
Real-Time Algorithms for
High Dynamic Range Video

Inauguraldissertation zur Erlangung
des akademischen Grades

eines Doktors der Naturwissenschaften
der Universität Mannheim

vorgelegt von

Dipl. Inf. Benjamin Guthier
aus Schwetzingen

Mannheim, 2012

Dekan: Prof. Dr. Heinz Jürgen Müller, Universität Mannheim
Referent: Prof. Dr. Wolfgang Effelsberg, Universität Mannheim
Korreferent: Prof. Dr. Jürgen Hesser, Universität Heidelberg

Tag der mündlichen Prüfung: 27. Juni 2012

Danksagungen

An dieser Stelle möchte ich all denjenigen danken, die mich bei und während der Entste-
hung dieser Arbeit unterstützt haben. Als erstes sei mein Doktorvater Prof. Wolfgang
“Effels” Effelsberg genannt, der mir die Möglichkeit zur Promotion an seinem Lehrstuhl
gegeben hat. Dank seiner sehr herzlichen Art und seiner schier unerschöpflichen Geduld,
war meine gesamte Promotion eine überaus positive Erfahrung – wenn auch nicht immer
alles glatt lief (siehe Leiterplatten-Projekt. . .). Durch den Wechsel auf die Landesstelle
später schaffte es Prof. Effelsberg, mein Interesse an der Lehre zu wecken, und beein-
flusste damit maßgeblich meine Entscheidung, weiterhin an der Uni zu bleiben.
Außerdem möchte ich meinen lieben Kollegen danken, die in all der Zeit für ein aus-
gesprochen angenehmes Arbeitsklima gesorgt haben (danke Mino!). Die Stimmung am
Lehrstuhl war immer sehr freundschaftlich und ermöglichte dadurch eine gute Zusam-
menarbeit an diversen Papern, von der am Ende alle profitieren konnten. Besondere
Erwähnung verdient mein Kollege Stephan, der für mich vor allem am Anfang, aber
auch später noch ein Mentor war, der mir immer wieder nützliche Tipps zum wis-
senschaftlichen Arbeiten geben konnte.
Ganz besonderer Dank gilt meinen Eltern Manfred und Annette. Ihre immer währende
Unterstützung ermöglichte mir zunächst das Studium und dann später die Promotion.
Auf meine Eltern konnte ich mich bisher mein gesamtes Leben lang bedingungslos ver-
lassen. Ihrer Erziehung und Fürsorge schreibe ich einen großen Teil meines Erfolges bei
der Promotion zu. Es tut gut zu wissen, dass sie jetzt sehr stolz auf mich sind!
Wenn auch nicht direkt an meiner Doktorarbeit beteiligt, möchte ich hier noch meine
langjährigen Freunde erwähnen. Das sind vor allem mein bester Kumpel Rene, die Sveni
und die Rini und der gesamte Treff. Danke, dass ihr es so lange mit mir ausgehalten
habt! Ich hab euch alle lieb!

i

ii

Abstract

A recurring problem in capturing video is the scene having a range of brightness values
that exceeds the capabilities of the capturing device. An example would be a video
camera in a bright outside area, directed at the entrance of a building. Because of
the potentially big brightness difference, it may not be possible to capture details of the
inside of the building and the outside simultaneously using just one shutter speed setting.
This results in under- and overexposed pixels in the video footage. The approach we
follow in this thesis to overcome this problem is temporal exposure bracketing, i.e., using
a set of images captured in quick sequence at different shutter settings. Each image
then captures one facet of the scene’s brightness range. When fused together, a high
dynamic range (HDR) video frame is created that reveals details in dark and bright
regions simultaneously.
The process of creating a frame in an HDR video can be thought of as a pipeline where
the output of each step is the input to the subsequent one. It begins by capturing a set of
regular images using varying shutter speeds. Next, the images are aligned with respect
to each other to compensate for camera and scene motion during capture. The aligned
images are then merged together to create a single HDR frame containing accurate
brightness values of the entire scene. As a last step, the HDR frame is tone mapped in
order to be displayable on a regular screen with a lower dynamic range.
This thesis covers algorithms for these steps that allow the creation of HDR video in
real-time. When creating videos instead of still images, the focus lies on high capturing
and processing speed and on assuring temporal consistency between the video frames. In
order to achieve this goal, we take advantage of the knowledge gained from the processing
of previous frames in the video. This work addresses the following aspects in particular.
The image size parameters for the set of base images are chosen such that only as little
image data as possible is captured. We make use of the fact that it is not always necessary
to capture full size images when only small portions of the scene require HDR. Avoiding
redundancy in the image material is an obvious approach to reducing the overall time
taken to generate a frame. With the aid of the previous frames, we calculate brightness
statistics of the scene. The exposure values are chosen in a way, such that frequently
occurring brightness values are well-exposed in at least one of the images in the sequence.
The base images from which the HDR frame is created are captured in quick succession.
The effects of intermediate camera motion are thus less intense than in the still image
case, and a comparably simpler camera motion model can be used. At the same time,
however, there is much less time available to estimate motion. For this reason, we use a
fast heuristic that makes use of the motion information obtained in previous frames. It

iii

is robust to the large brightness difference between the images of an exposure sequence.
The range of luminance values of an HDR frame must be tone mapped to the displayable
range of the output device. Most available tone mapping operators are designed for still
images and scale the dynamic range of each frame independently. In situations where
the scene’s brightness statistics change quickly, these operators produce visible image
flicker. We have developed an algorithm that detects such situations in an HDR video.
Based on this detection, a temporal stability criterion for the tone mapping parameters
then prevents image flicker.
All methods for capture, creation and display of HDR video introduced in this work have
been fully implemented, tested and integrated into a running HDR video system. The al-
gorithms were analyzed for parallelizability and, if applicable, adjusted and implemented
on a high-performance graphics chip.

iv

Zusammenfassung

Wenn eine Szene stärkere Helligkeitsunterschiede aufweist als eine Kamera aufzeichnen
kann, führt dies oft zu Problemen bei der Aufnahme. Ein typisches Beispiel ist eine
Videokamera, die im hellen Bereich vor einem Gebäude aufgestellt und auf dessen Ein-
gang gerichtet wird. Aufgrund der potentiell großen Helligkeitsunterschiede kann es
unmöglich sein, Details aus dem Inneren und dem Äußeren des Gebäudes gleichzeitig
unter Verwendung von nur einer Belichtungszeit zu erfassen. Dies führt zu unter- und
überbelichteten Pixeln im Videomaterial. Zur Lösung dieses Problems wird in der vor-
liegenden Arbeit das so genannte “Temporal Exposure Bracketing” verwendet. Dabei
wird eine Serie von Bildern mit unterschiedlichen Belichtungszeiten in schneller Folge
aufgenommen. Jedes einzelne Bild enthält dann einen Teil der gesamten Helligkeits-
spanne der Szene. Durch Verschmelzen der Bildserie entsteht ein High-Dynamic-Range-
Bild (HDR-Bild), in dem sowohl Details der dunklen als auch der hellen Bereiche gleich-
zeitig zu erkennen sind. Schnelles, wiederholtes Aufnehmen solcher HDR-Bilder führt
dann zu einem HDR-Video.
Der Ablauf zur Erzeugung eines Einzelbildes in einem HDR-Video entspricht einer Pipe-
line, bei der die Ausgabe jedes Teilschritts die Eingabe des nachfolgenden darstellt. Die
Pipeline beginnt mit der Aufnahme einer Serie von gewöhnlichen Bildern unter vari-
ierender Belichtungszeit. Als nächstes werden die Bilder aufeinander ausgerichtet, um
zwischenzeitliche Bewegung der Kamera und der Szene auszugleichen. Die ausgerichteten
Bilder werden dann verschmolzen, wodurch ein HDR-Einzelbild entsteht, das genaue Hel-
ligkeitswerte der gesamten Szene enthält. Zum Schluss wird ein Tone-Mapping-Operator
auf das HDR-Bild angewendet, um es auf einem Bildschirm mit niedrigerer Dynamic
Range anzeigen zu können.
In dieser Arbeit werden Algorithmen für die genannten Teilschritte vorgestellt, die es
ermöglichen, ein HDR-Video in Echtzeit zu erzeugen. Im Gegensatz zur Erzeugung
von Standbildern, liegt bei der Erzeugung von HDR-Videos der Schwerpunkt auf einer
hohen Aufnahme- und Verarbeitungsgeschwindigkeit. Außerdem muss zeitliche Konsis-
tenz zwischen den Videobildern gewährleistet werden. Um diese Ziele zu erreichen, wird
das Wissen der vorangegangenen Videobilder genutzt. Die Arbeit widmet sich den im
Folgenden beschriebenen Aspekten.
Die Parameter, die den aufzunehmenden Bildbereich spezifizieren, werden so gewählt,
dass so wenig zusätzliches Bildmaterial wie möglich aufgenommen werden muss. Dabei
wird von der Tatsache Gebrauch gemacht, dass nicht immer komplette Bilder benötigt
werden, wenn nur ein kleiner Teil der Szene schlecht belichtet ist. Redundanz im Bild-
material zu vermeiden ist ein naheliegender Ansatz zur Reduzierung der zur HDR-

v

Bilderzeugung benötigten Zeit. Auf Basis der vorherigen Videobilder wird die Hel-
ligkeitsverteilung der Szene analysiert. Die Belichtungszeiten für die nächste aufzuneh-
mende Bildserie werden so gewählt, dass häufig auftretende Helligkeitswerte in min-
destens einem Bild der Serie gut belichtet werden.
Die Belichtungsreihe, aus der das HDR-Videobild erstellt wird, wird in schneller Folge
aufgenommen. Die durch zwischenzeitliche Kamerabewegung entstehende Verschiebung
ist deshalb weniger stark ausgeprägt als dies bei HDR-Standbildern der Fall ist. Es
genügt daher, ein vergleichsweise einfaches Bewegungsmodell für die Kamera zu verwen-
den. Gleichzeitig steht jedoch weniger Zeit für die Bewegungsschätzung zur Verfügung.
Aus diesem Grund wird eine schnelle Heuristik verwendet, die sich der Bewegungsinfor-
mation aus vorangegangenen Videobildern bedient. Sie ist robust gegenüber den starken
Helligkeitsunterschieden zwischen den Bildern einer Belichtungsreihe.
Die hohe Spanne an Helligkeitswerten, die in einem HDR-Bild enthalten sind, muss durch
Tone Mapping auf den darstellbaren Bereich eines Ausgabegerätes abgebildet werden.
Die meisten existierenden Tone-Mapping-Operatoren wurden für Standbilder konzipiert
und nehmen diese Abbildung für jedes Videobild einzeln vor. In Situationen, in denen
sich die Helligkeitsverhältnisse der Szene rapide ändern, kann durch Verwendung von
Standbildoperatoren ein Bildflackern entstehen. Im Rahmen dieser Arbeit wurde ein
Verfahren entwickelt, das solche Situationen in einem HDR-Video erkennen kann. Ein
zeitliches Stabilitätskriterium wird verwendet, um Flackern im Video zu vermeiden.
Alle Verfahren zur Aufnahme, Erzeugung und Anzeige von HDR-Videos, die in dieser
Arbeit vorgestellt werden, wurden vollständig implementiert, getestet und zu einem
lauffähigen HDR-Video-System integriert. Die Algorithmen wurden hinsichtlich Paral-
lelisierbarkeit untersucht und, falls zutreffend, angepasst und für eine leistungsfähige
Grafikkarte implementiert.

vi

Contents

List of Figures xi

List of Tables xiii

Nomenclature xv

1 Introduction 1

2 Fundamentals and Earlier Work 5

2.1 Light and Color . 5

2.1.1 Measuring Light . 5

2.1.2 Representing Color . 8

2.2 The HDR Pipeline . 11

2.3 Image Capture . 14

2.3.1 Temporal Exposure Bracketing 14

2.3.2 Beam Splitting Devices . 15

2.3.3 Finding Good Exposure Values 16

2.3.4 Direct HDR Capture . 17

2.4 Image Registration . 18

2.4.1 Feature-based Registration . 20

2.4.2 Intensity-based Registration . 23

2.4.3 Ghost Removal . 29

2.5 HDR Stitching . 31

2.5.1 Estimating the Camera Response Function 32

2.5.2 Weighting Functions . 35

2.6 Tone Mapping and Display . 36

2.6.1 HDR Display Systems . 37

2.6.2 Still Image Tone Mapping Operators 38

2.6.3 Tone Mapping for Video . 41

vii

3 System Overview 43
3.1 LDR Image Capture . 43

3.1.1 Capturing with Partial Re-Exposures 44
3.1.2 Determining Optimal Shutter Sequences 45

3.2 Histogram-based Image Registration . 45
3.3 HDR Stitching . 46
3.4 Flicker Reduction in Tone Mapped HDR Videos 46

4 Capturing with Partial Re-Exposures 47
4.1 Properties of “True Partial Scan” . 47

4.1.1 Parameters and General Rules . 47
4.1.2 Estimating Capture Costs . 49

4.2 The Partial HDR Algorithm . 50
4.2.1 Determining ROIs for Re-Exposure 51
4.2.2 Setting the Initial Shutter . 52
4.2.3 Implementation Issues . 54

4.3 Experimental Results . 55
4.4 Conclusions . 58

5 Optimal Shutter Speed Sequences 59
5.1 Contribution Functions and Log Radiance Histograms 59
5.2 Optimal Shutter Sequence . 61

5.2.1 Stop Criteria . 63
5.2.2 Adapting to Brightness Change 64
5.2.3 Avoiding Flicker . 65
5.2.4 Reducing the Image Size . 66

5.3 Experimental Results . 67
5.3.1 Subjective User Study . 67
5.3.2 Objective Measurements . 69

5.4 Conclusions . 76

6 Histogram-based Image Registration 77
6.1 Mean Threshold Bitmap . 78
6.2 Row and Column Histograms . 79
6.3 Kalman Filtering . 80
6.4 Experimental Results . 81

6.4.1 Setting the Parameters . 83
6.4.2 Evaluation . 83

6.5 Conclusions . 85

7 Flicker Reduction in HDR Videos 87
7.1 Flicker Detection . 87
7.2 Flicker Reduction . 90
7.3 Experimental Results . 93

7.3.1 Subjective Flicker Detection . 93

viii

7.3.2 Setting the Parameter k . 95
7.3.3 Computational Effort of Flicker Reduction 97

7.4 Conclusions . 99

8 GPU Implementation 101
8.1 Considerations for a Parallel Implementation 101
8.2 Parallelizability of the HDR Pipeline . 104
8.3 Parallel Implementation . 106

8.3.1 Normalized Cross Correlation . 107
8.3.2 Bayer Pattern Interpolation . 107
8.3.3 Color Conversion . 108
8.3.4 Brightness Histogram . 108
8.3.5 Row and Column Histogram . 109
8.3.6 HDR Stitching . 110
8.3.7 Minimum, Maximum, Average . 110

8.4 Experimental Results . 111
8.4.1 Analysis of the Capturing Time 111
8.4.2 Analysis of the Processing Time 112
8.4.3 Performance in a Realistic Scenario 113

8.5 Conclusions . 116

9 Video Automatic Optical Inspection 119
9.1 Parameters of the System . 121

9.1.1 System Overview . 122
9.1.2 Hardware Parameters . 122
9.1.3 Application Parameters . 123
9.1.4 Adjustable Parameters . 124
9.1.5 Further Considerations . 126
9.1.6 Our Choice of Parameters . 126

9.2 Capturing Videos for Inspection . 127
9.2.1 Coordinate Systems and Transformations 128
9.2.2 Camera Calibration . 129
9.2.3 Image Registration for Video-AOI 130
9.2.4 Using Videos for Inspection . 133
9.2.5 Capturing HDR Video in a Video-AOI System 134

9.3 Experimental Results . 135
9.4 Conclusions . 136

10 Conclusions and Outlook 137

References 141

ix

x

List of Figures

1.1 Comparison: overexposed, underexposed and HDR image 2

2.1 Spectral sensitivity to brightness . 8
2.2 Spectral sensitivities of the three cone cell types 10
2.3 Bayer color filter array . 11
2.4 HDR Pipeline . 12
2.5 SUSAN corner detector . 21
2.6 Example for RANSAC . 24
2.7 Ghosting artifact . 30
2.8 Four camera response functions . 33
2.9 Pixel weighting functions . 36

3.1 Overview of the HDR video system . 44

4.1 Capture time with respect to ROI height 49
4.2 Illustration of the partial HDR algorithm 50
4.3 Histogram of an HDR frame . 53
4.4 Log histogram of an HDR frame . 53
4.5 Interleaving capturing and image analysis 54
4.6 Test scenarios for partial re-exposures . 56

5.1 Weighting function used in our experiments 60
5.2 Example of a tone mapped HDR image. 61
5.3 Illustration of the optimal shutter algorithm 62
5.4 Adaptation of the shutter sequence to brighter scenes 64
5.5 Website for a subjective user study . 68
5.6 Scenarios and results for optimal shutter speeds 70

6.1 Mean threshold bitmap . 78
6.2 Test scenarios for histogram-based registration 82
6.3 Setting the parameters of histogram-based registration 84
6.4 Average registration error . 85
6.5 Time taken for registration . 86

7.1 Log average brightness over an HDR video 88

xi

7.2 Flicker in an HDR video . 89
7.3 Iterative brightness adjustment . 91
7.4 Smoothing brightness differences over several frames 92
7.5 Histogram of flicker frames over k . 95
7.6 Precision and recall of flicker detection 96
7.7 Comparison of different F -scores . 97
7.8 Average brightness before and after flicker reduction 98

8.1 Memory hierarchy in CUDA . 103
8.2 Parallel normalized cross correlation . 107
8.3 Thread Relocation . 108
8.4 Shared memory banks . 109
8.5 Processing time versus image height . 113
8.6 Processing time versus number of exposures 114
8.7 Four frames of a demo HDR video . 115
8.8 Capturing time over the course of an HDR video 116
8.9 Frame rate and processing time over the course of an HDR video 116
8.10 Fractional computation time of the HDR pipeline 117

9.1 Overexposed capacitor on a PCA . 121
9.2 Video-AOI prototype . 122
9.3 Calibration board . 129
9.4 Temporary images for inspection . 134
9.5 Capturing HDR video in a VAOI system 135

xii

List of Tables

2.1 Summary of radiometric and photometric quantities 6

4.1 Time saving using partial re-exposures 57
4.2 Influence of rmax on image quality and capture speed 57

5.1 Coverage values and determined shutter speeds 74
5.2 Average distance between shutter sequences 75

7.1 List of flickering frames . 94
7.2 Comparison of cross-validation results . 97

8.1 Subtasks of the HDR pipeline . 105

xiii

xiv

Nomenclature

A/D Analog-to-Digital

AOI Automatic Optical Inspection

CAD Computer-Aided Design

CC Cross Correlation

CCD Charge-Coupled Device

CFA Color Filter Array

CIE Commission Internationale de l’Eclairage

CPU Central Processing Unit

CRT Cathode Ray Tube

CUDA Compute Unified Device Architecture

DoF Degrees of Freedom

DR Dynamic Range

GPU Graphics Processing Unit

HDR High Dynamic Range

IIDC Instrumentation & Industrial Digital Camera

LCD Liquid Crystal Display

LDR Low Dynamic Range

LED Light-Emitting Diode

MSE Mean Squared Error

MTB Mean Threshold Bitmap

NCC Normalized Cross Correlation

ND Neutral Density

PC Personal Computer

PCA Printed Circuit Assembly

RAM Random Access Memory

RANSAC Random Sample Consensus

xv

RGB Red Green Blue

ROI Region of Interest

SIFT Scale-Invariant Feature Transform

SNR Signal-to-Noise Ratio

TM Tone Mapping

VAOI Video Automatic Optical Inspection

xvi

Chapter1
Introduction

One of the challenges in photography is finding suitable exposure values for given scenes.
Natural scenes often exhibit ranges of illumination values that exceed the capabilities of
the capturing device. This range of illumination values is often referred to as the dynamic
range (DR) of a scene or a device, respectively. One can imagine an entrance to a building
as seen in Figure 1.1. Because of the limited dynamic range of current imaging sensors,
it is not possible to properly expose the dark and the bright areas simultaneously in one
picture. Choosing a large aperture and a long exposure time would allow to faithfully
capture the inside of the building, but would lead to white saturated pixels in the outside
parts. Conversely, a small aperture and a short exposure time would reveal details of the
outside while the inside of the building would appear noisy and dark. A photographer
is thus confronted with the task of carefully adjusting the shutter speed and aperture so
that the focus of the scene is well-exposed. This is often done at the expense of the less
relevant aspects of the given scene.
A term that is often used in this context is that of luminance. It is a photometric
quantity that correlates well with the appearance of illumination to a human observer.
It is given in the unit of candela per square meter cd/m2. Due to the adaptability of
the human eye, it is difficult to estimate luminance values subjectively. We thus give
an overview over some typical values here: A night scene with illumination levels from
only starlight to full moon exhibits luminance values ranging from 10−3 to 10−1 cd/m2.
Indoor lighting averages around 102 cd/m2, varying by about one order of magnitude
for home and office lighting. Daylight, ranging from an overcast to a clear sky, achieves
luminance levels from 103 to 105 cd/m2, with direct sunlight resulting in even higher
values.
For comparison, the human visual system can adapt to ten orders of magnitude of lumi-
nance variation, which is sufficient for all natural lighting conditions. Without adapting,
it can see five orders of magnitudes (or “log units”) of luminance in a single instant. A
typical digital imaging sensor, however, can only cover three orders of magnitude un-
der a single exposure setting. This is actually a step backwards from traditional film

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The inside of the building is much darker than the outside. There is
no shutter speed setting that exposes both correctly at the same time.
A longer shutter overexposes the outside (left) while a short shutter
underexposes the inside of the building (center). A solution to this
problem is merging the two images into one HDR image (right). Note
that due to the very poor dynamic range of print, a large portion of the
HDR effect may be lost in this illustration.

photography by one log unit. The dynamic range of current sensors may be sufficient
for scenes with single lighting conditions, like daylight only, but fail in situations where
multiple lighting conditions meet. Examples for such situations are numerous:

• A dark indoor scene with a window to the outside,

• monitoring the entrance to a building in a surveillance scenario,

• specular reflections of direct sunlight,

• the headlights of a car at night, . . .

In these cases, over- and underexposure is inevitable. In the digital image, overexposure
results in saturated pixels that are fully white. Contrast is completely lost. An under-
exposed pixel, on the other hand, is rarely entirely black. Instead, the low amount of
light hitting the surface of the sensor cell creates a response with an intensity lower than
the sensor’s noise threshold. The response becomes indistinguishable from noise, and
luminance information is lost as well. Therefore, the shutter speed and aperture setting
of a camera must be carefully chosen so that the light emitted from the scene creates a
sensor response within the usable range. This constitutes an imperfect mapping between
real luminance and sensor response. In high dynamic range (HDR) imaging, the goal
is to accurately measure physical luminance, that is, to get around the imperfect map-
ping, noise and saturation effects. An HDR image then becomes a digital representation
of physical quantities in the scene. This of course requires an imaging sensor with a
dynamic range at least as high as the scene’s DR.
As discussed earlier, most current sensors are inadequate for capturing high dynamic
range scenes in a single exposure. A possible solution to this problem is using multiple
exposures, i.e., capturing images in a quick sequence and varying the shutter speed
setting with each shot. The result is a sequence of images with varying brightness levels.
Each exposure then contains details in a different luminance range. As long as a pixel is
not too dark and not too bright in at least one of the images in the sequence, it conveys

3

information about the luminance of the corresponding point in the scene. This can be
assured by capturing enough images to cover the full dynamic range. Merging them
together results in a single HDR image, which faithfully reproduces dark and bright
objects at the same time (see Figure 1.1, right image). This approach can be extended
to video by reiterating the process of capturing an image sequence and merging it into
an HDR video frame. Given that the rate at which the camera produces images is fast
enough and the processing power is sufficient to merge images quickly, HDR videos can
be created and displayed in real-time.

There are a number of issues to be considered when putting the above approach into
practice. Most of them revolve around capturing and processing time. A typical rate
to play back a video is 25 frames per second. So creating 25 HDR frames per second
should be the goal of HDR video. Assuming that an HDR image can be created from
four exposures, a camera would need to capture 100 exposures per second. In addition
to this being a challenge for the image sensor and its data interface, there is only one
hundredth of a second left for exposing each image. For this to be enough, a lens with a
large aperture and possibly an increased gain is required. It is also likely that the camera
or the objects in the scene move while acquiring the sequence of exposures. In order to
merge them together, the intermediate camera and scene motion must be compensated.
Otherwise there would be motion blur or ghosting artifacts. This motion compensation is
a computationally costly step. Once the images are aligned, they can be merged together
into an HDR frame, which is another costly operation. The dynamic range limitation of
imaging sensors compared to the real world is also a problem for displays. Current LCD
screens are insufficient for displaying the luminance range of real world scenes. The HDR
image which represents real luminance values thus needs to be adapted to the display
conditions. The process of compressing an HDR image to be displayable on a regular
screen is called tone mapping. Depending on the desired output quality, this process can
be computationally expensive, too.

Producing 25 HDR frames per second means that there are only 40 ms of processing
time available for each frame. Capturing the low dynamic range exposures, aligning and
merging them and then tone mapping the result for display thus needs to be performed
within 40 ms. Considering this, it becomes apparent that there is a need for fast HDR
algorithms to create HDR videos in real-time. Contrary to capturing HDR still images,
temporal consistency becomes an issue here. To prevent artifacts like flickering, the
parameter set that is used for capturing and processing a frame should not differ by
too much from its predecessor. Parameters may only be changed smoothly. There are,
however, also some benefits of capturing videos over still images. Most notably, one can
take advantage of knowledge from previous frames. For example, the known brightness
distribution of the previous frame can be analyzed to optimally estimate the sequence of
shutter values to use for the next. Motion compensation is also more robust when there
is information about the past trajectory of the camera.

This work focuses on creating high dynamic range video in real-time. It contains im-
provements to existing HDR approaches as well as novel algorithms to speed up the
HDR capturing process. For this purpose, the advantage of prior knowledge from previ-
ous frames is exploited, and the newly arising problem of temporal consistency is tackled.

4 CHAPTER 1. INTRODUCTION

The thesis is structured as follows. Chapter 2 gives a technical introduction to HDR
imaging, including existing approaches for capturing, motion compensation, HDR frame
creation, and tone mapping. Chapter 3 then gives an overview of the high dynamic
range video system presented in this thesis. The subsequent chapters describe our novel
techniques for capturing LDR image sequences (4 and 5), compensating the interme-
diate camera motion (6), and reducing the visibility of flicker after tone mapping (7).
Implementation-specific details and a performance evaluation of the HDR video system
are presented in Chapter 8. HDR video can be applied in the context of automatic op-
tical inspection of printed circuit boards. This is demonstrated in Chapter 9. Chapter
10 concludes the thesis and gives an outlook on future work.

Chapter2
Fundamentals and Earlier Work

2.1 Light and Color

2.1.1 Measuring Light

There are two scientific domains that are concerned with measuring quantities of light.
Radiometry measures electromagnetic waves in general, with visible light being a small
part of the spectrum. Photometry, on the other hand, is specific to visible light and its
intensity as perceived by humans. It is strongly centered around human vision. Both
fields play an important role in HDR imaging. An HDR image contains real-world light
values. They represent the scene as it really is. This is in contrast to regular images
which store values that are specific to a particular capturing or target device. As an
example, a pixel with a byte value of 150 appears to have different intensities depending
on the type of display and contrast settings used, whereas a luminance value of 100
cd/m2 is always the same. The main goal of HDR imaging is to accurately measure light
in the scene by overcoming the inadequacies of the measuring sensor.
We start by discussing radiometric quantities and derive their photometric equivalents
in the second half of this section. The quantities of both domains are summarized in
Table 2.1. The most basic quantity to measure is radiant energy. It is the energy of an
electromagnetic wave which is measured in joule (J). It is denoted by Qe. The subscript
e indicates that it is a radiometric quantity. Because electromagnetic waves propagate
through space, one can measure the flow of radiant energy per time interval. This flow is
called radiant flux or more commonly radiant power (Pe). Its unit is joule per second or
watt (W). If one is interested in the amount of light incident on a surface, the amount of
radiant energy per time unit and per unit of area may be measured. In other words, it is
the total radiant flux hitting a surface, divided by its area. This is known as irradiance
(Ee), and the unit is W/m2.
Solid angles in space are measured in steradians (sr). They describe two-dimensional
angles and are the extension of radians to three-dimensional space. One steradian is

5

6 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

Domain Quantity Symbol Unit

Radiometry

Radiant energy Qe J (joule)
Radiant power Pe J/s = W (watt)
Irradiance Ee W/m2

Radiance Le W/(m2sr)

Photometry

Luminous power Pv lm (lumen)
Illuminance Ev lm/m2 = lx (lux)
Luminous intensity Iv lm/sr = cd (candela)
Luminance Lv lm/(m2sr) = cd/m2

Table 2.1: Summary of all radiometric and photometric quantities relevant to this
thesis.

defined as the two-dimensional angle that covers a unit area on the surface of a sphere
with a radius of 1. As an example, the sun as seen from the earth covers a solid angle
of 6 · 10−5 sr in the sky. A full sphere with radius 1 has an area of 4π, so 4π steradians
represent the concept of “in all directions” in 3D just like 2π radians or 360◦ represent
the same in 2D. Now, if we only consider the portion of light incident on a surface that
arrives from a particular direction, we can divide the irradiance of the surface by the
solid angle of the directions it comes from. The resulting radiometric quantity is called
radiance (Le) which is measured in W

m2sr
. Radiance is important in the context of image

formation. A pixel on an imaging sensor has a fixed surface area. The lens and the
aperture of the camera limit the solid angle from which light can reach the sensor. The
shutter speed setting determines how long radiant flux is integrated in the sensor cell.
At the end of the integration phase, the accumulated radiant energy Qe is converted into
a voltage and read out. Putting it all together, it can be said that a sensor measures
the radiance Le in the scene, integrated over the surface area A of a pixel, the solid
angle Ω of the aperture, and the exposure time t. This is expressed in the measurement
equation [66]. In simplified terms, it states that a camera measures

Qe = Le A Ω t. (2.1)

The measured radiant energy is converted into a voltage, digitized and eventually stored
as a pixel value.
In high dynamic range imaging, pixel values are converted back into real-world radiance.
The exact values for the pixel surface area and the solid angle of the aperture are generally
unknown, but assumed to be constant. Without prior calibration, the real-world values
obtained by inverting the image formation process thus only represent radiance up to
an unknown scale. This is sufficient for our purpose. Yet, it must be kept in mind
that when “radiance” is mentioned in this thesis, it refers to a quantity that is merely
proportional to radiometric radiance where the scaling factor is unknown. Furthermore,
if the aperture is fixed, irradiance is proportional to radiance (LeΩ = Ee). Since we are
only interested in radiance up to an unknown scale factor, these two quantities are used
interchangeably unless their distinction is crucial in the context.
The quantities of radiometry presented so far have the subscript e to denote that they are

2.1. LIGHT AND COLOR 7

radiometric values. They may be measured for each wavelength of the electromagnetic
spectrum individually. In that case, the additional subscript λ specifies the wavelength.
For example, the total irradiance Ee on a surface may be calculated by summing up all
wavelengths λ of light incident to a surface. Since irradiance for each wavelength Ee,λ is
a continuous function, this is expressed as an integral:

Ee =

∫
Ee,λ dλ. (2.2)

The human eye is only sensitive to a small range of wavelengths called visible light. The
sensitivity also strongly varies with wavelength. It is blind to electromagnetic waves
outside the range of approximately 400 to 700 nanometers, with a peak sensitivity at
555 nm (green light). This is expressed accurately by the luminosity function shown
in Figure 2.1 which was standardized by the Commission Internationale de l’Eclairage
(CIE). It represents the spectral sensitivity V (λ) to light of a certain wavelength λ of a
“standard observer” averaged over a large number of test subjects. Two surfaces having
the same irradiance calculated over the entire spectrum thus do not necessarily appear to
have the same brightness to a human observer. Due to the varying spectral sensitivity,
a surface lit by blue light appears darker than one lit by green light of the same radiant
power. In order to estimate the perceived brightness of a surface, the spectral irradiance
Ee,λ needs to be weighted with the sensitivity function V (λ). This perceived brightness
of a surface is called illuminance (Ev). The subscript v denotes that it is photometrically
weighted. It is computed as

Ev =

∫ 830

380

Ee,λV (λ)dλ. (2.3)

In the same way, each radiometric quantity can be weighted to obtain a corresponding
photometric value which expresses the same concept, but specific to human perception.
One of the basic units in photometry is the lumen (lm) expressing luminous power. It
corresponds to radiant power. Illuminance is derived from luminous power and has the
unit lm/m2 = lx (lux). Illuminance is the quantity that most closely resembles the
concept of subjective brightness. The photometric equivalent of radiance is luminance,
which is luminous power per unit area arriving from unit solid angle. Its unit is lm

m2sr
,

which is equivalent to the more common unit candela per square meter cd/m2 (lm/sr =
cd).
It should be noted that imaging sensors have a sensitivity that varies with wavelength,
too. Their sensitivity curve generally differs from the V (λ) curve of the CIE human
standard observer and is often supplied in the documentation. Hence, a sensor also
measures spectrally weighted radiance, similar to the concept of luminance. However,
this circumstance is mostly ignored in the literature on HDR imaging, and uniform
sensitivity is assumed so that radiometric radiance can be measured.
A central concept used throughout this thesis is that of dynamic range. It is the ratio
between the highest and the lowest value a signal can take on. Although it is defined
for many types of signals like sound or voltage levels, we exclusively use the term in
the context of light. As a ratio, the dynamic range is unitless. It is often expressed in

8 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

350 400 450 500 550 600 650 700 750 800

Se
ns

iti
vi

ty

Wavelength [nm]

V()λ

Figure 2.1: Relative sensitivity V (λ) of the human eye to light of a specific wave-
length λ. This luminosity function is standardized by the CIE.

decibel (dB), as orders of magnitude (i.e., powers of ten) or in stops (i.e., powers of two).
When decibel are used to express the dynamic range of radiance values, the following
convention is used:

DRdB = 20 log10

(
Le,max
Le,min

)
. (2.4)

Dynamic range can be determined for the radiance values present in a scene, the cap-
turable range of a camera, or a display output range. As an example, an LCD screen
with a dynamic range of 1000:1 spans three orders of magnitude of radiance levels, which
corresponds to 60 dB or roughly 10 stops. It is important to not mistake the contrast
ratio of a television set given by the manufacturer for true dynamic range. Such values
are often inflated by employing non-standardized measurement methods for marketing
purposes.
Dynamic range is often erroneously represented as a number of bits. This representation
confuses the ratio of radiance levels, i.e., the total range of physical values, with the
number of quantization levels used for digitization of the range. Nevertheless, it is often
desirable to store high dynamic range values with a higher number of bits. Using three
16 or 32-bit floating point values to store the red, green and blue component of an HDR
pixel or storing 8 bits for the mantissa of each component and 8 bits for a common
exponent are typical data formats. See the Radiance Picture Format introduced in [122]
and the OpenEXR file format [14] for details.

2.1.2 Representing Color

What we perceive as color is actually the wavelength of light on a physical level. For
instance, a wavelength of 460 nm is perceived as blue, 630 nm as red, and so on. In
practice, a real stimulus rarely consists of light of only one wavelength, but is a mix of

2.1. LIGHT AND COLOR 9

many. A stimulus can be represented mathematically as a continuous function of radiant
energy versus wavelength. The color appearance of a stimulus is then dominated by the
wavelengths with the most energy.
The plot of the luminous function in Figure 2.1 only shows the sensitivity of the human
eye to brightness. The human eye actually possesses three types of cone cells in the
retina that are susceptible to light. Each type has its peak sensitivity in a different
wavelength range. These ranges roughly correspond to the colors red, green and blue.
The three sensitivity functions r(λ), g(λ), and b(λ) are shown in Figure 2.2. Our brain
can “guess” the spectral energy distribution Qλ of a light stimulus based on the three
scalar responses R, G, and B it receives from the three cone cell types. Mathematically,
a cone cell’s response to a given stimulus Qλ is calculated as the inner product between
the stimulus and the sensitivity function:

R =

∫ 830

380

Qλr(λ)dλ (2.5)

G =

∫ 830

380

Qλg(λ)dλ (2.6)

B =

∫ 830

380

Qλb(λ)dλ (2.7)

The original stimulus can then be approximated from the response triplet (R,G,B), the
so-called tristimulus value of Q by a linear combination of the sensitivity functions with
the responses as coefficients:

Qλ ≈ r(λ)R + g(λ)G+ b(λ)B (2.8)

The human visual system estimates spectral power distributions from the responses of
cone cells that are sensitive to red, green and blue light. This is the reason why RGB is
the dominant color space to represent colors in devices that capture or reproduce images.
Despite the RGB color space being widely in use, a number of other color spaces exist
that are more suited for specific purposes. One notable example is the XYZ color space.
It is defined according to three artificial sensitivity functions x(λ), y(λ), and z(λ) that
differ from those of the retina. A light stimulus is now matched by a linear combination
with the coefficients (X, Y, Z). The sensitivity functions were defined in a way such that
the functions and the resulting tristimulus have a number of beneficial properties. One of
them is that the function y(λ) is identical to the spectral sensitivity V (λ) of the standard
observer (see Figure 2.1). Calculating the Y coefficient for a stimulus is thus equivalent
to photometric weighting (see Equation 2.3). This means that Y always represents the
perceived brightness of the stimulus. Another useful attribute of the XYZ color space is
the fact that a stimulus with unit radiant power over all wavelengths (perfect white) is
mapped to a tristimulus of (1, 1, 1).
Given the coefficients (R,G,B), the equivalent tristimulus in the XYZ color space can
be calculated by multiplying it with a conversion matrix. X

Y
Z

 =

 0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

 R
G
B

 (2.9)

10 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

350 400 450 500 550 600 650 700 750 800

Se
ns

iti
vi

ty

Wavelength [nm]

r()
g()
b()

λ
λ
λ

Figure 2.2: Spectral sensitivities r(λ), g(λ), and b(λ) of the three types of cone cells
in the human eye. The peak sensitivities correspond to the colors red,
green, and blue respectively.

The coefficients of this matrix can be found in [59].
Most of the processing done in HDR imaging is only concerned with changing brightness
levels while the color is kept the same. This gives rise to a color space that – unlike
XYZ – explicitly separates color from brightness information. One such color space
is the Yxy space, which is the one used in the HDR video system presented in this
thesis. It consists of one luminance (Y) and two chrominance channels (x and y) that
are independent of luminance. A color representation in Yxy can be derived directly
from the triplet (X, Y, Z) of a stimulus. The Y component already represents perceived
brightness, so it is the same in both color spaces. x and y can be calculated according
to the following formula:

x =
X

X + Y + Z
(2.10)

y =
Y

X + Y + Z
(2.11)

Unlike cone cells in the human retina, the pixels of a charge-coupled device (CCD)
sensor are color blind. They only have a single spectral response curve and thus only
yield a single response coefficient corresponding to brightness. This makes them unable
to distinguish between the wavelength distributions of two different light stimuli. A
common workaround for this problem is to place a color filter array over the sensor
surface. The filters only allow the transmission of light of a certain wavelength range
for each pixel. The wavelengths are chosen to match the human eye, that is, red, green,
and blue light. Each pixel underneath the filter then either measures the red, green, or
blue component of the incoming light. This is conceptually identical to capturing three
separate images, one for each color channel, at one third of the resolution and intensity.

2.2. THE HDR PIPELINE 11

Figure 2.3: A Bayer color filter array. Placing this pattern over a CCD sensor
makes the pixels sensitive to only a certain wavelength range while ev-
erything else is filtered out. A pixel then only measures either red,
green, or blue light. Full RGB values for each pixel are reconstructed
by interpolation.

Interpolation then allows the reconstruction of a full resolution RGB image. Figure 2.3
shows a specific color filter array that is widely used in practice. It is called Bayer filter.
50% of the pixels capture green, 25% red and 25% blue light. This imbalance mimics the
human visual system’s increased sensitivity to green light. As an example, the red Rx,y,
green Gx,y, and blue Bx,y components of a red pixel at position (x, y) can be obtained
in the following way:

Rx,y = Rx,y

Gx,y =
Gx−1,y +Gx+1,y +Gx,y−1 +Gx,y+1

4

Bx,y =
Bx−1,y−1 +Bx+1,y−1 +Bx+1,y+1 +Bx−1,y+1

4

2.2 The HDR Pipeline

The process of creating a frame in an HDR video can be thought of as a pipeline consisting
of the following steps: Setting camera parameters, capturing, color conversion, image
registration, HDR stitching, tone mapping and display. The steps must be performed
in order, and the output of each step is the input to the subsequent one. Statistical
information gathered during the creation of one frame may then be used to set the
camera parameters for the next to restart the pipeline. The HDR pipeline is depicted in
Figure 2.4.
The capturing of low dynamic range (LDR) images constitutes the first step. In a
situation where the dynamic range of the scene exceeds the one of the sensor, a single
image cannot represent the scene with sufficient accuracy. It is thus required to obtain

12 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

Scene

D
yn

am
ic

 R
an

ge

LDR Image Sequence

Images in Yxy Aligned Images

HDR Frame Displayable Frame

Capturing

C
o

lo
r

C
o

n
versio

n

Image
Registration

Tone
Mapping

B
ayer to

 Yxy

and Conversion
back to RGB

H
D

R

Stitch
in

g

Figure 2.4: The process of creating an HDR frame is a pipeline. It begins by cap-
turing multiple images of the scene. Each spans a different dynamic
range. They are then converted into the Yxy color space, registered and
stitched into an HDR frame. The dynamic range of the HDR frame is
compressed by tone mapping for display.

2.2. THE HDR PIPELINE 13

multiple exposures of the same scene, each covering a different radiance range. In our
work, we call this set of LDR exposures an image sequence. We exclusively use the term
in this context, and it is not to be confused with a sequence of HDR frames, which we call
HDR video. When creating an image sequence, the exposure values (e.g., shutter speed,
gain or sometimes aperture) must be chosen carefully. The simplest approach is using
a set of predefined values that vary by a constant factor. In photography, the factor is
usually expressed as a number of stops, which is a power of two. A more sophisticated
method would consider the minimum, maximum or average image brightness of the scene
or even its entire histogram to determine the exposure settings. It is also possible to
choose the parameters dynamically during image acquisition. A base image is captured
using default parameters and then analyzed. The analysis triggers the capturing of more
images if necessary which are analyzed in turn. This process ends when the full dynamic
range of the scene is covered.

The output of the capturing process is a set of LDR images captured at different points
in time using different exposure values. They are single channel color images obtained
from a sensor equipped with a color filter array. For easier processing, they are converted
into a different color format. The Yxy color space is suitable for this purpose, because it
separates a pixel’s brightness from the color information. Most of the subsequent steps
only work on the brightness channel while leaving colors unchanged.

If the camera is moved or the scene is dynamic, the images of the sequence do not show
exactly the same content. In order to establish pixel correspondence within the sequence,
the intermediate motion needs to be estimated and compensated. This process is called
image registration. There are two types of motion that can occur between two shots.
The first type is camera motion like pans, tilts and zooms which affect the entire image.
It can be globally estimated from corresponding points in the sequence. The second
type is motion of individual objects visible in the scene like cars or people. Estimating
it requires a more complex analysis of the scene and estimating a per-pixel flow. The
real-time constraints in the HDR video scenario rather suggest using a global motion
model that is fast to compute. The output of the image registration step is the original
sequence annotated with motion parameters for each exposure.

For each point in the scene, a set of corresponding pixels can be found in the registered
image sequence. Each pixel was taken under a different exposure setting, but all originate
from the same radiance value in the scene. The pixel values are noisy measurements of
the physical radiance under various conditions. As a rule of thumb, the brighter a pixel
appears without being saturated, the more accurately it measures radiance. This is
because a large portion of the image noise has a constant magnitude, which leads to a
higher signal-to-noise ratio for higher pixel values. The real radiance can be reconstructed
from a weighted average over all estimations, that is, all corresponding pixels. Doing
this for every point in the scene yields a full map of physical radiance values in the scene.
This radiance map is the resulting high dynamic range video frame.

In most cases, the radiance values contained in the HDR frame are not accurately dis-
playable on a regular screen. This becomes apparent when considering an HDR image
of a very bright spotlight. The comparably weak backlight of an LCD screen is most
likely unable to create the same amount of brightness. What is more, linearly scaling

14 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

the radiance map to the output range of the display yields unsatisfying results when the
dynamic range of the frame is much higher than that of the screen. It is thus desirable
to create a customized mapping between scene radiance and display pixel values. This
must be done in a way that keeps the visual appearance of the image on the screen
similar to the appearance of the real scene. This process is called tone mapping and is
the last step of the HDR pipeline before displaying the result.

2.3 Image Capture

The scenario assumed so far is that of capturing a video – or more specifically a single
video frame – of a scene which has a higher dynamic range than the camera. No matter
how the exposure parameters are set, there is always some under- or overexposure present
in the acquired image material. This section introduces techniques to overcome the
dynamic range limitation of an imaging sensor. Most of them revolve around taking
several LDR images while varying the exposure parameters. They mainly differ in how
the images are obtained. Each LDR image has different pixels well exposed. In the later
processing, only the “good” pixels are kept and the others are discarded. As long as the
exposure parameters are suitably chosen, at least one usable pixel is available for each
point in the scene.

The exposure of an image can be controlled in a number of ways. Adjusting the shutter
speed (also: “exposure time”) of a camera controls the time period over which its image
sensor is susceptible to incident light. The longer the shutter value is chosen, the more
light can enter the sensor cells, and the brighter the image appears. Long shutter speeds
can slow down the overall capturing process and increase the effect of motion blur.
Setting a gain value adjusts the amplification of the A/D converter that digitizes the
voltage in a sensor cell. Increasing gain makes the image brighter without increasing
capture time or adding motion blur. However, it comes at the cost of simultaneously
amplifying image noise. To reduce image noise at the expense of increased motion blur,
it is often sensible to pursue a shutter before gain policy, that is to first increase the
shutter value up to its maximum before increasing gain to obtain a brighter picture.
Both shutter and gain are controlled electronically and can thus be adjusted per-frame.
A more static way to control exposure is manually changing the aperture of the lens or
using a lens with different maximum aperture. Alternatively, so-called neutral density
(ND) filters can be placed in front of the lens to attenuate the incoming light. They are
called “neutral density”, because they ideally attenuate all wavelengths equally.

2.3.1 Temporal Exposure Bracketing

The most commonly used approach to capture LDR image sequences is temporal expo-
sure bracketing. It is also the approach we follow in our work. Multiple pictures are taken
in quick succession using a single camera. The exposure parameters for each image are
controlled by a PC to which the camera is connected, e.g., over a FireWire bus. It is only
feasible to adjust the dynamic parameters shutter speed and gain. They are transmitted

2.3. IMAGE CAPTURE 15

to the camera either as a list of parameters for an exposure sequence or individually. If
an entire sequence of parameters is transmitted, the camera loops through them while
continually capturing image sequences and sending them back to the PC. The advantage
of this mode of operation is that images can be captured by the camera and processed by
the PC asynchronously. On the other hand, triggering each shot separately gives more
fine-grained control over the parameters at the cost of dependency between capturing
and processing.

Taking multiple pictures at different points in time to create a single HDR frame has
obvious disadvantages. The most prominent one is the increase of overall capture time.
The frame rate of the HDR video is only a fraction of the camera’s capturing rate.
To overcome this disadvantage, a fast camera must be used. Another issue is scene or
camera motion between the shots. Images of the sequence no longer show the same
content, and motion compensation becomes necessary. The impact of motion artifacts
like ghosting is directly related to the camera’s frame rate. The less time the camera
takes to capture the sequence, the less ghosting occurs. Despite these drawbacks, the
low hardware requirements and costs, the easy setup and the high flexibility in choosing
exposure parameters make it a viable approach.

Examples where temporal exposure bracketing is used as a sub-part of an HDR image
or video creation technique are [17, 75, 76, 24, 82, 97, 60, 112, 88, 46].

2.3.2 Beam Splitting Devices

Another way of capturing an exposure sequence for an HDR frame is using multiple
cameras and a beam splitter. The incoming light of the scene is split up and redirected
towards the lenses of the cameras. Each camera sees the same image, but only at a
fraction of the original intensity. They are all connected to the same control unit and
synchronized, so that an entire sequence of images can be captured at once. The exposure
of each camera is adjusted individually so that the resulting sequence can be used to
create an HDR image. Here, it is possible to employ a combination of static and dynamic
exposure control. ND filters and different apertures can be used to control the exposure
offset between the cameras. Shutter or gain are then adjusted either individually for
each camera or globally to adapt to the brightness level of the scene.

The advantage of beam splitting capturing devices is that all images are taken at exactly
the same point in time under an identical perspective. This saves capturing time over
temporal bracketing, and no image registration is required. However, a beam splitting
apparatus is more expensive and more difficult to set up and calibrate than a single
camera. It is also more restricted in the number of exposures that are captured and
the choice of exposure values. Because the incoming light is divided among the imaging
sensors, more light sensitivity is required for each sensor. This necessitates more costly
lenses, more amplification or slower shutter speeds.

Publications that specifically use beam splitters to capture exposure sequences for HDR
include [57, 3, 125, 115].

16 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

2.3.3 Finding Good Exposure Values

An open question that is common to all multiple exposure capturing techniques is how
to set the exposure values for the given scene lighting and how many images to take.
In this context, only shutter speed and gain are considered, because they offer the best
adaptability.

At its core, HDR imaging is about reducing image noise, that is, to measure scene
radiance as accurately as possible. The accuracy is bounded by the limited dynamic
range of the imaging sensor. At the upper boundary, there is saturation of a sensor
cell, i.e., an image pixel. Above a certain brightness level, more photons arriving at
the cell no longer increase its charge, so that measuring the exact radiance becomes
impossible. Near the lower end of the dynamic range, the charge induced by incident light
is indistinguishable from noise in the circuitry. A large portion of the image noise (e.g.,
quantization noise, fixed pattern noise) is independent of the amount of light falling onto
the pixel. As a result, radiance is best measured in the upper segment of the sensor cell’s
operating range just below saturation. Here, the sensor achieves the best ratio between
the image signal and readout noise. So the goal is to control exposure in a way such that
every radiance range occurring in the scene is measured with a high signal-to-noise ratio
(SNR) in at least one of the images. Scene statistics like the minimum/maximum scene
radiance or the histogram of scene radiance [49] may be used as a basis to determine
exposure values.

As a general rule, averaging the signal from a higher number of images means less noise
in the resulting radiance map. However, as seen above, not all images contribute equally
well to the measurement of radiance (consider saturated or much too dark images). On
the other hand, capturing fewer images means saving capture time, so a compromise has
to be found. The problem is thus one of finding a set of exposure values that get the
most out of a certain number of images. This has been addressed in several published
works.

Barakat et al. [9] focus entirely on minimizing the number of exposures while covering
the entire dynamic range of the scene. Minimum and maximum of the scene’s irradiance
range are taken into account, and the least possible overlap of exposures is chosen. They
do not consider the SNR of the HDR result during the choice of exposure times, that
is, each pixel is considered to contribute the same amount to the result regardless of its
value. The algorithm is a fast heuristic suitable for real-time use.

In [19], the authors use a model of shot noise to determine the sequence of shutter
values producing the highest SNR for a given number of exposures. The shutter speeds
are obtained by solving a constrained optimization problem. For this purpose, a coarse
approximation of the scene irradiance histogram is used. The authors always use the
brightest pixel before saturation.

An approach to emulate an effective camera with a given response function and dynamic
range was published in [42]. In an offline process, a static table of exposure times is
created that spans the desired dynamic range. The static table prevents adaptation to
changes in scene brightness distribution, for example when large reflective surfaces like
cars appear.

2.3. IMAGE CAPTURE 17

A very recent method to determine noise-optimal exposure settings uses varying gain
levels [53]. For a given maximum sum of exposure times, increasing gain also increases
the SNR. The authors define SNR as a function over log radiance values. Only the
extrema of the scene’s brightness are considered. Computation of the exposure settings
is too expensive to be suitable in a real-time scenario.
The authors of [54] developed a theoretical model for photons arriving at a sensor pixel
by estimating the parameters of a Gamma distribution. From the model, exposure values
are chosen that maximize a criterion for recoverability of the radiance map. The focus
lies on the impact of saturated pixels on the HDR result.
In [58], an algorithm for estimating optimal exposure parameters from a single image
is presented. The brightness of saturated pixels is estimated from the unsaturated sur-
roundings. Using this estimation, the expected quality of the rendered HDR image for
a given exposure time is calculated. The exposures leading to the lowest rendering error
are chosen.

2.3.4 Direct HDR Capture

Instead of obtaining multiple exposures from a low dynamic range camera and combining
them in software, it is also possible to increase the dynamic range of the sensor. Doing
this increases the hardware cost, but allows direct capturing of HDR images. The dy-
namic range achieved by hardware solutions ranks somewhere between the four orders of
magnitude of a high quality LDR sensor and the nearly arbitrarily high DR of multiple
exposure approaches.
A CCD image sensor works in two phases: integration and read-out. During integration,
photons are collected and stored as electrons in the sensor cells. The length of this
phase is controlled by the shutter speed. In the read-out phase, the electronic charge is
transported out of the sensor and converted into a voltage by a charge amplifier. The
voltage is then quantized by an A/D converter and further processed.
The most effective approach to increasing a sensor’s DR is similar to capturing multiple
exposures, but on the sensor level [2, 72, 78, 126, 127]. The charge that is accumulated
in a cell is read out multiple times during integration in a non-destructive way. Each
reading then corresponds to a different exposure time. Alternatively, the charge can be
read out and reset multiple times (destructive reading) while remembering the number of
resets. This prevents saturation of the pixel. The readings obtained in this way are then
combined in hardware into a single value per pixel, resulting in an image with increased
dynamic range. As for temporal exposure bracketing in software, motion between the
read-outs remains an issue.
Another possibility to increase a sensor’s dynamic range is trading off spatial resolu-
tion for dynamic range. The authors of [86] place an array of ND filters over a high
resolution CCD sensor, similar to the Bayer pattern described earlier. Each pixel in
a 2 × 2 block is attenuated differently, leading to varying sensitivity to light. This is
comparable to simultaneously capturing four differently exposed images at one fourth
of the original resolution. Capturing simultaneously means that no image registration
is required. However, as with all approaches that work with ND filters, a large portion

18 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

of the incoming light is blocked and lost for measuring. This approach is extended to
filters with dynamically changeable density in [85].

A sensor design that differs from the multiple exposure techniques introduced so far was
presented in [15] and [22]. Instead of measuring charge accumulated in a set amount of
time, the sensor measures the time it takes for a cell to saturate. The time to saturation
is roughly inversely proportional to the radiance. Since the full capacity of a sensor cell
is used to measure this quantity, it is operated near the point of maximum SNR. The
highest radiance that can be detected depends on the resolution of the internal clock.
The lowest detectable radiance is limited by the maximum time to wait for saturation.
This time span corresponds to a shutter speed where even the darkest pixel in an image
would saturate.

Photocurrent induced by incoming light can be directly converted into a voltage instead
of integrating charge in a sensor cell. This is done in [61]. Logarithmic compression
during conversion gives the sensor a logarithmic response to light. This is an effect
similar to how the human eye perceives brightness. It achieves a natural extension of
the dynamic range. However, the compressed signal is very sensitive to noise introduced
in the later processing steps, and expensive high-precision circuitry is required. The
achieved SNR is actually worse than that of a regular sensor under low illumination.

2.4 Image Registration

The presented approaches for temporal exposure bracketing or multiple sensor read-
out sequentially capture image data with varying exposure parameters. For all these
approaches, motion that takes place between the shots is a problem and must be com-
pensated using image registration techniques. This section gives an overview of existing
techniques in general and those specific to the creation of HDR images and video in
particular.

Image registration – also called “image alignment” – is the process of establishing cor-
respondences between the pixels of two or more images. The goal is for each pixel in a
source image to find a corresponding pixel in the target image which represents the same
point in the scene. In the following, this is described for two images at a time. Multiple
images can be registered with respect to one chosen reference image or by aligning each
image with its predecessor.

Images can be taken under different viewing angles (e.g., to create panoramic images), at
different points in time (HDR from multiple exposures or long term medical studies), or
by different imaging sensors (multimodal image fusion). Combining them into a single
image without prior registration means merging images that do not show the same
content. This results in artifacts like ghosting around the borders of moving objects or
motion blur. In the context of HDR video, we are mostly concerned with merging images
taken in quick sequence from a slightly changing viewpoint. The difference between these
images that must be compensated is thus mainly due to motion that occurred in between
the shots – as opposed to changing lighting conditions or reflectance properties. Note
that the different brightness levels of the images are a intentional. They are not balanced

2.4. IMAGE REGISTRATION 19

during image registration but utilized during the following step of HDR stitching.

There exist a number of specialized image registration techniques for a multitude of appli-
cation scenarios. Each scenario brings different challenges: When creating a panoramic
image, the offsets in the source images are usually very large, and the overlap between
them is small. The source images are taken under arbitrary conditions. However, since
the output is meant to be viewed by humans, registration errors are not critical. This
changes when the source images capture parts of a printed circuit assembly (PCA) and
the merged image of the entire board is used for automatic optical inspection (AOI) [47].
Here, a high degree of accuracy is required, but a large amount of prior information is
available from the strictly controlled capturing conditions. In medical imaging, the im-
ages are often taken by devices with strongly varying characteristics, like x-ray computed
tomography and magnetic resonance imaging. Such images may show the same content,
but in an entirely different way. They may also be acquired over the course of several
months. The challenges specific to the HDR video scenario are the large difference in im-
age exposures making it difficult to detect correspondences, and achieving computability
in real-time. On the positive side, knowledge obtained from previous frames in the video
can be exploited, and when capturing at high frame-rates, motion has only little impact
on the images.

Motion occurring while capturing image sequences can be classified into two categories:
global camera motion and local object motion. Even though motion in practice is a mix
of the two types, they can each be treated separately. When the camera is kept static,
only motion of the objects in the scene remains. There may be walking people, moving
cars, or trees moving in the wind. Object motion is generally articulated, deformable,
and very difficult to model as it may come from a plenitude of sources. However, its
influence is limited to a local image area. Camera motion like pans and zooms, on
the other hand, have an impact on the entire image at once. This type of motion
is easily modeled by a small number of camera parameters. Mathematically, camera
motion can be expressed by a linear transformation between the coordinate systems of
the two considered images. Transforming a 2D pixel position from one image to its
corresponding position in the other image is done by multiplying the position vector by
a transformation matrix. Depending on the type of motion assumed, the transformation
matrix has a different number of degrees of freedom. Types of motion are: translation,
rotation, scaling, affine transformation and perspective transformation. If a camera with
a large focal length and a high frame rate is used, the camera motion between two frames
can be approximated by simple transformations like pure translation.

It is common to distinguish between two classes of image registration. They are feature-
based and intensity-based (or “dense”) registration and are discussed individually in the
following two sections. Methods in the former class first detect sets of notable points
– so-called feature points – that can be found in both images. A global transformation
is then estimated from the movement of the points between the images. Feature-based
approaches are best suited for deriving camera motion. They allow for large amounts
of motion, are fast to compute and robust to a certain amount of exposure change.
Intensity-based techniques, on the other hand, work directly on pixel values. They
compute a dense motion field with individual motion parameters for each block of pixels

20 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

or even each single pixel. Such motion is costly to compute, but achieves higher accuracy.
It is well suited for local object motion. In practice, methods from both classes can be
combined by first performing a feature-based global registration and then a pixel-based
refinement.

When object motion is not completely eliminated before merging images together, a type
of artifact called ghosting may appear in the final result. It is caused by a moving object
that is visible in more than one of the images, but located in a different position in each
of them. Without explicit ghost removal, the object then appears multiple times in the
fused image. Ghost removal can either be used to reduce the visibility of misalignment
after motion compensation or can replace object motion compensation completely. Ghost
removal approaches are discussed in Section 2.4.3.

2.4.1 Feature-based Registration

Feature-based registration is image alignment based on a set of interest points detected
in two images. It is performed in three separate steps: First, such points are detected
individually for each image. Then, correspondences between the points of the two images
are found. And lastly, motion parameters are estimated from the point correspondences.
Techniques used for each of the steps are introduced in the following.

Detecting Feature Points

Good feature points for registration should be recognizable even under changed imaging
conditions, and their position should be determinable accurately. The latter requirement
is obviously not met by unstructured, uniform areas. Even lines or edges only allow
for detecting motion perpendicular to their direction. Examples for good features are
unevenly textured areas, corners or T intersections. The decision whether an image area
is suited as a feature point is made locally on the pixel level.

One of the earliest automatic feature point detectors was published by Moravec in
1980 [84]. It is based on the assumption that interesting points exhibit strong inten-
sity variation in all directions. This is the case for corners, but not for lines which do not
vary along the edges. The detector considers pixel intensity differences in four directions
in a local window around each pixel position. The directions are: horizontal, vertical
and the two diagonals. Absolute intensity differences in these directions are summed
up over the entire window, yielding four values. Since good feature points should show
variation in all four directions, the pixel position is classified as a feature point if the
minimum of the four values exceeds a threshold.

The approaches published by Harris and Stephens [52] and by Shi and Tomasi [103] are
similar to each other in their working. Both define a virtual translational motion model.
For each pixel in an image, they set up a linear equation system with the translational
shift vector as free variable. The coefficients of the equation system contain values that
are derived from the image gradient. They are identical to the Hessian matrix at that
position. Solving the equations would yield an optimal translation vector. However,
the two approaches are only concerned with determining how suitable a location is for

2.4. IMAGE REGISTRATION 21

a)

b)

c)

Figure 2.5: The SUSAN corner detector inspects a circular area around a pixel.
The lower the fraction of pixels in the circle with the same color as the
center, the more likely it is to be a corner.

deriving a motion vector from it. Good features to track are those locations that allow
a stable solution of the linear equation system. They thus test how well-conditioned
the Hessian matrix is. In [103], a feature point is a location where the minimum of the
two eigenvalues of the matrix are both above a threshold. This is equivalent to saying
that the gradients in the window around the location are high and have more than
one preferred direction, i.e., the window contains a corner. [52] differs in that it uses a
different thresholding mechanism for the two eigenvalues and a more efficient calculation.
In [104], the SUSAN corner detector was published, which stands for “Smallest Univalue
Segment Assimilating Nucleus”. It considers sizes of areas of similar color. In order
to decide if a pixel position constitutes a feature point, it inspects a local circular area
around the pixel. It counts the number of pixels in the circle that have the same color
as the center pixel. If this number is close to the full area of the circle, then the pixel
must lie in a homogeneous image region and is thus not a good feature point (see Figure
2.5 a). For pixels lying on an edge, the neighboring pixels with the same color make up
approximately half the circle’s area (b). Only when the fraction of pixels with the same
color as the center pixel is minimal, it is likely to be located in a highly textured region
or at a corner and is thus chosen as a feature point (c).

Finding Correspondences

The result of the feature point detection step is two sets of feature positions, one for each
of the two images to be registered. It is now necessary to find correspondences between
the points in the two sets. A corresponding point pair consists of two feature points that
represent the same point in the scene. The two images were taken under similar, but not
identical conditions. If their exposure differs, a structured image area in one image may

22 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

become saturated in the other. Object motion between the shots may cause objects to
be no longer visible, partially occluded or deformed. As a consequence, the images do
not contain the exact same feature points, and matching becomes difficult.
The problem of finding correspondences can be subdivided into defining a suitable met-
ric for comparing feature points and deciding which points to compare. A feature point
can be characterized by using the intensity of the pixels in a local surrounding, or by
values derived from it. Examples for derived values are gradient intensity and orienta-
tion, texture parameters, or values determined during feature detection [73, 34, 99, 114].
The list of values characteristic to a feature point obtained in this way is called a fea-
ture descriptor ([80] gives a good overview of existing descriptors). Good metrics for
comparing the descriptors of two feature points are the mean squared difference and the
cross correlation. Both metrics may be normalized in order to be robust to brightness
variation.
In a simple case with only few detected features in each image, a brute force comparison
between the feature point sets may be a feasible approach. The chosen metric is evaluated
for the descriptors of every possible feature pair between the two sets. The best matching
pair is added to the list of correspondences and removed from the point sets. This is
repeated until one of the sets becomes empty or the score of the remaining matches falls
below a threshold.
In practice, feature descriptors are elements of a high-dimensional vector space and a
large number of features may be found. It is thus too costly to compute a matching
score for all possible combinations. Instead, it is more efficient to use hashing [102], to
organize the feature descriptors in data structures like k-dimensional trees [73, 98], or to
use nearest neighbor search algorithms [87].

Estimating Motion Parameters

A feature point correspondence (xi, x̂i), i = 1, ..,m describes the two pixel locations
xi and x̂i which an interest point in the scene takes on in two different images. The
difference in location is a result of motion occurring between the images. Since feature
points are sparse in the image, feature-based registration techniques can only be used to
estimate camera motion. So once a list of feature pairs has been established, a global
transformation matrix A modeling the camera motion is estimated. It is the matrix that
minimizes the mean squared distance between the points of the second image x̂i and
the transformed points of the first Axi. This is expressed by the following optimization
problem:

arg min
A

m∑
i=1

(Axi − x̂i)2 (2.12)

Note that this notation implies homogeneous coordinates to represent xi, and A is a 2×3
matrix. Minimization is done by taking the partial derivatives of the above term with
respect to the coefficients of A and setting them to zero. This yields one equation for
each degree of freedom (DoF) of the matrix. The minimum number of correspondences
required thus depends on the DoF of A. Solving the linear equation system results in
the optimal motion parameters between the two images.

2.4. IMAGE REGISTRATION 23

The method described here assumes affine motion with up to six DoF. This includes
translation, non-uniform scaling, rotation, and shear. If a full perspective transfor-
mation with eight degrees of freedom is assumed, the equation system derived from
the optimization problem becomes non-linear. This is due to the fact that the scalar
component of the homogeneous coordinates may now differ from 1, which necessitates
perspective division. Such a non-linear equation system can be solved numerically with
the Levenberg-Marquardt algorithm [70, 77]. It requires the computation of the Hessian
matrix and partial derivatives with respect to the transformation parameters.

So far, we have assumed that the detected point pairs (xi, x̂i) are correct matches and
represent a single feature point in the scene. This however is not always true in prac-
tice. Repetitive structures in images and deformable object motion can cause errors
in the matching process, leading to false correspondences – so-called “outliers”. They
indicate false motion. If included during the estimation of the transformation matrix,
outliers bias the result and lead to a registration mismatch. The negative effect of
outliers can be alleviated by a probabilistic technique called random sample consensus
(RANSAC) [32]. It randomly picks a small subset of the correspondences and uses it to
estimate a transformation matrix Ã. Using Ã, the distance d between the feature points
x̂i in the second image and the transformed points Ãxi of the first can be calculated as
d(xi, x̂i) = |Ãxi − x̂i| for each other pair that was not used in the estimation of Ã. If d
is smaller than a chosen threshold, the pair is considered to be an “inlier” that complies
with the motion Ã. The number of inliers is stored, and a new transformation matrix is
estimated from a different random subset of correspondences. This is repeated several
times. In the end, the subset leading to the highest number of inliers and all compliant
correspondences are used to calculate the final transformation matrix A. See Figure 2.6
for an illustration. The RANSAC approach leads to a correct estimate of motion with a
certain probability, which strongly depends on the ratio between inliers and outliers in
the correspondence set.

In addition to the individual methods described above, there exist complete systems for
feature detection, efficient matching of high-dimensional feature descriptors, parameter
estimation and outlier recognition. One prominent example is the scale-invariant feature
transform (SIFT) introduced in [73]. It has been used specifically to register exposure
sequences for HDR in [108].

2.4.2 Intensity-based Registration

The problem underlying intensity-based image registration is the same as in the feature-
based case. Two pictures of the same scene were taken at different points in time and
under slightly changed viewing conditions. The camera and scene motion that occurred
in between must be estimated in order to establish pixel correspondences between the
images. Rather than extracting feature points from the images, intensity-based methods
compare pixel values directly. These values can be adapted to the different exposures
of the images if necessary, they can be thresholded, or aggregated into various forms of
histograms. Depending on the particular method that is used, a global image transfor-
mation as above or a dense motion field on a pixel level or pixel block level is estimated.

24 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

(xi, xi)

|Ãxi – xi|

xi

xi

b)

a)

Figure 2.6: Example for RANSAC with one-dimensional points. The transforma-
tion matrix A describes a straight line. a) and b) are two guesses Ã
based on two randomly chosen point pairs. More of the point pairs fall
into the threshold distance of a). It is thus the better guess. All inliers
to a) are then used to estimate a final matrix A.

While a global transformation is fast to compute and suited for the real-time scenario
considered in this thesis, it only allows for compensating camera motion. A dense mo-
tion field, on the other hand, is more costly to compute and only adequate for smaller
amounts of motion, but achieves higher accuracy and provides a means of modeling
object motion. Pixel block-based methods which are widely used in video compression
make a compromise between the two by trading off estimation accuracy for computa-
tional efficiency.

Optical Flow

In general, the optical flow describes the movement of volume pixels along paths in three-
dimensional space. In image processing, the optical flow is limited to the projection of
the 3D motion to the 2D image plane. It is represented by a dense motion vector
field, which typically assigns a translational motion vector to each pixel in the image.
Mathematically, the intensity of a pixel in an image sequence is a function of position
and time. The value of a pixel at position (x, y) at time t can thus be expressed by
It(x, y). If a pixel travels along the motion vector (u, v) between time t and t+ 1, it can
be described by the following equation:

It(x, y) = It+1(x+ u, y + v). (2.13)

This equation means that radiance moves in a scene, but implicitly assumes that it
remains constant from one frame to the next. The assumption is violated by the presence

2.4. IMAGE REGISTRATION 25

of specular reflections whose intensity varies with the viewing angle and the angle of
incident light – both are usually ignored in this context.
The intensity of the displaced pixel at time t+ 1 can be approximated from the original
image by a first-order Taylor expansion ignoring the higher level terms

It+1(x+ u, y + v) ≈ It(x, y) +∇It(x, y) ·
(
u
v

)
+
∂It(x, y)

∂t
. (2.14)

Here, ∇It(x, y) is the gradient vector of the image. Substituting equation 2.14 into 2.13
and subtracting It(x, y) gives the gradient constraint equation [55]

∇It(x, y) ·
(
u
v

)
+
∂It(x, y)

∂t
= 0. (2.15)

It relates the unknown motion vector (u, v) to the image gradient and the temporal
derivative. The latter can be approximated by forward differences:

∂It(x, y)

∂t
≈ It+1(x, y)− It(x, y) (2.16)

The gradient constraint equation is one equation with two variables. It can therefore not
be solved uniquely. In particular, the first term in the equation becomes zero whenever
the motion vector is perpendicular to the image gradient, i.e., the motion is parallel to
an edge in the image. Only motion along the gradient direction can be detected. This
is known as the aperture problem which was first identified in [55]. It is alleviated by
not only considering a single pixel position (x, y), but weighting pixels in a local window
W centered around (x, y). Each pixel in the window provides one equation according to
2.15. Combining them leads to an overdetermined linear equation system in the variables
u and v. It can be solved by least-squares optimization, that is, finding a solution (u, v)
that minimizes the squared error averaged over all pixel positions (x′, y′) in the window
W :

arg min
(u,v)

∑
(x′,y′)∈W

g(x′, y′)

(
∇It(x′, y′) ·

(
u
v

)
+
∂It(x

′, y′)

∂t

)2

(2.17)

g is a weighting function (e.g., Gaussian) that controls the support of the pixels in the
window. The minimum can be found by computing the partial derivatives of the error
with respect to u and v, setting them to zero and solving the resulting linear equation
system. Repeating this for every pixel in the image produces a motion vector for every
location with sufficient structure, i.e., where the equation system is well-conditioned.
Using the square in the above minimization problem makes it prone to outliers. In cases
where a small number of pixels in W indicate greatly different parameters u and v, a
bias is introduced into the estimation. There are many potential causes for outliers.
Examples are:

• violation of the brightness constancy assumption by specular reflections or different
imaging conditions,

26 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

• errors in the image gradient or temporal derivative due to noise,

• the presence of multiple simultaneous motions if W spans object boundaries or
contains transparency or shadows.

To reduce the impact of outliers, two similar techniques were proposed at about the same
time [7, 91]. They first use the least median of squares instead of the mean. This allows
to find a motion vector (u, v) with which the majority of pixels in the window agree.
All other pixels are discarded. Since the least median of squares only gives approximate
motion parameters and behaves badly under Gaussian noise, it is only used to detect
outliers. Accurate parameters are then obtained by solving the least-squares problem on
the inliers only.
Black et al. [13] alleviate the outlier issue by reformulating the minimization problem
in terms of more general error metrics ρ rather than using the square. The proposed
error metrics are statistically more robust as they give limited weight to extreme values.
The resulting optimization problem is no longer solvable by simply setting the partial
derivatives to zero. Using ρ functions that are twice differentiable allows the use of
iterative gradient descent to obtain good motion parameters.
Computing the flow at a pixel position from a local neighborhood has several drawbacks.
The aperture problem makes the computation of good motion parameters unstable if the
motion in the window is perpendicular to the gradient direction (see Equation 2.15). A
similar problem arises when the local area is unstructured and the gradients are close
to zero. Horn and Schunck [55] thus make the additional assumption that optical flow
varies smoothly over the image. This allows the interpolation of flow in areas that are
badly suited for direct computation. They came up with a global formulation of the
optimization problem. Instead of determining a flow vector (u, v) for each pixel position
individually, they optimize for the full motion vector field [u(x, y), v(x, y)]T of the entire
image at once. u and v then become functions of position. To avoid clutter, we omit
the position and time parameters. The introduced optimization problem can then be
expressed as:

arg min
(u,v)

∫∫ (
∇I ·

(
u
v

)
+
∂I

∂t

)2

+ λ
(
‖∇u‖2 + ‖∇v‖2

)
dxdy, (2.18)

where ‖ · ‖ is the Euclidean vector norm. Here, the gradient constraint equation is
minimized in the same way as above. Additionally, spatial variation of the vector field is
minimized by the second term. The regularization parameter λ controls the smoothness.
By discretizing the integral and all partial derivatives therein, the optimal vector field
can be obtained by solving the associated Euler-Lagrange equations. This is described
in [100, 16]. Global optimization generally leads to better results than local methods,
but it is more costly to compute and also more sensitive to noise.
While the assumption of a simple translational motion model is valid for individual pixels,
the motion of an entire region is better described by more complex models. Techniques
that extend motion to affine flow or use non-parametric motion models can be found
in [13, 91, 12, 123, 35]. A good overview of the computation of optical flow is given
in [33] and [10].

2.4. IMAGE REGISTRATION 27

Block-based and Global Registration

Pixel-wise optical flow is well-suited for accurately compensating object motion. It has
applications in the field of HDR imaging when temporally bracketed exposure sequences
are merged in an offline process. However, establishing and solving a linear equation
system for each pixel is too costly in a real-time HDR video scenario, where multiple
exposures need to be registered within one frame time. It is more efficient to determine
motion parameters for blocks of pixels or only one parameter set for the entire image.
The goal is then to find parameters that maximize similarity or minimize the difference
between pixels of one image It and the transposed pixels of the other It+1. A generic
algorithm to estimate good parameters is then:

1. Pick motion parameters

2. Compensate motion, i.e., transform one of the images with the chosen parameters

3. Calculate similarity between the images

4. Repeat from 1 until a stop criterion is met

5. Choose the parameters that lead to the highest similarity.

This algorithm necessitates the definition of a suitable metric for the difference or sim-
ilarity. An intuitive definition is the mean squared error (also called sum of squared
differences) between pixel patches.

MSE(u, v) =
∑

(x,y)∈W

(It+1(x+ u, y + v)− It(x, y))2 (2.19)

It is a function of assumed motion parameters (here, we use translation for illustration).
The window W over which the difference is calculated can be chosen according to the
needs of the application. Choosing it as the full image allows to find the global motion
parameters that lead to the smallest MSE when applied. As in the optical flow case,
the square function can be replaced by any function ρ that is more statistically robust.
Another widely used similarity function is the cross correlation.

CC(u, v) =
∑

(x,y)∈W

It(x, y)It+1(x+ u, y + v) (2.20)

It uses the product of pixel values instead of the difference which grows with increasing
similarity. Both metrics can be normalized to be independent of the average brightness
of the two images. This is desirable when used for exposure sequences.
After defining a good similarity metric, one needs to decide upon a search strategy for
the motion parameters (step 1 of the above algorithm). An exhaustive search over all
possible parameters is only feasible with a very small number of parameters (e.g., rotation
or translation) and when restricted to a small search range (e.g., -10 to 10 pixels). For
example, exhaustive search of translational motion vectors over pixel blocks is used in
video compression. Another common strategy is to perform a hierarchical search: First,
two image pyramids consisting of multiple downscaled versions of the two images are

28 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

created. Parameters are then found by exhaustive search over a small search range on
the smallest scale. These parameters are used to initialize a local search on the next
higher pyramid level. In this way, the parameters are iteratively refined until the full-
sized images are reached. This is faster than a full search on only the original image for
the same effective search range.
There are ways to achieve sub-pixel registration accuracy through intensity-based image
alignment. One is to fit a continuous intensity function to the pixels of the images. Best
matching motion parameters can then be found on the continuous curve between the
pixels. This is similar to upscaling images in the pyramid search for further refinement.
It is also possible to evaluate the error metrics in a region around the discrete optimal
parameters, in order to interpolate the values and to find an analytic minimum.

Registration under Brightness Variation

Some intensity-based image registration techniques also take variation of the brightness
between the images into account. Effects like vignetting, automatic exposure control
and color correction can cause small variations in brightness. In the case of vignetting,
the amount of variation depends on the location in the image. The most common way
to handle such brightness differences is to model them by two adaptive parameters α
for contrast and β for brightness [74, 37, 35, 4]. Disregarding the misalignment, the
intensities of the two images to register are assumed to be linearly related:

It+1(x, y) = αIt(x, y) + β (2.21)

α and β can then be included as two additional parameters to estimate together with
motion. The linearity of this relationship makes it fit naturally into linear least-squares
optimization. Brightness and contrast are calculated on the same scale as the motion
parameters, e.g., on pixel-level, block-level or globally.
Brightness variation can be modeled more generally as a linear combination of appear-
ance variation images Ai(x, y) with coefficients λi [8, 51]. Again disregarding misalign-
ment, the two images are related as

It+1(x, y) = It(x, y) +
∑
i

λiAi(x, y). (2.22)

The Ai are predetermined according to the expected variation, e.g., constant to model
a brightness offset or containing linear image gradients. As above, the coefficients are
estimated in conjunction with the motion parameters.
The linearity assumption only holds within the small range of typical brightness change
as a side-effect of image capturing. It may break in the case of exposure bracketing for
HDR creation where large brightness differences are intended. The value of a saturated
pixel in an image taken with a long shutter speed is no longer linearly related to a pixel
in a darker exposure. There is thus a need for registration techniques that are specific
to the registration of exposure sequences for HDR. Kang et al. [60] propose one for
video sequences that alternate between dark and bright exposures. In order to create
an HDR video frame at time t, they combine the current LDR image with its differently

2.4. IMAGE REGISTRATION 29

exposed neighbors (at times t − 1 and t + 1 respectively). The intermediate motion
is compensated in an offline process. It is observed that the neighboring LDR frames
are closer to each other with respect to exposure values than they are to LDR image
t. The authors thus incorporate motion information gained from registering the two
neighboring frames with each other into the registration between t and its neighbors.
They compensate both camera and scene motion by using a combination of hierarchical
perspective transformations and a variant of the optical flow in [74]. A sufficient amount
of common structure in the neighbor images is assured by choosing the exposure values
for the sequence appropriately.

The approach by Kang et al. is further improved by Troccoli et al. [109]. Here, image
sequences with varying exposure, taken from slightly different camera positions are used
to obtain radiance maps and depth information simultaneously. Contrary to the previous
approach, this algorithm also works with unknown exposure values and camera response.
The authors make use of the fact that the normalized cross correlation is – to a certain
extent – invariant to exposure. However, their approach only compensates camera motion
and assumes a static scene.

A notable method for the registration of image sequences with large brightness differences
has been published by Ward in 2003 [120]. It is very fast and suitable for compensating
camera motion in real-time. Computational complexity is drastically reduced by using
a simple translational model and binary images. Before registration, the images are
thresholded such that 50% of the resulting pixels are black and 50% white. This is
achieved by using the median pixel values as the threshold. The resulting image is
called a mean threshold bitmap (MTB). Despite the greatly different exposure values,
roughly the same pixels remain above or below the median, making MTBs suitable for
registration. The pixels of the MTB are stored efficiently as single bits in 64-bit words.
A global translation vector is found in a hierarchical 2D search on a pyramid of MTBs.
On each level, the similarity score for nine offsets (the eight directions and no motion) is
calculated. Image shifting is reduced to bit shifts, and pixel differences are computed as
an XOR operation on 64-bit words and subsequent counting of ones by using a lookup
table. The shift vector is then refined on the next larger pyramid level. Ward’s method
has been extended to rotational motion in [56, 40]. In [48], the computational efficiency
is further improved by splitting up the hierarchical 2D search into two full 1D searches,
and it is extended to video sequences.

2.4.3 Ghost Removal

The previous two sections describe how camera motion and sometimes object motion
that takes place between two images can be compensated. However, such an image reg-
istration is never perfect. Object motion is generally too complex to model accurately by
block-based registration or optical flow and may sometimes be ignored for computational
efficiency. The residual motion that remains in the images then appears as ghosting ar-
tifacts in the merged result. Depending on the amount of motion between the shots,
ghosting can appear around the edges of moving objects, or objects may appear in the
result image twice with half intensity (see Figure 2.7). This motivates the development

30 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

Figure 2.7: Example for a ghosting artifact. Two images were taken with a static
camera and then merged together. The waving hand is in different po-
sitions in the two images. Each instance is visible in the merged image
with half intensity, creating a ghost-like effect.

of techniques for ghost removal in merged images. The underlying observation they all
have in common is that object motion creates inconsistency within the image set. For
each pixel or region in the target image, they identify a consistent subset of the images
to create the result from. They mainly differ in how consistency is measured and which
subset of the source images is used.
The problem of ghost removal was first considered in the context of panoramic images
where images taken under different angles are stitched into one large picture. For each
target pixel in the panoramic image, a set of source images that map to it is found. The
target pixel is computed as a weighted average of the source pixels. Moving objects in the
overlapping areas thus lead to ghosting artifacts. This was addressed in [23]. The authors
attempt to divide the overlap between two source images into two regions such that no
object boundaries are cut. Moving objects cause high differences between the pixels of the
two images. Static background pixels, on the other hand, are consistent among all images
if the global registration is accurate. The authors thus compute a relative difference
image of the overlapping area and find a minimal path cutting through it using Dijkstra’s
algorithm [21]. This divides the overlap into two regions without cutting through objects.
Low-pass filtering the difference image before applying Dijkstra’s algorithm assures that
broad paths of low differences are preferred. Each region is then filled with pixels from
only one of the images to avoid ghosting.
It is not obvious how to generalize the above to an arbitrary number of overlapping
images as is the case for general panoramic images. Uyttendaele et al. [113] recognized
this problem. They segment the difference image in the overlapping area into contiguous

2.5. HDR STITCHING 31

regions of high difference. Then they group corresponding regions of high difference
across the source images to find regions belonging to the same real-world object. The
regions are then represented as vertices in a graph with correspondences as its edges. By
removing the vertex cover from the graph, only non-corresponding regions (unconnected
vertices) remain. That is, multiple instances of a moving object are eliminated. The
remaining regions can then be used to synthesize a ghost-free final image.

Ghost removal takes on a slightly different form when applied in the context of high
dynamic range imaging. The source images have a much larger overlap – ideally close
to 100%. Cutting through the overlapping area is thus no longer feasible. Additionally,
taking the large exposure variations into account is essential for calculating suitable
difference images.

In their book on HDR imaging [96], the authors describe an HDR-specific ghost removal
technique. LDR sequences are combined into HDR images as a weighted average, too
(see the following section on HDR stitching for details). This suggests to also compute a
weighted variance image to detect inconsistencies between the source images by detecting
high variance values. This is done by thresholding the variance image, dilating it and
finding contiguous ghosting regions. For each region, the non-saturated LDR image
with the longest exposure time is chosen to derive radiance from. So, rather than using
a weighted average, regions of moving objects are filled with values from only a single
source image. This makes sense, because all images are self-consistent. The radiance
values derived from the chosen image are then blended with the original HDR result to
create a ghost-free image.

Instead of completely discarding all but one source image to avoid inconsistencies, the
authors of [62] manipulate the weights each image receives during HDR stitching of the
ghosting region. Additional weights are determined iteratively for each pixel depending
on its probability of being a background pixel. This has the effect that pixels that are
likely to be part of a moving object receive lower weights and become less visible in the
averaged HDR result. This is clearly advantageous in situations where a moving object
is only visible in one of the source images, leaving all other images available for stable
radiance estimation.

The same is also true for the approach published in [36]. Here, an LDR image with a long
exposure, but a low number of saturated pixels is chosen as a reference. Inconsistencies
are then detected with respect to the reference image. This is done patch-wise instead
of for every single pixel. A patch in an image is considered to be inconsistent with
the reference if a certain percentage of it differs from the reference image. All but the
inconsistent patches are then used to create the HDR image.

2.5 HDR Stitching

Section 2.3 introduced methods to capture images of a high dynamic range of scene
radiance values. All except for those doing HDR on the sensor level produce an LDR
image sequence Ii, i = 0, . . . , n with varying, but known exposure parameters. We limit
ourselves to varying shutter speeds ∆ti in this section for simplicity. Note that everything

32 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

mentioned here is also directly applicable to varying aperture size and gain. After image
registration has been performed as described in Section 2.4, we may assume that a certain
pixel position (x, y) represents the same point in the scene for all LDR images. The value
Ii(x, y) of a pixel in any of the images is an imperfect measurement of the scene radiance.
We can now use all available measurements to recover the entire radiance map L(x, y) of
the scene. This is done by first bringing the pixel values that were taken under different
imaging conditions into a common domain and then computing a weighted average.
The common domain is radiance, or scaled radiance to be more precise, which is sufficient
for our purpose. A point in the scene gives rise to the same radiance L(x, y) in all of the
LDR images. Radiance is integrated inside a pixel of a CCD sensor for the duration of
the shutter speed ∆ti, which is different for each Ii. What a sensor cell actually measures
is the exposure L(x, y)∆ti, which is radiance integrated over time. Only industrial digital
cameras that are meant for measuring light accurately map exposure linearly to pixel
values. Twice the radiance then results in a pixel value twice as high. Cameras which
take pictures intended to be viewed by humans introduce a nonlinear mapping function
f . The radiance L(x, y) captured with a shutter speed of ∆ti is then mapped to a pixel
value

Ii(x, y) = f(L(x, y)∆ti), (2.23)

typically in the range of 0 to 255.
For now, we assume that f is known. Details on how to obtain it are given in Section
2.5.1. Every reasonable mapping function is (stepwise) monotonic, i.e., more exposure
of the cell leads to a higher pixel value. This means that f is invertible. With the
shutter values and the LDR image sequence available, the inverse of f allows to make
an estimate L̃i(x, y) of the radiance at position (x, y) from image Ii:

L̃i(x, y) =
f−1 (Ii(x, y))

∆ti
. (2.24)

The real radiance map L(x, y) is then recovered by computing a weighted average with
weights w over the obtained radiance values L̃i(x, y):

L(x, y) =

∑
iw (Ii (x, y)) L̃i(x, y)∑

iw (Ii (x, y))
. (2.25)

Suitable weighting functions w are discussed in Section 2.5.2. Because of the increased
dynamic range of the radiance map, its values should be stored with a higher precision
than that of 8-bit integer values. Using 32-bit floating point values works well in practice.

2.5.1 Estimating the Camera Response Function

A large number of works have been published concerning the estimation of a camera’s
response function [76, 24, 82, 97, 110, 63, 41]. We outline the three most influential
methods in this section.
A response function f maps the exposure q to pixel values p: f(q) = p. Without loss of
generality, we assume 8 bits per pixel. If q is below or above a certain exposure threshold,

2.5. HDR STITCHING 33

0

50

100

150

200

250

 0 0.2 0.4 0.6 0.8 1

P
ix

el
 v

al
ue

s

Normalized exposure

A
B
C
D

Figure 2.8: Four examples of camera response functions that map exposure to
pixel values. They are taken from the database of response functions
(DoRF) [43]. Their names are given in the database as “F400CD
Red”(A), “Agfachrome RSX2 100CD Red” (B), “Portra 160VCCD
Red” (C), and “Kodachrome 25 Red” (D).

it is mapped to 0 or 255, respectively. Otherwise it is mapped nonlinearly to the range
of [1, 254]. See Figure 2.8 for exemplary camera response functions. It is safe to assume
that any reasonable response function is monotonically increasing and thus invertible. In
the context of recovering radiance, the inverse response function f−1 is of more interest.
It maps a pixel value back to exposure, and ultimately to radiance.
Mann and Picard [76] suggest estimating the response function from two images I0 and
I1. For this to be possible, the ratio k = ∆t1/∆t0 between the shutter speeds under
which the two images were captured must be known. They begin by choosing any dark
pixel I0(x0, y0) in the first image. It is the result of an unknown exposure q0 = ∆t0L
being mapped by f :

I0(x0, y0) = f(∆t0L) = f(q0). (2.26)

Now consider the same position in the second image I1(x0, y0). The pixel there is brighter
as it is a mapping of the exposure ∆t1L, which is a multiple of q0 with the factor k:

I1(x0, y0) = f(∆t1L) = f(k∆t0L) = f(kq0) (2.27)

Now search for a pixel in the first image that has exactly the same value. It is found at
a new location (x1, y1), so I0(x1, y1) = f(kq0). Again looking at the same position in the
second image gives us an even brighter pixel, the mapping of exposure k∆t1L:

I1(x1, y1) = f(k∆t1L) = f(k2q0). (2.28)

34 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

Continuing in this fashion, we obtain a sequence of explicit values for f(q0), f(kq0),
f(k2q0), They are values of the response function f at known multiples of the
arbitrary exposure q0. It is now possible to fit a function with the shape of f(q) = α+βqγ

to the sequence. It is invertible for nonzero β and γ.
Debevec and Malik [24] recover the inverse of the response function directly. By applying
f−1 to both sides of Equation 2.23 and taking the logarithm, it can be rewritten as

log f−1(Ii(x, y)) = log L(x, y) + log ∆ti. (2.29)

The logarithm of the inverse response function is given a new symbol g(·) = log f−1(·) for
simplicity. g maps the 256 pixel values to the logarithm of their corresponding exposures.
The goal is now to recover the log exposures g(p), p = 0, . . . , 255 that fully describe the
inverse response function. This is done by formulating an optimization problem from
the above relationship:

arg min
g,L

∑
i

∑
(x,y)

(
g(Ii(x, y))− log L(x, y)− log ∆ti

)2

+ λ
254∑
p=1

g′′(p)2. (2.30)

The first term minimizes the error of Equation 2.29 over all pixel positions (x, y) in all
LDR images Ii using the known shutter speeds ∆ti. The unknowns are the 256 values
of g as well as the original radiance map L(x, y). The second term is a smoothness term
with adjustable smoothness parameter λ. It minimizes the second derivative of g. In
the discrete case, it can be written as g′′(p) = g(p − 1) − 2g(p) + g(p + 1). It relates
the neighboring values of g to each other and controls the amount of variation in the
response function. Only a small number of suitable pixel positions (x, y) are selected
in practice. This is more efficient than summing over all pixels of all images. The
optimization problem is quadratic in the values g(p) and in the logarithm of radiance
values. Calculating all partial derivatives with respect to the unknowns and setting them
to zero thus yields a linear equation system which can be solved for the values of g.
Mitsunaga and Nayar [82] also consider the inverse camera response directly. They model
it as a polynomial of degree M for which the coefficients cj are to be determined:

f−1(p) =
M∑
j=0

cjp
j. (2.31)

An LDR image sequence Ii(x, y) forms the basis for the recovery of the coefficients. Only
the ratios between the shutter speeds of two subsequent images must be available. They
are denoted by ki,i+1 = ∆ti/∆ti+1. Using Equation 2.23, it can be seen that ki,i+1 is also
the ratio between the inverse response function values of a pixel in images i and i+ 1:

f−1(Ii(x, y))

f−1(Ii+1(x, y))
=

L(x, y)∆ti
L(x, y)∆ti+1

= ki,i+1. (2.32)

Substituting the polynomial model for f−1 into this relationship, the authors obtain an
equation for each pixel position in a pair of images:∑M

j=0 cjIi(x, y)j∑M
j=0 cjIi+1(x, y)j

= ki,i+1. (2.33)

2.5. HDR STITCHING 35

From the error of these equations, a least-squares optimization problem can be derived

arg min
cj

∑
i

∑
(x,y)

(
M∑
j=0

cjIi(x, y)j − ki,i+1

M∑
j=0

cjIi+1(x, y)j

)2

(2.34)

which can be easily solved numerically. The authors suggest solving it multiple times
for different degrees M < 10 of the polynomial and choosing the degree resulting in the
lowest total error.

2.5.2 Weighting Functions

The previously shown weighting function w in Equation 2.25 determines how much the
radiance estimate L̃i(x, y) from a pixel Ii(x, y) contributes to the corresponding HDR
pixel L(x, y). In other words, it judges a pixel’s usefulness for recovering a radiance
value based on its brightness value. Weighting functions are usually chosen to reflect
noise characteristics of a camera, the derivative of its response function (i.e., the camera’s
sensitivity), and saturation effects. They are often found in the literature as parts of
HDR creation techniques [24, 76, 82, 97]. Even though various weighting functions exist,
they often share a few common properties. Most notably, the extremes of the pixel range
are always assigned zero weight. This means that pixels with these values contain no
useful information about the real radiance. As an example, a white sheet of paper and
a reflection of the sun in a window can – under a certain exposure setting – both be
represented by a pixel value of 255, even though the sun is several orders of magnitude
brighter than the paper. The same reasoning applies to very dark pixels. Another
common attribute of weighting functions is the location of their maximum, which is
often in the middle or the upper half of the range. Pixels with a medium to high value
are considered to be more faithful than dark pixels. This is due to the fact that a large
portion of the image noise (e.g., quantization noise, fixed pattern noise) is independent of
the amount of light falling onto the pixel. A bright pixel thus has a better signal-to-noise
ratio than a dark one.

When the camera response curve is steep in a certain range, small changes in exposure
result in relatively large changes of the mapped pixel value. This means that the camera
is sensitive within this range. Mann and Picard [76] thus propose to use the derivative of
the response curve as weighting functions, i.e., give more weight to pixels in the sensitive
range. [96] suggests multiplying the derivative with a broad hat function to limit the
support of the weighting function. The result is shown as the first example for a weighting
function in Figure 2.9. The second example is taken from Debevec and Malik [24]. It
assigns a maximum weight to the middle of the pixel range and decreases linearly towards
the extremes. In practice, all choices adhering to the guidelines given in this section are
equally well-suited for recovering radiance. The influence of the weighting function is
rather small.

36 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

W
ei

gh
t

Pixel value

Mann/Picard
Debevec/Malik

Figure 2.9: The solid line is the pixel weighting function proposed by Mann and
Picard for an assumed camera response curve. It is multiplied by a
broad hat function to set the weight at the extremes to zero. The dashed
line is the simple weighting function by Debevec and Malik.

2.6 Tone Mapping and Display

HDR stitching is the last step in creating a frame in an HDR video. The resulting frame
is a floating point valued map of (scaled) real-world radiance. It was created in a way
that ensures that ratios of radiance values are maintained. For example, if the headlight
of a car is 103 times more intense than the surrounding night scene, the pixel values in
the HDR frame corresponding to the headlight are 103 times higher, too. Such an HDR
frame may have a dynamic range spanning over four orders of magnitude, measured from
the darkest shadows to the car’s lights. Ideally, the ratios of the HDR pixels would be
preserved during display. This however would require a display capable of producing
the same range of output values. Such high dynamic range displays exist, but they
are still not very common (see Section 2.6.1 for a discussion). Typical LCD and CRT
displays only span a dynamic range of 2 to 3 orders of magnitude, which is not enough
to reproduce an HDR video frame faithfully.

In addition to the inadequate dynamic range, the absolute luminous intensity produced
by the headlight of a car exceeds that of an LCD by far. Consider the following rough
calculation for illustration: A modern television set may emit a maximum luminance
of 500 cd/m2. Multiplied by the luminous area of a car lamp, we obtain a luminous
intensity of 5 cd for the TV set. The luminous power of a halogen car light may be
specified as 1500 lm. This results in a luminous intensity of 1500 lm/(4π sr) ≈ 120 cd
in all directions or 960 cd if focused into the solid angle of one eighth of a full sphere.
It becomes clear that this intensity cannot be reproduced accurately. Similar arguments
apply for the minimum reproducible luminance of an LCD screen. A pixel on such a
screen selectively attenuates the backlight to produce contrast. The darkest luminance

2.6. TONE MAPPING AND DISPLAY 37

is thus bounded by the luminance of the backlight multiplied by the lowest achievable
transmittance of a pixel.
For these reasons, an HDR frame must be further processed in order to be displayable
on a regular display device. Its dynamic range must be compressed to the limited output
range of the screen. This final DR reduction step is called tone mapping. Simply scaling
radiance down linearly would result in the loss of much of the detail obtained from
HDR processing. The goal of tone mapping is to find a mapping between radiance
and pixel values that preserves as much of the original appearance, color and detail as
possible. This can be achieved by intentionally mapping very bright image areas to a
darker output range to leave room for brightness variation. Section 2.6.2 introduces tone
mapping operators that were designed for still images. Considerations for the extension
to video are presented in Section 2.6.3.
The problem of tone mapping has been addressed even before high dynamic range imag-
ing. In the context of computer graphics, using physical quantities like radiance to
represent rays of light during rendering has been done for decades [39, 118]. The ren-
dered output image is then a radiance map similar to an HDR image which needs to be
tone mapped appropriately for display.

2.6.1 HDR Display Systems

With more and more HDR material emerging, there also arose a need for displaying
HDR content. Consequently, prototypes for HDR still image viewers [119] and systems
for viewing dynamic content were proposed [101, 89, 71, 20]. This section describes two
of these systems. The latter of the two is the basis for a great portion of the subsequently
developed displays. All HDR display systems are based on the same observation: Assume
that any display system achieves a dynamic range of c1 : 1 between the darkest and
brightest intensity it can produce. Now add a second layer in front of the first display,
for example an LCD panel with selectively attenuable pixels with a dynamic range of
c2 : 1. The theoretical contrast ratio of the combined system is then c1 · c2 : 1. The
dynamic range of a display can thus be increased by either selectively controlling the
intensity of the backlight, or by using two layers of attenuators.
One of the first viewing systems dedicated to high dynamic range still images was pro-
posed by Ward [119]. It combines the benefits of stereo vision and HDR imaging to
permit viewing of an image with a high degree of realism. It is designed as a box with
optics to look at a stereo HDR image inside. The optics provide a 120 degree field of
view, which is approximately the field of view of the human eye. A strong light source
in the back of the box providing a luminance of 20,000 cd/m2 illuminates two layers of
printed transparencies containing the image. One of the transparencies contains image
detail like regular film, while the other is a blurred grayscale version to further darken
the backlight where necessary. For regular film, the dynamic range is the ratio between
maximum transparency and maximum opaqueness. The usable contrast ratio of film is
estimated to be 100:1. Two layers thus achieve a dynamic range of 10,000:1.
Seetzen et al. [101] describe two different HDR display systems. Both are built as a
combination of two regular displays. In each of them, the pixels of an LCD panel

38 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

selectively attenuate a backlight to create an image. A color pixel of such a panel
typically only has a maximum transmittance of 3% to 8%, with a theoretical upper
bound of 16.7% (half of the light is lost during polarization and two thirds are absorbed
by the color filter array). The panel used in [101] only yields a contrast ratio of about
300:1. With the original backlight, this display produces luminance values ranging from
1 cd/m2 to 300 cd/m2. The dynamic range of the LCD panel is extended by replacing
the static backlight with a dynamic light source.
In the first of the two systems, it is exchanged for a digital light projector that allows
to spatially vary the light intensity. The image is projected onto the LCD panel and
dark areas are further attenuated there. This combination allows to use a light source
with a much higher luminous intensity while still maintaining a reasonable black level.
This system can produce luminance values in the range of 0.05 cd/m2 to 2700 cd/m2,
equaling a dynamic range of 54,000:1.
The second display uses a hexagonal array of 760 ultra-bright LEDs instead of a projector
behind the LCD screen. The brightness of each LED can be controlled individually to
create a low resolution version of the image. High frequency features are added by the
high resolution LCD panel. To derive the two distinct image signals, the HDR image is
factorized into an LCD and an LED component on a GPU. The maximum luminance
this system achieves is 8500 cd/m2 with a similar dynamic range as the one described
above. The prototype was further improved into the BrightSide DR37-P display, which
entered the market in 2005 as the first commercially available HDR display system.

2.6.2 Still Image Tone Mapping Operators

A variety of tone mapping (TM) operators for still images already exist. They are clas-
sified into spatially invariant, global operators and spatially variant, local operators [25].
Global operators are non-linear functions based on the content of an image as a whole,
using statistical values such as minimum, maximum or average luminance to estimate
optimal mapping parameters. When the optimal mapping function between luminance
values and the displayable range is found, the same transformation is applied to each
pixel in the luminance map. Psychophysical models of brightness and contrast perception
as well as retinal properties serve as a basis for most approaches [81, 111, 31, 117].
These operators are simple and fast, but are limited in their ability to process very high
dynamic ranges. A mapping of the full input range of luminance can be achieved by more
engineering-oriented models such as logarithmic contrast compression [26] or histogram
adjustment [121]. Due to their computational efficiency, global operators are the tone
mappers of choice for real-time HDR video.
Local operators consider a set of neighboring pixels for estimation of the parameters of a
local transformation function. Each pixel of an image is mapped differently, based on the
local features of its neighborhood. Such tone mappers aim to enhance local contrast to
create the impression of large brightness differences. Because the human visual system
is only sensitive to local contrast, high quality images spanning high dynamic ranges
are possible with these methods. Due to the more complex nature of these operators,
computing time increases, making them badly suited for a real-time scenario. They are

2.6. TONE MAPPING AND DISPLAY 39

also prone to artifacts such as halo effects.
Local operators can be further divided into different classes. Center-surround methods
increase local contrast by computing the difference between a pixel’s value and a weighted
set of its neighboring pixels. This procedure is inspired by receptor properties of the
human visual system [95, 5, 79, 94].
Frequency-based operators separate the low and high frequency bands of an image.
Assuming that an image is a product of light intensity and reflection, only the part
relevant to light intensity is compressed. This is the low frequency band, while the image
details contained in the high frequency bands are kept. Oppenheim et al. published this
technique known as the first TM operator which attenuates low frequencies more than
high frequencies [92].
Gradient-based operators alter the gradient of an image. High frequency regions contain
significant differences between neighboring pixels, while low frequency regions contain
rather small differences. Fattal et al. observed that drastic luminance changes greatly
increase gradients [29]. Thus the gradient field is compressed progressively and integrated
back into an image by solving the corresponding Poisson equation.
There are three TM operators that are of particular interest in the later chapters of this
thesis and are thus explained in more detail. They are Ward’s Contrast-Based Scale
Factor [117], the Photographic Operator by Reinhard et al. [95], and the Histogram
Adjustment technique published by Ward et al. [121].
The Contrast-Based Scale Factor is a global operator. The primary goal of this method
is the preservation of contrast. A constant of proportionality between display luminance
Ld(x, y) and world (scene) luminance Lw(x, y) has to be found that yields a tone mapped
result with roughly the same contrast visibility as the actual scene. Calculation of the
scale factor m is based on the research of Blackwell, who defined a relationship between
adaptation to luminance changes and the just noticeable luminance difference [106]. The
value of m depends on the maximum luminance the display can produce as well as the
average luminance in the image. It is then applied to pixel values to convert world
luminance values into display values

Ld(x, y) = mLw(x, y). (2.35)

The Photographic Operator consists of a global prescaling step with subsequent local
contrast enhancement. It is inspired by photographic development and printing tech-
niques. First, a linear mapping reduces the range of world luminance Lw(x, y) (i.e., range
of the HDR pixels) to an intermediate displayable range of values Lm(x, y) based on the
average luminance L̄w in the scene

Lm(x, y) =
a

L̄w
Lw(x, y). (2.36)

[95] recommends setting the user parameter a to 18% of the display range. The inter-
mediate values are then mapped nonlinearly by the following function:

L′m(x, y) =
Lm(x, y)

(
1 + Lm(x,y)

L2
w,max

)
1 + Lm(x, y)

, (2.37)

40 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

where Lw,max is the maximum luminance contained in the HDR image. These two global
mapping steps resemble deciding upon exposure settings when taking a picture. In the
local step, the algorithm determines for each pixel position (x, y) a circular surrounding
with maximum size that does not contain any sharp contrasts. The average luminance
of this circular area is denoted by Lavg(x, y). The intermediate values L′m(x, y) are then
finally mapped to display luminance

Ld(x, y) =
L′m(x, y)

1 + Lavg(x, y)
. (2.38)

A pixel that is darker than its surrounding is mapped to a lower value, because L′m(x, y) <
Lavg(x, y). If it is brighter, its brightness is further enhanced. Either way, the pixel’s
contrast relative to its surrounding is increased.
The third operator considered here is Histogram Adjustment. It globally applies a mono-
tonic tone reproduction curve derived from the cumulative log histogram to all pixels.
The idea is to allocate most of the displayable dynamic range to luminance ranges that are
represented by many pixels. Thus, pixels in less frequent brightness levels are compressed
more strongly. This is achieved by first computing a histogram H over the logarithm of
the HDR pixels, i.e., over log(Lw(x, y)). Each histogram bin H(j), j = 1, ..., 100 counts
the number of pixels in its corresponding log luminance range bj. The bins are summed
up to a cumulative histogram H̄ and normalized by the number T of pixels in the image
as follows

H̄(b) =

bj<b∑
j

H(j)/T (2.39)

T =
∑
j

H(j). (2.40)

The value of the cumulative histogram H̄ at a luminance position b is thus the sum of all
histogram bins H(j) corresponding to a log luminance that is smaller than b. It satisfies
0 ≥ H̄(b) ≥ 1. The cumulative histogram could then be used directly in the following
contrast equalization formula

logLd(x, y) = logLd,min + (logLd,max − logLd,min)H̄(logLw(x, y)). (2.41)

However, this mapping function has the flaw that contrast is expanded rather than
compressed wherever there is a peak in the histogram. The authors thus present a
number of algorithms for clipping of the histogram bins to prevent this from happening.
Human visual limitations such as glare or visual acuity are also simulated in further
processing steps. The log histogram created when applying this tone mapping operator
to an HDR frame can be used to derive optimal shutter speeds for the next frame of an
HDR video. This will be demonstrated in Chapter 5.
Among the many available tone mapping operators, it is difficult to find the one best
suited for a given application. The choice needs to be made based on the computational
efficiency of the operator, and also the quality of the LDR output. Quality rankings of

2.6. TONE MAPPING AND DISPLAY 41

various tone mapping operators can be found in the literature as the results of subjective
experiments. In these studies, the outputs of the TM operators are compared with each
other [18], with the unmodified HDR image shown on an HDR display [68], or with the
real-world scene itself [128, 6].

2.6.3 Tone Mapping for Video

A tone mapping operator typically considers the minimum, maximum or average lumi-
nance of a recorded HDR image and scales the image accordingly. However, the operators
described so far are designed with still images in mind. That is, the dynamic range of
each frame of an HDR video sequence is scaled independently. In situations where the
minimum, maximum or average brightness of a frame differs greatly from its predecessor,
the scaling function changes rapidly from one frame to the next, leading to visible image
flicker. Such a situation can easily arise when a bright object, such as the headlight of
a car or a specular reflection, enters the field of view. The tone mapper attempts to
map the greatly increased dynamic range onto the same output range, often changing
the brightness of the entire image in the process. This can be alleviated either by post-
processing of the tone mapped image [45] or by employing a TM operator specific to
HDR video content.
Pattanaik et al. [93] were among the first to model the gradual adaptation of the human
visual system (HVS) to abrupt changes in scene intensity specifically in the context of
temporal coherence in HDR sequences. Their tone mapping operator is built upon a
solid basis of published quantitative measurements of the HVS. It tone maps HDR se-
quences frame by frame, but achieves temporal coherence by maintaining a number of
state variables describing the current adaptation level. Scene radiance is first converted
into photoreceptor responses – much like the conversion between irradiance and illumi-
nance demonstrated in Equation 2.3. The responses are then modified in accordance
with the current adaptation level and further processed into appearance parameters like
whiteness/blackness and colorfulness. These are finally mapped to the display intensity.
An implementation of the Photographic TM operator [95] using programmable graphics
hardware was first presented by Goodnight et al. [38] and later in a similar fashion by
Wang et al. [116]. Goodnight et al. extend the TM operator to include a time-dependent
model that is based on the adaptation model proposed by Durand and Dorsey [27]. It
describes a multi-pass interactive rendering that computes the average luminance in a
first pass and tone maps the scene in the second pass. Both multiplicative and subtractive
light adaptation is simulated by applying a global multiplicative scale factor during the
mapping from world luminance to display luminance.
[67] also implement the Photographic Operator for a GPU and extend it to react to
temporal changes in luminance conditions in accordance with the human visual system.
They add perceptual effects like glare and night vision as a post-processing step, which
have not been considered in the previous work of Goodnight et al. [38].
An approach using gradient domain tone mapping in HDR videos was introduced by
Lee et al. [69]. The gradient field of the HDR image is compressed as in [29]. Pixel-wise
motion information is then incorporated into the Poisson equation used to create an

42 CHAPTER 2. FUNDAMENTALS AND EARLIER WORK

output image from the adjusted gradients. Incorporating motion information leads to a
decrease of visible flicker in the resulting LDR video. This is measured by comparing
the average luminance variation of the output frame over time.
More recently, Benoit et al. [11] proposed a model based on properties of the human
retina. HDR video content is enhanced by a non-separable spatio-temporal filter with
added temporal constancy. This is done by imitating the retina’s luminance compression
and additional temporal information processing.

Chapter3
System Overview

In this chapter, we give an overview of the HDR video system presented in this thesis,
with novel approaches for acquisition, registration and visualization. We introduce two
separate methods for the fast capturing of the LDR sequences required to create an HDR
frame. Both aim to reduce the redundancy when capturing multiple images of the same
scene. Furthermore, we present an image registration technique that is both robust to
extreme brightness differences and fast enough to be used on real-time video. For the
visualization of HDR video, we show an extension of existing still-image tone mapping
techniques to video. It mainly focuses on the removal of flickering artifacts arising in the
case of video.
The HDR video pipeline, as implemented for this thesis, is shown in Figure 3.1. It
consists of four modules: LDR image capture, image registration, HDR stitching, and
video tone mapping. We contribute new ideas to the fields of capturing, registration and
tone mapping and use existing techniques for HDR stitching.

3.1 LDR Image Capture

The capturing of LDR images constitutes the first step. We present two alternative
methods for capturing with reduced redundancy. The decision about which one to use is
based on the capabilities of the capturing camera as well as the preferred optimization.
The first one minimizes the amount of image data by only re-capturing the potentially
small badly exposed areas of a base LDR image. These areas are detected during the
capturing process, and new images are triggered one by one. Our second approach is
to only use the shutter speeds that contribute the most information to the HDR frame.
In this case, the shutter sequence is determined in advance using the histogram of the
previous frame. It is transmitted to the camera which then captures all images in one
go.

43

44 CHAPTER 3. SYSTEM OVERVIEW

Figure 3.1: Overview of the HDR video processing system introduced in this thesis.
As a first step, a sequence of LDR images is captured using one of the
two presented methods. The image sequence is passed to the registra-
tion module where camera motion in the sequence is compensated. The
registered sequence is then stitched into a single HDR frame, which is
finally tone mapped for display. HDR image statistics are passed back
to the capturing module and used to determine the capture parameters
for the next frame.

3.1.1 Capturing with Partial Re-Exposures

Many industrial FireWire CCD cameras have a feature called true partial scan. It allows
the definition of a rectangular sub-area of cells on the CCD sensor – a region of interest
– to be read out while all other cells are being discarded. As a result, the time needed
to read out the relevant parts of the sensor and to transmit the image data over the
FireWire bus is reduced, leading to a higher frame rate at lower image sizes.

In our partial re-exposure approach, we do not capture a fixed number of LDR images
with varying shutter speeds, but adapt the number to the dynamic range of the scene.
Additionally, we make use of the idea that it might not always be necessary to capture a
full image at another exposure setting if only a few image areas require a higher dynamic
range. We developed an algorithm that detects badly exposed regions in an already

3.2. HISTOGRAM-BASED IMAGE REGISTRATION 45

captured image and triggers the camera to re-capture only those regions. Reducing the
image size decreases the overall capture time of an image significantly. Capturing partial
images also reduces the amount of redundant data that is used to merge the LDR images
into an HDR image which saves additional processing time.

3.1.2 Determining Optimal Shutter Sequences

Another way of speeding up capturing is to optimally choose shutter speeds at which
to capture. The fewer images are captured, the less time is needed to process them,
leading to higher frame rates. Yet at the same time, the dynamic range of the scene
may necessitate a certain minimum number of exposures so that all detail is captured
properly. So the goal is to get the most out of the recorded exposures.

In our HDR video system, the histogram of scene radiance values is a by-product of
tone mapping the previous frames with Ward’s histogram adjustment technique [121].
This second approach thus uses the available histogram to calculate a shutter speed
sequence in real-time. The shutter speeds are chosen in a way such that frequently
occurring radiance values are well-exposed in at least one of the captured LDR images.
This increases the average signal-to-noise ratio (SNR) for a given number of exposures
or minimizes the number of exposures required to achieve a desired SNR.

The shutter speed algorithm is based on our definition of contribution functions to specify
precisely what we mean by “well-exposed”. An image pixel is a noisy measurement of
physical radiance. The quality of this measurement is a function of the pixel value, with
higher values generally leading to a more accurate measurement. This circumstance is
modeled by our contribution functions which are an extension to the weighting functions
introduced in Section 2.5.2. They are a concept similar to the noise models used in other
shutter speed methods.

In order to be applicable to video, we also consider bootstrapping and convergence to a
stable shutter sequence. Additionally, we introduce a stability criterion for the shutter
speeds to prevent flicker in the video.

3.2 Histogram-based Image Registration

We address the challenge of estimating the camera motion between two partial LDR
images in an efficient way. We argue that a purely translational camera motion model
is sufficiently accurate for high frame rates (≥ 200 frames per second). This assumption
is supported by [120]. The goal of the registration algorithm is thus to estimate a
translation vector between two LDR images captured at different exposure settings. We
improve the approach based on mean threshold bitmaps [120]. The hierarchical 2D
search is replaced by two separate exhaustive 1D searches to speed up the computation.
We start by counting the number of dark pixels in each column of both frames to be
aligned to create column histograms. By using a normalized cross correlation between the
two column histograms, we estimate the horizontal component of the translation vector.
Repeating this process for image rows allows us to estimate the vertical component in

46 CHAPTER 3. SYSTEM OVERVIEW

the same way. The resulting vector is then validated using a Kalman filter to incorporate
knowledge of the prior motion into the estimation.

3.3 HDR Stitching

The registered image sequence is then merged into a single frame. We do not contribute
own ideas to the field of HDR stitching and simply use the techniques introduced in
Section 2.5.
The cameras we employ are industrial FireWire cameras with linear response. This
means that the exposure of a sensor cell is mapped linearly to a pixel value. The camera
response function f is then the identity function. For our cameras, this was verified
using the response estimation technique by Mann and Picard [76] (see Section 2.5.1).
The same weighting function w is used for HDR stitching and for determining optimal
shutter sequences. Our weighting function of choice is discussed in Chapter 5 of this
thesis.
It is computationally cheap to add a calculation of the average radiance of the HDR
frame to the HDR stitching process where the frame is created. In the next frame,
the average is used to calculate an initial shutter speed for the capturing with partial
re-exposures.

3.4 Flicker Reduction in Tone Mapped HDR Videos

It is our goal to perform tone mapping of HDR videos using standard operators designed
for still images. When doing so, temporal changes of the minimum, maximum, or average
scene radiance lead to flicker in the tone mapped video. We propose a generic method for
the automatic detection and removal of flicker. It is implemented as a post-processing
step to be independent of the tone mapper used.
Essentially, the per-frame brightness difference (flicker) is smoothed over a number of
frames to become less obtrusive. We first introduce a criterion to detect flickering frames.
It is based on the difference of the average image brightness of two consecutive frames
and on a threshold derived from Stevens’ power law which relates the physical magnitude
of a stimulus to its perceived intensity. Our assumptions are that: Image flicker is the
most obtrusive artifact introduced by applying still image tone mappers to videos, and
flicker can be detected sufficiently well by analyzing the average brightness of a tone
mapped frame. These assumptions are supported by our experimental results.
To reduce the visibility of detected flicker, we adjust the average image brightness after
tone mapping. This is done using image normalization and clamping to the output range,
which is included as a last processing step in many tone mapping operators anyway. A
frame that was mapped to a much darker average than its predecessor is adjusted to
a level closer, but still darker than the previous frame. We always keep the brightness
variation within a range that is tolerable according to our flicker detection. After a few
frames of convergence, the same average brightness the operator would maintain without
our intervention is reached again.

Chapter4
Capturing with Partial

Re-Exposures

4.1 Properties of “True Partial Scan”

In order to describe our partial re-exposure algorithm, we begin by analyzing the rela-
tionship between image capture parameters (e.g., image size and shutter speed) and the
resulting capture time. From this relationship, our algorithm for selecting image regions
of interest and doing re-exposure is derived.
Many industrial FireWire CCD cameras have a feature called “true partial scan”. It
allows the definition of a rectangular sub-area of cells on the sensor – a region of interest
(ROI) – to be read out while all other cells are being discarded. As a result, the time
needed to read out the relevant parts of the CCD sensor and to transmit the image data
over the FireWire bus is reduced, leading to a higher frame rate at lower image sizes.
We first identify relevant camera parameters that influence capture speed and infer
general rules for the choice of parameters in Section 4.1.1. Then we apply the model
exemplarily to a specific camera in Section 4.1.2. The work described here was published
in [46].

4.1.1 Parameters and General Rules

The relevant parameters in our scenario are:

• shutter speed setting,

• position of the ROI on the CCD sensor, and

• width and height of the ROI to be captured.

47

48 CHAPTER 4. CAPTURING WITH PARTIAL RE-EXPOSURES

The shutter speed setting determines how long the sensor cells are exposed to light before
being read out and transmitted to the PC. This value imposes a delay in the capturing
process and is added to the overall capture time.

The position of the ROI on the CCD sensor has no significant influence on capture time.
Any ROI of a given size requires the same amount of time to be read out and transmitted,
no matter where it is located on the sensor.

The ROI size has the most interesting influence on capture speed. Increasing the height
of the ROI leads to a linear increase in capture time. This is obvious because CCD
sensors are usually read out row by row at a constant frequency, while rows that are not
captured are discarded completely. Contrary to this, no time can be saved by decreasing
the ROI width because the read-out time of a row on the sensor is constant. The ROI
width merely determines the number of bytes per read-out cycle produced by the camera.
This data is split into packets of a fixed size and sent over the bus at the bus’ own cycle
frequency. Since the bus packet size can only be set in discrete steps, a slight increase
in capture time is perceived when decreasing the ROI width.

From these considerations, we can conclude the following:

• The position of ROIs to be captured is irrelevant.

• Given that the camera’s data rate does not exceed the bandwidth of the FireWire
bus, it is most efficient to capture images at full width.

• The height of a ROI to be captured should be chosen as small as possible.

Additionally, some CCD cameras require a minimum total image size to capture effi-
ciently. Since the image width is fixed, this requirement results in a lower bound for the
ROI height hmin.

At full image width, the total capture time in milliseconds at a given shutter setting ∆t
and image height h can be described as

T (∆t, h) = a+ ∆t+ c+ v · h, (4.1)

where a is the time to set up an image buffer of appropriate size and to allocate bandwidth
on the bus. c and v are the camera-specific constant and variable capture costs. a, c and
v need to be determined experimentally as described in Section 4.1.2.

Note that the constant cost of image capturing (a+ ∆t+ c) can exceed the variable cost
v ·h for small ROI heights by far. Instead of capturing two close but distinct ROIs, it can
therefore be more efficient to capture both regions and the area in between in one step.
According to the above considerations, the distance between two ROIs can be expressed
by the number d of image rows between them. It is more efficient to merge two regions
and capture d additional rows in between rather than capturing twice and doubling the
constant cost if

v · d < a+ ∆t+ c ⇔ d <
a+ ∆t+ c

v
. (4.2)

4.1. PROPERTIES OF “TRUE PARTIAL SCAN” 49

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

C
ap

tu
re

 ti
m

e
[m

s]

ROI Height

Figure 4.1: Measured capture time in milliseconds for ROIs of a given height and
full width.

4.1.2 Estimating Capture Costs

In our experiments for this chapter, we used an AVT Marlin F-145B2 FireWire camera
with a maximum resolution of 1392 by 1040 pixels, B/W. It allows shutter values ranging
from 0.037 ms to 81.9 ms and features “true partial scan”.

To estimate the camera-specific coefficients, we captured images at different heights and
measured the time taken. We kept the image width constant at 1392 pixels and varied the
height from 10 to 1040 in steps of 10, measuring each size five times for an average. The
shutter speed was set to the minimum possible value of 0.037 ms and subtracted later.
The time to allocate image buffers and bus bandwidth and to trigger the camera was
averaged over all image sizes, resulting in a value of a = 20.36 ms. For each individual
exposure, we started to measure the capture time after triggering and stopped when the
image was fully received. The results are shown in Figure 4.1. As can be seen from the
plot, it is inefficient to capture ROIs with a height of less than 48 rows – this is where
the total image size falls below 64 kB. As a consequence of this characteristic trait, we
set hmin to 48 for our camera. In order to estimate c and v, we fit a regression line to the
sample data starting from h = 50 and obtained the values c = 25.63 ms and v = 0.09778
ms per row.

For our camera, the total time tcapt to capture an image of full width, height h and
shutter speed ∆t can therefore be calculated as

tcapt(∆t, h) = 20.36 + ∆t+ 25.63 + 0.09778 · h. (4.3)

50 CHAPTER 4. CAPTURING WITH PARTIAL RE-EXPOSURES

Figure 4.2: The left image shows the base image of an LDR image sequence. Some
areas of the base image are badly exposed. Only the rectangular ROIs
are captured again with a shorter (top) and longer (bottom) shutter
speed.

4.2 The Partial HDR Algorithm

Our algorithm to capture HDR images using partial re-exposures of poorly exposed
regions can be divided into the following steps:

1. Capture a base image of the scene at full resolution and an initial shutter setting,

2. Search the captured image for under- or overexposed pixels,

3. Group these pixels into ROIs for re-exposure and determine an appropriate shutter
speed setting,

4. Re-Capture all ROIs from the previous step with a different shutter setting and
repeat from 2 using each newly captured image,

5. If no more under- or overexposed regions are found, create an HDR image from
the set of exposures.

This is illustrated in Figure 4.2.
The algorithm explores the base image and all subsequently captured partial images
iteratively and captures at only as many shutter speeds as necessary to cover the full
dynamic range of the scene. As a side effect, it is insensitive to changes of the initial
shutter setting. Details on how to set the initial shutter speed are given in Section 4.2.2.
In order to search captured images for under- or overexposed pixels, we introduce a
simple criterion to determine bad exposure based on the brightness value of an image
pixel: A pixel is valid if its brightness value p lies within an interval [pmin, pmax] and is
invalid otherwise. In other words, very dark or very bright pixels are poorly exposed
(invalid) and are considered for re-exposure. The camera used in this chapter is an 8-bit

4.2. THE PARTIAL HDR ALGORITHM 51

industrial camera with very little dark noise. We thus choose [pmin, pmax] = [10, 254].
The choice for pmin is more or less arbitrary and can be adjusted to the needs of the
particular application and capturing device.

4.2.1 Determining ROIs for Re-Exposure

This Section describes the analysis of an image for invalid pixels and the identification
of rectangular image areas to be captured again at different shutter speeds. We derive
the latter mostly from the results of Section 4.1.
The ROI detection process starts with the first captured image – the base image. It is
the only image that is searched for both under- and overexposed pixels. All subsequently
recorded images have either lower or higher shutter speeds than the original image and
are only analyzed towards their corresponding direction. The two directions “higher
shutter speeds” and “lower shutter speeds” are performed independently but in parallel
to some degree, as can be seen later in Section 4.2.3.
Our considerations in Section 4.1 have shown that no performance gain can be achieved
by capturing images at less than full width. We therefore restrict the set of possible
ROIs to those with a width equal to the full width of the CCD sensor. Such a region
is fully described by the location of the first row belonging to the ROI and its height.
Thus, as a first step in determining areas for re-exposure, a histogram is created with
as many bins as the number of rows in the image to be considered. Each bin stores the
number of invalid pixels found in its corresponding image row. Note that two histograms
must be created for the base image. For all later images, one histogram for either under-
or overexposed pixel counts is sufficient.
From now on, only row histograms counting invalid pixels are considered, reducing the
problem of finding ROIs to a one-dimensional one. As a preprocessing step, a mor-
phological closing is done to the row histogram to achieve a preliminary grouping of
nearby rows with high numbers of invalid pixels. A threshold rmax is then applied to the
histogram, marking those image rows having an invalid pixel count of more than rmax
percent. Marked rows in the histogram are the ones to be considered for re-exposure. By
changing the parameter rmax, it is possible to adjust the trade-off between capture speed
and image quality: Setting rmax to a lower value results in more rows to be marked for
re-exposure, leading to a lower number of invalid pixels that remain in the final HDR
image, but also to increased costs for capturing. The influence of rmax on the image
capturing process is further examined in Section 4.3.
Next, the thresholded row histogram is searched for contiguous runs of marked rows.
These constitute the basic ROIs for re-exposure. Before being pushed into the image
capture queue, they are expanded to a minimum size of hmin rows, and ROIs that are
closer together than d rows are merged into single regions to accommodate the properties
of the camera’s “true partial scan” feature.
Lastly, the detected ROIs are pushed into the queue of images to be captured. Depending
on whether the image was analyzed for under- or overexposed pixels, the regions will be
re-exposed with either longer or shorter shutter speeds, respectively. In our approach,
we double or halve the shutter speeds. By doing so, there will be enough image pixels

52 CHAPTER 4. CAPTURING WITH PARTIAL RE-EXPOSURES

that are valid in both of two consecutive exposures, so they can be used for image
registration purposes. As soon as no more invalid pixels are found in any of the newly
captured images or the required shutter speed exceeds the camera’s limits, the algorithm
terminates. Therefore, no more shutter speeds than necessary to capture the scene’s
dynamic range are used.

4.2.2 Setting the Initial Shutter

Once an HDR frame is created from the partial re-exposures, it can be used to estimate
an optimal initial shutter setting for the next base frame. Optimal in this context means
that the expected number of re-exposures in the next set is minimal. Our approach is
to set the next initial shutter speed to a value that maps the average radiance of the
scene to a central pixel value of the next exposure. The average radiance is conveniently
obtained during HDR stitching.
A pixel is not under- or overexposed if its value lies within an interval [pmin, pmax]. Using
equation 2.24, the radiance interval resulting in well-exposed pixels under a given shutter
speed ∆t is given by [

f−1(pmin)

∆t
,
f−1(pmax)

∆t

]
. (4.4)

Taking the logarithm of the radiance values results in an interval of[
log

(
f−1(pmin)

∆t

)
, log

(
f−1(pmax)

∆t

)]
(4.5)

in the log HDR image. The size of this interval no longer depends on ∆t because ∆t
becomes a scalar offset in the log domain. The center of the interval is

1

2

(
log

(
f−1(pmin)

∆t

)
+ log

(
f−1(pmax)

∆t

))
. (4.6)

Figures 4.3 and 4.4 illustrate the intervals.
The average Lavg of the logarithm of the scene’s radiance values is calculated during
HDR stitching. We now set the next shutter speed ∆t so that the average log radiance
Lavg is mapped to the center of the interval of well-exposed pixels:

Lavg =
1

2

(
log

(
f−1(pmin)

∆t

)
+ log

(
f−1(pmax)

∆t

))
⇔ Lavg =

1

2

(
log
(
f−1(pmin)f−1(pmax)

)
− 2log (∆t)

)
⇔ log (∆t) =

1

2
log
(
f−1(pmin)f−1(pmax)

)
− Lavg

⇔ ∆t =
2

1
2
log(f−1(pmin)f−1(pmax))

2Lavg

⇔ ∆t =

√
f−1(pmin)f−1(pmax)

2Lavg

4.2. THE PARTIAL HDR ALGORITHM 53

0

1000

2000

3000

4000

5000

0.5 1 1.5 2 2.5 3

Fr
eq
ue
nc
y

Radiance Value

captured
with�t1 captured

with�t0

Δ

Δ

Figure 4.3: Histogram of an HDR frame. The marked radiance intervals will be
neither under- nor overexposed in images captured with a shutter speed
of ∆t0 and ∆t1.

0

1000

2000

3000

4000

5000

-5 -4 -3 -2 -1 0 1

Fr
eq
ue
nc
y

Log Radiance Value

captured
with�t1

captured
with�t0

A

Δ

Δ

L avg

Figure 4.4: Histogram of the logarithm of the same HDR frame as in Figure 4.3.
The log radiance intervals are now the same size. Lavg is the average
of the logarithm of the scene radiance.

54 CHAPTER 4. CAPTURING WITH PARTIAL RE-EXPOSURES

...

Time

C0 A+0 A+1C1 C2

A−1C−1A−0

C(I)0 A (I)0

+ C(I)+1 A (I)+1
+ C(I)+2

A (I)0

- C(I)-1 A (I)-1

-

Figure 4.5: Capturing and analyzing for badly exposed pixels can be interleaved to
use the camera and the CPU in parallel. While a darker image is cap-
tured C(I−1), a previously captured image I+1 can be searched for over-
exposed pixels A+(I+1).

4.2.3 Implementation Issues

Our experiments in Section 4.1 revealed a phenomenon that can be utilized for an efficient
implementation of the partial HDR algorithm. From an implementation point of view,
the image capturing process can be divided into two distinct parts. The first part is the
setup phase where an image buffer is allocated, bandwidth on the bus is reserved, and
the camera is triggered to record an image. In the second phase, the camera exposes the
sensor to the light of the scene, reads out the currents accumulated in its CCD cells, and
sends the image data over the FireWire bus to the PC where it is written into memory
via “Direct Memory Access” (DMA). During this second phase, until the image is fully
received from the camera, the CPU is idle. We can therefore use this idle CPU time to
analyze the captured images without adding to the overall capture time.
In our implementation, we make use of this fact in the following manner: First the base
image I0 is captured. We denote the process of capturing an image by C(I). Next, the
base image is analyzed for overexposed regions which are then put into a re-exposure
queue. We denote the analysis for under-/overexposed regions by A−(I) and A+(I),
respectively. After these two initial sequential steps, the algorithm can be parallelized:
While the overexposed regions are re-captured with a shorter exposure time to create a
new image I+1, we use the idle CPU time to analyze I0 again, this time for underexposed
regions. Then, during the process of capturing the brighter image I−1, the darker image
I+1 is analyzed, and so on. This process is illustrated in Figure 4.5.
Our way of implementing this is by using two queues. One queue contains the images to
be analyzed and the other contains camera settings for images to be captured. In each
step, one element from each queue is considered, and both are processed in parallel. We

4.3. EXPERIMENTAL RESULTS 55

found that in our setup, capturing even the smallest possible image took longer than
analyzing a full image. As long as there are images in the capture queue, the analysis
can thus be performed for free and will not add to the overall capture time.

4.3 Experimental Results

We conducted experiments to evaluate the performance of our algorithm. The two
performance criteria we considered were: 1) Time saved to create an HDR image from
partial re-exposures, and 2) the quality of the resulting image with regard to the number
of invalid pixels that remain in the final result. Both quantities were evaluated for our
partial image HDR approach with adaptive numbers of exposures and compared to the
traditional approach of creating HDR images using full images. For convenience we refer
to the two approaches as “partial HDR” and “full HDR”. To compare the results, we
first ran our algorithm on the test data to determine the set of exposures used and then
measured the full HDR approach using the same set. The camera was an AVT Marlin
F-145B2 black and white camera with a maximum resolution of 1392 by 1040 pixels,
capable of capturing 15 frames per second.

As test data, we created six scenarios we refer to as Hallway, Indoor, LEDs, PCA,
Telephone and Window. Tone mapped HDR images of these can be seen in Figure 4.6.
Each scenario consists of twelve saved exposures of the same static scene captured with
a static camera. The shutter speeds were set to 2i · 0.02ms, i = 1, .., 12 in accordance
with all possible shutter settings requested by our algorithm.

A compromise had to be made between making our measurements reproducible and
measuring time taken to capture images as realistically as possible. The former suggests
using saved images while the latter requires capturing live images. We chose to conduct
our experiments on saved image data. Instead of recording live images with the camera,
we copy ROIs from saved images and use the results of Section 4.1 to assess the required
capture time. As described in Section 4.2.3, the computation time that can be scheduled
in parallel to an image acquisition is neglected.

Table 4.1 compares the results of the speed measurements in each of the six scenarios
using full and partial HDR. In this experiment, the parameter rmax was set to 0.7%. It
can be seen that using partial re-exposures in these scenarios saves 20-49% of the time to
create an HDR image. This leads to an increase in achievable frame rates by 25-96%. As
expected, the LED example (see Figure 4.6) leads to the largest performance gain because
the bright areas cover only a small portion of the scene. As a “worst case” example, the
Hallway scenario contains overexposed regions that comprise a large area of the scene
(due to reflections on the floor). Throughout all scenarios, the overhead introduced
through image analysis accounts for approximately 5% of the overall duration.

The parameter rmax influences the process of detecting invalid regions in an image. It
determines the maximum allowed percentage of invalid pixels in an image row. Rows that
contain at most rmax percent invalid pixels are not re-exposed and may generate under-
or overexposed pixels in the final HDR image. As stated before, rmax is an optimization
parameter allowing to adjust the trade-off between capture speed and image quality.

56 CHAPTER 4. CAPTURING WITH PARTIAL RE-EXPOSURES

(a) Hallway (b) Indoor

(c) LEDs (d) PCA

(e) Telephone (f) Window

Figure 4.6: Tone mapped HDR images of the six scenarios we used for our ex-
periments. (a) and (b) were chosen as worst case examples for our
approach: (a) has very large overexposed areas due to the window in
the background and reflections on the floor, and (b) displays an indoor
scene with a rather low dynamic range. A high performance gain is to
be expected in scenario (c) where the bright LEDs cover only a small
portion of the image. The metal parts in (d) reflect the light source and
become overexposed. (e) and (f) are typical HDR examples with bright
and dark regions.

4.3. EXPERIMENTAL RESULTS 57

Scenario Capturing Analysis Stitching Total
Hallway (f) 1263 0 365 1628, 100%
Hallway (p) 954 77 274 1305, 80%
Indoor (f) 515 0 174 689, 100%
Indoor (p) 367 26 126 519, 75%
LEDs (f) 1936 0 545 2481, 100%
LEDs (p) 981 41 254 1276, 51%
PCA (f) 1493 0 451 1944, 100%
PCA (p) 1078 46 285 1409, 72%
Telephone (f) 897 0 256 1153, 100%
Telephone (p) 642 30 169 841, 73%
Window (f) 1074 0 327 1401, 100%
Window (p) 739 87 246 1072, 77%

Table 4.1: Measured time in milliseconds taken for image capturing, image analy-
sis and HDR stitching. For each scenario the two approaches full HDR
(f) and partial HDR (p) were examined.

Scenario rmax Invalid Total time
Hallway 0% 0% 87%

0.7% 0.02% 80%
5% 0.31% 67%

10% 3.68% 49%
PCA 0% 0% 89%

0.7% 0.04% 72%
5% 1.04% 42%

10% 3.78% 37%

Table 4.2: Influence of rmax on image quality and capture speed. The “Invalid”
column displays the percentage of invalid pixels in the HDR image.
“Total time” shows the total time taken to capture, analyze and stitch
images in relation to the speed achieved by the full HDR approach as
shown before.

The influence of rmax on these two performance criteria is illustrated in Table 4.2 for the
Hallway and PCA images. It shows the percentage of invalid pixels in the created HDR
image and the overall time taken to capture, analyze and stitch images. The overall time
is expressed as the percentage of the full HDR capture time, analog to Table 4.1. To
avoid clutter, we chose two exemplary scenarios and four different settings for rmax each.
The results in the other scenarios were similar.

58 CHAPTER 4. CAPTURING WITH PARTIAL RE-EXPOSURES

4.4 Conclusions

We have shown a technique to capture HDR images more efficiently than by capturing
images with varying exposure at full resolution. By capturing partial images and selecting
the range of shutter settings used adaptively, we were able to increase the frame rate by
25-96%. We also showed how our algorithm can be parallelized, so that image analysis
is performed while exposing a new image. Images can therefore be analyzed “for free”
while waiting for the next image. Capturing partial images also reduces the amount
of redundant data that is inputted to HDR stitching which allows for more time to be
saved.
A limitation of our approach is the relatively high constant cost of the capturing process.
In our scenario, only roughly one half of the total capture time was dependant on the
image size, setting an upper bound to the achievable performance gain.

Chapter5
Optimal Shutter Speed Sequences

In this chapter, we present the alternative capturing approach that makes use of the
cameras sequence mode. A shutter sequence is determined and transmitted to the cam-
era, which then captures the image sequence asynchronously. We begin by defining our
concept of contribution functions and describe a useful relationship between these func-
tions and histograms over the logarithm of scene radiance values. This relationship is
then exploited in our optimal shutter sequence algorithm.

5.1 Contribution Functions and Log Radiance His-

tograms

Section 2.5.2 introduced weighting functions in the context of merging corresponding
pixels of an LDR image sequence into one scaled radiance value. A weighting function
w is defined for the 256 different values an 8-bit pixel can take on. It determines a
weight for a pixel which reflects the pixel’s suitability as an accurate measurement of
radiance. Figure 5.1 shows the weighting function we use in our HDR video system. In
our experiments, we found that the function shown in the plot gives the best results, but
our approach also works with other choices.
For a given shutter speed ∆t, we can calculate how well a radiance value L can be
estimated from an image captured at ∆t by combining the camera’s response function
and the weighting function. A radiance value L is mapped to a pixel value using the
camera’s response function f . The weighting function w then assigns a weight to the
pixel value. We define

c∆t(L) = w(f(L∆t)) (5.1)

as the contribution of an image captured at ∆t to the estimation of a radiance value
L. In the special case of a linear response function, c∆t looks like a shifted and scaled
version of w. An example of a contribution function in the log domain is shown in Figure

59

60 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

W
ei

gh
t

Pixel Value

Figure 5.1: The weighting function we use in our experiments. The weight of a
pixel is its value multiplied by a hat function normalized to a maximum
weight of 1.

5.3. Representing radiance in the log domain is preferable in our scenario, because then
the shape of c∆t no longer depends on the shutter speed ∆t.

In our HDR videos system, the scene’s brightness distribution is known from tone map-
ping of the previous frame. We can thus use the available log radiance histogram to
calculate a sequence of shutter speeds ∆ti which allows the most accurate estimation of
the scene’s radiance. We do this by choosing the ∆ti such that the peaks of the contri-
bution functions c∆ti(L) of the LDR images coincide with the peaks in the histogram.
That is, radiance values that occur frequently in the scene lead to LDR images to be
captured which measure these radiance values accurately. This is illustrated in Figures
5.2 and 5.3.

The histogram over the logarithm of scene radiance has M bins. Each bin with index
j = 1, ...,M corresponds to the logarithm of a discrete radiance value: bj = log(Lj).
Bin j counts the number H(j) of pixels in the HDR image having a log radiance of bj.
The bins have even spacing in the log domain, meaning that for any j, the log radiance
values bj and bj+1 of two neighboring bins differ by a constant ∆b = bj+1 − bj. The
non-logarithmic radiance values corresponding to two neighboring bins thus differ by a
constant factor exp(∆b) = exp(bj+1)/exp(bj) = Lj+1/Lj.

Equation 5.1 states that, for a given shutter speed ∆t and an LDR image captured using
∆t, the value of c∆t(exp(bj)) indicates how accurately log radiance bj is represented in
the LDR image. When considering log radiance histograms, the continuous contribution
function is reduced to a discrete vector of contribution values. It has one contribution
value for each radiance interval of the histogram. We can now exploit a useful rela-
tionship between the log radiance histogram and our contribution vector: Shifting the
contribution vector by a number of s bins leads to

5.2. OPTIMAL SHUTTER SEQUENCE 61

Figure 5.2: Example of a tone mapped HDR image.

c∆t(exp(bj + s∆b))

= w(f(exp(bj + s∆b)∆t))

= w(f(exp(bj)exp(∆b)
s∆t))

= w(f(exp(bj)∆t
′))

= c∆t′(exp(bj)),

where
∆t′ = exp(∆b)s∆t. (5.2)

This means that the contribution vector corresponding to shutter speed ∆t′ is identical
to a shifted version of the original vector. We thus easily obtain an entire series of
contribution vectors for shutter speeds that differ by a factor of exp(∆b)s. In other
words, only the shift, but not the shape of the contribution function depends on the
shutter speed in the log domain. This allows us to move the contribution function over a
peak in the histogram and then derive the corresponding shutter speed using the above
formula.

5.2 Optimal Shutter Sequence

In order to compute an optimal shutter speed sequence, we first calculate an initial
contribution vector from the known camera response and a chosen weighting function.
Camera response functions can be estimated as described in Section 2.5.1. The initial
shutter speed ∆t to compute c∆t can be chosen arbitrarily. For ease of implementation,

62 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200

O
cc

ur
re

nc
e

Histogram Bin

Histogram
Contribution

Figure 5.3: The solid line depicts the log radiance histogram of our example scene
(Figure 5.2). The dashed line is the contribution function in the log
domain corresponding to a shutter speed chosen by our algorithm. The
exposure was chosen such that it captures the most frequently occurring
radiance values best.

we choose ∆t such that the first histogram bin is mapped to a pixel value of 1, that is
f(exp(b1)∆t) = 1. Note that f−1(0) is not uniquely defined in general. The size of the
contribution vector depends on the dynamic range of the camera, reflected in its response
function. Reaching a certain scene radiance LN+1 = exp(bN+1), the camera’s pixels will
saturate, resulting in f(exp(bj)∆t) = 255 for j ≥ N + 1 in case of an 8 bit sensor. It is
safe to assume that any reasonable weighting function assigns zero weight to this pixel
value. Hence, the contribution vector c∆t(Lj) = w(f(exp(bj)∆t)) consists of N nonzero
values. It can be shifted to M +N − 1 possible positions in the log radiance histogram.
Each shift position s corresponds to a shutter speed ∆ti, which can be calculated using
Equation 5.2: ∆ti = exp(∆b)s∆t. This equivalence between shutter and shift is utilized
later.

Here, we explain how a new shutter speed is added to an existing shutter sequence. The
first shutter can be determined analogously. So we assume that the sequence already
consists of a number of shutter speeds ∆ti. To each ∆ti belongs a contribution vector
c∆ti(Lj), with Lj = exp(bj) being the radiance values represented by the histogram
bins. See Figure 5.3 for an example. We now need to decide whether to add another
shutter to the sequence or not, and find out which new shutter brings the biggest gain
in image quality. For this purpose, we define a combined contribution vector C(Lj) that
expresses how well the radiances Lj are captured in the determined exposures. We make
the assumption that the quality of the measurement of a radiance value only depends
on the highest contribution value any of the exposures achieves for it. The combined

5.2. OPTIMAL SHUTTER SEQUENCE 63

contribution is thus defined as the maximum contribution for each histogram bin

C(Lj) = max
i

(c∆ti (Lj)) . (5.3)

This definition can now be used to calculate a single coverage value C to estimate how
well exposed the pixels in the scene are in the exposures. C is obtained by multiplying
the frequency of occurrence of a radiance value H(j) by the combined contribution C(Lj)
and summing up the products:

C =
M∑
j=1

C(Lj)H(j). (5.4)

This is essentially the same as the cross correlation between the two. The algorithm tries
out all possible shifts between a new contribution vector and the log histogram. The
shutter speed corresponding to the shift that leads to the biggest increase of C is added
to the sequence.
The algorithm described so far is greedy in that it does not reconsider the shutter speeds
it already chose. We added a second iteration over the shutter sequence to allow for
some hindsight refinement. All shutters but the first one are refined in the same way.
The first shutter is treated differently as described later. The shutter to be refined is first
removed from the sequence. The algorithm for finding the next best shutter according
to the maximum increase of C is then applied again. In most cases, the resulting shutter
value is similar, but slightly better than the previous choice with respect to coverage.
This is because the algorithm is aware of the rest of the sequence at this point. Our
experimental results support this claim.

5.2.1 Stop Criteria

If the histogram is normalized such that its bins sum up to 1 and the weighting function
has a peak value of 1, then C is in the range of [0..1] and can be expressed as a percentage.
C = 1 then means that for each radiance value in the scene, there exists an exposure
which captures it perfectly. However, perfect coverage is not achievable in a realistic
scenario. It is more practical to stop adding shutters to the sequence once a softer stop
criterion is met. We came up with three different stop criteria: the total number of
exposures, a threshold for C and a maximum sum of shutter speeds. The sum of shutter
speeds must not exceed the available time between two video frames. The criterion that
limits the total number of exposures is always active. It guarantees that the algorithm
terminates after calculating a finite number of shutter speeds. We also use this criterion
to manually choose the number of exposures for our evaluation for better comparability.
This is described in more detail in Section 5.3.
The threshold for the coverage value C is a quality criterion. A threshold closer to 1
allows for a better estimation of scene radiance, but requires to capture more exposures.
We chose C ≥ 0.9 for our running system.
For the type of camera we employ, the capture time of a frame is roughly proportional to
the exposure time. And since we are interested in capturing real-time video at 25 frames

64 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 20 40 60 80 100 120

O
cc

ur
re

nc
e

Histogram Bin

Saturated Histogram
New Darkest Exposure

Figure 5.4: Some areas of the scene are overexposed even in the darkest exposure.
It shows up as a peak at the highest radiance value in the histogram.
In the next frame, the algorithm chooses a shutter speed that covers
the peak. By doing so, areas with a higher radiance than the previous
maximum can still be captured faithfully.

per second, the sum of all shutter speeds must not exceed 40 milliseconds. Our third
stop criterion is an adjustable threshold for the sum of shutter speeds. However, it should
be made clear that the algorithm has little control over meeting this requirement. In
the example shots we took, only two exceeded the threshold. But they in turn overshot
it by a large factor. We argue that it is the camera operator’s responsibility to adjust
aperture and gain or to use a different lens to cope with particularly dark scenes.

5.2.2 Adapting to Brightness Change

So far, we described the algorithm to determine a sequence of shutter speeds for a single
HDR frame based on a perfect histogram of the scene. However, there are two major
problems that arise when applying this algorithm to HDR video directly: imperfect
histograms and flicker.

Perfect histograms are not available in a real video. The available histograms are created
from the previous frame which generally differs from the current one. Furthermore, the
dynamic range covered by the histogram is only as high as the range covered by the
previous exposure set. For example if the camera pans towards a window looking outside,
the bright outdoor scene may be saturated even in the darkest exposure. This shows up
as a thin peak at the end of the histogram of the previous frame (see Figure 5.4). How
bright are these pixels really? To find out, the algorithm needs to produce a shutter
sequence that covers a larger dynamic range than the histogram of the previous frame
indicates. This allows the sequence to adapt to changes in the scene.

We accomplish this by treating the first shutter in the sequence differently. The special

5.2. OPTIMAL SHUTTER SEQUENCE 65

treatment is based on the observation that underexposed images contain more accurate
information than overexposed ones. The dark pixels in an underexposed image are a
noisy estimate of the radiance in the scene. However, this noise is unbiased. Saturated
pixels, on the other hand, always have the maximum pixel value, no matter how bright
the scene actually is. As a consequence of this observation, the first shutter is chosen
such that its contribution peak covers the highest radiance bin of the histogram. The
peak of a weighting function is usually not located at the highest possible pixel value.
This means that radiances beyond the peak – if existing in the next frame – are still
represented by a non-saturated pixel. See Figure 5.4 for an example. This allows to
faithfully record radiance values that are higher by a certain percentage than the previous
frame’s maximum, and the sequence can adapt to brighter scenes. Change towards a
darker scene is less critical, because underexposed pixels still contain enough information
about the real radiance to calculate a new longer shutter time. With adaptation enabled,
bootstrapping becomes straightforward. We can start with any set of shutter speeds and
arrive at the correct values after a few frames. The speed of adaptation is evaluated in
Section 5.3.2.

5.2.3 Avoiding Flicker

The second problem to deal with when applying our algorithm to HDR video is flicker.
It is a side effect of changing the shutter sequence over time. Consider the following sce-
nario: A bright saturated area like a white wall leads to a peak at the highest histogram
bin. This gives rise to a darker exposure taken in the next frame as shown in Figure 5.4.
The darker exposure causes the histogram peak to spread out over several bins. It may
now cause too little extra coverage to justify the darkest exposure. In this situation,
the algorithm oscillates between including the lowest shutter speed and omitting it. In
the resulting video, the white wall would alternate between having texture and being
completely saturated.
Another reason why stable shutter sequences are desirable is the way we operate our
camera. A sequence of exposure parameters is sent to the camera. It then repeatedly
captures exposures by cycling through the parameter list. This is done asynchronously,
and the captured exposures are buffered. Changing the shutter sequence requires a costly
retransmission of the parameters, and the buffers are used suboptimally.
For these reasons we impose a stability criterion upon the shutter sequence. We begin
by defining whether two given shutter speed sequences are similar. If the number of
shutters in the two sequences differs, then they are not similar. If it is the same, then we
calculate the distance between their shutter values. The distance between two shutters is
expressed as a percentage to model their exponential nature. For each value in the first
sequence, the closest shutter speed in the second one is found. This search is necessary
because the order of the lists is arbitrary. The distance between all closest shutter pairs
is averaged. If the average is greater than a threshold (we use 20%), the sequences are
not similar. Otherwise they are similar.
Using this definition, we achieve temporal stability by distinguishing between two states:
changing and static. We always run our algorithm to determine a new shutter sequence.

66 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

In the changing state, this new sequence is used directly, and new parameters are trans-
mitted to the camera. In the static state, the sequence is simply discarded, and the
parameters of the previous frame are kept. A change between the states occurs accord-
ing to the following rules:

• When in the static state and the newly determined sequence is not similar to the
previous one, increase a counter.

• If more than certain number of non-similar sequences occur in a row (3 in our
system), transition to the changing state.

• A sequence similar to the current one always brings the algorithm back to the static
state and resets the counter.

These rules have the effect that small variations in the shutter speeds are ignored. Once
the scene actually changes, it takes three frames to react. Then the algorithm retains its
original flexibility. It is able to adjust in each frame until a stable shutter speed sequence
is found again. For fast bootstrapping, the system starts in the changing state.

5.2.4 Reducing the Image Size

When capturing with partial re-exposures as described in the previous chapter, capturing
and image analysis are interleaved, so that the algorithm can adapt the image sizes to
the scene while acquiring the LDR sequence. To maximize throughput for capturing
with optimal shutter speeds, we use the camera’s sequence mode. This means that the
camera parameters must be specified completely before the it starts exposing the first
image. Ideally, the same parameters can be used for multiple HDR frames. Another
requirement of using the sequence mode is that the DMA buffers for the image data and
bandwidth on the FireWire bus are allocated beforehand. This is only possible when the
exact image sizes are known in advance.

For these reasons, using the sequence mode with variable image sizes is difficult, and we
always capture full images here. The LDR images are then cropped after acquisition to
save processing time in the subsequent steps of the HDR pipeline. We begin by choosing
the darkest image of the sequence as the base image. It is searched for underexposed
areas as described in Section 4.2.1. The next brighter image is now cropped to the size
of the underexposed regions of interest of the base. The cropped brighter image is then
searched for underexposed ROIs in turn which are used to crop the next image in the
sequence, and so on.

Finding badly exposed regions can be done in one pass over the image plus several oper-
ations one the one-dimensional column histogram. It is thus an inexpensive operation.
Additionally, we do not actually crop the images, but store the cropping parameters and
only do further processing on the remaining ROI. In our experiments, we found that
the processing time saved during color conversion, image registration and HDR stitching
outweighs the cost of reducing the image size after capturing.

5.3. EXPERIMENTAL RESULTS 67

5.3 Experimental Results

This section presents the evaluation of our algorithm for optimal shutter speed sequences.
Section 5.3.1 describes a subjective user study we conducted to assess the HDR image
quality our approach achieves compared to the traditional way of choosing evenly spread
shutters. For reasons described later in the section – most notably the unavailability of
a perfect reference HDR video – only still images are used in this study. Section 5.3.2
contains a number of experiments to investigate the algorithm’s behavior in our live
HDR video system. They include an analysis of the algorithm’s adaptation to changing
brightness conditions and of its processing time.

5.3.1 Subjective User Study

27 participants took part in our subjective user study. Five of them were familiar with
HDR imaging algorithms. The study was done over a website that allows to rate the
quality of HDR images.1 See Figure 5.5 for a screenshot of the website. Its first page
contains a brief introduction to HDR imaging and the problem of choosing suitable
shutter speeds. The participants were told to base their rating on: The amount of under-
and overexposure present, the amount of image noise and quantization effects in color
gradients. An example for each type of artifact was given. Variations in overall image
brightness, contrast or color saturation were to be ignored as they may occur as a side-
effect of tone mapping. The subjects were then shown twelve datasets of various scenes
(see examples in Figure 5.6). Each dataset consisted of three HDR images: a reference
image, an image created using shutter speeds from our approach and one where evenly
spread shutters were used. The reference was always shown on the left side while the
two survey images were shown in random order to avoid a subjective bias. Each of the
two images had to be rated using the five scores (numerical value in parentheses): Very
Good (5), Good (4), Average (3), Poor (2), Very Poor (1).
We used an AVT Pike F-032C FireWire camera capable of capturing 208 VGA frames
per second with an aperture of f/2.8. The twelve scenes we captured had dynamic ranges
exceeding the camera’s capabilities. To attain radiance values with high precision, we
chose static scenes and used a tripod. Each scene was captured as a set of 79 LDR
exposures with shutter speeds varying by a factor of 8

√
2. An exposure set covers the

entire range of our camera’s shutter settings (37 µs to 81.9 ms). All 79 exposures were
used to generate the reference image and the log radiance histogram of each scene. The
reference image is assumed to be an accurate representation of the scene radiance.
To create our datasets, we manually selected a suitable number of LDR exposures to
be used for the two survey HDR images of each scene. The number was chosen low
enough for a discernible degradation of image quality to facilitate the rating process.
For comparison, the default stop criterion for total coverage was set to C ≥ 90%, while
the average coverage achieved for our datasets was 80.4% for optimal and 75.9% for
equidistant shutters. The chosen number of exposures was used as the only stop criterion
of our algorithm; a sequence of shutter speeds was created accordingly. Out of the 79

1http://pi4.informatik.uni-mannheim.de/∼bguthier/survey/

68 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

Figure 5.5: Screenshot of the website we used for our subjective user study. A
reference image and two survey images are shown, and participants can
rate their quality.

saved images of one dataset, those best matching the determined shutter speeds were
merged to create the first HDR image. The second image was created using evenly
spaced shutter speeds obtained in a way similar to [9]. To determine this sequence,
the minimum and maximum scene radiance were considered, and the same number of
exposures were spread evenly to cover the entire dynamic range. “Evenly” in this context
means that the corresponding shutter speeds vary by a constant factor, i.e., a constant
offset in the log domain. The shortest shutter speed was chosen in the same way as
for our algorithm. The only exception are equidistant shutter sequences with only two
shutters. For these, we found that choosing them closer to the center of the histogram
gave better results. Due to the way we determined them, equidistant shutters also benefit
from prior knowledge of the scene radiance, which is an advantage over plain exposure
bracketing. This needs to be considered when comparing the achieved scores.

The main reason to use HDR still images instead of video for subjective quality assess-
ment is the availability of a perfect reference image and with it the reproducibility of
the results. Capturing 79 LDR exposures at varying shutter speeds allows to reconstruct
the real scene radiance accurately. The shutter values are sufficiently close together to
simulate arbitrary shutter sequences. Capturing the same amount of exposures for an
HDR reference video is not feasible. Another reason is the difficulty to capture the
optimal and the equidistant shutter video both at once. And lastly, HDR video may
introduce various new artifacts like a misalignment of the exposures or a temporally
inconsistent tone mapping. These additional artifacts may mask the difference between
the two shutter speed choices.

5.3. EXPERIMENTAL RESULTS 69

The 27 participants rating 12 datasets resulted in a total of 324 pairs of scores, one for
optimal and one for equidistant shutters. Seven pairs were invalid because at least one
score was not specified by the subjects. This was explicitly allowed in order not to en-
courage the participants to enter bogus scores when wanting to skip datasets. Averaging
the 317 valid ratings results in a score of 3.73 for the optimal shutter algorithm and 2.83
for the equidistant approach. Note that the absolute value of the score is meaningless
as the survey images were intentionally captured with a less than optimal number of
exposures for better comparison. As a second aggregation of the results, we counted
the instances where either of the approaches scored better than the other. This leads
to our approach achieving a better score in 70%, the same in 16% and a worse score
in 14% of the ratings. Our approach got rated worse most often in a dataset where it
created a stronger quantization effect in the clouded sky. The sky only covers a relatively
small area of the scene. It appears, however, that human observers pay more attention
to it than its area indicates. We believe that this discrepancy between impact on the
scene histogram and human attention poses a challenge for our algorithm. Tackling it
exhaustively would require a costly visual attention analysis of the scene.
Figure 5.6 shows the reference images of all twelve scenes. The plot next to each image
contains the log radiance histogram of the reference HDR image. It is normalized so
that its bins sum up to 1. The plot also displays the combined contribution functions
created by the two algorithms. It is calculated according to Equation 5.3. It can be
seen that the equidistant shutters disregard the brightness distribution of the scene and
sometimes exposures are captured that add little to the coverage value. The achieved
coverage values and the calculated shutter speeds are presented in Table 5.1. Due to
the special treatment of the first shutter in our algorithm, its achieved coverage can be
lower than for equidistant shutters. This effect is most prominent in scenes where only
two exposures are used.

5.3.2 Objective Measurements

All experiments presented in this section were conducted in our real-time HDR video
system. The shutter speed sequence algorithm uses the histogram of the current HDR
frame as input. It was created during tone mapping of the frame. The calculated shutter
values are then used to capture the LDR exposures for the next frame. An appropriate
subset of the following three scenarios was used for the measurements.

1. Mostly static indoor scene with no camera motion.

2. A busy road with moving cars but no camera motion.

3. Moving scene with many camera pans between dark indoor and very bright outdoor
areas.

Unless stated otherwise, the measurements were taken over a period of 15 seconds (≈ 375
HDR frames).
As described in Section 5.2, the shutters that were determined greedily were refined in a
second pass over the sequence. The goal of this is to improve the coverage value C which
describes how well the chosen exposures overlap with the scene histogram. In order to

70 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(b)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(c)

Figure 5.6: The left column shows the reference images of the example scenes used
in our subjective evaluation. The plots contain the corresponding nor-
malized log radiance histogram. The dashed lines are the maximum of
the contribution functions belonging to the shutter speeds determined by
our algorithm and to the equidistant shutters.

5.3. EXPERIMENTAL RESULTS 71

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(d)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(e)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(f)

72 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(g)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(h)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(i)

5.3. EXPERIMENTAL RESULTS 73

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(j)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(k)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
cc

ur
re

nc
e

C
om

bi
ne

d
C

on
tr

ib
ut

io
n

Histogram Bin

Histogram
Optimal Shutters

Equidistant Shutters

(l)

74 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

Scene COPT CEQ Shutters (OPT) Shutters (EQ)

(a) 84.0% 77.2% 0.26 2.36 0.87 0.26 2.07 16.5
(b) 92.9% 83.8% 0.02 12 3.8 21 0.02 0.18 1.5 13
(c) 77.3% 69.8% 0.02 17.4 0.34 0.02 0.67 21.8
(d) 68.5% 53.0% 0.06 12.1 1.70 0.06 1.90 57.2
(e) 86.1% 77.0% 0.96 3.45 2.60 7.06
(f) 90.9% 81.9% 0.64 1.20 2.47 0.64 3.04 14.5
(g) 88.8% 82.0% 0.78 4.40 10.4 0.78 3.88 19.3
(h) 74.7% 64.8% 0.03 1.59 17.4 0.03 0.85 23.8
(i) 72.4% 82.0% 0.68 4.19 2.40 8.46
(j) 77.9% 83.2% 1.81 11.7 5.25 15.3
(k) 66.4% 73.0% 1.26 18.4 6.41 32.7
(l) 85.0% 83.9% 0.61 37.4 2.92 0.61 4.33 30.8

Table 5.1: The second and third column contains the coverage values C for the
twelve scenes as achieved by the two algorithms: optimal shutters
(OPT) and equidistant shutters (EQ). The third and fourth column
show the calculated shutter speeds in milliseconds.

evaluate the additional gain from the refinement step, we measured C before and after
the refinement. This was done in the third (dynamic) scenario. Averaged over 15 seconds
of video, the refinement achieved an increase of C by 1.5 percent points. To judge this
result, one must consider two things: Firstly, the algorithm usually stops adding shutters
to the sequence once C ≥ 0.9. Because the maximum coverage is 1.0, there is not much
room for improvement. Secondly, refinement does not add new shutters to the sequence,
but adjusts the existing ones. Compared to capturing an extra frame to obtain a higher
coverage, it is thus a rather cheap operation. We decided to include the refinement step
into our running system, but omitting it is a viable option when processing time needs
to be saved.

For our stability criterion, we defined the distance in percent between two shutter speed
sequences. In order to get an understanding of this quantity and to decide upon a
similarity threshold, we measured the distances between two sequences computed in two
consecutive frames. This was done in all three scenarios, and the stability criterion was
ignored. The results are listed in Table 5.2. When the size of two sequences differed,
they were always classified as non-similar. So the first column of the table counts how
often the size changed during the 15 seconds of the video. It is given as a percentage of
the frames. The second column contains the average distance between two consecutive
sequences. The standard deviation is given in the third column.

These values can be used to determine a suitable threshold for the distance to distinguish
similar and non-similar sequences. We make the following observations. The first scene
is completely static. Therefore, the shutter speed sequence should remain the same at all
times. All measured distances should be considered as being similar. The second scene
contains moving cars, and the shutter sequence needs to adapt occasionally. In the third
scenario, the sequence needs to change a lot to accommodate the varying brightness

5.3. EXPERIMENTAL RESULTS 75

Scenario Size Differs Average Distance Std. Dev.

1 0% 1.00% 0.89%
2 3.75% 2.79% 1.74%
3 18.87% 8.08% 9.11%

Table 5.2: Percentage of sequences with differing number of shutters, average dis-
tance between the sequences and the standard deviation of the distance.
They were obtained from 15 second shots in the three aforementioned
scenarios.

conditions. To meet these requirements, we set the threshold to 20%. Activating the
stability criterion with this threshold, we repeated the experiments. During the 15
seconds, the algorithm was in the changing state 0% of the time in the first scenario, 0%
in scenario 2, and 11.49% of the time in scenario 3. We found that these results were
rather insensitive to changes in the threshold as long as it is high enough for a stable
sequence most of the time. Once the scene’s brightness actually changes noticeably,
the size of the sequence often changes as well, and the distance between the sequences
becomes very large.

In the experiment described in the following, we investigated the time it took for our
algorithm to adapt to changes in the scene. We did this by keeping the scene and the
camera static, choosing extreme shutter speed sequences and measuring the number of
frames it took to stabilize. The scene and aperture of the camera were chosen such that
the optimal shutter sequence consisted of four shutter values around the center of the
camera’s shutter range. By center, we mean the middle value in the log domain with the
same factor to the lowest and to the highest shutter. For our camera, the shutter value of
1.74 ms is a factor of 47 higher than the minimum and lower than the maximum shutter.
The algorithm was set to the changing state, and three different starting sequences were
set: the sequence consisting of only the shortest possible shutter, the longest shutter and
a sequence covering the full shutter range with one stop between the shutters. We then
measured the number of frames the algorithm stayed in the changing state. The values
are averaged over 375 runs for each of the three starting sequences.

As expected, the full coverage sequence adjusted the fastest. It took 2.07 frames to
stabilize. This means that the stable sequence could be directly calculated from the
first HDR frame in almost all of the iterations. From only the shortest shutter value,
it took exactly 3 frames to stabilize. The algorithm already calculated three shutters
in the second frame and reached the final sequence in the third. It then switched to
the stable state in the fourth frame, because the calculated sequences were similar from
then on. The worst adaptation speed was achieved when starting from only the longest
shutter value, that is, from the brightest image. The lowest shutter in the sequence was
approximately halved in every frame. On the average, the algorithm was in the changing
state for 8.20 frames. This confirms our previous statement that convergence towards
darker scenes (i.e., higher shutter values) is easier. It also justifies the special treatment
of the first shutter in the sequence, as described earlier.

76 CHAPTER 5. OPTIMAL SHUTTER SPEED SEQUENCES

Since it is our goal to perform shutter sequence computations in real-time to create
HDR videos, we measured the processing time taken by our algorithm. As mentioned
earlier, the histogram of the previous HDR frame was computed during tone mapping.
Histogram creation is thus not included in these measurements. The system we used
for this experiment has an AMD Athlon II X2 250 dual-core CPU. The scenario with
dynamic camera and scene was used to cover a large variety of shutter sequence lengths.
The experiment showed that 96.5% of our algorithm’s processing time is spent for trying
out all possible shifts between the contribution vector and the histogram to find the next
shutter speed with the best coverage value. As a consequence, the processing time is
roughly proportional to the number of shutters in the sequence. We measured 0.30 ms
per shutter value including refinement. For comparison, the entire process of creating
a displayable HDR frame from an average of 3.6 base exposures takes 13.6 ms on a
GPU. As mentioned above, in a 25 fps real-time HDR video system, there are 40 ms
available for processing each frame. Our algorithm is thus fast enough to be used in this
application.

5.4 Conclusions

We presented an approach to computing shutter speed sequences for temporally brack-
eted HDR videos. Our goal is to maximize the achieved HDR image quality for a given
number of LDR exposures. This is done by consecutively adding shutters to the sequence
that contribute to the image quality the most. Choosing evenly spread shutters wastes
too much time for capturing exposures which contribute little to the HDR result. We
are thus able to save capturing and processing time over the traditional approach by
being able to reduce the number of LDR exposures without impairing quality. Analysis
of the algorithm’s behavior in a real-time HDR video system showed that it is suitable
for such a scenario.
Using the histogram coverage as our criterion for optimization means focusing on the
largest image areas first. We believe that being able to see as much as possible in a
video is the main focus in surveillance. However, the user study showed that in certain
situations, HDR images are also judged by where in the image the quality is achieved.
We would like to take this into account in our future work.

Chapter6
Histogram-based Image Registration

This Chapter describes our technique to compensate camera motion between the LDR
exposures. It was published in [48]. So far, a sequence of LDR images has been captured
with one of the two approaches introduced in Chapters 4 and 5, and the color format
has been converted from the camera-dependent Bayer pattern into the Y xy color space.
Our histogram-based algorithm for image registration solely operates on the brightness
channel Y . Both approaches produce exposures with varying image size that exhibit a
parent-child relationship: An LDR sequence consists of one full resolution base frame I0

and n smaller re-exposures Ii for i = 1, . . . n captured with different exposure settings.
Each re-exposure was initiated by badly exposed regions detected during the analysis
of a previous image. An exposure Ii with i > 0 is thus a brighter re-exposure which
was triggered by an underexposed area in Ii−1, making Ii−1 the parent of Ii. The base
frame is the root of the whole set. Each exposure is contained entirely in its parent. For
simplicity we only consider the brighter re-exposures in this section. Registration of the
darker re-exposures is done analogously.
Our algorithm performs no image registration on the base frame of an exposure set.
Each re-exposure is registered with respect to its parent, i.e., a two-dimensional integer
shift vector ~si between frames Ii−1 and Ii is estimated. The absolute shift ~vi between
each exposure and the base frame can be easily calculated by

~vi =
i∑

k=1

~sk. (6.1)

For estimating the translation vectors, we use mean threshold bitmaps (MTB) as de-
scribed in [120]. A mean threshold bitmap is a black and white image that was created
from a grayscale image such that 50% of the image pixels are white and 50% are black.
The advantage of an MTB compared to a regular grayscale image is that – within cer-
tain limits – two exposures depicting the same scene captured at two different exposure

77

78 CHAPTER 6. HISTOGRAM-BASED IMAGE REGISTRATION

Figure 6.1: An LDR frame (left) and its corresponding Mean Threshold Bitmap
(right). The row and column histogram of the MTB count the number
of black pixels in the image row and column.

settings will result in approximately the same MTB. This fact is very desirable for image
registration. The creation of MTBs is covered in Section 6.1.

Once the MTBs of two exposures to be registered are computed, we proceed by com-
puting a column histogram, counting the number of black pixels in each column of the
MTB. This is demonstrated in Figure 6.1. Such a column histogram is computed for both
MTBs. By using a normalized cross correlation between the two column histograms, we
estimate the horizontal component of the translation vector. Repeating this process for
image rows allows us to estimate the vertical component, respectively. More details on
the computation are given in Section 6.2.

As a last step, all resulting vectors are validated using a Kalman filter to incorporate
knowledge of the prior motion into the estimation. A novel uncertainty criterion is
used to determine the weighting between using the computed translation directly and
extrapolating it from the preceding trajectory. This process is described in Section 6.3.

6.1 Mean Threshold Bitmap

Image registration starts with the creation of two MTBs for the two exposures Ii−1

and Ii to be registered. Since a re-exposure is always contained entirely in its parent,
processing time can be reduced by computing the full MTB of the re-exposure Ii, but
only computing the MTB of the overlapping image area in the parent frame Ii−1.

The first step is to build a brightness histogram with 256 bins over the pixel values of
Ii. From this histogram, we can deduce the median brightness value mi to be used as
a threshold so that 50% of the thresholded pixels are white and 50% black. At this
point, the exposure values (e.g., shutter values) ∆ti−1, ∆ti at which the two frames were
captured as well as the response function f of the capturing camera are known. We can

6.2. ROW AND COLUMN HISTOGRAMS 79

thus use these known values to calculate the unknown threshold mi−1 as follows:

mi−1 = f

(
f−1(mi)

∆ti
∆ti−1

)
. (6.2)

This is an improvement over the original algorithm and saves the computation of a
histogram over Ii−1 [120].
In the original paper, ignoring pixels with a value near the median is suggested because
they are unstable with regard to thresholding. In our experiments, we found that a
noise threshold of TN = 2 brightness steps below and above the mean leads to good
results. Additionally, the original authors refrain from using medians that are closer
than a threshold TM to the margins of the 8-bit interval. If either of the computed
median brightness values is less than TM , they are computed again such that a higher
percentage of pixels will be black in the thresholded image. The case mi−1,mi > 255−TM
is handled analogously.
For our algorithm, it is sufficient to calculate the two medians mi−1 and mi which are
then used to build the row and column histograms. The MTB itself is not built.

6.2 Row and Column Histograms

We estimate a two-dimensional shift ~si = (xi, yi) between two exposures Ii−1 and Ii by
estimating two one-dimensional shifts xi and yi separately. It is a greedy algorithm for
image registration where each dimension of the shift vector is estimated independently
of the other.
We start by estimating the horizontal shift xi. The first step in doing so is to build
column histograms over the full image Ii and the overlapping image area of Ii−1. A
bin in the column histogram represents the number of black pixels in the corresponding
column of the exposure’s MTB. Since near-median pixels are ignored, as described in
the previous Section, two individual histograms counting black and white pixels must
be built for each exposure. Let wi and hi be the width and height of Ii. The column
histogram Bx

i (j) of exposure Ii counting black pixels is a function of the column index
j = 1, ..., wi and is defined as

Bx
i (j) = |{Ii(j, k) < mi − TN ; k = 1, ..., hi}| (6.3)

where Ii(j, k) is the pixel value at position (j, k) and | · | denotes the number of elements
in the set. The histogram W x

i counting white pixels and the two histograms for Ii−1 are
defined accordingly.
The horizontal shift xi is now estimated using these four histograms. We let the shift
s assume all possible integer values within a search range (e.g., -64 to 64 pixels) and
compute the normalized cross correlation (NCC) between the histograms of exposures
Ii−1 and Ii under the given shift:

NCC(s) =
C√
N1N2

(6.4)

80 CHAPTER 6. HISTOGRAM-BASED IMAGE REGISTRATION

where C is the cross correlation value between the histograms of Ii−1 and Ii

C =

wi∑
j=1

(
W x
i (j)W x

i−1(j − s) +Bx
i (j)Bx

i−1(j − s)
)

(6.5)

and N1 and N2 are the two normalization values

N1 =

wi∑
j=1

(
W x
i (j)2 +Bx

i (j)2
)

(6.6)

N2 =

wi∑
j=1

(
W x
i−1(j − s)2 +Bx

i−1(j − s)2
)
. (6.7)

The s producing the highest correlation value is then used as the estimate for xi.

Using row histograms, the vertical shift yi can be estimated analogously. The image
regions over which the row histograms are computed are chosen according to the now
known horizontal shift. Our experiments show that the choice of which dimension to
start with has little effect on the final result. We also found that performing multiple
iterations of the greedy algorithm does not improve the registration quality significantly.
We therefore only estimate xi and yi once and set ~si = (xi, yi) as the resulting translation
vector.

6.3 Kalman Filtering

A Kalman filter is used to incorporate the entire trajectory of the camera motion into
the estimate of the current frame. Simply put, instead of using ~si directly, we essentially
compute a weighted average over all preceding shift vector measurements, including those
of the previous HDR frames. Each shift vector is weighted by the degree of uncertainty
with which it was measured. This average is used as the shift of exposure Ii.

More precisely, the state of the Kalman filter represents the two-dimensional motion
vector corresponding to the current exposure, i.e., the velocity of the camera translation.
A 2× 2 covariance matrix represents the uncertainty of the current state with respect to
the real camera translation between exposures Ii−1 and Ii. We assume zero acceleration
of the camera, so our state transition model is the identity matrix. Changes in the camera
motion are modeled by process noise instead. For each exposure, the new state of the
Kalman filter is first predicted without including new information. The predicted state is
identical to the previous state, but its uncertainty increases due to process noise. Next,
a motion vector ~si is estimated as described in the previous section. This prediction is
used as the starting point of the greedy search algorithm to increase its accuracy.

We developed a criterion that allows to judge the uncertainty of the estimate ~si. From
manually registered HDR test videos, we computed the mean µ and the standard devia-
tion σ of the distances d between two consecutive motion vectors: d = |~si−1 − ~si|. With
approximately zero mean and assuming that the distances are Gaussian distributed, over

6.4. EXPERIMENTAL RESULTS 81

99% of the motion vectors lie within 3σ from the previous vector. At the same time, er-
roneous measurements can be assumed to be uniformly distributed over the entire search
range.

We thus use d as our criterion for the uncertainty of the measured shift. A d > 3σ is likely
to indicate an incorrect measurement, and the corresponding shift vector is discarded.
If d ≤ 3σ, the predicted state of the Kalman filter is corrected using ~si as the measured
state and d as the variance of the measurement. In both cases, we use the new state of
the filter as shift vector of the frame to be registered.

In our scenario, increasing the search range also increases the chance to detect errors
in the shift measurement. Since computing the NCC is rather cheap, we set our search
range to approximately ±20σ to leave enough room for error detection.

6.4 Experimental Results

For our experiments, we captured five HDR test videos. The videos are numbered from
1 to 5 and have the following characteristics:

1. Captured using a tripod. Mostly indoor scene with a window to the bright outside.
Smooth horizontal camera rotation only. Static scene.

2. Handheld camera. Indoor with very dark areas and window. Completely random
camera motion. Static scene.

3. Tripod. Outdoor scene with a relatively narrow dynamic range. Horizontal and
vertical camera rotation. Static scene.

4. Tripod. A street with moving cars and trees. Horizontal and vertical camera
rotation.

5. Tripod. Dark indoor scene with long exposure times and motion blur. Artificial
light sources. Horizontal and vertical camera rotation. Mostly static scene.

Figures 6.2(a) – 6.2(e) show sample frames of the five videos.

All videos have a resolution of 640× 480 pixels and an average of 87 HDR frames. Each
HDR frame was created using one base frame and 3.35 re-exposures on the average. The
first video has the most deterministic camera motion and the second the most random
one. We thus use these two videos to fine-tune the parameters of the algorithm. This
process is described in Section 6.4.1 All five videos are used for performance evaluation in
Section 6.4.2. All frames were registered manually, and the resulting translation vectors
constitute the ground truth for evaluating the accuracy of our automatic registration
algorithm. As the criteria for our evaluation, we use the mean and the standard deviation
of the distance between our estimate and the ground truth over all exposures of a video.
Since it is our goal to capture and display HDR videos in real-time, the time taken
for registration of a frame of a certain size is our second criterion. Both criteria are
compared to our implementation of Ward’s algorithm [120].

82 CHAPTER 6. HISTOGRAM-BASED IMAGE REGISTRATION

(a) Video 1 (b) Video 2

(c) Video 3 (d) Video 4

(e) Video 5

Figure 6.2: Representative frames of the five HDR test videos used in our experi-
ments.

6.4. EXPERIMENTAL RESULTS 83

6.4.1 Setting the Parameters

To optimize the settings of our algorithm’s parameters, we use the first two test videos.
One parameter is varied over the range of meaningful values, and all other parameters
are kept constant. The average registration error is measured, and the parameter is set
to the value leading to the smallest error. This process is repeated for all parameters
until no further improvement is achieved. In this section, we show plots for the variation
of each parameter while all other parameters are already set to their optimum. Our
choice for the parameter’s value is indicated by a vertical line in the plot.

The first parameter we consider is the search range. Figure 6.3(a) shows a plot of the
registration error against the size of the search range. It can be seen that within rea-
sonable bounds, changing the size of the search range does not influence the registration
error by much.

Our algorithm determines the two components (horizontal and vertical) of the shift be-
tween two exposures separately. We chose to estimate the horizontal shift first. Starting
with the vertical shift instead leads to an increase of the error by 0.069 pixels for video
1 and 0.002 for video 2.

An iteration of the algorithm is defined as the process of estimating one component of
the shift. We first estimate the horizontal and then the vertical shift which counts as
two iterations. Plot 6.3(b) shows the registration error against the number of iterations
performed. It can be seen that increasing the number of iterations beyond two has no
effect on the accuracy.

To decide whether a measured shift is reasonable or erroneous, we set an upper limit for
the measurement uncertainty d. Its plot is shown in Figure 6.3(c). Setting this value
too low results in misdetection of erroneous measurements, and a too large portion of
exposures is registered using shift values extrapolated from the previous frames. Too
large values lead to accepting too many bad shift measurements. Our choice is 10 which
corresponds to the 3σ mentioned above.

The last three parameters influence the creation of the MTBs. See Section 6.1 for a de-
scription. Figure 6.3(d) depicts the effect of the noise threshold TN on the accuracy of our
algorithm. It controls the number of pixels that are ignored during MTB computation.

If either of the computed means is too high or too low, both are computed again using a
different percentage of black and white pixels in the thresholded image. Parameter TM
is the width of the illegal area at the extrema of the 8-bit brightness range. In the two
considered videos, only very few of the means fall into this area. Thus, changing TM has
little effect on the registration error, as can be seen in Figure 6.3(e).

Similarly, changing the percentage of black pixels from the original 50% if the mean is too
high or too low has little effect (see Figure 6.3(f)). We chose to change the percentage
to 20% and 80% (50% ± 30%), respectively.

6.4.2 Evaluation

Ward’s algorithm was developed for registering still images only. It does not make use of
the history of motion vectors. So we start by comparing its accuracy to the one achieved

84 CHAPTER 6. HISTOGRAM-BASED IMAGE REGISTRATION

 1

 1.2

 1.4

 1.6

 1.8

 2

 30 40 50 60 70 80

R
eg

is
tr

at
io

n
 E

rr
o

r
[p

ix
el

]

Search Range [pixel]

our choice

Video 1
Video 2

(a) Effect of changing the size of the search
range on registration accuracy.

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

R
eg

is
tr

at
io

n
 E

rr
o

r
[p

ix
el

]

Number of Iterations

our choice

Video 1
Video 2

(b) Number of iterations performed by the
greedy search algorithm.

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16 18 20

R
eg

is
tr

at
io

n
 E

rr
o

r
[p

ix
el

]

Maximum Uncertainty

our choice

Video 1
Video 2

(c) Threshold for the uncertainty value d.

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14

R
eg

is
tr

at
io

n
 E

rr
o

r
[p

ix
el

]

Noise Threshold [brightness steps]

our choice

Video 1
Video 2

(d) Noise threshold TN for pixels near the
median.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

R
eg

is
tr

at
io

n
 E

rr
o

r
[p

ix
el

]

Mean Margin Width [brightness steps]

our choice

Video 1
Video 2

(e) Width TM of the margins of the 8-bit
interval.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50

R
eg

is
tr

at
io

n
 E

rr
o

r
[p

ix
el

]

Percentage in-/decrease [%]

our choice

Video 1
Video 2

(f) Percentage of black pixels in case 50%
yields a too high/low threshold.

Figure 6.3: Effects of changing the parameters of the algorithm on the registration
accuracy. One parameter is varied over the range of meaningful values
while all other parameters are set to their optimum. Our choice for the
parameter’s value is indicated by a vertical line in the plot.

6.5. CONCLUSIONS 85

Video # Ward without filtering with filtering

1 1.56 (3.46) 5.21 (6.90) 1.12 (2.60)
2 1.05 (2.21) 1.31 (1.49) 1.13 (0.89)
3 1.37 (4.05) 1.12 (3.47) 0.78 (0.78)
4 2.27 (4.70) 1.78 (3.76) 1.38 (1.37)
5 3.96 (6.33) 4.52 (6.69) 2.77 (2.89)

Figure 6.4: Average registration error in pixels (and standard deviation in brackets)
for the five test videos. The algorithms compared are: Ward’s algorithm,
our approach without filtering and our full algorithm.

by the still image version of our algorithm, excluding the filtering and prediction. The
search range is set to 16 for both approaches. The second and third column of the table
in Figure 6.4 show the results of this comparison. It can be seen that in this setup
both algorithms perform similarly with respect to accuracy. The first video contains re-
exposures with a height of only 48 pixels which is too small for our algorithm to handle
properly. Video 5 is a dark indoor scene with motion blur in some of the long exposures.
This explains the bad accuracy achieved by both.

In the second step, we add Kalman filtering to our approach and set the search range
to 64. The rightmost column of the table indicates the accuracy improvement achieved.
The effect of filtering outliers can be seen best in the reduced standard deviation. The
motion vectors of the small frames of video 1 are now interpolated from the surrounding
bigger frames, leading to a much better accuracy.

Figure 6.5 shows the time taken for both algorithms to perform image registration. As
described in Chapter 4, the HDR capturing algorithm we employ always captures re-
exposures at full width but with varying height [46], so the frame was cropped to heights
from 100 to 480 pixels in steps of 10 before registration. Depending on the frame size,
Ward’s algorithm takes between 1.4 and 3 times longer than ours.

At full resolution, approximately 7.3 out of the 8 ms taken by our algorithm are due to
the computation of means (1.4ms) and the construction of row and column histograms
(5.9ms). Only 0.7 ms are taken for computing the normalized cross correlation. Filtering
the results takes approximately 0.016 ms and is negligible.

6.5 Conclusions

We introduced an approach to the registration of LDR exposures for the creation of
HDR videos in real-time. The focus was on improved registration speed compared to
existing algorithms and suitability for the registration of differently exposed images. We
believe that the accuracy achieved by our algorithm using Kalman filtering is acceptable
in most viewing scenarios. The biggest obstacles for further accuracy improvement are
the assumptions of purely translational motion and integer-valued motion vectors. The
former is an inherent part of our algorithm. However in future work, we would like to
add sub-pixel shift measurements to our approach to overcome the 0.5 pixels of average

86 CHAPTER 6. HISTOGRAM-BASED IMAGE REGISTRATION

 0

 2

 4

 6

 8

 10

 12

 100 150 200 250 300 350 400 450

R
e
g
is

tr
a
ti

o
n
 s

p
e
e
d
 [

m
s
]

Frame height [pixel]

Ward Image Registration
Our Approach

Figure 6.5: Time taken for registration of images with a width of 640 pixels and the
given height.

quantization error immanent to our implementation. We would also like to explore the
possibility of registering different pairs of exposures than just a frame and its parent.

Chapter7
Flicker Reduction in HDR Videos

It is our goal to perform tone mapping on high dynamic range videos using standard
operators designed for still images. When doing so, temporal incoherence of the mini-
mum, maximum or average scene luminance leads to image flicker in the tone mapped
result. We argue that image flicker is the most disturbing artifact introduced in this
process. This is supported by two experiments described in Section 7.3. In the context
of tone mapping, we thus focus entirely on the detection and reduction of flicker. The
work described in this Chapter was published in [45].

7.1 Flicker Detection

We make the assumption that flicker is sufficiently well detected by computing the av-
erage image brightness of a tone mapped frame and comparing it to the average of the
previous frame. The validity of this simple criterion is also backed up by our experiments
described later in the chapter.
Figure 7.1 shows the average brightness of the frames of a tone mapped video over time.
It illustrates well the rapid decrease and the rapid increase in average brightness between
frames 52 and 53 and between frames 90 and 91. The respective frames are shown in
Figure 7.2. They are taken from our HDR video Turn which contains a camera turn from
a dark indoor area towards a window showing a light outdoor scene. The discontinuities
in Figure 7.1 occur exactly when the bright window first enters the camera’s field of view
or leaves it, respectively.
To compute the average image brightness, we use the geometric mean. Over its arith-
metic counterpart, the geometric mean has the advantage of being more resilient to
outliers. Furthermore it more closely resembles the way average image brightness is per-
ceived by the human eye. For this reason it is often used in tone mapping. It is given
by

Ĩ =
∏
(x,y)

(I(x, y) + ε)1/n, (7.1)

87

88 CHAPTER 7. FLICKER REDUCTION IN HDR VIDEOS

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 20 40 60 80 100 120

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Video 'Turn'

Figure 7.1: Log average pixel value of an HDR video tone mapped with the Pho-
tographic Operator. From frame 53 to 90, a window showing the light
outside is visible. This leads to a large increase of the scene’s dynamic
range and a large drop in brightness of the tone mapped result.

where n is the number of pixels in the image and I(x, y) is the value of the pixel at
position (x, y). ε is a small number to prevent the product from becoming zero for black
pixels. This equation can be rewritten as

Ĩ = exp

 1

n

∑
(x,y)

log(I(x, y) + ε)

 . (7.2)

The biggest challenge in developing a flicker detection criterion using the log average pixel
value is finding a suitable threshold for the difference of the averages of two consecutive
frames. We experimented with two different models found in the literature on the human
visual system. They are Weber’s law [30] and Stevens’ power law [105]. Both use
the notion of a just noticeable difference ∆R, which depends on a given background
luminance R, and both introduce an adjustable parameter k. For a given luminance level
(in our case the log average of the previous frame), these models allow the computation
of a maximum luminance change that will remain unnoticed by a human observer. Even
though the setting for which these laws were developed slightly differs from ours, they
serve as a perceptional basis for our criterion.

Weber’s law is a mathematical model for the human visual perception [30]. It states
that the ratio between the minimum incremental amount of luminance required to be
perceptible and the background luminance is a constant:

k =
∆R

R
(7.3)

7.1. FLICKER DETECTION 89

Figure 7.2: Six frames of the video Turn tone mapped with the Photographic Op-
erator. As soon as the window enters the camera’s field of view, the
scene’s minimum and maximum luminance change considerably, lead-
ing to a visible brightness difference in the tone mapped frames. This
can be seen between frames 52 and 53 and frames 90 and 91.

90 CHAPTER 7. FLICKER REDUCTION IN HDR VIDEOS

In other words, the just noticeable difference is a fixed fraction of the predominant
brightness. This equation can be solved for ∆R to yield the desired threshold.
Our second criterion is Stevens’ power law [105]. It describes the relationship between
the real magnitude of a general stimulus and the magnitude as perceived by a human.
A number of tone mapping operators use the power law with the stimulus being the
sensation of brightness [111, 81]. In its general form, it is given by

∆R = kRα, (7.4)

where α is a constant specific to the type of stimulus considered. For brightness α ≈ 0.33.
A suitable value for the parameter k is determined experimentally for each criterion. This
is presented in Section 7.3. In our experiments, we also found that Stevens’ power law
allows for the most accurate detection of flickering frames. It is therefore our criterion
of choice.

7.2 Flicker Reduction

In this section we demonstrate our flicker reduction algorithm, which makes use of flicker
detection. It will be seen that a robust detection makes flicker removal straightforward.
If flicker occurs in a frame, we iteratively adjust its brightness until it is within the
tolerable threshold. To illustrate our algorithm, we use frames 52 and 53 of the test
video Turn, as shown in Figures 7.1 and 7.2, as an example throughout this section: A
part of the window showing the very bright outside suddenly moves into the camera’s field
of view, making the maximum scene luminance go up rapidly. The TM operator maps
the now increased dynamic range of the scene onto the same display range, resulting in
a much darker image. The case where the image brightness increases rapidly is handled
analogously and not explicitly described here.
The algorithm is implemented as a post-processing step and works with any tone mapper.
We tested our approach with Ward’s Contrast-Based Scale Factor [117], the Histogram
Adjustment by Ward et al. [121] and the Photographic Tone Reproduction by Reinhard
et al. [95]. Since it was designed for live capturing of HDR material, it only adjusts the
brightness of the current frame and only uses knowledge of the previous frames. A more
optimal flicker reduction could be achieved if the whole video was known in advance.
However, this is not the case in our scenario.
We start by tone mapping the current frame t with the chosen operator and settings.
Next, the log average pixel value Ĩt of the frame is computed using Equation 7.2. Then
we calculate the maximum allowable brightness difference ∆R to the previous frame
using Stevens’ power law (Equation 7.4):

∆R = k(Ĩt−1)0.33, (7.5)

where Ĩt−1 is the log average of the previous frame. Now we check whether |Ĩt−1 − Ĩt| >
∆R. If it is not, then the frame is likely not to be a flickering frame (see experimental
results). In our example, however, it is assumed that the current frame is much darker
than the previous one (Ĩt−1 > Ĩt). The goal is now to increase the frame’s brightness so

7.2. FLICKER REDUCTION 91

Figure 7.3: Frame t is too dark after tone mapping (Ĩ0
t < Ĩt−1 −∆R). Its bright-

ness is thus iteratively adjusted towards the target value I∗. After three
iterations, it falls within the tolerable brightness range drawn in gray.

that it falls within a tolerable range. The lower end of this range is given by Ĩt−1−∆R,
meaning that there shall be no detectable flicker. It is also desirable to maintain the
original brightness produced by the TM operator as well as possible. After adjustment,
Ĩt should therefore be close to the lower end of the range. To accommodate this fact, we
set the upper bound to Ĩt−1 − p∆R, where p is a percentage which we set to 50% in our
implementation. The next step is to iteratively adjust the frame’s brightness, producing
a sequence Ĩ0

t , Ĩ
1
t , ..., Ĩ

i
t , until it falls into the desired range of [Ĩt−1 − ∆R, Ĩt−1 − p∆R].

As an explicit target value I∗, we aim for the range’s center. The process of iteratively
approaching the desired brightness is depicted in Figure 7.3. It should be noted that
adjusting the average brightness of an image directly is not possible due to saturation
effects. This necessitates iterative brightness adjustment. Our experiment in Section
7.3.3 shows that less than two iterations are required on the average.
Most TM operators perform a final normalization and clamping of the resulting floating
point values. The tone mapper may produce scaled luminance values in an arbitrary
range. In the normalization step, these values are shifted to begin from zero and scaled
to 255. Afterwards, the values may be clamped to [0, 255] again for robustness against
imprecision in the floating point operations. We modify these steps by introducing a
scale parameter s. The values after tone mapping are then normalized to the range of
[0, 255 ∗ s] instead. The subsequent clamping to a byte remains unchanged. In doing so,
the change of the average output brightness will be approximately linear to the change
of s (only approximately because of shifting and clamping). That is, for a certain range
of scale changes, there is a slope parameter m0 for which

Ĩ0
t − Ĩ1

t = m0(s0 − s1) (7.6)

holds. In the following, we use the superscript to denote the iteration index in our

92 CHAPTER 7. FLICKER REDUCTION IN HDR VIDEOS

 0 1 2 3 4 5 6

A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Lower Threshold

 Original Brightness

Adjusted Brightness

Figure 7.4: This plot shows a rapid decrease of average brightness between frames
1 and 2. Frame 2 is adjusted to reduce the brightness gap. The amount
of adjustment needed decreases with each subsequent frame. In frame
5, the adjusted brightness has converged towards the value achieved by
tone mapping with a standard scale. No more adjustment is required.

iterative brightness adjustment scheme. Ĩ0
t is therefore the log average pixel value of

frame It as determined earlier (called Ĩt above). s0 = 1.0 is the original scale used for
normalization. Ĩ1

t and s1 are the respective values after adjusting the scale once. The
initial slope m0 is set to an arbitrary value of 50. It is refined during the iterations and
re-used for later frames. In the following, we omit the time parameter t to avoid clutter.
At this point, we know the frame’s original average brightness Ĩ0, the desired target
brightness I∗ to which we would like to adjust it, the original scale s0 and a rough
estimate of the coefficient m0 to relate scale change to brightness change. From this, we
can compute a new scale s1 that maps the brightness closer to the target by rearranging
Equation 7.6 and replacing Ĩ1

t with I∗:

s1 = s0 − I0 − I∗

m0
. (7.7)

The normalization step as described before is then re-done using the adjusted scale
parameter s1. This results in a new log average image brightness of Ĩ1 in the first
iteration. We now know that adjusting the scale from s0 to s1 changed the average from
Ĩ0 to Ĩ1. Inserting these values into Equation 7.6 yields a more accurate approximation
of the slope parameter which we denote by m1.
In each iteration i, the scale parameter si is updated (Equation 7.7), and the original tone
mapping output is normalized and clamped using si, resulting in Ĩ i. A more accurate
slope mi is then estimated from

mi =
Ĩ i − I0

si − s0
. (7.8)

7.3. EXPERIMENTAL RESULTS 93

The iteration ends as soon as Ĩ i falls within the tolerable target range given above, in
which case the normalized image is the output of the post processing step. The iterative
brightness adjustment is illustrated in Figure 7.3. See the next section for the mean
number of iterations required. The final slope mi from the last iteration is saved and
re-used as an initial guess for the next flickering frame.
The adjusted brightness Ĩ it of frame t is now slightly lower than Ĩt−1 (more specifically:
Ĩ it ≈ I∗ < Ĩt−1). However, the difference is now within a range we consider to be
unobtrusive. For the next frame t + 1, we set the normalization scale to 1.0 again, i.e.,
we tone map with standard parameters. If there is no more rapid scene histogram change
between frames t and t+1, Ĩt+1 is now closer to Ĩt than Ĩt was to Ĩt−1, and the amount of
adjustment required is smaller. After a few frames, the difference approaches a value less
than ∆R, and no further adjustment is necessary. Figure 7.4 illustrates this convergence
towards standard parameters.

7.3 Experimental Results

7.3.1 Subjective Flicker Detection

Our experimental results are based on two subjective user studies we performed. For
both studies, we used the same five HDR videos, tone mapped without flicker reduction.
The lengths of the video clips range from 14 to 44 seconds. Here are the names and a
brief description of the videos:

Turn: Mostly indoor scene with a window showing the bright outside.
Smooth horizontal camera rotation with a sudden transition
from dark to bright and back.

Handheld: Handheld camera. Indoor with very dark areas and window.
Random camera motion.

Outdoor: Outdoor scene with a relatively small dynamic range.
Horizontal and vertical camera rotation.

Outdoor South: A street with moving cars and trees.
Linux Room: Dark indoor scene with long exposure times and motion blur.

Artificial light sources. In some frames, the window to the
outside is visible.

Since different TM operators produce different flicker artifacts, we tone mapped these
videos with the three different operators: Ward’s Contrast-Based Scale Factor [117] (re-
ferred to as Scale in the following), the Histogram Adjustment by Ward et al. [121]
(Histogram) and the Photographic Tone Reproduction by Reinhard et al. [95] (Photo-
graphic). This resulted in 15 videos total. The URL where all our videos can be found
is given in the References section [1].
Both experiments included the same ten test subjects. They had no prior experience with
HDR video or tone mapping. Because there is no standardized quality evaluation method
for tone mapping, our experiments were performed in accordance with the Subjective

94 CHAPTER 7. FLICKER REDUCTION IN HDR VIDEOS

Assessment Methodology for Video Quality (SAMVIQ) [28]. It is a subjective video
quality measurement for motion pictures, generally used to evaluate video encoding
techniques. We only differ from the recommendation in that we do not show an explicit
reference video. This was not possible due to the lack of an HDR display to show a
non-tone-mapped reference video on.
In the first experiment, the subjects were told to mark the video frames in which they
perceive a general distortion. They were not informed of our endeavor to remove flicker
artifacts in particular. From the resulting list of marked frames, we removed three frames
where problems were clearly due to errors in the capturing process and unrelated to tone
mapping (e.g., motion blur or ghosting due to exposure bracketing). In the second
experiment, we told the subjects to mark frames with visible image flicker. We observed
that more frames were marked in the second experiment than in the first. In particular,
each frame that was marked in experiment 1 by anyone was also marked by half or more
of the subjects in experiment 2, i.e., the first results were a subset of the second. The
fact that each reported distortion turned out to be classified as image flicker implies
that flicker is the most obtrusive artifact introduced when still image tone mappers are
applied to video.
To compile a final list of frames that are considered flickering, we used those frames that
were marked by 50% or more of the subjects in the second experiment. This includes
everything that was marked in the first experiment. Table 7.1 shows our list. Some clips
exhibit a large brightness difference between frame 0 and 1. This is an artifact of the
capturing process, but was left in the list as it also constitutes flicker.

Video Operator Reported Flickering Frames
Turn Scale 1, 53, 57, 71, 72, 90-92

Photographic 1, 53, 91
Histogram 19, 51-54, 91, 92

Handheld Scale 12, 14, 34, 35
Photographic -
Histogram -

Outdoor Scale 1, 13, 18
Photographic 1, 13, 60
Histogram -

Outdoor South Scale 6, 27, 28, 42, 54, 57
Photographic 27, 28, 41, 42
Histogram -

Linux Room Scale 10, 17, 50, 68
Photographic 10, 18, 50, 78
Histogram 14, 26, 78, 79

Table 7.1: List of flickering frames for each video tone mapped with each operator.
We included all frames that were reported by 50% or more of the subjects
in our second experiment. 50 frames were reported as flickering in total.

7.3. EXPERIMENTAL RESULTS 95

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 F

ra
m

es

Parameter k

flicker frames
non-flicker frames

Figure 7.5: The histogram shows the number of flicker and non-flicker frames for
each value of k for Stevens’ power law.

7.3.2 Setting the Parameter k

In Section 7.1, we introduced two criteria for the detection of flicker: Stevens’ power
law and Weber’s law. Both had an adjustable parameter k to control their sensitivity
to best match the subjective impression of flicker. We now describe how the marked
frames shown in Table 7.1 are used to determine the optimal values for k and to judge
the performance of the two criteria. For this purpose, a data set consisting of all 1311
frames of all video clips is created. For each frame, we compute the difference ∆R of its
log average brightness and its predecessor’s R. Knowing ∆R and R, solving Equations
7.3 and 7.4 for k yields a minimum sensitivity value for which the frame would just be
detected as flickering. We thus also record kweber and kstevens for each frame. Additionally,
we mark the flickering frames according to Table 7.1. Figure 7.5 shows the number of
frames having a certain value kstevens for the two classes of flicker and non-flicker frames.
For a given value of k, we can now count the number of correctly detected flickering
frames (true positives, tp), frames incorrectly classified as flickering (false positives, fp),
and missed frames (false negatives, fn). The metrics precision P and recall R are
calculated as [90]:

P =
tp

tp+ fp
, (7.9)

R =
tp

tp+ fn
. (7.10)

Precision is defined as the fraction of correctly detected flicker frames among all detected
frames, whereas recall is the fraction of correctly detected flicker frames among all actual
flicker frames. Figure 7.6 plots precision and recall in our data set against the chosen
value of k. A higher k generally increases the precision, but has a negative impact on
recall.

96 CHAPTER 7. FLICKER REDUCTION IN HDR VIDEOS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

Pr
ec

is
io

n
/ R

ec
al

l

Parameter k

precision
recall

Figure 7.6: Precision and recall of our detector plotted against parameter kstevens.

The Fβ-score (Fβ ∈ [0, 1], a higher score is better) combines both precision and recall:

Fβ = (1 + β2) · P ·R
β2 · P +R

. (7.11)

The parameter β expresses subjective preferences, e.g., whether the number of frames
incorrectly classified as flickering is more relevant compared to flicker frames that are
not detected (missed frames). In the case of β = 1, the F1 score can be interpreted as
the weighted average of precision and recall; β = 2 gives recall (missed frames) twice
the weight of precision. Figure 7.7 shows the value of four different F-scores depending
on the value of k. The global maximum of each F -score indicates the k which optimizes
the subjective preferences. Higher β values lead to a lower k and reduce the number of
missed frames at the expense of more false positives.
Our goal is to remove as much flicker as possible to generate high quality videos. Thus
the number of missed flicker frames should be low. False positives are more acceptable,
since additional tone mapping of a non-flicker frame merely increases the computational
effort. Based on these considerations we chose the F4-score as our quality measurement
criterion which assigns four times as much importance to recall as to precision.
To derive an optimal value for the parameter k, we consider the full data set. The optimal
values for Stevens’ power law and Weber’s law are kstevens = 2.133 and kweber = 0.0846,
respectively.
We use tenfold cross validation [65] to judge the performance of our flicker detection in
practice. The idea is to partition the video frames into ten subsets: In one iteration,
the maximum F4 score (i.e., the optimal value of k) is calculated using nine training
sets. The remaining subset is used to calculate a realistic F4-score and to judge the
performance of the detection. This is repeated ten times, such that all frames are used
for validation exactly once. The average over all F4-scores is used as the final score for
the respective detection method. Table 7.2 summarizes the results.

7.3. EXPERIMENTAL RESULTS 97

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

F-
sc

or
e

Parameter k

F1-score
F2-score
F4-score
F8-score

Figure 7.7: Comparison of different F -scores based on Stevens’ power law.

Method Avg. F4-score # false negatives # true positives # false positives
Stevens 0.8689 1 49 87
Weber 0.7774 2 48 149

Table 7.2: Comparison of cross-validation results.

It can be seen that the average F4-score of Stevens’ power law is higher, making it the
better choice for our purpose. From the number of false negatives and false positives
for our choice of k, we can conclude that a large difference of the log average pixel
value between two frames is a necessary criterion for a flickering frame. That is, if our
detector classifies a frame as non-flickering, it is very likely to actually be a non-flicker
frame. This justifies our decision to adjust a frame’s brightness until our detector stops
reporting flicker: it is very likely that the flickering is now removed. In other words, we
use flicker detection as an objective quality metric to prove the correctness of our flicker
reduction algorithm.

Our results are presented as eight plots in Figure 7.8. They show the trend of the log
average brightness before and after flicker reduction. We selected eight representatives
out of the 15 videos we created. The original and the non-flickering versions of all 15
videos can be downloaded from the URL given in the References section [1].

7.3.3 Computational Effort of Flicker Reduction

We assume that the log average brightness of a frame can be obtained from the TM op-
erator as a by-product or calculated with little extra effort. The cost of flicker detection
is thus negligible, and so is the calculation of the new scale parameter in our iterative
brightness adjustment scheme. Hence, the additional computational effort produced by

98 CHAPTER 7. FLICKER REDUCTION IN HDR VIDEOS

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 5 10 15 20 25 30 35 40 45

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Photographic Operator

Handheld, original
Handheld, corrected

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 20 40 60 80 100 120

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Photographic Operator

Outdoor, original
Outdoor, corrected

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 20 40 60 80 100 120

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Photographic Operator

Outdoor South, original
Outdoor South, corrected

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 10 20 30 40 50 60 70 80

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Photographic Operator

Linux Room, original
Linux Room, corrected

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 20 40 60 80 100 120

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Photographic Operator

Turn, original
Turn, corrected

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 10 20 30 40 50 60 70 80

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Contrast-Based Scale Factor

Linux Room, original
Linux Room, corrected

 100
 120
 140
 160
 180
 200
 220
 240

 0 20 40 60 80 100 120

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Histogram Adjustment

Turn, original
Turn, corrected

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

L
og

 A
ve

ra
ge

 B
ri

gh
tn

es
s

Frame t

Contrast-Based Scale Factor

Turn, original
Turn, corrected

Figure 7.8: Average brightness before and after flicker reduction. We chose to show
all five videos, tone mapped with the Photographic Operator. Addition-
ally, we show all three versions of Turn, since it contains the most
noticeable flickering artifacts.

7.4. CONCLUSIONS 99

our flicker reduction algorithm is mainly due to the repeated normalization of flickering
frames. When processing the 1311 frames of our test videos, 274 additional normaliza-
tions were performed. They were caused by adjusting 208 flickering frames. This number
differs from the 50 flickering frames in Table 7.1 because one flicker effect may have to be
smoothed over an entire succession of frames, and we also process false positives. This
gives an average number of 1.317 iterations per adjusted frame and 4.16 adjusted frames
per subjective flicker artifact.

7.4 Conclusions

We presented an algorithm for the automatic removal of flicker in tone mapped high
dynamic range video. It is based on a threshold for the maximum allowable difference
between the log average pixel value of two consecutive frames. When the threshold is
exceeded, the frame’s brightness is adjusted until it falls into a tolerable range. The
flicker artifact is thus smoothed over several frames and becomes unobtrusive.
We evaluated our work by first fitting the threshold for flicker detection to the results of a
subjective study. Flicker reduction adjusts the brightness until it is within the threshold.
Assuming that we can detect flicker reliably, our flicker reduction algorithm is very likely
to correctly remove flicker from the videos.

100 CHAPTER 7. FLICKER REDUCTION IN HDR VIDEOS

Chapter8
GPU Implementation

It is our goal to create high dynamic range video in real-time. In the previous chapters,
we have described algorithms we use in our HDR video system that focus on minimizing
the amount of data to process or perform the necessary computations as efficiently as
possible. To further increase the performance of our system, we decided to make use of
the parallel processing capabilities of a graphics processing unit (GPU). As opposed to a
CPU with a small number of high-performance processor cores, optimized for sequential
programs, a GPU has many simple cores that complete a large number of simple tasks in
parallel. Implementing algorithms for a GPU requires a higher degree of understanding of
the underlying platform than a serial CPU implementation. We thus begin this chapter
by giving an introduction to Nvidia’s Compute Unified Device Architecture (CUDA)
which we use in our work. Details can be found in Nvidia’s CUDA C Programming
Guide. 1 We then analyze the steps in the HDR pipeline with respect to suitability
for parallelization and show the required modifications to the algorithms. The end
of this chapter evaluates the performance of the HDR system as a whole and gives a
comparison between the runtimes of the CPU versus the GPU implementation. This
Chapter contains algorithms and results taken from a diploma thesis on HDR video
processing using GPUs which was supervised by the author [124]. It was also published
in [50].

8.1 Considerations for a Parallel Implementation

When designing a parallel algorithm for a GPU implementation, the specific properties
of the hardware must be understood. In our work, we use Nvidia’s Compute Unified
Device Architecture to create code for Nvidia GPUs. It classifies GPUs into categories
with similar compute capabilities, allowing to abstract from hardware details. Between

1http://developer.nvidia.com/nvidia-gpu-computing-documentation/

101

102 CHAPTER 8. GPU IMPLEMENTATION

the GPU classes, the differences are often just a matter of parameter adjustment, and
all code is backward compatible so far. In this section, we introduce the architecture
common to all CUDA devices, giving numbers that are specific to our graphics card
where applicable.

The CUDA programming model is a C99 dialect with a minimum set of language exten-
sions. At its core there are three key abstractions: a hierarchy of thread groups, shared
memories and barrier synchronization. This model requires partitioning of the problem
into many small sub problems that can be solved independently or by cooperation of the
threads within a block. More precisely, for a problem to be shifted to the GPU, it must
be expressible as a data-parallel algorithm. Data parallelism describes a programming
paradigm that suggests the subdivision of a problem into smaller sub problems such that
the same program (kernel) can be executed by a large number of threads working on
many data elements in parallel.

The sum of all threads launched by a GPU within one kernel call is called a grid. A grid
consists of several blocks of threads in a two dimensional structure. The elements con-
tained in the blocks are light-weight threads executed by the GPU. In image processing,
there is often a one-to-one correspondence between image blocks (e.g., 32 × 32 pixels)
and blocks of threads. This means that the image is divided into pixel blocks which are
then each processed by one thread block.

The conceptual structure of grids, blocks and threads is called thread hierarchy. Thread
blocks are required to be executable independently, in any sequential order or in parallel.
This requirement allows threads to be scheduled in arbitrary order to a flexible number
of cores, as one block is always executed by one core. The graphics card we use contains
15 multiprocessors of which each can process 32 threads at once.

The data to be processed (e.g., the LDR exposures) must be copied from the host com-
puter’s memory to the memory of the graphics card. The GPU distinguishes between
global, local, and shared memory, as illustrated in Figure 8.1. They differ in visibility,
size and access time. Global memory is accessible by all threads running on all multi-
processors. It is typically several gigabytes in size, but accessing it can take up to 800
clock cycles. If data is read only and the access pattern exhibits locality, this is sped up
by level-1 and level-2 caches. The access to local memory is restricted to a single thread
and is very fast. It is comparable to the access to CPU registers. Shared memory is a
user-managed cache that is shared among the threads of one block and invisible to all
other blocks. Its size is 48 kilobytes on our GPU, and it can be read or written without
latency, similar to a low-level cache or registers. Its main purposes are fast temporary
data storage and communication between the threads of a block. For the sake of perfor-
mance, it should be avoided to use the slow global memory wherever possible by keeping
intermediate results in local or shared memory.

Special care must be taken to prevent race conditions when multiple threads write to
the same address of the shared memory concurrently. The entire memory range is split
up into 32 interleaved memory banks such that successive 32-bit words are assigned
to successive banks. This means that the 32 threads of a block that are processed
concurrently can all access the shared memory in parallel as long as the requested words
lie in 32 different memory banks. When two concurrent threads access different words

8.1. CONSIDERATIONS FOR A PARALLEL IMPLEMENTATION 103

Figure 8.1: Visualization of the memory hierarchy in CUDA. Single threads have
access to every type of memory. Threads in a block can only communi-
cate via shared and global memory. The whole grid uses global memory
to exchange data.

in the same memory bank at the same time, they can only be read sequentially, and
the performance gain of parallel processing is lost. This needs to be considered when
designing algorithms for CUDA.

There exist two additional read-only caches called constant memory and texture mem-
ory. Constant memory is used for broadcasting read-only values quickly to requesting
threads. Texture memory is interesting in our scenario as it is an optimized cache for 2D
access. When a thread accesses the texture cache, the hardware prefetches values from
global memory that are close to the fetched value in 2D (e.g., neighboring pixels). This
decreases cache misses in image processing applications, leading to a large performance
gain. Additionally, the texture cache offers addressing modes like linear interpolation
of values in hardware. Consequently, these operations are very fast: fetching a linear
interpolated value does not take any longer than fetching a non-interpolated one.

Multiprocessors schedule and execute threads in groups of 32 parallel threads called
warps. Warps each have their own instruction counter and registers. They always execute
one common instruction at a time. If threads diverge due to data-dependent branching,
the warp serializes which means that threads following the branch are executed together
while all other threads are idle. When all threads are on the same path again, execution
is merged for the whole warp. Such divergent branching thus slows down execution speed
and is to be avoided in the code.

104 CHAPTER 8. GPU IMPLEMENTATION

8.2 Parallelizability of the HDR Pipeline

Redesigning an algorithm for a parallel implementation takes considerable effort. It
is also more difficult to assure correctness and to maintain such an implementation.
We thus first analyze the individual steps of the HDR pipeline with respect to the
computation time they require and their suitability for parallelization. The former is
measured easily from the existing sequential code. The latter is judged by the amount of
parallelism a problem exhibits and its arithmetic intensity: Parallelism is the percentage
of instructions that can be executed concurrently; arithmetic intensity can be defined as
the ratio between mathematical operations and memory access, where a higher arithmetic
intensity is preferable for a GPU realization. Both criteria are somewhat vague but still
sufficient for assessing the suitability for a parallel implementation.

The complete HDR video system we implemented consists of the following parts: Calcula-
tion of optimal shutters, capturing using the sequence mode, color conversion, histogram-
based registration, HDR stitching, histogram adjustment tone mapping with flicker re-
duction, and color back conversion. These parts can be further divided into their com-
putationally expensive subtasks. The most expensive step of determining shutter se-
quences is repeatedly calculating the cross correlation between the (existing) brightness
histogram and the contribution vector. Capturing is done by the camera and can not
be sped up. The Bayer pattern in the captured LDR images is first interpolated to full
RGB and then converted into Yxy. For registration, a brightness histogram must be
calculated for each LDR image and its median must be found. Row and column his-
tograms are then created from a temporary MTB and the normalized cross correlation
(NCC) between them is calculated repeatedly. The resulting shift vector is Kalman fil-
tered. HDR stitching consists of computing each HDR pixel from a weighted average over
the corresponding LDR pixels. Tone mapping requires the computation of a cumulative
log radiance histogram, which consists of finding the minimum and maximum radiance,
calculating a log radiance histogram and cumulating the bins. Each pixel is then tone
mapped from radiance to pixel values. To reduce flicker, the average brightness of the
tone mapped result must be calculated, and the image must be normalized iteratively.
In the end, the tone mapped image is converted back to RGB.

In the following, we analyze all subtasks with respect to necessity and feasibility of a
parallel implementation. The results of the analysis are summarized in Table 8.1. Refer
to the respective previous chapters of this thesis for details. Note that subtasks that are
similar to each other are discussed only once.

Cross correlation: The normalized cross correlation between all row or column his-
tograms for all possible shift values can be calculated independently of each other. One
thread can be started to calculate the NCC between each histogram pair for each pos-
sible shift. A high cache hit rate is expected, because the same row/column histogram
bins are read repeatedly. Additionally, a high arithmetic intensity makes cross correla-
tion well-suited for parallelization. On the other hand, it is a rather cheap operation
overall. We decided to implement cross correlation on the GPU only for image regis-
tration and not for shutter calculation: The row and column histograms were created
on the GPU and thus already reside in the graphic card’s main memory. Furthermore,

8.2. PARALLELIZABILITY OF THE HDR PIPELINE 105

HDR Pipeline Subtasks

Pipeline Step Operators Cost P AI GPU/CPU
Optimal Shutter Seq. Cross Correlation low med. high CPU
Bayer Pattern Interp. - high high med. GPU
Color Space Conversion - high high high GPU

Image Registration

Brightness Hist. high med. low GPU
Median low med. low CPU
Row/Column Hist. high high low GPU
NCC low high high GPU
Kalman Filter low low high CPU

HDR Stitching Weighted Average high high high GPU

Tone Mapping

Min / Max high med. low GPU
Brightness Hist. high med. low GPU
Hist. Cumulation low med. low CPU
TM Operator high high high GPU
Avg. Brightness high med. low GPU
Normalization high high med. GPU

Color Back Conversion - high high high GPU

Table 8.1: Overview of subtasks of the HDR pipeline. Shown are the relative com-
putational cost, the amount of parallelism (P), and the arithmetic in-
tensity (AI). “high” entries indicate factors that suggest a GPU imple-
mentation. Our decision for the type of implementation is given in the
rightmost column.

they are constant during the entire cross correlation, enabling efficient caching and data
independence. This is not the case when determining optimal shutters, as can be seen
in Equations 5.3 and 5.4. The combined contribution, which is repeatedly correlated
with the brightness histogram, changes after each determined shutter speed. This adds
a sequential dependence to the calculation, making it less suitable for parallelization.
Since it is a cheap operation, we kept the existing sequential code.

Bayer pattern interpolation: For bilinearly interpolating a pixel’s RGB value from
its neighbors, four cases need to be differentiated based on the pixel’s location on the
color filter array. This means that without further modification, this method leads to
massive branching in the kernel. On the other hand, an interpolation kernel can benefit
from texture caching, because the access pattern is highly local in 2D. It is also a highly
parallel problem. Its arithmetic intensity varies with the pixel position with an average
of 0.65 arithmetic operations per memory access.

Color conversion, tone mapping, normalization: Color space conversion, as well
as applying the tone mapping operator and image normalization are ideally suited for a
GPU implementation since they fully comply with the data parallelism paradigm. No
branching takes place as each element is treated in the same way. Each image pixel is
read and written exactly once. Additionally, all three operations have a high arithmetic
intensity caused by the multiplication and addition of pixel values.

106 CHAPTER 8. GPU IMPLEMENTATION

Brightness histogram: During the creation of a brightness histogram, data must be
written to a small set of memory addresses (the histogram bins) for all of the pixels. This
induces a certain data dependence and leads to thread collisions and sequential writing.
Additionally, there is very little computational work between the memory accesses. De-
spite these difficulties, we considered it for a GPU implementation because it is a costly
operation overall.

Median computation: There exist parallel sorting algorithms, so the problem of find-
ing the median of a histogram can be parallelized. However, the problem size of searching
through a number of histogram bins is too small to justify the effort.

Row and column histograms: The creation of an MTB can be viewed as an interme-
diate step to the computation of row and column histograms. Both operations have a low
arithmetic intensity. MTB creation has high parallelism as each pixel can be converted
separately. Computation of row and column histograms brings up a similar issue as
brightness histogram computation: An entire row/column accesses the same histogram
bin. However, in this case, this access is predictable and can be optimized.

Kalman filtering: Filtering only takes about 16µs on a CPU, so its computational
effort is negligible, and we thus leave it on the CPU.

Weighted average: HDR Stitching complies well with the data parallelism paradigm.
The radiance value of each HDR pixel can be obtained independently without a need for
synchronization. A thread is started for each pixel, iterating through the corresponding
LDR pixels to compute the weighted average. The arithmetic intensity of this operator
is high due to the addition and multiplication of pixel values and the evaluation of the
weighting function. The adaptive number of LDR exposures prevents the usage of the
texture cache, because the number of textures needs to be known at compile time.

Minimum, maximum and average: Calculating a cumulative log radiance histogram
for tone mapping starts by finding the minimum and maximum log radiance in the HDR
image. This is similar to calculating the average image brightness for flicker reduction.
It can be done by so-called parallel reduction. The minimum, maximum or average is
first (trivially) calculated in parallel for each pixel. The values of each pair of two neigh-
boring pixels is then merged in the second step, also in parallel. In each further step,
the number of values is halved until a single value for the entire image is reached.

Cumulative log radiance histogram: The same considerations as for general bright-
ness histograms described above apply to the computation of the cumulative log radiance
histogram. The only exception is the summing up of the histogram bins. It has negligible
computational costs and does not require a GPU implementation.

8.3 Parallel Implementation

This section describes a number of adjustments that were made to the subtasks of the
HDR pipeline for their parallel GPU implementation. For similar subtasks, we limit our
description to one sample of the respective category.

8.3. PARALLEL IMPLEMENTATION 107

Figure 8.2: Normalized cross correlation between two column histograms H1 and
H2 to determine the horizontal shift s between two images. A thread is
started for each value in the result vector to be calculated. The values
represent the correlation for a specific shift.

8.3.1 Normalized Cross Correlation

To compute the NCC between two row or column histograms, one thread is started for
each shift s in the search range (see Equation 6.4). Each thread calculates the normalized
cross correlation for its shift and writes the result of the calculation to its corresponding
position in the result vector. This approach allows a high cache hit rate if the arrays to
be correlated are read-only and bound to the texture cache. In the end, the result vector
is downloaded into the host memory. A sequential search on the CPU finds the position
of the highest correlation value. Figure 8.2 illustrates the process.

8.3.2 Bayer Pattern Interpolation

Bayer pattern interpolation benefits strongly from texture caching because of its high
access locality. It can be implemented with a few lines of code on a CPU. A naive
implementation iterates through the image and interpolates the missing pixel values
differently depending on the four possible locations in the Bayer grid. The obvious
problem with this implementation for a GPU is the massive branching induced by the four
cases. In order to avoid branching, a thread relocation mechanism was implemented which
is illustrated in Figure 8.3. It changes the relationship between a pixel and the thread
which does the interpolation. Normally, a thread would be responsible for interpolating
the RGB values for a pixel matching the thread’s position in the 2D grid. Neighboring
threads would then be executed at the same time sharing the same instruction counter.
In this situation, the different branching of the threads would lead to a serial execution
and low performance. Relocating the threads so that those corresponding to pixels with
matching location on the color filter array are executed simultaneously avoids branching.
For example, in the Figure, every thread in block 4 can now calculate its blue component
from its left and right neighbors.

108 CHAPTER 8. GPU IMPLEMENTATION

Figure 8.3: Each pixel is assigned one thread to interpolate its RGB values from
the surrounding. The threads with the same number belong to the same
block and are executed at the same time. This leads to threads with dif-
ferent colors in their neighborhood running simultaneously, and branch-
ing becomes necessary. After relocating the threads, each thread in the
block can interpolate in the same way.

8.3.3 Color Conversion

The description of GPU color conversion given here also applies to using a global tone
mapping operator and to image normalization. The implementation of the kernel for
color conversion from RGB to XYZ is the translation of Equation 2.9 into code. Again,
one thread is started per pixel. The RGB values for the conversion are read from the pixel
corresponding to the thread. These values are multiplied by the color transformation
matrix. The resulting vector (X, Y, Z)T is then normalized to obtain the chromaticity xy
and the brightness Y . These values are written back to the three channels of the pixel
in the output image. Afterwards, the result can either be passed on to the next kernel
(e.g., image registration), or it can be displayed in the case of the final back conversion
to RGB.

8.3.4 Brightness Histogram

The image over which the histogram is computed is first subdivided into rectangular
areas of size 32 × 64 pixels. To calculate a histogram, each block has to perform 2048
read and write operations on the histogram bins in global memory. This would take
many clock cycles, and the operations would be strictly serial. Instead, we apply the
paradigm of parallel reduction. That is, we first create histograms for small image areas
and then successively merge them into one final histogram over the entire image.
32 threads are started per block. Each thread computes a separate histogram with 64
bins over one row of the block which is written to the fast shared memory. We use a
histogram with only 64 bins for efficiency purposes. Interleaving of the histograms in
shared memory such that a whole histogram resides on the same memory bank allows for

8.3. PARALLEL IMPLEMENTATION 109

Figure 8.4: Simplified illustration of shared memory with 8 memory banks and 64
addresses. Consecutive addresses lie on consecutive banks. The his-
tograms are interleaved such that each lies on its own bank. Eight
threads can write concurrently.

conflict-free memory access by the threads, and true parallelism can be achieved. The
banks of shared memory and the way the histograms are stored is illustrated in Figure
8.4.
Next, the 32 histograms of the block are summed up into a single histogram for the block.
Since the content of the shared memory expires when the threads terminate, the same
32 threads must be re-used for summation. Each thread is assigned two bins of the total
histogram. It loops through the 32 histograms (vertically in Figure 8.4) and maintains
two sums. It must be noted that each histogram resides on its own memory bank. If
all threads started with the first histogram, the 32 read operations to the same bank
would be serialized, leading to bad performance. Instead, summation loops start with
a different histogram for each thread (shifted by one relative to its predecessor thread).
Like this, all summations can be done in parallel without bank conflicts. The final sums
(i.e., the histogram for the block) are then written to global memory by an atomic add
function provided by CUDA.
With this approach, we reduce the number of write operations to global memory from
2048 to 64 per block. Pixel data is read from global memory as a texture which allows
for efficient caching.

8.3.5 Row and Column Histogram

For the registration of an image pair, a total of eight row or column histograms are
created. All histograms are calculated separately by similarly implemented method
calls. On a GPU, this is more efficient than running one parametrized method with
code branching. For simplicity, we restrict our description to the creation of a column

110 CHAPTER 8. GPU IMPLEMENTATION

histogram counting black pixels for every column of an image.
We subdivide the image into blocks of 32 × 32 pixels. This time, one thread is started
for each pixel in the block. Each thread computes the MTB of its respective pixel, that
is, the thread checks if its pixel is darker than the threshold and writes a 1 into shared
memory if it is. The MTB is thus created in shared memory only. Care is taken that
the set of 32 threads that are executed concurrently on a multiprocessor write the bit to
32 separate memory banks. Pixel data is again read from global memory as a texture.
32 of the threads are then re-used to count the black pixels of each column. Each thread
is assigned one of the columns of the block. The thread loops through all rows to count
the 1s in shared memory. An entire row resides in the same memory bank (see Figure
8.4). So, in order to prevent bank conflicts, the threads each start counting from a
different row so that all 32 read operations can be done in parallel. The sum of black
pixels in a column is then added to the column histogram in global memory using an
atomic add operation.

8.3.6 HDR Stitching

HDR stitching cannot use the GPU’s texture cache to access the LDR exposures to be
stitched. This is because the CUDA compiler needs to know the number of texture
cache bindings in advance before compilation; however, the number of LDR exposures
is dynamically chosen as described earlier. The LDR sequence can be viewed as a 3D
stack of images with varying size. One thread is started for each HDR pixel which
iterates through the corresponding pixels in the stack of exposures and calculates the
weighted average. During one iteration, the current radiance and chrominance values
and the cumulated weight of all pixels must be held in local memory (registers). The
radiance and the two chrominance values are then written to the output image in global
memory as floating point values. Contrary to the CPU version, the GPU implementation
does not precalculate the weighting function or stores it in memory. Our experiments
showed that calculating only the required weights on the fly is cheaper than accessing
the precalculated array from all threads.

8.3.7 Minimum, Maximum, Average

Calculating the minimum, maximum or average value of an image on a GPU is done by
parallel reduction. We use the calculation of the maximum of a one-dimensional array
here for illustration. Parallel reduction is an iterative divide-and-conquer approach. In
the first iteration, one thread is started for each element in the array. Each thread
calculates the (trivial) maximum of the element, which is simply the element itself, and
writes it to shared memory. Every other thread is then discarded. In the next iteration,
the remaining threads calculate the maximum of their element and its neighbor and
again write it to shared memory. In each iteration, the number of threads is halved,
and maxima are combined with their neighbors. This is repeated until only one global
maximum is left which can then either be written to global memory or copied back to
the host system.

8.4. EXPERIMENTAL RESULTS 111

8.4 Experimental Results

In this section, we present the results of the experiments we conducted to assess the
performance of our HDR video system with GPU support. The following aspects are
analyzed:

• influence of the shutter speeds and the number of exposures on the time taken to
capture the LDR image sequence,

• processing times of the subtasks of the HDR pipeline when changing the image
size,

• processing times when changing the number of exposures,

• average capturing and processing times in a 30 seconds HDR video under realistic
conditions,

• comparison of CPU and GPU processing times.

The individual subtasks were grouped together as seen fit for the analysis. Displaying the
processed video frames means copying them into the memory of the graphics card. Since
the last step in the pipeline – color conversion from Yxy back to RGB – is performed
on the GPU anyway, displaying the result is a free operation and thus ignored in the
following.
For all experiments, we used a desktop PC with an AMD Athlon II X2 250 64-bit CPU
with two cores running at 3 GHz and a total of 4 GB of RAM. The installed graphics
card is an Nvidia GeForce GTX 480 with 15 multicores running at a clock rate of 1.4
GHz and 1.5 GB of dedicated memory. Each multicore can process 32 threads at once.
Our camera is an AVT Pike F-032C FireWire camera capable of capturing 208 frames
per second in VGA resolution. It can capture in sequence mode, and it uses a Bayer
color filter array to acquire color images.

8.4.1 Analysis of the Capturing Time

In order to determine how the chosen shutter speeds and the number of required LDR
images affect capturing, we varied these parameters and measured the time between
triggering the images and fully receiving them from the camera. Trying all combinations
of parameters exhaustively is not feasible as there is a large number of possible shutter
sequences. We thus limited ourselves to sequences where every image in the sequence
is taken using the same shutter speed. 24 different shutter settings in the range of 4
ms to 80 ms were chosen. The number of exposures was varied between one and ten.
For each of the 240 combinations, we captured five sequences and averaged the time
taken. In the first iteration of the experiment, the parameter sequence was transmitted
to the camera, and bandwidth on the FireWire bus and image buffers were allocated
for every measurement. This simulates the situation where the parameters change, and
they are newly transmitted to the camera. We found that within the range of considered
shutter speeds ∆t and number of exposures n, the capture time tcapt in milliseconds can
be closely modeled as:

tcapt(∆t, n) = ∆t · n+ 2 · n+ 25.8. (8.1)

112 CHAPTER 8. GPU IMPLEMENTATION

Here, ∆t · n is simply the sum of shutter times of all images. It is the minimum amount
of time capturing can take since each of the n images must be exposed for the desired
time span ∆t. 2 · n + 25.8 ms is the time it takes to transmit the parameters to the
camera, allocate resources, and trigger the images. This is a very slow process, because
the FireWire camera interface IIDC only allows to set parameters one by one with an
acknowledgment after each value is set.

In the second iteration of the experiment, the sequence was set up only once beforehand,
and then the capturing of the same sequence was triggered five times. This corresponds
to the situation where parameters only changed very little from one frame to the next,
and the currently used parameter sequence is kept. The rest of the experimental setup
is the same as before. Now, the capturing time in milliseconds is

tcapt(∆t, n) = ∆t · n+ 6.9. (8.2)

The sum of shutter times is still the lower bound. Now, only the constant 6.9 ms for
triggering the sequence are added to it. It can be seen that re-using the same sequence
is much cheaper than setting up a new one, which is a major reason for introducing the
stability criterion in Section 5.2.3. Both equations are valid for shutter speeds in the
tested range. However, for shutter speeds much lower than 4 ms, ∆t · n does not shrink
proportionally anymore. Capturing time is then bounded by the time it takes to transfer
the image data from the camera to the PC.

8.4.2 Analysis of the Processing Time

The computation time of most of the steps in the HDR pipeline depends on the size
of the images. In the experiment described here, we analyze the relationship between
processing time and image size. Most parts of our GPU implementation are optimized
specifically for the image width of 640 pixels. Changing this in our implementation
would bias the results of this test. However, different image heights were considered in
the implementation to accommodate the outputs of the capturing method with partial
re-exposures. This fact is used to investigate the relationship between image size and
processing time. The images in this experiment all had the full width of 640 pixels and
a height varying from 100 to 480 pixels. For each size, a sequence of five exposures was
captured once and processed 20 times by the entire HDR pipeline to obtain stable average
processing times. The steps from Bayer pattern interpolation to the computation of row
and column histograms were thus performed five times in each iteration, cross correlation
and filtering was done four times, and HDR stitching needs to take five exposures into
account. All the subsequent steps work on just one HDR image. The content of the
images has no significant influence on the processing times. We thus set the shutter
speeds to an arbitrary value that exposes the recorded indoor scene well. Most steps of
the pipeline depend on the image size in an obvious way as it influences the number of
pixels or blocks to process. Only the processing steps of shutter speed computation and
Kalman filtering are completely unaffected. Figure 8.5 shows the measured processing
times versus image height. Debayering and the initial color conversion are grouped

8.4. EXPERIMENTAL RESULTS 113

 0

 1

 2

 3

 4

 5

 6

 100 150 200 250 300 350 400 450 500
 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

Pr
oc

es
si

ng
 T

im
e

[m
s]

Image Height [Pixel]

Figure 8.5: Processing time versus image height for a fixed number of 5 exposures.
The two solid lines are image registration (blue) and color conversion
(red). They both use the left scale ranging from 0 to 6 ms. The dashed
lines use the right scale. They are tone mapping (blue), HDR stitching
(red) and color back conversion (green).

together. Excluding apparent measurement noise, the computation times of the pipeline
steps grow linearly in the number of pixels, as expected.

Now, we keep the image size at its maximum of 640 × 480 pixels and vary the number
of LDR exposures instead. The only steps that need to process a varying number of
exposures are color conversion from RGB to Yxy, Bayer pattern interpolation, image
registration and HDR stitching. The initial color conversion and debayering are again
grouped together. In order to perform registration, at least two images must be present
in the sequence. We thus varied the number of exposures from two to ten and, again,
repeated the measurement 20 times on the same sequence for a stable average. The
shutters were chosen to match the given scene. Figure 8.6 shows the measured processing
times versus the number of exposures. Again, the dependency is linear, as expected.

8.4.3 Performance in a Realistic Scenario

For the final test, we captured 30 seconds of HDR video material in a realistic scenario
using our system. The camera was situated inside a room illuminated only by sunlight
shining through a window on a sunny day. During the 30 seconds, the camera pans
from the bright window towards the darker room and eventually towards a door leading
to an even darker hallway. The video thus includes very bright, very dark, and mixed
lighting conditions. Four example frames are shown in Figure 8.7. We loosely refer to
the sections of the video as window, indoor, and door. The window is visible from frames
0 to 311, and the door enters the field of view in frame 583. The window section is a
typical high dynamic range example with large brightness differences between the sunny

114 CHAPTER 8. GPU IMPLEMENTATION

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

Pr
oc

es
si

ng
 T

im
e

[m
s]

Number of Exposures

Image Registration
Color Conversion

HDR Stitching

Figure 8.6: Processing time versus number of exposures for full images. Only those
steps that process multiple LDR exposures are considered.

outside and the dark inside. While slowly panning towards the inside of the room, the
dynamic range decreases. The indoor section has the lowest dynamic range of the video.
It increases again as the door to the dark hallway becomes visible. Here, long shutter
speeds are used to capture the very dark parts of the scene properly.

The video consists of 733 HDR frames. Averaged over the entire video, an HDR frame
was created from 3.62 LDR exposures. On the average, 29.8 ms per frame were spent
for capturing and 13.6 ms for processing. This results in a total time per frame of 43.4
ms and an average frame rate of 23 fps.

Figure 8.8 illustrates, how the number of exposures, the sum of shutter values and the
capturing time change over the course of the video. As can be seen, there is a strong
relationship between the sum of shutter values and the time taken for capturing. This
means that the total exposure time has the greatest influence on the capture time. Total
exposure time in turn strongly depends on the number of exposures, but also on the
illumination level of the scene. The Figure also clearly shows the peaks in the capturing
time whenever the number of exposures or the shutter speeds change. This is due to the
retransmission of the capturing parameters, i.e., changing from Equation 8.2 to Equation
8.1. During the door section of the video, the sum of shutter times required to properly
expose the dark hallway is already higher than the available frame time of 40 ms, making
the frame rate drop.

Figure 8.9 shows the total processing time and the achieved frame rate for the video.
When comparing it to Figure 8.8, it can be seen that the frame rate drops when the
parameter sequence changes. The rate is highest in the indoor section with a low DR
(45 to 50 fps) and goes down to 13 fps when the door to the hallway becomes visible. It
is interesting to note that the impact of the processing time on the frame rate is rather
low.

The time to create an HDR frame from beginning to end is more closely inspected in

8.4. EXPERIMENTAL RESULTS 115

Figure 8.7: Four tone mapped frames of the HDR video taken in our experiment.
The camera pans from left to right. The top left frame belongs to the
section window (frame number 100). Top right shows the transition to
section indoor (300). The bottom row frames represent indoor (500)
and door (620) respectively.

Figure 8.10. The top left chart shows the fractions of the computation time of the steps
of the HDR pipeline. As mentioned above, capturing took 29.8 ms and processing 13.6
ms in the average. Color conversion from RGB to Yxy, back to RGB and debayering is
grouped together. The other sub-figures show how computation time is further divided
among the subtasks for color conversion, image registration and tone mapping.

For comparison, the entire video was processed again using our pure CPU implemen-
tation. The computation times were now 56 ms for color conversion, 24 ms for image
registration, 43 ms for HDR stitching and 80 ms for tone mapping. This leads to an
average processing time of 203 ms per frame. Our GPU implementation is thus faster
by a factor of 15 on the average.

116 CHAPTER 8. GPU IMPLEMENTATION

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700
 1
 3
 5
 7

Sh
ut

te
r/

C
ap

tu
re

 T
im

e
[m

s]

N
um

be
r

of
 E

xp
os

ur
es

Frame Number

Figure 8.8: The red line shows the capturing time for each frame in milliseconds.
It strongly depends on the sum of shutter times of the LDR exposures
shown in green. The blue line is the number of exposures. Peaks in the
capture time occur when exposure parameters change.

 0
 10
 20
 30
 40
 50
 60

 0 100 200 300 400 500 600 700
 5
 10
 15
 20
 25

Fr
am

e
R

at
e

[1
/s

]

Pr
oc

es
si

ng
 T

im
e

[m
s]

Frame Number

Figure 8.9: Frame rate (red) and total processing time (blue) for the frames of the
test video. The processing time has less variation than the capturing
time.

8.5 Conclusions

From the experiment described above, we conclude that capturing is the bottleneck of
the HDR video pipeline. Setting up the camera parameters over the FireWire bus is a
costly operation. Especially when the scene is very dark, the exposure times alone can
already exceed the available frame time. This is a well-known problem even for LDR

8.5. CONCLUSIONS 117

7%

69%

10%

9%

2%
3%

Entire HDR Pipeline

Shutter Speeds Capturing Color Conversion

Image Regist. HDR Stitching Tone Mapping

69%

14%

17%

Color Conversion

Debayer RGB to Yxy Yxy to RGB

18%

41%

38%

3%

Image Registration

Hist. and Median Row / Column Hist.

NCC Kalman Filtering

43%

30%

16%

11%

Tone Mapping

Minimum / Maximum Histogram

TM-Operator Flicker Reduction

Figure 8.10: Percentage of the time taken to perform the steps of the HDR pipeline
in our test video. The steps of color conversion, image registration and
tone mapping are further subdivided into their individual tasks.

video equipment. The low-cost solution is to increase the sensor’s gain to amplify the
image brightness and noise at the same time. A better solution with respect to image
quality is to employ a bigger lens which allows to collect more light during the same
time span. Despite this limitation, we can also conclude that our system is capable
of capturing high dynamic range video in real-time with a sufficiently high frame rate
when the lens is adequate for the illumination level of the scene. In particular, the
frame rate averages to 24.7 fps in the high dynamic range window section of the video.
The processing times are consistently lower than 25 ms. In our current implementation,
capturing and processing is done sequentially. Large portions of these two parts could
be done in parallel, which would further increase the frame rate. Since capturing always
takes longer than processing, processing could then be done almost for free.

118 CHAPTER 8. GPU IMPLEMENTATION

Chapter9
Video Automatic Optical Inspection

Flaws in the process of populating printed circuit boards with electronic components often
lead to malfunctioning of the resulting printed circuit assembly (PCA). To guarantee that
the right components were placed at the correct positions and work as expected, PCAs
must be tested subsequent to the assembly. Various methods for testing exist. The most
straightforward approach is to do functional testing. This means running a sequence
of tests on the assembly as a whole and monitoring the results. However, there may
be faults that are more subtle and not covered by the functional tests. It is therefore
common to perform in-circuit tests to gain a more fine-grained understanding of the
components’ functionality. They allow for checks at any level of granularity varying
from a single component to the entire assembly. In-circuit testing is done by connecting
electrical probes to a PCA that allow for measuring conductivity, resistance, capacity
and other electrical properties.
The two major techniques used are the so-called bed of nails testers and the flying probe
testers. While the former uses a static arrangement of connectors that is pressed against
the PCA, the latter uses a typically much smaller set of movable probes to connect.
In practice, creating a specialized bed of nails adapter for one particular type of board
is expensive. Only for high volumes, the initial cost is redeemed by the high testing
speed achieved through extensive parallelization. On the other hand, the flexibility of
flying probe testers takes effect for smaller volumes and prototyping. These testers can
be easily configured to test new types of boards as needed. Their main drawback is
the lower testing speed due to the smaller number of probes and the time it takes to
re-position them between the individual checks.
An alternative to functional and in-circuit testing is automatic optical inspection (AOI)
[83, 64, 107, 44]. In this approach, line scan cameras or area scan cameras with strong
magnification are used to capture high-resolution images of the PCA. The digital images
are then processed by machine vision algorithms to search for faults. This technique re-
veals faults that are hard or impossible to detect by the other two approaches. Examples

119

120 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

of such faults are bent pins on a connector, badly aligned components, bad solder joints
or faults in regions that are unreachable by probes. Another advantage of optical inspec-
tion is contact-less testing. Assemblies tested with in-circuit tests often show traces of
the pointy tips of the connectors on the soldering pads. In-circuit testing damages the
tested PCA to some extent which can be avoided by AOI.

The approach we chose in this chapter is the enhancement of a flying probe tester by
AOI. This combination achieves a high coverage of fault classes as it joins the sets of
detectable faults of flying probe testers and AOI. Additionally, increased confidence in
the test results can be gained by checking crucial elements redundantly. When testing
speed is of major concern, individual checks can be completely shifted to the AOI and
performed in parallel to the electrical tests, speeding up the entire process significantly.
Depending on the particular application, an optimal weighting between electronic testing
and optical inspection can be determined.

As a novel idea, we use video sequences instead of still images in this scenario. We call
our technique Video-AOI. Our definition of video in this context is that we continuously
capture images of a moving PCA, resulting in a large number of images, such that
each electrical component on the PCA is contained in multiple images, taken under
varying viewing conditions. Having multiple images of each component can then be
exploited for inspection. If the images are captured at known camera positions, the
height of a component can be determined using stereo vision and structure from motion
approaches, facilitating the detection of missing components. Another way of taking
advantage of Video-AOI is by switching light sources on and off between the individual
shots, controlling the casting of shadows and light reflections. Similarly, the shutter
speed of the camera can be varied to capture images at varying exposure that each
emphasize a different dynamic range of the object under consideration. The necessity
for applying HDR video techniques in the context of optical inspection become apparent
when looking at Figure 9.1. It shows the top of a capacitor with a highly reflective
surface. Choosing the shutter speed high enough for the components on the board to
be detectable results in saturation of the pixels showing the capacitor. Due to specular
reflection of the light source, the markings on the capacitor are no longer recognizable.
Creating an HDR frame from a dark and a bright image alleviates this problem.

Applying Video-AOI inside a flying probe tester gives rise to new difficulties to over-
come. Optical inspection of PCAs requires an image capturing system with a very high
resolution. The image may need to span up to 40cm of a board while still resolving de-
tails with a size of 100µm. Such a resolution can only be achieved by line scan cameras,
but only area scan cameras are capable of capturing video. It is therefore necessary to
employ several area scan cameras at once, leading to increased costs of the system, high
data rates to be processed and shortness of space inside the narrow-built tester. The
narrowness of the tester is also a challenge for the lighting used. Additionally, due to
the moving probes, it is not possible to capture a video of the PCA during the elec-
tronic tests. In order to not add overhead for capturing to the overall duration of the
test, the video must be captured inline while the board is transported into the tester
via a conveyor belt. In an industrial environment, the speed of the conveyor must be
considered a given constant. Only by using short shutter times and cameras capable of

9.1. PARAMETERS OF THE SYSTEM 121

Figure 9.1: The surface of the capacitor in the image reflects light specularly. When
setting the shutter to a high enough value for the PCA to be well-
exposed, the markings on the capacitor already saturate. The rightmost
image is a tone mapped HDR image showing the components on the
PCA and the markings on the capacitor at the same time.

capturing video at high frame rates the capturing system can keep up with the conveyor
speed. And lastly, the capturing system will produce a large number of images taken
under varying lighting conditions and from differing angles. Before they can be used for
inspection, they need to be aligned with respect to each other. Having a fully registered
set of captured images of a PCA, the Video-AOI system is capable of determining the set
of images containing a component to inspect and its exact pixel position in the images.
It should be noted that calibrating the cameras, capturing image sequences and comput-
ing the offsets between the images so they can be used for inspection is the main focus of
this chapter. Going into the details of a particular inspection algorithm is not our goal.
In Section 9.1 we describe the prototype of a Video-AOI system and analyze its pa-
rameters and their relationship to each other. At the end of the section, we give the
parameters of our prototype as an example. Section 9.2 focuses on the capturing and
preprocessing of image sequences with our system and explains the steps necessary to
capture videos that can be used for AOI. They include camera calibration, coordinate
system transformations and four forms of image registration specific to this context. The
Section ends with a demonstration of how HDR video can be created with our system.
Section 9.3 contains experimental results. Section 9.4 concludes this Chapter. The work
described here was published in [47].

9.1 Parameters of the System

Before building a Video-AOI system to be used inside a flying probe tester, one must
first examine the system’s parameters, understand their interrelation and ultimately
decide upon the values to be used. We begin this section with an overview of the
system as a whole and its relevant components. We then analyze the parameters by
grouping them into three categories: Constraints by the tester (Section 9.1.2), parameters
determined by the application (9.1.3) and the freely adjustable parameters (9.1.4). The

122 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

Figure 9.2: Simplified representation of the flying probe tester and its preceding
Video-AOI unit. The camera array captures images of the PCA as
it is transported into the tester.

hardware constraints and the application requirements are the starting point for the
choice of adjustable parameters. The currently available camera hardware, optics and
bus technology then determine how well the requirements can be met. At the end of this
section, we list the choice of parameters we made when building our prototype.

9.1.1 System Overview

Figure 9.2 depicts the arrangement of conveyor, camera array and flying probe tester in
our Video-AOI prototype. The system is built as an inline facility that can be directly
connected to the production line. The assembled board is transported into the flying
probe tester on a conveyor band. On its way in, it passes an array of area scan cameras.
A photo sensor below the conveyor detects the approaching board and starts a clock
generator to trigger the cameras. The cameras then synchronously capture a sequence
of images until the board has completely passed the array. Finally the captured images
are processed while the PCA is tested electronically inside the flying probe tester.

For the remainder of this chapter, we will refer to the board axis perpendicular to the
board motion and parallel to the camera array as the horizontal axis. The direction of
board movement defines the vertical axis respectively.

9.1.2 Hardware Parameters

The first category of parameters of the Video-AOI system for flying probe testers con-
sists of the hardware parameters. Their values are usually given by the production
environment and we assume them to be fixed. The following parameters are relevant:

9.1. PARAMETERS OF THE SYSTEM 123

Maximum PCA width. The size of the biggest PCA to be inspected is determined
by the width of the conveyor. Its value has an impact on the number of cameras
used, their resolution and the required optics. For our further considerations, we
will assume that a PCA to be inspected has the maximum width which we denote
by w.

Minimum/maximum vertical camera position. The camera array may not always
be as freely positionable as shown in Figure 9.2. It may be tightly integrated into
the production line or the tester itself. In these cases, constraints regarding the
distance to the conveyor at which the camera array can be installed apply. They
limit the achievable depth of field and determine the optics to be used for the
cameras. The lower and upper bound for the distance of the camera to the PCA
will be denoted by dmin and dmax respectively.

Conveyor band speed. Making changes to the speed at which a PCA is transported
into the tester is difficult in an existing production line. We therefore assume it to
be constant and assign it the letter v. As a result, the cameras’ frame rate, shutter
speed and lighting must be chosen carefully to allow the capturing of motion blur-
free images under the given board movement speed.

9.1.3 Application Parameters

The second parameter set consists of those that are determined by the particular inspec-
tion application. Variations may be due to the type of boards and components to be
inspected as well as the inspection task to be performed. The reconstruction of 3D data
through stereo vision or the creation of HDR video for example require the cameras’
fields of view to overlap largely. Application parameters are in general more flexible
than hardware parameters. The parameters to be considered are:

Color. Many industrial cameras are available in the two variants color and monochrome.
A common trick is to apply a color filter array to an image sensor to make the sensor
cells color sensitive. While color cameras using this technique are similar in price to
the corresponding b/w models, they effectively trade off resolution for the ability
to detect colors. Color cameras should thus only be used if color information is
relevant to the application at hand.

Depth of field. The height of the highest inspectable component on a PCA determines
the depth of field required for the Video-AOI system. The achievable depth of field
mainly depends on the camera’s focal length, lens aperture and the distance to the
PCA. It is measured in units of length and we denote it by df .

Image brightness. Assuming that the lighting illuminating a scene was chosen to be
as bright as possible, the brightness of the captured images only depends on the
shutter speed and lens aperture used. Increasing the exposure time by adjusting
the shutter speed leads to brighter images but also to motion blur when capturing
a fast moving board. Its upper bound is therefore determined by the conveyor

124 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

speed. If the desired brightness cannot be achieved by adjusting the shutter speed
alone, depth of field must be traded off for image brightness by widening the lens
aperture.

Spatial resolution. The size of the smallest structure to be inspected through Video-
AOI is a parameter determined by the application. If we assume that a fixed
number of pixels is required to resolve a structure, dividing this number of pixels
by the size of the smallest structure directly leads to the required spatial resolution
of the optical system. Hence the spatial resolution r is the number of pixels required
per unit of dimension of the PCA.

Image multiplicity. We refer to the number of captured images in which a PCA com-
ponent is contained as image multiplicity. Multiplicity can be achieved by capturing
images that overlap horizontally or vertically. Horizontal overlap is the result of
overlapping fields of view of the cameras in the array. In the vertical direction,
increasing the cameras’ frame rate increases multiplicity. The horizontal and ver-
tical multiplicity factor mh and mv must be chosen according to how the captured
images are to be processed. Capturing images of a component under varying light-
ing conditions for example can only be achieved through vertical overlap, since all
cameras are triggered synchronously.

9.1.4 Adjustable Parameters

The final category of parameters are those of the optical system that must be chosen
to meet the hardware and application requirements determined before. In practice,
not every combination of parameters is possible and restrictions of the available camera
hardware must be considered. It is then necessary to review the hardware and application
parameters and to relax the constraints until they can be met. In this section we give
guidelines and formulae for their choice.

Number of cameras and resolution. When deciding on the camera type and the
number of cameras to be used for the Video-AOI system, the important values to
consider are the maximum PCA width w, the spatial resolution r and the horizontal
image multiplicity mh. The horizontal camera resolution, i.e. the number of cells
per row on the camera’s sensor, and the number of cameras used must be big
enough to achieve the desired spatial resolution over the entire width of a PCA at
the desired multiplicity. Mathematically, this can be expressed as follows: Let n
be the number of cameras and ph the number of camera pixels per row. n and ph
must be chosen so that wrmh ≤ nph. A suitable compromise between number of
cameras and resolution is one that minimizes the overall cost. Typical values for
ph range from 500 to 2000 for current industrial cameras.

Focal length. Once the type and number of cameras are determined, the cameras need
to be configured with suitable optics. We found that for optical inspection, it
is desirable to employ telephoto lenses to keep the distortion due to short focal

9.1. PARAMETERS OF THE SYSTEM 125

lengths to a minimum. We therefore position the camera array at dmax within
reasonable bounds. With the width of the desired field of view of a camera being
ph/r and knowing the width of the camera’s sensor ws, the required focal length f
can be approximated by

f =
dmax

1 + ph/(rws)
. (9.1)

Lens aperture. If the chosen lens has an adjustable f-number N , it can be set to achieve
the desired depth of field. Giving objective directives for setting the camera’s f-
number is difficult, since the definition of depth of field depends on the maximum
size of the acceptable circle of confusion c, which is strongly subjective. A suitable
value for c must be chosen for the given application (see Section 9.1.6 for our
choice). If the camera’s focus is set to the surface of the PCA, the achieved depth
of field df can be roughly estimated by

df = dmax −
dmaxf

2

f 2 +Nc(dmax − f)
. (9.2)

Given the desired depth of field, and values for the other parameters from the pre-
vious considerations, this equation can be used to estimate the required f-number
setting:

N =
dff

2

c(dmax − f)(dmax − df)
. (9.3)

Shutter speed. The shutter speed ∆t – also called exposure time – is the duration for
which the camera’s sensor is exposed to the light of the scene. It is measured in
microseconds. As stated before, we assume a constant conveyor band speed v in
our context. The longest usable shutter speed is therefore limited to avoid motion
blur. In other words, the distance in pixels a point on the PCA moves during one
exposure period must be lower than a threshold τ

vr∆t ≤ τ (9.4)

leading to an upper bound for the shutter speed of

∆t ≤ τ

vr
. (9.5)

Frame rate. The last parameter to be chosen is the frame rate s of the cameras in
the array. It is a crucial limiting factor of the attainable capture speed. Most
industrial cameras have an adjustable frame rate, so the question is: What is the
lowest frame rate sufficient to capture images of the moving PCA with the desired
vertical multiplicity mv? The cameras must then be chosen to support at least this
rate. More precisely, this requirement can be formulated as

s ≥ vr

pv
mv (9.6)

126 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

where vr is the conveyor band speed in pixels per time unit and pv the frame height
in pixels. It should be noted, that in theory the time between two frames cannot be
shorter than one exposure period, so the frame rate must also be less than 1/∆t.
In a VAOI scenario though, the illumination is bright enough to use very short
exposure periods, so that this restriction does not apply.

9.1.5 Further Considerations

Capturing videos with the VAOI system described above produces high data rates and
large amounts of data. For example, capturing 1392×1040 pixels at 15 frames per second
results in a data rate of roughly 175 MBit/s. By employing several of these cameras,
the bandwidth quickly exceeds the limit of a single FireWire bus. Special care must be
taken when choosing the image processing hardware to cope with the occurring data.
As a result of basing the design of the VAOI system and its parameters on the constant
conveyor band speed, the total time to capture a video of a PCA only depends on the
speed of the conveyor. Capturing ends once the PCA has passed the camera array
completely. Though before the captured video can be used for inspection, the individual
frames need to be registered. Time taken to perform this step is evaluated in Section
9.3.
Achieving proper lighting for the VAOI system is a challenge. Little advice on its choice
can be given here as it strongly depends on the availability of space, mounting and
power inside the tester. Generally speaking, the lighting should be as bright as possible
to attain more freedom in choosing other parameters like shutter speed and f-number.
We chose to use an array of LED light sources that are triggered synchronously to the
cameras. By using the LEDs in a pulsed mode rather than operating them continuously,
a higher luminous power can be achieved by the same LEDs without damaging them.
The pulse only needs to be as long as the exposure time, giving the LEDs time to cool
down while the CCD sensors are read out.

9.1.6 Our Choice of Parameters

Our VAOI prototype is built as box separate from the flying probe tester and is pre-
ceding the tester in the conveyor line. The box is opaque to allow for constant lighting
conditions, independent of the surrounding light. Upon entering the VAOI prototype,
the PCA triggers a light barrier that will start the capturing process. The same light
barrier will then signalize the end of the capturing process as the PCA exits.
In our scenario, the hardware requirements are as follows: The widest PCA to be in-
spected by Video-AOI has a width of w = 400 mm. PCAs are transported on the
conveyor at a speed of approximately v = 100 mm/s. Our Video-AOI prototype allows
a maximum height of the camera array above the surface of the PCA of dmax = 500 mm.
The upper limit for the height of an inspectable component on a PCA – and thus the
required depth of field – was set to df = 10 mm. Our application requires a resolution
of r = 40 pixels per millimeter. The horizontal image multiplicity was set to mh = 1.05
for roughly 5% of overlap as tolerance. In the vertical direction, we capture with a

9.2. CAPTURING VIDEOS FOR INSPECTION 127

multiplicity of mv = 2.1 to get two shots of each component with some tolerance that
can be used for image registration. The cameras we use are monochrome 1394b FireWire
cameras with a resolution of 1392× 1040 (ph × pv) pixels and 1/2” sensors.

Using the formulae described in Section 9.1.4, we get the following values for the ad-
justable parameters: We need at least n = 12 cameras. With a sensor width of
ws = 6.4 mm, Equation 9.1 gives a focal length of f = 77.7 mm. For reasons of
availability, we used a lens with a fixed focal length of 75 mm and moved the camera
array to a distance of d = 483 mm from the PCA to achieve the desired resolution. In
Equation 9.5, we require that the PCA moves at most one pixel during one exposure
period which results in an upper limit for the allowed shutter speed of ∆t ≤ 250 µs.
The shutter speed can be varied under this constraint to capture High Dynamic Range
videos using varying exposure settings for example. And finally the cameras must be
capable of capturing images at a rate of at least s = 8 frames per second.

The total data rate produced by the twelve cameras in our setup is 1111.8 MBit/s over
a duration of up to 5 seconds. This data rate can be handled by two 1394b interface
cards and the amount of data produced conveniently fits into the main memory of a
modern PC.

9.2 Capturing Videos for Inspection

This section describes in detail how high-resolution videos of PCAs can be captured and
preprocessed in order to be used for video-based automatic optical inspection. We start
with an overview of the coordinate systems involved and their relationships in terms of
mathematical transformations in Section 9.2.1.

In a first offline step, the cameras in the array need to be calibrated with respect to each
other and the conveyor band. For this step, we use a calibration board tailored to our
camera array. The board and the calibration process are described in Section 9.2.2.

In the online phase of the VAOI system, a PCA to be tested is transported into the
system where it triggers a light barrier and starts the capturing process. Periodic trigger
signals are sent to all cameras in the array and all light sources until the PCA exits the
VAOI unit. In each cycle, a row consisting of n images is captured by the n cameras.
We denote the number of total rows captured by m. It is important that all cameras
are triggered at exactly the same time so the relative positions of the images in one row
correspond to those determined in the calibration process. The video consisting of m · n
frames is first captured into the main memory of the PC the cameras are connected to.
Preprocessing of the video starts once capturing is completed. The preprocessing mainly
consists of estimating the transformations between images of the video. After this, one
last transformation needs to be computed that relates the “big picture” with the CAD
description of the PCA. This registration step is described in full detail in Section 9.2.3.

Once capturing and preprocessing is done, the video can be used for inspection. How
this can be done is beyond the scope of this thesis. We end this Section with an example
of how our VAOI system can be used to capture high dynamic range videos of PCAs.

128 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

9.2.1 Coordinate Systems and Transformations

A multitude of two-dimensional coordinate systems are involved in capturing videos
of a moving PCA. Each type of PCA has its own coordinate system called the CAD
coordinate system. It is used to describe positions and sizes of components placed on the
PCA, which is important for AOI. Its unit is usually a physical unit of length and its
axes and origin can be arbitrarily placed on the PCA.

Every camera of the array has a pixel coordinate system with the origin residing in the
top left pixel of the camera image and the positive horizontal and vertical axes pointing
right and down respectively. We refer to them as camera coordinate systems.

For the sake of understandability, we imagine the PCA to be standing still on the con-
veyor and the camera array moving once over the entire PCA while capturing m · n
images. It then becomes clear that each image has its own image coordinate system.
The coordinate systems of the first row of images are identical to the camera coordinate
systems. The coordinate systems of each subsequent row of captured images are then
related to the camera coordinate systems by a Euclidean transformation. A point given
in image coordinates is denoted by a homogeneous 2D coordinate (a 3-tuple) x. It should
be noted that contrary to the conventions in the previous chapters where x generally
was a scalar value representing the horizontal coordinate, it is a homogeneous vector in
this chapter. We omit explicitly writing homogeneous coordinates as 3-tuples (x, y, 1) to
avoid clutter and simply use x instead.

We introduce an additional virtual 2D coordinate system between CAD and the images
which we call the tester coordinate system. It lies in the plane defined by the conveyor
band and is established during the camera calibration process. It serves as an intermedi-
ate coordinate system to simplify image registration. Points given in tester coordinates
are denoted by x′.

Using homogeneous coordinates, a point in any of these coordinate systems is a tuple
with three components. Let x̄ be a point on a PCA, specified in CAD coordinates. It
is then represented in tester coordinates as one 3-tuple x′, since we imagine the board
to be standing still. For i = 1, . . . , n and j = 1, . . . ,m the 3-tuple xi,j represents the
same point in the coordinate system of image Ii,j, where Ii,j is the jth image captured
by camera i.

Transformations between the various coordinate systems can be expressed by 3 × 3
matrices. In the whole process of capturing and aligning m·n images, there are m·n+n+1
matrices involved. The image matrix Mi,j transforms a point from tester coordinates
into the coordinate system of image Ii,j:

Mi,jx
′ = xi,j, i = 1, . . . , n, j = 1, . . . ,m. (9.7)

Once during the calibration process, the camera matrices Ni are established, that trans-
form tester coordinates to the coordinate system of camera i (see Section 9.2.2). The
first row of image matrices are set to the camera matrices:

Mi,1 := Ni, i = 1, . . . , n. (9.8)

9.2. CAPTURING VIDEOS FOR INSPECTION 129

Camera 2 Camera 3 Camera 4Camera 1

Tester coordinate system

Figure 9.3: Calibration board placed on the conveyor belt underneath the camera
array. The cross-shaped fiducial marks are printed onto the board so
that each camera can see at least four marks. Their coordinates are
specified in an arbitrary coordinate system which later constitutes the
tester coordinate system.

All further matrices must be estimated in the registration process as described later. One
more matrix, the CAD matrix C, transforms CAD coordinates into tester coordinates:

Cx̄ = x′. (9.9)

It is estimated in the final step of image registration.
The matrices Mi,j and Ni represent projective transformations. The Mi,j are interrelated
by Euclidean transformations, which becomes clear when imagining the cameras to be
moved over the fixed PCA. C is a similarity transformation, consisting of a Euclidean
transformation with scaling. Its Euclidean part can be explained by the PCA residing
fixed in the tester, translated and rotated relative to the tester coordinate system. The
scaling is due to the potentially differing units of length used in the CAD and tester
coordinates. Note that all matrices are invertible and can also be used to transform
coordinates in the opposite direction.
The results of the entire capturing and registration process described throughout this
chapter are thus m · n images Ii,j with corresponding image matrices Mi,j and a CAD
matrix C. Using the matrices Mi,j, a single high-resolution image of the PCA similar to
a panoramic image can easily be obtained. However for AOI, this step is unnecessary.

9.2.2 Camera Calibration

Before any videos can be captured with the VAOI system, the array of cameras must be
calibrated once. This means to estimate the camera matrices Ni, that relate the pixels

130 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

of all cameras to positions in the common tester coordinate system. The matrices Ni

are saved and used in image registration later.
For calibration, we place a calibration board on the conveyor band, which is similar
to a PCA in size. A number of fiducial marks is printed onto the calibration board
and it is positioned in a way that allows each camera to see at least four marks. An
example calibration board with cross-shaped marks and the fields of view of four cameras
is shown in Figure 9.3. The positions xi,1 to xi,4 of the four fiducial marks in pixel
coordinates of camera i can be accurately detected by template matching, thresholding
and computation of centers of gravity.
Let x′i,1 to x′i,4 be the coordinates of the marks on the calibration board in a fixed
coordinate system with arbitrary origin and scale. These coordinates must be known
prior to calibration. The arbitrary coordinate system constitutes the intermediate tester
coordinate system.
For each camera i, the eight parameters of the camera matrix Ni are calculated by solving
the system of equations

Nix
′
i,k = xi,k, k = 1, . . . , 4. (9.10)

9.2.3 Image Registration for Video-AOI

As mentioned before, we imagine the PCA to be standing still on the conveyor while the
camera array is moved for scanning. From a mathematical point of view, this scenario
is identical to a moving PCA and stationary cameras, so the choice between the two
philosophies is arbitrary. We believe that our view helps the comprehensibility.
The problem of registration can be formulated as the estimation of the image matrices
Mi,j and the CAD matrix C. The matrices Mi,j relate the pixel coordinates of image Ii,j
to tester coordinates. For the first row of images, the image matrices are identical to the
calibration matrices. Every additional row of image matrices can then be obtained by
multiplying the matrices of the previous row by a Euclidean matrix which is estimated
from two subsequent images from the same camera. Three approaches to the problem
of estimating Mi,j will be introduced in the following sections. In the end, only one
mapping C between tester and CAD coordinates needs to be estimated.

Fiducial-based Registration

We now show how the image matrices Mi,j can be estimated by setting Mi,1 := Ni

for i = 1, . . . , n and showing a method for estimating Mi,j+1 from already known Mi,j

for j = 1, . . . ,m − 1. For this, we assume that in each pair of subsequent image rows
(I1,j, . . . , In,j) and (I1,j+1, . . . , In,j+1) there are two fiducial marks that are visible in any
two images of row j and the corresponding two images of row j+1. Let k be the camera
index so that the images Ik,j and Ik,j+1 contain the first mark, and let l be the index
so that Il,j and Il,j+1 contain the second. The pixel coordinates xk,j, xk,j+1, xl,j, xl,j+1 of
the marks in the four images are determined through template matching just like during
calibration. We must now estimate the matrices Mk,j+1 so that

M−1
k,j+1xk,j+1 = M−1

k,j xk,j. (9.11)

9.2. CAPTURING VIDEOS FOR INSPECTION 131

Index l likewise. Equation 9.11 means that the pixel coordinates of a mark in two images
must both map to the same position in the tester coordinate system.
We accomplish this by first transforming xk,j+1 and xk,j by the known matrix M−1

k,j and

transforming xl,j+1 and xl,j by the known matrix M−1
l,j into tester coordinates. We then

estimate a Euclidean transformation T that maps the transformed coordinates onto each
other:

TM−1
k,j xk,j+1 = M−1

k,j xk,j ∧ TM−1
l,j xl,j+1 = M−1

l,j xl,j. (9.12)

This system of four equations has three variables and can be solved by non-linear least-
squares fitting. We now set Mk,j+1 := Mk,jT

−1, so that M−1
k,j+1 = TM−1

k,j . It follows,
that

M−1
k,j+1xk,j+1 = TM−1

k,j xk,j+1 = M−1
k,j xk,j. (9.13)

It can be seen that Mk,j+1 fulfills Equation 9.11 as required. Index l likewise. Using the
same matrix T , all other Mi,j+1 are now calculated as: Mi,j+1 := Mi,jT

−1

Adding fiducial marks that can be used for fiducial-based registration to a PCA can
be done by putting the PCA into a fixture that already contains the required fiducials.
Mounting PCAs in such a way has to be done manually, which can be an unacceptable
drawback in some production lines. The advantage of fiducial-based registration is clearly
its speed. The indices k and l of the cameras that can see the fiducial marks as well
as their approximate position in the camera’s field of view are usually known. In a
relatively small search area properly printed marks on a fixture can be detected quickly
and robustly. Estimating the Mi,j is even faster, as is shown in Section 9.3.

Feature-based Registration

The feature-based registration is similar to the fiducial-based version. Again, we set
Mi,1 := Ni for i = 1, . . . , n and show a method for estimating Mi,j+1 from already known
Mi,j for j = 1, . . . ,m− 1.
For the feature-based registration, we relax the requirement of having fiducial marks
and only assume that detectable features like corners and dots are present in the images.
We use Harris feature points [52], SIFT [73] and RANSAC [32] for feature detection
and matching. For each pair of subsequent images Ii,j and Ii,j+1, ∀i, we obtain is a

list of coordinate pairs (x
(k)
i,j , x

(k)
i,j+1). For each k, this pair represents the coordinates

of a feature that has been detected in two subsequent images. We refer to this pair as
a feature match. Similar to Equation 9.11, Mi,j+1 must be estimated, such that both
coordinates of a match are transformed to the same tester coordinates:

M−1
i,j+1x

(k)
i,j+1 = M−1

i,j x
(k)
i,j , ∀i, k. (9.14)

In practice, only a small number of feature matches in only two distant images must be
considered. The more features and images are considered, the higher the accuracy.
Again, we transform both coordinates of a match (x

(k)
i,j , x

(k)
i,j+1) by the same known matrix

M−1
i,j and estimate one Euclidean transformation T , that approximates

TM−1
i,j x

(k)
i,j+1 ≈M−1

i,j x
(k)
i,j , ∀i, k. (9.15)

132 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

This system of three variables and two equations per feature match can be approximated
using non-linear least-squares fitting. Again, by setting Mi,j+1 := Mi,jT

−1, we get

M−1
i,j+1xi,j+1 = TM−1

i,j xi,j+1 ≈M−1
i,j xi,j (9.16)

and approximate Equation 9.14. The quality of this approximation is evaluated in Sec-
tion 9.3.
Note that the detection and matching of features is less accurate and robust than the
detection of fiducial marks. We therefore use a higher number of matches (in the mag-
nitude of tens or hundreds) for an average, and the correspondence in Equation 9.14
cannot be achieved perfectly for each of the matches. In order to be able to detect
enough feature matches, sufficiently structured PCAs and a higher vertical multiplicity
mv than for fiducial-based registration are required. The latter leads to a higher frame
rate requirement to retain the same conveyor velocity as can be seen in Equation 9.6. In
addition, the process of detecting, matching and selecting suitable features is computa-
tionally expensive. As an advantage, the overall accuracy is higher than for fiducial-based
registration due to averaging over all the feature matches considered. Another major
advantage is the independence of fiducial marks on the PCA, allowing feature-based
registration to be used without fixture and inline.

Reference-based Registration

In order to cope with high conveyor speeds using a small mv while still being mostly
independent of a fixture, we developed a third alignment mechanism called reference-
based registration.
Here, we use a fixture with fiducial marks only once for each type of PCA to be inspected.
A reference PCA is manually mounted to a fixture, and a reference video is captured and
registered based on the fiducial marks on the tray. Its images Ji,j and image matrices
Ri,j are saved and later used as a reference for alignment. For a fixed i and j, the image
Ii,j captured of a PCA to be inspected overlaps with Ji,j by nearly 100%. The difference
is only a Euclidean transformation. We therefore estimate Mi,j using Ji,j and Ri,j. Since
only images and matrices with the same i and j are used at a time, we omit the indices
here for simplicity’s sake.
We first detect feature matches (x(k), y(k)) in the images I and J as was done in the
previous section. M must be estimated, so that

M−1x(k) = R−1y(k), ∀k. (9.17)

Using the same method as before, we estimate a Euclidean transformation T , such that

TR−1x(k) ≈ R−1y(k), ∀k. (9.18)

Setting M := RT−1 yields

M−1x(k) = TR−1x(k) ≈ R−1y(k), ∀k, (9.19)

9.2. CAPTURING VIDEOS FOR INSPECTION 133

and Equation 9.17 is approximated. In practice, T is approximately equal for all i and
must be computed only once using a small set of images.
This registration method allows for conveyor speeds as fast as those achieved by fiducial-
based registration while taking as much processing time as the feature-based approach.
No additional fiducial marks need to be put on the PCAs in the running system. The
overall accuracy is limited by the accuracy achieved by the initial registration of the
reference video.

Mapping to CAD Coordinates

So far we introduced different approaches of obtaining the matrices Mi,j that transform
tester coordinates into pixel coordinates. As a last step once this is done, a similarity
transformation C is computed that performs the final mapping between CAD coordinates
and tester coordinates (see Equation 9.9). The four parameters of C denote the position
of the PCA inside the tester (in our view of a moving camera array), its rotation and
the difference in scale of the two coordinate systems.
To define the CAD coordinate system, a PCA always has at least two fiducial marks
with known CAD coordinates, which are also used for populating the PCA. The indices
of the images in which they appear are manually selected once when examining the
captured video of a reference PCA. Since all future PCAs will be captured under similar
conditions, knowledge about potential search areas for the fiducial marks gained from
the reference video can be used to facilitate the fiducial detection mechanism during
operation.
Let x̄(k), k = 1, 2 be the CAD coordinates of two fiducial marks. Let x(k) be the pixel
positions at which the fiducials have been detected in the images I(k). We transform
them into tester coordinates x′(k) using the image matrices M(k):

x′(k) := M−1
(k)x(k), ∀k. (9.20)

We can now calculate the four parameters of C by solving the following system of four
equations:

Cx̄(k) = x′(k), ∀k. (9.21)

9.2.4 Using Videos for Inspection

Knowing C and all matrices Mi,j, coordinates can be freely transformed between the var-
ious systems. This permits the inspection of PCA components using the video captured
as images Ii,j. Each component to be inspected will be visible in mh ·mv images in the
average. We obtain a component’s bounding box from the CAD data of the PCA. For
inspection, we create roughly mh ·mv temporary images containing exactly the compo-
nent, captured under varying application-dependent viewing conditions like angle, time,
camera settings and lighting. The size of the images is easily obtained by multiplying
the bounding box size by the resolution r. For each pixel in the temporary image, we
calculate the corresponding CAD position by linear interpolation of the bounding box
coordinates.

134 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

Figure 9.4: The left image shows a part of a PCA as seen by a camera. The cam-
era’s rotation was exaggerated for clarity. The white box represents the
bounding box of a component. It can be seen that the CAD coordinate
system is rotated and translated with respect to the camera’s pixel coor-
dinates. The right image is a temporary image created for inspection.
Its coordinates are aligned with the bounding box.

Let x̄ be the CAD coordinate corresponding to a pixel position. We transform it into
tester coordinates x′ = Cx̄. The selection of a source image from which the color value
is retrieved is highly application dependent. Generally speaking, indices i and j must be
determined, so that

Mi,jx
′ = x ε [0, ph − 1]× [0, pv − 1]. (9.22)

The color value at x in image Ii,j is calculated using bi-linear interpolation and inserted
into the temporary image. This process must be repeated for each pixel of each tempo-
rary image.
In the new images, pixel positions can be easily mapped to CAD coordinates and vice-
versa using linear interpolation. This allows for efficient AOI. See Figure 9.4 for an
exemplary camera image and a temporary image that was created for inspection.

9.2.5 Capturing HDR Video in a Video-AOI System

HDR video techniques can be applied to assist optical inspection. When capturing videos
of a PCA for inspection, achieving proper lighting is difficult. An integrated circuit for
instance may have highly reflective metal pins and a dark gray label on a black surface.
For an industrial camera with a CCD sensor with linear response, it may be difficult to
find a suitable shutter speed that shows details in dark and bright areas at the same
time. A similar example was the capacitor shown in Figure 9.1. We thus use our Video-
AOI prototype to capture two videos of the PCA using two different shutter settings and
combine them into one video covering a higher dynamic range.
For this purpose, we set the horizontal multiplicity tomh = 2.2 and set mv to an arbitrary
high value. We set each camera with an even index to a short shutter speed and cameras

9.3. EXPERIMENTAL RESULTS 135

Camera 3

Camera 4
Camera 2

Camera 1 Camera 5

Camera 6

Camera 7

C
onveyor direction

Figure 9.5: A row of images of a PCA on the conveyor is captured by seven cameras.
The horizontal multiplicity is mh = 2.2. Cameras with an even index
have a lower shutter speed setting, resulting in a darker image. This
assures that each position on the PCA is visible in one bright and one
dark image.

with odd index to a longer value within the upper bound specified in Equation 9.5. Like
this, two subsequent images captured by the same camera have the same brightness level
which increases the robustness of feature-based registration. This is illustrated in Figure
9.5.

Due to the horizontal image overlap of (1 − 1
mh

) ≈ 55%, each position on the PCA is
guaranteed to be contained in at least one bright and one dark image. When creating
a temporary image as described in the previous section, Equation 9.22 will be satisfied
for an odd and an even index i for each pixel. We retrieve both the dark and the bright
pixel value and combine them into a HDR pixel according to Section 2.5 in the technical
introduction of this thesis. mv temporary HDR images are created for each component
to be inspected.

9.3 Experimental Results

We used our VAOI prototype to perform measurements of the time taken for registration
and the accuracy achieved. The tests were done with a camera resolution of 1032× 776
and a spatial resolution of r = 12 pixels per millimeter. The other parameters remained
unchanged.

Four PCAs of the same type were used. Their width is 45 mm and their height 215
mm. The width was small enough to be captured with a single camera in this setup.
With a vertical multiplicity of 2.1, this resulted in seven rows of one image per row. The
first board was used as a reference and registered using feature points. The other three
were registered based on the reference video. In each image, we selected five components
that were visible in the top left and right corner, the bottom left and right corner and

136 CHAPTER 9. VIDEO AUTOMATIC OPTICAL INSPECTION

the center of the image. The real position of each component as seen in the images was
selected manually using a mouse and compared to the estimated position obtained by
transforming the component’s CAD position by the estimated matrices. The average
error over all 35 components was calculated. Out of the four videos, the reference video
had the lowest total error, as expected. Its total registration error was 0.53 mm. For
the other three videos, the error was 0.59 mm, 0.64 mm and 1.23 mm respectively.
Since registration is a pixel-based operation, this error is inversely proportional to the
resolution r.
We processed the captured video on a PC with an Intel Quad Core CPU with 2.4GHz.
Detecting Harris feature points in a full image and computing SIFT keys took 300 ms.
The feature threshold was set to a value so that roughly 600 features were detected.
Matching them with the same number of features in another image took 220 ms.
For reference, detecting a fiducial mark in a full image took 135 ms. The computation
time is proportional to the size of the search area. Prior knowledge about fiducial
positions will thus speed up the process significantly.
Estimating a Euclidean transformation from k feature matches took about k · 0.05 ms
with a lower bound of 0.5 ms for exactly two features, as is the case for fiducial-based
registration.

9.4 Conclusions

We showed how a prototype for video-based optical inspection of PCAs can be built.
We gave an overview of all the parameters involved and gave advice on how they can be
set. The process of capturing high-resolution videos for AOI was described. The focus
was put on preprocessing the videos in a way that allows to locate parts of the PCA in
the captured images.
Future work includes the development of inspection techniques that benefit from the
video aspect of our system. We also aim to conduct more detailed measurements of the
performance of our prototype. In this process, we hope to speed up the stitching and
increase its accuracy.

Chapter10
Conclusions and Outlook

We presented a real-time high dynamic range video system that creates HDR frames from
multiple low dynamic range exposures, captured under varying shutter speeds. The steps
necessary to create an HDR frame are: determining suitable shutter values, capturing
a sequence of LDR exposures, compensating intermediate camera motion, merging the
LDR images into an HDR frame, and tone mapping the result for display. We con-
tributed to the fields of shutter speed calculation, capturing, image registration, and
tone mapping, while existing techniques were used for frame merging. Our proposed
techniques focus on saving capturing and processing time and achieving temporal con-
sistency between the frames of an HDR video. They benefit from knowledge gained from
the previous frames.
The shutter values were calculated from the log radiance histogram of the scene. They
were chosen such that frequently occurring radiance values are covered by an LDR im-
age that exposes the radiance range well. Taking the entire histogram of the scene into
account is an improvement over existing techniques which only consider minimum, max-
imum or average brightness. Being adaptive to the scene allows to capture only as few
exposures as necessary. The introduced stability criterion for the shutter speeds prevents
oscillation of the values which would otherwise lead to flicker. It was also shown that
stable shutter sequences are desirable for more efficient capturing. Our criterion allows
to compromise between stability and adaptability to changes in the scene. A subjective
user study showed that our shutter values result in HDR images with a higher quality
than those created from the traditionally used equidistant shutters for the same number
of exposures. Likewise, fewer exposures are required for a desired image quality which
saves capturing time.
We made the observation that the parts of a scene requiring HDR often only cover small
image areas. When acquiring multiple LDR image of the scene, a large amount of time
can be saved by only selectively re-exposing these small areas. This avoids transmitting
and processing image material that does not contribute to the quality of the HDR result

137

138 CHAPTER 10. CONCLUSIONS AND OUTLOOK

anyway. By interleaving capturing and image analysis, badly exposed areas are identified
and only re-exposed as needed. 20% to 49% of the time to create an HDR frame was
saved by using this method.

Motion compensation for an exposure sequence is a computationally costly operation.
We introduced modifications to an existing still-image registration technique to simulta-
neously achieve faster computation times and better accuracy. This was made possible
by simplifying the still-image registration to a fast heuristic while exploiting knowledge
gained from the camera motion of the previous frames to keep the accuracy high. Our
algorithm is based on the normalized cross correlation between horizontal and vertical
projection profiles of the two images to register. Robustness to the large brightness dif-
ference among the images of an exposure sequence is accomplished by thresholding them
such that 50% of the pixels are white and 50% are black. Compared to the still-image
approach, computation time was improved by a factor of 1.4 to 3 while reducing the
average registration error by 30% in our tests.

In a subjective user study, we found that flicker is the most disturbing artifact introduced
when applying still image tone mapping operators to the frames of an HDR video. Flicker
occurs when the scene brightness changes drastically from one frame to the next. The
changed radiance range is then mapped to the same display range, resulting in a sudden
change of brightness of the tone mapped result. This is perceived as flicker. We showed
how flicker can be detected by checking the variation of the log average image brightness
against a threshold based on Stevens’ power law. Flicker was then removed by smoothing
large brightness differences over several frames. This was done as a post-processing step
to tone mapping by modifying the image normalization which is often included as a last
step of such operators. In our test scenario, 49 out of 50 flickering artifacts reported by
viewers were removed.

To further speed up the creation of HDR frames, we analyzed the employed HDR algo-
rithms with respect to necessity and suitability for a GPU implementation using CUDA.
We demonstrated the adjustments to the algorithms that were necessary for their par-
allelization. In a 30 second demo HDR video, the processing time was sped up by a
factor of 15 over its pure CPU counterpart. We achieved an average frame rate of 23
frames per second. Almost 70% of the time taken to create HDR frames was spent for
capturing. This justifies the effort we put into improving the acquisition. Large portions
of the capturing time were in turn caused by the exposure time itself. As a consequence
the frame rate depended more strongly on the illumination level of the scene than on
its dynamic range. Our system accomplished frame rates between 20 and 50 fps in a
very bright HDR setting and in an LDR setting with medium brightness. On the other
hand, the rate dropped down to 13 fps in a low-light HDR situation where the exposure
time of the LDR frames alone already constituted 55 ms (corresponding to an upper
bound for the frame rate of 18 fps). Using a camera lens that collects more light shifts
the bottleneck of HDR frame creation back towards capturing overhead and processing
time.

As an application of HDR video, we presented a prototype for the automatic optical
inspection of printed circuit assemblies. It uses multiple cameras with overlapping fields
of view to capture HDR video of a PCA. HDR has the potential to improve optical

139

inspection results for highly reflective components which would be saturated otherwise.
During our work, we recognized a limitation of the IIDC standard, the FireWire interface
for digital cameras. Transmitting exposure parameters to the camera one by one and
waiting for acknowledgments makes the setting of an exposure sequence inefficient. As
future work, we would like to look into the details of the frame grabber library and the
FireWire driver implementation we used. By modifying the standard, it may be possible
to reduce the overhead for setting the acquisition parameters. Furthermore, employing a
“smart camera” may permit to perform the shutter sequence calculation on the capturing
device directly.
Obtaining HDR video from a camera that needs to be connected to a PC is cumbersome
in practice. In the future, more and more parts of the HDR pipeline should be shifted
into the camera. Ideally, the camera would determine shutter speed sequences and
capture images on its own. Image registration may become mostly obsolete due to the
low delays between capturing. HDR stitching is expected to be well-suited for an on-chip
implementation. The camera could then output HDR video directly which would ideally
be displayed on an HDR screen without the need for tone mapping.
We would like to investigate the possibilities offered by applying our HDR acquisition
techniques to 3D video. In particular, igital representations of real actors are often used
for special effects in situations where filming a real actor is too expensive, too dangerous
or outright impossible. This can be done by a combination of 3D geometry scanning
and photography under a very large number of different lighting conditions. Specular
reflections on the skin surface cause problems for scanning under certain lighting angles,
necessitating HDR. Since a large number of HDR images must be taken to capture a
face under as many different lighting conditions as possible, the algorithms presented in
this thesis may prove useful to quicken the scanning process.

140 CHAPTER 10. CONCLUSIONS AND OUTLOOK

References

[1] http://ls.wim.uni-mannheim.de/de/pi4/research/projects/projekte/videos/.

[2] P.M. Acosta-Serafini. Predictive multiple sampling algorithm with overlapping integra-
tion intervals for linear wide dynamic range integrating image sensors. PhD thesis,
Massachusetts Institute of Technology, 2004.

[3] M. Aggarwal and N. Ahuja. Split aperture imaging for high dynamic range. Int. Journal
of Computer Vision, 58(1):7–17, 2004.

[4] P.M.Q. Aguiar. Unsupervised simultaneous registration and exposure correction. In
Proc. of the IEEE Int. Conference on Image Processing, pages 361–364, 2006.

[5] M. Ashikhmin. A tone mapping algorithm for high contrast images. In Proc. of the 13th
Eurographics Workshop on Rendering, pages 145–156, 2002.

[6] M. Ashikhmin and J. Goyal. A reality check for tone-mapping operators. ACM Trans.
Appl. Percept., 3(4):399–411, 2006.

[7] A. Bab-Hadiashar and D. Suter. Robust optic flow computation. Int. Journal of Com-
puter Vision, 29(1):59–77, 1998.

[8] S. Baker, R. Gross, and I. Matthews. Lucas-kanade 20 years on: A unifying framework:
Part 3. Technical Report CMU-RI-TR-03-35, Carnegie Mellon University Robotics In-
stitute, 2003.

[9] N. Barakat, A. N. Hone, and T. E. Darcie. Minimal-bracketing sets for high-dynamic-
range image capture. IEEE Trans. on Image Processing, 17(10), 2008.

[10] S.S. Beauchemin and J.L. Barron. The computation of optical flow. ACM Computing
Surveys (CSUR), 27(3):433–466, 1995.

[11] A. Benoit, D. Alleysson, J. Herault, and P. Callet. Spatio-temporal tone mapping operator
based on a retina model, pages 12–22. Springer-Verlag, Berlin, Heidelberg, 2009.

[12] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based motion
estimation. In Proc. of the ECCV, pages 237–252, 1992.

[13] M.J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and
piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–104,
1996.

141

142 References

[14] R. Bogart, F. Kainz, and D. Hess. OpenEXR image file format. ACM SIGGRAPH,
Sketches & Applications, 2003.

[15] V. Brajovic and T. Kanade. A sorting image sensor: An example of massively parallel
intensity-to-time processing for low-latency computational sensors. In Proc. of the IEEE
Int. Conference on Robotics and Automation, volume 2, pages 1638–1643, 1996.

[16] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: Combining
local and global optic flow methods. Int. Journal of Computer Vision, 61(3):211–231,
2005.

[17] P.J. Burt and R.J. Kolczynski. Enhanced image capture through fusion. In Proc. of the
4th Int. Conference on Computer Vision, pages 173–182, 1993.

[18] M. Cadik, M. Wimmer, L. Neumann, and A. Artusi. Evaluation of HDR tone mapping
methods using essential perceptual attributes. Computers & Graphics, 32(3):330–349,
2008.

[19] T. Chen and A. El Gamal. Optimal scheduling of capture times in a multiple capture
imaging system. In Proc. of the SPIE Electronic Imaging Conference, 2002.

[20] H. Cho and O.K. Kwon. A backlight dimming algorithm for low power and high image
quality LCD applications. IEEE Trans. on Consumer Electronics, 55(2):839–844, 2009.

[21] T.H. Cormen. Introduction to algorithms. The MIT Press, 2001.

[22] E. Culurciello, R. Etienne-Cummings, and K. Boahen. Arbitrated address-event repre-
sentation digital image sensor. Electronics Letters, 37(24):1443–1445, 2001.

[23] J. Davis. Mosaics of scenes with moving objects. In Proc. of the CVPR, pages 354–360,
1998.

[24] P.E. Debevec and J. Malik. Recovering high dynamic range radiance maps from pho-
tographs. In Proc. of the 24th Conference on Computer Graphics and Interactive Tech-
niques, 1997.

[25] K. Devlin, A. Chalmers, A. Wilkie, and W. Purgathofer. Tone reproduction and physi-
cally based spectral rendering. In State of the Art Reports, Eurographics, pages 101–123,
2002.

[26] F. Drago, K. Myszkowski, T. Annen, and N. Chiba. Adaptive logarithmic mapping
for displaying high contrast scenes. In Computer Graphics Forum, volume 22, pages
419–426, 2003.

[27] F. Durand and J. Dorsey. Interactive tone mapping. In Proceedings of the Eurographics
Workshop on Rendering Techniques, pages 219–230, 2000.

[28] European Broadcasting Union. SAMVIQ - Subjective assessment methodology for video
quality. Report by the EBU Project Group B/VIM, May 2003.

[29] R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dynamic range com-
pression. ACM Transactions on Graphics, 21(3):249–256, 2002.

References 143

[30] J.A. Ferwerda. Elements of early vision for computer graphics. IEEE Computer Graphics
Applications, 21(5):22–33, 2001.

[31] J.A. Ferwerda, S.N. Pattanaik, P. Shirley, and D.P. Greenberg. A model of visual adap-
tation for realistic image synthesis. In Proc. of the SIGGRAPH, pages 249–258, 1996.

[32] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[33] D.J. Fleet and Y. Weiss. Optical flow estimation. Handbook of Mathematical Models in
Computer Vision, pages 239–258, 2005.

[34] W.T. Freeman and E.H. Adelson. The design and use of steerable filters. IEEE Trans-
actions on Pattern analysis and machine intelligence, 13(9):891–906, 1991.

[35] C.S. Fuh and P. Maragos. Motion displacement estimation using an affine model for
image matching. Optical Engineering, 30(7):881–887, 1991.

[36] O. Gallo, N. Gelfandz, W.C. Chen, M. Tico, and K. Pulli. Artifact-free high dynamic
range imaging. In Proc. of the IEEE Int. Conference on Computational Photography
(ICCP), pages 1–7, 2009.

[37] M.A. Gennert. Brightness-based stereo matching. In Proc. of the 2nd International
Conference on Computer Vision, pages 139–143, 1988.

[38] N. Goodnight, R. Wang, C. Woolley, and G. Humphreys. Interactive time-dependent
tone mapping using programmable graphics hardware. In ACM SIGGRAPH Courses,
2005.

[39] C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaile. Modeling the interaction
of light between diffuse surfaces. In ACM SIGGRAPH Computer Graphics, volume 18,
pages 213–222, 1984.

[40] T. Grosch. Fast and robust high dynamic range image generation with camera and object
movement. In Vision, Modeling, and Visualization, pages 277–286, 2006.

[41] M. Grossberg and S. Nayar. What can be known about the radiometric response from
images? Computer Vision ECCV, pages 393–413, 2006.

[42] M.D. Grossberg and S.K. Nayar. High dynamic range from multiple images: Which
exposures to combine? In Proc. of the ICCV Workshop on Color and Photometric
Methods in Computer Vision (CPMCV), 2003.

[43] M.D. Grossberg and S.K. Nayar. What is the space of camera response functions? In
Proc. of the CVPR, volume 2, pages 602–609, 2003.

[44] E. Guerra and J.R. Villalobos. A three-dimensional automated visual inspection system
for SMT assembly. Computers & Industrial Engineering, 40(1-2):175–190, 2001.

144 References

[45] B. Guthier, S. Kopf, M. Eble, and W. Effelsberg. Flicker reduction in tone mapped
high dynamic range video. In Proc. of IS&T/SPIE Electronic Imaging (EI) on Color
Imaging XVI: Displaying, Processing, Hardcopy, and Applications, volume 7866, pages
78660C:01 – 78660C:15, 2011.

[46] B. Guthier, S. Kopf, and W. Effelsberg. Capturing high dynamic range images with par-
tial re-exposures. In Proc. of the IEEE 10th Workshop on Multimedia Signal Processing
(MMSP), 2008.

[47] B. Guthier, S. Kopf, and W. Effelsberg. High-resolution inline video-aoi for printed
circuit assemblies. In Proc. of IS&T/SPIE conference on Image Processing: Machine
Vision Applications II, volume 7251, 2009.

[48] B. Guthier, S. Kopf, and W. Effelsberg. Histogram-based image registration for real-
time high dynamic range videos. In Proc. of IEEE Int. Conference on Image Processing
(ICIP), pages 145–148, September 2010.

[49] B. Guthier, S. Kopf, and W. Effelsberg. Optimal shutter speed sequences for real-time
hdr video. Technical report, University of Mannheim, 2011. http://pi4.informatik.uni-
mannheim.de/∼bguthier/optshutter-TR.pdf.

[50] B. Guthier, S. Kopf, M. Wichtlhuber, and W. Effelsberg. Parallel algorithms for
histogram-based image registration. In Proc. of IEEE Int. Conference on Systems, Sig-
nals and Image Processing (IWSSIP), pages 182–185, April 2012.

[51] G.D. Hager and P.N. Belhumeur. Efficient region tracking with parametric models of
geometry and illumination. IEEE Trans. on Pattern Analysis and Machine Intelligence,
20(10):1025–1039, 1998.

[52] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, page 50. Manchester, UK, 1988.

[53] S.W. Hasinoff, F. Durand, and W.T. Freeman. Noise-Optimal Capture for High Dynamic
Range Photography. In Proc. of the 23rd IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2010.

[54] K. Hirakawa and P.J. Wolfe. Optimal exposure control for high dynamic range imaging.
In Proc. of the 17th IEEE International Conference on Image Processing (ICIP), 2010.

[55] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial intelligence, 17(1-
3):185–203, 1981.

[56] S. Hua and L. Wang. Photographs alignment and high dynamic range image composition
based on varying exposure levels. In 16th Int. Conference on Artificial Reality and
Telexistence (ICAT), volume 4282, pages 1146–1155, 2006.

[57] Eiichiro Ikeda. Image data processing apparatus for processing combined image signals
in order to extend dynamic range. U.S. Patent 5801773, September 1998.

[58] D. Ilstrup and R. Manduchi. One-shot optimal exposure control. In Proc. of the 11th
European Conference on Computer Vision (ECCV). 2010.

References 145

[59] International Telecommunication Union (ITU). Basic Parameter Values for the HDTV
Standard for the Studio and for International Programme Exchange. ITU-R Recommen-
dation BT.709, 1990.

[60] S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High dynamic range video. ACM
Transactions on Graphics (TOG), 22(3):319 – 325, 2003.

[61] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bogaerts. A
logarithmic response CMOS image sensor with on-chip calibration. IEEE Journal of
Solid-State Circuits, 35(8):1146–1152, 2000.

[62] E.A. Khan, A.O. Akyüz, and E. Reinhard. Ghost removal in high dynamic range images.
In Proc. of the ICIP, pages 2005–2008. IEEE, 2006.

[63] S.J. Kim and M. Pollefeys. Radiometric alignment of image sequences. In Proc. of the
CVPR, pages 645–651, 2004.

[64] S. Kishimoto, N. Kakimori, Y. Yamamoto, Y. Takahashi, T. Harada, Y. Iwata,
Y. Shigeyama, and T. Nakao. A printed circuit board (PCB) inspection system employing
the multi-lighting optical system. In Electronic Manufacturing Technology Symposium,
pages 120–129, 1990.

[65] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proc. of the 14th Int. Conf. on Artificial intelligence, pages 1137–1143,
1995.

[66] C. Kolb, D. Mitchell, and P. Hanrahan. A realistic camera model for computer graphics.
In Proc. of the 22nd conference on Computer Graphics and Interactive Techniques, pages
317–324. ACM, 1995.

[67] G. Krawczyk, K. Myszkowski, and H.P. Seidel. Perceptual effects in real-time tone
mapping. In Proc. of the 21st spring conference on Computer graphics, pages 195–202,
2005.

[68] P Ledda, A Chalmers, T. Troscianko, and H. Seetzen. Evaluation of tone mapping oper-
ators using a High Dynamic Range display. ACM Transactions on Graphics, 24(3):640–
648, 2005.

[69] C. Lee and C.S. Kim. Gradient domain tone mapping of high dynamic range videos. In
Proc. of the IEEE Int. Conference on Image Processing (ICIP), volume 3, pages 461–464,
2007.

[70] K. Levenberg. A method for the solution of certain nonlinear problems in least squares.
Quart. Appl. Math., 2:431–441, 1944.

[71] F.C. Lin, Y.P. Huang, L.Y. Liao, C.Y. Liao, H.P.D. Shieh, T.M. Wang, and S.C. Yeh.
Dynamic backlight gamma on high dynamic range LCD TVs. Journal of Display Tech-
nology, 4(2):139–146, 2008.

146 References

[72] X. Liu and A. El Gamal. Simultaneous image formation and motion blur restoration via
multiple capture. In Proc. of the Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), volume 3, pages 1841–1844, 2001.

[73] D.G. Lowe. Object recognition from local scale-invariant features. In Proc. of the 7th
Int. Conf. on Computer Vision, volume 2, pages 1150–1157, 1999.

[74] B. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In Proc. of the 7th Int. Joint Conf. on Artificial Intelligence, pages
674–679, 1981.

[75] B.C. Madden. Extended intensity range imaging. Technical Report 248, University of
Pennsylvania, December 1993.

[76] S. Mann and R.W. Picard. Being ’undigital’ with digital cameras: Extending dynamic
range by combining differently exposed pictures. In Proc. of the IS&T 48th Annual
Conference, 1995.

[77] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[78] M. Mase, S. Kawahito, M. Sasaki, Y. Wakamori, and M. Furuta. A wide dynamic range
CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-
parallel cyclic A/D converters. IEEE Journal of Solid-State Circuits, 40(12):2787–2795,
2005.

[79] L. Meylan and S. Süsstrunk. High dynamic range image rendering with a retinex-based
adaptive filter. IEEE Transactions on Image Processing, 15(9):2820–2830, 2006.

[80] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 27(10):1615–1630, 2005.

[81] G.S. Miller and C.R. Hoffman. Illumination and reflection maps: Simulated objects in
simulated and real environments. SIGGRAPH: Course Notes for Advanced Computer
Graphics Animation, pages 1–12, 1984.

[82] T. Mitsunaga and S.K. Nayar. Radiometric self calibration. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 1999.

[83] M. Moganti, F. Ercal, C.H. Dagli, and S. Tsunekawa. Automatic PCB inspection algo-
rithms: a survey. Computer Vision and Image Understanding (CVIU), 63(2):287–313,
1996.

[84] H.P. Moravec. Obstacle avoidance and navigation in the real world by a seeing robot
rover. Doctoral Dissertation, Stanford University, 1980.

[85] S.K. Nayar and V. Branzoi. Adaptive dynamic range imaging: Optical control of pixel
exposures over space and time. In Proc. of the 9th IEEE Int. Conference on Computer
Vision, volume 2, pages 1168 – 1175, 2003.

References 147

[86] S.K. Nayar and T. Mitsunaga. High dynamic range imaging: Spatially varying pixel
exposures. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 472–479, 2000.

[87] S.A. Nene and S.K. Nayar. A simple algorithm for nearest neighbor search in high
dimensions. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(9):989–1003,
1997.

[88] M. Niskanen. View dependent enhancement of the dynamic range of video. In Proc. of
the 18th Int. Conf. on Pattern Recognition (ICPR), volume 1, pages 984–987, 2006.

[89] E.Y. Oh, S.H. Baik, M.H. Sohn, K.D. Kim, H.J. Hong, J.Y. Bang, K.J. Kwon, M.H.
Kim, H. Jang, J.K. Yoon, et al. IPS-mode dynamic LCD-TV realization with low black
luminance and high contrast by adaptive dynamic image control technology. Journal of
the Society for Information Display, 13:215, 2005.

[90] D.L. Olson and D. Delen. Advanced Data Mining Techniques. Springer, Berlin Heidel-
berg, 1 edition, 2008.

[91] E.P. Ong and M. Spann. Robust optical flow computation based on least-median-of-
squares regression. Int. Journal of Computer Vision, 31(1):51–82, 1999.

[92] A.V. Oppenheim, R.W. Schafer, and Jr. Stockham, T.G. Nonlinear filtering of multiplied
and convolved signals. Proceedings of the IEEE, 56(8):1264–1291, August 1968.

[93] S.N. Pattanaik, J. Tumblin, H. Yee, and D.P. Greenberg. Time-dependent visual adap-
tation for fast realistic image display. In Proc. of the 27th Conference on Computer
Graphics and Interactive Techniques, pages 47–54, 2000.

[94] Z.U. Rahman, D.J. Jobson, and G.A. Woodell. Retinex processing for automatic image
enhancement. Journal of Electronic Imaging, 13(1):100–110, 2004.

[95] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone reproduction for
digital images. ACM Trans. on Graphics, 21(3):267–276, 2002.

[96] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec. High dynamic range imaging:
Acquisition Display and Image-Based Lighting. Morgan Kaufmann, 2006.

[97] M.A. Robertson, S. Borman, and R.L. Stevenson. Dynamic range improvement through
multiple exposures. In Proceedings of the International Conference on Image Processing
(ICIP), volume 3, pages 159–163, 1999.

[98] H. Samet. Applications of spatial data structures. Addison-Wesley, 1990.

[99] F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets, or
how do I organize my holiday snaps?. Computer Vision ECCV 2002, pages 414–431,
2002.

[100] C. Schnörr. Determining optical flow for irregular domains by minimizing quadratic
functionals of a certain class. Int. Journal of Computer Vision, 6(1):25–38, 1991.

148 References

[101] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste,
A. Ghosh, and A. Vorozcovs. High dynamic range display systems. ACM Transactions
on Graphics (TOG), 23(3):760–768, 2004.

[102] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-
sensitive hashing. In Proc. of the 9th Int. Conference on Computer Vision, pages 750–757,
2003.

[103] J. Shi and C. Tomasi. Good features to track. In Proc. of the Computer Vision and
Pattern Recognition (CVPR), pages 593–600, 1994.

[104] S.M. Smith and J.M. Brady. SUSAN – a new approach to low level image processing.
International Journal of Computer Vision, 23(1):45–78, 1997.

[105] S. S. Stevens. The surprising simplicity of sensory metrics. American Psychologist,
17(1):29–39, 1962.

[106] Technical Committee 3.1. An analytic model for describing the influence of lighting
parameters on visual performance, Vol. 1: Technical foundations. CIE 19/2.1, 1981.

[107] E.K. Teoh, D.P. Mital, B.W. Lee, and L.K. Wee. Automated visual inspection of sur-
face mount PCBs. In 16th Conference of the Industrial Electronics Society (IECON),
volume 1, pages 576–580, 1990.

[108] A. Tomaszewska and R. Mantiuk. Image registration for multi-exposure high dynamic
range image acquisition. In Proc. of the WSCG, pages 978–80, 2007.

[109] A. Troccoli, S.B. Kang, and S. Seitz. Multi-view multi-exposure stereo. In 3rd Int.
Symposium on 3D Data Processing, Visualization, and Transmission, pages 861–868,
2006.

[110] Y. Tsin, V. Ramesh, and T. Kanade. Statistical calibration of the CCD imaging process.
In Proc. of the ICCV, pages 480–487, 2001.

[111] J. Tumblin and H. Rushmeier. Tone reproduction for realistic images. Computer Graphics
and Applications, 13(6):42–48, 1993.

[112] J. Unger, S. Gustavson, M. Ollila, and M. Johannesson. A real time light probe. In
Proceedings of the 25th Eurographics Annual Conference, pages 17–21, 2004.

[113] M. Uyttendaele, A. Eden, and R. Skeliski. Eliminating ghosting and exposure artifacts
in image mosaics. In Proc. of the Computer Vision and Pattern Recognition (CVPR),
volume 2, 2001.

[114] L. Van Gool, T. Moons, and D. Ungureanu. Affine/photometric invariants for planar
intensity patterns. Computer Vision ECCV’96, pages 642–651, 1996.

[115] H. Wang, R. Raskar, and N. Ahuja. High dynamic range video using split aperture cam-
era. In Proc. of the IEEE 6th Workshop on Omnidirectional Vision, Camera Networks
and Non-classical Cameras, 2005.

References 149

[116] T.H. Wang, W.S. Wong, F.C. Chen, and C.T. Chiu. Design and implementation of a
real-time global tone mapping processor for high dynamic range video. In Proc. of the
IEEE International Conference on Image Processing (ICIP), pages 209–212, 2007.

[117] G. Ward. A contrast-based scalefactor for luminance display. Graphics Gems IV, pages
415–421, 1994.

[118] G. Ward. The RADIANCE lighting simulation and rendering system. In Proc. of the
21st Conference on Computer Graphics and Interactive Techniques, pages 459–472, 1994.

[119] G. Ward. A wide field, high dynamic range, stereographic viewer. Journal of Vision,
2:2, 2002.

[120] G. Ward. Fast, robust image registration for compositing high dynamic range pho-
tographs from hand-held exposures. Journal of Graphics Tools: JGT, 8(2):17–30, 2003.

[121] G. Ward, H. Rushmeier, and C. Piatko. A visibility matching tone reproduction opera-
tor for high dynamic range scenes. IEEE Transactions on Visualization and Computer
Graphics, 3(4), 1997.

[122] G. Ward and R. Shakespeare. Rendering with radiance: The art and science of lighting
simulation. Morgan Kaufman, 1998.

[123] A.M. Waxman and K. Wohn. Contour evolution, neighborhood deformation, and global
image flow: Planar surfaces in motion. The International Journal of Robotics Research,
4(3):95, 1985.

[124] M. Wichtlhuber. Real-Time Generation of HDR Videos Using GPUs. Master’s thesis,
Praktische Informatik IV, Prof. Dr. W. Effelsberg, University of Mannheim, Germany,
2010.

[125] B. Wilburn, N. Joshi, V. Vaish, E.V. Talvala, E. Antunez, A. Barth, A. Adams,
M. Horowitz, and M. Levoy. High performance imaging using large camera arrays. ACM
Trans. on Graphics, 24(3):765–776, 2005.

[126] O. Yadid-Pecht and E.R. Fossum. Wide intrascene dynamic range CMOS APS using
dual sampling. IEEE Trans. on Electron Devices, 44(10):1721–1723, 1997.

[127] S.H. Yang and K.R. Cho. High dynamic range CMOS image sensor with conditional
reset. In Proc. of the IEEE Custom Integrated Circuits Conference, pages 265–268, 2002.

[128] A. Yoshida, V. Blanz, K. Myszkowski, and H.P. Seidel. Perceptual evaluation of tone
mapping operators with real-world scenes. In Human Vision and Electronic Imaging
X, IS&T/SPIE’s 17th Annual Symposium on Electronic Imaging, volume 5666, pages
192–203, 2005.

