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Non-technical summary

In a linear regression model, specifying the conditional mean of a variable (outcome y) as a linear
function of a set of explanatory variables (regressors x), E(y|z) = 6, absence of correlation between
the regressors is typically a necessary and sufficient condition for point identification of the vector
of parameters 6, for a wide range of conditional distributions of y given z. This means that with
sufficiently many observations at hand, a researcher will be able to pinpoint the true value of the

parameters.

However, if y or z is imperfectly measured, for instance if, for some variable, only interval
measurement is available (which is often the case for variables such as age, income, or schooling),
then typically point identification will be lost: whatever the number of observations available, there
will be a set of values of the parameters that are compatible with the observations. This set is the
identified set, and the parameter (and also the model) is said to be partially identified. The task of

the researcher is then to learn from a set of observations what the identified set may be.

The literature on partially identified models has developed considerably over the last ten years
and it has many applications in labor economics and more recently in the empirical analysis of
game situations in industrial economics. Most of it is extremely technical, and the details needed
to apply the estimation methods in practice are often missing. Indeed, this paper originated in an
attempt to replicate the illustrative simulation results of the seminal contribution of Manski and
Tamer (2002) who study identification regions for parameters in regressions with interval data on

a regressor or the outcome.

While their focus was on illustrating the general approach, we concentrate instead on the deri-
vation of exact results for their two Monte Carlo simulation designs. For one of these, the identified
set is a simple three-dimensional polyhedron with six vertices and eight faces which is characterized
by eight inequalities involving exact expectations. Estimation proceeds by replacing these expec-
tations with sample means. We document significant gains in estimation speed and convergence to
the true set, compared with the algorithm used in Manski and Tamer (2002). For the other design,
the identified set is more complex, but we show that it can be closely approximated by a simple

polyhedron.



Das Wichtigste in Kiirze

In einem linearen Regressionsmodel, in dem der bedingte Erwartungswert einer zu erkldrenden
Variablen y als lineare Funktion eines Vektors von erkldrenden Variablen x spezifiert wird, also
E(ylz) = 0, ist die Unkorreliertheit der Regressoren in der Regel, fiir eine Reihe von bedingte
Verteilungen von y gegeben x, eine notwendige und hinreichende Bedingung fiir eine Punktiden-
tifikation des Parametervektors #. Somit konnen die wahren Parameter anhand einer ausreichend

groflen Anzahl an Beobachtungen bestimmt werden.

Sind y oder x jedoch nicht genau gemessen, sondern, zum Beispiel, nur in Intervallen (héufig
sind dies Variablen wie Alter, Einkommen, oder Schulbildung), dann ist eine Punktidentifikation
in der Regel nicht mehr moglich: Unabhéngig von der Anzahl verfiigbarer Beobachtungen existiert
eine Parametermenge, die die Beobachtungen erkldren kann. Diese Menge ist die identifizierte
Menge, und ein Parametervektor (genau wie das Modell) wird als partiell identifiziert bezeichnet.
Die Problemstellung des Forschenden ist damit die Schatzung der identifizierten Menge anhand

von Daten.

Die Literatur zu partiell identifizierten Modellen ist in den letzten zehn Jahren stark fortgeschrit-
ten und hat insbesondere in der Industriedkonomik viele Anwendungen zur empirischen Analyse
spieltheoretischer Modelle gefunden. Ein grosser Teil der Literatur ist &dusserst technisch und die
Details zur praktischen Anwendung der Schéitzmethoden sind héufig nicht dokumentiert. So hat
diese Arbeit ihren Ursprung im Versuch die illustrativen Ergebnisse des grundlegenden Beitrags
von Manski und Tamer (2002), die die Identifikationsregionen fiir Parameter in Regressionen mit

Intervaldaten iiber y oder z untersuchen, nachzubilden.

Wihrend der Fokus in Manski und Tamer (2002) auf der Illustration des allgemeinen Ansatzes
liegt, konzentrieren wir uns auf die Herleitung exakter Ergebnisse aus ihren zwei Monte Carlo De-
signs. In einem der beiden ist die identifizierte Menge ein einfaches dreidimensionales Polyeder mit
sechs Eckpunkten und acht Flidchen, das durch acht Ungleichungen, die Erwartungswerte beinhal-
ten, charakterisiert ist. Die Menge kann geschétzt werden, indem wir diese Erwartungswerte durch
Stichprobendurchschnitte ersetzen. Wir dokumentieren signifikante Geschwindigkeitsgewinne und
eine schnellere Konvergenz hin zur wahren identifizierten Menge im Vergleich zum Algorithmus,
den Manski und Tamer (2002) vorschlagen. Fiir das zweite Monte Carlo Design ist die identifizierte

Menge komplexer, aber wir zeigen daf ein simples Polyeder eine sehr gute Annéherung ergibt.
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1 Introduction

Weak assumptions or data limitations often lead to incomplete models in econometrics and, as a
consequence, the failure of point identification. Manski (2003, 2007) provides a general background
on partial identification and Tamer (2010) a recent survey. In their seminal contribution, Manski
and Tamer (2002), henceforth MT, study identification regions for parameters in linear regressions

with interval data on a regressor or the outcome.

MT consider two estimation methods, one termed modified minimum distance method (MMD)
for estimating the true identified set, and one termed modified method of moments (MMM) for
estimating a superset, which will be defined in Section 2. This superset depends on the choice of a
sequence of moments. The focus of MT is on illustrating the general approach and therefore they do
not dwell on special aspects of their examples. Here we do the opposite and take advantage of the
full knowledge we have of the joint distribution of the regressors to derive exact results. Our first
contribution is to characterize the true identified set and the superset. Second, we complete and
extend the Monte Carlo study of MT. We present benchmark results using the exact functional form
for the expectation of the dependent variable conditional on observables to compare with results
using its nonparametric estimates. In contrast with MT, we also provide illustrations concerning
MMM to give helpful insights to applied researchers using data warranting such an approach. A
striking feature of the bulk of the literature on partial identification is that the practical details
concerning estimation of the identified set are mostly omitted. MT only state (p. 533) “The MMD
estimates are obtained using the method of simulated annealing.” Bontemps et al. (2011) show how
to obtain a point of the boundary of the identified set in any one direction, but do not discuss how
to obtain the complete set. The practical examples they present only consider one direction. Here

we emphasize obtaining the entire set. For MMD, we propose a simple shortcut for estimation.!

More specifically, we consider the partial identification of the regression model in MT,
Y =710+ 727+ 73 + € E(e|z,v) =0,

where only the integer interval [vg, v1] to which v belongs is observed, and focus on the special case
with v1 = vg + 1, which corresponds to their Monte Carlo study. Without loss of generality, we
also assume 71 > 0. For further reference, we need to define functions 7 (x,vg,v1) = E[y|z, vo, v1]

and f (z,v,7) = E[y|z,v]. The data generating processes (DGP) MT consider have v = (1, —1,1).

Our first focus is on obtaining the true identified set, C*, for each of the two DGPs MT
consider in their MC study, that is « and v are independent and both either uniformly or normally
distributed. As we shall see in Section 2, C* is a polyhedron defined by an infinite number of
inequalities

c1vg + cox + c3 < 1 (x,v0,v1) < 11 + cox + c3,
expressed at all possible arguments of 7, where (¢, c2, ¢3) is observationally equivalent to the true ~.

In the uniform case, we show that the four pairs of inequalities expressed at the four combinations

of the bounds for z and vy suffice to characterize C*. The solution is found by obtaining the

'R code for all computations discussed in the paper is available from the authors on request.



intersections of all triples of planes in R? defined by these eight inequalities, and taking the convex
hull of the intersections which satisfy all inequalities.? In the normal case, we show that the model
is mathematically point identified at infinity. Yet, using the bisection method with the MMD
criterion to obtain C*, while confirming identification of the coefficient of z, leads to an interval for
the coefficient of v that is similar to the one MT report for N = 20,000 in their MC study. It also
leads to an interval for the intercept that has almost width 1, as in the uniform case, whereas MT
report a much smaller interval. This discrepancy between mathematical identification and what is
feasible on a computer is driven by the fact that, while vy is potentially unbounded, large absolute
values occur with tiny probabilities, so that when computing the minimand of the MMD procedure,
only fairly small values of |vg| can be used. We also document that a good approximation to this
computed solution can be obtained in the same way as for the uniform case, by using sufficiently
large values of z and vg (in absolute value) as bounds at which the inequalities are computed. In

the sequel, we refer to this as the “polyhedral approximation.”

Although we have only discussed intervals above, we do document the importance of considering
the polyhedron rather than the rectangular parallelepiped corresponding to the Cartesian product

of the intervals for each coefficient.

Our second focus is on approximating the limit of a sequence of supersets, C;*, where the list
of “instruments,” w, includes a complete set of indicators for the values of vy (all possible values
in the uniform case, the restricted set mentioned above in the normal case) and powers of a scaled
version of z. The solution is found again by obtaining the intersections of all triples of planes in R?
defined by the resulting set of moment inequalities, and taking the convex hull of the intersections
which satisfy all inequalities. We report sets for 500 powers for the uniform case and, for numerical
reasons, only 200 powers for the normal case. We were surprised to find that such a large number
of moments proved informative, but Menzel (2011) documents an important difference between
moment equalities and moment inequalities: if an infinity of moment inequalities apply, no finite
subset of these inequalities will define the true identified set. For the uniform case, and comparing
Crr with C*, we find the same bounds on the coefficient of v, slightly larger bounds on the coeflicient
of x, and much larger bounds on the intercept, with a width about 3 instead of 1. The volume of
Cy is also more than three times the volume of C*. For the normal case, we find that C},* is very
close to our numerically computed C*. This is remarkable, because obtaining C* numerically does

not require any shrinking of the support of vy, contrary to obtaining C* numerically.

The third focus of the paper is on estimation of C* and C*. In both cases we use the same
geometrical approach as for computing the true C* and C;*, replacing expectations with sample
means and bounds with min and max over the sample. In the Monte Carlo study, we obtain
several main findings. For MMD, using the exact functional form for n(x, vy, v1) = E[y|x, v, v1] as
a benchmark illustrates the gain of having this information over having to resort to nonparametric
estimation. The latter still yields very good results, which is important as the functional form of the
exact n is in general unknown. In the uniform case, some characteristics of C* are estimated very

fast. This is the case for the number of vertices and the slopes of the sides, that is, the shapes of

2There exist more refined algorithms for vertex enumeration for a polyhedron, but Fukuda et al. (1997) show that
the problem of vertex enumeration of a polyhedron is NP-complete.



the projected sets. The polyhedral approximation performs well in the normal case. In most cases,
the geometrical approach outperforms MT in estimating the bounds. Finally, we find that in many
cases a sample size of 20,000 is not sufficient to approximate the true set. We also produce results
for the binary response model (BRM) based on the latent linear model. In discussing the results, we
share the apparent presumption of MT that the exact identified set for the BRM model coincides
with its pendant for the linear model. This seems plausible, as apart from the non-identification of
the scale of the latent variable, if v were observed, v would be point identified in both models (with
the variance of € set to 1). This is at odds with the results found in Magnac and Maurin (2008),
who find exact identification if and only if the distribution of v given z, vg, and vy is uniform.
However, their identification results hinge on an assumption of “complete variation” (Assumption
NP.2, p. 838), which is not satisfied in the DGPs used here.

For MMM with alternative values of the powers of scaled x, we find that the convergence of the
estimated bounds to the true bounds is improved as the sample size increases but, as in the MMD
case, we find that a large sample size of N = 20,000 is not always enough to achieve convergence
to the true bounds. These results are more clear in the uniform case. Finally, we find that MMD

outperforms MMM, even considering the cost of estimating n nonparametrically.

We summarize the identification results in MT in Section 2. Section 3 discusses the character-

ization of the true identified sets and Section 4 presents the Monte Carlo evidence.

2 Definition of the sharp identified sets in MT

We begin with a quick exposition of our interpretation of the MMD and MMM approaches in MT.
In their Proposition 4, calling C' the set of possible parameter constellations, MT show that under
conditions that are satisfied here, the set C* of parameter values observationally equivalent to the

true parameter v is (in a slightly altered form):?

C*={ceC:P[V ()] =1}, (1)
with
V(C) - {(.’L’,Uo,vl) : f(.%',Uo,C) < n(xvvovvl) < f(x,vl,c)} : (2)
Here we have
f(z,v,¢) = c1v + cox + 3. (3)

A simplified presentation of the MMD approach is based on their Lemma 2:

C* = argmin Q (c,n),
ceC

with
Q (C, 77) = (C’ 77) + Qo (Cﬂ?) )

3These conditions (MT, p. 520) are P (vo <v <w1) =1, E (y|z,v) exists, is weakly increasing in v, and coincides
with F (y|z,v,vo,v1). The set V (c) is the complement of the set defined in their equation (16).




Ql (Ca 77) = E{w (f (mavlvc) 777(5571)071)1)) 1 [f (33,1)1,0) < 77(:1:71}07”1)]}7
QO (C’ 77) = E{’UJ (f (3377)076) 777(‘T’U0’U1)) 1 [f (xvvﬂvc) > 77(1‘,1}0,1}1)]},

where the function w : R? — R has properties w(s, s) = 0 and w(s,t) > 0if ¢t # s. The simplification
adopted here consists in specifying w such that w(s,t) =1 for all (s,¢). This does not satisfy the

first property but is innocuous for exact identification because for all ¢
P[f(z,v1,¢) =n(z,v,v1)] = P[f (x,v0,¢) = n(x,v0,v1)] = 0.

Clearly, P [V (c)] = 1 amounts to Q1 (¢,n) = Qo (¢,n) = 0, and thus

C* ={ceC:[Qien) = 0] A [Qo () = 0} (4)

The analogy principle then suggests estimating C* by the set

Cn ={ceC:[Qin (¢,9n) = 0] A [Qon (c,7n) = 0]}

where 7y denotes a consistent estimator of 1, and

QlN (C7 ﬁN) = EN]- [f (.T,'Ul,C) < ﬁN (:1:7110)1}1)]7

with Qon (¢, 7n) defined accordingly, and Ex the sample mean. Since the sample mean of the

indicators will only be 0 if each one is, this is equivalent to
Cn = {C eC: f(xnqu’rL?C) <N (xn7U0navln) < f(xnavlnvc)v n=1,... ,N}

A weakened version which is needed to avoid empty solutions is, given a sequence of positive

numbers ey = o (N),

¢ €Ct f (Tn,v0n: €) < AN (Tn, Voms V1n) + €N, } )

Cn=1% _
NN (wny'UOnvvln)_eN Sf(xnvvlfruC); n=1,...,N
The other approach, MMM, is based on the fact that the inequality

f (ZE,UO,C) S 77(1’71)07111) - E[y|xaUO,U1]
is equivalent with
E[y - f ($7UOaC) |"E7U0,U1] > 07

which in turns implies that for any vector of H positive functions w (z,vg, v1) (the arguments of w

are omitted in the sequel)
Elw{y — f (z,v0,¢)}] = 0.

Every point in C* thus satisfies both this inequality and E[w {y — f (x,v1,¢)}] < 0, and by choosing



a specific function w, MT define a set C}* which contains C*:
Cy ={ceC:Ewi{y— f(z,v1,0)}] <0< E[w{y - f(z,v0,c)}]}.

With f (z,v,¢) = civ+ cox + c3, C.F is thus defined by a system of 2H linear inequalities involving

moments

E[wy]

y [wor] + 2B [wz] + 3 E [w], (6)
Ewy]

<cFElw
> 1 E [wvg] + coFE [wx] + csE [w].

Each additional moment gives two more inequalities, which leads to a reduction of the set. In this
way one can construct a decreasing sequence of sets Ci*, all admitting C* as a subset. Again, the

analogy principle leads to characterizing C,, as the set of points ¢ satisfying

Enwy] — eny < c1En [wvui] + c2En [wx] + csEn [w],

En [wy] 4+ en > c1 En [wvg] + c2En [wx] + csEn [w],

given a sequence of positive numbers ey = o (N). An advantage of MMM over MMD is that it
does not require estimating 7. The obvious drawback is that the set it estimates is larger than C*

and that its definition depends on the choice of w.*

MT show that if function f has the monotone-index property, which is the case in all instances
we consider here, C* will be convex (corollary to Proposition 4), and this property extends to C;'*,

as a polyhedron defined by linear inequalities.

3 Characterizing the true identified sets

We proceed with a series of remarks that lead to the characterization of C* in the special cases MT
consider in their MC study. Remark 1 explains why the true parameter ~ lies in the identified set
C*, Remarks 2 and 3 why the coefficients of = and v are point identified if the support of (x,v) is
unbounded. Remark 4 concerns identification of the constant. Remark 5 lays out preliminaries for
the characterization of C*. Remark 6 gives that characterization for the uniform case and Remark

7 justifies the polyhedral approximation for the normal case.

For the moment we do not assume independence between z and v, and thus
n(z,vo,v1) =11 E (v[v € [vo,v0 + 1], @) + 722 4+ 73 = MV (v0, T) + 722 + 73, (7)

where © (vg, x) denotes E (v|v € [vg, vo + 1], 2). The inequalities which characterize V (c) can thus
be written

c1v9 + cox + ¢35 < 710 (vo, ) + Y2x + v3 < c1vp + cax + 3 + ¢,

4An interesting open question is then whether and under which conditions there exists an increasing sequence
of functions w such that the limit of C; coincides with C* (a place to start would be the case where v is point
identified, that is C* = {v}).



for all values (vg,x) in the support of the joint distribution of these variables. Equivalently, by

subtracting y1vg + Y2 + 3 everywhere and denoting d; = ¢; — y;

d1vo + dax + d3 < 1 [0 (vo) — vo] < dyvo + dox +d3 + 1. (8)

Remark 1. The true parameter lies in the identified set. The term v (vg,z) — vg lies in
[0,1], and thus the middle term lies in [0,+;]. Thus, the parameter v corresponding to the DGP

lies in C* since for ¢ = v the inequalities reduce to
0 < [v(vo, ) — vo] <1,
which is satisfied with probability 1.
Remark 2. Point identification of the coefficient of x. Whatever the values of vy, ¢; and
cs are, if the support of x is R and if do # 0, there will be a set of values of z large enough in

absolute value to violate one of the inequalities and this set will have positive probability. Thus if

x has unbounded support, s is point identified.

Remark 3. Point identification of the coefficient of v. Still assuming that the support of
x is R, assume that the support of v is also R. Then as vg is the largest element of Z below v,
the support of vg is Z and by the same argument as in Remark 2, ~; is identified. Note that this
extends also to the case where f has the single index property of Proposition 4 of MT (p. 544): in

point (b) of their proof of the corollary to Proposition 4, we have, with our notation:
PV (c)] > P[—dox < d3+ divg — 1],
or, since do = 0 if ¢ is in C*,
PV ()] 2 P[=divg < d3 — ],

and this probability is strictly positive if d; # 0.

Remark 4. Point identification of the coefficient of the constant. In the case where both

x and v are unbounded, and thus v; and 9 are point identified, the inequalities become
d3 <1 [V (vo, z) — vo] < d3 + 1,

or equivalently

Y1 [0 (vo, ) —vo — 1] < d3 < 1 [0 (vo, ) — vo] . (9)

Assuming independence between z and v implies that E (v|v € [vg, vg + 1], z) does not depend on



z, and so we denote it v (vg) . Since inequality (9) holds for all values of vy, it implies

~1 sup [0 (vg) —vg — 1] < dg <1 inf [0 (vy) — vo].
UOGZ ’UOGZ

Restricting attention to unimodal distributions symmetric around 0, Figure 3 plots the Cauchy,

normal, and logistic conditional densities of v given v in [vg,vg + 1]. It shows that, while in the

Cauchy case the density becomes flat as vy goes to —oo, in the normal case the distribution places

more and more weight on values near vy + 1 for vg < 0 and by symmetry near vy for vg > 0, so that

sup [0 (vg) —vp — 1] = inf [ (vg) — vo] = 0. (10)
VoEZL VoEZL

The logistic case lies inbetween. In the normal case (and for any other distribution satisfying (10)),

ds = 0, so that ~ is point identified, even though v is interval-measured.

10
1

-12 -10 -8 -6 -4 -2 0

v

Figure 1: Standard normal, scaled logistic and Cauchy conditional densities on intervals of length
1

Remark 5. Preliminaries for the characterization of the identified set. Assume now that
v has bounded support [v;, vy], and consider the case where z has unbounded support, so that 7,

is identified. The inequalities in (8) can be rewritten in the more convenient form

d1vo + d3 < 1 [0 (vo) — vo]
%1 [’l_) ('Uo) — V9 — 1] <d; (?}0 + 1) + ds.

Assume for simplicity that v (vg) — vg = 1/2 for all values of vy, so that now

divg + d3 < 7 /2,
di(vo+1) +dz > —71/2.



For a given triple (¢1,72,c3) in C*, bounds of the first terms in these inequalities are found for vy
equal to its minimum or to its maximum, depending on the sign of dy. Thus the vertices of the
polygon which is the projection of C* on the (c1, ¢3) plane are found as those intersections of pairs

of the four lines

divy +d3 = m/2
d1vy + d3 = m/2
di(vi+1)+d3 = —y1/2
dy (v +1)+ds = —v1/2

that satisfy the inequalities. For the pair (—12,11) of extreme values for vy (there is virtually no
probability mass outside that interval if v ~ N (0,2), the situation considered by MT), this yields
the following vertices, given first for any ~, then for v = (1,—1,1):

di/mi d3/m c1 3

0.000 0.500 1.000 1.500
0.000 —0.500 1.000 0.500
—0.043 —0.022 0.957 0.978
0.043 0.022 1.043 1.022

This illustrates how point identification of 7, is lost when we restrict attention to subset [v;, v, — 1]

when the true support of vy is Z, but we return to a more precise formulation in Remark 7.

Remark 6. Characterization of the identified set in the uniform case. Consider now the
case where z has also bounded support [z, z,], v is independent of z and uniform, so that the
middle term in (8) is y1/2. Then the vertices of the C* polyhedron are found as intersections of
three of the eight planes in R? corresponding to the two inequalities in (8) written for each of the
four pairs combining min and max of z and v. If y = (1,—1,1), v ~ U [-2, 3] and the distribution
of x has support [0,5] (even if it is not uniform, for instance it could have any other scaled Beta

distribution), the vertices of C* are

c1 &) c3

1.000 —1.000 0.500
1.000 —0.800 0.500
1.000 —1.000 1.500
1.000 —1.200 1.500
0.800 —1.000 1.100
1.333 —1.000 0.833

and this completely characterizes the set C* in the uniform case of MT. Figures 2 and 3 show the

true polyhedron for this case, and its projections.

Remark 7. Polyhedral approximation in the normal case. Here we introduce and justify the

polyhedral approximation we advocate in the normal case. Going back to the framework of Remark



Constant

Figure 2: Uniform case: True polyhedron

4, where both z and v have unbounded support, assume that, for numerical reasons, we restrict
attention to a subset [vj,v,] of the true support of vg, which is Z. Assume further independence
between z and v and that the distribution of v is normal with mean 0: then o (vg) — vg is a
decreasing function of vy (from 1, attained for —oo, to 0, attained for +o00). Given identification

of 72, the inequalities are as in Remark 5

d1vo + d3 < 1 [0 (vo) — vo]
%1 ['l_) (1}0) — U9 — 1] <d (Q}o + 1) + ds.

(11)

Since

2_}(Uu) — vy < 'U(,UO) —vp < Q_}(vl) — U
we can relax (resp. strengthen) the first inequality in (11) as
divg+ds <y [0(v) —vy]  (resp. 71 [0 (vy) — vu])-

Thus, still denoting C* the set defined by inequalities (11) over vy € [vy, v,], although it is strictly
larger than C*, we can define two sets C}" and Cj; such that C € C* C C;: C} is defined by the
inequalities

divo +d3 < [77 (Uu) - Uu]
04! [17(1}1) — U — 1] <d; (’U()-l-l) + d3
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Figure 3: Uniform case: Projections of the true polyhedron

and C}; by the inequalities

divo + d3 < 71 [V (v1) — vi]
Y1 [’L_) (’Uu) — Uy — 1] <d; (Uo + 1) + ds.

Both sets are polygons whose vertices can be obtained in the usual way by writing the inequalities
above for the pair of values (v;,v,) of vg. For v ~ N (0,2) and the pair (—12,11), this yields (as
in Remark 5, we could have expressed these for any DGP, but for short we give the results for
v=(1,-1,1))
Cr Cq oM
C1 c3 C1 c3 Cc1 c3
1.000 0.812 0.970 0.485 1.000 1.812
1.000 1.188 0.970 1.485 1.000 0.188
0.982 0.991 0.923 0.961 0.923 0.961
1.018 1.009 1.018 1.009 1.077 1.039

The columns in the middle correspond to the polyhedral approximation C; based on the inequalities
(11) evaluated at v; and v,. Note that the bounds for ¢; are [0.982,1.018] for C} and [0.923,1.077]
for C?, with the expected inclusion, and that the bounds for C, [0.923,1.018], lie in between. For
c3, the bounds are [0.812,1.188], [0.188,1.812] and [0.485,1.485], again with the expected inclu-

sions, although C} and (7, are much less informative as regards c3 as they are concerning c;.
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In the linear model it is feasible to compute the asymptotic MMD criterion, using analytical
expressions for expectations. Here we no longer assume it known in advance that o is identified.
We obtain the (numerically) identified set C* using a bisection method. The details are given in
Appendix A. Figure 4 shows projections of C* on the (c1, ¢3) plane for the range [—1.015, —0.985] of
values of ¢ (it proved numerically difficult to go beyond these values). Figure 5 shows projections
of the polyhedral approximation of Figure 4 based on evaluating the inequalities (8) at the four
combinations of the pairs of values (—12,11) for vg and +10° for z (we will still refer to it as C¥).5
Other choices that lead to approximations rather than true sets concern various tolerance levels.
See Appendix A for details. This said, the polyhedral approximation to the true set appears quite

satisfactory, as Figures 4 and 5 show.

1.4 1.447
|

1.2

c3
1.0

0.8
|

0.5600.6

T T T T T
0.932 0.94 0.96 0.98 1.00 1.016

cl
c2: solid in [-1.015,-1.001], dashed in [-.999, —-.985]

Figure 4: Normal case: Projections of the true set on (c1,c3), range [—1.015, —0.985] of values of
C2

Similarly, we can compute the exact inequalities corresponding to MMM for both the uniform
and the normal case, and the details are given in Appendix B. As already mentioned in the
introduction, we approximate the limit of a sequence of C}* sets, where the list of ”instruments”
w (z,vg,v1) contains a complete set of indicators for the values of vy (all possible values in the
uniform case, the restricted set mentioned above in the normal case) and powers of |z| for the
normal case and of z/F (x) for the uniform case. We report sets for 500 powers for the uniform

case and, for numerical reasons only 200 powers for the normal case, unusually large numbers of

5The discrepancies between the bounds on ¢; and ¢3 in Figure 5 and the values reported in Remark 7 come from
limitation imposed on z here.
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moments, but recall that this is not an estimation problem. Figures 6 and 7 show the results. For
the uniform case, there is a substantial improvement when moving from using two powers of z to
500, but comparing C;* with C* we obtain the same bounds on the coefficient of v, slightly larger
bounds on the coefficient of z, and much larger bounds on the intercept, with a width about 3
instead of 1. The volume of C}* (.0356) is also more than three times the volume of C* (.1119),
as reported in Tables C.1 and C.2 (in Appendix C). For the normal case we also find a large
improvement in moving from two to 200 powers of |z|, but more importantly, C* is now very
close to our numerically computed C*and to its polyhedral approximation C}, in particular if we
consider the projections on the plane (c1,c3), where C* has exactly the same curved shape as C*
for values of ¢y close to —1 (See Figure 4).5 This is remarkable, because obtaining C* numerically

does not require any approximation, contrary to obtaining C* numerically.

SNote that this is still a polyhedron, only with many vertices.
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4 Monte Carlo evidence

In this section, we replicate and extend the Monte Carlo design in MT with a twofold aim. First, we
complete the analysis by presenting a larger range of sample sizes. We also investigate the impact of
estimating 7(x, v, v1) nonparametrically, as proposed in MT, by comparing the respective results
to benchmark results using the exact functional form for n(z,vg,v1). For the rest of the paper,
we will somewhat loosely refer to the former as ‘nonparametric 1’ and to the latter as ‘exact n’.
Second, we compare the performances of MMD and MMM. The aim is to provide insights about
the efficiency loss of using MMM, weighted against the reliance on an estimate of 7 in MMD.

Recall the linear model (LM):
Y =0 +72T+ 3+ E(elz,v) =0, (12)

where y is a continuous outcome, v an interval-measured continuous variable, and x a continuous
regressor. We specify the parameter vector (y1,72,73) = (1,1, —1) and (v, z, €) to be stochastically

independent.

MT consider two cases. In the first, x and v are uniformly distributed. In the second, they
are normally distributed. In both cases, they let ¢ ~ N(0,1). In the uniform case, they set
v ~ U[-2,3] and x ~ U]0,5], and in the normal case, v ~ N(0,2) and  ~ N(1,4). MT round v
to obtain interval-measured vy and v; = vy + 1. We report results for samples of sizes N = 100,
N =200, N =800, and N = 20,000, as well as the true identified set. Recall that, in the normal
case, what we call the true set really is a polyhedral approximation, whereas it is the sharp true set
in the uniform case. In all cases, we employ 100 Monte Carlo replications. It would be desirable
to consider a larger number of replications. However, here we follow MT and find that our results

show sufficient stability to generate meaningful insights.

For MMD, we apply the simplified geometrical approach proposed in Section 3 to estimate the
identified set with simulated data using sample analogues. In a first step, we need to estimate 7
nonparametrically. We use product kernels involving a normal kernel for the continuous variables.
For practical reasons we treat vy as an ordered factor in the uniform case, using a Wang and Van
Ryzin kernel (see Hayfield and Racine, 2008), but as a continuous variable in the normal case.
In all cases we use least-squares cross validation (LSCV). In several experiments, computing the
bandwidth for every replication is too burdensome computationally. To reduce this burden, we
perform cross validation only for the first replication in a small sample design. For subsequent
replications in the same experiment, we adjust the bandwidths for the continuous variables (z
in all cases, vy in the normal case) by taking differences in the sample standard deviations into
account. In the uniform case, the bandwidth for vy found for the first replication is used without
adjustment for the other replications. In experiments with large N, we import the bandwidths from
experiments with smaller N and rescale them by (No/N)Y® for continuous variables and (Ny/N)*®
for vy treated as an ordered factor, where Ny is the small sample size used to compute the initial

bandwidth and N the large sample size.” The estimates with nonparametric 7 could be improved

"See Hayfield and Racine (2008) and the online documentation for the R function npregbw in the package np.
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by performing LSCV for each MC replication.

For MMM, we use the 2H inequalities from Equation (6) to estimate sequences of the sets C:*.
We replace the moments by their sample analogues and proceed by obtaining the intersections of
all triples of planes defined by the inequalities and taking the convex hull of the intersections which
satisfy all inequalities. In each sequence, we subsequently increase the powers of scaled |x|, denoted
by k in the function w. The powers we report are k = 2,5,20,30. We further include a set of
indicators for the values of vy. We construct indicators for all possible values of vy in the uniform
case. In the normal case, we restrict the set of indicators to accommodate very low numbers of

observations at the tails.

We then investigate the performance of MMM as compared to the MMD method. It is a
priori unclear which should perform better in small samples. MT note that we need to weigh the
advantage of MMM over MMD, where MMM relies only on a ‘continuous function of unconditional
sample moments’ but does not use ‘the full identification power of [MT’s|] Proposition 4.” The latter

always results in the true C* being a subset of any C};".

We construct ‘confidence intervals’ around the means of the estimated bounds such that they
include the estimated bounds of 90% of the MC replications.® Figures 8 to 13 show selected
projections of the true polyhedral set, the overall Minkowski averages, and the Minkowski averages
of quantiles based on Hausdorff distances from the true polyhedral set.” The green set is the true
set, the rose sets are the estimates, and the solid black set the Minkowski average of all estimated
sets. The dotted set is the Minkowski average of estimated sets with the 25% smallest Hausdorff
distances to the true set. The dashed and dotted set is the Minkowski average of estimated sets
with the 25% largest Hausdorff distances to the true set.

4.1 Findings: Modified Minimum Distance

Tables 1 and 2 report MT’s MMD results including their confidence regions,!® and our MMD
results for both exact and nonparametric . We obtain several main findings. Using the exact n as
a benchmark illustrates the gain of having this information over having to use its nonparametric
estimate. The latter still yields very good results, which is important as the functional form of the
exact 7 is in general unknown. In the uniform case, some characteristics of C* are estimated very
fast. This is the case for the number of vertices and the slopes of the sides, that is, the shapes of
the projected sets. The polyhedral approximation performs well in the normal case. In most cases,
the geometrical approach outperforms MT in estimating the bounds. Finally, we find that in many
cases a sample size of 20,000 is not sufficient to approximate the true set. We also produce results

for the binary response model based on the latent linear model.

Let us consider these results in more detail. First, the results confirm the expected gain in

8The quotation marks emphasize the fact that we merely summarize our results of the Monte Carlo studies. We
leave the issue of inference aside in this paper.

9We adapt Matlab code in Beresteanu and Molinari (2008) to R to compute Hausdorff distances and Minkowski
averages. For reasons of presentation we have delegated the full set of Figures to an Online Appendix available at
http://www.business.uzh.ch/professorships/entrepreneurship /team/ullrich/mcappendix.pdf

'OMT define as confidence region the shortest interval covering 95% of the estimated intervals. Note that this is
consistent with our choice of 90% because we interpret their intervals as one-sided.
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precision using exact 7 over its nonparametric estimate for sample sizes of N = 20,000 and for
almost all sample sizes in the uniform case. In the uniform case, even with the smallest sample,
N = 100, the mean estimated bounds using exact n are very close to the true bounds. The main
benefit from increased sample sizes are tighter confidence intervals over the estimated bounds due
to lower sampling imprecision. With nonparametric n, sample sizes of 800 or even 20,000 are needed
to approach the true bounds comparatively closely. Table C.1 in Appendix C shows that, in the
uniform case, the volume of the estimated polyhedron approaches the true value of .0356 very fast
for exact n. With N = 100, the average estimated volume is .0362. For nonparametric 7, it comes

comparatively close with a volume of .0334, using N = 20, 000.

Second, in the uniform case, column 2 in Table 1 shows fast convergence of the MMD estimate
to the bounds of the true set. The only instance in which a confidence interval fails to cover
the true bound is with a sample size of 100 and nonparametric 7, for the upper bound of the v
coefficient. In comparison with the criterion function approach in MT, where the latter requires
20,000 observations for several estimated bounds to approach the true bounds, our estimates mostly
achieve this with 800 observations. The lower bound of the coefficient of v and the bounds of the
intercept even do with as few as 100 observations. Figure 8, and to a lesser extent Figure 10 with
nonparametric 7, demonstrates how well the MMD estimate picks up the shape of the true set
even with very small sample sizes. In the normal case, this is true only for the projections on

the v coefficient and the intercept.!!

MT does better in estimating the coefficient of x which is
point-identified, whereas our estimates do not converge as closely to its true value even with the

largest sample sizes.

Third, compared to MT, the geometrical approach is more successful in recovering the bounds
of the true set in most cases. This is to some extent expected because we explicitly obtain the
vertices of the polyhedron and thus directly find the extreme points of the identified set. In the
uniform case, the bounds reported by MT are too narrow and even their confidence intervals fail
to cover the true bounds. The results are less clear cut in the normal case. We observe the largest
differences between MT and the geometrical approach in the estimates for the intercept, in both
the uniform and the normal cases, where M'T’s mean estimates and confidence intervals fail to cover

the true bounds. Hence, MT is successful in finding interior points of C* but not its boundary.

We further make the observation that reporting one-dimensional intervals may omit important
information. This is increasingly the case with higher dimensions of partially identified parameters.
For the uniform case, Table C.1 shows that the estimated and true polyhedra cover only about 17%
of the volume of the Cartesian product of the corresponding intervals. Considering the true shape
of the identified set instead of the intervals hence significantly reduces the set of relevant parameter

constellations.

In the last group of columns of Table 1, we present preliminary results for the binary response
model (BRM)
y=1[mv+z+7y3+e>0],

based on the linear latent model studied previously, with the same stochastic assumptions. We

1See the Online Appendix for the corresponding figures.
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now have

E (y|lz,v) = ® (710 + 722 +73),

where ® denotes the cdf of the standard normal distribution. Since @ is strictly increasing, MT

note that the inequalities

D (z,v0,¢) < n(x,v0,v1) = Ely|x, v, v1] < @ (2,01, ¢)
are equivalent with the (linear in c) inequalities

c1v0 + Cor 4¢3 < ®7F [0 (x,v0,v1)] < c1vg + cax + c3.

We have not (yet) worked out the exact functional form of 7 (x, v, v1) for the BRM, and it might not
be worth the trouble, since we have already documented the difference between exact and np 7 in the
LM. In estimating n nonparametrically, we have experimented with simple nonparametric regression
(ignoring the dichotomous character of ), nonparametric conditional density estimation (R function
npedens in pakage np), and the Ichimura and Klein-Spady versions of the semiparametric index
model (R function npindex), using the same approach as for the LM as regards kernel and bandwidth
choices. However, we have only obtained plausible results with npreg in the uniform case. We intend

to experiment further, possibly using the local logit approach in Frélich (2006).

As do MT, overall we find wider confidence regions for the bounds in the BRM than in the
LM. We make this observation even though the confidence regions are defined differently, since
both our estimated bounds and the outer bounds of the respective confidence intervals are wider
in the former. As in the LM, several of MT’s estimated bounds and confidence intervals do not
include the true bounds. Our estimated intervals always include the true bounds, except for the
lower bound of the z coefficient with smaller sample sizes. While not as apparent as in the LM, our
results seem to converge faster to the true bounds in the BRM. Comparing the results for N = 800,
the mean estimated bounds for the v coefficient are much closer using the geometrical approach
than MT. The same comparisons for the x coefficient and the intercept yield ambiguous results.
Our estimates with N = 20,000 come close to the true bounds, including all of them except the
lower bound of the x coefficient. However, comparison with MT is difficult as they report only
one replication for that sample size. In discussing the results, we share the apparent presumption
of MT that the exact identified set for the BRM model coincides with its pendant for the LM.
This seems plausible, as apart from the non-identification of the scale of the latent variable, if v
were observed, v would be point identified in both models (recall the variance of € is 1). This is at
odds with the results in Magnac and Maurin (2008), who find exact identification if and only if the
distribution of v given x, vy, and vy is uniform. However, their identification results hinge on the
hypothesis of complete variation (Assumption NP.2, p. 838), which is not satisfied in the DGPs

used here.
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Table 2: Monte Carlo Analysis — MMD, Normal Case — One-dimensional Bounds

Coefficient Lower/Upper bound MT true n np n
True: .932, Approx.: .932
N =100 .848 [.747, .941] .856 [.749, .961]
N = 200 97  (.88) .855 [.780, .936] .868 [.789, .942]
N = 800 96 (.91) .867 [.831, .912] .880 [.837, .927]
v N = 20000 .93 .885 [.877, .895] .895 [.867, .926]
True: 1.016, Approx.: 1.016
N = 100 1126 [.983, 1.248] 1115 [.983, 1.253]
N =200 1.07  (1.19) 1.112  [1.019, 1.215] 1.093 [.994, 1.209]
N = 800 1.02  (1.09) 1.088  [1.048, 1.140] 1.068 [1.015, 1.119]
N = 20000 1.08 1.057  [1.043, 1.068] 1.039 [.990, 1.077]
True: -1.015, Approz.: -1
N =100 -1.092 [-1.175, -1.021] -1.087 [-1.174, -1.016]
N = 200 -1.03  (-1.09) -1.083 [-1.146, -1.017] -1.074 [-1.145, -1.010]
N = 800 -1.02 (-1.04) -1.078 [-1.111, -1.047] -1.068 [-1.099, -1.051]
. N = 20000 -1.00 -1.061 [-1.069, -1.053] -1.053 [-1.078, -1.029]
True: -.985, Approx.: -1
N =100 -.895 [-.977, -.819] -.901 [-.982, -.819]
N = 200 -95  (-.88) -.906 [-.967, -.843] -.916 [-.975, -.851]
N = 800 -.99  (-.94) -.924 [-.956, -.893] -.934 [-.968, -.904]
N = 20000 -.99 -.940 [-.948, -.933] -.951 [-.975, -.931]
True: .560, Approx.: .521
N =100 518 [.319, .696] .540 [.342, .750]
N = 200 90 (.73) 519 [.386, .665] 581 [.364, .756]
N = 800 91 (.80) 519 [.447, .585] 576 [.405, .749]
N = 20000 .93 519 [.508, .532] .583 [.368, .768]
Intercept
True: 1.447, Approx.: 1.493
N =100 1.485 [1.293, 1.688] 1.460 [1.217, 1.730]
N = 200 1.08 (1.25) 1.486 [1.367, 1.627] 1.455 [1.244, 1.671]
N = 800 1.03 (1.14) 1.484 [1.412, 1.549] 1.427 [1.268, 1.581]
N = 20000 1.04 1.483 [1.468, 1.498] 1.404 [1.192, 1.568]

Notes: The MT results show only one bound of the confidence regions because these are defined over the entire estimated interval.
We report two sets of ‘confidence intervals’, one for the lower bound and one for the upper bound of the estimated interval. In-
tervals in italic indicate the failure to cover the true value of the corresponding bound. We include both the numerically obtained
true set and the polyhedral approximation. The former is plotted in Figure 4. The MC study with the largest sample completed
within 72 seconds, using nonparametric 7 with bandwidth computed for only one replication for N = 200 and scaled down for
N =800 and N = 20, 000.

4.2 Findings: Modified Method of Moments

Tables 3 and 4 report our MMM results for alternative values of k, the highest powers of scaled z
used in w. We consider k = 2,5,20,30. In general, we find that the convergence of the estimated
bounds to the true bounds is improved as the sample size increases. As in the MMD case, we
find that a large sample size of N = 20,000 is not always enough to achieve convergence to the
true bounds. These results are more clear in the uniform case. Moreover, we also find that the
gains obtained from increasing k are limited. That is, there is a noticeable improvement in the

convergence to the true bounds (as N increases) from adjusting & from 2 to 20 but this improvement
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the cost of estimating n nonparametrically.

is more modest for k > 20. This is reassuring given the considerable computational costs attached

to the estimation with large k. Finally, we find that MMD outperforms MMM, even considering

More specifically, column 2 in Table 3 shows, for the uniform case, the estimation of the bounds

Table 3: Monte Carlo Analysis — MMM, Uniform Case — One-dimensional Bounds

setting k£ = 2. With N = 20,000, the estimated bounds are very close to their true values (i.e.
the first of the two true values reported) and very precisely estimated. Note that in general, for
smaller sample sizes, the estimated bounds do not include the true bounds, a phenomenon that
becomes clear as k increases. Only for the estimated bounds for the coefficient of v, a large sample
size guarantees the convergence to the true bounds. Moreover, as highlighted above, the results

tend to vary less as k is increased beyond 20. The results for the normal case are less clear cut.

Coefficient Lower/Upper bound k=2 k=5 k=20 k=30
True: .800, .800
N =100 .806 [.686, .910] 811 [.688, .910] .817 [.694, .911] .820 [.694, .912]
N = 200 .795 [.738, .868] .798 [.744, .870] .801 [.745, .870] .801 [.745, .870]
N = 800 .794 [.752, .831] 197 [.754, .835] .798 [.755, .836] .799 [.757, .836]
v N = 20000 798 [.791, .806] 799 [.792, .807] .799 [.792, .807] 799 [.792, .807]
True: 1.333, 1.333
N = 100 1.366  [1.149, 1.563] 1.351 [1.146, 1.552]  1.341 [1.146, 1.531]  1.338 [1.146, 1.531]
N = 200 1.359 [1.213, 1.492] 1.349 [1.208, 1.481] 1.344 [1.203, 1.473] 1.343 [1.202, 1.473]
N = 800 1.363 [1.300, 1.445]  1.355 [1.297, 1.424] 1.351 [1.296, 1.414] 1.351 [1.294, 1.414]
N = 20000 1.337  [1.324, 1.351] 1.336  [1.323, 1.350]  1.335 [1.323,1.349] 1.335 [1.323, 1.349]
True: -1.800, -1.402
N =100 -1.620 [-1.855, -1.409] -1.449 [-1.637,-1.287] -1.346 [-1.599, -1.087] -1.323 [-1.574, -1.008]
N = 200 -1.701 [-1.888,-1.531] -1.506 [-1.632,-1.375] -1.402 [-1.557,-1.219] -1.385 [-1.555, -1.190]
N = 800 -1.736 [-1.831, -1.633] -1.521 [-1.608, -1.439] -1.412 [-1.495,-1.319] -1.398 [-1.494, -1.292]
. N = 20000 -1.787 [-1.804, -1.767] -1.552 [-1.565, -1.536] -1.434 [-1.450, -1.419] -1.421 [-1.439, -1.402]
True: -.200, -.598
N = 100 -.335 [-.582, .009] -.518  [-.714, -.274] -.626  [-.864, -.337] -.647  [-.918, -.337]
N = 200 -.314  [-.440, -.130] -.513  [-.633, -.377] -.619  [-.796, -.462] -.635 [-.818, -.462]
N = 800 -.249  [-.335, -.160] -.468  [-.537, -.403] -.580  [-.664, -.491] -.594  [-.696, -.495]
N = 20000 -.213  [-.236, -.193] -.447  [-.466, -.432] -.566  [-.583, -.549] -.579  [-.600, -.561]
True: -1.500, -.504
N =100 -.963 [-2.110, -.124] -.522  [-1.476, .106] -.260  [-1.218, .455] -.208  [-1.210, .558]
N = 200 -1.074  [-1.634, -.574] -.589  [-.986, -.149] -.332 [-.820, .228] -.291 [-.807, -.299]
N = 800 -1.312 [-1.614, -1.035] =774 [-1.041, -.537] -497 2775, -.231] -.463  [-.765, -.202]
N = 20000 -1.450 [-1.516, -1.377] -.866  [-.923, -.807] -.572  [-.629, -.511] -.539  [-.597, -.472]
Intercept
True: 3.500, 2.504
N = 100 2.775 [2.147,3.438]  2.378 [1.791, 2.950]  2.131 [1.399, 2.802] 2.075 [1.291, 2.798]
N = 200 3.077 [2.534, 3.639] 2.604 [2.140, 3.012] 2.350 [1.871,2.832] 2.306 [1.836, 2.822]
N = 800 3.238 [2.913, 3.564] 2.714 [2.487,2.979] 2447 [2.175,2.712] 2.413 [2.137, 2.712]
N = 20000 3.449 [3.382,3.515] 2.864 [2.815,2.907] 2.570 [2.521, 2.624] 2.538 [2.487, 2.594]

Notes: We report two sets of ‘confidence intervals’, one for the lower bound and one for the upper bound of the estimated interval.
The first set of true bounds corresponds to the true set with £ = 2 and the second to k& = 500.
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Table 4: Monte Carlo Analysis — MMM, Normal Case — One-dimensional Bounds

Coefficient Lower/Upper bound k=2 k=5 k=20 k=30
True: .932, .932
N = 100 .830 [.704, .951] .841 [.724, .958] .847 [.724, .970] .850 [.724, .999]
N = 200 .814 [.747, .899] .820 [.752, .909] .830 [.759, .916] .828 [.735, .924]
N = 800 .807 [.770, .851] .812 [.774, .856] .820 [.779, .879] .827 [.779, .903]
v N = 20000 811 [.803, .820] .812 [.803, .821] .813 [.804, .823] .819 [.804, .863]
True: 1.016, 1.016
N = 100 1.197 [.959, 1.392] 1.179 [.980, 1.369]  1.165 [.967, 1.351] 1.160 [.966, 1.349]
N = 200 1.219 [1.095, 1.346]  1.202 [1.089, 1.325]  1.192 [1.079, 1.310]  1.185 [1.041, 1.340]
N = 800 1.204 [1.136,1.285] 1.192 [1.127,1.273] 1.188 [1.125,1.258]  1.187 [1.124, 1.255]
N = 20000 1.179 [1.163,1.196] 1.177 [1.162,1.193] 1.176 [1.161, 1.189] 1.175 [1.161, 1.189]
True: -1.371, -1.081
N = 100 -1.449 [-1.905, -1.146] -1.254 [-1.518,-.999] -1.149 [-1.397,-.891] -1.138 [-1.397, -.839]
N = 200 -1.492 [-1.753,-1.295] -1.268 [-1.473,-1.096] -1.159 [-1.417,-.920] -1.136 [-1.353, -.839]
N = 800 -1.539 [-1.663, -1.430] -1.272 [-1.393,-1.174] -1.147 [-1.343,-.928] -1.130 [-1.318, -.876]
. N = 20000 -1.586 [-1.613, -1.560] -1.280 [-1.301, -1.262] -1.128 [-1.212,-1.023] -1.114 [-1.210, -.982]
True: -.631, -.920
N = 100 -.580  [-.969, -.178] -747 0 [-.972, -.467] -.837 [-1.154, -.531] -.848 [-1.122, -.560]
N = 200 -.480  [-.660, -.308] -.720  [-.876, -.553] -.834 [-1.062, -.634] -.835 [-1.084, -.535]
N = 800 -461  [-.567, -.342] =729  [-.813, -.621] -.850 [-1.063, -.693] -.863 [-1.109, -.704]
N = 20000 -413  [-.441, -.386] =721 [-.742, -.697] -.874  [-.968, -.783] -.893 [-1.030, -.788]
True: .181, .470
N = 100 414 [-.080, 1.017] .538 [.214, .888] .619 [.256, 1.037] .633  [.274, 1.138]
N = 200 212 [-.126, .583] 410 [.120, .675] .533 [.251, .843] 521 [.222, .977]
N = 800 .096 [-.057, .263] .340 [.218, .455] .465 [.294, .751] .490 [.293, .817]
N = 20000 -.042 [-.075, .003] .260 [.227, .289] 414 [.312, .501] .446 [.321, .679]
Intercept
True: 1.824, 1.534
N = 100 1.655 [1.189,2.113] 1.504 [1.132,1.903] 1.404 [1.026, 1.767] 1.387 [.963, 1.766]
N = 200 1.757 [1.446, 2.108]  1.575 [1.285, 1.864]  1.460 [1.172, 1.711]  1.447 [1.043, 1.761]
N = 800 1.914 [1.748,2.064] 1.668 [1.531, 1.840] 1.534 [1.265, 1.750]  1.504 [1.015, 1.719]
N = 20000 2.041 [1.998, 2.080] 1.742 [1.712,1.772] 1.591 [1.481, 1.672] 1.566 [1.426, 1.670]

Notes: We report two sets of ‘confidence intervals’, one for the lower bound and one for the upper bound of the estimated in-
terval. Intervals in italic indicate the failure to cover the true value of the corresponding bound. The first set of true bounds
corresponds to the true set with kK = 2 and the second to k = 200.

21



-0.587

-0.787

c2

-1.192

-1.367

-0.729
-0.795

Y -1.0

-1.197
-1.262

N = 100 N = 200

surfaces 0.108 0.107 surfaces 0.107 0.107

Figure 8: MMD, uniform case — True n — Projections on v and z

22

-0.669 —
-0.807 —
N -1.0 T
-1.211 —
-1.340 —
T T T T 1 T T
(@] o) — e N AN O - Al M~
g R § B 8 R 3 &
o o - - o O ~— -—
ci ci
surfaces 0.108 0.107 surfaces 0.108 0.107
N = 800 N = 20000
=0.786 = §
\‘\
\\\\
N -1.0
X
~
=1:399 - \
T 1 T T T T T TT
- QO o [(e} «© © o o)
© O — 0 ap - oxf
N © “ 3 e ™
oo — ~— [<o>] ——
cl cl




—-0.786
-0.895

o -1.0
o

-1.092

-1.247

-0.870

-0.924

c2

-1.0

-1.078

-1.120

N =100

I
Q
—

| | | |
N~ [0 0] © (o))
o < o Q
™~ @© - ™
o (o] ~— —

ci

surfaces 0.030
N = 800

| | T | |
(] N~ o [+0] ©
< — © Te)
© @« Q -
(@] o ~— ~—

ci

surfaces 0.018 0

-0.813
—-0.906

o\,
© 1.0
-1.083

-1.167

-0.928
-0.940

-1.061
-1.073

N = 200

I
Q
—

T T T T
[s2] n (41} [aY}
AN N - (o]
~ © - N
(o) () - ~—

ci

surfaces 0.025 0

N = 20000
| T 1
o o N <
~ 00 = 0 ~
@ © Qo
eNe] -

ci
surfaces 0.0110

Figure 9: MMD, normal case — True n — Projections on v and =

23




-0.585

-0.865

-1.135

-1.400

-0.731

-0.831

A -1.0

-1.172

-1.296

N =100

| | | |
N~ I\ - o)) N~
<+ ol ™ ol
© @ - ~
o o — —
ci
surfaces 0.065 0.107
N = 800
| | T | |
o o o () ©
N ® Q| <
(e) (] ~— ~—
ci

surfaces 0.095 0.107

-0.579

-0.754
-0.813

-1.186
-1.242

N = 200

I
<
-~

T T T T
e < » [Te]
o o N~ RN
~ @© A ]
o o ~— ~—
ci
surfaces 0.074 0.107
N = 20000
| T T T
- ™M o [0} o
0 - o)) [0)}
N @ N @
o O ~— -

ci
surfaces 0.104 0.107

Figure 10: MMD, uniform case — Nonparametric 7 — Projections on v and x

24




-0.774

-0.901
o -1.0
(&)

-1.087

-1.251

-0.870

-0.934

c2

-1.0

-1.068

-1.111

N =100

I
Q
-

T T T T
N~ Yo} n o
N Yo} A QA
© @ - ]
o o ~— -

ci

surfaces 0.03 0
N = 800

T T T T T
(o] o o [o0] o
— @© - © e}
@ @© ] —
(=) (@] ~— ~—

ci

surfaces 0.017 0

-0.820

-0.915

c2

-1.0

-1.074

-1.154

-0.915

-0.951

N -1.0

-1.053

-1.088

N = 200

|
e
-

I I I I
N~ © [s2] [o)]
(4] [{e] )] o]
™~ @ Q N
o o - ~—

ci

surfaces 0.023 0

N = 20000
I I I I I
© [Te] o [o)] o
Ty} o] - 1] ®
® @ S S
o o — —

cl
surfaces 0.01 0

Figure 11: MMD, normal case — Nonparametric 7 — Projections on v and =

25




-0.206

-0.626

c2

-1.346

-1.659

-0.471
-0.580

c2
N

-1.412

-1.596

N = 100

N = 200

0.726 —

0.801 —

1.344 —
1.555 —

ci
surfaces 0.355 0.107

N = 20000

-0.365 —
e -0.619 —
¥ -1
-1.402 —
-1.636 —
| | | |
[o)] N~ ~— - (@]
Vel ~— < o
© o0} o ©
o S — ~
ci
surfaces 0.314 0.107
N = 800
=0.563
¥ -1
=1:434 5

0.738 —

0.798 —

I
Q
-

1.351
1.438 —

ci
surfaces 0.378 0.107

0.788

I
Q
-

1:333

ci
surfaces 0.37 0.107

Figure 12: MMM, uniform case — k = 20 — Projections on v and =

26




-0.184

-1.590

-0.615

-0.850

c2
L

-1.147

-1.386

N =100

T T T T
~— N~ - Yo =]
0 < © <
© @© - 0
(o) (e») *~— -

ci

surfaces 0.082 0
N = 800

T T T T T
a o o © 0
0 = ® o
N ® - ]
o o ~— ~—

ci

surfaces 0.089 0

-1.490

N = 200

0.713

I
Q
—

T T
o [aY}
o )]
[o0) ~—
o -
ci
surfaces 0.097 0
N = 20000

1.379

1.0

ci
surfaces 0.072 0

Figure 13: MMM, normal case — k = 20 — Projections on v and x

27




Appendix A Asymptotic MMD criterion for the normal case

We want to compute the function

Q (C, 77) = Q1 (C7 77) + Qo (Ca 77)
with
1 (0’77) = E{l [f (x7v17c) <n (l‘vvﬂvvl)]} =P [f (x7vl’c) <n (SU,’U(),’Ul)]
Qo (6777) = E{l [f (*7377-]070) > (:E,’U(],’Ul)]} =P [f (1‘,1}0,6) > (."L‘,U(),Ul)]

and

f(z,v,¢) =civ+cox +c3

x~N(1,4), v~ N(0,2)

(v0/V2) — d(v1/V?2)
(v1/V2) = ®(vo/V2)

and hence vy takes all positive and negative integer values with probabilities

n(x,vo,vl)zl—x—i—E(vvo):1—:5—|—170:1—x+\/§£

P[vozn]:P[v1:n+1]:P[n<v<n+1]:q>[(n+1)/\/§] —@[n/\/ﬂ

The first 12 values of Plvg = n| (for n =0,...,11) are:

0 1 2 3 4 5 6 7 8 9 10 11
260 .161 .0617 .0146 2.14e—3 1.92e—4 1.07e—5 3.64de—7 7.6le—9 9.75e—11 7.65e—13 3.66e— 15

Thus we will compute

12

Qi(e;n) = Y Plg=uv1—1E {1[f (z,01,¢) < n(2,v0,01)]}
v1=—11

11
Qolem) = Y Pl =uvo+1EAL[f (w,v0,¢) > 1 (x,v0,v1)]} -
vo=—12
Condition f (z,v1,¢) < n(x,vp,v1) is equivalent to

civ1+cr+ce3<1—ax+1iy

or, with a = ¢9 + 1,
axr < di (C, Ul) =141y —civ1 —c3. (13)
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Condition f (z,vg,c) > n(x,v,v1) is equivalent to
cqvgt+cxr+c3>1—x+iy

or

azx > dy (c,v9) =141y — c1vg — 3 (14)

1. Case a >0

Then, given v; and condition (13), x varies between —oo and §; := d; (¢, v1) . Thus,

v . 51—E($) . (51—1
Ql(c’“)_@< vw)‘q)( )

Given vy and condition (14), x varies between &y := do (¢, v9) /a and +oo. Thus,

e ]

2. Casea <0

Then, given v; and condition (13), x varies between §; := d; (¢, v1) /a and +o00, and

Qe =1-0 (251,

Given vy and condition (14), x varies between —oo and &y := dy (¢, vp) /a and,

Qg (c,v9) = P (502_ 1> )

3. Casea =0

Then condition (13) imposes no restriction on = and two subcases must be distinguished.

(a) di(c,v1) <0. Then @ (¢,v1) = 0.
(b) di (¢,v1) > 0. Then QY (c,v1) = 1.
Condition (14) imposes no restriction on x either and two subcases must be distinguished.
(c) do(c,v0) > 0. Then Qf (¢, v9) = 0.
(d) do(c,v0) < 0. Then Qf (¢, v9) = 1.

Computational details The bisection method used to produce Figure 4 can be described
as follows. Given a value of cg, we first generate a grid of (c1,c3) values, check which of the
resulting (cq, ¢, c3) belong to C*, that is, which satisfy @ (¢,n) = 0, and take the average of these
values as reference point. Then, for 800 angles from 0 to 2w we obtain the boundary point in the
corresponding direction starting from the reference point and a step length equal to its norm. We

use a minimum relative step size of 107 and a threshold value of 107!® for the function value.
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Of course, for estimation this method would be prohibitively time-consuming. The polyhedral
approximation uses a tolerance of 1.578 in deciding whether an inequality is satisfied or not (this
plays the role of ey in equation (5) and it is needed even to compute the true set, or better said, a
numerical approximation thereof). A further tolerance specification which is needed is the tolerance
for computing the rank of a matrix (R function rankMatrix) when looking for intersections of planes
in R3. This was set to 1076, All these choices were made by trial and error and it is difficult for us

to assess their impact on the results.

Appendix B True MMM inequalities

Appendix B.1 Uniform case
We want to compute the exact form of the following inequalities
A0 (C) = E{w ($3v07vl) [y - f (w,vo,c)]} >0

A1 (c) = E{w (x,v0,v1) [y — f (2,v1,¢)]} <0

where
f(z,v,¢) = c1v + cox + c3,
y=f(z,0,7) +¢
with 71 = —y2 = 73 = 1, and € independent of all other variables and with zero mean, so that its

distribution does not matter for the computation here.
z~U[0,5], v~U[-2,3].

Hence, vy takes the integer values {—2,—1,0, 1,2} with equal probabilities 1/5.

The ”instruments” w are defined as v’ = (w),, w),), with w, a complete set of indicators for the

values of vy, and w, a vector of the first K powers of z: w/, = (3:, 2, ... ,xK) 12

Dropping the arguments of w for simplicity, we can rewrite A; (¢),j = 0,1, as

Aj(c) = E{w[f (z,v,7) — f (2,5, )]}
=nE (wv) — a1 E (wv;) + (72 — ¢2) E (wz) + (73 — ¢3) E (w).

Note that, because z and v are independent, E (wyz) = E (w,) E (x), E (wyv) = E (w;) E (v) and
E (wyvj) = E (wg) E (v;). Thus all we need to complete our task are the eight quantities E (v),
E(x), E(vj), E(wy), E(wg), E(wyv), E(wyv;) and E (w,x) .

1. E(v)=5/2—-2=1/2.

12Normalizations can be useful to avoid numerical problems: for instance use powers of z/E(x) or of z/o(x), with
2
o (z) =V(x).
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2. E(z) =5/2.

3. E(vg) = 0, since vy takes the integer values {—2, —1,0, 1,2} with equal probabilities 1/5, and
E (’Ul) =1.

4. E (w,) : this is a vector with 5 components E (1 [vg = n|) = P[vg =n] =1/5.
5. E(wy) : this is a vector with K components E (z¥) = (5F) /(k+1), k=1,..., K.

6. E (wyv) : this is a vector with 5 components

E@Wlvy=n])=E(E@lv=n)l{vo=n]), n=-2,...,2,
= E((vo+1/2)1[vo =n]) = (n+1/2) /5,

since F (vjvg =n) =n+1/2.
7. E (wyvp) : this is a vector with 5 components
E(vlvgo=n])=n/b, n=-2,...,2

and E (wyv1) = E (wy (vo + 1)) has components (n+ 1) /5.

8. E (wy) : this is a vector with K components E (zF1) = (5*™1) /(k+2), k=1,..., K.

Finally, a choice of w, that greatly simplifies computations in the normal case, but that we also
may want to try out here to solve numerical problems, is to take a K-vector of indicators with w,
the indicator of the k-th quantile out of K. Then E (w,) = 1/K for all k, and

E (werr) = E [wep B (z|rp—1 < 2 < 23)]
= E[wek (vp—1 + z1) /2]
= (zp-1 +ax) / (2K).

where 1 =0 and zx = 5.

Appendix B.2 Normal case

We want to compute the exact form of the following inequalities
AO (C) =F {w (.’137’1)07'1)1) [y - f (:1:71}070)]} >0

Ay () = E{w (z,v0,v1) [y — f (z,v1,0)]} <O

where

f(z,v,¢) = c1v + cox + c3,
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y:f(l'7v7’y)+€7

with 71 = —y2 = 73 = 1, and € independent of all other variables and with zero mean, so that its

distribution does not matter for the computation here.
x~N(1,4), v~ N(0,2)
and hence vg takes all positive and negative integer values with probabilities
Plvy=n]=Plvy=n+1=Ph<v<n+1] =9 [(n+1)/\/§] - [n/\@}

The first 12 values of Plug = n] (for n =0,...,11) are listed in Appendix 1.

Now we have

_ 5V — ow1/v?)
®(01/v2) — ®(v0/v2)

The "instruments” w are defined as w’ = (w],w!,), with w, a complete set of indicators for the
13

E(v|vo) :
values -12 to +11 of vy, and wg, a vector of the first K powers of |z|: w), = (|z, |z|%, ..., |z|¥).

Dropping the arguments of w for simplicity, we can rewrite A (¢),j = 0,1, as

Aj (C) = E{w [f (.%','U,"}/) - f (x,vj,c)]}
=mE (wv) — a1 E (wv;) + (72 — ¢2) E (wz) + (v3 — c3) E (w) .

Note that, because = and v are independent, E (wyx) = FE (w,) E (x), E (w,v) = E (w;) E (v) and
E (wyvj) = E(wy) E (vj). Thus all we need to complete our task are the eight quantities £ (v),
E(z), E (vj), E(wy), E(wy), E(wyv), E(wyv;) and E (w,x).

1. E(v)=0.
2. E(x)=1.
3. E(vg) = —1/2, since vy + 1/2 takes pairs of opposite values {—n +1/2,n —1/2} (e.g. -

12+1/2, 11+41/2) with equal probabilities and thus has mean 0.

4. E(wy) : this is a vector with 24 components E (1[vg =n]) = Pvg =n] = ® [(n+1) /v/2] —

5. E(w,) : this is a vector with K components F (]m\k) ,k=1,..., K. There is a formula for

this, but it is messy, and we might use MC approximation.

3Here we cannot take powers of z itself, because w must be a vector of positive functions. Normalizations can be
useful to avoid numerical problems: for instance use powers of 2/E(x) or of x/o(x), with o%(z) = V().
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6. E (wyv) : this is a vector with 24 components

E(wl[vg=n|)=E(E@lvy=n)lvg=n]), n=-12,...,11,

oo VB) VD) |
(f D(01/v3) — Bu/v2) ])’

Thus

ﬂ¢(vo/\/§) — ¢(v1/V?2)
O(v1/v2) — (vo/V2)

P(n/V2) —d[(n+1)/
E(vl[vo = n]) = V2 [(n+21 [] +1[n/%< (0 +1) V2] - @ [n/v2])

= v2{o(n/v2) = 6 |(n+1) /V2|}.

since E (v|vg) =

7. E (wyvp) : this is a vector with 24 components

E (vol[vg =n]) =nPlvg=n], n=-12,...,11,

:n<c1> [(n+1)/\/§] —‘I’[”/\@D’

and E (w,v1) = E (wy (vo + 1)) has components (n+ 1) (® [(n+1) /v2] — @ [n/V?2]).

8. E (wgzx) : this is a vector with K components E (]a:\kaf) ,k=1,...,K. If k is even this is
E (z"1) | since then |z|F = z¥; if k is odd this is E (z*"!sgn(z)), since then |z|F = 2%~ 1|z|

k+1

and |z|¥z = 2¥|z| = 2¥*1sgn(z). Unfortunately, this seems rather complicated ... but we may

want to give it a try (at worst we can approximate it by MC, in the same loop as E (\x|k))

Finally, a choice of w, that greatly simplifies computations is to take a K-vector of indicators
with w, the indicator of the k-th quantile out of K. Then E (wy;) = 1/K for all k, and

E (wypx) = E[wer B (z|xg—1 < x < x3)]

1+2¢(”f)—¢(%1)

=F |wyg

o) ey (el

2

“n () e () e fo () o (%)

where x1 = —o0 and xx = 0.

Appendix B.3 Computational details

In both cases the two sides of all inequalities are scaled in order to avoid numerical problems. The

solution is found by obtaining the intersections of all triples of planes in R? defined by the 2H
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inequalities in (6) and taking the convex hull of the intersections which satisfy all inequalities. In
principle this last operation should not be needed, since the set C}* is convex, but it is useful in
eliminating many spurious vertices resulting from rounding errors. Again some tolerances have to

be set here, and we chose 1072 for the inequalities, and the default precision for rankMatrix.
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Appendix C Monte-Carlo Study: Volumes

Table C.1: Monte Carlo Analysis — MMD, Uniform Case — Volumes

true n np n
Volume
True: .0356
N = 100 .0362 [.0232, .0510]  .0131 [.0004, .0364]
N = 200 .0361 [.0287,.0457]  .0192 [.0011, .0383]
N = 800 .0360 [.0319, .0412]  .0273 [.0124, .0363]
N = 20000 .0355 [.0348, .0365]  .0334 [.0268, .0392]
Volume / Volume “Cube”
True: .167
N =100 164 [.158, .167] 170 [.099, .208]
N = 200 165 [.161, .167] 72 [.100, .211]
N = 800 166 [.165,.167] 186  [.168, .211]
N = 20000 167 [.167, .167] 185 [.170, .203]
Table C.2: Monte Carlo Analysis — MMM — Volumes
Uniform Normal
Volume
N =100,k =2 .1348 [.0465, .2435]  .0508 [.0014, .1306]
N =200,k =5 1236 [.0587, .1717]  .0399 [.0185, .0773]
N = 800, k = 20 1171 [.0980, .1345]  .0220 [.0056, .0326]
N = 20000, k = 30 1183 [.1151, .1219]  .0152 [.0029, .0231]
True, k = 2 2228 .0155
True, k = 200 .0034
True, k = 500 1119
Volume / Volume “Cube”
N = 100, k = 2 048 [.028,.066]  .103  [.041, .168]
N =200,k =5 .069 [.052, .084] .164 [.104, .215]
N = 800, k = 20 .087 [.077, .098] 178 [.093, .228]
N = 20000, k = 30 .085 [.083, .088] .158 [.064, .208]
True, k = 2 .052 151
True, k = 200 .233
True, k = 500 .087
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