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Abstract 

 
To enhance robotic computational efficiency without degenerating accuracy, it is imperative to fit 
the right and exact amount of information in its simplest form to the investigated task. This thesis 
conforms to this reasoning in environment model building and robot localization. It puts forth an 
approach towards building maps and localizing a mobile robot efficiently with respect to 
unknown, unstructured and moderately dynamic environments. For this, the environment is 
modeled on an information-theoretic basis, more specifically in terms of its transmission property. 
Subsequently, the presented environment model, which does not specifically adhere to classical 
geometric modeling, succeeds in solving the environment disambiguation effectively. 

The proposed solution lays out a two-level hierarchical structure for localization. The structure 
makes use of extracted features, which are stored in two different resolutions in a single hybrid 
feature-map. This enables dual coarse-topological and fine-geometric localization modalities. 

The first level in the hierarchy describes the environment topologically, where a defined set of 
places is described by a probabilistic feature representation. A conditional entropy-based criterion 
is proposed to quantify the transinformation between the feature and the place domains. This 
criterion provides a double benefit of pruning the large dimensional feature space, and at the same 
time selecting the best discriminative features that overcome environment aliasing problems. 
Features with the highest transinformation are filtered and compressed to form a coarse resolution 
feature-map (codebook). Localization at this level is conducted through place matching. 

In the second level of the hierarchy, the map is viewed in high-resolution, as consisting of non-
compressed entropy-processed features. These features are additionally tagged with their position 
information. Given the identified topological place provided by the first level, fine localization 
corresponding to the second level is executed using feature triangulation. To enhance the 
triangulation accuracy, redundant features are used and two metric evaluating criteria are employ-
ed; one for dynamic features and mismatches detection, and another for feature selection. 

The proposed approach and methods have been tested in realistic indoor environments using a 
vision sensor and the Scale Invariant Feature Transform local feature extraction. Through 
experiments, it is demonstrated that an information-theoretic modeling approach is highly 
efficient in attaining combined accuracy and computational efficiency performances for 
localization. It has also been proven that the approach is capable of modeling environments with a 
high degree of unstructuredness, perceptual aliasing, and dynamic variations (illumination 
conditions; scene dynamics). The merit of employing this modeling type is that environment 
features are evaluated quantitatively, while at the same time qualitative conclusions are generated 
about feature selection and performance in a robot localization task. In this way, the accuracy of 
localization can be adapted in accordance with the available resources. 

The experimental results also show that the hybrid topological-metric map provides sufficient 
information to localize a mobile robot on two scales, independent of the robot motion model. The 
codebook exhibits fast and accurate topological localization at significant compression ratios. The 
hierarchical localization framework demonstrates robustness and optimized space and time 
complexities. This, in turn, provides scalability to large environments application and real-time 
employment adequacies.  
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Zusammenfassung 

 
Zur Erhöhung der Recheneffizienz bei der Steuerung autonomer mobiler Roboter ist es 
erforderlich die Menge der übermittelten Information sowie deren Repräsentation genau an die 
Aufgabe anzupassen. Diese Dissertation behandelt diese Fragestellung in Bezug auf die 
Umweltmodellierung und die Lokalisierung von mobilen Robotern, wobei für die Erzeugung von 
Umgebungskarten und die darauf basierende Lokalisation von unbekannten unstrukturierten und 
moderat veränderlichen Umgebungsbedingungen ausgegangen wird. Im Gegensatz zu klassischen 
Geometrie-basierten Verfahren, wird hier die Umgebung auf infomationstheoretischen 
Grundlagen insbesondere unter Berücksichtigung von Transmissionseigenschaften modelliert und 
zur Lösung des Unterscheidbarkeitsproblems verwendet.  

Die vorgeschlagene Lösung besitzt eine hierarchische Struktur mit zwei Ebenen in der 
extrahierte Umgebungsmerkmale in zwei unterschiedlichen Auflösungen in Form einer 
einheitlichen hybriden Karte abgelegt werden. Dies ermöglicht sowohl eine topologische 
Groblokalisierung als auch eine geometrische Feinlokalisierung.  

Die erste Hierarchieebene beschreibt die Topologie der Umgebung, in der eine Menge 
gegebener Orte durch eine probabilistische Merkmalsrepräsentation definiert werden. Ein 
Kriterium wird vorgeschlagen, das auf der bedingten  Entropie zur Beschreibung der 
Transinformation zwischen Merkmals- und Ortsbereich beruht. Dieses Kriterium besitzt den 
Vorteil, den hochdimensionalen Merkmalsraum zu reduzieren und gleichzeitig die Merkmale mit 
der höchsten Unterscheidbarkeit auszuwählen, die zur eindeutigen Ortswahrnehmung dienen. 
Merkmale mit höherer Transinformation werden gefiltert und zur Erzeugung einer grob 
aufgelösten Merkmalskarte (Code-Tabelle) komprimiert. Die Orterkennung auf dieser Ebene 
geschieht durch einen Vergleich  der Sensorwerte mit den Datenbankeinträgen. 

Auf der zweiten Ebene der Hierarchie wird die Umgebungskarte in hochauflösender Form mit 
unkomprimierten Merkmalen dargestellt, die in Bezug auf deren Entropie verarbeitet wurden. Die 
Merkmale sind zusätzlich mit der entsprechenden Positionsinformation belegt. Mit dem durch die 
erste Ebene gegebenen Ort wird die Feinpositionierung entsprechend der zweiten Ebenen mit 
Hilfe einer Triangulation durchgeführt. Um die Genauigkeit der Triangulation zu erhöhen, werden 
redundante Merkmale verwendet und zwei Kriterien angewandt: Das erste zur Erkennung von 
Merkmalsveränderungen (z.B. Verschiebungen in der Szene) und von Nicht-Übereinstimmung, 
das zweite zur Merkmalsauswahl. 

Die vorgeschlagenen Ansätze und Methoden wurden in einer realistischen Innenraum-
Umgebung mit einem Bildsensor und der sogenannten SIFT- (eng. Scale Invariant Feature 
Transform) Extraktion getestet. Experimente haben gezeigt, dass der informationstheoretische 
Modellierungsansatz hoch effizient in Bezug auf Genauigkeit und Ausnutzung der Rechenleistung 
ist. Weiterhin wurde gezeigt, dass der Ansatz geeignet ist, Umgebungen mit hochgradiger 
Unstrukturiertheit, Wahrnehmungsüberlappungen sowie dynamischen Variationen 
(Beleuchtungsverhältnisse, Szenendynamik) zur modellieren.  
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  Introduction 

This chapter provides an overview on the scope and objectives of the thesis. It starts with a 

brief statistic about current autonomous robots. Autonomy concepts are introduced next, from 

which the main scope of the work is described. Afterwards, aims and objectives of the 

research are derived, with highlights on the main contributions that try to solve some of the 

current challenges and limitations in the state of the art. 

1.1 Autonomous Mobile Robots; Recent Statistics and Today’s 

Requirements 

Autonomous mobile robots receive increasing attention on both levels of scientific and 

industrial or household appliances development communities. Several potential robot 

applications exist, ranging from dangerous tasks such as nuclear plants operations, de-mining 

and fire-fighting, to routine tasks such as industrial manufacturing, delivery of supplies in 

hospitals and airports, cleaning of offices and houses, and up to scientific missions like 

exploration of deep waters, planets and space. 

According to the IEEE Spectrum [URL:SPECTRUM], there were already 8.6 million 

working robots at the end of 2008. This number certainly exceeded 11 million units in 2010 
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according to statistics of the International Federation of Robotics (IFR). Besides the leading 

multipurpose industrial manipulator robots within these numbers, service robots are currently 

standing with the increasing mass market. From a total of 63,000 units sold up to the end of 

2008, the following rates have been registered for different professional use service robots 

[URL:IFR]: defense, rescue and security applications (31%), field robots (23%), cleaning 

robots (9%), medical robots (8%), underwater systems (8%), construction and demolition 

robots (7%), mobile robot platforms for general use (6%), logistic systems (5%), and with 

minor installation numbers counted for inspection systems and public relation robots.  

On an equivalent parallel route, mobile robots are evolving extremely rapidly as human 

companions. They work their way into our homes in an attempt to fulfill our needs for 

household servants, pets and other cognitive robot companions. From these personal and 

private service robots, 4.4 million units were sold for domestic use (e.g. vacuum cleaning, 

lawn-mowing and window cleaning robots) and 2.8 million units for entertainment and leisure 

(e.g. toy robots, education and training robots). Within this category, the market of handicap 

assistance robots is still considered relatively small, but expected to double in the next four 

years according to the IFR. Robots for personal transportation and home security/surveillance 

will also be of high importance in the near future.  

Mobile robots are becoming more involved in many fields for carrying out a variety of 

service-oriented tasks. Along with such extensive expansion, special attention needs to be paid 

to the design of these machines. The most important aspects and requirements expected to be 

met are skill and intelligence. The quest for developing efficient and intelligent robots has 

been and is still part of intensive research in diverse disciplines that principally include engi-

neering, artificial intelligence, machine learning and machine vision. Figure 1.1 summarizes 

the latest IFR statistics for the recent and expected projected sales of service robots introduced 

above, while figure 1.2 shows some application examples for today’s robots1. 

1.2 Concepts of Autonomy in Mobile Robots 

An essential requirement for a mobile robot is the capability of autonomous navigation. 

Autonomous navigation is the process of safely moving a vehicle without human intervention 
                                                 

1 Photos sources: (a) http://en.wikipedia.org/wiki/Da_Vinci_Surgical_System (b) www.hocoma.com (c) http://www.iat.uni-
bremen.de/sixcms/detail.php?id=1268 (d) http://marsrover.nasa.gov/home/ (e)  http://archive.darpa.mil/grandchallenge/ (f) 
http://www.techscoop.com.au/world-cups-robots/ (g) http://www.fanucrobotics.com  (h) http://world.honda.com (i) http://www.care-o-
bot.de (j) http://www.foxnews.com/story/0,2933,319473,00.html  (k) http://www.irobot.com (l) http://robotionary.com/robotics. 
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from a start position to a goal position along a feasible trajectory. This includes the 

automated tasks of finding a route, guiding the vehicle along the route, updating the vehicle’s 

position from time to time, and naturally avoiding collision with obstacles during motion. 

 

 

 

 

Figure 1.1. Service robots statistics for professional and personal use (Reference: International Federation of 
Robotics [URL:IFR]). 
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Figure 1.2. Application examples of today’s robots.

(a) Da-vinci surgery robot (b) Therapeutic aid robots (c) FRIEND III wheelchair 
rehabilitation robot 

(d) NASA exploration rover 
on Mars 

(e) Tartan obeying traffic regula-
tions UAV, 1st place racer in 
DARPA grand challenge 2007

(f) Robot OFRO in surveillance 
mission at world cup Olympic 
stadium in Berlin, Germany 

(g) FANUC M420iA robot 
in manufacture 

(h) Asimo humanoid 
robot developed 
by Honda 

(i) Museum robots for entertainment and 
tour guidance, Museum für Kommuni-
kation in Berlin, Germany 

(k) Roomba vacuum 
cleaner developed 
by iRobot 

(j) Yuki-Taro autonomous 
snowplow 

(l) Rescue robot participating in recovering 
efforts during the earthquake in 
Kashiwazaki City, Niigata 
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According to [Leonard and Durrant-Whyte, 1991], the robot navigation problem is 

summarized in the three characteristic questions of: (1) “Where am I?”, (2)“Where am I 

going?” and (3)“How do I get there?”. These questions are posed in the context of a 

description for the robot’s world, or in other terms a general environment map. While the 

answer to the second navigation question appears trivial, since it is assumed to be given, 

answering the first and third questions represents a real challenge for autonomous mobile 

robots. Those questions, which are taken for granted by humans, are immensely complex 

implementations in robotic systems. Answering them binds the general navigation problem to 

several fundamental robotic tasks or behaviors2, which are: 

 Collision avoidance: mostly a reflexive behavior for avoiding collision with 

unexpected static or dynamic obstacles in the working space, without prior information 

about their shape or location. 

 Local navigation: finding a way to the target in the absence of a detailed internal model 

about the environment. 

 Self-localization: the estimation of robot’s position with respect to its environment. 

 Map building: the acquisition of internal models that describe the environment from 

sensor data.  

 Path planning: finding a path which is interpreted as a sequence of motion actions in 

order to reach a goal from a current position. Path planning is substantially related to 

map building and self-localization. The current position, goal position and the complete 

map of free-ways are necessarily required to plan the trajectory towards the goal. 

 

The previous modular tasks are listed according to a Recursive Nested Behavior 

Control (RNBC) structure proposed in [Badreddin, 1991]. This control structure provides an 

increasing bottom-up components integration for designing highly complex systems. Figure 

1.3 illustrates this generalized design structure with pre-defined interfaces between the 

different behavior levels. The generality of the structure allows each level to be implemented 

using a sparse model on the suitable level of abstraction. The recursiveness enables ease of 

communication between the levels and makes it bounded. The nestedness embeds the lower 

level behaviors into the higher ones, in order to ensure stability and predictability of the  

                                                 
2 Tasks are executed sequentially, while behaviors simultaneously. 
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Figure 1.3.  RNBC control structure [Badreddin, 1991]. 

 

system, and such that relatively fast behaviors are set at lower levels, with the more 

sophisticated and intellectual behaviors at higher levels. Thanks to those properties, a flexible 

and highly dependable design structure is afforded. 

Despite the apparent generality of the RNBC structure, successful robot architectures 

suggest the use of simple behaviors at the lower operation levels to provide fast response 

suitable for dynamic environments (e.g. memoryless reactive behavior collision avoidance). 

Higher level behaviors like map building and task planning should be central and should rely 

heavily on internal environment models with a certain complexity that is proportional to both 

the task(s) to be achieved and the environment itself. Equipped with such a model, the robot 

can consequently plan movement, manipulation of the environment, or whatever action the 

task requires. 
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The work of this thesis is primarily concerned with environment map building for 

navigation purposes. It attempts to find suitable answers to the characteristic navigation 

questions “What does the world look like?” and “Where am I?”, which correspond to the 6th 

and 7th high behavior levels in the RNBC structure. Answering questions about map building 

and localization is challenging for a mobile robot. Several difficulties arise, such as dynamics 

of the environment, inaccuracies in perception, inaccuracies in localization, stationary and 

moving obstacles that are not considered in the map, resolution and accuracy of the sensors 

employed, etc. Being higher levels of certain sophistication in a complex and hierarchical 

structure example like the RNBC, an additional challenge counts, which is the efficient im-

plementation of those navigational aid tasks or behaviors with the least possible complexity.

1.3 Motivation 

For several decades, the practical robotic applications remained limited to carefully controlled 

environments such as assembly lines [Hamner, 2009]. Automation of the vast majority of real-

world tasks remained out of reach, because our best systems could not handle the complexity 

of unconstrained environments. Nowadays, autonomous robots move beyond factory arenas 

and evolve rapidly as professional service providers and companions everywhere (e.g. 

museum tour guide, rescue, servant, and wheelchair robots) [Prassler, 2001; Gross et al., 

2009]. They step into exploring and navigating inside new spaces which are full of unknowns, 

dynamics and unstructuredness. Several challenges confront those machines and their applica-

tion fields, in which robots are required to accomplish their missions safely and efficiently.  

For the safety and efficiency of navigation and manipulation, the future of robots, 

especially as service providers, is highly dependent on their abilities to understand, interpret 

and represent their working environments in an efficient and consistent fashion, and 

preferably in a way compatible to humans [Vasudevan et al., 2007]. Humans and even most 

animals including insects can handle their environments with ease, a task that robots are 

unfortunately far from doing with the same efficiency up till now. For example, a human can 

recognize an office environment of two different persons easily, though they might appear 

almost the same.  Similarly, a moving few things around in the environment only makes a 

human notice that things have changed, but does not make one believe that he/she is in a 

different place. In the same way, one is able to recognize a place which he/she might have 



Chapter 1. Introduction 

 
8

previously visited at some other time or season even though the scenes are fundamentally 

different. These are issues that a robot cannot presently carry out with the same effectiveness 

as humans. It is not a question of computation power, as resources nowadays are adequate. It 

is a matter of the inherent recognition capabilities which are granted to humans and are limited 

in machines, and which research communities have been imitating since many years in a trial 

to minimize the human-machine intelligence gap. These scene complexities (e.g. similar 

places, distinctive landmarks or features apprehension, and continuous dynamics such as 

different objects that change their positions, moving people or vehicles that obscure the 

horizon, light that changes between darkness and full brightness, or nature that changes in 

appearance with the season), remain a consistent challenge for autonomous robots when they 

confront building a model for an indoor or outdoor environment and localizing themselves in 

it. They have to deal with such complexities in some robust means.  

Figure 1.4 pictures a critical technical vision problem known as perceptual aliasing. It 

describes the case that different classes (e.g. places, objects) may have similar sensory images 

or induce similar descriptive patterns. Such perception problem is not specific to images only 

but for any sensory pattern. The two images in the figure show an elevator view at two 

different floors that one can almost say they look exactly the same. Perceptual aliasing is 

associated with another reverse problem. This is the data association or correspondence. 

Since a single pattern may match to more than one class, it is extremely difficult to determine 

the identity of a given pattern from those patterns exhibiting similarities. Figure 1.5 depicts a 

third problem known as image variability. It refers to the case that the same place may have 

different sensory patterns on different occasions, for e.g. when influenced by illumination  

Figure 1.4. Different places appear the same – perceptual aliasing problem. Example images are taken at 
Building A-Mannheim University. 
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Figure 1.5. The same place appears differently – image variability problem. Example images are from the 
KTH-IDOL2 Database [Luo et al., 2006]. 

 
conditions or other dynamics introduced to the environment. The figure shows a corridor at 

three different times (sunny, night and cloudy conditions), and with a person interrupting the 

scene. The place is said to undergo general dynamic variations. Although the place is exactly 

the same in the three images, it can be falsely recognized by current recognition techniques. 

The two problems of perceptual aliasing and environment variability are complementary and 

stand in the way of obtaining robust recognition and reliable place identification.  

The previous discussion summarizes a relevant perspective about environment model-

ing and localization challenges. Uncertainties exist and at any time (in both measurements 

and the environment itself as outlined by its scene complexities), and no or only partial 

knowledge about the environment might be available for the robot to provide some aid.  

A second challenge perspective is outlined, which concerns the rapidly flourishing 

technological revolution. Several sensors with different modalities, as well as numerous 

feature extraction techniques and algorithms, are afforded nowadays, all of which permit 

possibilities for environment perception and modeling. The high resolution provided by a 

sensor (e.g. vision) reveals more complexity about the environment, which is not an easy 

issue to handle when considering the building of a compact model. Massive data are 

provided by sensors and feature extraction, but unfortunately accompanied with redundancies 

and non-necessities.  Excessive features do not contribute to meaningful information, but 

actually degenerate the model’s quality. On the one hand, irrelevant data will simply increase 

uncertainty and affect the accuracy of the task employing them. On the other hand, the size of 

employed features will increase the computational complexity of task, since the processing 

spaces (memory and CPU) are related to the environment model size. The higher the 

dimensionality of employed features, the higher the computational cost involved.  
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Consequently, the quality and efficiency of environment modeling is not interpreted by 

the blind use of multiple sensors or highly sophisticated techniques for perception and data 

modeling (e.g. shape-based analysis). A rather high relevance should be laid on investigating 

the quality and quantity of information to be perceived and processed, and in accordance with 

the available sensors, resources, and the investigated task. This information should fit to the 

amount required by the task; evidently not higher. In such a way, it is more meaningful to 

express a robotic system by its storage and processing units’ consumption, and not just in 

terms of their numbers and sizes. 

From a third and final perspective, navigating robots nowadays are working in growing 

environment spaces. Most robot metric navigation methods are implemented for small to 

medium-scale environments. Applying those methods to large-scale environments requires 

processing storage and computations proportional to this large space, which is not practical. 

This motivates the need for new solutions that adapt to large environments. Such solutions 

have to be presented in a suitable organizational structure that stimulates accuracy and 

computational efficiency performances.  

The introduced perspectives represent real challenges for mobile robot navigation. It is 

firmly believed that the extent to which robots can navigate efficiently in their operating 

environments is decided by the way they represent their environments and localize them-

selves through accurate and economic methods. Figure 1.6 summarizes the three challenge 

perspectives with the technical terms introduced above, and which are tackled by this thesis. 

Figure 1.6. Challenges confronting environment model building and localization.
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1.4 Objectives and Contributions 

The major objective of the thesis at hand is to contribute to the development of robust and 

efficient environment modeling and localization for robotic applications. The efficiency in 

modeling concerns acquiring the most informative data and their representation in simplest 

form, whereas in localization concerns enhancing accuracy and computational efficiency 

performances. The robot’s operating environments may be characterized by having clutter, 

unstructuredness and moderate dynamics, in addition to being large. In the frame of the 

defined objective and operating conditions, some related problems arise which are posed in 

the form of the following questions: 

(1) How does the robot choose data that constitute importance, build the appropriate 

model for the environment and globally localize itself in it with a maximum 

bounded performance3?  

(2) How does the robot maintain robustness of the environment model and the 

localization in a moderately dynamic environment?  

(3) How are the model and the localization adapted for large space application?  

The first question is a major subject in this work. To answer it, an information-theoretic 

modeling approach for the environment is proposed. The approach regards the environment as 

a collection of properties (i.e. features), each of which delivers a certain transmission value 

that contributes to the minimization of location uncertainty. The higher this transmission 

value, the more relevant the property is. Filtering properties with the highest transmission 

values and discarding those with the lowest transmission values, it is possible to generate an 

environment model that asserts high global localization accuracy and computational efficiency 

performances. Integrating data compression techniques in the solution approach is proposed to 

provide additional enhancement for the computational efficiency performance.  

The merit of employing an information-theoretic modeling for the environment is that 

the modeling is independent of the employed sensor type and feature extraction methodology. 

It is only through statistical analysis that decisive conclusions can be generated about the data 

                                                 
3Performance has upper bounds which are a function of the environment data and in other terms the employed feature extraction 

methodology. Incorporated environment data itself can have bounds, as being a function of the specifications of the available resources (e.g. 
sensor resolution, memory unit size, processor power). 
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selection that achieves a double effect of minimizing uncertainties and reducing the data size. 

This issue enhances the general task execution by fitting the exact amount of information to 

the localization task, and with minimal data representation. Moreover, the approach can adapt 

a maximum bounded performance in accordance with limited available resources. 

The second and third questions are answered together in the proposed information-

theoretic modeling approach by adopting a special solution structure. This structure asserts 

robustness and scalability of the modeling and localization solution. The structure establishes 

a 2-level hierarchy, in which hybrid features are preserved. These hybrid features can be 

viewed in two different resolutions (coarse and fine) at the two levels, in order to support 

topological and metric localization modalities. Features are robustly detected and recognized 

under different conditions (e.g. viewpoint, scale, transformations and distortions). Dynamic 

variations, such as scene dynamics and illumination conditions, do not significantly influence 

the accuracy of localization. 

The first level of the hierarchy deals with a granular data representation and confines 

localization to a coarse topological place (i.e. topological localization). Special requirements 

have been imposed for the environment model at this layer. It is valuable to have minimal 

number of relevant features for less computations but precise decisions (i.e. a compromise of 

accurate prediction and space and time complexities). It is also valuable to include robust 

features which are relatively insensitive to noise, dynamics and other errors. Such requisites 

urge the application of the information-theoretic approach at this level. Local feature 

extraction is employed in simple supervised information-theoretic-based learning to evaluate 

extracted features. The evaluation searches for those particular features that provide biased 

discrimination between topological places, in order to efficiently differentiate between them. 

Those features are selected and compressed concurrently to generate an information-rich and 

compact topological model. Such a model, which conforms to a high-level representation, can 

assist fast, accurate and robust robot topological localization and navigation. With the high 

attained topological accuracy, a second level of hierarchy is reliably extended from this level, 

in which it guides a second scalable metric localization, with a smaller projected space search. 

The second level of the hierarchy deals with a finer data representation and localizes the 

mobile robot on a more precise level (i.e. geometric localization). Features at this level 

comprise the same topological data but in their non-compressed format to preserve identity. 
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Additionally, they are tagged with their metric position information, yielding a hybrid 

feature-map. Important requirements for localization at this level are: to accelerate 

localization and to minimize localization error. The first requirement complies with the 

proposed hierarchical structure design which provides speed and scalability. To fulfill the 

second requirement, two criteria are presented within a triangulation method for metric 

localization; one criterion to detect environment dynamics and feature mismatches, and a 

second to choose between features that contribute to less localization error. Consistency of 

the hybrid map is preserved at this level through the detection of dynamic features. 

Monitoring them on the running system for long terms provides decisions to exclude them 

from this level, or else they provide wrong estimations.  

The proposed solution and methods offer enhancements for robotic computational 

efficiency without degenerating the accuracy. They satisfy performance demands, which are 

crucial for the efficiency of navigation systems, especially those aiming to work in large 

spaces and real-time. In particular, the following contributions are presented by this thesis: 

 An information-theoretic-based environment modeling approach for localization. 

The approach evaluates the environment features and filters the most relevant (i.e. highly 

discriminative) ones based on their measured transmission property. Highly-transmissive 

features contribute to minimum localization uncertainty. The modeling and localization 

approaches are: (1) robust against location ambiguities, perceptual aliasing, illumination 

conditions and scene dynamics, (2) efficient in terms of online computational complexity, 

(3) accurate for localization as much as the feature extraction methodology provides, (4) 

generic as the modeling does not adhere to a specific sensor or an environment 

characterization. The proposed modeling has been evaluated and validated in two different 

indoor environments and with different sensor configurations (perspective and omni-

directional vision). It proves suitability for application in unknown, densely cluttered, and 

unstructured environments using the environment’s natural features. 

 A codebook compression module that compresses the model features more than ten 

times providing a compact topological model, which at the same time maintains the 

accuracy of localization. The module is easy to construct and flexible in its parameters.  

 A top-down hierarchical structure for combined topological-metric localization 

using a single hybrid map. The proposed structure supports dual global localization 



Chapter 1. Introduction 

 
14

modalities; coarse topological and fine geometric, and scales to large environments with 

lower complexity. The localization scheme is independent of the robot motion model (i.e. 

dead-reckoning). A hybrid map is proposed in the structure based on the same feature set. 

The feature set has two different resolutions, where both geometric and non-geometric 

properties of the environment are used differently to resolve the robot location at the two 

levels of the hierarchy. 

 Environment dynamics detection and geometry-based landmark selection criteria 

for increasing the accuracy and robustness of metric triangulation-based localization.  

 Detailed quantified performance analysis for measuring the performance gain in terms 

of memory, localization time and localization accuracy, a matter generally neglected by 

researchers. 

The contributing solutions and methods are summarized in figure 1.7. The figure shows 

how the proposed solutions and methods contribute to higher localization accuracy, lower 

complexity and increased robustness requirements, which form the principal foundation of 

efficient model building and localization. Topological model building and localization 

solutions are highlighted as bold blocks, whereas additional solutions adopted for hybrid 

model building and localization are highlighted as dotted blocks. 

 

Efficient Solution for Model Building and Localization 

Higher Localization 
Accuracy 

Lower Complexity 
(computational efficiency) 

Increased Robustness 

  

 

 

 

 

Figure 1.7. Efficient solution for model building and localization. An efficient model should provide robust 
and accurate localization performance with minimum computational complexity. The different contributing 
solutions satisfying those requirements are outlined. Blocks in bold satsify a topological solution, while 
additional dotted blocks satisfy an intregated topological-metric solution. 
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Chapter 2 – Reviews research and developments related to the topic map building and robot 

localization. State-of-the-art is described, in which approaches are mainly classified into 

metric, topological and hybrid. The advantages and disadvantages of each approach are 

highlighted and some common drawbacks are outlined.  

Chapter 3 – Presents basic preliminaries for the methods and techniques used. These include 

the topics: environment modeling and perception, sensors, vision-based modeling approaches, 

local feature extraction and evaluation, and finally the basic concepts and elements of 

information theory. The chapter ends with a concluding discussion on the motivations. 

Chapter 4 – Presents essential contribution of this work, which is an information-theoretic 

appearance-based model for environment description. A general solution structure is outlined 

for model building and map generation, which is based principally on features evaluation and 

compression. The structure is presented within a topological context that forms a first layer in 

a hierarchical framework to be designed. The proposed information-theoretic solution makes 

use of an entropy evaluating criterion and a codebook concept, in order to produce a set of 

distinguished features called entropy-based features, with a second compressed format called 

codewords. The information-theoretic solution approach has been demonstrated using a vision 

sensor and local feature extraction.  Thorough testing for employing both feature forms in a 

map to localize a mobile robot topologically is presented. Evaluating experiments indicate 

efficiency in localization and robustness against dynamic variations. High localization 

accuracy rates are obtained using the entropy-based feature map. Lower online complexity 

with maintained localization accuracies is realized using the codebook map. The attained 

performance gain and the substantial savings of the presented solutions are quantified. 

Chapter 5 – Evaluates and validates the proposed information-theoretic modeling and 

codebook approaches on the COLD benchmarking database. The indoor benchmark database 

is constructed with an omnidirectional sensor and is subject to severe illumination and scene 

dynamics conditions. 

Chapter 6 – Introduces a hierarchical framework that supports hybrid localization. The 

topological unit presented in chapter four is set as a first level of hierarchy and a second 

metric level is extended from the first. Precise metric pose estimation for the robot in 3-DOF 

is performed using a modified hybrid map. The map consists of a unified set of features 
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viewed in two resolutions; topological resolution in the form of a codebook and metric 

resolution in the form of entropy-based features additionally tagged with their position. 

Feature triangulation is applied to localize the robot given an identified topological place by 

the first level. Two methods are investigated for estimating the pose; The Newton-Gauss 

numerical method and the closed-form Geometric Triangulation. Additionally, two criteria are 

introduced in the triangulation to select features based on their stability and structure. 

Demonstrating experiments for the overall localization framework are given. They indicate 

accuracy and computational efficiency of the localization framework. Localization errors are 

bounded and accepted for an approach independent of dead-reckoning information. The 

proper choice of features based on geometry and exclusion of dynamic features show 

enhancement in the triangulation accuracy.  

Chapter 7 – Presents final conclusions and summarizes the contributions developed in this 

thesis, highlighting their advantages and application fields, as well as their restrictions. An 

outlook to possible directions for future work is given. 



 

Map building and Localization:            
State-of-the-Art 

Map building and self-localization are fundamental problems in mobile robots research. They 

set up two of the five preliminary tasks establishing the navigation problem, which includes 

additionally collision avoidance, local navigation and path planning. The topic has been 

studied intensively over the past years, to the extent that several solutions have been launched 

supporting different sensor configurations and a variety of application environments. 

This chapter reviews the state-of-the-art of this topic. It summarizes the research efforts 

and the most successful approaches and underlying techniques that have been undertaken in 

the scientific area of robotic map building and localization. 

2.1 Introduction 

The modality of environment interaction in which the robot is engaged invokes a specific 

environment description that should facilitate this interaction. This need has launched several 

environment-mapping solutions to support both robot-environment interactions and robot 

navigation. The provided solutions span different application environments, and are founded 

Chapter 2 
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on different platforms and sensing configurations. Each solution reports pros and cons, with 

one solution being more suitable for a specific application and an environment than the others.  

Map building is the process of acquiring a robot internal model about the environment 

through the robot sensors. The resulting model is termed the map. Building an appropriate 

map has been regarded as a major perquisite for the other navigational functions or behaviors; 

collision avoidance, self-localization and path planning. Some navigation approaches that do 

not require a map also exist (i.e. mapless navigation) [Desouza and Kak, 2002]. They depend 

on instantaneous relative measurements to find their ways and reach easily defined destina-

tions. Those approaches are simple but cannot be applied if the robot needs to reach particular 

locations in a relatively complex environment. Therefore, a map is always regarded as an 

elementary requirement for mobile robots engaged in non-trivial tasks [Budenske, 1989]. 

Self-localization, or simply localization, is the ability of the mobile robot to determine 

its location in space. This location can be determined relatively with respect to a priori known 

location if the exact motion model of the vehicle is known. However, this is not the common 

case, since the motion model is accompanied by uncertainties. In addition, a robot’s absolute 

location cannot be identified without a map. Knowledge of self-location and locations of other 

places of interest from the map is the basic foundation upon which high-level navigational 

operations, such as local navigation and path planning, are built. Therefore, obtaining a good 

performance from a navigation algorithm is strongly bound to accurate robot localization in 

the environment [Bonin-Font et al., 2008]. It is worth mentioning that without the notion of a 

location, the robot will be limited to a reactive behavior based on local stimuli only. This 

poses limitations and restrictions on the action planning capabilities of the robot.  

Human-constructed maps and external infrastructures, such as the Global Positioning 

System (GPS) have been proposed as navigation solutions. Those solutions are sufficient, but 

have their limitations. Manual feeding of systems that are supposed to be autonomous is a 

disadvantage, especially for a dynamic environment that will require map updates. The GPS 

infrastructure also might not always be available (e.g. for planetary exploration robots, many 

terrestrial environments such as indoors, near tall buildings, under foliage, underground and 

underwater). Additionally, the navigation problem, in many cases, has to be necessarily solved 

using the robot's internal sensors alone due to considerations of flexibility, costs, or other 
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requirements. Therefore, other solution approaches that mainly depend on the robot’s attached 

sensors are adopted. 

Sensors are the information sources that basically assist map building and navigation 

solutions. Like humans and animals, the robot uses its sensors to perceive the surroundings 

and get information about the environment through every observation and action it makes. A 

variety of sensors exists, which enables measuring and encoding various types of data 

modalities and information. Some sensors provide position information straightaway. That is 

to say, a direct solution for the localization problem is obtained. Other sensors provide other 

measurement modalities from which the position information can be inferred. In general, two 

distinct robotic sources of information can be distinguished [Filliat and Meyer, 2003]: 

Idiothetic (Proprioceptive) sources – They provide internal information about the 

robot movements. Those movements comprise speed, acceleration, orientation, leg 

movement or wheel rotation. Typical sensors include gyroscopes, accelerometers, 

compasses and wheel encoders. Integrating idiothetic information over time results in 

a position estimate known by dead reckoning, path integration or odometry. 

Allothetic (Exteroceptive) sources – They provide information about the 

environment and are robot external sensors. Examples are vision, microphones, odor, 

tactile, sonars, laser range-finders and scanners. Allothetic sources play the main role 

in perceiving the environment for navigation and correcting the robot internal states. 

The advantages and drawbacks of the two information sources are complementary. The 

major problem with idiothetic information lies in the nature of the integration process. It is 

subject to cumulative errors that can grow quickly. Causes of the errors are systematic 

because of the mechanical and electrical construction (e.g. unequal wheel diameters, 

misalignment of wheels, finite encoder resolution and finite sampling rate). Additional non-

systematic errors occur in the joint and the task space (e.g. floor) due to the effects of wheel 

slippage, uneven ground, variation in the contact point of the wheel, and probable collisions. 

Both sources of errors lead to a continuous decrease in the quality of movement detection 

[Borenstein et al., 1997; Siegwart and Nourbakhsh, 2004]. 

Figure 2.1 shows an example that manifests the position errors obtained from dead-

reckoning. It is demonstrated that such information is not reliable over long periods of time.  
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Shown in the figure is the robot’s path as obtained by its odometry relative to the real 

environment map. Over long periods of time, turn and drift errors1 as well as translational 

errors accumulate continually. Orientation errors dominate because they grow without bound 

into translational position errors, the issue that causes misalignment of the odometry 

measurements relative to the real map. The additional use of a heading sensor (e.g. gyro-

scope) can help to reduce those severe cumulative errors, though not totally avoiding them. 

In contrast to idiothetic sources, the quality of allothetic information is stationary over 

time [Filliat and Meyer, 2003]. Nevertheless, this information suffers from the problem of 

perceptual aliasing. It is the case that, for a given sensory system, two different environment 

places can induce similar perceptual patterns. Therefore, a good strategy is to fuse both kinds 

of information sources to overcome problems from both sides. This will be encountered in the 

literature survey. In such a case, allothetic information helps in the compensation of idiothetic 

drift, and in turn idiothetic information supports the disambiguation in allothetic place. 

 

 
  

Figure 2.1: Example demonstrating position errors caused by dead-reckoning [Thrun, 2002]. 

 
The map building and localization have been often introduced and studied in the 

literature as a fused topic. The literature commonly classifies both into topological and metric 

approaches, in relation to the same adopted classification for space representation. The rest of 

                                                 
1 Turn and drift errors are the angular orientation errors. Drift error is error in the orientation due to difference in the error of wheels 

[Siegwart and Nourbakhsh, 2004]. 

Goal 

Start 
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this chapter presents the related work for robotic map building and localization classified into 

metric, topological and hybrid approaches. The robotic map building is first surveyed in 

section 2, followed by the localization in section 3. Section 4 is dedicated to the recent hybrid 

map building and localization approach. The chapter ends with a brief summary for the state-

of-the-art and highlights for some of the current limitations which motivate this work. 

2.2 Map Building 

Robotic map building addresses the problem of autonomously acquiring spatial 

representations of physical environments through mobile robots. This is interpreted into a 

process of locating certain entities (e.g. places, features, landmarks or obstacles) within a 

certain frame of reference. Accordingly, the constructed map is viewed as a list of any 

environment objects together with their descriptive locations [Thrun et al., 2005]. The robot 

uses mounted sensors to perceive the environment and build the map automatically. A map is 

constructed during or after an environment exploration phase. A second option is that the 

robot constructs the map during navigation, in which location of both environment data and 

robot are solved simultaneously. The latter is known as Simultaneous Localization and 

Mapping, or SLAM for short [Smith et al., 1990; Durrant-Whyte and Bailey, 2006].  

2.2.1 Map Categories 

Traditionally, maps are classified into two major distinctions: metric maps and topological 

maps [Meyer and Filliat, 2003; Siciliano and Khatib, 2008]. Nevertheless, other map 

categories exist, such as appearance-based maps, semantic maps and hybrid maps [Buschka, 

2005].  

Metric maps contain distance information that corresponds to the distance actually found 

in the real world. They are sometimes called geometric maps. Such map art contains, for 

instance, information about the length of a path, the dimensions of a building, or the metric 

position of an object. A scaled road map, a city map and a CAD model (see figure 2.5-a) are 

generic examples of metric maps. 

Topological maps are representations in which the environment is modeled according to 

structure and connectivity. They can be represented by a graph, with nodes corresponding to 

key environment places and edges accounting for connections or relations between the places. 
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In such a map, one finds information about place connectivities and paths, such that one can 

decide which edges and nodes to pass to move from one place to another. A subway map is a 

typical example of a topological map, where each node represents a train station and each 

edge represents a train connection. 

Appearance-based maps are maps in which sensor data are used to form a direct relation 

from the data to a specific position. One of such maps is described in [Kröse et al., 2001]. 

Semantic maps are used for making decisions at a high level. They contain information about 

environment objects, space properties and relationships [Galindo et al., 2005; Vasudevan et 

al., 2006]. Hybrid maps combine different map types (for e.g. a metric map and a topological 

map). A hybrid map has additional links that connect elements in one map to elements in the 

other map. If these links do not exist, the hybrid map degenerates into merely a collection of 

totally unrelated maps [Buschka, 2005]. 

Another historic taxonomy for maps is world-centric versus robot-centric [Thrun, 2002]. 

World-centric maps are represented in a global absolute coordinate space. Entities in the map 

do not carry information about the sensor measurements that lead to their discovery. In 

contrast, robot-centric maps are described in the measurement space. They contain sensor 

measurements a robot would perceive at the different locations. Robot-centric maps are easier 

to build, since no translation of robot measurements into world coordinates are required. 

Nevertheless, they suffer from a severe perceptual aliasing problem since obvious geometry is 

missing in the measurement space. 

Table 2.1 summarizes the map taxonomies, as well as the map building problem.  Metric 

versus topological is the conventional classification, and is by far the most common taxonomy 

in literature of both map building and localization. In an extended sense, the map and map 

building can be further classified according to the way the map is indexed; being location-

based (i.e. occupancy) or feature-based [Thrun et al., 2005]. Aggregations on the same 

taxonomy level lead to a composite or a hybrid map. Generally, metric maps are constructed 

when high accuracy is required, for example in exact positioning and precise path planning. 

Application examples are Automated Guided Vehicles (AGV), which are restricted to fixed 

trajectories and paths, and are limited to repetitive tasks. On the other hand, topological maps 

are more adequate and much easier for autonomous navigation – especially indoors – which 

does not require such high precision. 
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Table 2.1. Map and map building taxonomies 

 

 

Both map building and localization can be expressed against the spatial representation, 

in which the environment space can have two forms; continuous and discrete. Table 2.2 shows 

the metric-topological classification expressed against the continuous-discrete environment 

representation. Metric maps and metric locations are representable in both continuous and 

discrete forms of the space. Topological maps have only a discrete representation. 

Consequently, the map building requires the definition of a specific data structure, as well as a 

method to update the structure. This will be encountered in the next subsections which discuss 

building metric and topological maps. 

 

Table 2.2. Map building and localization versus space representation 

 Continuous Discrete 

Metric   

Topological   

 

2.2.2 Metric Maps 

Metric maps describe the properties of the environment as either a collection of ‘environment 

objects’ or ‘occupied positions’ in space, with the geometric relationships among them 

preserved in a common global reference frame (normally the Cartesian space).  Hence, two 

specific kinds of metric maps are identified; feature maps and free space maps. In the general 

sense, feature maps differ from free space maps in that the sensed data are first transformed 

into a higher abstract representation which is secondly geometrically indexed. Most of the 

existing metric map-building solutions are based on SLAM [Thrun, 2002]. The map building 

is not separated from the localization process, and consequently, difficulty arises because the 

Metric Versus Topological 

World-centric Versus Robot-centric 

Occupancy-based Versus Feature-based 

space map 

localiazation
building &  
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localization errors are incorporated into the map. Hence, those solutions rely on the robot 

kinematic model together with probabilistic filters to compensate the errors.  

Feature maps contain landmarks or any environment features that the map depicts. 

Landmarks are references with known positions. They can be natural or artificial. Natural 

landmarks form high abstractions composed of simpler features. In structured indoor 

environments, it is often normal to encounter walls, corners and edges, which are formed by 

combining simpler geometric atoms (e.g. points and lines). Other higher abstractions exist 

like doors and windows. Distinguished environment objects also serve as natural landmarks 

(e.g. fire extinguisher, clock, wall painting, etc). Artificial landmarks or beacons are 

reference objects introduced to the environment, which mostly provide unique identification. 

They are often used when high positioning accuracy is required. Examples are bar codes and 

light-reflector tags.  Other than landmarks, feature maps may employ less-abstracted features 

such as vertical lines or point features extracted from objects’ surfaces, which are described 

by certain descriptor. Figure 2.2 shows a simple representation for a feature map for an 

indoor environment where walls and corners serve as natural landmarks. 

Figure 2.2: Simple representation for a feature-based map. Lines are used to represent walls and corners. 

 

In feature-based map building, the robot has to estimate its unknown pose while 

calculating the position of the features simultaneously. Building the map this way requires 

that each feature is first extracted from the sensor data relative to the robot, matched against 

the features in the existing map, and finally the feature can be added if it does not exist, or 

updated if it exists, or used to correct the position estimate in the SLAM execution. 

corner 

wall 
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Feature-based maps have been constructed using line segments extracted from walls 

through sonar [Ohya et al., 1994; Crowley, 1989], and laser scanner [Borges and Aldon, 

2004; Pfister et al., 2003], with the employment of Kalman filters. Additional features, such 

as corners and edges, were extracted using sonar in [Chong and Kleeman, 1999; Leonard and 

Durrant-Whyte, 1991]. Laser range finders have been used to map point features and register 

scans in [Biber and Staßer, 2003; Surmann et al., 2003]. In a similar manner, 3D point clouds 

have been extracted and registered for indoor and outdoor environments using laser range 

finders [Nüchter et al., 2006; Cole and Newman, 2006], stereo vision [Se et al., 2001], and 

combined laser-omnidirectional-vision sensors [Biber et al., 2005]. 

Free space maps are the second map type which represents the environment accessible 

parts only through tessellation. Tessellation can be uniform or non uniform. Figure 2.3 shows 

a planar workspace populated by polygonal obstacles. A map can be generated in the form of 

discrete non uniform cells obtained by exact cell decomposition. The method selects 

boundaries between discrete cells based on geometrical criticality [Siegwart and Nourbakhsh, 

2004]. Decomposed cells can be rectangular, trapezoidal or convex polygon shaped. The 

figure shows trapezoidal decomposition obtained by extending vertical lines up and down in 

the workspace at obstacle vertices until they touch either an obstacle or the boundary of the 

workspace. The representation is compact because each cell is stored as a single node, 

resulting in a total of only eighteen nodes for the given example. Such exact decomposition 

is, however, not always feasible, because it is a function of environment obstacles and free 

space which are not necessarily sharply defined. 

Another common alternative of free space maps are the occupancy grid maps [Elfes, 

1990]. They present a fixed decomposition by discretizing the space into a regular grid, 

whereby each cell stores occupancy information about the area it covers. Each grid-cell is 

assigned a single value representing the probability that this cell is occupied by an obstacle. 

Grid maps are volumetric, in the sense that they offer a label for every possible location in the 

environment. Although features can still be indexed in a grid representation, it is more 

frequent that grids are indexed with occupancy. Figure 2.4 shows the occupancy map 

generated for the virtual workspace defined in figure 2.3, while figure 2.5 shows an actual 

metric map constructed using fine-tessellated occupancy grid and a laser ranger for the CAD 

environment on the left hand side. 
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Figure 2.3: Example of exact cell decomposition mapping [Siegwart and Nourbakhsh, 2004]. 

 

Falling into SLAM categories, the occupancy grid map building proceeds by estimating 

the robot position first, and then the values of the grid cells are updated whenever the robot 

has a new set of data. A sensor model and an update rule are required. The sensor model 

describes the uncertainty of the sensor data, and the update rule describes the uncertainty of 

the resulting map. The robot’s position during map building is estimated directly through the 

odometry values given by wheel encoders, or through the map which is built concurrently in 

the SLAM execution. 

 

 

Figure 2.4: Fixed decomposition for the workspace shown in figure 2.3 [Siegwart and Nourbakhsh, 2004]. 
Cells in white are free space, black are occupied space, and gray are unexplored space. 
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(a) (b) 
 

Figure 2.5: (a) CAD Map of a large open exhibit place (b) Occupancy map generated using laser range data. A 
grid cell probability of occupancy is defined by a value bounded by (0,1), where 0 indicates definitely not 
occupied (free space) and 1 means definitely occupied. A prior probability of 0.5 is always initialized, which 
implies unexplored space (depicted by the light gray regions) [Thrun et al., 2005]. 
 

Most grid map implementations are range sensors based [Thrun, 2002]. Early 

implementations used sonars [Elfes, 1989; Thrun, 2003], while more recent ones use laser 

range finders [Yguel et al., 2006]. 3D grid maps have also been constructed from disparity 

information using stereo vision [Chen and Xu, 2006], and a combination of vision and 

proximity [Bennewitz et al., 2006].  

Occupancy grids have proven to be simple and quite useful for obstacle avoidance and 

small-scale planning purposes [Elfes, 1989]. They are suitable for coverage path planning 

(e.g. a field insecticide spraying Unmanned Aerial Vehicle (UAV) and a floor-cleaning robot). 

Performance-wise, they offer a constant time access to grid cells and can model unknown 

(unobserved) areas, which is an important feature in the context of exploration. However, 

these models become difficult to handle when the environment size is large. They require a lot 

of memory resources, and much of the detailed information stored in the cells becomes 

irrelevant and creates a corresponding data association problem.  

Consequently, a significant difficulty arises with occupancy grids working in large 

environments as a tradeoff between the grid resolution (granularity) and the computational 

complexity. Ideally, the grid size should be as small as possible (fine grained) to capture 

environment details and facilitate accurate position estimation. From another side, a large grid 
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size (coarse grained) may be necessary for feasible computations, given that storage and 

computation increase in proportion to the number of grid cells. Thus, it is evidently concluded 

that fine grid resolutions are not suitable for large-scale environments. Tasks, like path 

planning, become computationally expensive with them. Some methods to obtain variable 

granularity have been proposed [Burgard et al., 1998; Nebot and Pagac, 1995], and hence they 

focus the resources at regions of environmental complexity. Nevertheless, the methods 

possess implementation difficulties of their own [Bailey, 2005]. 

Occupancy grids and feature maps have been contrasted to each other [Laaksonen, 

2007; Bailey, 2005]. The advantage of feature maps over occupancy grids is that they contain 

only the needed features, and hence are much better to process. Furthermore, map update is 

easier. To correct a grid map, the entire map has to be recalculated, while in feature-based 

maps only the position of affected objects has to be adjusted. Occupancy grid, on the other 

hand, has the advantage that it shows immediately if a certain location on the map is 

accessible and free. For example, a position inside the wall is occupied in the map, so the 

robot cannot be in such a location. With feature maps, extra processing is needed to get some 

kind of information like that out of the map. In such reasoning context, feature maps do not 

facilitate path planning and obstacle avoidance, and the tasks must be performed as separate 

operations.  

2.2.3 Topological Maps 

Topological maps are abstracted maps that contain vital information only, with unnecessary 

detail removed. They form abstract but concise representation and are less concerned with the 

geometric properties. Generally, these maps lack scale. Distance and direction may vary but 

the relationship between points is always maintained. 

Building topological maps was introduced into the field of robotics following studies of 

human cognitive mapping undertaken by [Kuipers, 1978]. Since then, much progress has been 

made in the field, especially using vision. Robotic topological maps are inspirations from 

biological behaviors which do not hold a detailed metric representation of space.  Humans and 

animals memorize environments by recognizing landmarks and relating them to places, as 

well as relating places’ adjacencies. Therefore, a robot topological map is a graph-like 

structure that models the environment as a collection of spatial nodes with interconnectivities.  
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Figure 2.6 shows a graph representation for a topological map where significant places 

in the environment form the graph nodes and place neighborhoods form the graph edges. 

Interconnections describing the map can interpret other meanings other than adjacency. They 

can indicate actions or behaviors, such as ‘traversing a door’ or ‘wall following’. 

Furthermore, they can indicate specific relative distances and angles. Topological maps are 

much easier for robot navigation than metric maps, since they are at a higher level of 

abstraction. Finding a path from one point to another on the map only requires finding a 

possible traversable path between two nodes following the arcs. If the interconnecting edges 

are annotated with additional metric information, path planning is a straight-forward task 

using a readily path planning algorithm, such as Dijkstra’s Algorithm.  

 

Figure 2.6: A graph representation for a possible topological map. 

 

As mentioned, nodes are defined at some distinctive places. This highlights two issues 

for the topological node: what is a place and how can a node in practice be assigned. 

The term ‘place’ has been defined in some literature. [Chatila and Laumond, 1985] 

defines the place as an area of a functional or topological unit. Examples of topological units 

are rooms and corridors, whereas a printer, for instance, is a functional unit. In this 

perspective, connectors used to connect the places are restricted to doors, stairways and 

elevators. A place is also defined as a nameable segment in a real world environment, which is 

distinguished due to different functionalities, appearances or artificial boundaries [Pronobis et 

al., 2010]. Furthermore, a place is a collection of physically close positions which share 

similar visual appearances [Werner, 2010]. The three definitions, in a global sense, imply that 

a place means a set of features that share a common representation, and which are close in 

space. This consideration is compatible with the human comprehension of places. 
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In practice, there exist two possibilities to assign the nodes [Valgren, 2007]. The first is 

to let a human operator assign them (i.e. by guiding the robot and telling it when a new node 

should be assigned by for example, pressing a button) [Thrun et al., 1998; Ulrich and 

Nourbakhsh, 2000]. Different supervised learning algorithms can be applied later, such that 

the robot eventually learns where to define the nodes itself [Radhakrishnan and Nourbakhsh, 

1999; Mozos et al., 2006]. The second possibility is to let the robot assign the nodes 

automatically. The robot detects abrupt changes in the environment (or rather abrupt changes 

in the sensor input data stream) that signal a new node occurrence. Changes in the robot 

actions or behaviors help to signal the new node detection (e.g. turning a corner or entering a 

door). For instance, assume a robot is moving in a corridor and executing a free space or wall 

following behavior. It reaches the end of the corridor or the wall after a while and senses this 

by its range sensor. The robot will mark the place as a node, and will then execute an action or 

a behavior to continue moving. Some other ways monitor the disappearance of sensed data 

patterns or objects to detect the transition into a new place [Tapus and Siegwart, 2005], while 

others assign the nodes by clustering data [Kuipers and Beeson, 2002]. Both ways are mostly 

vision-based. Finally, a much simpler way other than all the previous ones is to assign the 

nodes after the robot has traveled either a distance far enough from the previous node or a 

fixed distance [Andreasson and Duckett, 2004; Goncalves et al., 2005]. 

The second possibility for node assignment is obviously more appealing for full 

autonomy. Despite that, it is common for indoor environments, and especially with vision 

sensors, to manually assume that each hallway or room is a node, and execute fixed distances 

for the node assignment. In outdoor environments, the natural segmentation of rooms and 

corridors does not exist and human classification represents the world in other topological 

terms, such as ‘in the parking place, ‘close to the fountain’ or ‘outside the restaurant’ 

[Valgren, 2007]. Supervised learning methods are promising solutions to identify the semantic 

regions the same way as defined by humans [Mozos et al., 2005; 2007]. This complies better 

with the correct definition of a place, which might be missed by the automated techniques. 

Topological maps are constructed in various ways depending on the available sensors. 

Typically, they are feature-based maps, though not compulsory. It is more efficient to use 

sensor allothetic data to characterize the nodes with fingerprints, while use sensor idiothetic 

data to induce the connectivity relations between the nodes [Remolina and Kuipers, 2004].  
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In order to generate the whole topology automatically, navigation solutions can be 

employed. Those solutions are basically range sensors based, and define different structures 

of space such as waypoints, navigational areas or convex polygons. These structures are 

explained in the scope of the methods; visibility graphs, Voronoi diagrams and cell 

decomposition [Giesbrecht, 2004]. Since a major disadvantage of the idiothetic data is the 

perceptual aliasing, it is preferable to combine the generated nodes with additional allothetic 

data characterization. In the general view, generating topological maps this way undergoes 

two typical strategies [Shatkay and Kaelbling, 1997]; building the map directly from sensor 

data or deriving it from a metric map through some process of analysis.  

Building the map directly from sensor data can be implemented using different methods. 

The most common method is the Generalized Voronoi Graph (GVG) [Siciliano and Khatib, 

2008]. The GVG derives a route network from information about the obstacle boundaries, 

from which the topological nodes automatically emerge. The graph is formed by the set of 

points in the free space, which are equidistant to the n closest obstacles in the n-dimensional 

space. Figure 2.7-a shows a two-dimensional space environment and the corresponding GVG 

(fine lines) consisting of curves that intersect at meeting points and end up in the corners of 

the environment. GVGs have been extracted directly from range sensor data in [Choset and 

Nagatani, 2001; Wallgrün, 2004; Beeson et al., 2005; Thrun, 1998; Blanco, 2000].  

Topological maps can be also automatically generated from visibility graphs [Siegwart 

and Nourbakhsh, 2004]. Those graphs consist of lines of sight which connect polygonal 

obstacles, without crossing their interior. Before applying such procedure, the environment 

obstacles are usually enlarged by a size equal to that of the robot (i.e. diameter or longest 

dimension). Topological nodes are next assigned to the midpoints of the visibility 

connections. In a similar manner, the exact cell decomposition discussed before (see figure 

2.3) generates a topological map, in which the free space is represented via convex or 

trapezoidal polygons [Siegwart and Nourbakhsh, 2004]. Nodes are assigned either to the 

midpoint of the constructed lines or to the middle of the generated polygons.  

Both the GVG and visibility graphs are known as roadmap methods used for path 

planning. That is why they form a geometric representation of routes rather than a graph 

representation. But they can still derive the topology automatically. 
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A third method to generate the topology directly from sensor data is to use the route 

generalization method [Lankenau and Rofer, 2002]. Figure 2.7-b shows the locomotion of the 

robot as recorded by its odometry in solid curved line. Odometry can be used to detect the 

environment topology. The rectangular boxes in the figure represent the so-called 

‘acceptance’ or ‘navigational areas’. As long as the robot remains inside such area, it is 

assumed that it is still located in the same region. Navigational areas generate the edges of 

the topology, while nodes are generated at the intersections of those areas. The method is 

suitable for mapping corridor-rich environments, where nodes emerge at hallways, corners 

and junctions; and edges represent the straight corridors. 

 

                 
 

Figure 2.7: Left: Generalized Voronoi graph (GVG) [Wallgrün, 2004] with vertices placed at the position of 
the corresponding meetings points, based on equidistant edge generation from obstacles. Right: Route 
generalization [Lankenau and Rofer, 2002]. The figure shows the locomotion of the robot as recorded by its 
odometry, with the detected corners and the acceptance areas for each route segment. 

 

The second strategy to build a topological map automatically using navigation solutions 

is to extract it from another type of map, usually a metric map. In [Thrun and Bücken, 1996], 

a grid map is preprocessed by setting the emptiness and occupancy values to crisp values 

through thresholding. A Voronoi diagram is next constructed on the empty space of the 

thresholded grid map. Local minima found on the diagram are used to partition the metric 

map into nodes of the topological map. Another procedure based on a thinning algorithm has 

been used in [Choi et al., 2002]. The procedure eliminates occupied cells gradually until the 

skeleton of the structure appears. Nodes are selected at the end points of an arc, at the corner 

points where an arc slope varies, or at the branch points where more than three arcs intersect. 
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The technique represents a line-intersection modeling of space where intersections denote the 

topological nodes. Clustering and graph cuts have also been applied in [Zivkovic et al., 2005; 

Valgren, 2007] to let the nodes evolve as clusters with pattern similarities. Other methods 

apply learning through a hidden Markov model (HMM) to fit the data [Shatkay and 

Kaelbling, 1997], or extend the HMM with robot action data into a partially observable 

Markov decision process (POMDP) [Koenig and Simmons, 1996; Shatkay and Kaelbling, 

2002; Tapus and Siegwart, 2005].  

Topological maps have several advantages. Since they are abstract maps, they offer a 

simple representation for the space that can be easily used in high-level tasks (e.g. path 

planning, homing). It is enough to know on which edge the robot is traveling when leaving a 

node to have fast and large-scale navigation execution. Unlike the geometric maps, they do 

not require a metric sensor model to convert allothetic data into a common frame reference 

[Filliat and Meyer, 2003]. The only requirement is to store and recognize the place 

fingerprint from sensor readings. Therefore, they normally require less memory than metric 

maps and, hence, have lower complexity. Topological maps solve the global localization 

problem. Furthermore, they provide a means to solve loop closing [Ho and Newman, 2007] 

and the kidnapped robot problem [Engelson and McDermott, 1992; Andreasson and Duckett, 

2004], because they can deal with the arbitrarily large errors in the robot’s odometry. Figure 

2.8 shows a loop closing example where appearance-based place recognition identifies 

similar regions that can close the navigated loop. Finally, they are strongly related to the 

semantics and provide a means of inserting context into the modeling if object classes are 

associated with them.  

Despite those advantages, topological maps are not problem free. Firstly, they are 

apparently easier to construct than metric maps, but their autonomous building is difficult. 

Practically, the decision of when to add a new node to the map is not always clear [Ramisa, 

2009]. Secondly, localization with them is still susceptible to general perceptual aliasing and 

data association problems, which makes node recognition not accurate enough [Buschka, 

2005; Guivant et al., 2004]. This second drawback can limit their employment for 

localization in certain environments, especially in large-scale ones. 
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Figure 2.8: Loop closing example [Ho and Newman, 2007]. (a) A snapshot of a SLAM just before loop 
closing shown in red. Global uncertainty (gray ellipses) increases with the length of the excursion. A poor scan 
match at the bottom right introduces a small angular error which leads to a large error in pose estimate when the 
robot returns to starting location (top right). The inset images are the two camera views (current and matched) 
which are used to close the loop and correct the pose. (b) The corrected map after loop closure detection.  

 

2.3 Localization

Robot localization is the problem of estimating the robot’s position in a map. Usually, this 

estimate cannot be sensed directly in a reliable way. Absolute position sensors like GPS are 

unsuitable for use in all environments, while reference position sensors like odometers 

generate large measurement drifts and give indications about the robot’s relative position 

only. Therefore, the robot’s position has to be inferred with the help of both an internal map 

and sensor data. The sensory perceptions are compared to the map in order to correctly locate 

the robot, or update its position estimate and keep the error or uncertainty bounded.  

Table 2.3 shows different criteria for classifying localization approaches. The typical 

classification is metric versus topological localization, in accordance with the space 

representation and the type of employed map [Desouza and Kak, 2002; Bonin-Font et al., 

2008]. Figure 2.9 illustrates different position estimates in differently employed spatial 

representations, and accordingly maps types, for the same environment. The estimated 

position can be metric in a continuous space, taking the form of a Cartesian location and 

orientation vector [x,y,θ]T as in figure 2.9-b.  It can also be metric represented as a bounded 

area in a discretized metric space as in figure 2.9-c (i.e. cell or neighboring cells in an 

occupancy grid). Finally, it can be a topological place in a discrete topological map as in 

figure 2.9-c (i.e. node). 
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 Another criterion for classifying localization approaches is absolute versus relative 

[Desouza and Kak, 2002; Bonin-Font et al., 2008; Thrun et al., 2005]. Absolute localization 

locates the robot without the need of prior knowledge about robot past positions, while in 

relative localization it is a main requirement. A third classification is probabilistic versus 

non- probabilistic. This classification originates from a recent terminology that refers to 

robots employing Bayesian filters for map building and localization as probabilistic robots 

[Thrun et al., 2005]. Probabilistic localization is also termed pose tracking. 

 

Table 2.3. Localization approaches classification. 

Metric versus Topological 

Absolute versus Relative 

Probabilistic versus Non-probabilistic 

 

The second localization classification has been also regarded in the literature 

differently, as a number of increasingly difficult problem instances or situations [Thrun et al., 

2001]. In the first situation, the initial robot pose is known, and it is required to track the pose 

relative to this given position while navigating. Techniques that solve this problem are called 

tracking or local techniques [Fox et al., 1999], and such situation is referred to as local 

localization, relative/incremental positioning or position tracking. Solution approaches for 

this situation accommodate the noise in the robot motion. Since the effect of noise is usually 

small, position tracking methods often assume that the pose error is locally bounded and 

approximate the pose uncertainty by a unimodal distribution, such as a Gaussian. 

In the second situation, no a priori knowledge about the robot starting position is given. 

Therefore, no assumptions can be made about the boundedness of the pose error and the 

robot has to localize itself from scratch. This is referred to as absolute or global localization, 

and sometimes referred to as the wakeup-robot problem. Methods that solve this problem are 

called global techniques [Fox et al., 1999]. The localization must construct a match between 

the observations and the expectations as derived from the observed and perceived spaces. 

Solution approaches include triangulation methods and Bayesian filters that accommodate 

multiple tracking. 
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Figure 2.9: Localization classification - metric versus topological: (a) An actual floor map example with the 
robot’s exact position. (b) Continuous metric localization [x,y,]T (in a metric map). (c) Discrete metric 
localization (in an occupancy grid). (d) Discrete topological localization (in a topological map). 

  

A third and even more difficult situation deals with the case in which the robot is 

suddenly transferred or ‘kidnapped’ to another position without being aware of it. This is 

identified as a kidnapped or lost robot problem. The robot doesn’t have to be physically 

teleported, but it is rather a simulation that the robot might have encountered an internal error 

or reset operation. This problem is critical since the robot might still have the belief that it is 

in the old location and severe consequences might occur because of that. In this case, the 

robot has to identify first that it has been kidnapped and then find out its new location. The 

wake-up robot problem is considered a special case of the kidnapped robot problem in which 

the robot knows that it has been kidnapped. 

Solution approaches developed in the literature for map-based localization are plentiful 

and cover the mentioned localization classification. A particular implementation depends on 

the application scenario, environment characteristics and the sensory equipment. In the 

following subsections, the commonly employed methods for both metric and topological 

localization of mobile robots are reviewed. Probabilistic and non-probabilistic localization 

methods are covered in the metric localization subsection. 
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2.3.1 Metric Localization 

In the metric localization problem, it is required to estimate a robot’s location and orientation 

– together called the pose – relative to a given coordinate frame. It is assumed that the robot 

holds a metric map of the environment and it tries to determine its pose in this map. 

Localization using metric maps is an intensively explored research area. In what follows, 

solutions are presented from the classification point of view of probabilistic pose tracking 

and non-probabilistic localization methods. 

2.3.1.1 Probabilistic Methods for Pose Tracking 

Probabilistic pose tracking methods track the robot’s pose using iterative Bayesian filters. 

Bayesian filters update a belief they maintain about the pose by integrating perceptions and 

control cues over time. This belief is a conditional probability density over the set of possible 

poses. The control in this sense is an action indicating that the robot has executed a move. A 

typical example of control data is the velocity of robot. The perceptions are observations or 

sensor measurements obtained from a range sensor or a video camera. The example in figure 

2.10 illustrates how the integration of data over time helps the robot resolve ambiguity in its 

position. In the example, the robot cannot decide its location after a single measurement of 

recognizing the first door. The robot has to move forward, and so its current belief is updated 

by fusing the previous belief with the current observation. The location estimate for the 

illustrated example is resolved after two steps. 

Figure 2.11 depicts the graphical model for the mobile robot localization problem in 

terms of a dynamic Bayes network [Thrun et al., 2005]. The robot is given a map of the 

environment m and the goal is to determine its state xt (position) at given time t relative to 

this map, given all the data which the robot recorded or computed up to time t. These 

correspond to the controls u0:t, the environment perceptions z1:t, and the previously computed 

poses x0:t-1. 

In mathematical terms, the robot’s belief about the location bel(xt) is a posterior in the 

form of p(xt| z1:t, u1:t). The system starts out with an initial probability distribution )( txbel  of 

p(xt| z1:t-1, u1:t-1), and modifies it based on recursive Bayesian estimation by iteratively 

integrating actions and evidences as follows [Thrun et al., 2005]: 
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111 )(),|()(  tttttt dxxbelxuxpxbel  (2.1)

 

)()|()( tttt xbelxzpxbel   (2.2)

 

 

 
 

Figure 2.10: Probabilistic global localization (Markov localization) – an illustrative example [Thrun et al., 
2005]. Each picture depicts the position of the robot in a corridor along with its current belief bel(x) represented 
as a probability density function. (b) and (d) additionally depict the observation model p(z|x), which describes 
the probability of observing a door at the different locations in the hallway. A robot’s current belief is updated 
by fusing the previous belief with the encountered observation. 
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Figure 2.11: Graphical model of mobile robot localization in the form of dynamic Bayes network, which 
characterizes the evolution of controls, states and measurements. The values of the shaded nodes are given: the 
map m, the measurements z, and the controls u. The goal of localization is to infer the robot pose variable x. 

 

Equation (2.1) is the robot’s belief after executing a movement but before an 

observation is made, and is called the Prediction Step.  Equation (2.2) is the robot’s belief 

after an observation is made and is called the Correction or Measurement Update Step. η is 

the Bayesian normalizing constant relative to the state p(zt| z1:t-1, u1:t). In the literature, the 

transition density p(xt|ut,xt-1) is referenced as the action or motion model and is approximated 

from the kinematics and dynamics of the robot. It is defined either through a velocity motion 

model or an odometry motion model. In practice, odometry models are more accurate than 

velocity models, for most robots do not execute velocity commands with the level of 

accuracy that can be obtained by measuring the revolution of robot’s wheels [Thrun et al., 

2005]. It should also be noted that odometry is available only after the motion command has 

been executed, while velocity commands are available before performing the actual motion. 

p(zt|xt) is referenced as the observation, sensor or measurement model. Unlike the transition 

density of the action model, the observation probability density is difficult to compute 

because of the high dimensionality of measurements.  

As (2.1) and (2.2) indicates, Bayesian filters usually simplify the iterative processing by 

following the Markovian assumption. It assumes that the estimated position is a function of 

observed and control data between current and previously occupied positions only, and not of 

the complete data history (first order Markov model). That is to say: 

p(zt|xt) 

xt-2 xtxt-1

zt-2 zt zt-1

ut-2 utut-1

m

p(xt|ut,xt-1) 
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The implementation of a Bayes filter requires a representation for the belief function, 

the initial belief state, and the motion and sensor models. Implementation techniques differ 

primarily in the way the belief is represented and how the update of the belief is calculated. 

Kalman Filters, Markov localization and Monte Carlo localization (MCL) are common 

techniques for implementing the Bayes filter. Kalman filters implement the belief in 

continuous form, while Markov localization and MCL implement it in discrete form.  The 

latter techniques are originally derived by Thrun and colleagues [Fox et al., 1999]. They form 

the main probabilistic framework foundations of many localization methods currently in use. 

Early metric probabilistic methods focused on single hypothesis tracking in the metric 

space using Kalman filters and its variants [Filliat and Meyer, 2003; Crowley, 1989; Leonard 

and Durrant-Whyte, 1991]. The Kalman filter (KF) smoothes out the effects of noise in the 

estimated state variable by incorporating more information from reliable data than from 

unreliable data. It also makes it very easy to combine measurements from different sources 

(i.e. sensor fusion). 

KF [Welch and Bishop, 2006] treats the probabilities ( )( 0xbel , p(xt|ut,xt-1) and p(zt|xt)) 

as parametric Gaussian distributions. It calculates the belief as a single Gaussian function 

characterized by its mean and covariance, and described by linear state equations. The 

measurement probability must be linear in its arguments; the same as the state transition 

probability. In practice, this might not always be true, but it does allow the KF to efficiently 

make its calculations [Fox et al., 1999]. The KF computes the a posteriori belief as the linear 

combination of a priori estimate and a weighted difference between the actual measurement 

and its prediction. This discrepancy (between predicted and actual measurements) is called 

the innovation, and is fused with a blending factor in order to update the a posteriori. The 

blending factor is called the Kalman gain, and is calculated based on minimizing the a 

posteriori error covariance. The Extended Kalman Filter (EKF) is a variant of the classical 

filter that disregards the linearity assumption to deal with non-linear state and observation 

models. The non-linear functions are approximated through first order Taylor expansion. 
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Different features are used with Kalman filters for robot localization. For example in 

[Crowley, 1989], lines are extracted from sonar data. Matching observations to a local model 

is applied as the correction step of a linear KF for the estimated robot position at the time the 

observation was made. [Leonard and Durrant-Whyte, 1991] matches geometric beacons 

(walls and corners) extracted from sonar scans against those predicted from a geometric 

feature map in an EKF. Similarly, an EKF is employed in [Bonnifait and Garcia, 1996] to 

fuse odometry and angular measurements to known landmarks (light sources which are 

detected using a CCD camera) together. 

Kalman filters allow high accuracy with low complexity, since the belief distribution is 

simple. Only one single pose is considered, and whenever an action is performed or an 

observation is made, the estimate is updated given this only hypothesis. Computing the 

posterior means computing only new mean and covariance from the old data, using the action 

and sensor readings. Hence, Kalman filters possess this advantage that the representation is 

simple and the update computations are cheap. Their disadvantage is that position tracking 

might be lost if the measurements are in some way ambiguous. The initial position must be 

also known.  Their solution remains unimodal, which means they are limited to solving local 

localization only, and cannot handle global or kidnapped situations. The big difference 

between the estimate and the real position can drive the system to completely wrong position, 

from which the system is unable to recover. 

To overcome such problem of having to know the initial robot position and the fatal 

error that can occur if the position is lost due to a wrong estimate at some time, simultaneous 

tracking of multiple position estimates has been proposed. This method is simply an 

extension of the single hypotheses of Kalman filters. Multiple Filters are employed to track 

several position hypotheses [Piasecki, 1995; Jensfelt and Kristensen, 2001]. The number of 

hypotheses adapts to the uncertainty of localization. They are induced on those positions that 

have generated the current perception. The method provides the missing robustness against 

lost situations. However, it becomes infeasible if the robot has to re-localize itself during 

motion due to the high computational complexity. 

Other types of filters can solve the previous problems of KF, such as topological 

graphs, grids or particle filters. These filters are based on discrete belief representation. Both 

topological graphs and grids are similar in dealing with a discrete representation for the 
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space, which at the same time represents the state to be estimated. Topological grids use a 

spatial discretized grid to compute a discrete approximation of a probability distribution over 

all possible poses. When the location space is discretized, the integrals in equation (2.1) 

become sums and the belief over this space can be explicitly computed and stored. The grid 

is similar to the occupancy grid, but with every cell preserving a belief of how likely the 

robot is located in that cell, instead of an occupancy value. Cells are updated using the 

Bayesian updating. Since no specific features are stored in the grid, the measurement model 

often uses raw sensor data instead of extracting features from the data. The topological graph 

proceeds the same way as the topological grid. Localization which employs both filters is 

called Markov localization [Fox et al., 1998; 1999; Kosecka and Li, 2004]. Markov 

localization has proven to be both accurate and robust. It is mutli-modal; thus handles the 

global uncertainty well. It is precise when a small number of cells or nodes is used, but 

suffers from the heavy computation burden with large grids or topology. Some extensions 

were introduced in [Burgard et al., 1998] to overcome this problem.  

The idea of representing a discrete localization belief with a probability distribution 

function is also utilized in MCL [Dellaert et al., 1999]. MCL proposes an improvement over 

the previous methods by employing sampling-based methods (particle filter). Such methods 

represent arbitrary distributions which offer a trade-off between precision and real-time 

performance. In a particle filter, the probability distribution over the robot location is 

represented by a set of weighted samples (importance factors), whose likelihood is updated 

with each control and perception information. Estimation of the state is given through the 

sample with the largest likelihood. The number of calculations is reduced compared to grid-

based Markov localization. Adaptation of the samples size has been introduced in [Kwok et 

al., 2003] to reduce the computational cost. Several of the recent applications use MCL with 

range sensors for localization [Dellaert et al., 1999; Thrun et al., 2001; Kwok et al., 2003; 

Laaksonen, 2007; Grisetti et al., 2007], while a few still adopt vision sensors [Wolf et al., 

2005; Menegatti et al., 2006; Bennewitz et al., 2006]. Figure 2.12 shows an example of 

multi-hypothesis tracking that resolves global localization using MCL. 

The main characteristics of the discussed probabilistic localization methods are 

summarized in Table 2.4. Generally, methods using features and landmarks permit handling 

environment dynamics as they reject much of the raw data. The accuracy of the method is 
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      (a)      (b)         (c) 
 

Figure 2.12: Example of multi-hypothesis tracking using MCL. (a) Samples are distributed randomly over 
possible positions. (b) As the robot moves, only few hypotheses are tracked where ambiguities due to 
environment similarities exist. (c) Samples condense around a single position hypothesis [Dellaert et al., 1999]. 

 

usually bounded to the quality of the sensor data and not to the method itself. Robustness, in 

the presented sense, is defined as the ability to avoid lost robot situations (i.e. Multi-

hypothesis Tracking (MHT)). The evaluation of MCL is considered a special case, because in 

order to be practical, the number of particles have to be reduced making it relatively 

vulnerable to lost situations. As can be seen from the table, there is no method fulfilling the 

complete list of the properties. The probabilistic approach, however, gains a large popularity 

for many applications. From a practical view, a specific implementation method can be 

selected based on the application, environment and sensor requirements. 

 

Table 2.4. Comparison between the different methods of probabilistic localization [Thrun, 2002]. 

 EKF MHT Coarse (topo-
logical) grid 

Coarse (metric) 
grid 

MCL 

 

Measurements Landmarks Landmarks Landmarks Raw 
measurements 

Raw 
measurements 

Measurement 
noise 

Gaussian Gaussian Any Any Any 

Posteriors Gaussian mixture of 
Gaussians 

Histogram Histogram Particles 

Efficiency 
(memory) 

++ ++ + – + 

Efficiency (time) ++ + + – + 
Ease of 
implementation 

+ – + – ++ 

Resolution ++ ++ – + + 
Robustness – + + ++ ++ 
Global 
localization 

No Yes Yes Yes Yes 
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2.3.1.2 Non-probabilistic Methods 

Other localization methods are non-probabilistic. These include: direct scan matching and 

triangulation. The first method falls into two sets depending on the information used; raw 

data or features. Dense raw scans have been used directly to infer the robot pose, without 

explicitly deciding what constitutes a landmark. The pose is inferred by matching the sensor 

readings against a reference surface map. The discrepancy between them is minimized in an 

optimization problem by finding the best alignment for the local range measurements with 

the maximum overlap [Lu and Milios, 1997; Biber and Straßer, 2003; Diosi and Kleeman, 

2005]. The other set of scan matching is feature-based. It extracts distinguishing features 

from the range data and uses them for calculating the alignment of the scans [Lingemann et 

al., 2005]. Direct scan matching is more popular than feature-based matching, because the 

strict constraint of the existence of a certain type of geometric feature in the environment is 

eliminated. However, it operates with memory-intensive maps compared to feature-based 

matching, since the maps consist of raw measurements recorded from the reference positions. 

Scan matching can be performed locally or globally. Local scan matching [Lu and 

Milios, 1997; Sandberg et al., 2009] performs the matching with an initial pose estimate 

usually acquired from the odometry. Based on this estimate, the search is limited to small 

perturbations of the sensor scans for the area consistent with the current robot position, while 

the areas distantly apart are discarded. Contrarily, global scan matching [Tomono, 2004] 

aligns the current scan with respect to a map in the form of a database of scans. An initial 

pose estimate need not to be assigned, and the robot can be globally and precisely localized 

given accurate inputs. Though local scan matching reduces the required number of 

computations, it sacrifices the ability to globally localize the robot. 

Range scan matching has also been emulated through omnidirectional vision in 

[Menegatti et al., 2006]. Floor images are searched for color transitions and range 

measurements are obtained and matched to the prior map in MCL implementation.  

The second non-probabilistic localization method is based on landmark triangulation. 

Sensor readings are analyzed for the existence of landmarks around. Given that these objects 

are registered in the map, and by incorporating distance (range) or directions (azimuth 

angles) to them, the absolute position of the robot can be inferred. 
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As outlined before, landmarks are environment reference points that a robot can detect 

and use to calculate its pose. A landmark can be a single feature or a combination of features 

that refer to a higher-level abstraction or an object. It can also be natural or artificial. 

Examples for natural landmarks are doors, windows and ceiling lights in indoor 

environments, whereas roads, buildings, trees, sidewalks, and traffic signs are outdoor 

environment candidates. Vertical lines and point features constitute simpler abstractions of 

natural landmarks suitable for triangulation [Krotkov, 1989; Goncalves et al., 2005].  

Artificial landmarks are human-engineered structures introduced to the environment. 

They can be passive or active. Passive artificial landmarks resemble natural landmarks, 

except that they are human-made constructions. Active landmarks are based on a different 

technology. They are radio transmitting objects that send out signals as a kind of location 

information. Sometimes, they are called beacons. Beacons are accurate to locate when their 

signals are strong enough, but structuring and maintaining the environment with them may be 

costly. Few constraints and problems still exist with those technologies [Singhal, 1997]. A 

sufficient number of them must be visible from all possible robot positions. In practice, 

beacons cannot send out their signals in all directions (i.e. omnidirectional transmission), and 

thus cannot be seen from all places. Additionally, the transmitting of active signals can get 

disturbed by atmospheric and geographic influences while going from the sender to the 

receiver. Disturbances like refractions and reflections result in incorrect measurements, and 

hence triangulation is less robust. 

The choice between the kinds of landmarks to use is arbitrary. Each kind reports its 

pros and cons. Artificial landmarks require a change to the environment, which may not be 

preferable. Moreover, they may not be feasible in very large environments. They are 

recommended for use in structured and highly similar environments which do not change 

very much. Hence, they are easier to locate with more accuracy. Natural landmarks eliminate 

the burden of changing the environment by already being part of it. They do not have to be 

engineered in any manner. In this sense, using natural landmarks seems easier. They are 

recommended for use when the environment possesses suitable amount of details, such that 

existing variation provides a natural means for recognition, without caring about where to 

introduce artificial aids. They are also highly recommended for outdoor environments. 

Compared to artificial beacons, natural landmarks improve over them in terms of robustness 



Chapter 2. Map Building and Localization: State-of-the-Art 

 
46

because of their passivity. Nevertheless, the computational complexity of recognizing them is 

higher and the reliability of their recognition is also lower in similar environments. 

Triangulation is the common term for absolute positioning using landmarks, but more 

precisely, there exist two techniques for this purpose: triangulation and trilateration 

[Calabrese and Indiveri, 2005]. Triangulation techniques use angular measurements, and 

sometimes combined with distances. On the other hand, trilateration techniques use distance 

measurements only [Siadat and Vialle, 2002]. A GPS, for example, uses trilateration to 

determine latitude, longitude and elevation through the time of fight information of uniquely 

coded radio signals sent from satellites. Any triangulation problem can be reduced to a 

trilateration problem by computing the intersection circles subscribing the landmarks (at least 

three circles for the 2D plane). An advantage of triangulation over trilateration is that the 

complete pose can be recovered (i.e. orientation in addition to the position). That is why 

triangulation techniques are more commonly applied than trilateration. Landmark 

triangulation is considered a robust, accurate, flexible and widely-used method for absolute 

localization [Esteves et al., 2003]. 

In triangulation, the angles and/or distances are used to derive the full pose of the robot 

through geometric and trigonometric relationships. Usually, two landmarks are required to 

derive the position if the orientation is known. Otherwise, at least three landmarks are 

required. Figure 2.13-a illustrates that the robot pose P is constrained to the arc of a circle, 

given only the angle measured between two distinguishable landmarks. When an additional 

landmark is observed, the pose is constrained to a single point lying at the intersection of the 

two circles (figure 2.13-b); provided that no two landmarks are coincident (i.e. all landmarks 

are visible to the robot). When four or more landmarks are observed, the triangulation 

solution is overdetermined and can be solved using least-squares analysis [Betke and Gurvits, 

1997; Siadat and Vialle, 2002].  Overdetermined solutions help minimizing the uncertainty 

bound arising from non-accurate sensor measurements. Singularity in the triangulation of 

figure 2.13 will arise if the robot point P lies on the circumference defined by the three 

landmarks. This is because both circumferences are the same and therefore their intersection 

cannot be determined. 

One of the earliest triangulation applications is that of [Atiya and Hager, 1993]. It uses 

vertical lines whose positions are assumed to be known. In a stereo, the robot recognizes  
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Figure 2.13: Triangulation: constraints of pose given the bearings. (a) Two landmarks: the knowledge of angle 
ij = j-i constrains the robot position to be on a circular arc through landmarks Li and Lj. (b) Angles  and  
define two circular arcs whose intersection is the pose P [Font-Llagunes, Batlle, 2009]. 

 

pairtriple landmarks, with sufficient length and angle attributes to set up correspondence 

between landmarks in the environment and pixels in the camera. Once correspondences are 

established, finding the absolute position of the robot simply becomes the exercise of 

triangulation. Localization is executed in real-time. The triangulation implementation is 

divided between range-camera sensors and artificial-natural landmarks employment. Laser 

systems have been used in [Hernandez et al., 2003; Font and Batlle, 2006], while projective 

geometry in conjunction with a pinhole camera model has been adopted in [Yuen and 

MacDonald, 2005; Welch et al., 1991]. The latter has the advantage that it can localize 

autonomous vehicles in 3 DOF. Human artificial landmarks were constructed and recognized 

using vision in [Briggs et al., 2000; Jang et al., 2005], while in [Jang et al., 2003], a 

combination of artificial and natural landmarks were used together for a combined 

topological and metric localization. Artificial beacons were also used on a wide scale such as 

in [Pierlot and Droogenbroeck, 2009; Lee and Song, 2007]. 

Several methods exist for solving the triangulation problem. Four common numerical 

and closed-form solutions are provided in [Cohen and Koss, 1992], and which have been 

applied later in different works: Geometric Triangulation [Easton and Cameron, 2006], 

Iterative search, Newton-Raphson iterative search [Siadat and Vialle, 2002] and Geometric 

Circle Intersection [Font-Llagunes and Batlle, 2009]. Both of the geometric methods require 

the landmarks to be ordered in a given fixed notation. This constraint has been relaxed 

through a generalized geometric triangulation algorithm in [Esteves et al., 2003], which 

improves on the one introduced in [Cohen and Koss, 1992].  

Robot pose 1 Robot pose 2
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Triangulation error analysis has been conducted in some studies, where the landmark 

noise (bearing errors) is propagated to the estimated pose [Easton and Cameron, 2006; 

Madsen et al., 1997; Shoval and Sinriech, 2001; Esteves et al., 2006]. Different regions are 

identified where triangulation is robust and accurate, while in other regions large errors are 

exposed. Results comply with [Kelly, 2003], which states, without quantification, that the 

error in the pose will increase as the distance between the robot and landmarks increases, and 

that the error size will decrease with the increase of the sine of the angle between the two 

landmarks. Error analysis helps designing accurate triangulation through optimal selection of 

landmarks that minimizes the pose uncertainty. In [Easton and Cameron, 2006], the effect of 

landmarks structure for the accuracy of triangulation is studied. For example, it has been 

shown that accuracy is higher if the landmarks are spaced close to an equilateral triangle, 

while lower if they lie on a straight line (a singularity of the triangulation). In [Madsen and 

Andersen, 1998], some guidelines were laid regarding a good selection of landmarks. 

2.3.2 Topological Localization 

Localization in topological maps is basically to identify in which node or edge the robot is. In 

contrast to metric localization, topological localization is a direct position inference done via 

place matching to recognize the node. The detection of edge traversal is recognized through 

the odometry or the robot’s actions. To infer the node accurately, most topological localization 

implementations use distinctive fingerprints to characterize the nodes. Normally, those 

fingerprints are feature-based descriptors. Distances and angles at the branching inter-

connections of node can account for the descriptor too [Choi et al., 2002; Choset and 

Nagatani, 2001]. The node inference, in general, is still liable to perceptual aliasing despite 

this rich characterization. Aliasing occurs due to noisy measurements, reduced data by feature 

extraction algorithms, or similar data because the environment itself has repeated structures 

(e.g. all corridors will look the same in a maze environment). 

Topological localization is efficiently presented by employing vision sensor-based 

features than range sensor-based features alone. This is because perceptual aliasing is less in 

the vision measurement space than the range measurement space. Several vision-based 

approaches have been presented, which mainly differ in the way the scene is perceived. 

Examples for used cues are image color histograms [Ulrich and Nourbakhsh, 2000; Blaer and 



 2.3 Localization 49

Allen, 2002], eigenspace representation [Artac, 2002], and frequency filter responses 

[Menegatti et al., 2004].  

The first original study for topological localization and place recognition is the work 

done in [Ulrich and Nourbakhsh, 2000]. In this work, the robot is led through an indoor 

environment taking pictures with a panoramic CCD camera, and images are classified in real-

time based on nearest neighbor learning, image histogram matching, and a simple voting 

scheme. It is claimed that the color images contain enough information that no additional 

range sensor data is needed. In [Lamon et al. 2003], an interesting ‘fingerprint’ concept is 

introduced for visual localization by recovering a circular list of combined features from 360º 

color images, where the ordering of the set matches the relative ordering of features around 

the robot. Part of the information is coded in the nature of the features (vertical edge, corner or 

color patch), and another in the order of the list. A minimum energy optimization algorithm 

based on cost matrix is used for the fingerprint matching.  

Other significant work employs regular cameras for the image acquisition. In [Jung and 

Kim, 2005], a webcam is used to extract a Gaussian model of texture distribution from a 

steerable pyramid using wavelet decomposition. Kullback-Leibler divergence is used for 

image matching. The success rate of place recognition is recorded to be 87% on average. A 

major contribution presented in [Pronobis et al., 2006] is a vision recognition approach for 

five-place office environment under varying illumination conditions. Receptive field 

histograms are used for feature extraction, with a support vector machine classifier. The 

approach achieved a classification rate of 74.5-84.6%, with remarkable recognition time. In 

[Mozos et al., 2007], an integrated vision-laser sensing succeeded in extracting geometric 

features from an indoor environment and classifying it into door, corridor, hallway, office and 

kitchen classes. The incorporation of the spatial dependencies, using a Markov model with 

AdaBoost classifier, managed to greatly distinguish between the different classes. 

Holistic approaches appear to work efficiently as well for topological recognition. In 

these approaches, recognition is accomplished based on a general appearance of the scene. 

This general appearance is often captured through spectral information. These approaches 

show general efficiency, but are known to be sensitive against rotation and translation 

transformations which may reflect scene dynamics. In [Oliva and Torralba, 2001], the use of 

shape is argued to be an underlying stable spatial structure that presumably exists within all 
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scenes. A gist descriptor is proposed consisting of Discrete Fourier Transform (DFT) 

coefficients, which are compressed by the Karhunen-Loeve Transform (KLT). The method 

shows satisfactory results when applied to outdoor environments. The descriptor’s 

performance, however, dropped dramatically when applied to indoor environment categories. 

Another gist, CENTRIST, is proposed in [Wu and Rehg, 2010] claiming to perform 

efficiently both indoors and outdoors. The descriptor is based on a window operation with a 

Census Transform that encodes and compresses information in local patches.  

Histograms of various image properties, such as color and image derivatives, have been 

widely applied for place recognition. However, after the SIFT feature descriptor [Lowe, 

2004] was introduced, it became popular and dominated several vision applications including 

localization systems [Kosecka and Li, 2004; Ledwich and Williams, 2004]. The features 

have been incorporated in direct topological matching using several distance measures and 

classifiers [Sabatta, 2008; Ullah et al., 2008], and sometimes fused with motion models in 

MCL [Bennewitz et al., 2006]. Different comparison studies of SIFT against other local and 

global descriptors were conducted, in which the SIFT’s accuracy was high and stable 

[Mikolajczyk and Schmid, 2003; Ramisa et al., 2008; Valgren and Lilienthal, 2007]. For 

faster execution of SIFT, some work suggested the elimination of the rotation invariance step 

from the descriptor’s processing [Ledwich and Williams, 2004], or the use of only persistent 

features which are robustly detected [Sabatta, 2008]. The latter can limit the total amount of 

information required to map an environment by 70% compared to other methods that store 

SIFT descriptors directly. Another local descriptor, SURF [Bay et al., 2008], has also proved 

in few works to be as good competitor as SIFT for mapping and localization [Valgren, 2007].

2.4 Hybrid Map Building and Localization

In the previous sections, the classical classification for map building and localization is 

introduced. Metric maps allow the robot to compute optimal paths and perform accurate 

localization. The maps are, however, hard to create and maintain due to the inaccuracies in 

the robot motion and sensing. Moreover, they involve heavy computational costs affecting 

performance and scalability in large environments, and do not interface well with symbolic 

problem solvers and humans [Buschka and Saffiotti, 2004; Thrun and Bücken, 1996]. In 

contrast, topological maps scale better to large environments and interface more naturally 
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with symbolic systems and humans. However, they allow only coarse localization and 

suboptimal path planning. Besides, they have difficulty in distinguishing between different 

places when additional metric information is not employed. Table 2.5 compares the metric 

versus topological paradigms. In a trail to combine the precision of the former with the 

scalability of the latter, the hybrid mapping and localization has emerged integrating both 

paradigms. The field is new and actively growing in research. It targets the need for systems 

that provide dual functionalities, with faster and scalable geometric localization than the 

classical metric approaches.  

 
Table 2.5. Comparing topological to metric map building and localization. 

 Metric Topological 

Resolution  High Low  

Computational time High Low 

Memory utilization High  Low  

Maintenance(map updates) High  Low  

Scalability Low  High  

Sensitivity to noise More  Less 

Perceptual aliasing exists exists 

Map size Larger  Smaller  

 

Although a hybrid map consists generally of any combination of different maps, the 

hybridization is most often performed using topological and metric maps. A semantic map is 

also a term related to the design of hybrid maps. Local metric maps can be connected to a 

global topological map which can be described by a third semantic layer comprising 

information about rooms and objects, such as kitchen, bedroom, bed, sofa, etc [Galindo et al., 

2005]. Most of the presented work, if not all, performs the ‘hybridization’ in the form of a 

hierarchical structure consisting of two levels, incorporating two maps and two localization 

modules. In this view, a precise frame structure for the hybrid map is defined; the topological 

map occupies the higher level of the hierarchy, while the metric map occupies the lower one. 

The initial motivating work in the area of hybrid map building and localization is [Thrun, 

1998]. In this work, the grid-based approaches are compared to the topological approaches, 

and it is concluded that a combination of both approaches gives the best results with respect 

to computational complexity, preciseness and scalability. Obviously, the merit of the hybrid 
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approach is seen in the hierarchical processing of localization which handles the geometric 

localization problem in economic means. 

Hierarchical map building and localization represent and process information in at least 

two separate levels. The hierarchy moves top-down in accordance with the resolution of 

information; from course to fine scale. In addition to providing an organized structure for data, 

the goal of hierarchical processing approaches is to reduce the set of candidates towards a 

solution, and hence, the high computations are evaluated only on a minimal subset rather than 

the entire reference set. Therefore, hierarchical localization frameworks provide much better 

metric localization performance in large-scale environments. The initial topological 

localization shrinks the related metric search space either to a single space or a distribution 

over it, providing less space and time complexities.  

General hybrid maps preserve both the topological and metric information generated in a 

top-down or bottom-up way. In the top-down case, the map structure is in the form of a global 

topological map that connects several local metric maps.  Usually, the topological map is 

initially constructed, and next linked to a set of detailed metric maps for each topological node 

in an obvious hierarchical fashion. An example of the top-down structure is [Tomatis et al., 

2003]. It uses corners and openings as topological landmarks and lines as metric ones, both 

recognized by means of a laser ranger. EKF and POMDP are used for metric and topological 

localization respectively. When switching from the topological to the metric map, the EKF 

has to be initialized. For this purpose, a detectable metric feature (a door) between both maps 

allows knowing when to begin the switch and gives an approximation of the robot position in 

the local metric map. In [Tully et al., 2007], a hierarchical atlas has been constructed linking a 

high-level topological graph (GVG) to a set of lower level feature-based metric submaps. A 

discrete Bayes filter and a KF are employed together to localize the robot at the two levels. 

Similar work is done in [Lisien et al., 2003] in a SLAM approach.  

The second bottom-up structure has another perspective. One can say it is of interest to 

decide how to distribute the environment into and between local maps. Therefore, obvious 

map hierarchy might be missing, since the idea is based on grouping. It can be seen only in the 

localization as it is top-down executed. This group coincides with the previously presented 

approach of generating topological maps from CADs or other forms of metric maps. The main 

idea is to cut the high-resolution map into disjoint areas. That is why a global metric or high-
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resolution map is first constructed from which the topological map is generated on the top of it 

by use of splitting measure. A relevant advantage for this structure is that the topological map 

preserves consistency with the high-resolution metric representation. This allows an easy and 

consistent switch between the two maps whenever a specific resolution is required. Another 

advantage is that the topological nodes are created automatically. 

In [Blanco et al., 2006], the recursive partitioning of the sensed space based on overlaps 

generates the topological map from the metric one obtained by SLAM with laser scans. It is 

assumed that the absolute poses, from where the different scans were taken, are available. The 

method then considers the space sensed in each observation as a node of a graph, whose arcs 

represent the sensed-space overlap between two observations.  Recursive cuts of this graph, 

based on intra-group cohesion metric, produce groups of strongly connected nodes. In [Thrun 

and Bücken, 1996], a topological map is extracted from a grid map using the Voronoi method 

in the classical way. The grid map is generated by training an artificial neural network that 

maps sonar measurements into occupancy values. 

It appears normal to extract a topological map from a metric one. Though the reverse 

seems to be odd, it has been carried out in [Duckett and Saffiotti, 2000] to design a 

hierarchical mapping and localization system. The technique is offline-based, which makes 

use of metric information in the topological map together with a relaxation method in order to 

maintain the geometric consistency.  

Other than employing an explicit hybrid map, place information has been fused with 

probabilistic filters to account for hierarchical localization. In [Wolf et al., 2005], an image 

retrieval system based on invariant features is used as the correction step in a MCL. Similarity 

values generated from the retrieval system are used to update the weights of samples, together 

with a visibility region determined from a pre-computed and stored occupancy grid map. 

[Menegatti et al., 2003a] uses the same idea without the visibility region, and with less 

number of images acquired from an omnidirectional sensor. Their retrieval system uses 

Fourier Transform to extract features instead. In [Murillo et al., 2007b], the topological 

localization first computes the robot position relative to a set of reference images. The 

reference images are identified through radial lines, which are next fed into a three-view 

omnidirectional vision system (trifocal tensor) that calculates the bearings and identifies the 

metric pose. 
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Different abstractions of features have established a third form of hierarchy towards 

localization [Courbon et al., 2008; Menegatti et al., 2003b; Wang et al., 2006]. Those 

methods start with coarse and fast data matching, such as matching using global features. 

Retrieved candidates enter a second matching phase using another set of data, such as local 

features to find a single best solution at the end. Good compromise of accuracy, memory and 

computational cost has been achieved by those methods. High-density data set is, however, 

an essential requirement for high resolution localization, which is a critical disadvantage. 

In terms of hybrid localization methods, the work of [Baltzakis and Trahanias, 2002] 

can be mentioned. It presents a hybrid technique for localization only, and regards efficiency 

but not scalability as the previous approaches. The technique uses a switching state-space 

model employing a probabilistic KF and the HMM. Line segments and corner points are 

extracted from laser range data. The features are tracked through multiple Kalman trackers, 

while allowing the probabilistic relations among the multiple hypotheses to be handled by the 

discrete Markovian dynamics, where duplicate hypotheses are merged and improbable 

hypotheses are removed. 

The advantages of the hybrid map building and hierarchical localization can be 

summarized as follows: (i) They provide both coarse and fine resolutions for a robot pose in 

a single framework; (ii) they translate the need to represent and reason about information at 

different levels of abstractions at the same time; (iii) they provide a sensor fusion approach if 

the topological space uses a different feature set than that used in the metric space. This 

would lead to a more accurate position estimate; (iv) performance scales much better for 

large environments. The hybrid framework additionally provides sound advantages from the 

topological mapping, such as: (v) Introducing context and semantics for cognitive perception; 

(vi) solving loop closing and recovering from serious errors of lost or kidnapped robot 

situations. A crucial and critical issue in those frameworks, however, exists. The accuracy of 

the metric localization is bound to the topological accuracy. A wrong topological estimation 

can lead to severe coincidences in the metric space, at least in regard to safety factors. 

2.5 Summary

Many potential solutions exist for robotic map building and localization. Basically, they are 

categorized into two paradigms: metric and topological. Robotic map building in the context 
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of the late 1980’s was primarily metric, meaning that solutions used geometric features or 

grids to represent the environment. Those solutions provide high-resolution position estimate 

but on account of high computation requirements. Topological maps, where only places and 

connections are stored in a graph representation, have been identified in the literature as 

compact, efficient and scalable representation but on account of the resolution.  

Localization solutions are rather categorized on another relevant dimension; that is 

relative and absolute localization. Relative localization uses relative measurements, such as 

odometry and inertial navigation fused with Kalman filters. Absolute localization uses 

probabilistic multi-hypotheses tracking filters such as Monte Carlo Localization, or employs 

active beacons, artificial/natural landmarks and dense scans in non-probabilistic methods like 

triangulation and model matching techniques. 

Though several environment map building and localization solutions are afforded for 

the different applications, some challenging problems exist which influence their 

performances. One group of challenges concerns the perception process, which in turn 

influence the localization accuracy. The group includes environment perceptual aliasing and 

data association problems. To minimize the severe effect of those problems, a different 

concept for modeling the operating environment should be regarded. Another group of 

challenges concerns the techniques used for the solution in their own, regarding their 

computational performance and scalability. The hybrid map building and localization 

paradigm emerged recently to provide a promising solution for the latter challenge group. It 

combines both the metric and topological paradigms to build computationally efficient and 

scalable metric localization solutions. In those solutions, the topological accuracy cannot be 

that easily overlooked. 



 



 

Preliminaries to            
Environment Modeling            

This chapter highlights some preliminaries for the solutions presented by this work. It first 

discusses some general, but basic concepts for environment modeling and perception. Next, 

the different exteroceptive sensors which form the candidate pool for the proposed work are 

introduced. The advantages and disadvantages of each sensor and its suitability to the type of 

environment in general are given. The possible environment modeling approaches and feature 

extraction are also presented. Afterwards, attention is given to the explanation of local feature 

extractors and the basic foundations of the information theory. The chapter closes with a short 

summary highlighting the foundation elements of the proposed work. 

3.1 Environment Modeling1 and Perception 

General environment modeling is the process of environment data interpretation and 

representation for a specific purpose. For the navigation purpose, it is a synonym for 

cartography or map building and is applied through an interaction between the agent and its 

surroundings by means of its exteroperceptive sensors.  

                                                 
1 In the scope of this work, environment modeling is the processing adopted to generate robotic navigating maps, which includes other 

methodologies rather than using the feature extraction methodology only. Hence, it is a more general term than environment map building. 

Chapter 3 
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Maps are descriptive models that work on a higher level of abstraction than state 

variables models or systems of differential equations. As has been introduced in the related 

work of chapter two, maps take different forms and are utilized for different tasks. For 

instance, a topological graph can be employed for path planning, while a list of distinguished 

objects can be used for local navigation. Similarly, a color map can be applied for workspace 

identification, and an ultra-sonic map for position update. Practically, there is hardly a single 

environment model that can be used for all purposes for complex systems. There is also no 

single model that is capable of capturing all the properties required. Furthermore, there is 

rarely one model that can map all kinds of environments [Badreddin, 1997]. Nevertheless, 

investigating efforts usually try to fit a specific model to the environment with regard to some 

application constraints and the required efficiency.  

Perception is an elementary and integral part of the environment modeling, and the 

employed sensor plays an essential role in the system’s behavior. To understand the value of 

sensors and perception, we can as an example imagine how difficult the task is to explain the 

red color of an apple for a lifelong blind person. Hence, choosing the proper sensor for the 

environment modeling is not a trivial issue. 

Perception starts by acquiring raw data from the sensors. Raw data can be used directly, 

but they deliver low information. Therefore, the data are often processed at different levels of 

perceptual abstraction, and the result is the so-called “features”. Features are the most 

relevant information extracted from the original data according to a certain filter with respect 

to a lower dimensionality space. Different feature abstractions exist; from primitive color, 

intensity, or distinct textural patterns, to high-level geometric features such as lines, edges or 

corners, and moving to complex and sophisticated object models. Normally, the choice of a 

feature abstraction is a function of the available sensor and the application environment. 

A model building is much more than a feature extraction process. From a generative 

point of view, it is decomposed into the following steps [Badreddin, 1997]: 

– Determining “attractive” features from which the model, or part of it, is to be built, 

i.e., unsupervised learning of some features. 

– Supervised learning of prescribed features. 
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– Establishing the topological relationship between features to deliver the structure 

which combines the features into a complete model. 

As can be deduced, learning appears to be an important factor in the model building 

process. Usually, the lack of explicit knowledge and the probable high-dimensional data 

spaces suggest learning as a strategic way to construct efficient solution-models. Similarly 

from the artificial intelligence field perspective, it is viewed as the basic strategy for building 

intelligent models [Han and Kamber, 2006]. Another considerable factor which cannot be 

ignored is that learning provides a means of robustness by handling the external noise effects 

and uncertain sensing and perception. 

Being engaged in lots of work, the geometric model represents the most widely applied 

modeling approach for environment modeling. A complex environment, however, can be 

better described by a set of layers, each capturing a particular class of features. A mapping of 

one feature class simply corresponds to the kind of sensor used to detect this feature.  For 

example, besides the geometric layer that describes the general shape of object, another layer 

can describe the physical properties, such as temperature or conductivity. An example of this 

layered concept is given in table 3.1.  

 

Table 3.1. Example of classes and their features [Badreddin, 1997]. 

Class Features 

Ultrasonic Range, Range-image, Intensity, … 

Passive Vision Grey-level, Color, Contour, … 

Active Vision 3D Range-image, Intensity, … 

Infrared Temperature, Range, Reflectivity, … 

Tactile Force, Torque, Electrical Conductivity, … 

Geometry Edge, Corner, Plane, … 

Objects Cylinder, Cube, Table, Window, … 

Microphone Sound frequency, … 

 

Moreover, the environment can be described in terms of information-theoretic quantities 

(e.g. conditional or unconditional entropy or transmission). These quantities provide measures 

for the detectability and distinguishability of environment objects and features. Usually, the 

question of which features to employ in the model is not a directly-answered question. It 
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depends on the purpose for which the model is intended, the available sensors, the type of 

environment, and the permissible space and time complexities. An information-theoretic 

modeling for the environment can count as an additional solution to answering this question. 

3.2 Sensors

As mentioned in the previous chapter, robot sensors can be distinguished into two types: 

idiothetic (proprioceptive) and allothetic (exteroceptive). This chapter is concerned with the 

exteroceptive type, which makes more relevance in the environment model building problem.  

Exteroceptive sensors are a major and vital technology that proliferates very fast. Noise 

and uncertainties remain an inherent part of all sensors. Without exceptions, all measurements 

provided by sensors are uncertain by nature. Therefore, it is recommended that the uncertain-

ties are isolated and modeled by knowing the physical characteristics of the sensor before 

errors propagate in the system application levels. Probabilistic and possibilistic approaches 

can model uncertainties. They are more reliable than relying only on the first measurement 

moment. In what follows, a variety of sensors suiting the presented work and implementation, 

together with the cons and pros and suitability for the environment, is introduced. 

3.2.1 Range Sensors 

Range sensors are used in almost every robotic platform. In the 1970’s and 1980’s, ultrasonic 

sensors were the popular perception system for acquiring distance information. They are still 

employed up till now, primarily because of their low cost and easy integration. Like most 

other range finders, they are based on the time-of-flight principle, where the range distance is 

estimated by measuring the time a beam requires to hit an obstacle and reflect back to the 

transmitter. Their disadvantage is their large beam angle, which accounts to a low angle 

resolution.  

Infrared sensors overcome this problem, but they do not extend for longer distances. 

Besides, as they emit infrared light, they do not function accurately outdoors or even indoors 

if there is direct and sometimes indirect sunlight. In the last decade, laser range finders and 

scanners gained a large acceptance. They are engaged in a large number of applications 

mainly because of the high accuracy they can achieve. For example, they have been used 

extensively in 3D object modeling and recognition. The sensor accuracy is determined by the 
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brevity of the laser pulse and the speed of the receiver. Laser rangers are, however, highly 

expensive when compared to ultrasonic and infrared sensors. 

Range measurement devices have been widely and efficiently used to detect obstacles 

and perform scanning of the environment. They suit structured environments, where walls, 

corners and edges can be recognized for producing a map and localizing the robot. They are, 

however, highly susceptible to noise. Sources of errors are sensor mechanical or electrical 

noise, cross-talk, specular reflections and environment dynamics, all of which lead to 

misinterpretations. Figure 3.1-a illustrates these kinds of errors. Probabilistic sensor 

modeling has been adopted to overcome these errors [Thrun et al., 2005]. Figure 3.1-b 

presents a probabilistic sensor example that can overcome errors and uncertainties 

accompanied with the raw measurement of a proximity sensor. 

Figure 3.1. (a) Typical measurement errors of any range sensor. (b) Proximity sensor probabilistic model as a 
mixture distribution comprising the different errors and uncertainties associated with the range measurement. 
Here, zmax is the maximum range measurement and zt

* is the actual beam measurement [Thrun et al., 2005]. 

 

3.2.2 Vision Sensors 

Compared to range sensors as a primary sensor, vision appears to possess several appealing 

advantages: (i) They have virtually unlimited range and can cover large field of views at high 

update rates. (ii) Due to their passive nature, multiple cameras do not interfere with each 

other when operating in the same area. (iii) Rich information like color and texture are 

readily available in images. (iv) Camera systems are now available at low costs and have 

limited power consumption. Cameras can also provide depth information when coupled in a 

stereo vision head, but in this case their complexity is unacceptable when compared to range 

zmaxzt
* 

(i) Normal beams 
reflected by obstacles 

(ii) Beams reflected 
by dynamic objects/ 
caused by crosstalk 

(iii) Random 
measurements 

(iv) Specular 
reflections 

(a) (b) 
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sensors. That is why they have limited access in autonomous systems for this purpose due to 

the complexity in treating the vast amount of information.  

Recent camera constructions exist which provide a 360 degrees horizontal field of view 

instead of the limited field of view offered by classical cameras. Figure 3.2 shows some 

examples of omnidirectional constructions that provide panoramic vision. A catadioptric 

sensor, such as the 0-360, offers a wide field of view usually with non-uniform spatial 

resolution, while a multiple camera rig can provide large fields of view with uniform spatial 

resolution. Approaches to panoramic photography [Brown and Lowe, 2003] stitch image 

shots taken separately into a single continuous image. This is computationally intensive with 

the usage of the RANSAC iterative algorithm to find the correspondences. Alternatively, an 

omnidirectional camera can be used to create panoramic art in real-time and without 

actuating neither the camera nor the robot. Panoramic images provide rich scene information, 

which can resolve many robotic navigation-related problems. They have an additional 

advantage of producing circular images with rotation invariant features.  

The different types of imaging systems (single cameras, stereo camera, multiple camera 

rigs and catadioptric sensors) have been used in map building and localization because of the 

rich information they provide. They suit different environments and match those lacking 

clear structure. The main associated problem is that vision data need high processing due to 

the massive amount provided. Cameras do not offer data richness only, but also redundant 

and unnecessary data in high-dimensional spaces. It cannot be ignored that the irrelevant 

data, together with the high complexity of the environment (which is more revealed through 

vision sensing), pose difficulties in the environment processing, modeling and recognition.  

3.2.3 Other Sensors 

Other sensor examples include tactile sensors, force sensors, thermal sensors and active 

beacons. Compared to range and vision sensors, tactile, force and thermal sensors are far 

away from a widespread utility, although they are indispensable for the distinct human-like 

activities: manipulation, exploration, and response [Appin, 2007]. The importance of tactile 

and force sensing for manipulation appears evidently for the fine motor tasks. 

Tactile sensors elicit information through physical interaction. Tactile information 

about materials and surface properties (e.g., hardness, thermal conductivity, roughness, 
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Figure 3.2. Omnidirectional vision commercial examples: (a) Ladybug consists of 6 cameras; 5 of which are 
radially configured on a horizontal ring and one points vertically. (b) 0-360 Panoramic Optic that provides 115 
degree vertical field of view. The camera is a popular construction that consists of a perspective camera 
pointing to a hyperbolic mirror. (c) Stereo Omnidirectional System (SOS) with 60 color C-MOS cameras that 
capture raw and depth images of all directions synchronized in real-time. (d) Example of a panoramic image 
acquired by a common omnidirectional camera outdoors. 

 

friction) help to identify objects. Force sensors measure components of contact forces when 

the fingers or arms of a gripper make contact with environment objects. These sensors are 

found most often at the base joints or wrist of robots, and may be distributed throughout the 

links of a robot. In a similar manner, forces can help to distinguish objects. Thermal sensors 

can be used to determine the material composition of an object, as well as to measure surface 

temperatures. A temperature sensor that contains a heat source can detect the heat rate 

absorbed by an object in room temperature where objects exhibit almost a constant 

temperature. This provides information about the heat capacity of the object and the thermal 

conductivity of the material from which it is made, and consequently makes it easy, for 

example, to distinguish among objects (e.g. metals from plastics). 

            
(a)   (b)   (c) 

 

 
(d) 
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Other than the previous group, active beacons appear to be more commonly employed 

sensors. These sensors are used by trilateration and triangulation navigation systems. In such 

navigation systems, there are usually three or more active transmitters (usually infrared) 

fixed at known locations in the environment and one receiver on board of the robot. 

Conversely, there may be one transmitter on board and the receivers fixed on the walls. 

Based on the time-of-flight information, trilateration systems compute the distances between 

the stationary transmitters and the onboard receiver. In the triangulation navigation system 

configuration, a rotating sensor on board of the robot registers the angles to the beacons it 

detects relative to the vehicle’s longitudinal axis. Such navigation systems can be built 

simply and inexpensively. One problem with these configurations is that the active beacons 

need to be extremely powerful to ensure omnidirectional transmission over large distances. 

In addition, beacons may not be visible in many areas, a problem that is particularly grave 

because at least two beacons must be visible for trilateration and three for triangulation. 

3.3 Vision-based Modeling Approaches

Places can be recognized in two ways, either through: (1) the objects they have which make 

them recognizable (e.g. a coffee machine in a kitchen), (2) holistically through a memorized 

pattern of the scene as a whole and not as component parts alone.  Both ways describe places 

with a feature set, which is often referenced in the latter way by the fingerprint or the gist.  

Both objects and scenes can be described through different modeling approaches that 

use different cues [Roth and Winter, 2008]. Earlier object modeling approaches are shape-

based which try to approximate the object with a collection of three dimensional lines and 

planes to form geometrical primitives (e.g. boxes, spheres, cones, cylinders, surface of 

revolution). They are termed model-based approaches. An obvious limit of these approaches 

is the shapes they can deal with. Most real objects are complex in shape and cannot be 

represented in this specific manner.  A second later approach tried to segment the scene into 

objects or homogenous parts and to characterize those segments by features (e.g. color, 

shape/contour, texture). The segmentation approach has been applied widely for several 

years, but the accuracy and processing of segmentation are a function of the complexity of 

object or scene. The object or scene may suffer variant appearance when viewed from 

different directions and when partially occluded by other objects. 



 3.3 Vision-based Modeling Approaches  65

Both the model-based and segmentation approaches are local or part-based models. A 

third different approach comprises a global characterization for the object or scene, and not a 

partial one. This is the appearance-based or view-based modeling. In this type of modeling, 

only the global appearance is used in which different two-dimensional information (mainly 

images) about the object or scene-of-interest is captured. The acquisition is sometimes 

complemented with the position from which the information is acquired. In this case, a direct 

mapping function from sensor data to pose space is preserved. For a mobile robot, the 

position information can be acquired through wheel encoders. Without this geometric 

knowledge, the only information from the environment is the images themselves, which can 

still be used for recognition purposes.  

Opposed to part-based models, those which are based on visual appearance are 

significantly less expensive in computation. They bypass the exhaustive and difficult 

segmentation step, which might be ineffective for densely cluttered environments. They also 

refrain away from the non-realistic assumption of finding the ideal geometric objects. In 

conjunction, they provide a richer description projection for the environment rather than the 

limited domain provided by geometric modeling approaches. Appearance-based modeling 

has several other advantages. It is conceptually simpler, because it characterizes the whole 

scene as a template and model information of the whole image rather than searching for 

specific objects or parts in the image. Another significant advantage is that the global 

appearance characterization is a combined effect of several scene or object properties (e.g. 

shape, reflectance), in addition to the implicit embedding of other intrinsic parameters (e.g. 

pose, view point and illumination conditions). Such an issue allows easy adaptation of the 

environment model to the external factors through automatic learning processes. 

The use of appearance based models has become recently more popular for object and 

scene modeling and recognition in various applications [Schiele and Crowley, 1998; Yang et 

al., 2004; Booij et al., 2006]. This is partly because vision sensors are becoming cheap. For 

mobile robot localization, it has been proved that simple appearance-based fingerprints are 

sufficient to recognize environment places, and hence approximately localize the robot. 

Appearance-based modeling can freely use local or global feature extraction methods. Those 

methods will be discussed in the next section. 
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3.4 Vision-based Feature Extraction

Feature extraction is the essential process for building any environment model. It provides a 

new representation of the input data for purposes of data reduction and concrete recognition.  

Image features can be classified on different levels of complexity, ranging from global 

low-level features, such as average color intensities or histograms, via medium-level features 

such as edges, lines or corners, to high-level features such as objects. The more complex the 

representation of features is, the more efficient it is to perform in complex environments, and 

the more semantic it is for human understanding. Such complexity, however, has its costs in 

the calculation time.  

The societies of signal processing and computer vision provide a wealthy set of 

algorithms for feature detection and description. A complete overview of the field is beyond 

the scope of this thesis. As a result, we outline those techniques, which deal with relevant 

issues in the outlined solution design (e.g. suitability for unstructured environments), and 

restrict them to vision data. 

3.4.1 Global Features versus Local Features 

Features can be extracted in two ways. They can be derived by processing the whole image or 

computed locally based on salient parts only. Hence, we speak of global features or local 

features respectively. 

Global descriptors are the result of a processing for all the data in a signal. Since the 

whole data are included, global methods allow the reconstruction of original data from the 

processed features. This is the case with frequency response filters (e.g. Fourier transform, 

Wavelet transform), and subspace methods (e.g. Principle Component Analysis (PCA) and 

Independent Component Analysis (ICA)). The main idea of all these methods is to project 

the original data onto the frequency domain or another subspace that represents the data 

optimally according to a predefined criterion (minimized variance (PCA), independency of 

the data (ICA)). Sometimes, it is not possible to restore the data back, as in the case of 

statistical measures, mean values and histograms. Histograms are simple but work 

surprisingly well for images with distinctive colors. Many appearance-based modeling 

approaches rely on global descriptors and their results are striking. 
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Alternatively, local features are computed based on a subset of the signal data. The 

same global processing yields a local descriptor if it is applied partially on the data. The most 

common trend is to represent the appearance of the image only around a set of characteristic 

points known as the interest points. Interest points are identified through some saliency 

measure. Any type of image characterization can be used around those interest points. Among 

the most familiar local feature descriptors are the Scale Invariant Feature Transform (SIFT) 

[Lowe, 2004], the Speeded-Up Robust Features (SURF) [Bay et al., 2008], and the Gradient 

Location and Orientation Histogram (GLOH) [Mikolajczyk and Schmid, 2003]. They 

provide robust gradient-information features, relying on several scale space decompositions. 

The Harris corner detector [Harris and Stephens, 1988] is an efficient local detector for edge 

and corner extraction. It is sometimes combined with the previous descriptors for feature 

extraction. However, it is sensitive to the scale of the image and therefore is not suitable for 

building maps that can be matched from a range of robot positions. 

Local features are known to be stable and observable from different viewpoints and 

angles. In other words, they can be robustly detected. In the recognition process, the degree of 

resemblance between images is a function of the number of properly matched interest points. 

Therefore, local features possess additional robustness to occlusions and clutter, since the non-

availability of some of the interest points or the intrusion of undesired ones does not affect the 

recognition greatly. In a similar sense, local features are considered robust to the dynamics of 

operational environments, where moving people and furniture, as well as illumination, affect 

the sensor image. In contrast, global feature processing is known for its high sensitivity to 

illumination changes, besides that some extractors need extra processing if they are required 

to have additional invariance properties (e.g. rotation). Nevertheless, it cannot be ignored that 

the global descriptors are much easier in computation compared to local descriptors, which 

are computationally expensive in both extraction and matching. 

3.4.2 Local Feature Extraction 

The process of local features extraction consists of two stages: interest point detection and 

feature description. An interest point detector identifies characteristic points in the image that 

should be capable of being re-detected, in spite of various transformations (e.g. rotation and 

scaling) and variations in illumination. The role of the descriptor is to provide characterization 

from the local patches located at the detected points. 
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The following subsections introduce the family of scale-invariant feature extraction 

methods. They depend on the scale-space theory, which provides a framework for analyzing 

signals at multiple scales. Since no a priori information about the scale is usually available, it 

is necessary to create a multi-scale representation on the basis of the original image, in which 

the fine-scale structures are successively suppressed with the increase of scale. All the 

members of this family show high robustness against image rotations, illumination changes 

and perspective deformations. 

The main idea of those techniques is based on convolving the image with a Gaussian 

kernel of increasing variance in order to smooth the image. This blurring Gaussian operator 

simulates the idea as if a viewer is moving away from the scene. Convolving with Gaussian 

filters is a low-pass filtering. Therefore, it is ideal for suppressing the high frequency 

components in real noise that may occur in the imaging process. It additionally makes the 

Gaussian derivatives in the scale space more stable.  

In what follows, the most applied local feature extractors are explained. The two 

construction phases, the interest point localization and the feature descriptor computation are 

described for each technique. 

3.4.2.1 Harris-Laplace Interest Point Detector 

Proposed back in 1988, the Harris corner detector [Harris and Stephens, 1988] has shown 

good performance in extracting corners and junctions. In [Ballesta et al., 2007], it is suggested 

as the most suitable interest point detector for visual SLAM. The detector is based on the 

second-moment matrix (also called the auto-correlation matrix), and can be used arbitrarily in 

conjunction with any feature description. The detector exhibits, however, sensitivity to 

variations in the image resolution (i.e. scale). 

[Mikolajczyk and Schmid, 2004] combined the reliable Harris detector with automatic 

scale selection [Lindberg, 1998] to provide a scale-invariant interest point detector, which 

they coined Harris-Laplace. The scale-adapted Harris measure is a function of the second 

moment matrix: 
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where g is a Gaussian kernel of scale σI  (integration scale), L(x,y,σD) is the smoothed image 

computed using a second Gaussian kernel with scale σD (differentiation scale), the operator * 

denotes convolution, and Lx and Ly are the respective derivatives of the smoothed image (i.e. 

gradient) in the x and y directions. The second moment matrix is the matrix with off-diagonal 

entries equal to the product of Lx and Ly, and diagonal entries equal to the squares of the 

respective derivatives.  

A function R for the cornerness at a given point and scale is defined based on the 

determinant and the trace2: 

)),,(trace)),,det( 2
DIDI (x,y(x,yR    (3.2) 

 
where  is a constant. Corresponding interest points are located by finding the local maxima 

of R at a given characteristic scale. This characteristic scale is selected by searching over 

multiple scales n
I  for a local extremum of Laplacian-of-Gaussian (LoG) responses: 
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where Lxx and Lyy are the second order derivatives in their respective directions. 
 

3.4.2.2 Scale Invariant Feature Transform (SIFT) 

Scale Invariant Feature Transform (SIFT) [Lowe, 2004] is a popular local feature detector and 

descriptor in the computer vision society. SIFT features correspond to highly distinguishable 

image locations that are extracted efficiently and with great stability across wide variations of 

viewpoint and scale. Those locations are detected by searching for peaks in an image D(x,y;σ), 

which is obtained by subtracting two neighboring smoothed images in the scale space, and 

which is separated by a constant multiplicative factor k, such that at a particular σ : 

););); σ L(x,y kσ L(x,y σD(x,y   (3.4) 

where σ denotes the scale blurring parameter. The image scale space L is produced by the 

convolution of the gray-scale image I(x,y) with a Gaussian kernel G of the varying σ to 

produce a smoothed image version: 

                                                 
2 The trace of a square matrix is the sum of the elements on the main diagonal. 
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From the current scale space, a new scale space is constructed using the Difference-of-

Gaussian (DoG) function3 D: 

 x,y * Ισx,yGkσx,y (GσD(x,y ));););  (3.8) 

The procedure is repeated on multiple octaves, with each following octave having an image 

with half the resolution of the image in the current octave. 

The candidate feature locations - called keypoints in the SIFT framework - are obtained 

by searching for local maxima or minima in D(x,y,σ) for each pixel neighborhood at a given 

scale, plus the neighborhood of the two adjacent scales – i.e. eight in the current image, and 

nine in each of the scales below and above (see figure 3.3). That is to say, the simultaneous 

selection of interest points )ˆ,ˆ( yx  and scales ̂  is performed according to the operator: 

),,(maxminarg)ˆ,ˆ,ˆ( )   yxD localσyx x,y,σ  (3.9) 

 

In the second stage, nearby data for candidate keypoints are interpolated to determine 

their position accurately. Points with low contrast and poor localization are discarded. Finally, 

each keypoint is assigned an orientation, such that the descriptor is represented relative to this 

orientation, and achieves invariance to rotation. Orientation is calculated from a histogram of 

local gradients from the closest smoothed image L(x,y,σ). For each image sample L(x,y) at this 

scale, gradient magnitude M(x,y) and orientation θ(x,y) are obtained using pixel differences:  
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3 The DoG is a close approximation of the LoG producing similar response effects. LoG is computationally expensive, since smoothed 

images should be computed anyway. In DoG, the calculation is reduced to image subtraction which significantly accelerates the 
computation process [Lowe, 1999]. 
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Figure 3.3. SIFT Processing. Left: For each octave of scale space, initial image is repeatedly convolved with 
Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted 
to produce the DoG images on the right. After each octave, the Gaussian image is down-sampled by a factor of 
2, and the process is repeated. Right: Maxima and minima of the DoG images are detected by comparing a pixel 
(marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked with circles). 

 

Finally, the descriptor is constructed by computing local orientation histograms (8-bin 

resolution) for each element of a 4x4 grid overlaying a 16x16 neighborhood of the keypoint. 

This 4x4 window operation in the local neighborhood yields a 128-dimensional feature vector. 

The features are normalized to unit length in order to reduce the sensitivity to image contrast 

and brightness changes in matching stages. Figure 3.4 illustrates the descriptor generation 

procedure of keypoint for a 2x2 window. Figures 3.5 and 3.6 show an image decomposition 

example and the corresponding generated keypoints by the algorithm. 

Figure 3.4. SIFT feature descriptor generation 
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A main drawback of SIFT, as many other local descriptors, is the high computational 

cost, besides the huge number of features that densely cover the image over the full range of 

scales and locations. Features’ size usually influences time performance to a great extent when 

matching the features in recognition and retrieval systems. A typical image of size 500x500 

pixels will give rise to about 2000 stable features according to the author [Lowe, 2003].   

Figure 3.5. The scale space constructed by combined smoothing and sub-sampling and the corresponding 
DoG levels obtained by subtracting neighborhood images. 

  

Figure 3.6. SIFT feature extraction example. (a) Peaks of DoG across scales. (b) Remaining keypoints after 
discarding low contrast points. (c) Remaining keypoints after discarding edge responses. 
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Therefore, reducing the quantity of generated keypoints without negatively affecting the 

general accuracy performance of recognition is highly desired for time critical systems. This 

problem is one of the main concerns in this thesis. 

3.4.2.3 Speeded Up Robust Features (SURF) 

Speeded Up Robust Features (SURF) is a local feature detector and descriptor recently 

introduced in [Bay et al., 2008]. It utilizes the same basic concepts as SIFT. It uses, however, 

several approximations and shortcuts to shorten the computation time. The detector is based 

on the determinant of the Hessian for selecting the location and scale of the interest points. For 

a given point (x, y) in an image I, the Hessian matrix4 HL at scale σ is defined through the 

second order derivatives as follows: 
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where L(x,y,σ) is the convolution of the Gaussian G(x,y,σ) with the image I for the point (x,y) 

at scale σ, defined by equations (3.5) and (3.7).  

In contrast to SIFT, which approximates LoG with DoG for the interest point detection, 

SURF approximates the second order Gaussian derivatives of the Hessian matrix with box 

filters. An example of one of 9x9 box filters that represent the lowest scale (i.e. highest 

spatial resolution) is shown in figure 3.7. Image convolutions with these box filters can be 

computed rapidly using integral images [Messom and Barczak, 2008]. 

The scale space (det(HL)) is analyzed by up-scaling the filter size, rather than iteratively 

reducing the image size. Precisely, the filter size is doubled for each new octave generated 

from the lowest scale up to the highest. Because of employing box filters and integral images, 

the same filter does not have to be iteratively applied to the output of a previously filtered 

layer. This direct processing provides faster execution than SIFT, which requires the 

computations of the images L(x,y,σ) for the different scales and octaves in order to find the 

extreme points in the DoG image. 

An integral image I∑(x,y) at point (x,y) contains the sum of the pixels of the input image 

I(x,y) above and to the left of x and y, inclusive, defined by: 
                                                 

4 The Hessian matrix is the square matrix of second-order partial derivatives of a function. In this context, it represents the convolution of 
the Gaussian second order derivatives with the image I at a given point and scale. 
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Figure 3.7. SURF Processing. Top: Gaussian second derivatives in horizontal x, vertical y and diagonal xy 
directions respectively. Bottom: Their corresponding box filters. Back refers to negative values, white to 
positive values. 
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Box filters of any size can be fast computed by using the integral image (the sum of a block in 

I(x,y) with the top-left corner at (x1,y1) and the bottom-right corner at (x2,y2)): 

)1,(),1(),()1,1( 12212211   yxIyxIyxIyxI  (3.14)

 
Using the integral image, SURF approximates the different levels of scale space by 

adjusting the size of the box filters. Once all images of the scale space have been computed, 

keypoints (local maxima) are localized by a non-maximum suppression in a 3x3x3 

neighborhood around each sample point.  

),,)(det(maxminarg)ˆ,ˆ,ˆ( )   yx LH localσyx x,y,σ  (3.15)

 
Finally, the local maxima found in the approximated Hessian matrix determinant are 

interpolated in scale and image space (i.e. localization of keypoints is improved using the 

second-order Taylor expansion as in SIFT). 

For the descriptor, SURF uses Haar-wavelet responses to determine the keypoint 

orientation. The Haar wavelets can be fast computed via integral images, similar to the 

-2 11
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Gaussian second order approximated boxes. Two-dimensional Discrete Wavelet Transform is 

applied in a 4x4 quantized sub-regions of a local neighborhood, and the responses in only two 

directions (horizontal direction dx and vertical direction dy) are preserved after they have been 

weighed by a Gaussian. Each sub-region has a four-dimensional descriptor vector consisting 

of the sum and the absolute values of responses over each sub-region: 

 yxyx ddddv  ,,,  (3.16)

 
Stacking the vectors for all sub-regions gives a descriptor for the interest point of length 64 

(the standard SURF-64). The final descriptor is obtained by normalization to unit length. 

3.4.3 Feature Evaluation and Selection 

Systems that navigate using high-resolution sensors have to cope with a massive data flow 

produced. To reduce the data volume somehow, low-level (e.g. edges, planes) and high-level 

(e.g. doors, tables) features are predefined and included in advance in the environment 

model. Later on, the sensor processing system has to be able to identify those features in the 

image data it perceives.  

Nevertheless, the navigation system using the designed feature space may still perform 

inefficiently. The feature space may contain redundant or misleading information, and can 

still be reduced somehow. Explicit definition of features or the existence of a semantic 

representation is not fulfilled in every modeling approach, especially when the features are 

defined on a low level of abstraction (e.g. point features or dense scans).  This poses more 

difficulty to understand the data. Intelligent data mining techniques are designed to solve 

these issues by extracting much more meaningful information [Han and Kamber, 2006]. 

They design systems with better performances, which comply with the intelligent human 

decisive behaviors. 

In the field of robotics, many studies apply feature extraction and representation 

methods, inspired by the large recognition domain of objects and scenes. Few do pay 

attention to the combined quality and size of extracted features for the target application. No 

efforts have been exerted in applying feature selection criteria that contribute to more 

efficient environment modeling. The studies assume that a domain of features is qualitative 

enough for employment, without paying attention to its size or its information content. The 
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literature presents dozens of robotic applications’ examples, which all use high-dimensional 

local descriptors directly (i.e. the way they are extracted) for topological, metric and hybrid 

representations [Ramisa et al., 2008; Murillo et al., 2007a; Andreasson and Duckett, 2004; Se 

et al., 2001; Ballesta et al., 2007; Goncalves et al., 2005; Wang et al., 2006; Valgren, 2007; 

Werner, 2010; Zivkovic et al., 2005]. 

Feature selection – also identified as a variable selection and feature reduction – is a 

group of machine learning techniques for selecting a subset of relevant features to build 

robust learning models. The process is based on including some evaluation procedure or 

criteria. Feature selection algorithms typically fall into two categories: feature ranking and 

subset selection [Guyon and Elisseeff, 2003]. The first category ranks the features according 

to an assigned metric and then eliminates features that do not achieve an adequate score. The 

latter performs an exhaustive search for the set of possible features to find the optimal subset. 

Regarding time complexity, metrics can be considered more efficient. Popular filter metric 

examples are correlation, entropy and mutual information. 

From the general perspective, the objective of variable selection is three-fold: (i) 

improving the prediction performance of predictors, (ii) providing faster and more cost-

effective predictors, and (iii) providing a better understanding of the underlying process that 

generated the data. The most active areas applying variable selection are gene selection from 

microarray data and text categorization. Yet its application is needed in other applications as 

well, where rich data are available like vision and highly complex feature vectors, and where 

perceptual aliasing contributes to higher uncertainties or misrecognitions. 

The research work regarding dimensionality reduction for local descriptors and features 

pruning is relatively limited. In [Ke and Sukthankar, 2004], PCA has been applied to reduce 

the SIFT dimensionality for the purpose of individual object detection. The study 

recommended the use of 20 dimensions instead of 128 to the specified application. For the 

same purpose, [Ayers and Boutell, 2007] used Linear Discriminant Analysis (LDA) for 

indoor scene classification, and experimented with feature pruning using a clustering 

technique. The approach, however, was reported as unsuccessful. In [Ledwich and Williams, 

2004], the rotational invariance step of the SIFT algorithm is eliminated resulting only in 

small reduction in computation complexity of the algorithm but not in the number of 

features. 
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Some work presents trials to reduce the number of computations, but not based on a 

quality measure. In [Bennewitz et al., 2006], SIFT features are down-sampled through 

random sampling from every cell in a feature-based grid map. A drawn feature is rejected if 

there is already a similar feature within the grid cell. A maximum of 20 features for each cell 

are sampled. The idea seems logical to reduce the features, but obviously not qualitative. The 

eliminated feature might have been distinguishable for cell disambiguation.  A second trial 

for pruning the place images themselves to reduce the map size is presented in [Booij et al., 

2006]. In [Sala et al., 2004], the minimal number of landmarks in environment regions is 

preserved such that every image captured in that region can still be localized. In other words, 

features that persistently appear in all images enclosing a region are regarded as good 

features, and hence selected. 

[Werner, 2010] claimed, on the one hand, that incorporating neighborhood relations can 

solve perceptual aliasing and disambiguate places. It is true, but this is not related to the 

capability of data to resolve ambiguities. On the other hand, the work which introduces 

classifiers to classify the different places can be counted as methods that generate models 

based on quality measures [Pronobis et al., 2006]. 

In the same sense, few significant works regarded data compression to account for the 

undesired computational complexity of local or huge size features. A Bag of Words model 

(BoW) inspired by text retrieval systems has been applied to enhance localization using 

vision-based local features in [Filliat, 2007]. Figure 3.8 shows an example of BoW modeling, 

where an image can be described through a set of compressed codewords by involving 

clustering techniques. 

 

 
 

Figure 3.8. Bag-of-visual-words approach. In the first step features are computed from images. The features 
are clustered into visual words in the second step. Finally the image representation can be computed as a 
histogram over visual words. (Source: http://cogrob.ensta.fr/index.html.) 
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From the previous related work in the area of data selection and reduction, it is clear 

that comparable approaches in the robotic domain, which concerns the combined size and 

quality of features for target applications, are not widely implemented so far. 

3.5 Information Theory

Information theory is concerned with the study of information production and transmission. 

It is regarded as a general framework since it is based on the statistical properties of the 

system and not its explicit description. The development of the standard communication 

model by Shannon did not only establish theoretical bounds on the limits of data compression 

and transmission over a noisy channel, but also contributed to several applications in other 

communities concerned with the quantification of information [Verdu, 1998]. The 

application of this model can be quite useful in judgments involving the economy of 

information processing systems. 

Figure 3.9 depicts Shannon’s standard communication system, sometimes called 

source-channel model, for a noisy memoryless channel [Shannon, 1948]. The input to the 

channel is a space of messages to be transmitted normally after being encoded. The output is 

the space of messages received over the channel after being decoded in a specific time. The 

transmitter and receiver sides should agree on a certain alphabet (i.e. symbol set) that forms 

the ingredients of the message content. In the communication system shown, the source 

selects a desired message from the set of possible messages which the transmitter changes 

into a signal that is actually sent over the communication channel. The receiver changes this 

signal back into a message, and hands it to the destination. Ordinarily, the signal is perturbed 

by noise during the transmission. Consequently, the received signal and the received message 

are not necessarily the same as those sent out by the transmitter. This results in a possible 

misinterpretation at the receiver’s side.  

The source is memoryless in the sense that the occurrence probability of a symbol does 

not depend on previous symbols. In other words, the occurrence of alphabet is independent 

and identically distributed (i.i.d). From the stochastic perspective, the channel’s behavior can 

be characterized by a conditional probability distribution p(Y|X), where X is a random 

variable representing the channel input and Y is a random variable representing the channel 

output. What the information theory seeks is trying to maximize the transmitted information 
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rate over the channel. It is something which has to do with the encoding of information, such 

that the channel is optimally utilized in terms of a maximum transmission with minimal 

error. The information theory achieves that by matching the source to the channel in a 

statistical way.  

 

 

Figure 3.9. Schematic diagram for a general communication system. 

 

Several elements are defined in the framework of the information theory; information 

content, entropy, conditional entropy and mutual information.  These elements are defined 

for a discrete channel as follows: 

For the possible states of the random variable X, the information content per arbitrary symbol 

xi is defined as: 

)(log)( 2 ii xpxi   (3.17)

 
The information in this sense represents the outcome of a selection among the finite number 

of possibilities of the variable X [Verdu, 1998]. A similar relation can be given for the 

information content per output symbol yj : 

)(log)( 2 jj ypyi   (3.18)

 
The entropy is defined as the average information content in the random variable and is 

sometimes called uncertainty: 

))((log)( 2 xpEXH   (3.19)
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the entropy can be defined for the output variable Y of distribution size m. 
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Entropy is also regarded as a measure of the variation, dispersion, or diversity of a 

probability distribution of observed events. Normally, it is applicable to measure different 

quantities, including randomness, uncertainty, ignorance, surprise or information. 

The conditional entropies H(X|Y) and H(Y|X) are called the Equivocation and 

Dissipation simultaneously, and are defined by: 


 


n

i

m

j
jiji yxpyxpYXH

1 1
2 )|(log),()|(  (3.23)


 


n

i

m

j
ijji xypyxpXYH

1 1
2 )|(log),()|(  (3.24)

 
The mutual information, sometimes called the transmission or transinformation, is a 

measure for the information processed by the channel: 


 


n

i

m

j ji

ji
ji ypxp

yxp
yxpYXI

1 1
2 )()(

),(
log),(),(  (3.25)

 
It is also a measure of the dependency between two random variables. Hence, it is a 

quantification measure for the degree of structure. 

Some relationships relate the different information-theoretic elements to each other. 

These relationships are illustrated in figure 3.10, and are summarized by the following. 
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Figure 3.10. Entropy, conditional entropy and transmission relationships. 

 

Some special cases of a channel exist. A noiseless channel has coinciding input and 

output sets resulting in: 

0)|()|(  YXHXYH  (3.30)

and  
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A channel is called lossless if H(X|Y) = 0; and deterministic if H(Y|X) = 0. A noiseless 

channel is, therefore, both lossless and deterministic. The real situation is that the channel is 

stochastic. For a strongly noise-corrupted or useless channel, the input and output sets are 

disjoint or mutually independent. i.e. I(X,Y) = 0. 

And hence, 

)()(),( YHXHYXH   (3.32)
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The channel capacity is the maximum transmission rate taken over symbol 

probabilities, if the average symbol duration is taken as unity. 
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Other related quantities are the channel redundancy: 
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and the channel efficiency: 
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Information is highly important in the study of complex systems and structures. The 

randomness and unpredictability of a system (i.e. entropy) do not completely capture the 

correlational structure in its behavior, however conditional entropy and transmission do. 

Information theory has been applied in robotics to choose the best actions in active sensing 

[Seekircher et al., 2011; Denzler and Brown, 2002; Davison, 2005], speed up exploration 

[Sujan and Dubowsky, 2005], and to cooperatively share the most useful information 

between communicating robots for map building [Rocha et al., 2005]. Information distances, 

such as the Kullback-Leibler distance, have been sometimes used for the general comparison 

between distributions. An interesting application of information distances is used in 

[Lungarella and Pfeifer, 2001; Olsson et al., 2004], where structure of the environment (e.g. 

vertical contours) is detected through distance measurements in the vision sensor plane. 

From the control engineering point of view, it is useless to deliver information in a 

system at a rate much higher than what is actually required by the task. Therefore, much 

effort should be dedicated to filtering the input data and extracting the relevant part out of it 

for avoiding unnecessary actions [Badreddin, 2002]. In the proposed work, the problems of 

information selection and filtering are viewed from the source-channel perspective which is 

combined with machine learning, in order to select the robust information that maximizes the 

channel transmission. More specifically, what is sought is the maximization of transmission 

between the system states which represent the channel source from one side and the 

environment observation domain which represents the receiver from the other side. A 

quality-based and less complex environment model should be generated from such 

information-theoretic environment modeling perspective. 
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3.6 Summary 

This chapter has introduced some preliminaries for the proposed work. The topics discussed 

are environment modeling basics, exteroceptive sensors, visual modeling approaches, feature 

extraction, and information theory. In basic terms, the chapter lays out the idea that 

environment modeling can be robustly and efficiently established based on concepts of 

learning, general location appearance, and proper data selection independent of its modality. 

The late issue, regarding data selection, has been hardly tackled in the field of robotics on a 

fair scale as reported by the literature. A proposal for the involvement of information-

theoretic concepts is suggested. It will add optimal refinements for the data and information 

engaged, in a way that should increase the efficiency of environment modeling and 

localization in robotics.  

 



 



 

 

Information-Theoretic Approach            
for Environment Modeling            

and Localization 

This chapter tackles the navigation-related questions: What is the suitable representation for a 

robot’s operating environment, and what is the global position of robot in the environment? 

The answers to the questions are presented in the frame of an information-theoretic 

environment modeling solution for localization purposes. The proposed modeling solution 

targets constructing information-rich and compact environment models and map projections, 

which manage to achieve combined accuracy and computational efficiency localization 

performances. The publications of [Rady et al., 2008; 2009; Rady and Badreddin, 2010] 

summarize the solution approach and included methods presented in this chapter. 

4.1 Introduction: ‘Why Information Theory?’

Generally, robots work in various complex environments characterized by lots of details, 

unstructuredness and dynamics. The sensors used by the robot for perception often provide 

large and noisy data streams depending on the corresponding environment detail. The 

complexity of the environment, together with the uncertainty of perception, represents a 

Chapter 4 
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challenge for navigation. For this purpose, a computationally efficient method is required for 

building robust models that can be employed in real-time.  

Most robot navigation methods are model-based. This means an explicit representation 

about the space in which navigation is to take place should be defined. An information-rich 

environment model is definitely of great significance for the related navigational tasks 

including self-localization and path planning. Information-rich models do not imply that they 

just contain massive or heterogeneous data. On the contrary, excessive data increase 

uncertainties associated with the system states and degrade the computational performance. 

Richness of information, in this sense, is defined by the right data in an exact amount that 

resolve states’ ambiguities and accomplish the task successfully. Accordingly, a model 

constructed on this basis is expected to issue better navigational capabilities in terms of both 

accuracy and computational performance. 

The previous argument is crucial, but unfortunately hardly tackled in the robotic real-

world applications on a fair scale. In [Siciliano and Khatib, 2008], three explicit challenges 

are mentioned as characteristics to be fulfilled by environment models. The models must (i) 

be compact so that they can be used efficiently by other components in the system; (ii) be 

adapted to the task and to the type of environment (illustrative example: it is irrelevant to 

model the environment as a set of planes for a robot operating in a natural terrain); (iii) 

accommodate the inherent uncertainty of both sensor data and robot states. The three 

requirements can be viewed as equally-important axioms for building environment models of 

efficient use. Similarly, in [Badreddin, 2002], the need for methods accommodating the right 

amount of information to fit exactly that required by the task, and not higher, has been 

highlighted. Despite that, the second requirement of the prior, which coincides with that of 

the latter, did not gain the relevant attention. 

This work targets such an unattended subject in the environment model building and 

uses it in localization purposes. It aims at ‘constructing compact, less-complex and 

information-rich environment models for enhancing localization performance’. The desired 

objective is met by proposing an environment modeling solution based on the information 

theory. The theory supplies measures that can analyze the perceived environment data in 

relation to the given task in quantitative terms. Based on the analysis, the quality and quantity 

of the information units to be perceived are identified and controlled. Hence, consecutive 
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data selection, filtering and possibly compression assist constructing the desired model that 

will contain the right and minimal amount of data fitting to the task. This implies adequate 

accuracy and computational complexity performances. The powerful advantage about 

information theory is that it lays a general infrastructure for the problem. It does not put 

constraints about following a specific modeling approach for the environment characterization 

or a specific type of sensor to be used.  The theory focuses on extracting the meaningful and 

effective information units in a statistical point of view only, independently of any sensor 

types or feature extraction methodologies.  

The idea behind employing an information-theoretic solution for environment modeling 

is driven by the intrinsic human notion that distinguishing information is related to its 

frequency of occurrence. A single occurrence of a special landmark in a certain place, for 

example, augments a unique description and identification of this place. In a similar manner, 

the existence of some objects in a place and their absence in another creates a way for place 

differentiation, even irrespective of the number of objects’ occurrences in the place. It is 

often too that some negative information can provide this place identification (e.g. an object 

presence in several places except for one distinguishes this late place). High-level real world 

examples are a coffee machine that is most probably found in a kitchen indoors, and platform 

number panels and clocks that are found on train platforms in railway stations outdoors. The 

information is simple, yet induces high localization accuracy at the same time. Thus, the 

general idea is to capture only this distinguishing data and employ them in an environment 

model that can resolve the ambiguities in the states (e.g. robot location, identity of an object/a 

feature) in few computing steps. The idea can be realized through information and 

communication concepts of the information theory, where helping metrics exist. Those 

metrics can indicate informativeness of data as the mutual relationship between the perceived 

data and the task. 

From another perspective, an information-theoretic-based environment modeling 

provides a concurrent solution for reducing high-dimensional feature spaces through pruning. 

Data are frequently dense, especially if the robot possesses several sensory devices. Using 

information-theoretic metrics, it is possible to extract the most relevant data part solely and 

discard the other which contributes to extra computational overhead.  
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In the general view, fitting the information content to the task and data filtering via 

information-theoretic measures affords two significant gains: (1) Minimization of 

uncertainties arising from certain problems, such as perceptual aliasing and the corresponding 

data association problem. Minimizing uncertainties directly implies increasing the task 

accuracy. (2) Minimization of time and space complexities involved, which means increasing 

the computational efficiency of task execution. Those two aspects have been identified as 

persisting challenges that confront model building and localization in figure 1.6.  

 Fitting the information content to the task and data filtering, through the proposed 

information-theoretic solution approach, also share one common objective.  They try to 

maximize the accuracy of a task with the minimal use of computational resources. In 

counterpart to maximizing the task’s accuracy, the accuracy can be set to meet a specified or 

minimum level in accordance with the resources available at hand. This means performance 

parameters (accuracy, complexity) can be simultaneously tuned with the need (e.g. higher 

accuracy for a large afforded memory space, a smaller memory at a lower accuracy cost, 

picking up a sensor that maximizes accuracy, or one that minimizes power consumption, etc). 

In other words, information rates inside systems can be adjusted, such that they fit exactly to 

the amount required by the task or to the available resources.  

The explained expectations and advantages of involving an information-theoretic 

solution initiate primary motivation to engage the theory in environment model building. This 

chapter introduces the information-theoretic approach with a structured solution proposal, 

which is applied on the topological level of model building and localization. Nevertheless, the 

approach is still extensible for metric model building and metric localization, as will be 

introduced in a late chapter. 

The proposed topological modeling approach includes basic structural filtering 

components for feature evaluation and feature compression, in addition to the common feature 

extraction component. A generated topological map for localization will finally contain a 

reduced selected feature set. The feature set is the output of information-theoretic evaluation 

component that accommodates supervised learning and an entropy-based criterion for 

filtering. The output of this component is called entropy-based features. The evaluation is, 

furthermore, implemented in a way that allows features to preserve a second compressed 

format, which is termed codewords. Those codewords enable faster localization with 
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maintained accuracy. Hence, the presented solution not only generates quality-based feature 

maps, but also compact ones. Localization is conducted through topological node matching, 

where the robot compares sensed features to the stored map in order to identify its location. 

The robustness and accuracy of localization using the two feature formats are discussed 

equally in this chapter, and the computational savings reflecting space and time complexities 

are highlighted. A single vision sensor and a robust local feature extraction methodology are 

suggested to demonstrate the approach. This choice provides collateral advantage of modeling 

unstructured environments using their natural features without external aids. 

This chapter is structured as follows: First, a view of how the information theory is 

applied for environment modeling is presented in section 2. Next, some design aspects of the 

solution are outlined in section 3. The problem statement is mentioned and mathematically 

formulated, together with a description for the solution approach, in section 4. Based on the 

given aspects and problem-solution description, a general solution structure is laid out in 

section 5, with the details of its structural components described in section 6. Section 7 states 

the performance metrics employed for measuring the accuracy of localization. Section 8 

describes the test environment, data acquisition and the reference method for comparing the 

presented approach, whereas section 9 presents the experimentations and results. Finally, 

section 10 summarizes the chapter. 

4.2 Application of Information Theory to Environment Modeling

Location information is affected by two types of uncertainty which includes ambiguity and 

imprecision [Pèrez, 2005]. Statistical variations are the main source of ambiguity [Warren, 

2007]. For the localization problem, it is claimed that ambiguity is inherently related to the 

environment structure (e.g. several locations contain identical objects or are similar in the 

general appearance – see example in figure 1.4). Definitely, resolving ambiguity is a difficult 

problem. Imprecision, on the other hand, arises from approximations of the used techniques 

and algorithms, parameterization, as well as noisy measurement data.  

An environment is modeled based on an information-theoretic formulation by regarding 

the location identification process as a communication channel that attempts to minimize the 

location ambiguity. The communication channel will quantify the mutual relationship 

between its input and output state variables. The quantification will assist minimizing 
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ambiguity in the input state variables through proper filtering of the output.  In analogy to 

Shannon’s classical communication channel which maximizes the information sent (see 

figure 3.9), the objective of the constructed channel is to maximize information rate between 

an input location space and a corresponding output feature space. Consequently, the channel 

will maintain minimized data rates for the map building, while keeping information rates 

above minimum for the online localization process. 

Figure 4.1 introduces an exemplar noisy channel for localization purpose, and in other 

terms for recognition purpose. Following Shannon’s channel definition, the input is a set of 

possible location instances (robot possible positions), and the outputs are a set of 

corresponding environment observation instances. The inputs and outputs can be either 

discrete state or continuous state that undergoes discretization for further processing. The 

example shows a discrete input and continuous output channel. Let’s assume that the input 

random variable X represents the location with the sample space {x1, x2, …, xn}, and the 

output random variable Z represents the observation, with the sample space {z1, z2, …, zm}. 

Each single input event xi
X will be ‘transformed’ by the channel to the corresponding 

possible output set zj
Z; 1 i  n and 1 j  m, whereas a joint or conditional probability that 

represents the channel will encode the characteristics of this transmission. In reality, the 

outlined channel represents a coding channel, since the location transmission over the 

channel is a kind of signature formation or feature extraction that processes the given input 

locations to produce observations. 

For the outlined channel, we define the following unconditioned and conditioned 

entropies. H(X) is the entropy of the location random variable and is an indication of the 

uncertainty as well as the average information per location. Similarly, H(Z) is the entropy of 

the observation random variable and is an indication of the uncertainty and the average 

information per observation. H(X,Z) is the joint entropy between the location and observation 

variables and is the indication of the overall uncertainty of localization or recognition. This 

joint entropy becomes zero if the outcome of an experiment describing the location 

transmission into observations is unambiguous, while reaches its maximum if all outcomes of 

the experiment are equally likely. Obviously, it is necessary to minimize this last mentioned 

ambiguity. The joint entropy H(X,Z) is related to the conditional entropies H(X|Z) and H(Z|X) 

through equations  (3.23)  and  (3.24),  where the  former describes  the equivocation and  the  
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Figure 4.1. Structure of a coding communication channel. X is a random variable representing the location. Z 
is a random variable describing the observation domain. The location and observation variables and 
corresponding spaces are statistically related through the probabilistic channel, where H denotes the entropy. 

 

latter describes the channel dissipation. The interpretation of the five entropy quantities for 

the general recognition process is important to understand and is summarized in table 4.1. 

 

Table 4.1. Entropy quantities and their interpretation in the context of a coding channel definition. 

 
 

The joint and conditional entropy quantities stated in table 4.1 all form possible 

definitions for the channel, since they provide measures to judge the quality of the 

recognition. We choose, however, to model the environment based on a defined transmission 

property. It is assumed that the environment is regarded as a set of properties which are 

monitored by the observations. Each property emits a certain virtual transmission value. 

Higher transmission values signal high distinguishness of the property, and hence relevance 

Entropy 
 Quantity 

Interpretation 

H(X) 
Average information per location xi; 1 i  n; n is the location 
distribution size 

H(Z) 
Average information per feature or observation zj; 1 j  m; m is 
the feature or observation distribution size 

H(X,Z) Overall uncertainty of the recognition  

H(X|Z) 
Equivocation; indication for the overall quality of recognition. 
The smaller the value, the better that the location variable X be 
recognized through the measurement variable Z 

H(Z|X) 
Dissipation; indication for the average ‘noise’ or error of 
recognition. The smaller the value, the better that the location 
variable X be recognized through the measurement variable Z 

 

H(X) 

 

H(X|Z) 
 

H(Z) 

Coding Channel 

H(Z|X) 
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for incorporating in an environment map. Lower transmission values indicate lower 

distinguishness and relevance and consequently non-efficiency for incorporating in a map. 

Therefore, the transmission or transinformation quantity (equation 3.25) is selected to 

quantify the relationship between the location and observations spaces. The quantity 

indicates how much the observations contribute to recognition of locations and hence should 

be maximized. Transinformation is also defined by the decrease in uncertainty (equation 

3.27), and is related to the conditional entropy by: 

)|()(),( ZXHXHZXI   (4.1) 

                )|()( XZHZH   (4.2) 

  
To maximize I(X,Z), either equation is solved by maximizing the unconditioned entropy 

while minimizing the conditional entropy. The a priori probabilities of location, p(X), are 

normally assumed to be known or assigned uniform distribution indicating maximum entropy 

(i.e. occurrence of xi is uniformly distributed). Therefore, H(X) is constant, while all the other 

entropies change with respect to the observation Z. Consequently, it is easier to follow 

equation (4.1) for the transinformation maximization, and reduce the problem to minimizing 

H(X|Z), assuming H(X) is given. Therefore, the coding channel is finally defined by this 

conditional entropy, as indicated in figure 4.1. The channel still maintains the relationship 

between the assumed input and output entropies as defined by equations (4.1) and (4.2).  

 A slight modification still needs to be performed. The conditional entropy, H(X|Z), 

quantifies the feature extraction process as a whole. What is actually desired is to quantify 

the transinformation between every single property (a property corresponds to a sample zj of 

the observation space) and the location variable. This is a quantification for the actual 

contribution of every feature to the localization in terms of the utility for categorization. 

Therefore, it is desired to calculate H(X|zj), and the objective function becomes searching for 

the zj values minimizing H(X|zj): 
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Supposing that the environment space is decomposed into n distinct locations x1, x2,…, 

xn , and the observation space is downsampled to a distribution over the features z1, z2,…, zm 
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as shown in figure 4.1, then the entropy evaluating criterion which quantifies the relation 

between the space variable and the corresponding distorted observations becomes: 
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Equation (4.4) will be set as an evaluating criterion to filter environment properties that 

make the location identification minimally ambiguous. The interesting aspect about using the 

coding channel is the possibility to evaluate different measurements of either different 

modalities or different feature extraction methodologies, which is considered an evaluation 

for the employed sensors and feature extraction methodologies. 

In conclusion, we refer that building an environment model is mapping from a robot’s 

position to sensor values. In order to fit proper and exact sensor information for localizing the 

robot accurately, this mapping is inverted in a trial to find the optimal mapping which 

maximizes the accuracy of robot location estimation. This consideration has been described 

via an information-theoretic formulation, in which the environment is modeled based on a 

domain of properties, with every property delivering certain measurable information. This 

information is quantified through the transmission value which has been reduced to the 

reduction in entropy value. The higher the reduction value, the higher the indication of 

usefulness of corresponding property to resolve the ambiguities, and hence relevance for 

employment in the environment map. 

4.3 Design Aspects for the Solution 

As introduced in chapter one, an important requirement for robotic systems is that they should 

be implemented with minimum complexity. Such issue is crucial for systems that constitute 

hierarchy or nestedness as the one in figure 1.3, and those involved with real-time computing 

constraints. Therefore, time and space complexities are necessary system considerations. This 

does not imply that a lower complexity is set on account of accuracy. A high or at least an 

acceptable accuracy level is a mutual requirement to guarantee a satisfactory performance.  

For this sake, the information-theoretic modeling approach has been proposed. The 

argumentation about its employment has been given in section 1, and a view of its application 

procedure has been explained in section 2. The modeling approach generates an information-

rich map which assigns the localization with desired accuracy and computational complexity 
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performance combination. Nevertheless, further enhancements regarding complexity can still 

be achieved. For example, minimal data representation and suitable organizational structure of 

system components can augment additional complexity reduction. 

Figure 4.2 defines three claimed efficiency measures for environment model building 

and localization to be achieved (higher localization accuracy, lower complexity and increased 

robustness). The figure also shows how these measures are realized in this chapter. An 

environment model should satisfy a maximum bound for the localization accuracy with 

minimum computational complexity. The application of information theory satisfies these 

requirements by fitting only the exact amount of information needed by the localization task. 

Additional complexity reduction is afforded if data can be stored in compressed form (e.g. 

dense vision data allow this possibility). Therefore, a codebook module is proposed for 

minimizing data representation via compression, which supports further complexity reduction. 

The codebook module may induce a slightly decreasing effect on the task’s accuracy due to 

partial loss of information. That is why it is not connected to the localization accuracy as 

shown in figure, though the mentioned degradation effect can be negligible.  

One more necessary requirement for the efficiency of the solution is robustness. The 

solution should be robust with respect to several issues, such as feature detection, recognition 

and environment variations. The robustness requirement is fulfilled through machine learning 

and local feature extraction. Such choice maintains the robustness of feature detection and 

recognition under different feature transformations and distortions, as well as the robustness of 

location identification under different illumination conditions, clutter and partial occlusions 

and, more importantly, operating environment dynamics. 

Some aspects have been regarded in the design of the solution, such that they fulfill the 

previously-mentioned requirements and comply with the used methods and concepts. The 

information-theoretic modeling approach can possibly be applied on the topological level or 

the metric level. Preference is set to its application on the topological level for various 

reasons. Topological modeling practically underlies many flexible capabilities for the robot, 

most notably with large-scale self-localization and navigation. This is generally suitable for 

mobile robots, and specifically for many service robots which are wide-spread nowadays. 

Service robots may need to have more understanding of the spatial and functional properties 

of  the  environment  in which  they  operate.  An  environment  model  acquired by  the  robot  
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Efficient Solution for Model Building and Localization 

Higher Localization 
Accuracy 

Lower Complexity 
(computational efficiency) 

Increased Robustness 

 

 

 

Figure 4.2. Efficient solution for environment model building and localization. An efficient model should 
provide robust and accurate localization with minimum computational complexity. The outlined proposed 
solutions contribute to those requirements for topological model building and localization.  

 

should be consistent, and preferably human-compatible. Since a human perceives space in 

terms of high-level information (such as scenes and objects, and in other abstract terms as 

states, descriptions and relationships), it is required that mobile robots support the encoding of 

information the same way. Such requirements are afforded easily through the scalable 

topological model which maps the environment as discrete places with interconnectivities. 

Furthermore, the application of the information-theoretic modeling at the topological 

level is more effective. This is because the processed space is smaller than the metric space 

with the fact that more data are available at the topological nodes. Such issue reduces the 

effect of aliasing and correspondence problems with better possibility for local data 

compression. Moreover, this design choice subsequently allows the approach to be extended 

into a suitable organizational structure (hierarchy), providing hybrid navigation capabilities 

(topological and metric). The efficiency in construction of the higher topological level will 

support the efficiency of the lower metric level. The general application of the information 

theory will influence differentiation between probable environment features (objects) and 

places, which will resolve the robot’s location at both levels.  

The rest of this chapter will tackle a solution approach, summarizing figure 4.2, from 

topological modeling and topological localization perspective. The topological environment 

description and identification will be addressed, in the view of information theory 

application, for a highly unstructured and dynamic environment. The topological solution 

forms a stand-alone unit, which will be fused into a hierarchical organization to be introduced 

in a later chapter, for the sake of hybrid modeling and localization. 
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4.4 Problem Formulation and Solution Approach

General environment models, specifically topological models, suffer from a perceptual 

aliasing problem when employed for navigation. That is to say, they have difficulty in 

distinguishing adequately between the different classes’ instances (e.g. locations, objects, or 

features) due to data similarities. This issue correspondingly creates a second problem of data 

association or correspondence. Additionally, the data provided by sensors are possibly huge or 

redundant. The result is that systems become complex, and high computational power is 

needed and sometimes wasted. One possible solution is to intentionally place simple visual 

markers or artificial beacons to assist navigation. However, the environment may not allow 

this change easily, and in other times, it is required to automatically construct a model based 

on the environment natural features and to minimize human interference.  

To overcome the above-mentioned problems and difficulties, information-rich models 

are suggested. These models are constructed with the minimal amount of quality-based data 

that resolves the ambiguity, to avoid overloading the robot system with a large overhead. 

Therefore, it is suggested that environment places be marked as much as possible in a unique 

separable way. In other words, each place should be characterized by discriminative 

information only, which makes it recognizable among the other places. This reduces 

environment and perception aliasing, and guarantees higher localization accuracy because the 

robot is distracted away from the non- or less-informative data. From another simultaneous 

perspective, minimum data will be stored in the model, an issue that reduces computational 

complexity and accelerates localization. In such a way, accuracy combined with efficient 

resource utilization, which is highly desired by complex systems, is achieved. 

In accordance with the previous statement, the main problem related to the topological 

model building and localization with freely-selected sensor(s) and the solution approach are 

mathematically formulated as follows: 

Problem Formulation: 

Given:  (1) A set of environment significant places N = {N1, N2, ..., Nn} of size n; 

 (2) A mobile robot equipped with a sensor capable of capturing a pattern 

of multiple features for every place Ni,N; i=1,…,n, or a combined 

sensor configuration to fulfill this condition;  
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 (3) Let Ni be described by a set of features Si of potentially different size 

per place. The whole feature space is denoted by F so that Si  F. 

Constraints: (1) No a priori specification about the environment (objects, landmarks); 

          (2) No a priori knowledge about previous positions of the robot; 

 (3) The environment possesses a moderate or high amount of details; 

 (4) Scene dynamics and varying illumination environmental influence. 

Required: (1) Construct an environment topological model Mt (N,C, f *) in the form 

of undirected graph T:=(N,C) (see figure 4.3-b), where N forms the 

graph nodes, and C is a set of ordered pairs indicating the spatial 

interconnection between nodes Ni and Nj; i,j=1,…,n; i ≠ j. Mt comprises 

a minimal feature set per place fi
*Si, which corresponds to a total 

minimal feature set in the model f *F; f1
*∪f2

*…∪fi
*…∪fn

*= f *, such 

that the general node identification probability p(Ni | fi
*) is maximized; 

 (2) Find the most probable current position(s) of the robot pt; pt N, using 

Mt and the extracted data from the same employed sensor(s) only.  

Solution Approach: 

The solution approach is based on a generic information-theoretic appearance-based 

modeling, which does not adhere to a specific sensor type, type of feature extraction, or 

precise characterization for the environment. Figure 4.3-a explains the appearance-based 

modeling. It shows a sketch for a part of an indoor environment where every place is 

represented by a few data set (e.g. images) under different acquisition or environment 

conditions (e.g. illumination, dynamic objects). A topological model (figure 4.3-b) is 

constructed, preserving the neighborhood and/or the distance information, as well as the 

corresponding signatures or characterizing patterns of the data set in every node. Such type of 

modeling gives robustness for the model, since various dynamics influencing the environment 

are automatically mapped in it. Other than the basic components of an arbitrary feature 

extraction and a matching procedure, the following three essential components are presented: 

(a) Optional preprocessing component for isolating the influence of disturbances 

(e.g. noise and intruding features) from the data (i.e. robust features). 
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(b) Information-theoretic evaluation component for recognizing and filtering 

the most discriminative feature set which records maximum transmission to the 

topological places, and in other words the set maximizing the node recognition 

probability (i.e. information-rich model). 

(c) Codebook component for compressing the filtered feature set to generate the 

map with the minimal possible representation (i.e. compact model). 

Although the problem formulation has been introduced to construct a complete 

topological model, consisting of nodes characterized by patterns plus interconnections, only 

node construction is targeted in this work scope. The interconnectivity, which is normally 

induced through odometry measurements, is excluded from the provided solution. Therefore, 

the efficiency of the solutions with respect to transition information is not a part of the work. 

Figure 4.3. (a) Environment sketch with an appearance-based modeling. Each place is characterized by a few 
pattern set. (b) Generated environment topological model. 

 

4.5 General Structure of the Solution

The information-theoretic-based solution for a topological environment structure is based on 

three particular processes: feature extraction, feature evaluation/selection, and feature 

compression. The topological node – which is equivalent to an environment place – will be 

characterized primarily through robust feature extraction. To induce an information-rich 

model and improve the computational performance of topological localization, supervised 

features evaluation and selection are applied in the following step. A final process concerns 

the proper storage formatting for the evaluated features. It applies feature compression to 

generate a compact model and accelerate the localization performance once more.  
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The first two processes of feature extraction and evaluation/selection follow the 

procedural steps of designing statistical pattern recognition systems, as proposed in [Duda et 

al., 2001]. Figure 4.4 shows a similar suggested procedure to build the environment 

representation based on the evaluation of extracted features. Blocks in bold are main modules 

that are common in any pattern recognition system, while shaded blocks are the modules 

proposed for the solution design. The procedure depends on feature extraction and machine 

learning, and the goal is to characterize a given object (i.e. an environment location in our 

case) by discriminating measurements or features, whose values are very similar for objects in 

the same category and at the same time very different for objects in different categories. 

The procedure flows in two phases: an offline phase for training and an online phase for 

recognition. Four blocks out of five are common in both phases: sensing, pre-processing, 

 

Figure 4.4. Suggested learning procedure for feature evaluation. The procedure follows the general design of 
pattern recognition systems, and aims at extracting a set of robust and discriminating environment features. 
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feature extraction and post-processing. The sensing block perceives the environment space 

by capturing data in raw format. An optional preprocessing simplifies or filters the captured 

data for subsequent operations, while trying not to lose the significant information. Data are 

reduced by the feature extraction process through measuring and extracting certain ‘features’ 

or ‘properties’. It is important that those features be insensitive to several variations (e.g. 

transformations). The process provides a new representation for the input pattern resulting in 

simplification of the model. Finally, the post-processing block uses the output of the learning 

process to decide on recommended actions for the generation of a final model. 

Learning is the core of the training phase. It evaluates the evidence at hand and 

generates a pre-final statistical model. The output of learning is a set of evaluated features as 

outlined in the figure, which is acted upon to produce the final model. A learning block can 

be a method for training a classifier or for feature selection. It can additionally be supervised, 

unsupervised, or reinforced. The recognition phase proceeds the same way as the training 

phase, except that the learner is now replaced by the final model. The model is often termed a 

classifier, in which a class label for the input pattern is generated, and sometimes 

accompanied with a related distance measure. 

As reported in the state-of-the-art, few techniques focusing on the quality of features do 

exist in the literature of robotic map building and localization. The massive features’ pruning 

and dimensionality reduction techniques have been tackled seldom, among which some were 

unsuccessful [Ayers and Boutell, 2007]. We believe that compression based on selected 

features using a quality measure is the missing concept in the previous unsuccessful work. 

For this purpose, and from the human notion of recognizing places and defining 

distinguishing features, the introduced information-theoretic evaluation criterion (4.4) is 

placed at the learning block in supervised procedure. The idea behind employing the criterion 

is the cognitive human-driven concept that items or objects which are equally distributed 

among all class categories are non-informative objects. On the other hand, less frequently 

encountered items reveal more information about identity and membership. An ideal case, 

though not in practice, is that each class maintains uniquely distinguished object(s). 

Therefore, the suggested information-theoretic-based learner will make use of this concept by 

studying the properties of the environment statistically and evaluating them.  
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The suggested supervised modeling of figure 4.4 is projected into a conceptual design 

and realization for the robotic model building and localization solutions, as shown in figure 

4.5. The design follows the sequential processes – feature extraction, evaluation and 

compression – before generating a final feature map form as shown in figure 4.5-a. Detailed 

structure of the conceptual design is introduced in figure 4.5-b. Figure 4.5-b is explained in 

two separate phases: model building and localization. Model building is executed in the 

initial environment exploration phase. It includes the following modules: (1) Feature 

extraction module related to the employed sensor or combined sensor configuration; (2) 

Preprocessing module for detecting and eliminating outliers; (3) Information-theoretic 

evaluation module for weighing the features according to their node discrimination capability 

measured by their transmission values. The module contains a selection function to filter the 

features into a reduced set according to a certain threshold. Additionally, it contains an 

implicit processing functionality that prepares the data for proper compression. The output of  

Figure 4.5. (a) Model building and map generation concept. (b)  Proposed realization and solution structure. 
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this module is two versions of information: the evaluated features which are termed entropy-

based features and a corresponding feature cluster identifier for every evaluated feature; (4) 

Codebook module for compressing the feature clusters to produce codewords. The codebook 

accounts for a final feature-map representation with the codewords accounting for the map 

features. Both the information-theoretic evaluation and codebook can be regarded as a 

unified block that generates two data formats: low-resolution data (i.e. the compressed 

codewords) and high-resolution data (i.e. entropy-based features). Robot localization is a 

process of querying the map. The current pattern sensed by the robot is compared to the map 

using a distance measure (the similarity matching block), and the result indicates the most 

probable place corresponding to a topological position in the map. 

The solution structure in figure 4.5 is a general structure that fits metric localization as 

well as topological place recognition. This depends on the type of feature characterization 

that induces either a topological or a metric feature map. As previously mentioned, the final 

design targets the construction of a hybrid map that will contain both types of features. In 

accordance with the design of this chapter, the topological feature map is discussed, while a 

modified structure for metric solution adaptation will be introduced in chapter six. 

The proposed solution structure includes the following three advantages. First, it is 

generic because it is information-theoretic-based, and hence applicable to different sensor 

modalities, feature abstractions and measurements. Places are not restricted to appearance 

characterization through vision or range measurement features (e.g. corners, openings) only. 

They can also be characterized by surface reflectance, tactile properties, temperature, sounds 

…etc, or a set of combined features which is highly recommended. The second advantage is 

that environment modeling using natural features or landmarks is efficiently represented in 

such solution structure. Features or landmarks can be extracted and filtered automatically 

without having to be explicitly identified. The third advantage is that it is robustly designed, 

since an employed appearance-based modeling implicitly embeds several factors that may 

influence the localization performance. 

4.6 Structural Components

The different structural components of the solution, which are outlined in figure 4.5-b, will be 

discussed in details in the following subsections. 
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4.6.1 Feature Extraction 

Adopting a specific feature extraction method usually depends on the available sensor. In the 

application point of view, any sensor(s) along with a suitable feature extraction method(s) 

matches the proposed solution. Nevertheless, for a uniquely employed sensor, a single 

condition should be satisfied. It should be capable of acquiring multi feature measurements in 

the same topological place. This condition is also coupled with the robot’s navigational 

behavior. An example of an unsuitable sensor-behavior is a range sensor mounted on a robot, 

whose behavior is restricted to free space or wall following in a corridor-like environment. In 

such behavior, the sensor provides only constant relative distance which does not build a 

signature for the topological node. Examples for sensors that fulfill the mentioned requirement 

are vision sensors and scanning laser rangefinders. They can gather a bundle of 

measurements, almost of non-uniform distribution. A set of combined sensors relaxes the 

single sensor constraint, since the place will possess several features that indicate a total 

measurement variation and a pattern probabilistic distribution. 

It is worth mentioning that the solution approach is not successfully applicable if the 

environment does not possess enough details. That is because the approach measures the 

transmission of every environment property in order to eventually pick up the smallest 

informative set. Therefore, an already existing pool of properties or features should be 

available. This is what is meant by environment details. In the case that combined sensors 

and/or feature extractions algorithms are used, it is the solution-approach’s role to quantify 

both sensors and features through the assigned information-theoretic measure to evaluate their 

contribution to minimizing the uncertainty. 

Although the choice of the sensor, feature extraction and modeling methodologies are 

arbitrary, some preferences are recommended. Practically, it is encouraged to employ vision as 

a main sensor. Vision possesses attractive advantages by providing rich capture and 

characterization abilities for the environment with passive interaction. They are additionally 

now affordable with low-costs and low-power consumptions. In conjunction, an appearance-

based modeling approach is recommended for the outlined advantages provided in section 

3.3. Appearance-based modeling excels over other shape and region-based modeling 

approaches which are strictly environment specific or require exhaustive preprocessing steps. 

Another relevant advantage is that it is easy adaptable to learning systems. 
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A third and final recommendation is related to the feature extraction method. Local 

interest point extraction is recommended for the non global application on the sensed pattern. 

Global feature extraction application may be a burden or even misleading when the important 

information is confined in a small local region. The literature provides several examples of 

local features, such as the SIFT and SURF explained in 3.4.2. Both methods show outstanding 

performances, especially in object recognition. The SIFT feature extraction is chosen since it 

is a dominating choice reported in several recognition work. The descriptor is based on 

characterizing interest point by non-geometric gradient information (see section 3.4.2.2). Non-

geometric characterization is a reasonable choice, because when it is additionally combined 

with geometric characterization, highly decisive information can be generated.  

Concluding the suggested implementation, SIFT feature extraction is proposed 

combined with an appearance vision-based modeling. Appearance-based modeling has been 

previously introduced in figure 4.3-a, where every place is represented by a small set of image 

signatures. Few signature set is involved, instead of a single one, because the same scene is 

subject to (slight) variation under varying conditions leading to (non-major) variance in their 

generated descriptors. The few set, which is needed by the information-theoretic learning 

anyhow, increases the recognition robustness against such variation. Figure 4.6 shows the 

local interest points extracted by SIFT algorithm for a panoramic image example.  The image 

has 913 interest points generated by the algorithm which are described by gradient descriptors. 

The number of extracted features is relatively small compared to what is stated by Lowe 

[Lowe, 2003]. This is because place feature extraction from a far point can induce fewer 

features in comparison to a closer point. Nevertheless, the number of local features is still high 

and will be reduced simultaneously through the proposed feature evaluation, selection and 

compression modules. 

Figure 4.6. An Indoor panoramic image with features extracted by SIFT algorithm (No. of features= 913). 
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4.6.2 Similarity Matching 

The similarity matching module compares the features extracted from the image viewed by 

the robot with the features stored in the map in order to infer the robot’s topological location 

(i.e. topological node). Some issues are noted in the context of similarity matching. Firstly, not 

every feature is always detected by the sensor. It may be missed due to changes in the robot 

pose, view point, illumination conditions, shadows, occlusions or sensor noise. Secondly, 

some undesired features may arise because of the natural clutter and dynamics that occur in 

real-world environments, such as scene backgrounds, newly added objects, moving people 

and vehicles, or other external imposed factors (e.g. illumination conditions, flashing lights 

effect). That is why learning is a good strategy for increasing the robustness against those 

factors. However, such factors cannot be completely avoided. Therefore, what is required is a 

choice of robust matching criteria that can eliminate the false feature matches and balance the 

matching for the partially detected features. 

The best candidate node match for a given sensed pattern is computed by comparing the 

pattern with the map using features majority voting. This requires measuring the distance 

between each feature in the sensed pattern and those of each node in the map then counting 

the corresponding feature matches found. On completion, the percentage of the total number 

of matches relative to the number of features of the sensed pattern decides for the best 

candidate node. For selecting the most accurate corresponding feature match, selective 

matching is applied by imposing a criterion. The criterion compares the distance of the first 

closest neighbor d1 to that of the second closest neighbor d2 for every single feature matching. 

If the ratio is greater than a given threshold thr [Lowe, 2004],  

thr
d

d


2

1  (4.5) 

 

then the feature is not accurate enough and is discarded from voting. For closest neighbor 

search, the Cosine angle distance, d, is suggested: 

||||||||

.
cos),(

ji

j
T

i
ji BA

BA
BAd    (4.6) 

 
where Ai is the l-dimensional vector of the ith feature extracted from the current view and Bj is 

the l-dimensional vector of the jth feature in a given map node, ||Ai|| and ||Bj|| are the 
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corresponding norms of the vectors defined by: 
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The Cosine distance gives a score in the range of [0,1], where zero indicates completely 

dissimilar vectors, while one indicates identical vectors. It acts the same as the popular 

Euclidean distance in high-dimensional data spaces of Content-based Retrieval systems [Qian 

et al., 2004], and has the advantage of being faster in computation.  

4.6.3 Outliers Detection and Elimination 

Outliers exist in every data gathering process. They always have a fraud effect that negatively 

affects systems’ accuracy. Hereby, a preprocessing filtering step is beneficial, especially in 

learning systems. Outliers in this sense represent unstable features in patterns of the same 

place. Stable features tend to appear in every extracted pattern, independent of illumination or 

dynamics of the environment. On a higher representative level, though not ideally extracted 

with current automatic outlier detection techniques, outliers can be features acquired through 

lighting conditions (e.g. shadows, a camera flash), or objects that temporarily intercept then 

vanish from the scene. For example, a camera flash or light reflection on a surface could be in 

fact distinguishing, but undesired, feature. An outlier can also be produced from a dynamic 

object that temporarily interrupted the scene when sensed by the robot during data gathering. 

The goal then is to eliminate those features that reduce map quality, and may lead to potential 

misrecognition. Eliminating outliers has a better effect regarding class consistency, primarily, 

and features size reduction, secondarily. Outlier detection is often based on distance measures, 

clustering and spatial methods. Several approaches have been investigated for outlier 

detection [Chandola, 2007], among them are clustering-based methods.  

Clustering is an unsupervised machine learning technique to group similar data 

instances together using a given measure of similarity. Clustering algorithms attempt to 

organize unlabeled feature vectors into clusters or groups, such that samples within a cluster 

are more similar to each other than to samples belonging to different clusters. Despite the 

advantages of the cluster-based techniques that they do not have to be supervised, in addition 

to being used in an incremental mode (i.e., after learning the clusters, new points can be fed 

in to the system and tested for outliers), the disadvantage lies in the fact that they are 
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computationally expensive as they involve computation of pairwise distances. Since there is 

no given information about the underlying structure of data or the number of clusters in 

clustering approaches, there is no single solution or even a single similarity measure to 

differentiate all clusters. For this reason, there is no theory that describes clustering uniquely. 

Nevertheless, the performance of clustering-based techniques is surprisingly outstanding. In 

[Yoon et al., 2007], the k-means clustering algorithm is applied successfully for outlier 

detection of software management data. Therefore, their long processing times can be 

tolerated as long as they are performed in offline learning phases. 

Outlier removal via clustering relies on the key assumption that normal data points 

belong to large and dense clusters, while outliers either do not belong to any cluster or form 

very small clusters. The assumption holds true, since data in general contain lots of 

redundancies that correspond to a certain object or multiple occurrences of similar objects. At 

least, robust features will appear for the same scene in the extracted pattern set, independent of 

any external factor like lightening conditions or environment dynamics.  

For implementation, the k-means clustering (see appendix A) with a Cosine similarity 

distance is suggested for this module. The unsupervised approach is quite suitable, because it 

is hard to obtain prior knowledge of a classification label for the local point features, being 

fraud or real, weak or robust. To avoid discarding too many features from the images of 

locations with few detected features, the value of k is set to be a function of both the number 

of images per place and the average number of extracted features per image. 

4.6.4 Information-Theoretic Feature Evaluation  

The information-theoretic evaluation component is one main improvement in environment 

model building, which contributes to generating information-rich maps, increasing accuracy 

of localization and reducing its online computational complexity. In simpler words, the 

function of component is to evaluate perceived data by sensors and filter data with the 

highest information content only. Data of the highest information content contribute to less 

location uncertainty and hence are selected for optimizing localization.  

In specific terms, the component maximizes the transinformation between topological 

places and corresponding extracted features. This idea has been introduced in section 4.2. In 

this idea, each extracted feature has an associated transinformation value contributing to the 
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topological node identification, or rather, uncertainty reduction. The higher the trans-

information value, the better the discrimination power of feature to identify the node1. The 

feature space is accordingly classified into either highly discriminating space (features 

possessing higher transinformation) or less discriminating space (features possessing lower 

transinformation). Such classification manages to find out which features give the minimum 

localization uncertainty and how many approximately are sufficient. A final filtering 

operation for the desired information (highly transinformative features and discarding the 

lower transinformative features) generates the information-rich map for accurate localization. 

In section 4.2, transinformation quantity has been reduced to the reduction in 

uncertainty, measured by the conditional entropy of location given features. Assuming that 

the topological node is a random variable X, and the extracted features from the environment 

is another random variable F, features are filtered based on minimizing:  

)fH(X|Ff j
mj


 },...,2,1{

* minarg         (4.8) 

 
with fj representing feature categorization instances (i.e. discretized feature domain) and m 

their distribution size. These instances are called in the component design feature categories. 

For the general feature evaluation problem, machine learning is applied. A training 

dataset consisting of {Feature–Class} tuples is needed for the statistical analysis. From this 

dataset, the proposed conditional entropy of a ‘Class’ (i.e. X, the topological node random 

variable) given a feature category can be calculated. In the case X is used for the ‘Class’, the 

problem falls into a classical node classification problem. However, another definition for the 

‘Class’ is adopted, which encodes higher-level information in the nodes and assesses 

suitability for feature compression at the same time. This is through introducing the idea of 

codewords. Codewords are a compressed-feature format. Therefore, in the implementation of 

the evaluation component, clustering is incorporated twice for quantization of features in the 

high-dimensional feature space, providing a two-fold: (1) a means for defining the feature 

categories fj, and (2) a facility for defining a new intermediate data form called feature 

clusters. Feature clusters are defined locally for every node and are codewords candidates. 

The reader can refer to figure 4.5-b to see the input and outputs of the evaluation component. 

                                                 
1 Transinformation is considered a measure for the distinguishability of feature, as well as for its discriminating power, to decide among the 
different places. 
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The evaluation component proceeds by firstly generating the feature clusters, then 

secondly the feature categories, and finally applying the filtering criterion.  

To generate the feature clusters, features of patterns of each node are split by means of 

k-means clustering, defining new compressed versions for the extracted features. The step is 

augmented by the extraneous redundant features that are mostly present in an image, and 

which may refer to an exact, a part of or a characteristic appearance of an object. The value 

of the number of clusters, k, is set differently in every node, because there exist nodes with 

few detected features and others with more. Therefore, k is set to be a function of both the 

number of images per node and the average number of extracted features per image. Local 

clustered features are called ‘feature clusters’ or ‘keypoint clusters’ in reference to SIFT. 

These generated clusters form the ‘Class’ column or the supervisory label in the training 

dataset, while the ‘Feature’ column simply refers to the value of feature or keypoint to be 

evaluated. The dataset is obtained by letting the robot move in the operating environment and 

build the topological graph, whose nodes contain the gathered extracted features. 

To generate the feature categories, the whole feature space is quantized to give the 

discrete sample space which is a measure for the actual probabilistic variation of data. The 

quantization is performed by applying clustering again. This time, however, clustering is 

applied on the whole features in the training dataset, in contrast to the prior local clustering 

applied on each node to generate the feature clusters.  The output clusters are termed feature 

categories, whose distribution represents the true realization of features’ variation. The k-

means algorithm is also used here as in the prior clustering, but surely with different 

parameter value for k. The previous two steps of generating the feature clusters and feature 

categories are illustrated in figure 4.7. 

Eventually, the conditional entropy criterion of recognizing a feature cluster O, given a 

sampled feature category fj is calculated through the posterior probabilities: 

)fP(o) fP(o) fH(O jkj
k

kj |log|| 2         (4.9) 

for every k=1,…,Ω, where Ω is the number of instantiations of the feature clusters, and 

j=1,…,Ψ, where Ψ is the number of instantiations of the feature categories. Equation (4.8) is 

consequently updated to searching for the minimal feature set f * that minimizes (4.9): 
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Figure 4.7. Generating feature clusters and feature categories. Clustering is applied first on the node level data 
to generate the feature clusters, while next on the whole map data to generate the feature categories. 
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The posterior probabilities )|( jk foP  in (4.9) are calculated from the likelihood of feature 

clusters and the prior probability of feature categories through the Bayes formulae: 
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Equation (4.9) distinguishes the quality of extracted features in their sampled space, as 

well as the created feature clusters. Features that tend to appear equally likely among the 

different nodes as well as feature clusters are less informative, and thus will encounter high 

entropy values. Those features are called high-entropy features. On the opposite side, 

features whose occurrence is bound to few nodes and feature clusters deliver more 

information (distinguishable in terms of categorization), and will encounter low entropy 

values. Those features are called low-entropy features. Consequently, a decision regarding 

each extracted feature, whether it is useful for node identification or not, can be made based 

on the information it delivers (i.e. if entropy is low). In a similar manner, the quality of the 

created feature clusters is determined through the evaluated features, and hence non-relevant 

feature clusters will diminish after filtering out the high-entropy features. Filtered feature 

clusters, which correspond to the low-entropy feature set, will be the selected codewords 

candidates that are passed to the compression codebook module. 

An important parameter to check in this component is the parameter k. With the high 

dimension of observation domain and the lack of knowledge about existence of evidence 

Topological 
representation 
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related to data semantics (e.g. assembling parts of an object, marginal categorization), the 

right number of clusters is difficult to know. Therefore, several trials are normally conducted 

in order to tune the best value for the parameter. Trial ranges can be set in relation to the size 

of data. The quality of clustering can also be verified through a quality-based criterion, such 

as the average Silhouette coefficient. The Silhouette value for each point in a cluster is a 

measure of how similar that point is to points in its own cluster compared to points in other 

clusters, and is defined by: 

    
)b,max(a

a -b
  S(i)

ii

ii     (4.12)

 
where ai denotes the average distance from the ith point to other points in its own cluster, and 

bi denotes the minimum of the average distances from the same point to the other clusters. 

The value of Silhouette coefficient varies between -1 and 1. A value near -1 indicates that the 

point is clustered badly. A value near 1 indicates that it is well clustered. To evaluate the 

quality of an applied clustering, the average Silhouette values of all points, S , is computed. 

4.6.5 Codebook for Feature Compression  

A feature codebook is a compression technique inspired by the Bag-of-words quantization 

methods adopted in text classification and retrieval systems. Recently, it has been introduced 

to the vision domain, and has shown efficiency and simplicity in its creation. Visual 

codebook construction is based on defining a certain visual alphabet (visual codewords). A 

simple meaning for the visual codeword can be a tire, a gear and a hand drive which can 

define a motorbike object. In the evaluation component, feature clusters have been defined 

locally in every node using k-means clustering. This allows efficient encoding for the 

candidate codewords, because slightly varying feature clusters may be of interest if they 

belong to the filtered set. For instance, in the motorbike object, a circular thick tire can be 

regarded as a codeword, while a relatively thinner tire can be regarded as another codeword, 

although both belong to the same general ‘tire’ class. 

The codebook component (CB) allows the filtered entropy-based features, which are 

the output of the information-theoretic evaluation component, to be stored in compressed 

format. It is easily generated from the information-theoretic evaluation component since the 

latter is intelligently processed to generate clusters of the evaluated features (i.e. feature 
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clusters). The CB is constructed from the filtered feature clusters. A CB entry is equivalent to 

a single codeword and is represented by the centroid of the corresponding filtered feature 

cluster. This value can be simply the mean of the given cluster members. The CB relates 

every codeword to the reference node(s) that encompass it. It is worth mentioning that while 

the robot senses the environment to recognize its location, no further clustering is applied to 

the sensed pattern. This is to save the time consumed by the clustering in order to detect the 

codewords. A direct feature-to-codeword matching using the codebook is applied instead. 

In figure 4.5-b, both the information-theoretic evaluation and the codebook components 

are highlighted as a single integrated processing unit. This unit has two output data formats: 

the entropy-based features and the compressed codewords. Either data can account for a 

feature-based map. The figure identifies the CB – the second contributing improvement for 

environment model building – as the feature map. Nevertheless, both data formats will be 

studied in the localization performance evaluation to contrast them against each other. 

4.7 Performance Measure of Localization Accuracy

The average localization accuracy is identified by the system recognition rate. System 

recognition rate is obtained by letting the robot execute several navigational experiments, in 

which the robot location is queried multiples of times, and then the average of the results over 

the total runs is calculated. To set a measure for localization accuracy, we adopt the Precision 

and Recall metrics used in retrieval systems. Precision is the measure of the ability of a search 

to retrieve an assigned number of the most relevant items (usually images or documents), and 

is defined by:  

ds retrieveer of itemTotal numb

rchd by a seas retrieveevant itemno. of rel
 P Precision   (4.13)

 
Recall is the measure of the ability of search to locate all relevant items in the corpus which 

should have been retrieved by the search, and is defined by:  

in corpusent items ting relever of exisTotal numb

rchd by a seas retrieveevant itemno. of rel
 RRecall   (4.14)

 

Precision and Recall measures are complementary. The difficulty resides in having both 

at maximum. An ideal case is when all the stored patterns representing a place are retrieved 
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as top matches. This is however far from practice. From the definitions of both performance 

measures, it can be claimed that Recall is more interesting for document retrieval, while 

Precision is more relevant for image retrieval applications. Nevertheless, from a point of 

view that Recall should be at maximum as important as the Precision, a score function is 

defined to be optimized to select the best combined Precision-Recall ratio. 

The possible Precision-Recall combined ratio is investigated using a single score; the 

E-measure, which is defined as [Lewis, 1995]: 

)/1)(1()/1(

1
1

RP
E

 
         (4.15)

 
where R is Recall, P is Precision, and  is a ratio parameter. (4.15) can be rewritten as: 
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        (4.16)

 
with [0,∞] being the required parameter to be found, and which measures the relative 

importance of Precision to Recall. It is related to   by )1/(1 2   . A bigger value 

indicates more emphasis on Recall, while a smaller value indicates more emphasis on 

Precision. The lower the value of E, the better the performance of Precision versus Recall. 

Therefore   is found by minimizing E. 

4.8 HEID Test Environment, Data Acquisition & SIFT-Map Construction 

The test environment is the indoor office environment of the Automation Department at the 

University of Heidelberg, whose dataset will be abbreviated as HEID (HEIdelberg Dataset). 

Figure 4.8 shows the floor plan of the department which spans an approximate area of 600 

square meters. Some areas are selected for the experimentation of model building and 

localization. They are identified by colored boundaries as shown in the figure. The selected 

space constitutes 7 places that account for the map topological nodes. The space spans 5 office 

sections in 3 rooms (2 double office rooms and one single office room), a meeting hall with a 

joint kitchen and an exit/stairs view. The total selected metric space is approximately 120 

square meters. Table 4.2 describes the selected space identified in the previous figure with the 

area of each room or enclosed space. 
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Figure 4.8. Floor plan of the Automation department at University of Heidelberg. The colored areas represent 
the space used for environment model building. Orange marking encloses office rooms spanning 5 office desks, 
red marking encloses a meeting hall and a kitchen, and green encloses an exit-stairs view. 

 
Table 4.2. Selected space with corresponding areas. Test environment-University of Heidelberg (HEID). 

id Room Area (m2) 

DO1 Double office room 1 21.5 

DO2 Double office room 2 24 

SO Single office room 12.5 

MK Meeting and Kitchen area 46 

SE Stairs and Exit view 16 

 

The environment is explored for data acquisition and an initial map is constructed 

containing features of the places as extracted by the original feature extraction algorithm 

(SIFT). This SIFT-map will be the reference for comparison while evaluating the proposed 

maps. It will act as the training dataset for the information-theoretic evaluation and will also 

be used to identify the parameter of the localization accuracy measure. The creation of this 

image dataset has been made using a digital Canon camera of resolution 640x480. The camera 

has been mounted on a tripod and images are acquired from the seven places. For each place, 

5-7 panoramic images are acquired at different time intervals varying during daytime to have 

different illumination conditions, as well as on apart timing intervals, where the order of the 

DO1 

DO2 

SO 

SE 

MK 
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place is changed through moved, missing or newly added objects. That is to say, illumination 

and scene dynamics are the factors affecting the environment. The whole dataset is collected 

over a period of 6 months to ensure meeting those variations.  

Panoramic views are constructed for places to capture a large amount of the environment 

details, and hence provide richer characterization. The position of the camera is slightly 

changed each time the same scene is acquired. This is not a severe problem since positional 

data are not preserved with the acquired image in our case. The wide-view images are 

constructed by stitching several sequential image shots for each place together (see appendix 

B). In the data gathering phase and initial map construction, a panoramic tool is used to 

perform the stitching. In the online localization, it has been automated. The tool depends also 

on SIFT points recognition for stitching, finding correspondences and finally creating the 

panorama. Each generated image describes a field of view for the scene between 180-270 

degrees. The restricted field of view is due to the limitation of software capabilities. The 

stitching mechanism is adopted emulating wide angle cameras, such as panoramic (360 

degrees) cameras and Eyefish cameras, which can perceive large parts of the environment. 

The emulated large field of view captures more details about the environment, and enables a 

better recognition with less false negatives (mismatches). Figure 4.9 shows panoramic image 

examples for the different topological places in the operating environment, with the 

classification on the right-hand side identified in table 4.2. 

SIFT feature extraction is applied for the panoramic views. The extracted patterns are 

associated with the corresponding nodes and stored in a structured file as the initial SIFT-map. 

The map includes topological features of 41 wide-view images which have been acquired in 

six environment exploration phases. The number of SIFT keypoints detected in an image 

varies between 500 and 1700, with an average of 1000 keypoints per image, each with 128 

dimensions. This yields a topological map of 40 Megabytes in size.  Figure 4.6 shows an 

image example for the meeting place, with 913 keypoints extracted by the SIFT algorithm. 

4.9 Experimentation and Results 

The experimenting robot is a Pioneer P3-DX base platform provided by MobileRobots Inc. 

(ActivMedia Robotics). The platform is a two motor differential drive robot with two 19- 

centimeter wheels and one rear caster wheel. It is equipped with a ring of 8 forward ultrasonic 
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Figure 4.9. Panoramic image view examples for the selected places.
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sensors, which is engaged with a single behavior for collision avoidance. A structure has 

been built up and fixed on the robot in order to support a camera and a laptop with windows 

and Matlab developing environment (Intel core Duo 2.4 GHz, 3Gbytes RAM). The mounted 

camera is a Logitech 4000 pro webcam of 640x480 resolution. Figure 4.10 shows the robot 

platform used in the experiments for evaluating the localization using the proposed entropy-

based features and codewords maps. In what follows, the performance using the original 

SIFT algorithm is first registered, followed by the application of the proposed solution 

approach, and the recording of the obtained performance results. 

 

 

Figure 4.10. Pioneer P3-DX mobile robot with built-in structure supporting a laptop and a webcam. 

 
4.9.1 Feature Extraction Performance 

This section records localization performance of the initial SIFT-map (i.e. localization 

accuracy using normal SIFT algorithm). Additionally, the algorithm’s robustness is tested 

against noise, camera resolution and scaling. In [Lowe, 2004], the repeatability of keypoints 

detection in image is tested as a function of pixel noise. Here, the robustness of recognition is 

tested with respect to noise, lower quality sensor (i.e. resolution) and scale. This can help to 

identify the different conditions in which the feature extraction can still be adequate. 
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Figure 4.11 records the localization accuracy of SIFT as a performance behavior 

between Precision and Recall. This performance evaluates the global retrieval process by 

considering the data in the map as queries. Localization is tested by the given node queries, 

and the retrieval process excludes the querying data pattern from the matched outputs. 

Precision and Recall values are recorded starting from the first best node match and up to the 

nth best match, where n is the total number of map patterns/images. The relationship indicates 

that 20% of the nearest neighbor images are 100% identified, and 60% of nearest neighbor 

images are identified with a precision of more than 90%. 100% Precision at 20% Recall 

means that the first nearest neighbor or top match is always classified to the correct node. 

Figure 4.12 shows an environment place example subject to different values of Gaussian 

white noise with a standard deviation equal to 0.001, 0.01, 0.1. Figure 4.13 shows the effect of 

different noise values (in terms of standard deviation) on the Precision-Recall performance 

compared to the non-turbulent image data. It is clear from the curves that SIFT features and 

recognition are sensitive to intense noise interferences. Similarly, Figure 4.14 shows the effect 

of sensor resolution on retrieval performance. The default image size 640x480 is down-

sampled to obtain four lower image resolutions of 352x288, 320x240, 176x144 and 160x120. 
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Figure 4.11. Precision-Recall performance for SIFT feature extraction. 
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Figure 4.12. Image with different noise values. 
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Figure 4.13. Retrieval Performance against Noise. 
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The results indicate that SIFT performance shows relatively good robustness to resolution. 

Figure 4.15 shows testing partial image matching, which can account for the scale. Partial 

image querying is correctly matched to similar views of other images, and vice versa. This 

indicates the robustness of local features to the scale, which is a significant advantage. 

Figure 4.14. Retrieval Performance against Resolution. 

Figure 4.15. SIFT robustness against scale. 
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4.9.2 Parameter Identification of the Accuracy Performance Measure 

For specifying an exact measure for localization accuracy, a cost function E has been defined 

by (4.16). The function should be minimized to deduce the parameter   that indicates the 

ratio of Precision versus Recall. Localization accuracy is measured by the Precision at a fixed 

value of Recall which is identified by this cost function. 

The value of E is optimized through experimental statistical measurements, where the 

SIFT-map previously constructed in 4.9.1 is utilized. In this experiment, the system is also 

tested by querying the data in the map, excluding the query from the results, and recording 

the equivalent Precision and Recall values starting from the first best match and up till the nth 

best match, for the total number of map images n. 

Figure 4.16-a shows the previously illustrated relation between Precision and Recall 

performance for SIFT retrieval process. Those Precision/Recall combinations are used to find 

the minimum E that solves for parameter . Figure 4.16-b shows the E-Measure calculated 

using (4.16) versus the given Precision/Recall combinations, and for different values of  = 1, 

0.5, 0.2, 0.1. Precision-Recall Combination values are recorded at the corresponding 

minimum values of E with for the different   values. Table 4.3 summarizes these 

combination values obtained from figure 4.16-b. The minimum E value occurs at  = 0.1, 

indicating the recommendation to set the localization accuracy measure as the Precision value 

at 20% Recall. Taking approximation, this means the first best match. 

Nevertheless, we prefer to introduce some uncertainty or noise in the adopted 

localization accuracy measure. Therefore,   will be set to a slightly higher value equal to 0.5. 

This setting adds extra value for Recall and sets it to be as important as the Precision. The 

setting which regards additional significance of Recall implies testing localization more 

strictly. The increased recalled retrievals will cause a drop in the Precision value but on the 

other hand will create a distribution over the identified location. Moreover, the ability of 

recognition to retrieve successive correct matches will be of concern to evaluate, not just the 

ability to retrieve a single best match which is always a default used by other works.  

Setting   to 0.5 means enforcing the condition that more than half of the correct 

patterns (60%) of a map node should be recognized when querying this node. This percentage 
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Figure 4.16. (a) Precision-Recall performance for SIFT feature extraction. (b) E- Measure for the 
Precision/Recall combinations.  
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is fair enough to judge the system as a localization module and as a general image retrieval 

system at the same time. In the next investigations, we will apply the case that the measure of 

the topological localization accuracy is the Precision value at 60% Recall.  

 

Table 4.3. Performance measures versus parameter Beta 

  1 0.5 0.2 0.1 

Precision (%) 80 96 97 100 

Recall (%) 80 60 40 20 

 

4.9.3 Clustering-Based Outlier Elimination 

K-means clustering with a Cosine distance is applied on the training dataset for outlier 

detection. The unsupervised approach is suitable for the problem as discussed, because it is 

hard to obtain prior knowledge about classification labels for the SIFT keypoints, being fraud 

or real, weak or robust. The procedure starts by clustering keypoints associated with patterns 

that belong to the same topological node using k-means. The value of k is assigned to the least 

number of keypoints occurring in the patterns of the same node. Hereafter, clusters having 1-7 

keypoints are removed.  

Figure 4.17 shows the Precision versus Recall plot when removing 10%, 13% and 14% 

of the features as outliers, compared to the original features extracted by SIFT (normal). As 

the graph indicates, outlier removal has a small negative impact on the Precision. This is 

clearer with 14% outliers. Such a result is expected since outliers are distinguishable as an 

external fraud effect, but not as a characteristic of the scene. Though further SIFT keypoints 

elimination can have a negligible effect on the retrieval performance, eliminating only 13% of 

the keypoints as outliers is chosen, in order to preserve the same Precision that is obtained by 

the original SIFT feature extraction at 60% Recall. 

4.9.4 Clustering-Based Feature Pruning 

As previously mentioned, the vision feature space is in most cases of high dimension. 

For example, the main drawback of the SIFT features is that a huge number of keypoints is 

generated. This large size induces a negative influence on the general performance regarding 

accuracy and complexity. Therefore, in this case, feature pruning is highly recommended. 

Features have been pruned using clustering. In the literature, we outlined a clustering-based  
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Figure 4.17. Retrieval performance after outlier removal. 

 

approach for pruning SIFT features in an indoor environment [Ayers and Boutell, 2007]. The 

approach breaks SIFT keypoints of each place into a certain number of clusters using the k-

means algorithm, and represents each class by mean values of the clusters. For matching, a 

nearest mean classifier is used for every SIFT keypoint in a test image to vote for the place 

class. The idea seems plausible to reduce the large size of keypoints. Excluding our proposed 

evaluation step for the features, both the authors’ and our implementation appear quite similar. 

We applied the authors’ approach to Heidelberg’s University feature-map after outliers 

were detected and eliminated. The number of tested clusters k is varied between 300 and 800. 

Figure 4.18 shows the performance results of the approach. The graph indicates non-

satisfactory results in comparison to the original features performance. In addition, the first 

matches exhibit obvious low precision values, which means that the localization cannot 

recognize the first match efficiently (relatively high false positives). Localization recorded an 

average accuracy between 78 ~ 83 % precision at 60% Recall. The approach is reported, as 

coinciding with the results obtained in [Ayers and Boutell, 2007], as unsuccessful.  
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Figure 4.18. Performance of pruned features using k-means based on data redundancy. 

 

4.9.5 Information-Theoretic Feature Evaluation  

SIFT shows high efficiency for place recognition, as performance in figure 4.11 indicates. 

However, the features represent a great overhead on the localization. Though outlier removal 

reduced the size of the map by 13%, the overhead is still high. The clustering-based feature 

compression experimented in the previous section which performs on the native extracted 

features didn’t prove its efficiency. The proposed information-theoretic evaluation is expected 

to solve those problems. Two datasets that form HEID are used for evaluating the localization: 

the first is the training dataset and used for the information-theoretic evaluation. The second is 

another testing dataset collected online from the environment, and is used to evaluate the 

localization using the filtered entropy-based features by the information-theoretic evaluation 

component. To localize the robot, the robot visits a node, executes sequential rotation actions 

to build the panoramic view of the place and then features extracted at the querying place are 

compared to the map. The Cosine distance defined by equation 4.2 is used in feature-to-

feature matching with a threshold value of thr equal to 0.6. Matched image patterns for the 

topological place(s) are determined through feature majority votes. 
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The feature evaluation approach is applied on the training dataset after outliers are 

eliminated. The entropy-based feature set is generated as explained in section 4.6.4. We 

experimented with different values for the parameter Ψ (number of feature categories) in 

equation (4.9), between 10 and 1000 for more than 35000 keypoints in the dataset, and 

monitored the effect of eliminating keypoints of relatively high entropy values.  

Figure 4.19 shows the localization accuracy versus different percentages of elimination 

of high-entropy keypoints in the training dataset, for different Ψ=10, 100 800 and 3936. The 

plot indicates that high cluster variation indicated by Ψ shows less accuracy (Ψ=3936). This 

identifies that the data undergo extra division and lose meaningful information content. For 

less cluster variation, the plots maintain an almost constant performance before it starts 

decreasing at 64% elimination. The plot still maintains high performance up to 72% for 

Ψ=800. The best performance in this study is obtained at 800 clusters. The graph shows that 

eliminating up to 64% of the keypoints as high-entropy keypoints has insignificant effect on 

the Precision. This means 64% of the keypoints do not share efficiently in the candidate 

codeword or place classification, but are rather an overhead on the localization. The figure 

Figure 4.19. Average localization accuracy versus high-entropy features elimination. 
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also shows that eliminating up to 72% as high-entropy features still preserves the same 

precision for 800 clusters. 

Figure 4.20 shows an environment example image with the keypoints extracted by 

SIFT (a), and after eliminating 44% of the keypoints as high-entropy features (b). The second 

image preserves only 511 keypoints, in comparison to 913 keypoints extracted by the normal 

SIFT, with 100% recognition precision for this place category. 

Figure 4.20.  (a) An Indoor panoramic image with keypoints extracted by SIFT algorithm (No. of keypoints = 
913). (b) Low-entropy keypoints after removal of high-entropy features (No. of keypoints =511). 

 

Figure 4.21-a shows a histogram for the entropy of keypoints obtained at 800 cluster 

quantization. Different margins indicate thresholds for filtering low-entropy features with 

percentages (74%, 65%, 43%, and 36%). Figure 4.21-b shows the relation between Precision 

and Recall performance for the retrieval process using the second test dataset. As mentioned 

previously, the localization accuracy is set to be the Precision value at 60% Recall. The 

figure shows the retrieval performance of original SIFT features (Ref.) and the previous low-

entropy features percentages. The four curves show much better performances than the one 

recorded by the original features extracted by SIFT. Eliminating 26% of the keypoints as 

high-entropy features (74% low-entropy features) achieves 100% Precision up till 70% 

Recall. This means the system recognizes more than four successive absolutely correct 

images out of an average of six that reside in the dataset. Moreover, eliminating up till 64%  
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Figure 4.21. (a) Entropy histogram for 800 keypoint clusters. (b) Average Precision-Recall performance for the 
test dataset by preserving low-entropy features and discarding high-entropy features. The percentage indicates 
the preserved low-entropy features referenced to original SIFT features. 
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(36% low-entropy features) achieves full precision at 34% Recall, and still achieves slightly 

better performance than the original SIFT at 60% Recall.  

Consequently, it is concluded that almost 64% of the SIFT generated keypoints do not 

share efficiently in the topological node categorization, and hence are not informative 

features. For the different experimentations, the entropy-based feature map outperformed the 

initial SIFT-map, with the best performance obtained at 800 clusters (review figure 4.19). 

The same range of the parameter Ψ is also tested using the Silhouette coefficient 

defined by (4.12). Average values of the coefficient, S , have shown a monotonic increase 

over a small range [0.1508, 0.1823], which indicates accepted clustering quality and 

flexibility of the values of k. Consequently, any value for k in its studied spanned domain can 

be picked up flexibly without complications or severe performance degradation. The studied 

feature domain fortunately covers a relatively wide range due to the large size of vision data. 

This is possibly not the same when extracted features are of smaller size.  

Table 4.4 illustrates the retrieval performance for some entropy-based feature maps 

which are employed in parts of the conducted studies. These are: 

A. Feature map extracted by SIFT Algorithm 

B. Feature map after outliers removal (13% Outliers) 

C. Entropy-based feature map (74%), 26% removal of high-entropy features, training data B 

D. Entropy-based feature map (65%), 35% removal of high-entropy features, training data B 

E. Entropy-based feature map (43%), 57% removal of high-entropy features, training data B 

Results indicate that the same high recognition/localization accuracy using SIFT (A) 

can be obtained through the low-entropy feature set, which has the impact of reducing almost 

2/3 of the overhead (E). The average retrieval precision is 96%, which implies a high 

confidence that the localization is correct. 

 

Table 4.4. Retrieval performance: Performance index versus feature-map 

Performance index/Feature-map A B C D E 

Average KPs (features)per image 1000 860 635 560 370 

Precision at 60% Recall (%) 95.9 95.9 100 99.2 96.7 

Search and Retrieval Time (sec) 19.8 16.5 12. 10.2 6.9 

Space reduction (%) - 14 36.5 44 63 

Time reduction (%) - 16.7 38.4 48.5 65.2 
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4.9.6 Codebook Performance 

In the codebook matching, extracted keypoints from testing queries are compared against the 

codewords of the CB. The Cosine distance is used for keypoint-to-codeword matching, with 

a threshold value for thr equal to 0.5. Far distanced matches are discarded and the matched 

place is determined through the majority votes acquired. Since the CB preserves only one 

value on behalf of a keypoint cluster, the size of the preserved features is again much more 

reduced than the low-entropy features obtained in the previous section. 

The results of two CB examples are shown: the first CB example is obtained from the 

low-entropy feature set reduced to 74% of the original features, and has 3845 entries. The 

second CB example is based on a reduced feature set to 36%, and has 2739 entries. 

Figure 4.22 shows the CB performance in comparison to the initial SIFT-map and the 

entropy-based features of the training dataset. Localization using the CB has approximately a 

similar performance to the entropy-based features. Localization performance still preserves 

almost the same precision for the two used CBs (94-96%), in comparison to the original SIFT 

features (96%). The CB, however, provides significant reduction for the data stored 

compared to other maps. This reduction is about 90% in comparison to original SIFT 

features, and about 80% in comparison to the entropy-based features (hint: SIFT-map ~35K 

total keypoints; 74% low-entropy features map ~26K total keypoints; 36% low-entropy 

features map ~13K total keypoints). The CB results in a similar linear reduction in the 

matching time by almost 90% as well. 

Figure 4.23 shows the performance for the two CB examples compared to the initial 

SIFT-map, when using the test dataset. The two CBs are approximately similar in 

performance as the original SIFT. The second CB (based on only 36% of low-entropy 

features) achieves 100% Precision for the top 1-2 place matches. Hence, it is concluded that a 

feature CB is worthwhile to gain high localization performance, which is similar to the 

original feature extraction performance. It saves, however, much of the overhead required for 

the storage of localization map and the pairwise matching of the data. 

A querying example for an office scene in the tested environment, HEID, is shown in 

Figure 4.24. The figure shows the top 4 retrievals by the place matching component. The 

retrievals are correctly identified by the 36% low-entropy map and the Codebook based on  
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Figure 4.22. Average retrieval and localization performance for the training dataset using CB based on (a) 26% 
reduction of SIFT keypoints (3845 Entry CB) (b) 64% reduction of SIFT keypoints (2739 Entry CB). 

(a)

(b)
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Figure 4.23. Average retrieval and localization performance for the test dataset using two different CBs. 

 

the same low-entropy feature set. The figure highlights the number of features extracted for 

the query by the original SIFT algorithm, and the number of low-entropy features and 

codewords stored for every retrieved image in the corresponding map. Scene dynamics and 

illuminations variation are clearly obvious in the map image examples. 

Table 4.5 provides a summary for the gains attained by the proposed information-

theoretic map building and localization approach. The data size and retrieval performance for 

some of the proposed reduced feature maps, which are employed in parts of the conducted 

studies, are given. In the table, time reduction is not equal to space reduction since this time 

concerns the localization process that includes additional feature extraction time of the query. 

The different proposed maps indicate that localization accuracy can be adapted efficiently to 

the available resources, and in other words, performance parameters (accuracy, complexity) 

are simultaneously tuned with the need. The table summarizes the following studies: 

A. Feature map extracted by SIFT Algorithm 

B. Feature map after outlier removal (~13% Outliers) 
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Figure 4.24. Illustrative localization example: A wide-view image for an office environment. Top image is the 
query image. The following images are the top 4 place matches, all correctly classified. Each image shows the 
associated keypoints extracted for the query and those acquired as reduced low-entropy features and codewords 
versions, which are stored in the topological map. Additionally, each image illustrates a different weather and 
illumination acquisition conditions. Scene dynamics is also obvious through new, moved or missing objects. 
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C. Low-Entropy feature map (74 %), training data B 

D. Low-Entropy feature map (36 %), training data B 

E. Codebook based on 36% low-entropy feature set 

 
Table 4.5. Data size and retrieval performance: Performance index versus feature-map 

Performance index/Feature-map A B C D E 

Average KPs per Image 1000 868 640 320 67 

Precision at 60% Recall (%) 95.5 95.5 100 96.9 93.6 

Localization Time2 (sec) 22.81 19.61 17.72 10.36 4.96 

Map Size(MBytes) 40.07 34.8 25.65 12.81 2.67 

Space reduction (%) - 13.2 36 68 93.3 

Time reduction (%) - 14 22.3 54.6 78.3 

 

4.9.7 Localization Performance under Acquisition Disturbances  

Figure 4.25 shows image examples for the meeting place with disturbed acquisition 

conditions. The images have been acquired in two situations. In the first situation, the robot 

platform is driven with relatively high velocity, introducing high vibrations in the camera 

sensor. In the second situation, the robot platform is driven with lower velocity yielding less 

camera vibrations. These situations, accordingly, influence the quality of image stitching. It is 

necessary to see the effect of those disturbances and the consecutive stitching quality on the 

localization performance.  Two webcams with two different resolutions have been used as 

well: Logitech 4000 pro (320x240) and Logitech C600 (640x480). This is because the image 

resolution is expected to have a consecutive effect on the image stitching quality as well. 

The introduced high vibrations lead to bad-quality stitching as illustrated by figures 

4.25-a,c. Figures (a) and (b) show the panoramic view constructed by the low resolution 

camera from 3-image stitching procedure, while figures (c) and (d) show the view constructed 

by the high resolution camera from 6-image stitching procedure. The images show that higher 

resolution images undergo low-quality stitching when the camera exhibits severe vibrations.  

Localization performance under the disturbed acquisition conditions is summarized in 

table 4.6. Employing a low-resolution sensor provides more robust localization towards the 

low-quality stitching caused by severe vibrations. The CB performance is slightly affected by 

                                                 
2  Localization time includes 3.11 seconds, which is the SIFT execution time on the specified machine. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

Figure 4.25. Examples for disturbed acquisition conditions. Stitching quality is influenced by sensor vibration 
and resolution: (a) 3-image stitching (320x240), high vibrations. (b) 3-image stitching (320x240), low 
vibrations. (c) 6-image stitching (640x480), high vibrations. (b) 6-image stitching (640x480), low vibrations. 

 

the stitching quality than the entropy-based features. On the other hand, employing a high-

resolution sensor provides less robust localization in a similar case. However, employing a 

high-resolution sensor shows good performance when stitching is of high-quality, which can 

be induced through a stabilized platform. Stabilization is guaranteed by acquiring the image 

shots after the robot executes a rotation control then pauses, instead of acquiring the shots 

while the robot platform is in motion. 

Table 4.7 shows the processed time needed for stitching several images (2, 3, 4 and 6 

images) by the two cameras). Stitching with the low-resolution sensor requires almost one 

second for every single stitching. This time is four times doubled with the high-resolution 



Chapter 4. Information-theoretic approach for environment modeling & localization 136

sensor since the feature extraction generates larger number of features. Experimentations have 

demonstrated stitching up till 3 images are enough for capturing the information of the scene. 

 
Table 4.6. Localization performance with disturbed acquisition conditions 

 Logitech 4000 pro (320x240) 

 
Less vibrations/ Good-quality 

stitching 
Severe vibrations/ Low-quality 

stitching 

Parameter / Method 

Entropy-
based 

features 
Codebook 

Entropy-
based 

features 
Codebook 

Avg. matching time (sec) 2.8475 0.8532 2.1094 0.5726 

Avg. localization time (sec) 4.009 2.9060 4.1622 2.6254 

Best match localization (%) 100 50 100 100 

Distribution localization3 (%) 100 50 100 50 

 Logitech C600 (640x480) 

 
Less vibrations/ Good-quality 

stitching 
Severe vibrations/ Low-quality 

stitching 

Parameter / Method 

Entropy-
based 

features 
Codebook 

Entropy-
based 

features 
Codebook 

Avg. matching time (sec) 9.8620 2.5056 8.6820 1.9469 

Avg. localization time (sec) 17.9329 10.5709 16.6734 10.0156 

Best match localization (%) 100 100 25 25 

Distribution localization3 (%) 100 75 75 25 

 

Table 4.7. Stitching performance. Stitching time versus resolution and number of images 

 Stitching time(sec) 

 2 images 3 images 4 images 6 images 

Logitech 4000 pro (320x240) 1.0955 2.0528 2.9486 4.3467 

Logitech C600 (640x480) 4.3019 8.0709 11.5317 16.3182 

 

4.10 Summary 

A real challenge for a mobile robot is to acquire user-independent abilities to interpret and 

represent the structure of the environment in a suitable and efficient way. Large and cluttered 

environments, together with the massive data provided by sensors, can induce a

                                                 
3 60% Recall localization. 
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highly-complex environment model for navigation. These factors can negatively influence the 

robot’s navigational performance, notably with the accuracy and computational complexity of 

localization. Therefore, it is necessary to fit the right and exact amount of information to that 

required by the localization task, and in its simplest form. 

This chapter has introduced an information-theoretic solution approach for environment 

modeling, and applied it for topological map building and localization. The approach is based 

on selecting a set of relevant features that contribute to location uncertainty minimization, and 

storing the features in their simplest form. This is achieved by evaluating environment 

extracted features based on measured transinformation values. Higher transinformation values 

indicate distinguishness of features, providing capability to resolve location ambiguities and 

worth for employment in a map model. The proposed approach is flexible in not adhering to 

specific sensors or feature extraction methodologies. 

A solution structure has been laid out, providing robust, computationally efficient, as 

well as accurate localization. In this structure, two feature forms are generated as a result of 

employing an entropy-based filtering criterion combined with a clustering technique; entropy-

based features and codewords. The first form is a reduced relevant feature set, while the 

second is a compressed form of the first. An implementation for the solution structure, using 

vision-based local feature extraction, has proven efficiency of both generated maps (entropy-

based feature map and codebook) for mobile robot topological localization. The localization 

performance exhibits higher accuracy at lower space and time complexities. The codeword 

map has induced significant localization computational performance (ten times faster with the 

same attained localization accuracy). The gains of the proposed modeling approach have been 

quantified, which shows its capability for adapting to the available resources efficiently. 

The proposed solution provides answers to important environment modeling inquests, 

such as which natural features or landmarks constitute relevance for incorporating into a map 

in unstructured, cluttered and dynamic environments, and what is an efficient representation 

of these data to minimize computational complexity, an issue that is extremely important for 

systems working in real-time. The performance evaluation of the solution approach, 

especially for the accuracy, has proven that the stand-alone topological unit can be integrated 

into a hierarchical design to assist scalable and computationally efficient geometric 

localization. This is the extended work that will be introduced in chapter six. 



 



 

Evaluation Study on COLD       
Benchmarking Database 

5.1 Introduction 

In this chapter, the information-theoretic environment modeling approach proposed in chapter 

four is tested on a recently-constructed standard benchmark database (COLD), primarily 

targeted for robot topological localization and map building. The tested images are acquired 

using an omnidirectional vision sensor and are subject to varying conditions of illumination 

and scene dynamics. Since it is important, in the point of view of vision-based solutions, to 

ensure robustness of solution against sensor resolution and dynamic variations, the benchmark 

study is relevant for the evaluation and validation of the proposed structure and methods. The 

considered evaluation is summarized in [Rady et al., 2010a]. 

Moreover, the chapter draws a comparison for the performances attained by HEID and 

COLD datasets on one side. On another side, it outlines customization for the solution 

approach according to the type of environment and sensor. The efficiency of the information-

theoretic solution, which is based on relevant information filtration to minimize uncertainty 

and computational complexity, is once again elaborated and explicitly discussed.  

Chapter 5 
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The chapter is structured as follows: First, the benchmarking database is described in 

section 2. The solution approach application, experimentation and results for the 

benchmarking database are presented secondly in section 3. Section 4 compares the results 

obtained with that of the previous chapter, and highlights differences and conclusions. The 

chapter closes with a short summary about the purpose of the chapter and the results obtained. 

5.2 COLD Database Description

COLD (COsy Localization Database) [Pronobis and Caputo, 2009; URL:COLD] is a large-

scale testing environment for evaluating vision-based localization systems aiming to work on 

mobile platforms in realistic settings. The database provides a large versatile set of image 

sequences acquired at three different laboratory environments in European cities 

(Saarbrücken, Freiburg and Ljubljana) under different natural variations and dynamics. 

Similar place categories or room functionalities are found in all of the three databases. These 

represent different office rooms, corridors, kitchen, etc. Table 5.1 lists the types of rooms used 

at each of the three laboratories. 

Perspective and omnidirectional video sequences were recorded for the database using 

different mobile robot platforms. The three mobile platforms engaged in the data acquisition 

at the three laboratories are shown in figure 5.1; with the parameters and settings of the 

camera sensors attached to each robot platform in table 5.2. Laser range scans and odometry 

data were also captured for most of the sequences. In each laboratory, data were acquired in 

all rooms using the same camera setup. Data acquisition process was done under different 

short-term dynamic changes caused by weather and illumination conditions (cloudy, sunny, 

night) across a time span of 2-3 days. Other dynamic activities like people wandering around 

and missing or newly added objects were introduced. Unfortunately, the videos have been 

acquired with low quality cameras (see figures 5.4 and 5.5). This has been reported in another 

work as well [Pronobis, 2011]. 

  
Table 5.1.  List of types of rooms used during image acquisition at each of the three labs 
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Table 5.2.  Parameters and settings of the cameras for each robot platform 

 
 

Since the COLD database provides an ideal and flexible test bed for assessing robustness 

of localization and recognition solutions subject to illumination and dynamic changes, we use 

an exemplar part of this large database to validate the proposed information-theoretic 

approach in the next section. Figures 5.2 and 5.3 show some example images for the interiors 

of rooms at the three laboratory environments as reported by the database developers in their 

description documents. The figures show images captured using perspective and omni-

directional cameras respectively.  

 

 

           
 

Figure 5.1. The three mobile platforms employed for image acquisition at the laboratories [Pronobis and 
Caputo, 2009]. 
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Figure 5.2. Example images from the three lab environments acquired by perspective camera showing the 
interiors of rooms [Ullah et al., 2008]. 

 

 
Figure 5.3. Examples of images of Saarbrücken database acquired by omnidirectional camera showing the 
interiors of rooms [Ullah et al., 2008]. 

 

5.3 Experimentation and Results

The COLD-Saarbrücken omnidirectional extended sequences (B) database is chosen in order 

to experiment the information-theoretic topological solution. The database contains omni-

directional image videos acquired by an omnidirectional sensor (see figure 5.3). In each video 

sequence, the robot navigates visiting five different functional areas in about 34 seconds 

(corridor, 1-person office, kitchen, bathroom and a printer area). Nine different places among 

those categories are selected as topological map nodes. The selected place images are shown 

in figure 5.4. Before applying feature extraction and generating an original SIFT feature map, 
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the omnidirectional images are unwrapped by projecting them on a cylinder surface to obtain 

normal view images (see figure 5.5). The resolution of omnidirectional image is 640x480 

pixels, which accounted for a 1003x199 slightly distorted image after unwrapping.  

Figure 5.4. Nine-place example images for five functional categories in Saarbrücken-COLD (B) Database 
(corridor, bathroom, kitchen, office room & printer area). 

 
Each node in the map is represented by 3-9 images, according to the existing amount of 

variation accounting for the lighting conditions, scene dynamics and robot pose. A dataset is 

prepared for feature evaluation with a total of 49 images and is constructed from three videos 

with the three different dynamic categories (cloudy, sunny and night).  A second testing 

dataset is prepared for the performance evaluation and is constructed from six videos with 

another intensity variation which is indicated by the benchmark developers. The test dataset 

has 52 images. Figure 5.5 shows omnidirectional and unwrapped normal-view images of two 

different place examples of the first dataset. The images illustrate severe dynamic variations 

(darkness, shadows, viewpoint change) which influence the testing environment. 

SIFT feature extraction is applied on data of the first dataset. The average number of 

keypoints extracted per image is 333, each with 128 dimensions. Assuming that a single 

number occupies 8 storage bytes, the size of original SIFT map becomes 15.92 Megabytes.  

In localization, the Cosine distance is used for matching images, together with a 

threshold to discard far distanced keypoint matches (section 4.6.2). The threshold value is set 

to 0.6 in keypoint-to-keypoint matching for the entropy-based map, and to 0.5 in keypoint- 
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Figure 5.5. Examples from the training dataset for the different weather and illumination conditions (cloudy, 
sunny and night). The figure shows the omnidirectional images and their unwrapped versions. The images 
indicate severe dynamic changes with respect to scene, illumination and robot pose. 
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to-codeword matching using the CB. The identity of queried place is determined through the 

keypoint or codeword majority votes. Similarly, as with HEID, localization accuracy is set to 

the calculated Precision value at 60% Recall (i.e. the ratio of correctly identified images from 

the entire retrieved set, on condition that 60% of the correct images that reside in the map 

corpus are retrieved). In the first COLD dataset, localization using the original SIFT features 

recorded 80% accuracy as shown in figure 5.6. The figure shows the complete retrieval 

performance, in which the first 1-2 images (20% Recall) show high localization accuracy 

(over 90%) as measured by the Precision value. After 20% Recall, the accuracy drops. 

In the k-means clustering of outlier detection, 9% of keypoints are eliminated after 

discarding small clusters (≤ 5). The value of k is set to be a function of both the number of 

images per place and the average number of extracted keypoints per image, in order to avoid 

discarding too many features from images of locations with few detected features. Filtered 

data after outlier elimination have almost identical Precision-Recall performance behavior as 

the original features extracted by SIFT. Figure 5.6 shows the performance of the original SIFT 

features and after outlier detection and elimination. Similarly as done in chapter 4, the filtered 

dataset will be used as the training dataset in the information-theoretic evaluation. 
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Figure 5.6. Performance of SIFT and after outlier detection for COLD database. 
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Different values for the parameter Ψ (number of feature categories) are investigated in 

the information-theoretic evaluation (review section 4.6.4). Values between 100 and 2000 are 

tested for the total 14848 keypoints of the training dataset, and the subsequent effect of 

eliminating keypoints of relatively high-entropy values is monitored. Figures 5.7-a, 5.8-a and 

5.9-a show the calculated Precision versus the different percentages of high-entropy keypoints 

elimination; Ψ = 100, 500 and 1512 respectively. All the figures show that almost a constant 

Precision is maintained up to 60% elimination percentage. After 60% elimination percentage, 

Precision starts decreasing. The 500 clusters, shown in figure 5.8-a, are considered an ideal 

choice for the parameter since the performance curve undergoes a smooth variation.  

Subsequently, figures 5.7-b, 5.8-b and 5.9-b show the relation between Precision and 

Recall as a performance behavior for the whole retrieval process, and as a function of the 

different elimination percentages in figures 5.7-a, 5.8-a and 5.9-a respectively. In order to 

demonstrate the effect of feature evaluation, performances are also compared to original SIFT 

features after outlier detection (red curve). As the plots indicate, the relationships exhibit a 

dense bundle of curves, in which performance is close to and sometimes better than SIFT. 

Such bundle corresponds to the constant precision level indicated in figures 5.7-a, 5.8-a and 

4.9-a.  This means that localization accuracy is similar to the original SIFT. The green curve is 

the one selected for the codebook generation. It has a filtering threshold equal to 52% of high-

entropy features, or reversely put, a 48% low-entropy feature set. 

Figure 5.10 shows the localization performance of 48% low-entropy feature set (LEF) 

for Ψ = 100, 500, 1000, 1512, and 2000 for the second test dataset. The map contains on 

average 6886 keypoints. Low-entropy feature sets with cluster variations 100 and 500 show 

better performances than the original features extracted by SIFT and SIFT with outlier 

detection (OD). Higher cluster variations show less accuracy as data undergo extra division 

and lose meaningful content. It is worth mentioning that accuracy is higher in the test dataset 

compared to the training dataset, with a value of 93% for the filtered evaluated features 

(Ψ=100 and 500), versus 86% for original SIFT features. 

Figure 5.11 shows the localization performance of five CB examples for the test 

dataset, which are generated from the previous entropy-based features examples. The map 

contains 575 keypoints, equivalent to 12 times compression than the entropy-based features 

map, and 28 times than the original SIFT map. Localization using the CB records much  
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Figure 5.7. (a) Average localization Precision versus different percentages of high-entropy features elimination 
(Ψ = 100). (b) Average Precision-Recall performance for the different elimination percentages of figure (a). The 
red curve is the performance of original SIFT Algorithm (reference). The green curve shows an elimination 
percentage of 52% chosen for codebook generation. 
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Figure 5.8. (a) Average localization Precision versus different percentages of high-entropy features elimination 
(Ψ = 500). (b) Average Precision-Recall performance for the different elimination percentages of figure (a). The 
red curve is the performance of original SIFT Algorithm (reference). The green curve shows an elimination 
percentage of 52% chosen for codebook generation. 
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Figure 5.9. (a) Average localization Precision versus different percentages of high-entropy features elimination 
(Ψ = 1512). (b) Average Precision-Recall performance for the different elimination percentages of figure (a). 
The red curve is the performance of original SIFT Algorithm (reference). The green curve shows an elimination 
percentage of 52% chosen for codebook generation. 
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Figure 5.10. Average localization performance based on preserving 48% of low-entropy features. 

 

lower performance than the entropy-based features, as well as than SIFT (57-64% accuracy). 

Hence, surprisingly, the CB fails to achieve the expected high accuracy of localization. 

Table 5.3 summarizes localization performance for different employed maps. 

Measurements are obtained in Matlab/Windows environment on a P4, 3.2 GHz processor, and 

with the databases residing on external disk storage. As indicated, an average reduction in 

map size of 57% is obtained for the entropy-based feature map, and with better accuracy than 

the original SIFT map (90% for entropy-based features versus 86% for SIFT). The CB records 

96% reduction in the map size, but at lower accuracy (62%). It records, however, acceptable 

accuracy at 20% Recall. Localization time is also reduced for the entropy-based map and CB 

by 33% and 54% respectively, compared to SIFT. This time includes 1.271 seconds, which is 

the SIFT execution time on the specified machine. Excluding this time, reduction in matching 

and retrieval times is linear with the storage reduction as proved in the previous chapter. 

5.4 Discussion: Comparison with HEID and Approach Customization

The work presented in chapters 4 and 5 concerns a common proposed approach for generating 

efficient maps that contain the smallest set of relevant features for localization purpose.  The 
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Figure 5.11. Average localization performance for codebooks generated from 48% of low-entropy features. 

 

Table 5.3.  COLD benchmarking database performance: Performance index versus feature map 

 

Feature map
 
 

Performance index 

Original 
SIFT Alg. 

Original 
SIFT + 
outliers 

detection

Entropy-
based 

Features 

Codebook 

Map Size(Mbytes) 15.92 14.48 6.72 0.56 

Average No. of KPs  per image 333 302 140 12 

Precision at 60% Recall (%) 86.19 85.93 90.84 61.95 

Precision at 20% Recall (%) 96.15 96.15 97.09 89.86 

Localization time (sec) 3.582 3.2271 2.2388 1.5440 

Memory reduction (%) - 9.07 57.77 96.47 

Localization time reduction (%) - 3.9 33.33 54.02 

 

relevance of features is based on place discriminative categorization. An information-

theoretic-based evaluation and selection of environment features is proposed. It attaches a 

discriminative feature set to a topological map in compressed format. The approach outputs 

two forms of features: filtered evaluated entropy-based features and filtered evaluated 

compressed codewords. An implementation for the approach has been presented in chapter 4 
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using HEID, the dataset acquired at the indoor environment of the Automation Laboratory at 

Heidelberg University. The robot setup carries a perspective camera of resolution 640x480. 

Wide-view images have been obtained by stitching sequential images together. This procedure 

generated panoramic images of average size of 1500x300 pixels. Testing the approach in the 

Heidelberg environment has shown outstanding performance using both feature forms. 

Localization performance using entropy-based features showed 96% accuracy with 68% 

reduction in space and 54% in time, while attracting performance was recorded using the 

codewords with 93% accuracy, 93% reduction in space and 78% reduction in time.  

The COLD database investigations presented in this chapter did not show the same exact 

sound performance as with HEID. Initially, comparing the two datasets and the acquisition 

conditions in both, the following is summarized: The increase in the visual field of 

omnidirectional camera in COLD comes at the cost of image resolution when compared to the 

perspective camera used in HEID. A single image frame acquired by the limited-view 

perspective camera is exactly equal to the omnidirectional image frame acquired by the omni-

directional camera. This accounts for a total lower resolution for COLD images. The 

resolution factor, in addition to large plain environment spaces (e.g. large wall areas), 

accounted for less details and pixel intensity variations in the images. The average number of 

features extracted per scene reveals this fact (333 for the COLD versus 1000 for HEID). A 

final difference between the datasets is that the COLD image set is of obvious poor quality.  

Experimentations on the COLD database were successful as the Heidelberg database, 

but showed a different performance. It was found that entropy-based feature map 

outperforms the original extracted SIFT feature map. A localization accuracy of 90% has 

been recorded for the former, while managing to reduce more than 50% of the original map 

size and 30% of the localization time. The CB module provided high computational savings, 

but not at a high localization accuracy. It recorded 62% accuracy with 96% reduction 

percentage in the map size and 54% in the localization time for the distribution localization. 

When comparing the results of the CB in the investigations carried out, it can be 

concluded that the codewords may not have represented the clusters of the entropy-based 

features in the most efficient way.  The number of clusters is a sensitive factor for the quality 

of clustering. Less or extra division of data makes the resultant clusters miss or lose the 
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meaningful information content. From this perceptive, a thorough test is conduced using the 

Silhouette coefficient, S (equation 4.12), in order to identify the quality of clustering applied.   

Figure 5.12 shows the values of the coefficient against the number of clusters. The 

relationship shows a monotonic increase that spans a small bounded range [0.02:0.17]. This 

indicates an accepted clustering quality over the studied range, and hence for the used 

clustering parameter. Consequently, it is deduced that other factors influence such 

performance more than the factor of the number of clusters, which puts forth customization 

limits according to the environment and sensor types. 
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Figure 5.12. Average Silhouette coefficient against number of clusters. 

 

The interpretation of the COLD database performance is as follows: It is clear that the 

images of the COLD datasets undergo conditions of severe illumination changes, poor quality, 

less resolution and contain less varying details. These conditions would possibly lead to less 

variation between the generated codewords. In the case that only 12 codewords are assigned 

per image to perform the scene recognition, the accuracy will naturally drop due to potential 

misrecognitions. The number of features and their descriptive content are practically 

insufficient in such case to do the recognition task efficiently. The details factor complies with 
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a previously mentioned constraint regarding the approach in section 4.4.  The environment 

should contain moderate amount of details so as to achieve high localization accuracy. It is 

true that the approach tries to select data that maximize recognition and localization 

accuracies, but the environment might not assist achieving this goal if it contains data that are 

mostly redundant over the whole environment or data that have a small variation domain. 

Within the experimentations, localization has been judged as an image retrieval system. 

The localization accuracy is set to be the precision at 60% Recall, which puts a restriction that 

more than half of the images bound to the best match should be retrieved. Such a setting can 

be used to derive a probability distribution over places, which allows fusion with tracking 

filters using multi-hypothesis. It is also still appropriate to set the accuracy to lower Recall 

values and obtain a single place solution (best match) in case the recognition rate is high. For 

example, referring to table 5.3, it is seen that Precision at 20% Recall provides high 

localization accuracy, and there is no need to track other retrievals (97% for entropy-based 

features and 90% for codewords). It is noted that the high percentage of Recall was imposed 

in order to validate the retrieval quality in general when employing features for recognition or 

to derive a location distribution. The comparison between the HEID and COLD datasets is 

summarized in table 5.4. 

The same exemplar benchmarking database tested in this chapter has been assessed in 

[Ullah et al., 2008] using Harris-Laplace, SIFT and support vector machines. The authors 

report a recognition and robot topological localization rate of 88%. This is for a common 

adopted condition between the two works that same weather conditions are used for both 

training and testing. The recognition rate can be fairly compared to our attained performance 

at 20 % Recall, as the authors do not use distribution analysis as in our case (i.e. consecutive 

retrievals after the first best match). The comparison indicates suitability of the proposed 

approach for application. 

In conclusion, a general customization for the approach can be applied. Either feature 

evaluation and compression components or the feature evaluation component alone can be 

employed. A CB performance is function of the size and variation of extracted features (i.e. 

environmental details). The approach proves general efficiency regarding accuracy and 

complexity and scales well to environment space as it has a topological context. The 
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localization performance is also tunable with respect to different performance criteria 

according to that required by the application.  

 
Table 5.4.  Comparing Heidelberg dataset to COLD dataset – Performance index versus feature map 

 HEID dataset COLD dataset 

No. of topological nodes  7 9 

Feature map 

 
Performance index 

Original 
SIFT Alg. 

Entropy-
based 

features 
Codebook

Original 
SIFT Alg. 

Entropy-
based 

features 
Codebook

No. of KPs  per image 1000 320 67 333 140 12 

Map Size(Mbytes) 40.07 12.81 2.67 15.92 6.72 0.56 

Distribution localization - 
Precision at 60% Recall (%) 

95.5 96.9 93.6 86.19 90.84 61.95 

Best match localization - 
Precision at 20% Recall (%) 

100 100 100 96.15 97.09 89.86 

Localization time (sec) 22.81 10.36 4.96 3.58 2.24 1.54 

Memory reduction (%) - 68 93.3 - 57.77 96.47 

Time reduction (%) - 54.6 78.3 - 33.33 54.02 

 

5.5 Summary 

This chapter evaluated the information-theoretic modeling and localization approach 

presented in chapter four against a benchmarking database, specifically targeted for robot 

topological localization and map building testing. The results obtained have shown efficiency 

of the proposed approach and methods regarding the feature evaluation and compression 

components. This indicates the validity of the approach.  

When high localization accuracy is an essential requirement, the modeled environment 

should necessarily possess an acceptable amount of details with acceptable variations. This 

factor additionally assists efficient codebook construction.  

Since the proposed solution approach proves repeated proficiency in assisting the 

construction of information-rich maps and efficient topological localization, the developed 

topological model and localization module can be safely integrated into a hierarchical 

localization framework for metric navigation purposes. This will be introduced in the 

following chapter. 



 



 

Hierarchical Framework            
for Localization 

This chapter presents a robot metric localization solution. It introduces an extension for the 

work presented in chapter 4, such that metric model building and metric localization are also 

supported. A hierarchical localization framework is proposed, together with a modified map 

that employs hybrid data. The hierarchy and hybrid data provide dual localization modalities 

(topological and metric) with high accuracy, scalability, as well as computational efficiency 

for the localization solution. The publications [Rady et al., 2010b; 2011] summarize this work. 

6.1 Introduction

Hybrid localization provides topological and metric position estimation in a single framework. 

In those frameworks, the metric localization executes faster compared to traditional global 

approaches if it is processed hierarchically. This is because the searchable space is projected 

on certain topological region(s) and becomes smaller. Generally, the goal of hierarchical 

approaches and frameworks is two-fold: (1) Providing an organized data or information 

structure. (2) Reducing the set of candidates towards a solution, and hence, possible high 

computations are evaluated only on a minimal subset rather than the entire reference set. 

Chapter 6 Chapter 6 
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Therefore, hierarchical processing systems are considered computationally efficient, and scale 

well with large data sizes. Despite such attractive performance, it is crucial to outline that the 

topological localization step preceding the metric one is critical in hierarchical localization 

frameworks. The topological step should be highly accurate, or otherwise, the robot will 

localize itself in the totally incorrect metric location, and will act based on that inaccurate 

estimation, which can be critically unsafe. A possible solution for such a situation (i.e. lower 

accuracy of topological localization) is to integrate filters which can track multiple hypotheses 

for the nodes. However, this does not controvert the fact that high topological localization 

accuracy or limiting the hypotheses will accelerate the localization. 

In chapter four, an information-theoretic topological environment modeling approach 

has been introduced. The approach extracts a minimal set of relevant entropy-processed 

features and compresses them. It has shown high localization accuracy besides computational 

efficiency on the topological level. In this chapter, a localization framework is proposed, in 

which the topological implementation acts as a first level in a hierarchy, whereas a second 

level of hierarchy extends from the first, providing a 2-level hierarchical framework for hybrid 

localization. The accuracy performance of the second metric level is safe thanks to the 

accuracy provided by the prior topological level, because of the information-theoretic 

modeling approach applied. The top-down designed frame will provide dual localization 

modalities: coarse topological and fine metric. This is advantageous, since the robot does not 

have to work on the exhaustive metric level all the time it is executing its mission. 

The specific integration of topological structure into hierarchical frameworks for 

localization purpose is summarized in the following pros. Firstly, the prior topological node 

identification will shrink the metric search space, either to a single space or a distribution over 

it, which is in all cases smaller than the total search space under investigation. Consequently, 

the global metric localization complexity is minimized. Secondly, attractive advantages of the 

topology will be introduced, such as scalability of the localization solution to large-spaces, 

which is a characteristic of topological models; introducing context and semantics into the 

entire system by assisting mapping functional places as well as modeling objects and 

memberships; solving loop closure by detection of previously visited places; and recovering 

from serious errors of lost or kidnapped robot situations. In the lost or kidnapped situations, 

the robot does not have to be physically teleported in another place. This scenario simulates 
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that the robot system might have undergone an internal error or reset operation that has issued 

the wrong position estimate. Thirdly, from the design point of view, the metric data will be 

locally assigned in each node, and not on a global level of the whole map. This provides 

significant robustness against data (feature) correspondence problem. 

Several global methods can be implemented at the metric localization level. For 

example, the most widely applied MCL can be chosen. Nevertheless, we chose another 

alternative which is non-probabilistic triangulation techniques. The choice is not in regard to 

their favor, but for establishing a solution based on a unified homogeneous feature set. The 

same topological feature set that comprises non-geometric information will be augmented 

with additional position information to account for the metric features. The metric features 

will be used to resolve the robot’s position through triangulation. In this view, the framework 

preserves a single hybrid feature-map and shares it between the two levels of the hierarchy. 

The information in the map is viewed as possessing two resolutions, where the coarse 

resolution is equivalent to the compressed codewords and is used to resolve the topological 

location, whereas the fine resolution is equivalent to the entropy-based features tagged with 

their additional positional information and are used to resolve the metric position. An 

additional reason in preferring triangulation techniques to MCL is related to the willingness to 

exclude dead-reckoning information (i.e. odometry) from the localization solution. 

The structure of this chapter is as follows: In section 2, the modified problem 

formulation and solution structure meeting hybrid map building and hierarchical localization 

are given. The description of general triangulation and vision-based triangulation problems 

are presented in section 3. The triangulation solution using photogrammetric model and both 

iterative and geometric methods is given in section 4. For accurate and robust solution, 

detection and elimination of environment dynamics and mismatches, as well as feature 

selection are introduced in section 5. Section 6 is dedicated to the metric map construction, 

experimentation and localization evaluation and finally section 7 summarizes the work. 

6.2 Modified Problem Formulation and Solution Structure 

Since the chapter introduces an extension of the information-theoretic modeling approach of 

chapter four, the problem statement and the solution will be reformulated to adapt to the new 

hybrid solution. Stress is given to the metric problem statement. 
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6.2.1 General Problem Formulation and Solution Approach 

Environment perceptual aliasing and correspondences are problems facing both topological 

and metric models, leading to a consecutive negative influence on correct localization. For 

this, characterizing the environment through discriminating features is a solution towards 

those problems and at the same time combines accuracy of feature and node identification. A 

second problem, concerning metric localization in particular, is the computational processing 

which scales up with the environment size. If the total space is processed in large operating 

environments, high computational processing is needed in identifying the pose. Such 

problem can be solved through a hierarchical processing structure for localization. In this 

structure, a topological localization is embedded in the first layer of the hierarchy and a 

second metric localization is conducted in the second layer of the hierarchy using the 

projected space by the first layer only. The metric localization execution will be faster by a 

factor equal to the number of topological places defined by the first level. The 

implementation of the first level, however, should be based on efficient node representation 

and identification in the suggested framework. That is to say the topological perceptual 

aliasing should be minimized. 

Consequently, a 2-level hybrid framework founded on a hierarchy principle for 

attaining lower complexity is proposed. An efficient model building process is used in 

conjunction, in order to generate an information-rich map that solves the aliasing problems. 

The proposed solutions define the two following phases: hybrid feature-map construction and 

hierarchical localization. 

A– Hybrid Map Construction 

Given:   (1) A set of environment significant places N = {N1, N2, ..., Nn} of size n; 

  (2) A mobile robot equipped with a sensor capable of capturing a pattern of 

multiple features for every place Ni,N; i=1,…,n,, or a combined sensor 

configuration to fulfill this condition. The sensor should be also capable of 

measuring bearings or an additional sensor is employed for this purpose; 

 (3) Let Ni be described by a set of features Si of potentially different size 

per place. The whole feature space is denoted by F so that Si  F. 

Required:  (1) Construct an environment topological feature-map Mt (N,C, f *) in the 
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form of undirected graph T:=(N,C), where N forms the graph nodes, and C 

is a set of ordered pairs indicating the spatial interconnection between 

nodes Ni and Nj; i,j=1,…,n; i ≠ j. Mt comprises a minimal feature set per 

place fi
*Si, which corresponds to a minimal feature set in the map f *F; 

f1
*∪f2

* …∪fi
*…∪fn

*= f *, such that the general node identification 

probability p(Ni | fi
*) is maximized; 

(2) Expand Mt into a hybrid topological-metric feature-map Mh which 

includes additional data that resolves the metric location. The map 

comprises geometric and non-geometric descriptors for the filtered set  f * : 

Mh(N, C , f ng , f g), with f ng being an arbitrary non-geometrical descriptor 

selection and f g being the geometric descriptor in the form of position 

vectors pim
A= [XA

m YA
m ZA

m]T ; m=1,2…,M;  for M features in node i.  

Assumptions: (1) No a priori environment specification is given (objects, landmarks);  

          (2) No a priori knowledge about previous positions of the robot; 

  (3) The environment possesses a moderate or high amount of details; 

 (4) Scene dynamics and varying illumination environmental influence. 

B– Hierarchical Localization 

Given:  (1) The hybrid feature-map Mh(N, C , f 
ng, f g) ;  

(2) The extracted sensory pattern  f 
ng for an unknown topological node pt;  

(3) The angle measurement vector between the unknown robot heading 

direction and the visible features (i.e. bearings) ; 

Required: (1) Estimate the robot’s most probable topological node(s) Npp tt ; , using 

the non-geometric descriptor part of the map; 

pt = g( f 
ng, f 

ng, N) (6.1)  
 

(2) Estimate the robot’s metric position: qr = [Xr Yr θr]
T in 2-dimensional space 

of the reference global frame of pt, using the non-geometric and geometric 

descriptors, as well as the bearings to the k identified visible features:  

         ,Y ,X rrr )( rq h (f 
ng, f 

g,) )( k21  ... ,,  , h ik
A

i2
A

i1
A p ,...p,p  (6.2)  
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where f 
ng  is required to resolve the identities of features in the estimated 

topological node and f gare their geometrical descriptors.  

The solution approach is based on similar structural components introduced in section 4.4, 

which maintain the same design properties and aspects. The new hybrid solution, however, 

includes the following modified components: 

(a) Hybrid feature extraction for extracting topological features and metric clues 

that represents the features’ metric positions (i.e. hybrid feature-map). 

(b) Hybrid localization for providing either topological or extended hierarchical 

metric localization modalities according to the need. 

The previously introduced components in the topological solution – optional preprocessing, 

information-theoretic evaluation and codebook – remain a main core for the general hybrid 

solution structure.  

6.2.2 Hybrid Solution Structure 

Figure 6.1 shows a modified structure for the solution presented in figure 4.5, such that it 

adapts to the insertion of additional metric model building and localization components. The 

hybrid feature-map generation undergoes the same concept provided in the topological model 

building and localization, except that a hybrid map is generated fusing both topological 

features and metric clues (figure 6.1-a). 

Figure 6.1-b introduces the new hybrid structure. The first modification is in the feature 

extraction. It is modified into the default feature extraction module (SIFT in the proposed 

implementation), plus an additional feature localization module to estimate the metric location 

of features. The feature localization subcomponent can be implemented using disparity-based 

methods [Jebara et al., 1999; Min et al., 2007; Torr, 2002]. The methods employ stereo or 

perspective vision and implement structure from motion strategies to calculate depth 

information. Triangulation is applied to calculate the features’ position relative to the robot, 

which can be later transferred to a global frame of reference.  

The output features from the previous hybrid feature extraction is a feature set that 

possesses a non-geometric characterization together with its positional information in 3D.  
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Figure 6.1. Modified solution structure for adapting into a hybrid model building and localization framework. 

 

Features will follow the same map generation procedure of the previous design, including 

filtering and compression processes, before being stored in the final map. Entropy-based 

features with position information will account for metric data, while compressed codewords 

will account for topological data. The two formats together represent a single hybrid map, and 

in this sense, it contains location information in two resolutions. 

The second modification in the structure is in localization. The previous matching 

component  is  replaced   by  a  hybrid  localization  component ,  which  includes  the  default 
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topological matching, besides an additional feature triangulation module. The latter module 

uses a photogrammetric projective model which relates the real-world to the image 

coordinates. Since triangulation is based on static positions, the accuracy of this module is 

ensured through dynamics and mismatches detection function. A second function is added for 

feature selection. While the first function overcomes the possible problems of data association 

and the environment dynamics, the second function will increase the precision of localization.  

The topological localization executes the same as described previously. It is done via 

place matching using currently extracted features and the stored codewords. Accurate and fast 

local place (or distribution over places) recognition can be conducted. The metric localization 

always begins by executing topological place identification. After the place has been 

identified, the entropy-based features with their metric clues are utilized. The identity of 

features is resolved in a second matching, and the features’ positions are triangulated to give 

the robot pose. The topological and metric scenarios can be traced on figure 6.1. 

One remark about the feature localization is worth mentioning in the modified solution 

structure. In the figure, it is shown that the whole extracted data undergo this process of 

feature localization. This means that all features are involved in their localization processing, 

although a high percentage of them will be eliminated later on. This case, however, allows the 

robot to perform a single exploration round in the environment to generate the hybrid data. 

The second option is that the robot extracts the topological data (without the metric data) and 

goes through the evaluation and compression processes of the map generation. A second 

exploration round will be needed, in order to find the features’ position data, in which the 

sensed data are compared to the processed entropy-based features, and then their position data 

are correspondingly fused. Finally, the metric data together with the topological one will form 

the final hybrid map. The second explained scenario has been adopted in our work. 

6.3 The Triangulation Problem

Triangulation with active or passive landmarks is a robust and flexible absolute localization 

method. Different triangulation solutions exist [Cohen and Koss, 1992], in closed-form such 

as Geometric Triangulation and Geometric Circle Intersection, or as numerical iterative 

methods such as the Iterative Search and the Newton-Raphson method.  
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Closed-form solutions provide a unique solution, which is as accurate as the provided 

data. They are, however, subject to some geometrical constraints. Geometric triangulation is 

simply based upon the geometry of the landmarks and the relative angles between them as 

viewed by the robot. Circle Intersection solves two circle equations as a function of landmarks 

and robots positions. The two-circle intersection should yield the positions of the common 

landmark and robot.  

Iterative solutions provide approximated solutions. The Iterative Search method 

triangulates two landmarks, which is sufficient to produce an accurate solution if the 

orientation is known or ignored. The method next iteratively searches through the possible 

space of orientations, given every pair of triangulated landmarks. The correct orientation is 

deduced to be the one yielding three robot positions that are closest together, from which a 

mean value is taken as the estimate. A second iterative solution is the Newton root solver 

methods. They make use of prior knowledge through iterative neighborhood function approxi-

mations and error calculations until a solution converges based on minimization of the errors. 

Those methods are adequate because of the non linearity of triangulation equation model. 

In the scope of the metric triangulation, two methods will be studied: the closed-form 

Geometric Triangulation and a modified version of the iterative Newton-Raphson, which is 

the Gauss-Newton method. 

6.3.1 Pose Estimation from Bearings 

The principle of triangulation is based on simple geometrical constraints. The location of a 

point in space can be deduced through angles between the heading direction of the unknown 

position and lines of sight to at least three different reference points (commonly defined 

targets). The technique is mostly applied in the 2-dimentional horizontal plane projection of 

the space. See figure 6.2-a for a three-landmark triangulation configuration. 

Considering the virtual environment defined in figure 6.2-a, it is required to estimate 

the robot pose variables (Xr,Yr,r) in 2-D space. The environment has four landmarks1, from 

which only three are visible to the robot at a time, Ak; k=1,…,3. It is assumed that each of the 

landmarks is individually identifiable, and that the robot has a priori knowledge of their  

                                                 
1 Landmarks are any distinguishable objects in the environments with known locations. In this chapter features and landmarks will be used 
interchangeably, indicating the same thing. 
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Figure 6.2. Three-landmark triangulation configuration. The position vector of the robot vector p(xr,yr,r) can 
be determined by: (a) the angles defined from the robot heading to commonly defined targets or (b) the relative 
angles between the defined targets. 

 

absolute positions in a global frame of reference. Each landmark can additionally have its 

own orientation. It is also assumed that the robot has a noisy sensor capable of measuring the 

direction to the landmarks. The output of the sensor is the direction and angle between the 

heading of the robot (robot’s orientation) and the line joining the robot and the landmark. 

These angles are called the bearings, and are identified in the figure as 1, 2 and 3 for 

landmarks A1, A2 and A3 respectively. 

For this scenario, the triangulation problem calculates the robot pose vector q(Xr,Yr,r) 

as a non-linear function of the known positions of landmarks in the global reference frame, 

using either the measured angles (figure 6.1-a) or the angular separations (figure 6.1-b): 

),,,,,g()( 3
A

2
A

1
A 321rrr ααα,θ,YX pppq   (6.3a)  

),,,,(g)( 3
A

2
A

1
A 2312rrr αα,θ,YX pppq   (6.3b)  

 

It can be assumed that each landmark position vector k
Ap  includes the landmark’s orientation 

lk beside its position. This orientation can be set to zero in case the landmark appears 

identical when seen from all directions, such as with point features. 
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The landmark visibility factor is of primary importance in triangulation. In practice, it is 

difficult to have visibility of at least three physical targets at one time. Accordingly, using 

several point features as landmarks relaxes this constraint rather than using several object 

landmarks, since many of them are encountered together in the robot’s view.  

Triangulation using bearings only requires at least 3 identified landmarks to recover the 

full pose. Determining the robot’s location and orientation from three landmarks is termed 

three-object triangulation. Some general geometric constraints limit the solution to a unique 

one. For example, when the robot lies on or very close to the circumference of the circle 

enclosing the three landmarks, or when the landmarks are collinear. The latter situation leads 

to two possible solutions, instead of a unique one. Another geometric constraint concerns the 

angular separations between the landmarks (see 12 and 23 in figure 6.2-b), which affects the 

accuracy of solution. The wider the bearings, the more accurate the triangulation. In other 

words, larger baselines connecting the landmarks are favorable.  Hence, it is concluded that 

both the geometry and dispersion of landmarks as viewed by the robot are relevant factors that 

can suggest candidate landmark selection for the triangulation, since they control its accuracy. 

6.3.2 Vision Bearings 

Bearings can be obtained using range or vision sensing. As vision-based local features were 

proposed in the implementation of the initial solution structure, vision bearings are of 

concern. Figure 6.3 shows a simple perspective camera projection model. The image plane is 

located at a distance equal to the focal length f measured from the camera focal point. Objects 

in the 3D world are projected onto the image plane corresponding to the sensor chip.  

Suppose (um,vm) is the image location of a given landmark A in the real world. 

Assuming that the x-axis of the image plane, X, is parallel to the robot plane of motion, then 

the bearings are a function of the pixel displacements from the principal point on the image 

plane and the camera focal length. A non-linear tangent function h preserves for example the 

horizontal bearing relation: 

 fuuhα 0mm  (6.4)  

 
With the general pose definition in (6.3), the camera (and correspondingly the robot) position 

variables become a function of the landmarks positions in the object reference frame, the 
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projected image displacements and the camera focal length. The projected displacements – 

which are proportional to the angular measurements - are assumed to be disturbed by additive 

noise u . This noise can be modeled with a zero-mean Gaussian function. The presented 

camera model provides information on the angles to the landmarks only, with no information 

about the distance to the landmarks (i.e. depth information). Therefore, at least 3 landmarks 

are needed to identify the robot pose.  

Figure 6.3. Camera model. 

 

6.3.3 Triangulation Mathematical Formulation 

The geometric localization in a general 3-D space notation is formulated as follows:  

Given:  (1) A mobile robot located at a recognized node pt in the environment 

topological graph T, with k visible and individually identifiable 

landmarks, such that k ≥ 3 as shown in figure 6.2;  

 (2) The position vector for each landmark m
Ap  = (XA
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m)T in the 

metric frame of reference of pt for m=1,2…,k; 
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Assumption:  The orientation of the landmark is ignored. This assumption implies 

that a landmark is identical when seen from any direction; 

Constraint:  Planar floor 

Required:  Estimate the robot geometric position in pt: rq  = (Xr , Yr , θr)
T, in the 

2-dimensional projective plane of the global frame of reference: 

                       )()( k321rrr α ... α,α,α  , g   ,Y ,X k
A

3
A

2
A

1
Ar p ...p,p,pq   (6.5)  

where (Xr,Yr) is the location in Cartesian space, theta is the robot’s 

angular heading with respect to the world’s positive x-axis, with a 

positive orientation taken in the counter clockwise direction, and g is 

a non-linear trigonometric equation of the given  landmarks positions 

k
A

3
A

2
A

1
A p ...p,p,p  and bearings k321 α ... α,α,α .  

A three-landmark triangulation problem is a case of non-redundant information, where a 

single solution exists. For a number of landmarks larger than three, the case is over-

determined, and an average numerical solution is obtained. Though landmark triangulation is 

not restricted to the vision-based detection of landmarks, we continue the detailed discussion 

of the solution in the next sections in a vision approach point of view.  

6.4 Metric Localization using Triangulation 

In this section, the solution-approach for the extended metric localization using triangulation 

is introduced. The approach is based on a single vision sensor and local point features 

implementation. Two methods for solving the triangulation problem are tested: the numerical 

iterative Gauss-Newton method and the closed-form Geometric Triangulation. The section 

begins by defining reference frames for the different physical components of the robot 

system. Next, the photogrammetric model is introduced, from which the equations describing 

the robot’s pose are concluded.  The model equations are solved with the iterative Gauss-

Newton and Geometric Triangulation in subsections 4 and 5 respectively. 

6.4.1 Geometry and Reference Frames 

A body’s position in 3-D space is defined by six variables: x,y,z describing the location of its 

center of mass, and what is called Euler angles ),,(   describing  the  body’s orientation. 
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The angles describe a sequence of rotations around the body’s X, Y and Z axes, with respect 

to a fixed global frame of reference. The six variables form a vector called the pose of body.  

For the robot pose estimation problem, different frame coordinate systems need to be 

defined according to the given physical components. Figure 6.4 identifies these frames for a 

situation of a moving robot with a camera sensor observing a stationary landmark. {W}, {V} 

and {C} are the reference coordinate systems of the global world, robot and camera 

respectively. It is often assumed that {C} has a fixed position with respect to {V} and aligns 

with it for non pan-tilt cameras. A constant offset vector qoff = (xoff ,yoff ,,zoff)
T shifts the 

camera a little away from {V}. The camera reference frame is chosen such that its origin 

coincides with the camera center (focal point) and with the Z-axis aligning with the camera 

optical axis.  

In the figure, vectors p and q indicate the position of the tracked landmark and the 

position of the moving robot in {W} respectively, while n indicates the position vector of the 

landmark relative to the robot. The landmark position is always given in the camera frame 

{C}, which has in turn to be transformed to the robot and world frames through vector 

transformations. The metric localization problem solves for q = p-n, expressed in {W}. 

Locating the camera in {W} implies locating the robot in {W} as well. This is done through 

simple, and almost fixed, camera-robot transformation. 

Figure 6.4. Reference frame coordinate systems-planar top view. 
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For a vector λ representing the orientation of {C} relative to {W}2, 
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a rotation matrix RW
C  is defined to be the transformation that maps vectors expressed in {C} 

relative to the global coordinate system {W}. 
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The matrix can be defined in different order of rotations. For the rotation sequence zyx: 

)().().(  zyx
W
C RRRR                     (6.8)  
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From our current camera setup, the geometry can be simplified. The camera is fixed on the 

robot in a horizontal position (approximately), with its optical axis aligning with the robot’s 

heading. This implies that the camera orientation variables ω and κ can be approximated to 

π/2 and 0 respectively.   remains implication for the change of robot heading (i.e. the 

orientation θr). In the case that the landmark has a given orientation θlm,   can be substituted 

with θr + θlm - π/2 instead. 

6.4.2 The Photogrammetric Model 

Photogrammetry is the technique of relating 3-D Cartesian coordinates of objects or simple 

points in real world to their corresponding 2-D image coordinates. The technique is mainly 

applied to derive 3-D position of objects from imagery. The fundamental model that has been 

used in the majority of photgrammetric applications is the Collinearity equations [Bossler et 

                                                 
2 Orientation angles are expressed in Cardan notation which defines the angles as three combined rotations in different axes. Rotations are 
executed with respect to the resultant rotated axes and not to the initial axes. 
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al., 2002; Welch et al., 1991]. The Collinearity equations mathematically describe the fact 

that an object point, its corresponding image point, and the perspective camera center lie on a 

straight line under the idealized pinhole imaging model. The camera projection model in 

figure 6.5 shows this alignment, with the image plane set in the positive focal position (below 

the camera perspective center) instead of the real negative focal plane. The Collinearity 

equations can be applied differently to locate objects in the environment, locate the camera, 

or determine the camera intrinsic parameters. They summarize the mutual relations between 

image coordinates, object coordinates and camera parameters. In object-vehicle 

environments, their application captures the bearing measurements, in order to locate either 

the object (i.e. map building, tracking) or the vehicle (i.e. localization) through triangulation, 

by knowing the 3-D position of one to derive the other and with the knowledge of the camera 

intrinsic parameters. Single camera photogrammetry establishes the full 6 DOF relations (i.e. 

position and attitude) of an object with respect to camera, not only the 3 DOF, as long as the 

object being located has the suitable reference markings or control points in the camera view.  

Figure 6.5 illustrates the projective mapping of a 3-D control point A to the 2-D image 

coordinates of the sensor plane. For a given vector of a control point relative to the camera 

iV = cA , the corresponding projected space vector iv = ca  is defined by the approximation: 

mm VPv   (6.10)
 

where P is the Projection matrix describing the rigid camera transformation, and consists of a 

camera matrix K and a concatenation of a 3D rotation matrix R and a 3-dimensional 

translation vector t: 

 t|RKP       (6.11)
 

The projection matrix incorporates 6 extrinsic camera parameters in R and t for the complete 

description of the camera pose in 3D world (3 for 3D position and 3 Euler angles). The K 

matrix is called the Calibration matrix and has 5 free parameters. It contains the camera 

intrinsic parameters: the image format, the principal point and most importantly the focal 

length. A general form for the matrix is: 
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Figure 6.5. Photogrammetric projective model. 

 

The parameters xx pf /  and yy pf /  represent the horizontal and vertical focal lengths in  

terms of pixels, where px and py are the pixel height and width respectively.  is a coefficient 

accounting for the skew between the x and y axes of the pixel for non-rectangular pixels. It is 

often zero. u0 and v0 denote the principal point, which is the point where the optical axis 

intersects with the image plane, and which would be ideally at the image center. A distortion 

parameter can be also introduced to K (e.g. to account for camera radial distortions). 

6.4.3 Derivation of the Robot Pose with the Collinearity Equations 

As indicated in figure 6.5, X, Y and Z define the world frame axes, while X', Y', Z' define the 

camera frame axes, with Z' corresponding to the optical axis of camera. The camera is located 
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through its perspective camera center C, and the rotation matrix ),,R(W
C  describing the 

camera’s relative orientation in {W}, which are all required variables to estimate. 

The 2-D image plane is located at z=-f from the camera frame, where f  is the camera 

focal distance. In the photogrammetric model of figure 6.5, a landmark A in the 3-D world is 

projected onto the positive planar image surface corresponding to the sensor chip, resulting in 

an image point a. Projections in the X' direction are the proportional bearings measurements 

required to derive the planar position of camera and robot. 

In the world coordinate frame {W}, a landmark positional vector pA and the perspective 

camera center vector pC are respectively defined by their position vectors as: 

T
AAA ZYXOA ),,(Ap   (6.13)

T
CCC ZYXOC ),,(Cp  (6.14)

 
Within {C}, a projection vector of the landmark a is defined by: 

T
aa fvuCa ),,( ap       (6.15)

 
From vector relationships and coordinates transformation, it can be concluded that: 

a
W
CCA pRpp ).,,(. S  (6.16)

 
where RW

C is the camera-in-world rotation matrix between the two coordinate systems in the 

form of (6.7), and S is a scaling factor. 

Rearranging (6.16), the landmark projection in the image frame becomes: 
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Equation (6.17) is the specific form of the general equation (6.10), where the projection 

matrix P is equivalent to the scaling and rotation. The equation is regarded as a 3-D 

similarity transformation with seven transformation parameters including one scale, three 

orientation and three translation parameters. Nevertheless, the scale factor between the image 

and object vectors is different for each point, and hence analyzing the Collinearity equations 
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is not applicable for solving the scale in practical applications. Dividing rows 1 and 2 by row 

3 in (6.17) eliminates the scale. The result is what is called the Collinearity equations 

[Bossler et al., 2002]: 
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which describes the angular measurements in both the horizontal and vertical directions in 

camera. It is noted that such an arrangement removes the nuisance scale parameter, but 

unfortunately transforms the equations into a more complicated and non-linear format.  

Now, the camera and the robot poses can be derived from equations (6.18). Given at 

least three different landmark position vectors pA
m; m=1,…,3, (6.18) can be solved to derive 

the 3-dimensional vector qc = T
CC YX ),,(   of the planar pose of camera3. The robot pose 

vector qr =
T

rrr YX ),,(   is calculated through the camera pose and the camera offset vectors: 

             offzcr qRqq )(       (6.19)
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Determining the camera variables (sometimes referenced as camera exterior parameters), 

with the aid of known coordinates of world 3D control points and corresponding image 

coordinates is sometimes called space resection problem. The following section deals with 

the way to find a method for solving the complex Collinearity equations.  

6.4.4 Solving Triangulation using Iterative Gauss-Newton Method 

Solving for the robot pose requires solving the equations (6.18) of the photogrammetric 

model described in section 6.4.2. In these equations, the rotation matrix coefficients are 

                                                 
3 The geometric pose estimation problem is discussed in the context of 2-D (planar) environment, which means that the 
location of the robot is given by its pose (i.e., position (x, y) and orientation φ). However, the concepts and results presented 
are equally valid for application in 3-D environments. 
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encapsulated as nonlinear elements, and this makes the problem inherently difficult to solve, 

and even more difficult to solve exactly. A solution, however, exists since the robot exists in 

the real world. An approximate solution can be assumed to be known, perhaps from the dead 

reckoning, which accelerates convergence towards a more accurate solution. For these two 

previous reasons, iterative methods can solve the problem. A traditional method to deal with 

the nonlinearity is linearization. There exist methods like Gauss-Newton and Levenberg-

Marquart Algorithm (LMA) which can solve the function directly without linearization. 

Here, we apply the Gauss-Newton iterative method. Iterative methods have the disadvantage 

that they may converge to local minima when the given initial value is far away from the 

solution. However, if the initial value is nearby, a fast and correct convergence will occur.  

The Gauss-Newton method is based on a linear approximation to the components of a 

given function F(x) in the neighborhood of x. The method can only be used to solve non-

linear least squares problems (NLLS). That is to say, finding x  ℜn that minimizes an 

objective function in the form of a sum of squared function values: 
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r(x).r(x)
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1
r(x)(x)  (6.21)

where r(x) is a vector of residuals; r: ℜn  ℜm for given m functional relations r1,…, rm 

involving d variables x=(x1,…, xd), with m≥d. 

The Gauss-Newton method applies a sequence of linear least squares approximations to 

the nonlinear function, each of which is solved by an “inner” direct or iterative process. In 

comparison to Newton’s method and its variants, the algorithm is attractive because it does 

not require evaluating the second-order derivatives in the Hessian of the objective function.  

Using the previously described photogrammetric model, it is required to estimate the 

robot position vector qr =
T

rrr YX ),,(   ℜ3 from the appropriate angles to the landmarks at 

locations m,...,, AAA ppp 21  ℜ3; 3m .  

 )(minarg rq
*
r qRq

r
 , (6.22)

  
Accordingly, the solution is formulated as NLLS as follows: 

For m given equations, where m represents the number of observed landmarks, the general 

form of the non-linear equations (6.18-a,b) can be written as the two residual functions: 
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For any choice of qr, and with: 
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Equations (6.23) and (6.24) can be written in the form of a 2 functional relation Ri to be 

equated to zero: 
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In the neighborhood of qr, each functional Ri can be approximated with a Taylor 

expansion [Press, 1988]: 
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The matrix of partial derivatives appearing in the previous equation is the Jacobian matrix J, 

whose elements are: 

j
r

i

ijr q

R
qJ




)(  


















r

r
i

r

r
i

r

r
i qR

Y

qR

X

qR


)()()(

; mi ,...,2,1 & 3,...,1j . (6.30)

 
The Jacobian matrix of error functions with respect to parameters can be viewed as mx3 

matrix with scalar entries, or as an mx1 matrix whose entries are vectors from ℜ3. 

In matrix notation, the 2xm residuals matrix T
m21 )R,...,R,(RR   can be written as: 

)(. 2
rrrrr qqJ)R(q)qR(q  O  (6.31)

 

By neglecting terms of order 2
rq  and higher, the Gauss-Newton iterative equation is 

obtained as a set of linear equations for the corrections rq  that move each function closer to 

zero simultaneously. 
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rrrr qJqRqqR  .)()(  (6.32)
 
Setting the residual function, we want to find the updated vector parameter 
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From (6.31), 
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Differentiating (6.33) w.r.t. rq and setting to zero,  

0 r
TT qJJRJ  (6.35)

 
The increment rq , which indicates the descent search direction for R, becomes the solution 

to the normal equations: 
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The assumption m ≥ 3 is necessary, otherwise the matrix JTJ is not invertible and the normal 

equations cannot be solved (at least uniquely). 

The change is next added to the solution vector 

r
old
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And the process is iterated to convergence. 

With old
r

new
rr qqq  , equation (6.35) can be obtained equivalently by minimizing the sum 

of squares of the RHS of equation (6.31), this means setting it to zero, which would lead to: 

RqJ r .  (6.38)
 

The Gauss-Newton method can minimize a least square function in a few iterations. 

However, it does more work per iteration for the multiplications needed to form JTJ and 

factorize it. In an exceptional case when JTJ is singular, the Gauss-Newton method will fail. 

However, some >0 can be chosen to obtain downhill search direction rq from the 

Levenberg-Marquardt equations: 
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The Newton method iteratively proceeds by first calculating R and J, with the initial 

guesses for Xr, Yr, and r of rq . For this set of equations, the Jacobian matrix can be 

approximated through finite differences. 
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Once R and J are calculated, the absolute sum of the R solutions is checked to be within 

some tolerance value. If so, then the initial guess has been accurate and the iteration 

terminates. If not, LU decomposition is performed to obtain new values of R. Again root 

convergence is checked, and if the sum of the absolute values of these solutions is within 

tolerance, the iteration terminates. Otherwise, the entire process is repeated until a possible 

solution is found or no solution is reported. 

Solving equations (6.22) and (6.28) is regarded as an optimization problem that seeks 

minimizing the measurement errors defined by (6.23) and (6.24). The given set of observed 

landmark projections Ti
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i fvu ),ˆ,ˆ(ˆ v can be modeled as theoretical image points 
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And consequently, the objective function to be minimized is: 
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which is equal to the summation of both residuals of Ri in (6.28), 
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with Ui, Vi and Wi defined by equations (6.24-26). 

Equations (6.42) and (6.43) conform with a general form for least-squares score function: 
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and is analogous to the projection defined in (6.10). The score function aims at minimizing 

the sum of the squared distances between the image coordinate iv̂  and the 3D feature vector 
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Vi. The cost function defines the sum as a squared error between the image values (the actual 

data) and the projected 3D model values (predicted values).  

It should be noted that this solution is not restricted to estimating the position vector of 

the robot (feature triangulation module in the hybrid localization component). The same 

solution is applied in the model building phase for estimating the position vectors of features 

(feature localization module in the hybrid feature extraction component) for given calculated 

robot poses – refer to figure 6.1-b. 

6.4.5 Closed Form Geometric Triangulation Solution 

Triangulation can be solved using closed form solutions such as the Geometric Triangulation. 

In Geometric Triangulation, the computed pose is accurate as the data provided. The 

geometry for the solution is, however, not straight forward as multiple solutions of valid 

robot poses are allowed. 

The computation of solution in Geometric Triangulation is not mathematically straight 

applied. The angles should be ordered properly to ensure that a unique solution is computed 

as stated in [Cohen and Koss, 1992]. The proper order constraint can be solved by imposing 

other easier constraints as done in [Esteves et al., 2003] to provide some flexibility. 

Geometric Triangulation works consistently with properly ordered landmarks, and with the 

robot located inside the triangle formed by the landmarks. There are areas outside the 

landmark triangle where the geometric approach works, but these areas are difficult to 

determine and are highly dependent on how the angles are defined.  

Geometric Triangulation is solved by defining a set of angles, which are illustrated in 

figure 6.6, as follows: 

)(2 3131                     (6.45)

1212                     (6.46)
 

Define   to be the angle between the positive x-axis and the line formed by the points of 

landmarks 1 and 2. 

Define σ  to be the angle between the positive x-axis and landmarks 1 and 3, plus . 

Define the constants: 
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The distance from landmark 1 to the robot is calculated: 

12

1212
1 sinλ

)λsin(τL
L


                    (6.49)

 
Accordingly: 

τ)cos(Lxx 11R                     (6.50)

τ)(insLyy 11R                     (6.51)

1R τ                     (6.52)
 

 
Figure 6.6. Defined angles for calculating the Geometric triangulation [Esteves et al., 2003]. 

 

6.5 Accurate Triangulation

The computational and accuracy performances of metric robot localization have been 

enhanced through the hierarchical processing and the improved topological localization 

respectively. A second requirement at this level is still to ensure accuracy and robustness of 

the solution. The main sources of metric localization errors are the following: (i) Mismatched 

features, (ii) Dynamic features, (iii) Features spatial arrangement, and (iv) Propagated errors 

from locations of features. Some solutions are suggested for the three errors sources. 
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Triangulation techniques assume that features are static, or else localization will exhibit 

errors. The given assumption of moderate dynamics influencing the operating environment 

will disturb the static state condition and will hinder realizing accurate and robust solution. 

Possible mismatched features have a similar effect on the triangulation solution as the 

environment dynamics. Therefore, a special functionality is introduced at the metric level for 

the detection of environment dynamic features and mismatches.  A second functionality for 

proper selection of features through their spatial arrangement is introduced. This should 

minimize the imprecision in the estimated solution. The two introduced functionalities 

increase the robot localization accuracy. To implement them, two criteria are presented; one 

for the common detection and exclusion of dynamic features and mismatches, while the other 

for the selection of features based on geometrical layout. 

6.5.1 Data Association and Environment Dynamics Detection 

This functionality detects possible mismatched feature pairs that occurred at the topological 

level, when the current robot view is compared to the topological features of the map. 

Dynamic features may also exist if some environment objects are relocated to new places 

instead of their previously registered ones. Failing to specify the identity of feature because of 

multiple-occurrence or similarity metrics is the cause of mismatches. It is a common problem 

in recognition, known by data association or correspondence problem. In another view, the 

identity of a dynamic object can be correctly identified; however features of such an object 

carry false information for robot localization, and hence are not desired. On the one hand, 

those features should be eliminated from the map if it is required to maintain static features 

only for metric localization purpose. On the other hand, the features can be preserved for 

topological induction at the first level only, but they should be excluded at the second metric 

level. In any case, dynamic and mismatches situations should be detected and excluded before 

the triangulation is executed. 

A mismatched or dynamic feature can be detected using spatial relationships between 

features. The following distance measure is utilized in order to classify those undesired 

features as outliers, and consequently, exclude them from the feature set recognized by the 

topological level. The distance measure has the form: 

 22 )'()'( mmmmm YYXXd                     (6.53)
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where (Xm,Ym) and (X'm,Y'm) are the location of the mth matched pair in the current image view 

and the image of the recognized topological node respectively; m=1, 2, …, M; and M is the 

number of matched features between the two images. With a simple splitting method like 

clustering or histogram generation for the calculated distances D = {d1,d2, …, dm}, outliers are 

easily encapsulated, and hence excluded. A small size for the number of clusters or the 

histogram bin size (e.g. 3-4) is sensitive enough to detect the outliers.  

6.5.2 Feature Selection 

In section 6.3.1, some factors have been mentioned as affecting the accuracy of triangulation 

(i.e. angular separation and collinearity of landmarks). Therefore, the features detected in the 

robot’s camera will be filtered based on these two measures: the geometry of features in real 

world and the features’ dispersion in camera view. The geometry measure will try to avoid 

quasi-collinear features, since localization error becomes large. The geometry measure is 

fused with another for the selection for widely dispersed features in the camera view. The 

dispersion measure contributes to less measurement errors in the bearings. Therefore, feature 

selection for triangulation will be based on the following weighted criterion: 

tycollineariNonDispersiondq  ).1(.                     (6.54)

 
which combines the dispersion of features in the camera view with the non-collinearity of 

features.  is a weighting factor. 

Angular dispersion between three given features, j,k and m, will be defined as: 
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where l1 and l2 denote the horizontal displacements between the features, and w denotes the 

width of  image view, both measured in pixels. In a similar manner the displacements l1 and l2 

can be defined as vertical or Euclidian displacements. We have chosen to define horizontal 

displacements only in the implementation. 
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Non-collinearity will be defined as a function of two parameters, the perimeter of the 

triangle enclosing the three features and the aspect ratio of the three feature construction: 

),,(_),,(),,( mkjratioaspectmkjperimetermkjtycollineariNon         (6.56)

 
where the aspect ratio is taken to be the reciprocal ratio between the maximum base of the 

enclosing triangle b to the corresponding height h, such that: 
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Figure 6.7 illustrates the parameters used in the measures of dispersion and non-collinearity. 

Figure 6.7. Parameters used in the metric feature selection criterion. 

6.6 Experimentation and Results 

The hierarchical localization evaluation is given in this section, with quantization for metric 

localization errors. A reference system is introduced for generating the ground truth of pose.

6.6.1 Ground Truth Reference System 

In order to determine the geometric accuracy of the proposed hierarchical localization and 

quantify localization errors, the real pose of the robot needs to be known. For this purpose, 

the Krypton K600 system, a product of the company Metris (URL: [met]), is used as the 
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reference system (see figure 6.8). The system measures the position of objects in 6 DOF with 

high precision. It consists of a 3-infrared-camera system with a controller to calculate the 3D-

position of infrared LEDs (so-called markers) by triangulation. These markers are attached to 

the movable body for tracking.  The reference system offers an accuracy of up to 2 

micrometer and can cover an area of ca. 17 cubic meters (refer to Table 6.1 for detailed 

technical information). To obtain measurements of fixed points as well, a Spaceprobe can be 

used. It allows determining the position of any point through direct contact. 

 

 
Figure 6.8. Krypton system K600 used for generating ground truth values [URL_MET]. 

Table 6.1. K600 system technical specification 

Space coverage 17 m3 
Resolution 2 μm 
Accuracy Up to 60 μm 
Temperature range 15-35 °C 
Relative Humidity 0-80 % 
Acquisition frequency (using one marker) 650 Hz 
Acquisition frequency (using three 325 Hz 

 

The evaluation of the metric localization could not be applied successfully to the 

Heidelberg University environment using the reference system. The reference system was 

heavy to transfer, and exhibited difficulties in tracking the robot when positioned on its 

tripod, because the markers failed to be efficiently detected most of the time. For efficient 
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markers detection, the system camera should be hanged on the ceiling of the testing 

environment. Hence, the mounted markers are always in the camera view for every possible 

move executed by the robot (especially rotations). Therefore, the evaluation of the 

Heidelberg University environment has been carried out manually by recording the real 

geometric position by hand. A second evaluation using the reference system has been carried 

out in a laboratory, where a suitable hanging mechanism is afforded. This has enabled 

conducting several and thorough testing experiments to precisely quantify the metric errors, 

although this issue needed to create a new map. 

6.6.2 Localization Evaluation for HEID 

In this evaluation, the first level of hierarchy uses the codebook ‘E’ of table 4.5 as a 

topological map. It is based on preserving 36% of low-entropy feature set. The topological 

map size is 2.67 megabytes with an average of 67 features per place. The metric data size is 

12.81 megabytes, with an average of 320 features per place. Both constitute the data to be 

processed in the hierarchical localization. A place matching is first executed at the first 

topological level, and triangulation is next executed at the second metric level using the 

detected features in the topological solution provided by the first layer. 

Before triangulation execution, metric features are investigated using criterion (6.53), in 

order to detect dynamic features and mismatches. Figure 6.9 shows a test example in an office 

room of the Heidelberg University environment. The two images represent the current camera 

view as seen by the mobile robot and the best matched place image retrieved by the 

topological matching module.  The paired detected matches by the matching module are 

shown in the figure. Using a histogram of three bins to classify the distances in (6.53), three 

outliers are detected, from which two are mismatched features, while the third is a feature for 

a relocated object. The test example has been recognized with a topological accuracy of 100% 

at 60% Recall at the default camera resolution (640x480 pixels).   

To quantify the metric errors, the robot is guided through the environment to test 

localization in several places. At each place, the robot executes a rotation control through a 

joystick, stitches the images, and then runs the hybrid localization to determine its pose. In the 

iterative Gauss-Newton triangulation, the required initialization is assigned to the origin of the 

local frame of each topological node, with zero orientation (i.e. (Xr,Yr,r) = (0,0,0)). 
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Figure 6.9. Dynamics and mismatches detection. From feature matching, features are classified into inliers 
that undergo the triangulation and outliers that are excluded. Outliers are identified in magenta and inliers in 
cyan. The upper image is the current camera view, while the lower image is the identified topological node.  

 

The average localization errors recorded for Heidelberg office experiments are 

summarized in table 6.2. The average error in x and y position variables, as well as in the 

orientation, is recorded for the Iterative Gauss-Newton and Geometric triangulation methods. 

The Gauss-Newton method has been implemented to support more than three landmarks. On 

average, six robust landmarks are often detected and triangulated per single estimation. Due 

to this data redundancy, the results in the table record lower localization errors for the Gauss-

Newton method in comparison to the Geometric Triangulation method. 

Table 6.2 also compares the Geometric Triangulation using random features versus 

employing the feature selection criterion defined by equation (6.54). In this experimentation, 

the weighting factor is set to a value of 0.5. Results indicate that online feature selection 

based on geometry decreases possible localization errors. We note that both the robot and 

features ground truth were recorded by hand, which makes the process subject to an error 

range of a few centimeters. The table also records the metric localization time, which is 

bounded to a few microseconds execution time of the triangulation. The total hierarchical 

localization time is within 5 seconds for the given robot setup. Consequently, the 

computational savings due to hierarchical localization are close to those ratios obtained by 

the topological level in chapter four. 
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Table 6.2. Metric localization performance in Heidelberg office environment– performance index versus          
method. 

Performance index / Method 
Iterative Gauss-
Newton method 

Geometric 
Triangulation 

method 

Geometric 
Triangulation 
method + FS 

Average positional x-error (cm) 6.1363 10.0167 4.3125 

Average positional y-error (cm) 4.0432 34.4958 14.0962 

Average rms error (cm) 7.3486 35.9207 14.7411 

Average orientation error () 2.0789 5.0393 3.0052 

Average execution time (msec) 69.842 22.008 - 

Maximum execution time (msec) 149.366 23.974 - 

 

6.6.3 Localization Evaluation using the Reference System 

A more precise evaluation for the metric localization is conducted using the reference system 

that has been described in 6.6.1. The experimentation was carried out in the robotics 

laboratory of Heidelberg University. The lab comprises an open area of about 100 m2. The 

Krypton camera is hanged on the ceiling, yielding a diagonal view for the test field, which 

restricts the navigation space to 2.0x1.8 m2. Due to the constrained navigational space and the 

open-area structure of the lab, topological nodes are defined as six arbitrary views, as seen 

from the defined workspace. Three markers are mounted on the robot’s platform in order to 

track the real pose of robot and generate the ground truth. 

6.6.3.1. The Metric Map 

The metric map in the new environment is generated in two exploratory steps. In the first 

exploration step, SIFT features are extracted for every topological node, and the proposed 

information-theoretic map generation is applied to extract the most relevant features. The 

extracted relevant features have two forms; the entropy-based feature form and the 

compressed codewords form. The compressed form represents the topological data part of 

the hybrid map, while the entropy-based form will be inputs to a second processing before 

generating the metric part of the hybrid map. 

In the second exploration step, the features’ metric information is calculated. To extract 

those positions while minimizing the errors, the reference system has been used to get robot 

poses and use them in a triangulation framework. The idea behind including robot poses 

measured by the reference system is to evaluate the localization, without the influence of 
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propagated metric map errors. Therefore, three robot poses are measured and their 

corresponding camera images are matched against the entropy-based features obtained in the 

previous step. Common features are next detected. Using the triangulation solution 

(photogrammetric model and the Newton-Gauss method), the 3-D positions of the commonly 

detected features are determined. Equations (6.18a-b) are solved for the position of features, 

together with the camera focal length as a parameter to be estimated. The solution to the 

metric map building (i.e. feature localization) is much easier than the robot localization’s, 

because the non linearity of the Euler angles does not exist. The final hybrid map is now 

constructed as consisting of the topological codewords and the metric entropy-based features 

with their position information. 

Figure 6.10 shows the process of feature matching for three camera views example, in 

which features are correctly matched, and subsequently localized. Figure 6.11 shows 3 and 2-

dimensional view for the generated metric data obtained at the six topological nodes.  

6.6.3.2. Metric Localization Evaluation 

In these evaluating experiments, the robot is commanded to move a distance ahead of 2 

meters from an arbitrary starting point in the navigating field, and then stop. Meanwhile, the 

real robot position (the ground truth) is determined by the reference system through the 

measured markers’ positions. Simultaneously, the vision-based hierarchical localization is run 

on the laptop attached to the robot. Data from both steps are generated with timestamps for 

synchronization. As previously mentioned, hierarchical localization starts with fast topological 

matching, in which features are extracted for the current scene, compared to the codewords, 

and a majority voting signals the best node match. To extend the metric localization, the 

node’s extracted features are matched to the entropy-based features to determine their identity, 

and the position of each feature is retrieved from the map. Finally, the filtering and selection 

criteria and the triangulation algorithm are executed. In the iterative Gauss-Newton method, 

the initial solution guess is assigned a default equal to the origin of the navigation field. It is 

noted that only the horizontal bearings are considered for the localization solution. This is 

chosen such that the vision sensor does not appear advantageous over other possible bearing-

measuring sensors.  Since the main purpose of the evaluation experiments is to quantify 

metric localization errors, quantified topological performance is not conducted in details in 

this section, as has been done in chapters four and five. 
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Figure 6.10.  Three different view matching at three given robot poses for 3-D feature localization. Examples 
are for images acquired at topological nodes (a) Node1 and (b) Node4. 
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Figure 6.11. Three and two-dimensional view for the metric data.  

 
Figures 6.12 to 6.18 show similar experiments conducted for the evaluation. In this 

experiment set, the iterative triangulation method is tested. The performance is evaluated in 

different nodes by comparing it to the ground truth. In all the cases tested, the topological 

place has been correctly identified by the robot at the beginning and all over the trajectory. 

Localization is executed similar to section 6.6.2. A topological place is first identified and the 

matched metric features are preprocessed using (6.52) to detect and exclude mismatched 

feature pairs and dynamic features. Next, triangulation is executed and the robot pose is 

estimated. Figures 6.12-a to 6.18-a show the 2-meter straight line ground truth trajectory 

driven by the robot which appear in blue color.  

The example of figure 6.12-a is a localization experiment in node number one (Node1). 

The figure compares the ground truth in blue with the triangulation estimation in red. Figure 

6.12-b shows the robot’s trajectory with respect to the surrounding environment features. The 

positions of the total feature space are highlighted as green squares. The feature set observed 

by the robot during motion are marked as red squares. Those red squares are the features used 

during the entire movement, but they do not have to be used in every single position estimate 

calculation. Figure 6.12-c shows the equivalent orientation error during the experiment. The 

average localization error in the pose vector is (13.9, 14.7, 8.9)4 with a maximum value of 

(22.3, 35.6, 9). This experiment localizes the robot at a starting distance of 4.4 meters from the 

furthest detected feature. 

                                                 
4 Units are (centimetres, centimetres, degrees) for the robot position vector. 
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Figure 6.13 shows a second experiment also conducted in Node1. This time, the robot 

has a better distribution for the observed features in the camera view (i.e. the features are 

spread on both sides of the robot). This generates less localization errors in both the robot’s 

position and orientation. The average localization error in the pose vector is (4.4, 6.8, 10) with 

a maximum value of (17.8, 20.8, 10.5).  

Figure 6.14 shows another experiment conducted in node number four (Node4), where 

the identified features are much further. The furthest detected feature is at a distance of 6 

meters. The topological node has been correctly identified, with less localization errors 

identified because of the better feature distribution in the robot’s view. The average 

localization error in the pose vector is (6.4, 5.9, 3.1) with a maximum value of (9.9, 9.5, 3.4).  

Figure 6.15 shows an experiment conducted in the same node again. This time, the Gauss-

Newton method is assigned an initial pose value which is far away from truth. The position 

estimates are correctly identified but the orientation estimate is not precisely identified. It is 

shifted by 180 degrees. The average localization error in the pose vector is (2.1, 6.8, 176.5) 

with a maximum value of (2.7, 15.6, 177).   

Figure 6.16 shows an experiment in topological node number six (Node6). The 

triangulation could not detect the features at the beginning and at the end of the trajectory 

because the features are grouped on one side and are sometimes undetected.  The average 

localization error in the pose vector is (4.3, 8.1, 5.2) with a maximum value of (16.6, 21.1, 

6.4).  Figure 6.17 shows an experiment conducted in topological node number five (Node5). 

The experiment has been carried out with two different initializing estimates. The first one 

managed to converge to the right orientation, while the other failed, and a shift of 180 degrees 

occurred. The average localization error in the pose vector for the latter is (6, 2.4, 183) with a 

maximum value of (12.4, 7.7, 183).  

Figure 6.18 shows an experiment in which the robot starts in Node1 and traverses a 

certain trajectory to reach a goal set in Node 4. During the turn, one of the three mounted 

markers is obscured by the robot’s camera, which accounts for non-correct values in the 

ground truth as seen in the figure. Both topological nodes have been correctly identified. The 

orientation has been wrongly estimated in Node1, while correctly estimated in Node4 as 

shown in figure 6.17-c where a 180 shift exists. The average localization error in the pose 

vector is (1.5, 11.1, 89) with a maximum value of (3.6, 17.6, 179).   
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Figure 6.12. (a) Metric localization performance in topological node one (Node1). 

-250 -200 -150 -100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

150

200

X

Y

 

 

Ground truth

Iterative Triangulation

Place Landmarks

Observed Landmarks

 
Figure 6.12. (b) Metric localization performance in topological node one (Node1). 
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Figure 6.12. (c) Metric localization performance in topological node one (Node1). 
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Figure 6.13. (a) Metric localization performance in topological node one (Node1). 
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Figure 6.13. (b) Metric localization performance in topological node one (Node1). 
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Figure 6.13. (c) Metric localization performance in topological node four (Node4). 
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Figure 6.14. (a) Metric localization performance in topological node four (Node4). 
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Figure 6.14. (b) Metric localization performance in topological node four (Node4). 
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Figure 6.14. (c) Metric localization performance in topological node four (Node4). 
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Figure 6.15. (a) Metric localization performance in topological node four (Node4). 
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Figure 6.15. (b) Metric localization performance in topological node four (Node4). 
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Figure 6.15. (c) Metric localization performance in topological node four (Node4). 
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Figure 6.16. (a) Metric localization performance in topological node six (Node6). 
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Figure 6.16. (b) Metric localization performance in topological node six (Node6). 
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Figure 6.16. (c) Metric localization performance in topological node six (Node6). 
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Figure 6.17. (a) Metric localization performance in topological node five (Node5). 
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Figure 6.17. (b) Metric localization performance in topological node five (Node5). 
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Figure 6.17. (c) Metric localization performance in topological node five (Node5). 
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Figure 6.17. (d) Metric localization performance in topological node five (Node5). 
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Figure 6.18. (a) Metric localization performance starting in Node1 and switching to Node4. 
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Figure 6.18. (b) Metric localization performance starting in Node1 and switching to Node4. 
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Figure 6.18. (c) Metric localization performance starting in Node1 and switching to Node4. 
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Figure 6.18. (d) Metric localization performance starting in Node1 and switching to Node4. 

 
 

Figure 6.18-d compares the orientation calculated by the Gauss-Newton method to that 

of the Geometric Triangulation for the trajectory of figure 6.18-a when using 3 landmarks 

only. The figure shows that the solution by the Geometric Triangulation method gives a more 

robust (i.e. non-shifted) estimate as compared to the solution by the Gauss-Newton method. 

Figure 6.19 shows an experiment example for comparing the robot pose vector using 

both the iterative and Geometric triangulation methods. The iterative method uses multiple 

landmarks (>3), while the Geometric method uses three landmarks only. From one side, it is 

obvious that more landmarks triangulation acquires more precise estimate. That is why errors 

exhibited in the Geometric Triangulation estimates are higher. However, from another side, 

the Geometric method preserves robustness for the orientation estimation as indicated in 

figure 6.19-b, which is missed in the iterative solution. For this reason, the Geometric 

Triangulation can be used to guide the iterative method for correct initialization values. It is 

noted that the process of landmark detection from image processing often includes poor 

measurement accuracy, because of the sensor characteristics and noisy measurement values. 

Using more than three landmarks can be efficient to increase such accuracy.  
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Figure 6.19. (a) Metric localization performance – Redundant features performance. 
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Figure 6.19. (b) Metric localization performance – Redundant features performance. 
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Figure 6.20 shows an experiment example to illustrate the effect of employing the 

metric feature selection criterion introduced in 6.5.2. The best 3-landmark configuration has 

been selected using equation (6.54) that combines measures of dispersion and non-

collinearity. The figure compares the Geometric Triangulation method in two cases: a case of 

random selection for any three visible features versus another case where three visible 

features are selected by the criterion. The proposed selection criterion provided more 

accurate position estimation (less localization errors) than the random selection for most of 

the trajectory. The figure also compares the Geometric Triangulation to the iterative 

triangulation that uses several features. The experiment again ensures that triangulating 

several features minimizes the localization errors. 
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Figure 6.20. Metric localization performance – Criteria employment performance. 

 
 
 

After conducting several experiments, the average localization errors have been recorded 

and summarized in table 6.3. The average x and y errors are about 4 centimeters when using 

the iterative triangulation method. The average root mean square error (rms) is about 16 

centimeters. The average orientation error is on average 6 (excluding the 180 orientation 

shifts cases). The detailed performance of the iterative triangulation method, Geometric 
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Triangulation with feature selection criterion, as well as Geometric Triangulation with random 

feature selection is summarized in the table. The Geometric triangulation exhibited higher 

localization errors than the iterative Gauss-Newton since it uses three landmarks only in the 

solution. Employing the criterion of feature selection shows less localization error than the 

random feature selection. 

Apart from the recorded results of the implementations, some sources introduced errors 

in the estimations, which can be handled. One source is the metric map building process. The 

position data in the feature-map have a few-centimeter error bound (about 2-3 centimeters). 

This error bound has been validated by single point measurements using the Spaceprobe of 

reference system. Triangulation with several robot poses in the metric map building, instead 

of the three poses applied in our case, helps in minimizing those errors. Another error source 

is the used camera because it is not optimally tuned with respect to its intrinsic parameters 

(e.g. lens distortion has been ignored). A final source of error originates from the camera 

setup. The camera has been fixed on a metal support to provide suitable height to capture the 

environment features. This, however, proved to be a source of vibrations that affected the 

bearing measurements and subsequently introduced measurement errors. 

 
Table 6.3. Metric localization performance in Heidelberg robotics laboratory environment–performance             

index versus method. 

Performance index / Method 
Iterative Gauss- 
Newton method 

Geometric 
Triangulation 

method  

Geometric 
Triangulation 
method + FS 

Average positional x-error (cm) 4.3775 27.0891 14.0323 

Average positional y-error (cm) 4.7784 28.5386 18.5011 

Average orientation error () 6.4 8.1 6.9 

Maximum positional x-error (cm) 17.7998 74.9801 36.5800 

Maximum positional y-error (cm) 25.8619 85.4723 58.0114 

Maximum orientation error () 10.5 41.2 25 

Average execution time (msec) 31.462 15.608 - 

Average rms error (cm) 16.4030 51.0987 30.0826 

 

Regarding the solution to the triangulation problem, direct or closed form solutions 

(e.g. Geometric Triangulation) frequently take less computational time than an iterative 

approach for the same positional accuracy. However, for real-time control problems, where 
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successive solutions should be produced at a high update rate, iterative solutions become 

highly efficient because previous estimates provide good starting point for the next iterations. 

Usually a single iteration is enough at each update period. However, an iterative method is 

sensitive to initial condition assignment, as has been encountered with the orientation 

estimation when it was assigned to a value far from the real one. In the general sense, this 

problem can be overcome through an estimate which can be obtained by sensor addition (e.g. 

a compass), combining other robust triangulation method (e.g. Geometric Triangulation), or 

using a pose tracking method. 

It is worth mentioning some general notes about the information stored in the hybrid 

map, as well as the localization. First, the metric information of the features is stored relative 

to the topological node and not to the global environment space. This minimizes confusion 

with similar features distributed all over the environment. In other words, it avoids falling 

into the severe problems of data association and data correspondence. At the same time, it 

reduces the number of bits required for storing the metric information. Second, the metric 

localization provides feedback for maintaining the consistency of the hybrid map through the 

detection of mismatches and dynamic features. Such detection is tracked during the system 

operation on long terms, by preserving a variable along with each feature. Every time a 

mismatch or dynamics is encountered, the stored variable is incremented. The feature can be 

eliminated from the map later when the variable reaches a certain threshold if needed. This 

assists the robot system to keep only robust and efficient features in the environment map. 

In conclusion, the advantage of the hierarchical solution presented in this chapter is 

mainly seen in the space and time complexities, which are significantly reduced to the 

dimension of the topological space (number of nodes). Compared to metric localization, 

which processes the entire space (accordingly entire feature space), the proposed hierarchical 

localization framework is computationally efficient by recording time and space savings 

between 60-90%. This has been verified in chapters four and five. The required accuracy of 

identifying a topological location by the first level of hierarchy is high, relying on the 

information-theoretic modeling for the environment. A final advantage for hierarchical 

frameworks is that they provide a means to employ and concurrently switch both arts of 

navigation, the topological and metric, as the robot is not required to work on the exhaustive 

metric level most of the time. 
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6.7 Summary 

This chapter has presented a hierarchical localization framework suitable for dynamic large-

scale environments. A hybrid map is employed for localization, which comprises data with 

two different resolutions obtained from two domains. The low-resolution data is compressed 

features characterized by non-geometric information, and is used for topological place 

recognition in the first layer of the hierarchy. Non-compressed form of the same features, but 

additionally complemented with metric clues accounts for high-resolution for the data. They 

are used for metric triangulation in the second layer of the hierarchy in order to estimate 

robot metric position. Since the topological level is modeled on information-theoretic basis, 

its accuracy is high enough to provide reliable hierarchical metric localization and robustness 

against place aliasing and misrecognition. Feature aliasing is also solved by detecting the 

environment dynamics as well as possible feature mismatches. This maintains accuracy and 

robustness of triangulation. Additional selection for the features based on their geometry and 

their dispersion in sensor view are proposed for augmenting more accurate pose estimates. 

The advantage of the proposed localization approach lies in the scalability and the lower 

complexity which has been revealed through the experimentations. Another significant 

advantage is that the approach does not rely at all on dead-reckoning information. Such issue 

provides an extensibility or fusion option with other localization approaches. 



 



 

Conclusion and Future Work 

7.1 Summary

It is difficult to develop simple machine models that completely correlate with the conceptual 

view of similarity that the human brain uses. A human recognizes environment similarities 

and differences systematically, a matter that is decidedly difficult for a robot. From another 

perspective, it is difficult to develop a general model that suits every environment with the 

same efficiency for application. Therefore, current and future advances in robotic perceptual 

and identification systems invoke many challenges to be addressed, in order to construct 

reliable and information-rich models that can assist robot navigational tasks. 

The work of this thesis targets an unattended research topic, which is the extraction of 

the minimal amount of information that supports efficient task execution. Such a topic is 

addressed for the benefit of environment model building and robot localization. Model 

building and localization are addressed in the context of large-scale, unstructured, densely 

cluttered and moderately dynamic environments. An information-theoretic-based solution 

approach is proposed, which employs structural components for generating information-rich 

maps and maximizing the localization accuracy while minimizing its complexity. The 

components provide solutions to the uncertainties caused by environment perceptual aliasing, 

Chapter 7 
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dynamics, and data correspondences, as well as to the space and time complexities caused by 

the high dimensions of features and space.   

The thesis presents a hierarchical framework consisting of two levels. The framework 

incorporates both the topological and metric paradigms for map building and localization. 

This hierarchical framework maintains a single hybrid feature-map which is shared between 

the two levels. The localization module of the first level affords coarse place identification, 

while that of the second level provides a more precise geometric estimate, given a previously 

identified topological place by the first level.  

A basic contribution in the proposed work is a novel approach for modeling the 

environment data in the hierarchy. The hierarchy adopts an appearance-based modeling 

approach. It is independent of metric clues of features at the first hierarchical level and relies 

only on their occurrences in certain topological places. A proposed information-theoretic 

evaluation component regards the environment features as properties emitting certain 

transmission values that contribute to place and feature uncertainty minimization. The 

transmission values are a measure for the features’ power of discrimination to categorize 

among the defined places, and are measured through a proposed conditional entropy filtering 

criterion. The evaluation component works in coordination with a second compression 

component by employing clustering techniques. The clustering provides significant 

compression ratios for the evaluated features. Only highly transmitting features are selected, 

while the rest are filtered out. Hence, two forms of data are generated from the evaluation 

and compression components: the selected entropy-based features and the compressed 

codewords. They represent high and low-resolution versions of the processed features 

respectively. Non-geometric descriptors of the codewords are preserved as topological data 

to be used at the first topological level. Non-geometric descriptors of the entropy-based 

features and their additional tagged positions account for metric data to be used at the second 

metric level. Having the same feature set but in two different forms yields a unified hybrid 

map at the two levels, with features capable of resolving topological and geometric locations.  

Localization at the first level is conducted as a place matching problem, in which the 

current scene viewed by the robot is compared to the codewords. A fast, accurate and robust 

(against dynamics) topological localization is performed. A geometric localization at the 

second level is executed based on the identified place, in which metric visible features are 
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triangulated. Relevance in the choice of features is made according to their structure (e.g. the 

more dispersed, the less collinear in real-world). Additionally, redundant feature triangulation 

is used to obtain a better estimate for the robot pose. Using the robot’s spatial view, dynamic 

features and mismatches are detected and excluded to ensure robust and accurate 

triangulation. A feedback on those undesired features is reported by the metric level to 

consider whether they will be preserved in the hybrid map or not. It happens that many 

environment objects move around, for example in house or office environments, due to 

human activities. These dynamic objects are useful for the topological localization and can be 

consequently still preserved for the topological level. They are, however, not beneficial for 

the metric localization and should be excluded as metric features. 

The proposed hierarchical framework augments accurate and less-complex localization, 

by utilizing only the data with the highest information content (as measured by their 

transmission rates) and the hierarchy concept. Additionally, the introduced information-

theoretic modeling approach refrains from any specific environment characterization or 

object modeling, such as the commonly used geometric modeling approach. Relying on a 

hybrid quality-based map, small-size maps are generated. The information-theoretic 

evaluation component provides quantified values for the environment properties in terms of a 

transmission value. Therefore, a poor environment can be detected and hence augmented 

with external referencing aiding solutions as localization accuracy is expected to be low. 

The proposed solutions have been demonstrated using a vision sensor, as being the 

most fundamental, important and rich information provider. Scale invariant local features, 

which are robust against several transformations and occlusions, are used. Employing the 

information-theoretic solution achieves a two-fold benefit by reducing the features’ 

disadvantageous huge size and selecting the best discriminative set for a place at the same 

time. The topological solution has been tested thoroughly using two different datasets and 

two different vision sensors; perspective and omnidirectional. The metric solution has also 

been verified in two different operating environments. The combined hybrid solution proves 

to achieve a good combination of accuracy-space-time performances, and suiting large-scale, 

dynamic and unstructured operating environments.  

The general advantages of the proposed information-theoretic solution approach and 

hierarchical framework can be summarized as follows: (1) The generality in being applied to 
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any environment, sensor and feature extraction methodology; (2) providing accurate multi-

resolution localization with efficient resource management; (3) scalability to large-scale and 

complex environments; (4) robustness to dynamics of environment. On other technical 

implementation levels, the approach has the pros of: (1) Automatically selecting natural 

features and building an environment map without any environment modification; (2) 

minimizing the perceptual aliasing and data correspondence problems of common similar 

places and features; (3) providing a purely-vision localization solution with independence of 

dead reckoning information. 

7.2 Scope and Limitations of Work

The proposed solution structure and methods adapt well to unstructured environments, where 

it is difficult to extract well-defined geometric features. In a similar way, it adapts well to 

densely cluttered environments, where objects can obscure each other, and hence important 

features are hidden. The approach is also practical and computationally efficient for 

implementation in large-scale environments due to the hierarchical structure and feature 

reduction techniques employed. It can provide substantial memory and computation savings. 

The issue might not be the storage itself, since large storage capacities are available at low 

cost. It is the searching and matching processes involving large data collections, which 

remain the main challenge for computer systems. 

Regarding the approach’s application, no restrictions on the environment are imposed, 

except for a plain background or an environment that lacks much detail.  In those 

environments, the approach might perform poorly, and it may sound more logical to employ 

external referencing (e.g. artificial landmarks). The approach is also unsuitable for places that 

show very a high degree of similarity where unique features hardly exist (see for example 

figure 1.4 for a severe perceptual aliasing problem). In such case, the approach has to be 

integrated with a component that can resolve this severe ambiguity. A multimodal probability 

distribution over place hypotheses can be tracked using temporal evidence, and hence 

provides a possible solution to the problem (e.g. probabilistic filtering like Markov models or 

particle filters as pose tracking solution). This distribution generation option is already there 

in the topological localization module. As the robot moves through its environment, the 

probability distribution will be updated on the basis of the new sensory evidence and 
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observed motion of robot since its previous position. Accordingly, the place ambiguities are 

resolved. In this context, it is assured that involving a topological feature-map based on 

information richness and distinguishability will assist this suggested solution against the 

severe ambiguities of some environment places. 

A property of the presented approach is that it is holistic. It is applied on the entire scene 

where natural features are acquired automatically without a need for prior feature or object 

specification. In an exact manner, the approach can be applied to characterize and recognize 

specific object classes (e.g. a wall painting, fire distinguisher or other objects), which can be 

deposited in environments with poor details. These object classes, which can be either 

artificial or natural, will act as landmarks to assist the local navigation.  

The proposed approach is applicable for several autonomous mobile robot applications. 

Specific applications include service robots, such as museum-guide tours, where it can guide 

a human or a robot over large environments influenced by several dynamic variations. The 

approach can additionally provide a navigational aid for visually impaired people and 

wheelchair users. Furthermore, the stand-alone topological level can serve as a place 

recognition application for mobile devices. 

7.3 Directions for Future Work

Future work suggests some enhancements for the presented methods, as well as other 

additional concepts to be integrated, which can enhance the general structure and 

performance. 

Regarding the implemented methods, it is desirable to regard more technical details for 

the generation of visual codebooks. The sampling of the patches or clusters is the critical 

component in any BoW method, as well as the consideration of the codeword value in the 

cluster. Combining Gaussian operators in clustering, instead of sharp clustering, can decide 

for codewords that are critically stable. This factor, in addition to studying the cluster density 

distribution, can generate more efficient codewords. Furthermore, other clustering algorithms 

than the k-means (e.g. k-medoids), and other distances rather than the Euclidean, can also be 

investigated.  
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For the general solution structure, the use of fused data modalities from different 

sensors is encouraged. It is also suggested that an inspection of the approach in larger 

environments be carried out. More specifically to vision, implementing the local features 

algorithms using hardware can be regarded [Zhang et al., 2008; Kwon et al., 2008]. This 

issue is quite promising for real-time implementations. Testing the localization with metric 

map-building methods in [Jebara et al., 1999; Min et al., 2007; Torr, 2002] are also 

suggested. 

Otherwise, new modules can be integrated into the solution structure to overcome the 

severe perceptual aliasing problems, as previously introduced. It is a fact that in large-scale 

spaces, the structure appears at a higher significance than the observations available at an 

instant. Therefore, two components can make relevance to the solution design: temporal 

evidence and adjacencies modeling. Integrating system dynamics in a hybrid fashion at the 

second level, by fusing current with pervious data measurements, will overcome severe 

ambiguities. Additionally, the environment model and the localization will be significantly 

improved by verifying possible transitions between places. For instance, the robot cannot 

jump suddenly from the office to the kitchen without passing through a corridor, or it cannot 

move from the elevator view on the first floor to the other one on the third floor without 

ascending two floors. During such motion, other distinguishing places or measurements will 

be encountered, and therefore, the solution structure will offer enhanced performance. 
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Appendix -A- 
K-Means Clustering 

 
Clustering is the process of grouping a set of physical or abstract objects into classes 

exhibiting similarity. The class, which is termed a cluster, is a collection of the data objects 

that are similar to one another within the same cluster, whereas dissimilar to the objects in 

other clusters. Every cluster can be treated collectively as one group, and so clustering may be 

considered a form of data compression. Clustering is the reverse process of classification, 

where the set of data is first partitioned into groups based on data similarity, and then labels 

are assigned to the relatively small number of groups. Consequently, it is a form of learning 

by observation, rather than learning by examples (i.e. unsupervised learning method). 

K-means [Han and Kamber, 2006] is one of the simplest algorithms in clustering 

analysis, which is classified as a partitioning method. It has been used in several problem 

domains. The algorithm classifies a given data set into a number of clusters (k), which is fixed 

a priori. The partitioning method creates an initial partitioning, and then uses an iterative 

relocation technique, which attempts to improve the partitioning by moving objects from one 

group to another. The criterion of obtaining good partitioning is that objects in the same 

cluster should be close or related to each other, whereas objects of different clusters should be 

far apart or very different. 

The algorithm proceeds by defining k centroids (centers of gravity), one for each cluster. 

The centroids are initialized by picking k samples at random. The next step is to take each of 

the remaining objects in the given data set and link them to the nearest centroid. An object is 

assigned to the cluster to which it is the most similar, based on the distance between the 

object and the cluster mean. When no point is pending, the first step is completed and an 

early groupage is completed. At this point, the prior assigned centroids are moved to the 

center of the clusters by re-calculating k new centroids. After having the k new clusters with k 

new centroids, a new binding is made between the data set points and the nearest new 

centroid as done before. The process is iterated in which the k centroids change their location 

step by step; until no more changes occur (i.e. centroids do not move any more). Hence, the 

centroids of the clusters are taken as the generate clusters. Figure A.1 shows a simple 

scenario for clustering into 3 groups, while figure A.2 summarizes the algorithm steps. 



Appendix -A-  
 

 

218

For the algorithm to converge, it sets up an objective function to be minimized. This 

objective function is a squared error function and has the formula: 
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where E is the sum of the square error for all objects in the data set; p is the point in space 

representing a given object; and mi is the mean of cluster Ci (both p and mi are 

multidimensional).That is to say, for each object in each cluster, the distance from the object 

to its cluster center is squared, and the distances are summed. This criterion attempts to make 

the resulting k clusters as compact and as separate as possible. 

 

 

 

Figure A.1:  The k-means partitioning algorithm 

 

 

Figure A.2:  The k-means algorithm steps. 
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– Update step: calculate the new means to be the centroid of the observations of the clusters.  
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Although it can be proven that the procedure will always terminate, the k-means 

algorithm does not necessarily find the most optimal configuration corresponding to the 

global objective function minimum. The algorithm is sensitive to the initial randomly 

selected cluster centers. The algorithm can be run multiple times to reduce this effect. 

In applying clustering approaches for data compression, the clusters are represented by 

the mean value of the objects in each cluster, such as in k-means, or by one of the objects 

located near the center of the cluster, such as in k-medoids.  
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Appendix -B- 
Panorama Creation via Image Stitching 

 
Panoramic imaging has the advantage of sensing larger area in the environment and hence 

capturing much detail all at one instant. Such imaging can be obtained through panoramic 

sensors which provide 360° field of view (FOV), or wide hemispherical FOV cameras such as 

the Eyefish camera (see figure 3.2). A classical method to obtain wide-imaging is by image 

stitching.  

Image stitching is the process of combining multiple images with overlapping fields of 

view to produce a panorama (see figure B.1). A robot can generate this panoramic image by 

capturing several image shots through its sensor actuation. The overlapping image shots will 

be acquired while the camera is in motion. The camera can be actuated by parallel 

translational motion with respect to a wall for example, or can be rotated around its central 

axis to capture the surrounding view. The former represents an easy projection on a planar 

surface, while the latter represents projection on a cylindrical surface. Both techniques will not 

generate accurate stitching if the camera exhibits severe vibrations. 

To perform the stitching, correspondences between the sequential image shots need to 

be found. While most of the older techniques work by directly minimizing pixel-to-pixel 

dissimilarities, a different class of algorithms works by extracting a sparse set of features and 

then matches them to each other. Most of the recent panorama creation methods and 

available commercial tools use the latter technique, in which the RANSAC [Fischler and 

Bolles, 1981] is employed to find the correspondences.  

When directly matching pixel intensities is used, alignment between two images is 

established in order to shift one image relative to the other. The other approach, however, 

extracts distinctive features from each image, matches individual features to establish the 

global correspondence, and then estimates the geometric transformation between the images. 

This kind of approach has been used since the early days of stereo matching, and has recently 

gained more popularity for image stitching applications. Feature-based approaches have the 

advantage of being more robust against scene movement, and are potentially faster. Their 

biggest advantage is their ability to automatically discover the adjacency (overlap) relation- 
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ships among an unordered set of images [Brown and Lowe, 2003]. Among the most 

successful employed features for generating panoramas is the Scale Invariant Feature 

Transform (SIFT) local detector and descriptor [Lowe, 2004]. 

The image stitching process can be divided into three main components: image 

registration, calibration and blending.  

Image registration involves using direct alignment methods or matching features to 

search for the alignments that minimize the sum of absolute differences between overlapping 

pixels. Since there are a small number of common features between two sequential images, 

the result of the search is more accurate and matching execution is faster. Image calibration 

aims to minimize differences between an ideal lens models and the camera-lens that was 

used, to remove optical defects such as distortions. Once the features are registered and their 

absolute positions are recorded, this data can be used for the geometric optimization of the 

images. Panotools and its various derivative programs use this method. Image blending 

involves executing the adjustments figured out in the calibration stage, combined with 

images remapping to an output projection. Perspective wrapping is done through 

homographies, and finally, seam line adjustment is done to minimize the visibility of seams 

between stitched images. 

The difficulty in the image stitching lies in the capture conditions. When the camera 

(accordingly the robot) undergoes rapid movement, severe vibrations or dynamic motion, 

artifacts will occur as a result of time differences between the image segments. "Blind 

stitching" through feature-based alignment methods, as opposed to manual selection and 

stitching, can cause imperfections in the assembly of the panorama. 

Figure B.1: A set of images and the panorama discovered in them. 
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