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Abstract

Duration analysis, which is also known as survival analysis, is a core subject of applied statistics

and econometrics. Application of duration analysis techniques can be found in actuarial science,

demography, economics, finance, marketing, and many other scientific fields. In the univariate case,

the tools of duration analysis are used for the study of the distribution of a certain duration variable

which is possibly associated with a set of explanatory covariates. This variable measures the time

to the occurrence of an event of interest such as transition from unemployment to employment,

retirement time, onset of a disease, purchase of a product. The main difference between duration

analysis and standard regression analysis is that sometimes the duration variable is right-censored,

namely, the only available information we have is that its realization exceeds a certain value.

Multivariate duration analysis is the natural extension of the univariate analysis. In this set

up, multiple duration variables, which specify the time to the occurrence of multiple events, are

considered and their joint distribution is analyzed for describing the association among them.

These variables can be either parallel or sequential. Parallel duration variables refer to cases in

which the multiple duration variables are measured by using the same reference point of time.

On the other hand, sequential duration variables refer to cases in which the measurement of each

duration variable starts after the realization of some other duration variable. Death times of twins

or the corresponding time of onset of several diseases are multivariate examples with parallel

duration variables. On the other hand, unemployment duration and the subsequent employment

duration is an example with sequential durations.

The current PhD dissertation deals with multivariate duration models. In particular, it consists

of three independent essays on multivariate duration models. In the next three paragraphs, a

synopsis of each essay is given.

The first essay, written jointly with Gerard J. van den Berg, considers bivariate frailty models

in which the frailty terms enter multiplicatively on the corresponding hazard rates. The frailty

terms capture unobserved or nonmeasurable characteristics that affect the duration outcomes. We

assume that the joint distribution of the frailty terms is characterized by gamma marginals. In
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particular, the gamma distribution is widely used in empirical analysis for modelling the distribu-

tion for the unobserved heterogeneity terms. Both analytical and graphical arguments have been

developed in the past which rationalize this specific choice. First, the focus of the paper is on the

concepts of negative quadrant dependence and positive quadrant dependence between the dura-

tion variables. Second, two measures of association between the duration variables are considered;

the Pearson’s correlation coefficient and the Kendall’s tau. In particular, (sharp) bounds for these

measures are derived and the necessary conditions are discussed discussion is provided about the

conditions which should be satisfied so that the bounds are approached very well.

The second essay, written jointly with Carlos Hernandez Mireles and Gerard Tellis, is concerned

with a new trivariate hazard rate model which can be applied to study the relationship among

the timing of the corresponding events. The suggested model allows for three types of dependence

among the timing of the underlying events: due to unobserved heterogeneity, lagged dependence,

and due to causality. As shown in the paper, this model can be nonparametrically identified and as

consequence the three different types of dependence are disentangled. The new model is adopted

to study the endogenous relationship between the timing of three important events in the sales

and prices of new products. Specifically, we investigate the causal relationship between the sales

crash, price crash, and sales recovery. A sales crash is a significant and permanent cut in the sales

of a new product. On the other hand, the sales recovery is a sales peak which is realized after the

crash. Finally, the price crash is a deep and permanent reduction in the price of a new product.

The last essay deals with competing risks models which are very popular in the scientific field

of duration analysis. Such models deal with cases in which we observe only the minimum duration

among several multiple durations for each individual unit under study. The goal of this paper is the

development of statistical properties of the cumulative incidence function. This function, which

is common in the empirical practice, specifies the probability that a particular duration variable

will be realized by a certain point of time and before the other duration variables. The proposed

estimator is nonparametric, that is, no parametric assumptions are made regarding the data

generating process. In addition, the estimator allows for Missing At Random observations. More

precisely, for some observations we have information about the value of the minimum duration

variable, but not information about which duration variable is the one smallest value of realization.
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Association Measures in Bivariate Gamma Frailty Models

1 Introduction

Frailty models are widely applied for the description of the distribution of time that a subject

spends in a certain state of interest. The main building block of these models is the hazard rate

function that specifies the instantaneous rate at which the subject transits from the state of interest

to some other state, given that the transition has not occurred yet. The hazard rate is expressed

as a function of i) the elapsed duration in the state of interest, ii) observed characteristics, and

iii) a frailty term which captures characteristics that are not measurable or observable due to

the nature of the problem. In the bivariate frailty model, two duration variables are considered

that may describe two parallel, possibly competing, durations of the same subject (e.g., duration

until merger and duration until bankruptcy of a firm) or single durations of two subjects which

belong to the same cluster (e.g., death times of twins). The bivariate frailty model has several

applications in economics (An et al., 2004; Røed and Westlie, 2007; Andrén, 2005; Hujer et al.,

2006; Tatsiramos, 2004; Beńıtez-Silva and Heiland, 2008), biostatistical studies (Clayton, 1978;

Paik et al., 1994; Shih and Louis, 1995a; Vu and Knuiman, 2002; Zhong and Li, 2002; Vu, 2004;

Xiang et al., 2007; Rondeau et al., 2007; Gorfine and Hsu, 2011) and many other fields such as

actuarial sciences, demography and engineering.

The main feature of the bivariate frailty model is the dependence between the two duration

variables which is caused by dependence between the two frailty terms that enter the underlying

hazard rates. In this paper, we first study the notions of negative quadrant dependence and

positive quadrant dependence for the joint distribution of the duration variables, if the frailty

terms act multiplicatively on the hazard rates. Second, we turn our attention to the level of

dependence between the duration variables by imposing the extra condition that the frailty terms

are gamma distributed. To quantify the degree of dependence between the duration outcomes,
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we will employ two association measures, specifically the Pearson’s correlation coefficient and

the Kendall’s tau. The former, which measures the strength of the linear relationship between

two random variables, is commonly used in empirical analysis for statistical inference. On the

other hand, the latter measures the strength of any monotonic relationship between two random

variables and consequently it is characterized by the rank-invariant property. For both association

measures we provide lower and upper bounds for the range of the corresponding values. We also

compare our findings with the results of Van Den Berg (1997) who provides nonparametric bounds

for these two measures.

Our choice to model the marginal distribution of the frailty terms as gamma is based on the

literature of the conventional univariate frailty model. Abbring and Van Den Berg (2007) show

that if the frailty term enters multiplicatively on the hazard rate, the distribution of the frailty

term, among the subjects who are still in the state of interest, converges quite rapidly to a gamma

distribution. The only weak requirement they impose is that the actual distribution should be

regularly varying at zero with nonnegative exponent. Examples of continuous distributions with

this property are the beta, exponential, uniform and in general all distributions with density

function that has finite strictly positive limit at zero. For the case of exponent equal to zero

all distributions, including finitely discrete distributions, with a positive mass at zero satisfy the

property of regular variation. In addition, several authors have proposed graphical and numerical

procedures to check for the adequacy of the assumption of gamma distribution for the frailty

term. For example, Shih and Louis (1995b) apply a graphical method to test the assumption of

gamma frailty by calculating the average of the posterior mean of the frailty given the observed

data. Cui and Sun (2004) propose a supremum-type test statistic, whose asymptotic critical values

are calculated by Monte Carlo simulation, and apply a numerical method as well as a graphical

approach to test the validity of the gamma assumption.

As explained above, we focus on negative as well as positive dependence between the duration

variables. In biostatistical applications, the duration variables under study are usually positively

dependent as the corresponding hazard rates share same unobserved or nonmeasurable characteris-

tics (e.g., environmental, genetic). On the other hand, in social sciences, besides a few cases where

the underlying duration variables are positively dependent, there are also numerous examples
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where the data reveal negative dependence between the duration variables. In labor economics,

for instance, consider an individual who is unemployed and faces two competing exits from the

unemployment state: employment and dropping out of the labor force. If the unemployed individ-

ual is strongly motivated (which is not observed) to get a job, then the duration until employment

will be negatively associated with the duration until nonparticipation in the labor force, as high

motivation to work mainly results in selection into the state of employment.

The results of this paper are useful for practitioners and researchers who work with the bivariate

frailty model in which the frailty terms enter multiplicatively on the hazard rates. First of all, we

provide a general result about the dependence structure of the bivariate distribution of the duration

variables given the bivariate dependence of the frailty terms. Notice that for the derivation of this

result we do not impose any restriction on the shape of the marginal distribution of the frailty

terms. Second, by calculating bounds for the Pearson’s correlation coefficient we can get insights

about the flexibility of the bivariate gamma frailty model with Weibull baseline hazards. Moreover,

the results on the bounds for the Kendall’s tau are more general concerning the flexibility of the

bivariate gamma frailty model as we do not make use of any parametric assumption regarding the

effect of time and explanatory variables on the hazard rates. The main criterion for assessing the

flexibility in the two above cases is the range of possible values that the two measures of association

can attain. Finally, we compare different families of bivariate distributions with gamma marginals

and we examine which of them can fit data with negative and/or positive dependence between the

duration variables.

The rest of the paper is structured as follows. Section 2 briefly introduces the bivariate frailty

model and discusses dependence properties of the joint survival function (equivalently, joint distri-

bution) of the duration variables given the dependence structure of the distribution of the frailty

terms. In Section 3, we discuss the properties of different bivariate distributions with gamma

marginals which can be used for modeling the bivariate distribution of the two frailty terms. Sec-

tion 4 focuses on the bounds for the Pearson’s correlation coefficient and Section 5 studies the

bounds for the Kendall’s tau. Section 6 concludes and discusses possible extensions. The mathe-

matical proofs are deferred to Appendix A. In Appendix B, we consider the dependence properties

of some popular bivariate copulas. Finally, for notational convenience, we will omit the transpose
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symbol for vectors throughout the paper. We hope this slight abuse of notation will not create

any confusion for the reader.

2 Quadrant dependence in the bivariate frailty model

Let T1 and T2 represent the nonnegative stochastic durations of interest and X be a vector of

observable characteristics with support X ⊆Rd, where d is a finite positive integer number. Denote

by x ∈ X the realization of X. In addition, introduce two frailty terms V1 ∈ R+ and V2 ∈ R+ that

are independent of the vector X and directly affect the realization of T1 and T2, respectively. The

random variables V1 and V2 capture unobserved or nonmeasurable time-invariant characteristics.

The corresponding hazard rate of the duration variables T1|x, V1 and T2|x, V2 is expressed as follows

θ1(t|x,V1) = λ1(t, x)V1,

θ2(t|x,V2) = λ2(t, x)V2,

(1)

with λ1 : R+×X → (0,∞) and λ2 : R+×X → (0,∞). We shall assume that the functions λ1(., x)

and λ2(., x) are integrable on bounded intervals of the positive real line, that is, the quantities

Λ1(t, x) =
∫ t

0
λ1(ω, x)dω and Λ2(t, x) =

∫ t
0
λ2(ω, x)dω exist for each (t, x) ∈ R+ ×X .

We denote by G the distribution of the bivariate random vector (V1, V2) and by G1 and G2

the marginal distribution of V1 and V2, respectively. The main assumption that will hold through-

out this paper is T1 ⊥ T2|x,V1, V2. In words, the duration variables are stochastically inde-

pendent of each other given the observable characteristics and the frailty terms. Let i = 1, 2,

and consider the survival functions Si(t|x,Vi) = P(Ti > t|x,Vi) and S(t1, t2|x,V1, V2) = P(T1 >

t1, T2 > t2|x,V1, V2). The specification (1) implies Si(t|x,Vi) = exp(−Λi(t, x)Vi) and therefore

S(t1, t2|x,V1, V2) = exp(−Λ1(t1, x)V1−Λ2(t2, x)V2) by using the conditional independence property

T1 ⊥ T2|x,V1, V2. Also, introduce the survival functions Si(t|x) = P(Ti > t|x) and S(t1, t2|x) =

P(T1 > t1, T2 > t2|x). The survival function of Ti|x can be explicitly calculated by a mixture of

exponential distributions in the following way
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Si(t|x) =

∫
R+

exp(−Λi(t, x)v)dGi(v) = LGi (Λi(t, x)) , i = 1, 2, (2)

where the generic symbol L denotes the Laplace Transform (LT) of the corresponding probability

measure. Likewise, the survival function of (T1, T2)|x can be represented by a mixture of bivariate

exponential distributions as follows

S(t1, t2|x)=

∫
R2

+

exp(−Λ1(t1, x)v1 − Λ2(t2, x)v2)dG(v1, v2)

=LG (Λ1(t1, x),Λ2(t2, x)) . (3)

If V1 ⊥ V2 we get LG(s1, s2) = LG1(s1)LG2(s2) for all (s1, s2) ∈ R2
+ and thus we have, by (2) and

(3), T1 ⊥ T2|x for any x ∈ X . On the other hand, if T1 ⊥ T2|x for some x ∈ X , then V1 ⊥ V2

by noting, in view of (1), that lnVi = − ln Λi(Ti, x) + εi for i = 1, 2, where ε1, ε2 are independent

random variables with probability density function fi(ε) = eε exp (−eε) .

We first begin with the definitions of negative quadrant dependence and positive quadrant

dependence Lehmann (1966).

Definition 1 An R2
+−valued bivariate random vector (W1,W2) and its distribution function are

said to be negative (positive) quadrant dependent if

P(W1 ≤ w1,W2 ≤ w2) ≤ (≥)P(W1 ≤ w1)P(W2 ≤ w2) for all (w1, w2) ∈ R2
+.

Equivalently, an R2
+−bivariate random vector (W1,W2) and its survival function are said to be

negative (positive) quadrant dependent if

P(W1 > w1,W2 > w2) ≤ (≥)P(W1 > w1)P(W2 > w2) for all (w1, w2) ∈ R2
+.

In the sequel, we use the acronyms NQD and PQD for the terms negative quadrant dependent

and positive quadrant dependent, respectively. These two dependence concepts are the weakest

for describing the dependence structure between two random variables. In particular, the density

function of a bivariate random vector is reverse rule of order two, the strongest notion of negative
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dependence, only if the underlying distribution function is NQD. Likewise, the density function

of a bivariate random vector is totally positive of order two, the strongest concept of positive

dependence, only if the corresponding distribution is PQD. Next, we recall the definition of the

concordance ordering ≺C that can be found in Joe (1997).

Definition 2 Suppose Pa and Pb are bivariate distribution functions on R2
+ or bivariate survival

functions on R2
+ with specific marginals P1 and P2. If Pa(w1, w2) ≤ Pb(w1, w2) for all (w1, w2) ∈

R2
+, then we say that Pb is more concordant than Pa, written as Pa ≺C Pb.

We first obtain the following result which states that any concordance ordering between two

different distributions of (V1, V2) will result in the same concordance ordering between the corre-

sponding survival functions of (T1, T2)|x.

Proposition 1 Let Ga and Gb represent two different distributions of the random vector (V1, V2)

with Ga ≺C Gb. Also, denote by Sa and Sb the corresponding mixtures of bivariate exponential

distributions as defined in (3). Then, Sa ≺C Sb for each x ∈ X .

An important remark about Proposition 1 is that its result can be extended to any arbitrary

bivariate hazard model in which the S(t1, t2|x,v1, v2) is bounded, continuous and 2 − positive

function in (v1, v2) for all (t1, t2, x) ∈ R2
+ × X (see Appendix A). The next corollary directly

follows from Proposition 1 by setting Ga(v1, v2) ≤ G1(v1)G2(v2) = Gb(v1, v2), (v1, v2) ∈ R2
+, for

the NQD result and Ga(v1, v2) = G1(v1)G2(v2) ≤ Gb(v1, v2), (v1, v2) ∈ R2
+, for the PQD result.

Corollary 1 Let T1 and T2 be the duration variables that are generated by the bivariate frailty

model (1). If (V1, V2) is NQD (PQD), then (T1, T2)|x is NQD (PQD) for every x ∈ X .

In Section 4 and 5 we shall consider bounds for the values of the Pearson’s correlation coefficient

and Kendall’s tau, respectively. The former quantitatively describes the strength of the linear

relationship between T1 and T2, whereas the latter is a rank correlation coefficient between T1

and T2. According to Corollary 1, the type of quadrant dependence of the random vector (V1, V2)

determines the type of quadrant dependence of the random vector (T1, T2)|x for any x ∈ X and

thereby the sign of these two association measures.
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Assuming E(Ti|x) < ∞ and E(T 2
i |x) < ∞ for x ∈ X and i = 1, 2, the conditional on x

Pearson’s correlation coefficient between T1 and T2 is expressed as

ρ(T1, T2|x) =
Cov(T1, T2|x)

[Var(T1|x)Var(T2|x)]
1
2

. (4)

By Hoeffding’s identity we have

Cov(T1, T2|x) =

∫
R2

+

[S(t1, t2|x)− S1(t1|x)S2(t2|x)] dt1dt2.

Therefore, if (T1, T2)|x is NQD for all x ∈ X it will hold S(t1, t2|x) − S1(t1|x)S2(t2|x) ≤ 0 for all

(t1, t2, x) ∈ R2
+×X and therefore ρ(T1, T2|x) ≤ 0 for any x ∈ X . The previous inequalities will be

reversed in case (T1, T2)|x is PQD.

The main drawback of the Pearson’s correlation coefficient is that it is not rank-invariant, that

is, generally ρ(T1, T2|x) 6= ρ(h1(T1), h2(T2)|x) for any nonlinear strictly monotone transformations

h1 and h2. A measure that satisfies this property is the Kendall’s tau which has attracted the

interest of researchers who work on duration analysis (Wang et al., 2000; Martin and Betensky,

2005; Beaudoin et al., 2007; Oakes, 2008). To be more precise, consider two independent copies

(TA1 , T
A
2 )|x and (TB1 , T

B
2 )|x of the bivariate random vector (T1, T2)|x. The value of τ(T1, T2|x) for

any x ∈ X is calculated by the following difference

τ(T1, T2|x) = P
[
(TA1 − TB1 )(TA2 − TB2 ) > 0|x

]
−P

[
(TA1 − TB1 )(TA2 − TB2 ) < 0|x

]
,

which gives

τ(T1, T2|x) = 2P
[
(TA1 − TB1 )(TA2 − TB2 ) > 0|x

]
− 1. (5)

Clearly, it holds −1 ≤ τ(T1, T2|x) ≤ 1 for all x ∈ X and it is also easy to see that the value

of τ(T1, T2|x) is equal to −1 (+1) if and only if T2 = h(T1), with h to be a strictly decreasing

(increasing) transformation. Some further elaboration of (5) gives

τ(T1, T2|x) = 4

∫
R2

+

S(t1, t2|x)dS(t1, t2|x)− 1. (6)
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Note that we have chosen to express τ(T1, T2|x) as a functional of S(t1, t2|x) and not of F (t1, t2|x),

where F (t1, t2|x) = 1 − S1(t1|x) − S2(t2|x) + S(t1, t2|x), as we find it more convenient for the

analysis in the sequel. Hence, in case (T1, T2)|x is NQD for all x ∈ X , it will hold S(t1, t2|x) ≤

S1(t1|x)S2(t2|x) for all (t1, t2, x) ∈ R2
+ ×X and by using the result of Theorem 2 of Tchen (1980)

it can be readily shown that τ(T1, T2|x) ≤ 0 for any x ∈ X . On the other hand, if (T1, T2)|x is

PQD the previous inequalities will go in the opposite direction.

3 Bivariate frailty distribution with gamma marginals

To derive bounds for the values of the two association measures, we assume Vi ∼ Gamma(ki, µi)

for i = 1, 2, where the parameters ki and µi are defined as shape parameter and scale parameter,

respectively, and we assume that they are strictly positive. More precisely, the probability density

of Vi is given by

gi(v) =
1

µkii Γ(ki)
vki−1 exp(− v

µi
), vi > 0, ki > 0, µi > 0,

where the Eulerian gamma function Γ is computed by Γ(k) =
∫∞

0
ωk−1 exp(−ω)dω for k > 0.

In the next two subsections we shall discuss possible parameterizations of G and the dependence

structure they induce on (T1, T2)|x.

3.1 Bivariate gamma distributions

Before proceeding to the description of two bivariate gamma distributions, recall that if T1 and

T2 are generated by (1), then S(t1, t2|x) =LG (Λ1(t1, x),Λ2(t2, x)) and Si(t|x) = LGi (Λi(t, x)) for

i = 1, 2. The first distribution that we study as a candidate for the parameterization of G is the

double bivariate gamma Kotz et al. (2000), which has the following stochastic representation

Vi = µi(V0 + V0i), i = 1, 2, (7)

with V0 ∼ Gamma(k0, 1) and V0i ∼ Gamma(k0i, 1) to be independent gamma variates. The

marginal distribution of Vi is gamma distribution with shape parameter k0+k0i and scale parameter

µi.
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Cherian (1941) studied the above distribution for µ1 = µ2 = 1 and k01 = k02. The use of

the double bivariate gamma distribution is widespread in applications in the field of biostatistics

(Korsgaard and Andersen, 1998; Zhong and Li, 2002; Jonker et al., 2009). By using Bayes’ law

we can deduce that the vector (V1, V2) is PQD and consequently, by Corollary 1, the vector

(T1, T2)|x is PQD for each x ∈ X . There is an alternative way to view that (T1, T2)|x is PQD

for this case. The LT of the double gamma distribution is expressed as LG(s1, s2) = LG0(µ1s1 +

µ2s2)LG01(µ1s1)LG02(µ2s2) for any (s1, s2) ∈ R2
+. Provided that V0 ∼ Gamma(k0, 1), it holds

LG0(µ1s1 + µ2s2) ≥ LG0(µ1s1)LG0(µ2s2) for all (s1, s2) ∈ R2
+, from which it is straightforward to

infer that (T1, T2)|x is PQD. Finally, note that for the limiting case k0i → 0 we get P(µ2V1 =

µ1V2)→ 1.

The second bivariate gamma distribution that we consider for modelling G is mostly known

by its LT which is expressed as follows

LG(s1, s2) = (1 + µ1s1 + µ2s2 + µ12s1s2)−k, (s1, s2) ∈ R2
+, (8)

with k > 0, µ1 > 0, µ2 > 0 and µ1µ2 − µ12 ≥ 0. The above LT corresponds to a bivariate

gamma distribution with V1 ∼ Gamma(k, µ1) and V2 ∼ Gamma(k, µ2). Kotz et al. (2000) call it

Kibble and Moran bivariate distribution. This bivariate gamma distribution is used by Henderson

and Shimakura (2003) who apply a Poisson-gamma model in longitudinal data to account for

individual-random effects and within-individual serial correlation. The case µ12 = 0 corresponds

to P(µ2V1 = µ1V2) = 1 and the case µ1µ2 − µ12 = 0 corresponds to independence between V1 and

V2. It is easy to verify that LG(s1, s2) ≥ LG1(s1)LG2(s2) for all (s1, s2) ∈ R2
+ and therefore the

random vector (T1, T2)|x is PQD for each x ∈ X .

Parameterization of G by using one of the two above distributions is convenient; although

the corresponding densities have quite complicated expressions, the LT for each distribution has

closed form expression which in turn gives closed form expression for S(t1, t2|x) as well. The

main drawback of using one of these two bivariate distributions is that the (T1, T2)|x is PQD and

consequently, the ρ(T1, T2|x) and τ(T1, T2|x) will be nonnegative for all x ∈ X . To overcome this

limitation we consider in the next subsection the notion of copula for parameterizing G and as we
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shall discuss, negative values of these two association measures can be attained.

3.2 Copula with gamma marginals

The advantage of using the copula approach is that it allows us to separate the bivariate distribu-

tion G into the marginals G1, G2 and an R-valued pure dependence parameter ψ which captures

the level of dependence between V1 and V2. Nelsen (2006) provides a detailed exposition of the

important concept of copula.

According to the celebrated Sklar’s theorem (Sklar, 1959) and given that the distributions

G1, G2 are continuous functions, there exists a unique copula Cψ : [0, 1]2 → [0, 1] such that

G(v1, v2) = Cψ(G1(v1), G2(v2)) for all (v1, v2) ∈ R2
+. It is not difficult to see that the Cψ is the

distribution of the random vector (G1(V1), G2(V2)). Conversely, for any given bivariate distribution

G we can construct the corresponding copula by considering the quantity G(G−1
1 (v1), G−1

2 (v2)),

where G−1
i (v) = inf{ω ∈ R : Gi(ω) ≥ v} for i = 1, 2. Hence, we have ψ = k0 for the double

bivariate gamma and ψ = µ12 for the Kibble and Moran bivariate distribution.

It is well-known that the following Frechet bounds apply

max{G1(v1) +G2(v2)− 1, 0} ≤ Cψ(G1(v1), G2(v2)) ≤ min{G1(v1), G2(v2)} (9)

for every (v1, v2) ∈ R2
+. When Cψ(G1(v1), G2(v2)) = max{G1(v1)+G2(v2)−1, 0} for each (v1, v2) ∈

R2
+, it holds G1(V1)+G2(V2)−1 = 0 with probability one, and the random variables V1 and V2 are

called countermonotonic. When Cψ(G1(v1), G2(v2)) = min{G1(v1), G2(v2)} for all (v1, v2) ∈ R2
+,

it holds G1(V1) = G2(V2) with probability one, and the random variables V1 and V2 are called

comonotonic. Equivalently, if Cψ equals the lower (upper) Frechet bound, the random variable

V1 is a strictly decreasing (increasing) function of V2. Note that when P(µ2V1 = µ1V2) = 1,

which implies k1 = k2, the G coincides with the upper Frechet bound and thus both of the two

bivariate gamma distributions that were studied in the previous subsection allow, in the limit, this

probabilistic behavior.

The family of bivariate copulas that we could use to parameterize Cψ is, for instance, either the

Archimedean family or the Farlie-Gumbel-Morgenstern (FGM) family. In Appendix B, we provide
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a discussion about the functional form and dependence properties of three Archimedean copulas,

Clayton, Frank, Gumbel, and also the FGM copula. Note that the Clayton copula we describe

in Appendix B is a simple extension of the copula introduced by Clayton (1978). The three

aforementioned Archimedean copulas are quite flexible in terms of positive dependence between

V1 and V2 (and consequently, between T1 and T2) in the sense that they can be, in the limit,

equal to the upper Frechet bound (9). Regarding negative dependence, Gumbel copula does not

admit a representation such that V1 and V2 are negatively dependent. However, Clayton copula

and Frank copula permit for negative dependence, with the Frank copula to converge towards the

lower Frechet bound (9) for limiting values of the dependence parameter ψ. Note that the Clayton

copula equals the lower Frechet bound for some certain value of the parameter ψ; however, if ψ

converges towards this particular value the copula does not converge to the lower Frechet bound.

On the other hand, the FGM copula does allow for both negative and positive dependence. But,

its shortcoming is that it does not allow for strong (either positive or negative) dependence, that

is, for any values of the parameter ψ, the Frechet bounds (9) cannot be approached.

4 Pearson’s correlation coefficient

In this section we focus our attention on the Pearson’s correlation coefficient under the assumption

of λi(t, x) = αit
αi−1ϕi(x) for i = 1, 2, with αi > 0, t ∈ R+ and ϕi : X → (0,∞). Namely, the

hazard rates of the bivariate frailty model (1) are expressed as

θ1(t|x,V1) = α1t
α1−1ϕ1(x)V1,

θ2(t|x,V2) = α2t
α2−1ϕ2(x)V2.

(10)

The specification (10), which is widely known as Weibull bivariate frailty model, is a special case

of the bivariate frailty model θi(t|x,Vi) = λ̃i(t)ϕi(x)Vi, where the λ̃i is called baseline hazard and

the ϕi is known as regressor function. Identification of this type of frailty models is provided

by Elbers and Ridder (1982), Ridder and Woutersen (2003), Abbring and Ridder (2009) for the

univariate case and Honoré (1993) for the bivariate case.

11



Next, we recall that

ρ(T1, T2|x) =
Cov(T1, T2|x)

[Var(T1|x)Var(T2|x)]
1
2

, x ∈ X .

The covariance and the variance formulas are given by

Cov(T1, T2|x) = E [E(T1T2|x,V1, V2)]−
2∏
i=1

E [E(Ti|x,Vi)] (11)

and

Var(Ti|x) = E [Var(Ti|x,Vi)] + Var [E(Ti|x,Vi)] (12)

for i = 1, 2, where the outer expectations and variance in the right-hand side of the two above

equations are taken with respect to the distribution of the frailty terms. The term E [Var(Ti|x,Vi)]

captures the autonomous variation, whereas the term Var [E(Ti|x,Vi)] captures the variation due

to the presence of the frailty term. Under the specification (10), the variable Ti|x,Vi follows a

Weibull distribution with shape parameter αi and scale parameter (ϕi(x)Vi)
− 1
αi and thus E(Ti|x,Vi)

and Var(Ti|x,Vi) are proportional to V
− 1
αi

i and V
− 2
αi

i , respectively. Denote by ρ12 the Pearson’s

correlation coefficient between V
− 1
α1

1 and V
− 1
α2

2 . Assuming

E

(
V
− 1
αi

i

)
<∞, E

(
V
− 2
αi

i

)
<∞ for each αi > 0,

we write

ρ12 =

E

(
V
− 1
α1

1 V
− 1
α2

2

)
− E

(
V
− 1
α1

1

)
E

(
V
− 1
α2

2

)
2∏
i=1

[
E

(
V
− 2
αi

i

)
−
[
E

(
V
− 1
αi

i

)]2
] 1

2

. (13)

After doing some algebra we can rewrite ρ(T1, T2|x) as follows

ρ(T1, T2|x) = ρ12

2∏
i=1

δ(αi) + (δ(αi)− 1)

[
E

(
V
− 1
αi

i

)]2

E

(
V
− 2
αi

i

)
−
[
E

(
V
− 1
αi

i

)]2


− 1

2

, (14)
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with

δ(αi) =

[
Γ(1 + 1

αi
)
]2

Γ(1 + 2
αi

)
, αi > 0. (15)

The function δ is strictly decreasing function in αi, with limαi→0 δ(αi) =∞ and limαi→∞ δ(αi) = 1.

One important observation from (14) is that the value of ρ(T1, T2|x) for fixed α1 and α2 depends

on the strength of the linear relationship between the random variables V
− 1
α1

1 and V
− 1
α2

2 and not

between the random variables V1 and V2. The latter is a consequence of the nonlinearity of the

model (10).

Recall from Section 2 that if (V1, V2) is NQD (PQD) the (T1, T2)|x is NQD (PQD) for any

x ∈ X and therefore the ρ(T1, T2|x) is nonpositive (nonnegative). This works in the formula (14)

by way of the term ρ12. In particular, if (V1, V2) is NQD (PQD) the (V
− 1
α1

1 , V
− 1
α2

2 ) is NQD (PQD)

as well due the monotonic relationship between Vi and V
− 1
αi

i for each αi > 0, which in turn implies

that ρ12 is nonpositive (nonnegative).

Define for (α1, α2) ∈ (0,∞)2

bl(α1, α2) = − 1

[δ(α1)δ(α2)]
1
2 + [(δ(α1)− 1)(δ(α2)− 1)]

1
2

(16)

bu(α1, α2) =
1

[δ(α1)δ(α2)]
1
2

. (17)

As shown by Van Den Berg (1997), for Weibull baseline hazards and any arbitrary joint distribution

function of the random vector (V1, V2) the bounds for ρ(T1, T2|x) are the following

bl(α1, α2) < ρ(T1, T2|x) < bu(α1, α2) (18)

for each pair (α1, α2) ∈ (0,∞)2. The bounds are tight for certain bivariate distributions of (V1, V2)

with discrete support, that is, they are approached arbitrarily closely. Given that δ(αi) is strictly

decreasing in αi, it is obvious from the above result that the range of possible values of ρ(T1, T2|x)

is increasing in αi and thus the extreme values −1 and 1 are possible to be attained for αi →∞.

This result can be explained as follows. To obtain maximum correlation it is required that first type

of variation E [Var(Ti|x,Vi)] be minimal relative to the second type of variation Var [E(Ti|x,Vi)]
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for each = 1, 2, and the correlation between V
− 1
α1

1 and V
− 1
α2

2 be maximal. For αi → ∞ the first

type of variation decreases and is dominated by the second type and thus it is possible to attain

any value in the interval (−1, 1). Reverse statement will hold for αi → 0.

Given that Vi ∼ Gamma(ki, µi), it can be easily shown that

E

(
V
− 1
αi

i

)
=

Γ
(
ki − 1

αi

)
Γ(ki)

µ
− 1
αi

i , E

(
V
− 2
αi

i

)
=

Γ
(
ki − 2

αi

)
Γ(ki)

µ
− 2
αi

i (19)

and therefore, the restriction ki >
2
αi

is imposed so that the the first two moments of V
− 1
αi

i are

defined for i = 1, 2. Then we can express ρ(T1, T2|x) as follows

ρ(T1, T2|x) = ρ12

2∏
i=1

δ(αi) + (δ(αi)− 1)
Γ2
(
ki − 1

αi

)
Γ
(
ki − 2

αi

)
Γ (ki)− Γ2

(
ki − 1

αi

)
−

1
2

. (20)

In the next two subsections we shall investigate how the assumption of gamma distributed

frailties affect the behavior of ρ(T1, T2|x). In particular, our interest is in studying whether the

lower and upper bound of (18) can be arbitrarily approached in case the distribution of (V1, V2)

has gamma marginals.

4.1 Lower bound for the Pearson’s correlation coefficient

We first fix our attention on the lower bound for the linear correlation coefficient. The next

proposition establishes a nonsharp (i.e., not necessarily attained) lower bound for the ρ(T1, T2|x).

Proposition 2 Suppose T1 and T2 are the duration variables that are generated by the bivariate

frailty model (10), with (α1, α2) ∈ (0,∞)2, V1 ∼ Gamma(k1, µ1) and V2 ∼ Gamma(k2, µ2). Then,

the following inequality holds

ρ(T1, T2|x) ≥ bgl(α1, α2), x ∈ X ,

with
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bgl(α1, α2) = min
k1>

2
α1

k2>
2
α2

 2∏
i=1

Γ (ki)

Γ
(
ki + 1

αi

) − 2∏
i=1

Γ
(
ki − 1

αi

)
Γ(ki)

 2∏
i=1

Γ
(
ki − 2

αi

)
Γ(ki)

−
Γ2
(
ki − 1

αi

)
Γ2(ki)

−
1
2

×
2∏
i=1

δ(αi) + (δ(αi)− 1)
Γ2
(
ki − 1

αi

)
Γ
(
ki − 2

αi

)
Γ (ki)− Γ2

(
ki − 1

αi

)
−

1
2

.

The next table lists the bounds bl(α1, α2) and bgl(α1, α2) for different values of α1, α2. To

make the comparison between bl(α1, α2) and bgl(α1, α2) more transparent, all numbers have been

rounded off to three decimal digits.

(α1, α2) bl(α1, α2) bgl(α1, α2)

(0.5, 1) −0.175 −0.125

(0.5, 2) −0.254 −0.233

(1, 1) −0.333 −0.220

(1, 2) −0.472 −0.366

(1, 3) −0.535 −0.520

(1.5, 2) −0.582 −0.397

(2, 2) −0.647 −0.451

(2, 3) −0.719 −0.580

(4, 4) −0.860 −0.590

(5, 5) −0.860 −0.599

Table 1: bl(α1, α2) and bgl(α1, α2) values.

In view of the results of Table 1, we can claim that the bound bgl(α1, α2) is generally closer to zero

than the bound bl(α1, α2). These results reveal a limitation of the the bivariate Weibull gamma

frailty model to fit data with relatively large negative dependence between the duration variables.

Note that the bound bgl(α1, α2) is not expected to be tight as three successive inequalities were
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employed to derive it. Namely, there could be values of α1, α2 such that bl(α1, α2) > bgl(α1, α2);

however, this is clearly due to the use of the three inequalities as the bl(α1, α2) covers all the

bivariate distributions with support on R2
+ and trivially all the bivariate distributions with gamma

marginals.

To improve the lower bound for the exponential case (i.e., α1 = α2 = 1) we carry out Monte

Carlo simulation. For the exponential model we have ρ(T1, T2|x) = ρ12

(√
k1k2

)−1
. For given

marginals G1 and G2, the ρ12 will be minimized if and only if the distribution of (V −1
1 , V −1

2 )

is equal to the lower Frechet bound. However, due to the fact that V −1
i is strictly decreasing

transformation of Vi, the ρ12 will be minimized for fixed G1 and G2 if and only if G(v1, v2) =

max{G1(v1) + G2(v2) − 1, 0} for each (v1, v2) ∈ R2
+. In case G is parameterized by the Frank

copula, the lower Frechet bound can be approached very well for limiting values of the dependence

parameter. To derive an estimation of the minimum value of ρ12 for fixed k1 and k2, we draw

gamma random variables V1 and V2 by using the relationship G1(V1) +G2(V2)− 1 = 0.

For the study of the values of ρ12 and ρ(T1, T2|x) we present two figures. The first figure shows

values of ρ12 as a function of k1 and k2. Note that we have reversed the axes with the values of k1

and k2 so that we have a more clear picture.
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Figure 1: Plot of ρ12 as a function of k1 and k2, if α1= α2 = 1.

16



The second figure displays the values of ρ(T1, T2|x) as a function of k1 and k2.
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Figure 2: Plot of ρ(T1, T2|x) as a function of k1 and k2, if α1= α2 = 1.

The estimated value of the lower bound is about −0.14, which is clearly much closer to zero

than the tight bound −1
3
. From the two above graphs we can easily notice the two opposite effects

of the value of the shape parameters on the values of ρ12 and ρ(T1, T2|x). More precisely, the ρ12

approaches arbitrarily closely the value −1 for large values of k1 and k2. However, large values

of the shape parameters weaken the linear relationship between the duration variables as the

variation of the random variable Ti|x due to the presence of the frailty is negligible with respect

to the autonomous variation. To see this, consider for simplicity the case k1 = k2 = k. Then,

we obtain E [Var(Ti|x,Vi)] = ((k − 1)k)−1 = O(k−2) and Var [E(Ti|x,Vi)] = ((k − 1)2(k − 2)) =

O(k−3) = o(k−2) for k →∞ and i = 1, 2.

Next, we consider three other possible families of distributions for G with marginals different

from gamma. In particular, Mardia (1970) shows that if the random vector (V −1
1 ,V −1

2 ) follows the

Filon-Isserk bivariate Beta distribution, the ρ(T1, T2|x) can attain any values in the interval (−1
3
, 0].

Moreover, Van Den Berg (1997) shows that if (Vi)
−1 =

k∑
j=1

U2
ij for i = 1, 2 and some finite positive

integer k, where the vector (U1j, U2j) follows a bivariate normal distribution, the lower bound

of ρ(T1, T2|x) is about −0.23. Finally, Van Den Berg (1997) shows that if Vi = exp (ηi0 + ηi1N ),
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where ηi0 ∈ R and ηi1 ∈ R\{0} for i = 1, 2 and N is a normally distributed random variable,

the lower bound of ρ(T1, T2|x) is about −0.17. In view of these results and using as criterion the

bounds for the Pearson’s correlation coefficient, the assumption that the distribution of (V1, V2) is

characterized by gamma marginals seems quite restrictive for attaining large negative values.

4.2 Upper bound for the Pearson’s correlation coefficient

We now concentrate on the bivariate frailty model that has the property P(µ2V1 = µ1V2) = 1,

which in turn implies G(v1, v2) = min{G1(v1), G2(v2)} for all (v1, v2) ∈ R2
+ and k1 = k2 = k. Under

the assumption of identical Weibull baseline hazards, that is, α1 = α2 = α, we have ρ12 → 1 for

any k > 2
α

. Also, for k → 2
α

and given that limk→ 2
α

Γ2
(
k − 2

α

)
→∞, we get by (20)

ρ(T1, T2|x)→
[
Γ(1 + 1

α
)
]2

Γ(1 + 2
α

)
= bu(α, α).

Therefore, if α1 = α2 = α the upper bound of (18) can be arbitrarily approached in case G is

equal either to one of the two bivariate gamma distributions of Section 3.1 or to one of the three

Archimedean copulas described in detail in Appendix B.

Next, we turn our attention to the case α1 6= α2 and Vi ∼ Gamma(k, µi) for i = 1, 2, that

is, k1 = k2 = k. Although imposing the assumption that both marginals have the same shape

parameter may seem restrictive, it is rather general. In particular, it includes as special cases the

bivariate frailty model in which P(µ2V1 = µ1V2) = 1 that we described above for α1 = α2 and also

the bivariate frailty model for which the (V1, V2) is distributed according to the Kibble and Moran

bivariate gamma distribution. The next proposition analytically establishes a nonsharp bound for

this case that is strictly smaller than the nonparametric upper bound (18).

Proposition 3 Let T1 and T2 be the duration variables that are generated by the bivariate frailty

model (10), with α1 > α2 > 0, V1 ∼ Gamma(k, µ1) and V2 ∼ Gamma(k, µ2). Then, the following

inequality holds

ρ(T1, T2|x) < bgu(α1, α2), x ∈ X ,

with
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bgu(α1, α2) =
1

[δ(α2)]
1
2

δ(α1) + (δ(α1)− 1)
Γ2
(

2α1−α2

α1α2

)
Γ
(

2(α1−α2)
α1α2

)
Γ
(

2
α2

)
− Γ2

(
2α1−α2

α1α2

)
−

1
2

< bu(α1, α2).

The next table reports the bounds bu(α1, α2) and bgu(α1, α2) for different values of α1, α2, with

α1 > α2. Like in the case with the lower bound, we have rounded all the numbers off to three

decimal points.

(α1, α2) bu(α1, α2) bgu(α1, α2)

(0.5, 0.25) 0.049 0.037

(0.75, 0.25) 0.071 0.041

(1, 0.5) 0.289 0.204

(2, 0.5) 0.362 0.194

(2, 1) 0.627 0.469

(5, 1) 0.689 0.423

(5, 2) 0.864 0.704

(10, 2) 0.880 0.669

(10, 5) 0.968 0.921

(20, 10) 0.999 0.976

Table 2: bu(α1, α2) and bgu(α1, α2) values.

The reason that bgu(α1, α2) < bu(α1, α2) is that the shape parameter k is bounded from below by

the maximum between the values of the ratios 2
α1

and 2
α2

so that the the first two moments of

V
− 1
αi

i for i = 1, 2 are defined. Moreover, the bound of Proposition 3 is not attained as the gamma

distribution is not closed under power transformation. In particular, if V1 ∼ Gamma(k, µ1) the

random variable V
α2
α1

1 , for any fixed positive α1, α2 with α1 6= α2, does not follow a gamma distri-

bution and this implies that we cannot have ρ12 = 1 such that V1 and V2 are gamma distributed.

Hence, even if P(µ2V1 = µ1V2) = 1 we will always have ρ12 < 1 for any fixed values of α1, α2, with

α1 6= α2.
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5 Kendall’s tau

We proceed now with the derivation of bounds for the range of values of the Kendall’s tau as the

results of Van Den Berg (1997) do not directly carry over to the bivariate gamma frailty model.

As explained in Section 2, for two independent copies (TA1 , T
A
2 )|x and (TB1 , T

B
2 )|x of the bivariate

random vector (T1, T2)|x we have

τ(T1, T2|x) = 2P
[
(TA1 − TB1 )(TA2 − TB2 ) > 0|x

]
− 1, x ∈ X . (21)

In contrast to the Pearson’s coefficient case, we will not assume anything about the range of

values of the shape parameters. Also, we will not impose any condition on the functional form

of λi except for the limiting result limt→∞
∫ t

0
λi(ω, x)dω = ∞ (i = 1, 2). We will make use of the

equality

lnVi = − ln Λi(Ti, x) + εi, i = 1, 2, (22)

with ε1, ε2 to be independent random variables that have probability density function fi(ε) =

eε exp (−eε) . The above equation is an equivalent representation of (1). Also, recall that Si(t|x) =

LGi (Λi(t, x)) for (t, x) ∈ R+ × X . Provided that Vi ∼ Gamma(ki, µi), it follows Si(t|x) = (1 +

µiΛi(t, x))−ki . Therefore, the stochastic duration Ti can be expressed in structural form as follows

Ti = Λ−1
i

(
1

µi
U
− 1
ki

i − 1

µi
, x

)
, Ui ∼ Uniform(0, 1), i = 1, 2. (23)

We first focus on the lower bound of the values of τ(T1, T2|x). We assume G(v1, v2) =

max{G1(v1) + G2(v2) − 1, 0} for each (v1, v2) ∈ R2
+. This implies G1(V1) + G2(V2) − 1 = 0

with probability one. Hence, V2 is a strictly decreasing transformation of V1 and we can write, by

(22),

ln Λ2(T2, x) = H(T1, ε1, ε2, x), (24)

whereH(., ε1, ε2, x) is strictly decreasing function, limt→∞H(t, ε1, ε2, x) = h(t, x) for all (ε1, ε2, x) ∈

R2×X , and h(., x) is strictly decreasing function. By using the rank-invariant property of Kendall’s

tau and combining (21) and (24) we have
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τ(T1, T2|x) = 2P
[
(TA1 − TB1 )(H(TA1 , ε

A
1 , ε

A
2 , x)−H(TB1 , ε

B
1 , ε

B
2 , x)) > 0

]
− 1. (25)

Clearly, the τ(T1, T2|x) can be also written as follows

τ(T1, T2|x) = 2P
[{

(TA1 − TB1 ) > 0
}
∩
{
H(TA1 , ε

A
1 , ε

A
2 , x)−H(TB1 , ε

B
1 , ε

B
2 , x) > 0

}]
+

2P
[{

(TA1 − TB1 ) < 0
}
∩
{
H(TA1 , ε

A
1 , ε

A
2 , x)−H(TB1 , ε

B
1 , ε

B
2 , x) < 0

}]
− 1. (26)

For k1 → 0 and µ1 = O(k−1
1 ) we have TA1 → ∞ and TB1 → ∞ which yield {H(TA1 , ε

A
1 , ε

A
2 , x) −

H(TB1 , ε
B
1 , ε

B
2 , x) > 0} → {h(TA1 , x) − h(TB1 , x) > 0} = {TA1 − TB1 < 0} and {H(TA1 , ε

A
1 , ε

A
2 , x) −

H(TB1 , ε
B
1 , ε

B
2 , x) < 0} → {h(TA1 , x) − h(TB1 , x) < 0} = {TA1 − TB1 > 0}. By making use of these

limiting statements, it is obvious, by using (26), that τ(T1, T2|x)→ −1.

To derive the conditions needed to be satisfied for the upper bound of the τ(T1, T2|x) values,

we require that G be equal to the upper Frechet bound, namely, G(v1, v2) = min{G1(v1), G2(v2)}

for each (v1, v2) ∈ R2
+. Under this scenario, G1(V1) = G2(V2) with probability one. Thus, V2 is a

strictly increasing transformation of V1 and therefore we can write, by (22),

ln Λ2(T2, x) = Y(T1, ε1, ε2, x), (27)

where Y(., ε1, ε2, x) is a strictly increasing function and limt→∞ Y(t, ε1, ε2, x) = y(t, x) for all

(ε1, ε2, x) ∈ R2 × X , and y(., x) is some strictly increasing function. Performing identical cal-

culations to the ones of the previous paragraph we obtain

τ(T1, T2|x) = 2P
[{

(TA1 − TB1 ) > 0
}
∩
{
Y(TA1 , ε

A
1 , ε

A
2 , x)− Y(TB1 , ε

B
1 , ε

B
2 , x) > 0

}]
+

2P
[{

(TA1 − TB1 ) < 0
}
∩
{
Y(TA1 , ε

A
1 , ε

A
2 , x)− Y(TB1 , ε

B
1 , ε

B
2 , x) < 0

}]
− 1. (28)

For k1 → 0 and µ1 = O(k−1
1 ) we obtain TA1 →∞ and TB1 →∞ which in turn gives {Y(TA1 , ε

A
1 , ε

A
2 , x)−

Y(TB1 , ε
B
1 , ε

B
2 , x) > 0} → {y(TA1 , x) − y(TB1 , x) > 0} = {TA1 − TB1 > 0} and {Y(TA1 , ε

A
1 , ε

A
2 , x) −

Y(TB1 , ε
B
1 , ε

B
2 , x) < 0} → {y(TA1 , x) − y(TB1 , x) < 0} = {TA1 − TB1 < 0}. Given the equality

P
[
(TA1 − TB1 ) > 0|x

]
= P

[
(TA1 − TB1 ) < 0|x

]
= 1

2
for all x ∈ X and making use of (28), the
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limiting result τ(T1, T2|x)→ 1 is obtained.

We summarize the above discussion to the next proposition.

Proposition 4 Suppose T1 and T2 are the duration variables that are generated by the bivariate

frailty model (1), with V1 ∼ Gamma(k1, µ1) and V2 ∼ Gamma(k2, µ2). Then, the following double

inequality holds

−1 < τ(T1, T2|x) < 1, x ∈ X .

The extreme bounds −1 and 1 are tight in the sense that they can be approached arbitrarily closely.

More precisely, if G(v1, v2) = max{G1(v1) +G2(v2)− 1, 0} for each (v1, v2) ∈ R2
+ and k1 → 0 with

µ1 = O(k−1
1 ), or k2 → 0 with µ2 = O(k−1

2 ), we obtain τ(T1, T2|x) → −1. On the other hand, if

G(v1, v2) = min{G1(v1), G2(v2)} for each (v1, v2) ∈ R2
+ and k1 → 0 with µ1 = O(k−1

1 ), or k2 → 0

with µ2 = O(k−1
2 ), then τ(T1, T2|x)→ 1.

Therefore, by assuming gamma marginals for the distribution of (V1, V2) a necessary condition

for approaching the lower bound of τ(T1, T2|x) is the distribution of (V1, V2) to be equal to the Frank

copula. On the other hand, the upper bound of τ(T1, T2|x) can be approached arbitrarily closely

if the bivariate distribution is modelled by the two bivariate gamma distributions of Section 3.1 or

one of the three Archimedean copulas presented in Appendix B. Note that if P(µ2V1 = µ1V2) = 1,

which clearly gives G(v1, v2) = min{G1(v1), G2(v2)} for each (v1, v2) ∈ R2
+, we will have k1 = k2 →

0.

By applying results of Embrechts et al. (2002), we have τ(T1, T2|x) → −1 if and only if

S(t1, t2|x)→ max{S1(t1|x)+S2(t2|x)−1, 0} for all (t1, t2, x) ∈ R2
+×X , or equivalently, S1(T1|x)+

S2(T2|x)−1 = 0 for all x ∈ X with probability approaching one. On the other hand, τ(T1, T2|x)→

1 if and only if S(t1, t2|x) → min{S1(t1|x), S2(t2|x)} for all (t1, t2, x) ∈ R2
+ × X , or equivalently,

S1(T1|x) = S2(T2|x) for all x ∈ X with probability approaching one. Hence, in view of Proposition

1, the condition in Proposition 4 that G is equal to the lower (upper) Frechet bound is indispens-

able. We should also point out here that S(t1, t2|x) can be written in a copula form as function

only of S1(t1|x) and S2(t2|x) and not of x because

S(t1, t2|x) = LG
(
L−1
G1

(S1(t1|x)),L−1
G2

(S2(t2|x))
)
, (t1, t2, x) ∈ R2

+ ×X ,
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where L−1 denotes the inverse of the LT of the corresponding probability measure.

6 Conclusions

We examine the dependence structure in bivariate frailty models in which the duration variables

are dependent by way of the frailty terms. We first show that if the distribution of the frailty

terms is negative (positive) quadrant dependent, then the conditional, on observed characteristics,

joint survival function of the duration outcomes is negative (positive) quadrant dependent as well.

To quantify the level of dependence between the duration variables, we consider the Pearson’s

correlation coefficient and the Kendall’s tau. We provide bounds for the range of values of these

measures under the assumption of gamma distributed frailty terms. To model the dependence

structure between the frailty terms, we can use either standard bivariate gamma distributions or

copulas with gamma marginals. The former induce only positive dependence between the duration

variables, whereas the latter can induce positive and/or negative dependence. Strong negative

(positive) dependence between the duration outcomes can be generated by bivariate distributions

of the frailty terms which can be, in the limit, equal to the lower (upper) Frechet bound.

We calculate bounds for the values of the Pearson’s correlation coefficient, if the baseline

hazards have Weibull specification. Regarding the negative values, we analytically provide a

nonsharp lower bound. We improve the lower bound for the exponential case by means of Monte

Carlo simulation. The resulting lower bound is closer to zero than its nonparametric analogue

which is derived by Van Den Berg (1997). For positive values of the Pearson’s coefficient we show

that the upper bound of Van Den Berg (1997) can be approached arbitrarily closely in case the

Weibull specifications are identical. Moreover, we provide an upper bound for different Weibull

specifications which is strictly smaller than the nonparametric bound. The resulting bound cannot

be attained due to the fact that the gamma distribution is not closed under power transformation.

In contrast to the Pearson’s correlation coefficient, Kendall’s tau can take any value in the

interval (−1, 1) regardless of the functional form specification about the hazard rates. If the

bivariate distribution of the frailty terms approaches the lower (upper) Frechet bound and the

first moment of the frailty term(s) is finite, then the lower (upper) bound can be approached
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arbitrarily closely. In particular, we should impose the condition that one of the two shape

parameters converges towards zero.

Fruitful topic for future research is the bounds for the two association measures in bivariate

duration models where the two duration variables are parallel and the realization of one of these

two variables affects the hazard rate of the other. Moreover, promising topic for investigation is

the range of values for local measures of dependence such as the cross-ratio function ?. Finally, it

is of practical relevance to consider the concepts of lower tail and upper tail dependence between

the duration variables. In particular, if the data display dependence between extreme values of

the duration variables, we should know which bivariate distributions for the frailty terms allow

such dependence pattern.

Appendix A

This appendix presents the mathematical proofs for the first three propositions in the main text.

Proof of Proposition 1. By definition

Sj(t1, t2|x)=

∫
R2

+

S(t1, t2|x,v1, v2)dGj(v1, v2), j = a, b, (A-1)

where S(t1, t2|x,v1, v2) = exp (−Λ1(t1, x)v1 − Λ2(t2, x)v2) for (t1, t2, x, v1, v2) ∈ R2
+ × X × R2

+.

The integrand is a continuous bounded function in (v1, v2) for any (t1, t2, x) ∈ R2
+ × X . More-

over, it holds ϑ2

ϑv1ϑv2
S(t1, t2|x,v1, v2) > 0 for each (t1, t2, x, v1, v2) ∈ R2

+ × X × (0,∞)2 (i.e., the

S(t1, t2|x,v1, v2) is 2−positive function in v1, v2). Given that Ga ≺C Gb, we obtain the inequality

Sa(t1, t2|x)≤Sb(t1, t2|x) for all (t1, t2, x) ∈ R2
+ × X by Theorem 2 of Tchen (1980). Recall also

that

Si(t|x) =

∫
R+

exp (−Λi(t, x)v) dGi(v), i = 1, 2. (A-2)

Provided that Ga and Gb are characterized by the fixed marginals G1 and G2, it follows that the

bivariate survival functions Sa and Sb are characterized by the same marginals, S1 and S2. This

in turn implies that Sa ≺C Sb for each x ∈ X .
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Define for each ε > 0 the digamma function

ψ(ε) =
Γ
′
(ε)

Γ (ε)
(A-3)

and the polygamma function

ψ(n)(ε) =
dnψ(ε)

dεn
, n ∈ N, (A-4)

with ψ(0)(.) = ψ(.). Moreover, it holds

ψ(n)(ε) = (−1)n+1

∫
R+

tn

1− e−t
e−εtdt, ε > 0. (A-5)

We state Lemma 1 which is needed for the proof of Proposition 2 and 3. Its simple proof, which

makes use of (A-4) and (A-5), is omitted.

Lemma 1 Let (ε1, ε2, ε3) ∈ (0,∞)3. Then,

Γ (ε1) Γ (ε1 + ε2 + ε3)− Γ (ε1 + ε2) Γ (ε1 + ε3) > 0.

Proof of Proposition 2. Recall that

ρ(T1, T2|x) = ρ12

2∏
i=1

δ(αi) + (δ(αi)− 1)
Γ2
(
ki − 1

αi

)
Γ
(
ki − 2

αi

)
Γ (ki)− Γ2

(
ki − 1

αi

)
−

1
2

(A-6)

for x ∈ X , where

ρ12 =

E

(
V
− 1
α1

1 V
− 1
α2

2

)
− E

(
V
− 1
α1

1

)
E

(
V
− 1
α2

2

)
2∏
i=1

[
E

(
V
− 2
αi

i

)
−
[
E

(
V
− 1
αi

i

)]2
] 1

2

. (A-7)

Note that by Lemma 1 we get Γ
(
ki − 2

αi

)
Γ (ki)−Γ2

(
ki − 1

αi

)
> 0 for ε1 = ki− 2

αi
and ε2 = ε3 =

1
αi
, with ki >

2
αi

. Given also that δ(αi) > 1 for each αi > 0, our problem reduces to bound from

below, for fixed marginals G1, G2, the numerator of (A-7).

Denote by El the expectation with respect to the probability measure max{G1(v1) +G2(v2)−
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1, 0}. By using the formula for the covariance and employing Hoeffding’s identity we get

E

(
V
− 1
α1

1 V
− 1
α2

2

)
≥ El

(
V
− 1
α1

1 V
− 1
α2

2

)
. (A-8)

The mapping ω 7→ (ω)−1 is strictly convex and thus Jensen’s inequality entails

El

(
V
− 1
α1

1 V
− 1
α2

2

)
≥
[
El

(
V

1
α1

1 V
1
α2

2

)]−1

, (A-9)

which together with (A-8) implies

E

(
V
− 1
α1

1 V
− 1
α2

2

)
≥
[
El

(
V

1
α1

1 V
1
α2

2

)]−1

(A-10)

For G = max{G1(v1) + G2(v2) − 1, 0}, the random vector (V1, V2) is NQD, which in turn gives

that the (V
1
α1

1 , V
1
α2

2 ) is NQD as well due to the fact that V
1
αi
i is strictly increasing transformation

of Vi for i = 1, 2. Using again the formula of the covariance and Hoeffding’s identity we get

El

(
V

1
α1

1 V
1
α2

2

)
≤ E

(
V

1
α1

1

)
E

(
V

1
α2

2

)
. (A-11)

Therefore, combining (A-10) and (A-11) we deduce

E

(
V
− 1
α1

1 V
− 1
α2

2

)
≥
[
E

(
V

1
α1

1

)
E

(
V

1
α2

2

)]−1

. (A-12)

For m < ki, the m−th moment of Vi and V −1
i is given by

E (V m
i ) =

Γ (ki +m)

Γ (ki)
µmi , E

(
V −mi

)
=

Γ (ki −m)

Γ(ki)
µ−mi . (A-13)

Hence, use of the formulas (A-6), (A-7), (A-12) and (A-13) for m = 1
ai

and m = 2
ai

and some

algebra yields the thesis of the proposition.

Proof of Proposition 3. For i = 1, 2 the ratio within the brackets in the formula of ρ(T1, T2|x),

see (A-6), can be rewritten as 1
F(yi(k),α−1

i )−1
for yi(k) = k − 2

αi
, where F(ε1, ε2) = Γ(ε1)Γ(ε1+2ε2)

Γ2(ε1+ε2)
,

ε1 > 0, ε2 > 0. We first show that F(ε1, ε2) is strictly decreasing in ε1 for each ε2 ∈ (0,∞), which
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in turn will imply that F(yi(k), α−1
i ) is strictly decreasing in k for any positive αi. Taking the

logarithm of F(ε1, ε2) and then differentiating with respect to ε1 we obtain

ϑ logF(ε1, ε2)

ϑε1

= ψ(ε1) + ψ(ε1 + 2ε2)− 2ψ(ε1 + ε2), (A-14)

Differentiating ϑ logF(ε1,ε2)
ϑε1

with respect to ε2 it follows

ϑ

ϑε2

[
ϑ logF(ε1, ε2)

ϑε1

]
= 2ψ

(1)

(ε1 + 2ε2)− 2ψ
(1)

(ε1 + ε2). (A-15)

Clearly, ψ(2)(ε) ≤ 0 for ε > 0, which in turn implies ϑ
ϑε2

[
ϑ logF(ε1,ε2)

ϑε1

]
≤ 0 for all (ε1, ε2) ∈ (0,∞)2

by using the (A-5). Hence, given that ϑ logF(ε1,0)
ϑε1

= 0 it follows ϑ logF(ε1,ε2)
ϑε1

≤ 0 for all (ε1, ε2) ∈

(0,∞)2. Therefore, given that ρ(T1, T2|x) is strictly decreasing in F(yi(k), α−1
i ) for ρ12 > 0, it

follows that it is strictly decreasing in k for every positive αi, and consequently, for ρ12 = 1,

k → max{ 2
α1
, 2
α2
} = 2

α2
, and by continuity of Γ(.) the bound is obtained. By Lemma 1, we have

logF(ε1, ε2) > 0 for all ε1 > 0, ε2 > 0 and thus Γ
(

2(α1−α2)
α1α2

)
Γ
(

2
α2

)
− Γ2

(
2α1−α2

α1α2

)
> 0 for all

α1, α2 > 0,with α1 > α2. Using also the property δ(α1) > 1 for each α1 > 0, the inequality

bgu(α1, α2) < bu(α1, α2) is shown.

Appendix B

In this appendix we provide a brief discussion about the Archimedean family, the FGM family

of copulas, and their corresponding properties. The Archimedean family is constructed according

to Cψ(ω1, ω2) = ξ
[−1]
ψ (ξψ(ω1) + ξψ(ω2)) with ξψ : [0, 1] → [0,∞), ξ

′

ψ(ω) < 0, ξ
′′

ψ(ω) > 0 for each

ω ∈ (0, 1) and ξψ(1) = 0. The function ξ
[−1]
ψ (ω) is called pseudo-inverse and is equal to ξ−1

ψ (ω) if

ω < ξψ(0) and 0 elsewhere. In case ξ−1
ψ (ω) = ξ

[−1]
ψ (ω) for every ω ∈ [0,∞), both the copula and

the respective generator are called strict. The case of ξψ(ω) = − lnω corresponds to independence

between the underlying random variables. Nelsen (2006) describes this important class of copulas.

We first describe the three most popular copulas which belong to the Archimedean family.
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Clayton Copula: For ξψ(ω) = 1
ψ

(ω−ψ − 1) we obtain the Clayton copula which is given by

Cψ(ω1, ω2) = max
{(
ω−ψ1 + ω−ψ2 − 1

)
, 0
}− 1

ψ
, ψ ∈ [−1,∞)\0. (B-1)

If ψ ∈ [−1, 0) the Cψ is NQD and for every ψ ∈ (0,∞) the Cψ is PQD. Additionally, C−1(ω1, ω2)

= max{ω1 + ω2 − 1, 0}, limψ→∞Cψ(ω1, ω2) = min{ω1, ω2} and limψ→0Cψ(ω1, ω2) = ω1ω2 for every

(ω1, ω2) ∈ [0, 1]2. Note that limψ→−1Cψ(ω1, ω2) 6= max{ω1 + ω2 − 1, 0}, which implies that Cψ is

not right-continuous at −1.

Frank Copula: If we apply ξψ(ω) = − ln e−ψω−1
e−ψ−1

as generator, we get the Frank copula

Cψ(ω1, ω2) = − 1

ψ
ln

[
1 +

(e−ψω1 − 1)(e−ψω2 − 1)

e−ψ − 1

]
, ψ ∈ (−∞,∞)\0. (B-2)

For any ψ ∈ (−∞, 0) the Cψ is NQD and for every ψ ∈ (0,∞) the Cψ is PQD. Additionally,

limψ→−∞Cψ(ω1, ω2) = max{ω1+ω2−1, 0}, limψ→∞Cψ(ω1, ω2) = min{ω1, ω2} and limψ→0Cψ(ω1, ω2)

= ω1ω2 for all (ω1, ω2) ∈ [0, 1]2.

Gumbel Copula: For ξψ(ω) = (− lnω)ψ we get the Gumbel copula which is expressed as

Cψ(ω1, ω2) = exp
[
−
(
(− lnω1)ψ + (− lnω2)ψ

) 1
ψ

]
, ψ ∈ [1,∞). (B-3)

The Cψ(ω1, ω2) is PQD for any ψ ∈ (1,∞). Moreover, limψ→∞Cψ(ω1, ω2) = min{ω1, ω2}, C1(ω1, ω2) =

ω1ω2 for any (ω1, ω2) ∈ [0, 1]2.

Finally, another copula that we could employ for parameterizing G is the Farlie-Gumbel-

Morgenstern (FGM) copula.

Farlie-Gumbel-Morgenstern Copula: This family of distributions is expressed as

Cψ(ω1, ω2) = ω1ω2 + ψω1ω2(1− ω1)(1− ω2), ψ ∈ [−1, 1]. (B-4)

If ψ ∈ [−1, 0) the Cψ is NQD, if ψ ∈ (0, 1] the Cψ is PQD, and C0(ω1, ω2) = ω1ω2 for any

(ω1, ω2) ∈ [0, 1]2.
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A Causal Trivariate Hazard Model:

Investigating the Sales-Price Crash of New Products

1 Introduction

The first iPhone was introduced on September 2007 at a price of $599. However, just 66 days after

its launch, Apple decided to drop the iPhone’s price by $200 and set its new price to $399. It was

hypothesized that Apple’s price cut was a response to sluggish sales (BusinessWeek Online, 2007;

Wired Magazine, 2007). How likely are firms to cut new product prices after experiencing a sales

slowdown? Are such dramatic price reductions effective for halting sales slowdowns?

In this paper we propose a novel triple hazard model that is suitable for studying the en-

dogenous relationship between three events, and simultaneously, for identifying the causal effects

among them. That is, our model is useful for identifying how the hazard rate of one event is

affected causally by the occurrence of preceding events. Current developments of hazard models

incorporate association (correlation) among the timing of multiple events. For example, Chinta-

gunta and Haldar (1998) propose a copula approach (Danaher and Smith, 2011) to model the joint

density of the purchase timing of two related product categories. More recently, Park and Fader

(2004) develop a duration model that allows for observed and unobserved association across the

timing of visits to multiple websites. Finally, Schweidel et al. (2008) propose a bivariate duration

model that allows correlation between consumers’ acquisition and retention times. Investigating

dependence across multiple events is academically and managerially important (Chintagunta and

Dong, 2006) because very often marketers need to analyze multiple dependent duration variables.

Moreover, marketers have the need to evaluate the effectiveness of their marketing mix and to
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uncover whether marketing actions causally lead to expected outcomes such as higher revenues,

lower consumer churn (Braun and Schweidel, 2011), or lower inter-purchase timing (Chintagunta,

1998). In this respect, econometric models with “treatment effects” (or “causal effects”) come in

handy because they are useful for identifying causal relationships among variables or events and

they have been applied, for example, for evaluating policy interventions like new regulations, job

assistance programs, or new medical treatments. Specifically in the context of duration analysis,

models with causal effects have been used in health and labor studies. For example, Van Ours

(2003) and Van Ours and Williams (2009) test whether the timing of the first use of cannabis is

a gateway to the later use of harder drugs or to school drop-out. Abbring et al. (2005) analyze

whether the timing of unemployment sanctions and unemployment are causally linked. Heckman

and Borjas (1980) test whether current unemployment causes future unemployment. Finally

Van den Berg and Drepper (2011) studies the causal interdependence between the survival rate of

twins.

We develop a new hazard model that incorporates both causal effects and three dependent

duration variables and we apply our method for studying the sales crash, the price crash, and the

sales recovery of new products. Two central research questions in our case study are whether price

crashes are an effective tool for deferring or halting a sales crash, and whether a sales crash has

a clear effect on the timing of price crashes. In addition, we also model the timing of a modest

sales recovery that usually follows the price crash and we test whether price is causally linked to

the recovery.

Previous marketing literature has addressed the relationship between prices and the timing

of turning point in sales of new products. For example, Golder and Tellis (1997) find that a 1%

decrease in the price of a new product is associated with a 4.5% increase in the probability of its

takeoff while Golder and Tellis (2004) find that a 1% decrease in price is associated with a 5%

decrease in the probability of a slowdown in the sales of a new product. The main limitation of

previous studies lays in their assumption that price is an exogenous factor affecting the timing

of turning point in sales. We address this limitation by allowing both statistical correlation and

causality between the timing of important turning points in the sales and prices of new products.

We also contribute to the marketing literature by documenting the heterogeneity of the sales
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and price crashes. Previous studies have documented extensively the heterogeneity in diffusion pat-

terns across countries and product categories (Talukdar et al., 2001; Tellis et al., 2003; Van Everdin-

gen et al., 2009) and the plausible determinants of inflection points in sales, like the sales takeoff

(Chandrasekaran and Tellis, 2008; Tellis et al., 2003; Agarwal and Bayus, 2002; Golder and Tellis,

1997) or the sales saddle (Chandrasekaran and Tellis, 2011). However, crash points have not been

documented before and they are a critical moment in the diffusion of new products that needs

further exploration. For instance, Peres et al. (2010), Hauser et al. (2006), and Golder and Tellis

(1997) call for further research regarding the heterogeneity and determinants of slowdowns in the

sales of new products.

Slowdowns, or saddle points, are crucial because revenues may be reduced dramatically at

these inflection points and managers need to plan or modify their marketing strategies accordingly

(Chandrasekaran and Tellis, 2011; Van Everdingen et al., 2009; Van den Bulte, 2000; Goldenberg

et al., 2002; Vakratsas and Kolsarici, 2008). Moreover, sales slowdowns are of utmost importance

for deciding upon the pricing policy of fast moving consumer goods and high-tech products, both

typically having very short life cycles after launch. That is, our empirical application is of great

relevance for marketing managers in the high-tech, fast-fashion, and information good industries.

The plan of the paper is as follows. In Section 2 we describe our data and the phenomena that

we study. In Section 3 we present our model, its parametrization, and the intuition behind its

identification. In Section 4 we present estimation results. Finally, in Section 5 we summarize our

findings and discuss managerial implications and further research topics. The model identification

results, its likelihood, and estimation method are introduced in the Appendices A, B, and C.

2 Defining the Big Crash

One of the most popular video-game titles in our dataset is the video-game “Star Wars: Shadow

of the Empire”. This title sold 300 thousand units at its market introduction while by its sixth

month it was selling less than 50 thousand units. Would the timing of this dramatic sales decrease,

its sales crash, have a causal impact on the timing of its price crash? Could its price crash aid in

the recovery of its sales?
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We make use of a market-level “natural experiment” that is occurring in the market of video-

games. In this experiment we observe market outcomes in terms of the timing of the sales crash,

the timing of the price crash, and the timing of the sales recovery. We may observe, for example,

the realization of a sales crash at time ts and the subsequent realization of a price crash at a time

tp (with tp > ts). A second plausible market outcome consists of observing the realization of a

price crash followed by the realization of a sales crash, hence observing tp < ts. The realization

of a sales recovery may be any time after observing a sales crash at ts and it may occur before or

after a price crash. In summary, every time a new video game is introduced to the market, we may

observe the triad ts, tp, and tr, being these latter realizations of the underlying random variables

Ts, Tp, and Tr. These market outcomes represent a natural experiment because whenever an event

occurs it may affect the hazard rate of subsequent, yet not observed, events. Our data consists of

1562 realizations of these three duration variables measured in months after introduction. We will

refer to this market phenomenon as the big crash because it consists of a permanent reduction in

both sales and price levels.

We define the sales crash as the moment after the first sales peak when the sales decrease rate

is closest to zero. That is, the timing of the sales crash is marked by the moment when sales

stop falling dramatically and stabilize at a new level. Note that we do not define the sales crash

based on the rates of the sales drop but our definition led us to identify sales drops that are deep

(63% decrease on average) and that occurred at a very fast rate (within 3 to 6 months). Hence,

the sales crash is very distinct from the sales saddle that is usually a gradual and not so deep

decay in sales (Chandrasekaran and Tellis, 2011; Goldenberg et al., 2002) that occurs long after

a product’s introduction. Next, we define sales recovery as the sales peak that follows the sales

crash and that is larger than 10% of the total sales. We measure the time to sales recovery with

the time spanning in between the sales crash and the sales recovery. Finally, we define the price

crash as the moment when the largest price cut occurs regardless of its depth. Our definitions

closely follow the literature on saddles. For example, Goldenberg et al. (2002) define the saddle

as a decline of 10% or 20% in sales that follows an initial sales peak and they define the start of

the saddle as the moment just before the sales drop. Goldenberg et al. (2002) define the end of

the saddle, or recovery, as the time when sales recover their initial peak level and they focus their
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study on saddles that have a duration of more than two years. Likewise, Chandrasekaran and

Tellis (2011) define the start of the saddle as the first drop in sales that is greater than 10% and

that lasts more than 2 years. Finally, Golder and Tellis (2004) define the start of the slowdown

as the moment when sales fall for two consecutive years after takeoff. Like the saddle studies, we

used heuristic rules and visual inspection to identify inflection points.1

The identification of events is done through the analysis of the monthly time series of market

sales (in units) and average market prices of video-games sold in the US from 1995 to 2001. These

data cover three major video-game platforms, nine product categories, eighty five firms and seven

years (1995-2001). The coverage of products reaches approximately 65% of the retailers in the

US market (sampled by NPD Group) and the products in the sample represent more than 400

million units and 14 billion dollar sales. In addition, we count with quality ratings for each of

the products. We also count with 48 observed characteristics for each video game and these are

its platform, publisher, quality, season and year of launch, and its genre. Given the nature of

the data, our analysis will focus on market-level outcomes. Such causal analysis at the market

level is common in the economics literature, for examples see Kaminsky and Reinhart (1999) and

Schnabel (2004).

In Figure 1 we illustrate the identification of the sales crash, the sales recovery, and the price

crash for three of the most popular video-games in our data. On the left side of the panel (a)

we observe the unit sales of the title “Grand Turismo” and how its sales go from 600 hundredth

thousand at introduction and then drop to less than 50 thousand by its fifth month in the market.

It is the fifth month when sales stabilize around a new low level and that is where we mark the

sales crash. The sales recovery is the first sales peak that comes next to the sales crash. We

notice that the sales recovery may be due to a completely exogenous factor, like seasonality, and

we control for it in our modeling approach. On the right side of the panel (a) we plot the price

of “Grand Turismo” and we identify the price crash at the moment when the largest price cut

happens. Finally, on the panels (b) and (c), we illustrate the definition of the sales-price crash for

the titles “Star Wars” and “Crash Bandicoot”, respectively.

1Our tests indicate that other alternative and simple rules of identification are linear transformations of our
original measures and therefore our results remain without significant change.
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The data reveals that the price crash occurs before the sales crash 73% of the time while it

occurs after the sales crash 27% of the time (see Table 1). The price crash occurs before the sales

recovery 90% of the time whereas it occurs after the recovery 10% of the time. The sales recovery

is unobserved for 63% of the products in the sample and it is observed for the remaining 37%.

Finally, the depth of the sales crash is close to 60% while the depth of the price crash is close to

23%. These last two figures remain fairly the same across firms, genres, and years (see Table 2).

3 Model

We introduce a continuous-time triple hazard model which permits three important sources of

variation in the timing of events that may arise from i) observed covariates, ii) unobserved and

correlated heterogeneity, and iii) causality between events. Our model is based on the bivariate

hazard model of Abbring and Van den Berg (2003). In basic terms, the model developed by

Abbring and Van den Berg (2003) concerns two parallel duration variables and the authors identify

the distribution of the correlated unobserved heterogeneity between the corresponding events and

the unidirectional causal effect of one event (the treatment) on a second duration outcome.

The model we study permits bidirectional causal effects between two pairs of parallel durations

and it also incorporates causal dependence between sequential duration variables. The first pair

of parallel durations are the sales crash timing and the price crash timing while the second pair

consists of the sales recovery timing and the price crash timing. The sequential duration variables

are the sales crash and the sales recovery. Figure 2 illustrates how our empirical application

involves these two pairs of parallel durations and one pair of sequential events.

Our model assumes that events cannot be perfectly anticipated and hence we analyze the effect

of a focal event on others only after the focal event is realized. Abbring and Van den Berg (2003)

also need this assumption. Assuming no anticipation means that market participants cannot

predict and expect with extreme accuracy the timing when the market events occur. Van Heerde

et al. (2005) argue that no anticipation is plausible in fast-moving consumer goods and they

also discuss guidelines for evaluating when such assumption may be reasonable. In our empirical

application we are concerned with an industry that had 345 new product introductions per year,
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that is almost one introduction per day. Thus, it is likely that market events across such large

array of products cannot be fully anticipated even though market participants may be aware that

price cuts or sales crashes may occur. In spite of the no anticipation assumption, we control for

the correlation among the timing of market events and hence any endogenous relationship between

the price crash, the sales crash, and sales recovery arising from unobservables (like the strategic

interaction of consumers and firms) is accounted for.

The model consists of three stochastic duration variables: i) Tp|ts, tr, x, vp, ii) Ts|tp, x, vs and

iii) Tr|ts, tp, x, vr; where the notation T |F denotes the stochastic variable T conditional on the

information set F . The marginal distributions of these stochastic durations are characterized by

the corresponding structural hazard rates λ̈p(t|ts, tr, x, vp), λ̈s(t|tp, x, vs) and λ̈r(t|tp, ts, x, vr). The

structural hazard rate λ̈j(t|.), for j ∈ {p, s, r}, represents the speed at which the event of interest

may occur at time t given that it has not occurred before, and also given other information which

are associated with the occurrence of this specific event. That is, the three relevant hazard rates

can be mathematically expressed as follows

λ̈p(t|ts, tr, x, vp) = (dt)−1 P(t ≤ Tp < t+ dt|Tp ≥ t, ts, tr, x, vp)

λ̈s(t|tp, x, vs) = (dt)−1 P(t ≤ Ts < t+ dt|Ts ≥ t, tp, x, vs)

λ̈r(t|tp, ts, x, vr) = (dt)−1 P(t ≤ Tr < t+ dt|Tr ≥ t, ts, tr, x, vr)

(1)

for all t > 0, where P(·) denotes a generic probability measure and dt is an infinitesimal time

increment. Thus, λ̈p(t|ts, tr, x, vp) is the probability of observing a price crash at time t given that

is has not occurred yet and given the information set ts, tr, x, and vp. Similarly, λ̈s(t|tp, x, vs)

and λ̈r(t|tp, ts, x, vr) denote the probability of observing a sales crash or a recovery at time t given

they have not occurred before. Note that each product i is characterized by a vector of observable

characteristics x being the realization of X ⊂ Rd (in our empirical example d = 48), and by a

vector of unobserved correlated factors (vp, vs, vr) ∈ R3
+ which represent time-invariant unobserved

or non-measurable explanatory variables and they are the realization of the random variables Vp,

Vs, and Vr. The sub-index i is omitted from all variables and functions for exposition purposes.

Next we describe how we model the relationship among Tp, Ts, and Tr and how we model their
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structural hazards. The aim of the model is to identify and to measure how the hazard rate of

each duration variable is affected by the occurrence of two possibly related events. Specifically,

our model incorporates four time-varying causal effects and one time-invariant causal effect. The

time-varying effects are: i) the effect of the realization of the sales crash on the hazard rate of the

price crash, ii) the effect of the price crash on the hazard rate of the sales crash, iii) the effect

of the price crash realization on the hazard rate of the sales recovery, and iv) the effect of sales

recovery on the hazard rate of the price crash. The time-invariant effect measures the effect of the

realization of the sales crash on the sales recovery.

The causal effects are incorporated as follows. We assume that the hazard rate of the event

of interest changes deterministically after the realization of one and/or the two other events.

Specifically, we assume that the hazard rate of the sales crash timing Ts at t increases/decreases

by a factor of δps(t|tp) after t > tp that is after the price crash occurs. In a similar way, we assume

that the hazard rate of the price crash timing Tp increases/decreases at t by a factor of δsp(t|ts)

after the sales crash occurs that is when t > ts, and by a factor of δrp(t|ts, tr) after the sales recovery

occurs that is when t > ts + tr. In addition, we assume that the hazard rate of the sales recovery

timing Tr increases/decreases at t by a factor of δpr (t|tp, ts) when the price crash occurs after the

occurrence of the sales crash but before the recovery, that is when ts < tp < ts + tr. Finally, we

assume that if the price crash occurs before the sales crash, then the price crash affects the sales

recovery indirectly through its effect on the sales crash. Note that hazard rates are strictly positive

and hence the functions δ must also be positive. If 0 < δ < 1 the hazard rates decrease, δ > 1

implies an increase in the hazard rates, whereas δ = 1 implies that the hazard rates is not affected

by the occurrence of the other events. In the model, the functions δ consists of time-varying

coefficients and hence we measure the time-varying effect of the “treatment” event on the hazard

rate of the two remaining events. We discuss all the parametrization details and the intuition

behind these functions in Section 3.1.
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Formally, we adopt the following specification for the structural hazard rates

λ̈p(t|ts, tr, x, vp) = λp(t)φp(x)δsp(t|ts)1{t>ts}δrp(t|ts, tr)1{t>ts+tr}vp

λ̈s(t|tp, x, vs) = λs(t)φs(x)δps(t|tp)1{t>tp}vs

λ̈r(t|ts, tp, x, vr) = λr(t)φr(x)δsr(ts)δ
p
r (t|tp, ts)1{ts<tp<ts+t}vr,

(2)

where 1 {.} is an indicator function that is equal to one if the event within the brackets occurs

and zero otherwise. The λj is the baseline hazard for j ∈ {p, s, r} and it captures the duration

dependence, that is, the effect of time on the likelihood of the occurrence of the event of interest.

The quantity φj is called regressor function and it captures the effect of observed covariates in

the overall level of the hazard rates. The “causal effects functions” δ are commonly known in

the literature as “treatments” and, as described in the previous paragraph, they capture the

causal effects among the duration variables. The variables vs, vp and vr refer to unmeasurable

or unobserved (to the researcher) characteristics. Note that the hazard rate corresponding to the

sales recovery is directly affected by the timing of the sales crash by way of the function δsr . This

type of dependence is known as lagged causal dependence (Van den Berg, 2001; Heckman and

Borjas, 1980). Notice that lagged dependence cannot exist between the duration variables Tp and

Tr as they are parallel to each other and as a consequence, information about their realization in

not available at the beginning of their respective duration process.

3.1 Model Parametrization

In this section we discuss the parametrization of the baseline hazard, the regressor functions, and

the causal effect functions introduced which are the main elements of the model in Equation (2).

We assume that the baseline hazards follow an Expo-power specification. Namely, we have for

t > 0, αj > 0 and γj ∈ R, where j ∈ {p, s, r},

λp(t;αp, γp) = αpt
αp−1eγpt,

λs(t;αs, γs) = αst
αs−1eγst,

λr(t;αr, γr) = αrt
αr−1eγrt.

(3)
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We choose an Expo-power specification because it permits several shapes for the baseline hazard

and because it is the most flexible function among other alternatives (Seetharaman and Chinta-

gunta, 2003; Saha and Hilton, 1997). In particular, the Expo-power allows for U-shape, inverted

U-shape, increasing, and decreasing hazard functions and it nests the Gompertz (when αj = 1) and

the Weibull (when γj = 0), two parametrization which have gained great popularity in empirical

analysis. See for example Franses and Paap (2004, Chapter 8) or Seetharaman and Chintagunta

(2003). Note also that although the Expo-power does not include as a special case the log-logistic,

it does allow for inverted U-shape which is the main attractive feature of the latter. In con-

trast with the log-logistic, the Expo-power has a closed form expression for its integrated hazard

function and this greatly facilitates model estimation.

The regressor functions follow an exponential specification which is widely used in empirical

analysis. In particular, for βsr ∈ R, βj ∈ Rd, x ∈ Rd, j ∈ {p, s, r}, and t > 0 we have that

φp(x; βp) = exp
(
x
′
βp
)
,

φs(x; βs) = exp
(
x
′
βs
)
,

φr(x; βr) = exp
(
x
′
βr
)
.

(4)

In view of the above definitions, the parameter vector βj for j = p, s, r measures the effect of the

observed covariates on the occurrence time of the respective event.

Next, we define the time-varying causal effects as piece-wise constant functions with K intervals

[Yl, Yl+1], where l = 0, ..., K − 1, Y0 = 0, and YK =∞. A piece-wise specification is highly flexible

and it is suitable for our study because we have no prior knowledge about the shape of the causal

effects. Notice that as the number of intervals increases, the more “non-parametric” that this

specification becomes. Moreover, such piece-wise specifications are commonly applied to measure

causal dependence among parallel durations (Van den Berg, 2001) and they were first introduced

by Freund (1961). Below we provide further intuition about how these causal functions work.

The causal effect function δsp quantitatively specifies the effect of the sales crash on the price
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crash and it is parametrized for t > ts > 0 as

δsp(t|ts; θsp) =
K−1∑
l=0

1 {Yl ≤ t− ts < Yl+1} exp(θspl). (5)

where we make use of an exponential specification to ensure that the causal effect is strictly

positive.

The role of the causal effect function in Equation (5) is to select the relevant coefficient l out of

K possible coefficients. In this case the function selects the relevant exp(θspl) coefficient that affects

the structural hazard rate when the treatment duration is equal to t− ts and when this treatment

duration lays in the interval [Yl, Yl+1). In the model implementation we define seven intervals each

of two months of length. These are [0, 2), [2, 4),. . . , and [12,∞). Notice that the last causal effect

is selected whenever the treatment duration is longer than 12 months. For example, in terms of

the first equation in (2), if t < ts, then the structural hazard rate of the price crash λ̈p(t| . . . )

would be equal to λp(t)φp(x)vp. That is, before ts, the structural hazard rate of the price crash

is not affected by the sales crash. In contrast, if we had t laying after the sales crash but before

the sales recovery, that is when ts < t < ts + tr, then the structural hazard of the price crash

λ̈p(t| . . . ) would be equal to λp(t)φp(x)δsp(t|ts; θsp)vp. Moreover, if the treatment duration t − ts

would be smaller than 2 months, for example, then the structural hazard rate would be equal to

λp(t)φp(t) exp(θspl)vp with l = 1. Notice that the sales crash affects the hazard of the price crash

only when t > ts. The structural hazard is defined in a similar way when t > ts + tr, that is when

both the sales crash and the sales recovery are observed. In this latter case, two causal functions

would affect the structural hazard as defined in Equation (2).

Next, the function δrp corresponds to the effect of the sales recovery on the price crash and it

is modeled for t > ts + td > 0 as

δrp(t|ts, tr; θrp) =
K−1∑
l=0

1 {Yl ≤ t− ts − td < Yl+1} exp(θrpl), (6)

The function δps gives the effect of a price crash on the event of sales crash. We parametrize it
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for t > tp > 0 as

δps(t|tp; θps) =
K−1∑
l=0

1 {Yl ≤ t− tp < Yl+1} exp (θpsl) . (7)

Furthermore, δpr measures the effect of a price crash on the propensity of a sales recovery. We

adopt the next parametrization where

δpr (t|tp, ts; θpr) =
K−1∑
l=0

1 {Yl ≤ t− tp + ts < Yl+1} exp (θprl) (8)

for t > tp − ts > 0.

Later we refer to the causal effects as vectors that consist of the all coefficients of theK intervals.

That is, θsp = (θsp1, θ
s
p2, ..., θ

s
pK), θrp = (θrp1, θ

r
p2, ..., θ

r
pK), θps = (θps1, θ

p
s2, ..., θ

p
sK), θpr = (θpr1, θ

p
r2, ..., θ

p
rK)

to denote the collection of the four sets of causal effects.

The causal effect of the sales crash on the sales recovery is operationalized as

δsr(ts) = exp (tsβ
s
r) . (9)

The parameter βsr quantitatively specifies the effect of the sales crash ts on the hazard rate of the

sales recovery. This latter specification was first introduced by Heckman and Borjas (1980) as a

way to measure the causal effect of a past event on a second event that always proceeds the first.

In our application, the sales recovery can only occur after the sales crash. That is the reason why

this causal effect is operationalized different from the others.

Finally, we assume that the random vector (Vp, Vs, Vr) follows a trivariate log-normal distribu-

tion, that is,

P
(

log(vs, vp, vr)
)

= (2π)−3/2|Σ|−1/2 exp
(
− 1

2
(vs, vp, vr)Σ

−1(vs, vp, vr)
′)
, (10)

where Σ is the variance-covariance matrix and whose off-diagonal elements give the correlation

between the logarithm of the corresponding random variables.
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3.2 Model Identification

The identification strategy of the model can be roughly described as follows. First, we identify

the variation coming from regressor functions, the baseline hazards, and the distribution of the

unobserved terms by considering the whole population regardless of the sequence of the realized

events. Secondly, we identify the causal effects. To achieve this, we analyze all sub-populations of

market outcomes where the events of interest occur in the same sequential order. For instance, we

identify the effect of the price crash on the sales crash based on the sub-population where the price

crash precedes the sales crash. In this latter sub-population of cases, we observe the price crash

at several timings tp and we can untangle how the variation in tp affects the observed variance in

the occurrence timing of the sales crash that follows at time ts. A similar identification strategy

applies for all other causal effects. All details about identification are provided in the Appendix

A.

4 Results

Table 3 presents the four sets of causal effects coefficients (in Equations (5) to (8)). These are: i)

The causal effect coefficients (θps) of the price crash on the sales crash (upper panel), ii) the causal

effect coefficients (θpr) of the price crash on the sales recovery (second panel from the top), iii) the

causal effects coefficients (θsp) of the sales crash on the price crash (third panel), and iv) the causal

effects coefficients (θrp) of the sales recovery on the price crash (bottom panel). As we can see in

the upper panel of Table 3, the signs of the causal effects of the price crash on the sales crash are

negative and this implies that the realization of a price crash decreases significantly the hazard

rate of the sales crash for all subsequent periods following the price crash. In contrast, on the third

panel we notice that the realization of a sales crash increases the hazard rate of the price crash in

all following periods after the sales crash time. Notice how the effect between the sales crash and

the price crash are asymmetric and that the stronger effect goes from the sales crash to the price

crash. In Figure 4 we plot the four sets of causal effects and their time variation. In the upper

right panel, we notice how the realization of a price crash increases the hazard rate of a sales crash

after the third month that follows the price crash and it stays relatively constant (around 1.3) up
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to the twelfth month after the price crash. The reverse effect of the recovery on the price crash

has no effect on the price crash for most periods as the confidence bounds for most of these last

coefficients contain zero. Finally, we report the coefficient of the causal effect of the sales crash on

the sales recovery in Table 4 (bottom of third column) together with the other regressor functions

coefficients. The −0.213 coefficient for ts is significant and it implies that the longer it takes the

saddle to occur, the less likely the sales recovery becomes.

In Table 4 we present the coefficients of the regressor functions in Equation (4). Our results

indicate that there is substantial heterogeneity driven by seasons, platforms, products’ genres,

publishers, and by quality. Quality has a significant -1.197 coefficient in the sales crash regressor

function and this implies that the hazard rate of a sales crash decreases as quality increases. In the

same fashion, an increase in quality decreases the hazard rate of a price crash given the -0.863 and

-0.205 significant coefficients in the price crash regressor function. A higher quality also predicts a

decrease in the hazard rate of the sales recovery given the significant -0.929 and -0.309 coefficients

for quality in the regressor function of the sales recovery. This last results is surprising but notice

that Goldenberg et al. (2002) also find that the sales of more successful products may fall at faster

than less successful ones. Seasons are also important, for example, we find that a sales crash is

more likely during the first four months of the year than during the last four months. See how

the coefficients first four months (January to February) are either not significantly different from

zero or they are smaller than coefficients of the last four months. In contrast, the price crash is

more likely during the shopping season of December than in the two months preceding it; see the

non-significant -0.084 coefficient for December and the significant -0.098 and -0.162 coefficients for

October and November (mid column of Table 4). Several of the platforms, publisher, and genre

effects are also significant and they explain observed heterogeneity in the timing of the sales crash,

the price crash, and the sales recovery.

In Table 5 we present the coefficient estimates of the baseline hazards (Equation (3)). All

coefficients are significantly different from zero with the exception of the γr of the sales recovery

hazard. This implies that the baseline hazard of the sales recovery follows a Weibull distribution

while the baseline hazards of the sales crash and the price crash follow an Expo-power function.

Note that the Expo-power hazard reduces to a Gompertz when α = 1 and to a Weibull when γ = 0.
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In Figure 5 we present the shape of the three baselines hazards given the parameter estimates.

The baseline hazard of the sales crash (top panel) shows an inverted U-shape with a peak at the

10th month after introduction. In contrast, the baseline hazard of the price crash (mid panel) has

a decreasing shape and it reaches zero by the second year (24 months) after introduction. This

last result implies that that the likelihood of a price crash increases only due to the realization of

a sales crash because without such realization the price crash hazard rate would decline with time.

Finally, we find that the baseline hazard of the sales recovery (bottom panel) is initially high and

that it decays but very mildly and it stays relatively constant after the tenth month.

In Table 6 we report the covariance matrix of the distribution of the random effects (Equation

(10)). Our results indicate that there is a strong positive dependence among the random effects

and this implies that an unobserved shock would change the hazard rate of all events by a similar

amount and by the same direction. In other words, the realization of a random shock delays or

advances evenly all events.

5 Discussion

This paper proposes a new causal triple hazard model to estimate the inter-dependence among

three events. The model can statistically identify three sources of variation in the timing of events

that may arise from i) observed covariates, ii) unobserved correlated covariates, and iii) causality

between events. Our identification results prove that the model can uniquely identify among these

three sources of variation in the timing of events. Hence, we contribute to the marketing literature

by proposing a method for incorporating correlation among the three events and simultaneously for

testing whether an event is causally linked to others. This section summarizes the main findings,

presents managerial implications, and lists limitations and topics for further research.

5.1 Summary of Findings

• The price crash occurs before the sales crash 73% of the time while it occurs after the sales

crash 27% of the time. The depth of the price crash is close to 23% while the depth of the

sales crash is close to 60%.
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• The occurrence of price crash causally and significantly lowers the hazard rate of a sales

crash whereas the occurrence of a sales crash causally and significantly increases the hazard

of a price crash. The latter effect is stronger than the former.

• The sales crash is the only determining factor that causally and significantly increases the

hazard rate of price crashes given that the baseline hazard of the latter is decreasing in time.

• The price crash causally and significantly increases the hazard rate of a sales recovery whereas

the sales recovery has a positive but insignificant effect on the occurrence of a price crash.

Products that face a late sales crash are less likely to face a sales recovery.

• The results are valid after controlling for observed heterogeneity that is significantly driven

by seasons, quality, platforms, publishers and genres. We also control for unobserved het-

erogeneity and we find that this latter factor delays or advances evenly all events in time.

5.2 Managerial Implications

Managers could use our method to analyze whether the co-occurrence of events is due to causal-

ity among them or due to exogenous marketing variables. For example, the model can provide

managers with new insights about the purchase timing of multiple durable goods, the click-stream

across multiple websites, or the adoption timing of multiple technologies. Moreover, the data and

empirical analyzes seem to indicate that firms will inevitably face sales crashes and most of the

time firms wait for the crash before cutting prices. Surprisingly, we find that a sales crash is not

completely inevitable and that managers may benefit from analyzing when to cut prices in order

to delay such dramatic sales drop. Fast moving consumer goods like mobile phones, fiction nov-

els, and designer’s clothes usually sell high at introduction or during their relevant season but a

crash may follow the high-season. Thus, managers in these industries may benefit from analyzing

whether such dramatic sales drop can be avoided or at least delayed by modifying their marketing

policies.
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5.3 Limitations and Further Research

Our empirical investigation can lead to further research topics due to its limitations. First, except

for the time-varying causal effects among events, we do not control for any time-varying covariates

of the marketing mix like advertising or promotion. A model that includes such variables would

represent an important and challenging development in causal hazard models. Second, our analyzes

focus on two main moments of the sales data (the sales crash and recovery) and a single moment of

the price series (the price crash) and the model leaves out all other information about the sales price

data. It could be that market participants dynamically update their beliefs about the realization

of events as new information is available and we consider that the formation of expectations is

an interesting avenue for further research. Third, we use aggregate data and we do not model

individual level behavior. We consider that modeling the individual level behavior of consumers

and firms facing price-sales crashes is also an interesting avenue for further research. Finally,

our results are valid only when market expectations are assumed to be incorporated through the

unobserved time-invariant shocks. All these topics are interesting avenues for further research.
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6 Tables and Figures

No. of Products
Total 1725
Total in Sample 1562
No Sales Crash 1
Sales Crash - Unobserved Recovery 996
Sales Crash - Observed Recovery 565
No Price Crash 87
Price Crash 1475
Price Crash Before Sales Crash 417
Price Crash After Sales Crash 1145
Price Crash Before Sales Recovery 1407
Price Crash After Sales Recovery 155

Table 1: Study Sample
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Price
Crash

Sales
Crash

% Depth of
Sales Crash

% Depth of
Price Crash

Average by Firm
ACCLAIM 9.45 3.61 -58.57% -22.25%
ACTIVISION 7.35 3.77 -61.70% -24.39%
CAPCOM 7.09 4.27 -59.64% -25.08%
EIDOS INTERACTIVE 5.61 4.44 -63.77% -22.24%
ELECTRONIC ARTS 5.82 4.63 -66.15% -26.71%
HASBRO 7.47 4.04 -66.19% -25.38%
INFOGRAMES 14.65 4.09 -60.55% -21.27%
INTERPLAY 13.18 3.37 -65.36% -20.04%
KONAMI 7.18 3.51 -61.96% -28.02%
MIDWAY 5.33 4.62 -58.43% -23.83%
NAMCO 6.91 4.17 -57.18% -23.11%
NINTENDO 7.67 4.13 -63.70% -22.56%
SEGA 5.18 4.38 -57.20% -24.65%
SONY 6.82 3.95 -58.16% -21.99%
THQ 7.22 3.93 -62.90% -22.09%
Average by Genre
ACTION 7.25 3.84 -62.69% -24.28%
ADVENTURE 9.50 3.20 -55.98% -22.84%
DRIVING 6.06 4.52 -57.56% -23.79%
FAMILY 8.95 4.32 -55.11% -26.29%
FIGHTING 7.84 4.60 -64.01% -22.66%
SHOOTER 6.92 4.49 -63.83% -23.02%
SIMULATIONS 7.78 3.69 -58.52% -24.25%
SPORTS 6.93 4.10 -63.04% -23.50%
STRATEGY 8.31 3.74 -61.06% -24.08%
Average by Year
1995 8.59 4.00 -60.00% -24.93%
1996 6.86 4.47 -59.59% -25.06%
1997 7.20 4.04 -61.42% -23.15%
1998 7.69 3.80 -63.67% -23.65%
1999 6.89 3.94 -64.01% -23.81%
2000 7.84 4.12 -59.08% -23.54%
2001 9.13 4.29 -40.38% -12.89%

Table 2: Descriptive Statistics of the Timing of Sales and Price Crash
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Price Crash → Sales Crash
Index [Yl,Yl+1) θpsl HPDR 95%
l = 1 [0-2) -0.418 ** (-0.543, -0.261)
l = 2 [2-4) -0.529 ** (-0.695, -0.306)
l = 3 [4-6) -0.974 ** (-1.279, -0.678)
l = 4 [6-8) -1.402 ** (-1.82, -0.995)
l = 5 [8-10) -0.811 ** (-1.259, -0.434)
l = 6 [10-12) -0.987 ** (-1.488, -0.390)
l = 7 [12-∞) -0.362 (-1.085, 0.420)

Price Crash → Sales Recovery
Index [Yl,Yl+1) θprl HPDR 95%
l = 1 [0-2) -0.116 (-0.372, 0.102)
l = 2 [2-4) 0.866 ** (0.66, 1.061)
l = 3 [4,6) 1.129 ** (0.939, 1.321)
l = 4 [6,8) 1.147 ** (0.926, 1.373)
l = 5 [8-10) 1.111 ** (0.815, 1.362)
l = 6 [10,12) 1.410 ** (1.119, 1.706)
l = 7 [12,∞) -0.247 * (-0.573, 0.041)

Sales Crash → Price Crash
Index [Yl,Yl+1) θspl HPDR 95%

l = 1 [0,2) 1.08 ** (0.677, 1.236)
l = 2 [2,4) 1.774 ** (1.269, 1.931)
l = 3 [4,6) 2.202 ** (1.699, 2.423)
l = 4 [6,8) 2.741 ** (2.218, 3.010)
l = 5 [8-10) 2.769 ** (2.271, 3.107)
l = 6 [10,12) 3.003 ** (2.301, 3.461)
l = 7 [12,∞) 3.380 ** (2.784, 3.862)

Sales Recovery → Price Crash
Index [Yl,Yl+1) θrpl HPDR 95%

l = 1 [0,2) -0.057 (-0.342, 0.195)
l = 2 [2,4) -0.084 (-0.453, 0.274)
l = 3 [4,6) 0.554 ** (0.172, 0.944)
l = 4 [6,8) 0.850 ** (0.401, 1.302)
l = 5 [8-10) 0.288 (-0.494, 1.033)
l = 6 [10,12) 0.025 (-0.961, 1.129)
l = 7 [12,∞) 1.004 ** (0.204, 1.643)
Notes: The interval limits [Yl, Yl+1) are de-
fined in months.

Table 3: Estimates of Causal Effects
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Sales Crash Price Crash Sales Recovery
Coefficient βs βp βr
Intercept 0.000 0.000 0.000
PLATFORM
Saturn -0.159 ** -0.139 * 0.005
Nintendo 64 0.013 -0.058 -0.15 **
Multiplatform (PS + Saturn) -0.177 ** -0.017 -0.12 **
Multiplatform (PS + N64) -0.144 ** -0.039 -0.158 **
GAME GENRE
Action -0.213 ** -0.095 ** -0.128 *
Adventure -0.055 -0.176 ** -0.098
Driving -0.311 ** -0.066 -0.102 **
Family -0.295 ** -0.115 * -0.085
Fighting -0.127 * -0.211 ** -0.215 **
Shooter -0.319 ** -0.042 -0.131 **
Simulations -0.029 -0.303 ** -0.233 **
Strategy -0.173 ** -0.128 * -0.010
FIRM
ACCLAIM -0.350 ** -0.047 -0.154 *
ACTIVISION -0.069 0.051 0.088
CAPCOM 0.030 -0.072 -0.037
EIDOS INTERACTIVE -0.144 * 0.058 -0.085
ELECTRONIC ARTS -0.078 -0.048 -0.099
HASBRO -0.133 * -0.008 -0.044
INFOGRAMES -0.227 ** 0.035 0.030
INTERPLAY -0.136 * -0.053 0.018
KONAMI -0.116 -0.117 * -0.194 **
MIDWAY -0.140 ** -0.126 * -0.135 *
NAMCO -0.063 -0.239 ** -0.102
NINTENDO 0.031 -0.257 ** -0.014
SEGA -0.012 -0.063 0.001
Small Publisher 1 -0.293 ** -0.203 ** -0.222 **
Small Publisher 2 -0.157 ** -0.031 -0.106 *
Small Publisher 3 -0.195 ** -0.113 * -0.191 **
THQ -0.109 -0.082 -0.134 *
YEAR
1996 -0.480 ** -0.167 ** -0.189 **
1997 -0.368 ** -0.184 ** -0.244 **
1998 -0.254 ** -0.175 * -0.357 **
1999 -0.332 ** -0.064 -0.331 **
2000 -0.480 ** -0.324 ** -0.400 **
2001 -0.219 ** -0.223 * -0.032
LAUNCH MONTH
February -0.075 -0.221 ** -0.378 **
March -0.167 ** -0.19 ** 0.027
April -0.064 -0.004 -0.045
May -0.203 ** -0.186 ** -0.01
June -0.044 -0.176 ** -0.529 **
July -0.296 ** -0.104 -0.089
August -0.142 ** -0.18 ** -0.049
September -0.262 ** -0.094 -0.263 **
October -0.431 ** -0.098 * -0.321 **
November -0.282 ** -0.162 ** -0.098 *
December -0.211 ** -0.084 -0.049
QUALITY
Quality -1.197 ** -0.863 ** -0.929 **
Quality2 0.043 -0.205 ** -0.309 **
ts – – -0.213 **
*,** mean that 0 is not included in the 90% and 95% Highest Posterior
Density Regions (HPDR), respectively. + The base platform is the
PlayStation, the base genre is Sports, the base firm is Sony, the base
year is 1995 and the base month is January. Intercept is equal to zero
for identification.

Table 4: Coefficients in Regressor Functions
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Coefficient HPDR 95%
Sales Crash
αs 1.916 ** (1.490, 1.967)
γs -0.007 ** (-0.010, -0.004)
Price Crash
αp 0.917 ** (0.870, 1.356)
γp -0.241 ** (-0.272, -0.07)
Sales Recovery
αr 0.649 ** (0.589, 0.733)
γr 0.008 (-0.035, 0.064)

Table 5: Coefficients of Expo-Power Baseline Hazard Functions

Covariance Matrix
vs vp vr

vs 0.0642 ** 0.0785 ** 0.0731 **
vp 0.1365 ** 0.1116 **
vr 0.1023 **
Correlation Matrix

vs vp vr
vs 1 0.8958 ** 0.9439 **
vp 1 0.9727 **
vr 1
*,** mean that 0 is not included in the 90% and 95%
Highest Posterior Density Regions (HPDR), respec-
tively.

Table 6: Covariance and Correlation Matrix (Distribution Random Effects)
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(c) Events for Crash Bandicoot

Figure 1: Events Definitions
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Figure 4: Estimates of the Time-varying Causal Effects
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A Identification Proof

The proof is organized as follows. First, we introduce some notation that is used throughout the

proof and the appendix. Second, we describe the assumptions that the model needs for identi-

fication. Finally, we prove seven propositions that identify all of the model structural elements.

These elements are i) the regressor functions and ii) the integrated hazard functions (Proposition

1, 2, and 4), iii) the distribution of the unobserved heterogeneity (Proposition 3), and finally iv)

the integrated causal effects functions (Proposition 1, 4, 5, 6, and 7).

A.1 Definitions and notation

The integrated baseline hazards are defined as

Λp(t) :=
∫ t

0
λp(ω)dω

Λs(t) :=
∫ t

0
λs(ω)dω

Λr(t) :=
∫ t

0
λr(ω)dω.

(A-1)

for t > 0. Next, we define the sub-survival functions

Qp(tp, ts, tr|x) = P(Tp > tp, Ts > ts, Tr > tr, Ts > Tp|x)

Qsp(tp, ts, tr|x) = P(Tp > tp, Ts > ts, Tr > tr, Ts < Tp < Ts + Tr|x)

Qs(tp, ts, tr|x) = P(Tp > tp, Ts > ts, Tr > tr, Ts < Tp|x)

Qr(tp, ts, tr|x) = P(Tp > tp, Ts > ts, Tr > tr, Ts + Tr < Tp|x)

(A-2)

for all tp, ts, tr > 0 and any x ∈ X . The first sub-survival function refers to the sub-population

where the price crash occurs before the sales crash. The second sub-survival function concerns the

sub-population where the price crash is realized after the sales crash but before the sales recovery.

The third sub-survival function refers to the sub-population in which the sales crash precedes the

price crash. Finally, the last sub-survival function is about the sub-population where the price

crash occurs after the realization of the sales recovery and consequently after the sales crash.

We define the integrated version of the product between the structural hazard functions and
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the causal effects functions for tp, ts, tr > 0 as

Υp
s(ts|tp) :=

∫ ts
tp
λj(ω)δps(ω|tp)dω, for ts > tp,

Υs
p(tp|ts) :=

∫ tp
ts
λj(ω)δsp(ω|ts)dω, for tp > ts,

Υr
p(tp|ts, tr) :=

∫ tp
ts+tr

λp(ω)δsp(ω|ts)δrp(ω|ts, tr)dω, for tp > ts + tr,

Υp
r(tr|tp, ts) :=

∫ tr
tp−ts λr(ω)δpr (ω|tp, ts)dω, for tr > tp − ts > 0.

(A-3)

The integrated causal effects are defined for tp, ts, tr > 0 as

∆p
s(ts|tp) :=

∫ tb
ta
δps(ω|tp)dω, for ts > tp,

∆s
p(tp|ts) :=

∫ tb
ta
δsp(ω|ts)dω, for tp > ts,

∆r
p(tp|ts, tr) :=

∫ tp
ts+tr

δrp(ω|ts, tr)dω, for tp > ts + tr,

∆p
r(tr|tp, ts) :=

∫ tr
tp−ts δ

p
r (ω|tp, ts)dω. for tr > tp − ts > 0.

(A-4)

Finally, we make use of the Laplace Transform LG of the trivariate random vector (Vp, Vs, Vr)

which is defined as

LG (ω1, ω2, ω3) : =

∫
R3

+

exp(−ω1v1 − ω2v2 − ω3v3)dG(v1, v2, v3) (A-5)

for (ω1, ω2, ω3) ∈ R3
+.

A.2 Assumptions

Assumption 1 The functions φp : X →(0,∞), φs : X →(0,∞), φr : X →(0,∞), δsr : R+→(0,∞)

are continuous with φp(x
∗) = φs(x

∗) = φr(x
∗) = δsr(t

∗) = 1 for some priory chosen x∗ ∈ X and

t∗ > 0.

Assumption 2 It holds Λp(t
∗) = Λs(t

∗) = Λr(t
∗) = 1 for some priory chosen t∗ > 0, and

Λr(tr)δ
s
r(ts)→ 0 as tr → 0 and ts → 0.

Assumption 3 The vector of the regressor functions (φp(x), φs(x);x ∈ X ) attain all values in a

nonempty open subset of (0,∞)2. There exists x̃ ∈ X , with x̃ 6= x∗, such that φr(x̃) 6= φr(x
∗).
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Assumption 4 The distribution of the trivariate random vector (Vp, Vs, Vr) is G. It also holds

E(Vp) <∞, E(Vs)<∞, E(Vr) <∞.

Assumption 5 The causal effects functions δps : R2
+→(0,∞), δsp : R2

+→(0,∞), δrp : R3
+→(0,∞),

and δpr : R3
+→(0,∞) are such that the quantities defined in (A-3) and (A-4) exist and are finite.

Assumption 1 and 2 impose mild smoothness conditions and normalizations about the functions

φj for j ∈ {p, s, r}. It also states normalizations about the function δsr and the integrated baseline

hazard rates Λp,Λs,Λr. These normalizations imply that the model is identified up to scale

normalizations. The statement Λr(tr)δ
s
r(ts) = 0 for tr → 0 and ts → 0 is needed for identification

of φr and it is satisfied if conventional parametric approaches are adopted such as exponential

specification for the δsr and expo-power specification for the λr. Note that Assumption 2 allows

limt→∞ Λj(t) < ∞ for j ∈ {p, s, r}, which permits the underlying distribution to be defective,

namely, the probability that the event of interest is not realized is strictly positive.

Assumption 3 ensures that we can independently vary φp, φs when x ranges over X . This

assumption is needed to identify the baseline hazards and the regressor functions of the hazard

rates corresponding to the price crash as well as the sales crash. On the other hand, we do not

make such an assumption about φr as we can exploit continuous variation in ts which enters the

hazard rate of the sales recovery. A necessary condition for Assumption 3 to hold is at least two

components of the x to have continuous variation. For ease of the presentation, we assume that

all the components of x are continuous. However, our identification result is valid even in case

some of the components of x have discrete variation such that Assumption 3 remains true.

Assumption 4 guarantees that the expectation of the non-negative random variables Vp, Vs, Vr

are finite. This is a standard assumption in duration analysis and is necessary for identification

of this type of models. Assumption 5 imposes the condition that all the corresponding defined

quantities are finite.

A.3 Propositions

Proposition 1 Let Assumptions 1-5 hold. Then, the regressor functions φp, φs, the integrated

baseline hazards Λp,Λs, and the integrated causal effect ∆p
s are identified.
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This proposition postulates identification of the regressor functions and the integrated baseline

hazards which correspond to the price crash and the sales crash. It also deals with the identification

of the integrated version of the function which describes the effect of the price crash on the sales

crash. Its proof is next.

Proof. This result is a direct consequence of Proposition 2 of Abbring and Van den Berg (2003).

In particular, Tp, Ts are two parallel duration variables and as soon as the former is realized, the

hazard of the latter is affected which is the same model setup of Abbring and Van den Berg (2003).

Proposition 2 Let Assumptions 1-5 hold. Then, the regressor function φr is identified.

This proposition concerns the identification of the regressor function of the structural hazard

rate corresponding to the sales recovery. Its proof is next.

Proof. For almost all (tp, ts, tr), with 0 < tp < ts, tr > 0, and x ∈ X we have

− ∂3

∂tp∂ts∂tr
Qp(tp, ts, tr|x)

= λp(tp)φp(x)λs(ts)φs(x)δps(ts|tp)λr(tr)φr(x)δsr(ts)

× L(psr)
G (φp(x)Λp(tp), φs(x) (Λs(ts) + Υp

s(tp|ts)) , φr(x)Λr(tr)δ
s
r(ts)), (A-6)

where L(psr)
G (ω1, ω2, ω3) = ∂3LG(ω1, ω2, , ω3)/∂ω1∂ω2∂ω3 for (ω1, ω2, ω3) ∈ R3

+.

Given that φp(x
∗) = φs(x

∗) = φr(x
∗) = 1 (Assumption 1), we can show that

lim
tp→0,ts→0,tr→0

∂3

∂tp∂ts∂tr
Qp(tp, ts, tr|x)

∂3

∂tp∂ts∂tr
Qp(tp, ts, tr|x∗)

= φp(x)φs(x)φr(x). (A-7)

By definition of the corresponding quantities (see the paragraph following the discussion of the

Assumptions), the left hand side of the above equation is non-parametrically identified from the

data. Moreover, the φp, φs have been identified (by Proposition 1) and therefore the φr is identified

on its entire support X .

Proposition 3 Let Assumptions 1-5 hold. Then, the trivariate distribution G is identified.
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This proposition deals with the identification of the distribution of the unobserved hetero-

geneity which generates correlated effects among the underlying duration variables. To prove the

result, we use a similar methodology to the proof of Theorem 3 of Honoré (1993) for identifying

the functions of interest. In particular, Honoré (1993) focuses on the identification of bivariate du-

ration models in which the duration variables are successive. Hence, given that Tr always follows

Ts we adopt the same approach.

Proof. Define the open connected sets (a1, a2) ⊂R+ and (b1, b2) ⊂R+, with t∗ ∈ (b1, b2) and

a2 < b1. Define also the function χ : (a1, a2)× (b1, b2)→ X S⊂ X such that the quantities

φp(χ(tp, ts))Λp(tp) and φs(χ(tp, ts))(Λs(tp)+Υp
s(ts|tp)) remain constant for any (tp, ts) ∈ (a1, a2)× (b1, b2).

Thus, for almost all (tp, ts) ∈ (a1, a2)× (b1, b2), (t̂p, t
∗) ∈ (a1, a2)× (b1, b2) and x ∈ X , we get

lim
tr→0

∂3

∂tp∂ts∂td
Qp(tp, ts, tr|χ(tp, ts))

∂3

∂t̂p∂t∗∂td
Qp(t̂p, t∗, tr|χ(t̂p, t∗))

=
φp(χ(tp, ts))λs(ts)φs(χ(tp, ts))δ

p
s(ts|tp)δsr(ts)

φp(χ(t̂p, t∗))λs(t∗)φs(χ(t̂p, t∗))δ
p
s(t∗|t̂p)δsr(t∗)

. (A-8)

Recall that we have already identified φp, φs,Λs, and ∆p
s (Proposition 1). Identification of Λs

and ∆p
s yields almost everywhere identification of λs and δps , respectively. Hence, by using the

normalization δsr(t
∗) = 1 (Assumption 1), we can show identification of δsr on the open set (b1, b2).

Additionally, for almost all tp, tr such that 0 < tp < ts, all tr > 0, and x ∈ X , we have that

∂2

∂tp∂ts
Qp(tp, ts, tr|x) = λp(tp)φp(x)λs(ts)φs(x)δps(ts|tp)

× L(ps)
G (φp(x)Λp(tp), φs(x) (Λs(ts) + Υp

s(tp|ts)) , φr(x)Λr(tr)δ
s
r(ts)), (A-9)

where L(ps)
G (ω1, ω2, ω3) = ∂2LG(ω1, ω2, , ω3)/∂ω1∂ω2 for (ω1, ω2, ω3) ∈ R3

+. Recall that Λr(t
∗) = 1

and thus

∂2

∂tp∂ts
Qp(tp, ts, t

∗|x) = λp(tp)φp(x)λs(ts)φs(x)δsr(ts|tp)

× L(ps)
G (φp(x)Λp(tp), φs(x) (Λs(tp) + Υp

s(tp|ts)) , φr(x)δsr(ts)). (A-10)

The left hand side of the above equation is directly identified from the data. The quantity L(ps)
G

on the right hand side is unknown. By Propositions 1 and 2, φp,Λp, φs,Λs,∆
p
s, and φr have been
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identified. Identification of Λp,Λs,∆
p
s implies almost everywhere identification of λp, λs, δ

p
s , respec-

tively. Also, δsr is known only on (b1, b2). By varying appropriately (tp, ts) over (a1, a2)× (b1, b2)

we can then identify the function L(ps)
G on an nonempty open subset of R3

+ and consequently on

the whole R3
+ due to its real analytical property. Recall that L(ps)

G is the corresponding mixed

partial derivative of LG .Hence, we can also identify the LG. Identification of the latter yields

identification of G due to the one to one relationship between the Laplace Transform and some

certain cumulative distribution function.

Proposition 4 Let Assumptions 1-5 hold. Then, the integrated baseline hazard Λr and the func-

tion δsr are identified. Its proof is next.

The above proposition establishes the identification of the integrated baseline hazard which

corresponds to the structural hazard rate of the sales recovery. It also gives the identification of

the effect of the timing of the sales crash on the structural hazard rate of the sales recovery.

Proof. By the proof of Proposition 3, we know that for almost all tp, ts such that 0 < tp < ts, all

tr > 0, and x ∈ X ,

∂2

∂tp∂ts
Qp(tp, ts, tr|x) = λp(tp)φp(x)λs(ts)φs(x)δps(ts|tp)

× L(ps)
G (φp(x)Λp(tp), φs(x) (Λs(ts) + Υp

s(tp|ts)) , φr(x)Λr(tr)δ
s
r(ts)), (A-11)

where L(ps)
G is defined in the proof of Proposition 3. The left hand side is observed from the

data. We set ts = t∗ and recall that δsr(t
∗) = 1 as Assumption 1 states. By Propositions 1, 2, 3,

the quantities φp,Λp, φs,Λs,∆
p
s, φr, and G have been identified. Identification of Λp,Λs,∆

p
s yields

almost everywhere identification of λp, λs, δ
p
s , respectively, and identification of G gives identifica-

tion of L(ps)
G . Hence, for ts = t∗ all the terms on the right hand side of the above equations are

known except for Λr. Given the fact that the L(ps)
G is strictly monotonic in its arguments, we can

identify Λr from the above equation. By using the latter result and analogous arguments to the

identification of Λr, we can identify for δsr from (A-11) on its whole support. This completes the

proof.
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Proposition 5 Let Assumptions 1-5 hold. Then, the integrated causal effect of the sales crash on

the price crash ∆s
p is identified.

Proof. For almost all ts > 0, every t > 0 and x ∈ X we obtain,

∂

∂ts
Qs(t+ ts, ts, t|x)

= λs(ts)φs(x)L(s)
G (φp(x)(Λp(ts) + Υs

p(t+ ts|ts)), φs(x)Λs(ts), φr(x)δsr(ts)Λr(t))), (A-12)

where L(s)
G (ω1, ω2, ω3) = ∂LG(ω1, ω2, ω3)/∂ω2 for (ω1, ω2, ω3) ∈ R3

+. The left hand side is directly

observed from the data. Moreover, φp,Λp, φs,Λs, φr,Λr, δ
s
r ,and G have been identified (Proposi-

tions 1, 2, 3, 4). Identification of Λp,Λs,Λr yields almost everywhere identification of λp, λs, λr,

respectively. Also, we know LG and consequently L(s)
G as we have identified G (i.e., use the one to

one relationship between a cumulative distribution function and a Laplace Transform). Given that

L(s)
G is strictly monotonic function in its first argument the identification of Υs

p follows. Recall the

definition ∆s
p(t|ts) =

∫ t
0

∂Υsp(t|ts)
∂ω

[λp(ω)]−1 dω. Given that we have identified Λp and consequently

λp almost everywhere, the identification of ∆s
p directly follows.

Proposition 6 Let Assumptions 1-5 hold. Then, the integrated causal effect of the sales recovery

on the price crash ∆r
p is identified.

Proof. For almost all ts, tr > 0, every tp > 0, with ts + tr < tp, and any x ∈ X we have,

∂2

∂ts∂tr
Qr(tp, ts, tr|x)

= λs(ts)φs(x)λr(tr)φr(x)δsr(ts)

× L(sr)
G (φp(x)(Λp(ts) + Υs

p(tr + ts|ts) + Υr
p(tp|ts, tr)), φs(x)Λs(ts), φr(x)δsr(ts)Λr(t))), (A-13)

where L(sr)
G (ω1, ω2, ω3) = ∂2LG(ω1, ω2, , ω3)/∂ω2∂ω3 for (ω1, ω2, ω3) ∈ R3

+. The left hand side is

non-parametrically described by the data. Following analogous arguments with the Proposition

4 and using also the result of the latter for the right hand side, the identification of Υr
p follows.

But, ∆r
p(t|tr) =

∫ t
0

∂Υrp(t|tr)
∂ω

[λp(ω)]−1 dω. Given that we have identified Λp, which implies almost

everywhere identification of λp, we obtain identification of ∆r
p.
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Proposition 7 Let Assumptions 1-5 hold. Then, the integrated causal effect of the price crash on

the sales recovery ∆p
r is identified.

Proof. We consider for almost all tp, ts > 0, every tr > 0, with ts < tp < tp + tr, and any x ∈ X ,

the following quantity

∂2

∂tp∂ts
Qsp(tp, ts, tr|x)

= λp(tp)φp(x)δsp(tp|ts)λs(ts)φs(x)

× L(ps)
G (φp(x)(Λp(ts) + Υs

p(tp|ts)), φs(x)Λs(ts), φr(x)δsr(ts)(Λr(tp − ts) + Υp
r(tr|tp, ts))). (A-14)

The left hand side of the above equation is described by the data. Moreover, making use of

identical steps to Proposition 4 for the right hand side, we can identify the function Υp
r. By using

the relationship ∆p
r(t|tp) =

∫ t
0

∂Υpr(t|tp)

∂ω
[λr(ω)]−1 dω and the identification of Λr, which yields almost

everywhere identification of λr, we uniquely determine ∆p
r.

B Model Likelihood

In the present section we describe the product-level likelihood contributions for each of the three

duration variables. We first introduce some extra notation that we apply throughout this section.

The data consist of N realizations of (T̃p, T̃s, T̃r, γp, γs, γr, X), where T̃j = min(Cj, Tj), γj = 1{Tj ≤

Cj} for j ∈ {p, s, r}. Throughout this section we denote the realization of T̃j and X by t̃j and x,

respectively. The Cj is a censoring variable that is equal to the number of months for which we

observe data for each product. For example, if we have 24 months of data and we do not observe

an event being realized within these 24 months, then t̃j will be equal to Cj = 24 for j ∈ {p, s}.

Note that we suppress the sub-index i from all expressions for exposition purposes.

In addition, the data are such that when neither Tp nor Ts has been realized and one of them

is censored the other duration variable is censored at the same point of time as well. Similarly,

when Ts < Tp and none of Tp and Tr has been realized, censoring of one of the latter automatically

results in censoring at the same point of time of the other variable as well. Finally, by construction

of the model, censoring of Ts implies that we have T̃r = 0.
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Let vp, vs and vr denote realization of Vp, Vs, Vr, respectively. For ease of notation we do not

place a subscript on these three variables as we do not observe them. We first form the likelihood

contribution

l(t̃p, t̃s, t̃r|x, vp, vs, vr) := lp(t̃p|t̃s, t̃r, x, vp)ls(t̃s|t̃p, t̃r, x, vp)lr(t̃r|t̃p, t̃s, x, vp), (B-1)

where the likelihoods on the right hand side of the above display refers to t̃p, t̃s and t̃r, respectively.

Next, we integrate out the unobserved terms vp, vs, vr with respect to the probability measure G

in order to obtain the likelihood contribution l(t̃p, t̃s, t̃r|x), that is,

l(t̃p, t̃s, t̃r|x) :=

∫
R3

+

l(t̃p, t̃s, t̃di|x, vp, vs, vr)dG(vp, vs, vr). (B-2)

The derivation of the form of the likelihoods is based on the following general idea. If we do not

have uncensored observation the contribution equals the density which in turn equal the product

between the respective instantaneous hazard rate and survival function. On the other hand, in

case an observation is censored its likelihood contribution equals the survival function.

Let T denote a positive duration variable with structural hazard rate λ̈(.). Denote by T̃ =

min(T , T c) and by τ̃ the realization of T̃ . Then, the likelihood contribution for τ̃ is given by

l(τ̃) = 1{T ≤ T c}λ̈(τ̃) exp

(
−
∫ τ̃

0

λ̈(ω)dω

)
+1{T > T c} exp

(
−
∫ τ̃

0

λ̈(ω)dω

)
.
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The likelihood corresponding for t̃p is

lp(t̃p|t̃s, t̃r, x, vp) = γp1
{
t̃p < t̃s

}
vpφp(x)λp(t̃p) exp (−φp(x)Λp(t̃p)vp)

+γs1
{
t̃s < t̃p ≤ t̃s + t̃r

} (
φp(x)λp(t̃p)δ

s
p(t̃p|t̃s)vp

)γp ×
exp (−φp(x)

(
Λp(t̃s) + Υs

p(t̃p|t̃s)vp
)

)

+γsγr1
{
t̃s + t̃r < t̃p

} (
φp(x)λp(t̃p)δ

s
p(t̃p|t̃s)δrp(t̃p|t̃s, t̃r)vp

)γp ×
exp (−φp(x)

(
Λp(t̃s) + Υs

p(t̃p|t̃s) + Υr
p(t̃p|t̃s, t̃r)

)
vp)

+(1− γp)(1− γs) exp (−φp(x)Λp

(
t̃p
)
vp). (B-3)

We now provide some intuition for the expression above. The first term is the likelihood contri-

bution in case the price crash occurs before the sales crash and consequently the hazard rate is

affected by neither the sales crash nor the sales recovery. The second term describes the likelihood

contribution in case the price crash happens after the sales crash but before the sales recovery.

Note that it is at this latter case that the causal effect function δsp enters the model and affects

the instantaneous hazard rate. The third term equals the likelihood contribution in case the sales

crash and sales recovery precede the price crash. In this latter case, two causal effects, δsp and δrp,

affect the instantaneous hazard rate. Finally, the last term is equal to the likelihood contribution

in case the timing of price crash and sales crash is censored. The term Υs
p(t̃p|t̃s, x) is defined as

follows,

Υs
p(t̃p|t̃s) =

K−1∑
l=0

1
{
Yl ≤ t̃p − t̃s < Yl+1

}
×

l∑
η=0

exp
(
θspη
) [(

Λp(t̃p)
)1{η=l} (

Λp(t̃s + Yη+1)
)1{0≤η<l}

−
(
Λp(t̃s + Yη)

)1{0<η≤l} (
Λp(t̃s)

)1{η=0}
]
, (B-4)

where we use the definition of Υs
p and the fact that

δsp(t̃p|t̃s; θsp) =
K−1∑
l=0

1
{
Yl ≤ t̃p − t̃s < Yl+1)

}
exp(θspl).
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Concerning the term Υr
p(t̃p|t̃s, t̃r), by using the corresponding definition and also that

δrp(t̃p|t̃s, t̃r; θrp) =
K−1∑
l=0

1
{
Yl ≤ t̃p − t̃s − t̃r < Yl+1

}
exp(θrpl),

we get

Υr
p(t̃p|t̃s, t̃r) =

∫ t̃p

t̃s+t̃r

λp(w)δsp(w|t̃s)δrp(w|t̃s, t̃r)dw

=
K−1∑
l=0

1
{
Yl ≤ t̃p − t̃s − t̃r < Yl+1

} l∑
η=0

exp
(
θrpη
)

×
∫ 1{η=l}t̃p+1{0≤η<l}[Yη+1+t̃s+t̃r]

t̃s+t̃r+Yη

λp(w)δsp(w|t̃s)dw. (B-5)

Recall that

δsp(t̃p|t̃s; θsp) =
K−1∑
l=0

1
{
Yl ≤ t̃p − t̃s < Yl+1

}
exp(θspl).

Then, the last line of (B-5) becomes

K−1∑
ρ=0

1
{
Yρ ≤ t̃r + Yη < Yρ+1

}K−1∑
ω=ρ

1
{
Yω ≤ 1{η = l}t̃p+1 {0 ≤ η < l}

[
Yη+1 + t̃s + t̃r

]
− t̃s < Yω+1

}
ω∑
ι=ρ

exp
(
θspι
) [[

Λp(1{η = l}t̃p + 1 {0 ≤ η < l}
[
Yη+1 + t̃s + t̃r

]
)
]1{ι=ω} [

Λp(t̃s + Yρ+1)
]1{ρ≤ι<ω}

−
[
Λp(t̃s + Yι)

]1{ρ<ι≤ω} [
Λp(t̃s + t̃r + Yη)

]1{ι=ρ}]
. (B-6)

The likelihood for t̃s is expressed as

ls(t̃s|t̃p, x, vs) = γs1
{
t̃s < t̃p

}
φs(x)λs(t̃s)vs exp (−φs(x)Λs(t̃s)vs)

+γp1
{
t̃p < t̃s

} (
φs(x)λs(t̃s)δ

p
s(t̃s|t̃p)vs

)γs
×exp

(
−φs(x)Λs(t̃p) + Υp

s(t̃s|t̃p)vs
)

+(1− γs)(1− γp) exp (−φs(x)Λs(t̃s)vs) (B-7)

The first term is the likelihood contribution if the sales crash is realized before the price crash
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and therefore the hazard rate is not affected by the price crash. The second term describes the

likelihood contribution in case the price crash is realized before the price crash. As a consequence,

the instantaneous hazard rate is multiplied by the function δps which captures the causal effect of

the price crash on the sales crash. Finally, the last term represents the likelihood contribution in

case both durations corresponding to the price crash and sales crash are censored. By making use

of the definition of Υp
s and the fact that

δps(t̃s|t̃p; θps) =
K−1∑
l=0

1
{
Yl ≤ t̃s − t̃p < Yl+1

}
exp (θpsl) ,

it follows

Υp
s(t̃s|t̃p) =

K−1∑
l=0

1
{
Yl ≤ t̃s − t̃p < Yl+1

}
×

l∑
η=0

exp
(
θpsη
) [(

Λs(t̃s)
)1{η=l} (

Λs(t̃p + Yη+1)
)1{0≤η<l}

−
(
Λp(t̃p+Yη)

)1{0<η≤l} (
Λp(t̃p)

)1{η=0}
]
. (B-8)

Finally, the likelihood for t̃r is given by

lr(t̃r|t̃p, t̃s, x, vr) = γsγp1
{
t̃p < t̃s

}
× exp (− φr(x)Λr(t̃r)δ

s
r(t̃s)vr)

×
(
φr(x)λr(t̃r)δ

s
r(t̃s)vr

)γr
+γsγp1

{
t̃s < t̃p < t̃s + t̃r

}
× exp (−φr(x)δsr(t̃s)

(
Λr(t̃p − t̃s) + Υp

r(t̃r|t̃p, t̃s)
)
vr)

×
(
φr(x)λr(t̃r)δ

p
r (t̃r|t̃p, t̃s)δsr(t̃s)vr

)γr
+γsγp1

{
t̃s + t̃r<t̃p

}
exp (−φr(x)δsr(t̃s)Λr(t̃r)vr)

+γs(1− γp)× exp (− φr(x)Λr(t̃r)δ
s
r(t̃s)vr)

×
(
φr(x)λr(t̃r)δ

s
r(t̃s)vr

)γr
+ (1− γs). (B-9)

The first term is the likelihood contribution if the price crash is realized before the sales

recovery (note that by definition the sales crash always precedes the sales recovery) and therefore
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the hazard rate of the latter is not directly affected by the occurrence of the former. The second

term describes the likelihood contribution in case the price crash is realized after the price crash

but before the sales recovery. Hence, the instantaneous hazard rate is multiplied by δpr . The third

term describes the likelihood contribution for the case in which the price crash occurs after the

realization of the sales recovery and therefore the hazard rate of the latter is not affected by

the former. The fourth term gives the likelihood contribution if the price crash occurs after the

sales crash but we do not observe the time to the occurrence of the latter. Finally the last term

specifies the likelihood contribution for the case in which the timing of the sales crash is censored

and therefore we do not observe at all the duration which corresponds to the sales recovery. As

a consequence, the instantaneous hazard rate is multiplied by the function δps which captures the

causal effect of the price crash on the sales crash. By making use of the definition of Υp
r and the

fact that

δpr (t̃r|t̃p, t̃s; θpr) =
K−1∑
l=0

1
{
Yl ≤ t̃r − t̃p + t̃s < Yl+1

}
exp (θprl) ,

we get

Υp
r(t̃r|t̃p, t̃s) =

K−1∑
l=0

1
{
Yl ≤ t̃r − t̃p + t̃s < Yl+1

}
×

l∑
η=0

exp
(
θprη
) [(

Λr(t̃r)
)1{η=l} (

Λd(t̃p − t̃s + Yη+1)
)1{0≤η<l}

−
(
Λd(t̃p − t̃s)

)1{η=0} (
Λd(t̃p − t̃s + Yη)

)1{0<η≤l}
]
. (B-10)

Then l(t̃p, t̃s, t̃r|x) is then obtained by applying the formula (B-1).

C Prior Specification and Model Estimation

We use a Bayesian model specification and complete the model with the following priors. We

assume that

p(αj) ∝ 1 for j = p, s, r

p(βj) ∝ |Ω|−1/2 exp(−1
2
βjΩ

−1β
′
j) for j = p, s, r (C-1)
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where Ω is equal to an identity matrix times 10. And we assume that

p(θj1) ∝ (1/τ 2
0 ) exp(− 1

2τ20
θ2
j1) for j = p, s, r

p(θjη − θj(η−1)) ∝ (1/τ 2
1 ) exp(− 1

2τ21
(θjη − θj(η−1))

2) for j = p, s, r and η = 2, . . . , K.
(C-2)

where τ 2
0 and τ 2

1 are set equal to 100. We set no prior for Σ and we define

p(ϑ) =
∏
j

∏
η

p(βj)p(αj)p(θj1)p(θjη − θj(η−1)) (C-3)

where ϑ is a vector containing αj for j = s, p, r, θjη for j = s, p, r and η = 1, . . . , K, βj for

j = s, p, r, and Σ.

The posterior distribution of ϑ is given by is then

p(ϑ|t̃p, t̃s, t̃r, x) = p(ϑ)
∏
i

l(t̃p, t̃s, t̃r|x) (C-4)

where we use (t̃p, t̃s, t̃r, x) to refer to the duration variables and covariates for all observations.

We sample each of the elements of ϑ using a Random Walk Metropolis step within a Gibbs

sampler that updates each of the elements of ϑ at a time. We use a block update for βj and a

block update for θjη. In addition, we use an auxiliary 3× 3 matrix H with each r of its row equal

to [εr1, εr2, εr3] and we sample each εrc from a random walk and use H ′H as the proposal for Σ.

This specification allow us to avoid an informative prior specification for Σ, like the Wishart. The

MCMC chain ran for 10,000 iterations and we discarded the first 5,000 draws and then applied a

thinning factor of 3.
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Asymptotic Theory for Nonparametric Estimation of
Cumulative Incidence Functions

1 Introduction

Competing risks analysis is a very important field of applied statistics. The competing risks model

encompasses a large class of statistical models where the subject is exposed to several risks at the

same point in time and fails due to only one of these risks. The risk that triggers the failure

is referred to as the cause of failure. The elapsed time between the starting point of time and

the failure is called failure time. Competing risks models are relevant for many applications in

demography, economics, medical research and reliability analysis. In labor economics, competing

risks for an unemployed person could be employment and leaving the labor force. In finance,

competing risks for a limit order are cancellation and execution. In studies for the failure of

firms, competing risks could be acquisition and bankruptcy. In cancer studies, competing risks are

usually recurrence of the original cancer and successful treatment of the original tumor. Kalbfleisch

and Prentice (1991) and Van den Berg (2001) provide a detailed overview on this important topic.

Tsiatis (1975) has shown that the complete identification of the competing risks model is

not feasible. In particular, for any joint distribution of the failure time and the cause of failure

we can always construct a competing risks model with independent risks that will generate this

particular joint distribution. However, it is possible to achieve nonparametric identification of two

functions without claiming anything about the dependence structure of the underlying risks. The

first one is the cumulative incidence function and the second one the cause specific hazard rate.

The former gives the probability of failure by a certain point of time due to a particular risk in

the presence of all other risks, whereas the latter gives the instantaneous rate of failure due to a

specific risk in the presence of all other risks. The cumulative incidence function and the cause
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specific hazard rate are important tools in competing risks analysis for several reasons. First, they

can be employed in determining which risk is greater than the others, namely, which risk is more

likely to trigger the failure. Second, the two quantities can be used to compare two different groups

(e.g., different treatment, different race) with respect to a particular risk, that is, to investigate

for which group the risk of interest is greater. Aly et al. (1994) propose relevant test statistics for

the first case, whereas Gray (1988), Lin et al. (1997), Bajorunaite and Klein (2007), andSchaubel

and Wei (2011) build different test statistics for the second case. Lee and Whang (2009) propose

a class of nonparametric tests for testing the significance of treatment effects that can be directly

applied by using cumulative incidence functions if the failure time and the cause of failure are

always observed. Finally, the knowledge of the shape of the cumulative incidence function and

the cause specific hazard rate is important in its own right as we can get useful insights about the

occurrence of failures as well as the effects of covariates on failures.

The goal of this paper is to derive asymptotic results for the nonparametric estimator of the

cumulative incidence function in cases in which continuous covariates affect the realization of

the failure time, and the cause of failure is Missing At Random for some observations. More

precisely, we provide results on the uniform convergence rate and pointwise asymptotic normality

of our estimator. We will rely on counting process theory as well as kernel smoothing theory to

derive the asymptotic results. Counting processes techniques are very successful in dealing with

censored data that commonly arise in survival analysis problems. Andersen et al. (1993) and

Fleming and Harrington (1991) provide an excellent review of this important field. On the other

hand, Nielsen and Linton (1995), Mammen and Nielsen (2007), and Linton et al. (2011) address

problems within the context of survival analysis as well as of conventional regression analysis by

combining the classical counting process theory with kernel smoothing methods. Nonparametric

techniques have recently received substantial attention because they do not require functional form

assumptions regarding the underlying model and consequently they do not suffer from the problem

of model misspecification which can potentially give erroneous statistical results. Peng and Fine

(2008), for instance, develop a two sample nonparametric test statistic for the significance of a

particular covariate on the survival probability of prostate cancer patients. Their findings contrast

the results of the parametric analysis which adopts a Cox proportional hazard form for the cause
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specific hazard rates.

The proposed nonparametric estimator is complementary to i) the developed (semi)-parametric

procedures for the estimation of the cumulative incidence function with right-censored data, ii)

the suggested parametric methods for right-censored data where missing observations, concerning

the cause of failure, occur randomly. Regarding the first category, there are two main approaches.

The first one is to use either a Cox specification (Andersen et al., 1993) or an additive specification

(Shen and Cheng, 1999) for the cause specific hazard rate and then, based on the estimation results

of the first step, to estimate the cumulative incidence function. The second one is to directly model

the cumulative incidence function. Fine and Gray (1999) adopt a fully parametric approach and

make the assumption that the complementary log-log of the cumulative incidence function is on the

proportional hazards form. Jeong and Fine (2007) use a Gombertz distribution to parameterize the

cumulative incidence function. Moreover, Scheike et al. (2008) adopt a semiparametric approach

that allows for time-varying effects of the covariates and includes as special cases the Cox’s model,

the Aalen’s additive model and the combination of these two. On the other hand, Lu and Liang

(2008) develop parametric estimation methods with randomly missing cause of failure. They adopt

(augmented) inverse probability weighting scheme to deal with missing observations, and additive

hazard specification for the underlying cause specific hazard rates.

Our focus on the concept of cumulative incidence function rather than cause specific hazard

rate is driven by the fact that the former is the most commonly employed quantity in the empirical

analysis of competing risks data. In particular, one drawback of the cause specific hazard rate is

that it is not linked to some probability distribution, if the failure time is continuously distributed

and the risks are not independent of each other. On the other hand, cumulative incidence function

has an easy probabilistic interpretation as it equals the proportion of failures due to a particular risk

by a certain point of time. Additionally, the use of cause specific hazard rates for the comparison

of two different groups with respect to a particular risk may not give satisfactory answers. In

particular, Gray (1988) describes an example in which the cause specific hazard rates of a certain

risk for different groups follow a particular ordering; however, this ordering is not preserved under

the comparison of the respective cumulative incidence functions.

The outline of the paper is as follows. Section 2 discusses the construction of the nonparametric
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estimator. In Section 3, asymptotic results for the nonparametric estimator are presented. Section

4 concludes. The technical proofs of the main results are relegated to the Appendix.

2 Nonparametric estimator

For expositional convenience only, we will focus on two possible risks. Let L1 > 0 and L2 > 0

represent the latent failure times that correspond to each risk, L = min(L1, L2) be the (actual)

failure time and γ be a failure type indicator, that is, γ = 1 if L1 < L2 and γ = 2 if L2 < L1.

Moreover, let X be a vector of observed covariates with support X⊂Rd which are associated with

the latent failure outcomes L1 and L2.

Let x ∈ X denote the realization of X. Define for each risk j = 1, 2 and (t, x) ∈ R+×X the

cumulative incidence function

Fj(t|x) := P(L ≤ t, γ = j|x). (1)

Namely, the value of Fj(t|x) equals the probability of failure by time t due to risk j for a subject

with characteristics x. Note that limt→∞ Fj(t|x) = P(γ = j|x) < 1 if P(Lj < Lξ|x) < 1 for ξ = 1, 2

with ξ 6= j, that is, Fj(t|x) is a subdistribution function. To obtain an explicit expression for the

cumulative incidence function we also introduce the notion of the cause specific hazard rate. We

will first suppose that the stochastic variables L1 and L2 are absolutely continuous (with respect

to R+) and consequently the stochastic variable L as well. Then, the cause specific hazard rate

function λj(t, x) is defined as follows

λj(t, x)dt = P(t ≤ L < t+ dt, γ = j|L ≥ t, x) + o(dt) (2)

for any (t, x) ∈ R+×X, where the notation dt denotes throughout the paper an infinitesimal

time increment. The λj(t, x) quantitatively describes for a subject with characteristics x the

instantaneous rate of failure at t due to risk j given survival up to t − . We also introduce the

cumulative cause specific hazard rate Λj(t, x) =
∫ t

0
λj(u, x)du. Next, consider also the overall

hazard rate λ(t, x) with λ(t, x) = λ1(t, x) + λ2(t, x) for all (t, x) ∈ R+ ×X and the corresponding
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cumulative overall hazard rate Λ(t, x) =
∫ t

0
λ(u, x)du. Note that the λ(t, x) gives the instantaneous

rate of failure at t due to either risk 1 or risk 2 given survival up to t− . By using (1) and (2) we

get for j = 1, 2,

Fj(t|x) '
∫ t

0

S(u− |x)dΛj(u, x), (3)

where S(t − |x) = P(L ≥ t|x). The latter survival function can be explicitly calculated by the

product-integral formula as follows

S(t|x) =
∏
u≤t

{1− dΛ(u, x)} . (4)

We impose the condition that our study consists of n independent subjects. If there were not

Missing At Random (MAR) observations we would observe n independently and identically dis-

tributed (i.i.d.) copies (Ti, Xi, γ̃i) (i = 1, ..., n) of (T,X, γ̃), where T = min(L,Z), γ̃ = γ1 {L ≤ Z} ,

and 1 {B} is the indicator function that is equal to one if the event B occurs and zero otherwise.

The stochastic variable Z is called censoring variable and satisfies the property Z ⊥ L1, L2 | X.

Namely, we would be encountered with the conventional right-censored competing risks model.

In this paper, we will nonparametrically estimate the cumulative incidence function, when

the cause of failure is missing for some uncensored observations and the missing data mechanism

satisfies the MAR assumption (Rubin, 1976; Little and Rubin, 1987). In particular, introduce the

missing indicator variable Ri for the cause of failure. The value of Ri equals 0 if Ti = Li and

the cause of failure is not observed. On the other hand, the stochastic variable Ri is equal to 1 if

Ti = Li and the cause of failure is observed or if Ti = Zi. The MAR scheme implies that

P(R = 1|γ̃, γ̃ > 0, T, x) = P(R = 1|γ̃ > 0, x) =: π(x). (5)

Hence, π(x) specifies the probability that the cause of failure is missing given the subject-level

characteristics x, and the fact that γ̃ is strictly positive. In view of the above discussion, the

dataset consist of n i.i.d. tuples (Ti, Xi, Ri, Riγ̃i, 1{γ̃i > 0}). We also assume that

R⊥Z,L1, L2|X. (6)
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In the above discussion we implicitly assume that the covariates are time-invariant. The same

assumption is also made for the missing indicator R. Under this scenario, information on whether

the failure cause is missing will be available at the beginning of the risk process. However, the

time-invariant setup is adopted only for notational convenience. In particular, all the results in

the sequel are true if both X and/or R are predictable. Predictability is ensured by imposing the

condition that X and R are either caglad (i.e., left continuous with right limits) or predictable

cadlag (i.e., right continuous with left limits). Predictability for X and R is roughly equivalent

to saying that the value of the underlying processes at t is known just prior to this point of time.

This implies for the missing mechanism that at every point of time we know whether the cause of

failure will be missing in case the subject fails at the next moment of time.

We will study two estimators for the cumulative incidence function. In particular,

F̂C
j (t|x) =

∫ t

0

ŜC(u− |x)dΛ̂C
j (u, x), j = 1, 2, (7)

and

F̂L
j (t|x) =

∫ t

0

ŜL(u− |x)dΛ̂L
j (u, x), j = 1, 2. (8)

where the superscripts C and L refer to the type of smoothing with respect to the vector x.

In particular, C is used for the local constant smoothing, whereas L is used for the local linear

smoothing. To obtain these estimators, we need introduce some extra notation. Consider the

counting processes Nji(t) = 1 {Ti ≤ t, γ̃i = j, Ri = 1} , Noi(t) = 1 {Ti ≤ t, γ̃i > 0, Ri = 0} . The

first process describes whether the subject i has failed due to risk j at the time interval [0, t] and

the cause of failure is not missing, and the second process represents whether the subject i has

failed due to either risk 1 or risk 2 at the time interval [0, t] and the cause of failure is missing.

We also introduce the counting process N̄i(t) = 1 {Ti ≤ t, γ̃i > 0} which specifies whether the

subject i has failed due to either risk 1 or risk 2 at the time interval [0, t]. It is straightforward

to see that N̄i(t) = N1i(t) + N2i(t) + Noi(t). Moreover, consider the ”at risk” predictable process

Yi(t) = 1 {Ti ≥ t} which describes whether the subject i has survived and not be censored up to

t−.
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Let ω = (ω1, ..., ωd) ∈ Rd and consider the quantity Kh(ω) = 1
hd

d∏
p=1

K
(ωp
h

)
, where K is a proba-

bility density function with symmetric around zero compact support K, and h is a sequence of non-

negative numbers such that h = o(n). Next, introduce the quantity Lh(ω) = Kh(ω)−Kh(ω)ωTD̄−1c̄1
c̄0−cT1 D̄−1c̄1

,

with

c̄0 =
1

n

n∑
i=1

Kh(x−Xi),

c̄1ρ =
1

n

n∑
i=1

Kh(x−Xi)(xρ −Xiρ),

d̄ρκ =
1

n

n∑
i=1

Kh(x−Xi)(xρ −Xiρ)(xκ −Xiκ),

and c̄1 = (c̄1ρ)
d
ρ=1 and D̄ = (d̄ρκ)

d
ρ,k=1. The notation xρ and Xiρ refer to the ρ−th element of the

corresponding row vector. To proceed with the formal description of the two estimators we also

consider the (local) weights wνi (x), bνi (x) for ν = C,L (suppressing dependence on n for notational

simplicity)

wCi (x) =
Ri

π̂C∗ (Xi, γ̃i)
Kh(x−Xi)

/ n∑
i=1

Ri

π̂C∗ (Xi, γ̃i)
Kh(x−Xi),

wLi (x) =
Ri

π̂L∗ (Xi, γ̃i)
Lh(x−Xi)

/ n∑
i=1

Ri

π̂L∗ (Xi, γ̃i)
Lh(x−Xi),

and

bCi (x) = Kh(x−Xi)
/ n∑

i=1

Kh(x−Xi),

bLi (x) = Lh(x−Xi)
/ n∑

i=1

Lh(x−Xi),

with π̂ν∗ (Xi, γ̃i) = 1{γ̃i 6= 0}π̂ν(Xi) +1{γ̃i = 0} and π̂ν(Xi) =
∑n

i=1 b
ν
i (x)Ri.Note that

∑n
i=1 w

ν
i (x) =∑n

i=1 b
ν
i (x) = 1 for all x ∈ X.

Introduce also the conditional distribution function H(t|x) := P(T > t|x). The corresponding

estimators of the cumulative hazard rates Λj(t, x) and Λ(t, x) are given by
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Λ̂ν
j (t, x) =

n∑
i=1

∫ t

0

wνi (x)

π̂ν∗ (Xi, γ̃i)Ĥν(u− |x)
dNji(u), Λ̂ν(t, x) =

n∑
i=1

∫ t

0

bνi (x)

H̆ν(t− |x)
dN̄i(u), (9)

where the above integrals are written in Riemann–Stieltjes form, H̆ν(t−|x) =
∑n

i=1 w
ν
i (x)1(T ≥ t)

and Ĥν(t − |x) =
∑n

i=1 b
ν
i (x)1(T ≥ t) for ν = C,L are estimators for the quantity H(t − |x) =

limu↑tH(u|x). Note that for the estimation of the Λj(t, x) we employ inverse probability weighting

(either local constant or local linear smoothing) scheme. Similar approach is popular in the

standard regression context for dealing with MAR observations (Hu et al., 2010). On the other

hand, we adopt the conventional smoothing (either local constant or local linear) techniques for

the estimation of the cumulative hazard rate Λ(t, x). The reason that we do not need inverse

probability weights for its estimation is that we always observe the variable Ti and the stochastic

variable 1{γ̃i > 0} regardless of whether we observe the cause of failure.

The respective estimator of S(t|x) is given by

Ŝν(t|x) =
∏
u≤t

{
1− dΛ̂ν(u, x)

}
, (10)

where the product is taken over the discontinuity points of the estimator Λ̂ν(t, x). The estimators

Λ̂ν
j (t, x) and Λ̂ν(t, x) are generalization of the Nelson-Aalen estimator, and Ŝν(t|x) is generalization

of the Kaplan-Meier estimator in the sense that continuous covariates, which affect the realization

of L1, L2 (and therefore L), are included in the model in a fully nonparametric way.

3 Asymptotic results

In this section, we will investigate the large sample properties of the estimator (7) and (8). We

give some extra definitions that will be used in the sequel. We first assume that the support of X

is of the form X=

p=d⊗
p=1

[xlp, xup] ⊂Rd, with xlp < xup for any p = 1, ..., d. We also define the internal

region

Xh =
{
x ∈ X :

{
x− hω : ω ∈ Kd

}
⊂ X

}
. (11)
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The set Xh is a compact subset of the interior of X that contains all points that are sufficiently far

away from the boundary in which the local constant smoother suffers from the so-called edge effects.

To give an example, if K = [−1, 1] we would have Xh =

p=d⊗
p=1

[xlp + h, xup − h]. For each x ∈ Xh,

let τ(x) be some real positive number such that τ(x) < sup {t ∈ R+ : H(t|x) > 0} and introduce

also the positive real number τ ≤ min {τ(x) : x ∈ Xh}. Finally, H(t, x) := P(T > t|x)f(x), where

f(x) is the probability density function of the stochastic vector X, H(t, x, γ̃ > 0) := H(t, x|γ̃ >

0)P(γ̃ > 0), H(t, x, γ̃ = 0) := H(t, x|γ̃ = 0)P(γ̃ = 0) and ||K||22 :=
∫
K2(u)du. We will employ

the following assumptions to derive the rate of uniform consistency rate and asymptotic normality

of the proposed estimator. All the results are proved in the Appendix.

Assumption 1 The derivatives of λj(t, x) (j = 1, 2) and H(t|x) with respect to x are continu-

ously differentiable up to order 2 on the interior of [0, τ(x)] for any x ∈ Xh, and the corresponding

derivatives are uniformly bounded. Moreover, the probability density function f(x) is strictly pos-

itive on Xh.

Assumption 2 The probability of missing cause of failure π(x) is bounded away from zero, that

is, π(x) ≥ ε > 0 for any x ∈ X.

Assumption 3 The univariate kernel K (i) is a probability density function with compact support

K=[−Sk,Sk], where 0 < Sk <∞, (ii) is of order 2, that is,

∫ Sk
−Sk

K(u)uηdu =


1, η = 0,

0, η = 1,

µ2(K) <∞, η = 2.

Assumption 4 For the bandwidth sequence it holds lnn = o(nhd).

The above conditions are standard and very weak in the context of nonparametric estima-

tion. Assumption 1 gives the smoothness conditions about the underlying functions. Assumption

2, which describes the properties of the kernel that can be used for the implementation of the

nonparametric estimator, allows for most commonly used kernels such as Epanechnikov, Quartic
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and Triweight. Note that we work with product kernels just for ease of notation. All the results

of the paper carry over to nonparametric estimators, which employ other multivariate kernels.

Finally, Assumption 3 is standard in nonparametric estimation and is required to ensure uniform

convergence for the proposed nonparametric estimation method.

Let αn ≡
(

lnn
nhd

) 1
2 + h2, Ξ ≡ [0, τ ]×Xh. The first main result presents the uniform consistency

rate for the nonparametric estimator of the cumulative incidence functions.

Theorem 1 Suppose Assumptions 1-4, hold. Then, for j = 1, 2 and ν = C,L, we have, as n→∞

sup
(t,x)∈Ξ

∣∣∣F̂ ν
j (t|x)− Fj(t|x)

∣∣∣ = Op (αn) .

The first part of the above convergence rate corresponds to the stochastic part, whereas the

second to the bias part. Bordes and Gneyou (2011) have obtained a similar result for an esti-

mator which is related to the cumulative incidence function without considering the possibility of

MAR observations. Also, their estimator is based on local constant smoothing. It is also worth

mentioning that for the calculation of the convergence rate we focus, for the variable t, on the

compact set [0, τ ] where the survival function H(t|x) is bounded away from zero for all x ∈ Xh.

The same approach is also adopted by Dabrowska (1989) who studies uniform convergence of the

conditional Kaplan-Meier estimator. This assumption is essential for deriving uniform consistency

of the estimated quantities which are employed in the estimation of the cumulative incidence

function.

To continue with the asymptotic distribution, we give some extra definitions. For any t > 0,

introduce the filtration

Ft = σ(N1i(u), N2i(u), Noi(u), Xi, Ri, Yi(u) : 0 ≤ u ≤ t, 1 ≤ i ≤ n),

where the notation σ specifies the sigma algebra generated by the events within the parenthesis.

With these definitions, for each j = 1, 2, the counting processes Nji(t) and Noi(t), have stochastic
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intensity λj(t,Xi)Yi(t)Ri and λ(t,Xi)Yi(t)(1−Ri), respectively, that is,

λj(t,Xi)Yi(t)Ridt = E((Nji(t+ dt)−)−Nji(t)−|Ft−),

λ(t,Xi)Yi(t)(1−Ri)dt = E((Noi(t+ dt)−)−Noi(t)−|Ft−),

where Nji(t)− = limu↑tNji(u) and Noi(t)− = limu↑tNoi(u) . Namely, the λj(t,Xi)Yi(t)Ri and

λ(t,Xi)(1 − Ri)Yi(t) give the conditional average rate of change in the counting processes Nji(t)

and Noi(t), respectively, over the interval [t, t+ dt). The stochastic intensities λj(t,Xi)Yi(t)Ri

and λ(t,Xi)Yi(1−Ri) are predictable with respect to Ft. We will also assume that the n−variate

process N̄(t) = {N̄1(t), ..., N̄n(t) : t ≥ 0} is a multivariate counting process, that is, it is not

possible for two processes N̄i(t), N̄η(t), with i, η = 1, ..., n and i 6= η, to simultaneously jump.

We should point out here that as N̄i(t) jumps only if either N1i(t) or N2i(t) or Noi(t) jumps, the

counting processes N1i(t), N2i(t) and Noi(t) will not jump simultaneously either. The latter facts

are used for the derivation of the asymptotic variance of the nonparametric estimator.

For each t > 0, j = 1, 2, and i = 1, ..., n, consider the Ft−measurable processes

Mji(t) = Nji(t)−
∫ t

0

λj(u,Xi)Yi(u)Ridu, Moi(u) = Noi(t)−
∫ t

0

λ(u,Xi)Yi(u)(1−Ri)du.

It is not difficult to verify that EMji(t) = 0. Working analogously to the proof of Theorem

1 of Shorack and Wellner (2009), we note that for any t > s > 0, E [Mji(t)|Fs] = Nji(s) −∫ s
0
λj(u,Xi)Yi(u)Ridu = Mji(s) and E [Moi(t)|Fs] = Noi(t)−

∫ s
0
λj(u,Xi)Yi(u)(1−Ri)du = Moi(s)

for all t > s > 0. Again, following the steps of the proof of Theorem 1 of Shorack and Wellner

(2009) we get EM2
ji(t) ≤ 1 and E [Moi(t)]

2 ≤ 1 for each t > 0. The above discussion shows that

Mji(t) and Moi(t) are zero-mean (local) square integrable martingales with respect to the filtration

Ft.

Next, our focus is on the asymptotic distribution of the nonparametric estimators (7) and (8)

for any fixed value x ∈ Xh. Let D [0, τ(x)] denote the space of cadlag functions endowed with

the Skorohod topology. Additionally, the symbol =⇒ will imply weak convergence. Define for
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j = 1, 2,

dj(t, u, x) =
S(u|x)

H(u, x)
, ρj(t, u, x) = −

∫ t
u
S(ε|x)λj(ε, x)dε

H(u, x)
.

Additionally, for ξ = 1, 2, with ξ 6= j,

bCjA(t, x) =
1∑
l=0

µ2(K)hr

(2− l)!l!

d∑
p=1

∫ t

0

∂2−lλj(u, x)

∂x2−l
p

∂lH(u, x)

∂xlp
[dj(t, u, x) + ρj(t, u, x)] du

bCjB(t, x) =
1∑
l=0

µ2(K)h2

(2− l)!l!

d∑
p=1

∫ t

0

∂2−lλξ(u, x)

∂x2−l
p

∂lH(u, x)

∂xlp
ρj(t, u, x)du,

and

bLjA(t, x) =
1

2

d∑
p=1

∫ t

0

∂2λj(u, x)

∂x2
p

H(u, x) [dj(t, u, x) + ρj(t, u, x)] du,

bLjB(t, x) =
1

2

d∑
p=1

∫ t

0

∂2λξ(u, x)

∂x2
p

H(u, x)ρj(t, u, x)du,

Moreover,

vjA(t, x) = ||K||22
∫ t

0

[
1

π(x)
H(u, x, γ̃ > 0) +H(u, x, γ̃ = 0)

]
d2
j(t, u, x)λj(u, x)du,

vjB(t, x) = ||K||22
∫ t

0

H(u, x)[λj(u, x) + λξ(u, x)]ρ2
j(t, u, x)du,

vjAB(t, x) = 2 ||K||22
∫ t

0

H(u, x)dj(t, u, x)ρj(t, u, x)λj(u, x)du,

ς1(t, x) = ||K||22
∫ t

0

H(u, x) [d1(t, u, x)ρ2(t, u, x) + ρ1(t, u, x)ρ2(t, u, x)]λ1(u, x)du,

ς2(t, x) = ||K||22
∫ t

0

H(u, x) [d2(t, u, x)ρ1(t, u, x) + ρ1(t, u, x)ρ2(t, u, x)]λ2(u, x)du.

Before stating Theorem 2, which establishes, pointwise in x, results for the weak convergence on

a Gaussian process of our nonparametric estimator, we replace Assumption 4 by Assumption 5.

Assumption 5 For the bandwidth sequence it holds i) lnn = o(nhd), ii) nhd+4 = O(1).

Clearly, Assumption 5 is stronger than Assumption 4. The extra condition that appears in

Assumption 5 has as consequence that the bandwidth parameter is optimally chosen in the sense
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that the bias squared and variance of the nonparametric estimator are of the same order.

We are now in a position to state Theorem 2.

Theorem 2 Suppose Assumptions 1-3,5 hold. Then, for each x ∈ Xh, we have, as n→∞

√
nhd

 F̂ ν
1 (t|x)− F1(t|x)− bν1A(t, x)− bν1B(t, x)

F̂ ν
2 (t|x)− F2(t|x)− bν2A(t, x)− bν2B(t, x)

 =⇒ N (0, V (t, x))

over D [0, τ(x)]2 , where

V (t, x) =

v1A(t, x) + v1B(t, x) + v1AB(t, x) ς1(t, x) + ς2(t, x)

ς1(t, x) + ς2(t, x) v2A(t, x) + v2B(t, x) + v2AB(t, x)


is a positive semidefinite matrix on [0, τ(x)] for each x ∈ Xh.

To digest the above result about the asymptotic distribution, we make some comments. Recall

that

F̂ ν
j (t|x) =

∫ t

0

Ŝν(u− |x)dΛ̂ν
j (u, x).

For the estimation of Fj(t, x) we use the estimators Λ̂ν
j (t, x) and Ŝν(t, x). The bias and variance

due to Λ̂ν
j (t, x) is captured by the terms bνjA(t, x) and vjA(t, x). On the other hand, the bias

and variance due to Ŝν(t, x) is captured by the terms bνjB(t, x) and vjB(t, x). Moreover, the term

vjAB(t, x) refers to the covariance due to the simultaneous estimation of Λ̂ν
j (t, x) and Ŝν(t, x). To

gain some more intuition, assume that we know the survival function S(t|x). Then, we obtain the

estimator F̃ ν
j (t|x) =

∫ t
0
S(u− |x)dΛ̂ν

j (u, x) for the cumulative incidence function. The asymptotic

distribution of F̃j(t|x) will be then expressed as follows

√
nhd

[
F̃ ν
j (t|x)− Fj(t|x)− bνjA(t, x)

]
=⇒ N (0, vjA(t, x)).

Regarding the off-diagonal terms of the matrix V (t, x), they capture the covariance between

the estimators F̂ ν
1 (t|x) and F̂ ν

2 (t|x). By definition, the quantity ςj(t, x) is expressed as the sum

of two terms. The reason for the presence of these two terms is that in order to estimate S(t|x),
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we have to estimate Λ1(t, x) and Λ2(t, x). Hence, for the estimation of Fj(t|x) we need estimate

”twice” the quantity Λj(t, x) and ”once” the quantity Λξ(t, x), with ξ 6= j. Finally, note that

the correlation between the estimators Λ̂ν
j (t, x) and Λ̂ν

ξ (t, x) is asymptotically negligible as the

correlation between the underlying counting process martingales which are employed for these two

estimators are asymptotically negligible (see Appendix for the details).

Corollary 1 Suppose Assumptions 1,3,4,5 hold and π(x) = 1 for all x ∈ Xh. Then, for each

x ∈ Xh, we have, as n→∞

√
nhd

 F̂ ν
1 (t|x)− F1(t|x)− bν1A(t, x)− bν1B(t, x)

F̂ ν
2 (t|x)− F2(t|x)− bν2A(t, x)− bν2B(t, x)

 =⇒ N (0, V̈ (t, x))

over D [0, τ(x)]2 , where

V̈ (t, x) =

v̇jA(t, x) + v1B(t, x) + v1AB(t, x) ς1(t, x) + ς2(t, x)

ς1(t, x) + ς2(t, x) v̇jA + v2B(t, x) + v2AB(t, x)

 ,

with v̈jA(t, x) = ||K||22
∫ t

0
H(u, x)d2

j(t, u, x)λj(u, x)du.

To the best of our knowledge, the above result is the first one which characterizes the asymptotic

distribution of the nonparametric estimator of cumulative incidence functions under the assump-

tion that continuous covariates affect the latent failure times and the cause of failure is always

observed. By abusing a bit our notation, Pepe (1991) shows that for a homogeneous population

the following stochastic expansion holds uniformly in t > 0,

F̂j(t)− Fj(t) =
1

n

n∑
i=1

∫ t

0

[dj(t, u) + ρj(t, u)]dMji(u) +
1

n

n∑
i=1

∫ t

0

ρj(t, u)dMξi(u) + op

(
n−

1
2

)
.

Application of the martingale central limit theorem leads exactly to the variance-covariance matrix

of Corollary 1 (of course by suppressing dependence on x).

To verify the validity of the statement of Corollary 1, we also consider the nonparametric

estimator of the cumulative incidence function if there is no censoring (i.e., Z = ∞) and miss-
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ing observations. For simplicity, we focus on the local constant estimator. Clearly, Nji(t) =

1 {Ti ≤ t, γi = j} and consequently,

F̂C
j (t|x) =

1∑n
i=1Kh(x−Xi)

n∑
i=1

∫ t

0

Kh(x−Xi)dNji(u),

ŜC(t− |x) =
1∑n

i=1Kh(x−Xi)

n∑
i=1

Kh(x−Xi)Yi(t),

The absence of censoring implies S(t|x) = H(t|x) for each (t, x) ∈ R+×X and we thus get

F̂C
j (t|x)− Fj(t|x) =

1∑n
i=1Kh(x−Xi)

n∑
i=1

∫ t

0

Kh(x−Xi)dNji(u)−
∫ t

0

S(u− |x)λj(u, x)du

=
1∑n

i=1Kh(x−Xi)

n∑
i=1

∫ t

0

Kh(x−Xi)dMji(u)

+

∫ t

0

[
ŜC(u− |x)− S(u− |x)

]
λj(u, x)du

+
1∑n

i=1Kh(x−Xi)

n∑
i=1

∫ t

0

Kh(x−Xi)Yi(u) [λj(u,Xi)− λj(u, x)] du

= [Vjj(t, x) + Vjξ(t, x) + Bjj(t, x) + Bjξ(t, x)] [1 + op(1)] ,

where the quantities Vjj(t, x),Vjξ(t, x),Bjj(t, x),Bjξ(t, x) are defined in the Appendix by setting

π∗(Xi, γ̃i) = 1 for this case. The second equality follows by Mji(t) = Nji(t)−
∫ t

0
λj(u,Xi)Yi(u)du,

and the third equality is obtained by using the Duhamel equation (see proof of Theorem 2) for the

expansion of the term ŜC(u−|x)−S(u−|x), and the fact that infx∈Xh

∑n
i=1Kh(x−Xi)/n ≥ ε+op(1)

for large n, which is obtained by combining standard results in nonparametric density estimation

(Gine and Guillou, 2002) and Assumption 1. Using arguments similar to the ones applied in the

proof of Theorem 2, we get the distribution of Corollary 1.

4 Conclusions

This paper proposes a nonparametric method for estimating for each risk the corresponding cu-

mulative incidence function in competing risks models, if continuous covariates affect the latent

failure outcomes and the cause of failure is Missing At Random for some observations. The rate

92



of uniform consistency on compact sets and pointwise asymptotic normality of the proposed esti-

mator are derived. Existing estimation procedures, which account for covariates, are either fully

parametric or semiparametric. In contrast to these estimation methods, the proposed estimator

does not make any functional assumptions and thus it is robust under any specification for the

underlying model. There are several topics for further research. First, the asymptotic distribution

of the nonparametric estimator is characterized by unknown quantities that we need to estimate

for statistical inference (e.g., construction of confidence intervals) that is not very appealing. Thus,

we plan to derive the asymptotic distribution of the bootstrap estimator that will have the advan-

tage of not needing to estimate unknown quantities. Second, interesting topic for future research

is the use of the proposed nonparametric estimator for testing the significance of treatment effects

in competing risks models and to extend the work of previous relevant articles that were cited in

the introduction. For instance, the test statistic for the significance of distributional treatment

effects which is developed by Lee and Whang (2009) is not directly applicable in cases in which the

outcome is censored for some of the observations. Finally, it is worthwhile studying nonparametric

estimation of the cumulative incidence functions in the multivariate competing risks model (Cheng

et al., 2007) which is extension of the conventional competing risks model. In this setup, either the

subjects are clustered or there are multiple observations for each subject. Multivariate competing

risks models are useful, for instance, in the analysis of data for familial diseases or unemployment

data where multiple unemployment spells are observed for each individual.
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A Appendix

We begin with two lemmas, whose statements will be employed to prove the main results in the

main text.

Define Fγ̃=j(t|x) = P(T ≤ t, γ̃ = j|x) for j = 1, 2. Consider the respective estimators of

Fγ̃=j(t|x) and H(t− |x)

F̂ ν
γ̃=j(t|x) =

n∑
i=1

wνi (x)Nji(t), F̆ ν
γ̃=j(t|x) =

n∑
i=1

bνi (x)Nji(t),

and

Ĥν(t− |x) =
n∑
i=1

wνi (x)Yi(t), H̆ν(t− |x) =
n∑
i=1

bνi (x)Yi(t).

It is clear that the local weight for the observation i of the estimators F̂ ν
γ̃=j(t|x) and Ĥν(t− |x) is

equal to the local weight of the estimators F̆ ν
γ̃=j(t|x) and H̆ν(t|x), multiplied by Ri

π̂ν∗ (Xi)
for ν ∈ C,L.

Lemma 1 states that multiplication results in a stochastic error of order Op(αn).

Lemma 1 Suppose Assumptions 1-4 hold. Then, we have for ν ∈ {C,L} and j = 1, 2, as n→∞,

sup
(t,x)∈Ξ

∣∣∣F̂ ν
γ̃=j(t|x)− F̆ ν

γ̃=j(t|x)
∣∣∣ = Op(αn),

sup
(t,x)∈Ξ

∣∣∣Ĥν(t− |x)− H̆ν(t− |x)
∣∣∣ = Op(αn).

Proof. We restrict our attention to the local constant estimator. Similar algebraic calculations

can be carried out for the local linear estimator and therefore we will skip this part.

To keep the notation simple, we omit the superscript C. Let

F̂γ̃=j(t, x) =
1

n

n∑
i=1

Ri

π̂∗(Xi, γ̃i)
Kh(x−Xi)Nji(t), F̆γ̃=j(t|x) =

1

n

n∑
i=1

Kh(x−Xi)Nji(t),

and

f̂(x) =
1

n

n∑
i=1

Ri

π̂∗(Xi, γ̃i)
Kh(x−Xi), f̆(x) =

1

n

n∑
i=1

Kh(x−Xi).
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Clearly,

F̂γ̃=j(t|x) =
F̂γ̃=j(t, x)

f̂(x)
, F̆γ̃=j(t|x) =

F̆γ̃=j(t, x)

f̆(x)
.

Define Fj(t, x) = |F̂γ̃=j(t, x) − F̆γ̃=j(t, x)|. In the following we show that sup(t,x)∈ΞFj(t, x) =

Op(αn). It is straightforward to see that

sup
(t,x)∈Ξ

Fj(t, x) ≤ sup
(t,x)∈Ξ

∣∣∣∣∣ 1n
n∑
i=1

Kh(x−Xi)Nji(t)

[
Ri (π∗(Xi, γ̃i)− π̂∗(Xi, γ̃i))

π̂∗(Xi, γ̃i)π∗(Xi, γ̃i)

]∣∣∣∣∣
+ sup

(t,x)∈Ξ

∣∣∣∣∣ 1n
n∑
i=1

Kh(x−Xi)Nji(t)

[
Ri − π∗(Xi, γ̃i)

π∗(Xi, γ̃i)

]∣∣∣∣∣
=: sup

(t,x)∈Ξ

FjA(t, x) + sup
(t,x)∈Ξ

FjB(t, x). (A-1)

Let βn ≡
(

lnn
nhd

) 1
2 +h. By definition, π∗(Xi, γ̃i) = 1{γ̃i 6= 0}π(Xi) +1{γ̃i = 0} and hence, π̂∗(Xi, γ̃i) =

1{γ̃ 6= 0}π̂(Xi) +1{γ̃i = 0}. By Hansen (2008), π̂(Xi) − π(Xi) = Op(αn) uniformly in i =

1, ..., n, if Xi ∈ Xh, and π̂(Xi) − π(Xi) = Op(βn) uniformly in i = 1, ..., n, if Xi ∈ X\Xh. Also,

π(Xi) is bounded away from zero with probability one, by making use of Assumption 2. Hence,

mini≤i≤n π̂∗(Xi, γ̃i)π∗(Xi, γ̃i) ≥ ε + op(1) for ε > 0 and consequently we get for positive constants

C1 and C2, and with large probability

sup
(t,x)∈Ξ

FJA(t, x) ≤ C1Op(αn) sup
x∈Xh

∣∣∣∣∣ 1n
n∑
i=1

Kh(x−Xi)1{Xi ∈ Xh}

∣∣∣∣∣
+ C2Op(βn) sup

x∈Xh

∣∣∣∣∣ 1n
n∑
i=1

Kh(x−Xi)1{Xi ∈ X\Xh}

∣∣∣∣∣ . (A-2)

By applying results of Hansen (2008) we have with probability one

sup
x∈Xh

∣∣∣∣∣ 1n
n∑
i=1

Kh(x−Xi)1{Xi ∈ Xh}

∣∣∣∣∣ = O(1), (A-3)

sup
x∈Xh

∣∣∣∣∣ 1n
n∑
i=1

Kh(x−Xi)1{Xi ∈ X\Xh}

∣∣∣∣∣ = O(h). (A-4)

The above arguments imply that
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sup
(t,x)∈Ξ

FjA(t, x) = Op(αn). (A-5)

To derive the stochastic order of sup(t,x)∈ΞFjB(t, x), we first note

E

{
Kh(x−Xi)Nji(t)

[
Ri − π∗(Xi, γ̃i)

π∗(Xi, γ̃i)

]}
= 0. (A-6)

Hence, employing analogous arguments to the ones of Hansen (2008), we can show that with

probability one

sup
(t,x)∈Ξ

FjB(t, x) = O(αn). (A-7)

Similarly, one can show that supx∈Xh
|f̂(x) − f̆(x)| = Op(αn) which completes the proof for

the first result of the Lemma. Also, the result sup(t,x)∈Ξ

∣∣∣Ĥν(t− |x)− H̆ν(t− |x)
∣∣∣ = Op(αn) can

be derived by following similar arguments. The proof is complete.

The following lemma deals with the uniform convergence rates of Λ̂j(t, x) and Ŝ(t|x) over the

compact set Ξ.

Lemma 2 Suppose Assumptions 1-4 hold. Then, it holds for ν ∈ {C,L} and j = 1, 2, as n→∞,

sup
(t,x)∈Ξ

∣∣∣Λ̂ν
j (t, x)− Λj(t, x)

∣∣∣ = Op(αn),

and with probability one

sup
(t,x)∈Ξ

∣∣∣Ŝν(t|x)− S(t|x)
∣∣∣ = O(αn).

Proof. We first argue that sup(t,x)∈Ξ

∣∣∣Λ̂j(t, x)− Λj(t, x)
∣∣∣ = Op(αn). Denote by Λ̆ν

j (t, x) the esti-

mator of Λj(t, x) if all observations were complete, that is, if Ri = 1 for each i = 1, ..., n. Clearly,

sup
(t,x)∈Ξ

∣∣∣Λ̂ν
j (t, x)− Λj(t, x)

∣∣∣ ≤ sup
(t,x)∈Ξ

∣∣∣Λ̂ν
j (t, x)− Λ̆j(t, x)

∣∣∣+ sup
(t,x)∈Ξ

∣∣∣Λ̆ν
j (t, x)− Λj(t, x)

∣∣∣ . (A-8)

By employing results of González-Manteiga and Cadarso-Suarez (1994), we have

sup
(t,x)∈Ξ

∣∣∣Λ̆ν
j (t, x)− Λj(t, x)

∣∣∣ = O(αn) (A-9)
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with probability one. Hence, we need to establish that sup(t,x)∈Ξ

∣∣∣Λ̂ν
j (t, x)− Λ̆ν

j (t, x)
∣∣∣ = Op(αn).

By definition, it is straightforward to see that

Λ̂ν
j (t, x) =

∫ t

0

dF̂ ν
γ̃=j(u|x)

Ĥν(u− |x)
, Λ̆ν

j (t, x) =

∫ t

0

dF̆ ν
γ̃=j(u|x)

H̆ν(u− |x)
.

By applying partial integration and triangle inequality we obtain

∣∣∣Λ̂ν
j (t, x)− Λ̆ν

j (t, x)
∣∣∣ ≤ ∣∣∣∣∣

∫ t

0

[
1

Ĥν(u− |x)
− 1

H̆ν(u− |x)

]
dF̂ ν

γ̃=j(u|x)

∣∣∣∣∣
+

∣∣∣∣∣[F̂ ν
γ̃=j(t|x)− F̆ ν

γ̃=j(t|x)
] 1

H̆ν(t− |x)

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

[
F̂ ν
γ̃=j(u|x)− F̆ ν

γ̃=j(u|x)
]
d

[
1

H̆ν(u− |x)

]∣∣∣∣∣
=: D1(t, x) +D2(t, x) +D3(t, x). (A-10)

Note that

1

Ĥν(t− |x)
− 1

H̆ν(t− |x)
=
H̆ν(t− |x)− Ĥν(t− |x)

Ĥν(t− |x)H̆ν(t− |x)
.

Hence,

sup
(t,x)∈Ξ

D1(t, x) ≤ sup
(t,x)∈Ξ

∣∣∣∣∣H̆ν(t− |x)− Ĥν(t− |x)

Ĥν(t− |x)H̆ν(t− |x)

∣∣∣∣∣ sup
(t,x)∈Ξ

∣∣∣F̂ ν
γ̃=j(t|x)

∣∣∣ (A-11)

Lemma 1 implies that Ĥν(t − |x) = H̆ν(t − |x) + Op(αn) uniformly over Ξ. Also, by González-

Manteiga and Cadarso-Suarez (1994), H̆ν(t − |x) = Hν(t − |x) + Op(αn) uniformly over Ξ. By

Assumption 1, we have inf(t,x)∈Ξ H(t − |x) > 0. Hence, inf(t,x)∈Ξ Ĥ(t − |x)H̆(t − |x) ≥ ε + op(1).

The latter entails

sup
(t,x)∈Ξ

∣∣∣∣∣H̆ν(t− |x)− Ĥν(t− |x)

Ĥν(t− |x)H̆ν(t− |x)

∣∣∣∣∣ ≤ inf
(t,x)∈Ξ

Ĥ(t− |x)H̆(t− |x) sup
(t,x)∈Ξ

∣∣∣H̆ν(t− |x)− Ĥν(t− |x)
∣∣∣

= Op(1) ·Op(αn) = Op(αn). (A-12)

Also, note that
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sup
(t,x)∈Ξ

∣∣∣F̂ ν
γ̃=j(t|x)

∣∣∣ ≤ sup
(t,x)∈Ξ

∣∣∣F̂ ν
γ̃=j(t|x)− F̆ ν

γ̃=j(t, x)
∣∣∣+ sup

(t,x)∈Ξ

∣∣∣F̆ ν
γ̃=j(t|x)

∣∣∣ = Op(1), (A-13)

where the equality makes use of Lemma 1, and results of González-Manteiga and Cadarso-

Suarez (1994) for the second term of the right-hand side. Consequently, combining (A-11) (A-

12) and (A-13), it follows sup(t,x)∈ΞD1(t, x) = Op(αn). In a similar fashion, we can deduce that

sup(t,x)∈ΞD2(t, x) = Op(αn) and sup(t,x)∈ΞD3(t, x) = Op(αn). The aforementioned results, com-

bined with (A-8), (A-9), (A-10), lead to the conclusion that

sup
(t,x)∈Ξ

∣∣∣Λ̂ν
j (t, x)− Λj(t, x)

∣∣∣ = Op(αn). (A-14)

For the second claim of the lemma we can directly infer that

sup
(t,x)∈Ξ

∣∣∣Ŝνj (t|x)− S(t|x)
∣∣∣ = O(αn) (A-15)

with probability one by making use of the results of González-Manteiga and Cadarso-Suarez (1994).

This concludes the proof.

In view of Lemma 2, we proceed with the proof of Theorem 1.

Proof of Theorem 1. Clearly,

F̂ ν
j (t|x)− Fj(t|x) =

∫ t

0

Ŝν(u− |x)d
[
Λ̂ν
j (u, x)− Λj(u, x)

]
+

∫ t

0

[
Ŝν(u− |x)− S(u− |x)

]
λj(u, x)du

=: Υ̂ν
jA(t, x) + Υ̂ν

jB(t, x), (A-16)

Triangle inequality entails

sup
(t,x)∈Ξ

∣∣∣F̂ ν
j (t|x)− Fj(t|x)

∣∣∣ ≤ sup
(t,x)∈Ξ

∣∣∣Υ̂ν
jA(t, x)

∣∣∣+ sup
(t,x)∈Ξ

∣∣∣Υ̂ν
jB(t, x)

∣∣∣ . (A-17)

Partial integration, triangle inequality and use of Lemma 2 yields for the first term
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sup
(t,x)∈Ξ

∣∣∣Υ̂ν
jA(t, x)

∣∣∣ ≤ sup
(t,x)∈Ξ

∣∣∣Λ̂ν
j (t, x)− Λj(t, x)

∣∣∣ sup
(t,x)∈Ξ

∣∣∣Ŝ(t|x)
∣∣∣

+ sup
(t,x)∈Ξ

∣∣∣Λ̂ν
j (t, x)− Λj(t, x)

∣∣∣ sup
(t,x)∈Ξ

∣∣∣∣∫ t

0

dŜν(u− |x)

∣∣∣∣ = Op(αn), (A-18)

as sup(t,x)∈Ξ

∣∣∣Ŝν(t|x)
∣∣∣ = Op(1). Regarding the second term, it is straightforward to check that

sup
(t,x)∈Ξ

∣∣∣Υ̂ν
jB(t, x)

∣∣∣ ≤ sup
(t,x)∈Ξ

∣∣∣Ŝν(t|x)− S(t|x)
∣∣∣ sup

(t,x)∈Ξ

|Λj(t, x)| = O(αn), (A-19)

where we apply Lemma 2 and use the fact that sup(t,x)∈Ξ |Λj(t, x)| = O(1). Combining (A-17)-(A-

19) completes the proof.

Before proving Theorem 2 we state the martingale central limit theorem (Andersen et al., 1993;

Kalbfleisch and Prentice, 1991).

Proposition 1 (Martingale Central Limit Theorem) Consider the filtration Ft for any t > 0 and

the Ft−martingales M(n)
1 (t), ...,M(n)

n (t) for n→∞. Moreover, introduce for j = 1, 2 and n→∞

the Ft−−measurable processes g
(n)
j1 (t), ..., g

(n)
jn (t) (i.e., the processes are predictable with respect to

Ft), the R2-valued martingale processes U (n) = (U (n)
1 ,U (n)

2 ), where

U (n)
j (t) =

n∑
i=1

∫ t

0

g
(n)
ji (u)dM(n)

i (u), j = 1, 2

and U (n)
ε = (U (n)

1ε ,U
(n)
2ε ), where

U (n)
jε (t) =

n∑
i=1

∫ t

0

g
(n)
ji (u)1(

∣∣g2
ji(u) > ε

∣∣)dM(n)
i (u), j = 1, 2.

Suppose that p limn→∞
[
U (n) < t >

]
= Σ(t), where Σ is a positive semidefinite matrix, and also

p limn→∞

[
U (n)
ε < t >

]
= 0 for any ε > 0. Then,

U (n)(t) =⇒ N (0,Σ(t)).
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For ξ = 1, 2, with ξ 6= j, introduce

Vjj(t, x) =
n∑
i=1

∫ t

0

Kh(x−Xi)

π∗(Xi, γ̃i)
[dj(t, u, x) + π∗(Xi, γ̃i)ρj(t, u, x)] dMji(u)

Vjξ(t, x) =
1

n

n∑
i=1

∫ t

0

Kh(x−Xi)ρj(t, u, x)dMξi(u)

Vjo(t, x) =
1

n

n∑
i=1

∫ t

0

Kh(x−Xi)ρj(t, u, x)dMoi(u)

and

Bjj(t, x) =
1

n

n∑
i=1

∫ t

0

[
dj(t, u, x)

RiKh(x−Xi)Yi(u)

π∗(Xi, γ̃i)
+ ρj(t, u, x)

]
× [λj(u,Xi)− λj(u, x)] du,

Bjξ(t, x) =
1

n

n∑
i=1

∫ t

0

ρj(t, u, x)Kh(x−Xi)Yi(u) [λξ(u,Xi)− λξ(u, x)] du.

We now proceed with the proof of Theorem 2.

Proof of Theorem 2. We will show the asymptotic normality for the estimator F̂C
j (t|x). The

asymptotic distribution for F̂L
j (t|x) can be derived by following similar arguments. For ease of

notation we skip the superscript C.

As in the proof of Theorem 1 we write

F̂j(t|x)− Fj(t|x) =

∫ t

0

Ŝ(u− |x)d
[
Λ̂j(u, x)− Λj(u, x)

]
(A-20)

+

∫ t

0

[
Ŝ(u− |x)− S(u− |x)

]
λj(u, x)du

= Υ̂jA(t, x) + Υ̂jB(t, x). (A-21)

By the definition of Λ̂j(t, x) and the property Mji(t) = Nji(t)−
∫ t

0
λj(u,Xi)Yi(u)Ridu, it follows

Υ̂jA(t, x) =
1

n

n∑
i=1

∫ t

0

Ŝ(u− |x)
Ri

π̂∗(Xi, γ̃i)

Kh(x−Xi)dMji(u)
1
n

∑n
i=1

Ri
π̂∗(Xi,γ̃i)

Kh(x−Xi)Yi(u)

+
1

n

n∑
i=1

∫ t

0

Ŝ(u− |x)
Ri

π̂∗(Xi, γ̃i)

Kh(x−Xi)Yi(u) [λj(u,Xi)− λj(u, x)]
1
n

∑n
i=1

Ri
π̂∗(Xi,γ̃i)

Kh(x−Xi)Yi(u)
du. (A-22)
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Next, we work on Υ̂jB(t, x) by making use of the Duhamel equation

Ŝ(t|x)− S(t|x) = −S(t|x)

∫ t

0

Ŝ(u− |x)

S(u|x)
d
[
Λ̂(u, x)− Λ(u, x)

]
.

In particular, by construction of Λ̂(t, x), the equalities N̄i(t) = N1i(t) + N2i(t) + Noi(t), Mji(t) =

Nji(t) −
∫ t

0
λj(u,Xi)Yi(u)Ridu and Nio(t) −

∫ t
0
λ(u,Xi)Yi(u)(1 − Ri)du, the Duhamel formula,

the fact that the mapping t 7→ S(t|x) is continuous for all x ∈ Xh (recall that L is absolutely

continuous), and doing some algebra we obtain

Υ̂jB(t, x) = − 1

n

n∑
i=1

∫ t

0

[∫ t

u

S(ε|x)λj(ε, x)dε

]
Ŝ(u− |x)

S(u|x)

× Kh(x−Xi)
1
n

∑n
i=1Kh(x−Xi)Yi(u)

d(M1i(u) +M2i(u) +Moi(u))

− 1

n

n∑
i=1

∫ t

0

Ŝ(u− |x)

S(u|x)

Kh(x−Xi)Yi(u) [λ(u,Xi)− λ(u, x)]
1
n

∑n
i=1Kh(x−Xi)Yi(u)

×
[∫ t

u

S(ε|x)λj(ε, x)dε

]
du. (A-23)

By Lemma 1 and continuity of the mapping t 7→ S(t|x), Ŝ(t−|x)
S(t|x)

= 1 + op(1) uniformly over t ∈

[0, τ(x)] for each x ∈ Xh. Making use of similar arguments with the case of standard nonparametric

regression Hansen (2008) or working analogously to González-Manteiga and Cadarso-Suarez (1994)

we can show that it holds, pointwise in x,

sup
t∈[0,τ(x)]

∣∣∣∣∣ 1n
n∑
i=1

Kh(x−Xi)Yi(t)

∣∣∣∣∣ = H(t−, x).

Recall also that π̂∗(Xi, γ̃i) = π∗(Xi, γ̃i) + op(1) uniformly over = 1, ..., n with π∗(Xi, γ̃i) to be

bounded away from zero. Furthermore, λ(t, x) = λ1(t, x) + λ2(t, x) for any (t, x) ∈ R+ × Xh.

Combining (A-20), (A-22) and (A-23) we get

F̂j(t|x)− Fj(t|x) = [Vj1(t, x) + Vjξ(t, x) + Voj(t, x) + Bjj(t, x) + Bjξ(t, x)] [1 + op(1)] . (A-24)

uniformly over [0, τ(x)] for each x ∈ Xh.
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Based on the previous lines, we rewrite the difference F̂j(t|x)− Fj(t|x) as follows

F̂j(t|x)− Fj(t|x) = {Vj1(t, x) + Vj2(t, x) + Vjo(t, x) + EBjj(t, x) + EBjξ(t, x)

+ [Bjj(t, x)− EBjj(t, x)] + [Bjξ(t, x)− EBjξ(t, x)]} [1 + op(1)] (A-25)

uniformly over [0, τ(x)] for each x ∈ Xh. In virtue of the above equation it is clear that for deriving

the asymptotic distribution of F̂j(t|x)− Fj(t|x) it suffices to consider the term

Vj1(t, x) + Vj2(t, x) + Vjo(t, x) + EBjj(t, x) + EBjξ(t, x)

+ [Bjj(t, x)− EBjj(t, x)] + [Bjξ(t, x)− EBjξ(t, x)] .

In the sequel, we show that the three terms in the above display give the variance of the estimator,

the fourth and the fifth term give the bias of the estimator, whereas the last two terms are asymp-

totically negligible. Application of the martingale central limit theorem yields
√
nhdVj1(t, x) =⇒

N (0, vjj(t, x)),
√
nhdVjξ(t, x) =⇒ N (0, vjξ(t, x)), and

√
nhdVjo(t, x) =⇒ N (0, vjo(t, x)), where

vjj(t, x) = p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)

π2
∗(Xi, γ̃i)

[dj(t, u, x) + π∗(Xi, γ̃i)ρj(t, u, x)]2 d < Mji > (u)

]

= p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)

π2
∗(Xi, γ̃i)

[dj(t, u, x) + π∗(Xi, γ̃i)ρj(t, u, x)]2 Yi(u)Riλj(u,Xi)du

]

=
||K||22
π(x)

∫ t

0

H(u, x, γ̃ > 0) [dj(t, u, x) + π(x)ρj(t, u, x)]2 λj(u, x)du

+ ||K||22
[∫ t

0

H(u, x, γ̃ = 0) [dj(t, u, x) + ρj(t, u, x)]2 λj(u, x)du

]
(A-26)
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vjξ(t, x) = p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)ρ

2
j(t, u, x)d < Mξi > (u)

]

= p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)ρ

2
j(t, u, x)Yi(u)Riλξ(u,Xi)du

]

= ||K||22 π(x)

∫ t

0

H(u, x, γ̃ > 0)ρ2
j(t, u, x)λξ(u, x)du

+ ||K||22
∫ t

0

H(u, x, γ̃ = 0)ρ2
j(t, u, x)λξ(u, x)du, (A-27)

and

vjo(t, x) = p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)ρ

2
j(t, u, x)d < Moi > (u)

]

= p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)ρ

2
j(t, u, x)Yi(u)λ(u,Xi)(1−Ri)du

]

+ ||K||22 [1− π(x)]

∫ t

0

H(u, x, γ̃ > 0)ρ2
j(t, u, x)λ(u, x)du. (A-28)

where the last equalities in (A-26), (A-27) and (A-28) follow by using the definition of Kh(x−Xi),

change of variables and dominated convergence theorem. For deriving the above expressions

we have also used the fact that it is not possible for two components of the process N̄(t) =

{N̄1(t), ..., N̄n(t) : t ≥ 0} to simultaneously jump, which in turn implies the same for the pro-

cess Nj(t) = {Nj1(t), ..., Njn(t) : t ≥ 0}, where j = 1, 2. Therefore, by carrying out simple

algebraic calculations we get d < Mji,Mjη > (t) = Cov(dMji(t), dMji(t)|Ft−) = o(dt) and

d < Moi,Moη > (t) = Cov(dMoi(t), dMoη(t)|Ft−) = o(dt) for any t > 0, j = 1, 2, i, η = 1, ..., n,

with i 6= η. Furthermore, by construction the counting processes N1i(t), N2i(t), Noi(t) cannot si-

multaneously jump (in fact, as soon as the one jumps, the other is not possible to jump) and

we thus get d < M1i,M2i > (t) = Cov(dM1i(t), dM2i(t)|Ft−) = o(dt) and d < Mji,Moi >

(t) = Cov(dMji(t), dMoi(t)|Ft−) = o(dt). The latter facts, combined with the equality λ(t, x) =

λ1(t, x) + λ2(t, x) for any (t, x) ∈ R+ ×Xh, and some algebra imply

√
nhd [Vjj(t, x) + Vjξ(t, x) + Vjo(t, x)] =⇒ N (0, vjA(t, x) + vjB(t, x) + vjAB(t, x)). (A-29)
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Next, we proceed with the stable parts in a similar manner to the approach of Nielsen and Linton

(1995). Let ω = (ω1, ω2, ..., ωd). It is easy to check that

EBjj(t, x) =

∫
Rd

∫ t

0

d∏
p=1

K(ωp) [λj(u, x− hω)− λj(u, x)]H(u, x− hω) [dj(t, u, x) + ρj(t, u, x)] dudω

=
1∑
l=0

µ2(K)h2

(2− l)!l!

d∑
p=1

∫ t

0

∂2−lλj(u, x)

∂x2−l
p

∂lH(u, x)

∂xlp
[dj(t, u, x) + ρj(t, u, x)] du+ op(h

2)

(A-30)

and

EBjξ(t, x) =

∫
Rd

∫ t

0

d∏
p=1

K(ωp) [λξ(u, x− hω)− λξ(u, x)]H(u, x− hω)ρj(t, u, x)dudω

=
1∑
l=0

µ2(K)h2

(2− l)!l!

d∑
p=1

∫ t

0

∂2−lλξ(u, x)

∂x2−l
p

∂lH(u, x)

∂xlp
ρj(t, u, x)du+ op(h

2), (A-31)

where the first equalities in the two above equations are obtained by the definition of Kh(x−Xi)

and the second equalities by applying r−th Taylor series expansion with Lagrange remainder for

the difference λj(u, x − hω) − λj(u, x) (j = 1, 2) and the quantity H(u, x − hω), along with the

fact that the K is of order r. Also, by working in a completely analogous way it is straightforward

to show that EB2
jι(t, x) = O(nhd−2)−1 for ι = j, ξ, which in turn gives E(Bjι(t, x)−EBjι(t, x))2 =

O(nhd−2)−1 = o(nhd)−1 and consequently, by Chebyshev’s inequality,

|Bjι(t, x)− EBjι(t, x)| = op(nh
d)−

1
2 . (A-32)

To calculate the off-diagonal terms of the matrix V (t, x) we exploit analogous steps as for the

derivation of vjA(t, x), vjB(t, x) and vjAB(t, x). As previously discussed, we note that d < Mji,Mjη >

(t) = o(dt), d < Moi,Moη > (t), d < M1i,M2i > (t) = o(dt), and d < Mji,Moi > (t) for all t > 0,

any j = 1, 2 and i, η = 1, ..., n, with i 6= η. Hence, application of martingale central limit theorem

for the covariance terms yields
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ς11(t, x) = p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)

π∗(Xi, γ̃i)
[d1(t, u, x) + π∗(Xi, γ̃i)ρ1(t, u, x)]ρ2(t, u, x)d < M1i > (u)

]

= ||K||22
∫ t

0

H(u, x, γ > 0)[d1(t, u, x) + π(x)ρ1(t, u, x)]ρ2(t, u, x)λ1(u, x)du

+ ||K||22
∫ t

0

H(u, x, γ = 0)[d1(t, u, x) + ρ1(t, u, x)]ρ2(t, u, x)λ1(u, x)du, (A-33)

ς22(t, x) = p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)

π∗(Xi, γ̃i)
[d2(t, u, x) + π∗(Xi, γ̃i)ρ2(t, u, x)]ρ1(t, u, x)d < M2i > (u)

]

= ||K||22
∫ t

0

H(u, x, γ > 0)[d2(t, u, x) + π(x)ρ2(t, u, x)]ρ1(t, u, x)λ2(u, x)du

+ ||K||22
∫ t

0

H(u, x, γ = 0)[d2(t, u, x) + ρ2(t, u, x)]ρ1(t, u, x)λ2(u, x)du, (A-34)

and

ςo(t, x) = p lim
n→∞

[
hd

n

n∑
i=1

∫ t

0

K2
h(x−Xi)ρ1(t, u, x)ρ2(t, u, x)d < Moi > (u)

]

= ||K||22 [1− π(x)]

∫ t

0

H(u, x, γ > 0)ρ1(t, u, x)ρ2(t, u, x)λ(u, x)du, (A-35)

where we make use of the definition of Kh(x−Xi), change of variables and dominated convergence

theorem. By simple algebra, we deduce the desired result.
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