
An Embedded Real-Time Systemon ATLAS ROBIN

Inauguraldissertationzur Erlangung des akademischen Gradeseines Doktors der Naturwissenschaftender Universit�at Mannheim

vorgelegt von
M.Eng. Informatiker Maoyuan Yuaus Anhui, China

Mannheim, 2012





Dekan: Professor Dr. Heinz J�urgen M�uller, Universit�at MannheimReferent: Professor Dr. Reinhard M�anner, Universit�at HeidelbergKorreferent: Professor Dr. Peter Fischer, Universit�at Heidelberg
Tag der m�undlichen Pr�ufung: 24.01.2013



Zusammenfassung
ATLAS ist einer der gr�o�ten Teilchendetektoren am Large Hadron Collider (LHC)f�ur Hochenergieexperimente. Der ATLAS Detektor produziert Ereignisdaten vonmehr als 40 Terabyte pro Sekunde mit einer Ereignisrate von 40 MHz. Diesesriesige Datenvolumen wird mit Hilfe der ATLAS Trigger und Data Acquisition Chain(TDAQ) vor der permanenten Speicherung reduziert. Das ATLAS Readout Bu�erInput (ROBIN) Teilsystem ist ein wesentliches Bestandteil in der ATLAS TDAQ.Ereignisdaten erreichen ROBIN mit einer Rate von 100kHz mit einer Gr�oSSe von1 kByte f�ur jedes Datenpaket. Es wird eine durchschnittliche Output Rate von 10kHz erwartet.Das ROBIN System wird von zwei Prozessoren gesteuert: einem Xilinx Virtex II2000 FPGA und einem PowerPC 440 Mikro-Controller. Der FPGA Prozessor spieltdie zentrale Rolle als der Daten
uss Kern f�ur hohe Ereignis-Raten und -Bandbreiten,der die Ereignisdaten (messages) und Kontrollnachrichten on-the-
y �ubertr�agt. DerPowerPC stellt die Kontrollfunktionen wie Ordnen des Ereignis Pu�ers, Aufschl�us-seln und Ausf�uhren von eingehenden Anfragen vom ROS PC als auch das Ausl�osenvon Antwort Nachrichten zur Verf�ugungDiese Dissertation behandelt das Design eines eingebetteten Echtzeit Systems f�ureinen IBM PowerPC 440GP Mikro-Controller als Management Kern f�ur das ROBINTeilsystem.F�ur die Implementierung der Power PCs Anwendung wird eine Seiten basierteL�osung f�ur die Verwaltung des Ereignis Pu�ers pr�asentiert und ein Hash Algorithmuswird f�ur die Ereignis Suche verwendet. F�ur eine e�ziente Suche im eingebettetenSoftware System wird eine �SChained Free Hash-Node Methode�T verwendet, um diedynamische Struktur der Hash-Tabelle zu speichern. Dieses Vorgehen erzielt einegute Performance und ben�otigt keinen extra Speicherplatz.Als wesentlicher Bestandteil des ROBIN Systems muss die eingebettete Soft-ware f�ur das ROBIN PowerPC System eine hohe Performance liefern. Es wer-den zwei Software Architekturen f�ur den ROBIN PowerPC vorgestellt. Die ersteist als einfache Kontroll-Schleife verwirklicht. Im zweiten Design ist ein eingebet-tetes real time Linux Betriebssystem f�ur den ROBIN PowerPC Prozessor kon�guri-ert, angepasst und optimiert worden. Die Performance beider Implementierungenwurde in aufw�andigen Messungen in einer RROS/ROBIN Testumgebung gemessen.Die experimentellen Ergebnisse zeigen, dass das Nicht-OS basierte PowerPC Systembereits die derzeitigen ATLAS DAQ Anforderungen �ubertri�t, w�ahrend die Perfor-mance des Linux-basierten ROBIN PowerPC Systems die Basisanforderungen der

iv



entsprechenden ROBIN Anforderungen nicht erf�ullt.

v



Abstract
ATLAS is one largest particle detector at the Large Hadron Collider (LHC) forhigh energy physics experiments. The ATLAS detector produces over 40 terabytesof event data per second at an event rate of 40MHz. The huge volume of data arereduced through the ATLAS Trigger and Data Acquisition Chain (TDAQ) beforepermanent storage.The ATLAS Readout Bu�er INput(ROBIN) subsystem is anessential device within the ATLAS TDAQ. Event data arrive at ROBIN with aninput data rate of 100kHz with 1kBytes for each data packet, and an average outputrate of 10kHz is expected.The ROBIN system is controlled by two processors: a Xilinx Virtex II 2000 FPGAand a PowerPC 440 micro-controller. The FPGA plays the centric role as a high-rate and high-bandwidth data-
ow core, which transmits event data (messages) andcontrol messages on-the-
y across the board. The PowerPC provides the controlfunctionalities, such as arranging the event data bu�er, decoding and executingincoming request messages from ROS PC as well as initiating response messagesbackwards.This dissertation addresses the software design of an embedded real-time systemcentering around an IBM PowerPC 440GP micro-controller, as the management coreof the ROBIN.For the implementation of the PowerPC's application, a page-based solution ispresented to handle the event bu�er management, and a hash searching scheme isapplied to deal with the event lookup. For an e�cient searching in the embeddedsoftware system, a Chained Free Hash-Node method is proposed to store the dynamicdata structure of the hash table. This strategy achieves a good performance withno extra memory space.As a main part of the ROBIN device, the embedded software for the ROBIN Pow-erPC system must provide high performance. Two software architectures for theROBIN PowerPC are presented. The �rst is implemented as a simple control loopwithout any operating system. In the second design an embedded real-time Linuxoperating system is recon�gured, adapted and optimized for the ROBIN PowerPCprocessor. Performances of these two implementations are measured through elabo-rate experiments in a simulated ROS/ROBIN testing environment. The experimentresults show that the standalone non-OS based PowerPC system is already abovethe current ATLAS DAQ requirements, while the performance of the RTLinux-basedROBIN PowerPC system does not meet the related ROBIN baseline requirement.

vi



Contents

1 Introduction 11.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . 32 Background: LHC - ATLAS - ROS 52.1 LHC - Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . 52.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1.3 Challenges in Data Processing . . . . . . . . . . . . . . . . . . 92.2 ATLAS - A Toroidal LHC ApparatuS . . . . . . . . . . . . . . . . . . 122.2.1 The Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2.2 TDAQ - Trigger and Data Acquisition Chain . . . . . . . . . . 142.3 ROS - ATLAS Readout Subsystem . . . . . . . . . . . . . . . . . . . 182.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 202.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Design of ATLAS ROBIN 253.1 Previous Implementations of ROBIN . . . . . . . . . . . . . . . . . . 253.1.1 SHARC DSP-Based ROBIN . . . . . . . . . . . . . . . . . . . 263.1.2 UK ROBIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.3 FPGA-Based ROBIN . . . . . . . . . . . . . . . . . . . . . . . 293.1.4 Performance Comparison of the Previous ROBIN Designs . . . 293.2 Final Design of ROBIN . . . . . . . . . . . . . . . . . . . . . . . . . . 323.2.1 Hardware Deployment . . . . . . . . . . . . . . . . . . . . . . 323.2.2 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
vii



Contents
4 Event Bu�er Management Algorithms 374.1 Page-Based Event Bu�er Organization . . . . . . . . . . . . . . . . . 374.2 Hash Table for Fast Event Lookup . . . . . . . . . . . . . . . . . . . 384.2.1 Choice of Event Lookup Algorithm . . . . . . . . . . . . . . . 394.2.2 Creation of the Hash Table . . . . . . . . . . . . . . . . . . . 414.2.3 Storage Management of Hash Buckets . . . . . . . . . . . . . . 424.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444.3 Hash Node Bu�er Allocation and Event Bu�er Allocation . . . . . . . 464.3.1 An Identical Imaging between Event Bu�er and Hash NodeBu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.3.2 Standard Bu�er Allocation Algorithm Using a Free-Page IDStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.3.3 Chained Free Hash-Node List for Hash Node Bu�er Allocation 484.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 ROBIN PowerPC System Analysis 595.1 PowerPC 440GP Microcontroller . . . . . . . . . . . . . . . . . . . . 595.2 Communication with FPGA . . . . . . . . . . . . . . . . . . . . . . . 615.2.1 Free-Page FIFOs and Used-Page FIFOs . . . . . . . . . . . . . 625.2.2 Message Descriptor FIFOs . . . . . . . . . . . . . . . . . . . . 635.3 Real-Time Performance Requirements . . . . . . . . . . . . . . . . . . 655.3.1 Event Data Rate from One Readout Link . . . . . . . . . . . 655.3.2 Request Message Rate from the ROS PC and the Event Builder 655.4 Cyclic Tasks in the PowerPC Application . . . . . . . . . . . . . . . . 665.4.1 Free Page Update . . . . . . . . . . . . . . . . . . . . . . . . . 665.4.2 Used-Page Record Handling . . . . . . . . . . . . . . . . . . . 675.4.3 Request Message Decoding and Execution. . . . . . . . . . . . 685.4.4 Response Message Initiation. . . . . . . . . . . . . . . . . . . . 685.5 System Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 Standalone PowerPC Application 716.1 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716.1.1 Component Diagram . . . . . . . . . . . . . . . . . . . . . . . 726.1.2 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . 726.1.3 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 766.2 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . 766.2.1 Goal of the Optimization . . . . . . . . . . . . . . . . . . . . . 776.2.2 Application-Speci�c Optimization . . . . . . . . . . . . . . . . 786.2.3 Worst Case after Optimization . . . . . . . . . . . . . . . . . . 806.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
viii



Contents
6.3.1 Setup of Testing Environment . . . . . . . . . . . . . . . . . . 816.3.2 Performance of Standalone ROBIN PowerPC Application . . . 826.3.3 Performance of Integrated ROS/ROBIN System . . . . . . . . 846.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887 Real-Time Linux Based PowerPC Application 917.1 Real-Time Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.1.1 Concepts in Real-Time Systems . . . . . . . . . . . . . . . . . 927.1.2 Traditional Linux Kernel and its Limited Real-Time Capability 927.1.3 Improvements in Real-Time Linux Kernel . . . . . . . . . . . 957.1.4 Choice of MontaVista Linux . . . . . . . . . . . . . . . . . . . 977.2 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987.2.1 Multi-Task Scheduling . . . . . . . . . . . . . . . . . . . . . . 987.2.2 Cautions in Multi-Task Scheduling . . . . . . . . . . . . . . . 997.3 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . 1007.3.1 Reducing the Number of Tasks . . . . . . . . . . . . . . . . . 1007.3.2 Determination of Task Cycle Time . . . . . . . . . . . . . . . 1037.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047.4.1 Performance of MontaVista RT-Linux Scheduling . . . . . . . 1057.4.2 Performance of RTLinux-Based ROBIN PowerPC Application 1087.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 Conclusions 113A Glossary 117B Software Development Platform for the PowerPC System 121B.1 Cross-Development Environment . . . . . . . . . . . . . . . . . . . . 121B.2 U-BOOT for the ROBIN PowerPC System . . . . . . . . . . . . . . . 122B.2.1 Bootstrap Loader . . . . . . . . . . . . . . . . . . . . . . . . . 123B.2.2 Features of U-Boot . . . . . . . . . . . . . . . . . . . . . . . . 125B.2.3 U-Boot Adaption . . . . . . . . . . . . . . . . . . . . . . . . . 126B.2.4 U-Boot Extensions . . . . . . . . . . . . . . . . . . . . . . . . 126C MontaVista RT-Linux Con�gurations for the ROBIN PowerPC System127C.1 Boot Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127C.2 Linux Kernel Adaptions . . . . . . . . . . . . . . . . . . . . . . . . . 128C.3 Ramdisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129C.4 Busybox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130C.5 C Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Bibliography 139

ix



Contents

x



1 Introduction
1.1 MotivationsSince the 6th century BC human beings have already had the idea that all matter iscomposed of elementary particles. Ancient Greek created the philosophical doctrineof atomism. In the 19th century people believed that each element of nature wascomposed of a single, unique type of particle, the fundamental particles of nature,and named them atoms, after the Greek word �atomos, meaning \indivisible". How-ever, not until the end of the 20th century, physicists discovered that atoms werenot actually the fundamental particles of nature.Explorations of nuclear physics and quantum physics in the early 20th centurynot only led to the development of nuclear weapons, but also brought the discoverythat one atom can be generated from another [33] [43].Theory of Standard Model (SM) [55] in the particle physics is built in the 1970s.The theory explains the state-of-the-art classi�cation of elementary particles. TheSM contains 24 fundamental particles (i.e. 12 particle/anti-particle pairs). Theyare supposed to be the constituents of matter. However, many postulations of theStandard Model have not been proved. It predicts, for example, the existence of atype of boson known as the Higgs boson, which has yet to be discovered throughhigh energy physics experiments.To explore the theories beyond the Standard Model, high-energy physics exper-iments at an energy level of above 1 TeV have to be done. Currently Tevatron atFermilab is the only high-energy particle accelerator, which reaches the requiredenergy level. The accelerator is located near Chicago, USA. It has a centre-of-massenergy of 1.96 TeV.In order to explore physics experiments at required energy regions, the EuropeanParticle Research Laboratory (CERN) sponsored the project of Large Hadron Col-lider (LHC) [14]. The LHC is a proton-proton collider. It is expected to become the

1



1 Introduction
world's largest and highest energy particle accelerator and collider, if it completesthe mission to accelerate two proton beams to an energy level of 7 TeV. Then acenter-of-mass energy of 14 TeV can be reached by colliding the two proton beams.This may bring far more chances for physicists to explore the open issues in highenergy physics [59].Four main detectors are being constructed inside LHC for the measurement ofparticle interactions. ATLAS [7] is one of the largest LHC detectors. ATLAS is ageneral-purpose detector. When the proton beams produced by the LHC interactin the center of the detector, a variety of di�erent particles with a broad range ofenergies will be produced. ATLAS is designed to measure the broadest possiblerange of signals, and to ensure that, whatever might take place from any new phys-ical processes or particles, ATLAS will be able to detect them and measure theirproperties. Hence the preciseness and the large bandwidth are two essential mea-surement features for the ATLAS detector. To this end a number of sub-detectorsare constructed inside ATLAS to observe a large variation of particles precisely.Every second around 40 million proton beams cross the center of the ATLASdetector, which generate a new event every 25 nanosecond, i.e. at an event rateof 40MHz. The detector creates approximately 1MByte data for each event. Thatmeans, ATLAS must handle a data volume of 40TByte per second. Hence theATLAS data acquisition system must support real time and huge data volume pro-cessing. Compared to other high energy physics experiments, the demand upon theATLAS data acquisition system is substantially higher, as the data rate and thedata volume are concerned.The ATLAS data acquisition system comprises three levels of trigger systems,which use simple information to identify in real time the most interesting events outof 40 million events every second. The �rst level trigger is based on the electronicsinside the ATLAS sub-detectors. The other two levels primarily run on a largecluster of computers near the detectors. The computers are equipped with similartechnologies. The design aims to distribute the data selection tasks uniformly acrossthe whole system, in order to reduce the e�orts in system administration and varioussoftware implementation. After the �rst level trigger, about 100,000 events areselected every second; and after the third level trigger, only a few hundreds of eventsremain. The data reduction rate is altogether up to a factor of 105.ReadOut Subsystem (ROS) is a core device in the ATLAS data acquisition chain,built between the level 1 and the level 2 triggers. The ROS layer receives detectordata on 1600 point-to-point readout links (ROL). Each link has a data rate of up to100kHz and a data volume of 100MByte/s. The ROS layer is designed to bu�er allthe event data temporarily and forward them on request to the level 2 trigger for
2



1.2 Organization of the Dissertation
the trigger decision.In order to sustain the huge volume of rapidly incoming data an extremely e�cientbu�ering system is required. ROBIN (ReadOut-Bu�er INput), as an essential deviceinside the ROS system, is expected to play the role. In the baseline architecture ofthe ATLAS level 2 trigger there are totally hundreds of ROS systems. Each ROSsystem comprises three or four active ROBIN devices; and each ROBIN devicereceives event data on three ROLs. For each ROL one 64MB SDRAM is availableon ROBIN as the according event data bu�er. The goal of the ROBIN device is tosupport an input rate of 100kHz and a bandwidth of up to 160MByte/s.ROBIN comprises two processors, a XILINX XC2V2000 FPGA and an IBM Pow-erPC 440 micro controller, which coordinate with each other to realize the function-alities of ROBIN. Generally the FPGA plays the centric role as a high-rate andhigh-bandwidth data-
ow core, which transmits event data and control messageson-the-
y across the system. The PowerPC provides the management and controlfunctionalities. It provides solutions to the e�ective allocation of event data bu�ersand solutions to the e�cient event data retrieval; it decodes and executes incomingrequest messages from ROS PC, and initiates response messages backwards.
1.2 Organization of the DissertationThis dissertation deals with the involved algorithms, the software design and soft-ware optimization of the ROBIN PowerPC system. The structure of this dissertationis as follows.Chapter 2 introduces the project background of ATLAS ROS/ROBIN. ROBINis the centric device inside the ATLAS readout subsystem (ROS) and ROS is acore subsystem in the LHC/ATLAS data acquisition chain. This chapter gives anoverview to the Large Hadron Collider (LHC) and one of its largest detectors, theATLAS detector. Challenges in the ATLAS data acquisition chain (TDAQ) arepointed out. ROS is the essential bu�ering system inside the ATLAS level-2 trigger.Its system requirements and baseline architecture are particularly addressed.Chapter 3 introduces the ATLAS �nal design of the ROBIN board and addressesits advantages over its previous solutions. In the �nal design of ROBIN an FPGAprocessor and a PowerPC micro-controller are integrated. It takes advantage of bothprocessors.Chapter 4 presents the strategy of ROBIN event bu�er management and algo-rithms involved in the e�ective bu�er allocation and e�cient event retrieval.Given the strategy for event bu�er management, the software interface, software

3



1 Introduction
requirements and software components for the ROBIN PowerPC system are analyzedin chapter 5 and its detailed tasks get also de�ned here.Two architectures are proposed for the implementation of the ROBIN PowerPCsystem, depending on whether a real-time operating system is integrated into thesystem. Both architectures are realized in this work and presented in chapter 6 andchapter 7, respectively.Finally, chapter 8 concludes the contribution of this work, points out possibleimprovements, and gives an outlook to the ATLAS ROBIN system in future exper-iments.

4



2 Background: LHC - ATLAS -
ROS

This chapter gives an overview to the project background of ATLAS ROS/ROBIN.ROBIN (ReadOut-Bu�er INput), the main topic of this work, is the centric deviceinside the ATLAS readout subsystem (ROS). ROS is one of the hundreds of subsys-tems inside the ATLAS detector, which is the largest detector inside Large HadronCollider (LHC), the world's largest particle accelerator and collider. Meanwhile ROSis also one of the most essential data bu�ering systems in the LHC/ATLAS dataacquisition chain.The structure of this chapter is as follows. Section 2.1 introduces the Large HadronCollider (LHC). Challenges in the LHC data processing are pointed out. Section2.2 presents the ATLAS detector, one largest detector of LHC. The data acquisitionchain in the ATLAS trigger system is particularly discussed. Section 2.3 deals withthe ATLAS readout subsystem (ROS), the essential data bu�ering system inside thesecond ATLAS trigger level. The system requirements and the baseline architectureof ROS are addressed in detail.
2.1 LHC - Large Hadron Collider

2.1.1 OverviewCurrently the most modern theory of the elementary particle physics is the Stan-dard Model (SM) [24]. It explains the state-of-the-art classi�cation of elementaryparticles. However, in spite of abundant experimental evidence supporting the SMtheory, di�erent arguments indicate that the SM is not the ultimate theory of ele-mentary particle physics [57] [35], [40] [49]. Meanwhile, discussions over the SM and
5



2 Background: LHC - ATLAS - ROS
Detector Energy(TeV) Event Rate(MHz) Data Volume(TByte/s)PEP IIBaBar 0.01085 238 5.4Tevatron(Run II)CDF 1.96 7.6 1.9D0 1.96 7.6 1.9HERAHERA B 0.134 10.4 10LHCATLAS 14 40 40CMS 14 40 40ALICE 14 40 80LHCb 14 40 3Table 2.1: Comparison of di�erent high energy particle colliders [48][8][16][10][29][6][11][9][13][7][66].

its extensions show that there are good reasons to expect more interesting physicsat the TeV energy level.In order to explore the TeV energy scale, the European Particle Research Labo-ratory (CERN) approved the project of the Large Hadron Collider (LHC) [34]. TheLHC is a particle accelerator and collider located at CERN in Geneva, Switzerland.It is currently still under construction. The LHC is the world's largest and highestenergy particle accelerator, when its commissioning at 7 TeV is completed. TheLHC is being funded and built in collaboration with universities and laboratoriesfrom 34 countries.Table 2.1 compares the performance of the LHC accelerator with that of otherexisting accelerators. The center-of-mass energy of LHC is substantially higher thanthat of the currently most powerful accelerator Tevatron at Fermilab. Accordinglythe probability of rare new physical events are expected to increase in the LHCexperiments. Regarding event rate the PEP II's BaBar experiment is the most de-manding, but its data volume is by far lower than the detectors at LHC, excludingLHCb. As the huge data volume and the high data rate are concerned, the exper-iments at LHC are signi�cantly more demanding than other high energy physicsexperiments.
6



2.1 LHC - Large Hadron Collider

Figure 2.1: Injection and acceleration scheme in the LHC collider [59].

7



2 Background: LHC - ATLAS - ROS
2.1.2 Construction

The LHC collider is contained in a 27 km circumference tunnel located undergroundat a depth ranging from 50 to 150 metres. The collider tunnel contains two pipesenclosed within superconducting magnets cooled by liquid helium. Each pipe con-tains a proton beam. The two beams travel in opposite directions around the ring.Additional magnets are used to direct the beams to four intersection points whereproton-to-proton collisions of the two beams are expected to take place. The tunnelwas formerly used to house the Large Electron/Positron Collider(LEP), which hasstopped operating since 2000. LEP was working at an energy level of 200 Gev,which covers the mass region of the weak force carrying W+� and Z0 bosons. Dueto the beam energy loss of synchrotron radiation, the lepton(e+, e�) collider canonly accelerate the electron and positron to limited mass energy. Although LHCuses the same tunnel as LEP, all the infrastructures of LEP have been replaced bythe superconducting magnets and high frequency cavity accelerators are used to ac-celerate and bend the beams. The beam bending magnets have a �eld strength ofup to 8.4T.Proton particles inside LHC have an energy level of around 7 TeV, which bringsa total collision energy of 14 TeV. It takes around 90 microseconds for an individ-ual proton to travel once around the collider. Instead of continuous beams, theprotons will be \bunched" together into about 2,800 bunches, so that interactionsbetween the two beams will take place at discrete intervals of over 25 nanoseconds.Besides, the LHC also o�ers an impressive luminosity ranging from the beginning1033cm�2s�1 to the designed luminosity of more than 1034cm�2s�1. This enablesthe LHC experiments to generate even the rarest physics events.Before being injected into the main accelerator, the proton particles are acceler-ated successively through a series of systems. Firstly a linear accelerator, Linac2,generates protons at an energy level of 50 MeV, and feeds the protons into a protonsynchrotron. The Proton Synchrotron (PS) consists of two linear accelerators: theProton Synchrotron Booster (PSB) and the Proton Synchrotron Ring (PSR). ThePSB brings the particles up to an energy level of 1.4 GeV; and the PSR to 26 GeV.Moreover, the Low-Energy Injector Ring (LEIR) is used as an ion storage and coolerunit. The Antiproton Decelerator (AD) can produce a beam of anti-protons at 2GeV, after cooling them down from 3.57 GeV. Finally the Super Proton Synchrotron(SPS) can be used to increase the energy of protons up to 450 GeV. An layout ofthe LHC injection and acceleration scheme is shown in �gure 2.1.
8



2.1 LHC - Large Hadron Collider
2.1.3 Challenges in Data Processing

Figure 2.2: Model layout of the LHC collider [59].
The probability of physical events that are useful for the investigation of highenergy particle physics is extremely low [7]. Therefore, the event detection rate hasto be very high to observe su�cient target processes in a reasonable time. Moreover,to record rare physical events at the collider, highly precise detectors are necessary.Typically, one particle collider consists of a number of di�erent detectors to coverthe broad bandwidth of signals, and to ensure that a large variation of particles canbe observed precisely. Each detector delivers the data in a large number of readoutchannels which transport either analog or digital data.Four main detectors are being constructed inside LHC for the measurement ofparticle interactions. They are ATLAS (A Toroidal LHC ApparatuS), CMS (Com-pact Muon Solenoid), LHCb (LHC-beauty) and ALICE (A Large Ion Collider Ex-

9



2 Background: LHC - ATLAS - ROS
periment). ATLAS and CMS are two relative larger and general-purpose particledetectors. LHCb and ALICE are smaller and more specialized. Figure 2.2 showsthe layout of the LHC detectors.All the four detectors are going to run at a rate of 40MHz that is more than�ve times the rate of Tevatron, which is currently the only accelerator reaching theTeV energy scale with a centre-of-mass energy of 1.96 TeV. Except LHCb the datavolume at each cycle is an order of magnitude higher. Every second ATLAS andCMS will deliver nearly 40 terabytes, and ALICE even 80 terabytes. This raises asubstantial demand upon the experiment's data acquisition process.The huge amount of data will get never stored in any storage media. Therefore,a pre-selection process of the event data is necessary, so that a real-time storage ofthe �nal data amount will be possible. The pre-selection process analyzes the data,reduces the amount of data by a considerable factor (for example, a factor of 105for ATLAS) and �nally picks out the rare useful events from the background orirrelevant events. Besides a high factor of data volume reduction, a reasonable factorof data-rate reduction is necessary as well due to limited storage capability.To achieve the high data-reduction factor in the pre-selection process, a complexevent analysis algorithm is required. However, more complex algorithm implies moreexecution time. On the other side, the data acquisition process must sustain thedata-detection rate of 40MHz, to ensure that no event data get lost. That means,the maximum allowable execution time for the data pre-selection in one cycle mustnot be over 25 nanoseconds.One typical solution to the above contradiction is to use staged triggers. Firstly,the complex pre-selection algorithm is split into a series of independent steps. Eachstep reduces the data volume by a certain data-reduction factor, and hence themultiplicity of the reduction factors in all the steps is the overall data reduction factorof the whole pre-selection process. Each pre-selection step is realized at one triggerlevel, where decisions for data selection are made and data reduction is performed.Usually the data rate is also reduced at each trigger level. The staged triggers workon the event data successively and build a chain of data acquisition processes. Onthe other hand, the triggers are allowed to work in parallel independently and eachtrigger supports the input data rate from the previous trigger, so that the overallsystem can sustain the initial data-detection rate of 40MHz for the LHC collider.Since in a staged trigger system the complexity of the data pre-selection algorithmis preserved, the process latency through the whole data acquisition chain is stillinevitable. However, the parallel pipeline computing of all the triggers ensures thatthe initial data-detection rate is sustained. The latency time does not increase andno data get lost. Figure 2.3 shows the performance of an example staged trigger
10



2.1 LHC - Large Hadron Collider

Figure 2.3: Parallel pipeline computing of an example staged trigger sys-tem. Original data rate is sustained with �xed latency time.

11



2 Background: LHC - ATLAS - ROS
system. The reduction of data rate and the sustaining latency time are indicated inthe �gure.
2.2 ATLAS - A Toroidal LHC ApparatuS

2.2.1 The DetectorA Toroidal LHC ApparatuS (ATLAS) is one general purpose particle-interactiondetectors constructed inside the Large Hadron Collider. The ATLAS detector has ashape of a cylinder, with a length of around 45 meters and a diameter of 25 meters.The detector weighs about 7,000 tons. Around 2,000 scientists and engineers from151 institutions in 34 countries get involved in the development of the ATLAS detec-tor. Physicists expect to use this detector to measure phenomena that involve highlymassive particles which are not measurable in earlier lower-energy accelerators. Theexperiment might even shed light on new theories of particle physics beyond theStandard Model.When the proton beams produced by the Large Hadron Collider interact in thecenter of the ATLAS detector, a variety of di�erent particles with a broad range ofenergy levels may be generated. ATLAS is designed as a multipurpose detector. Itis capable to detect and measure new physical phenomena predicted by currentlyavailable theories and to perform Standard Model measurements of high precision.At the same time, it is also open to unexpected signals from unpredicted physicsscenarios and thus has to be sensitive to any kind of event topology. Therefore, ratherthan focusing on a particular physical process, the ATLAS detector is designed tomeasure the broadest possible range of signals. This means to ensure that, whateverform of new physics processes or particles take place, the ATLAS detector mustbe capable to detect them and measure their properties. Designs of detectors forearlier colliders, such as the Tevatron and LEP, were based on a similar philosophy.However, the new challenges of the LHC are its unprecedented energy scale andextremely high rate of collisions, which require the ATLAS to be larger and morecomplex than any detector ever built.Since the ATLAS detector is expected to investigate a broadest range of physicalsignals, a number of special sub-detectors are constructed inside ATLAS. The sub-detectors are placed in several layers around the interaction point where the protonbeams collide. Figure 2.4 shows the pro�le view of the ATLAS model.The ATLAS detector can be divided into four major parts: the inner detector,the calorimeters, the muon spectrometer and the magnet systems. Each of theseis further made up of multiple layers. The detectors are complementary: the inner
12



2.2 ATLAS - A Toroidal LHC ApparatuS

Figure 2.4: ATLAS Model [59]

13



2 Background: LHC - ATLAS - ROS
detector tracks particles precisely, the calorimeters measure the energy of easilystopped particles, and the muon system makes additional measurement of highlypenetrating muons. The magnet systems bend charged particles in the inner detectorand the muon spectrometer, which allows their momenta to be measured.The ATLAS detector produces an overall data volume of 40 terabytes every sec-ond. The data are delivered by the sub-detectors inside ATLAS, with an event rateof 40MHz and a data volume of 1 megabytes each cycle.
2.2.2 TDAQ - Trigger and Data Acquisition ChainAs with other high energy physics experiments, the ATLAS shares a same princi-pal task in the data acquisition process: reducing the huge data volume and thehigh data rate. The staged trigger architecture has been commonly used in theseexperiments. The ATLAS data acquisition system follows also this principle.In general the ATLAS trigger system is composed of three trigger levels. The trig-ger system attempts to use simple information to identify online the most interestingevents that occur in the center of the detector through the beam intersections. Thethree trigger levels are level 1 trigger, level 2 trigger and the event �lter (EF). Thelast two levels of the trigger system are also termed as High-Level Trigger (HLT),since both of them involve asynchronous intensive computing process, while the �rststage is more synchronous hardware driven. Each trigger level re�nes the decisionsmade at the previous level(s) and applies additional selection criteria. Figure 2.5shows the ATLAS trigger system and its data acquisition chain.The �nal goal of the ATLAS system is to turn the pattern of signals from thedetector into physics objects, such as jets, photons, and leptons. In the level 1trigger physics objects are typically �rst identi�ed and crudely reconstructed.[63]The high-level trigger progressively re�nes the reconstruction, rejects fake objectsand improves the precision of the measurement. Inside ATLAS, the data-crossingrate is 40 MHz and on average about 23 proton-proton collisions will be produced ateach proton bunch crossing at the machine's design luminosity of 1034cm�2s�1. Thelevel 1 trigger makes the �rst level of event selection, reducing the initial event rateto about 100 kHz. After HLT the rate of selected events is reduced to hundreds ofhertz for permanent storage. Altogether the TDAQ system in ATLAS reduces thedata rate by a factor of 105. After the third level trigger only a few hundred eventsremain to be stored per second for further o�ine analysis. Even So, the remainingdata still requires over 100 megabytes of disk space per second or over 2 petabytes(1015) each year.O�ine event reconstruction (or physics object reconstruction) is performed on
14



2.2 ATLAS - A Toroidal LHC ApparatuS

Figure 2.5: The ATLAS trigger system and event data acquisition chain[59][53].

15



2 Background: LHC - ATLAS - ROS
all permanently stored events. Grid computing is extensively applied to event re-construction, which allows the parallel use of the computer networks in di�erentuniversities and laboratories throughout the world. This CPU-intensive task is toreduce the large quantities of raw data into a form that is suitable for physics anal-ysis. The software for these tasks has been under development for many years, andwill continue to be re�ned once the ATLAS experiment starts running.The following discusses in detail the three-level triggers in the ATLAS data ac-quisition chain.
2.2.2.1 Level 1 TriggerThe level 1 trigger is based on electronics inside the detector. Special-purpose pro-cessors are used to act on a subset of the data from the detector. The level 1 triggerexamines event data from the ATLAS calorimeter and muon sub-detector, and ana-lyzes threshold information of energy and momentum to �nd possible particles andto make a trigger decision. It takes the level 1 trigger around 2 �s per cycle tocollect data from detectors, to make trigger decision and to distribute the selecteddata. This time is called the level 1 latency. As this is longer than the proton bunchcrossing time (i.e. 25 ns), pipeline memories are used �rstly to store the events frommultiple bunch crossings. Then the arithmetic logics for making the trigger decisionare implemented with synchronous, pipelined, parallel processors (such as ASIC andFPGA processors) driven by the LHC 40 MHz clock. After the level 1 trigger, thedata volume drops from 45 TByte/s to 136 GByte/s, and the data rate is reducedfrom 40MHz to 100kHz.[7]On level-1 acceptance the level 1 trigger passes over the accepted event data tothe readout drivers (ROD) along their according region-of-interest (RoI), i.e. thecoordinates of the detector area where the events have been detected. The RoIrestricts the area and thus the event data fraction. The level 2 trigger requires theinformation to make further trigger decision.Altogether 1600 readout drivers are built in. Their tasks are to pre-format theevent data, to provide a general interface from the detector to the DAQ system andto de-randomize the event data. Accordingly 1600 readout links (ROL) [4] transportthe event data over a distance of up to a few hundred meters from the RODs to thereadout bu�ers (ROB), which are temporary data bu�ers for the level 2 trigger torequest the data and make further trigger decisions. The applied technology for theROLs is SLink, a custom unidirectional point-to-point link standard developed atCERN [21].
16



2.2 ATLAS - A Toroidal LHC ApparatuS
2.2.2.2 Level 2 TriggerThe second stage of the ATLAS DAQ chain is the level 2 trigger. The level 2trigger is a program driven trigger. It uses full-precision data from most of thedetectors, but examines only the event data occurring inside a certain detectorregion, i.e. Region of Interests(RoI) as mentioned above.[15] The introduction of RoIalleviates the bandwidth and processing-power requirements of the level 2 triggerdramatically, because individual RoIs can be analyzed independently. At the sametime the amount of data, transferred between the ATLAS readout bu�ers (ROB)and the level 2 trigger processors, is also reduced to a great extent.One goal of the level 2 trigger is to reduce the event rate from 100 kHz furtherdown to 1 � 5 kHz, a rate that can be sustained by the following event buildingsystem. Di�erent from the previous trigger, the level 2 trigger performs asynchronousoperations on events with an average trigger decision latency of 1�10 ms. To increasethe throughput and meet the incoming data rate, parallel computing is exploitedagain. That is, the trigger runs on a large farm of dual-CPU PCs connected overa Gigabit Ethernet network. A number of supervisor PCs control the level 2 farm,and distribute the trigger tasks and the RoI information collected by the RoI builderat the previous trigger level.The overall data
ow process is as follows. On event acceptance decision madeby the level 1 trigger, the event data are moved out of the pipeline memories andstored in the ROBs, until they are cleared by a level 2 reject signal or moved on tothe next stage of event builder (EB).Due to the RoI concept only a small number of ROBs, which cover the desiredarea of the detector, are required. The amount of data to the level 2 processor isvery limited. Modelling e�ort within the ATLAS community estimates, up to sevenpercent of all event data arriving at ROBs will be required by the level 2 trigger onaverage [12] and up to three percent will be accepted by the trigger decision [45].
2.2.2.3 Event FilterThe �nal stage of the ATLAS TDAQ chain is the Event Filter (EF). The EF analyzesthe whole event data to make the �nal selection of events that are to be recordedfor o�ine analysis.The ATLAS event �lter receives input data from the event builder (EB). Thetask of the EB is to gather data fragments that belong to a same event from bu�ersthat are dispersed by the previous triggers, because the EF needs to consider all theevent data from all sub-detectors for its analysis. Depending on the type of event,data volume reduction is achieved by a combination of event selection and possibly

17



2 Background: LHC - ATLAS - ROS
event compression.The data selection principles used by the EF resemble the o�ine algorithms thatare used for the o�ine analysis of the already recorded data. The trigger decisionmaking by the EF is also highly computing-intensive. Therefore, again a largecluster of general-purpose computers are employed. The farm of PCs build up aloosely coupled parallel system. Once an event with its full data assembled by theevent builder is assigned to a PC, the PC starts working on it with no furthercommunication with other PCs.The EF is expected to achieve a further data-rate reduction by a factor of 10�20.This will lead to a �nal event rate of up to 200 Hz. A data volume of up to 300megabytes will be written to the permanent storage medium per second for futureo�ine analysis by physicists.
2.3 ROS - ATLAS Readout SubsystemAs mentioned above the ATLAS readout bu�er (ROB) is a temporary data bu�erinside the second ATLAS trigger level. It receives the level-1-accepted event datafrom the readout drivers (ROD) through readout links (ROL) and bu�ers the data,until they are deleted or forwarded on request to the level 2 for trigger decision orto the event builder (EB) for event building.For each ROD or ROL there is a dedicated readout bu�er (ROB). That means,for 1600 ROLs 1600 ROBs are required for the bu�ering of the data accepted bythe level 1 trigger. Besides ROBs and level 2 PC farm there exists another coredevice in the second trigger level of ATLAS. The device is called readout subsystem(ROS). The ROS device takes over the control and management functionalities ofthe ROBs and makes the data available to the level 2 trigger on demand. Due to theintroduction of ROS the level 2 PC farm may concentrate only on the data analysisalgorithm for trigger decision making.
2.3.1 RequirementsThe ROS must ful�ll a number of requirements in terms of performance and us-ability. Figure 2.6 shows the dependencies of the ATLAS ROS and external DAQcomponents. The readout drivers (ROD) are at the input side of ROS, while thelevel 2 PC farm and the event �lter are located at the output side.The readout driver sends event data, accepted by the level 1 trigger, to the readoutbu�er inside the ROS device. The data is transferred through 1600 readout links.
18



2.3 ROS - ATLAS Readout Subsystem

Figure 2.6: A general use case diagram of ROS [37].

19



2 Background: LHC - ATLAS - ROS
Each ROL has a nominal bandwidth of 160 MByte/s and a data rate of up to 100kHz.Level 2 farm PCs collect required event data fragments from the ROS devices. Itis estimated that up to 7% of all event data arriving at ROS will be requested by thelevel 2 farm PCs on average for trigger decision making [12]. The maximum latencytime of the level 2 processing is expected to be up to 10 ms. Therefore, the readoutbu�ers must be large enough to keep the event data at least for the latency time.The event data, which are accepted by the level 2 trigger decision, are requestedand transferred from the ROBs within the ROS to the event builder. Event frag-ments are delivered through a dedicated Gigabit switched network, interconnectingall the ROS and all the Event Builder PCs. On average about 3% of all eventsarriving at the readout bu�ers are accepted by the level 2 trigger and leave for eventbuilding. All event data rejected by level 2 will no longer be used within the ATLASDAQ and are deleted at the ROB level.At last the ATLAS online control system is responsible for ROS con�guration andcontrol. This requires the ROS to provide an implementation with a generalizedsoftware interface. With the interface the online control can pass con�guration dataand switch between various run levels. Errors are also reported through this interface[12].
2.3.2 ImplementationThe readout bu�er system aims to store the detector data before event building. Itis also an indispensable component in other high energy physics experiments. Onecommon feature of readout bu�er systems is their high input rate and low outputrate. Therefore, combining a number of ROL inputs to one network output is abasic implementation rule in all high energy physics experiments. Most readoutbu�er components use bus-based systems, e.g. VME bus crates with a number ofcustom readout modules. In some cases the bus system is changed from VME toPCI and the crate is replaced by a standard high performance PC. The readoutmodules are usually built on FPGAs.The readout bu�er component in the ATLAS trigger is more demanding comparedwith that of the other experiments. First, it supports \sequential selection". Thatmeans, the bu�er component does not forward all the incoming event data for triggerdecision, but it supplies only these event data that are requested for trigger deci-sion. The sequential selection brings extra complexity to the design of the readoutbu�er system. Only one already operating experiment has a similar readout bu�ermechanism, which is the HERA B experiment. Its readout bu�er system is based
20



2.3 ROS - ATLAS Readout Subsystem
on SHARC DSP processors placed on VME crate modules. The incoming event rateto this readout bu�er system is 50kHz, and the SHARC links support 40MByte/s.This performance requirement is, however, much less demanding than that of theATLAS readout bu�er subsystem, which must support an incoming event rate of100kHz and a bandwidth of up to 160MB/s per link.Besides, the introduction of the RoI concept to the ATLAS DAQ also reduces theamount of necessary data transportation dramatically. This is also rarely found inother high energy physics experiments.
Many approaches have been discussed by the ATLAS community to implementthe ATLAS readout subsystem, and several ROS prototypes based on di�erent kindsof buses have been built and investigated, including VME-based ROS [23][25][3],PCI-based ROS [20][19][18] and CompactPCI-based ROS [56].After intensive discussion and investigation the ATLAS community made a deci-sion on the ATLAS ROS baseline architecture, which has been presented within theTrigger/DAQ Technical Design Report [12]. Considering the total estimated systemcost, the satisfaction of performance requirements, as well as the in
uence on otherparts of the ATLAS DAQ, a PCI bus-based solution with a standard, commercialo�-the-shelf PC (i.e. ROS-PC) was chosen for the baseline implementation of theATLAS ROS [52][1][5]. This ROS architecture is relatively cheap. Besides, it alsoprovides the possibility to perform local, partial event building inside the ROS-PC,such that the size of the PC farm in the event builder can be reduced. The detaileddecision making for the �nal ROS implementation strategy was discussed in [53].Figure 2.7 shows a ROS device implementation of the baseline design. The centriccontrol of a ROS device is based on a commercial o�-the-shelf (COTS) high perfor-mance server PC with PCI buses of high I/O capability. Since this standard PC isunable to handle the event data coming from the readout drivers on a reasonablenumber of links, the PC has to be extended by four custom hardware - PCI boards,called ROBIN (ReadOut Bu�er INput). Next chapter will address the hardwaredesign of the ROBIN device.The ROS PC host has three main tasks. It listens to requests from the level 2PC farm and the event builder, and then distributes the request messages to theaccording individual ROBIN boards. Moreover, a local, partial event building isperformed on the returning event data within the ROS-PC.The tasks of each ROBIN board are to receive incoming event data directly fromthree ROLs that are connected to it and to execute and reply the level-2 triggerrequests (e.g. RoI data requests) and the EB requests (e.g. EB data requests basedon level 2 acceptance decision). Due to the high data rate of up to 100kHz and

21



2 Background: LHC - ATLAS - ROS

Figure 2.7: A ROS baseline architecture [45]. Note, one ROS device maycontain three or four ROBIN boards.

22



2.4 Summary
the high bandwidth of up to 160MB/s per link, one important issue for the ROBINboard is to manage the bu�ering of the huge volume of event data arriving on theROLs e�ciently. Moreover, on the output side, the ROBIN must respond to therequests coming from ROS PC quickly.In the ROS implementation all data requests from the level 2 PC farm or theevent builder are sent to the ROS PC; and the ROS PC collects the relevant datafragments from some or all of their ROBINs and forwards them to the requesters. Inthis scenario each ROS PC will need to be connected to at least two network switches,through a multi-channel network interface installed on its PCI-E bus. The ROBINshave also their own on-board Gigabit Ethernet interfaces allowing an upgrade pathwhere some data is passed into the network directly from the ROBIN.Currently, each ROBIN device contains 3 ROBs connecting with 3 ROL channels,respectively. The output of the ROBIN is done via PCI to the host PC. Each ROSdevice has three or four active ROBIN devices.
2.4 SummaryThe Large Hadron Collider is expected to become the world's largest and highestenergy particle accelerator. The ATLAS detector, as one of the largest particledetectors of the LHC, has to confront unprecedented challenges in its trigger anddata acquisition chain (TDAQ), due to its extremely huge data volume of extremelyhigh data rate.The ATLAS readout subsystem (ROS) is a core device in the ATLAS data ac-quisition chain. Its essential role in the DAQ is to play as a temporary data bu�erfor the level 2 trigger. It receives level-1 accepted event data through readout linksat a data rate of up to 100 kHz, bu�ers the data temporarily for at least a latencytime of up to 10 ms, delivers up to 7% of the received data (on level-2 request) tothe level 2 PC farm at a rate of up to 7 kHz, and delivers up to 3% of the receiveddata (on level-2 acceptance) to the event builder at a rate of up to 3 kHz.The ROS device is composed of a COTS high performance server PC and threeor four custom hardware PCI boards, i.e. ROBINs. The ROBIN boards providethe most essential bu�ering functionality inside ROS. Details about ROBIN areaddressed in the following chapters.

23



2 Background: LHC - ATLAS - ROS

24



3 Design of ATLAS ROBIN
The ReadOut-Bu�er INput (ROBIN) is the core device inside the ATLAS ReadOutSubsystem (ROS). It receives and bu�ers incoming event data directly from readoutlinks (ROL), and executes and replies request messages from the level 2 PC farm andthe event builder. As mentioned in the previous chapter a PCI bus-based solutionwith a standard commercial o�-the-shelf PC (ROS-PC) was eventually chosen forthe implementation of the ATLAS ROS. This chapter discusses mainly the ROBINdesigns for the PCI bus-based ROS system.In the following of this chapter, di�erent ROBIN designs for the PCI bus-basedROS are �rstly reviewed in section 3.1. Then the choice for the �nal design ofROBIN is grounded in section 3.2. Details about the system architecture, boarddesign and data 
ow of the �nal ROBIN device are addressed.
3.1 Previous Implementations of ROBINDi�erent approaches for the implementation of the ATLAS readout subsystem (ROS)were investigated by the ATLAS community. For di�erent ROS implementations,dedicated custom ROB input modules with the evaluated bus interface have beendeveloped. The readout bu�er input module is called ROBIN (ReadOut Bu�er IN-put). Table 3.1 lists the di�erent ROBIN modules implemented for di�erent ROSdesigns.Considering the entire system cost and system performance, the ATLAS commu-nity decided for a ROS baseline design based on a COTS PC with PCI bused of highI/O capability. This chapter discusses primarily the di�erent ROBIN implementa-tions which are speci�cally designed for the PCI bus and PC-based ROS system. Tounderstand the di�erent ROBIN designs, we �rstly need to make clear the role andtasks of the ROBIN device inside the ROS system.

25



3 Design of ATLAS ROBIN
ROS Implementations ROBIN ImplementationsMFCC-Based ROBINCERN VME ROS UK ROBINSaclay CompactPCI-Based ROS PMC-Format ROBINSHARC DSP-Based ROBINUK ROBINPC-Based ROS FPGA-Based ROBINFinal ROBINTable 3.1: Di�erent ROBIN modules implemented for di�erent ROS designs.

The ReadOut-Bu�er INput (ROBIN) is a core device inside the ATLAS ReadOutSubsystem (ROS). It receives and bu�ers incoming event data directly from readoutlinks (ROL), and executes and replies request messages from the level 2 PC farm andthe event builder. In more detail each readout link (ROL) delivers event data, whichhas been accepted by the previous ATLAS level 1 trigger, at a maximum rate of100kHz and bandwidth of up to 160MB/s. ROBIN accepts the event data throughthe ROLs. It is expected to sustain the maximum data rate and bandwidth andstore the complete incoming event data temporarily on the 64MB SDRAM bu�ers,and then forward the accepted data on request to the ROS PC through PCI buses.The ROS PC is on the other hand responsible to collect the relevant data fragmentsfrom the ROBIN boards and forward them to the requesters, i.e. the level 2 PCfarm or the event builder [64].
According to Table 3.1, besides the �nal ROBIN design, there are another threeprevious ROBIN prototypes designed for the PCI bus and PC-based ROS system.They are the SHARC DSP-based ROBIN, the UK ROBIN, and the FPGA-basedROBIN. These di�erent designs are reviewed in the following.

3.1.1 SHARC DSP-Based ROBINThe SHARC DSP-based ROBIN has been developed by the NIKHEF institute [20].It comprises an Altera 10k FPGA, a SHARC DSP, and 1MByte ZBT SRAM. Thecomponent diagram of the SHARC DSP-based ROBIN is shown in Figure 3.1.The FPGA handles the input data stream from one SLink readout link (ROL) andaccesses the event data bu�er (i.e. the 1MByte SRAM) directly for event readingand writing. The SHARC DSP is responsible for the event bu�er managementand request messages handling. The event data bu�er is organized as a ring bu�er
26



3.1 Previous Implementations of ROBIN

Figure 3.1: PCI ROBIN based on a SHARC DSP [20].

27



3 Design of ATLAS ROBIN
with two pointers, pointing at the beginning and the end of the empty bu�er area,respectively. Up to four SHARC ROBIN boards can be combined to connect withone PCI interface.
3.1.2 UK ROBINThe UK ROBIN was developed by the Royal Holloway University of London andthe University College of London [19]. This ROBIN module is based on an i960processor with PCI bus interfaces. For the bu�ering of the event data an SRAM ofone megabytes is applied.

Figure 3.2: UK ROBIN based on an Intel i960 processor [25].
The SRAM event bu�er is organized as 1024 pages and each page has 1024 bytes.The data stream from the connected readout link (ROL) is routed to the eventbu�er by a control logic, i.e. a MACH 5 PLD (Programmable Logic Device). Thecontrol logic maintains two FIFOs, to store the empty pages and the �lled pages,respectively. Through the two FIFOs the control logic determines which page in thebu�er to write. Figure 3.3 shows the mechanism of the event bu�er management.On the hardware side, for each incoming event data fragment a free page is allocatedfrom the free-page FIFO. With the free page the control logic directs the event datato the page address in the event bu�er, and a new used-page record is generatedinside the used-page FIFO. The software part on the Intel i960 processor is thennoti�ed of the arrival of new event data through the used-page FIFO. It is also theresponsibility of the software part to manage the event requests and deletions, andto supply the free-page FIFO with new free pages after event deletions. Event dataleave the hardware via the PCI interface which is integrated into the i960 processor.

28



3.1 Previous Implementations of ROBIN

Figure 3.3: Bu�er management inside the UK ROBIN [19].
3.1.3 FPGA-Based ROBINA most recent FPGA-based design of ROBIN device was presented in [53]. TheROBIN board is based on one MPRACE FPGA co-processor. MPRACE is devel-oped as a multi-purpose PCI-based FPGA hardware. It has been used in variousphysics and computer science applications [46] [36] [22], and showed su�cient highperformance in these systems.Figure 3.4 shows the component diagram of the MPRACE ROBIN. Four ROLsare plugged on one of the MPRACE extension board connectors. Accordingly fourindependent ROL handlers are implemented inside the FPGA. They process in-coming event data and store the data in four a�liated SRAMs inside MPRACE.Request messages from level 2 or event builder arrive at the ROBIN via the PCIand PLX9656 local-bus interface, and required event data is transmitted over thesame interface backwards to level 2 or event builder.
3.1.4 Performance Comparison of the Previous ROBIN DesignsPerformance of the previously-proposed PCI ROBIN prototypes is compared. Forthe evaluation a ROS-PC with equal software is used to test the three di�erentROBIN designs: SHARC ROBIN, UKROBIN, FPGA-based ROBIN.For each ROBIN prototype, the maximum level 1 input rate (i.e. data rate at

29



3 Design of ATLAS ROBIN

Figure 3.4: PCI ROBIN based on a MPRACE FPGA Co-Processor [53].

30



3.1 Previous Implementations of ROBIN
ROLs) is measured while varying request rate from level 2 and event builder. Figure3.5 shows the results of the comparison. The FPGA-based ROBIN shows dominantlybetter performance over the other two ROBIN prototypes.FPGA processors are well-known for their fast performance due to the parallelprocessing based on programmable gate array logics. They show signi�cant advan-tages over general-purpose PCs in handling tasks of parallel computing. In the caseof ROBIN the bu�ering of incoming event data from RODs and the response to therequest messages from the ROS host PC can be executed in parallel independently.Besides, the MPRACE ROBIN is able to handle four ROLs at a maximum.

Figure 3.5: Performance comparison of the three previous ROBIN proto-types: SHARC DSP-based ROBIN, UK ROBIN and FPGA-based ROBIN [28].
However, to deal with complex tasks with complex data structures, it requiresmuch FPGA resource, i.e. space of programmable gate array. Larger size of gatearray means by far higher cost of a FPGA processor. The detailed ROBIN's tasks arediscussed in the next chapter. It is shown that the ROBIN application employs datastructures of stacks, linked lists and particularly hash tables to manage the eventbu�ers. The implementation of all these tasks on an FPGA processor would be veryresource-costly. Furthermore, the FPGA processor shows no better performance indealing with serial tasks, since its frequency is generally lower than that of a CPU.Besides, the development cost of the FPGA code is dramatically higher than that

31



3 Design of ATLAS ROBIN
for a general-purpose CPU.
3.2 Final Design of ROBINRegarding the above considerations the ATLAS community made the decision forthe �nal design of the ROBIN device [45] [44].
3.2.1 Hardware Deployment

Figure 3.6: A ROBIN prototype in the �nal design.
Figure 3.6 shows a picture of a ROBIN prototype in the �nal design. Names of thelabelled components in the �gure are listed in Table 3.2. The according hardwaredeployment of the ROBIN board is illustrated in Figure 3.7. Two kernel processors,a Xilinx Virtex II 200 FPGA and a PowerPC 440 micro controller, are deployed onthe board. The PowerPC microcontroller has an a�liated 128MByte DDR SDRAMused to store the PowerPC software. For the space consideration at most three ROLscan be connected with one ROBIN board in this design. Three 64MByte SDRAMs

32



3.2 Final Design of ROBIN
1 three optical HOLA SLink input channels(160 MB/s per channel)2 Gigabit Ethernet3 IBM PowerPC 440GP micro-controler (466 MHz)4 Xilinx XC2V2000 FPGA5 PLX9656 PCI-X Bridge at 66MHz6 LEDs7 three 64MByte SDRAM bu�ers8 PowerPC's a�liated 128MByte RAM9 XILINX XC2C256 CPLD10 reset button11 PowerPC 10/100M Ethernet InterfaceTable 3.2: ROBIN Components

are used for the storage of the incoming event data from three readout links (ROL),respectively.
The combination of an FPGA processor and a PowerPC micro-controller takesadvantage of both kernel processors. According to the hardware deployment ofROBIN, the FPGA is mounted in the middle of the device. It acts as a bridgebetween three ROLs, three event bu�ers, the PowerPC and the ROS PC. The FPGAplays the centric role as a high-rate and high-bandwidth data-
ow core. All the datatransmitted between the components must go through the FPGA. It transmits eventdata and control messages on-the-
y across the system. On the other hand, thePowerPC micro-controller takes over more complex and 
exible management andcontrol jobs with relatively lower performance requirement. It arranges the eventdata bu�ers, instructs the FPGA where to store or transmit event data, decodesand executes incoming requests from the ROS PC, and initiates response messageswith event data or status/debugging information backwards. This ROBIN designmakes full use of the on-the-
y parallel processing capability of FPGA and the highclock-rate and high 
exibility of PowerPC.
Moreover, compared with the previous FPGA-based ROBIN, the combination ofan FPGA processor and a PowerPC micro-controller also makes the extension of theROBIN device for a next generation development much more 
exible and convenient.The �rst prototype stage of this �nal ROBIN design has already been approved [31].

33



3 Design of ATLAS ROBIN

Figure 3.7: Hardware Deployment of ROBIN. The highlighted three eventbu�ers and PowerPC's a�liated RAM are to be organized bythe PowerPC application.

34



3.3 Summary

Figure 3.8: Data Flow Diagram of ROBIN.
3.2.2 Data FlowFigure 3.8 shows the data 
ow through the ROBIN system. The bold arrows indicatethe heavy tra�c pathes for the transmission of event data or messages containingevent data. The PowerPC processor gets never involved in the main event datapath, and hence avoids being a bottleneck in the huge volume of data transmission.Only request messages and response messages excluding event data are transmittedbetween FPGA and PowerPC. Free page IDs and used page records are the spe-ci�c control information for event bu�er management. Details about event bu�ermanagement are found in the chapter 4.
3.3 SummaryThis chapter reviews di�erent ROBIN designs for the PCI bus and PC-based ROSand presents the �nal ROBIN design. Three previous ROBIN designs are particu-larly discussed. They are the SHARC DSP-based ROBIN, the UK ROBIN and theFPGA-based ROBIN. The performance comparison between the di�erent ROBINprototypes shows that the FPGA-based ROBIN is much e�cient than the other twoROBIN designs.

35



3 Design of ATLAS ROBIN
However, due to the higher resource cost and the higher development cost of theFPGA-based ROBIN, the ATLAS community decided eventually to adopt the �nalROBIN design based on two kernel processors: a Xilinx Virtex II 200 FPGA and aPowerPC 440GP micro-controller. This combination takes advantages of both kernelprocessors. The former controls the data 
ow with high performance requirements,and the latter is responsible for more complex and 
exible management functionswith relatively lower performance requirement. The �nal ROBIN design keeps notonly the e�ciency of the FPGA-based ROBIN, but also makes the extension of theROBIN device for a next generation development much more 
exible.

36



4 Event Bu�er Management
Algorithms

Before introducing the detailed software design of the ROBIN PowerPC System,this chapter discusses �rstly the strategy of the ROBIN event bu�er managementand the algorithms involved in the e�ective bu�er management and e�cient eventlookup.Firstly, section 4.1 reviews the page-based strategy for event bu�er organization,which was originally introduced by the UK group to the ROBIN project [19]. Section4.2 presents a hash-table-based algorithm for fast event lookup inside event bu�ers.Section 4.3 proposes a storage strategy both for the hash-table storage managementand for the event bu�er storage management.As mentioned previously three ROLs are connected with one ROBIN board. Eventdata from di�erent ROLs are stored in di�erent bu�ers and handled separately bythe level 2 trigger. Accordingly, the management of di�erent event bu�ers is alsohandled separately but in a similar way. The following text of this chapter addressesthe management of one event bu�er against one ROL.
4.1 Page-Based Event Bu�er OrganizationThe event bu�er management strategy presented in this work is based on a page-based bu�er management scheme, which was originally introduced by the UK group[19] to the ROBIN project. Since then some improvements have been made andapplied to the �nal design of ROBIN.The page-based bu�er management scheme is to segment each event bu�er mem-ory (i.e. a 64MB SDRAM) into pages of �xed size. Each page has a unique IDand is the smallest unit for bu�er allocation. The size of each page is typically 1K

37



4 Event Bu�er Management Algorithms
bytes, 2K bytes or 4K bytes. It is determined a priori depending on the type ofthe sub-detector that is connected to the corresponding ROL/ROD, since di�erentsignal detectors generate di�erent sizes of event data. One event may occupy oneor more pages, and one page can only be occupied by one event. To simplify theexplanation, in the following it is assumed that each page is of 1K bytes. In this casethere are totally 64K pages, and the page ID can be expressed by a 16-bit number.The absolute bu�er address (up to 64M) can be easily computed through a bit-shiftoperation upon the 16-bit page ID by 10 bits to the left.For a certain time period each incoming event from a single ROL has a unique 32-bit event ID. The event ID is assigned by the level 1 trigger for each newly detectedevent. The event ID is generated with a sequentially incremental number [32]. Hencefor an event rate of 100kHz the 32-bit event ID restarts from zero around every 12hours. Because the ROS PC sends periodically event-delete request messages toremove obsolete event data [54], it can make sure that an old event has already beenprocessed and removed long before a new event with a same event ID is generated.That means, at any moment in one event bu�er each event has a unique event ID.As mentioned above, the data of one event is stored in one or more pages. Hencethere exists an one-to-many mapping between 32-bit event IDs and 16-bit page IDs,which makes it possible to retrieve the according event data in the event bu�er. Themapping between event IDs and page IDs is managed by the PowerPC applicationusing a hash function. The hash function will be introduced in the next section.Through a free-page ID FIFO the PowerPC application tells the FPGA whichpages in the event bu�er are free to store the data of newly-incoming events. Whena new event arrives, the FPGA removes a free-page ID from the FIFO, and storesthe event data to the corresponding page in the event bu�er. After the storagethe FPGA forwards accordingly a used-page record to the PowerPC applicationthrough a used-page record FIFO. A used-page record contains the event ID andthe occupied page ID. If more than one pages are needed for the storage of the newevent, the FPGA will take another free-page ID from the free-page ID FIFO and gothrough a same procedure as above. More details about the communication betweenthe PowerPC application and the FPGA inside ROBIN are found in chapter 5.
4.2 Hash Table for Fast Event LookupGiven an event ID, the storage location of the event data in the event bu�er (i.e. therelated page IDs) must be found out immediately for e�cient event data transmissionor deletion on request by the level 2 trigger. For this purpose a skillful management
38



4.2 Hash Table for Fast Event Lookup
of the one-to-many mapping between event IDs and related page IDs is necessaryfor the fast event lookup.An event ID has 32 bits. It is unrealistic to set up a sparse array with a size of232 to contain a 26-bit event bu�er address or a 16-bit page ID for each event. Thismethod may provide the fastest performance for event lookup, but it requires anunavailable memory space of at least 8 TBytes.This section presents a hash-table based algorithm for the fast event lookup. Thisalgorithm is of not only low computational cost but also low memory space cost. Thefollowing of this section reviews �rstly three standard searching algorithms and thenaddresses the choice of a hash table for the ROBIN event lookup. The creation ofthe hash table and the de�nition of the hash function are explained afterwards. Thestorage management of the hash buckets are also described. At last the complexityof the hash searching is discussed.
4.2.1 Choice of Event Lookup Algorithm4.2.1.1 Standard Searching AlgorithmsBook [62] presents in general three solutions to searching problems, including linearsearching, binary search trees and hash tables. First, the linear searching refers toa search through a static array or a linked list where the mappings between keysand their values are stored. In the case of ROBIN event lookup the keys are eventIDs and the values are the page IDs. It would be too computationally expensive toperform a linear searching through a list of the mappings between event IDs andpage IDs, since the list could have a maximum length of 216 for one event bu�er.Second, a binary search tree is a sorted two-way tree structure, where each nodein the tree contains a key-value pair. \Sorted"means that, for each node in the tree,all the keys of the nodes in its left subtree are less than or greater than the keysin its right subtree. A bad search tree with n nodes may also have a complexityof O(n) like the linear searching. Only a balanced binary search tree can provide amuch faster performance. \Balanced"means that there are about the same numberof elements on either side or subtree of each tree node. In this case a tree with nnodes has a height of h = log2 n+ 1. To search for a node in the tree we need onlydo comparison checks for at most h times till �nding the required key-node pair.The complexity of a balanced binary search tree is therefore O(log2 n) in the worstcase.Third, a hash table is another data structure that associates keys with their values.In a narrow sense a hash table is merely an array of pointers. Each pointer pointsat a desired location, named as a hash \bucket", in which the related key-value pairs

39



4 Event Bu�er Management Algorithms
are stored. Then given a key, a hash function is �rstly required, to convert the keyto a number. The number indexes into the hash table (i.e. a pointer array). Thepointer in the indexed element leads to the desired hash bucket, where the key-valuepair for the given key should be stored. A hash bucket can also be implementedusing di�erent data structures, such as a tree structure or a linked list of key-valuepairs. As with the above binary search tree, a hash table can speed up a lookupprocess only if it is relatively balanced. \Balanced" here means that the key-valuepairs are evenly distributed among the buckets.
4.2.1.2 Choice of Hash Searching for Event LookupAs the memory space required for the storage of data structures is concerned, linearsearching is the most economical among the above three searching algorithms. Forlinear searching with a linked list of key-value pairs, each node in the list contains oneadditional pointer pointing to the next node beside a key-value pair. The binarysearch tree needs to store for each tree node (i.e. for each key-value pair) twoadditional pointers pointing to the roots of its left and right subtrees. The hashingneeds an extra hash table to store the pointers to each hash bucket. Besides, eachhash bucket needs further a certain data structure for its storage. Although linearsearching occupies the least memory space to store the data structure. However, thetime complexity of linear searching, O(n) in the worst case, is unacceptable for thereal-time requirement of the ROBIN system.A balanced binary search tree o�ers a time complexity of O(log2 n), where n is atmost 64K for ROBIN's event bu�er management. This advantage of the balancedbinary searching is very attractive. However, inside ROBIN the mappings betweenthe event IDs and the page IDs for each event bu�er are continuously modi�ed.Many e�orts have to be devoted to maintain a dynamically sorted and balancedbinary search tree, both in terms of computational time and in terms of memoryspace. For example, besides two pointers to the left and right subtrees for eachtree node, the number of the nodes inside either subtree must be stored as well forthe purpose of balance evaluation; and in the case of node insertion or deletion asimilar searching process has to be carried out, and so does the re-balance for eachconcerned subtrees. That means, operations of insertion or deletion are even morecostly than the operation of node lookup.As for hash searching, an additional bu�er needs to be allocated for the storageof the hash table. Besides, if a unidirectional linked list is used to store a hashbucket, each node in the bucket contains not only a key-value pair but also a pointerleading to the next node, provided that each hash bucket is implemented as a uni-
40



4.2 Hash Table for Fast Event Lookup
directional linked node list. The hash searching supports a constant lookup time
O(1) on average, so long as a proper hash function can be found which balances thedistribution of the key-value nodes throughout the hash buckets. The computationaltime for node insertion or node deletion is also constant, and the time complexityis O(1). The hash searching method is �nally chosen to solve for the ROBIN bu�ermanagement problem, because it is proven that there exists such a hash functionthat distributes the hash nodes uniformly into the hash buckets. The creation ofthe hash function is introduced in the next subsection.
4.2.2 Creation of the Hash TableFor the event bu�er management problem in ROBIN the key-value pairs are theevent-ID and page-ID pairs. Since the size of an event bu�er is limited, there existsalso an upper limitation to the number of hash nodes, i.e. key-value pairs. Thelimitation is the total number of pages in one event bu�er, which is known as 64K(in the case that the page size is 1K bytes). Therefore, we might design a hashfunction such that the size of the hash table (i.e. an array of pointers to hashbuckets) is equal to the total number of pages, and that each bucket contains onlyone hash node on average when the event bu�er is full. Accordingly the index tothe hash table can be expressed by a 16-bit number.It has been mentioned in section 4.1 that each event has a unique event identi�er.It is assigned by the level 1 trigger and has 32 bits. The level 1 trigger generatesthe event IDs increasingly according to the occurrence order of the events; and theevents inside each event bu�er are cleared up periodically. Therefore, one possibilityis to use the lower bits of the event ID as the index to the hash table. This strategyguarantees that there is no collision of the hash indexes for a certain time span.Since the index to the hash table is a 16-bit number, a best choice to computethe hash index is using the lower 16 bits of the 32-bit event ID. The according hashfunction is given as follows:

Hash(key) = key & 0xFFFF (4.1)
where \&" is a bit-wise logical AND operation. Here the key is a 32-bit event ID.The result of the hash function is the index to the hash table.With the hash index to the hash table, we can get the related hash bucket. Nextsubsection introduces the data structure and the implementation of hash buckets.

41



4 Event Bu�er Management Algorithms
4.2.3 Storage Management of Hash Buckets

A hash bucket is a list of hash nodes. As described above the size of each hash bucketis less than one on average. Hence it is unnecessary to exploit a complex structurelike trees to implement each hash bucket. Typically a unidirectional linked list isused as the data structure for a hash bucket, if the sizes of the hash buckets aresmall and uncertain. Each node in the linked list contains a key-value pair and apointer to the next node.A linked list is a dynamic data structure, whose size changes continuously overtime. However, as is commonly known, dynamic memory allocation is discouragedinside an embedded system for security and stability's sake. Due to limited resourcein an embedded system every application or software in it is assigned a priori ade�nite amount of memory for its code and data. When a dynamic data structureis necessary, often it has to be managed by the software itself within its assignedmemory space. Mostly dynamic data structures are eventually implemented usingsome other static data structures in the background.Inside ROBIN the management of the hash table is done by the ROBIN PowerPCmicro-controller, which has an a�liated 128MByte DDR SDRAM for the storage ofits software. The PowerPC software also avoids using dynamic memory allocation.Hence the following of this subsection presents an algorithm to manage the dynamicstorage of the hash buckets using some static data structures.
4.2.3.1 Logical Structure
A hash bucket is implemented as a unidirectional linked list. The linked list iscomposed of a chain of hash nodes. For the hashing for ROBIN event lookup eachhash node in a hash bucket contains not only a key-value pair (i.e. event-ID andpage-ID pair) and a pointer to the next hash node, but also some brief informationof the according event data. Excluding the pointer to the next hash node the otherinformation are actually equivalent to that of a used page record. The used pagerecord is generated by the ROBIN FPGA micro-controller for each occupied pageinside the event bu�er and forwarded to the PowerPC system through a used-pagerecord FIFO as mentioned in section 4.1. A used page record has 16 bytes. Detailsabout used page records are found in chapter 5.See �gure 4.1 for an example of the logical structure of the hash table applied tothe fast event lookup in ROBIN.
42



4.2 Hash Table for Fast Event Lookup

Figure 4.1: Logical structure of an example hash table applied to the fastevent lookup.
4.2.3.2 Physical StorageThe data structure of a hash table is composed of two parts. One part is an arraycontaining pointers to corresponding hash buckets, which is termed as hash array(or hash table in a narrow sense). The other part is the hash buckets. As mentionedin section 4.2.2, the size of the hash array is �xed, so the hash array can be de�nedas a static array structure. The essential problem for the storage of the hash tableis the storage of its hash buckets with a changing number of hash nodes.As the total number of the pages in one event bu�er is 64K, the maximum numberof hash nodes is also 64K accordingly. Then we may assign a static bu�er with a sizeof 64K� sizeof(Hash Node) bytes for the storage of all the hash nodes. This bu�eris named as the hash node bu�er in this work. Figure 4.2 illustrates an example ofthe physical storage of a hash table inside the PowerPC software.Moreover, since all the hash nodes are stored in an array, the pointer to a hashnode can be expressed by the index of the node in the hash node array, instead ofthe physical address of the hash node in the memory. The former is of 2 bytes, andthe latter is of 4 bytes. In this way the bu�er sizes both for the hash array and forthe hash node array can be reduced by 2*64K bytes.The next problem is then how to manage the hash node bu�er, including allocatinga free space inside the hash node bu�er for a new hash node, and releasing the spaceof a deleted node. Two solutions to the management of the hash node bu�er areproposed in this work and presented in the coming section 4.3.3.

43



4 Event Bu�er Management Algorithms

Figure 4.2: Physical storage of an example hash table inside the PowerPCsoftware. Note, the hash table is the same one as shown in�gure 4.1).
4.2.4 DiscussionA hash table is introduced above for the fast event lookup inside ROBIN. Thissubsection discusses the hash searching algorithm with respect to its hash collisionprobability, space complexity and time complexity.
4.2.4.1 Hash CollisionA good hash function is essential for good hash table performance. A poor choice of ahash function can lead to clustering, in which case the probability of keys mappingto a same hash bucket is signi�cantly greater than that expected from a randomfunction. This clustering atmosphere is termed as hash collision. Hash collisionis an important factor to evaluate a hash function. A good-designed hash tableattempts to avoid hash collision as much as possible. The following discusses theprobability of hash collision for the hash table proposed in this section for the fastevent lookup inside ROBIN.Section 4.2.2 explains the choice of the hash function for the fast event lookupinside ROBIN. Firstly, the size of the hash table is designed to be the same as thetotal number of pages inside one event bu�er. Therefore, on average each hashbucket contains one used page record or hash node, if the event bu�er is full. Ideallythere is no collision of hash nodes in any hash bucket. Moreover, equation 4.1 gives
44



4.2 Hash Table for Fast Event Lookup
the hash function for the hash table. It takes the lower 16 bits of a 32-bit eventID as the index to the according hash bucket. Because the event IDs are generatedincreasingly according to the occurrence order of the events, a hash collision with acurrent occupied hash node occurs once after 64K events have happened. Chapter 2has introduced that ROBIN is essentially an intermediate bu�er in the ATLAS dataacquisition chain. It is designed to speed up the highly-selective event acquisitioninside ATLAS. ROBIN is built between the level 1 trigger and the level 2 trigger.Statistically less than three percent of the total events get passed on from the level1 trigger to the level 2 trigger; and event data get refreshed very often inside theATLAS DAQ chain as well as in the ROBIN's event bu�ers. When historical eventdata get removed, the old event IDs get deleted and the chance for hash collisiondecreases at the same time.
4.2.4.2 Space ComplexityTable 4.1 shows the storage requirement of the hash table proposed in this sectionfor various page sizes inside one 64MByte SDRAM event bu�er. According to thetable the PowerPC needs to reserve totally 1280K bytes for the storage of a wholehash table for the fast event lookup inside one event bu�er, provided that the pagesize is 1K bytes.

Page Size 1K Bytes 2K Bytes 4K Bytes

Number of Pages 64K 32K 16K

Size of a Hash Bucket Pointer 2 Bytes 2 Bytes 2 Bytes

Size of a Used Page Record 16 Bytes 16 Bytes 16 Bytes

Size of a Hash Node 18 Bytes 18 Bytes 18 Bytes

Length of Hash Array 64K 32K 16K

Bu�er Size for Hash Array 128K Bytes 64K Bytes 32K Bytes

Length of Hash Node Array 64K 32K 16K

Bu�er Size for Hash Node Array 1152K Bytes 576K Bytes 288K Bytes

Bu�er Size for the Whole Hash Table 1280K Bytes 640K Bytes 320K BytesTable 4.1: Memory requirement of the hash table for fast event lookup. Note thatthe event bu�er is a 64MByte SDRAM.
4.2.4.3 Time ComplexityTable 4.2 lists the time complexity of di�erent operations upon the hash table bothin the average case and at the worst case. The running time for the initialization

45



4 Event Bu�er Management Algorithms
of the hash table is in proportion to the total number of bu�er pages, i.e. O(M),where M is the total number of bu�er pages. The time required for the insertionof one used page is �xed and independent of the number of pages, i.e. O(1). Themaximum response time of the two operations are predictable.

Operation Time Complexity
(average case)

Time Complexity
(worst case)

Initialization O(M) O(M)

Used Page Insertion O(1) O(1)

Used Page Deletion O(1) O(M)

Event Lookup O(1) O(M)Table 4.2: Time complexity of the hash table management for fast event lookup.Note that M is the total number of bu�er pages.
Event lookup is a part of the process of event deletion. Once a requested hashnode is found in a certain hash bucket, it takes no time to remove it from the bucket.Hence the time complexity of hash node deletion is similar to that of event lookup.In the average case the hash table provides constant running time, i.e. O(1), bothfor event deletion and for event lookup. In the worst case when the event bu�eris full of M event pages and all the M occupied hash nodes are clustering in onehash bucket, the worst-case time complexity is O(M) for both operations. However,as indicated in the previous subsection 4.2.4.1, no hash collision occurs during acertain time span after bu�er initialization or re-initialization, and periodical clear-up of obsolete event data diminishes the chance of collision. Both practically andtheoretically the worst case of the hash table will never happen.

4.3 Hash Node Bu�er Allocation and Event Bu�er

AllocationThis section presents two solutions to the hash node bu�er allocation as well as tothe event bu�er allocation. Firstly it is shown that there exists an identical imagingbetween an event bu�er and its related hash node bu�er. Then a standard methodbased on a free-page ID stack is introduced for the allocation problem of both bu�ers.An improved algorithm is proposed afterwards in detail. The algorithm is based ona chained free hash-node list that is built inside the hash node bu�er. Finally thetwo algorithms are evaluated and compared with respect to their space complexityand time complexity.
46



4.3 Hash Node Bu�er Allocation and Event Bu�er Allocation
It has been described in the beginning of this chapter that an event bu�er is a64MB SDRAM memory and the bu�er is segmented into pages of �xed size. Thesize of each page is pre-de�ned. It could be 1K bytes, 2K bytes or 4K bytes typically.To simplify the explanation, in the following of this section it is assumed that eachpage is of 1K bytes. In this case there are 64K pages in one event bu�er.

4.3.1 An Identical Imaging between Event Bu�er and Hash

Node Bu�erCompare an event bu�er with its related hash node bu�er. The former is dividedinto 64K pages with a �xed size of 1K bytes per page. The latter is also dividedinto 64K hash nodes of �xed size of 18 bytes, in which 16 bytes is for a used pagerecord and 2 bytes is for a node ID pointing to the next hash node. Besides, eachoccupied hash node in the hash node bu�er corresponds to a used page in the eventbu�er. Naturally we may consider arranging the two bu�ers in a same way.As mentioned in the previous section, the ROBIN PowerPC software needs too�er the FPGA continuously free-page IDs inside the event bu�er. After copyingthe data of a newly-incoming event to a free page in the event bu�er, the FPGAreturns a used-page record to the PowerPC. The used page record is then wrappedin a hash node and inserted to the hash table. A used page record contains both anevent ID and a page ID; therefore in the hash node bu�er (or array) if we take thehash node also at the index identical to its page ID to contain the used page record,we can guarantee an identical imaging between the arrangement of the event bu�erand the arrangement of the hash node bu�er. Each used page in the event bu�erhas a corresponding node in the hash node bu�er at a same position, and vice versa.
4.3.2 Standard Bu�er Allocation Algorithm Using a Free-Page

ID StackA standard method to manage the storage of such a bu�er divided into segments/pagesof �xed size is to use a free-page ID stack. The free-page ID stack is used to storethe IDs of the free pages inside the event bu�er. The size of a page ID is 2 bytesand there are at most 64K free pages in one event bu�er. Therefore, the size of thefree-page ID stack is determined to be 64K � 2 bytes.For the initialization the event bu�er is empty and all the pages in the bu�er arefree, then all the page IDs are pushed into the free-page ID stack. In the case ofpage allocation for new events page IDs are popped out of the stack, and in the caseof page release for deleted events page IDs are pushed into the stack.
47



4 Event Bu�er Management Algorithms
As stated in the preceding subsection the allocation of the event bu�er can beeasily extended to manage the allocation of the related hash node bu�er.

4.3.3 Chained Free Hash-Node List for Hash Node Bu�er

Allocation4.3.3.1 NotationsThe solution proposed in this subsection for the hash-table storage management em-ploys same data structures as introduced in section 4.2 for the hash table. The hashtable is notated by a pair of arrays < H;G >. In the notationH = h1; h2; � � � ; hM de-notes the hash array, an array of pointers pointing at hash buckets; G = g1; g2; � � � ; gMis the hash node bu�er composed of an array of hash nodes, in which hash bucketsare stored.An entry of H, hi, points to the i-th hash bucket, i.e. the head hash node inthe linked hash node list of the i-th hash bucket. hi is the index to the head hashnode in the hash node array G. An entry of G, gi, is a hash node. It contains aused page record gi:data and a pointer gi:next pointing to gi's next hash node in achained/linked hash node list. gi:next is also an index of an hash node in the hashnode bu�er G.
M is equal to the total number of pages in one event bu�er. Because there existsan identical imaging between the event bu�er and its hash node bu�er, the lengthof the hash node bu�er G are also M . Besides, according to the design of the hashtable, when the event bu�er is full, the hash node bu�er is also full and each hashbucket contains on average one hash node. Therefore, the length of H is M as well.

4.3.3.2 Main Idea of the Bu�er Allocation Algorithm Based on a ChainedFree Hash-Node ListThis subsection introduces a chained free hash-node list to solve the allocation prob-lem both for the hash node bu�er and the event bu�er. The chained list of free hashnodes is created inside the hash node array G. Free hash nodes are the hash nodesinside the array G that are not inserted to any hash buckets in the hash table. All thefree hash nodes inside G are linked together and compose a chained free hash-nodelist. The main idea of the bu�er allocation algorithm is to maintain a chained listof all the free hash nodes. Each time when a new used page record is reported fromthe FPGA and a free hash node is required to store the used page record, a nodeis removed from the chained free hash-node list and inserted into the correspondinghash bucket; and each time when a used page record is required to be deleted, the
48



4.3 Hash Node Bu�er Allocation and Event Bu�er Allocation
corresponding hash node is removed from the related hash bucket and inserted backinto the chained free hash-node list.

Figure 4.3: Logical structure of an example hash table and an accordingchained free hash-node list.
Figure 4.3 shows the logical structure of an example hash table and an accordingchained free hash-node list. In the example the maximum number of the hash nodesis assumed to be eight, and accordingly the length of the hash array and the length ofthe hash node array are also eight. Figure 4.3 illustrates the corresponding physicalstorage of the example hash table and the built-in chained free hash-node list isindicated.With the introduction of a chained free-node list the hash table is denoted by aternary form < H;G; f >, where f points to the chained free hash-node List. It isthe index to the head hash node in the chained free hash-node list.

4.3.3.3 Extension to Event Bu�er ManagementThe chained list of free hash nodes proposed above can not only deal with thedynamic bu�er allocation and release for the hash table which is applied to the fastevent lookup, but also handle the event bu�er management inside ROBIN.As mentioned previously the event bu�er can be arranged in a same way that
49



4 Event Bu�er Management Algorithms

Figure 4.4: Physical storage of the example hash table shown in �gure 4.3.Note, f is the header of the built-in chained free hash-node list.
the hash node bu�er is organized, and vice versa. Therefore, when the PowerPC isrequired to update the free page ID FIFO for the FPGA, it may forward the IDs ofthe free hash nodes in the chained free hash-node list as free page IDs. When a usedpage record is returned from the FPGA, which contains an event ID and a page ID,the PowerPC may take the page ID as an index to allocate a hash node in the hashnode bu�er, �ll the hash node with the used page record and insert it then into therelevant hash bucket.Algorithms 4.3.3.3-4.3.3.3 give the detailed operations for the ROBIN event bu�ermanagement and event lookup based on the above proposed algorithm of a chainedfree hash-node list. In the operations only one event bu�er is concerned and thenotations introduced in section 4.3.3.1 are used. Besides, the hash table is denotedin the ternary form of < H;G; f > introduced in section 4.3.3.2, where H is thehash array, G is the hash node array and f points to the header of the chained freehash-node List.
4.3.4 DiscussionThis section introduces a chained free hash-node list for the allocation of an eventbu�er and its hash node bu�er. The space complexity and the time complexity ofthe method are analyzed in the following.Table 4.3 lists the memory requirements for the main data structures in the
50



4.3 Hash Node Bu�er Allocation and Event Bu�er Allocation
Algorithm 4.1 InitializationProblem StatementWhen the ROBIN system starts to work, or when a request from the level 2 triggercommands to clear all the event data, every bu�er in the ROBIN is cleared up andall hash nodes in the hash node bu�er are set free. The free hash nodes are linkedtogether and build up the initial chained free hash-node list, and on the other sideall hash buckets are empty.Algorithm1. Initialize the hash array H. For all i 2 f1; 2; � � � ;Mg set hi =NULL. Here allhash buckets are set empty.2. Initialize the hash node bu�er G. Link all hash nodes in the hash node bu�erinto one linked list. For all i 2 f1; 2; � � � ;M � 1g set gi:next = i + 1 and

gM :next =NULL.3. Initialize the chained free hash-node list f . Let f point to the �rst hash nodeof the above linked list g1, i.e. f = 1.
ROBIN PowerPC application for the management of one event bu�er, when thesize of each page inside the event bu�er (64MByte SDRAM) varies from 1K bytes,2K bytes to 4K bytes.

Page Size 1K Bytes 2K Bytes 4K Bytes

Hash Array (Pointers to Hash Buckets) 128K Bytes 64K Bytes 32K Bytes

Hash Node Array 1152K Bytes 576K Bytes 288K Bytes

Chained Free Hash-Node List 2 Bytes 2 Bytes 2 Bytes

Total 1280K Bytes 640K Bytes 320K BytesTable 4.3: Memory space requirements for the main data structures in the ROBINPowerPC application for one event bu�er (64MByte SDRAM).
An identical mapping between the page arrangement in the event bu�er and thehash node arrangement in the hash node bu�er is maintained, which simpli�es thestorage management inside the PowerPC application signi�cantly. Table 4.4 showsthe time complexity of the primary operations in the ROBIN PowerPC applicationboth in the average case and in the worst case. As stated in section 4.2, bothpractically and theoretically the worst case for the hash lookup are far from happen.

51



4 Event Bu�er Management Algorithms

Algorithm 4.2 Free Page FIFO UpdateProblem StatementThe PowerPC provides the FPGA free page IDs through a free page FIFO. Thefree page FIFO is implemented as a static cycled queue and denoted in a ternaryform by P; s; t, where P = p1; p2; � � � ; pN is an array and N > 0 is the length of thefree page FIFO. Each entry in P is a page ID. s and t are two indices of the array
P . They point to the start element and the end element of the static cycled queuewith valid free page IDs. At initialization s =NULL and t =NULL. To update thefree page FIFO the PowerPC application takes the IDs of the �rst hash nodes inthe chained free hash node list as free page IDs, inserts them into the free pageFIFO and removes these hash nodes from the chained list, till the FIFO is full orthe chained list is empty.Algorithm1. De�ne t0 = (t+ 1) mod N .2. If t0 is equal to s, which means that the free page FIFO is full, no furtheroperations are then required and exit. Otherwise, continue.3. If f is NULL, which means that the chained free hash node list is empty, nomore hash node or free page is available and exit. Otherwise, continue.4. If s is NULL, which means that the free page FIFO is currently empty, thenset s = 1 and t = 1. Otherwise, set t = t0.5. Assign the last element pt in the valid free page ID queue with the �rst nodein the chained free hash node list: pt = f .6. Assign f with the next hash node in the chained list: f = gf :next.7. Go to step 1.

52



4.3 Hash Node Bu�er Allocation and Event Bu�er Allocation

Algorithm 4.3 Insertion of a Used Page RecordProblem StatementWhen a page in the event bu�er is �lled, a used page record is then created inthe FPGA and forwarded to the PowerPC through a used page record FIFO. Onreceiving a used page record the PowerPC allocates a free hash node in the hashnode bu�er and �lls it with the used page record. Then insert the hash node intothe hash table, more exactly, the relevant hash bucket. Let r denote a new usedpage record to be inserted to the hash table, with r:pid for its page ID and r:eip forits event ID.Algorithm1. According to the identical imaging between the event bu�er and the hash nodebu�er, the page ID r:pid is also the ID of the hash node allocated in the hashnode bu�er to contain the used page record r. De�ne p = r:pid: and the hashnode gp is then the required free node.2. Assign the data of gp with the used page record r: gp:data = r.3. Put the event ID r:eid into the hash function, which yields the hash key:
k = Hash(r:eid) = r:eid & 0xFFFF.4. Insert the hash node gp at the head of k-th hash bucket hk:

gp:next = hk and hk = p.

53



4 Event Bu�er Management Algorithms

Algorithm 4.4 Event LookupProblem StatementOn event data request from the level 2 trigger the PowerPC software needs to �ndthe relevant used page record(s) from the hash table. Then initiate a reply messageinvolving the related page ID(s) and forward it to the FPGA. The FPGA is respon-sible to get the data from the event bu�er and assembles the �nal reply message forthe level 2 trigger. Let e denote the ID of the event to be deleted.Algorithm1. Put the event ID e into equation 4.1, which yields the hash key:
k = Hash(e) = e & 0xFFFF. The related hash node(s) are in the k-th hash bucket.2. De�ne p = hk, i.e. the head node in the k-th hash bucket.3. If p is null, which means that p is the end of the hash bucket, stop searchingand exit then.4. If gp:data:eid is equal to e, which means that gp is the required hash node andits data gp:data is one wanted used page record for the event e.5. Let p = gp:next.6. Go to step ??, to check whether any other hash node in the bucket is alsowanted.

54



4.3 Hash Node Bu�er Allocation and Event Bu�er Allocation

Algorithm 4.5 Hash Node DeletionProblem StatementOn event deletion request from the level 2 trigger the operations in algorithm 4.3.3.3for event lookup in the hash table are also performed in the PowerPC software, andthe related hash node(s) with the used page record(s) are then removed from thehash table. No further operations by the FPGA or direct upon the event bu�er arenecessary. Here shows only the operations required for the deletion of a hash nodefrom the hash table. To maintain the chained free hash-node list, the removed hashnode needs to be inserted back into the chained free hash-node list. Let gi denote ahash node that is to be removed from the hash table. Assume that the hash node
gi is currently in the k-th hash bucket hk, and that gj is the preceding node linkedto gi in the bucket (i.e. gj:next = i) if gi is not the �rst node in the bucket (i.e.
hk! = i).Algorithm1. If hk is equal to i, which means gi is the �rst node in the k-th hash bucket,then go to step 3.2. Since gj is assumed to be the currently preceding node linked to gi in the k-thhash bucket, let gj then point at the next node after ei: gj:next = gi:next. Goto step 4.3. Let the head of the k-th hash bucket point at the next node after gi: hk =

gi:next.4. Insert gi at the head of the chained free hash node list:
gi:next = f and f = gi.

55



4 Event Bu�er Management Algorithms
Operations Average Case Worst Case

Initialization O(M) O(M)

Free Page Allocation O(1) O(1)

Free Page FIFO Filling O(N) O(N)

Hash Node Insertion O(1) O(1)

Hash Node Deletion O(1) O(1)

Insertion of Used Page Record O(1) O(1)

Event deletion O(1) O(M)

Event Lookup O(1) O(M)Table 4.4: Time complexity of the primary operations in the ROBIN PowerPC ap-plication both in the average case and in the worst case. Note that M isthe total number of bu�er pages; and N is the number of page IDs to be�lled into the free page FIFO. N should be smaller than the size of thefree page FIFO inside the FPGA.
Compared with the standard bu�er allocation algorithm using a free-page IDstack, the second proposed algorithm based on a chained free hash node list providesa comparable computational e�ciency but with no requirement for extra memoryspace.

4.4 SummaryDue to limited resources in the embedded ROBIN system, the ROBIN event bu�ermanagement strategy must exert all e�orts to be economic both in the computa-tional cost and in the memory space cost. Besides, for the sake of system securityand stability it must also take into consideration to avoid dynamic memory alloca-tion. This chapter presents a complete strategy for the event bu�er managementin the �nal ROBIN system. The problem of ROBIN's bu�er management centersessentially around three tasks: event bu�er arrangement and assignment, fast eventlookup and the management of related dynamic data structures.In this chapter �rstly a page-based strategy for ROBIN event bu�er organizationis brie
y reviewed. The 64MB SDRAM event bu�er is segmented into �xed-sizedpages. To deal with the mappings between the event IDs and the page IDs, ahash table is then introduced. An appropriate hash function is designed for thehash table, which guarantees a balanced distribution of hash nodes over the hashbuckets. Moreover, a hash table is basically a dynamic data structure, since variousnumber of hash nodes are dynamically inserted and deleted into the hash table over
56



4.4 Summary
time. Therefore, a bu�er of �xed size is de�ned speci�c for the allocation of hashnodes. The bu�er is named as hash node bu�er.As there exists an one-to-one mapping between the used pages in an event bu�erand the occupied hash nodes in the related hash node bu�er, a same mechanism canbe adopted to arrange both the allocation of the event bu�er and the allocation ofthe hash node bu�er. In such a way the computational e�ort of the ROBIN PowerPCsoftware is skillfully reduced. To deal with the bu�er allocation both for the eventbu�er and the hash node bu�er, a chained free hash-node list is introduced. Thechained free hash-node list is built within the hash node bu�er and hence no extramemory space is required.The proposed bu�er allocation strategy based on a chained free-node list canbe easily extended to handle the bu�er management for other embedded systems.The solution contributes even to solve a generic memory management problem, ifthe memory has to be divided into partitions with �xed size and each partition is aminimum unit for memory allocation and release. In such a case, the proposed bu�ermanagement method is an optimal solution both in respect of space complexity andin respect of time complexity.

57



4 Event Bu�er Management Algorithms

58



5 ROBIN PowerPC System
Analysis

As stated in Chapter 3, the hardware of ROBIN consists of two main parts cen-tered on two processors, a Xilinx Virtex II 2000 FPGA and a PowerPC 440 micro-controller. The two processors cooperate to realize the functionalities of ROBIN.The FPGA plays the centric role as a high-rate and high-bandwidth data-
ow core,and the PowerPC provides the management and control functionalities. This chap-ter and the following two chapters concentrate on the work in the ROBIN PowerPCsystem. This chapter discusses mainly the system requirements and principal tasksof the ROBIN PowerPC application.The chapter is organized as follows. Firstly section 5.1 introduces brie
y thehardware setup of PowerPC 440GP micro-controller. Section 5.2 discusses the com-munication interface (i.e. eight FIFOs) between the PowerPC application and theFPGA inside ROBIN. Through analyzing the data rate of eight FIFOs section 5.3addresses the real-time requirements upon the ROBIN PowerPC application. Re-garding the eight FIFOs section 5.4 discusses further four main cyclic tasks in thePowerPC application. Finally two possible architectures are presented in section 5.5for the design of the PowerPC system, depending on whether an embedded real-timeoperating system is integrated.
5.1 PowerPC 440GP MicrocontrollerThe IBM PowerPC 440GP micro-controller o�ers exceptional performance, high de-sign 
exibility, and robust features geared to given networking and storage. ThePowerPC 440GP is designed speci�cally for high-performance embedded applica-tions. Figure 5.1 shows the block diagram of the PowerPC 440GP micro-controller.

59



5 ROBIN PowerPC System Analysis

Figure 5.1: PowerPC 440GP block diagram.[38]

60



5.2 Communication with FPGA
The IBM PowerPC 440GP micro-controller has an IBM PowerPC 440 core. TheIBM PowerPC 440 core is a 32-bit RISC (Reduced Instruction Set Computer) core.It is implemented with IBM's advanced 90-nm copper CMOS technology, and pro-vides up to 667 MHz and 1334 DMIPS (worst-case) performance. The 440 coreis designed for high performance and high scalability. The PowerPC 440 core in-corporates a super-scalar seven-stage pipeline and executes up to two instructionsper cycle, which enhances dramatically the overall system throughput. Separate in-struction and data caches, a JTAG port, trace FIFO, multiple timers and a memorymanagement unit (MMU) are also supported by the core. The core's large data cache(32K) and instruction cache (32K) are 64-way set associative, with versatile con�g-urations to enhance performance tuning. The integrated memory management unit(MMU), with 2.0 DMIPS/MHz performance, allows software developers to con�gurecache regions in three di�erent modes to optimize their applications. For instance,locked regions can be used for low-latency code or interrupt service routines; tran-sient regions handle use-once data without disturbing the whole cache; and normalregions is managed using typical least-recently-used (LRU) algorithms. Moreover,the 440 core employs the scalable and 
exible Book E enhanced Power Architecture,which is optimized for embedded applications. The core can be integrated withvarious peripherals and application-speci�c macro cores using the CoreConnectTMbus architecture to develop custom System-on-a-Chip (SoC) solutions. Peripheraloptions include memory controllers, DMA controllers, PCI interface bridges andinterrupt controllers.The PowerPC 440GP incorporates a width range of features, including on-chipDouble Data Rate (DDR) SDRAM controller, PCI-X interface, External Bus Con-troller (EBC) with 8/16/32-bit external data bus width, DMA controller, on-chipEthernet, 8K on-chip SRAM, debug support and other on-chip peripherals such astwo serial ports, two I2C controllers, up to 32 GPIO, up to 13 external interrupts,and general purpose timers. The versatile features complement the RISC PowrPC440 core, to provide powerful solutions to diverse embedded applications.

5.2 Communication with FPGA

To discuss the requirements upon the PowerPC system, we �rst need to know thePowerPC's system interface to the outside. The interface indicates the input oroutput data pipes of the PowerPC system. Through analyzing the requirements ofeach data pipe (e.g. its data rate or its data bandwidth), the requirements upon thePowerPC system are accordingly explained.
61



5 ROBIN PowerPC System Analysis
As mentioned before, the FPGA plays a centric role in ROBIN. It acts as ahigh-rate and high-bandwidth data-
ow core. The communication of the PowerPCsystem with outside are actually all through the FPGA, or more exactly through anumber of FIFOs inside the FPGA.There are totally eight FIFOs used for the information exchange between thePowerPC system and the FPGA. Three free-page FIFOs and three used-page FIFOsare de�ned for the storage management of event data; and two message descriptorFIFOs are de�ned for the message exchange between ROBIN and the ROS host PC.The three free-page FIFOs and one response message descriptor FIFO are writtenby the PowerPC system and read by the FPGA; the three used-page FIFOs andone request message descriptor FIFO are written by the FPGA and read by thePowerPC.The following of this section discusses how the eight FIFOs work in the ROBINsystem and how the PowerPC and the FPGA communicate with each other throughthe FIFOs.

5.2.1 Free-Page FIFOs and Used-Page FIFOsThe three free-page FIFOs and the three used-page FIFOs are used to deal withthe bu�ering of the incoming event data from three level-1 readout drivers (RODs),respectively. Figure 5.2 shows the activities inside FPGA in handling a fragment ofincoming event data from one ROL. The roles of the two kinds of FIFOs are alsoindicated in the �gure.As described in the previous chapter a page-based strategy is used for the eventbu�er management in ROBIN. According to the strategy one event bu�er is dividedinto pages of a �xed pre-de�ned size and the pages are the minimum unit for thestorage of event data. The PowerPC is responsible to tell the FPGA in which pagesto store the data of an incoming event through a free-page FIFO. Periodically thePowerPC writes the free-page IDs into the free-page FIFO. One free-page FIFO isdedicated to one event bu�er.When an event data fragment arrives at a readout link (ROL) connected to at theFPGA, it is �rstly stored in a data FIFO of 256 words. An input handler inside theFPGA reads the data from the FIFO and extracts the event ID and the event statusinformation (e.g. the last fragment 
ag, transmission 
ag, link errors, consistenceerrors, etc). At the same time, the input handler reads a free-page ID from theaccording free-page FIFO and removes it from the FIFO and then writes the eventdata fragment to the according free page in the event bu�er. The address of thefree page in the event bu�er is meanwhile computed by the bu�er arbiter through a
62



5.2 Communication with FPGA
bit-shift operation on the free-page ID.After the storage a used-page record is generated by the input handler. A usedpage record has 16 bytes and is composed of the event ID, the occupied page ID, aswell as the status information, debug information, and the exact number of bytes�lled in the page. The input handler inserts the used-page record into the used-pageFIFO. The PowerPC is noti�ed about the arrival of new events, and reads the newused-page records from the used-page record FIFO. Hence, the PowerPC applicationis informed of the occupation of another page in the event bu�er. As described inthe previous chapter a hash table is applied in the PowerPC application to managethe used-page records for later fast event retrieval.The size of the free page ID FIFO is 1K words and each page ID takes 2 bytes.Hence, the free page ID FIFO contains at most 1k free-page IDs. The size of used-page record FIFO in the DMA is 128 bytes. Each used-page record has 16 bytes.Hence, the used-page record FIFO contains at most 8 used-page records.

Figure 5.2: Handling of incoming event data from one ROL. The thick redarrows indicate the 
ow of event data, and the thin blue arrowsindicate the 
ow of control data [45].
5.2.2 Message Descriptor FIFOsOne request message descriptor FIFO and one response message descriptor FIFOare applied for the message exchange between the PowerPC application and the

63



5 ROBIN PowerPC System Analysis
ROS host PC. Figure 5.3 shows how the ROBIN system handles request messagesfrom the ROS host PC and assembles response messages to the ROS PC by usingthe two message descriptor FIFOs.

Figure 5.3: Handling of request and response messages exchanged betweenthe ROS host PC and the PowerPC application [45].
When a request message from the ROS host PC arrives at the FPGA, it is �rstlywritten into a 2048-word dual-port RAM. The address within this dual-port RAMis then written to a 32-word FIFO, which is the request message descriptor FIFO.With the address in the descriptor FIFO the PowerPC application can read themessage from the dual-port RAM, and then decode and execute it. The addressin the dual-port RAM is of two bytes, i.e. one word. Hence the request messagedescriptor FIFO may contain up to 32 request message addresses.Response messages from the ROBIN system to the ROS PC are initiated bythe PowerPC application. The response messages may contain event data or otherinformation (status or debug information). Event data are stored in the event bu�er.But the other information can be found in the related use-page records, which areprovided directly by the PowerPC application without accessing the event bu�er.In either case the PowerPC writes a 3-word command to the response messagedescriptor FIFO. The 3-word command is executed by a DMA engine inside theFPGA, which assembles and transmits the �nal response messages.

64



5.3 Real-Time Performance Requirements
5.3 Real-Time Performance RequirementsThis section addresses mainly the real-time performance requirements of the ROBINPowerPC system. As described above there are eight FIFOs used for the commu-nication between the PowerPC application and the FPGA. The performance of thePowerPC application must be high enough to support the required input or outputdata rate of each FIFO.
5.3.1 Event Data Rate from One Readout LinkIn the ATLAS TDAQ after event selection by the level 1 trigger the data volumedrops from 45 TBytes to 136 GBytes per second, and the data rate is reducedfrom 40 MHz to 100 kHz. In the level 2 trigger there are altogether 1600 readoutdrivers, i.e. 1600 readout links. Let vd denote the data volume arriving at the level2 trigger, rd denote the data rate and nROL denote the number of ROLs. Then
vd = 136 GBytes/s, rd = 100 kHz and nROL = 1600. It can be calculated, everycycle vd=rd = 1360 bytes arrives at the level 2 trigger and every cycle on average
vd=rd=nROL = 850 bytes at each ROL.Data rate is actually event rate. In each cycle one event arrives at one ROL. Oneevent occupies at least one page and at most, let's say, two pages in an event bu�er.Hence with an event rate of 100 kHz every 10 �s at most two free pages are �lled.Accordingly every 10 �s up to two free page IDs are removed from the free-pageID FIFO and up to two used-page records will be �lled into the used-page recordFIFO. As mentioned in the previous subsection, the free-page ID FIFO contains 1kfree-page IDs and the used page record FIFO contains 8 used-page records. Then itcan be calculated, every 5 milliseconds the free-page ID FIFO must be updated atleast once by the PowerPC application and every 40�s the used-page record FIFOmust be read and cleared once by the PowerPC application. Note that the maximumcycle time of 5 ms for free-page ID update is based on the assumption that everytime the free-page FIFO is fully �lled after updating. But this is mostly not thecase in the running. Hence the cycle time for free-page ID update must be less than5 ms.
5.3.2 Request Message Rate from the ROS PC and the Event

BuilderOn the other hand, the real-time performance with respect to the two messagedescriptor FIFOs is much less required. Firstly, the ROS host PC has a local re-
65



5 ROBIN PowerPC System Analysis
quest message queue. If the FPGA's request message FIFO is full, the ROS PCwill wait till there is space inside the FPGA's FIFO. Secondly, regarding the re-sponse message FIFO there is generally no direct performance requirement uponthe PowerPC application, but upon the polling mechanism of the ROS host PCapplication. The ROS PC must read and clear up the FIFO in time. However, thereis always an one-to-one correspondence between a request message and a responsemessage. Therefore, regarding the both message descriptor FIFOs a same real-timeperformance requirement is preferably applied.However, an average data rate at the request message descriptor FIFO must besupported by the PowerPC application. The most frequent request messages arethe event data request messages. Up to 7% of all data coming on one ROL arerequested by the level-2 PC farm on average [12]. Up to 3% will be accepted bythe level-2 trigger and requested by the event builder [12]. With a data rate of100 kHz at each ROL, the event data request rate for a ROBIN board with totallythree ROLs is then 100*3*(7%+3%) kHz, i.e. 30 kHz. That means, on averageevery 33 �s one event data request message arrives at the ROBIN. Moreover, thedescriptor FIFO contains the addresses of 32 request messages at most. Therefore,every 32*33 �s (i.e. 1.07 ms) the request message descriptor FIFO is completely�lled. Taking other request messages such as event deletion message into account,every one millisecond an empty request message descriptor FIFO is fully �lled andmust be read and cleared once by the PowerPC application.Table 5.1 lists the required processing rate from the PowerPC application withrespect to di�erent communication FIFOs between the PowerPC and the FPGA.According to the list the used-page record FIFO requires by far higher processingrate compared with other FIFOs.
5.4 Cyclic Tasks in the PowerPC ApplicationSection 5.2 discusses four types of FIFOs that are de�ned for the communicationbetween the PowerPC application and the FPGA inside the ROBIN system. Regard-ing the four types of FIFOs four principal cyclic tasks of the PowerPC applicationare de�ned: 1) free-page update, 2) used-page record handling, 3) request messagedecoding and execution and 4) response message initiation.
5.4.1 Free Page UpdateThe direct access to event bu�ers is done by the FPGA, but the organization andmanagement of the bu�ers is handled by the PowerPC application. Free page update
66



5.4 Cyclic Tasks in the PowerPC Application
Tasks of the Minimum Maximum

FIFOs PowerPC application processing rate Cycle time

Free-page ID FIFO Free-page update > 200 Hz < 5 ms

Used-page record
Used-page record FIFO handling 25 kHz 40 �s

Request message
Request message descriptor FIFO decoding and execution > 1 kHz < 1 ms

Response message
Response message descriptor FIFO initiation > 1 kHz < 1 msTable 5.1: Real-time requirement upon the PowerPC application with respect todi�erent communication FIFOs (between the PowerPC and the FPGA)and the according tasks of the PowerPC application.

is for the PowerPC application to �ll the three free page FIFOs in the FPGA withthe IDs of the unoccupied pages in the respective event bu�ers. With the free-page IDs the FPGA can then store newly incoming event data from RODs into theaccording pages in the according event bu�ers. Details about the strategy of freepage management is found in chapter 4.As mentioned in the previous section, according to the rate of the event dataarriving at the FPGA and the size of the FIFOs the minimum update rate of thefree-page ID FIFOs must be over 200 Hz. In other words the task of free pageupdate must be performed at least once every �ve microseconds by the PowerPCapplication.
5.4.2 Used-Page Record HandlingFor an incoming event fragment from ROD to ROBIN, the FPGA stores the eventdata into a free page in the event bu�er, creates a used-page record for the page andappends the used-page record into the according used-page record FIFO. Used-pagerecord handling is for the PowerPC application to read out the used-page records inthe used-page record FIFOs, and insert the records into the according hash tables inthe PowerPC application. The hash tables are applied to manage the storage of theevent bu�ers and to provide e�cient strategy for later event lookup. Details aboutthe design of the hash tables have been given in chapter 4.According to the incoming event data rate from RODs and the size of the used-page record FIFOs, the FIFOs must be cleared by the PowerPC application every40 �s. Detailed explanations are found in the previous section. That means, the

67



5 ROBIN PowerPC System Analysis
task of used-page record handling must be performed at least once by the PowerPCapplication every 40 �s.
5.4.3 Request Message Decoding and Execution.Request messages from the ROS PC or the event builder are forwarded to the Pow-erPC application through the request message descriptor FIFO in the FPGA. Thenthey are decoded and executed in the PowerPC application.Types of the request messages from the level 2 trigger are described in [32], includ-ing a series of messages for accessing the system con�guration parameters. Threemost complicated-to-handle request messages are related to the management of theevent bu�ers. They are \get fragment", \clear fragment", and \clear all fragment".The message of \get fragment" is a request for event data regarding a given eventID. Each event in the ATLAS has a unique event identi�er, which is assigned bythe level 1 trigger, and each request from the level 2 trigger must be attached withthe according event ID(s). \Clear fragment" is to delete event data, given one ormultiple event IDs. \Clear all fragments" commands ROBIN to remove all the datainside the event bu�ers. This request is used to re-initialize event bu�ers. In orderto reply the �rst two types of messages in real time, the PowerPC application isrequired to retrieve immediately the event storage address inside event bu�ers for agiven event ID. The event lookup strategy for ROBIN is presented in chapter 4.According to the real-time requirement analysis regarding the message descriptorFIFOs in the previous section, the task of request message decoding and executionmust be called at least once every one millisecond.
5.4.4 Response Message Initiation.Besides request message handling, the response messages backwards for the ROS PCand the event builder must also be initiated by the PowerPC application. For everyresponse message the PowerPC application will write a 3-word command into theresponse message descriptor FIFO in the FPGA. Except replies to \get fragment"requests, which require event data in the event bu�ers, information for other re-sponse messages can be provided by the PowerPC application directly. As with theabove task of request message decoding and execution, the task of response messageinitiation must also be performed at least once every one millisecond.
The correspondences between the above tasks and the di�erent communicationFIFOs are listed in table 5.1. The respective real-time requirements are also given

68



5.5 System Architectures
in the table.
5.5 System ArchitecturesIn this work two system architectures are investigated for the implementation of theROBIN PowerPC system. One is a standalone software implemented as a single loopof subroutines (or tasks) running directly upon the PowerPC hardware layer. Nooperating system is needed in this �rst implementation. The other is based on anembedded real-time operating system (RTOS). In this implementation the multipletasks of the PowerPC application are managed by the real-time scheduler from theoperating system .

Non-OS architecture OS-based architectureFigure 5.4: Two architectures for the ROBIN PowerPC system.Figure 5.4 shows the two system architectures. In both designs the U-Boot ischosen as the bootstrap loader for the system. The bootstrap loads the image ofthe �nal target software into the system memory and executes it on the machine.Details about the U-Boot and its extensions for the PowerPC system are found inthe appendix B.
5.6 SummaryThis chapter addresses mainly the ROBIN PowerPC system requirements. Speciallythe real-time performance requirement upon the PowerPC application is analyzedaccording to its communication interface with the FPGA, i.e. eight FIFOs in theFPGA. Regarding the eight FIFOs four major cyclic tasks in the PowerPC applica-tion are de�ned and addressed.Moreover, two system architectures are proposed in this chapter for the imple-mentation of the PowerPC application inside the ROBIN. The di�erence between

69



5 ROBIN PowerPC System Analysis
the two architectures lies on whether an embedded real-time operating system isintegrated. In the following two chapters the software design and software opti-mization based on the two architectures are discussed, respectively. The real-timeperformance requirement addressed in this chapter is applied to check the feasibilityof the two system architectures and optimization measures are proposed against theperformance requirement.

70



6 Standalone PowerPC
Application

In the previous chapter two architectures are presented for the implementation ofthe PowerPC system inside ROBIN. This chapter concentrates on the design andoptimization of the PowerPC software based on the �rst non-OS architecture, i.e.the standalone PowerPC application without an operating system.The organization of this chapter is as follows. Section 6.1 addresses the detailedsoftware design of the standalone ROBIN PowerPC application. Section 6.2 pro-poses several measures to optimize the performance and reliability of the software.Finally, the proposed standalone PowerPC system is tested together with an entireROS/ROBIN system in a simulated ATLAS testing environment and the experi-mental results are given in section 6.3.
6.1 Software Design

Since there is no operating system, the standalone PowerPC application is imple-mented as a single-thread program. The cyclic tasks discussed in the pervious chap-ter 5 are implemented in a single loop in the program.This section presents the software design of the standalone PowerPC applicationin three diagrams: the component diagram, the use case diagram and the activitydiagram. The component diagram explains the major construction of the software.Through expanding the component diagram the use case diagram is drawn. Finally,the activity diagram shows the work 
ow of the standalone PowerPC application.
71



6 Standalone PowerPC Application
6.1.1 Component Diagram

Chapter 4 introduces a page-based strategy for the event bu�er management in the�nal ROBIN design and a hash table for the fast event lookup in the event bu�ers.Implementation of the two baseline functionalities constitutes two major componentsof the PowerPC application. A third major component of the PowerPC applicationis the message handling module.Figure 6.1 shows the component diagram of the ROBIN PowerPC application.Three main modules in the application are: event bu�er management module, eventlookup module and message processing module. The major data 
ow through themodules and the FPGA is indicated in the �gure. The module of event bu�ermanagement maintains a free page ID list for each event bu�er to record the currentoccupation status of the related bu�er. The event lookup module manages a hashtable for each event bu�er for the fast lookup of event data.Section 4.3 proposed a data structure of a chained free hash-node list for thestorage both of the hash table and of the free page ID list. In the componentdiagram as well as the use case diagram in the next subsection, the hash table andthe free page ID list are denoted as two data resources for the easier understandingby the readers.
6.1.2 Use Case Diagram

Figure 6.2 shows the use case diagram of the ROBIN PowerPC application. The usecase diagram is in a sense an expanding diagram of the component diagram.Four actors are indicated in the diagram: the message controller, the messageexecutor, the event bu�er organizer and the used-page manager (hash-table man-ager). The �rst two actors are from the message processing module. The messagecontroller talks directly to the FPGA through the message descriptor FIFOs insidethe FPGA. The message handling is primarily done by the message executor. Toexecute the messages that are related to event bu�ers, the message executor needsto ask the used-page manager from the event lookup module as well as the eventbu�er organizer from the bu�er management module to ful�ll the task together. Theused-page manager maintains a hash table for each event bu�er for event lookup.The event bu�er organizer manages a free page ID list for each event bu�er to recordthe current occupation status of the bu�er.
72



6.1 Software Design

Figure 6.1: Component diagram of the ROBIN PowerPC application.

73



6 Standalone PowerPC Application

Figure 6.2: Use case diagram of the ROBIN PowerPC application.

74



6.1 Software Design

Figure 6.3: Activity diagram of the standalone ROBIN PowerPC applica-tion based on the non-OS architecture.
75



6 Standalone PowerPC Application
6.1.3 Activity Diagram

The previous chapter 5 addresses four major cyclic tasks of the PowerPC applicationregarding the four types of communication FIFOs between the PowerPC applicationand the FPGA. In the standalone ROBIN PowerPC application the four cyclic tasksare implemented in a single loop. Figure 6.3 shows the activity diagram of thestandalone PowerPC application based on the non-OS architecture. In the diagramthe task of request message decoding and execution and the task of response messageinitiation are indicated as one task, since the two tasks with a same cyclic time havean one-to-one identical mapping.The application starts with an initialization procedure, including loading con�g-uration parameters, initializing PowerPC registers and FPGA registers, as well ascreating a common address map for the PowerPC's a�liated memory, the eventbu�ers and the shared bu�ers with the FPGA. Global data structures in the Pow-erPC application, e.g. the hash tables and the chained free-node lists, are alsoinitialized here. Then a Build-In-Self-Test (BIST) routine is performed, to checkthe status of the FPGA, the ROLs, the accessibility of the shared bu�ers and thetemperature of the PowerPC itself.If the system self-test is passed, the program goes into the main loop of theapplication. Five operations get involved in the main loop. The �rst three tasks arethe cyclic tasks addressed in the previous chapter 5. The other two tasks are for idle-task processing and terminal command handling. Idle tasks include monitoring thedevice temperature measured by the temperature sensor and making some statisticanalysis over the bu�er occupancy. Terminal command handling is enabled only inthe development phase for system testing and debugging. In the �nal target boardit will be disabled.The exit of the program results from a user terminal command or from a requestmessage command from the ROS PC.
6.2 Performance Optimization

This section deals with the performance optimization of the standalone PowerPCapplication. Before the introduction of optimization measures the goal of the per-formance optimization is �rstly addressed.
76



6.2 Performance Optimization
6.2.1 Goal of the OptimizationThe activity diagram of the standalone PowerPC application in �gure 6.3 shows�ve cyclic tasks involved in the main loop. Among the �ve tasks the idle taskprocessing and the terminal command handling have by far lower priority comparedwith the other three tasks. These three tasks have been discussed in chapter 5and their minimum processing rates in the PowerPC application are analyzed andlisted in table 5.1. The PowerPC application must guarantee to reach the requiredprocessing rates of these tasks.In the standalone PowerPC application although �ve tasks get involved in themain loop, it does not mean that all the �ve tasks must be executed in each loopcycle. The execution rates of the tasks can be adjusted according to their relativepriority. In this context the priority of a task is de�ned according to its processingrate; task requiring higher processing rate has higher priority and vice versa. Task ofa higher processing rate may be executed more often, e.g. once in every loop cycle,while a task of a relatively lower processing rate may be executed once in severalcycles. In the case of the PowerPC application, the task of used-page record handlingrequires the highest processing rate, i.e. 25 kHz, and the task of idle task processingrequires the processing rate of 250 Hz. According to the relative proportion of theirprocessing rates, if the former task is executed once in every loop cycle, the latteris hence executed once in 100 cycles.When the relative processing rates of the tasks are guaranteed, another perfor-mance criterion is then how fast the entire main loop can run. The cycle rate of theentire main loop must reach the required processing rate of the highest-priority task.Therefore, the standalone PowerPC application must also minimize the processingtime of one main loop cycle.Because the main loop runs continuously without a timer, the running time ofeach main loop cycle varies due to the varying amount of workload in the cycle, forexample, varying numbers of used page records to be handled in the cycle or varyingnumbers of messages to be processed. The cycle rate of the main loop is a varyingfactor.Concerning the ROBIN PowerPC application, the used-page record handling taskis the most time-critical task. To ensure the safe and security of the ROBIN PowerPCsystem, the processing rate of used-page record handling task (25 kHz) must beguaranteed at any moment. It means that the running time of every main loopcycle, including the slowest cycle, must not exceed a limited time period, i.e. 40�s.For the simpli�cation of explanation, the running time of the slowest main loopcycle is de�ned as the cycle time of the main loop, and the corresponding cycle rate

77



6 Standalone PowerPC Application
is de�ned as the cycle rate of the main loop. So long as the de�ned cycle rate of themain loop is above the required processing rate of the most time-critical task, thesafe and security is guaranteed.At this point we can tell, the goal of the performance optimization for the stan-dalone PowerPC application is to maximize the cycle rate of the main loop whilethe required relative processing rate of each task is guaranteed. In other words, it isto minimize the running time of each main loop cycle while the relative processingrate of each task is guaranteed.
6.2.2 Application-Speci�c OptimizationAccording to the previous statement the optimization for the standalone PowerPCapplication is to minimize the running time of each main loop cycle. To achieve thisgoal, it is actually required to distribute the workload in the main loop uniformlyinto each cycle. This is the principle of the optimization measures proposed in thefollowing of this section.Without a real-time preemptive scheduler in the non-OS based PowerPC system, anumber of application-speci�c measures have to be taken to arrange the operations inthe main loop of the PowerPC application in order to improve the overall processingrate of the entire system. It will be seen that, with the help of these measures, therunning time of the main loop cycle in the worst case is even expectable and so isthe overall processing rate of the PowerPC system.
6.2.2.1 Used-Page Records Handled in Every Main Loop CycleAccording to table 5.1, the task of used-page record handling needs to be executedthe most frequently in the PowerPC application and has accordingly the highestpriority. The only reasonable setup for the standalone PowerPC application is toexecute the task once in every main loop cycle.The varying cycle rate of the main loop represents then the varying cycle rate ofthis task. Therefore, at any moment the cycle rate of the main loop must not belower than the required minimum processing rate of the used-page record handlingtask, i.e. 25 kHz. The running time of the slowest main loop cycle must not exceed40�s.
6.2.2.2 At Most Two Messages Handled in One CycleThe task with the second highest priority is message handling. According to table5.1 the minimum cycle rate of the task is 1 kHz. This number is given under the
78



6.2 Performance Optimization
assumption that all messages in the request message descriptor FIFO are processedat one cycle. That is to process up to 32 messages within one cycle. In this case therunning time of the cycles in the main loop with message handling could be muchextended. This is, however, against the above optimization principle of uniformworkload distribution.In order to reduce the running time of every main loop cycle, it is preferable thatat most one message would be handled in one main loop cycle. However, as statedin section 5.3 the average rate of request messages arriving at the ROBIN board isaround 30 kHz, which is faster than the expected cycle rate of the main loop, 20kHz. Therefore, it is suggested for the standalone PowerPC application to processat most two request messages in one main loop cycle. If more than two requestmessages are available, only the �rst two of them are handled in the current cycleand the other messages must be handled in a next or later cycle. In this way itguarantees, in one main loop cycle at most two messages are handled and at thesame time the required processing rate of request messages is also sustained.
6.2.2.3 At Most Three Tasks Executed in One CycleAccording to the descending priority order, the tasks are arranged as 1) used-pagerecord handling, 2) message handling, 3) free-page update, 4) idle-task processing5) and terminal command handling.As stated above, the used-page record handling task and the message handlingtask are executed in each cycle. The next question is then when to execute the otherthree tasks. To keep the running time of one main-loop cycle short, a straightforwardmeasure is not to execute the other three tasks in a same cycle. That also means,at most three tasks are executed in one main loop cycle. They are task 1, task2 and one of the other three lower-priority tasks. Since the real-time performancerequirements for the three lower-priority tasks are not critical, this measure is easyto realize.
6.2.2.4 Event Deletion Messages not Handled Together with OtherLower-Priority Tasks in a Same CycleMost event deletion request messages are massive event deletion messages. Handlingof these messages is also a costly operation in the PowerPC application. In theoperation a number of events have to be �rstly looked up in the hash table, in whichthe used-page records of these events are stored, and then removed from the hashtable. Hence another measure to reduce the maximum running time of one main

79



6 Standalone PowerPC Application
loop cycle is to handle event deletion messages not together with any of the otherthree lower-priority tasks in a same cycle.Although event deletion request messages are not so often received, an additionalmeasure for the system security must be taken in case event deletion request mes-sages continue arriving in every cycle and the three lower-priority tasks are blocked.Therefore, the minimum processing rates of the three low-priority tasks must bede�ned.According to table 5.1, the free page ID FIFO in the FPGA needs to be updatedevery 5 ms in the extreme case when the FIFO is full after updating, i.e. 1k validfree page IDs in the FIFO. Surely this is not always the case in the running. Actuallyone condition needs to be satis�ed for the free page ID FIFO update. That is, thenumber of valid free page IDs in the FIFO keeps being equal to or greater than eight,i.e. the size of the used-page record FIFO. It is easy for the PowerPC applicationkeep recording the current number of free-page IDs in the free-page ID FIFO. Whenthe number is less than 8, the task of free-page update is forced to be executed.Minimum calling rates for the other two low-priority tasks can be �xedly con�g-ured in the application. In this work the two tasks are called at least once every 100main loop cycles.
Note that the last three measures stated above are, however, not so critical forthe PowerPC application based on the OS-based architecture, because the schedulerin a real-time operating system guarantees the preemption for higher-priority taskseven when a lower-priority task is in the running. On the contrary lower-prioritytasks are not encouraged to run more often than enough, in order to reduce theoverhead of task switching costs.

6.2.3 Worst Case after OptimizationFollowing the optimization measures proposed in the previous subsection, the max-imum workload within one main loop cycle in the worst case is expectable. Theworst case occurs when all the three used-page record FIFOs are full and two event-deletion request messages arrives. The maximum workload within one main loopcycle is then to handle 24 used-page records and two event-deletion request messages.
6.3 ExperimentsIn this section the proposed standalone PowerPC application is tested together witha ROS/ROBIN simulation system. In the following the experiment environment is
80



6.3 Experiments
�rstly introduced. Then the performance of the standalone PowerPC applicationis measured. In particular the processing rate of its main loop is tested. Finally,the performance of the entire ROS/ROBIN system, with the proposed standalonePowerPC application integrated, is also measured against the baseline requirementof the ATLAS DAQ chain.
6.3.1 Setup of Testing EnvironmentThe PowerPC application is developed on a desktop with a 2.4GHz Pentium 4 CPU.The GNU toolchain is used to compile the code for the target PowerPC platform, i.e.an IBM 440GP micro-controller. In order to load the �nal executable binary codeof the application to the PowerPC platform, an Abatron BDI2000 JTAG Debuggeris �rstly used to write the U-Boot code to the PowerPC's 
ash memory via anEthernet Hub. When the PowerPC starts to run, the U-Boot loads the executablecode of the PowerPC application from the desktop to the PowerPC's memory (i.e.the on-chip DDR SDRAM) via a serial connection, and then triggers the applicationto run. Details about the setup of this cross development environment are found inappendix B.Since the ATLAS detector is still under construction, a simulation testing envi-ronment is built up to test the designed ROS/ROBIN system. Figure 6.4 illustratesthe setup of the ROS/ROBIN testing environment.

Figure 6.4: Setup for the ROS/ROBIN testing environment
81



6 Standalone PowerPC Application
It is described in chapter 3 that a commercial \o�-the-shelf" high performancePC is chosen as the ATLAS ROS host PC. The PC has a 3.4GHz Pentium 4 CPUand four PCI buses. The PC is equipped with four ROBIN boards and two GigabitEthernet network adapters. Setup of the ROBIN boards are the same as the ROBINprototype in the �nal design described in section 3.2.As the event data input and output of the ROS system is concerned, three ad-ditional PCs are used to set up the testing environment. They are one test datageneration PC and two data collection PCs.At the event input side a PC with an 866MHz Pentium III CPU is the test datagenerator, also named as the ROD emulator. It emulates the readout drivers (ROD),which generates \event data" and forwards the data to the ROS system through theSLinks on its a�liated ROBIN boards. Three SLink source cards called DOLAR[39] are plugged into three PCI slots on the PC. Each DOLAR card contains fourHOLA SLinks. The event data fragments generated by the PC are sent to the ROSPC via the 3� 4 HOLA SLinks with con�gurable size and frequency.Two data collection PCs are deployed at the event data output side of the ROSsystem. One of them has a 2.66GHz Xeon processor and is used to emulate thelevel-2 farm. The PC generates and forwards two types of request messages (datarequests and event deletion requests) to the ROS PC and collects reply event-datamessages that are sent back from the ROS PC. Note that each event deletion re-quest message contains a list of up to 100 events. The other data collection PC hasa 2.4GHz Pentium 4 CPU and emulates the event builder. It forwards only datarequests to ROS and collects data messages from ROS. The two PCs are connectedthrough a Gigabit Ethernet switch to the network adaptors of the ROS PC. TheGigabit Ethernet switch that connects the two data collection PCs with the ROShost PC has an Allied Telesyn AT-9410GB with 10 ports.
In the following of this section, the standalone PowerPC application proposedin this chapter is �rstly tested. The performance of its single-loop-of-subroutinesdesign is measured. Then experiments are conducted to measure the performanceof the entire ROS/ROBIN system with the proposed PowerPC system integrated.

6.3.2 Performance of Standalone ROBIN PowerPC ApplicationAs mentioned in section 6.2.1, the goal of the performance optimization for thestandalone PowerPC application is to minimize the running time of every main loopcycle. The cycle rate corresponding to the running time of the slowest main loopcycle is de�ned as the main-loop cycle rate that the standalone PowerPC application
82



6.3 Experiments
is capable to sustain. The experiment in this section is to measure the main loopcycle rate of the PowerPC application, while varying event data request rate. Theevent data request rate here refers to the event data rate that are requested by thelevel-2 PC farm and the event builder.Each event request from the level-2 PC farm or the event builder are �rstly sent tothe ROS PC and then forwarded by the ROS PC to the ROBIN. For each requestedevent a corresponding data request message is sent from the ROS PC to the ROBINand �nally to the PowerPC application. All the event data, either requested or non-requested, are always deleted in the end through event deletion request messages.As mentioned previously, each event deletion request message contains a list of upto 100 events.An additional prerequisite for this test is, that at each loop cycle the used-pagerecord FIFO in the FPGA is always previously fully �lled. That means, the test datageneration PC �lls the ROBIN board with as much event data as the ROBIN Pow-erPC application is capable to sustain, to guarantee a maximum data throughputduring the measurement.Figure 6.5 shows the curve of the main loop cycle rate of the PowerPC applicationwhile the event data request rate increases from zero to twenty percent. Higher eventrequest rates are not tested in this experiment. Because at most two messages arehandled in one main loop cycle, the according message handling rate will be lowerthan the request message incoming rate if a higher event request rate above twentypercent is provided.When the event request rate increases, more event data request messages arriveat the ROBIN board and more messages need to be handled in the main loop of thePowerPC application. However, according to the curve the main loop processingrate does not drop signi�cantly with the increased event request rate. Due to theoptimization measures introduced in the previous section, the increased workload ofthe application is distributed uniformly into the main loop cycles. Under a certainlimitation of workload, the most computational costly cycles are always those involv-ing two event deletion requests. This is because the handling of an event deletionrequest is the most costly operation. Besides, in this test the number of events to bedeleted in one event deletion request message is also �xed; therefore, the variationin the processing time of these messages is very limited.The �gure also shows, when the event request rate is 10 percent, the cycle rateof the main loop is around 29 kHz, i.e. a cycle time of about 34 �s. That means,the used-page record FIFO in the FPGA can be updated once every 34 �s. This isobviously above the real-time performance requirement (40 �s) as given in table 5.1.Figure 6.6 shows the maximum level-1 event data incoming rate that the stan-

83



6 Standalone PowerPC Application

Figure 6.5: Main loop cycle rate (supported by the standalone PowerPCsystem) vs. event data request rate
dalone ROBIN PowerPC system can sustain while the event data request rate in-creases from zero to twenty percent. Two curves are shown in the �gure. The bluecurve is for the case that each event data fragment occupies one page in the eventbu�er; the yellow curve is for the case that each event data fragment occupies twopages in the event bu�er. It is self-explanatory that the �rst curve is about onetime higher than the second curve. According to the ATLAS baseline requirementthe event request rate is about 10 percent and the level-1 event data incoming rateis around 100 kHz. In this test when the event request rate is 10 percent, the sup-ported level data incoming rates indicated in both the curves are above 100 kHz,i.e. above the ATLAS requirement.
6.3.3 Performance of Integrated ROS/ROBIN SystemThe experiment in the previous subsection shows the satisfying performance of thestandalone PowerPC application itself. The experiments in this section are to mea-sure the performance of the entire ROS/ROBIN system, in which the proposedstandalone PowerPC application is integrated.For the ROS/ROBIN system the most concerned factor is the maximum level-1
84



6.3 Experiments

Figure 6.6: Maximum level-1 data rate (supported by the standalone Pow-erPC system) vs. event data request rate.
incoming data rate that the ROS/ROBIN system is capable to support. In thefollowing this factor is measured, while varying di�erent input or output factors ofthe ROS/ROBIN system, including the data acceptance rate of the level-2 farm, thedata acceptance rate of the event builder and the size of event data fragments.
6.3.3.1 Maximum Supported Level-1 Data Rate versus Level-2 PC FarmData Request RateThe �rst test measures the maximum allowed level-1 data rate that the ROS/ROBINsystem supports, while the data request rate from the level-2 PC farm varies. TheROD emulator simulates the level-1 side and inputs event data continuously throughSLinks to the ROBIN boards. The level-2 farm emulator sends data request messagesto the ROS system, requires event data from the ROS, analyzes the data and makesthe level-2 data acceptance decision. The size of the pages inside the event bu�ersis �xed to be 1K bytes and the sizes of event data fragments are up to 1K bytes.The curve in �gure 6.7 shows the results of this test. Obviously the higher thelevel-2 data request rate is, the more data the ROS system must output. The morethe output volume is, the more workload the ROBIN devices have to take and

85



6 Standalone PowerPC Application

Figure 6.7: Maximum ROS/ROBIN-supported level-1 data rate vs. level-2PC farm data request rate
accordingly the lower level-1 data rate the ROBIN devices can support.According to the baseline requirements of the ATLAS data acquisition chain theoutput data rate of the level-1 trigger is at a maximum 100kHz. As shown in �gure6.7, to support this level-1 data rate, the data request rate by the level-2 PC farmcan be up to 8.3%. This is above the expectation by the ATLAS community. TheATLAS community estimated, statistically around 7% of the level-1 event data arerequested by the level-2 PC farm for data analysis and data selection.
6.3.3.2 Maximum Supported Level-1 Data Rate versus Event Builder DataAcceptance RateIn this test the data request rate by the level-2 farm emulator is �xed to be 7%.The balance between the data input from the ROD emulator and the data requestfrom the EB emulator is measured. That is, the maximum level-1 data rate that theROS/ROBIN system supports is measured, while varying the data rate of the eventbuilder. In this test the size of the pages inside the event bu�ers is also 1K bytes.The diagram in �gure 6.8 shows the results of this experiment. As with the aboveexperiment the higher the EB data request rate is, the lower level-1 data rate the
86



6.3 Experiments

Figure 6.8: Maximum ROS/ROBIN-supported level-1 data rate vs. eventbuilder data acceptance rate
ROBIN devices can support.In the ATLAS DAQ the level-2 accepted events are always requested by the eventbuilder. The ATLAS community estimated that statistically around 3% event dataare accepted by the level-2 trigger. Therefore, the expected data request rate of theEB must be above 3%. According to the result of this simulation test as shown in�gure 6.8, to support the ATLAS baseline requirement (i.e. a level-1 data rate of100 kHz), in the current ROS/ROBIN system the event data acceptance rate by theevent builder can reach 4.3%, which is above the ATLAS DAQ requirement.
6.3.3.3 Maximum Supported Level-1 Data Rate versus Event Data FragmentSizeThis test aims to measure the maximum supported level-1 data rate in case ofdi�erent event data fragment sizes. The diagram in �gure 6.9 shows the test results.Two curves are drawn in the diagram. They are for the cases when the level-2acceptance rate is 3% and 5%, respectively.The greater the size of ROL event data fragments is, the more data volume hasto be transmitted across the ROS/ROBIN system, and accordingly the lower level-1

87



6 Standalone PowerPC Application

Figure 6.9: Maximum ROS/ROBIN-supported level-1 data rate vs. eventdata fragment size
data rate the ROBIN boards can support. To support a level-1 data rate of 100kHz, the size of the data fragment could be 1024 bytes. This is generally above theATLAS baseline requirement.
According to the experiments above, both the integrated ROB/ROBIN and thestandalone ROBIN PowerPC application have reached the ATLAS baseline require-ment. Compare the graph in �gure 6.6 with the graph in �gure 6.9. The standaloneROBIN PowerPC application itself has a relatively higher performance comparedwith the integrated ROB/ROBIN.

6.4 SummaryThis chapter presents a ROBIN PowerPC system based on the non-OS architectureintroduced in the previous chapter. Without an operating system the PowerPC ap-plication is implemented as a single-thread program. Its cyclic tasks of the PowerPCsystem, including free-page updating, used-page record handling, message handlingand idle-task processing are performed in a single loop.Since no real-time preemptive scheduler is available inside the standalone non-
88



6.4 Summary
OS based PowerPC system, a number of application-speci�c measures have to be�gured out to organize operations in the standalone PowerPC application, in orderto improve the overall processing rate of the system. Several measures are proposedin this chapter to optimize the the standalone PowerPC application. The objectiveof the optimization is to distribute the workload in the main loop uniformly into eachcycle. With these optimization measures the maximum processing time of one mainloop cycle is both minimized and expectable. Accordingly the overall processingrate of the PowerPC application is improved to meet the real-time performancerequirement in the ROBIN system.The proposed standalone PowerPC system is tested together with an entire ROS/ROBINsystem in a simulated testing environment. Both the performance of the proposedPowerPC system itself and the performance of the entire ROS/ROBIN system withthe PowerPC system integrated are tested. The experimental results tell the satis-fying performances both of the PowerPC system and of the integrated ROS/ROBINsystem, with respect to the baseline requirement of the ATLAS DAQ chain.

89



6 Standalone PowerPC Application

90



7 Real-Time Linux Based
PowerPC Application

This chapter deals with the ROBIN PowerPC system built upon the OS-based sys-tem architecture. MontaVista real-time Linux is chosen as the operating systemfor the OS-based ROBIN PowerPC system. The real-time capability of the real-time Linux OS and the software design and optimization of the according ROBINPowerPC application are addressed in the chapter.The chapter is organized as follows. Section 7.1 reviews the features of a real-timeLinux OS and discusses in particular its supports for real-time systems. Section7.2 addresses the software design of the real-time Linux based ROBIN PowerPCapplication. Section 7.3 introduces strategies to optimize the performance and toimprove the reliability of the real-time system. Finally, the performance of theRT-Linux kernel and the performance of the proposed OS-based ROBIN PowerPCsystem are measured and results are presented in section 7.4.
7.1 Real-Time LinuxMany commercial embedded real-time operating systems have emerged in the lastdecades, including VxWorks, Windows CE, QNX, and some versions of real-timeLinux [65]. Real-time Linux is chosen for the implementation of the ROBIN Pow-erPC system, due to its open source, its 
exibility and its ability to support a widerange of hardware platforms. Linux is inherently modular. It can be easily scaledinto compact con�gurations and customized according to system-speci�c require-ments.This section reviews �rstly several related concepts in real-time systems and thendiscusses in detail the real-time mechanism provided by the real-time Linux OS.

91



7 Real-Time Linux Based PowerPC Application
7.1.1 Concepts in Real-Time SystemsStankovic and Ramamritham gave a formal de�nition to a real-time system [61]:
A real-time system is a system in which the correctness of the system depends not

only on the logical results that the system produces, but also on the time in which

the results are produced.\Response time" is an importance concept in a real-time system. Dankwardt gaveits de�nition [26]: the response time of an application is the time interval fromwhen the application receives a stimulus, e.g. a hardware interrupt, to when theapplication has produced a result based on that stimulus. Along with the responsetime, \deadline" is another important term. The deadline of a given task is thelongest acceptable response time of the task.According to the strictness of the real-time requirements, real-time systems canbe classi�ed into two groups: hard real-time systems and soft real-time systems. A
hard real-time system must guarantee that all the deadlines of the tasks must bemet at any time. The system designer must make sure that the deadlines can bemet, and that the system must not be overloaded. A soft real-time system, on theother hand, is a system in which the deadlines are generally met. In such a systemit may be acceptable if a small number of deadlines are occasionally missed [26]. Forexample, an air-tra�c controller is an example of a hard real-time system, where itis critical that every deadline is met. An audio sampling application could be anexample of a soft real-time system, where it is still acceptable if some samples arelost from time to time, as long as it does not happen too often.As the ROBIN PowerPC system is concerned, the system is a hard real-timesystem, since the deadlines of its tasks must be strictly met. Otherwise, the incomingevent data from RODs are not processed in time, which may lead to data overwritingand data missing.
7.1.2 Traditional Linux Kernel and its Limited Real-Time

CapabilityReal-time capability of an operating system depends principally on its task schedul-ing. It needs to determine, when to call the scheduler under a given circumstanceand which task to choose for the next to run. These two points are termed as thescheduling time and the scheduling strategy, respectively. When a real-time task isrequested to run, a real-time system must guarantee the task being scheduled withina certain time delay and also guarantee the task is chosen as the next task to becalled by the scheduler [58].
92



7.1 Real-Time Linux
7.1.2.1 Linux Scheduling TimeA task may terminate itself at any time or suspend itself by calling the system func-tions, e.g. pause(), sleep() and etc. In such cases the task gives up the CPU activelyand causes the scheduler function to be called. Obviously, scheduling caused by thevolunteered task termination or suspension cannot meet the real-time requirement.For example, when a task is in the running, a real-time task request occurs; but therunning task itself does not give up running; at last, the real-time task fails to startin time.Therefore, a preemptive scheduling is required. When a real-time task requestoccurs, the system must have the ability to terminate or suspend a currently runningtask and to schedule the real-time task to run. In Linux the preemptive schedulingoccurs each time when the system returns from the kernel space to the user space,i.e. when a system call or an interrupt or error handling call is �nished.The Linux operating system provides a scheduling mechanism based on cyclicpreemption points [50] [60]. At each preemption point the OS scheduling function isforced to be called. The preemption points give the operating system the possibilityto suspend or terminate a running task even when it refuses to give up running.For easy understanding of the scheduling mechanism, �gure 7.1 gives a simpli�edillustration of the preemption-point based scheduling. When a real-time task requestarrives, it must wait till the next preemption point for the task to be called. Actuallya preemption point is a time span, instead of a time point, since the scheduling call ata preemption point costs also CPU time. Figure 7.2 shows the actual task switchingprocessing for the example given in �gure 7.1.Linux applies a cyclic timer interrupt to realize the preemption points. The cycletime varies for di�erent versions of Linux. It is, however, always above microsecondsfor the Linux systems. The cycle time decides the granularity of the preemptionpoints as well as the timing preciseness of the system. The response time for areal-time task is also much related to this factor. For example, a cyclic task with acycle time of 100 �s cannot be realized on a Linux OS.Besides, the Linux kernel the preemption-point scheduling is disabled. Thatmeans, when the kernel is running, a real-time task cannot be called even at pre-emption point. The calling time of a real-time task is non-deterministic. This is asigni�cant limitation for Linux to be used as a real-time system.
7.1.2.2 Linux Scheduling StrategyLinux supports three scheduling schemes: SCHED-FIFO, SCHED-RR and SCHED-OTHER. SCHED-FIFO and SCHED-RR are for real-time tasks, while SCHED-

93



7 Real-Time Linux Based PowerPC Application

Figure 7.1: Simpli�ed illustration to the mechanism of the preemption-point based scheduling.

Figure 7.2: Actual task switching process for the example given in �gure7.1.
94



7.1 Real-Time Linux
OTHER is for non-real-time tasks. SCHED-FIFO is usually used for the real-timetasks with relatively shorter running time. When these tasks are running, theyare not allowed to be preempted. SCHED-RR is used for the real-time tasks withrelatively longer running time. Among these real-time tasks with SCHED-RR theround-Robin scheduling is applied.Although each task has a certain scheduling scheme, the scheduling order of thetasks depends on a positive weight value of each task. The scheduling scheme ofa task is surely taken into account when computing its weight value. Besides, fora real-time task its weight value is always multiplied with a signi�cant factor (e.g.1000). Therefore, when a real-time task is ready, a non-real-time task has no chanceto be scheduled.
The above three scheduling schemes of Linux guarantee a real-time task to bescheduled. In other words, the Linux OS is preemptible. However, the schedulingtime of a real-time task is still non-deterministic [17]. If a real-time task has adeadline, a Linux OS cannot guarantee to meet the deadline. Therefore, the LinuxOS cannot be used in a \hard" real-time system, but only in a soft real-time system,where the deadlines of real-time tasks are relative longer or must not be met strictly.

7.1.3 Improvements in Real-Time Linux Kernel7.1.3.1 An Additional Real-Time Kernel LayerMany researches have been done to improve the real-time performance of Linux.One widely-used approach is to add a hardware abstraction layer between systemhardware and Linux. Also a new separate real-time scheduler is used which runsLinux as its lowest priority thread. The hardware abstraction layer takes controlover the system interrupts and passes them on to Linux only if no real-time task isrunning. When Linux tries to disable interrupts, it only sets a 
ag in the hardwareabstraction layer and cannot really turn o� the interrupts or prevent itself frombeing preempted. Thus, the real-time scheduler has full control over the systemand Linux runs virtually unmodi�ed. Actually the hardware abstraction layer andthe separate real-time scheduler construct another OS kernel, i.e. a small \hard"real-time kernel.Above such a real-time Linux OS a user application is usually written in two parts:time-critical part and non time-critical part.- Tasks in the time-critical part have strict timing requirements. They are writ-ten as kernel modules and executed as real-time tasks within the kernel space,
95



7 Real-Time Linux Based PowerPC Application
which prevents the tasks to be swapped out and also the number of TLB(Translation Lookaside Bu�er) misses is reduced. These tasks have full accessto the kernel real-time API and the underlying hardware.- Tasks in the non time-critical part, such as user interface, are written andexecuted in the user space outside of the kernel.The two di�erent parts communicate with each other through, for example, FIFOqueues or shared memory. The software split requires obviously a new design of theapplication. Besides, the real-time tasks are written as kernel modules using thekernel real-time API, instead of the standard Linux API. Di�erent programmingskills are required from the application developers to write Linux kernel modulesinstead of a Linux application process. More cautions must be taken, since an errorin a kernel module may crash the whole system. This is a price that has to bepaid for the additional deterministic environment, which is required by every hardreal-time system.RTLinux [30] and RTAI [27] are two extensions of Linux that provide the abovetechnique about a real-time kernel layer. RT-Linux is a shared space system. Thatmeans, both the OS kernel and real-time tasks are running in the kernel space andthe user space is only for the non-real-time tasks to run. Due to its compact small-sized real-time kernel it is chosen for the ROBIN PowerPC system.Figure 7.3 shows the kernel structure of RT-Linux. Through combining the RT-Linux kernel with the Linux kernel, RT-Linux not only meet the requirement ofreal-time systems but also has the possibility to access numerous powerful functionsin the modern Linux operating system.

7.1.3.2 Increasing the OS Timing PrecisenessAs mentioned above, the timing preciseness of a traditional Linux OS is at themillisecond level. This preciseness is much below the real-time requirement of manyreal-time systems. Hence an intuitive idea to improve the real-time performance ofthe Linux OS is to increase the granularity of its preemption points. In this case thekernel checks more often if a higher priority process is ready to run, to reduce theresponse time to the real-time tasks.Moreover, to further increase the preciseness of the OS timing system, the RT-Linux scheduling uses a one-shot timer instead of a cyclic timer, which was usedpreviously to realize cyclic preemptive points, and adjusts the one-shot timer for thescheduling point of the next real-time task. In such a way the CPU resources can bemuch spared, since there is no need any more to call the OS scheduling cyclically at
96



7.1 Real-Time Linux

Figure 7.3: RTLinux kernel structure.
each preemptive point even when no high-priority task occurs. Besides, the waitingtime tw for a high-priority task request can also be spared. For the notation tw referto �gure 7.1 and �gure 7.2.
7.1.4 Choice of MontaVista LinuxThe Linux community is very active in adding features to support new hardware,�xing bugs in the kernel, as well as making general improvements in a timely manner.This results in having a new release of a stable Linux tree roughly every 6 months orless. Di�erent kernel trees and patches for speci�c architectures are maintained bydi�erent maintainers. When choosing a kernel for a project, one needs to evaluatehow stable the release is, whether it caters to the project requirements and thehardware platform, whether it comforts the programming from the point of viewof the system developers, and so on. It is also very important to �nd out all ofthe patches that need to be applied to the base kernel to tune it for the speci�carchitecture.Several alternatives of real-time Linux operating systems have been developed inthe last decades of years. MontaVista Linux was chosen and built in the ROBINPowerPC system, because it is one of leading real-time Linux solutions and is re-ported to support the PowerPC very well [51]. The MontaVista Linux o�ers a widerange of bene�ts in terms of reducing time requirements and minimizing risk.Before compiling MontaVista, the real-time Linux kernel must be con�gured �rstlywith proper parameters for the ROBIN board. The MontaVista Embedded Linux

97



7 Real-Time Linux Based PowerPC Application
3.1 is applied to the ROBIN PowerPC system, which is running with Linux kernel2.4.26.MontaVista was designed to run virtually for any embedded system. Now thatthe OS kernel is available, the ROBIN Board Support Packages(BSP) needs to beadded to make the kernel �t into the ROBIN board.
7.2 Software DesignDue to the same functionalities the software design of the RTLinux-based PowerPCapplication shares a same component diagram and a same use case diagram as in thestandalone PowerPC application. Refer to section 6.1.1 and section 6.1.2 for detailsof the two diagrams, respectively. Di�erence between the RTLinux-based PowerPCapplication and the standalone PowerPC application lies mainly on its schedulingof its prede�ned tasks.
7.2.1 Multi-Task SchedulingThe standalone PowerPC application implements its tasks in a single loop and ad-justs a cycle counter to control the calling rate of each task. A disadvantage ofthis single-loop mechanism is the possibility that multiple tasks must be �nishedin one loop. This leads to extended cycle time every now and then, such that thesystem is not capable to sustain an expected data processing rate stably, especiallya stable handling rate of incoming event data or used-page records. Therefore, sev-eral application-speci�c approaches have to be proposed in section 6.2 in order tooptimize the performance of the standalone ROBIN PowerPC application.For the OS-based ROBIN PowerPC application, the multi-task scheduling of thereal-time Linux OS provides a generic solution to the scheduling of its multiple tasks.Tasks are prioritized. A higher-priority task can preempt a running lower-prioritytask. Each task can de�ne its own individual cycle time. It is the job of the operatingsystem to manage the scheduling of the tasks automatically. It guarantees �rstlythe highest-priority task to be performed within its required cycle time, then thesecond highest-priority task and so on. In a logic real-time application the expectedcycle time of each of its tasks are met strictly.Figure 6.3 shows �ve tasks in the main loop of the standalone ROBIN PowerPCapplication. In the OS-based ROBIN PowerPC application each of the �ve tasks canrun in a single thread. The priorities of the threads are set according to their real-time requirement. According to the real-time requirement analysis of these tasksas shown in table 5.1, the task of used-page record handling requires the highest
98



7.2 Software Design
processing rate and accordingly the highest priority, and then the message handlingand the free-page update, sequentially. The idle task handling and the terminalcommand handling have the lowest priority.
7.2.2 Cautions in Multi-Task SchedulingTwo things must be taken care of in the development of an RTOS-based application.One is about shared resources among the multiple tasks; the other is about theoverall performance of the application, i.e. whether the required cycle time of eachtask is met strictly. The second point tells also the performance feasibility of anapplication.
7.2.2.1 Shared ResourcesFor single-loop scheduling, tasks are called one after another and at one momentshared resources are always occupied by a single task. No con
ict takes place in thatcase. In an RTOS-based application, an un�nished operation on a shared resourceinside a lower-priority task may be broken up by a higher-priority task and thehigher-priority task may modify the shared resource further based on the un�nishedoperation. For example, the hash table of used-page records in the ROBIN PowerPCapplication is a shared resource for the task of message handling and the task of used-page record handling. While the former task is deleting a used-page record from thehash table according to the command of an event deletion message, the latter taskmay preempt the former and insert newly-incoming used-page records into the hashtable. This may cause fatal data inconsistence in the ROBIN system.Therefore, cautions must be taken to protect shared resources among the tasks,either by de�ning a shared-resource operation as a critical section that allows nopreemption, or by using a mutex lock to protect a same share resource.
7.2.2.2 Performance FeasibilityAlthough the real-time requirements of higher-priority tasks are �rstly satis�ed, theperformance of the overall application must also be considered. Design of the wholeapplication must guarantee the required cycle time of each task is met strictly. Insingle-loop scheduling, overloaded tasks cause a performance dropdown of the overallapplication. But for real-time multi-task scheduling, accumulated overloaded jobmay crash the system.Therefore, a reasonable determination of the cycle time of each task is particularlyimportant for a real-time system with multi-task scheduling. It decides the feasibility

99



7 Real-Time Linux Based PowerPC Application
of the application. A too long cycle time may not meet the real-time performancerequirement of the system, while a too short cycle time may cause system crash byoverburdened job.
7.3 Performance OptimizationThe most principal performance cost for automatic priority-based real-time multi-task scheduling is the overhead of task switching. Therefore, in order to improvethe performance of a real-time system with multi-task scheduling, it is not onlynecessary to improve the e�ciency of each task by reducing the processing time ofthe tasks themselves, but also necessary to reduce the switching rate among thetasks.Apparently the task switching rate is in inverse proportion to the cycle timeof the tasks. When the tasks are called more often, switching between the tasksoccurs also more frequently. Besides, it will be shown in the following that the taskswitching rate is in direct proportion to the number of tasks, when the computationaltime of the tasks are relatively short. Based on the two principles, this sectionaims to minimize the overhead of task switching in the OS-based ROBIN PowerPCapplication by reducing the number of scheduled tasks reasonably and determininga moderate cycle time for each of the tasks.To distinguish the cyclic tasks in the ROBIN PowerPC application from the tasksscheduled by the OS scheduler, the latter \tasks" are termed as \OS tasks" in thissection.
7.3.1 Reducing the Number of TasksAs stated in section 7.2.1 there are �ve cyclic tasks in the ROBIN PowerPC appli-cation. (Refer to �gure 6.3 in section 6.1.3 for the details of the �ve cyclic tasks.)The simplest design for the OS-based PowerPC application is to let each of the �vetasks run in one single thread and use the OS multi-task scheduler to schedule the�ve tasks.Except the highest-priority task of used-page record handling, which has a strictlimitation to its minimum processing rate of 25 kHz (see table 5.1), the other fourtasks only need to reach an average processing rate. In other words, the used-pagerecord handling task is a \hard" real-time task and the other four tasks are \soft"real-time tasks. Therefore, there is a great 
exibility to join the four lower-prioritytasks into a smaller number of OS tasks or to adjust their cycle time to reach anoptimal performance of the PowerPC application.
100



7.3 Performance Optimization
Consider the design of the standalone non-OS based ROBIN PowerPC application,which implements all its �ve cyclic tasks in one loop. Following the idea of one-loop-of-subroutines, an extreme design is to put all the four lower-priority tasks into oneOS task and use a cycle counter to adjust the relative processing rates of the fourtasks. Since the four tasks are soft real-time tasks, the extreme design is theoreticallyacceptable, so long as the average processing rates of the tasks are reached. In thiscase there are only two OS tasks scheduled by the operating system. However, thisdoes not guarantee a reduced rate of task switching. If the running time of thelower-priority task at one cycle is too long, e.g. multiple times of the cycle time ofthe higher-priority task.

Figure 7.4: Task switching.
Figure 7.4 shows an example for task switching. Two cyclic tasks are sharing theCPU in the example. Task 1 is a higher-priority task. Task 2 is a lower-prioritytask. Task switching occurs, when task 1 preempts task 2 or when task 1 �nishes itsoperation at one cycle and task 2 resumes its operation. To simplify the denotation,

101



7 Real-Time Linux Based PowerPC Application
it assumes that the computational time for task switching at any situation is constantand the computational time for either task at each cycle is also constant. Besides,the starting requests of both tasks are assumed to arrive at a same time. In thiscase the number of task switching within one task-2 cycle is always an odd number.Let N denote the number of task switching and let N = 2 � n + 1. Then we canderive the following equation.

t2�abs = 2 � n � tsw + n � tr1 + tr2 = n � Tc1 + t2�extrawhere- tsw is the computational time for task switching,- Tc1 is the cycle time of task 1,- Tc2 is the cycle time of task 2,- tr1 is the computational time of task 1 at one cycle,- tr2 is the computational time of task 2 at one cycle,- t2�abs is the absolute running time of task 2 at one cycle, (i.e. from task-2start to task-2 stop)- and t2�extra is a small fraction of tr2 value, equal to tr2�n�(Tc1�(2�tsw+tr1))and smaller than Tc1 � tr1 � 2 � tsw.See �gure 7.4 for the illustration of the above denotation. When tsw, Tc1 , Tc2 ,
tr1 and tr2 are known, a unique solution to the integer n can be derived from theabove equation. A similar equation can be derived when more than two tasks getinvolved in the scheduling.The example in �gure 7.4 tells, the task switching rate does not always dropsigni�cantly, when the number of tasks is reduced. This is the case of the extremedesign as mentioned above, i.e. merging all the four lower-priority tasks into one OStask. The computational time of the four merged tasks is a number of times of thecycle time of the single highest-priority task of used-page record handling.However, when two or more tasks with relatively short computational time, (shorterthan Tc1�(2�tsw+tr1) for the example in �gure 7.4,) merging of these tasks will ob-viously decrease the task switching rate. This is the case of the three lowest-prioritytasks in the ROBIN PowerPC application: free-page ID FIFO updating, idle taskhandling and terminal command handling. Each of the three tasks has very short
102



7.3 Performance Optimization
computational time and their processing rates are also by far lower than the othertwo highest-priority tasks. Therefore, the �rst optimization measure is to mergethe three lowest-priority tasks into one OS task. The number of OS tasks to bescheduled by the real-time operating system is reduced to the following three in thedescending priority order:- OS Task 1 : used-page record handling,- OS Task 2 : message handling,- OS Task 3 : free-page ID update, idle task processing and terminal commandhandling.
7.3.2 Determination of Task Cycle TimeFor a real-time system it is necessary to set a reasonable cycle time for each of itstasks, so that it is not too long to miss the real-time performance requirement of thesystem, and that it is not too short to cause too much overhead of task switchingand lead to system overload.A overloaded real-time system results in task overrun. It means that not allits real-time tasks are executed within their respective expected cycle time. Forinstance, for the example system with two real-time tasks as shown in �gure 7.4, thesystem gets overloaded when the following condition is satis�ed:

t2�abs � Tc2:In this case the actual running time of the lower-priority task is longer than theexpected cycle time of the task. If the coming task-2 requests are not ignored, thewaiting task queue grows, which will eventually leads to system crash.As mentioned in the previous section the �ve tasks in the ROBIN PowerPC ap-plication run in three cyclic OS tasks, i.e. three real-time tasks scheduled by theoperating system. The following of this subsection discusses the strategies to deter-mine the cycle time of the three tasks.
7.3.2.1 OS Task 1Used-page records are handled in the �rst cyclic task. This most time-critical taskhas the highest priority in the system. The maximum allowed cycle time for thistask is 40 �s as given in table 5.1. For security the actual cycle time must be shorterthan 40 �s. In this work the shortest system-allowed cycle time of this task is not

103



7 Real-Time Linux Based PowerPC Application
determined a priori, but regarded as a criterion to evaluate the real-time capabilityof the ROBIN PowerPC system. Experiments presented in section 7.4 are done tomeasure the shortest cycle time of this task that the OS-based ROBIN PowerPCapplication is capable to reach.
7.3.2.2 OS Task 2Message handling task is performed in the second OS task. A limitation to theaverage processing rate of this task is 1 kHz, which is also given in table 5.1. Butthe determination of the cycle time of this task is more 
exible, since shorter cycletime means in one cycle fewer messages arriving at the message description FIFOand fewer messages need to be handled. It is not absolutely necessary to process all32 messages in the message description FIFO in one cycle. According to practicesa balanced choice of the cycle time for message handling task is set to be 200 �s. Itis �ve times as the cycle time of the used-page record handling task and one �fth ofthe maximum-allowed average cycle time of the task as given in table 5.1. It is easyto count, there are 6.4 (i.e. 32=5) messages on average to be handled in one cycle.
7.3.2.3 OS Task 3Free-page ID FIFO update is the only job in the third OS task that has certain real-time requirement. In order to reduce the burden of the system this thread is calledso often as necessary. For this purpose the cycle time of this OS task is adjusteddynamically during the running according to the following strategy.At each cycle of OS task 3, the cycle time for its next round Tc3 is re-determinedby the current number of free-page IDs in the free-page ID FIFO nf and the a-prioriknown event data rate (or free page occupation rate rf ), i.e. Tc3 = nf=rf . At thesystem initialization the event bu�er are empty and all pages are free. Hence, theinitial number of free pages in the free-page ID FIFO nf0 is the minimum of the sizeof free-page ID FIFO Sf and the total number of pages Np, i.e. nf0 = min(Sf ; Np).Therefore, the initial cycle time of thread 3 is Tc30 = nf0=rf .
7.4 ExperimentsLike the standalone ROBIN PowerPC application, the OS-based PowerPC applica-tion is also developed with a cross development environment as described in appendixB. In this section the real-time performance of the MontaVista RT-Linux OS is �rstlymeasured. Then the ROBIN PowerPC application based on the MontaVista Linux
104



7.4 Experiments
is tested. In order to reach the best performance of the OS-based ROBIN PowerPCsystem, the system performance is tested against di�erence cycle rates of its tasks.
7.4.1 Performance of MontaVista RT-Linux SchedulingThis subsection aims to measure the performance of MontaVista real-time Linuxoperating system. The most concerned OS performance for the ROBIN PowerPCapplication is the performance of the OS scheduling and in particular task switchingdelays caused by the scheduling.For the ROBIN PowerPC application there are two scenarios for task switching.In the �rst scenario a higher-priority task preempts a running lower-priority task; adelay is caused when the running lower-priority task is suspended and the higher-priority task is activated. In the second scenario a suspended lower-priority task isresumed when all higher-priority tasks �nish their operations; a delay occurs whenthe last higher-priority task is terminated or suspended to wait for the next cycleand the lower-priority task is resumed.Experiments in this section are to measure the two kinds of task switching delayscaused by the OS scheduling. Two tasks are de�ned in the test: task 1 and task2. Task 1 is a cyclic task and its cycle time is one millisecond. At each cycle task1 switches a LED on and o� once. Task 2 is continuously running task, whichtoggles another LED constantly. Task 1 has a higher priority compared with task2. Since the priority of task 1 is higher, it preempts the continuously-running task2 cyclically.The following is the code of task 1:while (true)

f SetLedOn (1) ; = � set LED 1 on � =SetLedO� (1) ; = � set LED 1 o� � =Sleep (1) ; = � suspend itself for one millisecond � =
gThe code of task 2 is given as follows:while (true)

f SetLedOn (2) ; = � set LED 2 on � =SetLedO� (2) ; = � set LED 2 o� � =
g

105



7 Real-Time Linux Based PowerPC Application

Figure 7.5: Task switching delay caused when a higher-priority task pre-empts a running lower-priority task.

106



7.4 Experiments

Figure 7.6: Task switching delay caused when a higher-priority task �nishesits operation in one cycle and a waiting lower-priority task isresumed.

107



7 Real-Time Linux Based PowerPC Application
In the �rst task switching scenario task 1 preempts the running task 2. The LEDcontrolled by task 2 stops toggling and a pulse is generated at the LED controlledby task 1. An oscilloscope is used to detect the signals at the two LEDs. Figure7.5 shows the result acquired by the oscilloscope. According to the �gure the delaycaused by the task switching at task preemption is around 28 microseconds.In the second task switching scenario for this test, task 1 �nishes its operation inthe current cycle and suspends itself to wait for its next cycle and the waiting task 2is resumed. That is, a pulse has been generated at the LED controlled by task 1 andthe LED controlled by task 2 resumes toggling. Figure 7.6 shows the measurementresult of the task switching delay at lower-priority task resume. According to the�gure the task switching delay in the second task switching scenario is about 10,5microseconds.

7.4.2 Performance of RTLinux-Based ROBIN PowerPC

ApplicationAs mentioned in section 7.3, three �nal cyclic OS tasks are de�ned and scheduledby the RT-Linux operating system. Refer to page 103 for the de�nitions of thethree tasks. The maximum cycle rate that the �rst OS task (i.e. used-page recordhandling) can reach is the most important concern for the real-time performanceof the OS-based ROBIN PowerPC application. As mentioned before, this factor isregarded as a criterion to evaluate the real-time capability of the ROBIN PowerPCsystem. The experiment in this subsection is to �nd the optimal setup of the OS-based ROBIN PowerPC application, to reach the best real-time performance of thePowerPC system, i.e. the maximum cycle rate that the �rst OS task of used-pagerecord handling.The experiment is carried out under the ROS/ROBIN testing environment asdescribed in section 6.3.1. On one side a ROD emulator generates event data andfeeds the data to the ROS PC which is mounted with ROBIN boards. On theother side two data collection PCs emulate the level-2 farm and the event builder,respectively. They generate and forward data request messages and event deletionmessages to the ROS/ROBIN system and collect requested event data backwards.The cycle time of the second and the third OS tasks is determined according to thestrategies introduced in section 7.3.2. The cycle time of the second OS task is �xed tobe 200 �s, while the cycle time of the third OS task is adjusted dynamically accordingto the actual system workload. The experiment in this section is to measure themaximum cycle rate of the �rst OS task, while varying event data request rate. Aswith the experiment in section 6.3.2 an additional prerequisite for this experiment
108



7.4 Experiments
is a full load of incoming event data, which is as much as the system can process. Inother words the used-page record FIFO is always full at each cycle of the �rst OStask for used page handling.Figure 7.7 shows the curve of the maximum cycle rate of the used-page-handlingtask while the event data request rate increases. Figure 7.8 shows the correspondingmaximum incoming rate of the event data that the OS-based ROBIN PowerPCapplication is capable to support.

Figure 7.7: Maximum cycle rate of the used-page handling task (supportedby the OS-based ROBIN PowerPC system) vs. event data re-quest rate
According to the two diagrams the performance of the proposed RTLinux-basedROBIN PowerPC application does not meet the ATLAS baseline requirement. Onlywhen every event data fragment is guaranteed to take no more than one page in eventbu�ers, the performance of the RTLinux-based PowerPC application is capable tomeet the real-time requirement. However, this is not always the case for the ROBINsystem.Analyzing the consumption of the CPU time, it is easy to tell that most of the CPUtime is devoted to the OS scheduling. According to the performance measurement ofthe RTLinux scheduling, 28 �s is needed for task preemption and 10 �s for suspendedtask getting resumed. This means, for this experiment the OS scheduling for taskswitching consumes over two thirds of the total processing time, while less than one

109



7 Real-Time Linux Based PowerPC Application

Figure 7.8: Maximum level-1 data incoming rate (supported by the OS-based ROBIN PowerPC system) vs. event data request rate.
third of the CPU time is devoted to task execution.
7.5 SummaryThis chapter presents an OS-based ROBIN PowerPC system. MontaVista RT-Linuxis chosen as the real-time operating system for the PowerPC system. With theexistence of a real-time operating system, user tasks are prioritized and scheduledautomatically by a real-time OS scheduler, to achieve a hard real-time performanceof the tasks.However, one tradeo� for this convenience is an extra computational cost for themulti-task scheduling or task switching. In order to reduce this cost several measuresare proposed in this chapter to improve the performance of the system by reducingthe number of user tasks and making an optimal choice for the cycle time of thetasks.Finally, the performance of the RT-Linux kernel as well as the performance ofthe proposed OS-based ROBIN PowerPC system are measured. Results show thatthe performance of the RTLinux-based ROBIN PowerPC system does not meet therelated ATLAS DAQ baseline requirement. However, according to the analysis of
110



7.5 Summary
the CPU time consumption, most of the computational time is devoted to the OSscheduling for task switching. The attempt in this chapter tells that there would be achance for an OS-based ROBIN PowerPC system to meet the ATLAS DAQ baselinerequirement, if an upgraded real-time operating system would emerge in the futurewith a real-time scheduler of higher performance, especially for task switching.

111



7 Real-Time Linux Based PowerPC Application

112



8 Conclusions
The goal of this dissertation is to realize an embedded real-time system for the AT-LAS Readout Bu�er INput (ROBIN). ROBIN is the centric device inside the ATLASreadout subsystem (ROS), which is one of the most essential bu�ering systems inthe LHC/ATLAS data acquisition chain (TDAQ).For the �nal design of ROBIN the ATLAS community decided to adopt the onebased on two kernel processors: a Xilinx Virtex II 200 FPGA and a PowerPC440GP micro-controller. The combination of an FPGA processor with a PowerPCmicro-controller takes advantages of both kernel processors. The former controlsthe data 
ow with high performance requirements, and the latter is responsible formore complex and 
exible management functions with relatively lower performancerequirement. This work focuses on the design and optimization of the ROBIN Pow-erPC system.Due to limited resources in the embedded ROBIN PowerPC system and strict real-time performance requirement, e�ective strategies have been studied in this workfor the ROBIN event bu�er management, which are economic both in the memoryspace and in computational cost. Three algorithms are introduced in this work forthe event bu�er arrangement and assignment, the fast event lookup and the storageof the related data structures.Firstly, a page-based scheme is adopted for the organization of event bu�ers,i.e. segmenting a 64MB SDRAM event bu�er into �xed-sized pages. A hash tableis introduced to deal with the mappings between event IDs and page IDs, whichguarantees a balanced distribution of hash nodes over hash buckets. The dynamicorganization of the hash table is managed with static data structures. Dynamicmemory allocation is avoided in order to keep system security and stability. Secondly,since there exists an one-to-one mapping between occupied pages in the event bu�erand hash nodes in the hash table, a same mechanism is proposed both for thearrangement of the event bu�er and for the arrangement of the static hash node

113



8 Conclusions
bu�er. In such a way the computational e�ort of the ROBIN PowerPC applicationis skillfully reduced. Thirdly, a chained free hash-node list is introduced as thebu�er allocation mechanism for the two bu�ers above. The chained free hash-nodelist is built within the hash node bu�er, with no extra memory space. This proposedbu�er allocation strategy based on a chained free-node list can be easily extendedto handle bu�er management problems for other embedded systems. The solutioneven contributes to solve a generic memory management problem, if the memoryhas to be divided into partitions with �xed size and each partition is a minimumunit for memory allocation and release. In such a case, the proposed algorithm is anoptimal solution to the memory management both in respect of space complexityand in respect of time complexity.With given strategy and algorithms for the ROBIN event bu�er management, theprimary software components and functionalities for the ROBIN PowerPC systemare de�ned. Moreover, following the baseline requirement of the ATLAS data acqui-sition chain, the real-time performance requirements of the PowerPC software arealso determined.For the implementation of the ROBIN PowerPC system, two architectures are pre-sented in this work, depending on whether a real-time operating system is integratedinto the system.In the standalone PowerPC system based on the non-OS architecture the ROBINPowerPC application is implemented as a single-thread program. Without a real-time preemptive scheduler, all the cyclic tasks of the ROBIN PowerPC applicationare performed in a single loop, although these tasks have di�erent priorities anddi�erent real-time performance requirements. In order to improve the overall pro-cessing rate of the single main loop, a number of application-speci�c measures havebeen proposed to organize operations in the loop optimally. The goal of the opti-mization is to distribute the operations uniformly into each cycle of the main loop,to minimize the maximum processing time of one main-loop cycle. This is becausethe processing rate of the main loop re
ects the cycle rate of the most time-criticaltask in the ROBIN PowerPC system.MontaVista RT-Linux is chosen as the real-time operating system (RTOS) forthe OS-based ROBIN PowerPC system. With the existence of an RTOS, user tasksare prioritized and scheduled automatically by a preemptive real-time multi-taskingscheduler. One tradeo� for this convenience is an extra computational cost for thescheduling or task switching. In order to reduce this cost several measures areproposed to improve the performance of the system by reducing the number of usertasks and making an optimal choice for the cycle time of the tasks.Performances of the two implementations above of the ROBIN PowerPC system
114



are measured through elaborate experiments in a simulated ROS/ROBIN testingenvironment. The performance of the standalone non-OS based PowerPC systemis slightly above the baseline requirement of the ATLAS DAQ chain, while theperformance of the RTLinux-based ROBIN PowerPC system does not meet therelated ATLAS DAQ baseline requirement. According to the analysis of the CPUtime consumption, over two thirds of the computational time for the RTLinux-basedsystem is devoted to the task scheduling or switching. Apparently, to make the OS-based ROBIN PowerPC system work, a higher-performance real-time scheduler isrequired.However, the attempt with the OS-based PowerPC system tells that there wouldbe a chance for an OS-based ROBIN PowerPC system to meet the ATLAS DAQbaseline requirement, if an upgraded real-time operating system with a real-timescheduler of higher performance, would emerge in the near future. For a complexmulti-tasking application an OS-based system architecture is always the tendency.Despite an extra cost of memory space for the OS kernel and an extra computationalcost for the scheduling, the introduction of a real-time operating system into a multi-tasking application saves by far more e�orts for the software development.

115



8 Conclusions

116



A Glossary
ALICE A Large Ion Collider Experiment (Detector)ASIC Application-Speci�c Integrated CircuitATLAS A Toroidal LHC ApparatuS (Detector)AUX auxiliaryBIOS Basic Input Output SystemBIST Build-In-Self-TestBSP Board Support PackagesCMS Compact Muon Solenoid (Detector)CERN European Particle Research LaboratoryCOTS Commercial \O�-The-Shelf"CPU Central Processing UnitDAQ ATLAS Data Acquisition ChainDDR RAM Double Data Rate RAMDDR SDRAM Double Data Rate Synchronous Dynamic RAMDF Data FlowDMA Direct Memory AccessDSP Digital Signal ProcessorEB Event BuilderEBC External Bus ControllerEEPROM Electrically Erasable Programmable ROMEF Event FilterFIFO First-In-First-OutFSM Finite State MachineFPGA Field Programmable Logic ArrayFPL Free-Page ListGDB GNU DebuggerGE Gigabit Ethernet

117



A Glossary
GNU GNU Not UnixGPIO General Purpose IOGPL General Public LicenseIC Integrated CircuitICE In-Circuit EmulatorIO Input/OutputISR Interrupt Service RoutineJTAG Joint Test Action GroupLED Light-Emitting DiodeLEIR Low-Energy Injector RingLDC Link Destination Card (SLink)LEP Large Electron/Positron ColliderLHC Large Hadron ColliderLHCb LHC-beauty (Detector)LIFO Last-In-First-OutLILO LInux LOaderLRU Least-Recently-UsedLSC Link Source Card (SLink)MAC Media Access ControlMBR Master Boot RecordMMU Memory Management UnitOS Operating SystemPCI Peripheral Component Interconnect (Local Bus)PCI-E PCI-ExpressPLD Programmable Logic DevicePSB Proton Synchrotron BoosterPSR Proton Synchrotron RingRISC Reduced Instruction Set ComputerRTAI Real-Time Application InterfaceRTHAL Real-Time Hardware Abstraction LayerRT-Linux Real-Time LinuxRTOS Real-Time Operating SystemROB ATLAS ReadOut Bu�erROBIN ATLAS ReadOut-Bu�er INputROD ATLAS ReadOut DriverRoI Region of InterestROS ATLAS ReadOut-SubsystemROL ATLAS ReadOut-Link

118



RR Round RobinSDRAM Synchronous Dynamic Random Access MemorySM Standard ModelSoC System on a ChipSPD Serial Presence Detect (Memory)SPS Super Proton SynchrotronTDAQ ATLAS Trigger and Data Acquisition ChainTeV Tera Electron VoltTLB Translation Lookaside Bu�erUART Universal Asynchronous Receiver/TransmitterUSB Universal Serial BusVME Versa Module Europa

119



A Glossary

120



B Software Development
Platform for the PowerPC
System

B.1 Cross-Development EnvironmentAn embedded system runs usually on a special target platform, for example, a micro-controller that runs with a minimal amount of memory for its own purpose. On sucha platform it is inconvenient or impossible for its software developers to develop theirapplications or compile their code directly above. Therefore, it is common that theembedded software is developed on another platform, such as an x86 desktop PC.Accordingly, a special toolchain is required for the cross development. The toolchainmust be capable of creating executable code for the target platform other than theone on which the toolchain runs. This process is referred as cross compiling, andthe special toolchain is termed as cross compiler.The software development for the ROBIN PowerPC system requires also a cross-development environment and a cross compiler or toolchain. The toolchain executeson an X86 platform, but generates binary code for a PowerPC platform. The U-Bootprogram, the real-time Linux OS as well as the application for the ROBIN PowerPCsystem are all integrated with the cross-platform toolchain.The GNU toolchain is chosen for the software development for the target ROBINPowerPC system. The GNU toolchain is composed of a GNU C/C++ compiler,a GDB debugger, an assembler, a linker and other binutils. Figure B.1 shows thecross development environment for the ROBIN PowerPC system.Furthermore, nowadays the increasing complexity of software and hardware designleads to new approaches for debugging. Silicon manufacturers o�er also increasing
121



B Software Development Platform for the PowerPC System

Figure B.1: Hardware deployment of the cross development environmentof the PowerPC system.
on-chip debugging features to assist embedded software developers to debug theircode.Joint Test Action Group (JTAG), implemented for various processors, follows theIEEE 1149.1 standard which entitles standard test access ports for testing. WithJTAG debug port, one can control and monitor the microcontroller solely throughthe stable on-chip debugging services. This debugging mode keeps running evenwhen the target system crashes, which enables developers to continue investigatingthe cause of the crash. This is a signi�cant advantage over generic software debug-gers. Moreover, JTAG debugger is also relatively cheaper and more general purposethan e.g. an in-circuit emulator(ICE).For the software debugging on the ROBIN PowerPC system, Abatron BDI2000JTAG Debugger is used. The BDI2000 can be used for many types of processors,including CPU12/16/32, PowerPC, ColdFire, M-CORE, MIPS, XScale, ARM, etc.The BDI2000 sets up a communication path between the development PC and thetarget ROBIN board via RS232 or 10 BASE-T Ethernet. The BDI2000 convertsthe debug commands automatically into appropriate JTAG sequences, which aretransferred to the target ROBIN board via a JTAG port. The use of a JTAGinterface occupies no system resource on the target system, i.e. in this case thePowerPC system.
B.2 U-BOOT for the ROBIN PowerPC SystemU-Boot is the abbreviation for das U-Boot (Universal Boot Loader). It is a prevailingboot loader implementation specially for embedded systems. It supports a numberof di�erent computer architectures, including PPC, ARM, MIPS, x86, m68k, Nios,
122



B.2 U-BOOT for the ROBIN PowerPC System
PowerPC, etc. It is released under the GNU General Public License (GPL) andtakes advantage of an open development process. U-Boot is usually built on an x86PC for any supported architecture using a cross development environment. Becausethe U-Boot provides strong supports for PowerPC architectures, it is chosen as theboot loader for the ROBIN PowerPC system.In this section some basic concepts about bootstrap loader are �rstly introduced.Then the speci�c features of the U-Boot is given. At last the U-Boot adaptions andextensions specially for the ROBIN PowerPC system are presented.
B.2.1 Bootstrap LoaderAny computer system, both for a personal computer and for an embedded chipmounted on a car, an aircraft, a robot, or a toy, can only execute codes that alreadyexist in the memory, such as Read-Only Memory (ROM) or Random Access Mem-ory (RAM). However, an operating system or a single application-speci�c programare often stored on non-volatile storage devices, e.g. hard disks, USB disks, or CDdrivers. Therefore, a bridge solution needs to be developed to load the target op-erating system or application-speci�c program into the memory and then to triggertheir start. A bootstrap loader is commonly applied to accomplish this task.This section reviews the basic concepts of bootstrap loaders, their principal tasksin embedded systems and the usual implementation hierarchy of a bootstrap loader.reviewed in this section.
B.2.1.1 De�nitionA bootstrap loader is also referred to as a boot loader or boot monitor. Its goal isto load the image of the �nal target software into the memory and run it on themachine. The target software can be an embedded operating system or a singleapplication-speci�c program.On a desktop PC, with Linux for example, LILO is commonly used as the OS bootloader, which resides on the master boot record (MBR) of the hard drive. When thePC is powered on, the BIOS performs �rstly various system initializations and thenexecutes the boot loader located in the MBR. The boot loader then passes systeminformation to the kernel and then executes the kernel. For instance, the boot loadertells the kernel which hard drive partition to mount as root.However, in an embedded system the role of the boot loader is more complicatedsince these systems do not have a BIOS to perform the initial system con�gura-tion. The low-level initializations of microprocessors, memory controllers and otherboard-speci�c hardware vary from board to board and CPU to CPU. All these

123



B Software Development Platform for the PowerPC System
initializations must also be conducted by the boot loader, besides the loading ofsoftwares from disk drives to the memory.
B.2.1.2 Principal TasksGenerally the boot loader for an embedded system must provide at a minimum thefollowing functions, including- initializing the hardware, especially the CPU, the memory controller, and the
ash memory,- providing boot parameters for the target software or the operating systemkernel if there is one,- and starting the target software or the OS kernel.Additionally, most boot loaders provide also more convenient features to simplifythe programs developed above them. The features are listed as follows:- reading and writing arbitrary memory locations,- uploading new binary images to the board's RAM via a serial line or Ethernet,- and 
ash functions, like copying the binary images from RAM to 
ash memory.
B.2.1.3 Implementation HierarchyA boot loader may be implemented in multiple stages. Several small programssummon one another sequentially, until the last of them loads the entire targetsoftware. The �rst stage is usually designed in a most convenient and simplest way;and only on the �nal stage the boot loader eventually transfers control to the targetsoftware. The name of bootstrap loader comes just from the one-by-one steps ofprogram-loading process.Because the implementation of a boot loader depends tightly upon the individualhardware platform, it is impossible to build a universal boot loader for the immerseembedded world. But generally most boot loaders consist of two major stages ingeneral. The code for hardware-related initializations is put in stage 1, which isusually implemented with assembler language and is compressed. Stage 2 is usuallyimplemented with C language, which supports more complex functionalities and hasbetter readability and portability.Basically stage 1 includes the following steps:
124



B.2 U-BOOT for the ROBIN PowerPC System
- initialize the hardware devices,
- assign a RAM space for the codes of stage 2,
- copy the codes of stage 2 to the RAM space,
- initialize memory stack,
- and go to the code entry of stage 2.

Stage 2 includes the following steps:
- initialize the related hardware devices used in this stage,
- check the system memory map,
- load the kernel map and root �le system map from 
ash to the RAM space,
- initialize the kernel parameters,
- and call the kernel.

B.2.2 Features of U-BootIt has been introduced in the previous section that a boot loader is a small pieceof software that executes soon after powering up a computer. Its goal is to loadthe image of the �nal target software into the memory and run it on the machine.Das U-Boot, commonly used in embedded systems as the boot loader, is intendedto provide a common, 
exible and easily extensible boot program for embeddeddevices.In the embedded world it is very important to provide a 
exible way to con�gurethe system environment. Accordingly, one primary goal of U-Boot is to achieve the
exibility. Developers must be able to decide which components are really neededwithin the actual target system. Besides, automatic detection of hardware compo-nents at runtime is also an important feature. For example, automatic detection ofthe CPU type, size of SPD memory or size of 
ash memory allows the extension ofhardware without changing the application code.
125



B Software Development Platform for the PowerPC System
B.2.3 U-Boot AdaptionIn order to port the U-Boot source code to the ROBIN board, it is necessary toadd some speci�c code to the U-Boot source code. This process is like the BoardSupport Packages(BSP) development in the Linux kernel. For the ROBIN boardthe following modi�cations and adaption are made.- Read values of the I2C bus, set the CPU speed, and enable instruction/datacaches;- set up the stack pointer;- initialize the interrupt controller;- initialize the DDR memory controller;- initialize UART and set the baudrate;- initialize External Bus and build one common address system for PowerPC'sRAM and FPGA's FIFOs;- initialize the FLASH layout and programming;- initialize other devices, such as Ethernet;- set up boot parameter area and construct parameter structures. (Note, bootparameters are used by the OS kernel to identify the root device, page size,memory size, etc.)
B.2.4 U-Boot ExtensionsThe PowerPC part acts as the auxiliary core in the ROBIN system. It is alsoresponsible for self-testing the whole board, as well as monitoring the con�guration.Hence the following four add-ons are attached extra to the standard U-Boot program:- memory test utility,- more APIs, like the 
ash reading/writing/clearing,- second UART support for ROBIN,- and FPGA con�guration through the GPIO(General Purpose IO).
126



C MontaVista RT-Linux
Con�gurations for the ROBIN
PowerPC System

This chapter presents details about how the MontaVista real-time Linux OS is con-�gured and adapted to the ROBIN PowerPC system.
C.1 Boot SequenceThe embedded Linux boot sequence is more complicated than a proprietary embed-ded operating system, and there are many more options to con�gure it. In general,the boot sequence goes as follows:[47]- After Power-On or reset, processor branches to the U-Boot startup code.- The U-Boot initializes the CPU and memory, Flash, performs only minimalinitialization of on-chip devices, such as the console serial port to provide bootdiagnostic messages.- U-Boot also sets up the memory map for the kernel to use in a format that isconsistent across platforms.- The U-boot decompresses the Linux kernel from 
ash into RAM, and jumpsto it.- The Linux kernel sets up the caches, initializes each of the hardware devicesvia the init function in each driver, decompress the Initial RAM disk (initrd)into ram, mounts the root �le system (including busybox) and executes the

127



C MontaVista RT-Linux Con�gurations for the ROBIN PowerPC System
init process, which is the ultimate parent of all user mode processes, typically/sbin/initd.- Executing the �rst program linked against the shared C runtime library (oftenthe init function) causes the shared runtime library to be loaded.- In a typical Linux system, the init function reads /etc/inittab to execute theappropriate run control script from /etc/rc.d, which executes the start scriptsto initialize networking and other system services. In the ROBIN PowerPCsystem the init function is replaced with a C program to start the PowerPCapplication programs. [41]

Figure C.1: The ROBIN PowerPC Startup Process
C.2 Linux Kernel AdaptionsIn order to run the MontaVista Linux on the ROBIN PowerPC system, a develop-ment host PC is connected to the target ROBIN board. The host PC must have anormal desktop Linux. A GNU cross development environment is set up on the hostPC, and the embedded Linux sourcecode of MontaVista for PowerPC is installed.The Linux kernel sourcecode is divided into two parts: the architecture-speci�cpart and the architecture-independent part. The architecture-speci�c part exe-cutes �rstly. It sets up hardware registers, con�gures the memory map, performs
128



C.3 Ramdisk
architecture-speci�c initialization, and then transfers control to the architecture-independent part of the kernel. During the second phase the rest of the system isinitialized.The directory arch/ under the kernel tree consists of di�erent subdirectories, eachfor a di�erent architecture (ARM, i386, PPC, and so on). Each of these subdirec-tories includes kernel/ and mm/ subdirectories, which contain architecture-speci�ccode to do things like initializing memory, setting up IRQs, enabling cache, settingup kernel page tables, and so on. These functions are called, once the kernel isloaded and given control; then the rest of the system is initialized.The MontaVista Linux sourcecode has already provided good support for Pow-erPC 440GP that is used in ROBIN. When porting MontaVista to the ROBINPowerPC system, only a few ROBIN-speci�c adaptions need to be made for the tar-get system, including memory alignment, serial port and baudrate, network driver,and Flash Memory.The kernel is then compiled as a vmlinux image �le for the ROBIN board. Afterthe compiling, the U-Boot communicates with the host using the serial or ethernetport to transfer the kernel into the PowerPC's 
ash, together with the Initial RAMdisk (initrd). In the boot process, the kernel is loaded into the PowerPC's memory bythe U-Boot. After the kernel is fully loaded, the U-Boot passes control to the addresswhere the kernel was loaded. The kernel then decompresses the Initial RAM disk(initrd) into ram, mounts the root �le system and executes the init process. Section?? gives more details.
C.3 RamdiskThe purpose of the Initial RAM disk (initrd) image is to provide a root �le systemfor the Linux kernel when it boots.[42] In a normal Linux, the ramdisk is only atemporary root �le system that is mounted during system boot to support the two-state boot process. The initrd contains various executables and drivers that permitthe real root �le system to be mounted; afterwards the initrd RAM disk is unmountedand its memory freed. But in many embedded Linux systems, the initrd is just the�nal root �le system. This implies that the �le system contains a number of things,including �le system structure(/bin, /dev, /etc, /lib, /proc ...), binaries (such asbusybox), con�guration �les (such as rc.sysinit), device entries (/dev/kmem, etc.),proprietary applications and the frequently used runtime libraries.To create an initrd for the PowerPC system, begin by creating an empty �le, using/dev/zero (a stream of zeroes) as input writing to the ramdisk.img �le. The �le size

129



C MontaVista RT-Linux Con�gurations for the ROBIN PowerPC System
is normally several megabytes. Then use the mke2fs command to create an ext2(second extended) �le system using this empty �le. Now that this �le is an ext2 �lesystem, mount the �le to a directory as a loop device. [42]The next step is to create the necessary subdirectories that make up the root �lesystem: /bin, /sys, /dev, and /proc. To make this root �le system useful, BusyBoxis used in ROBIN PowerPC. Busybox is a single image that contains many individualutilities commonly found in Linux systems. Refer to section ?? for more details.Then it is the creation of a small number of special device �les. Copy these directlyfrom current desktop /dev subdirectory, using the -a option (archive) to preservetheir attributes.The penultimate step is to generate the linuxrc �le. After the kernel mounts theRAM disk, it searches for an init �le to execute. If an init �le is not found, the kernelinvokes the linuxrc �le as its startup script. The basic setup of the environment isin this �le, such as mounting the /proc, /sys �le system. Then ash(a Bourne Shellclone) is invoked, so that an interact console is ready. The linuxrc �le is thus madeexecutable using chmod.Finally, the root �le system is complete. It is unmounted and then compressedusing gzip. The resulting �le (ramdisk.img.gz) is copied to the 
ash so that it canbe loaded by linux kernel.
C.4 Busybox

BusyBox is a software application which provides many standard Unix tools, muchlike the larger (but more capable) GNU Core Utilities. BusyBox is designed to bea small executable program for the use with Linux, which makes it ideal for specialpurpose Linux distributions and embedded devices. It has been called \The SwissArmy Knife of Embedded Linux". [2]BusyBox is a single image that contains many individual utilities commonly foundin Linux systems (such as ash, awk, sed, insmod, and so on). The advantage ofBusyBox is that it packs many utilities into one package while sharing their commonelements, which results in a much smaller image. This is ideal for the ROBINPowerPC embedded system. Copy the BusyBox image from its source directoryinto the /bin directory. A number of symbolic links are then created, all of whichpoint to the BusyBox utilities. BusyBox �gures out which utility was invoked andperforms the according functionality.
130



C.5 C Library
C.5 C LibraryIn the embedded system, if a customized application binary needs the standard Clibrary, there is an option beyond the massive glibc. It is the uClibc, which is aminimized version of the standard C library for space-constrained systems. If theuClibc is used, the binaries are needed to be recompiled with these libraries, hencesome additional work is required. However, in the ROBIN PowerPC system, theBusyBox image is statically linked so that no libraries are required. uClibc wastested but not used.

131



C MontaVista RT-Linux Con�gurations for the ROBIN PowerPC System

132



List of Figures

2.1 Injection and acceleration scheme in the LHC collider [59]. . 72.2 Model layout of the LHC collider [59]. . . . . . . . . . . . . . . 92.3 Parallel pipeline computing of an example staged trigger sys-tem. Original data rate is sustained with �xed latency time. 112.4 ATLAS Model [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.5 The ATLAS trigger system and event data acquisition chain[59][53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.6 A general use case diagram of ROS [37]. . . . . . . . . . . . . . 192.7 A ROS baseline architecture [45]. Note, one ROS devicemay contain three or four ROBIN boards. . . . . . . . . . . . 223.1 PCI ROBIN based on a SHARC DSP [20]. . . . . . . . . . . . 273.2 UK ROBIN based on an Intel i960 processor [25]. . . . . . . 283.3 Bu�er management inside the UK ROBIN [19]. . . . . . . . . 293.4 PCI ROBIN based on a MPRACE FPGA Co-Processor [53]. 303.5 Performance comparison of the three previous ROBIN pro-totypes: SHARCDSP-based ROBIN, UK ROBIN and FPGA-based ROBIN [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . 313.6 A ROBIN prototype in the �nal design. . . . . . . . . . . . . . 323.7 Hardware Deployment of ROBIN. The highlighted three eventbu�ers and PowerPC's a�liated RAM are to be organizedby the PowerPC application. . . . . . . . . . . . . . . . . . . . . 343.8 Data Flow Diagram of ROBIN. . . . . . . . . . . . . . . . . . . 354.1 Logical structure of an example hash table applied to thefast event lookup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
133



List of Figures
4.2 Physical storage of an example hash table inside the Pow-erPC software. Note, the hash table is the same one asshown in �gure 4.1). . . . . . . . . . . . . . . . . . . . . . . . . . 444.3 Logical structure of an example hash table and an accordingchained free hash-node list. . . . . . . . . . . . . . . . . . . . . 494.4 Physical storage of the example hash table shown in �gure4.3. Note, f is the header of the built-in chained free hash-node list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.1 PowerPC 440GP block diagram.[38] . . . . . . . . . . . . . . . 605.2 Handling of incoming event data from one ROL. The thickred arrows indicate the 
ow of event data, and the thin bluearrows indicate the 
ow of control data [45]. . . . . . . . . . . 635.3 Handling of request and response messages exchanged be-tween the ROS host PC and the PowerPC application [45].. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.4 Two architectures for the ROBIN PowerPC system. . . . . . 696.1 Component diagram of the ROBIN PowerPC application. . 736.2 Use case diagram of the ROBIN PowerPC application. . . . 746.3 Activity diagram of the standalone ROBIN PowerPC appli-cation based on the non-OS architecture. . . . . . . . . . . . . 756.4 Setup for the ROS/ROBIN testing environment . . . . . . . . 816.5 Main loop cycle rate (supported by the standalone PowerPCsystem) vs. event data request rate . . . . . . . . . . . . . . . . 846.6 Maximum level-1 data rate (supported by the standalonePowerPC system) vs. event data request rate. . . . . . . . . . 856.7 Maximum ROS/ROBIN-supported level-1 data rate vs. level-2 PC farm data request rate . . . . . . . . . . . . . . . . . . . . 866.8 Maximum ROS/ROBIN-supported level-1 data rate vs. eventbuilder data acceptance rate . . . . . . . . . . . . . . . . . . . . 876.9 Maximum ROS/ROBIN-supported level-1 data rate vs. eventdata fragment size . . . . . . . . . . . . . . . . . . . . . . . . . . 887.1 Simpli�ed illustration to the mechanism of the preemption-point based scheduling. . . . . . . . . . . . . . . . . . . . . . . . 947.2 Actual task switching process for the example given in �gure7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947.3 RTLinux kernel structure. . . . . . . . . . . . . . . . . . . . . . 97

134



List of Figures
7.4 Task switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017.5 Task switching delay caused when a higher-priority task pre-empts a running lower-priority task. . . . . . . . . . . . . . . . 1067.6 Task switching delay caused when a higher-priority task �n-ishes its operation in one cycle and a waiting lower-prioritytask is resumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077.7 Maximum cycle rate of the used-page handling task (sup-ported by the OS-based ROBIN PowerPC system) vs. eventdata request rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097.8 Maximum level-1 data incoming rate (supported by the OS-based ROBIN PowerPC system) vs. event data request rate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110B.1 Hardware deployment of the cross development environmentof the PowerPC system. . . . . . . . . . . . . . . . . . . . . . . . 122C.1 The ROBIN PowerPC Startup Process . . . . . . . . . . . . . 128

135



List of Figures

136



List of Tables

2.1 Comparison of di�erent high energy particle colliders [48][8][16][10][29][6][11][9][13][7][66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.1 Di�erent ROBIN modules implemented for di�erent ROS designs. . . 263.2 ROBIN Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.1 Memory requirement of the hash table for fast event lookup. Notethat the event bu�er is a 64MByte SDRAM. . . . . . . . . . . . . . . 454.2 Time complexity of the hash table management for fast event lookup.Note that M is the total number of bu�er pages. . . . . . . . . . . . . 464.3 Memory space requirements for the main data structures in the ROBINPowerPC application for one event bu�er (64MByte SDRAM). . . . . 514.4 Time complexity of the primary operations in the ROBIN PowerPCapplication both in the average case and in the worst case. Note that
M is the total number of bu�er pages; and N is the number of pageIDs to be �lled into the free page FIFO. N should be smaller thanthe size of the free page FIFO inside the FPGA. . . . . . . . . . . . . 565.1 Real-time requirement upon the PowerPC application with respectto di�erent communication FIFOs (between the PowerPC and theFPGA) and the according tasks of the PowerPC application. . . . . . 67

137



List of Tables

138



Bibliography
[1] Atlas Modelling Web Page [online]. http://www.nikhef.nl/pub/

experiments/atlas/daq/modelling.html.[2] BusyBox: The Swiss Army Knife of Embedded Linux. http://www.busybox.

net/about.html.[3] CES - Creative Electronic Systems [online]. http://www.ces.ch.[4] HOLA S-Link documentation. http://hsi.web.cern.ch/HSI/s-link/

devices/hola.[5] RS Components, Electronic Components [online]. http://www.

rs-components.com.[6] Technical Design Report. The BaBar Collaboration, SLAC, 1995.[7] ATLAS Detector and Physics Performance, Technical Design Report. The AtlasCollaboration, CERN/LHCC 99-14, CERN, May 1999.[8] The CDF IIb Detector }U Technical Design Report. The CDF Run IIb Collab-oration, Fermilab, 2002.[9] CMS - The TriDAS Project Technical Design Report, Volume 2: Data Acquisi-

tion and High-Level Trigger. The CMS Collaboration, CERN, 2002.[10] D0 Run IIb Upgrade Technical Design Report. The D0 Collaboration,FERMILAB-PUB-02/327-E, Fermilab, 2002.[11] Data Acquisition and Experiment Control - Technical Design Report. LHCbCollaboration, CERN, 2002.
139

http://www.nikhef.nl/pub/experiments/atlas/daq/modelling.html
http://www.nikhef.nl/pub/experiments/atlas/daq/modelling.html
http://www.busybox.net/about.html
http://www.busybox.net/about.html
http://www.ces.ch
http://hsi.web.cern.ch/HSI/s-link/devices/hola
http://hsi.web.cern.ch/HSI/s-link/devices/hola
http://www.rs-components.com
http://www.rs-components.com


Bibliography
[12] ATLAS High-Level Trigger, Data Acquisition and Controls Technical Design

Report. ATLAS HLT/DAQ/DCS Group, 2003.[13] ALICE - Technical Design Report of the Trigger, Data Acquisition, High-Level

Trigger, and Control System. The ALICE Collaboration, CERN-LHCC-2003-062, CERN, 2004.[14] LHC - The Large Hadron Collider. http://lhc.web.cern.ch/lhc/, 2007.[15] Abolins, M. and et al.: Speci�cation of the LVL1/LVL2 trigger interface.CERN ATL-DAQ-99-015, year = 1999.[16] Baranovski, A., C. Brock, D. Bonham, Lauri Loebel-Carpenter,
Lee Lueking, Wyatt Merritt, Carmenita Moore, Igor Terekhov,
J. Trumbo, Sinisa Veseli, J. Weigand, Steve White and K. Yip:
D0 Data Handling Operational Experience. Computing Research Repository,cs.DC/0306114, 2003.[17] Bird, T.: Comparing two approaches to real-time Linux. Guest column at Lin-

uxdevices.com. http://www.linuxdevices.com/articles/AT7005360270.

html, 12 2002.[18] Bock, R., J. A. Bogaerts, P. Werner, A. Kugel, R. Maenner and
M. Mueller: Active Rob Complex: An SMP-PC and FPGA based solution

for the Atlas ReadoutSystem. In IEEE Realtime Conference, pages 199{203,Valencia, 2001.[19] Boorman, G., P. Clarke, R. Cranfield, G. Crone, B. Green and
J. Strong: The UK ROB-in a Prototype ATLAS Readout Bu�er Input Mod-

ule. CERN ATLAS Note, CERN, May 2000.[20] Boterenbrood, H., P. Jansweijer,G.Kieft, R. Scholte, R. Slopsemaand J. Vermeulen: A SHARC based ROB Complex : design and measurement

results. CERN ATLAS Note ATL-DAQ-2000-021, CERN, May 2000.[21] Boyle, O., R. McLaren and E. van der Bij: The S-LINK Interface Spec-

i�cation. Technical report, CERN, 1997.[22] Brosch, O.: A Kaon Trigger for FOPI. PhD thesis, Ruprecht-Karls Universityof Heidelberg, Heidelberg, Germany, May 2004.
140

http://lhc.web.cern.ch/lhc/
http://www.linuxdevices.com/articles/AT7005360270.html
http://www.linuxdevices.com/articles/AT7005360270.html


Bibliography
[23] Calvet, D., O. Gachelin, M. Huet and I. Mandjavidze: A Scheme of

Read-Out Organization for the ATLAS High-Level Triggers and DAQ based on

ROB Complexes. CERN ATLAS Note ATL-DAQ-2000-014, CERN, 2000.[24] Cheng, T.P. and L.F. Li: Gauge theory of elementary particle physics. Ox-ford University Press, 1995.[25] Crone, G., D. Francis, M. Joos, J.Petersen and S. Veneziano: Read-
Out Bu�er in DAQ/EF prototype -1. CERN ATLAS Note ATL-DAQ-2000-053,CERN, 2000.[26] Dankwardt, K.: Real-Time and Linux, Part 1. Embedded Linux Journal, 12002.[27] The DIAPM RTAI project Homepage. http://www.rtai.org.[28] Francis, D., M. Mueller, L. Tremblet and J. Vermeulen: Sum-

mary of ROS system tests. http://agenda.cern.ch/askArchive.php?base=
agenda&categ=a02164&id=a02164s5t2/transparencies.[29] Fruehwirth, R.,M. Regler, R.K. Bock, H. Grote and D. Notz: Data
Analysis Techniques for High-Energy Physics. Cambridge Monographs on Par-ticle Physics, Nuclear Physics and Cosmology, 2000.[30] FSMLabs, Inc. Homepage. http://www.fsmlabs.com.[31] Gorini, B., M. Joos, J. Petersen, A. Kugel, R. Maenner,
M. Mueller, M. Yu, B. Green and G. Kieft: A RobIn Prototype for

a PCI-Bus Based Atlas Readout-System. In The 9th Workshop on Electronics

for LHC Experiments, pages 152{156, Amsterdam, Netherland, 2003.[32] Green, B., G. Kieft and A. Kugel: ATLAS TDAQ/DCS ROS Prototype-

ROBIN Software Interface. CERN EDMA Note ATL-DQ-EN-003, CERN, 92002.[33] Griffiths, D.J.: Introduction to Elementary Particles. Wiley, John & Sons,Inc., 1987.[34] Group, LHC Study: The Large Hadron Collider, Conceptual Design Report.CERN/AC 95-05, 1995.[35] Group, Particle Data: Review of Particle Physics. The European PhysicalJournal C3, 1998.
141

http://www.rtai.org
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a02164&id=a02164s5t2/transparencies
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a02164&id=a02164s5t2/transparencies
http://www.fsmlabs.com


Bibliography
[36] Hezel, S.: FPGA-basiertes Template-Matching mit Distanztransformierten

Bildern. PhD thesis, University of Mannheim, Germany, 2004.[37] Huet, M.: An UML description of the ATLAS ROB viewed from the Level-2

Trigger. CERN ATLAS Note.[38] IBM: PPC440GP Embedded Processor User Manual.[39] Iwanski, W. and E. van der Bij: 32-bit S-LINK to 64-bit PCI interface

- Users Guide, CERN. https://edms.cern.ch/file/249657/1/userguide.

PDF, February 2002.[40] Jarlskog, G. andD. Rein (editors): Proceedings of the Large Hadron Colider

Workshop, CERN 90-10 / ECFA 90-133, Aachen, Germany, 1990.[41] Jones, M. Tim: Inside the Linux boot process. http://www.ibm.com/

developerworks/linux/library/l-linuxboot/, 2006.[42] Jones, M. Tim: Linux initial RAM disk (initrd) overview. http://www.ibm.
com/developerworks/linux/library/l-initrd.html, 2006.[43] Kane, G.L.: Modern Elementary Particle Physics. Perseus Books, 1987.[44] Kugel, A.: The ATLAS ROBIN - A High-Performance Data-Acquisition

Module. PhD thesis, University of Mannheim, Germany, 2009.[45] Kugel, A., R. Maenner, M. Mueller, M. Yu, E. Krause, B. Gorini,
M. Joos, J. Petersen, S. Stancu, B. Green, A. Misiejuk, G. Kieft and
J. van Wasen: The Final Design of the ATLAS Trigger/DAQ Readout-Bu�er

Input (ROBIN) Device. 2005.[46] Lienhart, G.: Beschleunigung Hydrodynamischer Astrophysikalischer Simu-

lationen mit FPGA-Basierten Rekon�gurierbaren Koprozessoren. PhD thesis,Ruprecht-Karls University of Heidelberg, Heidelberg, Germany, 2004.[47] LinuxLink: The Linux Startup Process. https://linuxlink.timesys.com/

docs/startup_overview, 2006.[48] Litvintsev, D. O.: The CDF Data Handling System. In Conference for

Computing in High Energy and Nuclear Physics, La Jolla, California, 2003.[49] Llewellyn-Smith, C.H.: Particle Physics in the Future. In The Perkins

Conference, Oxford, England, 1993.
142

https://edms.cern.ch/file/249657/1/userguide.PDF
https://edms.cern.ch/file/249657/1/userguide.PDF
http://www.ibm.com/developerworks/linux/library/l-linuxboot/
http://www.ibm.com/developerworks/linux/library/l-linuxboot/
http://www.ibm.com/developerworks/linux/library/l-initrd.html
http://www.ibm.com/developerworks/linux/library/l-initrd.html
https://linuxlink.timesys.com/docs/startup_overview
https://linuxlink.timesys.com/docs/startup_overview


Bibliography
[50] Mao, D. and X. Hu: LINUX Kernel Source Code Scenario Analysis (in Chi-

nese). Zhejing University Publisher, 2001.[51] MontaVista: Platform Support for MontaVista Linux. http://www.

montavista.co.jp/products/boards.html.[52] Mornacchi, G.: Architecture, deferrals and costing. ATLAS Week Pre-

sentation. http://agenda.cern.ch/askArchive.php?base=agenda&categ=

a03192&id=a03192s0t4/transparencies, 2003.[53] Mueller, M.: Evaluation of an FPGA and PCI Bus based Readout Bu�er for

the Atlas Experiment. PhD thesis, University of Mannheim, Germany, 2004.[54] Mueller, M.: ATLAS ROBIN PCI Communication Interface Description.Technical Report, CERN, 2005.[55] Novaes, S.F.: Standard model: An introduction. In 10th Jorge Andre Swieca

Summer School: Particle and Fields, pages hep{ph/0001283, Sao Paulo, Brazil,1999.[56] PCIMG, PCI Industrial Computers: CompactPCI Speci�cation. Techni-cal report, 1997.[57] Perkins, D.H.: Introduction to High Energy Physics. Addisen-Wesley, 1987.[58] Qu, Zhenxin, Qingwei Zeng and Bo Han: Design and Implementation of

Embedded Real-Time Operating System Kernel (in Chinese). Computer Engi-neering and Application, 2001.[59] Sessler, M.: Algorithms on CPUs and FPGAs for the ATLAS LVL2 Trigger.PhD thesis, Ruprecht-Karls University of Heidelberg, Germany, 2000.[60] Stallings, William: Operating System - Kernel and Design Theory ???

(Version IV). ???, 2001.[61] Stankovic, J.A. and K. Ramamritham: What is Predictability for Real-

Time Systems? Journal of Real-Time Systems, (2):247{254, 1990.[62] Storer, J.A.: An Introduction to Data Structures and Algorithms. Springer,2002.[63] Veneziano, S.: The Read-Out Crate in ATLAS DAQ/EF prototype. In CHEP,2000.
143

http://www.montavista.co.jp/products/boards.html
http://www.montavista.co.jp/products/boards.html
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a03192&id=a03192s0t4/transparencies
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a03192&id=a03192s0t4/transparencies


Bibliography
[64] Vermeulen, J.C. and et al: The Baseline DataFlow Systems of the ATLAS

Trigger and DAQ. In 9th Workshop on Electronics for LHC Experiments in

Amsterdam, pages 147{151, 2003.[65] Wang, C.L., B. Yang, Y. Yang and Z. Zhu: A Survey of Embedded Op-

erating System. http://www.cs.ucsd.edu/classes/fa01/cse221/projects/
group2.pdf, 2001.[66] Wolf, T.: Die Systemsoftware fuer den First Level Trigger des HERA-B Ex-

periments. PhD thesis, University of Mannheim, Germany, 1998.

144

http://www.cs.ucsd.edu/classes/fa01/cse221/projects/group2.pdf
http://www.cs.ucsd.edu/classes/fa01/cse221/projects/group2.pdf

	1 Introduction
	1.1 Motivations
	1.2 Organization of the Dissertation

	2 Background: LHC - ATLAS - ROS
	2.1 LHC - Large Hadron Collider
	2.1.1 Overview
	2.1.2 Construction
	2.1.3 Challenges in Data Processing

	2.2 ATLAS - A Toroidal LHC ApparatuS
	2.2.1 The Detector
	2.2.2 TDAQ - Trigger and Data Acquisition Chain

	2.3 ROS - ATLAS Readout Subsystem
	2.3.1 Requirements
	2.3.2 Implementation

	2.4 Summary

	3 Design of ATLAS ROBIN
	3.1 Previous Implementations of ROBIN
	3.1.1 SHARC DSP-Based ROBIN
	3.1.2 UK ROBIN
	3.1.3 FPGA-Based ROBIN
	3.1.4 Performance Comparison of the Previous ROBIN Designs

	3.2 Final Design of ROBIN
	3.2.1 Hardware Deployment
	3.2.2 Data Flow

	3.3 Summary

	4 Event Buffer Management Algorithms
	4.1 Page-Based Event Buffer Organization
	4.2 Hash Table for Fast Event Lookup
	4.2.1 Choice of Event Lookup Algorithm
	4.2.2 Creation of the Hash Table
	4.2.3 Storage Management of Hash Buckets
	4.2.4 Discussion

	4.3 Hash Node Buffer Allocation and Event Buffer Allocation
	4.3.1 An Identical Imaging between Event Buffer and Hash Node Buffer
	4.3.2 Standard Buffer Allocation Algorithm Using a Free-Page ID Stack
	4.3.3 Chained Free Hash-Node List for Hash Node Buffer Allocation
	4.3.4 Discussion

	4.4 Summary

	5 ROBIN PowerPC System Analysis
	5.1 PowerPC 440GP Microcontroller
	5.2 Communication with FPGA
	5.2.1 Free-Page FIFOs and Used-Page FIFOs
	5.2.2 Message Descriptor FIFOs

	5.3 Real-Time Performance Requirements
	5.3.1 Event Data Rate from One Readout Link
	5.3.2 Request Message Rate from the ROS PC and the Event Builder

	5.4 Cyclic Tasks in the PowerPC Application
	5.4.1 Free Page Update
	5.4.2 Used-Page Record Handling
	5.4.3 Request Message Decoding and Execution.
	5.4.4 Response Message Initiation.

	5.5 System Architectures
	5.6 Summary

	6 Standalone PowerPC Application
	6.1 Software Design
	6.1.1 Component Diagram
	6.1.2 Use Case Diagram
	6.1.3 Activity Diagram

	6.2 Performance Optimization
	6.2.1 Goal of the Optimization
	6.2.2 Application-Specific Optimization
	6.2.3 Worst Case after Optimization

	6.3 Experiments
	6.3.1 Setup of Testing Environment
	6.3.2 Performance of Standalone ROBIN PowerPC Application
	6.3.3 Performance of Integrated ROS/ROBIN System

	6.4 Summary

	7 Real-Time Linux Based PowerPC Application
	7.1 Real-Time Linux
	7.1.1 Concepts in Real-Time Systems
	7.1.2 Traditional Linux Kernel and its Limited Real-Time Capability
	7.1.3 Improvements in Real-Time Linux Kernel
	7.1.4 Choice of MontaVista Linux

	7.2 Software Design
	7.2.1 Multi-Task Scheduling
	7.2.2 Cautions in Multi-Task Scheduling

	7.3 Performance Optimization
	7.3.1 Reducing the Number of Tasks
	7.3.2 Determination of Task Cycle Time

	7.4 Experiments
	7.4.1 Performance of MontaVista RT-Linux Scheduling
	7.4.2 Performance of RTLinux-Based ROBIN PowerPC Application 

	7.5 Summary

	8 Conclusions
	A Glossary
	B Software Development Platform for the PowerPC System
	B.1 Cross-Development Environment
	B.2 U-BOOT for the ROBIN PowerPC System
	B.2.1 Bootstrap Loader
	B.2.2 Features of U-Boot
	B.2.3 U-Boot Adaption
	B.2.4 U-Boot Extensions


	C MontaVista RT-Linux Configurations for the ROBIN PowerPC System
	C.1 Boot Sequence
	C.2 Linux Kernel Adaptions
	C.3 Ramdisk
	C.4 Busybox
	C.5 C Library

	Bibliography

