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Zusammenfassung

ATLAS ist einer der grofiten Teilchendetektoren am Large Hadron Collider (LHC)
fiir Hochenergieexperimente. Der ATLAS Detektor produziert Ereignisdaten von
mehr als 40 Terabyte pro Sekunde mit einer Ereignisrate von 40 MHz. Dieses
riesige Datenvolumen wird mit Hilfe der ATLAS Trigger und Data Acquisition Chain
(TDAQ) vor der permanenten Speicherung reduziert. Das ATLAS Readout Buffer
Input (ROBIN) Teilsystem ist ein wesentliches Bestandteil in der ATLAS TDAQ.
Ereignisdaten erreichen ROBIN mit einer Rate von 100kHz mit einer GréSSe von
1 kByte fiir jedes Datenpaket. Es wird eine durchschnittliche Output Rate von 10
kHz erwartet.

Das ROBIN System wird von zwei Prozessoren gesteuert: einem Xilinx Virtex 11
2000 FPGA und einem PowerPC 440 Mikro-Controller. Der FPGA Prozessor spielt
die zentrale Rolle als der Datenfluss Kern fiir hohe Ereignis-Raten und -Bandbreiten,
der die Ereignisdaten (messages) und Kontrollnachrichten on-the-fly iibertrigt. Der
PowerPC stellt die Kontrollfunktionen wie Ordnen des Ereignis Puffers, Aufschliis-
seln und Ausfiihren von eingehenden Anfragen vom ROS PC als auch das Auslosen
von Antwort Nachrichten zur Verfiigung

Diese Dissertation behandelt das Design eines eingebetteten Echtzeit Systems fiir
einen IBM PowerPC 440GP Mikro-Controller als Management Kern fiir das ROBIN
Teilsystem.

Fiir die Implementierung der Power PCs Anwendung wird eine Seiten basierte
Losung fiir die Verwaltung des Ereignis Puffers prisentiert und ein Hash Algorithmus
wird fiir die Ereignis Suche verwendet. Fiir eine effiziente Suche im eingebetteten
Software System wird eine SChained Free Hash-Node MethodeT verwendet, um die
dynamische Struktur der Hash-Tabelle zu speichern. Dieses Vorgehen erzielt eine
gute Performance und benétigt keinen extra Speicherplatz.

Als wesentlicher Bestandteil des ROBIN Systems muss die eingebettete Soft-
ware fiir das ROBIN PowerPC System eine hohe Performance liefern. Es wer-
den zwei Software Architekturen fiir den ROBIN PowerPC vorgestellt. Die erste
ist als einfache Kontroll-Schleife verwirklicht. Tm zweiten Design ist ein eingebet-
tetes real time Linux Betriebssystem fiir den ROBIN PowerPC Prozessor konfiguri-
ert, angepasst und optimiert worden. Die Performance beider Implementierungen
wurde in aufwéindigen Messungen in einer RROS/ROBIN Testumgebung gemessen.
Die experimentellen Ergebnisse zeigen, dass das Nicht-OS basierte PowerPC System
bereits die derzeitigen ATLAS DAQ Anforderungen iibertrifft, wihrend die Perfor-
mance des Linux-basierten ROBIN PowerPC Systems die Basisanforderungen der
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entsprechenden ROBIN Anforderungen nicht erfiillt.



Abstract

ATLAS is one largest particle detector at the Large Hadron Collider (LHC) for
high energy physics experiments. The ATLAS detector produces over 40 terabytes
of event data per second at an event rate of 40MHz. The huge volume of data are
reduced through the ATLAS Trigger and Data Acquisition Chain (TDAQ) before
permanent storage. The ATLAS Readout Buffer INput(ROBIN) subsystem is an
essential device within the ATLAS TDAQ. Event data arrive at ROBIN with an
input data rate of 100kHz with 1kBytes for each data packet, and an average output
rate of 10kHz is expected.

The ROBIN system is controlled by two processors: a Xilinx Virtex IT 2000 FPGA
and a PowerPC 440 micro-controller. The FPGA plays the centric role as a high-
rate and high-bandwidth data-flow core, which transmits event data (messages) and
control messages on-the-fly across the board. The PowerPC provides the control
functionalities, such as arranging the event data buffer, decoding and executing
incoming request messages from ROS PC as well as initiating response messages
backwards.

This dissertation addresses the software design of an embedded real-time system
centering around an IBM PowerPC 440GP micro-controller, as the management core
of the ROBIN.

For the implementation of the PowerPC’s application, a page-based solution is
presented to handle the event buffer management, and a hash searching scheme is
applied to deal with the event lookup. For an efficient searching in the embedded
software system, a Chained Free Hash-Node method is proposed to store the dynamic
data structure of the hash table. This strategy achieves a good performance with
no extra memory space.

As a main part of the ROBIN device, the embedded software for the ROBIN Pow-
erPC system must provide high performance. Two software architectures for the
ROBIN PowerPC are presented. The first is implemented as a simple control loop
without any operating system. In the second design an embedded real-time Linux
operating system is reconfigured, adapted and optimized for the ROBIN PowerPC
processor. Performances of these two implementations are measured through elabo-
rate experiments in a simulated ROS/ROBIN testing environment. The experiment
results show that the standalone non-OS based PowerPC system is already above
the current ATLAS DAQ requirements, while the performance of the RTLinux-based
ROBIN PowerPC system does not meet the related ROBIN baseline requirement.
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Introduction

1.1 Motivations

Since the 6th century BC human beings have already had the idea that all matter is
composed of elementary particles. Ancient Greek created the philosophical doctrine
of atomism. In the 19th century people believed that each element of nature was
composed of a single, unique type of particle, the fundamental particles of nature,
and named them atoms, after the Greek word datomos, meaning “indivisible”. How-
ever, not until the end of the 20th century, physicists discovered that atoms were
not actually the fundamental particles of nature.

Explorations of nuclear physics and quantum physics in the early 20th century
not only led to the development of nuclear weapons, but also brought the discovery
that one atom can be generated from another [33] [43].

Theory of Standard Model (SM) [55] in the particle physics is built in the 1970s.
The theory explains the state-of-the-art classification of elementary particles. The
SM contains 24 fundamental particles (i.e. 12 particle/anti-particle pairs). They
are supposed to be the constituents of matter. However, many postulations of the
Standard Model have not been proved. It predicts, for example, the existence of a
type of boson known as the Higgs boson, which has yet to be discovered through
high energy physics experiments.

To explore the theories beyond the Standard Model, high-energy physics exper-
iments at an energy level of above 1 TeV have to be done. Currently Tevatron at
Fermilab is the only high-energy particle accelerator, which reaches the required
energy level. The accelerator is located near Chicago, USA. It has a centre-of-mass
energy of 1.96 TeV.

In order to explore physics experiments at required energy regions, the European
Particle Research Laboratory (CERN) sponsored the project of Large Hadron Col-
lider (LHC) [14]. The LHC is a proton-proton collider. It is expected to become the
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world’s largest and highest energy particle accelerator and collider, if it completes
the mission to accelerate two proton beams to an energy level of 7 TeV. Then a
center-of-mass energy of 14 TeV can be reached by colliding the two proton beams.
This may bring far more chances for physicists to explore the open issues in high
energy physics [59].

Four main detectors are being constructed inside LHC for the measurement of
particle interactions. ATLAS [7] is one of the largest LHC detectors. ATLAS is a
general-purpose detector. When the proton beams produced by the LHC interact
in the center of the detector, a variety of different particles with a broad range of
energies will be produced. ATLAS is designed to measure the broadest possible
range of signals, and to ensure that, whatever might take place from any new phys-
ical processes or particles, ATLAS will be able to detect them and measure their
properties. Hence the preciseness and the large bandwidth are two essential mea-
surement features for the ATLAS detector. To this end a number of sub-detectors
are constructed inside ATLAS to observe a large variation of particles precisely.

Every second around 40 million proton beams cross the center of the ATLAS
detector, which generate a new event every 25 nanosecond, i.e. at an event rate
of 40MHz. The detector creates approximately 1MByte data for each event. That
means, ATLAS must handle a data volume of 40TByte per second. Hence the
ATLAS data acquisition system must support real time and huge data volume pro-
cessing. Compared to other high energy physics experiments, the demand upon the
ATLAS data acquisition system is substantially higher, as the data rate and the
data volume are concerned.

The ATLAS data acquisition system comprises three levels of trigger systems,
which use simple information to identify in real time the most interesting events out
of 40 million events every second. The first level trigger is based on the electronics
inside the ATLAS sub-detectors. The other two levels primarily run on a large
cluster of computers near the detectors. The computers are equipped with similar
technologies. The design aims to distribute the data selection tasks uniformly across
the whole system, in order to reduce the efforts in system administration and various
software implementation. After the first level trigger, about 100,000 events are
selected every second; and after the third level trigger, only a few hundreds of events
remain. The data reduction rate is altogether up to a factor of 10°.

ReadOut Subsystem (ROS) is a core device in the ATLAS data acquisition chain,
built between the level 1 and the level 2 triggers. The ROS layer receives detector
data on 1600 point-to-point readout links (ROL). Each link has a data rate of up to
100kHz and a data volume of 100MByte/s. The ROS layer is designed to buffer all
the event data temporarily and forward them on request to the level 2 trigger for
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the trigger decision.

In order to sustain the huge volume of rapidly incoming data an extremely efficient
buffering system is required. ROBIN (ReadOut-Buffer INput), as an essential device
inside the ROS system, is expected to play the role. In the baseline architecture of
the ATLAS level 2 trigger there are totally hundreds of ROS systems. Each ROS
system comprises three or four active ROBIN devices; and each ROBIN device
receives event data on three ROLs. For each ROL one 64MB SDRAM is available
on ROBIN as the according event data buffer. The goal of the ROBIN device is to
support an input rate of 100kHz and a bandwidth of up to 160MByte/s.

ROBIN comprises two processors, a XILINX XC2V2000 FPGA and an IBM Pow-
erPC 440 micro controller, which coordinate with each other to realize the function-
alities of ROBIN. Generally the FPGA plays the centric role as a high-rate and
high-bandwidth data-flow core, which transmits event data and control messages
on-the-fly across the system. The PowerPC provides the management and control
functionalities. It provides solutions to the effective allocation of event data buffers
and solutions to the efficient event data retrieval; it decodes and executes incoming
request messages from ROS PC, and initiates response messages backwards.

1.2 Organization of the Dissertation

This dissertation deals with the involved algorithms, the software design and soft-
ware optimization of the ROBIN PowerPC system. The structure of this dissertation
is as follows.

Chapter 2 introduces the project background of ATLAS ROS/ROBIN. ROBIN
is the centric device inside the ATLAS readout subsystem (ROS) and ROS is a
core subsystem in the LHC/ATLAS data acquisition chain. This chapter gives an
overview to the Large Hadron Collider (LHC) and one of its largest detectors, the
ATLAS detector. Challenges in the ATLAS data acquisition chain (TDAQ) are
pointed out. ROS is the essential buffering system inside the ATLAS level-2 trigger.
Its system requirements and baseline architecture are particularly addressed.

Chapter 3 introduces the ATLAS final design of the ROBIN board and addresses
its advantages over its previous solutions. In the final design of ROBIN an FPGA
processor and a PowerPC micro-controller are integrated. It takes advantage of both
Processors.

Chapter 4 presents the strategy of ROBIN event buffer management and algo-
rithms involved in the effective buffer allocation and efficient event retrieval.

Given the strategy for event buffer management, the software interface, software
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requirements and software components for the ROBIN PowerPC system are analyzed
in chapter 5 and its detailed tasks get also defined here.

Two architectures are proposed for the implementation of the ROBIN PowerPC
system, depending on whether a real-time operating system is integrated into the
system. Both architectures are realized in this work and presented in chapter 6 and
chapter 7, respectively.

Finally, chapter 8 concludes the contribution of this work, points out possible
improvements, and gives an outlook to the ATLAS ROBIN system in future exper-
iments.



Background: LHC - ATLAS -
ROS

This chapter gives an overview to the project background of ATLAS ROS/ROBIN.
ROBIN (ReadOut-Buffer INput), the main topic of this work, is the centric device
inside the ATLAS readout subsystem (ROS). ROS is one of the hundreds of subsys-
tems inside the ATLAS detector, which is the largest detector inside Large Hadron
Collider (LHC), the world’s largest particle accelerator and collider. Meanwhile ROS
is also one of the most essential data buffering systems in the LHC/ATLAS data
acquisition chain.

The structure of this chapter is as follows. Section 2.1 introduces the Large Hadron
Collider (LHC). Challenges in the LHC data processing are pointed out. Section
2.2 presents the ATLAS detector, one largest detector of LHC. The data acquisition
chain in the ATLAS trigger system is particularly discussed. Section 2.3 deals with
the ATLAS readout subsystem (ROS), the essential data buffering system inside the
second ATLAS trigger level. The system requirements and the baseline architecture
of ROS are addressed in detail.

2.1 LHC - Large Hadron Collider

2.1.1 Overview

Currently the most modern theory of the elementary particle physics is the Stan-
dard Model (SM) [24]. It explains the state-of-the-art classification of elementary
particles. However, in spite of abundant experimental evidence supporting the SM
theory, different arguments indicate that the SM is not the ultimate theory of ele-
mentary particle physics [57] [35], [40] [49]. Meanwhile, discussions over the SM and



2 Background: LHC - ATLAS - ROS

Detector Energy(TeV) Event Rate(MHz) Data Volume(TByte/s)
PEP 11

BaBar 0.01085 238 5.4
Tevatron(Run IT)

CDF 1.96 7.6 1.9

DO 1.96 7.6 1.9
HERA

HERA B 0.134 10.4 10
LHC

ATLAS 14 40 40

CMS 14 40 40

ALICE 14 40 80

LHCb 14 40 3

Table 2.1: Comparison of different high energy particle colliders [48][8][16][10][29][6]
[H][o113][7][66].

its extensions show that there are good reasons to expect more interesting physics
at the TeV energy level.

In order to explore the TeV energy scale, the European Particle Research Labo-
ratory (CERN) approved the project of the Large Hadron Collider (LHC) [34]. The
LHC is a particle accelerator and collider located at CERN in Geneva, Switzerland.
It is currently still under construction. The LHC is the world’s largest and highest
energy particle accelerator, when its commissioning at 7 TeV is completed. The
LHC is being funded and built in collaboration with universities and laboratories
from 34 countries.

Table 2.1 compares the performance of the LHC accelerator with that of other
existing accelerators. The center-of-mass energy of LHC is substantially higher than
that of the currently most powerful accelerator Tevatron at Fermilab. Accordingly
the probability of rare new physical events are expected to increase in the LHC
experiments. Regarding event rate the PEP II's BaBar experiment is the most de-
manding, but its data volume is by far lower than the detectors at LHC, excluding
LHCDb. As the huge data volume and the high data rate are concerned, the exper-
iments at LHC are significantly more demanding than other high energy physics
experiments.
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Figure 2.1: Injection and acceleration scheme in the LHC collider [59].



2 Background: LHC - ATLAS - ROS

2.1.2 Construction

The LHC collider is contained in a 27 km circumference tunnel located underground
at a depth ranging from 50 to 150 metres. The collider tunnel contains two pipes
enclosed within superconducting magnets cooled by liquid helium. Each pipe con-
tains a proton beam. The two beams travel in opposite directions around the ring.
Additional magnets are used to direct the beams to four intersection points where
proton-to-proton collisions of the two beams are expected to take place. The tunnel
was formerly used to house the Large Electron/Positron Collider(LEP), which has
stopped operating since 2000. LEP was working at an energy level of 200 Gev,
which covers the mass region of the weak force carrying W+~ and Z° bosons. Due
to the beam energy loss of synchrotron radiation, the lepton(et, ™) collider can
only accelerate the electron and positron to limited mass energy. Although LHC
uses the same tunnel as LEP, all the infrastructures of LEP have been replaced by
the superconducting magnets and high frequency cavity accelerators are used to ac-
celerate and bend the beams. The beam bending magnets have a field strength of
up to 8.47T.

Proton particles inside LHC have an energy level of around 7 TeV, which brings
a total collision energy of 14 TeV. It takes around 90 microseconds for an individ-
ual proton to travel once around the collider. Instead of continuous beams, the
protons will be “bunched” together into about 2,800 bunches, so that interactions
between the two beams will take place at discrete intervals of over 25 nanoseconds.
Besides, the LHC also offers an impressive luminosity ranging from the beginning
1033cm =257 to the designed luminosity of more than 103*e¢m=2s~!. This enables
the LHC experiments to generate even the rarest physics events.

Before being injected into the main accelerator, the proton particles are acceler-
ated successively through a series of systems. Firstly a linear accelerator, Linac2,
generates protons at an energy level of 50 MeV, and feeds the protons into a proton
synchrotron. The Proton Synchrotron (PS) consists of two linear accelerators: the
Proton Synchrotron Booster (PSB) and the Proton Synchrotron Ring (PSR). The
PSB brings the particles up to an energy level of 1.4 GeV; and the PSR to 26 GeV.
Moreover, the Low-Energy Injector Ring (LEIR) is used as an ion storage and cooler
unit. The Antiproton Decelerator (AD) can produce a beam of anti-protons at 2
GeV, after cooling them down from 3.57 GeV. Finally the Super Proton Synchrotron
(SPS) can be used to increase the energy of protons up to 450 GeV. An layout of
the LHC injection and acceleration scheme is shown in figure 2.1.



2.1 LHC - Large Hadron Collider

2.1.3 Challenges in Data Processing
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Figure 2.2: Model layout of the LHC collider [59].

The probability of physical events that are useful for the investigation of high
energy particle physics is extremely low [7]. Therefore, the event detection rate has
to be very high to observe sufficient target processes in a reasonable time. Moreover,
to record rare physical events at the collider, highly precise detectors are necessary.
Typically, one particle collider consists of a number of different detectors to cover
the broad bandwidth of signals, and to ensure that a large variation of particles can
be observed precisely. Each detector delivers the data in a large number of readout
channels which transport either analog or digital data.

Four main detectors are being constructed inside LHC for the measurement of
particle interactions. They are ATLAS (A Toroidal LHC ApparatuS), CMS (Com-
pact Muon Solenoid), LHCb (LHC-beauty) and ALICE (A Large Ton Collider Ex-
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periment). ATLAS and CMS are two relative larger and general-purpose particle
detectors. LHCb and ALICE are smaller and more specialized. Figure 2.2 shows
the layout of the LHC detectors.

All the four detectors are going to run at a rate of 40MHz that is more than
five times the rate of Tevatron, which is currently the only accelerator reaching the
TeV energy scale with a centre-of-mass energy of 1.96 TeV. Except LHCb the data
volume at each cycle is an order of magnitude higher. Every second ATLAS and
CMS will deliver nearly 40 terabytes, and ALICE even 80 terabytes. This raises a
substantial demand upon the experiment’s data acquisition process.

The huge amount of data will get never stored in any storage media. Therefore,
a pre-selection process of the event data is necessary, so that a real-time storage of
the final data amount will be possible. The pre-selection process analyzes the data,
reduces the amount of data by a considerable factor (for example, a factor of 103
for ATLAS) and finally picks out the rare useful events from the background or
irrelevant events. Besides a high factor of data volume reduction, a reasonable factor
of data-rate reduction is necessary as well due to limited storage capability.

To achieve the high data-reduction factor in the pre-selection process, a complex
event analysis algorithm is required. However, more complex algorithm implies more
execution time. On the other side, the data acquisition process must sustain the
data-detection rate of 40MHz, to ensure that no event data get lost. That means,
the maximum allowable execution time for the data pre-selection in one cycle must
not be over 25 nanoseconds.

One typical solution to the above contradiction is to use staged triggers. Firstly,
the complex pre-selection algorithm is split into a series of independent steps. Each
step reduces the data volume by a certain data-reduction factor, and hence the
multiplicity of the reduction factors in all the steps is the overall data reduction factor
of the whole pre-selection process. Each pre-selection step is realized at one trigger
level, where decisions for data selection are made and data reduction is performed.
Usually the data rate is also reduced at each trigger level. The staged triggers work
on the event data successively and build a chain of data acquisition processes. On
the other hand, the triggers are allowed to work in parallel independently and each
trigger supports the input data rate from the previous trigger, so that the overall
system can sustain the initial data-detection rate of 40MHz for the LHC collider.

Since in a staged trigger system the complexity of the data pre-selection algorithm
is preserved, the process latency through the whole data acquisition chain is still
inevitable. However, the parallel pipeline computing of all the triggers ensures that
the initial data-detection rate is sustained. The latency time does not increase and
no data get lost. Figure 2.3 shows the performance of an example staged trigger

10
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Figure 2.3: Parallel pipeline computing of an example staged trigger sys-
tem. Original data rate is sustained with fixed latency time.
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system. The reduction of data rate and the sustaining latency time are indicated in
the figure.

2.2 ATLAS - A Toroidal LHC Apparatu$S

2.2.1 The Detector

A Toroidal LHC ApparatuS (ATLAS) is one general purpose particle-interaction
detectors constructed inside the Large Hadron Collider. The ATLAS detector has a
shape of a cylinder, with a length of around 45 meters and a diameter of 25 meters.
The detector weighs about 7,000 tons. Around 2,000 scientists and engineers from
151 institutions in 34 countries get involved in the development of the ATLAS detec-
tor. Physicists expect to use this detector to measure phenomena that involve highly
massive particles which are not measurable in earlier lower-energy accelerators. The
experiment might even shed light on new theories of particle physics beyond the
Standard Model.

When the proton beams produced by the Large Hadron Collider interact in the
center of the ATLAS detector, a variety of different particles with a broad range of
energy levels may be generated. ATLAS is designed as a multipurpose detector. It
is capable to detect and measure new physical phenomena predicted by currently
available theories and to perform Standard Model measurements of high precision.
At the same time, it is also open to unexpected signals from unpredicted physics
scenarios and thus has to be sensitive to any kind of event topology. Therefore, rather
than focusing on a particular physical process, the ATLAS detector is designed to
measure the broadest possible range of signals. This means to ensure that, whatever
form of new physics processes or particles take place, the ATLAS detector must
be capable to detect them and measure their properties. Designs of detectors for
earlier colliders, such as the Tevatron and LEP, were based on a similar philosophy.
However, the new challenges of the LHC are its unprecedented energy scale and
extremely high rate of collisions, which require the ATLAS to be larger and more
complex than any detector ever built.

Since the ATLAS detector is expected to investigate a broadest range of physical
signals, a number of special sub-detectors are constructed inside ATLAS. The sub-
detectors are placed in several layers around the interaction point where the proton
beams collide. Figure 2.4 shows the profile view of the ATLAS model.

The ATLAS detector can be divided into four major parts: the inner detector,
the calorimeters, the muon spectrometer and the magnet systems. Each of these
is further made up of multiple layers. The detectors are complementary: the inner
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Figure 2.4: ATLAS Model [59]
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detector tracks particles precisely, the calorimeters measure the energy of easily
stopped particles, and the muon system makes additional measurement of highly
penetrating muons. The magnet systems bend charged particles in the inner detector
and the muon spectrometer, which allows their momenta to be measured.

The ATLAS detector produces an overall data volume of 40 terabytes every sec-
ond. The data are delivered by the sub-detectors inside ATLAS, with an event rate
of 40MHz and a data volume of 1 megabytes each cycle.

2.2.2 TDAQ - Trigger and Data Acquisition Chain

As with other high energy physics experiments, the ATLAS shares a same princi-
pal task in the data acquisition process: reducing the huge data volume and the
high data rate. The staged trigger architecture has been commonly used in these
experiments. The ATLAS data acquisition system follows also this principle.

In general the ATLAS trigger system is composed of three trigger levels. The trig-
ger system attempts to use simple information to identify online the most interesting
events that occur in the center of the detector through the beam intersections. The
three trigger levels are level 1 trigger, level 2 trigger and the event filter (EF). The
last two levels of the trigger system are also termed as High-Level Trigger (HLT),
since both of them involve asynchronous intensive computing process, while the first
stage is more synchronous hardware driven. Each trigger level refines the decisions
made at the previous level(s) and applies additional selection criteria. Figure 2.5
shows the ATLAS trigger system and its data acquisition chain.

The final goal of the ATLAS system is to turn the pattern of signals from the
detector into physics objects, such as jets, photons, and leptons. In the level 1
trigger physics objects are typically first identified and crudely reconstructed.[63]
The high-level trigger progressively refines the reconstruction, rejects fake objects
and improves the precision of the measurement. Inside ATLAS, the data-crossing
rate is 40 MHz and on average about 23 proton-proton collisions will be produced at
each proton bunch crossing at the machine’s design luminosity of 103*e¢m=2s7!. The
level 1 trigger makes the first level of event selection, reducing the initial event rate
to about 100 kHz. After HLT the rate of selected events is reduced to hundreds of
hertz for permanent storage. Altogether the TDAQ system in ATLAS reduces the
data rate by a factor of 10°. After the third level trigger only a few hundred events
remain to be stored per second for further offline analysis. Even So, the remaining
data still requires over 100 megabytes of disk space per second or over 2 petabytes
(10'°) each year.

Offline event reconstruction (or physics object reconstruction) is performed on
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Figure 2.5: The ATLAS trigger system and event data acquisition chain
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all permanently stored events. Grid computing is extensively applied to event re-
construction, which allows the parallel use of the computer networks in different
universities and laboratories throughout the world. This CPU-intensive task is to
reduce the large quantities of raw data into a form that is suitable for physics anal-
ysis. The software for these tasks has been under development for many years, and
will continue to be refined once the ATLAS experiment starts running.

The following discusses in detail the three-level triggers in the ATLAS data ac-
quisition chain.

2.2.2.1 Level 1 Trigger

The level 1 trigger is based on electronics inside the detector. Special-purpose pro-
cessors are used to act on a subset of the data from the detector. The level 1 trigger
examines event data from the ATLAS calorimeter and muon sub-detector, and ana-
lyzes threshold information of energy and momentum to find possible particles and
to make a trigger decision. It takes the level 1 trigger around 2 us per cycle to
collect data from detectors, to make trigger decision and to distribute the selected
data. This time is called the level 1 latency. As this is longer than the proton bunch
crossing time (i.e. 25 ns), pipeline memories are used firstly to store the events from
multiple bunch crossings. Then the arithmetic logics for making the trigger decision
are implemented with synchronous, pipelined, parallel processors (such as ASIC and
FPGA processors) driven by the LHC 40 MHz clock. After the level 1 trigger, the
data volume drops from 45 TByte/s to 136 GByte/s, and the data rate is reduced
from 40MHz to 100kHz.[7]

On level-1 acceptance the level 1 trigger passes over the accepted event data to
the readout drivers (ROD) along their according region-of-interest (Rol), i.e. the
coordinates of the detector area where the events have been detected. The Rol
restricts the area and thus the event data fraction. The level 2 trigger requires the
information to make further trigger decision.

Altogether 1600 readout drivers are built in. Their tasks are to pre-format the
event data, to provide a general interface from the detector to the DAQ system and
to de-randomize the event data. Accordingly 1600 readout links (ROL) [4] transport
the event data over a distance of up to a few hundred meters from the RODs to the
readout buffers (ROB), which are temporary data buffers for the level 2 trigger to
request the data and make further trigger decisions. The applied technology for the
ROLs is SLink, a custom unidirectional point-to-point link standard developed at
CERN [21].
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2.2.2.2 Level 2 Trigger

The second stage of the ATLAS DAQ chain is the level 2 trigger. The level 2
trigger is a program driven trigger. It uses full-precision data from most of the
detectors, but examines only the event data occurring inside a certain detector
region, i.e. Region of Interests(Rol) as mentioned above.[15] The introduction of Rol
alleviates the bandwidth and processing-power requirements of the level 2 trigger
dramatically, because individual Rols can be analyzed independently. At the same
time the amount of data, transferred between the ATLAS readout buffers (ROB)
and the level 2 trigger processors, is also reduced to a great extent.

One goal of the level 2 trigger is to reduce the event rate from 100 kHz further
down to 1 — 5 kHz, a rate that can be sustained by the following event building
system. Different from the previous trigger, the level 2 trigger performs asynchronous
operations on events with an average trigger decision latency of 1—10 ms. To increase
the throughput and meet the incoming data rate, parallel computing is exploited
again. That is, the trigger runs on a large farm of dual-CPU PCs connected over
a Gigabit Ethernet network. A number of supervisor PCs control the level 2 farm,
and distribute the trigger tasks and the Rol information collected by the Rol builder
at the previous trigger level.

The overall dataflow process is as follows. On event acceptance decision made
by the level 1 trigger, the event data are moved out of the pipeline memories and
stored in the ROBs, until they are cleared by a level 2 reject signal or moved on to
the next stage of event builder (EB).

Due to the Rol concept only a small number of ROBs, which cover the desired
area of the detector, are required. The amount of data to the level 2 processor is
very limited. Modelling effort within the ATLAS community estimates, up to seven
percent of all event data arriving at ROBs will be required by the level 2 trigger on
average [12] and up to three percent will be accepted by the trigger decision [45].

2.2.2.3 Event Filter

The final stage of the ATLAS TDAQ chain is the Event Filter (EF). The EF analyzes
the whole event data to make the final selection of events that are to be recorded
for offline analysis.

The ATLAS event filter receives input data from the event builder (EB). The
task of the EB is to gather data fragments that belong to a same event from buffers
that are dispersed by the previous triggers, because the EF needs to consider all the
event data from all sub-detectors for its analysis. Depending on the type of event,
data volume reduction is achieved by a combination of event selection and possibly
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event compression.

The data selection principles used by the EF resemble the offline algorithms that
are used for the offline analysis of the already recorded data. The trigger decision
making by the EF is also highly computing-intensive. Therefore, again a large
cluster of general-purpose computers are employed. The farm of PCs build up a
loosely coupled parallel system. Once an event with its full data assembled by the
event builder is assigned to a PC, the PC starts working on it with no further
communication with other PCs.

The EF is expected to achieve a further data-rate reduction by a factor of 10— 20.
This will lead to a final event rate of up to 200 Hz. A data volume of up to 300
megabytes will be written to the permanent storage medium per second for future
offline analysis by physicists.

2.3 ROS - ATLAS Readout Subsystem

As mentioned above the ATLAS readout buffer (ROB) is a temporary data buffer
inside the second ATLAS trigger level. It receives the level-1-accepted event data
from the readout drivers (ROD) through readout links (ROL) and buffers the data,
until they are deleted or forwarded on request to the level 2 for trigger decision or
to the event builder (EB) for event building.

For each ROD or ROL there is a dedicated readout buffer (ROB). That means,
for 1600 ROLs 1600 ROBs are required for the buffering of the data accepted by
the level 1 trigger. Besides ROBs and level 2 PC farm there exists another core
device in the second trigger level of ATLAS. The device is called readout subsystem
(ROS). The ROS device takes over the control and management functionalities of
the ROBs and makes the data available to the level 2 trigger on demand. Due to the
introduction of ROS the level 2 PC farm may concentrate only on the data analysis
algorithm for trigger decision making.

2.3.1 Requirements

The ROS must fulfill a number of requirements in terms of performance and us-
ability. Figure 2.6 shows the dependencies of the ATLAS ROS and external DAQ

components. The readout drivers (ROD) are at the input side of ROS, while the
level 2 PC farm and the event filter are located at the output side.

The readout driver sends event data, accepted by the level 1 trigger, to the readout
buffer inside the ROS device. The data is transferred through 1600 readout links.
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Figure 2.6: A general use case diagram of ROS [37].
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Each ROL has a nominal bandwidth of 160 MByte/s and a data rate of up to 100
kHz.

Level 2 farm PCs collect required event data fragments from the ROS devices. It
is estimated that up to 7% of all event data arriving at ROS will be requested by the
level 2 farm PCs on average for trigger decision making [12]. The maximum latency
time of the level 2 processing is expected to be up to 10 ms. Therefore, the readout
buffers must be large enough to keep the event data at least for the latency time.

The event data, which are accepted by the level 2 trigger decision, are requested
and transferred from the ROBs within the ROS to the event builder. Event frag-
ments are delivered through a dedicated Gigabit switched network, interconnecting
all the ROS and all the Event Builder PCs. On average about 3% of all events
arriving at the readout buffers are accepted by the level 2 trigger and leave for event
building. All event data rejected by level 2 will no longer be used within the ATLAS
DAQ and are deleted at the ROB level.

At last the ATLAS online control system is responsible for ROS configuration and
control. This requires the ROS to provide an implementation with a generalized
software interface. With the interface the online control can pass configuration data
and switch between various run levels. Errors are also reported through this interface

[12].

2.3.2 Implementation

The readout buffer system aims to store the detector data before event building. It
is also an indispensable component in other high energy physics experiments. One
common feature of readout buffer systems is their high input rate and low output
rate. Therefore, combining a number of ROL inputs to one network output is a
basic implementation rule in all high energy physics experiments. Most readout
buffer components use bus-based systems, e.g. VME bus crates with a number of
custom readout modules. In some cases the bus system is changed from VME to
PCI and the crate is replaced by a standard high performance PC. The readout
modules are usually built on FPGAs.

The readout buffer component in the ATLAS trigger is more demanding compared
with that of the other experiments. First, it supports “sequential selection”. That
means, the buffer component does not forward all the incoming event data for trigger
decision, but it supplies only these event data that are requested for trigger deci-
sion. The sequential selection brings extra complexity to the design of the readout
buffer system. Only one already operating experiment has a similar readout buffer
mechanism, which is the HERA B experiment. Its readout buffer system is based
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on SHARC DSP processors placed on VME crate modules. The incoming event rate
to this readout buffer system is 50kHz, and the SHARC links support 40MByte/s.
This performance requirement is, however, much less demanding than that of the
ATLAS readout buffer subsystem, which must support an incoming event rate of
100kHz and a bandwidth of up to 160MB/s per link.

Besides, the introduction of the Rol concept to the ATLAS DAQ also reduces the
amount of necessary data transportation dramatically. This is also rarely found in
other high energy physics experiments.

Many approaches have been discussed by the ATLAS community to implement
the ATLAS readout subsystem, and several ROS prototypes based on different kinds
of buses have been built and investigated, including VME-based ROS [23]][25][3],
PClI-based ROS [20][19][18] and CompactPCI-based ROS [56].

After intensive discussion and investigation the ATLAS community made a deci-
sion on the ATLAS ROS baseline architecture, which has been presented within the
Trigger /DAQ Technical Design Report [12]. Considering the total estimated system
cost, the satisfaction of performance requirements, as well as the influence on other
parts of the ATLAS DAQ, a PCI bus-based solution with a standard, commercial
off-the-shelf PC (i.e. ROS-PC) was chosen for the baseline implementation of the
ATLAS ROS [52][1][5]. This ROS architecture is relatively cheap. Besides, it also
provides the possibility to perform local, partial event building inside the ROS-PC,
such that the size of the PC farm in the event builder can be reduced. The detailed
decision making for the final ROS implementation strategy was discussed in [53].

Figure 2.7 shows a ROS device implementation of the baseline design. The centric
control of a ROS device is based on a commercial off-the-shelf (COTS) high perfor-
mance server PC with PCI buses of high I/O capability. Since this standard PC is
unable to handle the event data coming from the readout drivers on a reasonable
number of links, the PC has to be extended by four custom hardware - PCI boards,
called ROBIN (ReadOut Buffer INput). Next chapter will address the hardware
design of the ROBIN device.

The ROS PC host has three main tasks. It listens to requests from the level 2
PC farm and the event builder, and then distributes the request messages to the
according individual ROBIN boards. Moreover, a local, partial event building is
performed on the returning event data within the ROS-PC.

The tasks of each ROBIN board are to receive incoming event data directly from
three ROLs that are connected to it and to execute and reply the level-2 trigger
requests (e.g. Rol data requests) and the EB requests (e.g. EB data requests based
on level 2 acceptance decision). Due to the high data rate of up to 100kHz and
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Figure 2.7: A ROS baseline architecture [45]. Note, one ROS device may
contain three or four ROBIN boards.
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the high bandwidth of up to 160MB/s per link, one important issue for the ROBIN
board is to manage the buffering of the huge volume of event data arriving on the
ROLs efficiently. Moreover, on the output side, the ROBIN must respond to the
requests coming from ROS PC quickly.

In the ROS implementation all data requests from the level 2 PC farm or the
event builder are sent to the ROS PC; and the ROS PC collects the relevant data
fragments from some or all of their ROBINs and forwards them to the requesters. In
this scenario each ROS PC will need to be connected to at least two network switches,
through a multi-channel network interface installed on its PCI-E bus. The ROBINs
have also their own on-board Gigabit Ethernet interfaces allowing an upgrade path
where some data is passed into the network directly from the ROBIN.

Currently, each ROBIN device contains 3 ROBs connecting with 3 ROL channels,
respectively. The output of the ROBIN is done via PCI to the host PC. Each ROS
device has three or four active ROBIN devices.

2.4 Summary

The Large Hadron Collider is expected to become the world’s largest and highest
energy particle accelerator. The ATLAS detector, as one of the largest particle
detectors of the LHC, has to confront unprecedented challenges in its trigger and
data acquisition chain (TDAQ), due to its extremely huge data volume of extremely
high data rate.

The ATLAS readout subsystem (ROS) is a core device in the ATLAS data ac-
quisition chain. Its essential role in the DAQ is to play as a temporary data buffer
for the level 2 trigger. It receives level-1 accepted event data through readout links
at a data rate of up to 100 kHz, buffers the data temporarily for at least a latency
time of up to 10 ms, delivers up to 7% of the received data (on level-2 request) to
the level 2 PC farm at a rate of up to 7 kHz, and delivers up to 3% of the received
data (on level-2 acceptance) to the event builder at a rate of up to 3 kHz.

The ROS device is composed of a COTS high performance server PC and three
or four custom hardware PCI boards, i.e. ROBINs. The ROBIN boards provide
the most essential buffering functionality inside ROS. Details about ROBIN are
addressed in the following chapters.
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The ReadOut-Buffer INput (ROBIN) is the core device inside the ATLAS ReadOut
Subsystem (ROS). It receives and buffers incoming event data directly from readout
links (ROL), and executes and replies request messages from the level 2 PC farm and
the event builder. As mentioned in the previous chapter a PCI bus-based solution
with a standard commercial off-the-shelf PC (ROS-PC) was eventually chosen for
the implementation of the ATLAS ROS. This chapter discusses mainly the ROBIN
designs for the PCI bus-based ROS system.

In the following of this chapter, different ROBIN designs for the PCI bus-based
ROS are firstly reviewed in section 3.1. Then the choice for the final design of
ROBIN is grounded in section 3.2. Details about the system architecture, board
design and data flow of the final ROBIN device are addressed.

3.1 Previous Implementations of ROBIN

Different approaches for the implementation of the ATLAS readout subsystem (ROS)
were investigated by the ATLAS community. For different ROS implementations,
dedicated custom ROB input modules with the evaluated bus interface have been
developed. The readout buffer input module is called ROBIN (ReadOut Buffer IN-
put). Table 3.1 lists the different ROBIN modules implemented for different ROS
designs.

Considering the entire system cost and system performance, the ATLAS commu-
nity decided for a ROS baseline design based on a COTS PC with PCI bused of high
I/O capability. This chapter discusses primarily the different ROBIN implementa-
tions which are specifically designed for the PCI bus and PC-based ROS system. To
understand the different ROBIN designs, we firstly need to make clear the role and
tasks of the ROBIN device inside the ROS system.
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ROS Implementations ROBIN Implementations
MFCC-Based ROBIN
CERN VME ROS UK ROBIN

Saclay CompactPCI-Based ROS | PMC-Format ROBIN
SHARC DSP-Based ROBIN
UK ROBIN

FPGA-Based ROBIN

Final ROBIN

PC-Based ROS

Table 3.1: Different ROBIN modules implemented for different ROS designs.

The ReadOut-Buffer INput (ROBIN) is a core device inside the ATLAS ReadOut
Subsystem (ROS). It receives and buffers incoming event data directly from readout
links (ROL), and executes and replies request messages from the level 2 PC farm and
the event builder. In more detail each readout link (ROL) delivers event data, which
has been accepted by the previous ATLAS level 1 trigger, at a maximum rate of
100kHz and bandwidth of up to 160MB/s. ROBIN accepts the event data through
the ROLs. It is expected to sustain the maximum data rate and bandwidth and
store the complete incoming event data temporarily on the 64MB SDRAM buffers,
and then forward the accepted data on request to the ROS PC through PCI buses.
The ROS PC is on the other hand responsible to collect the relevant data fragments
from the ROBIN boards and forward them to the requesters, i.e. the level 2 PC
farm or the event builder [64].

According to Table 3.1, besides the final ROBIN design, there are another three
previous ROBIN prototypes designed for the PCI bus and PC-based ROS system.
They are the SHARC DSP-based ROBIN, the UK ROBIN, and the FPGA-based
ROBIN. These different designs are reviewed in the following.

3.1.1 SHARC DSP-Based ROBIN

The SHARC DSP-based ROBIN has been developed by the NIKHEF institute [20].
It comprises an Altera 10k FPGA, a SHARC DSP, and 1MByte ZBT SRAM. The
component diagram of the SHARC DSP-based ROBIN is shown in Figure 3.1.

The FPGA handles the input data stream from one SLink readout link (ROL) and
accesses the event data buffer (i.e. the IMByte SRAM) directly for event reading
and writing. The SHARC DSP is responsible for the event buffer management
and request messages handling. The event data buffer is organized as a ring buffer
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Figure 3.1: PCI ROBIN based on a SHARC DSP [20].
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with two pointers, pointing at the beginning and the end of the empty buffer area,
respectively. Up to four SHARC ROBIN boards can be combined to connect with
one PCI interface.

3.1.2 UK ROBIN

The UK ROBIN was developed by the Royal Holloway University of London and
the University College of London [19]. This ROBIN module is based on an 1960
processor with PCI bus interfaces. For the buffering of the event data an SRAM of
one megabytes is applied.

FIFOs Program SRAM

Chip Enable 1

MACH 5 1960 local bus 1960 RD | rcl bus
PLD
Chip Enable 0
Fragment SRAM Boot ROM

Figure 3.2: UK ROBIN based on an Intel i960 processor [25].

The SRAM event buffer is organized as 1024 pages and each page has 1024 bytes.
The data stream from the connected readout link (ROL) is routed to the event
buffer by a control logic, i.e. a MACH 5 PLD (Programmable Logic Device). The
control logic maintains two FIFOs, to store the empty pages and the filled pages,
respectively. Through the two FIFOs the control logic determines which page in the
buffer to write. Figure 3.3 shows the mechanism of the event buffer management.
On the hardware side, for each incoming event data fragment a free page is allocated
from the free-page FIFO. With the free page the control logic directs the event data
to the page address in the event buffer, and a new used-page record is generated
inside the used-page FIFO. The software part on the Intel 1960 processor is then
notified of the arrival of new event data through the used-page FIFO. It is also the
responsibility of the software part to manage the event requests and deletions, and
to supply the free-page FIFO with new free pages after event deletions. Event data
leave the hardware via the PCI interface which is integrated into the 1960 processor.
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Figure 3.3: Buffer management inside the UK ROBIN [19].

3.1.3 FPGA-Based ROBIN

A most recent FPGA-based design of ROBIN device was presented in [53]. The
ROBIN board is based on one MPRACE FPGA co-processor. MPRACE is devel-
oped as a multi-purpose PCI-based FPGA hardware. It has been used in various
physics and computer science applications [46] [36] [22], and showed sufficient high
performance in these systems.

Figure 3.4 shows the component diagram of the MPRACE ROBIN. Four ROLs
are plugged on one of the MPRACE extension board connectors. Accordingly four
independent ROL handlers are implemented inside the FPGA. They process in-
coming event data and store the data in four affiliated SRAMs inside MPRACE.
Request messages from level 2 or event builder arrive at the ROBIN via the PCI
and PLX9656 local-bus interface, and required event data is transmitted over the
same interface backwards to level 2 or event builder.

3.1.4 Performance Comparison of the Previous ROBIN Designs

Performance of the previously-proposed PCI ROBIN prototypes is compared. For
the evaluation a ROS-PC with equal software is used to test the three different
ROBIN designs: SHARC ROBIN, UKROBIN, FPGA-based ROBIN.

For each ROBIN prototype, the maximum level 1 input rate (i.e. data rate at
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Figure 3.4: PCI ROBIN based on a MPRACE FPGA Co-Processor [53].
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ROLs) is measured while varying request rate from level 2 and event builder. Figure
3.5 shows the results of the comparison. The FPGA-based ROBIN shows dominantly
better performance over the other two ROBIN prototypes.

FPGA processors are well-known for their fast performance due to the parallel
processing based on programmable gate array logics. They show significant advan-
tages over general-purpose PCs in handling tasks of parallel computing. In the case
of ROBIN the buffering of incoming event data from RODs and the response to the
request messages from the ROS host PC can be executed in parallel independently.
Besides, the MPRACE ROBIN is able to handle four ROLs at a maximum.
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Figure 3.5: Performance comparison of the three previous ROBIN proto-
types: SHARC DSP-based ROBIN, UK ROBIN and FPGA-
based ROBIN [28].

However, to deal with complex tasks with complex data structures, it requires
much FPGA resource, i.e. space of programmable gate array. Larger size of gate
array means by far higher cost of a FPGA processor. The detailed ROBIN’s tasks are
discussed in the next chapter. It is shown that the ROBIN application employs data
structures of stacks, linked lists and particularly hash tables to manage the event
buffers. The implementation of all these tasks on an FPGA processor would be very
resource-costly. Furthermore, the FPGA processor shows no better performance in
dealing with serial tasks, since its frequency is generally lower than that of a CPU.
Besides, the development cost of the FPGA code is dramatically higher than that
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for a general-purpose CPU.

3.2 Final Design of ROBIN

Regarding the above considerations the ATLAS community made the decision for
the final design of the ROBIN device [45] [44].

3.2.1 Hardware Deployment

Figure 3.6: A ROBIN prototype in the final design.

Figure 3.6 shows a picture of a ROBIN prototype in the final design. Names of the
labelled components in the figure are listed in Table 3.2. The according hardware
deployment of the ROBIN board is illustrated in Figure 3.7. Two kernel processors,
a Xilinx Virtex II 200 FPGA and a PowerPC 440 micro controller, are deployed on
the board. The PowerPC microcontroller has an affiliated 128MByte DDR, SDRAM
used to store the PowerPC software. For the space consideration at most three ROLs
can be connected with one ROBIN board in this design. Three 64MByte SDRAMs
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three optical HOLA SLink input channels(160 MB/s per channel)
Gigabit Ethernet

IBM PowerPC 440GP micro-controler (466 MHz)
Xilinx XC2V2000 FPGA

PLX9656 PCI-X Bridge at 66 MHz

LEDs

three 64MByte SDRAM buffers

PowerPC’s affiliated 128MByte RAM

XILINX XC2C256 CPLD

reset button

PowerPC 10/100M Ethernet Interface

Q||| =W N~

—
e
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Table 3.2: ROBIN Components

are used for the storage of the incoming event data from three readout links (ROL),
respectively.

The combination of an FPGA processor and a PowerPC micro-controller takes
advantage of both kernel processors. According to the hardware deployment of
ROBIN, the FPGA is mounted in the middle of the device. It acts as a bridge
between three ROLs, three event buffers, the PowerPC and the ROS PC. The FPGA
plays the centric role as a high-rate and high-bandwidth data-flow core. All the data
transmitted between the components must go through the FPGA. It transmits event
data and control messages on-the-fly across the system. On the other hand, the
PowerPC micro-controller takes over more complex and flexible management and
control jobs with relatively lower performance requirement. It arranges the event
data buffers, instructs the FPGA where to store or transmit event data, decodes
and executes incoming requests from the ROS PC, and initiates response messages
with event data or status/debugging information backwards. This ROBIN design
makes full use of the on-the-fly parallel processing capability of FPGA and the high
clock-rate and high flexibility of PowerPC.

Moreover, compared with the previous FPGA-based ROBIN, the combination of
an FPGA processor and a PowerPC micro-controller also makes the extension of the
ROBIN device for a next generation development much more flexible and convenient.
The first prototype stage of this final ROBIN design has already been approved [31].
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Figure 3.7: Hardware Deployment of ROBIN. The highlighted three event
buffers and PowerPC’s affiliated RAM are to be organized by
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Figure 3.8: Data Flow Diagram of ROBIN.

3.2.2 Data Flow

Figure 3.8 shows the data flow through the ROBIN system. The bold arrows indicate
the heavy traffic pathes for the transmission of event data or messages containing
event data. The PowerPC processor gets never involved in the main event data
path, and hence avoids being a bottleneck in the huge volume of data transmission.
Only request messages and response messages excluding event data are transmitted
between FPGA and PowerPC. Free page IDs and used page records are the spe-
cific control information for event buffer management. Details about event buffer
management are found in the chapter 4.

3.3 Summary

This chapter reviews different ROBIN designs for the PCI bus and PC-based ROS
and presents the final ROBIN design. Three previous ROBIN designs are particu-
larly discussed. They are the SHARC DSP-based ROBIN, the UK ROBIN and the
FPGA-based ROBIN. The performance comparison between the different ROBIN
prototypes shows that the FPGA-based ROBIN is much efficient than the other two
ROBIN designs.
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However, due to the higher resource cost and the higher development cost of the
FPGA-based ROBIN, the ATLAS community decided eventually to adopt the final
ROBIN design based on two kernel processors: a Xilinx Virtex II 200 FPGA and a
PowerPC 440GP micro-controller. This combination takes advantages of both kernel
processors. The former controls the data flow with high performance requirements,
and the latter is responsible for more complex and flexible management functions
with relatively lower performance requirement. The final ROBIN design keeps not
only the efficiency of the FPGA-based ROBIN, but also makes the extension of the
ROBIN device for a next generation development much more flexible.
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Event Buffer Management
Algorithms

Before introducing the detailed software design of the ROBIN PowerPC System,
this chapter discusses firstly the strategy of the ROBIN event buffer management
and the algorithms involved in the effective buffer management and efficient event
lookup.

Firstly, section 4.1 reviews the page-based strategy for event buffer organization,
which was originally introduced by the UK group to the ROBIN project [19]. Section
4.2 presents a hash-table-based algorithm for fast event lookup inside event buffers.
Section 4.3 proposes a storage strategy both for the hash-table storage management
and for the event buffer storage management.

As mentioned previously three ROLs are connected with one ROBIN board. Event
data from different ROLs are stored in different buffers and handled separately by
the level 2 trigger. Accordingly, the management of different event buffers is also
handled separately but in a similar way. The following text of this chapter addresses
the management of one event buffer against one ROL.

4.1 Page-Based Event Buffer Organization

The event buffer management strategy presented in this work is based on a page-
based buffer management scheme, which was originally introduced by the UK group
[19] to the ROBIN project. Since then some improvements have been made and
applied to the final design of ROBIN.

The page-based buffer management scheme is to segment each event buffer mem-
ory (i.e. a 64MB SDRAM) into pages of fixed size. Each page has a unique ID
and is the smallest unit for buffer allocation. The size of each page is typically 1K
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bytes, 2K bytes or 4K bytes. It is determined a priori depending on the type of
the sub-detector that is connected to the corresponding ROL/ROD, since different
signal detectors generate different sizes of event data. One event may occupy one
or more pages, and one page can only be occupied by one event. To simplify the
explanation, in the following it is assumed that each page is of 1K bytes. In this case
there are totally 64K pages, and the page ID can be expressed by a 16-bit number.
The absolute buffer address (up to 64M) can be easily computed through a bit-shift
operation upon the 16-bit page ID by 10 bits to the left.

For a certain time period each incoming event from a single ROL has a unique 32-
bit event ID. The event ID is assigned by the level 1 trigger for each newly detected
event. The event ID is generated with a sequentially incremental number [32]. Hence
for an event rate of 100kHz the 32-bit event ID restarts from zero around every 12
hours. Because the ROS PC sends periodically event-delete request messages to
remove obsolete event data [54], it can make sure that an old event has already been
processed and removed long before a new event with a same event 1D is generated.
That means, at any moment in one event buffer each event has a unique event ID.

As mentioned above, the data of one event is stored in one or more pages. Hence
there exists an one-to-many mapping between 32-bit event IDs and 16-bit page IDs,
which makes it possible to retrieve the according event data in the event buffer. The
mapping between event IDs and page IDs is managed by the PowerPC application
using a hash function. The hash function will be introduced in the next section.

Through a free-page ID FIFO the PowerPC application tells the FPGA which
pages in the event buffer are free to store the data of newly-incoming events. When
a new event arrives, the FPGA removes a free-page 1D from the FIFO, and stores
the event data to the corresponding page in the event buffer. After the storage
the FPGA forwards accordingly a used-page record to the PowerPC application
through a used-page record FIFO. A used-page record contains the event ID and
the occupied page ID. If more than one pages are needed for the storage of the new
event, the FPGA will take another free-page ID from the free-page ID FIFO and go
through a same procedure as above. More details about the communication between
the PowerPC application and the FPGA inside ROBIN are found in chapter 5.

4.2 Hash Table for Fast Event Lookup

Given an event ID, the storage location of the event data in the event buffer (i.e. the
related page IDs) must be found out immediately for efficient event data transmission
or deletion on request by the level 2 trigger. For this purpose a skillful management
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of the one-to-many mapping between event IDs and related page IDs is necessary
for the fast event lookup.

An event ID has 32 bits. It is unrealistic to set up a sparse array with a size of
232 to contain a 26-bit event buffer address or a 16-bit page ID for each event. This
method may provide the fastest performance for event lookup, but it requires an
unavailable memory space of at least 8 TBytes.

This section presents a hash-table based algorithm for the fast event lookup. This
algorithm is of not only low computational cost but also low memory space cost. The
following of this section reviews firstly three standard searching algorithms and then
addresses the choice of a hash table for the ROBIN event lookup. The creation of
the hash table and the definition of the hash function are explained afterwards. The
storage management of the hash buckets are also described. At last the complexity
of the hash searching is discussed.

4.2.1 Choice of Event Lookup Algorithm
4.2.1.1 Standard Searching Algorithms

Book [62] presents in general three solutions to searching problems, including linear
searching, binary search trees and hash tables. First, the linear searching refers to
a search through a static array or a linked list where the mappings between keys
and their values are stored. In the case of ROBIN event lookup the keys are event
IDs and the values are the page IDs. It would be too computationally expensive to
perform a linear searching through a list of the mappings between event IDs and
page IDs, since the list could have a maximum length of 2'¢ for one event buffer.

Second, a binary search tree is a sorted two-way tree structure, where each node
in the tree contains a key-value pair. “Sorted” means that, for each node in the tree,
all the keys of the nodes in its left subtree are less than or greater than the keys
in its right subtree. A bad search tree with n nodes may also have a complexity
of O(n) like the linear searching. Only a balanced binary search tree can provide a
much faster performance. “Balanced” means that there are about the same number
of elements on either side or subtree of each tree node. In this case a tree with n
nodes has a height of h =log,n + 1. To search for a node in the tree we need only
do comparison checks for at most h times till finding the required key-node pair.
The complexity of a balanced binary search tree is therefore O(log, n) in the worst
case.

Third, a hash table is another data structure that associates keys with their values.
In a narrow sense a hash table is merely an array of pointers. Each pointer points
at a desired location, named as a hash “bucket”, in which the related key-value pairs
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are stored. Then given a key, a hash function is firstly required, to convert the key
to a number. The number indexes into the hash table (i.e. a pointer array). The
pointer in the indexed element leads to the desired hash bucket, where the key-value
pair for the given key should be stored. A hash bucket can also be implemented
using different data structures, such as a tree structure or a linked list of key-value
pairs. As with the above binary search tree, a hash table can speed up a lookup
process only if it is relatively balanced. “Balanced” here means that the key-value
pairs are evenly distributed among the buckets.

4.2.1.2 Choice of Hash Searching for Event Lookup

As the memory space required for the storage of data structures is concerned, linear
searching is the most economical among the above three searching algorithms. For
linear searching with a linked list of key-value pairs, each node in the list contains one
additional pointer pointing to the next node beside a key-value pair. The binary
search tree needs to store for each tree node (i.e. for each key-value pair) two
additional pointers pointing to the roots of its left and right subtrees. The hashing
needs an extra hash table to store the pointers to each hash bucket. Besides, each
hash bucket needs further a certain data structure for its storage. Although linear
searching occupies the least memory space to store the data structure. However, the
time complexity of linear searching, O(n) in the worst case, is unacceptable for the
real-time requirement of the ROBIN system.

A balanced binary search tree offers a time complexity of O(log, n), where n is at
most 64K for ROBIN’s event buffer management. This advantage of the balanced
binary searching is very attractive. However, inside ROBIN the mappings between
the event IDs and the page IDs for each event buffer are continuously modified.
Many efforts have to be devoted to maintain a dynamically sorted and balanced
binary search tree, both in terms of computational time and in terms of memory
space. For example, besides two pointers to the left and right subtrees for each
tree node, the number of the nodes inside either subtree must be stored as well for
the purpose of balance evaluation; and in the case of node insertion or deletion a
similar searching process has to be carried out, and so does the re-balance for each
concerned subtrees. That means, operations of insertion or deletion are even more
costly than the operation of node lookup.

As for hash searching, an additional buffer needs to be allocated for the storage
of the hash table. Besides, if a unidirectional linked list is used to store a hash
bucket, each node in the bucket contains not only a key-value pair but also a pointer
leading to the next node, provided that each hash bucket is implemented as a uni-
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directional linked node list. The hash searching supports a constant lookup time
O(1) on average, so long as a proper hash function can be found which balances the
distribution of the key-value nodes throughout the hash buckets. The computational
time for node insertion or node deletion is also constant, and the time complexity
is O(1). The hash searching method is finally chosen to solve for the ROBIN buffer
management problem, because it is proven that there exists such a hash function
that distributes the hash nodes uniformly into the hash buckets. The creation of
the hash function is introduced in the next subsection.

4.2.2 Creation of the Hash Table

For the event buffer management problem in ROBIN the key-value pairs are the
event-ID and page-ID pairs. Since the size of an event buffer is limited, there exists
also an upper limitation to the number of hash nodes, i.e. key-value pairs. The
limitation is the total number of pages in one event buffer, which is known as 64K
(in the case that the page size is 1K bytes). Therefore, we might design a hash
function such that the size of the hash table (i.e. an array of pointers to hash
buckets) is equal to the total number of pages, and that each bucket contains only
one hash node on average when the event buffer is full. Accordingly the index to
the hash table can be expressed by a 16-bit number.

It has been mentioned in section 4.1 that each event has a unique event identifier.
It is assigned by the level 1 trigger and has 32 bits. The level 1 trigger generates
the event IDs increasingly according to the occurrence order of the events; and the
events inside each event buffer are cleared up periodically. Therefore, one possibility
is to use the lower bits of the event ID as the index to the hash table. This strategy
guarantees that there is no collision of the hash indexes for a certain time span.

Since the index to the hash table is a 16-bit number, a best choice to compute
the hash index is using the lower 16 bits of the 32-bit event ID. The according hash
function is given as follows:

Hash(key) = key & OxFFFF (4.1)

where “&” is a bit-wise logical AND operation. Here the key is a 32-bit event ID.
The result of the hash function is the index to the hash table.

With the hash index to the hash table, we can get the related hash bucket. Next
subsection introduces the data structure and the implementation of hash buckets.
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4.2.3 Storage Management of Hash Buckets

A hash bucket is a list of hash nodes. As described above the size of each hash bucket
is less than one on average. Hence it is unnecessary to exploit a complex structure
like trees to implement each hash bucket. Typically a unidirectional linked list is
used as the data structure for a hash bucket, if the sizes of the hash buckets are
small and uncertain. Each node in the linked list contains a key-value pair and a
pointer to the next node.

A linked list is a dynamic data structure, whose size changes continuously over
time. However, as is commonly known, dynamic memory allocation is discouraged
inside an embedded system for security and stability’s sake. Due to limited resource
in an embedded system every application or software in it is assigned a priori a
definite amount of memory for its code and data. When a dynamic data structure
is necessary, often it has to be managed by the software itself within its assigned
memory space. Mostly dynamic data structures are eventually implemented using
some other static data structures in the background.

Inside ROBIN the management of the hash table is done by the ROBIN PowerPC
micro-controller, which has an affiliated 128MByte DDR SDRAM for the storage of
its software. The PowerPC software also avoids using dynamic memory allocation.
Hence the following of this subsection presents an algorithm to manage the dynamic
storage of the hash buckets using some static data structures.

4.2.3.1 Logical Structure

A hash bucket is implemented as a unidirectional linked list. The linked list is
composed of a chain of hash nodes. For the hashing for ROBIN event lookup each
hash node in a hash bucket contains not only a key-value pair (i.e. event-ID and
page-ID pair) and a pointer to the next hash node, but also some brief information
of the according event data. Excluding the pointer to the next hash node the other
information are actually equivalent to that of a used page record. The used page
record is generated by the ROBIN FPGA micro-controller for each occupied page
inside the event buffer and forwarded to the PowerPC system through a used-page
record FIFO as mentioned in section 4.1. A used page record has 16 bytes. Details
about used page records are found in chapter 5.

See figure 4.1 for an example of the logical structure of the hash table applied to
the fast event lookup in ROBIN.
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Figure 4.1: Logical structure of an example hash table applied to the fast
event lookup.

4.2.3.2 Physical Storage

The data structure of a hash table is composed of two parts. One part is an array
containing pointers to corresponding hash buckets, which is termed as hash array
(or hash table in a narrow sense). The other part is the hash buckets. As mentioned
in section 4.2.2, the size of the hash array is fixed, so the hash array can be defined
as a static array structure. The essential problem for the storage of the hash table
is the storage of its hash buckets with a changing number of hash nodes.

As the total number of the pages in one event buffer is 64K, the maximum number
of hash nodes is also 64K accordingly. Then we may assign a static buffer with a size
of 64K x sizeof(Hash Node) bytes for the storage of all the hash nodes. This buffer
is named as the hash node buffer in this work. Figure 4.2 illustrates an example of
the physical storage of a hash table inside the PowerPC software.

Moreover, since all the hash nodes are stored in an array, the pointer to a hash
node can be expressed by the index of the node in the hash node array, instead of
the physical address of the hash node in the memory. The former is of 2 bytes, and
the latter is of 4 bytes. In this way the buffer sizes both for the hash array and for
the hash node array can be reduced by 2*64K bytes.

The next problem is then how to manage the hash node buffer, including allocating
a free space inside the hash node buffer for a new hash node, and releasing the space
of a deleted node. Two solutions to the management of the hash node buffer are
proposed in this work and presented in the coming section 4.3.3.
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Figure 4.2: Physical storage of an example hash table inside the PowerPC
software. Note, the hash table is the same one as shown in
figure 4.1).

4.2.4 Discussion

A hash table is introduced above for the fast event lookup inside ROBIN. This
subsection discusses the hash searching algorithm with respect to its hash collision
probability, space complexity and time complexity.

4.2.4.1 Hash Collision

A good hash function is essential for good hash table performance. A poor choice of a
hash function can lead to clustering, in which case the probability of keys mapping
to a same hash bucket is significantly greater than that expected from a random
function. This clustering atmosphere is termed as hash collision. Hash collision
is an important factor to evaluate a hash function. A good-designed hash table
attempts to avoid hash collision as much as possible. The following discusses the
probability of hash collision for the hash table proposed in this section for the fast
event lookup inside ROBIN.

Section 4.2.2 explains the choice of the hash function for the fast event lookup
inside ROBIN. Firstly, the size of the hash table is designed to be the same as the
total number of pages inside one event buffer. Therefore, on average each hash
bucket contains one used page record or hash node, if the event buffer is full. Ideally
there is no collision of hash nodes in any hash bucket. Moreover, equation 4.1 gives
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the hash function for the hash table. It takes the lower 16 bits of a 32-bit event
ID as the index to the according hash bucket. Because the event IDs are generated
increasingly according to the occurrence order of the events, a hash collision with a
current occupied hash node occurs once after 64K events have happened. Chapter 2
has introduced that ROBIN is essentially an intermediate buffer in the ATLAS data
acquisition chain. It is designed to speed up the highly-selective event acquisition
inside ATLAS. ROBIN is built between the level 1 trigger and the level 2 trigger.
Statistically less than three percent of the total events get passed on from the level
1 trigger to the level 2 trigger; and event data get refreshed very often inside the
ATLAS DAQ chain as well as in the ROBIN’s event buffers. When historical event
data get removed, the old event IDs get deleted and the chance for hash collision
decreases at the same time.

4.2.4.2 Space Complexity

Table 4.1 shows the storage requirement of the hash table proposed in this section
for various page sizes inside one 64MByte SDRAM event buffer. According to the
table the PowerPC needs to reserve totally 1280K bytes for the storage of a whole
hash table for the fast event lookup inside one event buffer, provided that the page
size is 1K bytes.

Page Size 1K Bytes 2K Bytes 4K Bytes
Number of Pages 64K 32K 16K
Size of a Hash Bucket Pointer 2 Bytes 2 Bytes 2 Bytes
Size of a Used Page Record 16 Bytes 16 Bytes 16 Bytes
Size of a Hash Node 18 Bytes 18 Bytes 18 Bytes
Length of Hash Array 64K 32K 16K
Buffer Size for Hash Array 128K Bytes 64K Bytes 32K Bytes
Length of Hash Node Array 64K 32K 16K
Buffer Size for Hash Node Array 1152K Bytes | 576K Bytes | 288K Bytes
Buffer Size for the Whole Hash Table | 1280K Bytes | 640K Bytes | 320K Bytes

Table 4.1: Memory requirement of the hash table for fast event lookup. Note that
the event buffer is a 64MByte SDRAM.

4.2.4.3 Time Complexity

Table 4.2 lists the time complexity of different operations upon the hash table both
in the average case and at the worst case. The running time for the initialization
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of the hash table is in proportion to the total number of buffer pages, i.e. O(M),
where M is the total number of buffer pages. The time required for the insertion
of one used page is fixed and independent of the number of pages, i.e. O(1). The
maximum response time of the two operations are predictable.

Operation Time Complexity | Time Complexity
(average case) (worst case)

Initialization O(M) O(M)

Used Page Insertion | O(1) o)

Used Page Deletion | O(1) O(M)

Event Lookup 0(1) Oo(M)

Table 4.2: Time complexity of the hash table management for fast event lookup.
Note that M is the total number of buffer pages.

Event lookup is a part of the process of event deletion. Once a requested hash
node is found in a certain hash bucket, it takes no time to remove it from the bucket.
Hence the time complexity of hash node deletion is similar to that of event lookup.
In the average case the hash table provides constant running time, i.e. O(1), both
for event deletion and for event lookup. In the worst case when the event buffer
is full of M event pages and all the M occupied hash nodes are clustering in one
hash bucket, the worst-case time complexity is O(M) for both operations. However,
as indicated in the previous subsection 4.2.4.1, no hash collision occurs during a
certain time span after buffer initialization or re-initialization, and periodical clear-
up of obsolete event data diminishes the chance of collision. Both practically and
theoretically the worst case of the hash table will never happen.

4.3 Hash Node Buffer Allocation and Event Buffer
Allocation

This section presents two solutions to the hash node buffer allocation as well as to
the event buffer allocation. Firstly it is shown that there exists an identical imaging
between an event buffer and its related hash node buffer. Then a standard method
based on a free-page ID stack is introduced for the allocation problem of both buffers.
An improved algorithm is proposed afterwards in detail. The algorithm is based on
a chained free hash-node list that is built inside the hash node buffer. Finally the
two algorithms are evaluated and compared with respect to their space complexity
and time complexity.
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It has been described in the beginning of this chapter that an event buffer is a
64MB SDRAM memory and the buffer is segmented into pages of fixed size. The
size of each page is pre-defined. It could be 1K bytes, 2K bytes or 4K bytes typically.
To simplify the explanation, in the following of this section it is assumed that each
page is of 1K bytes. In this case there are 64K pages in one event buffer.

4.3.1 An ldentical Imaging between Event Buffer and Hash
Node Buffer

Compare an event buffer with its related hash node buffer. The former is divided
into 64K pages with a fixed size of 1K bytes per page. The latter is also divided
into 64K hash nodes of fixed size of 18 bytes, in which 16 bytes is for a used page
record and 2 bytes is for a node ID pointing to the next hash node. Besides, each
occupied hash node in the hash node buffer corresponds to a used page in the event
buffer. Naturally we may consider arranging the two buffers in a same way.

As mentioned in the previous section, the ROBIN PowerPC software needs to
offer the FPGA continuously free-page IDs inside the event buffer. After copying
the data of a newly-incoming event to a free page in the event buffer, the FPGA
returns a used-page record to the PowerPC. The used page record is then wrapped
in a hash node and inserted to the hash table. A used page record contains both an
event ID and a page ID; therefore in the hash node buffer (or array) if we take the
hash node also at the index identical to its page ID to contain the used page record,
we can guarantee an identical imaging between the arrangement of the event buffer
and the arrangement of the hash node buffer. Each used page in the event buffer
has a corresponding node in the hash node buffer at a same position, and vice versa.

4.3.2 Standard Buffer Allocation Algorithm Using a Free-Page
ID Stack

A standard method to manage the storage of such a buffer divided into segments/pages
of fixed size is to use a free-page 1D stack. The free-page ID stack is used to store
the IDs of the free pages inside the event buffer. The size of a page ID is 2 bytes
and there are at most 64K free pages in one event buffer. Therefore, the size of the
free-page ID stack is determined to be 64K x 2 bytes.

For the initialization the event buffer is empty and all the pages in the buffer are
free, then all the page IDs are pushed into the free-page ID stack. In the case of
page allocation for new events page IDs are popped out of the stack, and in the case
of page release for deleted events page IDs are pushed into the stack.
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As stated in the preceding subsection the allocation of the event buffer can be
easily extended to manage the allocation of the related hash node buffer.

4.3.3 Chained Free Hash-Node List for Hash Node Buffer
Allocation

4.3.3.1 Notations

The solution proposed in this subsection for the hash-table storage management em-
ploys same data structures as introduced in section 4.2 for the hash table. The hash
table is notated by a pair of arrays < H, G >. In the notation H = hy, hg, -+, hys de-
notes the hash array, an array of pointers pointing at hash buckets; G = g1, g2, -+, gmr
is the hash node buffer composed of an array of hash nodes, in which hash buckets
are stored.

An entry of H, h;, points to the i-th hash bucket, i.e. the head hash node in
the linked hash node list of the i-th hash bucket. h; is the index to the head hash
node in the hash node array G. An entry of G, g¢;, is a hash node. It contains a
used page record g;.data and a pointer g;.next pointing to g;’s next hash node in a
chained/linked hash node list. g;.next is also an index of an hash node in the hash
node buffer G.

M is equal to the total number of pages in one event buffer. Because there exists
an identical imaging between the event buffer and its hash node buffer, the length
of the hash node buffer G are also M. Besides, according to the design of the hash
table, when the event buffer is full, the hash node buffer is also full and each hash
bucket contains on average one hash node. Therefore, the length of H is M as well.

4.3.3.2 Main ldea of the Buffer Allocation Algorithm Based on a Chained
Free Hash-Node List

This subsection introduces a chained free hash-node list to solve the allocation prob-
lem both for the hash node buffer and the event buffer. The chained list of free hash
nodes is created inside the hash node array G. Free hash nodes are the hash nodes
inside the array (G that are not inserted to any hash buckets in the hash table. All the
free hash nodes inside GG are linked together and compose a chained free hash-node
list. The main idea of the buffer allocation algorithm is to maintain a chained list
of all the free hash nodes. Each time when a new used page record is reported from
the FPGA and a free hash node is required to store the used page record, a node
is removed from the chained free hash-node list and inserted into the corresponding
hash bucket; and each time when a used page record is required to be deleted, the
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corresponding hash node is removed from the related hash bucket and inserted back
into the chained free hash-node list.

Chained Free Hasgh-Mode List
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Figure 4.3: Logical structure of an example hash table and an according
chained free hash-node list.

Figure 4.3 shows the logical structure of an example hash table and an according
chained free hash-node list. In the example the maximum number of the hash nodes
is assumed to be eight, and accordingly the length of the hash array and the length of
the hash node array are also eight. Figure 4.3 illustrates the corresponding physical
storage of the example hash table and the built-in chained free hash-node list is
indicated.

With the introduction of a chained free-node list the hash table is denoted by a
ternary form < H,G, f >, where f points to the chained free hash-node List. It is
the index to the head hash node in the chained free hash-node list.

4.3.3.3 Extension to Event Buffer Management

The chained list of free hash nodes proposed above can not only deal with the
dynamic buffer allocation and release for the hash table which is applied to the fast
event lookup, but also handle the event buffer management inside ROBIN.

As mentioned previously the event buffer can be arranged in a same way that
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Static Buffer for Static Buffer for
Hash Array Hash Node Array

5 UPRT | A\ |
A UPRZ | 3 | %
4 UPR3 | A n
A UPR4 | /\
AN UFRS 1
s UPRE | /N |4—
g f—»| LUPR7 2
A \ UPRE | &

Figure 4.4: Physical storage of the example hash table shown in figure 4.3.
Note, f is the header of the built-in chained free hash-node list.

the hash node buffer is organized, and vice versa. Therefore, when the PowerPC is
required to update the free page ID FIFO for the FPGA, it may forward the IDs of
the free hash nodes in the chained free hash-node list as free page IDs. When a used
page record is returned from the FPGA, which contains an event ID and a page 1D,
the PowerPC may take the page ID as an index to allocate a hash node in the hash
node buffer, fill the hash node with the used page record and insert it then into the
relevant hash bucket.

Algorithms 4.3.3.3-4.3.3.3 give the detailed operations for the ROBIN event buffer
management and event lookup based on the above proposed algorithm of a chained
free hash-node list. In the operations only one event buffer is concerned and the
notations introduced in section 4.3.3.1 are used. Besides, the hash table is denoted
in the ternary form of < H,G, f > introduced in section 4.3.3.2, where H is the
hash array, G is the hash node array and f points to the header of the chained free
hash-node List.

4.3.4 Discussion

This section introduces a chained free hash-node list for the allocation of an event
buffer and its hash node buffer. The space complexity and the time complexity of
the method are analyzed in the following.

Table 4.3 lists the memory requirements for the main data structures in the
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Algorithm 4.1 Initialization

Problem Statement

When the ROBIN system starts to work, or when a request from the level 2 trigger
commands to clear all the event data, every buffer in the ROBIN is cleared up and
all hash nodes in the hash node buffer are set free. The free hash nodes are linked

together and build up the initial chained free hash-node list, and on the other side
all hash buckets are empty.

Algorithm

1. Initialize the hash array H. For all i € {1,2,---, M} set h; =NULL. Here all
hash buckets are set empty.

2. Initialize the hash node buffer G. Link all hash nodes in the hash node buffer
into one linked list. For all i € {1,2,---, M — 1} set g;.next = i + 1 and
gnr-next =NULL.

3. Initialize the chained free hash-node list f. Let f point to the first hash node
of the above linked list gy, i.e. f=1.

ROBIN PowerPC application for the management of one event buffer, when the
size of each page inside the event buffer (64MByte SDRAM) varies from 1K bytes,
2K bytes to 4K bytes.

Page Size 1K Bytes 2K Bytes 4K Bytes
Hash Array (Pointers to Hash Buckets) | 128K Bytes 64K Bytes 32K Bytes
Hash Node Array 1152K Bytes | 576K Bytes | 288K Bytes
Chained Free Hash-Node List 2 Bytes 2 Bytes 2 Bytes
Total 1280K Bytes | 640K Bytes | 320K Bytes

Table 4.3: Memory space requirements for the main data structures in the ROBIN
PowerPC application for one event buffer (64MByte SDRAM).

An identical mapping between the page arrangement in the event buffer and the
hash node arrangement in the hash node buffer is maintained, which simplifies the
storage management inside the PowerPC application significantly. Table 4.4 shows
the time complexity of the primary operations in the ROBIN PowerPC application
both in the average case and in the worst case. As stated in section 4.2, both
practically and theoretically the worst case for the hash lookup are far from happen.
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Algorithm 4.2 Free Page FIFO Update

Problem Statement
The PowerPC provides the FPGA free page IDs through a free page FIFO. The
free page FIFO is implemented as a static cycled queue and denoted in a ternary

form by P, s,t, where P = py,po,---,py is an array and N > 0 is the length of the
free page FIFO. Each entry in P is a page ID. s and ¢ are two indices of the array
P. They point to the start element and the end element of the static cycled queue
with valid free page IDs. At initialization s =NULL and £ =NULL. To update the
free page FIFO the PowerPC application takes the IDs of the first hash nodes in
the chained free hash node list as free page IDs, inserts them into the free page
FIFO and removes these hash nodes from the chained list, till the FIFO is full or
the chained list is empty.

Algorithm
1. Define ¢t = (¢t + 1) mod N.

2. If ¢ is equal to s, which means that the free page FIFO is full, no further
operations are then required and exit. Otherwise, continue.

3. If fis NULL, which means that the chained free hash node list is empty, no
more hash node or free page is available and exit. Otherwise, continue.

4. If s is NULL, which means that the free page FIFO is currently empty, then
set s =1 and t = 1. Otherwise, set t =t'.

5. Assign the last element p; in the valid free page ID queue with the first node
in the chained free hash node list: p; = f.

6. Assign f with the next hash node in the chained list: f = gy.next.

7. Go to step 1.
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Algorithm 4.3 Insertion of a Used Page Record

Problem Statement

When a page in the event buffer is filled, a used page record is then created in
the FPGA and forwarded to the PowerPC through a used page record FIFO. On
receiving a used page record the PowerPC allocates a free hash node in the hash

node buffer and fills it with the used page record. Then insert the hash node into
the hash table, more exactly, the relevant hash bucket. Let r denote a new used
page record to be inserted to the hash table, with r.pid for its page ID and r.eip for
its event ID.

Algorithm

1. According to the identical imaging between the event buffer and the hash node
buffer, the page ID r.pid is also the ID of the hash node allocated in the hash
node buffer to contain the used page record r. Define p = r.pid. and the hash
node g, is then the required free node.

2. Assign the data of g, with the used page record r: g,.data = r.

3. Put the event ID r.eid into the hash function, which yields the hash key:
k = Hash(r.eid) = r.eid & OxFFFF.

4. Insert the hash node g, at the head of k-th hash bucket hy:

gp-next = hy and hy =p.
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Algorithm 4.4 Event Lookup

Problem Statement

On event data request from the level 2 trigger the PowerPC software needs to find
the relevant used page record(s) from the hash table. Then initiate a reply message
involving the related page ID(s) and forward it to the FPGA. The FPGA is respon-
sible to get the data from the event buffer and assembles the final reply message for
the level 2 trigger. Let e denote the ID of the event to be deleted.

Algorithm
1. Put the event ID e into equation 4.1, which yields the hash key:
k = Hash(e) = e & OxFFFF

. The related hash node(s) are in the k-th hash bucket.
2. Define p = hg, i.e. the head node in the k-th hash bucket.

3. If p is null, which means that p is the end of the hash bucket, stop searching
and exit then.

4. If gp.data.eid is equal to e, which means that g, is the required hash node and
its data g,.data is one wanted used page record for the event e.

5. Let p = g,.next.

6. Go to step 7?7, to check whether any other hash node in the bucket is also
wanted.
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Algorithm 4.5 Hash Node Deletion

Problem Statement

On event deletion request from the level 2 trigger the operations in algorithm 4.3.3.3
for event lookup in the hash table are also performed in the PowerPC software, and
the related hash node(s) with the used page record(s) are then removed from the
hash table. No further operations by the FPGA or direct upon the event buffer are
necessary. Here shows only the operations required for the deletion of a hash node
from the hash table. To maintain the chained free hash-node list, the removed hash
node needs to be inserted back into the chained free hash-node list. Let ¢g; denote a
hash node that is to be removed from the hash table. Assume that the hash node
g; is currently in the k-th hash bucket h;, and that g; is the preceding node linked
to g; in the bucket (i.e. g;.next = i) if g; is not the first node in the bucket (i.e.
hi! = 1).

Algorithm

1. If hy is equal to ¢, which means g; is the first node in the k-th hash bucket,
then go to step 3.

2. Since g; is assumed to be the currently preceding node linked to g; in the £-th
hash bucket, let g; then point at the next node after e;: g;.next = g;.next. Go
to step 4.

3. Let the head of the k-th hash bucket point at the next node after g;: hy =
g;-next.

4. Insert g; at the head of the chained free hash node list:

ginext=f and f=gy;.
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Operations Average Case | Worst Case
Initialization O(M) o(M)
Free Page Allocation o(1) 0(1)
Free Page FIFO Filling O(N) O(N)
Hash Node Insertion o) 0(1)
Hash Node Deletion o) 0(1)
Insertion of Used Page Record o(1) 0o(1)
Event deletion o) Oo(M)
Event Lookup o(1) O(M)

Table 4.4: Time complexity of the primary operations in the ROBIN PowerPC ap-
plication both in the average case and in the worst case. Note that M is
the total number of buffer pages; and N is the number of page IDs to be
filled into the free page FIFO. N should be smaller than the size of the
free page FIFO inside the FPGA.

Compared with the standard buffer allocation algorithm using a free-page ID
stack, the second proposed algorithm based on a chained free hash node list provides
a comparable computational efficiency but with no requirement for extra memory
space.

4.4 Summary

Due to limited resources in the embedded ROBIN system, the ROBIN event buffer
management strategy must exert all efforts to be economic both in the computa-
tional cost and in the memory space cost. Besides, for the sake of system security
and stability it must also take into consideration to avoid dynamic memory alloca-
tion. This chapter presents a complete strategy for the event buffer management
in the final ROBIN system. The problem of ROBIN’s buffer management centers
essentially around three tasks: event buffer arrangement and assignment, fast event
lookup and the management of related dynamic data structures.

In this chapter firstly a page-based strategy for ROBIN event buffer organization
is briefly reviewed. The 64MB SDRAM event buffer is segmented into fixed-sized
pages. To deal with the mappings between the event IDs and the page IDs, a
hash table is then introduced. An appropriate hash function is designed for the
hash table, which guarantees a balanced distribution of hash nodes over the hash
buckets. Moreover, a hash table is basically a dynamic data structure, since various
number of hash nodes are dynamically inserted and deleted into the hash table over
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time. Therefore, a buffer of fixed size is defined specific for the allocation of hash
nodes. The buffer is named as hash node buffer.

As there exists an one-to-one mapping between the used pages in an event buffer
and the occupied hash nodes in the related hash node buffer, a same mechanism can
be adopted to arrange both the allocation of the event buffer and the allocation of
the hash node buffer. In such a way the computational effort of the ROBIN PowerPC
software is skillfully reduced. To deal with the buffer allocation both for the event
buffer and the hash node buffer, a chained free hash-node list is introduced. The
chained free hash-node list is built within the hash node buffer and hence no extra
memory space is required.

The proposed buffer allocation strategy based on a chained free-node list can
be easily extended to handle the buffer management for other embedded systems.
The solution contributes even to solve a generic memory management problem, if
the memory has to be divided into partitions with fixed size and each partition is a
minimum unit for memory allocation and release. In such a case, the proposed buffer
management method is an optimal solution both in respect of space complexity and
in respect of time complexity.
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ROBIN PowerPC System
Analysis

As stated in Chapter 3, the hardware of ROBIN consists of two main parts cen-
tered on two processors, a Xilinx Virtex II 2000 FPGA and a PowerPC 440 micro-
controller. The two processors cooperate to realize the functionalities of ROBIN.
The FPGA plays the centric role as a high-rate and high-bandwidth data-flow core,
and the PowerPC provides the management and control functionalities. This chap-
ter and the following two chapters concentrate on the work in the ROBIN PowerPC
system. This chapter discusses mainly the system requirements and principal tasks
of the ROBIN PowerPC application.

The chapter is organized as follows. Firstly section 5.1 introduces briefly the
hardware setup of PowerPC 440GP micro-controller. Section 5.2 discusses the com-
munication interface (i.e. eight FIFOs) between the PowerPC application and the
FPGA inside ROBIN. Through analyzing the data rate of eight FIFOs section 5.3
addresses the real-time requirements upon the ROBIN PowerPC application. Re-
garding the eight FIFOs section 5.4 discusses further four main cyclic tasks in the
PowerPC application. Finally two possible architectures are presented in section 5.5
for the design of the PowerPC system, depending on whether an embedded real-time
operating system is integrated.

5.1 PowerPC 440GP Microcontroller

The IBM PowerPC 440GP micro-controller offers exceptional performance, high de-
sign flexibility, and robust features geared to given networking and storage. The
PowerPC 440GP is designed specifically for high-performance embedded applica-
tions. Figure 5.1 shows the block diagram of the PowerPC 440GP micro-controller.
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Figure 5.1: PowerPC 440GP block diagram.[38]
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The IBM PowerPC 440GP micro-controller has an IBM PowerPC 440 core. The
IBM PowerPC 440 core is a 32-bit RISC (Reduced Instruction Set Computer) core.
It is implemented with IBM’s advanced 90-nm copper CMOS technology, and pro-
vides up to 667 MHz and 1334 DMIPS (worst-case) performance. The 440 core
is designed for high performance and high scalability. The PowerPC 440 core in-
corporates a super-scalar seven-stage pipeline and executes up to two instructions
per cycle, which enhances dramatically the overall system throughput. Separate in-
struction and data caches, a JTAG port, trace FIFO, multiple timers and a memory
management unit (MMU) are also supported by the core. The core’s large data cache
(32K) and instruction cache (32K) are 64-way set associative, with versatile config-
urations to enhance performance tuning. The integrated memory management unit
(MMU), with 2.0 DMIPS/MHz performance, allows software developers to configure
cache regions in three different modes to optimize their applications. For instance,
locked regions can be used for low-latency code or interrupt service routines; tran-
sient regions handle use-once data without disturbing the whole cache; and normal
regions is managed using typical least-recently-used (LRU) algorithms. Moreover,
the 440 core employs the scalable and flexible Book E enhanced Power Architecture,
which is optimized for embedded applications. The core can be integrated with
various peripherals and application-specific macro cores using the CoreConnect?™
bus architecture to develop custom System-on-a-Chip (SoC) solutions. Peripheral
options include memory controllers, DMA controllers, PCI interface bridges and
interrupt controllers.

The PowerPC 440GP incorporates a width range of features, including on-chip
Double Data Rate (DDR) SDRAM controller, PCI-X interface, External Bus Con-
troller (EBC) with 8/16/32-bit external data bus width, DMA controller, on-chip
Ethernet, 8K on-chip SRAM, debug support and other on-chip peripherals such as
two serial ports, two 12C controllers, up to 32 GPIO, up to 13 external interrupts,
and general purpose timers. The versatile features complement the RISC PowrPC
440 core, to provide powerful solutions to diverse embedded applications.

5.2 Communication with FPGA

To discuss the requirements upon the PowerPC system, we first need to know the
PowerP(C’s system interface to the outside. The interface indicates the input or
output data pipes of the PowerPC system. Through analyzing the requirements of
each data pipe (e.g. its data rate or its data bandwidth), the requirements upon the
PowerPC system are accordingly explained.
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As mentioned before, the FPGA plays a centric role in ROBIN. It acts as a
high-rate and high-bandwidth data-flow core. The communication of the PowerPC
system with outside are actually all through the FPGA, or more exactly through a
number of FIFOs inside the FPGA.

There are totally eight FIFOs used for the information exchange between the
PowerPC system and the FPGA. Three free-page FIFOs and three used-page FIFOs
are defined for the storage management of event data; and two message descriptor
FIFOs are defined for the message exchange between ROBIN and the ROS host PC.
The three free-page FIFOs and one response message descriptor FIFO are written
by the PowerPC system and read by the FPGA; the three used-page FIFOs and
one request message descriptor FIFO are written by the FPGA and read by the
PowerPC.

The following of this section discusses how the eight FIFOs work in the ROBIN
system and how the PowerPC and the FPGA communicate with each other through
the FIFOs.

5.2.1 Free-Page FIFOs and Used-Page FIFOs

The three free-page FIFOs and the three used-page FIFOs are used to deal with
the buffering of the incoming event data from three level-1 readout drivers (RODs),
respectively. Figure 5.2 shows the activities inside FPGA in handling a fragment of
incoming event data from one ROL. The roles of the two kinds of FIFOs are also
indicated in the figure.

As described in the previous chapter a page-based strategy is used for the event
buffer management in ROBIN. According to the strategy one event buffer is divided
into pages of a fixed pre-defined size and the pages are the minimum unit for the
storage of event data. The PowerPC is responsible to tell the FPGA in which pages
to store the data of an incoming event through a free-page FIFO. Periodically the
PowerPC writes the free-page 1Ds into the free-page FIFO. One free-page FIFO is
dedicated to one event buffer.

When an event data fragment arrives at a readout link (ROL) connected to at the
FPGA, it is firstly stored in a data FIFO of 256 words. An input handler inside the
FPGA reads the data from the FIFO and extracts the event ID and the event status
information (e.g. the last fragment flag, transmission flag, link errors, consistence
errors, etc). At the same time, the input handler reads a free-page ID from the
according free-page FIFO and removes it from the FIFO and then writes the event
data fragment to the according free page in the event buffer. The address of the
free page in the event buffer is meanwhile computed by the buffer arbiter through a
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bit-shift operation on the free-page ID.

After the storage a used-page record is generated by the input handler. A used
page record has 16 bytes and is composed of the event ID, the occupied page 1D, as
well as the status information, debug information, and the exact number of bytes
filled in the page. The input handler inserts the used-page record into the used-page
FIFO. The PowerPC is notified about the arrival of new events, and reads the new
used-page records from the used-page record FIFO. Hence, the PowerPC application
is informed of the occupation of another page in the event buffer. As described in
the previous chapter a hash table is applied in the PowerPC application to manage
the used-page records for later fast event retrieval.

The size of the free page ID FIFO is 1K words and each page ID takes 2 bytes.
Hence, the free page ID FIFO contains at most 1k free-page IDs. The size of used-
page record FIFO in the DMA is 128 bytes. FEach used-page record has 16 bytes.
Hence, the used-page record FIFO contains at most 8 used-page records.
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Figure 5.2: Handling of incoming event data from one ROL. The thick red
arrows indicate the flow of event data, and the thin blue arrows
indicate the flow of control data [45].

5.2.2 Message Descriptor FIFOs

One request message descriptor FIFO and one response message descriptor FIFO
are applied for the message exchange between the PowerPC application and the
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ROS host PC. Figure 5.3 shows how the ROBIN system handles request messages
from the ROS host PC and assembles response messages to the ROS PC by using
the two message descriptor FIFOs.
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Figure 5.3: Handling of request and response messages exchanged between
the ROS host PC and the PowerPC application [45].

When a request message from the ROS host PC arrives at the FPGA, it is firstly
written into a 2048-word dual-port RAM. The address within this dual-port RAM
is then written to a 32-word FIFO, which is the request message descriptor FIFO.
With the address in the descriptor FIFO the PowerPC application can read the
message from the dual-port RAM, and then decode and execute it. The address
in the dual-port RAM is of two bytes, i.e. one word. Hence the request message
descriptor FIFO may contain up to 32 request message addresses.

Response messages from the ROBIN system to the ROS PC are initiated by
the PowerPC application. The response messages may contain event data or other
information (status or debug information). Event data are stored in the event buffer.
But the other information can be found in the related use-page records, which are
provided directly by the PowerPC application without accessing the event buffer.
In either case the PowerPC writes a 3-word command to the response message
descriptor FIFO. The 3-word command is executed by a DMA engine inside the
FPGA, which assembles and transmits the final response messages.
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5.3 Real-Time Performance Requirements

This section addresses mainly the real-time performance requirements of the ROBIN
PowerPC system. As described above there are eight FIFOs used for the commu-
nication between the PowerPC application and the FPGA. The performance of the
PowerPC application must be high enough to support the required input or output
data rate of each FIFO.

5.3.1 Event Data Rate from One Readout Link

In the ATLAS TDAQ after event selection by the level 1 trigger the data volume
drops from 45 TBytes to 136 GBytes per second, and the data rate is reduced
from 40 MHz to 100 kHz. In the level 2 trigger there are altogether 1600 readout
drivers, i.e. 1600 readout links. Let v; denote the data volume arriving at the level
2 trigger, ry denote the data rate and ngo; denote the number of ROLs. Then
vg = 136 GBytes/s, r4 = 100 kHz and ngor, = 1600. It can be calculated, every
cycle vy/ry = 1360 bytes arrives at the level 2 trigger and every cycle on average
va/Ta/nror = 850 bytes at each ROL.

Data rate is actually event rate. In each cycle one event arrives at one ROL. One
event occupies at least one page and at most, let’s say, two pages in an event buffer.
Hence with an event rate of 100 kHz every 10 us at most two free pages are filled.
Accordingly every 10 us up to two free page IDs are removed from the free-page
ID FIFO and up to two used-page records will be filled into the used-page record
FIFO. As mentioned in the previous subsection, the free-page ID FIFO contains 1k
free-page IDs and the used page record FIFO contains 8 used-page records. Then it
can be calculated, every 5 milliseconds the free-page ID FIFO must be updated at
least once by the PowerPC application and every 40us the used-page record FIFO
must be read and cleared once by the PowerPC application. Note that the maximum
cycle time of 5 ms for free-page ID update is based on the assumption that every
time the free-page FIFO is fully filled after updating. But this is mostly not the
case in the running. Hence the cycle time for free-page 1D update must be less than
5 ms.

5.3.2 Request Message Rate from the ROS PC and the Event
Builder

On the other hand, the real-time performance with respect to the two message
descriptor FIFOs is much less required. Firstly, the ROS host PC has a local re-
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quest message queue. If the FPGA’s request message FIFO is full, the ROS PC
will wait till there is space inside the FPGA’s FIFO. Secondly, regarding the re-
sponse message FIFO there is generally no direct performance requirement upon
the PowerPC application, but upon the polling mechanism of the ROS host PC
application. The ROS PC must read and clear up the FIFO in time. However, there
is always an one-to-one correspondence between a request message and a response
message. Therefore, regarding the both message descriptor FIFOs a same real-time
performance requirement is preferably applied.

However, an average data rate at the request message descriptor FIFO must be
supported by the PowerPC application. The most frequent request messages are
the event data request messages. Up to 7% of all data coming on one ROL are
requested by the level-2 PC farm on average [12]. Up to 3% will be accepted by
the level-2 trigger and requested by the event builder [12]. With a data rate of
100 kHz at each ROL, the event data request rate for a ROBIN board with totally
three ROLs is then 100*3*(7%+3%) kHz, i.e. 30 kHz. That means, on average
every 33 us one event data request message arrives at the ROBIN. Moreover, the
descriptor FTFO contains the addresses of 32 request messages at most. Therefore,
every 32%33 pus (i.e. 1.07 ms) the request message descriptor FIFO is completely
filled. Taking other request messages such as event deletion message into account,
every one millisecond an empty request message descriptor FIFO is fully filled and
must be read and cleared once by the PowerPC application.

Table 5.1 lists the required processing rate from the PowerPC application with
respect to different communication FIFOs between the PowerPC and the FPGA.
According to the list the used-page record FIFO requires by far higher processing
rate compared with other FIFOs.

5.4 Cyclic Tasks in the PowerPC Application

Section 5.2 discusses four types of FIFOs that are defined for the communication
between the PowerPC application and the FPGA inside the ROBIN system. Regard-
ing the four types of FIFOs four principal cyclic tasks of the PowerPC application
are defined: 1) free-page update, 2) used-page record handling, 3) request message
decoding and execution and 4) response message initiation.

5.4.1 Free Page Update

The direct access to event buffers is done by the FPGA, but the organization and
management of the buffers is handled by the PowerPC application. Free page update
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Tasks of the Minimum Maximum
FIFOs PowerPC application processing rate | Cycle time
Free-page ID FIFO Free-page update > 200 Hz < 5 ms

Used-page record

Used-page record FIFO handling 25 kHz 40 ps
Request message

Request message descriptor FIFO decoding and execution > 1 kHz < 1ms
Response message

Response message descriptor FIFO > 1 kHz < 1ms

initiation

Table 5.1: Real-time requirement upon the PowerPC application with respect to
different communication FIFOs (between the PowerPC and the FPGA)
and the according tasks of the PowerPC application.

is for the PowerPC application to fill the three free page FIFOs in the FPGA with
the IDs of the unoccupied pages in the respective event buffers. With the free-
page IDs the FPGA can then store newly incoming event data from RODs into the
according pages in the according event buffers. Details about the strategy of free
page management is found in chapter 4.

As mentioned in the previous section, according to the rate of the event data
arriving at the FPGA and the size of the FIFOs the minimum update rate of the
free-page ID FIFOs must be over 200 Hz. In other words the task of free page
update must be performed at least once every five microseconds by the PowerPC
application.

5.4.2 Used-Page Record Handling

For an incoming event fragment from ROD to ROBIN, the FPGA stores the event
data into a free page in the event buffer, creates a used-page record for the page and
appends the used-page record into the according used-page record FIFO. Used-page
record handling is for the PowerPC application to read out the used-page records in
the used-page record FIFOs, and insert the records into the according hash tables in
the PowerPC application. The hash tables are applied to manage the storage of the
event buffers and to provide efficient strategy for later event lookup. Details about
the design of the hash tables have been given in chapter 4.

According to the incoming event data rate from RODs and the size of the used-
page record FIFOs, the FIFOs must be cleared by the PowerPC application every
40 ps. Detailed explanations are found in the previous section. That means, the
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task of used-page record handling must be performed at least once by the PowerPC
application every 40 us.

5.4.3 Request Message Decoding and Execution.

Request messages from the ROS PC or the event builder are forwarded to the Pow-
erPC application through the request message descriptor FIFO in the FPGA. Then
they are decoded and executed in the PowerPC application.

Types of the request messages from the level 2 trigger are described in [32], includ-
ing a series of messages for accessing the system configuration parameters. Three
most complicated-to-handle request messages are related to the management of the
event buffers. They are “get fragment”, “clear fragment”, and “clear all fragment”.
The message of “get fragment” is a request for event data regarding a given event
ID. Each event in the ATLAS has a unique event identifier, which is assigned by
the level 1 trigger, and each request from the level 2 trigger must be attached with
the according event ID(s). “Clear fragment” is to delete event data, given one or
multiple event IDs. “Clear all fragments” commands ROBIN to remove all the data
inside the event buffers. This request is used to re-initialize event buffers. In order
to reply the first two types of messages in real time, the PowerPC application is
required to retrieve immediately the event storage address inside event buffers for a
given event ID. The event lookup strategy for ROBIN is presented in chapter 4.

According to the real-time requirement analysis regarding the message descriptor
FIFOs in the previous section, the task of request message decoding and execution
must be called at least once every one millisecond.

5.4.4 Response Message Initiation.

Besides request message handling, the response messages backwards for the ROS PC
and the event builder must also be initiated by the PowerPC application. For every
response message the PowerPC application will write a 3-word command into the
response message descriptor FIFO in the FPGA. Except replies to “get fragment”
requests, which require event data in the event buffers, information for other re-
sponse messages can be provided by the PowerPC application directly. As with the
above task of request message decoding and execution, the task of response message
initiation must also be performed at least once every one millisecond.

The correspondences between the above tasks and the different communication
FIFOs are listed in table 5.1. The respective real-time requirements are also given
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in the table.

5.5 System Architectures

In this work two system architectures are investigated for the implementation of the
ROBIN PowerPC system. One is a standalone software implemented as a single loop
of subroutines (or tasks) running directly upon the PowerPC hardware layer. No
operating system is needed in this first implementation. The other is based on an
embedded real-time operating system (RTOS). In this implementation the multiple
tasks of the PowerPC application are managed by the real-time scheduler from the
operating system .

Multiple Tasks

Single Loop of

Subroutines Real-Time Linux

U-Boot U-Boot
Hardware Hardware
Non-0OS architecture OS-based architecture

Figure 5.4: Two architectures for the ROBIN PowerPC system.

Figure 5.4 shows the two system architectures. In both designs the U-Boot is
chosen as the bootstrap loader for the system. The bootstrap loads the image of
the final target software into the system memory and executes it on the machine.
Details about the U-Boot and its extensions for the PowerPC system are found in
the appendix B.

5.6 Summary

This chapter addresses mainly the ROBIN PowerPC system requirements. Specially
the real-time performance requirement upon the PowerPC application is analyzed
according to its communication interface with the FPGA, i.e. eight FIFOs in the
FPGA. Regarding the eight FIFOs four major cyclic tasks in the PowerPC applica-
tion are defined and addressed.

Moreover, two system architectures are proposed in this chapter for the imple-
mentation of the PowerPC application inside the ROBIN. The difference between
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the two architectures lies on whether an embedded real-time operating system is
integrated. In the following two chapters the software design and software opti-
mization based on the two architectures are discussed, respectively. The real-time
performance requirement addressed in this chapter is applied to check the feasibility
of the two system architectures and optimization measures are proposed against the
performance requirement.
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Standalone PowerPC
Application

In the previous chapter two architectures are presented for the implementation of
the PowerPC system inside ROBIN. This chapter concentrates on the design and
optimization of the PowerPC software based on the first non-OS architecture, i.e.
the standalone PowerPC application without an operating system.

The organization of this chapter is as follows. Section 6.1 addresses the detailed
software design of the standalone ROBIN PowerPC application. Section 6.2 pro-
poses several measures to optimize the performance and reliability of the software.
Finally, the proposed standalone PowerPC system is tested together with an entire
ROS/ROBIN system in a simulated ATLAS testing environment and the experi-
mental results are given in section 6.3.

6.1 Software Design

Since there is no operating system, the standalone PowerPC application is imple-
mented as a single-thread program. The cyclic tasks discussed in the pervious chap-
ter 5 are implemented in a single loop in the program.

This section presents the software design of the standalone PowerPC application
in three diagrams: the component diagram, the use case diagram and the activity
diagram. The component diagram explains the major construction of the software.
Through expanding the component diagram the use case diagram is drawn. Finally,
the activity diagram shows the work flow of the standalone PowerPC application.
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6.1.1 Component Diagram

Chapter 4 introduces a page-based strategy for the event buffer management in the
final ROBIN design and a hash table for the fast event lookup in the event buffers.
Implementation of the two baseline functionalities constitutes two major components
of the PowerPC application. A third major component of the PowerPC application
is the message handling module.

Figure 6.1 shows the component diagram of the ROBIN PowerPC application.
Three main modules in the application are: event buffer management module, event
lookup module and message processing module. The major data flow through the
modules and the FPGA is indicated in the figure. The module of event buffer
management maintains a free page ID list for each event buffer to record the current
occupation status of the related buffer. The event lookup module manages a hash
table for each event buffer for the fast lookup of event data.

Section 4.3 proposed a data structure of a chained free hash-node list for the
storage both of the hash table and of the free page ID list. In the component
diagram as well as the use case diagram in the next subsection, the hash table and
the free page ID list are denoted as two data resources for the easier understanding
by the readers.

6.1.2 Use Case Diagram

Figure 6.2 shows the use case diagram of the ROBIN PowerPC application. The use
case diagram is in a sense an expanding diagram of the component diagram.

Four actors are indicated in the diagram: the message controller, the message
executor, the event buffer organizer and the used-page manager (hash-table man-
ager). The first two actors are from the message processing module. The message
controller talks directly to the FPGA through the message descriptor FIFOs inside
the FPGA. The message handling is primarily done by the message executor. To
execute the messages that are related to event buffers, the message executor needs
to ask the used-page manager from the event lookup module as well as the event
buffer organizer from the buffer management module to fulfill the task together. The
used-page manager maintains a hash table for each event buffer for event lookup.
The event buffer organizer manages a free page ID list for each event buffer to record
the current occupation status of the buffer.
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Figure 6.1: Component diagram of the ROBIN PowerPC application.
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Figure 6.3: Activity diagram of the standalone ROBIN PowerPC applica-
tion based on the non-OS architecture.
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6.1.3 Activity Diagram

The previous chapter 5 addresses four major cyclic tasks of the PowerPC application
regarding the four types of communication FIFOs between the PowerPC application
and the FPGA. In the standalone ROBIN PowerPC application the four cyclic tasks
are implemented in a single loop. Figure 6.3 shows the activity diagram of the
standalone PowerPC application based on the non-OS architecture. In the diagram
the task of request message decoding and execution and the task of response message
initiation are indicated as one task, since the two tasks with a same cyclic time have
an one-to-one identical mapping.

The application starts with an initialization procedure, including loading config-
uration parameters, initializing PowerPC registers and FPGA registers, as well as
creating a common address map for the PowerPC’s affiliated memory, the event
buffers and the shared buffers with the FPGA. Global data structures in the Pow-
erPC application, e.g. the hash tables and the chained free-node lists, are also
initialized here. Then a Build-In-Self-Test (BIST) routine is performed, to check
the status of the FPGA, the ROLs, the accessibility of the shared buffers and the
temperature of the PowerPC itself.

If the system self-test is passed, the program goes into the main loop of the
application. Five operations get involved in the main loop. The first three tasks are
the cyclic tasks addressed in the previous chapter 5. The other two tasks are for idle-
task processing and terminal command handling. Idle tasks include monitoring the
device temperature measured by the temperature sensor and making some statistic
analysis over the buffer occupancy. Terminal command handling is enabled only in
the development phase for system testing and debugging. In the final target board
it will be disabled.

The exit of the program results from a user terminal command or from a request
message command from the ROS PC.

6.2 Performance Optimization

This section deals with the performance optimization of the standalone PowerPC
application. Before the introduction of optimization measures the goal of the per-
formance optimization is firstly addressed.
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6.2.1 Goal of the Optimization

The activity diagram of the standalone PowerPC application in figure 6.3 shows
five cyclic tasks involved in the main loop. Among the five tasks the idle task
processing and the terminal command handling have by far lower priority compared
with the other three tasks. These three tasks have been discussed in chapter 5
and their minimum processing rates in the PowerPC application are analyzed and
listed in table 5.1. The PowerPC application must guarantee to reach the required
processing rates of these tasks.

In the standalone PowerPC application although five tasks get involved in the
main loop, it does not mean that all the five tasks must be executed in each loop
cycle. The execution rates of the tasks can be adjusted according to their relative
priority. In this context the priority of a task is defined according to its processing
rate; task requiring higher processing rate has higher priority and vice versa. Task of
a higher processing rate may be executed more often, e.g. once in every loop cycle,
while a task of a relatively lower processing rate may be executed once in several
cycles. In the case of the PowerPC application, the task of used-page record handling
requires the highest processing rate, i.e. 25 kHz, and the task of idle task processing
requires the processing rate of 250 Hz. According to the relative proportion of their
processing rates, if the former task is executed once in every loop cycle, the latter
is hence executed once in 100 cycles.

When the relative processing rates of the tasks are guaranteed, another perfor-
mance criterion is then how fast the entire main loop can run. The cycle rate of the
entire main loop must reach the required processing rate of the highest-priority task.
Therefore, the standalone PowerPC application must also minimize the processing
time of one main loop cycle.

Because the main loop runs continuously without a timer, the running time of
each main loop cycle varies due to the varying amount of workload in the cycle, for
example, varying numbers of used page records to be handled in the cycle or varying
numbers of messages to be processed. The cycle rate of the main loop is a varying
factor.

Concerning the ROBIN PowerPC application, the used-page record handling task
is the most time-critical task. To ensure the safe and security of the ROBIN PowerPC
system, the processing rate of used-page record handling task (25 kHz) must be
guaranteed at any moment. It means that the running time of every main loop
cycle, including the slowest cycle, must not exceed a limited time period, i.e. 40us.

For the simplification of explanation, the running time of the slowest main loop
cycle is defined as the cycle time of the main loop, and the corresponding cycle rate
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is defined as the cycle rate of the main loop. So long as the defined cycle rate of the
main loop is above the required processing rate of the most time-critical task, the
safe and security is guaranteed.

At this point we can tell, the goal of the performance optimization for the stan-
dalone PowerPC application is to maximize the cycle rate of the main loop while
the required relative processing rate of each task is guaranteed. In other words, it is
to minimize the running time of each main loop cycle while the relative processing
rate of each task is guaranteed.

6.2.2 Application-Specific Optimization

According to the previous statement the optimization for the standalone PowerPC
application is to minimize the running time of each main loop cycle. To achieve this
goal, it is actually required to distribute the workload in the main loop uniformly
into each cycle. This is the principle of the optimization measures proposed in the
following of this section.

Without a real-time preemptive scheduler in the non-OS based PowerPC system, a
number of application-specific measures have to be taken to arrange the operations in
the main loop of the PowerPC application in order to improve the overall processing
rate of the entire system. It will be seen that, with the help of these measures, the
running time of the main loop cycle in the worst case is even expectable and so is
the overall processing rate of the PowerPC system.

6.2.2.1 Used-Page Records Handled in Every Main Loop Cycle

According to table 5.1, the task of used-page record handling needs to be executed
the most frequently in the PowerPC application and has accordingly the highest
priority. The only reasonable setup for the standalone PowerPC application is to
execute the task once in every main loop cycle.

The varying cycle rate of the main loop represents then the varying cycle rate of
this task. Therefore, at any moment the cycle rate of the main loop must not be
lower than the required minimum processing rate of the used-page record handling
task, i.e. 25 kHz. The running time of the slowest main loop cycle must not exceed
40us.

6.2.2.2 At Most Two Messages Handled in One Cycle

The task with the second highest priority is message handling. According to table
5.1 the minimum cycle rate of the task is 1 kHz. This number is given under the
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assumption that all messages in the request message descriptor FIFO are processed
at one cycle. That is to process up to 32 messages within one cycle. In this case the
running time of the cycles in the main loop with message handling could be much
extended. This is, however, against the above optimization principle of uniform
workload distribution.

In order to reduce the running time of every main loop cycle, it is preferable that
at most one message would be handled in one main loop cycle. However, as stated
in section 5.3 the average rate of request messages arriving at the ROBIN board is
around 30 kHz, which is faster than the expected cycle rate of the main loop, 20
kHz. Therefore, it is suggested for the standalone PowerPC application to process
at most two request messages in one main loop cycle. If more than two request
messages are available, only the first two of them are handled in the current cycle
and the other messages must be handled in a next or later cycle. In this way it
guarantees, in one main loop cycle at most two messages are handled and at the
same time the required processing rate of request messages is also sustained.

6.2.2.3 At Most Three Tasks Executed in One Cycle

According to the descending priority order, the tasks are arranged as 1) used-page
record handling, 2) message handling, 3) free-page update, 4) idle-task processing
5) and terminal command handling.

As stated above, the used-page record handling task and the message handling
task are executed in each cycle. The next question is then when to execute the other
three tasks. To keep the running time of one main-loop cycle short, a straightforward
measure is not to execute the other three tasks in a same cycle. That also means,
at most three tasks are executed in one main loop cycle. They are task 1, task
2 and one of the other three lower-priority tasks. Since the real-time performance
requirements for the three lower-priority tasks are not critical, this measure is easy
to realize.

6.2.2.4 Event Deletion Messages not Handled Together with Other
Lower-Priority Tasks in a Same Cycle

Most event deletion request messages are massive event deletion messages. Handling
of these messages is also a costly operation in the PowerPC application. In the
operation a number of events have to be firstly looked up in the hash table, in which
the used-page records of these events are stored, and then removed from the hash
table. Hence another measure to reduce the maximum running time of one main
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loop cycle is to handle event deletion messages not together with any of the other
three lower-priority tasks in a same cycle.

Although event deletion request messages are not so often received, an additional
measure for the system security must be taken in case event deletion request mes-
sages continue arriving in every cycle and the three lower-priority tasks are blocked.
Therefore, the minimum processing rates of the three low-priority tasks must be
defined.

According to table 5.1, the free page ID FIFO in the FPGA needs to be updated
every 5 ms in the extreme case when the FIFO is full after updating, i.e. 1k valid
free page IDs in the FIFO. Surely this is not always the case in the running. Actually
one condition needs to be satisfied for the free page ID FIFO update. That is, the
number of valid free page IDs in the FIFO keeps being equal to or greater than eight,
i.e. the size of the used-page record FIFO. It is easy for the PowerPC application
keep recording the current number of free-page IDs in the free-page ID FIFO. When
the number is less than 8, the task of free-page update is forced to be executed.

Minimum calling rates for the other two low-priority tasks can be fixedly config-
ured in the application. In this work the two tasks are called at least once every 100
main loop cycles.

Note that the last three measures stated above are, however, not so critical for
the PowerPC application based on the OS-based architecture, because the scheduler
in a real-time operating system guarantees the preemption for higher-priority tasks
even when a lower-priority task is in the running. On the contrary lower-priority
tasks are not encouraged to run more often than enough, in order to reduce the
overhead of task switching costs.

6.2.3 Worst Case after Optimization

Following the optimization measures proposed in the previous subsection, the max-
imum workload within one main loop cycle in the worst case is expectable. The
worst case occurs when all the three used-page record FIFOs are full and two event-
deletion request messages arrives. The maximum workload within one main loop
cycle is then to handle 24 used-page records and two event-deletion request messages.

6.3 Experiments

In this section the proposed standalone PowerPC application is tested together with
a ROS/ROBIN simulation system. In the following the experiment environment is
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firstly introduced. Then the performance of the standalone PowerPC application
is measured. In particular the processing rate of its main loop is tested. Finally,
the performance of the entire ROS/ROBIN system, with the proposed standalone
PowerPC application integrated, is also measured against the baseline requirement
of the ATLAS DAQ chain.

6.3.1 Setup of Testing Environment

The PowerPC application is developed on a desktop with a 2.4GHz Pentium 4 CPU.
The GNU toolchain is used to compile the code for the target PowerPC platform, i.e.
an IBM 440GP micro-controller. In order to load the final executable binary code
of the application to the PowerPC platform, an Abatron BDI2000 JTAG Debugger
is firstly used to write the U-Boot code to the PowerPC’s flash memory via an
Ethernet Hub. When the PowerPC starts to run, the U-Boot loads the executable
code of the PowerPC application from the desktop to the PowerPC’s memory (i.e.
the on-chip DDR SDRAM) via a serial connection, and then triggers the application
to run. Details about the setup of this cross development environment are found in
appendix B.

Since the ATLAS detector is still under construction, a simulation testing envi-
ronment is built up to test the designed ROS/ROBIN system. Figure 6.4 illustrates
the setup of the ROS/ROBIN testing environment.

Data Collector 1 Test Data
Data Collector 2 (Level 2 farm _ _ Generator
(EB emulator) emulator) GE Switch ROS Device (ROD Emulator)

GE

L]
L]
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Figure 6.4: Setup for the ROS/ROBIN testing environment
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It is described in chapter 3 that a commercial “off-the-shelf” high performance
PC is chosen as the ATLAS ROS host PC. The PC has a 3.4GHz Pentium 4 CPU
and four PCI buses. The PC is equipped with four ROBIN boards and two Gigabit
Ethernet network adapters. Setup of the ROBIN boards are the same as the ROBIN
prototype in the final design described in section 3.2.

As the event data input and output of the ROS system is concerned, three ad-
ditional PCs are used to set up the testing environment. They are one test data
generation PC and two data collection PCs.

At the event input side a PC with an 866MHz Pentium III CPU is the test data
generator, also named as the ROD emulator. It emulates the readout drivers (ROD),
which generates “event data” and forwards the data to the ROS system through the
SLinks on its affiliated ROBIN boards. Three SLink source cards called DOLAR
[39] are plugged into three PCI slots on the PC. Each DOLAR card contains four
HOLA SLinks. The event data fragments generated by the PC are sent to the ROS
PC via the 3 x 4 HOLA SLinks with configurable size and frequency.

Two data collection PCs are deployed at the event data output side of the ROS
system. Omne of them has a 2.66GHz Xeon processor and is used to emulate the
level-2 farm. The PC generates and forwards two types of request messages (data
requests and event deletion requests) to the ROS PC and collects reply event-data
messages that are sent back from the ROS PC. Note that each event deletion re-
quest message contains a list of up to 100 events. The other data collection PC has
a 2.4GHz Pentium 4 CPU and emulates the event builder. It forwards only data
requests to ROS and collects data messages from ROS. The two PCs are connected
through a Gigabit Ethernet switch to the network adaptors of the ROS PC. The
Gigabit Ethernet switch that connects the two data collection PCs with the ROS
host PC has an Allied Telesyn AT-9410GB with 10 ports.

In the following of this section, the standalone PowerPC application proposed
in this chapter is firstly tested. The performance of its single-loop-of-subroutines
design is measured. Then experiments are conducted to measure the performance
of the entire ROS/ROBIN system with the proposed PowerPC system integrated.

6.3.2 Performance of Standalone ROBIN PowerPC Application

As mentioned in section 6.2.1, the goal of the performance optimization for the
standalone PowerPC application is to minimize the running time of every main loop
cycle. The cycle rate corresponding to the running time of the slowest main loop
cycle is defined as the main-loop cycle rate that the standalone PowerPC application
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is capable to sustain. The experiment in this section is to measure the main loop
cycle rate of the PowerPC application, while varying event data request rate. The
event data request rate here refers to the event data rate that are requested by the
level-2 PC farm and the event builder.

Each event request from the level-2 PC farm or the event builder are firstly sent to
the ROS PC and then forwarded by the ROS PC to the ROBIN. For each requested
event a corresponding data request message is sent from the ROS PC to the ROBIN
and finally to the PowerPC application. All the event data, either requested or non-
requested, are always deleted in the end through event deletion request messages.
As mentioned previously, each event deletion request message contains a list of up
to 100 events.

An additional prerequisite for this test is, that at each loop cycle the used-page
record FIFO in the FPGA is always previously fully filled. That means, the test data
generation PC fills the ROBIN board with as much event data as the ROBIN Pow-
erPC application is capable to sustain, to guarantee a maximum data throughput
during the measurement.

Figure 6.5 shows the curve of the main loop cycle rate of the PowerPC application
while the event data request rate increases from zero to twenty percent. Higher event
request rates are not tested in this experiment. Because at most two messages are
handled in one main loop cycle, the according message handling rate will be lower
than the request message incoming rate if a higher event request rate above twenty
percent is provided.

When the event request rate increases, more event data request messages arrive
at the ROBIN board and more messages need to be handled in the main loop of the
PowerPC application. However, according to the curve the main loop processing
rate does not drop significantly with the increased event request rate. Due to the
optimization measures introduced in the previous section, the increased workload of
the application is distributed uniformly into the main loop cycles. Under a certain
limitation of workload, the most computational costly cycles are always those involv-
ing two event deletion requests. This is because the handling of an event deletion
request is the most costly operation. Besides, in this test the number of events to be
deleted in one event deletion request message is also fixed; therefore, the variation
in the processing time of these messages is very limited.

The figure also shows, when the event request rate is 10 percent, the cycle rate
of the main loop is around 29 kHz, i.e. a cycle time of about 34 us. That means,
the used-page record FIFO in the FPGA can be updated once every 34 us. This is
obviously above the real-time performance requirement (40 ps) as given in table 5.1.

Figure 6.6 shows the maximum level-1 event data incoming rate that the stan-
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Standalone ROBIN PowerPC Application — Performance Test 1
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Figure 6.5: Main loop cycle rate (supported by the standalone PowerPC
system) vs. event data request rate

dalone ROBIN PowerPC system can sustain while the event data request rate in-
creases from zero to twenty percent. Two curves are shown in the figure. The blue
curve is for the case that each event data fragment occupies one page in the event
buffer; the yellow curve is for the case that each event data fragment occupies two
pages in the event buffer. It is self-explanatory that the first curve is about one
time higher than the second curve. According to the ATLAS baseline requirement
the event request rate is about 10 percent and the level-1 event data incoming rate
is around 100 kHz. In this test when the event request rate is 10 percent, the sup-

ported level data incoming rates indicated in both the curves are above 100 kHz,
i.e. above the ATLAS requirement.

6.3.3 Performance of Integrated ROS/ROBIN System

The experiment in the previous subsection shows the satisfying performance of the
standalone PowerPC application itself. The experiments in this section are to mea-
sure the performance of the entire ROS/ROBIN system, in which the proposed
standalone PowerPC application is integrated.

For the ROS/ROBIN system the most concerned factor is the maximum level-1

84



6.3 Experiments

Standalone ROBIN PowerPC Application — Performance Test 2
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Figure 6.6: Maximum level-1 data rate (supported by the standalone Pow-
erPC system) vs. event data request rate.

incoming data rate that the ROS/ROBIN system is capable to support. In the
following this factor is measured, while varying different input or output factors of
the ROS/ROBIN system, including the data acceptance rate of the level-2 farm, the
data acceptance rate of the event builder and the size of event data fragments.

6.3.3.1 Maximum Supported Level-1 Data Rate versus Level-2 PC Farm
Data Request Rate

The first test measures the maximum allowed level-1 data rate that the ROS/ROBIN
system supports, while the data request rate from the level-2 PC farm varies. The
ROD emulator simulates the level-1 side and inputs event data continuously through
SLinks to the ROBIN boards. The level-2 farm emulator sends data request messages
to the ROS system, requires event data from the ROS, analyzes the data and makes
the level-2 data acceptance decision. The size of the pages inside the event buffers
is fixed to be 1K bytes and the sizes of event data fragments are up to 1K bytes.
The curve in figure 6.7 shows the results of this test. Obviously the higher the
level-2 data request rate is, the more data the ROS system must output. The more
the output volume is, the more workload the ROBIN devices have to take and
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Figure 6.7: Maximum ROS/ROBIN-supported level-1 data rate vs. level-2
PC farm data request rate

accordingly the lower level-1 data rate the ROBIN devices can support.

According to the baseline requirements of the ATLAS data acquisition chain the
output data rate of the level-1 trigger is at a maximum 100kHz. As shown in figure
6.7, to support this level-1 data rate, the data request rate by the level-2 PC farm
can be up to 8.3%. This is above the expectation by the ATLAS community. The
ATLAS community estimated, statistically around 7% of the level-1 event data are
requested by the level-2 PC farm for data analysis and data selection.

6.3.3.2 Maximum Supported Level-1 Data Rate versus Event Builder Data
Acceptance Rate

In this test the data request rate by the level-2 farm emulator is fixed to be 7%.
The balance between the data input from the ROD emulator and the data request
from the EB emulator is measured. That is, the maximum level-1 data rate that the
ROS/ROBIN system supports is measured, while varying the data rate of the event
builder. In this test the size of the pages inside the event buffers is also 1K bytes.
The diagram in figure 6.8 shows the results of this experiment. As with the above
experiment the higher the EB data request rate is, the lower level-1 data rate the
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Figure 6.8: Maximum ROS/ROBIN-supported level-1 data rate vs. event
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ROBIN devices can support.

In the ATLAS DAQ the level-2 accepted events are always requested by the event
builder. The ATLAS community estimated that statistically around 3% event data
are accepted by the level-2 trigger. Therefore, the expected data request rate of the
EB must be above 3%. According to the result of this simulation test as shown in
figure 6.8, to support the ATLAS baseline requirement (i.e. a level-1 data rate of
100 kHz), in the current ROS/ROBIN system the event data acceptance rate by the
event builder can reach 4.3%, which is above the ATLAS DAQ requirement.

6.3.3.3 Maximum Supported Level-1 Data Rate versus Event Data Fragment
Size

This test aims to measure the maximum supported level-1 data rate in case of
different event data fragment sizes. The diagram in figure 6.9 shows the test results.
Two curves are drawn in the diagram. They are for the cases when the level-2
acceptance rate is 3% and 5%, respectively.

The greater the size of ROL event data fragments is, the more data volume has
to be transmitted across the ROS/ROBIN system, and accordingly the lower level-1
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Figure 6.9: Maximum ROS/ROBIN-supported level-1 data rate vs. event
data fragment size

data rate the ROBIN boards can support. To support a level-1 data rate of 100
kHz, the size of the data fragment could be 1024 bytes. This is generally above the
ATLAS baseline requirement.

According to the experiments above, both the integrated ROB/ROBIN and the
standalone ROBIN PowerPC application have reached the ATLAS baseline require-
ment. Compare the graph in figure 6.6 with the graph in figure 6.9. The standalone
ROBIN PowerPC application itself has a relatively higher performance compared
with the integrated ROB/ROBIN.

6.4 Summary

This chapter presents a ROBIN PowerPC system based on the non-OS architecture
introduced in the previous chapter. Without an operating system the PowerPC ap-
plication is implemented as a single-thread program. Its cyclic tasks of the PowerPC
system, including free-page updating, used-page record handling, message handling
and idle-task processing are performed in a single loop.

Since no real-time preemptive scheduler is available inside the standalone non-

88



6.4 Summary

OS based PowerPC system, a number of application-specific measures have to be
figured out to organize operations in the standalone PowerPC application, in order
to improve the overall processing rate of the system. Several measures are proposed
in this chapter to optimize the the standalone PowerPC application. The objective
of the optimization is to distribute the workload in the main loop uniformly into each
cycle. With these optimization measures the maximum processing time of one main
loop cycle is both minimized and expectable. Accordingly the overall processing
rate of the PowerPC application is improved to meet the real-time performance
requirement in the ROBIN system.

The proposed standalone PowerPC system is tested together with an entire ROS/ROBIN
system in a simulated testing environment. Both the performance of the proposed
PowerPC system itself and the performance of the entire ROS/ROBIN system with
the PowerPC system integrated are tested. The experimental results tell the satis-
fying performances both of the PowerPC system and of the integrated ROS/ROBIN
system, with respect to the baseline requirement of the ATLAS DAQ chain.
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Real-Time Linux Based
PowerPC Application

This chapter deals with the ROBIN PowerPC system built upon the OS-based sys-
tem architecture. MontaVista real-time Linux is chosen as the operating system
for the OS-based ROBIN PowerPC system. The real-time capability of the real-
time Linux OS and the software design and optimization of the according ROBIN
PowerPC application are addressed in the chapter.

The chapter is organized as follows. Section 7.1 reviews the features of a real-time
Linux OS and discusses in particular its supports for real-time systems. Section
7.2 addresses the software design of the real-time Linux based ROBIN PowerPC
application. Section 7.3 introduces strategies to optimize the performance and to
improve the reliability of the real-time system. Finally, the performance of the
RT-Linux kernel and the performance of the proposed OS-based ROBIN PowerPC
system are measured and results are presented in section 7.4.

7.1 Real-Time Linux

Many commercial embedded real-time operating systems have emerged in the last
decades, including VxWorks, Windows CE, QNX, and some versions of real-time
Linux [65]. Real-time Linux is chosen for the implementation of the ROBIN Pow-
erPC system, due to its open source, its flexibility and its ability to support a wide
range of hardware platforms. Linux is inherently modular. It can be easily scaled
into compact configurations and customized according to system-specific require-
ments.

This section reviews firstly several related concepts in real-time systems and then
discusses in detail the real-time mechanism provided by the real-time Linux OS.
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7.1.1 Concepts in Real-Time Systems

Stankovic and Ramamritham gave a formal definition to a real-time system [61]:

A real-time system is a system in which the correctness of the system depends not
only on the logical results that the system produces, but also on the time in which
the results are produced.

“Response time” is an importance concept in a real-time system. Dankwardt gave
its definition [26]: the response time of an application is the time interval from
when the application receives a stimulus, e.g. a hardware interrupt, to when the
application has produced a result based on that stimulus. Along with the response
time, “deadline” is another important term. The deadline of a given task is the
longest acceptable response time of the task.

According to the strictness of the real-time requirements, real-time systems can
be classified into two groups: hard real-time systems and soft real-time systems. A
hard real-time system must guarantee that all the deadlines of the tasks must be
met at any time. The system designer must make sure that the deadlines can be
met, and that the system must not be overloaded. A soft real-time system, on the
other hand, is a system in which the deadlines are generally met. In such a system
it may be acceptable if a small number of deadlines are occasionally missed [26]. For
example, an air-traffic controller is an example of a hard real-time system, where it
is critical that every deadline is met. An audio sampling application could be an
example of a soft real-time system, where it is still acceptable if some samples are
lost from time to time, as long as it does not happen too often.

As the ROBIN PowerPC system is concerned, the system is a hard real-time
system, since the deadlines of its tasks must be strictly met. Otherwise, the incoming
event data from RODs are not processed in time, which may lead to data overwriting
and data missing.

7.1.2 Traditional Linux Kernel and its Limited Real-Time
Capability

Real-time capability of an operating system depends principally on its task schedul-
ing. It needs to determine, when to call the scheduler under a given circumstance
and which task to choose for the next to run. These two points are termed as the
scheduling time and the scheduling strategy, respectively. When a real-time task is
requested to run, a real-time system must guarantee the task being scheduled within
a certain time delay and also guarantee the task is chosen as the next task to be
called by the scheduler [58].

92



7.1 Real-Time Linux

7.1.2.1 Linux Scheduling Time

A task may terminate itself at any time or suspend itself by calling the system func-
tions, e.g. pause(), sleep() and etc. In such cases the task gives up the CPU actively
and causes the scheduler function to be called. Obviously, scheduling caused by the
volunteered task termination or suspension cannot meet the real-time requirement.
For example, when a task is in the running, a real-time task request occurs; but the
running task itself does not give up running; at last, the real-time task fails to start
in time.

Therefore, a preemptive scheduling is required. When a real-time task request
occurs, the system must have the ability to terminate or suspend a currently running
task and to schedule the real-time task to run. In Linux the preemptive scheduling
occurs each time when the system returns from the kernel space to the user space,
i.e. when a system call or an interrupt or error handling call is finished.

The Linux operating system provides a scheduling mechanism based on cyclic
preemption points [50] [60]. At each preemption point the OS scheduling function is
forced to be called. The preemption points give the operating system the possibility
to suspend or terminate a running task even when it refuses to give up running.
For easy understanding of the scheduling mechanism, figure 7.1 gives a simplified
illustration of the preemption-point based scheduling. When a real-time task request
arrives, it must wait till the next preemption point for the task to be called. Actually
a preemption point is a time span, instead of a time point, since the scheduling call at
a preemption point costs also CPU time. Figure 7.2 shows the actual task switching
processing for the example given in figure 7.1.

Linux applies a cyclic timer interrupt to realize the preemption points. The cycle
time varies for different versions of Linux. It is, however, always above microseconds
for the Linux systems. The cycle time decides the granularity of the preemption
points as well as the timing preciseness of the system. The response time for a
real-time task is also much related to this factor. For example, a cyclic task with a
cycle time of 100 us cannot be realized on a Linux OS.

Besides, the Linux kernel the preemption-point scheduling is disabled. That
means, when the kernel is running, a real-time task cannot be called even at pre-
emption point. The calling time of a real-time task is non-deterministic. This is a
significant limitation for Linux to be used as a real-time system.

7.1.2.2 Linux Scheduling Strategy

Linux supports three scheduling schemes: SCHED-FIFO, SCHED-RR and SCHED-
OTHER. SCHED-FIFO and SCHED-RR are for real-time tasks, while SCHED-
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OTHER is for non-real-time tasks. SCHED-FIFO is usually used for the real-time
tasks with relatively shorter running time. When these tasks are running, they
are not allowed to be preempted. SCHED-RR is used for the real-time tasks with
relatively longer running time. Among these real-time tasks with SCHED-RR the
round-Robin scheduling is applied.

Although each task has a certain scheduling scheme, the scheduling order of the
tasks depends on a positive weight value of each task. The scheduling scheme of
a task is surely taken into account when computing its weight value. Besides, for
a real-time task its weight value is always multiplied with a significant factor (e.g.

1000). Therefore, when a real-time task is ready, a non-real-time task has no chance
to be scheduled.

The above three scheduling schemes of Linux guarantee a real-time task to be
scheduled. In other words, the Linux OS is preemptible. However, the scheduling
time of a real-time task is still non-deterministic [17]. If a real-time task has a
deadline, a Linux OS cannot guarantee to meet the deadline. Therefore, the Linux
OS cannot be used in a “hard” real-time system, but only in a soft real-time system,
where the deadlines of real-time tasks are relative longer or must not be met strictly.

7.1.3 Improvements in Real-Time Linux Kernel
7.1.3.1 An Additional Real-Time Kernel Layer

Many researches have been done to improve the real-time performance of Linux.
One widely-used approach is to add a hardware abstraction layer between system
hardware and Linux. Also a new separate real-time scheduler is used which runs
Linux as its lowest priority thread. The hardware abstraction layer takes control
over the system interrupts and passes them on to Linux only if no real-time task is
running. When Linux tries to disable interrupts, it only sets a flag in the hardware
abstraction layer and cannot really turn off the interrupts or prevent itself from
being preempted. Thus, the real-time scheduler has full control over the system
and Linux runs virtually unmodified. Actually the hardware abstraction layer and
the separate real-time scheduler construct another OS kernel, i.e. a small “hard”
real-time kernel.

Above such a real-time Linux OS a user application is usually written in two parts:
time-critical part and non time-critical part.

- Tasks in the time-critical part have strict timing requirements. They are writ-
ten as kernel modules and executed as real-time tasks within the kernel space,
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which prevents the tasks to be swapped out and also the number of TLB
(Translation Lookaside Buffer) misses is reduced. These tasks have full access
to the kernel real-time API and the underlying hardware.

- Tasks in the non time-critical part, such as user interface, are written and
executed in the user space outside of the kernel.

The two different parts communicate with each other through, for example, FIFO
queues or shared memory. The software split requires obviously a new design of the
application. Besides, the real-time tasks are written as kernel modules using the
kernel real-time API, instead of the standard Linux API. Different programming
skills are required from the application developers to write Linux kernel modules
instead of a Linux application process. More cautions must be taken, since an error
in a kernel module may crash the whole system. This is a price that has to be
paid for the additional deterministic environment, which is required by every hard
real-time system.

RTLinux [30] and RTAI [27] are two extensions of Linux that provide the above
technique about a real-time kernel layer. RT-Linux is a shared space system. That
means, both the OS kernel and real-time tasks are running in the kernel space and
the user space is only for the non-real-time tasks to run. Due to its compact small-
sized real-time kernel it is chosen for the ROBIN PowerPC system.

Figure 7.3 shows the kernel structure of RT-Linux. Through combining the RT-
Linux kernel with the Linux kernel, RT-Linux not only meet the requirement of
real-time systems but also has the possibility to access numerous powerful functions
in the modern Linux operating system.

7.1.3.2 Increasing the OS Timing Preciseness

As mentioned above, the timing preciseness of a traditional Linux OS is at the
millisecond level. This preciseness is much below the real-time requirement of many
real-time systems. Hence an intuitive idea to improve the real-time performance of
the Linux OS is to increase the granularity of its preemption points. In this case the
kernel checks more often if a higher priority process is ready to run, to reduce the
response time to the real-time tasks.

Moreover, to further increase the preciseness of the OS timing system, the RT-
Linux scheduling uses a one-shot timer instead of a cyclic timer, which was used
previously to realize cyclic preemptive points, and adjusts the one-shot timer for the
scheduling point of the next real-time task. In such a way the CPU resources can be
much spared, since there is no need any more to call the OS scheduling cyclically at
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Figure 7.3: RTLinux kernel structure.

each preemptive point even when no high-priority task occurs. Besides, the waiting
time t,, for a high-priority task request can also be spared. For the notation ¢, refer
to figure 7.1 and figure 7.2.

7.1.4 Choice of MontaVista Linux

The Linux community is very active in adding features to support new hardware,
fixing bugs in the kernel, as well as making general improvements in a timely manner.
This results in having a new release of a stable Linux tree roughly every 6 months or
less. Different kernel trees and patches for specific architectures are maintained by
different maintainers. When choosing a kernel for a project, one needs to evaluate
how stable the release is, whether it caters to the project requirements and the
hardware platform, whether it comforts the programming from the point of view
of the system developers, and so on. It is also very important to find out all of
the patches that need to be applied to the base kernel to tune it for the specific
architecture.

Several alternatives of real-time Linux operating systems have been developed in
the last decades of years. MontaVista Linux was chosen and built in the ROBIN
PowerPC system, because it is one of leading real-time Linux solutions and is re-
ported to support the PowerPC very well [51]. The MontaVista Linux offers a wide
range of benefits in terms of reducing time requirements and minimizing risk.

Before compiling MontaVista, the real-time Linux kernel must be configured firstly
with proper parameters for the ROBIN board. The MontaVista Embedded Linux
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3.1 is applied to the ROBIN PowerPC system, which is running with Linux kernel
2.4.26.

MontaVista was designed to run virtually for any embedded system. Now that
the OS kernel is available, the ROBIN Board Support Packages(BSP) needs to be
added to make the kernel fit into the ROBIN board.

7.2 Software Design

Due to the same functionalities the software design of the RTLinux-based PowerPC
application shares a same component diagram and a same use case diagram as in the
standalone PowerPC application. Refer to section 6.1.1 and section 6.1.2 for details
of the two diagrams, respectively. Difference between the RTLinux-based PowerPC
application and the standalone PowerPC application lies mainly on its scheduling
of its predefined tasks.

7.2.1 Multi-Task Scheduling

The standalone PowerPC application implements its tasks in a single loop and ad-
justs a cycle counter to control the calling rate of each task. A disadvantage of
this single-loop mechanism is the possibility that multiple tasks must be finished
in one loop. This leads to extended cycle time every now and then, such that the
system is not capable to sustain an expected data processing rate stably, especially
a stable handling rate of incoming event data or used-page records. Therefore, sev-
eral application-specific approaches have to be proposed in section 6.2 in order to
optimize the performance of the standalone ROBIN PowerPC application.

For the OS-based ROBIN PowerPC application, the multi-task scheduling of the
real-time Linux OS provides a generic solution to the scheduling of its multiple tasks.
Tasks are prioritized. A higher-priority task can preempt a running lower-priority
task. Each task can define its own individual cycle time. It is the job of the operating
system to manage the scheduling of the tasks automatically. It guarantees firstly
the highest-priority task to be performed within its required cycle time, then the
second highest-priority task and so on. In a logic real-time application the expected
cycle time of each of its tasks are met strictly.

Figure 6.3 shows five tasks in the main loop of the standalone ROBIN PowerPC
application. In the OS-based ROBIN PowerPC application each of the five tasks can
run in a single thread. The priorities of the threads are set according to their real-
time requirement. According to the real-time requirement analysis of these tasks
as shown in table 5.1, the task of used-page record handling requires the highest
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processing rate and accordingly the highest priority, and then the message handling
and the free-page update, sequentially. The idle task handling and the terminal
command handling have the lowest priority.

7.2.2 Cautions in Multi-Task Scheduling

Two things must be taken care of in the development of an RTOS-based application.
One is about shared resources among the multiple tasks; the other is about the
overall performance of the application, i.e. whether the required cycle time of each
task is met strictly. The second point tells also the performance feasibility of an
application.

7.2.2.1 Shared Resources

For single-loop scheduling, tasks are called one after another and at one moment
shared resources are always occupied by a single task. No conflict takes place in that
case. In an RTOS-based application, an unfinished operation on a shared resource
inside a lower-priority task may be broken up by a higher-priority task and the
higher-priority task may modify the shared resource further based on the unfinished
operation. For example, the hash table of used-page records in the ROBIN PowerPC
application is a shared resource for the task of message handling and the task of used-
page record handling. While the former task is deleting a used-page record from the
hash table according to the command of an event deletion message, the latter task
may preempt the former and insert newly-incoming used-page records into the hash
table. This may cause fatal data inconsistence in the ROBIN system.

Therefore, cautions must be taken to protect shared resources among the tasks,
either by defining a shared-resource operation as a critical section that allows no
preemption, or by using a mutex lock to protect a same share resource.

7.2.2.2 Performance Feasibility

Although the real-time requirements of higher-priority tasks are firstly satisfied, the
performance of the overall application must also be considered. Design of the whole
application must guarantee the required cycle time of each task is met strictly. In
single-loop scheduling, overloaded tasks cause a performance dropdown of the overall
application. But for real-time multi-task scheduling, accumulated overloaded job
may crash the system.

Therefore, a reasonable determination of the cycle time of each task is particularly
important for a real-time system with multi-task scheduling. Tt decides the feasibility

99



7 Real-Time Linux Based PowerPC Application

of the application. A too long cycle time may not meet the real-time performance
requirement of the system, while a too short cycle time may cause system crash by
overburdened job.

7.3 Performance Optimization

The most principal performance cost for automatic priority-based real-time multi-
task scheduling is the overhead of task switching. Therefore, in order to improve
the performance of a real-time system with multi-task scheduling, it is not only
necessary to improve the efficiency of each task by reducing the processing time of
the tasks themselves, but also necessary to reduce the switching rate among the
tasks.

Apparently the task switching rate is in inverse proportion to the cycle time
of the tasks. When the tasks are called more often, switching between the tasks
occurs also more frequently. Besides, it will be shown in the following that the task
switching rate is in direct proportion to the number of tasks, when the computational
time of the tasks are relatively short. Based on the two principles, this section
aims to minimize the overhead of task switching in the OS-based ROBIN PowerPC
application by reducing the number of scheduled tasks reasonably and determining
a moderate cycle time for each of the tasks.

To distinguish the cyclic tasks in the ROBIN PowerPC application from the tasks
scheduled by the OS scheduler, the latter “tasks” are termed as “OS tasks” in this
section.

7.3.1 Reducing the Number of Tasks

As stated in section 7.2.1 there are five cyclic tasks in the ROBIN PowerPC appli-
cation. (Refer to figure 6.3 in section 6.1.3 for the details of the five cyclic tasks.)
The simplest design for the OS-based PowerPC application is to let each of the five
tasks run in one single thread and use the OS multi-task scheduler to schedule the
five tasks.

Except the highest-priority task of used-page record handling, which has a strict
limitation to its minimum processing rate of 25 kHz (see table 5.1), the other four
tasks only need to reach an average processing rate. In other words, the used-page
record handling task is a “hard” real-time task and the other four tasks are “soft”
real-time tasks. Therefore, there is a great flexibility to join the four lower-priority
tasks into a smaller number of OS tasks or to adjust their cycle time to reach an
optimal performance of the PowerPC application.
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Consider the design of the standalone non-OS based ROBIN PowerPC application,
which implements all its five cyclic tasks in one loop. Following the idea of one-loop-

of-subroutines, an extreme design is to put all the four lower-priority tasks into one
OS task and use a cycle counter to adjust the relative processing rates of the four
tasks. Since the four tasks are soft real-time tasks, the extreme design is theoretically

acceptable, so long as the average processing rates of the tasks are reached. In this
case there are only two OS tasks scheduled by the operating system. However, this
does not guarantee a reduced rate of task switching. If the running time of the

lower-priority task at one cycle is too long, e.g. multiple times of the cycle time of

the higher-priority task.
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Figure 7.4: Task switching.

Figure 7.4 shows an example for task switching. Two cyclic tasks are sharing the

CPU in the example. Task 1 is a higher-priority task. Task 2 is a lower-priority
task. Task switching occurs, when task 1 preempts task 2 or when task 1 finishes its

operation at one cycle and task 2 resumes its operation. To simplify the denotation,
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it assumes that the computational time for task switching at any situation is constant
and the computational time for either task at each cycle is also constant. Besides,
the starting requests of both tasks are assumed to arrive at a same time. In this
case the number of task switching within one task-2 cycle is always an odd number.
Let N denote the number of task switching and let N = 2 xn + 1. Then we can
derive the following equation.

to_abs = 2% n % lsw TN xlp + 12 =n % Tcl + to_eatra

where

- tgy is the computational time for task switching,

- T is the cycle time of task 1,

- Ty is the cycle time of task 2,

- t,1 is the computational time of task 1 at one cycle,
- tqo is the computational time of task 2 at one cycle,

- to_aps is the absolute running time of task 2 at one cycle, (i.e. from task-2
start to task-2 stop)

- and to_eqzerq 18 a small fraction of ¢,5 value, equal to to —nx (T — (2% tsy +1,1))
and smaller than T,; — t,; — 2 * .

See figure 7.4 for the illustration of the above denotation. When tg,, Ty , T
t,1 and t.o are known, a unique solution to the integer n can be derived from the
above equation. A similar equation can be derived when more than two tasks get
involved in the scheduling.

The example in figure 7.4 tells, the task switching rate does not always drop
significantly, when the number of tasks is reduced. This is the case of the extreme
design as mentioned above, i.e. merging all the four lower-priority tasks into one OS
task. The computational time of the four merged tasks is a number of times of the
cycle time of the single highest-priority task of used-page record handling.

However, when two or more tasks with relatively short computational time, (shorter
than Ty — (2%tg, +1t,1) for the example in figure 7.4,) merging of these tasks will ob-
viously decrease the task switching rate. This is the case of the three lowest-priority
tasks in the ROBIN PowerPC application: free-page ID FIFO updating, idle task
handling and terminal command handling. Each of the three tasks has very short
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computational time and their processing rates are also by far lower than the other
two highest-priority tasks. Therefore, the first optimization measure is to merge
the three lowest-priority tasks into one OS task. The number of OS tasks to be
scheduled by the real-time operating system is reduced to the following three in the
descending priority order:

- OS Task 1 : used-page record handling,
- OS Task 2 : message handling,

- OS Task 3 : free-page ID update, idle task processing and terminal command
handling.

7.3.2 Determination of Task Cycle Time

For a real-time system it is necessary to set a reasonable cycle time for each of its
tasks, so that it is not too long to miss the real-time performance requirement of the
system, and that it is not too short to cause too much overhead of task switching
and lead to system overload.

A overloaded real-time system results in task overrun. It means that not all
its real-time tasks are executed within their respective expected cycle time. For
instance, for the example system with two real-time tasks as shown in figure 7.4, the
system gets overloaded when the following condition is satisfied:

tQ, abs Z T02 .

In this case the actual running time of the lower-priority task is longer than the
expected cycle time of the task. If the coming task-2 requests are not ignored, the
waiting task queue grows, which will eventually leads to system crash.

As mentioned in the previous section the five tasks in the ROBIN PowerPC ap-
plication run in three cyclic OS tasks, i.e. three real-time tasks scheduled by the
operating system. The following of this subsection discusses the strategies to deter-
mine the cycle time of the three tasks.

7.3.2.1 OS Task 1

Used-page records are handled in the first cyclic task. This most time-critical task
has the highest priority in the system. The maximum allowed cycle time for this
task is 40 us as given in table 5.1. For security the actual cycle time must be shorter
than 40 ps. In this work the shortest system-allowed cycle time of this task is not
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determined a priori, but regarded as a criterion to evaluate the real-time capability
of the ROBIN PowerPC system. Experiments presented in section 7.4 are done to
measure the shortest cycle time of this task that the OS-based ROBIN PowerPC
application is capable to reach.

7.3.2.2 OS Task 2

Message handling task is performed in the second OS task. A limitation to the
average processing rate of this task is 1 kHz, which is also given in table 5.1. But
the determination of the cycle time of this task is more flexible, since shorter cycle
time means in one cycle fewer messages arriving at the message description FIFO
and fewer messages need to be handled. Tt is not absolutely necessary to process all
32 messages in the message description FIFO in one cycle. According to practices
a balanced choice of the cycle time for message handling task is set to be 200 us. It
is five times as the cycle time of the used-page record handling task and one fifth of
the maximum-allowed average cycle time of the task as given in table 5.1. It is easy
to count, there are 6.4 (i.e. 32/5) messages on average to be handled in one cycle.

7.3.2.3 OS Task 3

Free-page ID FIFO update is the only job in the third OS task that has certain real-
time requirement. In order to reduce the burden of the system this thread is called
so often as necessary. For this purpose the cycle time of this OS task is adjusted
dynamically during the running according to the following strategy.

At each cycle of OS task 3, the cycle time for its next round 7,3 is re-determined
by the current number of free-page IDs in the free-page ID FIFO n; and the a-priori
known event data rate (or free page occupation rate r¢ ), i.e. T3 = ny/rp. At the
system initialization the event buffer are empty and all pages are free. Hence, the
initial number of free pages in the free-page ID FIFO ny, is the minimum of the size
of free-page ID FIFO S; and the total number of pages N,, i.e. ny = min(Sy, N,).
Therefore, the initial cycle time of thread 3 is 1,3, = ny, /7y

7.4 Experiments

Like the standalone ROBIN PowerPC application, the OS-based PowerPC applica-
tion is also developed with a cross development environment as described in appendix
B. In this section the real-time performance of the MontaVista RT-Linux OS is firstly
measured. Then the ROBIN PowerPC application based on the MontaVista Linux
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is tested. In order to reach the best performance of the OS-based ROBIN PowerPC
system, the system performance is tested against difference cycle rates of its tasks.

7.4.1 Performance of MontaVista RT-Linux Scheduling

This subsection aims to measure the performance of MontaVista real-time Linux
operating system. The most concerned OS performance for the ROBIN PowerPC
application is the performance of the OS scheduling and in particular task switching
delays caused by the scheduling.

For the ROBIN PowerPC application there are two scenarios for task switching.
In the first scenario a higher-priority task preempts a running lower-priority task; a
delay is caused when the running lower-priority task is suspended and the higher-
priority task is activated. In the second scenario a suspended lower-priority task is
resumed when all higher-priority tasks finish their operations; a delay occurs when
the last higher-priority task is terminated or suspended to wait for the next cycle
and the lower-priority task is resumed.

Experiments in this section are to measure the two kinds of task switching delays
caused by the OS scheduling. Two tasks are defined in the test: task 1 and task
2. Task 1 is a cyclic task and its cycle time is one millisecond. At each cycle task
1 switches a LED on and off once. Task 2 is continuously running task, which
toggles another LED constantly. Task 1 has a higher priority compared with task
2. Since the priority of task 1 is higher, it preempts the continuously-running task
2 cyclically.

The following is the code of task 1:

while (true)

{
SetLedOn (1); /% set LED 1 on =/

SetLedOff (1); /* set LED 1 off «/
Sleep (1) ; / * suspend itself for one millisecond x /

}

The code of task 2 is given as follows:

while (true)
{
SetLedOn (2); /* set LED 2 on */
SetLedOff (2); /% set LED 2 off */
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In the first task switching scenario task 1 preempts the running task 2. The LED
controlled by task 2 stops toggling and a pulse is generated at the LED controlled
by task 1. An oscilloscope is used to detect the signals at the two LEDs. Figure
7.5 shows the result acquired by the oscilloscope. According to the figure the delay
caused by the task switching at task preemption is around 28 microseconds.

In the second task switching scenario for this test, task 1 finishes its operation in
the current cycle and suspends itself to wait for its next cycle and the waiting task 2
is resumed. That is, a pulse has been generated at the LED controlled by task 1 and
the LED controlled by task 2 resumes toggling. Figure 7.6 shows the measurement
result of the task switching delay at lower-priority task resume. According to the
figure the task switching delay in the second task switching scenario is about 10,5
microseconds.

7.4.2 Performance of RTLinux-Based ROBIN PowerPC
Application

As mentioned in section 7.3, three final cyclic OS tasks are defined and scheduled
by the RT-Linux operating system. Refer to page 103 for the definitions of the
three tasks. The maximum cycle rate that the first OS task (i.e. used-page record
handling) can reach is the most important concern for the real-time performance
of the OS-based ROBIN PowerPC application. As mentioned before, this factor is
regarded as a criterion to evaluate the real-time capability of the ROBIN PowerPC
system. The experiment in this subsection is to find the optimal setup of the OS-
based ROBIN PowerPC application, to reach the best real-time performance of the
PowerPC system, i.e. the maximum cycle rate that the first OS task of used-page
record handling.

The experiment is carried out under the ROS/ROBIN testing environment as
described in section 6.3.1. On one side a ROD emulator generates event data and
feeds the data to the ROS PC which is mounted with ROBIN boards. On the
other side two data collection PCs emulate the level-2 farm and the event builder,
respectively. They generate and forward data request messages and event deletion
messages to the ROS/ROBIN system and collect requested event data backwards.

The cycle time of the second and the third OS tasks is determined according to the
strategies introduced in section 7.3.2. The cycle time of the second OS task is fixed to
be 200 ps, while the cycle time of the third OS task is adjusted dynamically according
to the actual system workload. The experiment in this section is to measure the
maximum cycle rate of the first OS task, while varying event data request rate. As
with the experiment in section 6.3.2 an additional prerequisite for this experiment
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is a full load of incoming event data, which is as much as the system can process. In
other words the used-page record FIFO is always full at each cycle of the first OS
task for used page handling.

Figure 7.7 shows the curve of the maximum cycle rate of the used-page-handling
task while the event data request rate increases. Figure 7.8 shows the corresponding
maximum incoming rate of the event data that the OS-based ROBIN PowerPC
application is capable to support.

RTLinux-Based ROBIN PowerPC Application - Performance Test 1
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Figure 7.7: Maximum cycle rate of the used-page handling task (supported
by the OS-based ROBIN PowerPC system) vs. event data re-
quest rate

According to the two diagrams the performance of the proposed RTLinux-based
ROBIN PowerPC application does not meet the ATLAS baseline requirement. Only
when every event data fragment is guaranteed to take no more than one page in event
buffers, the performance of the RTLinux-based PowerPC application is capable to
meet the real-time requirement. However, this is not always the case for the ROBIN
system.

Analyzing the consumption of the CPU time, it is easy to tell that most of the CPU
time is devoted to the OS scheduling. According to the performance measurement of
the RTLinux scheduling, 28 us is needed for task preemption and 10 us for suspended
task getting resumed. This means, for this experiment the OS scheduling for task
switching consumes over two thirds of the total processing time, while less than one
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RTLinhux-Based ROBIN PowerPC Application - Performance Test 2
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Figure 7.8: Maximum level-1 data incoming rate (supported by the OS-
based ROBIN PowerPC system) vs. event data request rate.

third of the CPU time is devoted to task execution.

7.5 Summary

This chapter presents an OS-based ROBIN PowerPC system. MontaVista RT-Linux
is chosen as the real-time operating system for the PowerPC system. With the
existence of a real-time operating system, user tasks are prioritized and scheduled
automatically by a real-time OS scheduler, to achieve a hard real-time performance
of the tasks.

However, one tradeoff for this convenience is an extra computational cost for the
multi-task scheduling or task switching. In order to reduce this cost several measures
are proposed in this chapter to improve the performance of the system by reducing
the number of user tasks and making an optimal choice for the cycle time of the
tasks.

Finally, the performance of the RT-Linux kernel as well as the performance of
the proposed OS-based ROBIN PowerPC system are measured. Results show that
the performance of the RTLinux-based ROBIN PowerPC system does not meet the
related ATLAS DAQ baseline requirement. However, according to the analysis of
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the CPU time consumption, most of the computational time is devoted to the OS
scheduling for task switching. The attempt in this chapter tells that there would be a
chance for an OS-based ROBIN PowerPC system to meet the ATLAS DAQ baseline
requirement, if an upgraded real-time operating system would emerge in the future
with a real-time scheduler of higher performance, especially for task switching.
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Conclusions

The goal of this dissertation is to realize an embedded real-time system for the AT-
LAS Readout Buffer INput (ROBIN). ROBIN is the centric device inside the ATLAS
readout subsystem (ROS), which is one of the most essential buffering systems in
the LHC/ATLAS data acquisition chain (TDAQ).

For the final design of ROBIN the ATLAS community decided to adopt the one
based on two kernel processors: a Xilinx Virtex IT 200 FPGA and a PowerPC
440GP micro-controller. The combination of an FPGA processor with a PowerPC
micro-controller takes advantages of both kernel processors. The former controls
the data flow with high performance requirements, and the latter is responsible for
more complex and flexible management functions with relatively lower performance
requirement. This work focuses on the design and optimization of the ROBIN Pow-
erPC system.

Due to limited resources in the embedded ROBIN PowerPC system and strict real-
time performance requirement, effective strategies have been studied in this work
for the ROBIN event buffer management, which are economic both in the memory
space and in computational cost. Three algorithms are introduced in this work for
the event buffer arrangement and assignment, the fast event lookup and the storage
of the related data structures.

Firstly, a page-based scheme is adopted for the organization of event buffers,
i.e. segmenting a 64MB SDRAM event buffer into fixed-sized pages. A hash table
is introduced to deal with the mappings between event IDs and page IDs, which
guarantees a balanced distribution of hash nodes over hash buckets. The dynamic
organization of the hash table is managed with static data structures. Dynamic
memory allocation is avoided in order to keep system security and stability. Secondly,
since there exists an one-to-one mapping between occupied pages in the event buffer
and hash nodes in the hash table, a same mechanism is proposed both for the
arrangement of the event buffer and for the arrangement of the static hash node
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buffer. In such a way the computational effort of the ROBIN PowerPC application
is skillfully reduced. Thirdly, a chained free hash-node list is introduced as the
buffer allocation mechanism for the two buffers above. The chained free hash-node
list is built within the hash node buffer, with no extra memory space. This proposed
buffer allocation strategy based on a chained free-node list can be easily extended
to handle buffer management problems for other embedded systems. The solution
even contributes to solve a generic memory management problem, if the memory
has to be divided into partitions with fixed size and each partition is a minimum
unit for memory allocation and release. In such a case, the proposed algorithm is an
optimal solution to the memory management both in respect of space complexity
and in respect of time complexity.

With given strategy and algorithms for the ROBIN event buffer management, the
primary software components and functionalities for the ROBIN PowerPC system
are defined. Moreover, following the baseline requirement of the ATLAS data acqui-
sition chain, the real-time performance requirements of the PowerPC software are
also determined.

For the implementation of the ROBIN PowerPC system, two architectures are pre-
sented in this work, depending on whether a real-time operating system is integrated
into the system.

In the standalone PowerPC system based on the non-OS architecture the ROBIN
PowerPC application is implemented as a single-thread program. Without a real-
time preemptive scheduler, all the cyclic tasks of the ROBIN PowerPC application
are performed in a single loop, although these tasks have different priorities and
different real-time performance requirements. In order to improve the overall pro-
cessing rate of the single main loop, a number of application-specific measures have
been proposed to organize operations in the loop optimally. The goal of the opti-
mization is to distribute the operations uniformly into each cycle of the main loop,
to minimize the maximum processing time of one main-loop cycle. This is because
the processing rate of the main loop reflects the cycle rate of the most time-critical
task in the ROBIN PowerPC system.

MontaVista RT-Linux is chosen as the real-time operating system (RTOS) for
the OS-based ROBIN PowerPC system. With the existence of an RTOS, user tasks
are prioritized and scheduled automatically by a preemptive real-time multi-tasking
scheduler. One tradeoff for this convenience is an extra computational cost for the
scheduling or task switching. In order to reduce this cost several measures are
proposed to improve the performance of the system by reducing the number of user
tasks and making an optimal choice for the cycle time of the tasks.

Performances of the two implementations above of the ROBIN PowerPC system
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are measured through elaborate experiments in a simulated ROS/ROBIN testing
environment. The performance of the standalone non-OS based PowerPC system
is slightly above the baseline requirement of the ATLAS DAQ chain, while the
performance of the RTLinux-based ROBIN PowerPC system does not meet the
related ATLAS DAQ baseline requirement. According to the analysis of the CPU
time consumption, over two thirds of the computational time for the RTLinux-based
system is devoted to the task scheduling or switching. Apparently, to make the OS-
based ROBIN PowerPC system work, a higher-performance real-time scheduler is
required.

However, the attempt with the OS-based PowerPC system tells that there would
be a chance for an OS-based ROBIN PowerPC system to meet the ATLAS DAQ
baseline requirement, if an upgraded real-time operating system with a real-time
scheduler of higher performance, would emerge in the near future. For a complex
multi-tasking application an OS-based system architecture is always the tendency.
Despite an extra cost of memory space for the OS kernel and an extra computational
cost for the scheduling, the introduction of a real-time operating system into a multi-
tasking application saves by far more efforts for the software development.
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GNU GNU Not Unix

GPIO General Purpose 10

GPL General Public License

IC Integrated Circuit

ICE In-Circuit Emulator

10 Input/Output

ISR Interrupt Service Routine
JTAG Joint Test Action Group

LED Light-Emitting Diode

LEIR Low-Energy Injector Ring

LDC Link Destination Card (SLink)
LEP Large Electron/Positron Collider
LHC Large Hadron Collider

LHCb LHC-beauty (Detector)

LIFO Last-In-First-Out

LILO LInux LOader

LRU Least-Recently-Used

LSC Link Source Card (SLink)

MAC Media Access Control

MBR Master Boot Record

MMU Memory Management Unit

OS Operating System

PCI Peripheral Component Interconnect (Local Bus)
PCI-E PCI-Express

PLD Programmable Logic Device
PSB Proton Synchrotron Booster
PSR Proton Synchrotron Ring

RISC Reduced Instruction Set Computer
RTAI Real-Time Application Interface

RTHAL Real-Time Hardware Abstraction Layer
RT-Linux Real-Time Linux

RTOS Real-Time Operating System
ROB ATLAS ReadOut Buffer
ROBIN ATLAS ReadOut-Buffer INput
ROD ATLAS ReadOut Driver

Rol Region of Interest

ROS ATLAS ReadOut-Subsystem
ROL ATLAS ReadOut-Link
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SDRAM Synchronous Dynamic Random Access Memory
SM Standard Model

SoC System on a Chip

SPD Serial Presence Detect (Memory)

SPS Super Proton Synchrotron

TDAQ ATLAS Trigger and Data Acquisition Chain
TeV Tera Electron Volt

TLB Translation Lookaside Buffer

UART Universal Asynchronous Receiver /Transmitter
USB Universal Serial Bus

VME Versa Module Europa
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Software Development
Platform for the PowerPC
System

B.1 Cross-Development Environment

An embedded system runs usually on a special target platform, for example, a micro-
controller that runs with a minimal amount of memory for its own purpose. On such
a platform it is inconvenient or impossible for its software developers to develop their
applications or compile their code directly above. Therefore, it is common that the
embedded software is developed on another platform, such as an x86 desktop PC.
Accordingly, a special toolchain is required for the cross development. The toolchain
must be capable of creating executable code for the target platform other than the
one on which the toolchain runs. This process is referred as cross compiling, and
the special toolchain is termed as cross compiler.

The software development for the ROBIN PowerPC system requires also a cross-
development environment and a cross compiler or toolchain. The toolchain executes
on an X86 platform, but generates binary code for a PowerPC platform. The U-Boot
program, the real-time Linux OS as well as the application for the ROBIN PowerPC
system are all integrated with the cross-platform toolchain.

The GNU toolchain is chosen for the software development for the target ROBIN
PowerPC system. The GNU toolchain is composed of a GNU C/C++ compiler,
a GDB debugger, an assembler, a linker and other binutils. Figure B.1 shows the
cross development environment for the ROBIN PowerPC system.

Furthermore, nowadays the increasing complexity of software and hardware design
leads to new approaches for debugging. Silicon manufacturers offer also increasing
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Figure B.1: Hardware deployment of the cross development environment
of the PowerPC system.

on-chip debugging features to assist embedded software developers to debug their
code.

Joint Test Action Group (JTAG), implemented for various processors, follows the
IEEE 1149.1 standard which entitles standard test access ports for testing. With
JTAG debug port, one can control and monitor the microcontroller solely through
the stable on-chip debugging services. This debugging mode keeps running even
when the target system crashes, which enables developers to continue investigating
the cause of the crash. This is a significant advantage over generic software debug-
gers. Moreover, JTAG debugger is also relatively cheaper and more general purpose
than e.g. an in-circuit emulator(ICE).

For the software debugging on the ROBIN PowerPC system, Abatron BDI2000
JTAG Debugger is used. The BDI2000 can be used for many types of processors,
including CPU12/16/32, PowerPC, ColdFire, M-CORE, MIPS, XScale, ARM, etc.
The BDI2000 sets up a communication path between the development PC and the
target ROBIN board via RS232 or 10 BASE-T Ethernet. The BDI2000 converts
the debug commands automatically into appropriate JTAG sequences, which are
transferred to the target ROBIN board via a JTAG port. The use of a JTAG
interface occupies no system resource on the target system, i.e. in this case the
PowerPC system.

B.2 U-BOOT for the ROBIN PowerPC System

U-Boot is the abbreviation for das U-Boot (Universal Boot Loader). It is a prevailing
boot loader implementation specially for embedded systems. It supports a number
of different computer architectures, including PPC, ARM, MIPS, x86, m68k, Nios,
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PowerPC, etc. It is released under the GNU General Public License (GPL) and
takes advantage of an open development process. U-Boot is usually built on an x86
PC for any supported architecture using a cross development environment. Because
the U-Boot provides strong supports for PowerPC architectures, it is chosen as the
boot loader for the ROBIN PowerPC system.

In this section some basic concepts about bootstrap loader are firstly introduced.
Then the specific features of the U-Boot is given. At last the U-Boot adaptions and
extensions specially for the ROBIN PowerPC system are presented.

B.2.1 Bootstrap Loader

Any computer system, both for a personal computer and for an embedded chip
mounted on a car, an aircraft, a robot, or a toy, can only execute codes that already
exist in the memory, such as Read-Only Memory (ROM) or Random Access Mem-
ory (RAM). However, an operating system or a single application-specific program
are often stored on non-volatile storage devices, e.g. hard disks, USB disks, or CD
drivers. Therefore, a bridge solution needs to be developed to load the target op-
erating system or application-specific program into the memory and then to trigger
their start. A bootstrap loader is commonly applied to accomplish this task.

This section reviews the basic concepts of bootstrap loaders, their principal tasks
in embedded systems and the usual implementation hierarchy of a bootstrap loader.
reviewed in this section.

B.2.1.1 Definition

A bootstrap loader is also referred to as a boot loader or boot monitor. Its goal is
to load the image of the final target software into the memory and run it on the
machine. The target software can be an embedded operating system or a single
application-specific program.

On a desktop PC, with Linux for example, LILO is commonly used as the OS boot
loader, which resides on the master boot record (MBR) of the hard drive. When the
PC is powered on, the BIOS performs firstly various system initializations and then
executes the boot loader located in the MBR. The boot loader then passes system
information to the kernel and then executes the kernel. For instance, the boot loader
tells the kernel which hard drive partition to mount as root.

However, in an embedded system the role of the boot loader is more complicated
since these systems do not have a BIOS to perform the initial system configura-
tion. The low-level initializations of microprocessors, memory controllers and other
board-specific hardware vary from board to board and CPU to CPU. All these
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initializations must also be conducted by the boot loader, besides the loading of
softwares from disk drives to the memory.

B.2.1.2 Principal Tasks

Generally the boot loader for an embedded system must provide at a minimum the
following functions, including

- initializing the hardware, especially the CPU, the memory controller, and the
flash memory,

- providing boot parameters for the target software or the operating system
kernel if there is one,

- and starting the target software or the OS kernel.

Additionally, most boot loaders provide also more convenient features to simplify
the programs developed above them. The features are listed as follows:

- reading and writing arbitrary memory locations,
- uploading new binary images to the board’s RAM via a serial line or Ethernet,

- and flash functions, like copying the binary images from RAM to flash memory.

B.2.1.3 Implementation Hierarchy

A boot loader may be implemented in multiple stages. Several small programs
summon one another sequentially, until the last of them loads the entire target
software. The first stage is usually designed in a most convenient and simplest way;
and only on the final stage the boot loader eventually transfers control to the target
software. The name of bootstrap loader comes just from the one-by-one steps of
program-loading process.

Because the implementation of a boot loader depends tightly upon the individual
hardware platform, it is impossible to build a universal boot loader for the immerse
embedded world. But generally most boot loaders consist of two major stages in
general. The code for hardware-related initializations is put in stage 1, which is
usually implemented with assembler language and is compressed. Stage 2 is usually
implemented with C language, which supports more complex functionalities and has
better readability and portability.

Basically stage 1 includes the following steps:
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- initialize the hardware devices,

- assign a RAM space for the codes of stage 2,
- copy the codes of stage 2 to the RAM space,
- initialize memory stack,

- and go to the code entry of stage 2.

Stage 2 includes the following steps:

initialize the related hardware devices used in this stage,

check the system memory map,

load the kernel map and root file system map from flash to the RAM space,

initialize the kernel parameters,

and call the kernel.

B.2.2 Features of U-Boot

It has been introduced in the previous section that a boot loader is a small piece
of software that executes soon after powering up a computer. Its goal is to load
the image of the final target software into the memory and run it on the machine.
Das U-Boot, commonly used in embedded systems as the boot loader, is intended
to provide a common, flexible and easily extensible boot program for embedded
devices.

In the embedded world it is very important to provide a flexible way to configure
the system environment. Accordingly, one primary goal of U-Boot is to achieve the
flexibility. Developers must be able to decide which components are really needed
within the actual target system. Besides, automatic detection of hardware compo-
nents at runtime is also an important feature. For example, automatic detection of
the CPU type, size of SPD memory or size of flash memory allows the extension of
hardware without changing the application code.
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B.2.3 U-Boot Adaption

In order to port the U-Boot source code to the ROBIN board, it is necessary to
add some specific code to the U-Boot source code. This process is like the Board
Support Packages(BSP) development in the Linux kernel. For the ROBIN board
the following modifications and adaption are made.

- Read values of the 12C bus, set the CPU speed, and enable instruction/data
caches;

- set up the stack pointer;

- initialize the interrupt controller;

- initialize the DDR memory controller;
- initialize UART and set the baudrate;

- initialize External Bus and build one common address system for PowerPC’s
RAM and FPGA’s FIFOs;

- initialize the FLASH layout and programming;
- initialize other devices, such as FEthernet;

- set up boot parameter area and construct parameter structures. (Note, boot
parameters are used by the OS kernel to identify the root device, page size,
memory size, etc.)

B.2.4 U-Boot Extensions

The PowerPC part acts as the auxiliary core in the ROBIN system. It is also
responsible for self-testing the whole board, as well as monitoring the configuration.
Hence the following four add-ons are attached extra to the standard U-Boot program:

memory test utility,

more APIs; like the flash reading/writing/clearing,

second UART support for ROBIN,

and FPGA configuration through the GPIO(General Purpose 10).
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Configurations for the ROBIN
PowerPC System

This chapter presents details about how the MontaVista real-time Linux OS is con-
figured and adapted to the ROBIN PowerPC system.

C.1 Boot Sequence

The embedded Linux boot sequence is more complicated than a proprietary embed-
ded operating system, and there are many more options to configure it. In general,
the boot sequence goes as follows:[47]

- After Power-On or reset, processor branches to the U-Boot startup code.

- The U-Boot initializes the CPU and memory, Flash, performs only minimal
initialization of on-chip devices, such as the console serial port to provide boot
diagnostic messages.

- U-Boot also sets up the memory map for the kernel to use in a format that is
consistent across platforms.

- The U-boot decompresses the Linux kernel from flash into RAM, and jumps
to it.

- The Linux kernel sets up the caches, initializes each of the hardware devices
via the init function in each driver, decompress the Initial RAM disk (initrd)
into ram, mounts the root file system (including busybox) and executes the
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init process, which is the ultimate parent of all user mode processes, typically
/sbin /initd.

- Executing the first program linked against the shared C runtime library (often
the init function) causes the shared runtime library to be loaded.

- In a typical Linux system, the init function reads /etc/inittab to execute the
appropriate run control script from /etc/rc.d, which executes the start scripts
to initialize networking and other system services. In the ROBIN PowerPC
system the init function is replaced with a C program to start the PowerPC
application programs. [41]

ROBIN PowerOn

System Startup

U-Boot

Linux Kernel

init

ROBIN application

Operation

Figure C.1: The ROBIN PowerPC Startup Process

C.2 Linux Kernel Adaptions

In order to run the MontaVista Linux on the ROBIN PowerPC system, a develop-
ment host PC is connected to the target ROBIN board. The host PC must have a
normal desktop Linux. A GNU cross development environment is set up on the host
PC, and the embedded Linux sourcecode of MontaVista for PowerPC is installed.
The Linux kernel sourcecode is divided into two parts: the architecture-specific
part and the architecture-independent part. The architecture-specific part exe-
cutes firstly. It sets up hardware registers, configures the memory map, performs
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architecture-specific initialization, and then transfers control to the architecture-
independent part of the kernel. During the second phase the rest of the system is
initialized.

The directory arch/ under the kernel tree consists of different subdirectories, each
for a different architecture (ARM, i386, PPC, and so on). Each of these subdirec-
tories includes kernel/ and mm/ subdirectories, which contain architecture-specific
code to do things like initializing memory, setting up IRQs, enabling cache, setting
up kernel page tables, and so on. These functions are called, once the kernel is
loaded and given control; then the rest of the system is initialized.

The MontaVista Linux sourcecode has already provided good support for Pow-
erPC 440GP that is used in ROBIN. When porting MontaVista to the ROBIN
PowerPC system, only a few ROBIN-specific adaptions need to be made for the tar-
get system, including memory alignment, serial port and baudrate, network driver,
and Flash Memory.

The kernel is then compiled as a vmlinux image file for the ROBIN board. After
the compiling, the U-Boot communicates with the host using the serial or ethernet
port to transfer the kernel into the PowerPC’s flash, together with the Initial RAM
disk (initrd). In the boot process, the kernel is loaded into the PowerPC’s memory by
the U-Boot. After the kernel is fully loaded, the U-Boot passes control to the address
where the kernel was loaded. The kernel then decompresses the Initial RAM disk
(initrd) into ram, mounts the root file system and executes the init process. Section
77?7 gives more details.

C.3 Ramdisk

The purpose of the Initial RAM disk (initrd) image is to provide a root file system
for the Linux kernel when it boots.[42] In a normal Linux, the ramdisk is only a
temporary root file system that is mounted during system boot to support the two-
state boot process. The initrd contains various executables and drivers that permit
the real root file system to be mounted; afterwards the initrd RAM disk is unmounted
and its memory freed. But in many embedded Linux systems, the initrd is just the
final root file system. This implies that the file system contains a number of things,
including file system structure(/bin, /dev, /etc, /lib, /proc ...), binaries (such as
busybox), configuration files (such as rc.sysinit), device entries (/dev/kmem, etc.),
proprietary applications and the frequently used runtime libraries.

To create an initrd for the PowerPC system, begin by creating an empty file, using
/dev/zero (a stream of zeroes) as input writing to the ramdisk.img file. The file size
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is normally several megabytes. Then use the mke2fs command to create an ext2
(second extended) file system using this empty file. Now that this file is an ext2 file
system, mount the file to a directory as a loop device. [42]

The next step is to create the necessary subdirectories that make up the root file
system: /bin, /sys, /dev, and /proc. To make this root file system useful, BusyBox
is used in ROBIN PowerPC. Busybox is a single image that contains many individual
utilities commonly found in Linux systems. Refer to section 7?7 for more details.

Then it is the creation of a small number of special device files. Copy these directly
from current desktop /dev subdirectory, using the -a option (archive) to preserve
their attributes.

The penultimate step is to generate the linuxrc file. After the kernel mounts the
RAM disk, it searches for an init file to execute. If an init file is not found, the kernel
invokes the linuxrc file as its startup script. The basic setup of the environment is
in this file, such as mounting the /proc, /sys file system. Then ash(a Bourne Shell
clone) is invoked, so that an interact console is ready. The linuxrc file is thus made
executable using chmod.

Finally, the root file system is complete. It is unmounted and then compressed
using gzip. The resulting file (ramdisk.img.gz) is copied to the flash so that it can
be loaded by linux kernel.

C.4 Busybox

BusyBox is a software application which provides many standard Unix tools, much
like the larger (but more capable) GNU Core Utilities. BusyBox is designed to be
a small executable program for the use with Linux, which makes it ideal for special

purpose Linux distributions and embedded devices. It has been called “The Swiss
Army Knife of Embedded Linux”. [2]

BusyBox is a single image that contains many individual utilities commonly found
in Linux systems (such as ash, awk, sed, insmod, and so on). The advantage of
BusyBox is that it packs many utilities into one package while sharing their common
elements, which results in a much smaller image. This is ideal for the ROBIN
PowerPC embedded system. Copy the BusyBox image from its source directory
into the /bin directory. A number of symbolic links are then created, all of which
point to the BusyBox utilities. BusyBox figures out which utility was invoked and
performs the according functionality.
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C.5 C Library

In the embedded system, if a customized application binary needs the standard C
library, there is an option beyond the massive glibc. Tt is the uClibe, which is a
minimized version of the standard C library for space-constrained systems. If the
uClibc is used, the binaries are needed to be recompiled with these libraries, hence
some additional work is required. However, in the ROBIN PowerPC system, the
BusyBox image is statically linked so that no libraries are required. uClibc was
tested but not used.
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