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Abstract

Our future environment will be managed by a multitude of different pervasive systems. A

pervasive system consists of users and devices which cooperate to provide functionality to the

users. The provision of functionality is realized by pervasive applications. A major characteristic

of pervasive applications is their context-interactivity. On one hand, pervasive applications are

context-aware and can adapt themselves to changing context. This ability enables them to

provide their functionality in different configurations. On the other hand, pervasive applications

have the ability to influence and change the context themselves. A context change can be caused

implicitly as a side effect of employed resources or explicitly through the use of actuators. Due

to the context-interactivity, problems are likely to occur when two or more applications are

executed in the same physical space. Since applications share a common context and interact

with it, they can have a direct impact on each other.

The described problem is defined as an interference in this thesis. An interference is an

application-produced context that impairs the functionality provision of another application.

To manage interferences in pervasive systems, a coordination framework is presented. The

framework detects interferences using a context model and information about how applications

interact with the shared context. The resolution of an interference is achieved through a coor-

dinated application adaptation. The idea is based on the assumption that an alternative appli-

cation configuration may yield a different context interaction. Thus, the framework determines

a configuration for each application such that the context interactions do not interfere. Once a

configuration is found for each application, the framework instructs applications to instantiate

the selected configuration, resolving the interference.

The framework is unique due to three design decisions. At first, the framework is realized as a

cross-system coordination layer in order to allow an integration of arbitrary systems. Secondly,

the integration of applications can be achieved through the extension of existing systems while
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iv Abstract

preserving their system characteristics. Thirdly, the framework supports a generic interface to

integrate arbitrary resolution strategies in order to allow the customization of the framework

to the needs of different pervasive systems. The thesis introduces the theoretical concepts of

the framework, presents a prototypical implementation and evaluates the prototype and its

implemented concepts through extensive measurements.
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1. Introduction

This chapter serves the purpose to give an overview of the thesis at hand and the ad-

dressed problem statements. At first, it describes the vision of pervasive computing and

discusses the trends towards pervasive computing and its importance in the industrial

sector. Subsequently, the problem of interferences in pervasive systems is identified and

the need for their management is motivated. The motivation is followed by the definition

of a research aim and a summary of the contributions of this thesis. The introduction of

the research aim closes with an overview of the thesis structure.

1.1. Pervasive Computing

The notion of Ubiquitous Computing, or Pervasive Computing, was first introduced by

Mark Weiser in 1991. In his essay The Computer for the 21st Century [Wei91], Weiser

described his vision of the human-computer interaction. He predicted that the future

human environment would be pervaded by a multitude of information processing devices.

Being equipped with respective hard- and software, these devices will be able to form

networks and to cooperate in the interest of their users. Through their cooperation they

would provide functionality to users assisting them seamlessly in their everyday tasks.

The explicit human-computer interaction would transform into an implicit use of the

functionality the networks provide. As a result, the user’s environment would become

intelligent, sensing the user’s need and aiming at an optimal user support at any time

and anywhere.

The vision of Mark Weiser has brought forth a multitude of approaches that contribute

to the realization of pervasive computing. Early approaches in this area were projects such

as Aura [GSSS02] or Gaia [RHC+02] which addressed a variety of aspects in pervasive
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2 1. Introduction

computing and yielded system software for their realization. More than twenty years later,

a truly pervasive system as described in Weiser’s vision is yet to be realized. However,

the trend towards pervasive computing has become visible in different areas. One of the

areas which is discussed in the following is the business sector.

1.2. Business Applications

In 2006, a study entitled “Pervasive Computing: Trends and Impacts” [BSI06] was de-

veloped by order of the German Federal Office for Information Security (BSI). The study

was conducted in cooperation with VDI/VDE Innovation und Technik GmbH, Fraunhofer

Institute for Secure Information Technology and Sun Microsystems GmbH. One goal of

the study was to identify trends in pervasive computing and to analyze impacts on the

industrial sector. The results of the study reflect the knowledge of international experts

that was gathered through a comprehensive online survey and a variety of interviews. The

following discussion on pervasive computing in the industrial sector and the observations

are extracted from the study.

The study revealed that a variety of areas exist in which “pervasive computing is already

recognisable and is very likely to play a decisive role in the future” [BSI06, p. 22]. An area

in which the trend towards pervasive computing is evident is the sector of production and

logistics [BSI06, Section 4.1, pp. 23-25]. Nowadays, IT-based controlling and monitoring

systems are an integral part of production-specific and logistical systems. The aim of such

systems is the optimization and automation of production, transport and supply along the

entire supply chain. The integration of physical objects is realized by attaching artifacts

to the objects providing them with digitally ascertainable data. In earlier systems, the

use of bar code was the prevailing standard. However, a disadvantage of bar code was its

requirement to physically access the artifact to retrieve the stored data. The use of RFID,

in contrast, enables a remote access to the artifacts and thus the data. Thus, the tracking

and tracing of objects without the need of additional physical actions has become viable.

While a complete automation and optimization has yet to be achieved, a trend towards

intelligent and autonomous systems is obvious.
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E-commerce has been identified as another area in which pervasive computing has

become recognizable [BSI06, Section 4.6, pp. 30-31]. An enabler for e-commerce has been

the fact that today’s users can typically be identified through pervasive computing objects

such as their smart phones. The exploitation of user profiles and preferences provides a

large potential for user-tailored marketing and location-based services [VMG+01]. The

use of location-based services has contributed to the sharing of costly products such as

bicycles and cars. Depending on the user’s location, the availability of such objects can be

determined and their use can be precisely recorded and billed. As a result, such systems

enable the shared utilization of capital-intensive objects and can provide an attractive

business model to users.

Another example is the area of medical care [BSI06, Section 4.7, pp. 31-33]. Medical

and health-related systems have been identified as a large application area for pervasive

computing. The optimization and automation of core processes in this area promise a

large potential for cost reductions. As an example, pervasive systems could be employed

to monitor patients at home to avoid long-term stays in hospitals for observation reasons.

Likewise, the state of patients with chronic illnesses could continuously be monitored in

order to develop an optimal treatment plan and to adapt it if necessary. Besides the cost

factor, this also has the potential to improve the patient’s quality of life. Instead of being

bound to the hospital bed, the treatment could be realized in an environment familiar to

the patient.

1.3. Motivation

The results of the BSI study reveal that pervasive computing is increasingly present

in the human’s daily life. The promise of pervasive computing is the optimization and

automation of processes core to the respective area. In the area of logistics, core processes

can be all processes involved in the management of stock such as tracking of pallets and

ordering on demand. In the context of smart homes this could be the realization of any

tasks to ease its user life. Conceivable examples are the adjustment of the temperature

to its user’s needs or the redirection of a phone call to the room the user is currently in.
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The vision of Mark Weiser has brought forth a variety of research work that aims at

the realization of pervasive computing. Technically, pervasive computing is realized by a

pervasive system. A pervasive system consists of users, devices, and the physical space

they reside in. In order to provide functionality to users, pervasive applications are exe-

cuted. A pervasive application is a distributed application which makes use of resources

and capabilities currently available in the pervasive system. To provide their functionality

anytime and anywhere, pervasive applications are context-aware and adaptive. According

to Dey [Dey01], “context is any information that can be used to characterize the situa-

tion of an entity”. The entity may be a user, a specific location, or any kind of object

that may have an impact on the application’s behavior. This context-awareness allows

the application to incorporate the context information into configuration decisions. The

adaptivity enables the application to adjust to changing contexts, pursuing an optimal

configuration at all times. As a result, a pervasive application is able to continuously

provide functionality in different functional configurations.

While pervasive applications have been specifically designed to adapt themselves to

changing environments, the application’s ability to influence the environment and thus

to change the context itself is often neglected. Such a context influence can either be

produced implicitly as a side effect of employed resources or explicitly through the use of

available actuators. As a consequence, the relationship between an application and the

context is bidirectional. The context influences a pervasive application and vice versa.

The fact that applications interact with the context and not only react to context changes

makes them context interactive.

When an application is run in isolation, its ability to influence the context can be

neglected. The execution of multiple applications, however, leads to new challenges if the

applications are executed in the same physical space. The challenges arise from the fact

that applications share the physical environment as common context and interact with

it. One one hand, they react to changes in the context by adapting themselves. On the

other hand, they change the context according to their needs. As a consequence, pervasive

applications are directly related with each other via the context they share.
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Consider the following example: User Anne is in the living room reading on her e-book

reader. In order to provide a good contrast, her application has turned on the lights. After

a while Bob enters the living room. His intention is to watch a movie on the projector

installed in the environment. To do so, his application closes the blinds and turns off the

light to provide the optimal atmosphere for a movie. Bob’s application clearly has an

impact on Anne’s application. The changing of the light level impairs the functionality

provision of Anne’s application. In this scenario, the e-book application has two options

to deal with the context change. It can 1) adapt the context according to its need again,

i.e. turn on the light and open the blinds or 2) adapt itself, i.e. by redirecting its output

to another device for example. The first option may result in both applications taking

turns adapting the context. The second option may lead to a situation where the e-book

application cannot provide its functionality anymore.

The described problem is referred to as an interference throughout this thesis. An

interference is an application-produced context that impairs the functionality provision

of another application. The problem can be reduced to the fact that applications which

are executed in the same physical space share and interact with a common context. As a

consequence, they can have a direct impact on each other through the commonly shared

context.

1.4. Research Aim

The fact that interferences can occur becomes more problematic given that future user

environments are likely to comprise not only multiple applications within a single sys-

tem, but also multiple pervasive systems. With the continuous development of pervasive

computing, it is very unlikely that the world will be managed by only a single system.

Instead, a variety of different pervasive systems will exist in parallel. As a consequence,

pervasive applications which are executed in the same physical space are likely to inter-

fere with each other even if they are executed in different pervasive systems. Ideally,

the occurrence of interferences should be avoided to enable the unobstructed provision of

functionality by multiple applications in the same physical space. In practice, however,
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the context-interactivity is one of the major characteristics of pervasive applications. As

a consequence, interferences cannot be avoided and thus must be detected and resolved

at runtime to allow an undisturbed pervasive system experience. The goal of the thesis

at hand is to develop an approach to manage interferences in terms of their detection and

resolution. The proposed solution must be able to manage interferences across multiple

systems. It should consider the needs of its users and handle interferences in their interest.

Up to the present, the management of interferences as defined in this thesis has not

been addressed in its entirety. Some research work exists which addresses the man-

agement of subsets of the interference problem , e.g. [KMW03], [MD06], [SHW05], or

[RC03]. Other work focuses on the realization of frameworks to detect and resolve prob-

lems between multiple applications such as [MD06] and [BRK06]. However, their work

remains on a theoretical level and has not been developed to handle the addressed prob-

lems at runtime. Further approaches exclusively focus on the task of interference detec-

tion, e.g. [PLH05], [SW09], and [AKM06], or specific interference resolution strategies,

e.g. [JCL11], [HME+06], and [SW05]. In summary, none of the existing approaches is able

to handle the problem of interferences as addressed in this thesis.

1.5. Contribution

The contribution of this thesis is a coordination framework that manages interferences

between applications in pervasive systems. The management is split into two tasks, inter-

ference detection and interference resolution. For interference detection, applications are

required to provide information to the framework about their context interaction in their

current functional configuration. Based on this knowledge and a context model, interfer-

ences can be detected. For interference resolution, applications are required to specify and

provide interactions for alternative functional configurations. If the framework detects an

interference, it determines interference-free context interactions for each application to

resolve the interference. The applications are then requested to instantiate the respective

functional configuration that complies with the context interaction. Thus, a coordinated

application adaptation is performed. Specifically, the contributions of this thesis are:
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(I) Interference Model and Detection: The thesis analyzes the problem of interferences

in detail and introduces a formal model for interferences based on monadic predicate

logic [Löw31]. Based on the interference model, the problem of interference detection

is discussed and two algorithms, a basic statement evaluation and an optimized

version, are presented.

(II) Interference Resolution Plan Computation: The first step of interference resolu-

tion is the computation of a respective plan. Based on the model of interferences,

the problem of interference resolution plan computation is modeled as a constraint

satisfaction problem (CSP) and the suitability of algorithm classes for CSPs is dis-

cussed for pervasive systems. Furthermore, a heuristic that uses information about

an application’s involvement in an interference is introduced realizing an informed

backtracking algorithm to compute an interference resolution plan.

(III) Design: The framework is designed to be tailored to pervasive systems which can

be heterogeneous, dynamic and open with respect to devices, users and pervasive

applications. For this purpose, the framework design is subject to three decisions:

(a) Cross-System Coordination Layer: The framework is designed as a cross-sys-

tem coordination layer. It coordinates the interaction of pervasive applications

with the shared context across different system software. For the realization,

the requirements towards application systems are kept at a minimum and ab-

stract from details specific to a particular pervasive system. Besides these

requirements, integrated application systems are treated as black boxes.

(b) Extension of Existing Systems: The minimal requirements described in the

previous design decision are realized through extensions of existing application

systems. For this purpose, the concept of a context configuration is intro-

duced. The context configuration extends a functional configuration with the

specification of its context interaction. Furthermore, an adaptation interface

is introduced that allows the framework to request the instantiation of a con-

figuration computed by the application itself.
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(c) Strategy-based Application Coordination: A variety of aspects can be consid-

ered when applications are coordinated in order to maintain an interference-free

system state. For this purpose, the framework realizes a generic interface for

the use of arbitrary resolution strategies. This allows to customize the frame-

work for the needs of different pervasive systems.

(IV) Development and Evaluation: A prototypical realization is developed that imple-

ments the theoretical concepts of the framework. Furthermore, extensive evaluations

are conducted in order to show the utilizability of the coordination framework in

practical pervasive systems.

(a) Component Placement and Communication Sequences: System

characteristics that have an impact on the practical realization are identified

and discussed for general pervasive systems. Based on the findings, recommen-

dations for the placement of components that compose the framework and the

points in time when data should be exchanged are given.

(b) Prototype and Measurements: The prototype COMITY is devel-

oped that implements the concepts of the application coordination framework.

Furthermore, measurements are conducted to assess the quality of the proto-

type and the concepts it implements. For this purpose, the memory require-

ment and the overhead it causes are analyzed. Furthermore, the algorithms for

interference detection and resolution are evaluated.

1.6. Structure

The remainder of the thesis is structured as follows: Chapter 2 provides the preliminaries

for the contributions of this thesis. It introduces the concept of pervasive systems and

discusses the notion of pervasive applications to realize functionality in such systems.

Furthermore, it identifies major characteristics of pervasive applications and classifies

existing approaches along these criteria. The result is an overview of existing approaches

and their commonalities yielding a definition for pervasive applications used in this thesis.
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Finally, the problem of interferences is discussed as situations which are likely to occur

when multiple applications are executed in the same physical space.

Chapter 3 defines the research question of this thesis. For this purpose, the chapter

first introduces a system model describing the target system for which a solution is to be

developed. Subsequently, it presents the concept of application coordination as the idea

to manage interferences in the target systems and defines the goals of this thesis. The

chapter closes with the identification and analysis of requirements towards the approach

to be taken. The requirements tailor the approach to the pervasive systems and thus

refine the research goal.

Chapter 4 discusses related work. At first, related problems and definitions similar to

the notion of interferences are analyzed. Then, related work with respect to application

coordination is addressed. The chapter introduces comprehensive approaches which ad-

dress the entire process of application coordination. Finally, existing work with respect

to the isolated tasks of interference detection and interference resolution is evaluated.

Chapter 5 presents the framework for application coordination as the approach to han-

dle interferences in the targeted pervasive systems. To start with, the chapter discusses

the major design decisions for the framework. Subsequently, it gives an overview of the

framework, its compositional parts and describes the mode of operation. The overview is

followed by an elaboration on how existing systems need to be extended in order to allow

their coordination through the framework. Finally, the tasks of interference detection and

interference resolution are addressed. After a thorough analysis of the underlying theory,

respective solutions are discussed and developed.

Chapter 6 analyzes the realization of the theoretical application coordination frame-

work for practical pervasive systems. The practical realization covers the component

deployment and the points in time when communication is performed. To develop a vi-

able approach, the chapter first identifies system characteristics which have an impact

on realization decisions. It then analyzes general pervasive systems with respect to these

characteristics. Based on the findings, decisions on component placement and their in-

teraction to realize application coordination are presented. Finally, the dynamism of
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pervasive systems is addressed and an approach for its handling is discussed.

Chapter 7 presents the prototype COMITY. The prototype implements the concepts

described in Chapter 5 and 6. It gives an overview of the classes and discusses the details

of the implementation. Finally, the realization of the coordinator for an existing system

– the middleware BASE – is presented.

Chapter 8 evaluates the prototype presented in Chapter 7. The chapter analyzes the

memory requirements of the coordinator and discusses its overhead in relation to BASE.

Furthermore, the chapter conducts performance measurements with respect to the crit-

ical path of application coordination and the algorithms implemented for interference

detection and resolution.

Chapter 9 closes the thesis with a summary of the results and an outlook on future

work.



2. Background

This chapter provides the conceptual preliminaries of the thesis at hand. Section 2.1

presents a general introduction to the notion of pervasive computing and its realization

through pervasive systems. Section 2.2 discusses the concept of pervasive applications

to provide functionality in such systems. At first, classification criteria for pervasive ap-

plications are identified and described in detail. Subsequently, existing approaches are

classified along the criteria and characteristics of general pervasive applications are sum-

marized. Finally, Section 2.3 analyzes the problem of interferences in pervasive systems

and gives the definition of interferences in the context of this thesis.

2.1. Pervasive Systems

Mark Weiser’s vision of Pervasive Computing describes the existence of an omnipresent

network of information processing devices assisting humans in their everyday tasks. How-

ever, the pure existence of information processing devices in a person’s daily environments

does not suffice. In order to be a truly pervasive, helpful system, these devices need to

be able to form networks, communicate, and cooperate with each other. It is in this

cooperation that users can be best supported in their daily life. The environment needs

to become smart, assisting the user in her tasks anytime and anywhere.

The technical realization of pervasive computing is achieved by a pervasive system. A

pervasive system consists of a set of devices connected in a network infrastructure, users

to whom functionality is provided, and the physical space the devices and users reside

in. An example for a pervasive system is an intelligent home that provides assisted living

for elderly people. In this example the user is a person with special – and potentially

changing – physical needs, the physical space is the living environment of that person,

11
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and the set of devices comprises the networked devices designed to assist the user with

her needs. Examples of potential functionalities provided include an automated heating

and ventilation system, automated visual and/or auditory reminders to take prescribed

medicine, an alarm system the inhabitant can access in multiple ways, or even motion-

detection devices which can automatically call for help if the inhabitant has had a fall.

Further examples of pervasive systems include smart office environments that support

employees with their daily working tasks or a smart factory in which workers are aided

throughout the entire production cycle.

mobile usermobile user mobile 
device

Infra-
structure

device

Figure 2.1.: Smart Environment (SE) [Sch07]

Pervasive systems can be realized based on two concepts, a smart environment or

a smart peer group. Figure 2.1 illustrates the concept of a smart environment. The

approach is characterized through the existence of a predefined infrastructure of devices.

These devices may be stationary such as a desktop computer or may be mobile devices

being carried by a user such as a PDA. The resourcefulness of the single devices may range

from powerful processing devices such as a server down to resource-poor devices such as

sensors. Due to the existence of stationary devices, the physical space of the pervasive

system is determined through the location of the infrastructure. The devices in a smart

environment and the functionalities they offer are typically managed in a centralized

manner. The infrastructure usually contains at least one powerful device which provides
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SPG

mobile devicemobile device

SPG SPG

stationary mobilestationary 
device

mobile 
device

mobile user mobile user

Figure 2.2.: Smart Peer Groups (SPG) [Sch07]

enough capacity to manage resources in the system and to realize functionalities. In

order to cooperate, devices in the smart environment are equipped with adequate system

software. This also allows for a dynamic integration of mobile devices if the respective

system software is present. Smart environments are also often referred to as active spaces

[RHC+02], smart spaces [Sat01], or intelligent spaces [CFJ03]. Examples in the literature

for smart environment based approaches are Aura [GSSS02], one.world [GDH+01], Gaia

[RHC+02], or iRos [PJKF03].

The second concept for the realization of a pervasive system is a smart peer group.

The concept of a smart peer group is illustrated in Figure 2.2. A smart peer group is a

spontaneously formed network of devices which are in communication range of each other.

Devices are able to detect each other and to form an ad-hoc network without the need of

user interaction. As soon as a group has been formed, devices can directly interact with

each other on a peer-to-peer basis. Thus, in contrast to smart environments, smart peer

groups do not rely on a predefined infrastructure. The resources and the functionalities

provided by a smart peer group are managed in a decentralized way.

Devices are selected for cooperation based on the assumption that a user prefers to make

use of nearby devices [Sch07]. To support this as well as user mobility, devices in a smart

peer group are likely to use wireless communication technology such as Bluetooth [Blu]
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or Wi-fi [Wf] to detect and interact with each other. The use of wired communication

technology however is not excluded. The goal to support user mobility also has an impact

on the physical space of the pervasive system. The physical space depends on the location

of the users and their devices and thus may change over time. As a consequence, smart

peer groups are typically user-centric. They form around a user device and move with

the user respectively. Similarly to smart environments, devices in the smart peer group

need to be equipped with appropriate system software to form ad-hoc networks and to

provide functionalities in such networks. Examples in the literature of smart peer group

based approaches are BASE/PCOM [BSGR03] [BHSR04] or P2PComp [FHMO04].

2.2. Applications in Pervasive Systems

The provision of functionality in pervasive systems is realized through the execution of

applications. Pervasive applications are typically distributed making use of the resources

provided by the devices which are present in the pervasive system. In order to determine

which functionality needs to be provided to a user in any given situation, applications

are context-aware [SAW94]. They are able to obtain information about the user and

the environment and to incorporate this information into configuration decisions. This

information is typically referred to as the context. According to the definition of Dey

[Dey01] “context is any information that can be used to characterize the situation of an

entity”. The entity may be a person, a certain location, or any kind of object that may

have an influence on the application specifics in a certain situation. As the environment of

a user may change over time, applications are adaptive. They are able to perceive changes

in their execution environment and to adapt accordingly.

A variety of approaches exists which aim at the realization of applications for perva-

sive computing. Representative and comprehensive classes with respect to the number

of approaches are location-based services [VMG+01], context-aware systems [SAW94] and

pervasive computing applications [BBG+00]. The majority of approaches which address

applications for pervasive computing can be assigned to one of the three classes. While

every approach contributes to the realization of pervasive computing applications, the



2.2. Applications in Pervasive Systems 15

focus of the classes differs. For this purpose, an overview of existing approaches and

their characteristics is given in the following. Furthermore, the criteria which have been

inferred from a thorough analysis of existing approaches are presented and discussed. Sub-

sequently, the existing approaches are classified along these criteria. Finally, a definition

of pervasive applications as it will be used throughout this thesis is given. The term perva-

sive application subsumes the three major classes, location-based services, context-aware

systems, and pervasive computing applications into a more general definition.

2.2.1. Classification Criteria

The classification of existing approaches requires a selection of respective criteria along

which the approaches can be characterized. An analysis of existing approaches and re-

lated literature has led to the selection of different categories as shown in Table 2.1. The

criteria can be divided into four broad categories, context type, adaptation level, adapta-

tion control, and system architecture. Each category comprises two or more subcategories.

Context type has three subcategories: location context, technical context, and user context.

The adaptation level comprises two subcategories, system and application, where appli-

cation itself possesses four subcategories, namely composition, behavior, explicit context,

and implicit context. Adaptation control has two subcategories: manual and automatic

adaptation. The last category, system architecture, has three subcategories: centralized,

peer-to-peer, and hybrid. The context types and their subcategories are described in detail

in the following.
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Table 2.1.: Classification Criteria for Pervasive Applications
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2.2.1.1. Context Type

The provision of functionality to a user in any given situation requires applications to be

able to incorporate context information into configuration decisions. The criterion context

type refers to the kind of context an application is able to retrieve and to process. The

retrieval of context can be achieved through a direct access of sensors via a mechanism

that may be provided by the system software or through a context server which is available

in the pervasive system [BDR07]. The types of context an application makes use of can

be split into three classes, namely location, technical context, and user context.

Location: Location information is any kind of information that is used to identify and

define the position of a user in a physical space. A typical example for location

information are coordinates in the Global Positioning System (GPS) [GPS]. The

use of location models such as [Sat05], [BBR02], and [BZD02] which subdivide

buildings into floors and rooms which provide a symbolic reference for locations are

also part of this category. Within an indoor space additional techniques, such as

infrared, may also be used, to compute the approximate position of a user in a room.

Technical Context: The technical context of an application provides information about

nearby and available devices and resources [SAW94]. As a pervasive system is ex-

pected to be dynamic the technical context is used by applications to select the

devices which are physically close to a user. A reasonable example is that informa-

tion should be displayed in a user’s physical range. A possibility to identify nearby

users is the computation of physical proximity based on location information. On

the other hand, nearby devices can also be identified searching for devices in wireless

communication range.

User context: The last subcategory of the context type is information about the user and

her environment. This context type covers information which is not addressed by the

former two categories. It may, for example, comprise the activity a user is involved

in or the relationships it has with other users in the environment. Furthermore,



2.2. Applications in Pervasive Systems 17

environmental information may involve information about the physical surrounding

of a user such as the noise or the light level of the room the user is present in.

2.2.1.2. Adaptation Level

Applications which realize pervasive computing are adaptive in order to cope with changes

in their execution environment and to be able to continuously provide functionality. Thus,

the second criterion along which approaches are classified is the kind of adaptation they

realize. The analysis of the literature has shown that adaptation can be split into two

kinds, adaptation on the system level and adaptation on the application level.

System: Adaptation on the system level denotes an adaptation of parts of the system

software based on which applications are realized. A service that is part of a system

software and searches for configurations of an application may for example change

the configuration algorithm at runtime depending on available memory and memory

requirements. Similarly, a discovery service may employ a power-saving service

lookup if the battery of the device the service runs on is low.

Application: The adaptation on the application level can be subdivided into four different

subcategories, composition, behavior, context (explicit), and context (implicit). The

compositional adaptation refers to the ability of an application to adapt the current

set of parts the application is built of. This may for example be necessary if a

device which is hosting an active application part becomes unavailable due to user

movement. Consequently, the application must find a respective atomic or complex

substitute which may be located on one or more other devices in the environment

to continue a functionality provision. Behavioral adaptation does not adapt the

composition of an application but the way it provides functionality. Behavioral

adaptation is usually applied to parts which are in general parameterizable such as

the output quality of media. The third adaptation type in this category is explicit

context adaptation. Explicit context adaptation refers to the ability of applications

to not only sense the context and adapt themselves accordingly, but to actively
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modify the context according to their needs. This can be achieved through the use

of available actuators such as a light switch to adjust the lightning level in a specific

room. The last adaptation type is the implicit context adaptation. Implicit Context

adaptation takes place if the application modifies the context but does so as a side-

effect of its execution. As an example, an application could use speakers in order

to provide information via speech instead of choosing a textual output on a display.

The output of speech via speakers obviously has an impact on the noise level on the

environment. The current noise level however may be information that is considered

as context as well. Consequently, an implicit context adaptation occurs.

2.2.1.3. Adaptation Control

Pervasive computing aims at the provision of functionality to users in order to support

them in their everyday tasks. A major criterion for the provision is a seamless user assis-

tance allowing the user to focus on her primary task without distraction. Consequently,

approaches aim at the automation of context-awareness and adaptation. However, the

ability of an application to autonomously make decisions at runtime also requires respec-

tive capabilities and a certain amount on information based on which the application can

make decisions. In general, the adaptation control can be subdivided into automatic and

manual adaptation control.

Manual: Manual adaptation is realized by a user in the pervasive system. Manual adap-

tation may be required if the application is not provided with the ability to make

decisions autonomously. The success of a manual adaptation however depends on

several factors. Obviously, the user performing the adaptation must have a general

idea of the application model and which implications an action has on the appli-

cation. Furthermore, she needs to be able to capture information of the execution

environment which is essential for the application and to determine the best possi-

ble adaptation. Supporting the user in decision making using an interface such as

iCompose [DGM+11] can ease those tasks.
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Automatic: In contrast to manual adaptation, automatic adaptation is performed by

the application without required interaction of the user. To realize this task, ap-

plications must have access to essential information and to reason and decide on

adaptation at runtime. Moreover, the application requires the ability to actually

perform an adaptation after a decision has been made.

2.2.1.4. Architectural Approach

The last category in this overview is the system architecture of existing approaches. The

system architecture can be split into three classes, centralized, peer-to-peer, and hybrid.

Centralized: A centralized approach follows a client-server model. All services which

are required to realize the provision of functionality such as a device discovery,

resource manager, or device communication in a pervasive system are provided by

a centralized server or infrastructure. In order to realize the task of functionality

provision, clients (devices) access and make use of the provided services.

Peer-to-Peer: In contrast to a centralized approach, peer-to-peer based approaches do

not rely on a centralized device. System services are realized on a peer-to-peer

basis. For example, device discovery is realized by every device in the system.

Communication between devices is realized on a peer-to-peer basis and does not

require a coordinating centralized communication service.

Hybrid: Approaches which fall into this category are neither purely centralized nor do

they follow a pure peer-to-peer based approach but a combination of both. An

example of a hybrid approach could provide a centralized device discovery which

devices access in order to retrieve devices in the network with whom they interact

on a peer-to-peer basis afterwards.

2.2.2. Classification of Existing Approaches

Having defined the classification criteria, Table 2.2 gives an overview of selected ap-

proaches and their evaluation with respect to the criteria. The approaches in the table are
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sorted according to the three previously mentioned classes of approaches, location-based

services, context-aware systems, and pervasive computing applications. All of these classes

aim at realizing pervasive computing. The table shows a selection of approaches which

are representatives for each application class. The listing is not exhaustive. However,

the focus lies on the characterization of general classes and not on particular approaches.

Thus, the classification of further approaches along the criteria is feasible.

The first row in the column states the criteria based on which existing approaches are

analyzed. The first column presents the list of analyzed approaches. A mark in the table

indicates that the approach has the respective characteristic. A mark in brackets states

that the approach does not explicitly describe this characteristic but is conceivable in

general.

Location-Based Services (LBS) comprise the first class of approaches aiming at the

realization of pervasive computing. Examples of this class are Cyberguide [AAH+97],

GeoNotes [EPS+01], and further approaches ([CDM+00], [BG02], [Pas97]). A location-

based service is a functionality which uses information about its user’s location as primary

context information. Typical applications in this class are those that present location-

dependent information to users such as the tourist guides Cyberguide [AAH+97] and

GUIDE [CDM+00] or which support the interactive sharing of location-dependent infor-

mation such as GeoNotes [EPS+01] and e-graffiti [BG02]. If the context, i.e. the location,

of a user changes, applications adapt on the behavioral level. For example, they choose

the information for the new location and present it to the user. One approach that stands

out in the table is the stick-e-notes [Pas97] approach. Stick-e-notes are able to incorpo-

rate arbitrary context information in addition to location information to make adaptation

choices. With respect to adaptation control, the majority of the approaches offer an au-

tomatic adaptation to the extent that a preselection of location-dependent information is

made and presented to the user. The final selection, however, needs to be made manually

choosing an option from the set of presented possibilities.

An interesting observation for this class is the fact that all discussed approaches have
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Location-Based Services

Cyberguide [AAH+97] X X X X X X

GUIDE [CDM+00] X X X X X X

GeoNotes [EPS+01] X X X X X X

E-graffitti [BG02] X X X X X X

Stick-e-notes [Pas97] X X X X X X X X

Context-Aware Systems

CMF [KMK+03] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

SOCAM [GPZW04] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

CASS [DHH07] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

Context Toolkit [SDA99] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

Hydrogen [HPL+03] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

CORTEX [BC04] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

JCAF [Bar05] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

Cooltown [BK01] [DGV03] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

Solar [CLK04] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

PACE [HIMB05] X X X (X) (X) (X) (X) (X) (X) (X) X (X)

Active Badge [HHS+02] X X X X X X X

CARISMA [CEM03] X X X X X X X X X

ParcTab [SAW94] X X X X X X X X X X X

Perv. Com. Applications

Aura [GSSS02] [SG02] X X X X (X) X X X X

Gaia [RHC+02] [RC03] X X X X X X X X X X

ALLOW [HRKD08] X X X X X X X - - -

P2PComp [FHMO04] X X X X X X X

IRos [PJKF03] X X X X X X X X X

REFLECT [SvdZH08] X X X X X X X X X

Vainino et. al [VVV08] X X X X X X

OS2 [PPS+08] X X X (X) X - - -

One.World [GDH+01] X X X X X X X

RUNES [CCM+05] X X X X (X) (X) X X X

3PC [BSGR03] [BHSR04] (X) X (X) X X X X (X) X X X

PECES [HHM09] X (X) X X - - -

PARM [MV03] X (X) X X X

Table 2.2.: Overview and Classification: Pervasive Applications

the ability to influence context. Even though explicit context adaptation is not realized,

the context is implicitly adapted as a side-effect of applications. The presentation of in-

formation via speakers that are installed on a user’s device, for example, has an impact

on the noise level of the environment. In interactive applications, the provision of ad-



22 2. Background

ditional information for a specific location also influences the context for the next user.

Lastly, the overview shows that all of the discussed approaches are realized in a cen-

tralized architecture. The architecture typically consists of a centralized infrastructure

serving a number of client devices. While the infrastructure may provide usable services

and information used by these services, the client device retrieves information from the

infrastructure based on the location information it communicates.

Context-Aware Systems (CAS) are the second class of applications which realize

the provision of functionality in pervasive systems. This class comprises a variety of ap-

proaches such as the Context Management Framework [KMK+03], SOCAM [GPZW04],

and further approaches ([DHH07], [SDA99], [HPL+03], [BC04], [SAW94], [WSA+95],

[Bar05], [CEM03], [BK01], [DGV03], [CLK04], [HIMB05], [HHS+02]). While a lot of

a approaches in the class of location-based services aim at the realization of specific ap-

plications, a large group focuses on the provision of general frameworks and middleware

to support the development and deployment of applications. Using the framework or

middleware, arbitrary context-aware applications can be realized. As the approaches do

not focus on the application systems but on their support, applications are not restricted

with respect to their characteristics. The realization of an application adaptation on

all possible levels is conceivable as well as a manual and automatic adaptation support.

Furthermore, a hybrid approach can be pursued such that the application may be com-

posed and realized on a peer-to-peer basis, combined with a centralized context retrieval

and management. Since the approaches do not explicitly focus on specific applications,

arbitrary characteristics are conceivable and thus are stated in brackets.

Approaches in this class which do not focus on the development of an infrastructure but

provide systems to actually realize applications are Active Badge [HHS+02], CARISMA

[CEM03], and ParcTab [SAW94], [WSA+95]. All of those approaches explicitly support

a compositional adaptation on the application level. Furthermore, ParcTab explicitly

supports the adaptation of user context. In addition to the adaptation on the application

level, CARISMA and ParcTab realize an adaptation on the system level.
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Pervasive Computing Applications are the third class represented in the overview.

In contrast to the previously discussed classes, approaches in this class focus on the

development of system software to build and execute applications in pervasive systems

including their support at runtime. Representative approaches in this class are [SvdZH08]

and ALLOW [HRKD08] among others ([PJKF03], [PLF+01], [JF02], [VVV08], [GDH+01],

[HHM09], [MV03]). Some approaches focus on the development of middleware to realize

functionality and to support context-awareness and adaptivity at runtime such as RUNES

[CCM+05] or P2PComp [FHMO04]. Others address for example how user goals towards

the provision of functionality can be modeled and translated into an executable context-

aware and adaptive application at runtime such as ALLOW [HRKD08] or OS2 [PPS+08].

Other comprehensive projects have addressed a variety of different challenges such as

the Aura project [GSSS02], [SG02], [JS03], the Gaia project [RHC+02], [CAMCM05],

[RCAM+05], [RC01], or the 3PC project [BSGR03], [BHSR04].

The overview table shows that a lot of approaches are able to make use of different

kinds of context information. The adaptation focus lies on a compositional adaptation

of applications. A lot of approaches also support the adaptation of an application’s

context. This adaptation is often achieved through the use of actuators which are available

given that the approach supports their access. Furthermore, it becomes obvious that the

majority of the discussed approaches adapt context implicitly, for example, through the

integration and use of respective resources by an active application.

Other approaches in this group realize compositional and behavioral adaptation on

the application level while using information about nearby devices as the major context

information. RUNES and the 3PC project even provide adaptation on the system level

in addition to the application level. Two approaches which stick out in the overview

are PECES [HHM09] and PARM [MV03]. Both approaches focus on the adaptation

of middleware at runtime and do not address application adaptation. However, both

approaches do not adapt their context, neither explicitly nor implicitly.
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2.2.3. Pervasive Applications

The preceding overview of existing approaches for pervasive applications has shown that

a variety of different systems exist. All of these approaches are context-aware but differ in

the kind of context information they are able to incorporate into configuration decisions.

Moreover, each approach realizes adaptivity on possibly different levels. One observation

that can be made is the fact that a large majority of the discussed approaches are either

able to adapt the context explicitly or have the capability to adapt the context implicitly.

In order to provide a common understanding and a basis for discussion, applications

which aim at the provision of functionality in pervasive systems are referred to as per-

vasive applications in the following. The concept of a pervasive application subsumes

the previously discussed approaches into a more general definition. In the context of this

thesis, a pervasive application is defined by three characteristics:

Distribution A pervasive application is typically distributed. It makes use of resources

and functionalities provided by multiple devices. However, the execution of the

application and the retrieval and management of context information on a single

device is also conceivable. The set of constituent parts in terms of resources and

functionalities that form an application is referred to as the functional configuration

of the application.

To realize distributed applications, arbitrary application models may be employed.

An application model may for example be component-based, task-based, or service-

oriented. Its communication may be message based or may be realized via a dis-

tributed shared memory. Moreover, the distribution may use a centralized, a peer-

to-peer based, or a hybrid approach. In summary, distribution may be realized in a

variety of ways.

Context-interactivity A pervasive application is context-interactive. The characteristic

of being context-interactive consist of two parts, being context-aware and context-

influencing. Context-awareness refers to the ability of an application to retrieve

context information and to incorporate this information into configuration decisions.
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The choice on which specific information is considered to be context information

depends on the respective approach and application itself. However, for the problem

addressed in this thesis, a pervasive application is assumed to at least incorporate

location and user context – as discussed in the previous section – in its configuration

decisions. The use of technical context is possible but not required. The retrieval of

context by an application is not restricted to a certain method. Context information

may be provided and accessed via an available context model or through the direct

use of sensors in the environment.

As a counterpart of being context-aware, pervasive applications are context-influen-

cing. The characteristic of being context-influencing refers to the ability of a per-

vasive application to influence and change the context itself. One way to achieve

the adaptation of the context is the use of actuators in the environment such as

a light switch or a temperature control. This kind of adaption is referred to as

explicit context adaptation. Another way to influence the context is an implicit

context adaptation. An implicit context adaptation happens when an application

uses respective resources which have an impact on the physical environment as a

side-effect of their use, e.g. loudspeakers or lamps.

Adaptivity As a last characteristic pervasive applications are adaptive. Adaptivity refers

to the ability of an application to adapt itself to changing environments. The basis

for the adaptivity is the context-awareness. Based on context information, the

application can decide how to react to context changes. The self-adaptation can

either be a behavioral or a compositional adaptation. In the following, both types

of adaptation are referred to as re-configuration of the application. With respect

to adaptation control, an automatic approach is assumed. A pervasive application

has the ability to make decisions based on the context and to autonomously realize

adaptations.
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2.3. Interference in Pervasive Systems

The overview of approaches in the last section has shown that research in pervasive

computing has yielded a multitude of approaches. The variety in this approaches suggests

that pervasive computing is unlikely to be realized by one single and exclusive world-wide

system. In contrast, pervasive computing will be realized by a conglomeration of different

systems. These systems will coexist and provide functionality to a multitude of users in

parallel.

A major challenge that needs to be addressed in the systems that result from the co-

existence of multiple pervasive systems is the satisfaction of all users at the same time.

Without the provision of additional means, such systems are unlikely to succeed in achiev-

ing this goal. The reasons for this and the problems which are likely to occur are analyzed

in the following.

Pervasive systems are often designed without considering the existence of multiple users.

From the perspective of a single pervasive application, its objective is the provision of func-

tionality to its current user in the best possible way. Based on a variety of information

such as user goals, user preferences, context etc. each application aims at an optimal ap-

plication configuration and context interaction satisfying its user’s needs. In single-user

environments in which a single application is executed, the adaptation of the applica-

tion as well as of the context does not pose any challenges. Based on the assumption

that an application aims at the satisfaction of the user’s goals, the user expects context

adaptations to happen explicitly or implicitly.

Consider the example of a smart meeting room in an office environment in which user

Anne wants to work on a advertisement video for the company. The video file is located on

the notebook she has brought. In order to simulate the official presentation, her pervasive

application chooses the projector which is provided by the pre-installed infrastructure as

video output device. In order to make the video visible and to provide a high-contrast

picture, the application makes use of available actuators in order to set the light level.

It closes the blinds and turns off the light. Furthermore, the activity of the room is set

to individual work. The application obviously adapts its context according to its needs.
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The use of the actuators to close the blinds and to turn off the light are explicit context

adaptations as well as the activity statement. An implicit context adaptation takes place

through the use of the installed speakers to output the audio track influencing the noise

level in the environment.

(a) Different Context Goals (b) Context Influences Overlap

Figure 2.3.: Interferences in Pervasive Systems

While the interaction with the context does not pose any challenges in single-user-single-

application environments, challenges arise in multi-user-multi-application environments.

The challenges stem from the fact that applications interact with a shared context when

they are executed in the same physical space. Figure 2.3 illustrates two possible situations.

Figure 2.3(a) shows two applications – Appi and Appj – which are executed in the same

physical space and thus interact with a shared context. Consider the situation in which

application Appi has retrieved context information and has based its configuration decision

on the current context state. Right after Appi has configured itself Appj is started. Appj

discovers that the context does not represent its user’s goals in the best possible way.

Consequently, it adapts the context according to its needs.

The context which has been adapted by Appj overlaps with the context Appi depends

on. Since the context has changed for Appi it is now forced to react. In general, a pervasive
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application can cope with such a situation in two different ways. First, it can adapt the

context again according to its needs by using respective actuators. Especially, as Appi has

no means to detect that the context was changed actively by another application, up to

the present, it might consider the context adaptation to be a good option. This however

may result in a cycle of context adaptations. The re-adaptation of the context will force

Appj to react which likewise can choose one of two general options to handle this situation.

The problem can be reduced to the fact that both applications have contradicting goals

towards the shared context. As a second option, the application can try to adapt to the

changed execution environment by adapting itself, e.g. by choosing a configuration based

on the new context state. Depending on the resources which are available in the physical

space, this process may result in a configuration that is suboptimal for its user. Moreover,

no configuration may be found preventing the provision of the functionality.

To exemplify this situation consider the extension of the previously discussed example

by another activity Anne wants to pursue. While watching the video Anne decides to

take notes on her interactive notepad while studying the advertisement video. In order

to provide an optimal context for working with the notepad, the notepad application

decides to open the blinds and to turn on the light. The execution of the notebook

application clearly has an impact on the video application as it changes the context

the video application depends on. The light level in the environment compromises the

quality with which the functionality is provided as the video is hardly visible anymore.

Since the context has changed the video presentation application is now forced to react.

It may either choose to adapt the context again according to its needs or may decide

to adapt itself. The adaptation of the context however may yield a context adaptation

cycle as both applications obviously have contradicting goals towards the environment.

The adaptation of the application itself is likely to not fulfill Anne’s goals. The video

application could decide to redirect the output to the display of Anne’s notebook or to

another output device available in the room. However, since Anne wants to simulate the

presentation appointment, the reconfigured application is not usable anymore. Moreover,

if the physical space does not provide any further output devices, no configuration may
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be found at all and the functionality cannot be provided.

Another problematic situation that results from interactivity of applications is shown

in Figure 2.3(b). As applications have an influence on their physical environment they

are likely to interference with each other in the physical space they share. This may lead

to a compromise of the quality with which the functionality is provided. This situation is

illustrated by applications Appk and Appn who both adapt the context in their execution.

As an example, consider the situation of Anne which was described above. While Anne

is watching the video presentation a phone call arrives at her office. Since phone calls

are handled by a pervasive application, it retrieves Anne’s current location, searches for

devices in the location that allow speech input and output and starts the phone call.

If both – the video application as well as the phone call application – are executed in

parallel without any additional measures, the audio output of both applications interfere

with each other. This compromises the quality of both application functionalities. Anne

will neither be able to follow the video presentation nor to process the phone call properly.

The situations described above represent examples of a more general problem in per-

vasive systems. Applications interact with the shared context in terms of making con-

figuration decisions based on context states and adapting the context according to their

needs without considering that other applications may be executed in parallel. They are

likely to be designed to run in isolation, not taking into account the dependencies other

applications have on the shared context. The problem becomes even more general if the

pervasive system is assumed to be a multi-user system in which multiple users are served

in parallel. While being provided with a certain functionality a user may have require-

ments towards its physical surrounding. A user that processes a phone call for example

may feel disturbed by any other application which has an impact on the noise level such

as a music application. The described situations are examples of a general problem which

is referred to as context interference (interference) as follows:

Definition 1 (Context Interference (Interference))

A context interference (interference) is an application-produced context state which im-

pairs the functionality provision of a pervasive application to a user.
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The crucial factor for an interference is the fact that the context is produced by another

application in the pervasive system. A pervasive application is designed to be able to cope

with context changes and take respective measures. However, in multi-user environments

an application-induced context change represents the goals of another user towards the

context. If an application’s functionality provision is compromised by the created context,

a goal conflict between the application evolves. As a result, if the impaired application

reacts to the context change, it submits itself to the interests of another user. Since each

application represents its own user’s needs, this dependence is not tolerable in multi-user

environments and needs to be addressed.

To summarize this chapter, a general introduction to pervasive systems and an overview

and classification of existing approaches to realize functionality in pervasive systems was

given. The classification determined commonalities of pervasive applications and sum-

marized them into a definition of pervasive applications which is used in the context of

this thesis. The analysis of existing approaches showed that the majority of pervasive

applications are context-interactive. They interact with the context, adapting themselves

or the context according to their needs. If two or more applications share a common

context, interferences are likely to occur.



3. Coordination: System Model and

Requirements

This chapter identifies the research goal of this thesis. At first, Section 3.1 presents

the system model which provides a concise definition of the targeted pervasive systems.

Subsequently, Section 3.2 discusses coordination as the approach to handle interferences

in multi-user pervasive systems. Finally, Section 3.3 infers and analyzes requirements

towards a coordination approach from the characteristics described in the system model.

3.1. System Model

The targeted systems are multi-user pervasive systems in which a multitude of applica-

tions are executed in parallel. A pervasive system consists of a set of entities – users,

devices which are connected via a network and pervasive applications – and the physical

space in which the entities reside. A user in a pervasive system is a human who makes

use of the functionality provided by the pervasive system. To provide functionality, the

pervasive system comprises a set of heterogeneous devices which are able to form net-

works. This set may consist of stationary as well as mobile devices which are carried by

users. Furthermore, the existence of sensors which are able to capture the state of the

physical space as well as the existence of actuators which allow control of objects in the

environment is assumed. The resourcefulness of devices may range from powerful devices

like a server down to resource-poor devices like a temperature sensor. Functionalities are

realized through the execution of pervasive applications. While a user may execute several

applications in parallel it is assumed that each application is executed by a single user,

the application owner. In case a pervasive application is part of an automated system like

31
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a building control the owner is said to be the system administrator.

A pervasive application is defined by three characteristics as described in Section 2.2.3.

Firstly, it is distributed, making use of resources and functionalities provided in the per-

vasive system. Secondly, a pervasive application is context-interactive. It uses context

information for configuration decisions on one hand while it is also able to change the

context itself, e.g. through the use of respective actuators. Thirdly, a pervasive applica-

tion is adaptive. It has the ability to adapt to changing environments by adapting its

behavior or its composition resulting in a functional reconfiguration. In addition to the

three characteristics, pervasive applications are assumed to be cooperative with respect

to the management of interferences. The specifics of the willingness to cooperate are

discussed in Section 5.3. Furthermore, it is assumed that besides an active functional

configuration, each application is able to compute possible alternative configurations as

discussed by [GRWK09].

In order to realize pervasive applications, devices are assumed to be equipped with

respective system software as discussed in Section 2.2. The concept based on which the

respective system software is realized can be a smart environment as well as a smart peer

group. The system software provides the basic functionalities in order to manage the

pervasive system and to realize pervasive applications. Typical system functionalities are

device discovery, resource managers, application configuration, context management, and

communication services.

A group of devices which is equipped with the same system software and executes

pervasive applications for one or more users is said to be a uni-platform pervasive system.

The group of devices and users of a uni-platform pervasive system is not fixed and may

change over time. Each uni-platform pervasive system independently manages the devices

and pervasive applications within the system, involving all tasks which are essential to

realize pervasive computing.

An illustration of the targeted pervasive systems – multi-platform pervasive systems

– is shown in Figure 3.1. A multi-platform pervasive system emerges if two ore more

uni-platform pervasive systems share a physical space. To determine the physical space
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Figure 3.1.: Multi-Platform Pervasive System

of a pervasive system, the existence of a location model like [Sat05], [BBR02], or [BZD02]

is assumed. The location model provides a symbolic reference for physical spaces like

buildings, floors, and rooms. To ease the discussion in the following, a set of uni-platform

pervasive systems is assumed to form a multi-platform pervasive system if their location

refers to the same physical space. In the following, the term pervasive system always

refers to a multi-platform pervasive system as described in this section.

3.2. Application Coordination

In Section 2.3, interferences were identified as a problem that is likely to occur in the

targeted pervasive systems. The occurrence of interferences can be ascribed to the fact

that applications in a pervasive system share and interact with a common context. In

addition, they lack the awareness that other applications may be executed in parallel.

Moreover, up to the present, the interactions a pervasive application has with the shared
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context are only known by the application itself. Even if an application was aware of other

applications in the environment, it could not exactly determine how these applications

depend on and influence the context.

The context-interactivity, however, is a major characteristic of a pervasive application.

In order to provide functionality to its user in the best possible way, the application needs

to interact with its environment. As a consequence, interferences can hardly be avoided

even though this would be the optimal solution. In order to enable the unobstructed pro-

vision of functionality to multiple users in pervasive systems, the interaction of pervasive

applications with the shared context needs to be coordinated. Coordination in this context

means that interferences need to be detected and resolved to maintain an interference-free

system state. The existence of an interference indicates the need for coordination. The

resolution of an interference realizes the coordination of context interactions. To detect

the need for coordination, i.e. an interference, applications need to explicitly define their

interaction with the common context. This interaction consists of how an application

depends on the current context state and how the application changes the context in

its execution. Based on the specification of context interactions, interferences between

applications can be detected.

The basic idea to resolve an interference is the coordinated adaptation of applications

in the system. According to the system model, pervasive applications are able to provide

the same functionality in different functional configurations. The functional configuration

determines the interaction of an application with the shared context. Thus, an adaptation

of the application may also change the interaction of the application with the context.

However, the application will be able to continue the provision of its functionality. As

an example, consider a music application which runs on a smart phone and uses speakers

which are installed in the environment in order to output music for its user. The cur-

rent functional configuration which involves the use of the speakers influences the shared

context by changing the audio level in the environment. An alternative functional con-

figuration could be the use of plugged-in headphones. The use of headphones allows the

music application to continue the provision of its functionality. However, due to the use
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of headphones, the interaction with the context changes.

An uncoordinated adaptation of one or more applications may however not suffice to

solve the problem of interferences. Up to the present, applications are not aware of other

applications and their interaction with the shared context. Without the knowledge of

dependencies of other applications, an application may iterate through its possible func-

tional configurations to find an interference-free configuration. Considering the previous

example, the music application could try to adapt itself changing the output devices it

uses. Since it is not aware of the fact that the reason of the interference is the changed

audio volume, the adaptation is a trial and error process. Depending on the number of

possible configurations this process may be highly inefficient. Moreover, the goal of solv-

ing an interference may not be achieved if the adaptation of a single application does not

suffice but requires the adaptation of multiple applications. Consequently, a coordinated

application adaptation is needed for an effective and efficient interference resolution.

The goal of this thesis is the development and realization of an approach to coordinate

applications in pervasive systems in terms of interference detection and their resolution.

The approach must be tailored to the specific characteristics discussed in Section 3.1.

These characteristics can be summarized into three facts: firstly, pervasive systems are

heterogeneous; secondly, pervasive systems can be highly dynamic; thirdly, pervasive

systems are open with respect to new uni-platform pervasive systems.

With regard to heterogeneity, this is true not only for the system software employed,

but the concept (smart environment vs. smart peer group), provided functionality, and

used application model. With regard to dynamism, this is a function of user mobility:

new users and/or devices may be brought into (or be removed from) a pervasive system,

thereby adding a new user to an existing subsystem or a new uni-platform pervasive

system to the pervasive system. With regard to openness, the consequence of this is that

the actual set of users, devices, pervasive applications, etc. is not known before runtime.
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3.3. Requirements

Based on the previous discussion, requirements towards an approach for application co-

ordination need to be derived. The functional requirements towards the framework are

(1) the detection of interferences as the need for coordination and (2) the resolution of

detected interferences realizing a coordination. In addition, the application coordination

framework should fulfill a number of nonfunctional requirements (Requirement I through

Requirement VIII) which are discussed in the following.

I. System Integration

The first requirement addresses the heterogeneity of pervasive systems. According to

the system model, pervasive systems will be a composition of a number of different and

heterogeneous pervasive subsystems. These systems are likely to differ with respect to

a variety of aspects. They will employ different system software, may have different

application models, configuration algorithms, and adaptation frameworks among a variety

of other aspects. Likewise, the executed applications are heterogeneous. Consequently,

the framework for application coordination should support the integration of arbitrary

applications irrespective of their system-specifics. The approach should be independent

of a particular application class or model. It should allow for applications to participate in

application coordination which act autonomously or which are coordinated within a uni-

platform pervasive subsystem. In summary, the system must be realized as a cross-system

design which allows the integration of arbitrary applications in application coordination.

II. System Autonomy

The second requirement ties in with the previously discussed requirement. While the

approach should aim at the integration of arbitrary and heterogeneous systems, system-

specific characteristics should be preserved. Each pervasive subsystem must be able to use

its own system software and to manage itself independently. Likewise, the specifics of the

realization and execution of pervasive applications must be maintained. This includes the
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used application model, the adaptation framework, the realization of context-awareness

etc. In summary, the approach should enable an integration without the need to signif-

icantly change existing systems. Each pervasive subsystem should remain autonomous

while being integrated into application coordination.

III. Runtime Coordination

The third requirement addresses the characteristics of a pervasive system to be highly

dynamic and open with respect to users and devices. An important implication of these

characteristics is that the actual set of users and devices in a pervasive system at a

certain point in time is hardly predictable. Consequently, the approach must coordinate

applications in terms of interference detection and resolution at runtime. In the optimal

case interferences should be handled before they actually occur. The achievement of

this goal would provide a basis for real interference avoidance. However, due to the

characteristics of the system, interference avoidance is unlikely to be achieved. Thus, the

system must provide means to detect and resolve interferences when they actually occur.

IV. Application-Specific Interferences

The fourth requirement also addresses the characteristics of the system to be dynamic

and open with respect to users and devices. Interferences are often subjective and are

strongly dependent on a user or an application. Considering the scenario where music

is playing in the same room while a user is talking on the phone. This situation may

pose an interference for user Anne who feels disturbed by the music while talking on

the phone. Another user who finds himself in the same situation may enjoy listening to

music while talking on the phone and may not encounter this situation as an interference.

Moreover, interferences are not necessarily mutual. The user who is playing the loud music

does not necessarily perceive the parallel phone call as an interference. Consequently,

the system should be able to detect application-specific interferences. It needs to know

which interferences may occur dependent on the users and applications executed in the

environment. Moreover, the system needs to be able to cope with the dynamism of the
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system. The set of users and applications may change over time leading to changes in the

set of interferences which are likely to occur in the system.

Furthermore, an interference may involve more than two applications. A context which

is produced by a single application may have an impact on a number of m applications.

Turning on a light in an environment with multiple applications which rely on a dark

light level may force the reaction of several applications in parallel. On the other hand,

a complex context may be a product of multiple applications. Thus, a single interference

may be caused by a number of n applications. Respectively, m applications may cause an

interference for n applications as well. A system that detects and resolves interferences

must be able to handle such n : m interferences.

V. Minimal User Distraction

The approach should aim at automatic detection and resolution of interferences as far as

it is possible. Obviously, many interferences can be perceived by users and can be solved

on the user level through social mechanisms. However, pervasive systems aim at the

assistance of users in their everyday tasks. The withdrawal of user attention from their

primary task to handle an interference contradicts this goal. Consequently, the distraction

of users should be avoided when it comes to interferences and application coordination

should be done automatically.

VI. Strategy-Based Coordination

Once an interference has been detected it needs to be resolved in order to yield an

interference-free system state. The resolution of an interference involves the adaptation of

a selected set of applications. In order to choose these applications a number of different

criteria can be used. However, the focus of this work is not to develop and realize a single

specific resolution strategy but to provide a framework which is able to support arbitrary

resolution strategies which can be set according to the needs of the pervasive system.
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VII. Correctness of Interference Detection

The seventh requirement towards the approach to be taken is the correctness of inter-

ference detection. The characteristic of being correct states that interference detection

reports interferences if and only if an interference exists. It neither detects an interference

in an interference-free system nor leaves an interference undetected.

VIII. Completeness of Interference Resolution

The completeness of interference resolution states that the approach finds a resolution

if a resolution to an interference exists. Furthermore, the interference resolution process

terminates after finite amount of time with a result of the computation. The result is

either a viable solution to the interference or the indication that no solution exists.

To summarize this chapter, the research goal for the thesis at hand was defined. For

this purpose, the characteristics of the targeted pervasive systems were summarized in a

system model. The targeted systems are dynamic, heterogeneous and open with respect

to users, devices, and the pervasive applications which are executed at runtime. Subse-

quently, the idea of application coordination as the approach to handle interferences in

pervasive systems was introduced. The need for application coordination was motivated

and requirements towards the approach to tailor it to the target systems were identified

and discussed.
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4. Related Work

This chapter discusses related work with respect to interferences. Section 4.1 addresses

the notion of interferences. It presents existing definitions or concepts which are similar to

the concept of interferences. Subsequently, Section 4.2 analyzes approaches for application

coordination. After an introduction of frameworks which address application coordination

in pervasive systems, Section 4.2.1 and 4.2.2 discuss related research which focuses on

interference detection and resolution.

4.1. Interference

The analysis of existing literature has shown that no research work exists which defines or

addresses the problem of interferences in its generality. However, a number of approaches

address subclasses of the defined problem under the terms interferences, service interac-

tions, and conflicts. In [MD06] [MD07] Morla et al. define an interference as a situation

where the behavior of a component in a deployed system differs from its behavior in isola-

tion. The participants of an interference are usually two entities which are connected via

the environment. An interference occurs when the first entity changes the environment

which causes the second entity to behave differently as if in isolation. The authors distin-

guish between three different classes of interferences, generative interference, destructive

interference, and distortional interference depending whether input from the environment

has been added, removed, or modified. The authors give a brief overview of the frame-

work which consists of a notation to describe interferences and a discussion of five generic

resolution possibilities. These resolution possibilities are based around the modification

or removal of one of the entities. Furthermore, they suggest the filtering of information

made to the environment or being read from the environment.

41



42 4. Related Work

The problem of interferences has also been addressed as the service interaction problem

by [KMW03]. A service interaction happens between two services when services have

different goals towards the state of the environment. The authors define four different

kinds of service interactions namely the multiple action interaction, the shared trigger

interaction, the sequential action interaction, and the missed trigger interaction. The

first type of interaction refers to a situation where an exclusive service is requested to

perform different operations. The last three types describe interactions which may occur

through the use of a shared environment. As certain states of the environment serve as

triggers for services and this state can be modified through other services, these types

of service interactions may happen. A single environmental state may be a trigger for

two or more services which perform conflicting actions. A missed trigger may happen

if the environment is changed by another service such that the service is not triggered.

Lastly, the sequential action interaction describes a chain of triggers. This happens when

the environment triggers a service which in turn changes the environment triggering yet

another service.

An intersection set with interferences are the conflicts which have been addressed in

various research approaches such as [SHW05], [RC03], [PLH05], [CEM03], [LPP+07],

[SLS05], [AKM06], [HME+06], [DIK02], [HAM+06], and [JCL11]. In summary, three dif-

ferent classes of conflicts can be identified. 1) The resource conflict ([SHW05], [OSWS06],

[JCL11], [HME+06] [LPP+07]) describes a conflict in which two or more users access an

exclusive service with conflicting goals. For example, the use of the TV for two differ-

ent TV channels can be considered a resource conflict. 2) The second class of conflicts

is the class of service interference conflicts ([SHW05], [SW09], [AKM06], [PLH05]). A

service interference occurs if two services are executed in a way that their impacts on the

environment interfere with each other. Services may be executed by one as well as by

multiple users. A good example is the execution of a music service and a television service

which both affect the environment with sound. If the sound is too loud the two services

interfere with each other and the quality of their functionality decreases. 3) The third

class of conflicts are the intra-service conflicts ([DIK02], [SLS05], [CEM03], [RC03]). An
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intra-service conflict describes a situation in which a service or application cannot unam-

biguously determine how to react to a certain state of the environment. Often these types

of conflicts occur in systems where the behavior of an application is rule- or policy-based

using context information as a basis. While each single rule itself seems to be reasonable,

for certain context states they may prove to be different. An example is when two people

have specified contradicting preferences for the temperature in the room. If only one

person is present, the system can unambiguously determine how to react. However, the

fact that both people are in the room at the same time leads to an intra-service conflict.

As the prior discussion shows, a variety of concepts or definitions exist for the problem

of interferences. None of the definitions covers exactly the problem of interferences as

they are addressed in the context of this thesis. Morla et al. [MD06], for example, refer to

an interference as a situation where the behavior of a ubiquitous component in a multi-

user/multi-application environment differs from that in isolation. In contrast to this,

we assume that applications actually work as intended as they have been designed to

react to context changes and adapt respectively. However, the fact that context may be

produced by applications and consequently applications directly influence each other via

the common context they share is the problem which was identified. A similar problem

where the behavior of components – here services – in multi-service environments differs

from that in isolation has been referred to as service interaction problem by Kolberg

et al. [KMW03]. However, services in this system model do not represent the interests

of different users. In contrast, it is the interest of the system that all services function

correctly and work together in the way that each service can be provided correctly.

In the research area of conflicts the notion of service interference conflicts covers a

subset of interferences as they are defined in the context of this thesis. They cover the

part where the influences of two or more applications interfere with each other such that

the quality of the provided functionality decreases. The situation in which the context

influences of one application force another application to adapt are not covered by this

concept.
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4.2. Application Coordination

The analysis of existing work showed that subclasses of interferences have been identified

and addressed under the terms interference, service interaction, and conflict. Approaches

exist which propose frameworks to solve the problem of coordination in terms of interfer-

ence detection and resolution in pervasive systems ([BRK06], [Bor06], [BCRZ09], [SRL10],

[MD06]).

The group of Bortenschlager et al. ([BRK06], [Bor06], [BCRZ09]) has taken first steps

to approach the problem of application coordination in pervasive systems. In [Bor06]

and [BCRZ09] the authors analyze requirements of pervasive systems and present the

UbiCoMo infrastructure for agent-based/application-based coordination in such environ-

ments. Furthermore, they introduce a number of patterns as a theoretical basis to model

situations which require coordination and to handle them [BRK06]. Another general

approach for the detection and resolution of interferences is introduced by Morla et

al. [MD06]. They present a general framework that allows for the detection and anal-

ysis of interferences in pervasive systems and provides solutions to solve them.

Silva et al. [SRL10] address conflicts that arise in collective ubiquitous context-aware

systems. The basic assumption of their work is that services in a ubiquitous environment

can be shared by several users. Conflicts in this setting occur if multiple users require

the service to adapt differently depending on their individual user profiles. Conflicts

are detected over three input dimensions, namely application tasks, user profiles, and

environment characteristics. Each user is required to provide an action level file defining

the user’s requirements towards these dimensions. A conflict is detected if the union of

all action level files leads to an inconsistent system state. In order to solve conflicts,

the approach introduces a conciliation module which provides several conflict resolution

algorithms. The task of conflict resolution is the task of adapting the application according

to the users’ interests. At runtime the module selects an algorithm considering the specific

characteristics of the conflict as well as energy requirements aiming at the adaptation of

the service with the greatest user satisfaction.

The works of Bortenschlager et al. ([BRK06], [Bor06], [BCRZ09]) and Morla et al. [MD06]
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provide a general approach for coordination and interference management in pervasive sys-

tems. In contrast to the framework presented in this thesis, the considerations remain

on a theoretical level. The infrastructure and the patterns provide a basis for coordina-

tion in pervasive systems. However, a coordination at runtime and its challenges is not

addressed. Likewise, Morla et al. have analyzed in detail how interferences can occur in

pervasive systems and how they can be resolved in general. They propose a framework

to model entities in pervasive systems in an abstract manner and enable developers to

reason about their behavior in isolation and in combination with further entities. The

research work however aims at providing developers with a system that supports interfer-

ence management offline and is not applicable at runtime.

While the approach of Silva et al. [SRL10] suggests to be closely related to the one

presented in this thesis, their definition of conflicts differs significantly from the one given

in this thesis. According to Silva et al. conflicts occur when multiple users have different

requirements towards a single service. Thus, the task of conflict resolution involves the

adaptation of the single service aiming at the highest possible overall user satisfaction.

In contrast, this thesis addresses interferences involving multiple applications in a shared

context. Consequently, the resolution of an interference involves the adaptation of a set

of applications with different configurations instead of a single one.

In contrast to the discussed research work which aims at frameworks to manage inter-

ferences (conflicts) in pervasive systems, further approaches exist which mainly focus on

specific aspects of interference detection and resolution. Section 4.2.1 discusses approaches

which realize interference detection. Approaches which are summarized in Section 4.2.2

neglect the process of interference detection and exclusively focus on the development of

resolution strategies.

4.2.1. Interference Detection

The detection of interferences, service interactions, and conflicts has been the focus of a

number of research projects ( [KMW03], [PLH05], [SW09], [AKM06], [SLS05], [LPP+07],

[DIK02], [JCL11]). In order to detect interferences the majority of these approaches
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rely on a model of a pervasive environment. This model typically comprises applica-

tions, services, resources, and environmental variables and a specification of their possible

relationships ([PLH05]), [SW09], [KMW03], [AKM06], [JCL11], [MAJ07]). At runtime

these models are instantiated with real-time objects such as resources which are currently

available in the pervasive environment or devices which are used and how they affect

environmental variables. For interference detection the approaches define a set of pat-

terns which describe interferences (conflicts) in terms of specific model structures. An

interference is detected in an instantiated model if such a pattern is found at runtime.

As an example, Shin and Woo [SW09] have developed an ontology to model smart home

environments. In addition to static information such as devices and resources which are

permanent parts of the smart home, instance data is required at runtime and thus has

been added to the ontology. Conflicts in the smart home environment occur if multiple

applications share properties, share resources or share conditions. To detect conflicts the

authors have defined three patterns covering the identified situations. At runtime, the

ontology is frequently checked for the occurrence of these patterns indicating the existence

of a conflict.

Another example is the approach by Kolberg et al. [KMW03]. The authors present a

static model for the smart home domain. The model consists of three layers, the service

layer which comprises the services in the home, the device layer consisting of all devices in

the environment and the environmental layer which represents the state of the physical

environment in form of environmental variables. Connections between entities of the

layers are made if for example a service uses a certain device or when the use of a device

has an effect on an environmental variable. In addition, three different kinds of access

attributes have been introduced which are set by services during runtime. Using an access

attribute services can state whether or not the use of a device can be shared. Analogously,

it can be stated if an environmental variable may exclusively be influenced by a specific

device or if several devices may set the variable and increase or decrease its value. A

conflict occurs and is detected in two different scenarios: 1) If a service requests the use

of a device which has been marked exclusive by another service. 2) If a device requests
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to change the value of an environmental variable which is marked exclusive or wants to

increase/decrease a value that’s marked as decrease-only/increase-only.

Other approaches which focus on interference detection do not require a model of the

entire pervasive system but opt for using a collection of all potential conflicts that may oc-

cur in the system or a collection of all conflict-free states respectively ([LPP+07], [DIK02],

[SLS05]). Lee et al. [LPP+07] for example propose a lock-based approach in order to detect

conflicts in pervasive systems. The basic idea of the approach is to require applications

to request a lock at a central component in order to make use of a resource. The central

component then checks if granting the lock will yield a conflict-free system state. For this

purpose, it employs a database which contains entries about all possible conflict-free lock

combinations which need to be defined by an administrator before runtime. A similar

approach is taken by Dunlop et al. [DIK02]. Conflict detection relies on a database of

possible conflicts which have been identified before runtime. In order to detect conflicts,

the current situation is compared to the scenarios specified in the database.

The discussion of related work shows that a number of approaches exist which realize in-

terference (conflict, service interaction) detection in pervasive systems. These approaches

can be split into two categories. The first category uses models and patterns that describe

interferences as a certain structure within a model. Interferences are detected at runtime

by searching for the patterns in the model which is instantiated with objects of the perva-

sive system. This approach models interferences independent of specific instances and thus

enables a general applicability. In contrast, the second category of approaches employs

a collection of specific situations which have been identified as interference/interference-

free. In order to detect an interference the actual state of the environment is compared

to the situations specified in the collection.

Compared with the approach presented in this thesis none of the existing approaches

is able to handle application-/user-specific interferences. The use of patterns to detect

interferences as well as of a collection of system states that pose/do not pose an interfer-

ence does not take the subjectivity of interferences into account. A specific structure in



48 4. Related Work

the model or a specific pre-defined situation is considered to be an interference for an ap-

plication independent of its user’s perception. Likewise, very specific context states which

may in general not be considered as interference but may be perceived as an interference

by a specific user cannot be handled either. As an example, consider the previously men-

tioned situation when a phone call arrives while music is playing in the environment. The

described situation may pose an interference for one user while another one likes to listen

to music while talking on the phone. However, the discussed approaches cannot assess

whether or not this situation is an interference for specific user.

Moreover, the discussed approaches which make use of a collection of interfering/

interference-free system states do not take the openness and dynamism of the environ-

ment into account. The discussed approaches assume that the collection grows over time

leading to a comprehensive description of interfering system states. However, as inter-

ferences depend on users and applications in the pervasive system, these approaches lack

the ability to adapt accordingly and to cope with the dynamism. In contrast to that, the

approach presented in this thesis considers the openness and dynamism of the targeted

pervasive systems through a dynamic set of interference specifications.

4.2.2. Interference Resolution

A variety of research work exists which addresses the problem of interference (conflict, ser-

vice interaction) resolution in pervasive systems ([LPP+07], [HME+06], [JCL11], [RC03],

[KMW03], [SW05], [CSW05], [SYW07], [SDW08], [SW09], [MD06], [OSWS06], [SHW05],

[PLH05], [TJK+08], [MAJ07], [SRL10]). The majority of these approaches focus on the

development of one specific resolution strategy.

For example, the use of priorities to solve a detected conflict has widely been investi-

gated ([LPP+07], [HME+06], [JCL11], [RC03], [KMW03], [SW05], [CSW05], [WKM07],

[SLS05], [MAJ07]). Especially in scenarios where conflicts occur due to multiple access

on exclusive resources, a priority-based resolution strategy has shown to be successful.

Haya et al. [HME+06], for example, approach the resolution of concurrent requests to

exclusive resources by employing preemptive priority queues. A centralized mechanism is
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used to store action requests on resources in queues. Each action request has a pre-defined

priority. If several requests for a resource exist in a queue, the request with the highest

priority is chosen. A similar approach is taken by Kolberg et al. [KMW03] for the service

interaction problem. Each service in the home environment is assigned a priority. If two

or more services try to use a device which is marked as exclusive, the access is granted to

the service with the higher priority. Priority-based resolution strategies are also employed

for interferences (conflicts) that occur between different users. Shin et al. [SW05] and

[CSW05] dynamically assign priorities to users based on their context conflict history.

If a user’s context is likely to lead to a conflict according to the history, the user is as-

signed a low priority. A dynamic priority assignment is also proposed by Masoumzadeh et

al. [MAJ07]. In the presented approach policies are used to define which activities are al-

lowed and prohibited in a pervasive system. A conflict occurs if contradicting policies are

detected within one system. To solve the conflict the authors present an algorithm which

dynamically computes priorities for the conflicting policies enabling a decision. Likewise,

Syukur et al. [SLS05] define a priority order for users in the environment or spaces in gen-

eral. If a conflict occurs between the owner of a pervasive environment and a visitor for

example, the owner is granted the execution of the service while the service of the visitor

may not be executed. Another area of applicability for a priority-based resolution process

in presented by Ranganathan et al. [RC03]. In the presented approach priorities are used

to solve intra-service conflicts. An intra-service conflict occurs if the service has different

choices considering the reaction to a given context. Consequently, the approach assigns

priorities for context-action rules of applications. In case more than one context-action

rule is applicable for a given context the one with the highest priority is chosen.

Further approaches that can be found in the literature are those that resolve conflicts

based on user preferences ([SHW05], [PLH05], [TJK+08]). These approaches are based

on the idea that users have preferences towards services and how they are composed,

e.g. use of specific resources. An interference (conflict) occurs if a service is accessed

by multiple users or when multiple services share limited resources. The resolution of a

detected conflict is achieved by computing service compositions trying to optimize user
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satisfaction based on preferences.

The previously mentioned approaches provide a single strategy to automatically resolve

interferences (conflicts). None of them require interaction with the user during the res-

olution process. In contrast to this, approaches exist which combine several resolution

strategies and require the interaction with the user. For example, Shin et al. ([OSWS06],

[SYW07], [SDW08], [SW09]) have developed a process that provides three resolution

strategies and determines which resolution strategy is suitable for a resolution depending

on the characteristics of a detected conflict. The first two strategies support an automatic

resolution of a conflict. They make use of user preferences or assign priorities to users

respectively. The third strategy is referred to as technology augmented social mediation

and requires the interaction with the user. Technology augmented social mediation works

on the basis of user preferences. The central idea of this approach is that in case of a con-

flict a centralized device compiles a list of service recommendations based on the group

of users and their preferences. The list is presented to each user on their devices and

users are prompted to make a selection. The approach then decides whether the group

can agree on a specific service and selects the service respectively.

The discussed approaches can be distinguished between approaches that aim at the pro-

vision of a single resolution strategy and approaches that integrate a resolution strategy

selection process. In contrast to these approaches, the focus of this thesis is the support

of arbitrary resolution strategies instead of one explicit one. Those strategies can be

based on priorities or preferences or may as well analyze the characteristics of a detected

interference and automatically choose a resolution strategy. They can be implemented

by a developer and can be set for a specific environment respectively. Moreover, some

approaches differ significantly from the one presented in this thesis due to their defini-

tion of interferences/conflicts. Syukur et al. [SLS05] and Ranganathan et al. [RCAM+05],

for example, address conflicts that occur when an application cannot unambiguously de-

termine how to adapt in a certain context state. In this situation, a conflict resolution

involves to determine which action needs to be chosen for a single application. However,

a coordinated adaptation of several applications is not addressed.
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In summary, the discussion of related work showed that no approach exists which handles

the problem of interferences in its entirety as addressed by this thesis. A variety of re-

search work exists which focuses on the management of subsets and intersection sets of the

interference problem. Other approaches focus on the development of specific resolution

strategies assuming a prior detection. The only approaches which present comprehen-

sive frameworks for interferences remain on a theoretical level and are not applicable to

practical pervasive systems.
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5. Framework for Application Coordination

This chapter presents the theoretical approach to application coordination in pervasive

systems. A framework is introduced that detects interferences between pervasive appli-

cations and resolves them through a coordinated application adaptation. Section 5.1

discusses the major design decisions for the taken approach. Subsequently, Section 5.2

introduces the framework, presents its compositional parts and explains the mode of oper-

ation. Section 5.3 then discusses how applications of different systems are integrated into

application coordination and describes the required system extensions. Finally, Section

5.4 gives an in-depth analysis and presentation of the tasks of interference detection and

interference resolution and discusses its underlying theory in detail.

5.1. Design Rationale

In order to handle interferences in multi-platform pervasive systems, a framework for

application coordination has been developed in the context of this thesis. The frame-

work is able to detect interferences across different uni-platform pervasive systems and

to resolve them respectively. The following subsections – 5.1.1, 5.1.2, and 5.1.3 – discuss

the three major design decisions for the framework, namely the design as a cross-system

coordination layer, the extension of existing application systems and the realization of

strategy-based application coordination. The design decisions were made in dependence

on the requirements identified in Section 3.3. They tailor the approach to the multi-

platform pervasive systems described in Section 3.1.

53
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5.1.1. Cross-System Coordination Layer

The first major design decision is to realize the application coordination framework as a

cross-system layer approach as shown in Figure 5.1. It has been designed to span across an

arbitrary number of uni-platform pervasive systems, while it is also employable within one

system only. The layer coordinates the interaction of pervasive applications in different

uni-platform pervasive systems with the shared context.

Figure 5.1.: Cross-System Coordination Layer

The coordination is based on the idea that each application provides the framework

with information about its context interaction. This comprises how the application de-

pends on the context and how it influences the context in its execution. The knowledge

about current context interaction of all pervasive applications in the system enables the

framework to detect interferences and thus the need for coordination.

In order to resolve the interference, the framework requires knowledge about the appli-

cation’s context interaction in possible alternative functional configurations. Based on the

set of all alternative context interactions, the framework can compute how applications

must reconfigure and thus change their context interactions. To implement the resolution,

the framework initiates application adaptations according to the computation results. For

this purpose, it requires the ability to request an application to switch to an alternative
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functional configuration.

The design of the coordination framework as a cross-system layer satisfies Requirement

I and III, namely system integration and coordination at runtime. With respect to system

integration, the framework requires knowledge about context interactions for the current

and alternative functional configurations and the application’s ability to instantiate a

requested configuration. Besides these requirements application systems are treated as

black boxes. The framework does not require an application system to use a specific appli-

cation model or adaptation framework. It abstracts from system-specific characteristics

and thus enables the integration of applications in arbitrary pervasive subsystems into

application coordination.

Since an application’s context interaction serves as a basis, interference detection and

resolution must be realized at runtime. The context interaction of an application as well

as the set of active applications is hardly predictable before runtime. The provision of

this information as well as application reconfigurations at runtime satisfy the requirement

for runtime coordination.

5.1.2. Extension of Existing Application Systems

The second design decision is the extension of existing application systems to enable

the framework to coordinate applications. As described in the previous section, each

application system needs to realize certain functionalities. At first, each application needs

to provide information about its context interaction in its current and all alternative

functional configurations. Secondly, each application system must enable the framework

to instruct its applications to switch to a selected alternative functional configuration.

The functionalities have been defined such that they can be realized as extensions to

already existing functionalities of existing pervasive applications. Each extension should

be implemented in accordance to the specifics of the respective application system.

The realization of information about the context interaction is achieved by extending

the functional configuration by a context configuration. The context configuration adds

two new sets of data to an application’s overall configuration namely the interference
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specification and the context influences. The interference specification explicitly specifies

all possible context states which the application considers as interferences. Up to the

present, this information is only known to the application itself. Since applications are

context-aware, the context changes which require an application reaction can be inferred

from the rules that define an application’s context-awareness. Furthermore, pervasive

systems may employ user preferences to provide the application with more information

regarding user goals and satisfaction. Based on this information, for example, interference

specifications can be composed. The context influences in turn explicitly specify which

impact an application has on the shared context when being executed. They depend on

the resources which are employed in an application configuration and the actuators an

application makes use of. In order to provide this information, the effects of the use of

resources and actuators on the shared context need to be explicitly specified. In contrast

to the information required by interference specifications, this information is not yet

accessible by pervasive applications. To retrieve this information two steps are necessary.

Firstly, each resource and actuator needs to be provided with information about how they

affect the environment when being used by an application. Secondly, applications must

be extended in the way that they are able to retrieve this information and to pass it on

to the framework as part of the context configuration.

In addition to the realization of context configurations, existing systems are extended

to determine a set of alternative context configurations and to be able to instantiate a

certain configuration on request. As discussed in the system model 3.1, the ability to

compute alternative functional configurations is assumed for pervasive applications. The

extension involves that each pervasive application is also able to compute the context

configuration of the alternative configuration and provides this information to the frame-

work. In addition, pervasive applications are extended in the sense that they are able to

instantiate a specific configuration if the framework requests it. Up to the present, the

decision which configuration to initiate and when an adaptation happens is exclusively

made by the application. The extensions allow the framework to request the instantiation

of a specific configuration for application coordination purposes.
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The extensions of existing systems, as they are described above, satisfy Requirements

II and IV, viz. preserving system autonomy and handling application-specific interfer-

ences. The way existing systems are extended allows arbitrary applications to participate

in application coordination while preserving their system specifics and autonomy. Since

the extensions need to be done for every system, they can be realized in compliance with

the used application model, the adaptation framework etc. The discussed changes do

not interfere with the way a specific pervasive subsystem is managed. The extension of

the application configuration requires the explicit specification and collection of context-

related information. The way applications are built and executed as well as all major

system services remain the same. At last, the introduction of interference specifications

satisfies the requirement to handle application-specific interferences. Interference spec-

ifications always depend on a specific user or application. They allow the definition of

those context states that an application, and thus a user represented by its application,

considers as an interference. By providing an interference specification, the application is

ensured that the framework monitors the pervasive systems for the specified interferences

and takes measures to solve them.

5.1.3. Strategy-Based Application Coordination

The third major design decision is the realization of a strategy-based application coordi-

nation. As Section 5.4.2 discusses in detail, the process to resolve an interference consists

of two steps. The first step involves the determination of which and how applications

must reconfigure themselves in order to resolve an existing interference. An application

reconfiguration, however, can be costly [BMV10]. Based on the assumption that an ap-

plication uses the best possible configuration in the current system, a reconfiguration may

lead to the instantiation of a viable but suboptimal configuration. Furthermore, due to

the reconfiguration, delays in the service provision may happen. Thus, the the set of

applications as well as their alternative configurations can be selected along a variety of

different criteria and may also be influenced by the environment. As an example, in an

office environment it might be reasonable to assign rights and priorities to users in the
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system. A team manager might have more rights than a regular team member who in

turn may have more rights than business partners who come to visit the company once

in a while. If an interference occurs between applications of users with different rights, a

resolution might pick the application with less rights for an adaptation.

To allow the use of different resolution criteria, the framework supports the use of

interchangeable resolution strategies. The development and use of a specific coordination

strategy may however require additional information which may either be managed within

the framework or which needs to be provided by participating applications. With respect

to the example of using rights and priorities for users, the framework needs to be aware

of this information when computing a resolution plan. A conceivable realization could

be a provision of a user database which allows the framework to retrieve the rights and

priorities of users and applications. Another possibility is to enable applications to provide

the respective information. For example, the use of preferences and utility values for

configurations obviously requires applications to provide the respective information.

The design decision aims at the satisfaction of Requirement V and VI, i.e. minimal

user distraction and support of exchangeable coordination strategies. The minimal user

distraction highly depends on the resolution strategy that is employed. While interfer-

ences are automatically detected, a resolution strategy may be designed to require user

interaction. However, if the strategy is able to resolve interferences without further user

input, the user will not be distracted. As discussed, the integration of resolution strategies

which use different criteria is possible in general.

The three major design decisions, the extension of existing systems, the design of the

application coordination framework as a cross-system layer, and the strategy-based ap-

plication coordination on demand satisfy Requirements I through VI which have been

identified to realize an approach to application coordination in the targeted pervasive

systems. In the subsequent section, the general approach for a framework for application

coordination is presented. The discussion introduces the theoretical foundation of the

framework. Actual runtime behavior – such as the deployment of components to devices

and the points in time when data needs to be exchanged – are addressed in Chapter 6.
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5.2. Framework Overview

The goal of application coordination is to allow for the unobstructed and parallel provision

of functionality by multiple applications in multi-platform pervasive systems. Since the

unobstructed provision of functionality can be impaired by interferences, interferences

need to be managed. For this purpose, a framework for application coordination has been

developed in the context of this thesis. The framework detects and resolves interferences

for pervasive applications in multi-platform pervasive systems. The following discussion

introduces the components of the framework, gives an overview of its mode of operation

and describes how applications are integrated and coordinated at runtime. An overview

and details of the framework have been published by the author of this thesis [MSS+10].

Figure 5.2.: Overview: Application Coordination Framework
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Figure 5.2 shows the overview of the application coordination framework, i.e. the ap-

plication coordinator. It gives a detailed view on the application coordination approach

depicted in Figure 5.1. The application coordinator realizes the cross-system coordina-

tion layer shown in Figure 5.1. It is responsible for the detection of interferences in a

pervasive system and their resolution through a coordinated adaptation of applications.

Each application Appi may belong to a different uni-platform pervasive system. In order

to realize interference detection and resolution, applications are required to provide con-

text configurations to the framework. A context configuration describes the interaction

of the application with the shared context and depends on the application’s functional

configuration. It consists of the application’s interference specification and its context

influences. The interference specification enables an application to explicitly define the

context states which pose interferences for the application. The context influences specify

how the application influences the shared context.

The context configurations that need to be provided to the framework are subdivided

into two types, the active context configuration and the set of alternative context con-

figurations. The active context configuration is required for interference detection. It

specifies the interaction with the shared context in the application’s current functional

configuration. A finite set of alternative context configurations is needed by the frame-

work for interference resolution. Each alternative context configuration is linked to an

application’s alternative functional configuration. An alternative functional configuration

is a configuration the application is able to instantiate in the given system. Consequently,

an alternative context configuration specifies the expected interaction of the application in

an alternative functional configuration. The provision of the context configuration as well

as the alternative context configurations is realized at runtime using the framework in-

terface. The interface offers all methods which are essential to subscribe and unsubscribe

applications from application coordination and to allow them to provide and update the

required data.

The coordination framework itself comprises several data and task components. With

respect to the data components, the framework maintains an application registry, a con-
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text management, a collection of interference specifications, and a set of alternative context

configurations. The application registry maintains information about which applications

have registered for application coordination. It allows context influences and interference

specifications to be associated with a specific application and stores application callbacks

to contact them in case of interferences. The context management maintains information

about the shared context in the pervasive system. It provides the framework with the

current state of the shared context and enables the framework to add context influences

as context information to the system. The context which is held by the context man-

agement system may be fed by a variety of different sources. Physical sensors which are

present in the pervasive system can capture and report the state of the physical envi-

ronment to the context management system. The integration of information provided

by virtual sensors which retrieve context information from online resources such as social

networks is conceivable. Furthermore, high level context can be inferred from existing

context information. The existence of different context providers – physical sensors, vir-

tual sensors, inference engine – is neither assumed nor required but their integration is

conceivable. Adding context information to the context management system however re-

quires its association with at least one source. The source can be an application, a sensor,

or a combination of sources for inferred context. The association with a context source

is required to enable the framework to identify the applications which are involved in an

interference. The third data set is the collection of interference specifications. The collec-

tion comprises all interference specifications of active context configurations which have

been communicated to the framework. Thus, it holds all potential interferences which

may occur in the pervasive system and for which the pervasive system is monitored. The

last set of data is the set of alternative context configurations provided by all applications

in the environment. Alternative context configurations are required by the framework for

interference resolution. The set comprises all possible alternative context configurations

of active applications.

The four data sets, as shown in Figure 5.2, provide the basis for the tasks of interference

detection and interference resolution through a coordinated application adaptation. The
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tasks of interference detection and interference resolution are realized by the interference

detection component and the application coordination component respectively. The task of

the interference detection component is to monitor the pervasive systems for interferences.

The existence of an interference indicates the need for coordination. For this purpose, the

interference detection component relies on the data provided by the application registry,

the context management, and the set of interference specifications. In the detection pro-

cess it continuously evaluates every interference specification for the current context. An

interference is detected if the context satisfies an interference specification. Consequently,

the interference detection composes a description of the interference. The description

includes the satisfied interference specification, the context which has led to its satisfac-

tion and a list of all involved applications. Once the description has been composed,

the interference resolution process is triggered by invoking the application coordination

component.

The task of the application coordination component consist of two parts, the com-

putation of an interference resolution plan and its realization through the initiation of

application adaptations. The interference resolution plan is computed according to a co-

ordination strategy which has been set for the pervasive system by an administrator. The

coordination strategy determines how applications and the configurations they must ini-

tiate are selected. For the computation of the interference resolution plan the application

coordination component relies on data provided by the set of alternative application con-

figurations, the set of interference specifications and the context management. To find a

resolution for an interference, the application coordination component needs to determine

how applications must adapt to yield an interference-free system state.

Once an interference resolution plan has been computed, the application coordination

component initiates the adaptations of the selected applications. The initiation is a simple

request which is sent to an application to instantiate an alternative functional configu-

ration which is linked to the selected context configuration. As the selected alternative

context configurations have been computed by the pervasive applications themselves, their

instantiation does not pose any additional challenges. As soon as applications receive the
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interface Instructable {

void adaptToCC(ContextConfiguration cc);

}

Figure 5.3.: Interface: Instructable

adaptation requests, the adaptations are performed and the interference is resolved.

5.3. System Extensions

The integration of pervasive applications requires the extension of existing application

systems. The first extension is the realization and provision of context configurations.

A context configuration defines an application’s interaction with the shared context and

provides the basis for interference detection and resolution. The computation and pro-

vision of context configurations constitutes the first part of an application’s cooperation.

If an application is not cooperative, i.e. not willing to determine and provide context

configurations, its coordination is not possible.

The second extension enables the framework to request applications to initiate a spe-

cific configuration if required. To realize the second extensions, the adaptation interface

Instructable shown in Figure 5.3 is introduced.

The interface has a single method – adaptToCC – which needs to be realized by pervasive

application systems. It provides the framework with the ability to instruct an application

to switch into an alternative functional configuration. As a parameter, the framework

provides the context configuration the framework has determined to be interference-free.

The functionality that needs to be realized by the application is its ability to instantiate

a functional configuration that complies with the context configuration. If multiple func-

tional configurations comply with the context configuration, the application may choose

a suitable one. The realization of the adaptation interface constitutes the second part of

the application’s cooperation. If the framework instructs an application to switch to an

alternative functional configuration, the application must fulfill this task.
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The ability to instantiate a matching functional configuration is based on the assump-

tion that pervasive applications are able to compute alternative functional configurations

as described in Section 3.1. Provided with the ability to determine context configurations

in general, the computation of alternative context configurations is likewise possible. In

order to fulfill the framework’s request, the application selects a functional configuration

which matches the context configuration requested by the framework. In this process, the

application chooses from the functional configurations it has previously computed and

which served as the basis to provide alternative context configurations to the framework.

5.3.1. Context Configuration

This section introduces the concept of a context configuration as one of the system ex-

tensions required for application coordination. A context configuration defines how a

pervasive application interacts with the shared context. It depends on the functional

configuration of an application, i.e. the resources and actuators the application uses.

For application coordination, the framework requires two different types of context con-

figurations, an active context configuration and a list of alternative context configurations.

The active context configuration specifies the interaction with the shared context in the

application’s current functional configuration. It is required by the framework for inter-

ference detection. An alternative context configurations specifies the expected interaction

of the application in an alternative functional configuration. The provision of a list of

alternative context configurations is needed by the framework for interference resolution.

In the following, the components of the context configuration are discussed in detail. A

major challenge for the realization of context configurations is to ensure that the shared

context is addressed by all pervasive applications in a common way. For this purpose, an

ontology is introduced in Section 5.3.1.1 and a definition of an ontology is given. Based

on this, the concepts of interference specifications and context influences are defined and

presented in Sections 5.3.1.2 and 5.3.1.3 respectively.
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5.3.1.1. Context Ontology and Context

A common addressing of the shared context is a prerequisite to enable an application

coordination by the coordination framework. As pervasive applications are context-aware

per definition, they are likely to use and have access to context information that is spe-

cific to their own system. To maintain system autonomy, the decision was made that

applications are only required to address context in a common way which is required

for application coordination. The management and use of context information that is

exclusive to a uni-platform pervasive system is expected to coexist.

In order to provide a common understanding and the possibility to address the shared

context, the definition of a common vocabulary for the shared context is required. The

specification of a vocabulary for a shared domain is called an ontology [Gru93]. An

ontology is a model for a distinct part of the real world. It consists of types, properties

and relationships which map to the concepts of the real world. According to Gruber

[Gru93] ontologies are used as a commitment for applications to allow a communication

about a domain. An application commits to an ontology if its actions are describable

with the concepts defined by the ontology.

For application coordination the use of an ontology serves two purposes. At first, it

provides a model of the physical environment which represents the shared context for

applications in pervasive systems. It defines the structure of the model, its elements and

the possible values the elements may have. Secondly, it defines the elements which can

be used by applications to specify their interactions with the context. This involves the

creation of interference specifications and context influences which compose the context

configurations. The formal definition of a context ontology of a pervasive system is given

by Definition 2.

Definition 2 (Context Ontology)

The context ontology defines a model for the shared context of pervasive applications in a

pervasive system. The context ontology CO is a set of:

1) properties and

2) object types and their properties.
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A property has the form:

p = (name, {(value type1, value range1, {relop11, . . . , relop1r}) . . . ,

(value typen, value rangen, {relopn1 , . . . , relopns})}).

An object type has the form:

t = (name, {property1, . . . , propertyn}).

A property models a characteristic of the physical environment. It defines its possible

value types, the valid value ranges and the supported relational operators used by interfer-

ence specifications. An object type models objects of the physical environment and their

characteristics using properties.

The ontology defines the properties which characterize the physical environment. These

properties represent attributes such as the temperature, the humidity, or the light level

of the physical space. The object types in the ontology are used to model objects and

their attributes within the physical space. A typical example for an object type is a user,

who is characterized by her name, gender, or date of birth. In addition to the property

and object types, the ontology defines restrictions in the sense of valid value types and

value ranges. Furthermore, it specifies the relational operators which can be used. If an

application commits to an ontology, its interference specifications and context influences

need to be in accordance with the vocabulary and restrictions of the ontology.

In order to keep the considerations in this chapter on a general level, the specific

ontology is presented as part of the implementation in Chapter 7. For the subsequent

discussion, the knowledge about the structural elements of the ontology suffices. Given

an ontology, a context state can be defined as follows:

Definition 3 (Context State)

Let CO = {p1, . . . , pn, t1, . . . , tm} be a context ontology. A context state is a set:

CTXCO = { p1 = value1, . . . , pn = valuen,
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t1.p1 = value11, . . . , t1.pm = value1m,

. . .

tj.p1 = valuej1, . . . , tj.po = valuejo}

where valuei and valueik are the values of property pi and type property tik respectively, in

compliance with the ontology CO.

According to the definition, the context is an instance of the ontology which repre-

sents the current state of the physical environment. Each property as well as each type

property is assigned a distinct value in compliance with the restrictions of the ontology.

Having defined the context ontology and the context, the subsequent section introduces

the interference specification as the first part of the context configuration.

5.3.1.2. Interference Specifications

The interference specification is the first part of an application’s context configuration. It

enables a pervasive application to define context states which pose interferences for the

application. Being provided with an interference specification, the coordination framework

ensures that the specified interferences will be detected and measures will be taken to

resolve them.

Interference specifications play a crucial role in the processes of interference detection

and resolution. Thus, their nature has a strong impact on the complexity and efficiency

of the entire application coordination process. In order to reason about the complexity,

a formal model for interference specifications needs to be selected. The selection process

must consider two aspects. The first aspect is the expressiveness of the model. In the ideal

case, an interference specification should support the specification of arbitrary context

states. To start with, simple statements over the value of context variables such as

environmental attributes are needed. As an example, an application may specify an

interference if the light level in the environment is set to anything but dark or if the noise

level is above a certain value. As a next step, simple statements should be combinable in

order to specify more complex system states. An application could define an interference
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if the combination of both – a bright light level and the noise level above a certain value

– happens at the same time. In addition to combined simple statements, the specification

of the existence of certain objects such as persons or devices may be needed. The user

could define an interference in the situation when a phone call arrives while being in the

same room with user Bob. Furthermore, it can be desirable to make statements about

characteristics of a set of entities in the environment and relationships between them.

The existence of a group of people who are all part of the same team is as an example.

The second aspect that needs to be considered for the selection of a formal model is the

efficiency with which expressions are evaluated. Interference specifications are used by

the framework for the task of interference detection and in the process of computing an

interference resolution. For interference detection, the framework evaluates every interfer-

ence specification for each context change. The evaluation of interference specifications is

a continuous process which only pauses if the environment remains static. With respect

to the computation of an interference resolution plan, interference specifications also play

a crucial role. The task of computing an interference resolution plan consists of finding

alternative configurations for applications such that the current context does not satisfy

any interference specification. A reconfiguration of an application however may imply the

change of context influences and interference specifications. Consequently, the framework

needs to evaluate the changed set of interference specifications for the changed context.

The details of computing an interference resolution plan and its complexity are discussed

in depth in Section 5.4.2.1.

Another situation in which the evaluation of interference specifications proves to be

reasonable is a consistency check for its set. Each interference specification constrains

the possibilities of interference-free interactions of other applications within the shared

context. Thus, the collection of interference specifications specifies the system states with

interferences. Any system state that is not modeled in an interference specification is

interference-free.

The framework aims at maintaining an interference-free system state. If an interference

occurs it takes measures to resolve the interference yielding an interference-free pervasive
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system. Problems however occur if the collection of interference specifications constrains

the use of the shared context in a way that every system state poses an interference.

Consider the example where two applications add an interference specification to the

framework. The first application specifies a bright light level as an interference. The

second application specifies a light level that is everything but bright as an interference.

The combination of the two interference specifications constrain the modification of the

light level in the sense that every possible light level results in an interference. To overcome

this problem it is conceivable to check if the combination of interference specifications

leaves possibilities for interference-free system states. For this purpose, the satisfiability

of the set of interference specifications needs to be computed.

The expressiveness of a model and the efficiency with which model-based expressions are

evaluated have a strong influence on each other. With increasing expressiveness of a

formal model, the efficiency of expression evaluation decreases. In order to select a formal

model for interference specifications, the tradeoff between expressiveness and efficiency

needs to be considered.

A variety of different logics exist which can provide a formal model for interference

specifications. However, instead of giving a comprehensive overview of existing logics and

a thorough analysis of their characteristics, three candidate logics, namely propositional

logic, monadic first-order logic and first-order predicate logic have been selected. The log-

ics have been chosen as they cover the possible space of formal models that can be used as

theoretical foundation for interference specifications. While propositional logic proves to

be very strong with respect to expression evaluation it is limited considering its expressive-

ness. First-order predicate logic in comparison is far more expressive than propositional

logic but has drawbacks when it comes to the efficiency of expression evaluation. Monadic

first-order logic is situated in the middle between propositional and first-order predicate

logic expressiveness-wise and with respect to the efficiency of expression evaluation.

Table 5.1 gives an overview of the expressive power of the three logics. From the three

logics, propositional logic is the least expressive one. It allows simple and negated state-
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Aspects/Logic Prop. Logic Monadic FO Logic FO Predicate Logic
Simple Statements X X X
Neg/Comb. Statements X X X
Exists/Forall - X X
Predicates - arity 0-1 arity 0-n
Functions - - arity 0-n

Table 5.1.: Overview: Logic Expressiveness

ments to be made and to combine the simple statements into more complex expressions.

With respect to the shared context this allows statements to be made about the light level

and the temperature of the environment or a combination of both. Monadic first-order

logic and first-order predicate logic extend propositional logic by universal and existential

quantifiers. Quantifiers allow statements to be made about a set of entities or to specify

the existence of an object. In addition to quantifiers, monadic first-order logic as well as

first-order predicate logic provide the use of predicates. A predicate represents a function

that evaluates to the truth value true or false. A predicate often relates to elements in

a set of objects and is used to make statements about the property of an object. For

interference specifications the use of quantifiers in combination with predicates enables

an application to specify the existence of a person with a certain name, for example, or

to state that a group of people works in the same company.

As the table shows, monadic first-order logic allows for the use of predicates of arity

zero and one. First-order predicate logic in contrast supports the use of predicates of ar-

bitrary arity. Using a predicate of an arity greater than one allows to model relationship

between elements. A typical example is to specify that a person is the boss of another

person. The last aspect of the discussed logics are functions. The use of functions is only

provided by first-order predicate logic. Functions evaluate to objects in the world. While

propositional logic and monadic first-order logic do not support the use of functions, first-

order predicate logic does. With respect to interference specifications the use of functions

allows to deduce further objects such as the boss of person with name Bob.

The previous discussion reveals that propositional logic as a formal model for interfer-
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ence specifications is not suitable. Especially the use of quantifiers and predicates which

address elements in sets and allow for statements to be made about them, provides an

expressiveness that is desirable for interference specifications. Considering monadic first-

order logic, predicates are restricted to arities of null and one. Thus, the modeling of

arbitrary relationships – even of binary relationships – is not possible using monadic

first-order logic while this is supported by first-order predicate logic. As previously men-

tioned, first-order predicate logic provides interference specifications with the greatest

expressiveness. However, the expressiveness has a strong impact on the efficiency with

which expressions in a specific logic are evaluated.

Table 5.2 gives an overview of the complexity of statement evaluation – the evaluation

of an interference specification – and the computation of satisfiability – the consistency

check for newly added rules. In order to provide the entries in the table with proper

semantics, let ϕ be a formula in the respective logic and |ϕ| the number of variables in the

formula. Furthermore, let A = (UA,IA) be a structure where UA is the universe of A and

IA is an interpretation function that assigns 1) each n-ary predicate symbol P an n-ary

predicate symbol over UA, 2) each n-ary function symbol f an n-ary function symbol over

UA, and 3) each variable x an element from the universe UA. Moreover, let |A| be the

number of elements in the structure. Then, the complexity for expression evaluation can

be defined as given in the first row of Table 5.2.

Aspects/Logic Prop. Logic Monadic FO Logic FO Predicate Logic

Expression evaluation O(|ϕ|) O(|ϕ||A|) O(|ϕ||A||ϕ|)
Satisfiability decidable decidable undecidable

Table 5.2.: Overview: Logic Complexity

The entries in the table show that the complexity of expression evaluation increases

with the expressiveness of the logic. While propositional formulas can be evaluated in

a straightforward manner, monadic first-order logic requires additional effort due to the

treatment of sets. In contrast to the former two logics, the evaluation of formulas in

predicate first-order logic is far more complex due to the existence of relationships and
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functions of arbitrary arity.

The second aspect that needs to be considered is the determination of satisfiability of

expressions to perform consistency checks on the set of interference specifications. As

the table shows, the satisfiability problem in propositional logic as well as in monadic

first-order logic is decidable and NP-complete as it has been shown by Cook [Coo71] and

Löwenheim [Löw31]. The characteristic of being decidable means that an automated pro-

cess exists which can solve the problem. The satisfiability problem in first-order predicate

logic in contrast is undecidable as shown by Church [Chu36]. Thus, there exists no general

effective procedure that can solve the problem.

In summary, considering the tradeoff between the expressiveness and the evaluation ef-

ficiency of statements, monadic predicate logic has been selected as the formal model

for interference specifications. The discussion has shown that the use of propositional

logic proves to be efficient with respect to expression evaluation but lacks required ex-

pressiveness. First-order predicate logic in contrast provides a strong expressiveness but

proves to be inefficient with respect to expression evaluation. Moreover, the fact that the

satisfiability of expressions in propositional logic is undecidable makes the logic inappli-

cable for consistency checks. Compared to propositional logic and first-order predicate

logic, monadic predicate logic resides in the middle of the two logics. It provides a greater

expressiveness than propositional logic while still allowing for an efficient expression evalu-

ation. Furthermore, the logic is decidable with respect to the computation of satisfiability.

The formal definition of interference specifications based on monadic first-order logic is

given in Definition 4.

Definition 4 (Interference Specification (IS))

Let CO = {p1, . . . , pn, t1, . . . , tm} be a context ontology with:

pi = (namei, {(value typei1, value rangei1, {relopi11 , . . . , relopi1s1}) . . . ,

(value typeio, value rangeio, {relopio1 , . . . , relopioso})}) and

tj = (namej, {pj1, . . . , pjp}) with
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pjl = (namejl , {(value typejl1 , value rangejl1 , {relop
jl1
1 , . . . , relopjl1t1 }) . . . ,

(value typejlq , value rangejlq , {relop
jlq
1 , . . . , relopjlqtq })}).

A unary predicate PCO according to the ontology CO is defined as:

1. namei relopila

with i ∈ {1, . . . , n}, l ∈ {1, . . . , o}, and a ∈ {1, . . . , sl} for properties.

2. namej.namejl relopjlrb

with j ∈ {1, . . . ,m}, r ∈ {1, . . . , q}, and b ∈ {1, . . . , tl} for object properties.

An interference specification is built as follows:

1. If P is a predicate and x is a variable then P (x) is an atomic context

constraint.

2. If ACC is an atomic context constraint then ¬ ACC is an atomic context

constraint.

3. If x is a variable and ACC is an atomic context constraint then ∃xACC

and ∀xACC are atomic context constraints.

4. If ACC1, . . . , ACCi with i = 1, 2, 3, . . . are atomic context constraints then

ACC1 ∧ . . . ∧ ACCi is a composed context constraint.

5. If CCC1, . . . , CCCi with i = 1, 2, 3, . . . are composed context constraints

then CCC1 ∨ . . . ∨ CCCi is an interference specification (IS).

To ease the discussion throughout this thesis, a set-based notation for interference speci-

fications is used as follows:

IS = {CCC1, . . . , CCCn}

where {CCC1, . . . , CCCn} denotes CCC1 ∨ . . . ∨ CCCn and

CCCi has the form CCCi = {ACCi
1, . . . , ACCi

mi
}

where {ACC1, . . . , ACCmi
} denotes ACC1 ∧ . . . ∧ ACCmi

.

According to the definition, an interference specification is a disjunction of a set of

conjunctions of atomic context constraints. The predicates which can be used depend on

the properties and objects defined by the context ontology. The following is an example

of an interference specification for a meeting application:
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IS = { {activity = meeting, audio.type = phone}, {¬light.level = bright}}

The interference specification consists of two composed context constraints. The first

context constraint comprises two atomic context constraints according to which an inter-

ference occurs if a meeting takes place and the phone is ringing. The second constraint

describes an interference when the light level is set to anything but bright. Note, that the

interference specification is not defined for a specific environment. Once it is added to

the application coordinator, the interference specification is valid for the physical space

the coordinator is responsible for. Another example of an interference specification is the

following:

IS = {{audio.intensity = loud}, {¬temperature inRange(18, 22, celsius)}}

The interference specification could be defined for public spaces by an administrator of

an office building. The interference specification is composed of two context constraints.

The first constraint specifies that an interference exists if the audio intensity will be loud.

The second constraint defines a temperature range. In case the temperature will be lower

than 18 � or higher than 22 �, an interference occurs and measures will be taken to

resolve it.

In order to be used by applications, interference specifications need to be defined by the

application developer. A basic set of interference specifications can be derived from the

rules that describe how an application adapts to a certain context. The derivation of these

rules covers all interferences where another application forces the application to react.

Furthermore, it is conceivable that a user adds further constraints to an application’s

interference specification. As an example, a user could define a high noise level to be an

interference while listening to music. The high noise level does not necessarily must be

covered by the application’s adaptation rules. It is a user preference which is also specific

to the individual user.
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5.3.1.3. Context Influences

Context influences are the second part of an application’s context configuration. They

explicitly specify the effects an application has on the shared context in its execution.

The context influences depend on the functional configuration of an application. They

are determined through the resources and actuators an application uses.

Context influences are provided to the framework as part of an application’s active

context configuration and as part of each alternative context configuration. Within an

active configuration context influences specify the actual impact of the application on the

shared context in compliance with the used context ontology. Context influences of an

application are added as context to the context management system by the framework.

Definition 5 gives a formal description of context influences.

Definition 5 (Context Influences (CI))

Let CO = {p1, . . . , pn, t1, . . . , tm} be a context ontology. A single context influence has

the form:

1) pi.namei := valuei; in compliance with the ontology CO

if a property pi is addressed or

2) ti.name.pij.name := valueij; in compliance with the ontology CO

if a property pj of the object ti is addressed

Context influences are a collection of single context influences and are denoted by

CI = {ci1, . . . , cin}.

Note that the definition uses a JAVA-like notation to address the name of a property

and types and their properties respectively. The expression .name is a function that

realizes the retrieval of the name of the element. The following is an example for context

influences which have been specified by a relaxing music application. The example also

shows the result of the .name function.

CI = { person.forename := Bob, activity := relax, light.intensity := dark,

audio.type := music, audio.intensity := 60dB}
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The context influences state that a person with forename Bob is present in the en-

vironment. Furthermore, the context is influenced in the way that the activity of the

environment is set to relaxing, the light intensity of the environment is set to dark and

music is played with an intensity of 60dB.

While the context influences of an active functional configuration can be determined, the

exact context influences of an alternative functional configuration are hard to predict. As

a result, an alternative context configuration can only specify expected context influences

as described formally in Definition 6.

Definition 6 (Expected Context Influences)

Let CO = {p1, . . . , pn, t1, . . . , tm} be a context ontology. A single expected context

influence has the form:

1) pi.name inRange (valueimin, value
i
max); in compliance with the ontology CO

if a property pi is addressed or

2) ti.name.pij.name inRange(valueijmin
, valueijmax

); in compliance with the

ontology CO if a property pj of the object ti is addressed.

Expected context influences are a collection of single expected context influences and

are denoted by ECI = {eci1, . . . , ecin}.

To realize the specification of expected context influences the use of value ranges is

supported. Once the configuration is instantiated, the actual value is communicated

as part of the active context configuration. As an example, a navigation application

that uses a visual representation could specify an audio-based navigation as alternative

configuration. As the audio-based configuration is not instantiated yet it would specify

the influence of the audio level in the environment between 50 and 80 decibel. Once the

configuration is instantiated the actual value of 55 decibel is communicated as part of the

active context configuration to the framework.

In addition to the fact that the actual value may not be known before a configuration is

instantiated, the specification of a range of values also minimizes the number of alterna-

tive context configurations an application must provide. Instead of having to specify an
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alternative context configuration for each decibel value, the set of alternative context con-

figurations which only differ in the decibel value can be summarized into a single context

configuration.

5.4. Application Coordination Framework

The extensions of existing systems by context configurations enable the coordination of

applications by the application coordination framework to manage interferences. In the

following sections, the main tasks of the framework, namely interference detection and

application coordination are discussed in detail.

5.4.1. Interference Detection

The first task of application coordination is the detection of interferences. Interference

detection is realized by the interference detection component of the framework. The basis

for interference detection is the set of interference specifications and the current context

which is held in the context management system. The task of interference detection is to

evaluate active interference specifications for the current context. The interference detec-

tion process is required when an interference specification is added to the coordination

framework or when the context changes. In the former case, the interference detection

process only needs to evaluate the new interference specification. In the case of a context

change, all interference specifications must be evaluated for the changed context.

The reasons for a context change are twofold. Firstly, the context may change due to

the effects of an application on the shared environment such as the use of a light switch.

Secondly, the context may change due to a natural event such as the sunset which changes

the light level. While interferences are caused by application-induced context changes per

definition, triggering interference detection for natural context changes also proves to be

reasonable. At first, a natural event may contribute to the occurrence of an interference.

In that case, the interference can possibly be resolved by adapting those applications

which contributed to the interference. Secondly, it allows an application to determine

whether or not a context change can be ascribed to another application or to a natural
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event. If the context change can be ascribed to a natural event, the application can react

as it has been designed to do. Moreover, the framework can help the application to find

a configuration that does not lead to an interference if desired.

Algorithm 1: InterferenceDetection
Input: IS : Set of interference specifications, CTX : Context
Output: interferenceExists

1 begin
2 for ISi ∈ IS do
3 for CCCj ∈ ISi do
4 interferenceExists ← true
5 exists ← false

6 for ACCk
j ∈ CCCj and while interferenceExists do

7 ACCk
j has pattern: (¬)P (x)

8 interferenceExists ← (¬)satisfies(CTX,ACCk
j )

9 ACCk
j has pattern: ∀xP (x)

10 for ctxx ∈ CTX do
11 if satisfies(ctxx, ACCk

j ) then

12 interferenceExists ← false

13 ACCk
j has pattern: ∃xP (x)

14 for ctxx ∈ CTX do
15 if satisfies(ctxx, ACCk

j ) then

16 exists ← true

17 interferenceExists ← exists

18 if interferenceExists then
19 return true
20

21 return false

Algorithm 1 describes the process of interference detection. In the process every active

interference specification maintained by the coordination framework is evaluated for the

current context. As discussed in Section 5.3.1.2, interference specifications are modeled

based on monadic predicate logic. Recall that an interference specification is a disjunc-

tion of composed context constraints (CCC) which themselves are conjunctions of atomic

context constraints (ACC). Consequently, the algorithm stepwise breaks down the inter-

ference specifications into atomic context constraints and evaluates them for the current

context.

The presented algorithm follows a brute-force approach. It evaluates every interference
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specification in the set of interference specifications. However, for performance reasons

optimizations are conceivable. The optimized version is presented and discussed in more

detail as part of the prototype which is described in Chapter 7.

An interference is detected if an interference specification evaluates to true. Before the

interference is handed to the application coordination component, a description of the

interference is composed. The interference description comprises the satisfied interfer-

ence, the context which satisfies the interference specification associated with the context

sources, i.e. the interfering pervasive applications. The interference description serves as a

basis for interference resolution as it provides all information relevant to the interference

and its contributors.

The interference description is obtained through a small modification and extension

of Algorithm 1. The algorithm needs to be modified in the sense that an interference

specification is completely evaluated before a result is returned. In the presented version,

the algorithm returns true as soon as a composed context constraint proves to be satisfied.

As a consequence, subsequent composed context constraints are not evaluated. For the

creation of an interference description however, the entire interference specification needs

to be evaluated as its contents serve as a basis for interference resolution. The extension

that is required is that the algorithm keeps track of the sources of a context that contribute

to the satisfaction of the interference. If in line 8 for example, the context CTX satisfies

ACCk
j , the algorithm needs to retrieve the context source of CTX and add it to the

description.

As described in Section 3.1, a requirement towards interference detection is Requirement

VII, the correctness of interference detection. A process is said to be correct if it returns a

correct output for a given input. In the context of application coordination, interference

detection is correct if it reports an interference if one exists and does not report an

interference if no interference exists.

In the framework, interference detection is the truth evaluation of expressions in monadic

predicate logic. The truth evaluation of monadic predicate logic is known to be correct.

Thus, the correctness of interference detection strongly depends on the quality of the con-
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text model. The quality of a context model states how accurate the digital representation

of the real world matches the actual physical. If the context model is an exact digital

copy of the real physical world then interference detection is correct. The interference

detection process will eventually detect an interference if one exists and will report those

interferences only.

However, in practice the context model is unlikely to be an exact digital image of

the real world. One of the reasons is that the context information that is captured by

sensors and fed into the context model may not be 100 % accurate. Furthermore, several

context reporting resources may exist for the same context variable and are likely to

report different values. The temperature in a room may for example differ slightly close

to the window in comparison to the entrance door. Furthermore, the context influences

of applications need to be processed as well in order to obtain unambiguous context

information. With the variety of context information and its uncertainty, an exact digital

representation of the real world is hardly obtainable.

5.4.2. Interference Resolution

The second task of application coordination is the interference resolution. The resolution

of a detected interference is realized through a coordinated application adaptation. The

coordinated application adaptation is the task of the application coordination component

of the coordination framework. The application coordination component is invoked as

soon as an interference description has been created by the interference detection com-

ponent. The basic idea to resolve a detected interference is a coordinated adaptation of

applications.

The task of interference resolution is split into two subtasks: 1) The computation of

an interference resolution plan and 2) the instruction of applications to adapt according

to the plan. The second step is realized through a call on the interface, applications

must implement, as described in Section 5.3. The adaptation request includes the context

configuration which has been selected for the application as a result of the interference

resolution plan computation. It initiates the application to instantiate the functional con-
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figuration which belongs to the context configuration. The computation of an interference

resolution plan, in contrast, is a complex task. The following sections discuss the theory

of the problem in general and its implications on the process to solve the problem.

5.4.2.1. Interference Resolution Plan Computation

An interference resolution plan is a list of active applications where each of these appli-

cations is assigned one context configuration. The realization of each application-specific

assignment resolves the detected interference and yields an interference-free system state.

An assignment can be one of three options: (1) no changes are required, (2) an adaptation

is required, or (3) a pause is required. While the first two assignments allow the continu-

ation of functionality provision, the request to pause an application does not. Whether or

not pausing is considered as an option depends on the pervasive system and the desired

coordination strategy.

In order to compute an interference resolution plan, the framework relies on the al-

ternative context configurations which are provided by each application in the pervasive

system. In the process, the framework searches for a context configuration for each appli-

cation such that the detected interference is resolved and no new interferences are created.

That means, an assignment needs to be found for each application such that (1) the con-

text influences of the application combined with the current context do not lead to the

satisfaction of any interference specification and (2) the interference specification of the

application is not satisfied by the current context which also includes current context

influences.

The complexity of the problem stems from the fact that context influences and in-

terference specifications are strongly related with each other. The context influences on

one hand change the context based on which interference specifications are evaluated.

The interference specification on the other hand restricts the possible context influences.

Changing the context configuration of an application is likely to change the context influ-

ences as well as the inference specification of the application. As a result, the instantiation

of an alternative context configuration may lead to the satisfaction of the new interference
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specification or to the satisfaction of an existing interference specification due to the new

context influences.

Consider the following example of three pervasive applications (App1, App2, App3)

which are active in the same pervasive system. Table 5.3 shows the active context con-

figuration in terms of interference specifications (IS) and context influences (CI) of each

application. Furthermore, each application has one alternative context configuration and

thus an alternative interference specification and alternative context influences. The ex-

ample uses symbols as a placeholder for context variables and their values in order to

provide a clear example.

Aspects/Logic App1 App2 App3
Active IS A ∨ B A ∧ C D ∨ E
Active CI B A E

Alternative IS A ∨ C A ¬D
Alternative CI E B ∧ D D ∧ B

Table 5.3.: Example: Interference Resolution Problem

According to the active context configurations, the current context has the following

state CTX = {A, B, E} and the set of interference specifications IS = {A∨B, A∧C,

D ∨ E}. The evaluation of the set of interference specifications for the current context

result in the satisfaction of the interference specification of App1 through the context

influences of App2. Consequently, an interference exists between the two applications.

Note that applications cannot cause interferences for themselves, i.e., App3 does not have

an interference with itself.

In order to determine an interference resolution plan, the process needs to find assign-

ments for each of the three applications. Going through the example, the process could try

to adapt application App1. However, assigning App1 an alternative context configuration

would cause a new interference between App1 and App3 as the alternative context influ-

ences of App1 lead to the satisfaction of the interference specification of App3. The same

problem occurs if the process assigns the alternative context configuration exclusively to
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application App2. In this case an interference would be caused between App2 and App3.

The only viable solution in this scenario is the assignment of alternative context configu-

rations to all three applications. The context that results from the reconfiguration of all

App1, App2, and App3 creates a context CTX = {B, D, E} and a set of interference

specifications IS = {A ∨ C, A, ¬D}, yielding an interference-free system state.

The discussed example illustrates the interdependency between context influences and

interference specifications. The single adaptations of App1 or App2 or the adaptation

of both in combination solves the existing interference but leads to the creation of a

new one involving application App3. The example also shows that the adaptation of

initially interfering applications does not necessarily suffice. The resolution of the initial

interference and the transformation into an interference-free pervasive systems requires

the integration of the uninvolved application App3.

As stated at the beginning of this section, the framework can also assign the pausing

of an application if required which is often the easiest way to solve an interference. In the

example described above, pausing application App2 for example would solve the existing

interference. However, pausing an application implies that the application cannot provide

its functionality anymore. Whether or not this is acceptable strongly depends on the

environment of the pervasive system. In an office environment for example the automated

ventilation may be paused if it disturbs participants of an important meeting. In contrast,

if all active applications are of great importance pausing an application may not be an

option.

Based on the previous discussion, the problem of the interference resolution plan com-

putation is formalized as follows:

Definition 7 (Interference Resolution Plan Problem)

Let PS be a pervasive system and App1, ..., Appn active applications in PS. Furthermore,

let CC(Appi) = {cciactive, cci1, . . . , ccimi
, ccipaused} be the set of context configurations of

application Appi with ccij = (CI ij, IS
i
j) and cciactive being the active context configuration,

cci1, . . . , cc
i
mi

being the set of alternative context configurations and ccipaused = ({}, {})

being the context configuration when being paused. Furthermore, let CTXnat be the cur-



84 5. Framework for Application Coordination

rent context which is produced by natural events. Thus, the interference resolution plan

problem is defined as follows: For each application Appi find an assignment such that⋃n
i=1 CI ij ∪ CTXnat(

⋃n
i=1 IS

i
j) |= 0, i.e., the resulting context does not satisfy the set of

active interference specifications.

Finding a solution to the problem proves to be complex as the question of whether

or not the context configuration of the k-th application is viable depends on applications

App1, . . . , Appk−1, Appk+1, . . . , Appn. Based on the assumption that each application Appi

has at most m context configurations, O(mn) combinations need to be evaluated in order

to find a solution if a solution exists at all.

5.4.2.2. Interference Resolution Plan Problem as CSP

In order to develop a suitable approach to compute an interference resolution plan, an

analysis of the complexity of the problem needs to be made. The problem is obviously

NP-complete. In order to show this, the problem of computing an interference resolution

plan is modeled as a constraint satisfaction problem (CSP) [RN03]. Since CSPs have been

shown to be NP-complete [Ben96] [Wal00], the NP-completeness of the interference reso-

lution plan computation problem is shown. A constraint satisfaction problem is formally

defined in Definition 8.

Definition 8 (Constraint Satisfaction Problem (CSP))

A constraint satisfaction problem is a triple (V,D,C) where V = {V1, . . . , Vn} is a finite

set of variables and D = {D(V1), . . . , D(Vn)} is a set of finite domains such that D(Vi)

is the finite set of potential values for Vi. Furthermore, C = {C1, . . . , Ck} is a finite set

of constraints where each Cl is a pair (tl, Rl) with tl = (vl1 , . . . , vlm) being an m-tuple of

variables and Rl being an m-ary relation over D.

A solution of an instance of a CSP is a function f : V → D such that ∀(tl, Rl) with

tl = (vl1 , . . . , vlm) (f(vl1), . . . , f(vlm)) ∈ Rl.

Given Definition 8, the problem of computing an interference resolution plan can be

modeled as a constraint satisfaction problem as follows: Let V be the set of applications
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which are active in the environments App = {App1, . . . , Appn} and let Conf (App) =

{Conf (App1), . . . ,Conf (Appn)} with Conf (Appi) = {(CIi1 , ISi1), . . . , (CIim , ISim)} the

finite domain of Appi, namely the finite set of possible configurations for Appi. Fur-

thermore, let C = (t, R) be the single constraint with t = (App1, . . . , Appn) and R =⋃n
i=1CIij ∪ CTXnat(

⋃n
i=1 ISij) |= 0. Thus the solution to the computation of an inter-

ference resolution plan is a selection of a configuration for each application such that the

union of the context influences of all applications in combination with the natural context

(CTXnat) does not satisfy the union of all interference specifications.

5.4.2.3. Algorithms for Constraint Satisfaction Problems

Having modeled the problem of computing an interference resolution plan as a constraint

satisfaction problem, any algorithm that solves an instance of a constraint satisfaction

problem can in general compute an interference resolution plan. A variety of different

algorithms for solving CSPs exists which can be split into four different classes ([Kum92]

[DF98]) namely Backtracking, Constraint Propagation, Intelligent Backtracking and Truth

Maintenance, and Local Search Algorithms. In the following, a brief description of each

class is given preceded by a discussion of their suitability for the targeted systems.

Backtracking: The basic Backtracking algorithm to solve constraint satisfaction prob-

lems was first introduced by Bitner and Reingold [BR75] even though the basic idea of

backtracking can be traced back to the 19th century. Backtracking is a search method

which uses a depth-first search. It chooses assignments for one variable at a time, succes-

sively finding a solution. If, in the process, the algorithm detects that no feasible value

can be assigned for the i-th variable, it backtracks to the (i − 1)-th variable, choosing a

new value in order to continue with the procedure. Backtracking is complete which means

that the algorithm eventually finds a solution to the instance of a constraint satisfaction

problem if a solution exists. It is an uninformed search which systematically walks the

search space. In the worst case, the backtracking algorithm looks at every possible value

combination resulting in an exponential runtime. Backtracking-based searches may how-
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ever be improved using heuristics. The most-constrained-variable heuristic [BR75] which

prioritizes the value assignment of those variables first which are constrained the most

or the least-constraining-value heuristic [HE80] as the opposite are examples of domain-

independent heuristics which have been employed to improve the search. Moreover, the

use of heuristics which consider the structure of a specific CSP is also reasonable.

Constraint Propagation: One drawback of simple backtracking algorithms is the oc-

currence of thrashing [Gas79]. The term thrashing refers to the situation in which the

value assignment of the i-th variable prevents a successful assignment for the k-th vari-

able with i < j < k. This means that independently of which value the algorithm assigns

for any variable between i and k, a solution cannot be found. In order to overcome this

problem algorithms in the class of Constraint Propagation aim at keeping track which

legal values remain for unassigned variables when assigning a variable. The goal of such

algorithms is to transform the initial problem into a simpler one which can be solved more

efficiently using backtracking but often also eliminates the need for backtracking at all

[Wal75]. A concept which has been introduced in the context of constraint propagation

is arc-consistency. Looking at the constraint graph of a constraint satisfaction problem,

an arc between two variables (Vi, Vj) is said to be arc consistent if for every value x in

the current domain of Vi there exists a value in the domain of Vj that is consistent with

x. A number of algorithms such as AC-3 [Mac77], AC-4 [MH86], and MAC [SF94] exist

which enforce arc-consistency on constraint graphs reducing the search space for a viable

solution to the problem. Stronger approaches have been developed using the notion of

k-consistency. A constraint graph is said to be k-consistent if for every value assignment

for any set of k − 1 variables, which is constraint-satisfying, there exists a value assign-

ment for the k-th variable which is consistent. The constraint graph is said to be strongly

k-consistent if it is i-consistent for all i < k. Through enforcing strong k-consistency the

need for backtracking is eliminated. Algorithms exist which transform a constraint graph

into a strongly k-consistent graph [Fre88] [Coo89]. The complexity of the search space

reduction, however, is also exponential.
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Intelligent Backtracking and Truth Maintenance: Basic backtracking is often also

referred to as chronological backtracking as it always backtracks to the most recently as-

signed variable. The algorithm class of Intelligent Backtracking and Truth Maintenance

modifies backtracking in the sense that it enables the algorithm to identify variables that

cause a failure and to directly return to those in order to find a new assignment. Conflict-

directed backjumping [Pro93], for example, maintains a so-called conflict set for every

variable which is a set of previously assigned variables that are related to the variable via

a constraint. In case the algorithm detects that no consistent value can be assigned to

the current variable, the algorithm jumps back to the most recent variable in the conflict

set in order to re-assign a new value. A more powerful and general approach to intelli-

gent backtracking proved to be dependency-directed backtracking [SS77] which resulted in

the development of truth maintenance systems [Doy79]. Truth maintenance systems are

based on the idea that an algorithm chooses value assignments based on its beliefs. These

beliefs are successively created throughout the process. Every time a variable is a assigned

a value, the system justifies why exactly this value is assigned and saves the justification.

In case a value is assigned which violates any constraint, a new node is created stating the

inconsistency of the value combination. The created node again is used to justify another

value assignment on the variable. The process is repeated until a consistent assignment

for the variables, i.e., a solution to the CSP is found. The amount of search that such a

system requires is minimal. However, the determination of the reasons of a failure and

the selection of variables has proven to be complex and thus, the approach is often more

costly than basic backtracking [CJP87].

Local Search: A last class of algorithms to solve instances of constraint satisfaction

problems is Local Search. Local search algorithms are based on the idea of iterative

improvement. An algorithm starts out with an initial assignment and improves the as-

signment locally in several iterations. The algorithm typically stops after a pre-defined

number of iterations or after a fixed period of time. Moreover, the algorithm may be devel-

oped to stop if a good enough solution could be found. In this case the algorithm requires
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an assessment function in order to determine the quality of a found solution. Iterative

improvement typically uses a hill climbing [RN03] approach where an inconsistent value

assignment is revised. A problem of hill climbing approaches is that an algorithm may get

trapped in local minima. A local minimum is a state which is still inconsistent but it’s not

possible for the algorithm to decrease the number of violated constraints by re-assigning

the value of a single variable. Approaches however exist which enable the escape from

such local minima such as the breakout algorithm [Mor93]. Furthermore, heuristics exists

which guide the selection of values for a variable. The min-conflicts [MJPL92] [Gu89]

heuristic selects the value with the minimum number of conflicts it has with other vari-

ables and proved to be surprisingly effective for constraint satisfaction problems especially

for the n-queens problem [SG94].

5.4.2.4. Discussion

In theory, any algorithm of the above discussed classes can be used to compute an in-

terference resolution plan. As CSPs are NP-complete, none of the discussed algorithms

outperforms another in general. However, depending on the specifics of the CSP in prac-

tice, some algorithms may perform better than others. The first algorithm discussed in

the previous section is basic backtracking. In the context of computing an interference

resolution plan, backtracking is a standard algorithm that systematically walks through

all possible combinations. The algorithm terminates when it finds a solution or all combi-

nations have been tested. The basic backtracking is a pure search algorithm. It walks the

search space without considering the structure of the addressed problems – interferences

in this situation – nor reducing the search space in the process.

Intelligent backtracking, in contrast, typically uses heuristics in order to improve the

performance of the backtracking algorithm. With respect to computing an interference

resolution plan, a heuristic could be used that exploits the structure of interferences. The

algorithm could walk through those combinations at first that include the adaptation

of interfering applications. In case the adaptation of interfering applications suffices to

solve the interference, the heuristic is likely to improve the performance of the algorithm
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compared to an uninformed backtracking. However, if further applications need to be

involved, an improvement might not be noticed.

Another possibility for intelligent backtracking is the reduction of the search space. The

reduction of the search space is typically achieved through skipping combinations which

are known to not provide a solution to the problem. In the context of interference resolu-

tion, intelligent backtracking could identify those application configurations that prevent

a combination from being a solution to an interference. Without loss of generality, any

combination that involves the identified configurations will not prove to be a solution to

the interference. Given that knowledge, the algorithm is able to skip those combinations

and to reduce the search space respectively. Such an algorithm promises to perform best

for problems in which large parts of the solution space can be pruned.

In contrast to backtracking and intelligent backtracking, constraint propagation and truth

maintenance systems spend more effort on the reduction of the search space to minimize

the need for searching. Such systems suggests to be best suitable for pervasive systems

which have a low dynamic and have a well-known set of users, applications, and their

context configurations. In such a system, it seems to be reasonable to maintain a truth

maintenance system or to propagate constraints and to adapt it respectively if the envi-

ronment changes. This may significantly reduce the search effort.

In highly dynamic environments, the reduction of the search space may prove to be

hardly applicable. Due to changes in the environment, the CSP is altered and the changes

need to be considered in the truth maintenance system and for constraint propagation.

If the changes impact the structure and contents of the truth maintenance system or the

constraint propagation, the adaptation of the system may require a lot of effort. As a

consequence, it might be more reasonable to spend effort in searching instead of reducing

the search space, especially in dynamic environments.
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Finally, algorithms in the class of local search also seem to be promising to compute

an interference resolution plan in pervasive systems. In contrast to the previously dis-

cussed approaches, a variety of algorithms in this class exist which are not complete. The

completeness is, however, a desired characteristic for the targeted systems as defined by

Requirement VIII. Since interferences distract the users, they need to be resolved in order

to maximize the potential of the pervasive system – the seamless provision of functionality.

The completeness states that the algorithm finds a solution if one exists and otherwise

reports that no solution can be found. The completeness guarantees that a resolution for

an interference is found. Recall that pausing all applications solves the interference and

is the fallback solution in case no combination of context configurations can be found.

5.4.2.5. Coordination Strategy Realization

In order to provide the framework with an actual coordination strategy, two intelligent

backtracking approaches are presented in the following. Both algorithms are complete,

which satisfies Requirement VIII. As discussed in the previous section, both algorithms use

a heuristic which exploits the nature of interferences in order to improve the performance

of the backtracking algorithm. In chapter 8, measurements are conducted which show

how the used heuristics actually improve the backtracking-based search.

To provide a basis for the discussion on the heuristics, Algorithm 2 describes the pro-

cess of computing an interference resolution using basic backtracking. As input, the

algorithm takes a matrix of context configurations as shown in Figure 5.4. The x-axis of

the matrix depicts the active applications App1, . . . , Appn of the environment. The y-axis

lists an application’s context configurations, m at most. The matrix is designed in the

way that the first row contains all active context configurations of the applications. All

other rows contain alternative context configurations. The matrix shown in the figure has

four applications which possess between three and five context configurations. A context

configuration combination is a vector com = (CCApp1, . . . , CCAppn) where each applica-

tion is assigned one of its context configurations. The connected nodes show a possible

combination. The initial combination is com = (1, 1, 1, . . . , 1).
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Figure 5.4.: Input Matrix of Applications and Context Configurations

Algorithm 2: resolveInterference

Input: matrix : ContextConfigurationMatrix
Output: com : ContextConfigurationCombination

1 begin
2 com← initialCombination(matrix)
3 while hasNextCombination(matrix, com) do
4 com← nextCombination(matrix, com)
5 if isInterferenceFree(com) then
6 return com

7 return ∅

Algorithm 2 realizes the computation of an interference resolution plan. The algorithm

starts on the initial combination. The initial combination of context configurations is

the one that represents the interference to be resolved. The algorithm then enters a

loop. The loop is executed as long as the matrix of active applications and their context

configurations hold another combination which has not been tested yet. Within the loop,

the algorithm retrieves the next combination and checks it for interference-freedom. In

case the combination proves to be interference-free, a solution has been found and the

algorithm returns the respective combination. Otherwise, the algorithm remains within

the loop until all combinations have been evaluated which also leads to its termination.
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In the worst case, the algorithm checks all possible O(mn) combinations with n being the

number of active applications and m being the maximum number of context configurations

an application has.

The actual backtracking is realized in Algorithm 3. The algorithm systematically cre-

ates new combinations of context configurations. The algorithm takes the current com-

bination com and the matrix of context configurations as input and starts with the last

position of com. It checks if the application represented by the position possesses another

context configuration. If this is the case, the new context configuration is selected and

the algorithm returns a new combination. In case the application does not have any

further context configurations, the first configuration of the application is selected. The

algorithm then proceeds with the predecessor position. In case com already represents the

last possible combination, the algorithm terminates indicating that no next combination

could be found.

Algorithm 3: nextCombination

Input: matrix, com = (CCi, . . . , CCk)
Output: p

1 begin
2 for i = (length(com)− 1)→ 0 ∈ matrix do
3 if (hasNextConfiguration(com[i])) then
4 com[i]← getNextConfiguration(com[i])
5 return p

6 else
7 com[i]←getFirstConfiguration(com[i])

8 return NO NEXT COMBINATION

The combination of Algorithm 2 and Algorithm 3 realizes the computation of an in-

terference resolution plan based on chronological backtracking. Starting with an initial

assignment, the algorithm systematically creates new context configurations by adapting

single applications. While the algorithm finds a solution if one exists, its performance can

be improved by exploiting the structure of interferences.

ORDERING The first heuristic addresses the order for the selection of applications and

their adaptations. The heuristic is based on the idea that those applications should be
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adapted at first which are actually involved in the interference that is to be resolved.

Thus, the use of the ORDERING heuristic has an impact on how applications are sorted

in the matrix.

To sort applications, the algorithm makes use of the information provided by the inter-

ference description which is created in the interference detection process. The interference

description includes the satisfied interference specification, the context which is respon-

sible for its satisfaction and the set of applications which produce the context. The

processing of the interference description determines how often an application is involved

in an interference. For example, if an application changes the activity of a pervasive

system and has an impact on the audio volume and both influences contribute to an in-

terference, its involvement in the interference can be counted as 2. An application that

only influences audio volume which leads to the interference has an involvement of 1.

Consequently, the application with the highest involvement is placed at the end of the

matrix as its adaptation may already solve the interference.

The sorting of the matrix requires additional effort. In order to determine the ranking,

the set of interference descriptions needs to be evaluated. In the worst case, each active

context configuration interferes with each other resulting in O(n) interferences. As a

consequences, the complexity for matrix sorting is determined by the sorting algorithm

itself, i.e., it is O(n · log(n)).

PRUNING The basic idea of the second heuristic is that the algorithm skips combi-

nations which involve sub parts that have proven to create an interference. Let com =

(CC1, . . . , CCi, CCi+1, . . . , CCn) be a combination of context configurations. If CC1 and

CCi cause an interference, without loss of generality, no combination of CCi+1 . . . CCn

will lead to an interference-free state as the interference between CC1 and CCi will per-

sist. This fact can be used in order to prevent the resolveInterference method to evaluate

combinations by skipping those combination which is realized through pruning [RN03,

p. 100]. Thus, the next viable combination which avoids the generation of combinations

with interferences can be obtained by CCi and resetting CCi+1 . . . CCn. The process of
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pruning in the context of interference resolution is described in Algorithm 4.

Algorithm 4: nextPrunedCombination

Data: matrix, com = (CCi, . . . , CCk)
Result: com

1 begin
2 for i = (length(com)− 1)→ 0 ∈ matrix do
3 if isInterfering(p[i]) ∧ hasNextConfiguration(p[i]) then
4 com[i]← getNextPrunedConfiguration(com[i])
5 return com

6 else
7 com[i]← getFirstConfiguration(com[i])

8 return NO NEXT COMBINATION

The use of pruning is realized by exchanging line 4 in Algorithm 2 with com ←

nextPrunedCombination(matrix, com). The algorithm takes the matrix of active appli-

cations and their context configurations and the current combination. In this setting,

the ORDERED heuristic is not used and applications are sorted in random order. The

algorithm then searches for the first application – the ith application – that is involved

in an interference starting with the nth application. Since the current combination holds

the initial interference such an application will be found. If the ith application has further

context configurations, the next context configuration for the ith application is selected.

Furthermore, all applications i+1st to nth are assigned their first context configuration.

In the case that the ith application does not have any further context configurations, the

algorithm proceeds with the i+1st application and assigns all applications i to n their first

context configuration.

Figure 5.5 illustrates the results of the pruning process on the matrix. The current

configuration in the figure is com = (1, 3, 2, 1). A prior check for interferences has shown

that the context configuration 1 of App1 and context configuration 2 of App3 create an

interference – as indicated by the dotted circles. Consequently, the algorithm selects

application App3 as the first application to be involved in an interference starting from

the end of the matrix. It then selects the next context configuration for App3, preventing

the evaluation of four combinations which will have proven to have an interference due to
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Figure 5.5.: Pruning Process

the context configurations of App1 and App3.

To conclude this chapter, the theoretical framework for application coordination was

presented as the approach to manage interferences in pervasive systems. The three design

rationales, cross-system coordination layer, extension of existing application systems, and

strategy-based application coordination, make the approach unique and tailor it to the

target systems. The required system extensions in form of context configurations and an

adaptation interface were described in detail and a model for interferences was defined.

Based on this model, the problem of interference detection was analyzed and a solution

was presented. Furthermore, the problem of interference resolution plan computation was

discussed in detail. An overview of algorithms to solve the problem was given and their

applicability in dependence of pervasive system characteristics was discussed. Finally, a

heuristic was presented that considers the specific structure of interferences to improve

the process of interference resolution plan computation.



96 5. Framework for Application Coordination



6. Application Coordination in Pervasive

Systems

This chapter discusses the practical realization of the coordination framework for general

pervasive systems. The realization comprises the deployment of task and data components

as well as the definition of points in time when data must be exchanged. For this pur-

pose, Section 6.1 discusses characteristics which have an impact on realization decisions.

Section 6.2 then analyzes general pervasive systems with respect to these characteristics.

Subsequently, Section 6.3 derives requirements towards a practical realization before the

realization decisions for interference detection and resolution are presented in Section 6.4.

The chapter concludes with a discussion on measures that need to be taken in dynamic

pervasive systems in Section 6.5.

6.1. System Characteristics

The efficiency of application coordination in practical pervasive systems is influenced

by two factors: (1) The placement of task and data components and (2) the points

in time when required data is exchanged between remote devices. Depending on the

characteristics of a pervasive system, decisions for component deployment and the point

in time for required communication may differ. Two major factors which have an impact

on these decisions are the reliability of devices in the system and their resourcefulness.

Their implications on a practical realization are discussed in the following:

Reliability: The first characteristic which needs to be considered for a practical realization

is the reliability of devices in the system. In the context of this thesis, a device is said

to be reliable if it remains within the system throughout the entire system life cycle.

97
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A reliable device is always reachable unless it becomes unavailable due to network or

technical failures1. The existence of at least one reliable device enables the placement

of data and task components on the device without the need to expect and cope with

its sudden unavailability. This overcomes the need to maintain data backups or to

support a dynamic reassignment of responsibilities. In contrast, pervasive systems

without a reliable device need to be able to cope with an unpredictable unavailability

of devices. If a device leaves the environment, data may get lost and the execution

of assigned tasks may get interrupted. As a result, the practical realization needs

to provide respective backup mechanisms if data and tasks cannot be assigned to a

reliable device.

Resourcefulness: The second characteristic is the resourcefulness of devices in the system.

In the context of this thesis a device is said to be resourceful if it is able to execute

all tasks and maintain all data which is required for the realization of a specific

functionality, i.e. application coordination. The existence of a resourceful device

allows for the placement of task and data components without the consideration

of available processing and storage capabilities. The device is not restricted with

respect to the processing capabilities it uses nor its storage capabilities. The fact

that the data storage is not limited also has an impact on the point in time when

data must be exchanged. Due to non-restricted data storage, data can be pre-fetched

and stored on the device. In contrast, resource-poor devices are limited with respect

to their storage and processing capabilities. Thus, the amount of data as well as

the need for processing capabilities needs to be minimized. The lack of resourceful

devices can also have an impact on the point in time when data is exchanged. If a

resource-poor device executes a task that requires access to remote data but lacks

the required storage capabilities it needs to retrieve the data via the network during

the process.

1The occurrence of technical failures is not explicitly covered in this thesis.
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6.2. Smart Environments and Smart Peer Groups

Pervasive systems can be realized as smart environments, smart peer groups, or a combi-

nation of both, as discussed in Section 2.1. In the following, both approaches are analyzed

with respect to their reliability and resourcefulness. The goal of the analysis is to derive

characteristics for general pervasive systems. This allows a practical realization irre-

spective of whether the pervasive system uses a smart environment or smart peer group

approach.

Smart Environment A smart environment is an infrastructure-based approach which

is characterized by a predefined set of installed devices and the physical environments

in which the devices reside. A smart environment can typically be considered to be

resourceful. The infrastructure of a smart environment usually comprises at least one

resourceful device such as a server or a personal computer. One of the resourceful devices

is typically used to realize functionalities which are required to run the pervasive system

such as a device registry, an application manager, or a context management system. It

possesses enough capabilities to execute required tasks and to manage task-related data.

For the same reason of having a fixed infrastructure, smart environments are considered

to have reliable devices. As part of the fixed infrastructure, devices remain within the

system throughout the entire system life cycle.

Smart Peer Group In contrast to smart environments, smart peer groups do not rely

on a pre-defined infrastructure. A smart peer group is typically a spontaneously formed

network of devices which are in communication range of each other. A smart peer group

can be formed anywhere given the nearby devices are equipped with respective system

software. Once a smart peer group has been established, the devices can directly com-

municate with each other and share functionalities on a peer-to-peer basis. As smart

peer groups are spontaneously formed and may disband spontaneously just as well, their

devices are considered to be unreliable.

A smart peer group is typically user-centric and moves with its user. As a result, new
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devices may be integrated into the smart peer group and devices may be removed as the

user moves. Moreover, as the exact user movement is hard to predict, the set of devices

may change unexpectedly. The characteristic of being user-centric also suggests that a

smart peer group comprises at least one resourceful device. A user in the smart peer

group is typically identified by a personal device such as a smart phone or a tablet pc.

Nowadays, these devices possess enough processing and storage capabilities to perform

the tasks of application coordination (cf. Section 8.1). Hence, smart peer groups can be

assumed to comprise at least one powerful device at any given time.

General Pervasive Systems In summary, general pervasive systems can be assumed to

contain at least one resourceful device. In a smart environment the resourceful device is

part of the infrastructure. In a smart peer group the resourceful device is the personal

device of the user.

The existence of a resourceful device has several advantages for the practical realization

of application coordination. At first, a resourceful device enables the placement of the

interference detection and the interference resolution component on a single device without

the need to distribute the tasks among multiple devices. Secondly, a resourceful device

allows for a local maintenance of the data required for application coordination without

the need to explicitly limit its amount. Moreover, the unlimited storage capability allows

pre-fetching of remotely available data and to maintain a local copy. The data copy can

be used by locally-executed tasks, thus minimizing the need to retrieve data over the

network in time-critical situations.

With respect to reliability, the existence of a reliable device cannot be assumed for

pervasive systems in general. In a smart environment, a device which is part of the

infrastructure can usually be considered to be reliable. In contrast, the reliability of a

device cannot be assumed for smart peer groups. The unreliability poses challenges with

respect to the execution of tasks and the availability of data. In smart environments, a

reliable device can be selected for the assignment of tasks and the storage of data. Thus,

the functionality will be provided throughout the entire life cycle of the system. However,



6.3. Requirements 101

the pervasive system may as well be realized as a smart peer group. Consequently, a

mechanism is required to ensure the continuous provision of application coordination. In

the case that the pervasive system uses a smart environment approach, the mechanism

can be omitted.

6.3. Requirements

The discussion in the previous section has shown that general pervasive systems can be

assumed to: 1) comprise at least one resourceful device and 2) not necessarily possess

reliable devices. In order to tailor the practical realization of the theoretical application

coordination framework to a general pervasive system, the realization must fulfill a number

of requirements in addition to Requirements I through VIII:

IX. Coordination Efficiency

The first requirement towards a practical realization is the efficiency of the entire appli-

cation coordination process. The process starts with a change in the context or the set of

interference specifications and ends with the initiation of application adaptations. Since

interferences are likely to disturb the user and pervasive computing aims at the unob-

structed and seamless provision of functionalities, interferences should be detected and

resolved as quickly as possible. In the ideal case, the user is not aware that an interference

has been handled. Thus, the practical realization must aim at the minimization of the

time required by the entire process.

X. Best-Effort Application Coordination

The second requirement towards a practical realization is to aim at a best effort appli-

cation coordination. While in theory, interference detection is correct and accurate and

interference resolution is complete, the characteristics cannot be guaranteed for practi-

cal pervasive systems. Interference detection, for example, is performed on the context

model. If the context model does not hold an accurate representation of the real world,

false positives and false negatives with respect to interferences are possible. Furthermore,
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it is conceivable that interferences are detected but disappear before they are resolved.

Thus, application coordination should aim at best effort to keep the pervasive system

interference-free.

XI. Minimal Additional Load for Resource-Poor Devices

The third requirement is to minimize the additional load for devices in the pervasive

system which are not resourceful but execute pervasive applications. A practical realiza-

tion should aim at requiring low additional effort such that the continuous execution of

applications is not threatened.

XII. Availability of Application Coordination Functionality

The last requirement addresses the availability of application coordination. Pervasive

systems can be highly dynamic and changes in the set of devices may happen unexpectedly.

Consequently, the practical realization should enable a continuous provision of application

coordination. For this purpose, it needs to be able to cope with unreliability of devices.

6.4. Component Placement

In this section, the practical realization of the framework for application coordination is

discussed. The decisions are made to meet the requirements identified in the last section.

They tailor the approach to the targeted systems. In the following, a brief overview of the

entire process of application coordination is given. The data and task components which

need to be deployed are depicted and the required data access and exchange are identified.

Subsequently, the decisions for component placement and the points in time, when data

is exchanged, are discussed for interference detection in Section 6.4.1 and interference

resolution in Section 6.4.2.

Figure 6.1 gives an overview of the complete application coordination process. As dis-

cussed in Section 5.4.2, application coordination is split into two subprocesses, interference

detection and interference resolution. The interference detection process is realized by the

interference detection component. The process is invoked any time a change in the set of
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Figure 6.1.: Overview: Data Access
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interference specifications or the context information happens. The interference detection

component realizes two subprocesses: the evaluation of interference specifications and

the composition of interference descriptions. For the evaluation of interference specifica-

tions, the process requires access to the set of interference specifications and information

about the state of the context which is addressed by the interference specifications. If

the evaluation yields a satisfied interference specification, an interference description must

be composed. Since the description comprises the satisfied interference specification, the

context information which has led to its satisfaction, and a list of all involved applica-

tions, this process requires access to the set of interference specifications, the context

information, and the application registry. Once the interference description is composed

the interference resolution process is invoked.

The interference resolution process is realized by the interference resolution component.

It consists of two subprocesses. The first subprocess is the computation of the interference

resolution plan. This subprocess requires access to all four data components, viz. the

set of interference specifications, context information, the application registry, and the

alternative configurations. As a result this subprocess yields an interference resolution

plan which contains application assignments to solve a detected interference. The plan

serves as an input for the second subprocess, the invocation of application adaptation. To

retrieve the required contact information, the subprocess requires access to the application

registry. Once the assignments have been sent to the applications, the process is finished.

In order to realize application coordination in practical pervasive systems, tasks and

data must be deployed on devices. As discussed in Section 6.3, the approach must satisfy

Requirements IX, X, XI, and XII. In the following, Sections 6.4.1 and 6.4.2 discuss the

realization decisions for interference detection and interference resolution respectively.

6.4.1. Interference Detection

Figure 6.2 shows an overview of the component placement required for interference detec-

tion. For the practical realization, a centralized approach has been chosen. The interfer-

ence detection component IDC, which realizes the two subprocesses and all required data
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Figure 6.2.: Interference Detection: Component Placement

components – the set of interference specifications IS, the context information CTX,

and the application registry AR – are placed on a resourceful device, the coordinator

(Devicei). The coordinator is responsible for the detection of interferences that occur

between applications executed on the devices Device1, Devicei, Devicej, and Devicen.

The centralized placement of task and data components contributes to the satisfaction

of Requirement IX. The requirement states that the time taken by the entire process

should be minimized. The subsequent discussion exclusively focuses on optimizations

which can be achieved through intelligent component placement and points in time when

data is exchanged. Other optimizations such as the improvement of employed algorithms

or data structures are not considered.

For interference detection, the process requires access to the set of interference specifi-

cations and the context information. If the data is not maintained centrally, interference

detection requires network communication in order to collect the data distributed among

multiple devices. Besides the interference specifications and context influences, this also
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involves the continuous collection of context information provided by sensors in the envi-

ronment.

Focusing exclusively on component placement, the only possibility to optimize the time

required for interference detection is the avoidance of network communication during the

process. For this purpose, the interference detection component, the set of interference

specifications, and the context information need to be placed centrally. The placement

allows the execution of the interference process locally without the need to retrieve data

over the network. All interference specifications which need to be evaluated are locally

available as well as the context information for which the interference specifications are

evaluated. Moreover, the centralized placement of task and data components allows in-

terference detection to be triggered with a minimal delay, i.e. as soon as a change in the

context information is observed.

A challenge of the centralized placement, however, is the currentness of data. Since

interferences are detected based on the set of interference specifications and the data held

in the context model, both data sets need to be up to date when the interference detection

process is started. To keep data in the sets up to date, applications need to provide their

interference specifications and context influences as soon as possible. This is realized by

requiring applications to register at the coordinator as soon as they enter the pervasive

system and to provide their active context configurations. The same holds for the case

when an active context configuration changes. In order to process a detection as fast

as possible, the application needs to send an update on its context configuration to the

central entity immediately. Given that remote access is more time consuming than local

operations, a centralized storage of the interference detection process, the context model

including context influences, and a collection of all interference specifications on a sin-

gle device satisfies Requirement IX. These decisions also suggest a centralized placement

of the application registry on the coordinator. Consequently, the interference detection

component can create an interference description with local data access.

In addition to the centralized placement of necessary components at the coordinator, each

non-coordinator device is provided with the same functionality as the coordinator. The



6.4. Component Placement 107

functionalities include the ability to set up a context model, the set of interference speci-

fications, and the application registry as well as an instance of the interference detection

component. The application registry AR is emphasized, as it is only used in case the de-

vice becomes coordinator. In addition to the functionalities, every non-coordinator holds

a tailored copy of the context information maintained by the coordinator. The context

information which is contained in the copy is determined by the interference specifica-

tions of applications executed on the device. As an example, the context information

CTXj on device j includes all context information that is addressed by the interference

specifications of Appj1, . . . , App
j
ij .

There are two reasons for the provision to non-coordinator devices of the functionalities

and data required for interference detection. The first reason is to enable each device to

locally detect interferences. Given the tailored copy of context information, each device

can locally detect if it encounters an interference. The ability to detect encountered

interferences enables applications to differentiate between actual interferences or natural

context changes. While the former needs to be managed through application coordination,

the latter is a situation for which a pervasive application has been designed. Consequently,

the application can adapt itself to handle the natural context change without interaction

with the coordinator.

The application can actively check for interferences it encounters and choose a context

configuration and thus a functional configuration that does not lead to an interference.

In the described setup, the application’s ability to avoid interferences is limited. The

application cannot determine if its execution will cause an interference with any other

application in the pervasive system based on the reduced set of interference specifications.

The second reason for the provision of non-coordinator devices with respective func-

tionalities is the realization of a backup mechanism. The backup mechanism enables the

resumption of interference detection for the pervasive system if the current coordinator

becomes unavailable. As discussed in detail in Section 6.5, a new coordinator is elected

in the event that no coordinator exists. With the provision of coordinator functionality,

every device is eligible to be elected as coordinator and thus to set up the required data
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Figure 6.3.: Interference Resolution: Component Placement

structures and perform interference detection. However, in order to be a coordinator, a

device needs to provide sufficient resources. If the resources of a device are so limited that

it cannot act as a coordinator, it also does not need to be equipped with the respective

functionality or data.

6.4.2. Interference Resolution

The interference resolution process consists of two subprocesses. At first, an interference

resolution plan needs to be computed. The computation is performed according to one of

the strategies which are set for the environment. To compute an interference resolution

plan, the interference resolution component requires access to the context information,

the set of interference specifications, the application registry, and the set of alternative

application configurations. Once a resolution plan has been computed, the coordinator

initiates the adaptation of applications according to the plan. For this purpose, it needs

to retrieve contact information from the application registry.
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The component deployment for interference detection results in a centralized place-

ment of the set of interference specifications, the context information, and the application

registry. Hence, a centralized placement of the task and data components required for

interference resolution is reasonable. In addition to the three data components, the in-

terference resolution component requires access to the alternative context configurations.

Figure 6.3 shows the centralized placement for data. The interference resolution com-

ponent IRC and all required data components – context information CTX, the set of

interference specifications IS, the application registry AR, and the set of alternative

application configurations ACC – have been placed on the coordinator.

The centralized placement and management of alternative application configurations

contributes to the satisfaction of Requirement IX considering interference resolution. Due

to the nature of the interference resolution plan computation, each alternative configura-

tion may be analyzed several times. To avoid the retrieval of data via network commu-

nication on the critical path for every access, alternative context configurations should

be locally available. Moreover, the point in time when applications compute and provide

their alternative context configurations is a crucial factor considering the satisfaction of

Requirement IX. The decision of whether to compute alternative context contributions

or to provide them is a trade-off between Requirements XI and IX. To satisfy Require-

ment XI it is reasonable to request and compute alternative application configurations

only when they are needed. The advantage of this proceeding is that the effort can be

reduced. For example, it is possible to use a coordination strategy which allows the coor-

dinator to pre-select those applications which are required to compute and provide their

alternative context configurations. In the ideal case, alternative context configurations

are computed and provided by a minimal set of applications. In the worst case, however,

the requested alternative context configurations do not suffice to compute a resolution

for an interference. The disadvantage of requesting further alternative context configura-

tions contradicts Requirement IX. At first, the interference resolution plan computation

is further delayed as context configurations need to be retrieved. Moreover, the process

may be further delayed if the selected application needs to compute alternative context
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configurations first.

To avoid a delay, alternative context configurations should be provided by an application

as soon as possible. A point in time when this proves reasonable is during an applica-

tion’s registration. An application registers as soon as it enters the environment. As a

new environment often also implies a changed context, the application is likely to compute

configurations for the changed execution environment. Consequently, the applications can

determine alternative context configurations and provide them to the coordinator. This,

however, implies that applications need to send updates in case their alternative context

configurations change to keep updated information at the coordinator. The advantage of

the proactive provision of alternative context configurations is that the interference res-

olution plan can be computed without the need to retrieve required information during

the process. On the other hand, this may lead to unnecessary computations on the appli-

cation side. If the adaptation of a certain application is never required, the computation

of alternative context configurations only results in additional load. The determination

of whether or not the computation of alternative context configurations is necessary is

not possible before a solution to an interference is found. Thus, the trade-off lies between

additional load for applications or a delayed interference resolution. However, requiring

an application to compute alternative context configurations at a certain point in time

may come at an inconvenient moment. Thus, it suggests to be more reasonable to have

applications compute alternative context configurations when they enter the pervasive

system and update them if necessary.

In order to provide a backup mechanism, all devices in the pervasive system are provided

with the basic functionality to set up interference resolution. As shown in Figure 6.3, the

elements are emphasized as they do not become active unless the device is selected as

coordinator.

6.5. Dynamic Application Coordination

Figure 6.4 shows an overview of the component placement for the entire application

coordination process, as presented in the preceding sections. All task and data components
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Figure 6.4.: Application Coordination: Component Placement

have been placed on a central element, the coordinator. The elements which are only used

if the device becomes the coordinator are emphasized.

Due to the unreliability of devices in general pervasive systems, the coordinator can-

not be guaranteed to remain within the system throughout the entire system life cycle.

Consequently, measures need to be taken to cope with dynamic environments in order to

satisfy Requirement XII. In the time span, when no coordinator is available, application

coordination cannot be performed. Moreover, if the coordinator leaves the environment

unexpectedly, an non-completed application coordination process may be aborted. In

order to satisfy Requirement X, application coordination is resumed by setting up a new

coordinator. For this purpose, every device in the pervasive system is provided with the

ability to set up application-coordination-specific data models and to perform the tasks

of interference detection and resolution.
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In order to set up a new coordinator, several steps are required. Figure 6.5 shows the

process for the setup of a new coordinator. The process is subdivided into four phases, the

Election Phase, the Initiation Phase, the Registration Phase, and the Coordination Phase.

The setup process is triggered as soon as the current coordinator leaves the pervasive

system. If the coordinator leaves the environment in a planned way, it can initiate a

new coordinator selection. If the coordinator leaves the environment unexpectedly, the

election is initiated as soon as a device observes that no coordinator is present.

In the Election Phase a new coordinator must be selected which fulfills the task of

application coordination. Moreover, all devices must be aware of the new coordinator.

For this purpose, a number of algorithmic approaches exist which realize the election

of a coordinator. In this process, devices are compared with respect to their suitability

of performing the role as a coordinator. The suitability of a device may depend on

different aspects. A very prominent example is the lowest id approach of Ephremides et

al. [EWB87] which is used to select nodes with specific responsibilities in MANETs. The

approach is based on the assumption that every node in the network has a unique id. If a

new responsible node is required, the device with the lowest id is selected as responsible

device. Another example is the one presented by Schiele [Sch07] which uses the remaining

energy of a node as decision factor. An alternative metric is that presented by Basu et

al. [BKL01] which uses the mobility of nodes as a decision factor for the selection of a

dedicated node in ad hoc networks.

For application coordination the suitability of a device with respect to performing the

coordinator role is primarily determined through its resourcefulness. The coordinator

device needs to have enough resources in order to fulfill the tasks of interference detection

and resolution. Furthermore, it may be reasonable to select a reliable device in order

to overcome the need for repeated coordinator election. Since the existence of a reliable

device cannot be assumed the decision was made to use the election algorithm based on

the lowest id. This approach provides good results in smart environments as well as in

smart peer groups. In smart environments the devices with the lowest id are those that

are part of the installed infrastructure and thus are reliable. In smart peer groups the
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resourceful device with the lowest id is likely to be the device of the user who initiated

the creation of the smart peer group.

Figure 6.5.: Coordinator Setup Process

Once the coordinator has been selected, the Initiation Phase is entered. In this phase

the new coordinator is set up. This includes the instantiation of all task and data com-

ponents which are required by the coordinator. With respect to task components, the

coordinator needs to initiate the interference detection and resolution component. Fur-

thermore, the data components, context information, interference specifications, alter-

native application configurations, and application registry need to be instantiated. The

outcome of this phase is a coordinator which is ready to start coordinating applications

in the pervasive system.

The Registration Phase is the third phase in the overall process of the coordinator setup.

This phase is similar to the initial coordinator setup. In this phase all applications are

required to register at the new coordinator. The registration process serves the purpose of

providing the new coordinator with the data required for application coordination. More-

over, sensors need to be registered if a device possesses sensors. Since the coordinator

has changed, sensors also need to change the address point to which they provide data.

Secondly, applications register their context configurations. In the process of adding inter-

ference specifications, the new coordinator also subscribes devices to context information

required for the evaluation of the local interference specifications.

With the initialization of the data components with required data, the setup of the new

coordinator is complete. Consequently, application coordination can be resumed and the
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Coordination Phase is entered. The new coordinator is now responsible for the detection

and resolution of interferences in the pervasive system. The responsibility ends in case

the coordinator becomes unavailable.

To summarize this chapter, the realization of the application coordination framework for

practical pervasive systems was discussed. At first, the reliability and resourcefulness of

devices were identified as system characteristics which have an influence on the practical

realization. Next, general pervasive systems were analyzed with respect to the charac-

teristics and requirements towards a practical realization were identified. Finally, the

component placement for application coordination was presented and an approach for

dynamic environments was introduced. Through the realization decisions, Requirements

IX through XII could be satisfied.



7. Protoype

This chapter presents COMITY, the prototypical implementation of the concepts intro-

duced in Chapters 5 and 6. Section 7.1 gives an overview of the coordinator and its

components, Configuration and Application Management, Context Management, Inter-

ference Detection, and Interference Resolution. Subsequently, Section 7.2 describes the

implementation of context configurations, before the four parts are presented in Section

7.3 through 7.6. The chapter closes with a description of the implementation of the

coordinator in BASE, a system software for pervasive computing, realizing application

coordination in a practical pervasive system.

7.1. Coordinator Overview

Figure 7.1 shows an UML [Gro07] class diagram of the COMITY prototype which has

been implemented in Java. The central class of the prototype is the Coordinator which

implements the interface ICoordinator. The interface offers all methods to applications

which are required for application coordination and which can be called on the coordina-

tor:

register(cbInfo, ContextConfiguration):appID The register method registers an

application at the coordinator for application coordination. It is the first method,

a pervasive application must call on the coordinator. The method requires two

parameters. First, an application provides its callback information. The callback

information enables the coordinator to contact the application in case of an interfer-

ence. The second parameter is the application’s active context configuration. With

a successful registration, the coordinator ensures that the application interferences

115
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Figure 7.1.: UML: Coordinator Overview

are detected and measures are taken to resolve them. A successful registration re-

turns an appID. The appID identifies the application at the coordinator and needs

to be used for all methods called on the coordinator subsequent to the application’s

registration. In case the registration fails, an exception is thrown.

deregister(appID) The counterpart to the register method is the deregister method.

The method takes a single parameter, namely the appID. A call of the deregister

method on the coordinator removes an application from application coordination.

It results in the deletion of all information associated with the application.

addCC(appID, ContextConfiguration, isActive) The third method which is provided

by the coordinator allows applications to add further context configurations to the

coordinator. As parameters, the method requires the appID, the context config-

uration and a flag which states if the context configuration is to be added as an

active one. In case the flag is set to false, the context configuration is added as an

alternative context configuration. The number of alternative context configurations
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an application can add to the coordinator is not restricted. In case the flag is set to

true, the currently active context configuration is deactivated and the new context

configuration is activated since only one configuration can be active per application

at any given time. The method throws an exception if the configuration could not

be successfully added.

removeCC(appID, configurationID) As applications can add context configurations to

the coordinator, they can likewise remove them. As parameters this method re-

quires the appID and the configurationID. The configuration identifier needs to

be provided by an application itself in order to distinguish between the configura-

tions added to the coordinator. In case an applications tries to delete an active

context configuration, the operation fails and an exception is thrown. This is due

to the fact that each application needs to have one configuration active in order to

participate in application coordination. If the application removes an alternative

configuration, the configuration is simply deleted.

activateCC(appID, configurationID) The last method which can be called on the co-

ordinator by pervasive applications is the activation of a configuration which has

already been added to the coordinator. The activate method requires the appID

and the configurationID as parameters. In the activation process, the coordina-

tor deactivates the currently active configuration and activates the configuration

with configurationID. In case no configuration can be found with the respective

identifier, the method fails and an exception is thrown.

The interface provides all methods that allow applications to register themselves and

to manage their active and alternative context configurations. The collection of context

configurations constitute the coordinator’s data basis to perform all tasks of application

coordination. To manage context configuration information and to realize application co-

ordination, the coordinator comprises four parts which are illustrated in Figure 7.1. The

management of context configuration information is realized by a collection of classes com-

bined into Configuration and Application Management and is described in detail in Sec-
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tion 7.3. The second part is Context Management and is addressed in Section 7.4. While

the focus of application and configuration and context management is the maintenance of

data, Interference Detection and Interference Resolution realize their corresponding tasks.

Interference detection and interference resolution are discussed in Section 7.5 and Section

7.6 respectively. In the following, the realization of context configurations is presented

first to provide a basic understanding of the data type in the following discussion.

7.2. Context Configuration

 ContextConfiguration 
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Figure 7.2.: UML: Context Configuration

Context configurations provide the information based on which application coordina-

tion is realized. Figure 7.2 shows a UML diagram for the classes which compose a context
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Figure 7.3.: UML: Coordinator Management Tables

configuration. A context configuration consists of an InterferenceSpecification and a col-

lection of objects of type Context.

The InterferenceSpecification is realized in accordance with Definition 4. It is a collec-

tion of ComposedContextConstraints which in turn are collections of AtomicContextCon-

straints. An AtomicContextConstraint comprises a quantifier, a negator, its attribute

name, a relational operator, the attribute value, and its attribute type. The specific

attribute name, the viable relational operators, and the attribute type depend on the

context ontology which is used by the coordinator.

Context objects can be specialized into ExpectedContextInfluences or ContextInfluences

as specified in Definitions 5 and 6. The former allows the definition of range values to

represent anticipated context influences. The latter explicitly specifies the actual context

influences of the application.
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7.3. Configuration and Application Management

In order to manage the information provided in context configurations, the coordinator

maintains a set of management tables, namely the IdTable, the ContextConfigurationTable,

the InterferenceSpecificationTable, and the ContextInfluenceTable, as shown in Figure 7.3.

The tables allow easy access to information required for regular operations such as adding

and removing context configurations, or retrieving an application’s active one.

The IdTable serves the purpose of keeping track of registered applications. It holds all

application ids assigned by the coordinator including the application’s callback informa-

tion. To manage the table, methods to register and remove applications and to get their

callback information are provided.

The ContextConfigurationTable stores all context configurations of registered applica-

tions. This includes one active context configuration per application and an arbitrary

number of alternative context configurations. In order to realize the functionality of

the methods offered by the coordinator interface, the ContextConfigurationTable offers

respective methods to add, remove, and change the status of active and alternative con-

figurations.

For efficiency reasons of interference detection and resolution, information of active con-

text configurations is stored in additional tables, the InterferenceSpecificationTable and

the ContextInfluenceTable. The InterferenceSpecificationTable holds all interference spec-

ifications which are currently active for the pervasive system. This provides fast access to

the set of interference specifications which need to be evaluated in the interference detec-

tion process. The ContextInfluenceTable enables the tracking of active context influences

which have been added as context to the context model. It allows the coordinator to

quickly access an application’s context influences in the context model without additional

search effort and to remove them if required. In order to manage both tables, methods

to set and remove interference specifications and context influences are provided.
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7.4. Context Management

The context influences of an application’s active context configuration are handled by the

configuration and application management as well as by the context management. This

is due to the fact that context influences as part of a context configuration are also part

of the context. Thus, context influences are managed in the respective tables but are also

added to the context model as context information.

The current state of the environment in which pervasive applications are executed is

held in the context model. However, context influences are not the only elements which

are added to the context model. To maintain the current context state, a variety of

sensors may report their information to the context model. The number of sensors is

not restricted and different sensors as well as applications can report values for identical

context attributes. Thus, in order to obtain a consistent context state, the context model

needs to merge these values and decide on the actual state of an attribute. The prototype

has also been designed such that pervasive applications can use the context model as a

primary source for context information for their context-awareness.

The context model is built according to an ontology. For this purpose, Section 7.4.1

first introduces the ontology which has been developed as part of the prototype, before

the context model is discussed in Section 7.4.2.

7.4.1. Context Ontology

A challenge for application coordination is the common addressing of the shared context.

In order to detect and resolve interferences, the data held in the context model and the

data provided in the context configurations need to be compliant. For this purpose, a

context ontology was developed. The ontology provides a common vocabulary for the

context which is shared by applications in the pervasive system. To achieve a common

addressing, the context model as well as the elements used in context configurations, must

comply with the context ontology.

The ontology was developed on the basis of the ontology presented by J. Frankenbach

[Fra10]. The ontology is tailored for application coordination and is composed of parts
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of the ontologies SOUPA [CPFJ04], CONON [WZGP04] and the ontology developed by

Korpipää [KMK+03]. Furthermore, the ontology was extended based on sensor class re-

search in pervasive systems conducted by Beigl et al. [BKZD04]. The sensor classes, which

are important for interference management, are audio, light, temperature, and humidity.

All of these classes have been added to the ontology and have been refined where needed.

Figure 7.4.: Context Ontology Extract

A graphical overview of an extraction of the ontology is illustrated in Figure 7.4. The

figure shows a selection of entities which are important for application coordination. The

ontology extraction shows that the context of an application is mainly determined by five

classes namely Location, Physical Environment, Person, Device, and Activity.

The Location of an application is a major characteristic as it determines its physical lo-

cation and thus the context it shares. Recall that the use of a location model was assumed

in the system model in order to provide physical spaces with a symbolic reference. Hence,

the prototype uses a room-centric approach to model physical spaces. As a consequence,

the attributes of the room compose the context of a pervasive application. The attributes

are the room’s Physical Environment, the Persons residing in the room, the Devices

within the room, and the Activity indicated for the room. The Physical Environment can

further be subdivided into Temperature, Audio, Light and Humidity. Each attribute can

have further characteristics. As an example, Audio is further subdivided into Frequency,
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Figure 7.5.: UML: Context Model

Type, and Intensity where Speech, Music, and Office Noises are added as possible audio

types. Moreover, the ontology only comprises context entities which have been identified

to be subject to interferences. Since the development of a comprehensive and complete

ontology was not the focus of this thesis, the ontology remains on a prototypical level

required to implement application coordination.

7.4.2. Context Model

The context ontology serves as an input for the constructor for a ContextModel object.

The constructor parses the ontology, creates the respective context attributes and gener-

ates consistency check rules based for viable value ranges and value types. This allows

it to automatically check if a context model entry complies with the ontology. As an

example, the context ontology defines a context “physical environment” with an attribute

“audio” which has a “type” which can take the values “speech”, “music”, and “office

noise”. When the context model is set up, the constructor creates the context attribute

“physical environment.audio.type”. Furthermore, a consistency check is added for the

setContext method that checks if the value takes one of the pre-defined possibilities.

The collection of all context attributes composes the context. When a context attribute

value is set, the context model stores a timestamp, the source of the context, and the
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confidence of the source. A source can be any kind of sensor, a context inference engine,

or an application in the pervasive system. The confidence of the source determines the

probability that the reported value is correct and is required for the computation of a

consistent context state.

Since several sources can report context information, the context model can hold sev-

eral entries per context attribute. This relationship is also reflected in the UML diagram

in Figure 7.5. The ContextModel is an aggregation of ContextList objects. A ContextList

object represents one specific context attribute and holds all entries related to that at-

tribute realized through ContextListEntry objects.

The resulting internal structure of the context model is illustrated in Table 7.1. The

table shows that each context attribute can have several entries, the ContextListEntries

which compose the ContextList of the attribute. The first entry in each list holds the ac-

tual value of the attribute and is indicated by the final flag. The actual value is computed

by the context model on the basis of the context information provided by the various

sources. This context information is stored in the subsequent rows where final is set to

false. Every entry consists of the timestamp when the context information was added to

the context model, the source id of the context source, the confidence that the value is

correct, the value, and the value type. The final-flagged entry does not hold a source id.

However, the sources which have contributed to the context state can be retrieved from

the list.

The design of the context model to have several entries per context attribute realizes

two objectives: 1) The context model needs to be able to determine and communicate

the actual state of the context. For example, if an application requires knowledge about

the current temperature, the context model needs to be able to service this query. 2)

For interference resolution, the coordinator needs to be able to retrieve all parties that

contribute to a certain context state. In the example given above, the context model

returns that the value of attribute “audio.volume” is 55 dB. For interference resolution,

however, the coordinator needs to know all parties that contribute to the context state.

The table shows that two applications have an influence on the audio volume. The source
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Context Model

attribute final timestamp source id confidence value type

temperature

true 16:13:15:045 - 1.0 19.0 celsius
false 16:13:14:812 app5 1.0 19.0 celsius
false 16:13:14:035 sen7 0.9 19.0 celsius
false 16:13:14:099 sen3 0.88 19.2 celsius

audio.volume

true 16:13:14:015 - 1.0 55 dB
false 16:13:14:001 app2 1.0 55 dB
false 16:13:15:015 app3 1.0 45 dB
false 16:13:15:014 sen1 0.8 54 dB

light.intensity
true 16:13:10:077 - 0.9 100 lx
false 16:13:14:990 sen4 0.9 100 lx
false 16:13:13:045 sen5 0.9 90 lx

Table 7.1.: Internal Structure of the Context Model

app2 influences the context with 55 dB while source app3 influences the context with 45

dB. In addition, the noise level is captured by the sensor sen1 and is reported to the

context model.

In case an interference occurs due to the value of “audio.volume” being greater than

30dB, it will not suffice to exclusively adapt app2 for a resolution. The coordinator

needs to know that two applications contribute to the current state of the audio.volume

attribute in order to compute an interference resolution plan. The sensor, in contrast,

only reports the context and cannot be included for resolution purposes.

7.5. Interference Detection

The third building block of the prototype is the Interference Detection. As shown in Figure

7.6, the abstract class DetectionManager contains a single method, namely detectInter-

ferences which requires the context model as input. The current version of the prototype

implements two variants of interference detection, the BasicInterferenceDetection and the

OptimizedInterferenceDetection.
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Figure 7.6.: UML: Interference Detection

Algorithm 5: detectInterferences
Input: IS, CTX

Output: Collection<InterferenceDescription>

1 begin

2 if OPTIMIZED then

3 IS ← filterRelevantIS(IS)

4 result ← new Collection()

5 for ISAppi ∈ IS do

6 iDesAppi ← hasInterference(ISAppi , CTX)

7 add(result, iDesAppi)

8 return result

Both algorithms are summarized in Algorithm 5. As input the algorithms take the set

of active interference specifications IS and the current context CTX which is held in the

context model. The BasicInterferenceDetection checks every interference specification

in the set of active interference specifications for satisfaction by the current context.

For this purpose, the algorithm calls the hasInterference method which evaluates one

interference specification for the current context and returns an interference description.

The interference description states the context which leads to the satisfaction of the
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interference specification as well as the sources of the context. In case the interference

specification is not satisfied, the interference description is empty.

The hasInterference method is described in Algorithm 6. To compose the interference

description, the hasInterference method breaks down the interference specification in

AtomicContextConstraint objects and checks if these are satisfied by the current context.

Consider the example where an AtomicContextConstraint has the form audio.volume >

30 dB. The method then retrieves the actual value of audio.volume from the context

model and checks if it meets the constraint. If the actual value is greater than 30dB, an

interference description is composed. The source of the context is identified and the con-

text as well as its possibly several sources are added to the interference description. Thus,

the result of the detectInterferences algorithm is a collection of interference descriptions.

In the collection, each description represent one satisfied interference specification. The

collection serves as input for interference resolution.

Algorithm 6: hasInterference
Input: IS, CTX

Output: Collection<InterferenceDescription>

1 begin

2 iDes ← new InterferenceDescription()

3 CCCs ← getComposedContextConstraints(IS)

4 for CCC ∈ CCCs do

5 ACCs ← getAtomicContextConstraints(CCC)

6 for ACC ∈ ACCs do

7 CTXACC ← getContext(getAttributeName(ACC))

8 if satisfies(CTX,ACC) then

9 add(iDes, (CTX, getSource(CTX)))

10 return iDes

In addition to the basic interference detection, the prototype also implements an op-

timized version. The optimized version reduces the number of interference specifications

which must be evaluated in the interference detection process. The reduction is based on
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Figure 7.7.: UML: Interference Resolution

the following idea: The evaluation of an interference specification will always yield the

same result unless the values of the context attributes it constrains are changed. There-

fore, it is reasonable to evaluate only those interference specifications which may have

been affected by a context change.

To realize this, two additional mechanisms were implemented. At first, when an interfer-

ence specification is registered at the coordinator, the coordinator retrieves the addressed

attributes and creates links between these attributes and the interference specification.

This enables the coordinator to have a direct access to all interference specifications which

include a particular context attribute. Secondly, the context model was provided with the

ability to track which context attributes have been changed recently. A context attribute

has been changed recently, if it was altered after interference detection was performed the

last time. If detectInterferences is called, the coordinator iterates over the set of recently

changed attributes, retrieves the associated interference specifications and clears the set.

Subsequently, the retrieved interference specifications are evaluated for the current con-

text.

7.6. Interference Resolution

The last building block of the prototype is Interference Resolution. The UML overview

of Interference Resolution is shown in Figure 7.7. The abstract class ResolutionManager

has a single method namely resolveInterference which takes a map of application ids and
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their context configurations as input. The prototype implements four different algorithms

to compute an interference resolution plan, viz. NO-NP, O-NP, NO-P, and O-P where O

stands for the ordering heuristic, P stands for pruning, and N is the negator. NO-NP

realizes a chronological backtracking, O-NP an informed backtracking using the order-

ing heuristic, NO-P an informed backtracking that uses pruning, and O-P an informed

backtracking that uses both ordering and pruning.

Algorithm 7: resolveInterference
Input: matrix : ContextConfigurationMatrix
Output: com : ContextConfigurationCombination

1 begin
2 if ORDERING then
3 matrix← sortAppsByInvolvementASC (matrix)
4 com← initialCombination(matrix)
5 while hasNextCombination(com) do
6 if PRUNING then
7 com← nextPrunedCombination(matrix, com)
8 else
9 com← nextCombination(matrix, com)

10 if isInterferenceFree(com) then
11 return com

12 return ∅

The four variations are summarized in Algorithm 7. A variation can be obtained by

setting ORDERING and PRUNING as required. Recall that the algorithm takes a matrix

of context configurations as input. In case ORDERING and PRUNING are disabled,

the algorithm realizes a chronological backtracking. The algorithm terminates if either

an interference-free combination is found or all combinations have been checked and no

solution could be found. The four resolution algorithms were introduced and discussed

in detail as part of the theoretical framework in Section 5.4.2.5. For this purpose, the

algorithms are not described in this section. For detailed information refer to Section

5.4.2.5.
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7.7. Coordinator as a Service

In order to realize application coordination in practical pervasive systems, the coordinator

has been implemented using a middleware. For the prototype the middleware BASE

[BSGR03] has been selected as it has been specifically designed to meet the requirements

of pervasive computing. It has a lightweight but extensible core based on a micro-broker

approach. This allows BASE to be operated on resource-poor devices, such as embedded

sensors, but it also supports the addition of costly functionalities to be run on full-fledged

devices such as desktop computers.

Devices which are in communication range with each other and which are equipped

with the BASE software are able to form a spontaneous network. BASE supports basic

functionalities to manage the network, e.g. a device discovery and registry. It is able

to dynamically detect new devices and to integrate them into the network making them

available to all connected BASE instances. Likewise, BASE keeps the device registry up

to date and removes devices which no longer exist. Once a network has been established,

BASE instances are able to communicate with each other on a peer-to-peer basis.

In order to build and execute pervasive applications, BASE uses a service abstraction to

model functionalities and capabilities in a common way and to provide a uniform access.

Thus, remote services can be accessed via local proxies. The actual call on a remote service

is realized by the BASE middleware. BASE has been designed to shield applications from

the management of communication. Using BASE, an application can communicate with

remote instances not having to manage communication technology, the interoperability

protocols, or the communication models. As a consequence, pervasive applications are

not aware of how their communication with remote devices is realized.

Figure 7.8 shows the coordinator as a BASE service. The coordinator is indicated

through an emphasized border. In order to implement the coordinator as a service, a

stub and a skeleton need to be generated and its interface needs to be exported in the

BASE Service Registry. As a BASE service, the coordinator and the methods defined by

its interface are available to all other BASE instances.

In order to be used by applications, the BASE application model was extended through
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Figure 7.8.: Coordinator as BASE Service

a routine that automatically detects the coordinator, registers the application and pro-

vides its context configurations. In case no coordinator is found, the application initiates

a coordinator election as described in Section 6.5.

To summarize the chapter, a prototypical implementation of the application coordination

framework and its concepts has been presented. Besides the realization of the conceptual

components described in Section 5.2, the coordinator is provided with additional tables.

These tables enable easy access to information of active context configurations to support

the execution of frequent operations. For context management, a context ontology was

introduced and the internal structure of the context model was discussed. Furthermore,

the implementation of the algorithms for interference detection and resolution were pre-

sented. The outcome of this chapter is a functioning prototype that is able to coordinate

applications in pervasive systems. In order to integrate the functionality of application

coordination in a real pervasive system, the coordinator was implemented as a BASE

service.
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8. Evaluation

This chapter evaluates the prototype which was presented in Chapter 7. The goal of this

chapter is to assess the concepts which were developed in this thesis and to show the

utilizability of the coordinator for practical pervasive systems. For this purpose, Section

8.1 first discusses the memory requirements of the coordinator in detail in dependence on

the number of active applications and their context configurations. Subsequently, Section

8.2 evaluates the prototype with respect to its performance. At first, the critical path

of application coordination is analyzed. Afterwards, measurements for the implemented

interference detection and interference resolution algorithms are conducted and the results

are discussed.

8.1. Memory Requirements and Overhead

The first evaluation addresses the memory requirements of the coordinator and the over-

head it causes. Firstly, the memory requirements of the classes that compose the coor-

dinator are determined in dependence of active and alternative context configurations.

Secondly, conceivable examples of context configurations and the resulting load for the

coordinator are discussed. Moreover, the resulting load is set in relation to the memory

requirements of the middleware BASE to determine the overhead. Finally, the message

overhead that is caused through the use of the coordinator in a pervasive system realized

with BASE is analyzed.

In order to determine the memory requirements, a footprint of the prototype has been

measured using the Java profiler Java VisualVM which is part of JDK. The classes that

compose the prototype and their memory requirements are shown in Table 8.1. The table

states the size of each class in bytes in dependence on active and alternative context

133
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Class Size in Bytes

Coordinator 120

IdTable 16 + (Size(CallBackInfo) + Size(Length(ID))) · #Apps

CCTable 16 + Size(CCany) · #CCany/App ·#Apps

ContextModel 8 + Size(ContextList) · #CTXAttribute

ISTable 16 + Size(ISactive) · #Apps

CITable 16 + Size(ContextListEntry) · #Apps

Table 8.1.: Memory Requirements: Coordinator Classes

configurations.

As described in Chapter 7, the coordinator maintains different tables to manage ap-

plication and context configuration information. The IdTable enables the coordinator

to store coordination-specific ids and the callback information. As a consequence, the

memory requirements are computed accordingly in addition to a base value of 16 bytes.

The CCTable stores all context configurations of applications, the active as well as the

alternative ones. Thus, the memory requirements are determined as a product of the size

of context configurations, the number of context configurations per application and the

number of active applications in the system. The size of the context model is determined

through the number of context attributes maintained by the context model and the num-

ber of entries per attribute. Recall that for interference resolution, every context list holds

one entry per source that reports a value for the respective attribute. The ISTable and

CITable provide the coordinator with easy and efficient access to currently active config-

urations. This includes access to active interference specifications in the ISTable and the

access to active context influences which are stored as context in the context model and

referenced in the CITable. Hence, the memory requirements of the ISTable are determined

through a base of 16 bytes plus the product of active interference specifications and the

number of active applications in the pervasive system. The size of CITable is composed

of a base of 16 bytes plus the product of the size of a ContextListEntry and the number

of active applications.

The formulas to compute the size of context configurations, context lists, and context

list entries are given in Table 8.2. For example, a single ContextListEntry has a size of
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Class Size in Bytes

ContextConfiguration (CC) 24+ Size(IS) + Size(CI)

InterferenceSpecification (IS) 16 + #CCC · (16 + #ACC · 24)

ContextInfluences (CI) 16

ContextList 16 + 32 ·# CTXEntries

ContextListEntry 32

Table 8.2.: Memory Requirements: ContextConfiguration and ContextList

32 bytes. Hence, the memory requirements of a ContextList is determined through the

number and size of ContextListEntry objects plus a base of 16 bytes.

In order to give an idea for the real size of the coordinator which manages a number

of applications and their context configurations, an example is described in the following:

assuming the interference specification of the context configuration consists of 4 composed

context constraints with 4 atomic context constraints each and assuming furthermore

that the context configuration comprises 4 context influences. Thus, the overall size of

the context configuration is 552 bytes. The resulting sizes for the coordinator classes are

shown in Table 8.3. For the computations, the coordinator was assumed to manage a

number of 0, 10, 25, 50, and 100 applications where each application had 1 active and 3

alternative context configurations.

Load BASE COMITY Overhead

0 290kB 160B 0.0005 %

10 290kB 33428B 11.26 %

25 290kB 82418B 27.75 %

50 290kB 164068B 55.25 %

100 290kB 327368B 110.24 %

Table 8.3.: Memory Requirements and Overhead

The numbers in the table indicate that the memory requirements of COMITY grow

with an increasing number of registered context configurations. Furthermore, the table

shows the memory requirements for the middleware BASE and the overhead that is caused

when the coordinator is used. The middleware has been chosen as comparison to give

an idea for the size of a system software. Depending on the functionalities, the size of
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the system software may vary significantly. The selected configuration of BASE, however,

provides a minimal configuration in order to manage pervasive systems and to enable

communication in dynamic environments. The minimal configuration does not support

the automatic configuration of applications or their adaptation. However, additional

functionality will only add to the memory requirements of BASE.

According to the table, a minimal BASE configuration has a memory requirement of

approximately 290kB. Running as a BASE service, a pure COMITY without data adds

up to 160 bytes. In the initial setup, COMITY causes a minimal overhead. However,

without any data the coordinator is not able to coordinate applications and with every

context configuration that is added to the coordinator its memory requirement grows. In

the described example, an overhead of about 11% is produced for a set of 10 applications.

Recall that every application has 1 active and 3 alternative context configurations. To

manage 50 applications in this scenario, the coordinator produces an overhead of about

55% in comparison to BASE. Thus, the memory requirements of BASE/COMITY add up

to around 450kB when managing 50 applications. In today’s pervasive systems, however,

such a size is manageable by typical devices. Given that current smartphones such as the

Samsung Galaxy S III [SEC] or the HTC One X+ [Cor] have a RAM of 1GB size, devices

in a pervasive systems have sufficient resources (cf. Section 6.1) to host a coordinator.

Besides the memory requirements, the additional message load which is produced by

the coordinator was investigated and compared to the pure BASE. In order to manage

and keep the network up to date, BASE sends messages to and receives messages from

all BASE instances in the system. The detection cycle is performed every 100ms. The

time has been set in order to balance the tradeoff between network traffic and the refresh

period for services within the network. For n BASE instances this results in 2(n − 1)

messages per instance adding up to O(n2) messages. The realization of the coordinator as

a BASE service does not result in any extra messages. Since each BASE instance updates

all other instances with a vector of its services, the updates are sent as bundle. Across

different systems, however, this would lead to another n messages as the BASE internal
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mechanism could not be reused to broadcast the existence of the coordinator.

For coordination purposes, COMITY adds 2 messages per application for the registra-

tion process and 1 message for the addition/activation/removal of each alternative context

configuration. Furthermore, leases were implemented that applications must renew every

100ms on the coordinator. This allows for the information of active applications to be

kept up to date even in dynamic environments. The leases add one extra message per

detection cycle to the communication overhead.

8.2. Performance Measurements

Having discussed the memory requirements and the overhead caused by coordination,

this section focuses on the evaluation of the application coordination process. At first,

Section 8.2.1 gives an overview of the process and analyzes its critical path. Two sub-

processes which play an important role on the critical path are interference detection

and interference resolution. Consequently, Section 8.2.2 evaluates the performance of the

two implemented algorithms, BasicInterferenceDetection and OptimizedInterferenceDe-

tection. Subsequently, Section 8.2.3 conducts and discusses measurement to evaluate the

implemented algorithms – NO-NP, O-NP, NO-P, and O-P.

8.2.1. Critical Path

The critical path of the application coordination process defines the minimal sequence

of steps which is performed in an application-coordinator interaction. Hence, the critical

path determines the minimal time required for the interaction starting with a call on the

coordinator and ending with a possible adaptation instruction sent to the application. In

the following the single steps on the critical path are discussed and the time requirements

are analyzed.

Figure 8.1 gives an overview of the entire process of application coordination. The

process starts when an application registers for coordination at the coordinator (1). In

this process, the application provides the coordinator with its callback information and

its active context configuration. Upon receipt, the coordinator processes the data. It
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Figure 8.1.: Overview: Application Coordination Process

creates an application id and adds the information contained in the context configuration

to its management tables and the context model (2). As soon as the data has been

processed, the coordinator sends the application id to the application (3). Furthermore,

the interference detection process is triggered, if the addition of the context configuration

has led to a change in the context or the set of interference specifications (3). With

the provided application id, the application can now add, activate, or remove context

configurations at the coordinator. Interference detection is always triggered when the

context or the set of interference specifications are changed, e.g. through the activation

or removal of context configurations. If one or more interferences are detected in the

interference detection process, interference resolution is triggered (4). This subprocess

computes the interference resolution plan and instructs pervasive applications to adapt

according to the plan (5).

Analytically, the time required from (1) through (5) can be determined as shown in

Equation 8.1, where OWNC is the time required for a one-way network communication

(1)(5), DP the time required for data processing (2), ID the time required for interference

detection (3), and IR the time required for interference resolution (4).

T (CP ) = OWNC + DP + ID + IR + OWNC (8.1)
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To obtain the values for the variables of the equation, separate measurements were

conducted. At first, measurements were performed to obtain the times for OWNC and

DP . OWNC clearly depends on the employed communication middleware, i.e. BASE.

DP in turn is determined by two subprocesses implemented in the prototype. At first,

the coordinator creates an application id (IDP ) and subsequently adds the information

held in the context configuration to the management tables (CCP ). The results of the

measurements are shown in Table 8.4. The parameter that was varied was the length of

the context configurations, i.e. the number of attributes in the interference specification

(IS) and context influences (CI). The measurements also showed that the structure of the

interference specification did not have an impact on the results. Whether the interference

specification consisted of a single composed context constraint containing several atomic

context constraints or several composed context constraints containing a single atomic

context constraint each did not make a difference.

The setup of the test scenario was as follows: The coordinator – realized as a BASE

service – was executed on a desktop PC with Intel Core2Quad Q 6600 @ 2.40 GHz and

4 GB RAM running a 64 Bit Windows 7. The application – whose representative part

is also realized as a BASE service – was executed on a Sony Vaio Solo U1500@1.33 GHz

with 1 GB RAM running a Windows Vista Business which is comparable to contemporary

smartphones. The communication was provided via LAN. The OWNC was determined

as half an average communication round trip time. For each setting, a number of 50 runs

was performed. The obtained average time is given in Table 8.4.

|CI/IS|
Processes 1 4 9 16 25 36

OWNC 1.80ms 1.60ms 1.80ms 1.50ms 1.70ms 1.80ms

DP
IDP 0.50ms 0.50ms 0.45ms 0.45ms 0.45ms 0.45ms
CCP 1.20ms 1.20ms 1.20ms 1.40ms 1.70ms 1.70ms

Overall 5.30ms 4.90ms 5.25ms 4.85ms 5.55ms 5.75ms

Table 8.4.: Performance Results for the Critical Path

The table shows the time required for the overall process for different sizes of context

configurations |CI/IS| = {1, 2, 4, 9, 16, 25, 36}. The results indicate that required time
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does not vary significantly. The application required between 4.85ms and 5.75ms to reg-

ister an active context configuration at the coordinator ensuring that the interferences of

the application are handled in the system and getting an application id as return value.

For a context configuration size of 9 for example, the one way network communication

required 1.8ms, the data processing required 0.45ms for the creation of an id and 1.2ms

for processing the data contained in the context configuration. The overall time it took

an application to be ensured that its interferences are detected and measures are taken

to resolve them with a context configuration of 9 was 5.25ms.

The measurement results shown in table 8.4 summarize the time required to communicate

with the coordinator and to provide the coordinator with respective information. Part of

the critical path, however, are the processes of interference detection ID and interference

resolution IR. With respect to interference detection and resolution, the performance

depends on the employed algorithms. Furthermore, since a prototypic implementation

is evaluated, optimizations with respect to the implementation are conceivable. In the

following, Section 8.2.2 discusses the performance of interference detection followed by

the evaluation of interference resolution in Section 8.2.3.

8.2.2. Interference Detection

In order to assess the performance of interference resolution, measurements were con-

ducted for the implementations of the BasicInterferenceDetection algorithm and the Opti-

mizedInterferenceDetection algorithm. The evaluation of both algorithms was conducted

on a Quad-Core Intel(R) Xeon(R)@2.33GHz device with 6GB RAM running a 64 Bit

Windows Server Standard Edition.

For the measurements, two different scenarios were set up as follows: a number of

n = {1, 5, 25, 50, 100, 200, 500} active context configurations were added to the coordina-

tor. The context configurations were designed such that the initial setup did not yield

any interferences. After the context configurations had been added, the context was

changed such that (1) one of n interference specification would be satisfied by one active
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Figure 8.2.: Measurement Results for BasicInterferenceDetection

context configuration or (2) 1 of the n interference specifications would be satisfied by n

applications. Due to the design, the BasicInterferenceDetection had to evaluate all in-

terference specifications of active context configuration, i.e. n interference specifications,

for the changed context. Besides the number of active context configurations, the size of

context configurations with |CI/IS| = {1, 4, 9, 16, 25} served as a second parameter. This

parameter indicates how many different context attributes were addressed in the context

influences and the interference specification. Each setup was repeated 20 times.

Figure 8.2 shows the results for the BasicInterferenceDetection algorithm. The x-axis

depicts the number of applications and thus the number of active context configurations

being added to the coordinator. The y-axis shows the required time to detect the inter-

ference in milliseconds.

T (ID) = #Apps · |CI| · |CIC| (8.2)

The time required for interference detection is summarized in Equation 8.2 and is deter-

mined as follows: for each application that is registered at the coordinator with an active

context configuration, the active interference specification must be evaluated resulting

in #Apps. For each of these interference specifications, atomic context constraints with

|CI| context attributes must be evaluated. If the atomic context constraint makes use of

quantifiers, all candidates CIC held in the context must be considered.
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T (ID/ID) = #Apps · |CI| · |CIC| · avg(CTXE) (8.3)

An additional factor is added – avg(CTXE) as shown in Equation 8.3 – if the creation

of the interference description is integrated into the interference detection process. The

integration is reasonable, as it avoids a second evaluation of the interference specification.

The additional factor is caused through the structure of the context model as described

in Section 7.4.2. For each context attribute, the context model holds an entry for the

final value and a list of entries that influence the context attribute. In case the final value

satisfies an atomic context constraint, the list is parsed for all application sources that

contribute to the final value. For satisfying entries, the application id and the context are

added to the interference description.

The OptimizedInterferenceDetection algorithm was evaluated in the same setup. Recall

that the optimized version only evaluates the interference specifications which could be

affected by a context change. Thus, only those interference specifications are checked that

reference a context attribute ctxa, if the value of ctxa was changed since the detection

was performed last. Table 8.5 gives an overview of the times required for the optimized

interference detection in comparison to the non-optimized version in milliseconds. For the

subsequent discussion, the measurement results for |CI/IS| = 9 were selected.

The measurement results show that the optimized version reduces the required time

between 12% and 20% for 1:1 interferences. For 1:n interferences, the optimized version

is even able to reduce the required time up to 60%. The results also give an indication for

which context change rate the coordination can still handle interference detection. For

example, the coordination is able to handle about 1400 context updates a second in order

to detect interferences for 50 application if 1:1 interferences must be detected.

With respect to the targeted pervasive systems, interference detection can be applied

in time-critical systems. Using a room-centric approach, the execution of more than

100 applications seems unlikely. However, even with 200 applications, the optimized

interference detection is able to detect about 700 1:n interferences within one second.
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Setup
BID 1:1 OID 1:1 Red. BID 1:n OID 1:n Red.

#
A
p
p
l
ic
a
t
io
n
s

2 0.0493ms 0.0451ms -12% 0.0506ms 0.0270ms -47%
4 0.0670ms 0.0590ms -12% 0.0649ms 0.0423ms -35%
6 0.0810ms 0.0695ms -15% 0.0968ms 0.0544ms -44%
8 0.1028ms 0.0867ms -16% 0.1251ms 0.0770ms -39%
10 0.1191ms 0.1016ms -15% 0.1591ms 0.0923ms -42%
12 0.1418ms 0.1160ms -19% 0.1876ms 0.1135ms -39%
14 0.1651ms 0.1336ms -20% 0.2163ms 0.1289ms -40%
16 0.1783ms 0.1476ms -18% 0.2508ms 0.1422ms -43%
18 0.2012ms 0.1619ms -20% 0.2773ms 0.1580ms -44%
20 0.2231ms 0.1790ms -20% 0.3079ms 0.1818ms -41%
50 0.5246ms 0.4240ms -20% 0.7489ms 0.4162ms -45%
100 0.9985ms 0.8756ms -12% 1.3645ms 0.7030ms -50%
200 1.7361ms 1.5278ms -14% 2.5130ms 1.4320ms -44%
500 5.0591ms 4.5022ms -12% 9.9831ms 4.0299ms -60%

Table 8.5.: Basic vs. Optimized Interference Detection, |CI/IS| = 9

However, interference detection only contributes a small part to the overall time required

on the critical path. As the next section shows, the task of computing an interference

resolution plan is the most time consuming subprocess in the overall process of application

coordination.

8.2.3. Interference Resolution Plan Computation

The goal of this section is to assess the performance of the algorithms implemented for

interference resolution. As previously discussed, interference resolution consists of two

subprocesses, the interference resolution plan computation and the initiation of applica-

tion adaptations. While the latter constitutes the distribution of adaptation requests, the

former is a complex task. In Section 5.4.2.5 an ordering heuristic was introduced and the

use of pruning was suggested to realize an informed backtracking. In order to evaluate

the improvements, measurements were conducted for all four variations, no ordering - no

pruning (NO-NP), ordering - no pruning (O-NP), no ordering - pruning (NO-P), and

ordering - pruning (O-P). In this setup, the non-intelligent backtracking (NO-NP) serves

as a reference algorithm.

To test the two improvements specifically, two different test cases were set up. In
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both cases, the algorithms had to compute an interference resolution plan for a given

interference. However, while the first test case only required applications to be adapted

that are initially involved in the interference for its resolution, the second test case required

the adaptation of further, uninvolved applications. In order to provide a clear discussion,

the first test case is described and its results are discussed before the second test case is

addressed.

Test case 1: The goal of the first test case was to assess the quality of the improvements

for interferences where the adaptation of involved applications suffices to resolve the in-

terference. The parameters were: (1) the number of applications n = {2, 4, 6, 8} which

are registered at the coordinator, (2) the number of context configurations per applica-

tion m = {2, 4, 8}, where one configuration is the active one, (3) the number of context

configurations per application that can resolve the interference r = {1,m/2} and thus

have an impact on the density of the solution space, and (4) the number of applications

involved in the initial interference i = {2, n/2, n}. The number of attributes per context

configuration was fixed to |CI/IS| = 5. A set of 20 runs was performed per point. The

order of context configurations for each application was randomly generated in each run.

While the setup provides different variations, a setup with m = 8 and i = 2 was chosen

as a representative scenario for this discussion. The choice for 8 context configurations

per application was made because it provides the largest search space among the possible

variations. Thus, the overall number of combinations an algorithm must evaluate in the

worst case is 8n. Furthermore, a number of 2 applications was selected as required to

adapt to find a solution in order to emphasize the improvements through the ordering

heuristics. Moreover, the size of the search space was varied to observe the improvements

through pruning. Hence, the described setup was evaluated with r = 1 such that only one

out of the 8 context configurations led to the solution of the interference and r = m/2,

i.e. half of the configurations led to a solution.

The measurement results for n = {2, 4, 6, 8}, m = 8, i = 2, and r = 1 are shown in

Figure 8.3. The x-axis of the graph indicates the number of applications n. The y-axis
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Figure 8.3.: Interference Resolution: r = 1, i = 2

depicts the average number of steps the algorithms required in order to find a solution.

The figure shows that the use of either ordering or pruning or the combination of both

(NO-P, O-NP, and O-P) clearly outperforms NO-NP, i.e. basic backtracking. The use of

the heuristic in this scenario lets the algorithm adapt those applications first which are

involved in the interference.

The complexity of all three variations lies in O(mi) with m being the number of context

configurations and i being the number of interfering applications. Moreover, in this setup

the complexity is independent of the number of active applications. The use of the

ordering heuristic ensures that all combinations that involve the adaptation of interfering

applications are evaluated before the adaptation of any non-interfering application is tried.

Thus, 82 combinations must be evaluated in the worst case. If pruning is combined with

the ordering heuristic, the effects of pruning are hardly visible. This is due to the fact

that the ordering of the matrix reduces the pruning potential to a minimum.

The measurement results for n = {2, 4, 6, 8}, m = 8, i = 2, and r = 4 are shown in

Figure 8.4. The difference in comparison to the previous setup is the increased density of

the solution space. In this setup, every other of an application’s context configurations led

to a solution of the interference. Overall, the graph shows the same tendency as the graph

in Figure 8.3. O-NP, NO-P, and O-P clearly outperform NO-NP. Due to the choice of r,

however, solutions are more frequent than in the first setup. Hence, the determination of

a solution requires less steps.
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Figure 8.4.: Interference Resolution:: r = m/2, i = 2

In order to compare the actual number of steps, Table 8.6 gives a numeric overview of

the results shown in Figure 8.3 and 8.4. Furthermore, Table 8.7 shows evaluation results

for a number of m = 4 context configurations per application. While m = 8 supported

a better exposition of the improvements through ordering and pruning, 4 context con-

figurations seem to be more likely in practice. An application may have a number of

different functional configurations. However, the context configurations of different func-

tional configurations may be identical. As an example, a music application may have

several functional configurations which employ different output resources. Even though

the output resources may differ, the context interaction stays the same if they all output

music to the environment. In addition to the average number of steps that were required

to find a solution, the table also shows the taken time in milliseconds.

The results in both tables show that NO-NP is not applicable for interference resolution

in time-critical pervasive systems. In a setup for 8 applications with 4 context configura-

tions each and a dense distribution of solutions in the search space, NO-NP takes about

521 milliseconds to find a solution. In contrast, NO-P, O-NP, and OP perform similarly

and solve the interference in between 0.5ms and 3.9ms. The measured times also indicate

that the algorithms do not come close to their limits. However, as previously discussed,

the complexity for O-NP and O-P is dependent on the number of context configurations

and the number of interfering applications. As a consequence, the performance will not

change with an increasing number of applications. The time requirement will change if
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m = 4, r = 1 m = 4, r = m/2
Steps Time Steps Time

N
O

-N
P 2 11.8 0.9203ms 7.8 1.5428ms

4 131.1 3.8409ms 91.9 2.9162ms
6 636.4 27.4153ms 634.7 26.9436ms
8 14190 855.4604ms 8827.9 521.1618ms

N
O

-P
2 11.5 2.6971ms 8.1 3.879ms
4 13.5 1.1856ms 8.5 0.7690ms
6 11.5 0.6630ms 8 0.8222ms
8 12 0.8917ms 8.2 0.6330ms

O
-N

P

2 11.5 0.8550ms 8.1 0.6528ms
4 13.2 0.4278ms 8.5 0.3203ms
6 12.1 0.5681ms 7.7 0.3744ms
8 12 0.7757ms 8.5 0.5640ms

O
-P

2 11.5 2.7354ms 8.4 4.2097ms
4 12.3 1.0428ms 8.8 07619ms
6 11.2 0.6289ms 8 0.8189ms
8 13.5 0.9729ms 8.8 0.6367ms

Table 8.6.: Test Case 1: Required Steps and Time, m = 4

m = 8, r = 1 m = 8, r = 1
Steps Time Steps Time

N
O

-N
P 2 41.2 1.1056ms 17.4 0.9084ms

4 1660.8 50.0728ms 475.6 13.7538ms
6 80456 3448.6ms 17566.5 745.7630ms
8 6275075 364537ms 988300 56808ms

N
O

-P

2 41.8 2.1569ms 19.5 2.2915ms
4 40.3 1.6877ms 17.8 1.1648ms
6 52.6 2.8751ms 15.4 0.8732ms
8 50.6 3.4173ms 21.3 1.5162ms

O
-N

P

2 42.5 1.2114ms 15.3 0.8159ms
4 42.4 1.3150ms 21.3 0.6657ms
6 54 2.4374ms 15.4 0.7340ms
8 52 3.2630ms 21.3 1.3645ms

O
-P

2 43.9 2.2605ms 18.8 2.3092ms
4 41.7 1.6455ms 19.9 1.3297ms
6 48.8 2.2205ms 16.1 0.8754ms
8 53.4 3.5158ms 17.1 1.1936ms

Table 8.7.: Test Case 1: Required Steps and Time, m = 8
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the number of context configurations is changed – which does not seem reasonable as

discussed earlier – or more applications are involved in the initial interference and need

to be adapted.

While the results suggest that the algorithms can be employed to detect interferences in

pervasive systems without any reservations, the scenario in test case 1 does not represent

typical interferences. In practice, the number of applications which need to be adapted

to resolve an interference is not known until a solution is found. For this purpose, a

second test case was set up in which initially uninvolved applications need to be adapted

in addition to interfering applications to resolve the interference.

m = 4, r = 1 m = 4, r = 1
Steps Time Steps Time

N
O

-P

4 135.5 0.008s 95.1 0.009s
6 1530 0.091s 1825 0.102s
8 41448 3.6335s 22704 1.847s

10 443894.8 51.852s 567161 41.360s

O
-P

4 163.4 0.009s 121.1 0.013s
6 2081 0.127s 1883.5 0.105s
8 45927 3.9968s 35817.12 2.9080s

10 620875 73.23s 550156 59.1857s

Table 8.8.: Test Case 2: Required Steps and Time, m = 4

Test case 2: The goal of the second test case was to assess the quality of the use of

ordering and pruning for interferences where the adaptation of initially involved appli-

cations does not suffice. As in the first test case, the parameters were: (1) the number

of applications n = {2, 4, 6, 8} which are registered at the coordinator, (2) the number

of context configurations per application m = {2, 4, 8} where one configuration is the

active one, (3) the number of context configurations per application that can resolve the

interference r = {1,m/2} and thus have an impact on the density of the solution space,

and (4) the number of applications involved in the initial interference i = {2, n/2, n}. In

addition, (5) the number of applications that need to be adapted with a = {n/2, n} was

added as parameter. The number of attributes per context configuration was fixed to

|CI/IS| = 5.

For test case 2, the results showed that the only viable variations of the resolution
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m = 8, r = 1 m = 8, r = 1
Steps Time Steps Time

N
O

-P

4 1304 0.050s 921.3 0.036s
6 81238 5.129s 48843 2.834s
8 6291376 595.603s 4296380 361.276s

O
-P

4 2066.1 0.082s 1262.9 0.058s
6 1185426 7.574s 49088 2.839s
8 7562447 713.744s 3838073.5 320.682s

Table 8.9.: Test Case 2: Required Steps and Time, m = 8

algorithm are the ones that use pruning, i.e. NO-P and O-P. As further interferences

are detected while searching for an interference resolution plan, the ordering heuristic

does not improve the performance. In contrast, in the combination with pruning, the

ordering heuristic reduces the pruning potential. The reason for that is shown in Figures

8.5(a) and 8.5(b). The use of the ordering heuristic places the applications which are

initially involved in the interference to the right of the input matrix. This means that

these applications are adapted first in order to find a solution. However, the way pruning

works, only the last application can be adapted which is part of the interference. In Figure

8.5(a), the interfering application that can be adapted is application 1. Since application

1 is the last application in the matrix, pruning is not possible. In contrast, if applications

were ordered differently, i.e. without the use of the ordering heuristic, pruning is likely to

have more potential. Figure 8.5(b) shows the same context configuration as Figure 8.5(a)

but with permutated application positions.

Tables 8.8 and 8.9 state the performance of NOP and OP for 4 and 8 context configu-

rations respectively. The parameters in this test were set to: m = 4, 8, r = 1,m/2, i = 2,

and a = n, respectively. In this very complex setting, the best-performing NOP takes

0.009s, 0.102s, 1.847s, and 41.360s for finding a resolution in a system with 4, 6, 8, and

10 applications and 4 context configurations.

In summary, the use of NO-P has proven to be the best option for the computation of

an interference resolution plan. For interferences which exclusively require those applica-

tions to be adapted that are initially involved in the interference, O-NP, NO-P, and O-P

are all comparable with respect to their performance. For interferences, which require

the adaptation of further, uninvolved applications for a resolution, NO-P outperforms all
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(a) With Ordering Heuristic (b) Without Ordering Heuristic

Figure 8.5.: Ordering vs. Non-Ordering

other variations. However, the use of NO-P is still limited, especially in time-critical sys-

tems. As an example, the algorithm requires about 40s for 10 applications with 4 context

configurations and large solution space to find an interference resolution plan. Adding the

time required for communication and interference detection, this may add up to about 45s

in which the interference persists and the experience of a seamless functionality provision

is disturbed.

In summary, this chapter evaluated the prototype and its implemented concepts. The

analysis of the memory requirements showed that the size of COMITY is dependent on the

number of managed context configurations and their memory requirements. Furthermore,

performance measurements with respect to the critical path were conducted. The single

steps of the path were analyzed and the results showed that the communication with the

coordinator – excluding the processes of interference detection and resolution – takes about

5ms-6ms using BASE as communication middleware. Subsequently, the algorithms for

interference detection and resolution were evaluated. While the results indicate that the

optimized interference detection is suitable for time-critical pervasive systems, interference

resolution proves to be the bottleneck regarding the application coordination process. In

order to be applicable in time-critical systems, further improvements, considering the

performance of interference resolution, are required.



9. Conclusion and Outlook

This chapter summarizes the contents of this thesis and provides an outlook on future

work.

9.1. Conclusion

The extrapolation of the current trends in pervasive computing suggests that future hu-

man environments will be managed by a multitude of different pervasive systems. In

order to provide functionality, each of these systems will execute pervasive applications.

A major characteristic of such applications is their context-interactivity. On one hand,

pervasive applications are aware of their context and can adapt themselves if the context

changes. On the other hand, pervasive applications are able to influence and change the

context. This can be done implicitly as a side effect of employed resources or explicitly

through the use of respective actuators. If multiple applications are executed in the same

physical space, problems are likely to occur. These problems can be reduced to the fact

that applications which are executed in the same physical environment share and interact

with a common context. As a consequence, they are directly related with each other as

an application may change the context other applications depend on.

The described problem has been defined as an interference in this thesis. An interference

is an application-produced context that impairs the functionality provision of another

application. In order to show that interferences is a problem class likely to occur between

pervasive applications, an overview of existing approaches has been given. The overview

shows that the majority of the discussed approaches interact with their context and thus

are likely to interfere with each other.

In order to handle interferences between applications across different systems, an ap-

151
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plication coordination framework has been presented. The framework is subject to three

major design decisions. Firstly, the framework realizes a cross-system coordination layer

to allow interference management across different systems. Secondly, it supports the in-

tegration of arbitrary application systems through the realization and provision of active

and alternative context configurations and the implementation of an adaptation inter-

face. The context configuration defines the interaction of the application in its current

and alternative functional configuration. The first part of the context configuration is the

interference specification which defines those context states which the application consid-

ers to be an interference, using monadic predicate logic. The second part are the context

influences which describe how the application influences the context in the functional

configuration. Finally, the framework provides a generic interface to enable the use of

different resolution strategies allowing a customization of the framework to the needs of

different pervasive systems.

The management of interferences is achieved through their automatic detection and res-

olution at runtime. For interference detection, the framework requires the active context

configuration of each application in the pervasive system. Based on that information and

a context model, interferences are automatically detected. For interference resolution,

the framework makes use of the alternative context configurations provided by applica-

tions. It computes an interference resolution plan by selecting a context configuration

for each application such that the pervasive system is interference free. Once a plan has

been obtained, each application is instructed to instantiate a functional configuration that

complies with the selected context configuration.

The analysis of the interference resolution plan computation and its modeling as a con-

straint satisfaction problem showed that the problem is NP-complete. As a consequence,

any algorithm that solves a constraint satisfaction problem can be employed to compute

an interference resolution plan. For this purpose, different algorithm classes were dis-

cussed and two informed backtracking approaches which exploit the specific structure of

interferences have been introduced.

For a practical realization of the framework the component deployment in pervasive sys-
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tems and the point in time when data must be exchanged has been analyzed. Furthermore,

the concepts are implemented in a prototype. To assess the prototypical implementation

and the underlying concepts, several measurements are conducted to evaluate them. The

measurements show that with respect to the managed data, typical devices in pervasive

systems, such as smartphones, are resourceful enough to coordinate up to 100 applica-

tions. Considering required tasks, the process of interference detection is performable by

typical devices by all means. However, the process of interference resolution plan com-

putation clearly constitutes the bottleneck in the application coordination process. With

10 applications with 4 context configurations, the best variation of informed backtracking

required about 41 seconds.

9.2. Outlook

The application coordination framework presented in this thesis provides a solid basis to

manage interferences in pervasive systems. However, this research reveals several worth-

while future directions to be explored.

Firstly, the framework could be extended in the sense that it realizes a cooperation

of applications through coordination. At present, applications in different pervasive sys-

tems coexist. They do not interact with each other nor do they make use of each other’s

functionality. The current state of the presented framework realizes measures to main-

tain this state of application coexistence. In case an interference occurs, the framework

automatically detects the interference and takes measures to resolve the context-based

interconnection of applications. In order to make use of synergistic effects, the framework

could support the cooperation of applications in different systems. Instead of defining

interference specifications, applications could define goals they want to achieve but which

require further support. This could enable the framework to determine the actions and

activities of multiple applications in order to achieve a common goal.

Secondly, concepts could be developed to support users with respect to the creation

of interference specifications. Users could define a number of interference specifications

to ensure that undesired situations are handled as quickly as possible. For this purpose,
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a first step towards a user-interface to support the creation of interference specifications

has been presented [TSB06].

Thirdly, further resolution strategies could be developed. In this thesis, four variations

of a backtracking-based algorithm were analyzed and evaluated. The evaluation showed

that especially for interferences that require the adaptation of initially uninvolved appli-

cations for a resolution, the proposed algorithms are hardly employable in time-critical

systems. For this purpose, further resolution strategies could be developed that, for ex-

ample, consider the pausing of applications for a resolution.

Lastly, the coordination framework could be provided with a proactive component. At

present, the framework detects interferences when they actually happen. Based on the

context configurations it then computes a resolution plan for the interference. A proactive

component could detect potential interferences and compute respective resolutions before

the interference actually happens. Hence, in case the predicted interference happens, a

resolution is already available. The proactive coordination also promises a reduction in

the overall time required for the application coordination process as the computation of

an interference resolution plan is preponed.
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[Löw31] Leopold Löwenheim. A Source Book in Mathematical Logic, chapter On

possibilities in the calculus of relatives, pages 228–251. Harvard University

Press, 1879-1931.

[Mac77] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intel-

ligence, 8:99–118, 1977.

[MAJ07] Amirreza Masoumzadeh, Morteza Amini, and Rasool Jalili. Conflict De-

tection and Resolution in Context-Aware Authorization. In Proceedings of

the 21st International Conference on Advanced Information Networking and

Applications Workshops, 2007.

[MD06] Ricardo Morla and Nigel Davies. A Framework for Describing Interfer-

ence in Ubiquitous Computing Environments. In Proceedings of the 4th

IEEE International Conference on Pervasive Computing and Communica-

tions Workshops, 2006.

[MD07] Ricardo Morla and Nigel Davies. Informing the Design of User Studies on

Conceptual Interference Frameworks. In Proceedings of the 21st Interna-

tional Conference on Advanced Information Networking and Applications

Workshops, 2007.

[MH86] Roger Mohr and Thomas C. Henderson. Arc and Path Consistency Revis-

ited. Artificial Intelligence, 28(2):225–233, 1986.

[MJPL92] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird.

Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfac-

tion and Scheduling Problems. Artificial Intelligence, 58(1-3):161–205, 1992.

[Mor93] Paul Morris. The Breakout Method for Escaping From Local Minima. In

Proceedings of the 11th National Conference on Artificial Intelligence, 1993.

[MSS+10] Verena Majuntke, Gregor Schiele, Kai Spohrer, Marcus Handte, and Chris-

tian Becker. A Coordination Framework for Pervasive Applications in Multi-



Bibliography 165

User Environments. In Proceedings of the Sixth International Conference

on Intelligent Environments, 2010.

[MV03] Shivajit Mohapatra and Nalini Venkatasubramanian. PARM : Power Aware

Reconfigurable Middleware. In Proceedings of the 23rd International Con-

ference on Distributed Computing Systems, 2003.

[OSWS06] Friederike Otto, Choonsung Shin, Woontack Woo, and Albrecht Schmidt.

A User Survey on: How to Deal with Conflicts Resulting from Individual

Input Devices in Context-Aware Environments. In Adjunct Proceedings of

the 4th International Conference on Pervasive Computing, 2006.

[Pas97] Jason Pascoe. The Stick-e Note Architecture: Extending the Interface Be-

yond the User. In Proceedings of the 2nd International Conference on In-

telligent User Interfaces, 1997.

[PJKF03] Shankar R. Ponnekanti, Brad Johanson, Emre Kiciman, and Armando Fox.

Portability, Extensibility and Robustness in iROS. In Proceedings of the 1st

IEEE International Conference on Pervasive Computing and Communica-

tions, 2003.

[PLF+01] Shankar R. Ponnekanti, Brian Lee, Armando Fox, Terry Winograd, and Pat

Hanrahan. Icrafter : A Service Framework for Ubiquitous Computing Envi-

ronments. In Proceedings of the 3rd International Conference on Ubiquitous

Computing, 2001.

[PLH05] Insuk Park, Dongman Lee, and Soon J. Hyun. A Dynamic Context-Conflict

Management Scheme for Group-Aware Ubiquitous Computing Environ-

ments. In Proceedings of the 29th Annual International Computer Software

and Applications Conference, 2005.

[PPS+08] Justin Mazzola Paluska, Hubert Pham, Umar Saif, Grace Chau, Chris Ter-

man, and Steve Ward. Structured Decomposition of Adaptive Applications.

Pervasive Mobile Computing, 4(6):791–806, 2008.



166 Bibliography

[Pro93] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.

Computational Intelligence, 9:268–299, 1993.

[RC01] Manuel Roman and Roy H. Campbell. Unified Object Bus: Providing Sup-

port for Dynamic Management of Heterogeneous Components. Technical

report, University of Illinois at Urbana-Champaign Champaign, 2001.

[RC03] Anand Ranganathan and Roy H. Campbell. An Infrastructure for Context-

Awareness Based on First Order Logic. Personal Ubiquitous Computing,

7(6):353–364, 2003.

[RCAM+05] Anand Ranganathan, Shiva Chetan, Jalal Al-Muhtadi, Roy H. Campbell,

and M. Dennis Mickunas. Olympus: A High-Level Programming Model

for Pervasive Computing Environments. In Proceedings of the 3rd IEEE

International Conference on Pervasive Computing and Communications,

2005.

[RHC+02] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan,

Roy H. Campbell, and Klara Nahrstedt. A Middleware Infrastructure for

Active Spaces. IEEE Pervasive Computing, 1(4):74–83, 2002.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson Education, 2nd edition, 2003.

[Sat01] Mahadev Satyanarayanan. Pervasive Computing: Vision and Challenges.

IEEE Personal Communications, 8:10–17, 2001.

[Sat05] Ichiro Satoh. A Location Model for Pervasive Computing Environments. In

Proceedings of the 3rd IEEE International Conference on Pervasive Com-

puting and Communications, 2005.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing

Applications. In Proceedings of the 1994 First Workshop on Mobile Com-

puting Systems and Applications, 1994.



Bibliography 167

[Sch07] Gregor Schiele. System Support for Spontaneous Pervasive Computing En-

vironments. PhD thesis, Universität Stuttgart, 2007.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit:

Aiding the Development of Context-Enabled Applications. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems: the

CHI is the Limit, 1999.

[SDW08] Choonsun Shin, Anind K. Dey, and Woontack Woo. Mixed-Initiative Con-

flict Resolution for Context-Aware Applications. In Proceedings of the 10th

International Conference on Ubiquitous Computing, 2008.

[SEC] Ltd. Samsung Electronics Co. Galaxy S III Specification. http:

//www.samsung.com/global/galaxys3/specifications.html. accessed

20.10.2012.

[SF94] Daniel Sabin and Eugene C. Freuder. Contradicting Conventional Wisdom

in Constraint Satisfaction. In Proceedings of the 2nd International Work-

shop on Principles and Practice of Constraint Programming (PPCP), 1994.

[SG94] Rok Sosic and Jun Gu. Efficient Local Search With Conflict Minimization:

A Case Study of the n-Queens Problem. IEEE Transactions on Knowledge

and Data Engineering, 6(5):661–668, 1994.

[SG02] Joao Pedro Sousa and David Garlan. Aura: An Architectural Framework for

User Mobility in Ubiquitous Computing Environments. In Proceedings of the

IFIP 17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Con-

ference on Software Architecture: System Design, Development and Main-

tenance, 2002.

[SHW05] Choonsung Shin, Daeho Han, and Woontack Woo. Conflict Management

for Media Services by Exploiting Service Profiles and User Preference. In

Proceeding of the 1st International Workshop on Personalized Context Mod-

eling and Management for UbiComp Applications, 2005.

http://www.samsung.com/global/galaxys3/specifications.html
http://www.samsung.com/global/galaxys3/specifications.html


168 Bibliography

[SLS05] Evi Syukur, Seng Wai Loke, and Peter Stanski. Methods for Policy Con-

flict Detection and Resolution in Pervasive Computing Environments. In

Proceedings of the 14th International World Wide Web Conference, Policy

Management for the Web, 2005.

[SRL10] Thais R.M. Braga Silva, Linnyer B. Ruiz, and Antonio A.F. Loureiro. To-

wards a Conflict Resolution Approach for Collective Ubiquitous Context-

Aware Systems. In Proceedings of the 12th International Conference on

Information Integration and Web-based Applications & Services, 2010.

[SS77] Richard M. Stallman and Gerald J. Sussman. Forward Reasoning and

Dependency-Directed Backtracking in a System for Computer-aided Cir-

cuit Analysis. Artificial Intelligence, 9(2):135–196, 1977.

[SvdZH08] Andreas Schroeder, Marjolein van der Zwaag, and Moritz Hammer. A Mid-

dleware Architecture for Human-Centred Pervasive Adaptive Applications.

In Proceedings of the 2nd IEEE International Conference on Self-Adaptive

and Self-Organizing Systems Workshops, 2008.

[SW05] Choonsung Shin and Woontack Woo. Conflict Resolution Method utilizing

Context History for Context-Aware Applications. In Proceedings of the 1st

International Workshop on Exploiting Context Histories in Smart Environ-

ments, 2005.

[SW09] Choonsung Shin and Woontack Woo. Service Conflict Management Frame-

work for Multi-User Inhabited Smart Home. Journal of Universal Computer

Science, 15(12):2330–2352, 2009.

[SYW07] Choonsun Shin, Hyoseok Yoon, and Woontack Woo. User-Centric Con-

flict Management for Media Services Using Personal Companions. ETRI,

29(3):311–321, 2007.

[TJK+08] G.S. Thyagaraju, S.M. Joshi, Umakant P. Kulkarni, S.K. NarasimhaMurthy,



Bibliography 169

and Anil R. Yardi. Conflict Resolution in Multiuser Context-Aware Envi-

ronments. In Proceedings of the International Conference on Computational

Intelligence for Modelling Control & Automation, 2008.

[TSB06] Verena Tuttlies, Gregor Schiele, and Christian Becker. End-user Configura-

tion for Pervasive Computing Environments. In Proceedings of the Interna-

tional Conference on Complex, Intelligent and Software Intensive Systems,

2006.

[VMG+01] Kirsi Virrantaus, Jouni Markkula, Artem Garmash, Vagan Terziyan, Jari

Veijalainen, Artem Katanosov, and Henry Tirri. Developing GIS-Supported

Location-Based Services. In Proceedings of the 2nd International Conference

on Web Information Systems Engineering, 2001.

[VVV08] Antti-Matti Vainio, Miika Valtonen, and Jukka Vanhala. Proactive Fuzzy

Control and Adaptation Methods for Smart Homes. IEEE Intelligent Sys-

tems, 23(2):42–49, mar 2008.

[Wal75] David Waltz. Understanding Line Drawings of Scenes with Shadows. In

The Psychology of Computer Vision, 1975.

[Wal00] Toby Walsh. SAT vs. CSP. In Principles and Practice of Constraint Pro-

gramming – CP 2000, volume 1894 of Lecture Notes in Computer Science,

pages 441–456. Springer Verlag, 2000.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American,

265(3):66–75, 1991.

[Wf] Standard Wi-fi. http://standards.ieee.org/about/get/802/802.11.

html. IEEE 802.11 - 2012, accessed 30.09.2012.

[WKM07] Michael Wilson, Mario Kolberg, and Evan H. Magill. Considering Side

Effects in Service Interactions in Home Automation - an Online Approach.

http://standards.ieee.org/about/get/802/802.11.html
http://standards.ieee.org/about/get/802/802.11.html


170 Bibliography

In Proceedings of the International Conference on Feature Interactions in

Software and Communication Systems, 2007.

[WSA+95] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Petersen,

David Goldberg, John R. Ellis, and Mark Weiser. An Overview of the

PARCTAB Ubiquitous Computing Experiment. Personal Communica-

tions, 2:28–43, 1995.

[WZGP04] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology

based context modeling and reasoning using owl. In Proceedings of the 2nd

IEEE Annual Conference on Pervasive Computing and Communications

Workshops, 2004.



Curriculum Vitae

Verena Elisabeth Majuntke received the Abitur from Geschwister-Scholl-Gymnasium in

Pulheim, Germany, in June 1999. In October 1999, Verena started her computer science

studies at Universität des Saarlandes, Germany, which she completed with the degree of

Vordiplom in fall 2002. Verena continued her computer science studies at RWTH Aachen

University, Germany, in spring 2003. She graduated and obtained her Dipl.-Inform. de-

gree in November 2006. After her graduation, in December 2006, Verena started her

doctoral studies under the supervision of Prof. Dr. Christian Becker at the Chair of In-

formation Systems II at Universität Mannheim, Germany. Verena’s research project was

partly founded by the German Research Foundation (DFG). Her paper “A Coordination

Framework for Pervasive Applications in Multi-User Environments” was awarded as best

paper at the International Conference on Intelligent Environments in 2010. Furthermore,

she received a Google PhD Award at the International Conference on Pervasive Comput-

ing and Communications in 2010. In addition to her research activities, Verena served as

teaching assistant and as reviewer for several international conferences and journals.

171


	Abstract
	Acknowledgements
	1 Introduction
	1.1 Pervasive Computing
	1.2 Business Applications
	1.3 Motivation
	1.4 Research Aim
	1.5 Contribution
	1.6 Structure

	2 Background
	2.1 Pervasive Systems
	2.2 Applications in Pervasive Systems
	2.2.1 Classification Criteria
	2.2.2 Classification of Existing Approaches
	2.2.3 Pervasive Applications

	2.3 Interference in Pervasive Systems

	3 Coordination: System Model and Requirements
	3.1 System Model
	3.2 Application Coordination
	3.3 Requirements
	I System Integration
	II System Autonomy
	III Runtime Coordination
	IV Application-Specific Interferences
	V Minimal User Distraction
	VI Strategy-Based Coordination
	VII Correctness of Interference Detection
	VIII Completeness of Interference Resolution


	4 Related Work
	4.1 Interference
	4.2 Application Coordination
	4.2.1 Interference Detection
	4.2.2 Interference Resolution


	5 Framework for Application Coordination
	5.1 Design Rationale
	5.1.1 Cross-System Coordination Layer
	5.1.2 Extension of Existing Application Systems
	5.1.3 Strategy-Based Application Coordination

	5.2 Framework Overview
	5.3 System Extensions
	5.3.1 Context Configuration
	5.3.1.1 Context Ontology and Context
	5.3.1.2 Interference Specifications
	5.3.1.3 Context Influences


	5.4 Application Coordination Framework
	5.4.1 Interference Detection
	5.4.2 Interference Resolution
	5.4.2.1 Interference Resolution Plan Computation
	5.4.2.2 Interference Resolution Plan Problem as CSP
	5.4.2.3 Algorithms for Constraint Satisfaction Problems
	5.4.2.4 Discussion
	5.4.2.5 Coordination Strategy Realization



	6 Application Coordination in Pervasive Systems
	6.1 System Characteristics
	6.2 Smart Environments and Smart Peer Groups
	6.3 Requirements
	IX Coordination Efficiency
	X Best-Effort Application Coordination
	XI Minimal Additional Load for Resource-Poor Devices
	XII Availability of Application Coordination Functionality

	6.4 Component Placement
	6.4.1 Interference Detection
	6.4.2 Interference Resolution

	6.5 Dynamic Application Coordination

	7 Protoype
	7.1 Coordinator Overview
	7.2 Context Configuration
	7.3 Configuration and Application Management
	7.4 Context Management
	7.4.1 Context Ontology
	7.4.2 Context Model

	7.5 Interference Detection
	7.6 Interference Resolution
	7.7 Coordinator as a Service

	8 Evaluation
	8.1 Memory Requirements and Overhead
	8.2 Performance Measurements
	8.2.1 Critical Path
	8.2.2 Interference Detection
	8.2.3 Interference Resolution Plan Computation


	9 Conclusion and Outlook
	9.1 Conclusion
	9.2 Outlook

	Bibliography



