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Abstract

Shrinking process node sizes allow the integration of more and more functionality into

a single chip design. At the same time, the mask costs to manufacture a new chip

increases steadily. For the industry this cost increase can be absorbed by selling more chips.

Furthermore, new innovative chip designs have a higher risk. Therefore, the industry only

changes small parts of a chip design between different generations to minimize their risks.

Thus, new innovative chip designs can only be realized by research institutes, which do not

have the cost restrictions and the pressure from the markets as the industry.

Such an innovative research project is EXTOLL, which is developed by the Computer

Architecture Group of the University of Heidelberg. It is a new interconnection network

for High Performance Computing, and targets the problems of existing interconnection

networks commercially available. EXTOLL is optimized for a high bandwidth, a low

latency, and a high message rate. Especially, the low latency and high message rate become

more important for modern interconnection networks. As the size of networks grow, the

same computational problem is distributed to more nodes. This leads to a lower data

granularity and more smaller messages, that have to be transported by the interconnection

network.

The problem of smaller messages in the interconnection network is addressed by this

thesis. It develops a new network protocol, which is optimized for small messages. It reduces

the protocol overhead required for sending small messages. Furthermore, the growing

network sizes introduce a reliability problem. This is also addressed by the developed

efficient network protocol.

The smaller data granularity also increases the need for an efficient barrier synchronization.

Such a hardware barrier synchronization is developed by thesis, using a new approach of

integrating the barrier functionality into the interconnection network.

The masks costs to manufacture an ASIC make it difficult for a research institute to

build an ASIC. A research institute cannot afford re-spin, because of the costs. Therefore,

there is the pressure to make it right the first time. An approach to avoid a re-spin is

the functional verification in prior to the submission. A complete and comprehensive

verification methodology is developed for the EXTOLL interconnection network. Due to

the structured approach, it is possible to realize the functional verification with limited
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resources in a small time frame. Additionally, the developed verification methodology is

able to support different target technologies for the design with a very little overhead.
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Zusammenfassung

Die Verkleinerung der Prozessgrößen ermöglicht es immer mehr Funktionalität in einen Chip

zu integrieren. Gleichzeitig steigen die Kosten für die Produktion eines Chips stetig. Die

Industrie kann diese Kostensteigerung auffangen, in dem sie mehr Chips verkauft. Zusätzlich

haben neue innovative Chipdesigns ein höheres Risiko. Um ihr Risiko zu minimieren, ändert

die Industrie nur kleine Teile eines Chips zwischen aufeinander folgenden Generationen. Das

führt dazu, dass neue innovative Chipdesigns nur noch von Forschungsinstituten entwickelt

werde, die nicht dem gleichen Kostendruck unterliegen.

Ein solches innovatives Forschungsprojekt ist EXTOLL von dem Lehrstuhl für Rech-

nerarchitektur der Universität Heidelberg. Es ist ein neues Verbindungsnetzwerk für das

Hochleistungsrechnen, und zielt darauf ab die existierenden Probleme von kommerziell

verfügbaren Verbindungsnetzwerken zu lösen. Es ist optimiert für eine hohe Bandbreite,

eine kleine Latenz und eine hohe Nachrichtenrate. Insbesondere, die kleine Latenz und die

hohe Nachrichtenrate werden immer wichtiger für moderne Verbindungsnetzwerke. In dem

Maße in dem die Größe der Verbindungsnetzwerke steigt, werden Berechnungsprobleme auf

immer mehr Rechner verteilt. Das führt dazu, dass die Datengranularität immer kleiner

wird und damit die Nachrichten, die in einem Verbindungsnetzwerk transportiert werden

müssen.

Das Problem der verkleinerten Datengranularität in Verbindungsnetzwerken wird von

der vorliegenden Arbeit behandelt. Sie entwickelt ein neues Netzwerkprotokoll, das für

kleine Nachrichtengrößen optimiert ist. Es verringert den Aufwand, der benötigt wird

um kleine Nachrichten zu versenden. Zusätzlich verursachen steigende Netzwerkgrößen

ein Zuverlässigkeitsproblem, welches bei dem entwickelten effizienten Netzwerkprotokoll

berücksichtigt wird.

Die kleinere Datengranularität vergrößert die Notwendigkeit nach einer effizienten Barrier-

ensynchronisation. Eine solche Barrierensynchronisation wird in der vorliegenden Arbeit

entwickelt. Dabei wird ein neuer Ansatz verwendet, um die Barrierensynchronisation in ein

Verbindungsnetzwerk zu integrieren.

Die steigenden Maskenkosten um einen ASIC zu produzieren, machen es für ein Forsch-

ungsinstitut schwer, einen ASIC zu entwickeln. Ein Forschungsinstitut kann es sich aufgrund

der Kosten nicht leisten einen ASIC zweimal zu fertigen. Aufgrund dessen muss der ASIC
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nach der ersten Fertigung funktionieren. Eine Möglichkeit, eine zweite Fertigung zu ver-

meiden ist die Verwendung der funktionalen Verifikation bevor der Chip gefertigt wird.

Dafür wurde eine komplette und vollständige Verifikation Methodik für das EXTOLL

Verbindungsnetzwerk entwickelt. Durch die strukturierte Herangehensweise ist es möglich

die funktionale Verifikation mit begrenzten Ressourcen in einem kleinen Zeitfenster zu

realisieren. Zusätzlich ermöglicht es die entwickelte Verifikationsmethodik mehrere Zieltech-

nologien mit einem kleinen Zusatzaufwand zu unterstützen.
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1. Introduction

Nowadays, the development of new complex hardware designs is driven by the industry.

Shrinking process node sizes enables hardware engineers to integrate more functional logic

into a single chip from generation to generation. As more functionality is integrated, also

the verification of the implemented designs is getting more complex. In the design teams

more members are assigned for the verification than for the hardware implementation.

Meanwhile, the time available to build a new chip decreases, as there is a competition

between companies to release a new chip design first. Only then, it is possible to monetize

the investments made to build a chip. As a result, the industry has started to build new

chips by reusing building blocks, and combining them with only a small amount of new

functionality into Systems on a Chip (SOCs). These building blocks are either used from

previous designs or are bought from third party vendors. This development can be best

seen for mobile devices. There are many different SOCs available for these devices. But,

the used Central Processing Units (CPUs), Graphics Processing Units (GPUs), and other

blocks, are developed by only a couple of companies. Therefore, the differences between

chip generations decrease, as new innovative approaches and designs are too cost intensive.

In contrast, research institutes do not have the same time and cost restrictions as the

industry on the one hand. On the other hand, they have limited resources regarding to

funding and manpower. Furthermore, they do not have the pressure from the markets to

release new chips regularly. Therefore, they can think about and implement new innovative

chip designs. In this process they are not forced to rely on building blocks. Instead, they

are able to build everything from scratch, which enables them to optimize every aspect of

a design. This includes the system architecture as well as the transistor level.

Building new innovative hardware designs consists of two design phases. First, there

is an architectural phase, in which the features, the concepts, and the architecture of a

design are explored and defined. This phase is dominated by simulations to analyze and

understand the system behavior. But, a simulation uses predetermined synthetic workloads

only, as it is difficult to model and map real workloads to a simulation. Thus, in a second

phase a hardware implementation of the design is done to validate, that the system meets

the expectations regrading to scalability and performance.

This implementation is done in the form of an Application Specific Integrated Circuit
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(ASIC). Building an ASIC is a demanding task for a research institute. Due to its limited

resources, the implementation process must be very efficient. In addition, there is the

pressure to make it the first time right. Due to increasing mask costs, a re-spin is not

affordable by a research institute. Therefore, a sophisticated functional verification method-

ology is needed to get the confidence, that the chip behaves like intended. Furthermore,

the functional verification must be done with limited manpower.

Such an innovative research project is Extended ATOLL (EXTOLL) of the Computer

Architecture Group (CAG) of the University of Heidelberg. The performance gain of

supercomputers and computers used for cloud computing and big data applications is

mainly driven by an increasing grade of parallelism. The single thread performance does not

scale with the needs for more computing power any more. Consequently, these computers

are build using thousands of compute nodes, which are connected by an interconnection

network. Whereas the performance of the compute nodes increases steadily, the performance

of the available interconnection networks does not scale in the same way. The goal of

EXTOLL is to build a new interconnection network for High Performance Computing

(HPC) to address the existing drawbacks of the commercial interconnection networks

available. EXTOLL is optimized for a high bandwidth, a low latency, and a high message

rate. It is a complete own design to have the flexibility to optimize each aspect of the

interconnection network. In particular the latency and the message rate are getting an

issue with growing network sizes. As the network size grows, also the grade of parallelism

grows, which results in a lower granularity of the processed data. Therefore, more small

messages must be transported by the network. The lower granularity leads to a decreasing

computation time proportional to the transportation time of the data in the network.

This development must be taken care of in the design phase of a modern interconnection

network. Because, more small messages are used also the network protocol has to be

optimized therefore. To allow a high bandwidth and message rate even for small messages,

the framing of the network protocol has to be as small as possible. Additionally, the fault

tolerance of a network is getting an issue with growing network sizes. As more nodes

are involved, also the amount of physical connections between the nodes increases, which

results in a higher probability of bit errors in the whole network. Therefore, reliability

mechanisms are needed for the network protocol to detect and correct errors in the network

with a low overhead. These problems are addressed by this thesis, which develops a new

efficient network protocol with low overhead for small messages and a strong fault tolerance.

The lower data granularity raises another problem. Many parallel codes solve a compu-

tational problem iteratively. Thereby, the computational task is scattered among several

compute nodes, where each node processes a part of the whole problem. To proceed with

the computation, the nodes have to exchange their intermediate results in regular intervals.

At these exchange points, all nodes have to wait until all other ones have reached this
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point, too. This synchronization is done by a collective operation called a barrier. The

time duration of a barrier synchronization must be as short as possible, as during the

synchronization all compute nodes are not able to proceed with the computation. Due to

a smaller data granularity, more synchronization points are needed, which raises the need

for a very efficient and short barrier synchronization. Therefore, this thesis proposes a new

way to integrate a barrier synchronization into an unified interconnection network.

As mentioned above, an ASIC implementation of a new hardware design is needed

to show and validate its system behavior and performance. Due to the manufacturing

costs of an ASIC, a research institute can not afford a re-spin in the case of an erroneous

implementation. Consequently, it must be ensured in prior to the submission of the ASIC,

that the implementation is functionally correct. Because of the limited resources of a

research institute, the functional verification has to be very productive and needs to be

applied in a reasonable time frame. Furthermore, in a research context Field Programmable

Gate Arrays (FPGAs) are used as a prototyping platform. As they are reprogrammable,

new hardware designs can be tested quickly, but with a limited performance. Additionally,

finding bugs in an FPGA is a time consuming task, although they are reprogrammable.

For the functional verification of such a project, there are different requirements. First,

different target technologies must be supported. On the one hand, there are FPGA

implementations, and on the other hand, there is the ASIC. Second, it has to be done with

limited resources, and of course, it must be complete, in order that all bugs are found,

before the tape out. To be able to handle the complexity of the functional verification

process, an efficient and complete methodology must be used. Such a methodology is

developed by this thesis.

1.1. Outline

This thesis is divided into four chapters. The first chapter introduces a new network

protocol for a HPC interconnection network. It describes the requirements for such a

network, and shows how an efficient network protocol improves the performance of an

interconnection network. Furthermore, reliability aspects of interconnection networks and

their impact on the network protocol are discussed.

The second chapter gives an example of fast barrier synchronization in an unified

interconnection network. In addition, an implementation of a global interrupt logic is

shown.

The third chapter concentrates on the functional verification methodology for a large

hardware design. It demonstrates, how the verification of a new hardware design can be

organized to reach verification closure in a short time frame with limited resources, and
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explains the structure of the whole verification environment. All parts of the environment

are described in depth. Thereby, it is revealed, how reusable verification components and a

hierarchical verification approach improves the verification process, and shortens the time

needed for a successful functional verification.

The last chapter summarizes thesis with a reflection about the achievements made and

the impact on this work.
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2.1. Introduction

The number of compute nodes used in supercomputers increases steadily [1]. This growth

will become more and more critical in the transition from petascale to exascale computing.

The interconnection network, which is used for the communication between the nodes,

becomes a critical component with the increasing node count. While computational

intensive benchmarks like High Performance Linpack [2] show a performance improvement

[3] over time, network intensive benchmarks as G-RandomAccess and G-FFTE [3] do

not improve in the same way. In contrast to compute nodes, which are built using

commodity hardware, commodity interconnection networks as Ethernet [4] do not deliver

the performance needed for HPC. These commodity networks are designed to fit for different

heterogeneous environments. Thus, each network layer is defined to be easily exchangeable

by a different technology, which causes a high overhead in the network protocol stack.

Furthermore, they implement many features, that are not needed for HPC. For example, a

typical interconnection network for HPC needn’t to be globally addressable. Therefore,

homogeneous interconnections networks, which are used for HPC, should be optimized

for this use case to improve its performance. To address these problems with commodity

networks, several interconnection networks were developed for HPC like [5], [6], [7], or

EXTOLL.

To measure the performance of an interconnection network three key metrics are used:

the bandwidth, the latency, and the message rate. The bandwidth measures the amount of

data, that can be delivered by a network in a second. As the size of networks grows and the

compute nodes are able to process more data in the same time frame, also the bandwidth

of the interconnection network needs to grow accordingly. The latency measures the time

from a message is generated at its source node until it gets delivered at its destination

node. During the time a message needs to traverse the network, its data can’t be processed

as well as the the compute nodes can be blocked as they wait for a message to be received

or until the message is delivered. Therefore, a low latency improves the performance of a

network. The message rate counts the number of messages that can be delivered by an

interconnection network in a time frame. Particularly for parallel codes, which use many

small messages for synchronization, a high message rate improves the overall performance.
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The growing network sizes lead to smaller messages, which an interconnection network

has to transport. This is caused by distributing a computational problem to more nodes.

Thereby, each node processes a smaller data set. For this reason, also smaller messages

are exchanged by the nodes. Thus, the interconnection network needs to be optimized for

small messages, in order to sent small messages with a low latency at a high message rate.

As the sizes of interconnection networks grow, also their fault tolerance is getting an

issue. The kinds of faults, that an interconnection network has to deal with, mainly include

bit errors on physical links, and complete failures of links or compute nodes. With the

growing size also the amount of physical links for connecting the compute nodes increases,

which increases the overall probability of faults in the whole system. A network fault that

is not detected causes programs executed on the system either to fail or to progress with

wrong data, when the fault occurred within the data of a network packet. Therefore, an

interconnection network needs to ensure a reliable operation, which includes the ability to

recover from faults.

2.2. Protocol Requirements

A key factor for the overall performance and fault tolerance of an interconnection network

is its network protocol. It defines how data is transferred in the network. This includes

how the data is assembled into packets, the packet types that are available, the framing of

a packet, the routing and fault tolerance mechanisms.

The requirements for an interconnection network are defined in [8]. From this, the

following key requirements for a network protocol can be derived.

Scalability Scalability means for a network, that when additional nodes are added to the

network, also the performance of the network has to increase accordingly to avoid

that the network becomes a bottleneck. For the network protocol it follows, that

it must be able to address these additional nodes. Moreover, the network protocol

should not restrict the number of nodes in the network, which reduces its scalability.

The reliability mechanisms for an interconnection network depend on retransmission

buffers to hold the transmitted data until it is completely received by the destination.

When additional nodes are added, the total buffer space needs to be increased, too.

For a scalable network, the buffer space should not limit the size of the network.

Efficiency Data, that is transferred in the network, normally can not be injected directly

into the network. The data is assembled into packets to be able to share the network

between different transfers. Therefore, the data is framed to mark the start and the

end of the data. This framing includes the destination node for the packet and all
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other information needed by the network to forward a packet to its destination node.

As the framing reduces the bandwidth, which is available to send data, it has to be

as compact as possible for an efficient network. The efficiency of a network protocol

can be calculated with the following formula:

Efficiency =
Payload Size

Packet Size
(2.1)

Whereas the payload size is the size of the data to be sent, and the packet size the

size of the data including the packet framing.

Reliability The reliability of a network describes its ability to recover from network faults.

As faults are getting an issue with growing network sizes, the reliability mechanisms

of the network protocol must be able to recover from any faults that have occurred.

The reliability of a network can be increased either by error detection or by error

correction. With an error detection, the network detects errors in the transmitted

data. To able to recover from an error, the data sent must be stored in an extra buffer

before the transmission. When an error is detect, the corrupted data is retransmitted

from that buffer. These buffers can be located in the sending node of a message.

The receiving node checks the message, and requests retransmission of the message

from the sender in the case of an error. This is called an end to end retransmission.

Another method is the link retransmission, in which the messages are checked at

a per link basis. Thus, the buffers are located in each link of the network and the

retransmission is done in the link layer in the case of an error. From a scalability

point of view, the link retransmission scales better than the end to end retransmission,

as by a link retransmission each new node adds it own buffers. In contrast to the

end to end retransmission, which needs larger buffers with each added node.

An error correction detects and corrects faults on the fly. Therefore, hamming codes

are normally used. To be able to fix detected errors they have to add additional

information to the data transferred, which in return reduces the efficiency of the

network protocol.

2.3. State of the Art Networks

There are several interconnection networks available, which are used to connect the compute

nodes of supercomputers. The following sections will describe the most important ones.
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2.3.1. Ethernet

Ethernet [4] is the most widely used commodity network. It was firstly introduced in 1980,

and today the specified data rates range from 10 megabits to 100 gigabits. That’s why, it

is used in home networking as well as supercomputers.

Figure 2.1 on the facing page shows an Ethernet frame. Each frame starts with a seven

byte preamble, followed by a one byte start of frame delimiter. It includes the destination

and source address, which both have a size of 48 Bits. The length is encoded in a two

byte field. An Ethernet frame can carry 42 to 1500 bytes of data. The frame is protected

against errors with a 32 bit Cyclic Redundancy Check (CRC). The interframe gap defines

the idle time between two frames, and must be at last twelve bytes.

The frame CRC enables an error detection. Thus, the hardware is able to detect

transmission errors. A retransmission mechanism isn’t specified for Ethernet. When an

error has occurred, the hardware discards the erroneous packet silently. The retransmission

of the packet has to be done by other higher level protocols.

Ethernet handles the access to the local physical media. For a complete network

communication further protocols on top of Ethernet must be used. Such a protocol is the

Internet Protocol (IP) [9]. It is the primary protocol of the internet and is responsible for

routing of packets across networks. The header of an IP packet is shown in figure 2.2 on

the next page. The IP header is protected with a CRC. A protection against errors for

the payload of the IP packet isn’t included. As well as with Ethernet, packets with CRC

errors get dropped by IP.

Therefore, a third protocol is used to ensure a reliable connection between to nodes.

This protocol is Transmission Control Protocol (TCP) [10]. It adds the concept of ports to

establish a connection between two processes on two nodes. Sequence numbers are used to

detect lost data in the network and to reorder the packets, if they were swapped. For each

received packet, the receiver returns its current received sequence number to the sender

with an acknowledgement. The sender uses a timeout for resending data. If the sender

doesn’t receives an acknowledgement within the timeout, the data is resend.

Ethernet with IP and TCP needs 78 bytes for the framing of a packet. For a payload of

256 bytes it reaches a protocol efficiency of 76%.

2.3.2. Infiniband

Infiniband [5] [11] is an interconnection network developed for the use in HPC and enterprise

data centers. Its specification is defined and maintained by the InfiniBand Trade Association

(IBTA). The goal of the Infiniband development was to build a scalable interconnection
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Figure 2.1.: Ethernet Frame

Figure 2.2.: IP Header

Figure 2.3.: TCP Header
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network with a low latency and high throughput. Currently, it is widely adopted in HPC,

as it can be seen in [1].

Infiniband has hardware support for two different communication mechanisms: Messaging

via (send/receive) and Remote Direct Memory Access (RDMA). Both mechanisms support

a direct user space communication. Protection keys are used to prevent the user to access

foreign data.

Figure 2.4 on the facing page shows an Infiniband packet for a reliable datagram

communication, which corresponds to an EXTOLL Remote Memory Access Unit (RMA)

transfer. Each packet begins with a start delimiter. It is used by the physical layer to

detect the start of packet. It is followed by the Local Routing Header (LRH). The LRH

contains the fields needed to route the packet in an Infiniband subnet. The fields include

the virtual lane, the destination and source node, and the packet length. In a subnet 216

nodes are addressable.

The Base Transport Header (BTH) contains the fields for the transport layer of Infiniband.

It includes an opcode, which specifies the transport to be used. Additionally, a packet

sequence number and the destination queue pair is included. The queue pair is the virtual

interface to the hardware for the user, and provides a virtual communication port. The

BTH is followed by the Reliable Datagram Extended Transport Header (RDETH). The

RDETH contains additional fields for the reliable datagram service. It includes a reference

to the end to end context, which is used to store the acknowledgement counters for reliability

protocol. The Datagram Extended Transport Header (DETH) includes the queue key for

access authorization of the receive queue and the source queue pair number. The RDMA

Extended Transport Header (RETH) specifies the the virtual address for the operation and

the length of the Direct Memory Access (DMA) transfer. It also includes a protection key.

Each Infiniband packet is protected against errors with two CRCs. The 32 Bits invariant

CRC covers all packet fields, that do not change from its source to its destination, and

establishes an end to end reliability. The 16 Bits variant CRC covers all fields including the

changing ones. Therefore, it is recalculated in each link before the packet is sent. When a

link receives an incoming packet, it checks its CRCs. If a CRC check fails, the packet is

discarded. The destination node returns an Acknowledgment (ACK) to the source node

on a correctly received packet. If there is an error detected by the destination node, it

returns a Not Acknowledgment (NACK). This way discarded packets in the network can

not be detected. Therefore, the requesting node starts a timeout, when it sends a packet.

If a timeout occurs for a packet, it is retransmitted. As Infiniband uses an end to end

reliability mechanism large buffers are needed on the requester side to store the packets

sent until they get acknowledged, which reduces the scalability of the network.

To improve the reliability, Infiniband Fourteen Data Rate (FDR) [11] [12] introduces a
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Figure 2.4.: Infiniband Packet

block error correction code for the physical layer. Each 2080 Bit block is protected by a 32

additional parity bits, and is able to correct up to 11 bit errors. As a complete block must

be received by the physical layer before it can be checked, the forward error correction

increases the latency of the network.

The framing of an Infiniband packet for a reliable datagram packet is 56 Bytes. For a

packet with 256 Bytes of payload the protocol has an efficiency of 82%.

2.3.3. Cray Gemini

Gemini [7] is a proprietary interconnection network developed by Cray. It is used in their

supercomputers. In the November 2012 Top500 list the fastest system is a Cray XK7,

which uses the Gemini network. Gemini uses a special ASIC to build a direct 3D torus

network. It is build to scale up to 100,000 nodes. The ASIC provides two Network Interface

Controllers (NICs) and a 48 port router. Gemini has communication engines for small low

latency transfers triggered by Programmed Input/Output (PIO) from the processor, large

block transfers with RDMA, and for Partitioned Global Address Space (PGAS).

The Gemini router uses packet switching for forwarding data from its source to destination

node. The packets consist of multiple Physical Units (PHITs), each with a size of 24 Bits.

A request packet has a header of seven PHITs, up to 24 PHITs of data, and an end of

packet PHIT. The grey shaded fields in figure 2.5 on the next page are used as control

signals by the link layer. The header includes the source and destination nodes. The source

and destination Identifiers (IDs) identify the NIC in the source and destination nodes. The
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Figure 2.5.: Gemini Packet

additional bits in the first PHIT specify the Virtual Channel (VC), and control the routing.

The header also includes the memory address for the request.

A cache-line write of 64 Bytes requires 7 header, 24 data, and 1 End of Packet (EOP)

phit. From this, it follows a protocol efficiency of 66%.

The EOP PHIT contains a 16 Bit CRC, which protects the data and the header of a

packet. A link to link retransmission is used to ensure a reliable transmission of a packet

in the network. To avoid a store and forward in each link, a received packet is forwarded

immediately. If a CRC error has occurred, the packet is tagged erroneous in the last

PHIT. The destination node then discards the packet. As the routing information is not

checked, when the packet is forwarded, this can lead to packets cycling around the network.

Additionally, an end to end significance is used. For each received request packet a response

is sent to the origin node. Therefore, the network is able to handle complete failures of

nodes. In this case, the management software stops the network, computes new routing

tables, and enables the network again.

2.3.4. IBM Blue Gene

The Blue Gene line of massive parallel supercomputers is the HPC solution from IBM.

There are three different generations available. Blue Gene/L [13] and Blue Gene/P [14]
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use three different proprietary interconnection networks: a tree for collective operations, a

barrier network, and a 3D Torus [6] for the main communication. The torus network has

support for send/receive and RDMA communication.

A packet has an 8 Bytes header for the link protocol. It includes a sequence number,

routing information with the destination, the virtual channel, the size of the packet, and an

8 Bit CRC for protecting the header. This CRC is checked immediately a packet is received

to ensure, that the routing information of the packet is correct. A 24 Bit CRC protects

the complete packet. A one byte valid indicator is used to tag a packet erroneous in the

case a packet CRC error has occurred. The link receiver returns an ACK to the opposite

link sender, if a packet was received without errors. The link sender uses a timeout to

resend packets, if no ACK was received. In addition a cumulative CRC is calculated for

all packets send and received by a link. This CRC can be checked by the management

software for example when a check point is written. If they don’t match an escape from

the packet CRCs has occurred, and the computation needs to be restarted from the last

check point.

For Blue Gene/Q [15] the three interconnection networks were integrated into one 5D

Torus [16] [17] network, which supports send/receive and RDMA. It also has special

hardware support for collective communication and barriers. A network packet consists

of a 32 Byte header, at which 12 Bytes are used as network header, and 20 Bytes for the

transport layer. A packet can carry up to 512 Bytes of data. 8 Bytes are for protecting

a packet against link errors. A 10 Bit Reed Solomon error correction block code is used

to protect all static fields of a packet. Additional 5 10 Bit Reed Solomon code words are

calculated and checked for each link a packet traverses. An ACK is generated in the link

for each received packet without errors. If the link sender doesn’t receive an ACK for a

packet within a given timeout, it retransmits the packet. The same additional cumulative

CRC is used as for Blue Gene/L and Blue Gene/P.

The Blue Gene/Q network protocol has an efficiency of 86% for a 256 Byte transfer.

2.3.5. TOFU Network

The K computer [18] is a supercomputer developed by RIKEN as a Japanese project.

It is a distributed memory system consisting of more than 800,000 compute nodes. An

interconnection network called TOFU [19] [20] was developed for this system to connect

the compute nodes. The network uses a 6D Torus as topology. It supports RDMA, and

has a barrier unit for synchronization and collective reduce operations.

A network packet for a put operation has a 31 Byte header. This header contains a

sequence number, the routing information, the source and destination nodes, a virtual
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memory address, and a global process ID. Each packet has a 17 Bytes trailer. It includes a

32 Bit end to end CRC, a 32 Bit link CRC, and an end marker. When a packet traverses

a link it is stored in a retransmission buffer. The link receiver checks the link CRC, and

returns an ACK if the CRC is correct, or a NACK otherwise. In this case the sender

retransmits the packet. An erroneous packet also gets marked in the trailer. This way, the

destination node can remove the packet. As the CRC is checked after the header with the

routing information was forwarded to the switch, erroneous packets can be cycling around

the network.

With the 48 Bit framing for a packet, TOFU reaches a network protocol efficiency of

84% for a 256 Byte put operation.

2.3.6. TianHe-1A

The TianHe-1A [21] supercomputer was built by the National University of Defense

Technology of China. It has a hybrid architecture, which uses CPUs and GPUs. The

interconnection network [22] [23] is an own development. It uses a hierarchical fat tree

topology. The network supports user level communication, has support for RDMA, two

sided communication messages with a size up to 120 Bytes, and multicast communication.

Packets are forwarded in the network using source path routing and wormhole switching.

A packet consists of four flits: one header flit and four data flits. Each flit has a size

of 256 Bits, and contains 20 Bits for sideband signaling. These bits include a 16 Bit

CRC, the virtual channel and a header/tail flag. The flits are retransmitted on a per link

basis, if the CRC computation for a received flit fails. The header flit contains a 56 Bit

NetHeader, which includes the routing string and some control information for the flow

control. As there is no information available about the header format for a RDMA transfer,

no efficiency estimation of the network protocol can be done.

2.4. Fault Tolerant Network Protocols

The amount of compute nodes used in supercomputers increases steadily. In contrast, the

Bit Error Rate (BER) of a physical connection between two nodes does not change. With

a typical BER of 10−15 for an optical link, a single bit error occurs every 27 hours. For a

3D Torus with 1000 nodes and 6000 unidirectional links, an error occurs every 16 seconds.

For a 10000 node system, an error happens every second. Therefore, the interconnection

network has to provide mechanisms to detect and correct these errors. Otherwise, the

network can not deliver any messages anymore. The error handling for packet increases its

latency, and consequently decreases the performance of the network. Thus, the reliability
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Figure 2.6.: Error Handling

mechanisms need to be as fast as possible with a very low overhead.

The error handling consists of two aspects. First, the error occurred must be detectable

by the network. If this is not given, a program executed on the system will return a

false result without noticing it. Second, when the error is detected, the network must be

able to recover from the error. This can be done either by forward error correction, or

by retransmission. Forward error correction adds additional information to the data the

should be protected against errors. This redundancy enables Hamming codes to detect and

correct errors. In a Hamming code, the number of bits two code words differ in is called

the Hamming distance. A greater Hamming distance is capable to detect and correct more

errors. The amount of correctable bit errors is given by fe = (d−1)/2. With d representing

the Hamming distance of a set of code words, and fe the amount of correctable code errors.

A retransmission mechanism stores the data before it is sent in a buffer. Furthermore,

a check-sum is added to the data for its transmission. Depending on the length of the

check-sum, it is capable of detecting multiple bit errors [24] [25]. The receiver of the data

checks the sum. Therefore, it calculates its own sum with the received data and compares

it with the received check-sum. If they match, an ACK is sent the source, which then

removes the data from its buffer. If the check-sums differ, a NACK is returned, and the

source retransmits the data. A retransmission can either be done from the source to the

destination node, or on a link per link basis. A end to end retransmission needs enough

buffer space for all outstanding not acknowledged data. Therefore, for a large network

with multiple concurrent transmissions, large buffers in the source nodes are needed, which

reduces the scalability of a network. Otherwise, it is able to handle complete node fails in

a direct network more easily, as the data is not lost in an intermediate node. A link to link

retransmission needs smaller buffers, as it has only to store as much data as a round trip

for an ACK needs. Consequently, it does not influence the scalability of a network. But,

complete node fails can lead to a loss of the data in the buffers, which makes the error

handling for this case more complex.

A fault tolerant protocol enables the network to deal with errors. As the protocol

influences the efficiency of an interconnection network, the overhead in the protocol for

the fault tolerance should be as small as possible without losing the ability to detect and

correct errors.
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2.4.1. EXTOLLr1 Protocol

EXTOLLr1 is the successor of the Atomic Low Latency (ATOLL) interconnection network.

It is a direct network, and therefore no central switches are necessary to connect the

compute nodes. It has six bidirectional network links, which allows to built a 3D Torus

network topology. EXTOLL is optimized for a high bandwidth and a low latency for small

messages. It uses wormhole routing to forward packets from their source to destination

node. Wormhole routing transfers the network packets in a pipelined fashion. Therefore,

the packets are divided into smaller units. The flow control is done on the basis of these

units, which are called flow control digitss (Flits).

Packets are routed within the network with source path routing. Thereby, the source

node determines the route of the packet through the network. Consequently, adaptive

routing is not possible with source path routing. The advantage of source path routing is,

that the routing decision can be made very fast in every switch. This gets important for

large networks, where a packet has to cross several switches to reach its destination.

The payload of a network packet consists of three segments: the routing string, the

command, and the data. Normally, the routing string defines for each node the out port of

the switch the packet has to take. Each hop removes the part of the routing string, which

defines the current out port, when the packet is forwarded. When the packet reaches its

destination node, the routing string is completely consumed. As this results in a large string

for large networks, EXTOLL uses delta routing to compress the string. There, each part

of the routing string is valid for multiple hops. Each part has a counter for each network

dimension called x,y, and z. First, the counter for the x dimension gets decremented by one

in each hop the packet traverses until it reaches zero, followed by the y and z dimensions.

When all counters are zero, the current part is removed, and the next routing string part

is used. For distances in one dimension larger than the maximum counter value, multiple

parts must be used, were the counters of the other dimensions are set to zero.

EXTOLL uses two virtual channel groups for deadlock avoidance in the network. These

groups are divided into 4 virtual channels each to minimize the impact of head of line

blocking in a switch.

A credit based flow control is used between two node connected to each other, which

prevents buffer overflows in the switches. Each virtual channel has its own independent

credits. There are 32 credits available in total. They were chosen to guarantee a complete

link saturation[26].

The network protocol used for EXTOLLr1 was developed in [27]. It was optimized for

small messages. Thus, the protocol overhead is as small as possible. A network packet

consists of multiple PHITs. Each PHIT has a size of 16 Bit, which is equivalent to the

16



2.4. Fault Tolerant Network Protocols

Figure 2.7.: EXTOLLr1 Packet

EXTOLL’s internal data width. The size of a packet is not limited. There are control and

data PHITs available. Control PHITs are used for the framing of packets and for exchange

of control information on the link level. This includes the credits for the flow control and

the ACKs/NACKs for the retransmission protocol. Data PHITs carry the payload of the

packets.

EXTOLLr1 uses 8B/10B coding [28] as line coding. This code distinguishes between 8

Bit K-characters for the framing of packets and normal 8 Bit D-characters for data. Each

control PHIT consists of a K-character to detect the control character in the data stream.

As there are more control PHITs than K-characters, the second 8 Bit of a control PHIT

uses a D-character. The control PHITs were constructed to have a Hamming distance of 3

in the 10B space, which enables a 1 Bit error correction for control PHITs with a special

8B/10B decoder.

A packet(figure 2.7) starts with an Start of Packet (SOP) control PHIT followed by

the routing string PHITs. The start of the command segment is indicated by the Start

of Control control PHIT. The data segment begins with the Start of Data control PHIT.

A packet ends with an EOP control PHIT. As the length of a packet is unlimited it can

exceed the allowed length of a flit, which is 32 PHITs plus framing. Thus, a packet can be

split into several flits. The first flit starts with an SOP and includes the routing string

and the command segment. It ends with the Flit CRC and an End of Flit (EOF) control

PHIT. The data segment gets distributed over one or more Flits depending on its length.

All Flits following the first one start with an Start of Flit (SOF), and end with an EOF

with the exception of the last flit, which ends with an EOP. The start control PHIT of all

Flits encode the virtual channel of the packet.
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EXTOLLr1 implements a retransmission for each unidirectional link. Therefore, every

Flit sent by the Link Port (LP) is stored in a retransmission buffer. The LP on the opposite

side of the link checks the CRC for a received Flit, and returns either an ACK, if the

CRC check was successful, or a NACK otherwise. When the LP receives an ACK, it

removes the first pending Flit from the retransmission buffer. On a received NACK all

Flits currently in the buffer are sent again. The start of a retransmission is indicated by

sending a retransmission control PHIT. As control PHITs can correct 1 Bit errors only,

eight different ACKs/NACKs are used to improve the fault tolerance in the case that an

ACK is lost. These ACKs are sent in an ascending order. If an ACK is lost, it is detected

by receiving an ACK with a higher number than expected.

Credits are transferred by the link with the help of credit control PHITs. For each virtual

channel an own control PHIT is available. To sent for example four credits for the virtual

channel one, four credit control PHITs for this virtual channel are sent. As for control

PHITs only one bit errors are correctable and no other further reliability mechanisms are

used to protect the control PHITs, multiple bit errors on the link can lead to lost credits.

2.4.2. EXTOLLr2 Network Protocol

EXTOLLr2 is a redesign of EXTOLL [29] [30] based on the lessons learned from its first

implementation. The goal of the redesign was to further improve the bandwidth, the

latency, the message rate, the scalability, and the fault tolerance of EXTOLL. In addition

to an FPGA based implementation, also an ASIC implementation was done. The increase

of the bandwidth was reached by using an internal data path width of 64 Bits for the

FPGA and 128 Bits for the ASIC, in contrast to the previous used 16 Bits. This was also

reflected by an increased data width of the physical links. For the FPGA, four serial lanes

were used, and twelve lanes for the ASIC. Each serial lane with a serialization factor of 16.

As the internal data path for the ASIC and its physical data width do not match, a rate

conversion was implemented to match the bandwidth.

The scalability of EXTOLL was limited by the use of source path routing [31]. The

routing strings for each destination node were stored in a single Random Access Memory

(RAM), from which each functional unit read the routing string when it created a new

network packet. As the number of entries in the RAM limited the reachable destination

nodes, the routing was changed from a source path routing to a table based one. The table

based routing allowed it to store more routing entries in the same buffer space. In addition,

this change made it possible to use an optional adaptive routing, which can reduce the

probability of a congestion in the network.

In EXTOLLr1, the routing string was protected by the Flit CRC only. Furthermore, a

received Flit from the link was forwarded directly to the network crossbar. A store and
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forward was not done in the LP to reduce the latency for a Flit in the network. If an error

occurred in the routing string on the link, it was detected by the Flit CRC, but as the

crossbar could have already made the routing decision, this could lead to packets cycling

around in the network.

These improvements and new requirements for EXTOLL made it necessary to also adapt

the network protocol, as they could not be addressed by the existing protocol. In summary,

the goals for the new protocol development for EXTOLLr2 were as follows:

• Adapt the network protocol to the new features

• without increasing the protocol efficiency

• make the protocol more flexible in regard to different data path widths

• increase the fault tolerance and in particular protect the routing better against link

errors

An EXTOLLr1 network packet consisted of a routing, a command, and a data segment.

The routing segment became dispensable, because of the use of table based routing. The

intention of the command segment was to identify the target functional unit on the

destination node. As each functional unit had its own network crossbar port, an explicit

command tagging was not needed anymore. Therefore, it was discarded for the new

protocol, which helped to improve the efficiency of the new protocol.

2.4.2.1. Protocol Layers

In the design phase of the new network protocol, it was structured into different layers.

Using different layers in network protocols was introduced by [32]. The purpose of using a

layer model is to characterize and standardize the functions of a communication protocol.

Thereby, each layer represents a specific function of the protocol. This distinction makes it

easier to design the protocol and understand its functionality. Each layer in the model

depends on its lower layers, which hide their functionality from higher layers. Thus, it is

possible to modify or change the implementation details of layer, without touching other

layers. The protocol layers of EXTOLL are shown in figure 2.8 on the next page.

Physical Layer The physical layer describes the electrical, mechanical, and functional

means, which are necessary to establish and maintain a physical connection between two

EXTOLL instances. It transfers bit streams using this connection.

The electrical connection is established by high speed serializers, which transfers the

bit stream. A physical link consists four, eight or twelve physical lanes. Each lanes has a

parallel data path width of 16 Bits. The lanes run at a speed of 3 GBit/s, 6 GBit/s, or 10
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Figure 2.8.: EXTOLLr2 Protocol Layers
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GBits/s. As line coding 8b/10B coding is used. It guarantees DC-balanced transmission

with enough bit changes, which allow a reliable clock data recovery. Furthermore, the

8B/10B coding defines special characters which allow an encoding of control and data

information. As cabling, both electrical and active optical cables are supported.

The physical layer has to operational modes. It supports an asynchronous and syn-

chronous operation. In asynchronous operation each physical layer entity has it own

clock source for sending the bit stream. The receiving entity has to recover the source

synchronous clock and synchronize the stream into its own clock domain. In synchronous

operation all entities use the same clock source for sending the bit stream. Thus, a bit

stream synchronization isn’t needed in the receiver, which reduces the latency of the

transmission.

The physical layer receives EXTOLL cells from the link layer which are then transmitted.

As the EXTOLL’s internal data path width (64 or 128 Bits) can differ from the physical

data path width (64, 128, or 192 Bits), the physical layer has to do a rate conversion to

match the data rates of the link and physical layer.

Link Layer The link layer handles the connection of two EXTOLL nodes directly connected

to each other. It ensures a reliable transmission of EXTOLL network packets over the

physical layer. Therefore an acknowledgment protocol with retransmission is used. Beside

network packets, credits received from the network layer are forwarded to the network

layer of the node directly connected. It does not take part itself in the flow control of the

network layer. In addition, it forwards barrier messages between the barrier instances. As

such, the link layer is completely transparent for the network layer.

At system start up the link layer uses a handshake protocol to detect and establish the

connection to the remotely connected link layer. After the handshake is finished the link

layer is ready for the transmission of EXTOLL network packets.

Network Layer The network layer is responsible for forwarding EXTOLL network packets

from their source to their destination node. Therefore, the network layer includes a

switching fabric, which consists of a crossbar in each node of the network. It supports

unicast and mulitcast packet routing. In addition it provides a barrier synchronization and

global interrupt logic.

The EXTOLL network layer is defined for a data path width of 64 Bits or multiples of

64 Bits. Each network packet has a data granularity of 64 Bits. A 64 Bits chunk of data is

also called a cell. The packet size of a network packet is limited to 32 ∗ data width/64

data cells. The EXTOLL crossbar and the EXTOLL Network Port (NP) are part of the

network layer. Between the units of the network layer a credit based flow control is used.
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The routing in the network layer is done by a table based routing.

Transport Layer The transport layer delivers data between communication end points,

and has an end-to-end significance. It provides three different communication mechanisms.

The first mechanism is a two sided communication, which is optimized for transferring small

messages with a very low latency of under one micro second [31] [29]. The second mechanism

is a communication engine for RDMA [30], which supports put and get operations. The

third mechanism provides access to remote memory via load and store operations [33]

directly from the host processor.

The transport layer passes network packets to the network layer for their delivery to the

communication end point, and receives network packets from the network layer, which are

locally processed.

2.4.2.2. Cell Definition

The minimal data granularity of the Extoll network protocol is a chunk of data with the

size of 64 Bit. These chunks are called cells. This size was chosen, as it is the minimal

data path width of EXTOLL. Larger data paths were defined to be multiples of 64 Bit.

Therefore, the network protocol can be adapted to different data paths by rearranging the

positions of the cells in the data path without modifying the protocol itself.

The network protocol defines two different kinds of cells: control and data cells. Control

cells are used for the network protocol control information transport and for the framing

of network packets. Data cells transport the actual data payload of network packets.

A control cell(figure 2.9 on the facing page) consists of four parts: a tag, a type field, an

information field and a CRC. The type field specifies the control cell type. The information

field transports the data of the control cell.

The format of the information field is cell type specific, and each control cell type

defines its own layout. The CRC protects the control cell against bit errors caused by the

transmission of the cell over a physical link. It is calculated from the type and the payload

field. As CRC polynomial 0x90D9 is used. This polynomial has a Hamming distance of 6

for a data word length up to 135 bits according to [25], which guarantees a detection of up

to 5 bit errors.

The tag field can be used by the physical layer to distinguish between data and control

cells. For example an 8B/10B coded physical layer can insert a K-character for the control

field. The link and network layers have to use an extra control signal to distinguish between

control and data cells.
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The control cell types and formats are shared across the protocol layers. Therefore,

packets from the network layer needn’t to be encapsulated in lower level packets. This

reduces the protocol overhead, and increases the protocol efficiency.

Figure 2.9.: General Control Cell Format

Initialization Cell The initialization cell(figure 2.10) is used by the link layer initialization.

It carries the Globally Unique Identifier (GUID) of the sending node. The init bit indicates

the phase of the initialization hand shake. It has the cell type 0x0.

Figure 2.10.: Initialization Cell Format

Node ID Cell The Node ID cell(figure 2.11) with cell type 0x1 is used by the link layer to

sent the local node ID and the LP ID to the remote node. They are stored in the Register

File (RF) of the remote node. This information is used by system management software

for the exploration of the network.

Figure 2.11.: Node ID Cell Format

Credit Cell The Credit control cell(figure 2.12 on the next page) with cell type 0x2 is

used by the link layer to exchange credits and the current acknowledgment counter between

two nodes directly connected to each other.

The ACK field transports the acknowledgment counter used by the retransmission

protocol. The counter has a size of 8 Bits.

The credits field transports the credits that were released by the crossbar. The first

specification for this cell, used an own counter for each Flow Control Channel (FCC). This

approach generated many credit cells if not all FCCs were used by the network traffic.
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Thus, the cell was modified to reduce the amount of credit cells needed to be sent. The new

format uses four sets for the credits. Each set has two fields. The first field specifies the

FCC of the credits. The second field specifies the amount of credits that are transported.

Consequently, the credits that are transported by a credit cell can be more variable.

Figure 2.12.: Credit Cell Format

Acknowledgment Cell The ACK cell(figure 2.13) with cell type 0x3 is used by the link

layer for the acknowledgment protocol.

The ACK field transports the acknowledgement counter used by the retransmission

protocol. The counter has a size of 8 Bits.

The NACK field is used to request a retransmission. When a link layer receives a ACK

control cell with the NACK field set, it has to start a retransmission.

The RETRANS field indicates the start of a retransmission. The link layer sends one

ACK control cell with the RETRANS field set to mark the start of a retransmission

followed by the retransmitted data.

Figure 2.13.: Acknowledgment Cell Format

Start of Packet Cell The SOP control cell(figure 2.14 on the next page) with cell type

0x4 is the start cell for a network packet. The SOP cell is directly followed by a data cell.

The cell carries all information needed by the network layer for the routing of a packet.

When the multicast bit is set, the field for the node ID is used as the multicast ID.

AVC and DVC select the adaptive or deterministic virtual channels. TC sets the traffic

class. The target unit(TU) field selects the crossbar out port on the destination node of

the packet, in order that the packet is forwarded to the correct NP.

End of Packet Cell The EOP control cell(figure 2.15 on the facing page) with cell type

0x5 is the last cell of a network packet. It carries the 32 Bit packet CRC.
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Figure 2.14.: Start of Packet Cell Format

Figure 2.15.: End of Packet Cell Format

End of Packet Error Cell The End of Packet with Error (EOP E) control cell with cell

type 0x6 has the same layout as the EOP cell. When packet CRC error has occurred, the

EOP cell is replaced by an EOP E to indicate the destination node of the packet, that an

error has occurred during the transmission. The packet is than discarded.

Barrier Cell The Barrier cell(figure 2.16) with type 0x7 transports barrier and global

interrupt messages. The ID field specifies the barrier or interrupt ID.

Figure 2.16.: Barrier Cell Format

Filler Cell The Filler cell with type 0xf used by the physical layer for rate conversion.

There the Filler cell is used to align the transmitted cells to the physical layer data path

width.

2.4.2.3. Network Layer

The network layer is responsible for transferring Extoll network packets from their source

to their destination node. Therefore, the network layer includes a switching fabric. The

switching fabric consists of a crossbar in each node of the network.
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One requirement for the network protocol was its adaptability to different data path

sizes. Thus, the network layer is defined for a data path width 64 Bits or multiples of 64

Bits, with a data granularity of 64 Bits.

Packet Definition Data sent through the EXTOLL network is encapsulated in a network

packet(figure 2.17). A packet consists of three parts: a start control cell, the packet’s data

payload and an end control cell. As start cell the SOP control cell is used. It is followed

by the data cells of the packet. The last cell of packet is an EOP control cell. A network

packet has to carry at least one data cell and has a maximum size of 32∗data path width/2

data cells.

The traffic class of a packet mustn’t be changed by the network layer. The virtual

channel may be changed by the routing algorithm to provide a deadlock free routing.

A packet is protected against bit errors on the physical layer by a 32 bit CRC. This

packet CRC is stored in the information field of the EOP cell. The CRC is calculated from

the start cell and the payload data cells of the packet. For a data path greater than 64 Bits,

the CRC gets calculated from each bit time of the packet. If the end cell is not located in

the first 64 Bits, it is replaced by 0 for the CRC computation. An unmodified CRC is not

able to detect added or missing leading zeros. The compensate this, the shift register of

the CRC generator is initialized with ones. The same problem occurs with trailing zeros.

Therefore, the CRC gets inverted before the transmission. For the CRC computation the

polynomial 0x20044009 is used. According to [24], it has a Hamming distance of 6.

Figure 2.17.: EXTOLLr2 Packet

Protocol Alignment The network layer is defined for a data path width 64 Bits or a

multiple of 64 Bits. For a 64 Bits data path no protocol alignment restrictions must be

applied, as each cell has a size of 64 Bits. For a wider data path more than one cell

are packed into one bit time. This can lead to multiple control cells in a single bit time.

Thereby, it is critical when an EOP is directly followed by an SOP in the same bit time.

Then, the crossbar has to decode more than one packet in single bit time. To simplify

the protocol decoding, the start control cell is restricted to the first 64 Bits of the data

path(see figure 2.18 on the next page). For the end control cells no alignment restrictions

exist, as the data cell count mustn’t be a multiple of the data path width.
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Figure 2.18.: EXTOLLr2 Packet Alignment

VC/TC 0 1 2 3

0(det.) Yes Yes Yes Yes

1(det.) Yes Yes Yes Yes

2(adp.) Yes Yes No No

Table 2.1.: Available FCCs

Flow Control The network layer uses a credit based flow control mechanism with 10

FCCs. The flow control is done between two network layer instances directly connected

to each other. The link layer is used to forward the credits from one node to another

one. The link layer itself does not take part in the flow control. The FCC number is

the concatenation of the virtual channel and the traffic class of a packet. As depicted in

table 2.1, traffic classes zero and one can be used for adaptive and deterministic routed

traffic, two and three are for deterministic traffic only. Virtual channel 0 and 1 transports

deterministic traffic. Virtual channel 2 is used for adaptive traffic.

One credit reflects the buffer space for 8 ∗ data path width/64 data cells [31]. From this

it follows, that a maximum sized packet consumes four credits. The control cells of a packet

are not part of the flow control.

Each FCC has a minimum of 8 credits and a maximum of 40 ones. The sum of all credits

for all FCCs may not exceed 128.

2.4.2.4. Link Layer

The link layer handles the connection between two nodes. It forwards packets, credits,

and barrier messages received from the local network layer to the network layer of the

connected node. The link layer ensures a reliable transmission of all data. Therefore an

acknowledgment protocol with retransmission is used. At system start up or cable hot

plug an initialization protocol detects the connected node.

Initialization The link layer initialization does a detection of the connected node to ensure

that an opposite side is available and ready to receive and sent data. This is done by a

handshake protocol. The initialization is started on system start up or after a cable hot
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plug.

The handshake consists of two phases. In the first phase a beacon message is sent to

signal its own availability. In in the second phase a reply message is transmitted to inform

the opposite side, that its beacon has been received. Afterward, the link is established and

fully operational.

The initialization state machine is depicted in figure 2.19 on the next page. The

initialization sequence uses initialization control cells for the information exchange. First,

each layer sends an initialization cell with the init field set to zero. Then, it waits for the

reception of an initialization cell. If such a cell is not received within 1ms, the initialization

cell is sent again. If it receives an initialization cell with init set to zero, it confirms the

reception by sending an initialization cell with init set to one, and the handshake is done

for this node. If it receives an initialization cell with init set to one, then the opposite has

already finished the handshake, which means, that the handshake can also be ended for

this node.

Afterward, a Node ID cell is sent, which carries the node ID and the LP ID sending LP.

This information is stored in the RF of the receiving node, and it is used by the system

management software for the exploration of the network.

The link layer returns to the link down state any time the physical layer indicates, that

it has lost the connection, or in the ready state and an init cell is received. Then, the

initialization is restarted as soon as the physical layer reports its readiness.

Retransmission Protocol A retransmission protocol can be used two guarantee the

reliable transmission of data in an interconnection network. Thereby, the sender stores the

data in a buffer, when it sends the data. The receiver of the data acknowledges the correct

reception by returning a reply message. Upon the reception of the reply message, the

sender removes the data from its retransmission buffer. A retransmission can be requested

either by sending a reply message stating, that the data was corrupted, or be omitting the

reply. Then, a timeout has to be used to resend the data.

Generally, there are two possibilities to realize a retransmission protocol. The first

option is to use an end to end retransmission. There the source node stores the data in

a retransmission buffer, and the destination node generates the reply. When the data

is corrupted in an intermediate hop, it is discarded and a timeout in the source node is

used the start the retransmission. This method has several drawbacks. The size of the

retransmission buffer and the amount of outstanding packets limit the scalability of the

network, as buffer space must be available for each data sent. When the network size

grows, more data is on the fly in the network. Therefore, also the buffers have to grow,

which is not practical for large networks and buffers. Furthermore, a retransmission needs
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Figure 2.19.: Link Layer Initialization

some time. During this time the destination of the data can’t proceed, which results in a

decreasing performance of the network.

The second option is to use a retransmission between two nodes directly connected to

each other. In this case, each hop stores the data in an own retransmission buffer. The

next hop acknowledges the received data immediately, or requests a retransmission if an

error has occurred. As each hop has its own local buffers, the network scales. Each new

node adds its own buffers. Also the retransmission is much faster, because no timeout is

needed and a non acknowledgement is directly sent when an error is detected.

Because of the advantages of the link based retransmission, it was chosen for the EXTOLL

network protocol.

The EXTOLL retransmission protocol protects the packets, the credits and the barrier

messages sent by the link layer. The packets, the credit sets the credit control cells and
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the barrier messages are called ack units. The link layer stores each sent ack unit in a

retransmission buffer. On a received acknowledgement ack units are deleted from the

retransmission buffer.

Two 8 bit counters named tx ack and last rx ack are used for the acknowledgement

protocol. On system start up both counters get initialized with 0. The tx ack counter gets

incremented each time an ack unit is received without errors from the physical layer. The

current tx ack count is sent with each ACK or credit control cell.

When the link layer receives an ACK or credit cell, the difference of the last rx ack and

the received ack count indicates the number of ack units which can be removed from the

retransmission buffer. The received ack count gets the new last rx ack.

Figure 2.20.: Acknowledgment Protocol

The link layer has to request a retransmission, if one of the following errors is detected:

• a control cell CRC error

• a packet CRC error

• a non SOP cell followed by a data cell

• a data cell followed by a non end control cell

• 32 ∗ data path width/64 data cells not followed by a end control cell

To request a retransmission, the link layer sends an ACK control cell with nack=1 and

the current tx ack counter. Thereafter, all received cells with the exception of the ACK

control cell are ignored. After the reception of an ACK control cell with retrans=1, link

layer starts normal operation again. This has the advantage, that retransmitted packets

stay in order, and no reordering is needed. Therefore, a sequence number for the packets is

not needed, which improves the efficiency of the packet framing. As the link retransmission
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Figure 2.21.: Retransmission Example

is started very fast, it is acceptable, that no other data is processed until the retransmission

starts.

On the reception of an ACK control cell with nack=1, the link layer has to start a

retransmission. In the time between the last locally received ACK counter and the error

occurred on the remote link layer, the remote link layer can have received ack units without

errors. Thus, the local link layer has to update its retransmission buffer with the help

of the received ACK count in the ACK control cell. Then, the link layer sends an ACK

control cell with retrans=1 followed by the retransmitted ack units.

The ACK control cells used to initiate a retransmission are protected against errors with

the cell CRC. But, when they are lost by a very unreliable link, this can not be detected.

Therefore, a timeout is used. This timeout is started, when the link layer detects an error

and sends an ACK control cell. If the timeout expires and no ACK control cell with

retrans=1 was received, the retransmission request is sent again. The timeout is canceled,

when an ACK control cell with retrans=1 is received. Each time the timeout expires, a

second timeout counter is incremented. This timeout counter is reseted when an ACK

control cell with retrans=1 is received. If the timeout counter is greater than 7, it is likely

that the link is defect, and the link is disabled. The system management software has to

decide how the defect link is handled. Possible actions are:

• Restart the physical layer initialization.

• Detect and remove defect physical lanes.

• Mark the link as defect and remove the link from the routing tables.

31



2. Network Protocols

2.4.2.5. Protocol Analysis

Each network packet has as framing an SOP cell and an EOP cell. As each cell has a size

of 8 Bytes, and therefore a 16 Bytes are needed for the framing of packet. To send an

RMA put request, the RMA adds a command header of 16 Bytes into the payload of the

packet before the actual transmitted data. Therefore, the protocol has an efficiency of 88%

for an RDMA put request. A two sided Virtualized Engine for Low Overhead (VELO)

message has a command header of 8 Bytes, and therefore a protocol efficiency of 91%.

Due to the protocol granularity of 64 Bits and the use of cells, is the protocol easily

adaptable the different data path sizes by distributing the cells over the data path. The

SOP alignment guarantees a simple decoding of received packets in all network layers.

The high reliability of the network protocol is reached by the use of strong CRCs to

protect all parts of the protocol. All control cells are protected by an own CRC. Thus,

the link layer can ensure to forward only packets to the network with a correct routing

information, which eliminates falsely routed packets. Furthermore, credits and barrier

messages are now protected by the retransmission, as well as the packet data, which is

protected by a 32 Bits CRC. In contrast to the network protocol for EXTOLLr1, the

retransmission itself is protected against errors. This is reached by the use of timeouts for

sent ack cells.
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Computer systems used in HPC consist of hundreds to thousands compute nodes. On these

systems, a program is executed in parallel on the compute nodes. Typically, such programs

solve a computational problem iteratively. First, the data needed for the computation

is distributed among the compute nodes. Thereafter, they start the computation. To

fulfill this task, intermediate results and data must be exchanged during the computation.

Therefore, the compute nodes must wait after a computational iteration, until all other

nodes have reached the same synchronization point as well. When all nodes have reached

the synchronization point, the data for the next iteration is exchanged, and the nodes

resume the computation. The need for a regular synchronization is tightened by a possible

unbalance of the computational execution time or unbalanced data structures. The problem

of an unbalanced computational execution time is partly caused by Operation System (OS)

jitter [34]. This jitter has its origin in timer interrupts and different OS daemons, that are

executed on the compute nodes. When they are executed, the computation is stopped,

until they are finished.

The described synchronization is done with the help of a collective operation called

barrier [35]. At defined synchronization points, all processes of a parallel program wait until

all other processes also have arrived at the synchronization point. This synchronization

point is called a barrier. After all processes have reached the barrier, they can proceed with

their execution. During the time needed for the synchronization, the parallel program can

not make any progress. Therefore, it is essential to have an efficient barrier implementation,

that reduces the time needed for the operation. As the barrier operation is critical for

parallel programs, several proposals were made for hardware barrier implementations in

the past ([36], [37], [38], [39]).

This section will propose a new way to integrate a barrier synchronization directly into

an interconnection network, which improves the performance of the barrier operation

significantly. Furthermore, the proposed barrier implementation is extended to support a

global interrupt mechanism, that can be used to reduce the OS jitter.
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Figure 3.1.: Barrier Synchronization

3.1. Barrier Requirements

Before describing the approaches for implementing a barrier, an instrument is needed in

order to evaluate each approach. The performance and properties of a barrier can be

characterized by its time duration, which is the key metric, the network load caused by the

operation, and its scalability for large barrier member counts. These metrics are described

in the following.

Duration The most important property of a barrier operation is its duration. During the

barrier operation, all processes must wait until the operation is completed. Therefore,

the time needed for the barrier has to be as small as possible. The time duration of

a barrier begins with the entry of the last process and ends at the time when the last

process leaves the barrier.

The barrier operation consists of several steps, at which each step has its own time

duration. First, there is the start-up time. It is the time needed from the software

invocation of the barrier until barrier logic starts its operation. For a hardware based

barrier, this includes the time for a CPU request to reach the barrier logic.

Then, there is the time for processing the barrier operation. This consists of the time

for collecting the information from all processes involved, that they have reached

the synchronization point. Moreover, the size of the network influences this time.

For a large network with many hops and a long cables for connecting the hops,

the synchronization messages need a longer time. Therefore, a fast efficient barrier

implementation gets more and more important with growing interconnection sizes.

The last time is the time needed to notify all processes, that the barrier operation is

finished.

Network Load In order that a barrier operation can take place, message needs to exchanged

between the processes of a parallel program. Each message needs time for reaching its

target. Therefore, minimizing to amount of messages needed reduces the duration of

the barrier. Depending on the approach used for the barrier, several barrier messages
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must be combined in a single place. Thus, a bottleneck can occur, when many

messages hit the same target.

Furthermore, several different parallel programs can be executed on a parallel system

at the same time. Programs, which do not take part in a barrier operation, also

exchange message. Consequently, these messages compete with the barrier messages

for the resources of the used interconnection network. This can decrease the latency

of barrier message in a saturated network. For that reason, a smaller network load of

a barrier operation can improve the overall performance of a barrier operation.

Scalability The scalability of a system describes its ability to improve its performance, when

new components are added. Thereby, the performance gain should be proportional

with the added components. For a barrier operation, scalability is given when adding

hosts to the barrier group will not decrease the time duration significantly.

Fault Tolerance A barrier operation needs to exchange synchronize messages. These

messages are transported to its destination by an interconnection network. Especially

in large interconnection networks, the fault tolerance is getting an issue for the

reliability of a system. Mechanisms as retransmission protocols are used to ensure

a reliable transmission. The barrier operation is also affected by these mechanisms.

Barrier message need to be protected by these mechanisms, as well as it has to be

taken account of barrier messages, when designing them, to make sure that barrier

messages are not slowed down by the fault tolerance mechanisms.

3.2. Barrier Design Space Evaluation

The barrier operation can be either implemented in software or with specialized hardware.

Obviously, efficient hardware implementation should be faster than software implementa-

tions. Nevertheless, for the sake of completeness both options are described in the following

sections.

3.2.1. Software Barrier

A software barrier does not directly dependent on the used interconnection network. Of

course, an efficient interconnection network improves the performance of a software barrier.

But generally, a software barrier is used, when the interconnection network has no extra

functionality for barrier synchronization or the hardware barrier resources are consumed

by other programs.
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Figure 3.2.: Barrier Design Space

3.2.1.1. Counter based Barrier

The straightforward approach for implementing a software barrier operation is the use

of a central shared counter that records the arrival of processes at the synchronization

point. The counter is initialized with zero. Each process, that reaches the synchronization

point, increments the counter by one, and keeps polling the counter until it has reached

the number of processes take part in the barrier operation. When the counter has reached

the expected value, the barrier operation is done.

In a shared memory system, the counter can be accessed directly by all threads, and

must be protected by a semaphore to serialize the accesses from the different threads. In a

message based system, one process manages the counter. It receives the reach messages

from all other processes, and sends release messages when the counter equals the number

of processes in the barrier operation.

3.2.1.2. Butterfly Barrier

The counter based approach does not scale very well with an increasing amount of processes

in the barrier operation. As all processes must have access to the counter, it creates a

central hot spot. All requests accessing the single resource must be serialized. This can

be done either by using a semaphores in shared memory system, or by a central process

for message based system. Thus, this approach has an execution time linearly with the

amount of processes.

Therefore, [40] proposed the use of a butterfly barrier, for which the execution time grows

with log2N . It is based on the same idea, which is also used by the butterfly algorithm for
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Figure 3.3.: Butterfly Barrier[40]

Fourier transformations. The barrier synchronization is constructed with a basic building

block to synchronize two processes. Each process has to notify its partner, that has reached

the synchronization point, and must wait until its partner has also arrived at the point, too.

This done by the use of two shared variables. This is then repeated as shown in figure 3.3

until all processes are synchronized.

3.2.2. Hardware Barrier

A hardware barrier can be either realized as dedicated network or can be integrated into

an existing interconnection network. Both solution were realized in commercial systems for

HPC. The following sections describe the advantages and disadvantages of both solutions.

For a more detailed description refer to [41].

3.2.2.1. Dedicated Barrier Network

A dedicated barrier network can be realized either by an or or an and network. Both

possibilities are based on the nature of the barrier operation. All participants of the

operation have to wait, that all others also have reached the synchronization point. This

corresponds exactly to the logical operation of an or or an and.

An or network is depicted in figure 3.4 on the next page. It consists of a synchronization

wire with a pull-up resistor to VDD. Each node of the network has a pull-down transistor.

The collector of the pull-down transistor is connected to the synchronization wire. The

basis of the transistor is connected to the barrier member node. The emitter is tied to
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Figure 3.4.: Barrier Or Network

ground. Each barrier member node has two registers for a barrier. The X register is

connected to the basis of the pull-down transistor, and the Y register is connected to the

synchronization wire.

By default, the X register is set to one. This enables the pull-down transistor. As all

nodes set their X registers, the synchronization wire is tied to ground and the Y register

becomes zero. If a node reaches the barrier, it deasserts its X register. When all nodes have

arrived at the barrier, then the synchronization wire is tied to VDD and all Y registers

becomes asserted. If a member node recognized the Y register, it resets the X register. All

nodes are synchronized.

If a node does not take part in the barrier, it sets its X register permanently to zero.

This makes the node transparent for all other nodes, which are part of the barrier.

The wired-OR is vulnerable to raise conditions. A raise condition occurs, if a node

reasserts its X register before all other have recognized the end of the barrier. They stay

at the barrier until the nodes, which recognized the end of the barrier, reach the next

barrier. A possible solution for this problem would be to wait some time after the Y

register becomes true, before resetting the X register. This ensures that all member nodes

have recognized the end of the barrier. But it also increases the barrier latency. Another

solution would be to use a second or wire for the barrier release synchronization.

The and network is shown in figure 3.5 on the facing page. All nodes are connected to a

large and gate. Each node, that reaches the barrier sets its barrier reached signal. When

all nodes have set their signal, the and-gate is asserted and the barrier is finished. As for

the or network, the and network is vulnerable to raise conditions. This can be solved by a

set-reset flip-flop and a second and-gate. The first and-gate sets the flip-flop, and therefore
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Figure 3.5.: Barrier And Network

the barrier done signal. When node as noticed the barrier done signal, it sets the signal to

the second and-gate. This way, barrier done signal is not reset not until all nodes have

acknowledged the barrier done signal.

The advantage of the described dedicated networks, is their performance for the barrier

operation. On the other hand a second network beside the main interconnection network

is needed, which is very cost intensive.

3.2.2.2. Integrated Barrier Network

As a dedicated barrier network are very cost intensive, modern interconnection networks

integrate the barrier functionality into the same network, which is also used for the main

data transport. Thereby, the same algorithms are used as for software barriers. In contrast

to software barriers, the synchronization variables are not located in the main memory, but

in a special barrier logic in the network. Therefore, the hardware barrier is much faster, as

the barrier logic has not to access main memory in each hop.

An integrated barrier is realized in two phases. In the first phase the information from

all nodes is collected, that they have reached the synchronization point. This phase is

called the up phase. In the second phase all nodes are notified about the end of the barrier.

This phase is called the down phase.

An interconnection network consists of multiple switching stages. For the hardware

barrier, these stages are organized in a virtual tree structure. The nodes of this tree

represent the participating network nodes of the barrier. The processing of the barrier

starts in the leave nodes. When a leave nodes reaches the barrier, it sends an up message

to its parent node. All other nodes of the tree, waits until the own node and all child nodes

have reached the barrier. Then, they send an up message to their parent node as well.

This is repeated until the root node has reached the barrier and received up messages from

all child nodes. At this point all nodes have reached the barrier. Thereafter, the root node

sends down messages to its child nodes, which are then propagated to the leave nodes.

When node receives a down message, it ends the barrier operation.

[41] gives a further description about the integration of a hardware barrier into an

interconnection network.
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Figure 3.6.: Barrier Overview

3.3. State of the Art

Optimized hardware barriers are integrated into several state of the art interconnection

networks for HPC. The Cray Gemini network [7], as well as the TOFU network [19] for

the K-computer implement a hardware barrier logic, but there is no information available

about the implementation and the performance of the hardware barrier.

IBM integrated hardware barrier support for all of its Blue Gene Systems. Blue Gene/L

[13] and Blue Gene/P use an own global barrier network, which supports four concurrent

hardware barriers. It is able to synchronize up the 64K nodes in about 1.5us. As the

dedicated barrier network is very cost intensive, the barrier logic was integrated into its 5D

Torus for the Blue Gene/Q systems [16]. This barrier implementation is able to synchronize

100K nodes in about 6.3us.

3.4. EXTOLL Barrier

The EXTOLL hardware barrier is implemented as an independent hardware module. It

supports 16 concurrent barriers and 4 global interrupts. The global interrupt functionality

is used to trigger an interrupt on all nodes in the network at the same time. This interrupt

can either replace the timer interrupt of the OS, which reduces the OS jitter, or set a

global distributed time stamp counter in each node to the same value.

The barrier module is connected directly to the LPs of EXTOLL. By omitting the

crossbar, the latency for each hop can be reduced. Furthermore, barrier messages are

transported by barrier cells(section 2.4.2.2 on page 25) in the network, and not by network

packets. As cells are the minimal unit the network can transport, this provides the most
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efficient way to forward barrier messages. The barrier cell carries the barrier ID and a flag,

which indicates if it is an up, down, or interrupt messages.

The LP arbitrates the link between barrier messages and network packets. Thereby,

barrier messages have a higher priority than network messages, which guarantees a fast

barrier operation even for saturated networks. For interrupt messages it is important,

that they have constant latency, when they traverse a hop. Only then, it is possible to

deliver the interrupt in all nodes at the same time. Therefore, global interrupt messages

are handled by the LP using delayed insertion. As each packet has a maximum length of

34 clock cycles, the LP delays each interrupt message received from the barrier module

for 34 clock cycles. In the meantime, if there is a packet in process, this packet is sent

completely, but no more packet are granted the link until the interrupt message is sent.

This guarantees a constant latency in each hop.

The barrier module is depicted in figure 3.6 on the facing page. The In Ports are

connected to the LPs, and forward received barrier messages to the according barrier or

interrupt unit based on the ID of the message. Each barrier unit consists of three sets of

registers. The first set is used for the configuration. These registers are set by management

software with the help of the RF. As all nodes part of a barrier ID are arranged in a virtual

tree structure, they configure which link leads to the parent node, and which ones to the

child nodes. Furthermore, they configure if the local node and when how many processes

of the local node are part of the barrier. This way, several process on single node can

take part in a barrier by notifying the hardware directly when they reached the barrier

without any further synchronization on the local node, which lowers the duration time of

the barrier.

The second set of registers is the interaction set for each ID. It is used by processes

of the local node to interact with the barrier logic. It consists of reached and released

registers. These registers are mapped into the address space of a process part of the barrier.

A process writes the reached register, when it has arrived at the synchronization point.

Thereafter, it polls the released register, which is set by the barrier logic in the release

phase of the barrier, and gets reset the next time the reached register is written. A raise

condition can occur, when more than one process on a node are part of a barrier ID, and

trigger the barrier in short intervals. Then, a process can read the released register and

write the reached one, before all other processes have noticed the release of the previous

barrier. To avoid the raise condition, the released register was duplicated. These two

registers are used alternately. For the first barrier, the first released register is used, and

after each barrier the active released register is changed. A status bit in the barrier RF

states for each barrier ID, which is the current active released register.

The third set of registers is the working set, which holds the current status of the barrier.
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It consists of a host counter, a bit mask for each link, and a phase marker. The counter is

incremented each time the reached register of the interaction set is written, and is reset in

the down phase. The bits of the mask are set for the corresponding link in the up phase,

when a barrier message is received from a LP. When the host counter has reached the

value specified in the configuration set, and all up messages were received from all child

nodes, the barrier unit sends an up message to its parent node, if the current node is not

the root node of the barrier tree. If the current node is the root node, which is indicated

by a not set parent node in the configuration set, the barrier unit sends down messages to

all child nodes, and sets the active released bit in the interaction set. When a barrier unit

receives a down message, it is forwarded to all configured child nodes. Additionally, the

active released bit is set, if the host count for the current node is not zero.

A barrier unit needs to send all messages for a phase at the same time. Therefore, an

arbiter is used to handle the access to the barrier out ports. A barrier units requests the

out ports, and on a grant the barrier message is sent to all ports leading to child nodes in

the down phase, or to the parent node in the up phase. The out ports are connected the

LPs.

The interrupt units are used for processing the global interrupts. Global interrupts are

distributed from a root node to all other nodes, on which the interrupt should be triggered.

Therefore, the same virtual tree structure is used as for the barrier. As the interrupt units

have to distribute the interrupt without collecting information before, they use the same

logic function as the barrier unit uses for the down phase. Consequently, its configuration

registers indicate, which links lead to the child nodes of a node.

A global interrupt has to be triggered on all nodes at the same time. As the interrupt

messages propagate from the root node to the child nodes through the network like a wave,

the interrupt is triggered earlier on the root node than on the child nodes. To compensate

this, a delay counter was introduced in the interrupt unit. The counter is started when

an interrupt message is received and triggers the local interrupt when it exceeds a value

specified in the configuration registers. The value has to be larger for nodes next to the

root node, and is zero for the leave nodes. To be able to adjust the delay cois wayters,

a measurement logic was integrated into the interrupt unit, which measures the time an

interrupt messages needs to traverse a single link. The logic consists of a counter, which is

accessible by the RF. A measurement is done by sending an interrupt message to another

node directly connected, which reflects the interrupt message. The counter is reset and

started when the start node sends the measurement message, and stopped, when the

reflected message is received. The reflection is done by configuring the sending node as the

single child node in the remote node. This way, all links that are used by an interrupt tree

can be exactly measured. Thereafter, all delay counters are set with the values received

from the measurements.
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3.4.1. Performance Evaluation

The barrier module was implemented in a Verilog Register Transfer Level (RTL) description.

This implementation was verified using formal verification. From the simulation, the

performance of the implementation was extracted. A barrier message needs 5 clock cycles

for passing the barrier module. Furthermore, the LP needs 6 clock cycles for sending a

message to link and 11 clock cycles for passing a received message from the link to the

barrier module. The physical layer needs about 10 clock cycles for transmitting a cell.

Thus, a barrier message needs 32 clock cycles for a single hop. A 3D Torus network with

216 nodes has diameter of 3
2( 3
√
N − 1) = 59. Therefore, about 1900 clock cycles are needed

by an up message to traverse the network from the leave nodes to the root node, and

3800 clock cycles for a complete barrier operation. Assuming a frequency of 750 MHz for

EXTOLL, a 216 nodes cluster can be synchronized in about 5us.

The barrier implementation was tested on a test cluster with nine nodes. Each node was

equipped with an Opteron CPU running at 1600 MHz, and an Ventoux FPGA card. The

FPGA board was connected to CPU via HyperTransport (HT), and were loaded with a

complete EXTOLL design including the barrier module. The EXTOLL logic run at 200

MHz. Beside EXTOLL, the cluster was also equipped with a Gigabit Ethernet network.

A small test program was written to measure the performance of the hardware barrier.

This program executed the barrier operation repeatedly. The measurements were done

using a Message Passing Interface (MPI) barrier with Ethernet and with EXTOLL. The

measurements for the hardware barrier were done without MPI. The barrier operation

synchronizing the nine nodes took 160us using Ethernet, 4,5us using EXTOLL with two

sided communication, and 1,2us using the hardware barrier.
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The complexity of hardware chips doubles approximately every two years. This observation

is called Moore’s Law[42]. The growth is mainly driven by integrating more and more

components into the same die size. The first chip the 4004[43] from Intel had 2300

transistors in 1971. In contrast, current chips do have about 2.6 billion[44] transistors.

Shrinking the process node size enables this high integration grade. Being able to integrate

more components on a single chip leads to an increasing functionality a chip can perform.

But, the time for developing a chip stays the same. From this, the problem arises that from

one chip generation to the next one, more functionality must be checked before submitting

the chip to the factory in the same time frame. Increasing mask costs[45] raise the pressure

to do it right the first time. A second mask set is hard to afford for many projects. Also

the delay introduced by a second fabrication run decreases the market window for the chip,

which makes it even harder to reach the break even point with the chip.

Due to the increasing costs of developing an ASIC, a re-spin of an erroneous chip is

most times not affordable, which raises the pressure to make it the first time right without

any functional bugs. Therefore, techniques and methodologies are required to ensure a

functional correct chip implementation. Furthermore, this has to be done in a reasonable

time frame with restricted resources to not increase the costs for manufacturing an ASIC.

In addition, a criteria is required to decide, when the chip is fully functional correct.

To address these problems, several methodologies were developed over the years. The

most important methodology beside others is the functional verification, which can best be

described with the following citation:

”Verification is a process used to demonstrate the correctness of a design with

respect to the requirements and specification.”[46]

In general there are different sources for hardware faults: functional faults, physical

faults, and software faults. Physical faults are introduced during the manufacturing of

the chip in the factory. There are several methods available to detect physical faults

during fabrication and later on the produced wafer. The most important methods are test

structures and scan chains for register to register testing.

Software faults are caused by software mishandling of the hardware. Common errors are
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Figure 4.1.: Verification Reconvergence Model

writing to a wrong register or writing the wrong data to the right register. Software faults

are hard to detect as it is difficult to distinguish who caused the fault, the hardware or the

software. Once detected they can be fixed in a short time frame. Even when the hardware

is already in production and shipped to the customer.

Functional faults have their origin in the specification or the implementation of a chip.

The chip design process starts by defining a specification. The specification is a text

document written in natural language which describes the chip to be implemented. It

includes the function the chip has to perform, the interfaces to the outside world, and the

conditions that affect the design. After the specification is finished, the chip design team

starts to implemented the design in RTL. The specification and the implemented RTL

are two representations of the chip. As the transformation into RTL is done by humans,

it is fault-prone. Beside errors made during this transformation, specifications can be

wrong, vague, or not existing. As the specification is written in natural language, it is

hard to describe the features exactly as intended. This leads to an interpretation of the

specification from the RTL designer. This interpretation can obviously be different from

the intention of the specification.

To model this relationship [46] defines the reconvergence model as depicted in figure 4.1.

It is an illustration of the verification process. On the one hand there is the transformation

from the specification to RTL which also called implementation. On the other hand there is

the verification. The verification ensures that the RTL matches the specification. Therefore,

the verification introduces a second path. This second path compares the RTL against

the specification. When both paths are independent from each other, than the verification

process can be successful. This verification process can be used between any two different

design representations. As mentioned before, between the specification and RTL. But also

between RTL and the gate level netlist after synthesis. Depending on the transformation

different verification techniques can be used. These are described in a later section.

The interpretation of the specification is a big problem in the verification process. Espe-

cially when the implementation and the verification are based on the same interpretation as

shown in figure 4.2 on the facing page. Then the chip seems to be verified, but on the wrong

assumptions, as the functionality of the chip does not corresponds to the specification.

For a successful verification process the human intervention and other error sources must
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Figure 4.2.: Verification Reconvergence Model Interpretation

be eliminated. This can be reached in three different ways. The first one is the automation.

It is the obvious solution. So, human intervention can be completely eliminated. The

automation can also speed up the verification process, which leads to a reduced turn a

round time for the chip implementation. However, there is no complete automation solution

available. The main problem stays the interpretation of the specification. Only, when

there is a way to transfer the specification into a efficient representation for automatic

verification, the verification can be completely automated.

The second way is to use poka-yoke [47]. A yoka-poke is a mechanism to avoid and

prevent mistakes. Basically it is reached by defining standard processes for common tasks,

and the interaction between the tasks. Thereby, the processes must be defined in such a

way, that a mishandling or a wrong use is not possible.

The third way is introducing redundancy. By using two redundant design representations,

errors in the implementation can be avoided. Therefore, the chip development team is

divided into two groups. The first group is responsible for the implementation of the RTL

model. The second team does the verification. It verifies the implementation against the

specification. Therefore the verification team creates a second different implementation out

of the specification. This implementation is either a reference model used in the simulation

based verification (see section 4.1.2 on page 54), or a set of properties for the formal

verification (see section 4.1.3 on page 55), or a combination of both. Then the RTL model

is simulated and checked with the help of the reference model. The formal verification tool

uses the properties to prove the correct behavior of the RTL. Due to the two teams the

problems caused by interpreting the specification can by mostly eliminated providing that

the teams work on their on.

A central concept of all verification methodologies is the Test Bench (TB). A TB

summarizes all elements needed to verify a design. As shown in figure 4.3 on the next

page, a generic TB consists of the Design under Verification (DUV), a stimulus generator,

a monitor, and a scoreboard. The stimulus generator is a mandatory component of a TB.

It provides the input stimulus for the DUV. The monitor collects the output of the DUV.

Both, the stimulus generator and the monitor send the their data to the Scoreboard (SCB).

The SCB compares the expected with the received DUV responses and reports an error, if

they do not match.
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Figure 4.3.: Generic Testbench

Not all components were in the TB from the beginning. The first testing environments

were quite simple. Actually, they were pattern generators. A test pattern is a sequence

of test vectors to test a specific design behavior. Each test pattern handles a single test

scenario. The checking of the DUV had to be done manually. There was neither automation

for the creation of test patterns nor automatic checking of the DUV behavior. As test

patterns were hand generated and can be quite complex, they were hard to create and to

maintain. Also the execution of a test pattern was expensive, as the checking has to be

done manually.

To improve the testing, test cases became popular. They introduced automation for

the behavior checking. The tests knew which signals were available and what value they

should have. So, it was possible to implement automatic checks. The self checking TB

made the testing more productive.

The introduction of test cases paved the way for the verification. Although some

automation was introduced by test cases, they still had several drawbacks. For each test

case the verification engineer needed to write the input stimulus for each clock cycle, which

resulted in a lot of code, that had to be maintained. Especially, when there were changes

in the specification a lot of test cases had to be changed. The engineer also had to think in

corner cases. He analyzed the specification to create specific test cases for a specific feature

or a specific design state. Finding corner cases was a complex task and needed a lot of

experience. Even for an experienced verification engineer it was hard, probably impossible

to find all corner cases.

All test cases were summarized in a test suite. This test suite ran each test once.

Whenever there were changes in the specification or the implemented design, the whole

test suite had to be rerun. A test suite can give an impression about the test progress.

But, a problem arose when the test suite finished without failing tests. As there was no

direct binding to the specification, it was not possible to give a statement, if all features

were completely tested. If a test case was missed in the test suite, there was no chance to

find the error that was triggered by this test case. Consequently, there was no real sign off

criteria for the chip. It made it also difficult to track the verification process.

Writing a test case is a complex task even for simple interfaces. For interfaces like

for example PCIe [48] or HyperTransport [49] it is nearly impossible to write the test
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patterns for the initialization, credit management, and retransmission for each test case

from scratch. Therefore, people came up with Bus Functional Models (BFMs). A BFM is

a test component which encapsulates the functionality of a single interface and provides

the user with different high level functions for accessing the interface. Typical functions

include read and write accesses to the interface. BFMs reduced the test case complexity,

but still it was a complex task to write a reasonable test case. Additionally, there was no

standard for building BFMs. Each BFM had its own programming interface and its own

way for configuration. This made it hard to integrate it into a TB.

Due to the fact that the design complexity grew, the conclusion could be drawn, that

more features needed to be tested, as well as the complexity of test case also increased.

For many chip designs there are large building blocks, which are reused from one

generation to another. This includes building blocks for common interfaces like PCIe, but

also building blocks for on chip networks or Functional Units (FUs). It would require to

rewrite the test code for every design when using simple test cases.

To overcome all the issues with test cases, people came up with the verification. The goal

of verification is to ensure that all features of a design work as intended in the specification.

There are several methodologies and technique available to improve verification efficiency.

This includes a more efficient generation of stimulus, an improved checking of the DUV

behavior and a better way to track progress of the verification effort. A modern verification

methodology also has a strong support for reusing verification Intellectual Property (IP)

in different verification projects. The following sections describe the available verification

methodologies and techniques. Thereafter, a complete verification methodology is described

a for a complex hardware design.

4.1. Verification Methodology

The common simulation based testing of a hardware design reaches its limits with current

SOCs. They are too complex to finish the testing within a reasonable amount of time. So,

new verification techniques and verification technologies are used in the industry to close

this gap. This section gives an overview of the methods and methodologies used in a state

of the art verification project.

4.1.1. Verification Techniques

There are different verification techniques available, which are shown in figure 4.4 on the

following page. A verification technique is a method used to verify a hardware design.

Although there are different techniques available, they are normally used together for
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Figure 4.4.: Verification Techniques

an efficient verification process. Each technique is suitable for a special aspect of the

verification.

4.1.1.1. Transaction Based Verification

Writing a TB for a large hardware design is a challenging task. Because of the complexity,

a lot of verification code has to be written. The test developer must write every single test

vector, which tends to be time consuming. To simplify the test code, but also the code for

checking the DUV behavior, people came up with the Transaction Based Verification (TBV)

as depicted in figure 4.5 on the next page. The TBV adds an abstraction layer to the TB.

This follows from the observation, that each interaction of the TB with the DUV is a closed

operation or can be split into several closed operations. Examples for such operations are

a read or a write to/from the DUV. These basic operations are called transactions. A

transaction includes all attributes needed like command type, or the attached data needed

to fulfill the operation. As a transaction is an abstract object, it can not be sent directly

to the DUV. It has no information about the interface protocol to the DUV. Therefore, a

special component called driver, that is part of the stimulus generator, is used in the TBV.

The driver sends the transactions to the DUV interface and transforms the transaction into

interface signals. Interface control signals like a valid can be omitted in the transaction, as

the driver generates them itself according to the interface specification. Once the driver

is implemented, the test writer only has to deal with transactions. He does not need to

know every detail of the interface signals. Also complex interface behavior like the credit

management for a flow control mechanism is completely hidden from the test writer.

The checking of the black box behavior of the DUV is also done by using transactions.

The driver forwards the transactions sent to the SCB. The response of the DUV is collected

by a component called monitor. The monitor samples the interface signals of the DUV

and creates a transaction out of them. The collected transaction is then sent to the SCB.

The SCB compares the received response transaction with the request transaction sent

before. Due to the use of transactions inside the SCB and thereby a higher abstraction

level of the DUV behavior, the complexity required to model the DUV behavior can be

significantly reduced.
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Figure 4.5.: Transaction Based Verification

4.1.1.2. Random Constraint Verification

The goal of the Random Constraint Verification (RCV) is to simplify the generation of the

input stimulus for a design. It is used in the simulation based verification that is presented

in section 4.1.2 on page 54. In a test case based verification, the test writer has to specify

each test vector for each clock cycle. This results in a lot of test cases to verify all features

of a DUV. On the one hand the RCV reduces the complexity of creating a single test

case, on the other hand it lowers the amount of required test cases. This is reached by

a random generation of the input stimulus. The input stimulus can not be completely

random generated, as each DUV interface has its own specific protocol. The test writer

has to bias the random generator. This constraining is done in conjunction with the TBV.

The stimulus generator creates transactions for a DUV interface. The attributes of the

transactions are assigned random values. Thereafter, the random generated transactions

are sent to the driver that then sets the interface signals. By using this method it is

guaranteed, that the random stimulus generator does not break the interface protocol.

To create a test for a specific DUV behavior, the test writer constraints the attributes of

the transactions to be sent. A test also includes the order in that specific transactions are

sent. The random generator then uses a constraint solver for assigning random values to

the transactions according to the constraints.

Each test in a RCV is run multiple times with different seeds for the random generator.

The seed selects the start state of the random generator. So, each run for each test

produces a different input stimulus. To be able to debug any DUV issues, a random

stability is required. This means that, when a test is run with the that same seed, the

random generator always has to produce the same stimulus. Every time a test is run, the

generator creates an input stimulus, which has not been thought of by the designer due to

the randomness of the generated transactions.
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Figure 4.6.: Coverage Types

4.1.1.3. Coverage Driven Verification

The RCV simplifies the task of writing tests. As the DUV stimulus is random generated,

the problem arises, that it gets difficult to give a statement about which features of a DUV

have already been verified. Because of the randomness it also gets impossible to measure

the verification progress with the RCV.

A solution for these problems is provided by the Coverage Driven Verification (CDV).

The CDV is a technique to track the verified features as well as the verification progress.

As shown in figure 4.6, two main coverage types can be differentiated. The code coverage

is extracted automatically by coverage tools from the TB and DUV source code. The

functional coverage has to be specified by the verification or RTL engineer.

Each feature of the specification is represented by one or more coverage item(s). During

simulation the coverage tool collects for each coverage item, if it occurred and how many

times. After the simulation the collected coverage data can be analyzed in a graphical

tool. As the total amount of coverage items is known for a DUV, it is possible to track the

verification process with the CDV. When all coverage items occurred at least once and all

tests finished without any errors the verification process is complete.

Code Coverage The code coverage is a basic coverage type that is collected automatically.

As figure 4.6 shows, there are four important code coverage types for the Functional

Verification (FV). The line coverage covers, which lines of code was executed during

simulation. The block coverage covers that each code block was executed. A code block is

the code inside a ”begin ... end” statement in Verilog. The branch coverage covers if each

branch of an ”if” statement was executed. The expression coverage covers, that each term

in a boolean expression was executed.

The code coverage gives an overview of the executed source code. A code coverage

of below 100% is an indication that the verification process is not finished yet. There
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are two possibilities two improve the code coverage: The code not executed cannot be

executed, because there exists no condition that leads to an execution. This dead code can

be removed. The other possibility is that RCV has not produced the input stimulus to

reach the code. Then either the existing tests must be run more often, or the verification

engineer has to write new tests or modify the existing constraints to reach a full code

coverage.

A code coverage of 100% isn’t a valid sign off criteria. Most complex features of a DUV

cannot be covered by the code coverage. For example, the code coverage is able to cover

that a variable gets assigned. It cannot cover which values were assigned.

Functional Coverage The functional coverage makes it possible to cover DUV behaviors

that cannot be covered by the code coverage. It cannot be generated automatically. The

verification engineer has to specify the functional coverage by himself. The functional

coverage is extracted either from the specification or from the DUV source code to cover

implementation specific behavior.

There are two types of functional coverage: the data oriented and control oriented

coverage. The data oriented coverage covers the values of a given variable that were

assigned. To describe relationships between two or more variables a cross product can

be defined. This cross product describes that all different combinations of the involved

variables have occurred in simulation.

The data oriented coverage covers the DUV state at a given point in time. The control

oriented coverage is able to cover behaviors that span over more than one point in time.

This way, it gets possible to cover for example that if there is a request, a grant is given

later on and at which point in time. The control oriented coverage can be described by

properties, that are also used to describe assertions.

4.1.1.4. Assertion Based Verification

A verification environment needs an automatic checking of the DUV behavior. Assertions

are the common mechanism for this checking. An assertion is a claim about a design

behavior. It is a boolean expression that has to evaluate to true. Otherwise an error is

reported.

There are two basic types of assertions. Safety and liveness assertions. Safety assertions

are defined by a boolean expression. The expression must be true for all times. Safety

assertions have been used for software development for a long time. In a hardware context,

checks are not only needed for a given point in time, but also for different consecutive

points in time.
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That’s why liveness assertions nowadays are used as well. For liveness assertions boolean

expressions are extended to include a temporal component. For example, this enables to

write a temporal check for a request grant scheme, where the grant is given one or more

clock cycles after the request.

Assertions are described by properties. A property does a claim about a signal behavior.

This property can be used in different contexts. It can be used as an assertion to check

a behavior. Another use case is to use the property as a coverage item. It is marked as

covered, each time the behavior described by the property is seen in the simulation.

Assertions can be used in the formal and the simulation based verification. In the formal

verification assertions describe the legal input of a DUV. For internal signals and outputs

assertions describe what the formal verification tool has to verify. In the simulation based

verification assertions are used as checks and are evaluated in parallel to the simulation.

For an introduction to SystemVerilog Assertion (SVA) refer to chapter A on page 145.

4.1.2. Simulation Based Verification

The Simulation Based Verification (SVB) evolved from the classic test case based hardware

verification approach. It uses a simulator to execute an implemented RTL model. This

model is also called DUV. The SVB extends the test case approach with random constraint

stimulus generation(section 4.1.1.2 on page 51), transaction based verification(section 4.1.1.1

on page 50), and coverage collection(section 4.1.1.3 on page 52). Figure 4.7 shows a typical

SVB environment. It consists of the DUV, the stimulus generators, drivers, monitors, and

a SCB.

For the simulation the input for the DUV must be provided. Therefore, the stimulus

generators create random transactions. The created transactions are controlled by a test,

that constraints the generated transactions. In a typical SVB environment there are several

different tests available to verify different features of the DUV more easily. Following the

TBV a driver is used to generate the input signals for the DUV out of the transactions

from the stimulus generator. One monitor for each output interface of the DUV is used

to sample the DUV responses, and creates a transaction for each received response. The

stimulus generator as well as several monitors forward the collected transactions to the

SCB.

Common DUVs do have more than one input interface. In this case several stimulus

generators are used, one for each interface. Complex test scenarios need to coordinate

the traffic sent on each interface. For example when there are dependencies for the input

stimulus on different interfaces. Therefore a central stimulus generator is used which

controls all other stimulus generators.

54



4.1. Verification Methodology

The SCB is the central component for comparing the received DUV responses with

the expected ones. In the simplest form, the transactions pass the DUV without any

modifications. Then the SCB compares the received with the send transactions. When the

DUV modifies the input transaction or generates new ones, the scoreboard needs to know

more about the functionality of the DUV. An example for new generated transactions is a

DMA operation. There a descriptor, which describes the DMA operation, is sent to the

DMA controller. The controller then generates reads to receive the data from the origin

memory location followed by a several write operations to the target memory location.

The DUV functionality is provided by a reference model to the SCB. The reference model

is a second implementation of the DUV and is derived from the specification. Unlike the

DUV, the reference model does not need to be cycle accurate. It is only used for checking

the DUV’s black box behavior. This simplification makes the development of the reference

model much faster and helps avoiding faults in the reference model. As the reference

model must be developed only by the help of the specification and not by the RTL team,

it represents a second, independent version of the DUV. This redundant representation of

the hardware design minimizes the chance of misinterpreting the specification or missing

features of the hardware design.

The SCB passes the received transactions from the stimulus generators to the reference

model. The reference model then computes the expected DUV responses. As the reference

model is not cycle accurate, it is much faster in generating the response than the DUV.

For this reason, the SCB stores the expected response calculated by the reference model in

several queues. One queue for each output interface of the DUV. When the SCB receives a

response from an interface monitor, this response is compared with the computed response

of the reference model from the corresponding queue. If the response matches the expected

one, it is removed from the response queue. Otherwise an error message is issued by the

SCB and the simulation is aborted. The verification and the RTL engineer then have to

analyze and fix the error, as the error can be in both, the verification or the RTL source

code.

With the RCV the problem arises that it is impossible to track the verified DUV features

and the verification process. Therefore, the SVB is used in conjunction with the CDV.

The CDV tracks the verifications process with the help of coverage items. A verification

methodology, which is based on the SVB and uses the RCV, TBV, and CDV is also called

Metric Driven Verification (MDV) [50].

4.1.3. Formal Verification

The goal of the formal verification is to mathematically prove that an RTL design corre-

sponds to the specification. In contrast to the SVB, the formal verification does not need
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Figure 4.7.: Simulation Based Verification

an input stimulus provided by the user. It is generated ”automatically” by the formal

verification tool. The strength of the formal verification is its high degree of automation.

From an users perspective, the challenge for the formal verification is the transformation

of the functional specification into a mathematical representation that can be used as a

reference for the verification of a design.

Binary Decision Diagrams (BDDs) [51] and Conjunctive Normal Form Satisfiability

(SAT) solvers are the basic technologies used in formal verification tools. They are used to

transform an RTL design or a temporal logic into a mathematical representation. Graph

algorithms are used to show if the design matches, when two designs are transformed in a

BDD.

Figure 4.8.: Formal Verification Types

There are two types of the formal verification, as depicted in figure 4.8. The equivalence

checking proves that two design representations behave exactly the same. It is mainly

used when a design representation transformation is done. A common example for such a

transformation is the synthesis of a behavioral RTL model to a gate level representation.

There, it is used as a redundant path to ensure that the synthesis tool worked correctly.

As the equivalence checking does a comparison of two designs, it cannot be used to show

that a design is functionally correct regarding to the specification.

Model Checking is the second formal verification type. It is based on the observation,

that each hardware design can be represented by a Finite State Machine (FSM). [52] shows,

that with the help of a temporal logic it is possible to prove the correct design behavior.

Therefore, the properties of a design are described in temporal logic. Listing 4.1 on the
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facing page shows an example property written in SVA. It describes that when a request

was set, one to ten clock cycles later a grant must be given. The formal verification tool

transforms the properties and the RTL description into a BDD and proves the design

correctness for each property.

1 property p1 ;

2 r eque s t |−> ##[1:10] grant ;

3 endproperty

Listing 4.1: Sample Property

Properties can be used as assumptions or as checks. Assumptions constrain the input

signals of a design to valid values according to the specification. So, the formal verification

tool does not check the behavior for invalid input stimulus, which may produce false

negatives. Checks describe the expected behavior of a design that must hold for all allowed

inputs and are used to prove the correct behavior.

The prove of the correctness of a single property starts from a defined design state. In

the beginning the state of the design is unknown, and must thus be forced into a known

state. The common way to achieve this, is to use a simulator assert the reset signal and

simulate the design for a couple of clock cycles. Afterward, all registers are in a defined

state. This state is loaded into the formal verification tool. Henceforward, the formal

verification proves for each following clock cycle, the correctness of a given property. With

each proceeding clock cycle more states are explored. This is also called the proof radius

(see figure 4.9 on the next page). The proof radius describes how many clock cycles the

model checking has advanced from a given starting state. A proof radius of one means,

that for a design all states that are possible to reach within one clock cycle are checked.

In contrast to model checking, SVB does not do an exhaustive exploration of the design

space. The red point in figure 4.9 on the following page represents a bug. The grey line is

the path of a possible randomly exercised test. Although the test has advanced four clock

cycles, it has not found the bug. It needs several different tests or test runs to find this bug.

Model checking finds this bug, when it has reached a proof radius of four and all design

properties were defined correctly, because of the completeness of the formal verification.

Most properties are completely explored after a couple of cycles. If the design held

the property for all clock cycles, it is marked as proven. Otherwise a counter example is

generated. The counter example provides a waveform showing the error related signals

leading to the false condition.

Due to its exhaustive approach, model checking is limited by the design size. It does

a complete exploration of a design. Each input signal and each internal register added

increases the state space of a design. The complexity for checking increases exponentially.

This leads to a high computational time and a high memory consumption of the model
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Figure 4.9.: Proof Radius

checking tool. Consequently, model checking is only usable for small designs in a reasonable

amount of time. A common use case for model checking is testing a RTL model before the

SVB environment is ready. Setting up a model checking environment is a lot easier than a

SVB. To get a reasonable statement about a small design, only a couple of properties like

in listing 4.1 on the previous page are needed.

4.1.4. Verification Hierarchy

Large hardware designs like SOCs are divided into several partitions or logical units. This

design principle also known as divide and conquer enables and simplifies the process

of designing large systems. Thereby the typical design approach is the top to bottom

approach. It starts with a black box representing the whole system. This box is then divided

into smaller logical units step by step. Each part gets assigned a specific functionality.

Figure 4.10 on the facing page shows the hierarchy levels in a system on the basis of

EXTOLL. The system level is the black box representing a whole system in which the

design is used. The system is divided into several boards. The boards assemble several

chips. The chips itself consists of one or more units. A unit is larger block in a chip. All

units combined represents the main functionality of a chip. As units are still large blocks,

they are redivided into modules. The smallest unit in the hierarchy are blocks. Blocks are

the level were most of the behavioral RTL code is written.

From a verification’s point of view the question raises, which is the hierarchy level that

should be used for the verification and with what verification technology. For example

using formal verification for a full system level verification is impossible due to the logic

complexity. Before selecting the technology and hierarchy level another problem should

be considered. A successful verification needs two components. On the one hand the

input stimulus for the DUV needs to be provided. On the other hand, the verification
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Figure 4.10.: Verification Hierarchy

environment has to check the behavior of the DUV. If one component is missing, then the

whole verification fails. It is indispensable for a check that the DUV reaches a state, in

which the trigger condition for the check is given. Only then, it is possible to check the

behavior for a design feature. Depending on the hierarchy level, it is more or less difficult

to reach this state.

A simulation of the whole system including several boards is a time and resource

consuming task. In most cases an RTL simulation is not possible due to high memory

consumption. Also, the time needed for the simulation is normally in the scale of days.

System level verification is mostly used for modeling the system. Instead of RTL models

more abstract models which are not cycle accurate are used. Only by simulating on a

higher abstraction level a simulation is possible. So, the specification can be evaluated for

drawbacks. When the abstract models are partitioned the same way as the implemented

system later on, these models can be reused as reference models for the test benches of sub

blocks.

The board level and the chip levels are used to verify the connectivity and the interaction

of different units in simulation. For formal verification the code complexity is to large. But,

it can be used to check the connectivity of different units. On this level there is also an

observability problem to reach a full coverage and execute all checks. When a check or a

coverage item is defined in a submodule it is difficult to generate an input stimulus that

triggers the item. This is due to the fact that there are to many other dependencies on the

path to this item, and other modules have to be in special states to enable a check in an

other module.

The unit and module levels are the common levels for an SVB. There, the design

complexity is controllable. It is possible to reach a full coverage and execute all checks. It

is also possible to do a formal verification of sub modules.
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For the block level an SVB is not applicable. The complexity of the TB exceeds the

complexity of the code to be verified. On this level formal verification is popular for the

verification. It enables the RTL designer to check his code before the SVB environment for

larger modules are ready.

4.1.5. Verification Planning

The verification of a large system is a complex task. A system has different features that

must be verified to ensure that the system works in all operational conditions as intended.

Although, there are features that are considered more important than others, all features

need to verified. As there are many features in a large system, it gets hard to keep track of

all features and to have a predictable verification process. To fill this gap verification plans

are used. They are the single instance to keep track of all verification related information.

As such, the items of the verification plan define the metric for the verification progress.

Figure 4.11 on the next page depicts the general structure of such a verification plan.

Before the verification starts, a specification of the system and its parts is created. Those

specifications are used to create the verification plan. But, these specifications are not the

single source of the verification plan. Other sources include information from the RTL

designers for implementation specific coverage and checks, and knowledge of the verification

engineer about the verification process.

The most important part of the verification plan is the features of the design section. It

is extracted from the specification and describes each single feature of the design. Checks

and coverage items are derived from these features, which need to be included in the

verification environment.

The verification plan summarizes all required resources. This includes the required tools

and licenses, as they must be available during the complete verification. A missing tool

or license can delay the whole verification effort by weeks. Resources also includes the

manpower required for the project.

Another important and mandatory part of the verification plan are test scenarios. Each

test scenario describes the input stimulus for the SVB for a single test. The test scenarios

are grouped by the different TBs which are available for the verification project.

An advantage of verification over testing is the predictability of the verification process

when it is finished. Therefore, criteria need to defined when the verification can be finished

or stopped. These completion criteria are specified in the verification plan. Important

completion criteria are coverage goals, and that all tests and all properties of the formal

verification have successfully passed. The coverage goal for the functional coverage should

be 100%, which means that all features were verified in a verification environment. However,
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Figure 4.11.: Verification Plan Sections

a code coverage 100% is very hard to reach. The effort to reach the last 20% is too high

proportional to the knowledge that can be achieved. Thus, a code coverage of 80% is a

common goal.

A complete verification plan also has to list its risks and its dependencies. Risks are

events, that when they occur can delay or stop the verification process.

The verification schedule is an optional part of the verification plan. In many projects it

is part of a greater schedule for the whole project. Then, the schedule is not needed in the

verification plan. The schedule gives an estimation of the time frame required to complete

the verification. For each single task like building the TBs, implementing the coverage

the required time for completion is predicted. The schedule also shows the dependencies

between single tasks.

In general, verification plans can be written with any text editor. After the implemen-

tation of the functional coverage, checks, and properties the problems arises, that there

is no connection between the implemented verification code, and the verification plan,

which makes it hard to track the verification process. Therefore, the Electronic Design

Automation (EDA) industry came up with executable verification plans. The verification

plan is created with the help a special tool. This tool is able to read the collected coverage

data from the test runs. This way, the user can directly see the so far achieved coverage.

The functional coverage of a design can be divided into different views. Each view

describes a different aspect of the DUV. The first view is the functional interfaces. There,

the interface behavior is described. The main focus is on the involved signals and the

transaction behavior of theses interfaces. The second view is the black box view. It specifies

the DUVs overall behavior and the interface to interface behavior. The sections of the

black box view should be grouped by function groups. The functional interface and the

black box behavior is independent of the actual implemented DUV. They are are extracted

directly from the specification.
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To be able to define implementation specific functional coverage the white box view is

used. It opens the black box and describes the internal DUV behavior. The white box

coverage has to be defined by the RTL designer in cooperation with a verification engineer.

As it is difficult the specify the coverage for RTL code when its implementation is finished,

it is a good design practice to define the coverage and checks as early as possible. This

has the benefit, that when a module is implemented checks are already there, which then

can be used in a first formal verification run. For defining the white box coverage inside

the verification plan the following steps should be taken. With this approach no signal

behavior is missed, because it recommends to analyze each signal.

1. Add the unit hierarchy as sections in the verification plan

2. Add a comment for each module describing its function

3. Add the coverage points and checks for each sub module

• Start with the interface signals of the module

• Which is the expected interaction with other signals inside the module? →
define a check

• What are important interactions between signals? → define a coverage item

• Continue with internal signals and output signals

4.1.6. Verification Cycle

Figure 4.12 on the facing page gives an overview of the complete verification cycle. A

complete specification for the chip/system is needed, before the verification starts. Once

the specification is finished the RTL team starts with the implementation of the design. In

parallel the verification team starts the verification process. First, a verification plan as

described in section 4.1.5 on page 60 is created. The verification plan specifies which units

are verified in a SVB environment and which with formal verification. Secondly, the TBs

for the units are created. The TBs are build with a methodology like Universal Verification

Methodology (UVM) (see section 4.1.7 on page 64). The simulation is started for the first

time, when the TB’s code is finished and the DUV is ready. In this phase many bugs are

found in both the RTL and verification code. That’s why, a close cooperation between

the verification and the RTL engineer is needed for fixing the bugs. The regressions are

started, as soon as the simulation of single tests does not fail any more.

A regression is the process of running tests for a TBs multiple times with different seeds.

Each seed sets a different start state for the constraint solver and therefore a different

stimulus for each test run is created. When a test in a regression fails, the failure has to be

analyzed and fixed by the responsible verification and RTL engineers for the corresponding
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Figure 4.12.: Verification Cycle

TB. Coverage is collected for each test run during the regression. This coverage is merged

into one large database. The database is used for the analysis of the overall coverage.

Figure 4.13 on the next page depicts the progress of the coverage and the bug rate. In the

beginning, many bugs are found at a high rate. With a continuing regression effort the

amount of bugs found decrease until the DUV is bug free.

The coverage typically reaches 80% very fast. In order to increase the coverage further,

human interaction is required. Therefore, the collected coverage data from the regressions

runs is analyzed. In this process coverage items not met are called coverage holes. There

exist different causes for coverage holes, which are discussed in the next paragraphs.

The functional coverage is not implemented automatically. Especially in the beginning

of the coverage analysis, there are bugs found in the functional coverage code describing

items, that are not possible to met because of the specification. Beside coverage bugs,

functional coverage is not met because of a missing stimulus. The simplest way to improve

the coverage in this case is to do more regression runs. When the coverage does not increase

after several runs, other actions need to be taken. The first way is to improve the existing

tests, in order that they send traffic which better triggers the coverage holes. The second

way is to create new random tests, which do have very tight stimulus constraints for a

specific coverage item or a group of items.

Another reason for coverage holes are bugs in the DUV. On the one hand features are

not implemented. On the other hand bugs in the DUV can make it impossible, that a

certain behavior cannot be triggered. Then the RTL designer needs to fix these bugs.

A coverage of 90% to 95% is reachable, with those actions described above for most

verification projects. Then, the coverage cannot be increased further with random tests

in a reasonable amount of time. The remaining coverage holes can only be triggered by

a special input sequence with the DUV in defined state. To come to a coverage closure,
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Figure 4.13.: Verification Progress

directed tests or a combination of a directed start sequence with random stimulus thereafter

are used. These directed tests enables it to trigger coverage items directly.

Each coverage analysis session can cause changes within the verification plan. Either

because of new coverage items or changed ones. With each change on the verification plan

a new verification cycle is started. This cycle is repeated until the verification goals defined

in the verification plan are met. This includes, that all tests finish successfully. When all

goals are met, the design is ready for tape out from a functional verification’s perspective.

4.1.7. Universal Verification Methodology

Building a verification environment is a complex task. Creating an verification environment

gets more complex every year, due to the ever increasing complexity of the RTL designs

themselves. Surveys in the industry show, that currently up to 70% of the time to develop

a new ASIC is used for verification. The verification has become more and more the

bottleneck in the development of an ASIC. Consequently, there is a strong effort in the

industry and academia to reduce the time needed for verification.

An approach to make the verification more efficient is the Universal Verification Method-

ology (UVM) [53]. UVM is actively developed by the industry consortium Accerella, which

is supported by all major EDA vendors. The goal of this activity is to create a common

verification methodology. UVM addresses a list of problems. An overview is given in [54].

The major topic is the re-usability of Verification IPs (VIPs). Many companies, that use

verification do have their own methodology. The differences in the methodology not only

exists between companies, but also within companies. That makes is impossible to reuse

VIPs within companies between different projects. As a result there are many different

64



4.1. Verification Methodology

Figure 4.14.: Interface UVC

ways to solve the same problem. Some are better than others, but the differences costs a

lot of time for migrating and training when migrating from one solution to another. Also,

best practices are not shared, which leads to a further fragmentation of the methodologies.

UVM tries to address all these problems.

UVM consists of two parts. On the one hand there is the methodology. It describes

which components are in an UVM environment, how they interact with each other and

which is the best practice for verifying a DUV. On the other hand there is a library, which

represents a runtime environment to help the verification engineer to build the verification

environment. The library is currently implemented in SystemVerilog (SV). But, there are

efforts to use UVM with other language as e or SystemC and with a mixture of different

languages.

As UVM is intended for SVB environments, it focuses on creating the input stimulus for

the DUV in an efficient way. It targets both small and large verification projects. Due to

its strong support of re-usability, it is possible use the same verification code in different

verification hierarchies. This reduces the verification effort, when going from unit level

TBs to a complete chip level TB.

The use of TBV for data modeling enables an efficient stimulus generation and simplifies

the checking of the DUV behavior in the scoreboard. UVM also defines a method for

collecting coverage in an UVM based VIP. Beside the creation of VIPs, UVM describes

the methodology for building complete TBs and for running tests within a TB.

The following sections provide an overview of UVM. For more details refer to [55] and

[56].
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4.1.7.1. Universal Verification Components

In UVM all verification code for a specific interface or a module is aggregated into VIPs.

A VIP is called Universal Verification Component (UVC) in the context of UVM. The

structure of an UVC is defined by UVM and consists of the same components for each

UVC. Figure 4.14 on the preceding page depicts its structure. An UVC consists of the

following components:

Data Item UVM uses the TBV for modeling the stimulus sent to the DUV. A transaction

is called data item in the context of a UVM. A data item aggregates the information

required for a single DUV operation. Examples for a data item are read or write

operations, network packets, or descriptors which trigger other operations. The fields

of a data item specify the information needed for a single transaction. For a network

packet common fields are the destination address, the traffic class, and the payload

of the packet.

The data item itself is implemented in the library as an SV class. The fields are

from the extra SV type random. Thus, it is possible to generate random data items.

Beside the fields, the data item has default constraints for the constraint solver, as

not all values for a field are compliant with the specification.

In the lifetime of a data item, the data item has to be converted to bits, when it is

sent the the DUV or it has to be created out of interface signals from the DUV. At

this conversation some fields can be directly applied to interface signals, for example

when there is an interface which transfers network packets. If the interface has

dedicated signals for the packet header, the header fields of the data item can be

directly applied to the interface. If the interface has a common signal for the packet

header and the payload, first the packet header has to applied to the signal in the first

bit time followed by the payload. To have a more general approach for assembling

the data stream, data items do have pack and unpack functions. These functions are

available automatically when using UVM and can be modified by the user by hooks.

The pack function creates a bit stream out of the fields. The unpack function gets a

bit stream and extracts the field from the stream and sets the fields accordingly.

Sequencer Sequencers are used in UVM to generate data items. The data items are

forwarded to the connected driver on request from the driver. Sequencers can act as

simple stimulus generators providing one item after each other. They also enable

more complex test scenarios and test libraries via sequences. A sequence is a set

of data items which are generated in a given order. The data items in a sequence

either can be completely random or can have additional constraints to test a specific

behavior. Sequences can also start other sequences or can be assembled in libraries.

Sequence libraries can be used within different verification environments and are a
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key feature for the re-usability of UVM.

A sequencer controls one driver and therefore a single DUV interface. For complex test

scenarios it is necessary to control the stimulus on more than one DUV interface. For

that reason, UVM defines virtual sequencers. Virtual sequencers are not connected

to a driver. Instead, they are connected two one or more other sequencers. Via these

connections, virtual sequencers can issue data items or sequences on other sequencers.

Sequencers can also be reactive. Reactive sequencers receive a request from the DUV

and provide corresponding responses. Reactive sequencers can be both non virtual

or virtual.

Driver The driver in UVM handles the signals on a DUV interface. It requests data items

from the connected sequencer. The data item is then converted into interface signals

according to the specification.

Monitor The monitor samples the signals on an interface and creates a data item for each

transaction seen. The monitor also checks the signal behavior of the interface, and

the fields of the collected data item. The field check verifies, that each field only has

allowed values. For example, when a data item has field that indicates the length of

the attached data, a check can ensure that length field and actual data length are

the same.

Coverage collection for the interface is also done in the monitor.

Agent The agent is used as a container for the driver, sequencer and monitor. It represents

a single instance on an interface. If there is a bus, there can be more than one

instances using the bus. Each single instance is represented by an agent. A single

UVC for a bus interface can have multiple agents. The agent count is adjustable by

the UVC configuration.

A point to point interface has two actors: the sender and the receiver. An UVC for

such an interface does have two agents. A master and a slave agents representing the

sender and the receiver. So, the UVC is able to act as each member of the interface.

An agent can exist in an active or passive mode. An active agent has the driver, the

sequencer and the monitor activated. It can send input stimulus to a DUV. In a

passive agent only the monitor is activated. The driver and the sequencer are disabled.

It is used to monitor and check an interface. The modes are used in different ways.

In an UVC for a point to point interface only the master agent or the slave agent

has to generate the stimulus for a DUV. Then the not needed agent is set to passive,

and thereby disabled. This functionality also improves the re-usability of an UVC.

When the UVC is used to verify a module of a bigger design, its agents are active to

generate the input stimulus. Is the module integrated into a bigger TB, then the
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Figure 4.15.: Module UVC

interface which was driven by the UVC before, is driven by a surrounding module.

To still be able to monitor and check the interface, the UVC agents are set to passive

mode. This monitoring improves the overall observability of the complete DUV.

The mode of an agent is configured via the built-in UVM configuration mechanism,

which is described in section 4.1.7.3 on page 71.

UVCs can be distinguished between interface and module UVCs. An interface UVC,

which is shown in figure 4.14 on page 65, is directly connected to a DUV. It handles the

signals of the interface. The agents do have a driver, a sequencer, and a monitor.

A module UVC, as shown in figure 4.15, is used to control other UVCs. It does not have

an interface connection to a DUV. The agents only consists of a monitor and a sequencer

without a driver. Module UVCs are used to partition the TB. For example, in a large

design there are standard interfaces to connect the different modules. For each interface an

interface UVC is created. In a TB for a module these UVCs are used to provide the input

stimulus on the interfaces of the DUV. The data items used on these UVCs are related

to the interface. Protocols on top of the interface, which are used by the module itself,

can be hard to realize with constraints on the data items of the interface UVC. In this

case a module UVC is used to simplify the stimulus generation, but also to increase the

re-usability. If the interface of the module changes to a new interface, only the interface

UVC changes. The module UVC and all tests, checks including the scoreboard stay the

same.

4.1.7.2. UVM Phases

A typical verification environment consists of several independent components like stimulus

generators, monitor, and scoreboards. As they are independent of each other, problems

occur, when a simulation starts or at the end of a simulation. At the simulation start, all

components need to be created. Then, they need to be connected to the DUV and other

components. Not before all components are created and connected, the reset of the DUV

is started. If this order is violated, the TB does not behave as intended. For example

components access other components before they are created. Another problem that arises
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Figure 4.16.: UVM Phases

is the end of a simulation. In a TB there are many transactions on the fly. Before the

simulation can be stopped, all transactions must be finished. Also the DUV needs a drain

time, so that it can enter an idle state and no other operations are in flight. Therefore, all

components need to be stopped at the same time to avoid false error reporting. This can

be a complex task a large environment with many components and transactions.

UVM uses an approach based on phases to provide a synchronization between the

different states of a TB. The scheduling of the phases is done by UVM. Each component

can implement an own function named as the phase to execute code in this phase. These

functions are called automatically by UVM in the corresponding phase. Due to this

automatism, the TB writer does not have to care about the synchronization. Even large

TBs with many components can be set up easily.

The phases used within UVM are depicted in figure 4.16. Each phase has a specific task

as shown below.

Build The build phase is the first UVM phase executed in a simulation. It is used to create

all static components like UVCs, drivers, and scoreboards in the environment. As all

components are arranged in a hierarchy. They are build top down. First the test is

created, followed by the TB, UVC tops, and then further down the hierarchy.

Connect After the build phase is finished, all components in the verification environment

are available. In the connect phase the components are connected with each other.

For example, the sequencers gets connected to the corresponding drivers. It is safe to

connect components across the UVM hierarchy, as all components were create before.

End of Elaboration In the end of elaboration phase final adjustments to the configurations
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of the components and the connections between them can be made.

Start of Simulation The start of simulation phase is intended to print banners, the final

topology and configuration of the TB.

Run The run phase is the single simulation time consuming phase in UVM. In this phase

the sequencers create the stimulus. The scoreboard(s) check the responses from the

DUV. When all transactions defined by the test are sent and the DUV is idle again

after processing all input stimulus, the run phase can advance to the next phase.

Extract In the extract phase analysis components retrieve information from the scoreboards

and monitors. This information can be used for statistics.

Check The check phase does an end of test checking with the information received in the

extract phase. A common check is that the scoreboard does not have any outstanding

transactions.

Report In the report phase the final statistics and result of the simulation is displayed.

A problem arises when the run phase advances to the extract phase. The phase change

should only occur, when all components have finished their tasks in the run phase. UVM

therefore uses an objection mechanism. Each component can raise an objection on a phase

object and drops it when its task is finished. The run phase advances to the next phase

not until all objections that were raised before are dropped. An optional drain time can be

specified. This time is waited after the last objection has dropped before UVM advances to

the next phase. If a new objection is raised, the drain time is stopped until all objections

are dropped again. For example, a sequence raises an objection on start up and drops it,

when all its transactions are sent. Thus, it is possible to synchronize the transition to the

next phase with little overhead for the verification engineer even for environments with a

large number of concurrent components.

4.1.7.3. UVM Configuration Mechanism

An advantage of UVM is its design for re-usability. Therefore, it uses UVCs to encapsulate

the behavior of an interface or a module. An UVC is a generic object, which represents the

different modes of an interface. For example there are master and slave agents. Depending

on the environment a UVC is used in, either the master or the slave agent is active.

Consequently, there must be a mechanism for the configuration of the UVCs. It is possible

to directly change the UVC code to change its configuration. But, this approach has several

drawbacks. Not always the UVC is completely available. When the UVC is provided by

third party vendor, its core code is encrypted. Even when the code is available, it can

cause trouble modifying the code directly. When the UVC is used within different TBs

and in each use case a different configuration is needed, the UVC needs to be copied for

70



4.1. Verification Methodology

0

2

4

6
Drain Time

Time

O
b

je
ct

io
n
s

Figure 4.17.: UVM Objections

each use case. This makes it hard to maintain the code in each copy.

UVM provides a configuration database to solve these problems. This database stores

the configuration for each UVM component, which differs from the default configuration.

To change a configuration value, UVM provides set config() functions. These functions get

as parameters the hierarchy name of the component, the attribute to change, and the new

value. When a component is created during the build phase, the configuration is applied

automatically.

4.1.7.4. UVM Factory

Building a verification environment is a dynamic and fluid process. The use case of an

UVC can change while being used. The original specification changes or a specific use case

needs to extend its behavior. These changes cannot be foreseen at the time of the creation

of the UVC. For example, the transaction of an UVC has default constraints for its fields.

They are sufficient for normal use cases and are built to only allow valid values for the

field of the transaction. To test error conditions these constraints have to be changed from

the outside of the UVC.

UVM uses the factory design pattern [57] to allow changes on an UVC after the creation

without modifying it itself. A factory is an object, that is used to create other objects.

That’s why, each UVM component is registered in the UVM factory. Instead of using

the constructor of a class to create an object, the factory has to be used. On request the

factory returns an object of the given type. To be able to change the behavior of an UVC

type overrides are used. Type overrides instructs the factory to return another object type

as requested. For instance to change to default constraint from the example above, a new
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Figure 4.18.: UVM Testbench

class is created which inherits from the original transaction class. There the new constraint

is added. Afterward, the factory is instructed the return an object of the new class instead

of an original one. Type overrides only work for classes, that are inherited from the class

that should by overridden. Beside global type overrides, the factory also allows overrides

for specific instances in the UVM hierarchy.

4.1.7.5. UVM based Test Bench

An UVM TB, as shown in figure 4.18, assembles all UVM components needed to verify a

DUV. In the TB the UVCs are instantiated. There, the module UVCs get connected to the

interface UVCs. The central scoreboard is also part of the TB. It receives transactions from

the different monitors inside the UVCs. A virtual sequencer is used to control the sequencers

of the UVCs. Therefore, the virtual sequencer is connected to the UVC sequencers. An

optional coverage collector can be instantiated in the TB. It collects coverage for the

interface to interface DUV behavior, which is not collected in the interface and module

monitors.

Each test in the verification environment again instantiates the TB. So, changes in the

TB are instantly available in all tests. The test itself specifies, which default sequence the

virtual sequencer in the TB has to execute. This default sequence actually defines the test

stimulus. It sends single transactions to the UVC sequencers or starts other sequences on

them.

4.1.7.6. Connecting UVCs

The previous sections mentioned interface and module UVCs. They are used to represent

the different layers in complex protocols. They also add an abstraction layer, which makes

it easier for a test writer to implement complex tests without caring about each interface
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detail and enables the strong re-usability of UVM.

This sections describes a way how to establish the connection between UVCs. Therefore,

it shows how the different UVM facilities can be used together to build a verification

environment.

As depicted in figure 4.19 on the following page, the layering of UVCs consists of two

parts. First, the data items created in the module UVC must be forwarded to the sequencer

in the interface UVC. Henceforward, the data items of the module UVC are called upper

items and the data items of the interface UVC are called lower items. The sequencer of the

interface UVC has to transform the upper items into lower items, before the lower items

can be sent to the driver. Second, the lower items collected by the interface monitor need

to be transformed into upper level items, in order that the monitor in the module UVC

can forward the upper item.

In an interface UVC, the sequencer and the driver communicate via Transaction Layer

Modeling (TLM) [58]. TLM is a standard for transaction based modeling. Particularly,

TLM defines channels for the communication between transaction based components. UVM

uses these channels for the transportation of data items between components. Therefore,

each sequencer has a default sequence item export. Each driver has a sequence item pull

port. These ports are connected in the agent they are used in. Afterward, the driver can

request new data items from the sequencer by using the get() function of its pull port.

As each sequencer has a sequence item export, this port can be used also to send data

items from the module sequencer to the interface sequencer. This has the advantage, that

the sequences for the module sequencer stays the same, regardless which interface UVC

is used. A standard sequencer has no sequence item pull port. Consequently, a sequence

item pull port has to be added to the interface sequencer. It is not advisable to change the

sequencer in the interface UVC. A sequence item pull port is always parameterized with a

data item type. An interface sequencer parameterized with an external data item type

has a reduced re-usability, because of its dependency to the upper data item. Instead, a

factory override should be used. Therefore, a new sequencer which extends the interface

sequencer is created. In this sequencer a sequence item pull port is added. Thereafter, a

factory instance override is added, which instructs the factory to return the new sequencer

instead of the interface sequence, when the sequencer is created in the interface UVC. In

the TB the port of module sequencer can be connected to the port of the new sequencer.

With the new sequencer the upper items are forwarded to the interface sequencer. To sent

the items to the driver, they have to be converted into lower items. This conversion is done

by a special sequence, which is executed in the interface sequencer. The sequence requests

a new item from the module sequencer via the newly added TLM channel. Depending on

the module and the interface protocol, the conversion creates one or more lower items out
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Figure 4.19.: UVM Layering

of the upper item. Either the fields of the upper item are copied to the according fields of

the lower item, or the upper item information gets encapsulated in the payload of the lower

item. In this case the pack function of the upper item is used to create a bit stream. This

bit stream copied into the lower item payload. Afterward, the lower item(s) are forwarded

to the driver.

The lower items are sampled by the interface monitor on the DUV interface. Each

monitor implements an analysis port, which is used to sent the sample data items to

other components like a scoreboard. This port can also be used to sent the lower items

from the interface monitor to the module monitor. Data items can be received from an

analysis port with the help of an analysis implementation. A module monitor has no

analysis implementation, as it is unknown to which other monitor it is connected at the

time of creation. This problem can be solved again with a factory override. Therefore, the

module monitor is extended and an analysis implementation is added to the new monitor.

Afterward, a factory instance override is added for the module monitor. The new monitor

is connected with the interface monitor in the TB.

The module monitor has to create upper items from the received lower items. After the

conversion the upper items are to the analysis port of the module monitor.

4.2. EXTOLL Functional Verification

This section describes the functional verification methodology which has been developed

for the functional verification of EXTOLL. The goal was to create a complete methodology

out of the existing methodologies and technologies for verification, that fits exactly to the

needs for the verification of EXTOLL.
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4.2.1. Functional Verification Roles

In a large verification project like for EXTOLL, many people are involved. There are

system architects, who specify functional blocks of a chip and their interaction with each

other. There are RTL designers, who implement the chip specified by the system architects

in RTL. There are semi custom design flow specialists, who do a synthesis of the RTL

netlist and create the final Graphic Database System (GDS)II view for the tape out. And

there is the functional verification team. They have to ensure, that the implemented chip

conforms to the specification. The functional verification team can be further distinguished

into several roles depending on the skill set of each member. For the EXTOLL verification

project the following roles have been defined, each one with different responsibilities:

TB Creator The TB creator has a strong knowledge of the whole verification process.

He has to decide how each part of a design is verified. Another responsibility is to

build the verification environments for each part. Therefore, a strong knowledge of

verification methodologies like UVM is needed. He also has to maintain the regression

suite.

Coverage/Assertion Specialist Coverage/assertion specialist implements the coverage and

checks defined in the verification. He has a deep knowledge about coverage and

assertion languages like SVA or Property Specification Language (PSL). He don not

need to have a in depth knowledge about the verification process.

Regression Analyst The regression analyst has to examine the coverage progress in the

regression. During regular analysis sessions, he determines the holes in the coverage

and makes proposals how to close these holes. Therefore, he needs a understanding

of the complete system design.

User The user uses the existing verification environments implemented by the TB creators.

Users are typically RTL designers, who wants to do single test runs with his design

before the regression starts or after changes in their design. He also does reruns of

failed regression test runs for debugging.

4.2.2. EXTOLL Verification Analysis

The functional verification of EXTOLL started with an analysis of the design. Goal of the

analysis was to get to know the design and the functionality of each block. Furthermore, it

was important to understand the interactions of the different blocks with each other. As

shown in section 4.1.5 on page 60, the knowledge gained from the analysis has been used

to create a first version of the verification plan.

As depicted in figure 4.20 on the following page, EXTOLL consists of three main parts:
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Figure 4.20.: EXTOLL Overview

the host interface, the network interface, and the network. The host interface connects

EXTOLL to the host system either with HT [49] or Peripheral Component Interconnect

Express (PCIe) [48]. The network interface is the communication layer, which provides

different communication mechanisms. The network is responsible for transferring packets

from their source to their destination node in the network. From a verification perspective,

these parts are large blocks, which do have a high functional complexity. Building a

verification on this level, introduces many problems in generating a stimulus to reach full

coverage. It also has an observability problem, as when a functional fault occurs, it is

difficult to locate the fault.

On the next hierarchy level in EXTOLL there are the main functional units. The HTAX

Bridge connects either the HT or the PCIe core with the central on chip network called

HyperTransport Advanced Crossbar (HTAX) [59]. To the HTAX the functional units of

the network interface are connected. These are the VELO [31], the RMA, the Address

Translation Unit (ATU), the Shared Memory Functional Unit (SMFU), and the central

RF. The functional units are connected to the network via NPs. The network consists of

the EXTOLL crossbar and the LPs. All these units have a reasonable size for a functional

verification.

The next step in the analysis has been to identify common internal interfaces between

units. For these interfaces interface UVCs were created. The goal was to build a library of

UVCs, as shown in figure 4.21 on the next page, which can be reused in the TBs for the

different units. The reuse of the UVCs reduced to overall effort to build the verification
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Figure 4.21.: EXTOLL Interface UVC Library

Figure 4.22.: HT Core Interfaces

environments for each unit. In this case, the clean design of EXTOLL helped to build the

verification. EXTOLL has three main internal interfaces. These interfaces are the HTAX

interface, the FU to NP interface, and the network interface. The HTAX interface is used

by the on chip network. The FU to NP interface is used to connected the FUs to the NPs.

The network interface is used by all units in the network layer for communication. For

example, the network UVC could be used in the verification environments for the EXTOLL

crossbar, the LP, and the NP. Improvements made to the network UVC are available for

all verification environments they are used in. The interface UVC library also includes

the Buffer Queue (BQ) and Write Combining Buffer (WCB) UVCs, as they are needed

in several verification environments. The CAG RGM UVC is used for the Register File

Surrogate (RFS) interface, which the standardized interface for accessing the register file

from each unit.

After the analysis of the internal interfaces, the decision was made for which units a

verification environment is needed. An overview for each unit is given the following list.

HT Core/HTAX Bridge The HT core(see figure 4.22) and the HTAX bridge are closely

coupled units. That’s why, a common verification environment was created. For this

environment the existing HT link UVC from the HT core verification was reused.

The previously developed HTAX UVC was also reused. The scoreboard had to be

implemented from scratch.

HTAX For the HTAX existed a verification environment from an earlier project in which

the HTAX was fully verified. So, no environment needed to be created for the HTAX.
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Figure 4.23.: BQ Interfaces

RF The RF is generated by RFS [60]. As the code generation was verified during the

development of RFS, a verification environment for the RF was not needed. The only

faults that could occur were wrong connections from the RF to the FUs. To check

these connections the chip level verification (see section 4.2.5 on page 113) was used.

Buffer Queue The BQ [31] represents a ring buffer in main memory. This ring buffer

is used by EXTOLL to write data directly in the user space of a process without

involving the kernel. The ring buffer behaves like a First In First Out (FIFO)

structure. It has a write and a read pointer for adding and taking data from the

buffer. The hardware writes new data to the current write pointer address, and

does an increment of the pointer afterward. The software polls on the read pointer

address until new data is available. After the new data is processed, the read pointer

is increment. It is desirable to have a large enough buffer for receiving messages.

Due to limitations in the Linux kernel, a four MegaByte (MB) segment is the largest

segment possible in a single memory allocation. To be able to handle buffers with

a larger size, the ring buffer needs to be virtualized. This virtualization is done by

the BQ. It forms a logical continuous ring buffer out of several distributed memory

segments. It encapsulates the handling of the single segments from the Hardware

(HW) unit, that has to use a memory ring buffer. Therefore, it provides a request

interface, where an unit can request the next physical write address.

The BQ is used in the VELO for writing received messages in the main memory. The

RMA uses the BQ for the handling of notifications in main memory. The BQ is a

central unit within EXTOLL with a complex function. To speed up the verification

of the VELO and the RMA, an SVB environment for the BQ was created.

Write Combining Buffer Modern CPUs and memory controllers are able to split and

reorder memory read responses as well as write requests. This can lead to a frag-

mentation of descriptors sent to the VELO and the RMA. To hide the functionality

of recombining and reordering the received packets from the host system from the

FUs the WCB [31] was introduced. It provides an interface to the FU, which only

forwards completely reassembled packets. The WCB is also used to resolve blocked

traffic on the posted VC. When a process wants to send a message to another node,

it sends a descriptor to one of the EXTOLL FUs via a posted write. If one or
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Figure 4.24.: WCB Interfaces

many processes send a lot of descriptors to the FUs and the network is blocked in

order that these descriptors cannot be injected into the network, the posted VC gets

blocked. This leads to a deadlock, if this happens on two nodes sending to each

other. The posted write, which increments the read pointer in the BQ, cannot pass

the outstanding blocked descriptors. Consequently, the receiver in the FUs cannot

drain the network, when the receiving mailbox is full. In this case the WCB is used

to resolve the deadlock. It starts to drop the received posted writes, which drains the

posted VC. As no descriptors should be lost, software has to buffer all descriptors.

The WCB counts the dropped and forwarded descriptors. These counters are used by

the software to determine, which descriptors have to be resend. Instead of dropping

descriptors, the WCB is also capable to drain the posted VC by writing them to a

reserved memory region in main memory.

The logic complexity of the WCB justifies it to build a verification environment for

the WCB. Especially the dropping and mirroring of packets is too complex to verify

it in conjunction with a FU the WCB is used in. Also, the verification code for

handling the WCB can be reused in the VELO and RMA TBs, which simplifies the

implementation of the corresponding verification environments.

VELO The VELO [31] is optimized for sending small messages with a low latency and

incorporates a two sided communication. It is completely virtualized to ensure a safe

access directly from the user space. It consists of two submodules, the requester and

the completer. The requester injects a message to be sent in the network. A WCB

instance is used to aggregate the received descriptors, which may be split by the host,

from the host CPU. The completer receives messages from the network and writes

them into the corresponding mailbox in main memory using a BQ instance. The

VELO uses Protection Domain Identifiers (PDIDs) to guarantee safety and security

of a message.

The VELO has two interfaces. One to the HTAX crossbar and one to the NP. For the

verification environment the HTAX and FU to NP UVCs are reused to connected the

interfaces. A module UVC is needed to encapsulate the functionality of the VELO.

This UVC uses VELO descriptors as its transaction. The verification environment has

to check, that VELO requester and completer correctly forward the VELO messages.
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Figure 4.25.: VELO Interfaces

For the completer it has to be checked that the received messages are written to the

correct mailbox and in the mailbox to the correct segment. The verification has to

focus on the error handling of the VELO, as this a critical point for the chip. It has

to check the VELO behavior for messages received with a wrong PDID and messages

for a disabled mailbox. In both cases the message has to be dropped.

RMA The RMA [61] is used in EXTOLL to realize a remote memory access to other nodes

using DMA. It supports remote put and get operations, as well as locks. As the

VELO, the RMA is fully virtualized. From a software’s perspective, it is possible to

directly access the RMA from the user space without involving the kernel. Because

software operates with virtual addresses and the RMA needs physical address to

perform its operation, an address translation is needed. Therefore, the RMA uses a

functional unit called ATU.

Each RMA operation is specified by a descriptor. The descriptor includes the

operation type and all information needed to fulfill the operation like the memory

addresses for reading and writing data, or the Virtual Process Identifier (VPID).

This descriptor is sent from the host CPU to the RMA, where it is then processed.

The RMA operates directly on the main memory. So, the software is not able to

determine easily, when an operation is finished. To solve this problem, the RMA

supports notifications. These notifications are triggered optionally, when an operation

finishes. Whether a notification is triggered or not is specified in the descriptor. The

notification is written into the mailbox specified by the descriptors VPID. The RMA

uses the BQ for handling theses mailboxes. Like with the VELO, all RMA descriptors

sent over the network are secured with a PDID.

The RMA consists of three major blocks: the requester, the responder, and the

completer. The requester receives descriptors from the host CPU and is the starting

point for all RMA operations. For put operations it first reads the needed data from

main memory. Then, the descriptor is transformed into one or more network descrip-

tors, which are injected into the network. The responder processes get operations

from remote nodes. On a received network descriptor, it reads the data from the

requested main memory address. This data is then sent back to the requesting node.

The completer is the last unit involved in an RMA operation. When it receives an
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Figure 4.26.: RMA Interfaces

network descriptor, it writes the attached data into main memory to the address

specified in the descriptor.

The RMA has the highest functional complexity of all EXTOLL functional units.

Consequently, it is obvious, that a verification environment for this unit is needed. It

has two interfaces to the HTAX, two interfaces which are connected with an NP, an

interface to the BQ, and an interface to the ATU. For all these interfaces, interface

UVCs from the EXTOLL UVC library can be used. A module UVC for the RMA

functionality is also needed. The verification environment has to check, that all

descriptors are processed correctly by the RMA. Error checks include wrong received

PDIDs and descriptors for disabled VPIDs. Also false page translations needs to be

checked. For a complete description of the verification environment for the RMA see

section 4.2.4.1 on page 94.

SMFU EXTOLL introduces a functional unit for non-coherent distributed shared memory

communication called SMFU [33]. Remote memory accesses are handled by forwarding

local load or store transactions to a remote node. This forwarding is completely

done in hardware without involvement of any software layers. So, the SMFU directly

enables shared memory memory paradigms like PGAS in hardware.

The address space gets partitioned into local and global addresses. Local addresses

point directly to the local memory. The local memory has a private and a shared

partition. The shared local partitions of all nodes are mapped into the global address

space. So, each node is able to directly access the shared local memory of all other

nodes.

A CPU can access remote memory by a load or store operation to a global address.

Therefore, the global address space is mapped to the SMFU in a local node. So,

the system automatically forwards the operation to the SMFU. It encapsulates the

received operation which is either a posted write or non-posted read, and sends it via

the network to the remote node. The remote SMFU extracts the operation from the

network packet, which is then send to the host main memory. Responses for reads
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Figure 4.27.: SMFU Interfaces

are returned accordingly.

The SMFU determines the destination node by the help of the global address. Which

part of the address selects the destination node can be configured in prior to the

start of a program. As the global address space can be mapped to different local

address on different nodes, the SMFU needs to determine the global address. This is

done by subtracting a local start offset from the local address. The address to the

local memory of the destination node is calculated by adding the nodes local offset

to the global address.

A node can receive read requests from different remote nodes. Each node has its own

pool of source tags. When the SMFU forwards these requests to the local memory,

it can happen, that a source tag is used more than once within a node. Therefore,

the SMFU does a source tag remapping for requests from remote nodes. It stores

the origin source tag together with origin node, and assigns a new local source tag.

The request is sent to the local memory controller. Upon arrival of the response, the

source tag is exchanged by the origin source tag. The response is then sent to the

origin node.

The verification environment for the SMFU needs special checks for the address

calculation and the source tag handling. All other fields of a request must not be

modified by the DUV. There, a comparison of the injected and received values can

be done. The SMFU has an interface to the HTAX, an interface to the network port,

and a register file interface. For all these interfaces UVC from the EXTOLL UVC

library are used. On top a module UVC for the SMFU was build. This UVC has a

special component for handling the source tags.

Address Translation Unit The ATU [60] is used in EXTOLL for address translations. As

mentioned before, the RMA cannot operate with physical addresses for security

reasons. Instead, Network Logical Addresss (NLAs) are used. An NLA in the context

of EXTOLL is the same as a virtual address in the context of an CPU. Therefore,

the RMA needs to translate NLAs received from the software into physical addresses

to access the main memory.

The ATU uses Global Address Tables (GATs) for storing the address translations.
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Figure 4.28.: ATU Interfaces

Figure 4.29.: NP Interfaces

These tables reside in main memory. A lookup table in the ATU is used to find

the corresponding GAT for an address translation. The NLA is used as index for

the lookup table and the GAT. Each GAT entry consists of the physical address,

the VPID, and valid bits, which indicate if a page is read only, write only, or

read/writable. As the address translation is critical for the system performance, the

ATU incorporates a Translation Look-aside Buffer (TLB) to reduce the translation

latency, when an NLA is used regularly.

The ATU implements fences to inform the RMA about the invalidation of translations

and flushes to remove entries from the TLB.

The verification environment for the ATU has to deal with three interfaces. There is

the request interface, which is used by the RMA to request translations. The HTAX

interface is used to read the GATs from the main memory. And there is an RF

interface to connect the ATU RF with the global EXTOLL RF. The HTAX and RF

interfaces are driven with the corresponding UVCs. Beside these UVCs, a ATU UVC

is needed. This UVC needs two agents. One agent to handle the request interface.

The second agent emulates the main memory and responses to reads from a GAT.

This agent is connected to the HTAX UVC and acts as module agent.

Network Port The NP handles the credit based flow control used in the network for the

FUs. This simplifies the FUs, as the NP provides a FIFO like interface to them.

The network flow control starts and ends in the NP from a FU perspective. The

NP also capable to drop erroneous packets received from the network, as they are

re-transmitted by the LP.

The NP verification environment uses the FU to NP and network UVCs. A scoreboard

needs to be added to check the NP behavior.

EXTOLL Crossbar The EXTOLL network crossbar [31] is the central switching element

in the EXTOLL network. It is responsible for forwarding packets in the network
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from their source to their destination node. Beside unicast routing, the crossbar

implements a hardware multicast. The routing is based on table based routing. The

crossbar supports two virtual channels for deadlock free routing. Packets traveling

on theses virtual channels are delivered in order. A third virtual channel is used for

adaptive routing for a better congestion management. Four traffic classes allow a

quality of service mechanism. A credit based flow control is used by the crossbar and

the network, as already mentioned in the previous section.

The crossbar uses two different interfaces for the communication with other units.

The network packet interface is used to connect the crossbar to the network ports

and link ports. A register file interface connects the crossbars internal register file to

the global EXTOLL register file. The verification environment can use the network

packet UVC and the register file UVC to connect to the crossbar. The environment

has to check that a packet sent to an input port of the crossbar gets forwarded to

the correct crossbar output port. Packets on the deterministic virtual channels have

determined out ports based on the routing table. For packets on the adaptive virtual

channel there are different possible out ports. The verification environment cannot

determine which out port is taken from the outside, as this decision is made in the

crossbar based on the fill grade of its internal buffers. Consequently, the scoreboard

has to check that the packet is forwarded to exactly one of the possible out ports

specified in the routing table. The check for the correct forward behavior is done by a

white box check in the crossbar itself. The virtual channel is changed in the crossbar

based on the routing entry for the destination node of packet. All other fields are

not modified by the crossbar. The scoreboard implements one queue for each out

port. When a packet is sent to an in port, the scoreboard adds this packet to the

queue of the out port specified by the routing table. When a packet is received at an

out port, it is compared against the packets in the corresponding scoreboard queue.

To check the flow control of the crossbar, the network packet UVC incorporates a

credit handler. Packets are only sent by the driver, when enough credits for a packet

are available. If not, the driver waits until credits get available. When a packet is

received by the UVC from the DUV, the corresponding amount of credits is sent

back to the DUV after a random time. The credit handler checks on the reception

of a packet, that enough credits were available to sent this packet. At the end of a

simulation it is checked, that all credits were released again.

The crossbar uses a table based routing. In order that the crossbar is able to forward

packets, crossbar’s routing table must be written when the simulation starts. The

verification environment implements a routing table handler. This handler is the

reference routing table for the verification environment. This routing table gets

populated with random entries when the simulation starts. An initialization sequence
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Figure 4.30.: Crossbar Interfaces

writes the routing table in the register file of the crossbar.

Link Port The LP ensures a reliable transmission of packets via a link cable. It receives

packets and credits from the crossbar and sends them to the directly connected node.

In addition, barrier messages from the barrier module are sent as well. All sent data

is stored in a retransmission buffer, in order to resend them in the case of an bit

error.

The LP has four interfaces. An interface to/from the crossbar, an interface to the link

phy, an interface to/from the barrier, and a register file interface. The network packet

UVC is connected to the crossbar interface. The CAG RGM UVC is connected to

the register file interface. The barrier UVC developed for the barrier verification

environment is connected to barrier interface. An UVC was created for the link

interface.

If no link errors occur, the LP forwards EXTOLL packets. In this case, the scoreboard

has to check, that the packets, the barrier messages and credits are correctly forwarded

without any modifications.

The more important checks for the LP affect the error handling and retransmission.

For the verification this can be split into two parts. The first one is the out port. It has

to be checked, that if the LP receives a NACK, all not acknowledged retransmission

units are resent. Therefore, the verification environment has to keep track of the

outstanding, not acknowledged packets. The verification environment has to delay

to sending of the ACK for packet received from the link out port, in order that the

retransmission buffers can fill up. Randomly, a NACK instead of an ACK is sent

back to the LP to trigger a retransmission. Then, the verification environment has

to check that a retransmission cell is sent followed by the first not acknowledged

retransmission unit and all other units to be resend.

The second part is the in port. The in port checks the protocol CRCs and does a high

level protocol check. To verify the correct error handling of the in port, all possible

faults must be injected. The LP in port interface to the link consists of valid signal,

a control signal and a data signal. For error insertion the verification environment

randomly inverts one or more bits of these signals. Then, the environment waits for
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Figure 4.31.: LP Interfaces

Figure 4.32.: Barrier Interfaces

a NACK received from the LP. Afterward, it sends a retransmission cell followed

by all not acknowledged retransmission units. On the interface to the crossbar, the

environment has to check, that no erroneous packets are forwarded by the LP. As the

LP has to drop all received data after a link error until the retransmission starts, the

scoreboard needs no special handling for errors. It continues the check the packets on

the LP to crossbar interface. If the LP forwards erroneous packets, there are either

mismatches in the fields of the packets or duplicated packets. Both faults are found

by the scoreboard, as it checks for these things during normal operation.

Barrier The barrier module implements an efficient hardware barrier. For a complete

description refer to section 3 on page 33.

The barrier logic is dominated by control logic. There is no complex data path with

data transformation or FIFOs. Consequently, the barrier unit was verified using

formal verification. For a detailed description of the barrier verification environment

refer to section 4.2.4.2 on page 113.

A schedule was made for the implementation of the EXTOLL verification library and

verification environments, after the analysis of all EXTOLL units. The schedule has to be

aware of the availability of each unit. Units for which the RTL is completed first, needs to

have a verification environment first. In parallel to the verification, the FPGA bring up for

EXTOLL began. The verification schedule also has to consider, which units for the bring

up are mandatory and which can be added to the FPGA later on.

The RTL of the HT Core and the HTAX bridge as well as the HTAX crossbar were

reused from the first release of EXTOLL. Only small modifications were made. So, the

TBs for these modules were assigned the lowest priority.

The BQ and the WCB are used in the VELO and RMA. Therefore, they were assigned
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the highest priority. The bring up first focused on sending messages in to the local node

without traversing a link. For that reason and because of the lowest complexity of all

functional units, it was decided to implement the VELO first. Sending a message in the

local node also requires the NP and the crossbar. So, the TBs for these units needed to

build next.

After the delivery of local messages worked, the link was started running. Thereafter,

EXTOLL was extended by the missing functional units stop by step. Here from, the

following priorities for finishing the TBs for the EXTOLL units were given:

1. BQ

2. WCB

3. VELO

4. Crossbar

5. Network Port

6. LP

7. ATU

8. RMA

9. Barrier

10. SMFU

11. System Level Testbench

12. HT Core/HTAX Bridge

To accelerate the availability of the TBs a two phased approach was chosen. For the

bring up, not all features of a unit were needed in the first place. It was sufficient, that the

basic functionality was implemented and verified first. With the progress of the project

more and more special functions like error handling were implemented. This could be

reflected in the TBs. The first versions of the TBs only verified the basic functionality.

During the verification and the FPGA bring up, the design was more understood in its

detailed behavior. This knowledge gained from this process, was used to improve the

verification plans for each unit, and therefore the TBs and the test coverage.

4.2.3. Verification Infrastructure

One goal for an advanced verification methodology is a high automation grade. The

automation reduces the probability of errors made in the verification caused by human

intervention. It also improves the reproducibility and predictability of the verification
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process. To enable this automation a verification infrastructure is needed, which assists all

actors in the verification process.

4.2.3.1. Subversion Directory Structure

During the development of a large ASIC a lot of source code needs to written for the RTL

as well as for the verification. To synchronize the source code between the developers

involved, version control systems are used. Version control systems also enable the tracking

of changes in the source code. For the EXTOLL development Subversion (SVN) was chosen

as version control system, as it is widely adopted and was known to all developers involved.

As there is different code in the SVN repository, a directory structure was developed to

address the following problems:

• Make it easy to locate code in the repository

• Reduce redundant code in the repository

• Allow script automation

• Support different target technologies for EXTOLL

The SVN structure is depicted in figure 4.33 on the next page. The SVN top directory

is separated into two main directories. One for the RTL code named hw/, and for the

verification code named verification/. In the hw/ directory there are subdirectories for the

EXTOLL units called extoll r2/, for the building blocks like FIFOs, and the EXTOLL

targets. Each unit or module has its own subdirectory in the corresponding directory. In

this directory there is its source code, a .f file which lists all source files in this directory.

The .f files are used by the TBs and synthesis tools for a faster read in of the source code.

In the vplan/ directory resides the verification plan for the unit.

EXTOLL can be mapped to different target technologies like FPGAs or ASICs. Each

target can use a different configuration of EXTOLL. For example, as host interface either

HT or PCIe can be used, the internal data path can be 64- or 128-Bit, or the amount of

links can change. Therefore, each target needs a different top level file, a different crossbar,

and a different RF. To reflect these differences, the extoll r2 target/ directory is used. Each

target has an own directory to collect all source files specific to this target.

The verification directory is structured into three subdirectories. The TBs reside in the

tb/ directory. The common/ directory is used for scripts and files used in all TBs. The

UVCs are stored in the UVC/ directory. There, each UVC has its own subdirectory. The

UVC directory structure is defined in [62]. The sv/ subdirectory is used for the SV code,

the doc/ subdirectory for the documentation, and the vpm/ subdirectory for the UVC’s

verification plan.
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SVN root

hw/

extoll r2/

${UNIT NAME}/
${UNIT NAME}.f
vplan/

...

extoll r2 targets/

${TARGET NAME}/
building blocks/

verification/

tb/

common/

extoll r2/

${TB name}/
building blocks/

UVCs/

${UVC name}/
sv/

doc/

vpm/

Figure 4.33.: Subversion Directory Structure

EXTOLL is mapped to different target technologies. Each target technology uses different

building and IP blocks. For example, RAMs are highly technology specific. To meet the

timing for a technology, it can be required, that a module needs to add pipeline stages,

which are not necessary for all targets. This leads to minor or major changes to the RTL

code. But, each unit needs to be verified for each target technology, if there are code

changes. A technology specific TB for each target is not an option, as it duplicates the

verification code and increases the effort to maintain the verification. Code changes are

only done internally to units for which a TB is needed. The interfaces between them are

technology independent. When the interfaces stay the same, also the TB code needs no

modification. For the TB the DUV code needs to be changed. Therefore, the TB must be

made aware of the different target technologies. This is reached by adding a parameter

to the TB’s run script to select the target technology, which then reads the technology

specific source code files. This also needs to be considered when specifying the directory

layout for the TBs.

Each TB shares the same directory layout as shown in figure 4.34 on the following

page. On the top level there is the run.sh script to start the simulation. The clean up.sh

script is used to remove all temporary files created by the simulator. build/ contains

all files needed by the simulator to start the simulation. The compile ius.f file specifies
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TB directory

build/

compile ius.f

ncsim.tcl

coverage.cf

compile ius ${TARGET NAME}.f [optional]

src/

rgm/

targets/ [optional]

${TARGET NAME}/
rgm/ [optional]

duv.sv

tb top.sv

duv.sv

${TB NAME} tb.sv
${TB NAME} scoreboard.sv
${TB NAME} virtual sequencer.sv

testlib/

${TEST NAME}/
${TEST NAME} sequence.sv
${TEST NAME}.sv

seqlib/

test lib.sv

${TEST NAME} base test.sv

create new test.pl

vpm/

analysis/

${TB NAME} tb.vplan
scripts/

vpm compile.sh

vpm run.sh

execute/

run.sh

pre run.sh [optional]

pre run ${TARGET NAME}.sh [optional]

clean up.sh

Figure 4.34.: TB Directory Structure
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the parameters for the simulator. It includes the .f files from the source code directories

for providing the source code. As different source files are needed for different targets,

optionally compile ius ${TARGET NAME}.f files for each target can be used. All target

specific sources are specified in this file. It has to reference compile ius.f, which sets all

target independent parameters and source files. The ncsim.tcl TCL file is automatically

executed by the simulator via the run scripts. There, the simulation can be further

configured. For example, signal probes to create simulator waveforms have to be declared

here. In coverage.cf it can be declared what kind of coverage and for which modules should

be generated for the TB. For more details on coverage generation refer to [63].

The src/ directory is used for all TB specific code. tb top.sv is the top file for the whole

TB. This central file improves the overall usability of the TB for the verification engineer,

as in this file all other files needed for the TB are included via preprocessor statements. It

includes:

• Instances of the SV interfaces used by the UVCs

• a clock generator

• an instance of duv.sv

• the run task, which starts the UVM

In duv.sv the DUV is instantiated. Thus, it is possible to add auxiliary code for the

DUV without congesting tb top.sv. In ${TB NAME} tb.sv all UVCs, the scoreboard, and

the virtual sequencer are created and connected with each other.

The optional rgm/ directory stores the register file model for the CAG RGM UVC. A

shell script in this directory is used to generate the model from the RFS xml definition.

In the optional targets/ directory code specific to a target is stored. Each target has a

subdirectory with its name. If the targets need a special version of the DUV it is stored

here, as well as target specific register file models. When target specific DUVs instances

are used, then the non target duv.sv can be omitted.

The test library in testlib/ includes all tests available for the TB. Each test has its own sub-

directory. There is the test file (${TEST NAME}.sv), which configures the virtual sequencer

for the TB to execute the main test sequence specified in ${TEST NAME} sequence.sv.

Some tests need modifications to the TB. These modifications are done in the test file as

well. For example, when a tests needs to sent packets with specific length, this can be

reached by using constraint layering. Therefore, the original data item class gets extended.

In the extended class a new constraint is added which sets the length to a certain value.

This class is stored the test library directory of the test. In the test file a type override is

added, which instructs the UVM to generate objects of the extended class instead of the
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Figure 4.35.: CAG Testbench Hierarchy

original one.

In testlib/ also a base test for all tests is stored. All tests are extended from this test.

The base test instantiates the UVM TB (${TB NAME} tb.sv) and includes functionality

that is used in all tests like printing the UVM topology. Thus, it possible to make changes

to all tests without modifying each single test, which increases the verification efficiency and

reduces duplicated code. In test lib.sv all tests are included with preprocessor statements.

This file gets included in tb top.sv. In seqlib/ sequences can be stored, that can be used by

all tests in the test library.

In the testlib/ directory a create new test.pl also exists, which creates a new test. As

parameter it needs the name of the new test. It makes a new directory with the test

name, creates the test and sequence files, and adds include statements for the new files to

test lib.sv. Afterward, the test can be started directly. The test writer only needs to fill

the test sequence with the intended test stimulus.

The vpm/ directory summarizes all files needed for the regression of the TB. In analysis/

there is the verification plan specific for this DUV. It instantiates the verification plan from

the UVCs used, the white box verification plan for the RTL and the code coverage. The

scripts/ directory is used for the run scripts needed for the regression environment. For a

detailed description see section 4.2.6 on page 133.

Figure 4.35 shows the TB hierarchy resulting from the described structure.

The definition of the directory structure enables it to create the infrastructure for a new

TB using a script, which significantly reduces the time needed to start a new TB. This

script is stored in the verification/tb/ directory of the SVN. It expects the name of the new
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Option Description

-h Prints the help.

-c Runs clean up.sh in the TB directory before starting
the simulator.

-t ${TEST NAME} Selects the test to run.

-v Sets the UVM verbosity.

-d ${TARGET NAME} Selects the target.

-g Opens the graphical waveform viewer.

-o Enables coverage generation.

-s ${SEED} Selects the seed for the random constraint solver.

-f Disables the execution of the pre run*.sh scripts.

Table 4.1.: Run Script Options

TB as a parameter and creates the whole directory structure including all files mandatory

for each TB. The newly created TB can be started immediately. The test writer then has

to fill this skeleton with the functionality required.

4.2.3.2. Testbench Run Script

Before the verification methodology described in this chapter was introduced at the CAG,

each TB used its own run script. These scripts had different options, and different methods

to select a test, when this was even possible. Each TB user needed to dig in the scripts to

get to know, how to use them. To simplify the use of the run scripts, a common run script

format for all TBs was developed.

The new run script is split into a TB independent core script and the run.sh script in the

TB itself. So, improvements made to the core script are available to all TBs immediately.

The TB run.sh script is a small wrapper for the core script. It controls the core script via

environment variables. It needs to set the path to the TB and optionally a default target,

and calls then the core script.

The core script starts the simulator. The runtime options for the simulator are specified

in either build/compile ius.f or build/compile ius ${TARGET NAME}.f, if the -d option

is set, of the TB. So, the run script instructs the simulator to use the options from the

compile file. Some IPs need to be compiled in a library before the simulator is started.

Therefore, optional pre run.sh scripts in the TB directory are used. The core script checks

their availability, and executes them if needed. It also possible to use target specific pre

run scripts, which must be called pre run ${TARGET NAME}.sh. They are called after

the common pre run script.

The -o instructs the simulator to collect coverage during simulation. The selecting of
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the coverage types that should be collected and for which modules can be made in the file

build/coverage.cf.

Table 4.1 lists all available run script options.

4.2.4. Unit Verification

For the verification of EXTOLL TBs for each major unit were created. As examples for

these TBs, this section describes the TBs for the RMA and the barrier. The RMA TB was

chosen because of its complexity. On the basis of the barrier, an example for the formal

verification is given.

4.2.4.1. RMA

The RMA functional unit is used in EXTOLL to realize remote memory access. An

overview of the RMA is given in section 4.2.2 on page 75. For the verification of the RMA

a verification plan was created first. There all features of the RMA were listed.

The verification environment needs to verify all features of the RMA. Therefore, it must

be able to create all legal and possible input stimulus on the one hand. On the other hand,

all transactions generated by the RMA and received by the verification environment must

be checked. First, it needs to be checked that a transaction generated by the RMA is

expected. These transactions are a result of a descriptor sent to the RMA before. The

RMA is not allowed to generate transactions, which do not have their origin in a descriptor

sent to the RMA before. Second, when the transaction is expected its fields must be

checked against the fields of the transaction generated by the reference model for the RMA

from the descriptor which caused the received transaction.

The RMA is connected to the other units by standard EXTOLL interfaces. It communi-

cates with the host via two HTAX interfaces. The first interface is shared by the requester

and the completer. The second one is connected to the responder. On the network side two

NP interfaces are used. They are connected to the RMA main units in the same way as

the HTAX interfaces. Beside these main interfaces, several other helper interfaces are used.

The BQ request interface connects to the RMA to the BQ. The BQ handles the the ring

buffers in main memory which are used by the RMA the store the notifications for each

VPID. The interface is used to request the next main memory address for a VPID. The

ATU interface is used to request address translations from the ATU. The RFS interface

connects the internal RF to the global EXTOLL RF.

For the stimulus generation for these interfaces there are two possibilities: Either create

one large UVC, which directly connects to the RMA’s interfaces, or create several UVCs,
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Figure 4.36.: RMA UVC

which are connected to the interfaces and a RMA UVC, which is connected to the interface

UVCs. For the RMA verification, the second approach was chosen. On the the one hand,

each interface has its own complexity. On the other hand, these interfaces are used by

different units within EXTOLL. To speedup the verification process and to avoid having

redundant code, interface UVCs for each interface were created. The RMA UVC was

realized as a module UVC. It creates RMA transactions like software descriptors, which

are then sent to the interface UVCs.

RMA UVC The RMA UVC encapsulates the verification functionality, which is needed

for the verification of the RMA. It is realized as a module UVC. Figure 4.36 shows the

components in the UVC.

Building an UVC starts with the definition of the needed transaction types. From the

verification plan, the following transactions can be identified:

Software Descriptor Software descriptors are used to start an RMA operation and consists

of all information needed for the operation specified. The RMA supports gets and

puts from/to remote memory. Both are available as byte and quad word aligned

variants. Immediate puts can write up to eight bytes directly to remote memory

without involving a DMA transfer. Put notifications write data directly in the remote

ring buffer of a given VPID. Locks are used to synchronize processes on different nodes.

Software descriptors are sent from the host CPU to the RMA and are processed by

the requester. Table 4.2 on the following page describes the fields available in the

software descriptor transaction.

Network Descriptor Network descriptors are used by the RMA to transfer data over the

network. They get encapsulated in EXTOLL network packets for the transmission

by the NPs connected to the RMA. An EXTOLL network packet has a maximum

payload length of 512 bytes. So, each network descriptor must fit in the same size.

The requester creates one or more network descriptors out of a software descriptor

to match the network packet size. Network descriptors are received either by the

responder or the completer. The responder reads data from main memory or does
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Field Description

command Specifies the operation.

resp notification Generate a notification at the responder.

comp notification Generate a notification at the completer.

req notifiaction Generate a notification at the requester.

source vpid VPID of the source process.

traffic class The traffic class the network packets resulting from
this descriptor have to use.

descriptor length The data length in bytes− 1.

translation enable The used addresses are NLAs, and therefore the RMA
has to do an address translation.

interrupt enable Generates an interrupt instead of a notification of the
notification bit for a unit is set.

remote register access PUTs and GETs target the EXTOLL RF instead of
main memory.

destination node The remote node for the operation.

destination vpid The remote VPID of the operation.

multicast PUTs are treated as multicasts.

ntr Each network descriptor which is generated out of a
software descriptor generates a notification not only
the last one.

era Use an Excellerate read access instead of a main mem-
ory read.

ewa Use an Excellerate write access instead of a main mem-
ory write.

payload size Specifies how many bytes the descriptor will transport.

read address Specifies from which address data should be read.

write address Specifies to which address data should be written.

payload The payload for immediate and notification PUTs.

target Target unit for the lock operation, either the responder
or the completer.

lock number Identifies the lock number for the lock operation.

compare operand The compare value for the lock operation.

add operand This value is used by the lock operation to modify the
lock variable.

Table 4.2.: RMA Software Descriptor Fields
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a lock operation and sends the responses as network descriptors to the completer

of the source node. The completer writes the data attached of a received network

descriptor into the main memory. The fields of the network descriptor are shown in

table 4.3 on page 97.

Memory Access Memory accesses are used by the RMA to read and write data from/to

main memory. The requester and the responder do read accesses to receive data from

main memory, which is then injected into the network. The completer uses write

accesses to store data received from the network in main memory. There are three

different access types: read, write, and read response. Table 4.4 shows all fields of

the memory access.

Notification Notifications are used to inform the software, that a RMA operation has

finished. Each software or network descriptor can trigger a notification depending on

the notification fields of the software descriptor, which started the RMA operation.

The notifications are written to a ring buffer in main memory, which is handled by

the BQ. There are three different notification types: standard notifications, which

are used by put and get commands. Notification puts are special puts to write data

directly in the notification ring buffer, and thus they have an own format. Lock

notifications carry information to identify the lock number and the result of a lock

operation. Table 4.5 on the next page lists all notification fields.

For each transaction, an UVM transaction was defined by extending uvm sequence item.

This way, the transactions are provided automatically with print, compare, and copy

functions which operate on all transaction fields. The pack and unpack UVM callbacks

were used to implemented the according pack and unpack functionality for each transaction.

These functions are used to create a bit stream out of a transaction and the other way

round. They simplify the transformation of a transaction to a bit pattern in the driver.

As the transactions are created randomly, it can happen, that transaction fields are

assigned values which are out of their allowed ranges. For example, the allowed range for

the payload length is different for each descriptor command. To assist the random solver,

which assigns the random values to the fields of the transactions, constraints are used,

which define allowed values for each field. For each transaction, default constraints were

added to create valid default random transactions. These constraints need to be as general

as possible, to allow the generation of all possible input stimulus. For a more specialized

test, these constraints can be modified be by the test writer.

The RMA UVC must be able to generate stimulus for each unit of the RMA. First,

it has to generate software descriptors for the requester. Second, it also has to generate

network descriptors for the responder and the completer. Therefore, two different agents

were developed. The requester agent handles the software descriptors. The network agent
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Field Description

destination node The destination node for the operation.

n
et
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rk
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destination vpid The destination VPID of the operation.
target unit The EXTOLL crossbar port to be used in the

destination node.
traffic class The traffic class for the network packet.
dvc The deterministic virtual channel to be used.
avc The adaptive virtual channel to be used.
multicast Use a multicast group.

protection domain id The PDID of the destination VPID.
source node The node which sent the descriptor.
source vpid The VPID of the source process.
resp notification Generate a responder notification.
comp notification Generate a completer notification.
command Specifies the operation.
rra PUTs and GETs target the EXTOLL RF instead

of main memory.
intr Generates an interrupt instead of a notification

of the notification bit for a unit is set.
te The used addresses are NLAs, and therefore the

RMA has to do an address translation.
ewa Do an Excellerate read access instead of main

memory.
ntr Each network descriptor which is generated out

of a software descriptor generates a notification
not only the last one.

era Do an Excellerate read access instead of main
memory.

error If the requester or the responder encounters an
error, this field is set.

byte count The data length in bytes− 1.
write address Specifies to which address data should be written

by the completer.
read address Specifies from which address data should be read

by the responder.
payload The payload for immediate and notification

PUTs.
data The data attached for PUTs and GET responses.
target Target unit for the lock operation, either the

responder or the completer.
lock number Identifies the lock number for the lock operation.
compare operand The compare value for the lock operation.
add operand This value is used by the lock operation to modify

the lock variable.
result The result of a lock operation. Set to one on

success.
value after lock The lock value after a lock operation.

Table 4.3.: RMA Network Descriptor Fields
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Field Description

access type Can be a write, read, or read response.

address Address for writes and reads.

length The length of the data.

source tag Used to correlate a response to a read.

data Array with the data attached for writes and
responses.

Table 4.4.: RMA Memory Access

Field Description

notification type Can be a standard, a put, or a lock notification.

remote vpid The VPID of the remote process belonging to
the operation which generated the notification.

remote node id The node ID of the remote process belonging to
the operation which generated the notification.

requester The requester generated the notification.

responder The responder generated the notification.

completer The completer generated the notification.

rra Remote register file access, copied from the RMA
descriptor.

intr Interrupt, copied from the RMA descriptor.

te Translation enable, copied from the RMA de-
scriptor.

ewa Excellerate write access, copied from the RMA
descriptor.

ntr Notification replicate, copied from the RMA de-
scriptor.

era Excellerate read access, copied from the RMA
descriptor.

requester error A requester error occurred.

responder error A responder error occurred.

completer error A completer error occurred.

local address The address that was affected by the descriptor
on the local node.

count The amount of data, that was transferred by the
descriptor.

payload The payload of a put notification.

lock number The lock number of the lock operation.

result The result of the lock operation.

value after lock The lock value after the lock operation.

target target == 0 → lock request to the completer.
target == 1 → lock request to the responder.

Table 4.5.: RMA Notification

99



4. Functional Verification

creates network descriptors. Each agent has a sequencer, which is able to create descriptors.

The requester agent has one monitor, which samples the software descriptors sent to the

DUV. The network agent has two monitors, as on the network port interface packets are

sent to the NP and received from the NP. Consequently, it possible to distinguish between

packets sent in a direction more easily.

Because the RMA uses DMA, main memory must be provided in its verification environ-

ment. It is not practical to provide a complete memory in the verification environment.

This memory has to be allocated in advance to a test run, and needs a lot of physical

memory, while only a small amount of memory is actually used. The reduced size makes it

also impossible to use high and low memory addresses in the same test, which narrows the

test coverage. Instead of using a real memory, the memory gets emulated in the verification

environment. This emulation is done by the memory responder of the RMA UVC. The

RMA forwards the data read from main memory to the network and has no constraints

about its content. Thus, it is sufficient, when the verification environment returns complete

random data for a read request. Therefore, read requests are forwarded to the memory

responder. It then creates a responds with random data attached, which is sent to the

RMA in return.

The RMA uses a VPID table to store VPID specific information. There it stores data

like if a VPID is enabled or its PDID. Before the RMA can process traffic, this table must

be initialized. The UVC needs also to handle this table. It has to do its initialization and

checks received descriptors with the help of table. This functionality is implemented in the

VPID table component of the UVC. It implements a list of table entries. Each entry has

all fields which are needed for a VPID. Theses entries are randomized in the beginning of

a test. Getter and setter functions can be used by any verification component to access

these entries. The verification environment uses an initialization sequence to write the

table into the RMA.

The RMA supports a lock operation using an atomic fetch-compare-and-add operation.

The operation itself is handled in the RMA to ensure its atomicity. The lock values for

each lock number are located in main memory and cannot be used on user-defined data.

The management of the locks in the verification environment is done by the lock handler.

It abstracts the main memory region, which is used in a real system for locks. All available

lock values are stored in an internal array. Getter and setter functions are used to access

the lock values from other verification components. A get address function returns the

address for a given VPID lock number combination.

The RMA UVC’s sequence library includes basic sequences which assists the UVC user

with the stimulus generation for the RMA. Following sequences are available:

Send Software Descriptor The send software descriptor sequence sends a single software
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descriptor. The command field of the software descriptor to be sent is constraint to

valid requester commands.

Send Network Descriptor The send network descriptor sequence sends a single network

descriptor and must be executed on the sequencer of the network agent. Its single

field is the network descriptor to be sent. Each network descriptor sent to the RMA

must carry the same PDID as stored in the RMA’s VPID table. If they do not equal,

the RMA drops the received descriptor. The sequence ensures, that the descriptor is

sent with the right PDID. Therefore, the network descriptor gets randomized first.

Afterward, the right PDID for its destination VPID gets inserted. Last, the sequence

sends the network descriptor.

Send Responder Descriptor The send responder descriptor sequence inherits from the

send network descriptor sequence. It adds a constraint, that only valid responder

commands are sent by this sequence.

Send Completer Descriptor The send completer descriptor sequence inherits from the

send network descriptor sequence. It adds a constraint, that only valid completer

commands are sent by this sequence.

TB After all required UVCs for the RMA verification were finished, the RMA TB was

build. An overview of the TB is given in figure 4.37 on the following page. It shows the

UVCs used and the connections between them.

First, the directory structure for the TB as described in section 4.2.3.1 on page 87

was created followed by the instantiation of the DUV. The DUV also includes an HTAX

instance. The HTAX is used as in the complete EXTOLL. It provides three different ports,

where each one is used for a single HT VC. These ports are connected the the HTAX

bridge within EXTOLL. In the TB these ports are used to connect the UVCs to the RMA,

which simplifies the handling of the VCs in the TB a lot.

The next step was to connect the SV interfaces, which are used by the UVCs to interact

with the DUV. Followed by the instantiation of the UVCs. First the interface UVCs were

created and instantiated and configured. For the HP2NP UVCs only the slave agents

were activated, as they receive packets from the RMA and do not inject any packets. The

NP2HP UVCs sent packets to the DUV and do not receive any of them, so the master

agents were activated and the slave agents deactivated. The ATU UVC has to respond

to ATU translation requests. Therefore, only the RMA slave agent needs to be activated

for the ATU UVC. The RGM UVC sends RF requests to the RMA. There, the master

agent is activated. The BQ UVC has to respond to BQ address requests. So, the request

slave agent is activated. There, also the host agent is set to passive. It is used to receive

the RMA’s notifications and checks that they are written to the right memory location of
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Figure 4.37.: RMA TB Overview
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its related ring buffer. The UVC for the posted VC needs to send packets to the RMA

and receive posted writes from the DUV. There, the master agent for the included HTAX

Transmit (TX) UVC and the slave agent for the HTAX Receive (RX) UVC are activated.

On the non posted HT VC, the verification environment has to receive requests from the

DUV, but has not to sent its own. Here, only the HTAX RX UVC slave agent is required.

For the response VC the TB sends requests to the RMA, but does not receive them from

the DUV. Thus, the master of HTAX TX UVC is activated.

After the DUV was connected to the interface UVCs, the RMA UVC was integrated into

the TB. For this integration, the method for connecting UVCs described in section 4.1.7.6

on page 72 was used. First, new extended sequencers for all interface sequencers were

created. They obtained an UVM pull port for receiving data item from higher level

sequencers. Then translation sequences, which create interface UVC transaction out of the

RMA transactions, were constructed. Type overrides in the TB made sure, that the new

sequencers were used instead of the original ones. The upper and lower level sequencers

were connected in the TB as well. Following sequencers were modified this way:

• The HyperTransport on Chip Protocol (HTOC) master sequencer of posted HTOC

UVC instance.

• The HTOC master sequencer of response HTOC UVC instance.

• The NP2HP master sequencer of the first NP2HP UVC instance.

• The NP2HP master sequencer of the second NP2HP UVC instance.

In order to connect the monitors of the RMA UVC to the scoreboard, the monitors

need to receive transactions from the interface monitors. Then, the RMA UVC monitors

transform the interface transactions into RMA descriptor transactions. Therefore, the

RMA monitors were extended as described in section 4.1.7.6 on page 72. Type overrides

for the RMA monitors were added to the TB to use the new extended monitors instead

of the original ones. The connections between the interface and RMA monitors were also

established in the TB.

All RMA units access main memory. Following operation are executed:

• Read accesses for DMA by the requester and the responder.

• Write accesses for DMA by the completer.

• Notifications are stored in main memory ring buffers using memory writes.

• The lock values needed for lock operations are stored there and are access by reads

and writes.

By doing so, for the verification arises the problem that it cannot distinguish the
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functionality that is targeted by a write access, which is needed in the scoreboard to decide

which checks must be applied for a write. Writes can either trigger data checks for the

completer, notification checks for ring buffers accesses, or lock operation checks. The first

possible solution for this problem is to search the different queues for expected items in the

scoreboard to find the target functionality. This solution is very complicated to implement

in the scoreboard, as it adds more complexity to the already complex scoreboard. That’s

why another solution was chosen. For the addresses for writes into main memory a memory

map is used. The address space is divided into three segments: the lock, the completer,

and the buffer queue segment. As current CPUs have a maximum physical address size

of 52 Bits, the address bits 51 to 50 are used as a segment tag. In the build phase of the

TB the segment tags are randomized, in order that each segment is mapped to the each

address range. This information is stored in the configuration object of the TB and is used

by the scoreboard to correlate a received write to a function block. Also, all descriptors

sent to the RMA need to be aware of these segments.

The descriptors’s fields send to the RMA cannot be completely randomized. They have

to follow TB specific constraints like the address constraints for writes which are sent

by the RMA. Indeed, these writes are sent by the RMA, but they have their origin in a

descriptor sent before by the TB. So, each descriptor has to be constraint in a way, that

all resulting RMA transactions fulfill the global constraints as well.

Another point a test writer has to keep in mind are the translations for NLAs. When the

NLAs for a descriptor are generated completely random, there is no translation available

in the beginning, as the GAT table of the RMA UVC is empty when the simulation starts.

Therefore, a new GAT entry must be created for the NLA before the descriptor is sent

to the DUV. Send sequences were written for the TB which add GAT entries before the

descriptors.

To hide some constraints from the test writer and therefore make it easier to create valid

descriptors, the following sequences are available in the TB:

Send software descriptor sequence The send software descriptor sequence sends a single

software descriptor. It inherits from the software descriptor sequence of the RMA

UVC. It automatically adds valid address translations to the GAT table of the TB,

after the descriptor was randomized and before it is sent to the RMA.

Send responder descriptor sequence The send responder descriptor sequence sends a

single network descriptor. It inherits from the send responder descriptor sequence of

the RMA UVC. It automatically adds valid address translations to the GAT table of

the TB, after the descriptor was randomized and before it is sent to the RMA.

Send completer descriptor sequence The send completer descriptor sequence sends a

single network descriptor. It inherits from the send completer descriptor sequence of
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Figure 4.38.: RMA User Sequences

the RMA UVC. It automatically adds valid address translations to the GAT table of

the TB, after the descriptor was randomized and before it is sent to the RMA. In

addition, it has a constraint, that ensures, that the descriptor’s write address hits

the current memory segment of the completer.

Send responder descriptor with wrong PDID sequence The send responder descriptor

with wrong PDID sequence sends a single network descriptor. It can be used to

verify the error handling of the RMA. It inherits from the send responder descriptor

sequence of the TB and overrides the set protoction domain id() function inherited

from the send network descriptor sequence of RMA UVC to return a wrong PDID.

The probability for a wrong PDID is controlled by a constraint.

Send completer descriptor with wrong PDID sequence The send completer descriptor

with wrong PDID sequence sends a single network descriptor. It can be used to

verify the error handling of the RMA. It inherits from the send completer descriptor

sequence of the TB and overrides the set protoction domain id() function inherited

from the send network descriptor sequence of RMA UVC to return a wrong PDID.

The probability for a wrong PDID is controlled by a constraint.

Before the TB can sent descriptors to the RMA, the RMA has to be initialized. This is

done by an initialization sequence, that writes into the RF of the RMA using the CAG

Register Modeling (RGM) UVC. The values of the configured parameters are stored in the

global configuration object of the UVC. The sequence is executed by each test in the run

phase, before it starts to sent the test specific stimulus. The initialization sequence itself
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executes a couple of function specific sequences. The following sub initialization sequences

are used:

General Configuration The general configuration sets the network Maximum Transfer

Unit (MTU), and the PCIe MTU.

VPID Table initialization This sequence initializes the VPIDs in the RMA. It writes all

available VPID table entries of the RMA UVC’s VPID table to the RMA. The table

itself is initialized during the TB’s end of elaboration phase.

Buffer Queue Initialization The buffer queue initialization sequence creates the descriptor

queues for the buffer queue. The size of each ring buffer and the number of buffer

segments are randomized and stored in the BQ UVC.

Lock Initialization The lock initialization sequence writes the base address of the lock

memory segment. It also writes the lock configuration register, which enables the

locks, set the number of available VPIDs, and the number of available locks per

VPID.

RMA Scoreboard The checking of the RMA’s the the black box behavior is done by the

TB’s scoreboard. It generates for each descriptor sent to the RMA by the TB the expected

response transactions. These response transactions are stored in the scoreboard. Each

transaction generated by the RMA is forwarded to the scoreboard. The scoreboard checks,

if the transaction is expected. If not a error message is printed, otherwise the fields of the

expected transaction are compared against the fields of the expected one. If there is any

mismatch an error message is reported. When an error is detected by the scoreboard, it

stops the simulation immediately, as from this point on the DUV is in a error state and

may behave not correctly any more.

As described in the previous sections, all interfaces of the RMA are monitored by UVCs.

Via UVC layering all transactions generated by the RMA are transformed into RMA UVC

transactions. The monitors of the UVCs are used to forwarded these transactions to the

scoreboard. The connections between the scoreboard and the monitors are established

via UVM TLM channels. The RMA UVC monitors forward all software and network

descriptors sent to and from the RMA. Beside these connections all read and write memory

accesses as well as all buffer queue accesses are forwarded to scoreboard. All monitor to

scoreboard connections are shown in figure 4.37 on page 102.

All three RMA units operate independently of each other. For example, when the

requester sends a get operation it hasn’t to wait for a response from the responder. So, the

scoreboard can check the units independent of the other units as well.

The scoreboard needs to store the expected RMA transactions for a descriptor until
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the DUV sends a response. Each expected transaction must be easily correlated to its

original descriptor to be able to determine when an RMA operation is finished. So, it

is not feasible to use a set of queues for expected network descriptors, memory accesses

and so on. As the expected transactions must be correlated to a descriptor, another

possibility would be to extend the RMA descriptors by several fields to store the expected

transactions. This reduces the re-useability of the scoreboard, when global factory type

overrides for descriptors are used. That’s why a third solution was chosen. For all RMA

units a scoreboard container object was created. These containers store all information

needed by the scoreboard to check the processing of a single descriptor. Each descriptor

sent to the RMA gets an own container instance. The RMA’s units process all received

descriptors in order. So, the scoreboard has container queues for each unit, where the

descriptors are stored in order. Not until the first descriptor in a queue is finished, the

next one is checked.

Requester Checking The requester is checked by the scoreboard in the following way.

The scoreboard receives software descriptors sent to the RMA from the RMA UVC’s request

monitor. It creates a request scoreboard container and adds the received descriptor. For put

operations the requester needs to read data from main memory. Therefore, the scoreboard

generates the expected reads. If an address translation is requested by the descriptor, the

scoreboard requests the physical address for the descriptors read address from the ATU

UVC. When more than one page must be read because of the descriptors length, also

the translations for the following pages are requested. Then the addresses and sizes of

the all read requests are calculated, and stored in the container. Puts and gets operation

send more than one network descriptor. For this reason, also the addresses of the network

descriptors are calculated and stored in the container. For all other operations, the requester

generates one network descriptor for each received network descriptor, and copies the fields

of the software descriptor to the according fields of the network descriptor. Therefore, the

scoreboard stores the newly created container in the container of the requester without

any further action.

When a main memory read request is received, its address is compared against the

expected address of the first container which expects a read. If the address matches the

expected address is set to the next address, otherwise an error is reported. When response

for this request is received, its data is attached to the first container which expects a read

for a later data check.

When the scoreboard receives a network descriptor sent by the requester, it checks if a

software descriptor is outstanding in the container queue. If not an error is reported. When

a software descriptor is available, first all fields that copied from the software to the network

descriptor are checked. Afterward, the network descriptor addresses are compared with
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the expected ones, as well as the data which was received by the scoreboard with memory

responses. If no more network descriptors are expected, the current scoreboard container is

deleted. If not, the address and data pointers are incremented in the container for the next

network descriptor. If it was the last network descriptor for a software descriptor and the

software descriptor has to generate a notification, the container is added to a notification

queue for further checking.

Responder Checking The completer performs two actions. First, it reads data for

get requests from main memory and generates get responses. Second, it processes lock

operations.

The scoreboard receives network descriptors sent to the responder from the send monitor

of the RMA UVC’s second network agent. Each network descriptor is stored in its own

scoreboard container. For get requests, the scoreboard has to calculated the expected

memory read accesses. If the read address in the network descriptor is an NLA, the

scoreboard requests the physical addresses for each page that is targeted by the descriptor

from the GAT of the ATU UVC. Thereafter, The addresses and sizes for each expected

memory read request are calculated and stored in the container. The container is add to

the responder container queue. When the responder starts to read from main memory,

the scoreboard receives the read requests from the memory responder of the RMA UVC.

It then compares the addresses and sizes of the requests with the expected ones from

the first responder container entry expecting read requests. If there are mismatches an

error is reported. The data of the responses generated by the TB, are forwarded to

scoreboard by the TB’s memory monitor. The scoreboard adds the data to the first

responder container with outstanding memory requests. When the responder has read

all data from main memory, it creates a get response descriptor and injects it into the

network. This descriptor is forwarded to the scoreboard by the receive monitor of the

RMA UVC’s second network agent. This descriptor’s fields are compared to the fields of

the first descriptor in the scoreboard’s responder queue. Also data is checked against the

collected data from the memory responses received before. If there are no mismatches, the

first container is removed from the responder queue. Otherwise an error is reported. If

the request descriptor indicates, that the responder has to trigger a notification after the

completion, the container is added to the notification queue for further checking.

For a lock operation, the responder reads the lock value from main memory, and compares

the lock value with the compare value in the network descriptor. If the lock value is less or

equal the compare value, the lock is successful. In this case, the responder adds the add

value of the descriptor to the lock value and writes the new lock value into main memory.

After the completion of the lock operation, lock response is set the node which requested

the lock. It carries the result of the lock operation and the current lock value.
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When the scoreboard receives a lock operation, it generates the lock address from the

lock number and the VPID, and adds this address to the scoreboard container. On the

responder’s read of the lock value from main memory, the read address is compared with

the expected one of the container. The data of the response is stored in the container.

When the scoreboard receives the lock response, it compares the fields of response with

the fields of the lock request. As the scoreboard has the value of the old lock value stored

from the memory response, it can check the lock value and the result in the lock response.

Afterward, the first container is removed from the responder queue. If notification should

be sent, the container is added to the notification queue.

Completer Checking The scoreboard receives network descriptors sent to the completer

from the send monitor of the RMA UVC’s first network agent. As for the other units, a

scoreboard container is created for the received descriptor. For puts and get responses, the

completer writes the data attached to the descriptor into the main memory. Therefore,

the scoreboard calculates the addresses, and sizes for the expected memory write requests

using the write address of the descriptor as start address. If the write address is an NLA,

an address translation with the help of the GAT is done for each page that is hit by the

current descriptor to get the physical address. The addresses and sizes are stored in the

container. Lock responses only generate notifications. That’s why in this case the container

is directly added to notification queue instead of the completer one.

When the scoreboard receives a memory write targeting the completer’s memory segment,

the write’s address, size and data are compare to the expected values of the first completer

container in the completer queue. If all writes for a descriptor were seen, its container is

removed from the queue. If the descriptor requests a notification, the container is added to

the notification queue.

The NP2HP monitors as all monitors collect a complete packet, before they sent the

transaction for this packet to other UVM components. The completer starts the descriptor

processing immediately after it receives its the first word. Due to the short completer

pipeline, it can happen therefore, that it sends the first write before the scoreboard receives

the corresponding descriptor. If this is not considered the scoreboard would report an error,

as it can’t assign a descriptor to this write. To solve this problem, the scoreboard has an

extra queue, where writes are stored, for which the network descriptor wasn’t seen yet.

When scoreboard receives a descriptor, and the write queue isn’t empty the writes in the

queue are compared with the expected one of the descriptor. As they must be triggered by

this descriptor, an error is reported on mismatch. This repeated until the queue is empty.

Notification Checking Notification are written to a BQ ring buffer. The buffer for each

VPID is shared among the RMA units. From this it follows, that the notifications for an
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unit must have the same order in the buffer as the descriptors which have triggered the

notification. The notifications of from the units can be mixed.

Notifications can be sent by the RMA, after it has completed a descriptor. For the

checking of the notification the scoreboard needs the fields of the descriptor. That’s why,

all containers of descriptors, that generate a notification are moved to a notification queue

after the scoreboard has detected that the descriptor is completed.

The scoreboard receives notifications via the host monitor of the BQ UVC. If the

notification queue is empty, an error is reported. Each notification has a field indicating

by which unit it was sent. This information is used to find the according container in the

notification queue. If no container can be found, an error is reported. Else ways, the fields

of the notification and its descriptor are compared.

RMA Error Checking The RMA has to deal with different issues that are caused by

programming errors or an unexpected termination of a program. The behavior of the RMA

has to be verified in these situations as well, as they can occur quite often. The following

classes of errors can be distinguished:

Wrong PDID PDIDs are used by the RMA to prevent a process to read or write data

from another process from which it isn’t allowed to communicate with. The system

software sets the PDIDs for all VPIDs, that communicate with each other to the same

random value. The PDID for a VPID is stored in the RMA’s VPID table. When

the RMA injects a descriptor into the network, it adds the PDID of the descriptor’s

VPID to the descriptor. When the RMA receives a network descriptor, it compares

the received PDID with the target VPID’s PDID. The descriptor is only processed,

if the PDIDs match. If they don’t match, the RMA has to completely discarded this

descriptor, in that way that the descriptor doesn’t issue any further actions on this

node, disregarding optinla error notifications.

To verify the PDID handling, the TB needs to generate network descriptors with a

wrong PDID. For sending network descriptors, the TB provides sequences, which

add the correct PDID to a network descriptor before it is sent. These sequences were

extended to insert a random PDID instead of the right one. Whether a correct or a

wrong PDID is used, is randomized each time a descriptor is sent. The test writer

can control this via a constraint.

As the RMA has to drop the descriptor, without requesting any page translations,

accessing main memory, or generating notifications, the scoreboard drops a received

descriptor with a non matching PDID. If the RMA, doesn’t discard the descriptor

correctly, it will generate transactions on its interfaces. These transactions will trigger

an error, in the scoreboard, either because there are no outstanding transactions
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expected or because of a mismatch with other expected transactions.

Disabled VPID When the RMA receives any descriptor, which targets a VPID, that is

not enabled in the VPID table of the RF, the descriptor has to be discarded.

The TB verifies this by not enabling all VPIDs during the initialization. It still sends

random descriptors to all VPIDs. When the scoreboard receives a descriptor targeting

a not enabled VPID, it is discarded. If the RMA doesn’t drop the descriptor correctly,

it will generate transactions, which the scoreboard can’t correlate to descriptor, and

will therefore trigger an error.

Address Translation Failure The third error the RMA has to deal with are address trans-

lation failures. They are caused by programming failures. Either by addressing a

wrong NLA or by an unexpected termination of a program on a node, while other

nodes still access its data. When a program terminates, the EXTOLL kernel driver

frees its resources, which includes to delete the address mappings of the ATU used by

this program. If there are network descriptors still in flight in the network after the

clean up, the address translation isn’t available any more. The RMA must handle

these errors, as they can happen quite often during the development of a parallel

program.

The RMA TB uses send sequences, which add random address translations for a

descriptor to the GAT before it is sent. To verify the address translation failure

handling, the TB has to return no address translations for a translation request

randomly. Therefore, the descriptor send sequences were extended to randomly not

create one or more GAT entries for a descriptor, as a RMA descriptor can caused

memory accesses to one or more pages in main memory.

When the RMA requests a translation for NLA, that isn’t available, the ATU UVC

returns an invalid response indicating that there is no translation available.

The checking of the RMA’s behavior in the case of a non available translation is more

complex than in the first two failure cases. The translation can fail for the first or

any following page that is involved in a descriptor operation. When the translation

for the first page fails, no memory accesses are done. When the translation fails for

any following page, only the memory accesses for pages with a translation are done.

All following accesses aren’t executed. The scoreboard has to consider this when it

calculates the expected memory accesses. During the generations of the expected

memory accesses, it stops to add more accesses, if the GAT has no translation

for a page. Also, the network descriptors generated by the RMA look different.

When the translation for the first page fails, only the first network descriptor is sent

with no data attached and the error field set. Then the scoreboard adds only one

network descriptor as expected to the scoreboard container for this operation. If
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the translation fails for any later page, not all data can be read from main memory.

Then only the descriptors are sent, for which data can be read. The last descriptor

sent has a reduced size, if the data from this descriptor crosses a page boundary. As

the scoreboard knows for which page translations are available, it can calculate the

length of the last descriptor.

After all expected transactions are added to the scoreboard container of the received

descriptor with the modified calculations, the scoreboard does its checking as without

injected errors.

Test Library For the RMA TB a test library was created to verify the features of the

RMA more easily. Each test creates traffic, which is constraint to verify a specific feature or

several features. Theses tests are also used a regression, were they are executed repeatedly

each time with a different seed for the constraint solver.

The following tests are available:

Simple Test This test sends 100 packets to each RMA unit. It is meant to have a short

test to do a fast check if everything is still fine after changes to the RTL or TB code.

It is not intended for a use in the regression suite.

Requester The requester test only creates traffic for the requester. It sends 2000 random

software descriptors to the RMA. For sending the descriptors, the send software

descriptor sequence of the sequence library is used.

Responder The responder test only creates traffic for the responder. It sends 2000 random

network descriptors to the RMA. For sending the descriptors, the send responder

descriptor sequence of the sequence library is used.

Completer The completer test only creates traffic for the completer. It sends 2000 random

network descriptors to the RMA. For sending the descriptors, the send completer

descriptor sequence of the sequence library is used.

Random Traffic The random traffic test creates traffic for all RMA units simultaneously.

It sends 2000 random descriptor for each unit. For sending the descriptors, again the

according sequences from the sequence library are used.

Disabled VPID The disabled VPID test sends random traffic for all units. During the

initialization of the test a random count of VPIDs are not enabled. The TB sends

traffic for all VPIDs including the not enabled ones. This way, it can be verified that

the RMA correctly drops descriptors for disabled VPIDs.

Wrong Protection Descriptor This test is used to verify the RMA’s behavior, when it

receives network descriptors with wrong PDIDs. It sends random traffic for all units.
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For the network traffic generation, the sequences from the sequence library, which

randomly send descriptors with a wrong PDID are used.

Wrong Translations The wrong translation test sends random descriptors to all units. To

verify the RMA’s handling of failing ATU translations, the descriptor send sequences

are modified to randomly not add all translations for a descriptor to the GAT.

4.2.4.2. Barrier

The barrier module developed in section 3 on page 33 was verified using the formal

verification. The formal verification was chosen because of the nature of the barrier

implementation. It consists mainly of control logic without a complex data path. Also, its

logic complexity is ideal for a formal verification.

The model checking approach, which is described in section 4.1.3 on page 55, has been

chosen for the formal verification. Therefore, properties using SVA were written to describe

the intended behavior of the DUV. First, assumption properties were used to guide the

formal verification tool, which is a valid input stimulus. Followed by checking properties to

check and verify the barrier behavior. They described the intended behavior of the internal

and output signals.

Afterward, the model checking tool was set up to reset the DUV. During the verification,

it created counter examples to show the found bugs. Counter examples are waveform

dumps, which show an example stimulus, which triggers the error.

Due to the efficiency of the formal verification, the verification of the barrier module

was realized in about one week. Also, the time required to get familiar with the formal

verification tool is very small, assuming that the verification engineer is used to write

properties.

4.2.5. Chip Level Verification

After the TBs for each unit were finished, it had to be verified that they work together on

the one hand. On the other hand it needed to be verified behaviors that can’t be verified

on the unit level. A typical example is the reset and clocking scheme of the whole chip.

Figure 4.39.: Chip Verification Decision
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As shown in figure 4.39 on the next page, there are three possibilities for the implemen-

tation of the chip level TB. The white box approach is not considered for the chip level

verification. It needs a lot of checks written for the units, which is not feasible for the chip

verification. Also, the several units were verified before with their own TBs. That’s why

major bugs should occur in the chip level verification.

From this is follows that the first doable alternative is the black box verification, as for

the unit TBs. EXTOLL has five major interfaces (see figure 4.40). On the host side there

is a HT or PCIe interface, which can be used alternatively. The link interface is used to

connect one EXTOLL chip to another one in the network. Beside these interfaces, there

are two further interfaces available for debugging an initialization. The Inter-Integrated

Circuit (I2C) interface provides a side interface to access the EXTOLL’s RF. The flash

interface connects a flash chip to EXTOLL. It is used to patch the RF during initialization.

Figure 4.40.: EXTOLL interfaces

For all these interfaces UVCs were developed(HT, link, I2C), or were available from

other sources(PCIe,flash). For the generation of the functional unit specific stimulus, the

unit module UVCs developed before can be reused, and connected to the interface UVCs

with the UVC layering approach. This way the stimulus can be created for the DUV.

4.2.5.1. Checking Strategy

As mentioned before, the simulation based verification needs both: the ability to generate

valid stimulus for the DUV, and a way to check its behavior. For each EXTOLL’s unit a

scoreboard was developed. These scoreboards expect its transaction to be received from

monitors directly connected to the unit’s interfaces. In a black box verification of EXTOLL

these interfaces aren’t monitored. That’s why, the reuse of these scoreboards isn’t possible.

A transaction sent from the link to the host, passes the LP, the crossbar, and the NP

before it reaches a functional unit. To check for example the RMA, its scoreboard must be

able to receive transactions from the link interface. Then it has to decided if the received

packet targets the local node, and if its destination node is the local, if it targets the right

local crossbar port. So, the RMA scoreboard needs to do an own routing lookup. This

functionality is not implemented in the existing scoreboard, and it’s no option to implement

it there.

Another problem arises in regard to the observability of an error. When the scoreboard
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checks transactions from on external interface to another, and it finds a transaction

mismatch, it is hard to locate the origin of this mismatch. First, the transaction the was

injected on the interface has to be identified. This transaction mustn’t be the transaction

that is used in the scoreboard for the compare operation, as this transaction can be a

transformation of the interface transaction. When this origin transaction is identified, it

must be tracked through the complete DUV, which a complex and time consuming task in

such a large design.

As the reuse of existing verification components and the observability of errors are very

limited with a black box approach, a different solution was chosen. Instead the grey box

approach was used. Using this approach it was possible to monitor the internal interfaces

of EXTOLL, from which the existing scoreboards expect to receive transactions. This way,

the scoreboards could be reused. It also solves the observability problem. Transactions are

monitored more closely to the place were an error occurs.

Figure 4.41 on the next page shows the resulting TB architecture. The EXTOLL’s

outside interfaces are connected to the link UVC on the link side. On the host side either

the HT or the PCIe UVC are used. EXTOLL can be used as a HT or a PCIe device.

Which UVC is used can be configured for each target in the target specific compile file of

the TB via the defines CAG USE HT and CAG USE PCIE. A more precise description of

this configuration option follows in later paragraph. For the flash and I2C debug interfaces

the corresponding UVCs are used. For these interfaces both the master and the slave agent

are activated, as the have to sent and receive transactions to/from the DUV.

Because a grey box verification approach was chosen for the chip level verification, the

internal main interfaces need to be monitored. Following interfaces were monitored:

• All crossbar interfaces

• The NP2HP interfaces

• The HP2NP interfaces

• The HTAX interfaces

These interfaces are used by the main EXTOLL units for the communication with each

other. For each interface instance a corresponding UVC instance was created. All these

UVCs were set to be passive via the UVM configuration mechanism. The SV interfaces for

the UVCs were instantiated in the tb top file of the TB. The interface signals are connected

to the Verilog signals with assigns. For example:

assign interface_I.valid = duv_I.network.lp_0_I.valid_to_xbar;

With the interface UVCs in place, the scoreboards for each unit are able to receive
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Figure 4.41.: Chip Verification Overview
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Figure 4.42.: EXTOLL traffic directions

transactions from the needed interfaces. The LP scoreboards are connected to the link

UVCs and network UVCs connected to LP crossbar interfaces. The crossbar scoreboard is

connected to the network UVCs. The same way the other scoreboards for the other units

are connected.

When a transaction is sent to the DUV, it is monitored by the interface UVC and

forwarded to the first scoreboard. When this transaction passes the interface to the next

unit its sampled by the UVC monitoring this interface. This transaction is forwarded to two

scoreboards. The scoreboard for the unit which sends the transaction uses the transaction

to compare it with the expected ones. The scoreboard for the unit which receives the

transaction calculates the expected response transactions for this transaction. Following

this scheme, a transaction sent from one external interface to another is completely covered

by scoreboards during its whole lifetime, as all units are covered by a scoreboard. Therefore,

it can be checked that the transaction is processed correctly in the DUV.

All UVCs and scoreboards used so far to monitor and check the UVC were reused from

the unit TBs without any modifications to the original code. Only the UVM configuration

mechanism was used to disable the active parts of the UVCs. This was only possible because

during the implementation of the UVCs it was payed attention to separate the generation

and the monitoring of the DUV’s stimulus. Also, the scoreboards were implemented as real

passive components which receive its data for the DUV only by standard UVM interfaces.

4.2.5.2. Stimulus Generation

For a complete verification TB, also the stimulus for the DUV must be provided. For

EXTOLL two main generators can be distinguished. The one which creates stimulus from

the host, and another one which creates the stimulus from the link. This stimulus can be

further differentiated as shown in figure 4.42. There is traffic from the host targeting the

same host. This traffic uses the network crossbar for an internal loop back. Then there is

traffic from the host to a link and the other way round. In all these traffic patterns the

functional units of the network interfaced are involved. Consequently, the traffic must be

initiated by a valid unit transaction. This can be done by reusing the module UVC for

these units. In traffic from a link to another link only the LP and the network crossbar are
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Figure 4.43.: Link Environment

involved. Therefore, the fields of a packet’s SOP sent this direction must be valid. But, the

payload can be random. This observation can be used to simplify the stimulus generation

on the link side.

The two mentioned generators must be able to easily provide stimulus for the EXTOLL’s

main functional units namely the RMA, the VELO, and the SMFU. These generators

were realized as two UVM environments, which assemble the UVCs needed to provide the

stimulus for an EXTOLL interface.

Link Environment The link environment is depicted in figure 4.43. This environment is

instantiated for each EXTOLL link interface one time. As interface UVC the link UVC

was reused, which was developed for the LP unit TB. It sends link transactions to the

connected LP. As mentioned, the TB must be able to inject valid transactions for the

network functional units. Consequently, the module UVCs for these units were reused in

the link environment. Because the scoreboards for these units are connected to EXTOLL’s

internal interfaces, it is sufficient when these UVCs generate transactions, but don’t sample

it, which simplifies the verification environment. Therefore, their monitors needn’t to be

connected to the link UVC.

The VELO UVC has only one agent, which creates VELO transactions. Its sequencer

was connected to the link UVC sequencer as described in section 4.1.7.6 on page 72. The

translation sequence needed to convert the VELO transactions into link UVC transactions.

First, it creates a new link transaction, and copies the according SOP fields from the
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VELO transaction. Thereafter, the pack() function of the VELO transaction is used to

created a bit stream of this transaction. This bit stream is copied in the payload of the

link transaction.

The RMA UVC has to create network descriptors. Therefore, all agents except one

network agent were disabled. The network agent’s sequencer was connected to the link

sequencer as the VELO sequencer. Also, a translation sequence was created, which

transforms RMA network descriptors into link transactions.

As for the RMA UVC, the SMFU UVC needs only one network agent in the link

environment to generate the traffic for one link interface. All other agents were disabled

with UVM configuration mechanism. Additionally, a translation sequence was created

to transform the SMFU transactions into link transactions. The SMFU sequencer was

connected to the link sequencer, the same way like for the VELO and RMA sequencers.

Host Environment The EXTOLL is available in two flavors: as an HT or as a PCIe

device. Both flavors share the same functionality, beside the host interface. Of course,

both flavors must be verified. In EXTOLL, either the HT or PCIe are active. For sure, it

is not desirable to build two different TBs. One major goal for building the chip level TB

was to build a common environment, which supports both flavors with only minor changes.

On the DUV side, this can be reflected in different targets for the TB. For the verification

code some more work is needed.

On the host side the TB has to be able to generate stimulus for all units that can be

reached for the host interface. These units include:

• the RF

• the VELO functional unit

• the RMA functional unit

• the ATU functional unit

• the SMFU functional unit

• the barrier

For this generation of the DUV’s stimulus the module UVCs for the functional units were

reused. In the unit TBs only one module UVC were used to generate the DUV’s specific

stimulus. In the chip level TB several module UVCs need to share the same interface UVC.

From this it follows, that there is a multiplexing needed between the single module UVCs.

Also, when a transaction is sent to the DUV or received from the DUV, it is sampled by an

interface UVC’s monitor, and then must be forwarded to the right module UVC’s monitor.
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Figure 4.44.: North Bridge UVC

North Bridge UVC To be able to support both EXTOLL flavors and to do the needed

multiplexing between the module UVCs, the so-called north bridge UVC was introduced

to the chip level TB. It is an intermediate layer between the module and interface UVCs

in the host environment.

All units of the EXTOLL’s network interface are connected to the HTAX. That’s why,

for their module TBs translation sequences from the module UVC transactions to HTOC

transactions were written to connect the module UVCs via the HTOC interface UVC to

the DUV. Because these sequences were already available, the decision was made to reuse

them in the chip level TB. This also had the consequence to use HTOC transactions for the

north bridge UVC. It had the advantage, that for the interface UVCs only one translation

sequence and monitor must be created to connect them to the upper levels, instead of

using a single one for each module UVC.

The north bridge UVC as an intermediate layer, also makes it possible to exchange the

host interface of the DUV with only minor changes to the TB. To change the interface,

another interface UVC must be used. As well as interface specific translation sequences

and monitors, which transform HTOC transactions into the specific interface transactions

and the other way round. All other parts of the host environment stay the same. These

translations were implemented for HT and PCIe. They are like the actual interface UVC

instances guarded by defines in the TB. To use a specific interface UVC a target sets either

CAG USE HT or CAG USE PCIE in the target specific build script.

The north bridge UVC is depicted in figure 4.44. It has three sequencers. One for each

VC(posted, non posted, and response) of the host interface. Beside the sequencers, it also

has two monitors. One for the stimulus sent to the DUV, and one for the transactions

sent by the DUV. The sequencers and monitors are connected via UVC layering to the

corresponding sequencers and monitors of the interface UVC.

When a north bridge monitor receives a transaction it needs to determine the module

UVC to which the transaction has to be forwarded. For read and write transactions

therefore a memory map is used. All functional units of EXTOLL can be identified by
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Segment Description

VELO This segment is used for the VELO mailboxes.

RMA From this segment, the RMA reads main memory data.

RMA BQ The segment for the RMA notification queues.

ATU In this segment the GATs are available.

SMFU Main memory for the SMFU.

RGM Used for System Notification Queue (SNQ) queues.

Table 4.6.: Host Segments

their address in the EXTOLL memory map within the EXTOLL’s Base Address Registers

(BARs). This information is used by the north bridge monitors to forward a monitored

transaction to the right module UVC.

For transactions sent by the DUV such a memory arrangement isn’t available by default.

For example, the mailboxes for the VELO can be anywhere in main memory. Also, the

main memory pages the RMA uses for reading or writing data can be scattered to the

whole memory. This makes it nearly impossible for the north bridge receive monitor to

decide to which module UVC a received transaction has to be forwarded. This problem

was solved by a second memory map for all transaction hitting main memory. This map is

divided into even segments. One for each module UVC. Where which segment is located is

stored in the global configuration object of the TB. The available segments are shown in

table 4.6. In order that the monitor can use the address for deciding to which module UVC

a transaction must be forwarded, also the sequences that create the test stimulus must be

constraint in that way, that the right segment is hit for an operation. These sequences are

described later in this section.

Read responses have no address. Hence for responses another solution is needed. In all

current Input Output (I/O) protocols, which support more than one outstanding read,

source tags are used to correlate responses with read requests. When a read request is

sent, it gets a source tag assigned. The generated response carries the same tag. As it is

not allowed to use a source tag more than once at the same time, it is possible the assign

a received response to a read request. This source tag handling also done in the north

bridge UVC for reads sent to the DUV. Therefore, a source tag handling component was

implemented. It has a configurable amount of source tags. Whereas the default is set to

32. The component has blocking get task to request a source tag, and is connected to

the receive monitor. Via this connection the source tag for a received response is freed

automatically. Each time a read request is sent to the DUV a source is requested by the

tag handler. This functionality is encapsulated in a send sequence, which has to be used

to sent a read request. This sequence has as parameters the read request and the origin

module UVC of the request. First, the sequence requests a source tag from the tag handler.
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Therefore, is uses the get task, which has as parameter the origin module UVC. When

the task returns a source tag, the handler stores the information to which module UVC

the tag belongs to. When the receive monitor samples a response, it requests by the tag

handler the target module UVC for the response’s tag. Then, the response is forwarded

accordingly. At the same time, the response is also forwarded to the tag handler, which

releases the source tag.

A second passive source tag handler was implemented to check the source tags of the

read request coming from the DUV. It receives requests from the receive monitor, and read

responses from the sent monitor. It checks, that no source tag is used more than once at

the same time.

Register File Access The TB must access the RF of the DUV to configure the EXTOLL

before sending traffic and during the simulation to update the read pointers for the BQ. To

access a register of the the RF, the verification environment has to know its address. These

addresses can change if registers are added or removed from the RF, and it’s not desirable

to modify the addresses each time by hand for the whole DUV. That’s why an UVC called

RGM for accessing the RF was developed. It has two different agents. An interface agent,

which is used to connected the UVC to the generic RFS interface. The host agent can

be used in TBs, where the RF isn’t accessible by the RFS interface like in the EXTOLL

chip level verification. For EXTOLL RFS is used to build the RF automatically from an

Extensible Markup Language (XML)[64] specification. It also creates an annotated XML

with the addresses for each register. The RGM UVC implements a generic RF model which

has a corresponding class for each element of the XML specification like a register or a

RAM. A program was implemented that is used to create the actual RF model from an

annotated XML automatically. The elements of this model inherits from the base classes

of the UVC model. The model enables the user to access the registers of the RF by name

without needing to know the exact address. Every time the RF changes the model is

regenerated with the new XML and therefore with the new addresses. If the name of a

register isn’t changed, the verification code stays the same. Otherwise, only the changed

names must be adjusted and not each register. The model implements get functions, which

returns an SV object representing a requested register with all its fields and the address.

These functions retrieve a register either by name or by address. The received object can

than be used the access the RF. The UVC’s sequencer implements read and write tasks to

access registers, which expected a register object as parameter. To write a register, the

fields of the register’s object must be set to the new values. Afterward, the write task is

called. To read a register, the read task is called. When it returns, the register object

fields have to values read from the DUV.

For the chip level TB one RGM UVC is used. The interface is disabled and the host

122



4.2. EXTOLL Functional Verification

Figure 4.45.: VELO Environment

agent is enabled. Its sequencer and monitors are connected to the north bridge UVC.

References to the host sequencer are used by other components to access its read and write

tasks and therefore the EXTOLL’s RF.

Functional Unit Environments As mentioned before, for the functional unit stimulus the

module UVCs were reused. These UVCs need some assistance from other UVCs to perform

its functionality. For example is the handling of the ring buffers which are used for the

VELO’s mailboxes done by the BQ UVC. The VELO UVC receives only the transaction

which is written to a ring buffer slot from the BQ UVC without only knowledge about

the ring buffer itself. To improve the clarity of the TB source code, it was partitioned

for the host environment. For each functional unit an own sub environment was created.

Therefore there are three environments:

• the VELO environment

• the RMA environment

• the SMFU environment

VELO Environment The VELO host environment is shown in figure 4.45 on the previous

page. It creates all stimulus, that is needed for the verification of the VELO. Beside

creating VELO messages, it also handles the BQ and the does the read pointer update

for the mailboxes. It includes instances of the VELO, WCB, and BQ UVCs. The VELO

UVC generates VELO transactions for the host interface. As the VELO uses a WCB
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instance to assemble the received VELO messages from the host system, a WCB UVC is

connected to the VELO UVC. This way, the WCB sequences for splitting messages, as

well as the translation sequences from VELO to WCB transactions could be reused. The

WCB sequencer is connected to the posted sequencer of the north bridge UVC.

The north bridge sent monitor samples the VELO messages sent to the DUV. It is

connected to WCB monitor, which is then connected to the VELO requester monitor.

The monitors translate step by step from HTOC transactions over WCB transactions

into VELO transactions. They were all reused from the previously developed module

TBs. The VELO’s completer monitor is connected to the VELO scoreboard. On host

side the scoreboard is connected to the external interface and not to a internal interface

monitor. This solution was chosen, because the UVCs were needed for the stimulus

generation, and were already available. To sample the internal VELO interface to the

HTAX interface a complete second set of VELO, WCB, and BQ UVCs would be needed.

As the VELO transaction isn’t further modified on its way to the host interface, and is

easily distinguishable on this interface from other traffic by its address, the decision was

made to connect the VELO scoreboard to the external interface monitors. It also doesn’t

reduce it observability of errors, as the HTAX bridge is covered by an own scoreboard,

which detects errors in the bridge.

As the VELO’s mailboxes are constraint to be in the VELO segment of the verification

memory map, the north bridge receive monitor forwards received transactions targeting a

VELO mailbox to the BQ UVC of the VELO environment. After checking the received

transaction, that is targets the right ring buffer address, it is forwarded to the completer

monitor. The monitor translates the transaction into a VELO transaction. It is then sent

to the scoreboard, as the requester transactions.

The BQ implements ring buffers for storing data in main memory. These ring buffers

needn’t to be in continuous memory regions and can be distributed across the whole main

memory. This distribution is hidden from the functional units by the BQ. The BQ has

to know were the single segments of ring buffer are in main memory. This information is

stored in a data structure called descriptor queue. There, for each segment its base address

and size is stored. The BQ loads the descriptor for the next segment, when the write

pointer reach the end of a segment. When the TB creates a new VELO mailbox, it has

also to creates the descriptors for the ring buffer segments randomly and stores them in the

descriptor queue handler of the BQ UVC. The TB needs to response to BQ main memory

reads to its descriptor queues. Therefore, the BQ responder component was developed.

The descriptor queues are constraint to be in the VELO segment of the verification memory

map. Consequently, the north bridge receive monitor is able to forward these reads to the

BQ responder. The responder uses the read address to find the right descriptor queue, reads

the next segment from the BQ UVC’s descriptor handler and creates a read response. The
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read response data is assembled out of the data for the requested segment, and equates to

the memory layout for descriptor queue entry as specified in the BQ specification[31]. The

response is the sent to the DUV via the north bridge UVC. Of course, the BQ responder

checks, that the next requested segment is the next expected one.

A mailbox has a read and a write pointer. The write pointer indicates the next free

slot, and is handled in hardware. The read pointer points to the next slot in which the

next messages is expected by the software. It is incremented each time the software

has processed a message. The hardware has to know, when the mailbox is full to avoid

overwriting messages, that weren’t read before. Therefore, the hardware has a copy of

the software’s read pointer. The hardware isn’t allowed to write to the next slot, when

write pointer + 1 = read pointer. To avoid, that a mailbox gets full, the software has to

update the hardware’s read pointer with its current read pointer. As in the verification

environment no software is available, another method has to be applied for the update to

imitate the software’s behavior. Actually, the verification environment has to keep a read

pointer for each mailbox. It’s incremented for each received VELO message and has to

be written to hardware’s read pointer. Therefore, a read pointer update component was

introduced. It has a read pointer for each mailbox and receives each VELO message from

the DUV from the BQ UVC’s monitor. Then the read pointer for the according mailbox is

incremented. Afterward, a random timeout is started. When the timeout is reached, the

current read pointer is written to the RF of the DUV with the help of the RGM UVC. If

in the mean time another message was received, then the read pointer to be written has a

larger difference than one from the previous one. The difference between the previous and

the next read pointer can be controlled by the constraint for the timeout. If the timeout

is small, also read pointer difference is small. A large timeout leads to full mailbox. The

default constraint has three ranges for the timeout. A small one, a middle one, and a large

one.

RMA Environment The RMA host environment is shown in figure 4.46 on the following

page. First, this environment has to create RMA software descriptors. Second, the RMA

uses the ATU for NLA to physical address translation. Therefore, it has to respond

to translation requests. Third, the environment has to respond to read requests from

main memory. Fourth, the notifications from the RMA for completed descriptors are

stored in ring buffers. The environment has to provide the infrastructure to handle these.

Consequently, the host environment has instances of the RMA, ATU, and BQ UVC, which

are reused from the module TBs.

For the RMA UVC, the request agent and the memory responder are enabled. The

request agent’s sequencer, which generates software descriptors is connected to the posted

sequencer of the north bridge UVC. The request agent’s monitor is connected to send
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Figure 4.46.: RMA Environment

monitor of north bridge UVC. The translation sequence and the translating monitor are

reused from the module TB. The memory responder receives read requests from the north

bridge’s receive monitor and uses the responses sequencer for sending the responses. The

ATU UVC uses its memory agent for responding to GAT read requests from the DUV. It

is also connected to the north bridge UVC’s receive monitor and response sequencer. The

BQ UVC is used to receive the notifications, which are stored in ring buffers.

For the BQ read pointer update the same read pointer update component as for the

VELO environment is used. As well as the BQ responder component to respond to

descriptor queue reads.

SMFU Environment The SMFU forwards local write and read requests to remote nodes.

Therefore, the SMFU environment(see figure 4.47 on the next page) has to create requests,

which targets the SMFU’s BAR address. It has also to generate responses for read requests

received from the DUV. Thus, the environment uses an instance of the SMFU UVC, with

its host agent enabled. As the UVC sends traffic on all VCs of the host interface, the host

agent’s sequencer is connected to the posted, non posted and response sequencers of the

north bridge UVC. A special send sequence was implemented for the host sequencer, which

forwards a generated transaction to the right north bridge sequencer according to its VC.

The host agent’s send and receive monitors are connected to the send and receive monitors
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Figure 4.47.: SMFU Environment

of the north bridge UVC. The SMFU UVC implements an automatic response sequence

for received read requests, which was also used in the SMFU environment.

The translation sequences from SMFU transactions into HTOC transactions as well as

the translating monitors were reused from the SMFU’s module TB.

Debug Interfaces EXTOLL has two debug interfaces. The I2C interface is used two

access the EXTOLL’s RF independently from the host interface. The flash interface

connects a flash chip, in which patches to modify the RF’s default values can be stored.

The RF reads these values and writes them to the according registers during the reset

phase of EXTOLL. To verify the I2C access and the patch behavior, an I2C and a flash

UVC were connected to the DUV. The I2C UVC was an own development, whereas the

flash UVC was used from the Cadence VIP Catalog[65].

As the patching process from the flash memory needs some simulation time and has to

take place in the reset sequence, the patching is verified in a special test of the TB. This

reduces the run time for all other tests without any reduction of the overall test coverage.

EXTOLL Initialization Before the TB can sent random traffic to the EXTOLL it has

to be initialized. For example the routing table of the network crossbar has to be set, in

order that the crossbar forwards any packets to other destinations than the same node.

Therefore, a set of initialization sequences for each functional block was written for a

better modularity of the initialization process. Additionally, a main initialization sequence

was implemented, that executes the other sequences step by step. As the initialization

sequences has to be executed by each test, this improved the clarity of the tests and hides

the complexity from the test writer.

All the configuration settings, which are written during the initialization, are stored
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Fields Description random

Node ID The node ID of the DUV. *

Link Count The number of available links.

VELO segment base address The base address of the VELO segment

Table 4.7.: Configuration Parameters

in the RF of the DUV. Therefore, all sub initialization sequences uses the RGM UVC

instance of the TB to access the RF.

The TB has a couple of global configuration parameters. These parameters are used to

configure the TB when it is build, and during the simulation for constraining the stimulus.

It is randomized before the TB gets build. Table 4.7 lists all available parameters.

Following sub initialization sequences were implemented:

Host Interface The host interface initialization sequence configures the host interface. For

HT, it starts with a cold reset. Afterward, the HT link is configured as by the Basic

Input Output System (BIOS). It starts with reading the capabilities of the device,

followed by the setting the link configuration registers of the device to the desired

link width and link frequency. They can be set in the global configuration object of

the TB. After a warm reset is done and the link has finished its low level training

sequence, the initialization sequence does the device enumeration to set the BARs.

For PCIe, the PCIe UVC does the initialization completely automatically without

any user involvement. As for HT, this includes setting the PCIe configuration space

registers like the BARs. When the initialization is finished, the UVC triggers an

event. Consequently, for PCIe the host interface initialization sequence just waits for

this event before it finishes itself.

Whether the HT or PCIe initialization is done, is controlled by the CAG USE HT

and CAG USE HT defines, which are also used the select the host interface for a

DUV target.

Node ID This sequence writes the own node ID of the DUV into its RF. The node ID’s

value can be set in the global configuration object of the TB.

HTAX bridge The HTAX bridge uses an interval mapper to decide to which port of the

HTAX a request from the host interface has to be sent. After the reset the interval

mapper is disabled and all requests are sent to the RF by default. In order to

sent requests to the other functional units than RF, the interval mapper needs to

be configured. The address ranges for each interval are configured in the global

configuration object.

This sequence writes the address ranges for each interval into the RF and enables
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the interval mapper.

Routing Table The network crossbar uses a table based routing[31]. Its routing has to

be initialized in order that the crossbar knows to which port a packet has to be

forwarded. The TB reuses the routing table component of the network crossbar TB

to handle the routing table entries. The entries of this table are randomized in the

end of elaboration phase of the TB. The initialization sequence writes the entries of

the routing table component into the routing tables of the network crossbar.

RMA The RMA uses PDIDs for a basic access control to other VPIDs. These are stored

in a VPID table in the RF. The RMA UVC implements a VPID handler to make the

PDIDs available to the TB. This sequence writes the entries of the VPID handler

into the RF. It also sets the host MTU of the RMA, initializes the BQ for the RMA,

and enables the NPs connected to the RMA.

ATU This sequence writes the base addresses of the ATU’s GATs. The ATU UVC stores

these addresses in its GAT handler, from where the GATs are available to the TB.

The sequence also enables the ATU in the RF.

VELO As the RMA, the VELO uses PDIDs as a security mechanism. These PDIDs are

handled by the VPID handler component of the VELO UVC, and are randomized in

the end of elaboration phase of the TB. The initialization sequence writes the PDIDs

into DUV, and enables the BQ for the VELO, and the NP connected to the VELO.

SMFU This sequence writes the address offsets, which are needed for the address mapping

to remote nodes by the SMFU. Additionally, it enables the NP connected to the

SMFU.

Sequence Library In the chip level TB, the sequencers of the module UVCs can’t create

complete random transactions. As mentioned before, the TB uses an own memory map on

the host interface to be able to separate the transactions sent to main memory. Therefore,

all transactions sent to the DUV have to be constraint in order that resulting transactions

targeting main memory hit the right segment.

Additionally, the target node of transactions has to be constraint as well. For traffic

from a link to the host, the node ID of the DUV has to be used. In the routing table not

all entries initialized with valid entries, as in the simulation it lasts a long time to write all

210 entries. Measurements have shown, that the simulation needs about two hours to write

a complete routing table. For a random constraint verification it is sufficient to initialize

only a small amount of entries, if they are chosen randomly. The verification coverage is

reached by running the simulation over and over again with different seeds for the random

constraint solver. Therefore, all packets sent to the network crossbar must be constraint to

use a destination node, which has a valid routing table entry.

129



4. Functional Verification

Figure 4.48.: Virtual Sequencer References

To create a valid input stimulus, a set of sequences was implemented. These sequences

ensure with the help of different constraints, that the generated transactions fulfill the

mentioned constraints. As they have to access different components of the TB like the

routing table, they are executed on the virtual sequencer of the TB.

As mentioned in section 4.1.7.5 on page 72, each TB has one virtual sequencer, which

controls all other sequencers in the TB by starting transactions or sequences on UVC

sequencers. Consequently, the virtual sequencer for the chip level TB(see figure 4.48) has

references to the module UVC sequencers of the host environment, which includes the

VELO, RMA, and SMFU sequencers. For the initialization a reference to the host interface

sequencer is available. To sent stimulus to the link interfaces, there are references to each

module UVC’s sequencers for each link environment. Beside these sequencer references, the

virtual sequencer needs access to different handler components of the UVCs. This includes

references to the routing table to receive a valid target node, to the VPID tables for the

RMA and VELO to access the PDIDs, and to the GAT of the RMA UVC to register

new translations. Additionally, a reference to the global configuration object of the TB is

available. It is used to access the address ranges of the memory segments.

1 class SEQUENCENAME extends uvm sequence ;

2

3 rand TRANSACTION TYPE t r ;

4

5 b i t [ 6 3 : 0 ] l ower addre s s ;

6 b i t [ 6 3 : 0 ] upper address ;

7

8 constraint addre s s c {
9 t r . address i n s i d e { [ l ower addre s s : upper address ] } ;

10 }
11

12 ‘ u vm ob j e c t u t i l s (SEQUENCENAME)

13 ‘ uvm dec l a r e p sequence r ( v i r t u a l s e qu en c e r )

14
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15 function void pre randomize ( ) ;

16 i f ( t r == nu l l )

17 t r = TRANSACTION TYPE: : type id : : c r e a t e ( ” t r ” ) ;

18

19 l ower addre s s = p sequencer . c f g . segments [RMA] . l ower addre s s ;

20 upper address = p sequencer . c f g . segments [RMA] . upper address ;

21 endfunction : pre randomize

22

23 task body ( ) ;

24 TRANSACTION TYPE m tr ;

25

26 t r . t a rge t node = p sequencer . r t . get random node ( ) ;

27

28 ‘uvm create on (m tr , p sequencer . rma l i nk s eq r [ l i n k ] )

29 m tr . copy ( t r ) ;

30 ‘uvm send (m tr )

31 endtask : body

32

33 endclass

Listing 4.2: Sequence Structure

All sequences of the chip level TB’s sequence library have the same structure, which

is depicted in listing 4.2 on the preceding page. This structure allows the sequence user

a complete control over the generated stimulus on the one hand, on the other hand it

automates as much as possible. First, there is a field(line 2) of the transaction type the

sequence sends, which is declared random. This way, the field gets randomize when the

sequence is started with the ‘uvm do macro. Default constraints in the sequence ensure,

that the created transaction follows the global TB’s constraints. The pre randomize()(line

15) function is called by the simulator prior to the randomize() function. It first creates a

new transaction object, as no transaction object is created by default when the sequence

object is created. Then, default values are loaded from the global configuration object. In

this example the lower and upper address for a main memory segment. The constraint

in line 8 constraints the address of the transaction with the help of the addresses set in

pre randomize(). As mentioned above, not all routing table entries are set in the routing

table. Thus, the destination node of the a transaction can’t be randomized freely. Therefore,

a function called get random node() was implemented for the routing table component,

which returns a random existing node ID. This function is called in line 26 within the body

task(). This task is executed by UVM after the randomization of the sequence. In line

28 and following lines, the random created transaction is forwarded to the module UVC

sequencer on which the transaction should be sent.

The following sequences are written for the TB:

Link to Link This sequence sends EXTOLL packets from on link to another without hitting

131



4. Functional Verification

a functional unit. In its body task the routing table’s get random node() function to

receive a random target node, which is not local host.

VELO Host It sends one random VELO message from the host to the VELO requester.

The target node is set using the routing table’s get random node() function.

VELO Link This sequence sends one VELO message from a random link to VELO com-

pleter. The link to be used can be constraint with the link id field. The target node

ID is set to the node ID of the DUV. It also sets the right PDID for the message’s

VPID with the help of the VELO’s VPID table component.

RMA Host The RMA host sequence sends one RMA software descriptor from the host to

the RMA. A constraint ensures that the read address for acr:put requests is inside the

RMA’s memory segment. If the randomized software descriptor indicates the use of

a NLA via a set transation enable fields, the sequence adds random page translations

to the ATU’s GAT for the affected pages of the request. The target node is set using

the routing table’s get random node() function.

RMA Link This sequence sends a single RMA descriptor from a random link to the RMA.

Whether the descriptor is sent to the responder or the completer is randomized by

its target field. Depending on the target, the descriptor’s command is constraint

accordingly. For responder descriptors to gets. For completer descriptors to puts

and get responses. As for the RMA sequence the addresses of the network descriptor

are constraint to hit the RMA’s main memory segment, and also necessary page

translations are added to the ATU’s GAT. The target node ID is constraint to the

DUV’s node ID.

SMFU Host The SMFU host sequence sends a single SMFU request from the host to the

SMFU. The address of the sent request is constraint to hit the BAR of the SMFU.

That a valid target node ID is hit by the resulting network target, is reached by

constraining the part of the address with encodes the target node ID accordingly.

SMFU Link This sequence sends a SMFU request from a random link to the SMFU. The

address of the request is constraint to hit the SMFU’s main memory segment. The

target node ID is constraint to the DUV’s node ID.

Tests After the TB was in place, the last step for the chip level verification environment

was to create meaningful tests. These tests were built to verify, that all units of EXTOLL

function with each other as intended in the specification. The strategy for building the

tests was as follows. First, a small simple test was written for the bring up of the TB.

After the TB successfully compiled, the first stimulus was sent to the device. Thereby,

each functional unit was tested after each other. The tests started with sending only a

couple of transactions to see, if the TB works as intend. Then, the amount of transactions
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was increased. After the test for the single functional units worked, a test was written in

which all units are used. All tests use the sequences from the TB’s sequence library for the

generation of the stimulus.

Following tests were created:

Simple Test This test sends 100 transactions for each functional unit from the host to the

link and the other way round. It not intended to run in regression. It is a short test

to check that there is nothing broken after a major change to the DUV or the TB.

VELO It is used to only test the VELO. It sends 5000 VELO messages from the host into

the network, and 5000 VELO messages from the links the to host.

RMA It is used to only test the RMA. It sends 5000 RMA descriptors from the host into

the network, and 5000 RMA descriptors from the links the to host.

SMFU It is used to only test the SMFU. It sends 5000 SMFU requests from the host into

the network, and 5000 SMFU requests from the links the to host.

Link to Link The link to link test sends traffic from one link to another one without hitting

the network interface. Combined, it sent 5000 network packets.

Random Traffic This test is intended to stress EXTOLL. It sends random traffic for all

functional units from the host into the network, and from the links to the host

together with traffic which only crosses the network crossbar. In for each functional

unit and direction 5000 packets are send.

4.2.6. Regression Analysis

For a complete verification, it isn’t enough to build TBs, which are able to generate random

stimulus and run each test once. This way, it isn’t possible to verify all features of the

design sufficiently. Therefore, a regression is needed. A regression is the process of running

all available tests repeatedly each time with a different seed value for the random constraint

solver. This leads to a different stimulus for each run of the same test. As normally

several hundreds to thousands of different runs are needed to reach coverage closure, it

isn’t practical to start each run by hand. Therefore, regression tools are used to automate

the process of launching the tests.

Such a regression tool is the Enterprise Manager from Cadence Design Systems[66],

which was used for the verification of EXTOLL. It manages to execution of the single test

runs, and integrates a tool for the coverage analysis. A file format called VSIF is used to

describe a single regression run. This description includes which tests for a TB have to be

executed in a regression run, and how often. For each TB, a shell script has to be specified,

which is used to the start the TB. Therefore, the run scripts described in section 4.2.3.2 on
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Figure 4.49.: Regression HTML Report

page 93 were used.

The goal for the EXTOLL regression was to have completely automated regression with

the following features:

• As there are daily changes to both the RTL and TB source code, regression should

be started each evening.

• Each regression run has to use always the latest source code.

• Automatic status notification via email.

• Creation of an up-to-date coverage report.

All these goals were realized with a set of scripts. The main script is started every

evening by a cron job. It first updates the source code of the RTL and the TBs from the

SVN. Then the regression is started. Therefore, the eManager is started with a VSIF,

which is located in the SVN. For the eManager a script was written, that creates a summary

of the regression in a text file when the eManager finishes. This file includes for each test

if it succeeded or not, and if not, the error reported by the TB is added to the report

file. Afterward, this reported is sent by email to all module owners. Another script parses

the report for errors, and adds tickets to the bug tracking system. This way, no bugs are

missed, and get documented for a further risk analysis.

During the regression, the eManager also collects coverage data. This collected data

is stored a a database for a further analysis. With each regression run, the accumulated
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Figure 4.50.: Regression eManager Report

coverage data crows. The collected and accumulated coverage can be analyzed withe the

eManager(figure 4.50). For a quick overview, that can be accessed easily by all team

members, the regression run script also creates an Hyper Text Markup Language (HTML)

report(figure 4.49 on the facing page) with the latest coverage data. This report uses

the verification plans created for each module, and maps the collected coverage to their

corresponding items in the plan. This way, the collected coverage can be correlated with

the features of the DUV as defined in the specification.

In the regression code and functional coverage are collected. In contrast to the code

coverage, the functional coverage can’t be generated automatically. It has to be specified by

an engineer. The functional coverage was specified in the verification plan, and implemented

as SV cover property and cover groups in the RTL modules for the white box coverage.

The black box coverage was implemented in the UVC’s monitors and interfaces as cover

group statements. As the black box coverage is implemented directly in the UVCs, the

black box coverage model also gets reusable.

4.2.7. FPGA Acceleration

Running regressions with simulations is a time consuming task. It lasts weeks to reach

coverage closure. Furthermore, it is not always completely known, which transactions are

sent by other chips on the external interfaces of a DUV. For example, the behavior of

a CPU isn’t documented in a way, that it can be completely modeled in a verification

environment.
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Figure 4.51.: Ventoux Board
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Therefore, the functional verification of EXTOLL was combined with an emulation of

the design in an FPGA. This way, it was possible to test the design in its final environment.

As EXTOLL can be used with HT or PCIe as host interface, two FPGA boards were

developed at the CAG. Both, uses a Virtex 6 FPGA[67] from Xilinx. The board named

Ventoux(figure 4.51) has a HT interface and provides six network links. The Galibier board

uses PCIe and provides four links.

During the implementation of the EXTOLL’s RTL, it was payed attention to have

a very generic RTL implementation. All technology specific components like RAMs or

Phase Looked Loops (PLLs) were wrapped in generic modules with standardized interfaces.

Therefore, the main RTL can easily mapped to different technologies as FPGAs or ASICs

by exchanging the wrappers with technology specific implementations. Of course, larger

blocks like the host interface or the serializers for the network links needs more attention

for changing the target technology.

After the mapping of the DUV to the FPGA boards was finished, test programs were

developed by the CAG to sent data over the network. First, the functional units were

tested using an internal loop back in the network crossbar. Afterward, the amount of nodes

in the network was increased step by step. By running the test programs, errors could be

identified either by the reception of wrong data, or by not responding hardware. Then,

the bug was isolated with the goal of finding the smallest possible use case, which triggers

the error. Therefore, a lot of debug registers were added to all units of EXTOLL, which

are accessible by the RF. These debug registers include for example counters for packets

or flow control credits, as well as the state registers of important FSMs. With the help

of these debug registers the unit causing the error and the condition which leads to the

error can be identified. This approach can encircle the error, but can’t point directly to

the logic function with the error.

Indeed, there are logic analyzers available witch are integrated in the FPGAs, but they

aren’t capable to monitor all registers in the design at the same time. Instead, the engineer

has to specify the registers of interest, and build a special bit file for the FPGA including

the analyzer watching these registers. As only subset of registers can be monitored this way,

many bit files must be built to identify the erroneous logic function. Also, this integration

influences the timing of the FPGA’s logic, which makes it hard to meet the needed timing.

Therefore, in addition to the functional verification flow, a combination of functional

verification and FPGA testing was used. As mentioned, an error only can be encircled in

an FPGA. But, the knowledge gained from this analysis can be used to build test, which

triggers the error. As random constraint TBs are used for the verification, it isn’t needed

to exactly model the stimulus, which leads to an error. For example, when the analysis

shows, that the error is triggered by small messages on a high network load, then the test
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is constraint only to sent a lot of small messages with small gaps between each other. As

in the simulation all registers are accessible, and can be viewed in a waveform viewer, it is

possible to find and fix the logic error more easily.

With this additional methodology, it is possible to identify errors in the design much

master, than in simulation. In simulation, the DUV runs in terms of kilo Hertz. In contrast,

the FPGA platforms operates with 200 MHz. The lack of observability of errors in the

FPGA is eliminated by building a specific random test in a verification TB.

The FPGA platform makes it also possible to build and test the needed software for the

design, before the ASIC is ready. Consequently, the software hardware interaction can be

tested extensively in an early design phase, which helps to improve the software hardware

interface. In addition, the software is also ready and tested for the bring up of the ASIC,

when it returns from the fab.

4.2.8. Conclusion

This section described a complete and efficient verification methodology for a large chip

design. After describing the features of the EXTOLL design, the main external and internal

interfaces as well as functional units were identified. These findings lead to a library of

verification IPs, which were implemented using UVM. By the consequent reuse of the

developed UVCs, the code needed for the verification environments could be reduced. This

was also possible, because of the clean design of EXTOLL with clearly defined functionality

for each unit without spreading a functionality over different units, and a set of standardized

internal interfaces.

The efficiency of the chosen verification approach was demonstrated with the implemen-

tation of the chip level TB for EXTOLL. For this TB most verification code was reused

from the unit TBs. There the analysis of the design in the beginning of the verification

process helped in building compact, reusable verification IPs which were then used in the

different TBs.

With the FPGA acceleration approach, a verification methodology was introduced,

which combines the advantages of FPGA prototyping with the ones of a simulation based

verification. There, the FPGA is used to speedup the detection of bugs, whereas the

simulation based verification is used to fix the bug with the help of its observability and

checking capabilities. This combined approach reduced the time needed to eliminate the

most critical bugs in the design, and showed several hard to find ones.

Furthermore, a completely automated regression suite was developed. This suite is

started each evening and checks regularly the latest RTL code. With an automated error

reporting by email and the use of the bug tracking tool trac, the errors found in the
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regression get documented, which helps in fixing all errors as well as in an analysis of

the main causes for errors. This analysis can help in avoiding these errors in a following

project.

4.3. Verification Tools

As mentioned in the introduction, one requirement for a state of the art verification

environment is its efficiency. The engineers have to focus on the features and architecture

of a design. The verification tends to be a ”necessary evil”. Therefore, many work was done

to develop verification methodologies based on simulation or formal verification to improve

the efficiency of the verification process. All these methodologies have in common, that

the automation grade of building new verification environments is very limited. However,

a high automation grade reduces the probability of making errors in the implementation

phase of a chip. For example, the synthesis of an RTL implementation into a gate level net

list is completely automated today. In contrast, a verification environment needs to be

build manually from the specification. This process needs a good methodology like the one

presented in the last sections to avoid errors. There are tools available for simulation or the

coverage analysis after a regression. But, tools to assist in building these environments are

not available, beside advanced editors. Many tasks in building verification environments

must be repeated in this process. To provide the engineer with more help in building a

TB, the following section suggests creating tools to improve the efficiency of building TBs.

4.3.1. Testbench Creator

Creating a new TB is a time consuming task. For each TB always the same tasks must be

fulfilled. These task are shown in the following:

1. Create the directory structure for the TB. As described in section 4.2.3.1 on page 87

a sophisticated directory structure helps in using the TB.

2. Create the basic files for the TB. This includes:

• The run script to launch the TB.

• The compile file to load the source files and configure the simulator.

• The top module, which includes the verification code, instantiates the DUV,

and creates the clocks and resets for the DUV.

• The TB file, were the UVCs are instantiated.

• The virtual sequencer, which controls the other UVC sequencers.
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• A basic test to start the environment.

3. Instantiate and connect the DUV to the SV interfaces of the UVCs.

4. Instantiate and configure the UVCs needed for the TB. This includes adding the SV

interfaces for the UVC DUV communication.

5. Create a scoreboard for the DUV.

6. Connect the UVCs with the SV interface instances, connected the monitors with the

scoreboard, and connect the interface UVCs with the module UVCs as described in

section 4.1.7.6 on page 72.

7. Create the tests for the TB.

For the steps one and two, a Perl script was already created for the EXTOLL’s verification.

It expects as argument the name of the TB to be created. It then creates a new sub

directory with the name of the TB, followed by the building the directory structure of the

TB. Afterward, the files described in step two are created. When the script finishes, the

newly created TB can be started immediately. Then, the verification engineer has to do

steps three to seven, which is the main work. But, this scripts makes it more easier to

start a new TB.

This script is the first step for a comprehensive tool for creating a TB. The goal is to

build a tool, which enables the user to create a new TB with a graphical interface. The

requirements for such a tool are:

• A parser, that supports to read UVCs and detects their sequencers, monitors, drivers,

sequences, and interfaces.

• A GUI to connect the DUV with the interfaces required for the communication with

UVCs.

• A GUI to connect these interfaces with the UVCs.

• A GUI to connect UVCs as described in section 4.1.7.6 on page 72.

• An automatic creation of the virtual sequencer with connections to all sequencers in

the verification environment.

• Support for grouping UVCs in bigger environments, like in the chip verification of

EXTOLL, in order the structure the verification environment.

• The ability to allow the user to insert own code to specific UVM phases like build, or

connect.

• A GUI to create new tests with the ability to allow test overrides of verification

components.
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• Support for graphical test sequence generation.

• A code generator for the verification environment built.
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The functional complexity of hardware designs grows steadily. This growth is driven by

shrinking node sizes of the process technology. At the same time, the costs for manufacturing

an ASIC increases. For a research institute it gets more difficult to build a new innovative

hardware design. As they have limited resources, there is the pressure to have a working

ASIC by the first submission. Usually, a re-spin is not affordable by a research institute.

Therefore, an efficient design and verification methodology is needed to avoid a re-spin.

The goal of this thesis was to developed a new efficient network protocol, a barrier

synchronization for an unified network, and a complete and comprehensive verification

methodology, that can be realized with limited manpower.

The first contribution of this thesis is a new efficient, flexible, and reliable network

protocol for an HPC interconnection network. It uses a data granularity of 64 Bits. Thus,

it can be easily adapted to different data widths for the internal data path of the EXTOLL

network. This was reached by using 64 Bits wide cells, which are either used as control

cells for the framing and link management, or as data cells for the network packet data

transport. The overhead for the framing of a packet was minimized to 16 Bytes. Therefore,

the network protocol reaches an efficiency of 91%. Thereby, it is one of the most efficient

network protocols for HPC.

The network protocol efficiency is reached without losing the reliability of the protocol.

In fact, the reliability of the new protocol was improved by using strong CRCs for the

protection of the control cells and the packet’s data. By the use of a CRC in each control

cell, it was possible to protect the routing information of each packet. Thus, it can

be guaranteed, that only valid routing information is passed to the network crossbar.

Consequently, in the case of an error, packets are not forwarded to a wrong destination

node or block the network anymore. The retransmission protocol was also improved to be

more fault tolerant by the use of timeouts. Also, the credits used for the flow control are

now part of the retransmission.

The second contribution is an innovative hardware barrier synchronization directly

integrated into the EXTOLL interconnection network. Its efficiency is reached by using

special control cells for the transport of the barrier messages. The barrier logic is realized

in an own module inside the network layer. Instead of using the network crossbar for the

143



5. Conclusion

message routing, it is done by the barrier module itself. Therefore, the barrier module is

connected to all LPs of EXTOLL. The distributing of barrier messages to the right LPs

is done by the barrier module. Thus, a barrier message passes the barrier module in 5

clock cycles, in contrast to 15, which would be needed, if the network crossbar was used.

Beside, the barrier synchronization, the barrier logic was extended to support a new global

network interrupt, which is able to trigger an interrupt on all nodes, or a subset of nodes,

exactly at the same time. The barrier logic was implemented in Verilog, and verified with

the formal verification. In addition, the barrier was tested in an FPGA implementation.

There, it was shown, that the implementation needs 1,2us to synchronize a network of 9

nodes.

In addition, a complete and comprehensive verification methodology for a large ASIC

was developed and implemented. By using a structured methodology, it was possible

to realize the functional verification of the design with very limited resources. The first

step in the verification process was the analysis of the design. Therefore, the main units

were identified, and verification plans for each unit were created. The verification plans

summarized the features and functionality of the units. Furthermore, checks and coverage

items were extracted from these for the later use in the verification.

A key aspect for the successful verification was the consequent reuse of verification code

across the TBs. Before the TBs were created, the main interfaces used between the units

were identified. For these interfaces, interface UVCs were created to generate and check

the stimulus of theses interfaces. Thereafter, the TBs for the main units were built by

using the interface UVCs. Additional module UVCs were used to generate stimulus and

check behavior specific for each unit. For each TB, also a scoreboard was implemented.

Furthermore, multiple tests were created to verify specific behaviors of the units, and the

functional coverage was implemented to track the verification process.

After all unit TBs were available a system level TB was created to verify the connectivity

and interaction of the units. Therefore, the verification code implemented for the unit TBs

was reused, which enabled it to build this TB very fast.

To help to structure the verification, a new directory structure for all TBs was developed.

This structure contributed to be able to reuse verification code across the TBs, and helped

the users of the TBs to use them more easily.

Furthermore, a completely automated regression suite was build. It is started on a daily

basis, and helps to find new bugs shortly after changes made to the RTL code. After a

regression run is finished, a report is generated to summarize the success of each test run.

Failing tests are added by the regression suite to a bug tracking tool for further investigation

of the responsible unit owners, and to understand what kind of bugs were found in order

to avoid them next time. The regression suite also collects coverage data. This data is
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merged into a single coverage database. It allows the tracking of the verification process,

and makes the verification process more predicable. When all coverage items, which are

defined in the verification plans, are met then is the DUV ready for tape out from the

perspective of the functional verification.

Beside the simulation based functional verification, also FPGAs were used to accelerate

the verification process. On the one hand, a simulation is very slow in comparison to

an FPGA implementation. On the other hand, bugs can be analyzed more easily in a

simulation, as all signals are accessible in a waveform viewer. Therefore, an innovative

hybrid approach was developed for the verification, which uses the benefits of both solutions.

The DUV is mapped to an FPGA. There the design is executed in its real environment.

If a hardware failure occurs, the workload pattern, which lead to this failure, is analyzed

and minimized to a very small set of traffic. This pattern is then used to create a random

constraint test for the DUV in the simulation to trigger the failure. Thereafter, the failure

is analyzed and corrected.

Due to the verification efforts, it was possible to install a 9 node test cluster with

EXTOLL as interconnection network at the CAG. This cluster is used to develop the

software environment needed for EXTOLL. Currently, the interconnection network functions

as intended without any known hardware bugs. As the verification for the FPGA target

was successful, it is foreseeable, that the verification of the ASIC is successful as well, which

makes a re-spin unnecessary.
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A.1. Introduction

SV[68] is programming language for hardware design and hardware verification. To

assist the verification engineer with the checking of a DUV, it introduces assertions. An

assertion specifies the behavior of a system, and does a claim about the expected behavior.

Consequently, they are primarily used to validate the behavior of a design. In addition,

assertions can be used to provide functional coverage and generate input stimulus for formal

validation. An assertion specifies the behavior of a design by describing the relationship of

the design’s signals in time. For example, it is not allowed to shift data into a FIFO if

the FIFO is full. An assertion which checks this behavior would look like the following

example:

assert ( ! ( f u l l && s h i f t i n ) ) ;

Listing A.1: Immediate Assertion

If the DUV behaves correctly this assertion will evaluate to true. Otherwise, a failure of

the assertion will be reported during simulation.

SV assertions are used for checking the DUV in a simulation based verification. In

simulation they aren’t capable to provide an input stimulus for the DUV. The stimulus

must be created by a verification environment as described in chapter 4 on page 45. In a

formal verification environment, they are used for both creating the stimulus and checking

the behavior. Assertions for the input signals of a DUV create the stimulus. They other

assertions check the DUV behavior.

A.2. Assertion Types

SV distinguishes between two kinds of assertions: concurrent and immediate assertions.

Immediate assertions follow simulation event semantics for their execution and are executed

like a statement in a procedural block. Immediate assertions are primarily intended to be

used with simulation.
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Concurrent assertions are based on clock semantics and use sampled values of vari-

ables. As concurrent assertions are based on clock semantics, they can be used by formal

verification tools for design verification.

A.2.1. Immediate Assertions

The immediate assertion statement is a test of an expression performed when the statement

is executed in the procedural code. The expression is non-temporal and is interpreted the

same way as an expression in the condition of a procedural ”if” statement. That is, if the

expression evaluates to X, Z or 0, then it is interpreted as being false and the assertion is

said to fail. Otherwise, the expression is interpreted as being true and the assertion is said

to pass. An immediate assertion is described by the assert statement and can be specified

anywhere a procedural statement is specified. The complete syntax of the assert statement

is listed in the following listing:

1 assert ( exp r e s s i on ) a c t i on b l o ck

2

3 a c t i on b l o ck : := s t a t emen t o r nu l l | [ statement ] else statement

Listing A.2: Immediate Assertion Syntax

The action block specifies what actions are taken upon success or failure of the assertion.

The statement associated with the success of the assert statement is the first statement. It

is called the pass statement and is executed if the expression evaluates to true. The pass

statement can be omitted. If the pass statement is omitted, then no user-specified action

is taken when the assert expression is true. The statement associated with else is called

a fail statement and is executed if the expression evaluates to false. The else statement

can also be omitted. The action block is executed immediately after the evaluation of the

assert expression.

Example for an immediate assertion:

1 always @(posedge c l k ) begin

2 i f ( s t a t e == REQ) begin

3 assert ( req1 | | req2 )

4 $display ( ” a s s e r t succeeded ” ) ;

5 else

6 $e r r o r ( ” a s s e r t f a i l e d at time %0t ” , $time ) ;

7 end

8 end

Listing A.3: Immediate Assertion Example
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A.2.2. Concurrent Assertions

Concurrent assertions describe a design behavior that spans over time. Unlike immediate

assertions, the evaluation model is based on a clock such that a concurrent assertion

is evaluated only at the occurrence of a clock tick. The values of variables used in the

evaluation are the sampled values. This way, a predictable result can be obtained from

the evaluation, regardless of the simulator’s internal mechanism of ordering events and

evaluating events. This model of execution also corresponds to the synthesis model of

hardware interpretation from an RTL description. An expression used in an assertion is

always tied to a clock definition. The sampled values are used to evaluate value change

expressions or boolean sub expressions that are required to determine a match of a sequence.

A concurrent assertion is stated by a verification statement, and defined by a property.

The statement can be one of the following:

assert property Specifies, that the property is used as a checker to ensure that the property

holds the design.

assume property Specifies, that the property is used as an assumption for the environment.

cover property Specifies, that the property monitors the design behavior, and therefore

collects coverage for the property.

A concurrent assertion statement can be specified in:

• an always block or initial block as a statement, wherever these blocks can appear

• a module

• an interface

• a program

An example of a concurrent assertion is given in the following listing:

1 l a b e l : assert property ( property ) pass \ s t a t else f a i l \ s t a t ;

Listing A.4: Immediate Assertion Example

Concurrent assertions use the same action block semantics as immediate assertions. The

property in the example describes the assertion itself. The label is optional. It can be used

by verification tools like the Cadence ePlanner to map the assertion to a verification plan.

A.3. Properties

A property defines a behavior of the design. It can be used for verification as an assumption,

a checker, or a coverage specification. In contrast to the immediate assertions, properties
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are able to describe a design behavior at consecutive points in time. As properties describe

a behavior, they aren’t able to check a design directly, and its declaration by itself does not

produce any result. In order to use a property as a check it has to be used with an assert

statement. Assume statements describe the input for a formal verification tool. Whereas

cover statements are used to collected coverage for a given property, which basically means,

that the specified behavior has occurred in the simulation.

A property can be declared in:

• a module

• an interface

• a program

• a clocking block

• a package

• a compilation-unit scope

A property is declared in the following way:

1 property name [ ( l i s t o f f o rm a l s ) ] ;

2 [ a s s e r t i o n v a r i a b l e d e c l a r a t i o n ]

3 prope r ty spec ;

4 endproperty

5

6 prope r ty spec : := [ c l o ck i ng ev en t ] [ disable i f f ( exp r e s s i on ) ] p r ope r ty exp r e s s i on

7

8 prope r ty exp r e s s i on : :=

9 sequence expr

10 | ( proper ty expr )

11 | not proper ty expr

12 | proper ty expr or proper ty expr

13 | proper ty expr and proper ty expr

14 | sequence expr |−> proper ty expr

15 | sequence expr |=> proper ty expr

16 | i f ( e x p r e s s i o n o r d i s t ) proper ty expr [ else proper ty expr ]

17 | prope r ty i n s t anc e

18 | c l o ck i ng ev en t proper ty expr

Listing A.5: Property Grammar

There are two forms of an implication that are provided for properties: an overlapped

implication using the operator —-¿, and non-overlapped implication using the operator

—=¿. For the overlapped implication, if there is a match for the antecedent sequence expr,

then the end point of the match is the start point of the evaluation of the consequent

property expr. For non-overlapped implication, the start point of the evaluation of the
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consequent property expr is the clock tick after the end point of the match.

An example property:

1

2 wire s1 , s2 , s3 ;

3

4 property p1 ;

5 @(posedge c l k ) disable i f f ( ! r e s n )

6 ( s1 && s2 ) |=> s3 ;

7 endproperty

8

9 assert property ( p1 ) ;

10 A short form :

11 assert property (@(posedge c l k ) disable i f f ( ! r e s n )

12 ( s1 && s2 ) |=> s3 ; ) ;

Listing A.6: Example Property

A.4. Sequences

More complex properties can be constructed out of sequences. A sequence is a list of

boolean expressions in a linear order of increasing time. The sequence is true over time if

the boolean expressions are true at the specific clock ticks. An example sequence:

a ##1 b ##1 c

Listing A.7: Example Sequence

In this example, at the first clock tick a must be true, at the second one b, and at the

last clock tick c. The whole sequence fails, if one of these conditions fail.

A.4.1. Sequence Operators

Delay (a ##n b, a ##[n:m] b) The delay operator specifies the number of clock ticks

from the current clock tick until the next behavior occurs. Beside a constant value,

it is possible to specify an range of clock ticks. This is indicated with the range

operator ( [:] ). An open range is specified by a $ character. For example: a ##[3:$] b

Consecutive repetition (a[*n], a[*n:m]) The consecutive repetition specifies finitely many

iterative matches of the operand sequence, with a delay of one clock tick from the

end of one match to the beginning of the next match. The overall repetition se-

quence matches at the end of the last iterative match of the operand. For example:

a[∗3] equals a ##1 a ##1 a

151



A. SystemVerilog Assertions

Goto repetition (a[-¿n], a[-¿n:m]) The goto repetition specifies finitely many iterative

matches of the operand boolean expression, with a delay of one or more clock ticks

from one match of the operand to the next successive match and no match of the

operand strictly in between. The overall repetition sequence matches at the last

iterative match of the operand. For example: a[−>1] equals (!a)[∗0:\$] \#\#1 a

Non-consecutive repetition (a[=n], a[=n:m]) The non-consecutive repetition specifies

finitely many iterative matches of the operand boolean expression, with a delay of

one or more clock ticks from one match of the operand to the next successive match

and no match of the operand strictly in between. The overall repetition sequence

matches at or after the last iterative match of the operand, but before any later

match of the operand. For example: a[=1] equals (!a)[∗0:\$] ##1 a ##1 (!a)[∗0:\$]

And Operator (a and b) The and operator matches, if both sequences match, and the

start time of both is the same. The end time can be different.

Or operator (a or b) The or operator matches, if one of the sequences match.

Intersect operator (AND with length restriction) (a intersect b) The intersect opera-

tor matches, if both sequences match and the start and and time is the same.

First match operator (first match( a )) The first match operator matches only the first

of possibly multiple matches for an evaluation attempt of its operand sequence.

Throughout operator (a throughout b) The throughout operator matches, if a is true

during the whole match of b. It is an abbreviation for: (expr)[∗0:\$] intersect b

Within operator (a within b) The within operator matches, if b matches and a is true at

some point of this interval.

A.5. Local Variables

SV supports the declaration of local variables inside properties and sequences. They are

used to pass data for one stage in a sequential expression to a later stage. The following

data types are supported as local variables:

bit, byte, int, integer, logic, reg, time, packed struct, class, arrays of supported types

An example for local variables:

1 property p i p e l i n e ;

2 b i t [ 6 3 : 0 ] x ;

3 @(posedge c l k ) disable i f f ( ! r e s n )

4 ( va l id , x = data in ) |=> ##5 ( data out == (x+1)) ;

5 endproperty
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Listing A.8: Local Variable Example

A.6. Assertion Writing Guidelines

The SV assertion language sub set is a powerful language for writing assertions. It allows to

describe very complex design behavior by using properties and sequences. The drawback of

this complexity is, that is possible to write properties, which can slow down the simulation a

lot. To avoid common mistakes in writing assertions, [69] gives some advice for maximizing

the assertion performance. The following paragraphs will show some of these advices with

the help of bad examples and how they can be avoided.

Minimize the number of attempts Properties with an enabling condition, that is true a

lot of times, slows down the simulator a lot.

1 property bad ;

2 @(posedge c l k ) disable i f f ( ! r e s n )

3 va l i d && enable |−> a ve ry l ong s equence ;

4 endproperty : bad

Listing A.9: Slow Assertion

Use instead:

1 property good ;

2 @(posedge c l k ) disable i f f ( ! r e s n )

3 $rose ( va l i d ) && enable |−> a ve ry l ong s equence ;

4 endproperty : good

Listing A.10: Improved Assertion

Minimize false starts Try to start sequences or property enabling conditions with a

condition that is rarely true.

1 sequence bad ;

2 a ##1 b ##2 c ;

3 endsequence : bad

Listing A.11: Improved Assertion

If b is rarely true and a is true very often, a better solution is the following one:

1 sequence good ;

2 ( $past ( a ) && b) ##2 c ;

3 endsequence : good

Listing A.12: Improved Assertion
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Cadence NCSim Profiler SystemVerilog Assertions Examples

A.7. System Functions

Assertions are commonly used to evaluate specific characteristics of a design. Therefore

some system functions are available to simplify this evaluation. The following functions

are available:

$onehot(〈expression〉) returns true if only one bit of the expression is high

$onehot0(〈expression〉) returns true if at most one bit of the expression is high

$isunkown(〈expression〉) returns true if any bit of the expression is X or Z. This is

equivalent to 〈expression〉 ===′ bx.

$countounes(〈expression〉) returns the number of 1s in the expression.

A.8. SVA Examples

1 sequence l e ng th o f p a ck e t ;

2 ##[1:32] ##1 any eox ;

3 endsequence : l e n g th o f p a ck e t

4

5 property l e g a l d a t a v a l i d ;

6 @(posedge c l k ) disable i f f ( ! r e s e t n )

7 ( da t a va l i d && $rose ( any sox ) ) |−>
8 da ta va l i d throughout l e ng th o f p a ck e t ;

9 endproperty : l e g a l d a t a v a l i d

10 da ta va l i d : assert property ( l e g a l d a t a v a l i d ) ;

11

12 unknown valid : assert property ( @(posedge c l k ) disable i f f ( ! r e s n )

13 va l i d |−> $isunknown ( s igna l name )

14 ) ;

15

16 unknown : assert property ( @(posedge c l k ) disable i f f ( ! r e s n )

17 ! $isunknown ( s igna l name )

18 ) ;

Listing A.13: Assertion
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