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1 Introduction 

1.1 Motivation 

In consequence of the pervasive existence of information technology in modern life, the 

development of software became increasingly important within the software industry 

and other industrial sectors. Contemporary software development is confronted with 

significant challenges including increased innovation, cost and time pressure, soaring 

complexity and high quality demands (Pohl 2010). Many software development projects 

cannot cope with these challenges. According to a recent study, issued by the Standish 

Group, only 32% of all software development projects are finished successfully, while 

the remaining projects invest more resources than planned, reduce their original 

functional scope or entirely fail (Standish 2009).  

The success of IS
1
 development highly depends on the accuracy of the requirements 

gathered from users and other stakeholders (Appan and Browne 2012; Hickey and 

Davis 2004). Requirements which have been overlooked, misinterpreted or 

incompletely specified can cause high costs. Boehm and Basili (2001) estimate that the 

detection and removal of a software problem after delivery is 100 times more expensive 

than the correction of a problem during the requirements or design phase. Therefore, the 

efficient determination of complete and correct software requirements is of utmost 

importance. 

Approximately 80% of software requirements are recorded in natural language (Mich et 

al. 2004; Neill and Laplante 2003), within informal requirements documents, interview 

transcripts, discussion forums, or narrative scenarios. Natural language is inherently 

powerful and expressive and can thus be used to communicate between a broad range of 

stakeholders and users (Casamayor et al. 2011). Even though it appears to be a well-

suited means to articulate and discuss requirements, severe problems emerge when 

using natural language in specification documents as they might be ambiguous, 

inconsistent and incomplete (Wilson et al. 1997). Moreover, a direct interpretation of 

these documents by subsequent development tools is almost impossible. Accordingly, 

                                                 
1
 Information Systems. 
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natural language requirements are usually transformed from initially informal 

statements into more consistent and unambiguous representations (Tichy and Koerner 

2010). This process is referred to as requirements discovery in the context of this 

doctoral thesis
2
. 

Especially in large IS development projects, requirements discovery is a challenging 

task as a huge number of natural language requirements becomes available and needs to 

be analyzed. In these cases, manual requirements discovery can become time-

consuming, error-prone, and monotonous, especially if it has to be repeated multiple 

times when updates to previously existing documents become available (Ambriola and 

Gervasi 2006; Huffman Hayes et al. 2005). These problems lead to a low individual 

performance and more specifically to a low productivity of requirements engineers 

involved in this process. As a consequence, the question can be raised if and how 

requirements discovery can be supported by software development systems. 

1.2 Research Goals 

Many systems have been suggested to support requirements discovery by the means of 

technology (Ambriola and Gervasi 2006; Casamayor et al. 2010; Cleland-Huang et al. 

2007; Gacitua et al. 2011) and ultimately to improve requirements engineers’ 

productivity. Additionally to a first identification of requirements or requirements 

abstractions, these systems also support different processing steps such as requirements 

interrelation (Ambriola and Gervasi 2006; Harmain and Gaizauskas 2003; Sampaio et 

al. 2007) or requirements classification (Casamayor et al. 2010; Cleland-Huang et al. 

2007; Vlas and Robinson 2012). The latter class of systems (systems to support 

requirements identification and classification) is focused in the context of this thesis and 

referred to as Requirements Mining Systems (RMS).  

Although former works made major progress in the technical development of RMS, few 

efforts have been made to systematically capture the prescriptive knowledge gained. An 

according codification and abstraction of results in a design theory could significantly 

extend the requirements discovery knowledge base and guide future research in this 

                                                 
2
 In the following, this doctoral thesis will be simply referred to as „thesis“. 
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area. To increase the probability of an effective design, this theory should be grounded 

on practical experiences in the area of requirements discovery on the one hand and 

existing kernel theories which are relevant in this context on the other. Furthermore, 

existing RMS have been mainly evaluated through simulations, comparing the results of 

the presented system with a previously defined gold standard. Even though these 

evaluations allow precise measurements of absolute quality criteria, they do not allow a 

comparison to the as-is situation of manual discovery. More specifically, the question if 

RMS improve a requirements engineer’s individual productivity is hardly answered yet. 

As a consequence, this research project aims at 1) deriving a theoretically grounded 

design theory for RMS 2) implementing an artifact based on this design theory and 3) 

evaluating if requirements mining supported by this artifact results in increased 

productivity (in comparison to manual discovery). The leading research question to 

attain these goals is: How can a system be designed which aims at improving 

requirements mining productivity over manual discovery?  

Following a Design Science approach, the theory which shall be derived is structured 

according to the eight components of a design theory suggested by Gregor and Jones 

(2007). Design requirements are identified based on general knowledge and kernel 

theories, design principles are conceptualized and mapped to design features which are 

then instantiated in an artifact. The artifact is used to measure effects of the identified 

design principles on requirements mining productivity in two experiments: one in a 

laboratory and one in a field setting. This thesis contributes to the design theory body of 

knowledge by providing a design theory for RMS. The design theory is a contribution to 

the IS literature because RMS represent an important class of design situations that have 

not been adequately described yet by existing works. From a practical point of view, the 

study can help commercial providers of requirements engineering software packages in 

the design of their applications. Applied to commercial software development, the 

design theory can guide developers by reducing the range of possible system features 

and development activities to a more manageable set, and thus increase the probability 

of success. 



1.3 Structure of the Work 4 

 

1.3 Structure of the Work 

The remainder of this thesis is organized in the following chapters: Chapter two 

summarizes the foundations of this research. In this chapter, first requirements 

discovery as the superordinate process of requirements mining is defined and related to 

different requirements engineering and software development approaches. Then 

different types of requirements discovery systems and their technological characteristics 

are presented.  

In the third chapter, an analysis framework for the related work of this thesis is 

conceptualized. The analysis framework is then applied to research works in the area of 

RMS which represent the related work of this thesis. This analysis results in the 

identification of research gaps to be addressed in this thesis.  

In the fourth chapter, the overall methodology which is applied in this thesis is 

presented, including an introduction to the concepts of Design Science Research (DSR), 

the research paradigm which is followed here.  

Chapter five then describes the first main result of this thesis, a design theory for RMS. 

The description is structured along the eight components of an IS design theory 

suggested by Gregor and Jones (2007), including a presentation of the designed artifact.  

In chapter six, the results of two quantitative evaluations which have been conducted 

over the course of this thesis project are depicted. The first evaluation was performed 

during the design of the artifact while the second evaluation was conducted based on the 

artifact’s final version.  

In the subsequent chapter seven, results of both evaluations and the overall research 

project are discussed.  

Finally, in chapter eight, the contents of this thesis are summarized, limitations and 

future research opportunities are outlined and both research and practice contributions 

are depicted. 



5 

2 Foundations 

In the following sections, requirements discovery and related terms are defined and 

characterized. Subsequently, requirements discovery is related to existing software 

development and requirements determination approaches. 

2.1 Defining Requirements Discovery 

In general, a requirement is “a condition or capability that must be met or possessed by 

a system or system component to satisfy a contract, standard, specification, or other 

formally imposed documents” (IEEE 1990, p. 62). Requirements can include 

"specifications of the service the system should provide, the constraints on the system 

and background information which is necessary to develop the system" (Rayson et al. 

2000, p. 1363). Following the suggestion of Ambriola and Gervasi (1997) in the context 

of this work, the term “requirement” is used for the final product of requirements 

determination as well as for early incarnations of the same information. 

The determination and management of requirements is generally associated with the 

Requirements Engineering (RE) discipline. Pohl (2010, p.48) characterizes RE as a 

“cooperative, iterative and incremental process” aiming at 1) gathering and 

understanding all requirements 2) agreeing on requirements between all stakeholders 

and 3) documenting requirements complying to defined specification formats and rules. 

Requirements can be documented in natural language (e.g., a narrative scenario), in 

models (e.g., UML
3
 models) or even figures (e.g., a drawn user interface mockup) (Pohl 

2010). This thesis focuses on natural language requirements (NLR). NLR can be 

expressed in documents (e.g., informal requirements specifications, interview 

transcripts, workshop memos, or narrative scenarios) as well as in other resources (e.g., 

entries in issue tracking or test case management systems, support databases or 

discussion forums) (Vlas and Robinson 2012). Therefore, in the following the term 

“natural language requirements resources” (NLRR) is used instead of “natural language 

documents”. 

                                                 
3
 Unified Modeling Language. 
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As depicted in the introduction, NLR are usually transformed from initially informal 

statements into a more consistent and unambiguous representation, often containing 

additional information about a requirement’s category or interrelation to other 

requirements. In RE research there are different terms describing this process as 

requirements elicitation (Castro-Herrera et al. 2009), requirements analysis (Ambriola 

and Gervasi 2006), requirements identification (Casamayor et al. 2010) or requirements 

classification (Cleland-Huang et al. 2007). In absence of an agreed-upon term and in 

analogy to the Knowledge Discovery process (Fayyad et al. 1996) which proceeds 

similarly, this process is referred to as “Requirements Discovery” in the context of this 

thesis. Within requirements discovery, two main process steps can be differentiated: 

requirements identification and requirements transformation (Cleland-Huang et al. 

2007; Vlas and Robinson 2012). Both the identification as well as the transformation of 

requirements can be performed with and without system support. These two steps are 

looked upon in detail in the following. 

Within a NLRR, a requirement may be represented by anything from single words (e.g., 

a data field to be implemented), over an entire sentence (e.g. the description of a 

function) to a sequence of sentences (e.g. to specify a non-functional requirement). 

Requirements identification mainly serves two purposes: First, it separates text that 

describes requirements from text which is not relevant from a requirements point of 

view. Second, it delimits each requirement within the document, resulting in multiple, 

individual requirements statements (Vlas and Robinson 2012). Depending on the text’s 

degree of structure and preprocessing, the amount of irrelevant content can largely vary. 

In Open Source Software Development, for example, requirements are often identified 

from forums containing thousands of lines of social communications, code segments or 

slang which do not contain any requirements (Cleland-Huang et al. 2007). At the other 

end of the spectrum, requirements could be identified within already pre-processed, 

semi-structured use case descriptions which contain requirements in a very condensed 

form. By ignoring or even eliminating non-relevant passages of a requirements 

description, the requirements identification also results in a summarization of the source 

information. In addition to this document-wide summarization, requirements 

descriptions can also be abstracted to derive the main concepts and most significant 
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terms of the domain under investigation. From the requirement “The user interface 

should provide information about the flight number, gate and departure time” for 

example, the abstractions “flight number”, “gate” and “departure time” could be 

extracted to build up domain-specific knowledge for traveling applications. 

Abstractions can be used to support subsequent identifications and transformations or to 

provide a value in itself. They can be used for example in early requirements elicitation 

steps to assist an analyst in gaining an understanding of an unfamiliar domain by 

providing a collection of the core terminology (Goldin and Berry 1997).  

Based on the identification of individual requirements, a subsequent transformation can 

be conducted. Requirements transformation can include multiple, non-exclusive 

transformation steps which are introduced in the following. A widespread way to enrich 

requirements with additional semantics is the classification into distinct categories 

(Casamayor et al. 2010; Cleland-Huang et al. 2007; Vlas and Robinson 2012). By using 

requirements templates (e.g. the Volere requirements template
4
), requirements are 

classified into categories such as functional or non-functional requirements and sub-

categories of these (e.g. performance requirements as a sub-category of non-functional 

requirements). An according classification can simplify (or even be a prerequisite for) 

subsequent modeling activities. Classified requirements can be grouped together to 

derive specific model types (e.g., a data model). In addition, a classification structure 

which is envisioned in a template can help to avoid omitting certain aspects of software 

(e.g., usability requirements). 

After individual requirements have been identified, they can be interrelated to create 

models. A requirements specification for a purchasing application for example could 

describe individual data requirements for a user interface (e.g., “The user interface to 

enter purchase orders should include a data field to select a purchasing organization. In 

case a purchasing organization is subdivided, it should also be possible to select a 

purchasing group”). During requirements interrelation, these two individual 

requirements could be linked in a data model, in which the according relationship 

between purchasing organizations and purchasing groups is depicted. Requirements 

                                                 
4
 http://www.volere.co.uk/template.htm (5.2.2013). 
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interrelation is based on abstract terms, and therefore is usually performed after 

requirements abstraction has been conducted (Kof 2004; Mich and Garigliano 2002).  

2.2 Relating Requirements Discovery to IS Development 

In traditional IS development approaches, requirements discovery is associated with a 

formal process and distinct phases summarized as Requirements Engineering 

(Sommerville 2010). In the following, traditional RE is characterized with a focus on 

the relation to requirements discovery activities. Even though traditional RE is still a 

widely-followed approach, various alternative development approaches (e.g., market-

driven development) have emerged in recent years, resulting in different settings and 

challenges for requirements discovery. Therefore, in addition to traditional RE, 

requirements discovery is also related to alternative development and requirements 

determination approaches. 

2.2.1 Traditional Requirements Discovery 

Traditional RE differentiates between two main processes, requirements determination 

and requirements management (Davis 1982; Pohl 2010). Requirements determination 

includes the elicitation, analysis, negotiation, specification and validation of 

requirements (Davis 1982; Pohl 2010). Requirements management includes change, 

traceability and release management for requirements (Pohl 2010; Sommerville 2010) 

(Figure 1).  

There is no general agreement to which phase requirements discovery should be 

assigned. While some authors relate it to requirements elicitation (Castro-Herrera et al. 

2009; John and Dörr 2003; Kaiya and Saeki 2006; Kiyavitskaya and Zannone 2008; 

Shibaoka et al. 2007), others assign it to requirements analysis (Cybulski and Reed 

1998; Mich and Garigliano 2002; Park et al. 2000; Seresht et al. 2008). While one could 

argue that it contains aspects of both phases (associating the identification task with 

elicitation and the transformation task with analysis), this apparent inconsistency could 

also be caused by the inconsistency in definitions of the phases themselves. For 

example, Pohl (2010) regards analysis activities to be part of elicitation, without being a 

phase on its own. Sommerville (2010) similarly sees elicitation and analysis tightly 
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interwoven and combines them in one phase called “elicitation and analysis”. Hickey 

and Davis (2004) in contrast see them as two separate phases. Moreover, the term 

“requirements analysis” is often used as a synonym for “requirements engineering” in 

the RE literature (Cao and Ramesh 2008). 

 

 

Figure 1: Requirements Engineering Processes 

 

Despite this disagreement in allocation, the discovery of requirements depends on the 

provision of unstructured or semi-structured requirements descriptions which are 

usually gained through elicitation methods in the context of traditional RE (Pohl 2010). 

The majority of these methods involves a direct interaction between requirements 

owners and requirements producers (Goguen and Linde 1993). Requirements owners 

are usually stakeholders and users of the software who provide requirements. 

Requirements producers conduct a first documentation of requirements and are 

generally part of the product or development team. Ideally, requirements elicitation 

would ultimately result in a set of complete and correct requirements. However, due to 

cognitive, motivational and communicative issues in the exchange between 

requirements owners and producers, this is often not the case (Davis 1982; Valusek and 

Fryback 1985). For example, when a user is asked concerning his requirements for a 

new system, he is challenged to verbalize his implicit knowledge. This requires an 

immediate mental compilation and structuration of previously unordered information 
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resulting in significant cognitive work. Instead of delivering an optimal solution to this 

task, users tend to be satisfied with a "good enough" one (Valusek and Fryback 1985). 

To respond to these issues, a plethora of methods such as interviewing, focus groups, 

observations, document analysis or repertory grids have been researched and practiced 

(Davis et al. 2006; Goguen and Linde 1993; Tuunanen 2003). Even though some 

authors propose the usage of one single method in any possible situation, an approach 

fitting every domain, application and requirements context is yet to be found. Instead, 

Hickey and Davis (2004) suggest an active selection process for elicitation methods, 

incorporating problem, solution, and project domain characteristics as well as the state 

of the requirements. 

Many methods used during requirements elicitation result in unstructured or semi-

structured NLRR. Interview outcomes for example are summarized in interview notes 

or even transcripts and results of focus groups are documented in meeting protocols or 

in a simple email. In a subsequent requirements discovery these documents are analyzed 

to identify single requirements and transform them into a more formal representation. 

Therefore requirements discovery can be seen as a connecting activity between the 

requirements elicitation phase and subsequent phases. 

The traditional RE approach is characterized by distinct, sequential phases and an 

upfront and “en bloc” determination of requirements (Sillitti et al. 2005). Each of the 

phases is self-contained, and the process does not move to the next phase until the 

previous phase is completed. Furthermore, it is subject to a high degree of formality, 

enforcing standards at the hand-off between different phases and involving an 

abundance of documentation (Robey et al. 2001). Although this is still a widely-

followed approach (particularly in custom software development), various alternative 

development approaches have emerged in recent years and became increasingly 

important (Ramesh et al. 2007; Sharp et al. 2007; Vlas and Robinson 2012; van de 

Weerd et al. 2006). Caused by different delivery models (such as packaged or open 

source software) or alternative development paradigms (such as agile or user-centered 

development), requirements discovery is often performed in a different setting than in 

the traditional development approaches. In the following, these differences and their 

consequences are pointed out. 
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2.2.2 Market-Driven Requirements Discovery  

Software is increasingly developed by specialized companies (software vendors) 

implementing packaged software (Sawyer 2000). Packaged software (also known as 

commercial-off-the-shelf or commercial software) includes all types of software sold as 

tradable products (purchased from vendors, distributors or stores) for multiple types of 

hardware and operating systems (Carmel 1997). In contrast to custom-built software, 

packaged software is usually licensed, instead of sold (Sawyer 2000). 

The development of packaged software (sometimes also called market-driven 

development) aims at implementing standardized software products for markets 

consisting of a potentially large number of different customers (Karlsson et al. 2002). In 

contrast to traditional RE, in this development approach a clear differentiation between 

requirements owners and producers is often not possible. Users often act as 

requirements producers: customer wishes (which later evolve into market-driven 

requirements) are directly articulated and described in natural language through 

customers using issue tracking systems, emails or similar electronic communication 

means (Regnell et al. 1998). Similarly, developers frequently act as requirements 

owners: technology-driven requirements are “invented” by developers or product 

managers of the software company to differentiate the own product from a competitive 

market (Karlsson et al. 2002; Regnell et al. 1998). The relative ease of requirements 

creation in combination with a development model which aims at a large number of 

customers can easily result in a big and continuous flow of incoming requirements, a 

situation which is referred to as “requirements overload” (Karlsson et al. 2002). In 

addition, due to requirements owners from different companies, requirements are not 

synchronized between different stakeholders resulting in a high probability of 

requirements duplicates, overlaps and contradictions (van de Weerd et al. 2006). Even 

for requirements without interdependencies, the initial description quality is often poor 

(Regnell et al. 1998). Prior to the first inspection through the software vendor, 

requirements do usually not pass any quality control, do not adhere to specification 

standards and are often formulated by authors not familiar with requirements 

specification (Regnell et al. 1998).  
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Consequently, product owners and other employees responsible for requirements 

discovery at software vendors are facing two major challenges. First, during 

requirements identification, the main issue is the sheer amount of different NLRR to be 

analyzed (Karlsson et al. 2002). Second, during requirements transformation, potentially 

inconsistent customer wishes need to be processed into consolidated product 

requirements (Natt och Dag et al. 2004). Consolidation is further impeded by the 

continuous arrival of new requirements and the changes applied by customers to already 

processed ones. 

2.2.3 Agile Requirements Discovery 

Traditional RE approaches face the problem that requirements are often changed, added 

or dismissed during the course of a development project, a circumstance which cannot 

be adequately handled in a linear, sequential development model (Rajlich 2006). As a 

consequence, the resulting software often does not match the users’ needs after 

deployment on the one hand, while on the other, implemented features are sometimes 

not used (Petersen and Wohlin 2010). Addressing this issue, Agile Software 

Development became increasingly popular in the last decade. It propagates an iterative 

and incremental software development approach (Larman and Basili 2003) and the 

compliance to a set of principles expressed in the Agile Manifesto: 

 

“Individuals and interactions over processes and tools 

Working software over comprehensive documentation 

Customer collaboration over contract negotiation 

Responding to change over following a plan”  

The Agile Manifesto (Beck et al. 2001) 

 

These principles are also applied to requirements determination and manifest in the 

following differences to traditional RE. First, instead of formal specifications, 

requirements are mainly specified via face to face communication and narrative user 

stories (De Lucia and Qusef 2010). The latter represent short, natural language feature 

descriptions of the system to be built (Cohn 2004). In contrast to use cases, user stories 
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describe a single requirement to be fulfilled instead of a complete scenario (Leffingwell 

2011). User stories are written from the user’s perspective, addressing the strong 

customer focus of the agile principles. A typical way to formulate a user story is the 

“role-activity-business value” form, in which a stakeholder describes in one sentence, in 

which role he interacts with the system during an activity to achieve a business value 

(Cohn 2004). While the choice of lean documentation can increase responsiveness to 

customers’ needs and reduce time efforts for documentation, it becomes problematic 

when customers are not available or cannot come to consensus (in case of multiple 

customers) (Cao and Ramesh 2008). Furthermore, when people are leaving the 

development team (or even the company) their work and knowledge is hardly 

reproducible from documentation.  

Second, instead of an initial upfront elicitation, requirements are determined iteratively 

(Ramesh et al. 2007). As customers often do not have a complete picture of the set of 

requirements at the beginning of a project, this approach offers the opportunity to 

explore requirements incrementally (Leffingwell 2011). While the elicitation quality of 

functional requirements can benefit from iterative elicitation, there is, however, a strong 

concern that it neglects certain non-functional requirements, such as scalability, 

maintainability, portability, safety, or performance (Cao and Ramesh 2008). In 

traditional RE, these technical requirements are often contributed by developers or 

architects, also viewing the system from a technical perspective, which can get lost 

when elicitation strictly focuses on the user perspective. 

For requirements discovery, the focus on face to face communication reduces the 

amount of documented NLR, which are necessary for requirements discovery. 

Accordingly, the added value of requirements discovery in an agile setting can be 

questioned. However, as previously described, continuous, extensive and direct 

customer integration is an ideal which can often not be realized in practice. In cases 

customers cannot be physically present for face to face communication, requirements 

are still formulated and discussed using information and communication technology 

(e.g., through emails, ticket systems or similar means). To complement requirements 

information from face to face communication, these sources therefore additionally need 

to be considered and can be adequately analyzed by requirements discovery. An 
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according strategy to combine personally with electronically communicated 

requirements becomes even more important when the agile principle of iterative and 

incremental requirements elicitation is applied and requirements discovery is a 

continuous activity. 

2.2.4 Distributed Requirements Discovery 

Distributed development is a major trend in software engineering (Agerfalk et al. 2009; 

Pries-Heje and Pries-Heje 2011). It is usually conducted by virtual teams which are 

working together but without being co-located (Casey and Richardson 2006). Virtual 

teams can collaborate across geographical and organizational boundaries and are usually 

linked by communication and information technology (Lipnack and Stamp 1997). 

According to a study by Robinson and Kalakota (2004), over 95% of the Fortune 1,000 

firms utilize globally distributed development teams. Multiple advantages are associated 

with an according approach, including decreased costs through wage differences 

between countries, a better access to highly qualified employees through global 

sourcing and reduced implementation times as a result of working “around the clock” in 

different time zones (Herbsleb and Moitra 2001; Holmström et al. 2006). However, it 

also creates new challenges, due to increased complexity. Working in a virtual team, the 

complexity of communication, coordination and collaboration can increase, e.g. due to 

different cultural backgrounds and differing work practices (Agerfalk et al. 2009; Li and 

Maedche 2012). 

In distributed RE, methods which rely on face to face, synchronous communication are 

often replaced by electronically mediated, asynchronous communication (Menten et al. 

2010). Electronically identified requirements enable the assurance of traceability and 

rationale management which are of utmost importance for overall distributed 

development and specifically for distributed RE (Geisser et al. 2007; Hildenbrand et al. 

2009). In recent years, using internet technology, multiple types of information and 

communication support have been established to support distributed requirements 

elicitation. Using wikis (Geisser et al. 2007), forums, issue tracking systems (Scacchi 

2002) or similar technologies, a lean early documentation of requirements, often in 

natural language, can be achieved. For requirements discovery, these NLRR provide 
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abundant material for the identification of requirements. In this setting, the 

consolidation of requirements is a major challenge, as requirements statements can be 

spread across different sources and media. To support this consolidation, systems which 

enable an identification and classification of individual requirements have been 

suggested (Vlas and Robinson 2012). 

2.2.5 User-Centered Requirements Discovery 

The idea of a “User-centered design” was first propagated by Donald Norman in the 

1980s and became popular after the publication of two books (Norman and Draper 

1986; Norman 1988) in which the author explains how the usability of products can be 

improved by putting the user (and not the system) into the center of all design activities. 

In this approach designers have the primary role of simplifying the user-system 

interaction and make sure that the actual system usage equals (or at least comes close 

to) the intended usage. This aspired congruence prerequisites an extensive 

understanding of the users and their tasks which shall be accomplished by a strong 

integration of users in all development phases. Additionally to user-centricity, Gould 

and Lewis (1985) recommend two further principles which have been incorporated in 

most user-centered procedure models, namely “empirical measurements” and an 

“iterative design”. While the first principle recommends evaluating prototypes of the 

software in early development stages through actual users, the second suggests to 

continuously design, test and measure to be able to fix usability problems. To apply 

user-centered design in practice, different procedure models have been proposed (e.g., 

the “Star Lifecycle Model” (Hartson and Hix 1989), the “Usability Engineering 

Lifecycle” (Mayhew 1999), or “Goal Directed Design” (Cooper et al. 2007)). 

Furthermore a “Human-Centered Design Process” has been normed by ISO 

standardization (see Figure 2). 
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Figure 2: Human-Centered Design Process
5
 

 

One of the distinguishing elements in comparison to other software engineering 

approaches is the initial activity “Understand and specify the Context of Use” before the 

specification of user requirements. Revisiting the goal of user-centered design to 

increase usability, this activity reflects the fact that usability is no generic attribute, but 

defines “[t]he extent to which a product can be used by specified users to achieve 

specified goals with effectiveness, efficiency and satisfaction in a specified context of 

use.” (ISO 1998) 

An established method to capture the specific context of use is the contextual analysis, 

proposed by (Beyer and Holtzblatt 1998). The basic principle of contextual analysis is 

the observation and inquiry of users at their actual workplace and during their daily 

work activities. Applying this method, requirements or usability engineers learn which 

aspects of the current work practices (including the utilized IS) are helpful or hindering. 

Furthermore, it can be clarified which features of an IS are important or less important 

                                                 
5
 According to ISO 9241-210 (ISO 2010). 
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for a user. To get a comprehensive picture, contextual analyses are usually conducted 

with multiple users (even in similar working contexts) (Wixon et al. 1990). 

Requirements Engineers should remain passive during contextual analyses, taking the 

role of an apprentice who learns the users work context from him (Beyer and Holtzblatt 

1998). Learning how and why something is done or not is one of the main goals of this 

exercise. 

During the specification of the context of use, a plethora of unstructured and semi-

structured documents and materials is compiled which can be analyzed during 

requirements discovery. This includes interview transcripts, observation notes or first, 

narrative scenario descriptions describing a typical work practice (Sharp et al. 2007). 

Contextual analyses which involve observations may also result in audio or video 

material containing requirements information. The combined analysis of textual and 

non-textual information therefore represents an additional challenge in user-centered 

requirements discovery. 

2.3 Summary 

In this chapter, topic-specific terms and concepts which are relevant in the context of 

this thesis were introduced. Starting with general definitions of requirements and 

requirements engineering, the specific process of requirements discovery was defined 

and conceptualized. This specific process has then been related to existing approaches 

to develop software and determine requirements, highlighting the specific impact and 

context of requirements discovery.  
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3 Related Work
 6

 

In this chapter, an analysis framework for related research works on Requirements 

Discovery Systems (RDS) is presented. First, an overview of the analysis framework is 

depicted. Then each of the framework’s dimensions and characteristics is presented in 

detail. In the last section of the chapter, the framework is applied to research in the area 

of Requirements Mining Systems (the focus of this thesis) and the research gap which 

will be referred to is outlined. 

3.1 Analysis Framework 

As previously described, unassisted requirements discovery can be time-consuming and 

error prone. Therefore a plethora of systems have been proposed to support the process 

(Meth et al. 2013a). These systems are referred to as RDS in the following and are 

analyzed along a multi-dimensional analysis framework, which is depicted in Figure 3. 

The framework consists of multiple dimensions (e.g., purpose), characteristics which 

are assigned to a dimension (e.g. “evaluation approach” is assigned to “evaluation”) and 

values for characteristics (e.g. the characteristic “evaluation approach” can have the 

value “controlled experiment”). The first two dimensions (purpose and design) are used 

to analyze RDS from a technological point of view. First, analyzing the purpose of the 

systems, a differentiation concerning the output of the systems is made. Second, 

investigating the design of the systems, characteristics of the employed technology are 

distinguished. The third and fourth dimension (evaluation and knowledge exchange) 

complement the framework to enable a holistic assessment of RDS research works. This 

includes an analysis of the chosen evaluation approaches and constructs as well as a 

classification of the type of knowledge exchange applied in the research work. Each of 

the dimensions, their related characteristics and the different values of these 

characteristics will be explained in detail in the following. 

  

                                                 
6
 Parts of this chapter of the thesis are based on Meth et al. (2013a). 
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Figure 3: An Analysis Framework for RDS Research Works 

3.2 Purpose 

The purpose of RDS is the support of the requirements discovery process in the 

identification and transformation of requirements from NLRR (e.g., documents, issue 

tracking databases or emails). In 2.1, different types of identification, namely 

requirements identification and abstraction identification and different types of 

transformation, namely requirements classification and requirements interrelation have 

been introduced. In the following, these characteristics of the discovery process are used 

to characterize different classes of RDS. 
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3.2.1 Abstraction Identification Systems 

 

Figure 4: Characterization of Abstraction Identification Systems 

 

Abstraction Identification Systems aim at the identification of abstractions from NLRR 

which will, for example, assist a requirements engineer in gaining an understanding of 

an unfamiliar domain (Berry et al. 2012). In this context, abstractions are single words 

within the requirements document which represent the main concepts and most 

significant terms of the problem and application domain (Gacitua et al. 2011). This 

domain knowledge can then be used as a reference and a starting point during further 

requirements discovery. In particular the knowledge can help to avoid information 

overload and to overlook important aspects that might evolve into requirements (Berry 

et al. 2012). Systems that support abstraction identification through automatisms have 

been proposed by Gacitua et al. (2011) Goldin and Berry (1997) and Sawyer et al. 

(2002). 

3.2.2 Requirements Identification Systems 

 

Figure 5: Characterization of Requirements Identification Systems 

 

Requirements Identification Systems focus on the pure identification of requirements, 

without subsequent discovery steps. However, most of the systems support additional 

activities related to requirements determination. For example, in the system presented 

by Kaiya and Saeki (2006), NLRR are preprocessed to identify requirements and the 

related concepts. A requirements engineer then manually maps these concepts to items 

of an ontology from the same domain (if possible). Based on these mappings, the 
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system then recommends further requirements to be added. Through this procedure, the 

overall completeness and correctness of requirements descriptions shall be improved. 

An enhanced version of this system is presented in Shibaoka et al. (2007). Another 

example is the system developed by Castro-Herrera et al. (2009). It supports the 

identification of requirements themes. On the basis of initial statements, which are 

entered manually by the customers into a web-based tool, a linguistic processing is 

conducted to tag each statement with illustrative terms. Based on these tags, the 

statements are clustered to requirements themes. For each requirements theme, a 

discussion forum is created to foster further discussions among stakeholders. 

3.2.3 Requirements Modeling Systems 

 

Figure 6: Characterization of Requirements Modeling Systems 

 

Requirements Modeling Systems identify, abstract and interrelate requirements. The 

resulting models and their graphical representation can foster the discussion of 

requirements with stakeholders and enable a direct transition between requirements and 

design activities (Sommerville 2010). A plethora of systems has been proposed to 

support requirements modeling: While some systems generate standardized UML 

models (Ambriola and Gervasi 2006; Harmain and Gaizauskas 2003; Sampaio et al. 

2007), others produce proprietary object-oriented models (Mich and Garigliano 2002), 

models specifically tailored to security requirements (Kiyavitskaya and Zannone 2008) 

or models to describe the interaction of the user with the system’s user interface 

(Brasser and Vander Linden 2002; Lemaigre et al. 2008; Tam et al. 1998). 
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3.2.4 Requirements Mining Systems 

 

Figure 7: Characterization of Requirements Mining Systems 

 

Requirements Mining Systems identify requirements and classify them according to an 

existing taxonomy. Depending on the type of knowledge generation (see 3.4.1), they 

can also include functionality for abstraction identification. Cleland-Huang et al. (2007) 

focus on non-functional requirements (NFR) as e.g. security, performance or usability 

requirements. Based on the notion that each sub-group of NFR has its unique keywords, 

the system uses different knowledge base items to find and classify NFR from each sub 

group. Casamayor et al. (2010) similarly aim at the detection of NFR, and employ a 

semi-supervised categorization approach that only needs a small set of manually 

classified requirements for the initial training of the classifier. In their system, the 

classification model is iteratively enhanced based on the users’ feedback on the 

artifact’s output. Rago et al. (2011) present QAMiner, a system that also aims at 

discovering NFR. The system, however, analyzes use case specifications, and relates 

requirements to pre-defined quality attributes (e.g., modifiability, performance, 

availability, etc.) to avoid that these non-functional aspects are understated in the 

resulting requirements specifications. Vlas and Robinson (2012) present an automated 

approach for the identification and classification of both functional and non-functional 

requirements in natural language feature requests of open source software projects.
7
 

3.3 Design – Processing Characteristics 

To fulfill the previously described purposes of different types of RDS, the systems 

provide alternative processing characteristics which will be presented in the following. 

The characterization is centered on the concept of automation, being the core processing 

concept of RDS (Cleland-Huang et al. 2007; Natt och Dag et al. 2002; Pérez-González 

                                                 
7
 Each of the four systems will be analyzed in more detail in the related work paragraph. 
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and Kalita 2002; Sampaio et al. 2007). First, a differentiation of approaches along 

different degrees of automation is made. After that the underlying technology to enable 

automation is introduced. 

 

 

Figure 8: Processing Characteristics of RDS 

3.3.1 Degree of Automation 

While there are some research works, which present system support for purely manual 

requirements discovery (Abrams et al. 2006; Ossher et al. 2009), most RDS incorporate 

capabilities to at least partially automate the process. However, existing works show 

differences concerning the degree of automation provided. Research suggests that while 

system support can cause an efficiency advantage in comparison to a purely manual 

discovery (Cheng and Atlee 2007), a complete automation of requirements discovery 

tasks can lead to a loss of information or erroneous results (Goldin and Berry 1997). 

Berry et al. (2012) point out that the cognitive aspects of requirements discovery should 

not be underestimated, as RDS may omit important requirements, and fail to detect 

logically correct, but questionable requirements. Thus, automation approaches should 

additionally involve human interaction. This indicates a conflict between the benefits of 

automation and the necessity of human intervention. According to Parasuraman et al. 

(2001), the appropriate degree of automation in the support of human tasks should be 

chosen according to a variety of evaluative criteria, including the reliability of the 

automation and the costs of decision outcomes. While a full automation would replace 

the human analyst, a semi-automated approach would merely support him and thus 

rationalize requirements discovery, while still requiring an interaction with the system. 

In contrast to (semi-)automatic approaches, during manual requirements discovery an 

analyst would start the analysis from scratch, without any potential requirements 

recommended by the system. This said, it should be noted that in practice the degree of 

automation should rather be seen as a continuum than as a categorical concept. While a 
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fully automated approach might target to replace any manual requirements mining 

activity, in most cases an analyst will still double-check at least parts of the results of 

the automatism to make sure that requirements have been captured correctly. In this 

sense the differentiation between semi-automation and full automation which will be 

made in the framework should rather be understood as the design and usage focus of a 

system. Examples for semi-automatic RDS include the systems presented by Ambriola 

and Gervasi (2006), Casamayor et al. (2010), Rago et al. (2011) and Sawyer et al. 

(2002), examples for entirely automatic approaches are presented by Gacitua et al. 

(2011), Goldin and Berry (1997), Kiyavitskaya and Zannone (2008) and Vlas and 

Robinson (2012). 

3.3.2 Automation Technology 

Most RDS use Natural Language Processing (NLP) or Information Retrieval (IR) 

techniques to automate requirements discovery (Berry et al. 2012; Cheng and Atlee 

2007). The according techniques can be employed to achieve each of the previously 

described requirements discovery purposes, which will be outlined in the following. 

There is plethora of different techniques from NLP, IR and other research fields which 

have been applied to RDS. The subsequent assembly therefore does not claim 

completeness, but should rather be seen as a compilation of prominent design choices 

for RDS systems. 

3.3.2.1 Linguistic Preprocessing to Prepare Requirements Discovery 

Before search techniques or other automated discovery techniques can be applied, the 

provided NLRRs need to be preprocessed. In this preprocessing, the texts are broken 

down to a list of relevant, individual and harmonized words (or even parts of words). 

This process is described in more detail in the following. 

First, the text is split into single sentences and words, applying sentence segmentation 

and tokenization (Palmer 2000). Sentence segmentation aims at identifying sentence 

boundaries, which are usually indicated by punctuation marks. During tokenization, 

word boundaries are localized and used to further segment the text into single words. 

Even though in English texts in most cases word segmentation can be performed after 
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each space, there are some exceptions to this heuristic. For example, a genitive “s” (e.g. 

John’s desk) is part of the previous word while an apostrophe “s” in verb contractions 

(e.g. she’s) represents an additional word (is) which needs to be separated (Palmer 

2000). 

After tokenization has been performed, irrelevant words need to be eliminated to 

improve the performance and precision of subsequent processing, a process step 

referred to as stop word removal (Silva and Ribeiro 2003). Stop words represent words 

which are extremely common and therefore not helpful for NLP or IR processing 

(Manning et al. 2008). Examples for English stop words are “a”, “of” or “the”. 

Finally, the remaining words usually need to be harmonized. Harmonization can help to 

detect duplicates and improve the results of subsequent processing steps. During 

searches, for example, using the exact same words as they originally occurred in a 

NLRR generates multiple problems. Semantically similar words might appear in 

varying forms, e.g. due to grammatical conjugation and declination, different spelling 

(e.g., American vs. British spelling) or inconsistent capitalization of words (Manning et 

al. 2008). Without harmonization these words would not be recognized as similar, 

resulting in an unsuccessful search. Thus different harmonization techniques can be 

employed which will be summarized in the following. First, during normalization, the 

capitalization of words is harmonized and accents, diacritics and hyphens are eliminated 

(Manning et al. 2008). Second, during stemming, words are reduced to their stems 

(Salton and McGill 1986). Word stems in contrast to original words do not contain 

grammatical alterations like plurals, gerund forms or tense suffixes. 

Even though normalization and stemming can increase information retrieval success, 

they can come to limits if words have multiple meanings depending on their actual word 

class. For example, the word “order” can be used as a verb (“The system should provide 

functionality to order catering services”) or as a noun (“The system should display 

details of an order”). Whereas in the first example “order” is part of an activity which 

should be supported by the system, in the second example “order” describes an object or 

data element. Similarly, it is difficult to apply stemming to irregular verbs, for example 

the word “went” has no common stem with “go” although they just represent different 

conjugations of the same verb. Therefore, alternatively to normalization and stemming, 
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the NLP technique of lemmatization can be employed. While normalization and 

stemming aim at the reduction of words to a common part (e.g. “production” is reduced 

to “produc”), lemmatization replaces the original word with a lemma. A lemma is a 

word, which serves as a proxy for an entire set of forms taken by this word. For 

example, the conjugations “choose, chose and chosen” would all be replaced by the 

lemma “choose”.  

Lemmatizers usually require an input tuple of a) the word to be replaced and b) the 

word class associated with this word (e.g. noun, verb, adjective). In computer 

linguistics, these word classes are referred to as part-of-speech (POS) (Voutilainen 

2003). POS tagging is the process of assigning part-of-speech labels to words (Jurafsky 

and Martin 2009). Additionally to the use in lemmatizers, POS tags can also be used to 

improve IR results (which will be described later on). Figure 9 gives an overview of the 

described NLP and IR techniques for linguistic preprocessing. 

 

 

Figure 9: Linguistic Preprocessing Using NLP and IR Techniques 

3.3.2.2 Frequency Profiling for Abstraction Identification 

As described earlier, abstraction identification aims at identifying the main concepts and 

most significant terms of a requirements domain. The previously described techniques 

for linguistic preprocessing can help to identify and harmonize individual words within 
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a NLRR. However, apart from stop word removal, no filtering or selection is applied to 

reduce the set of words to the most important ones for a specific domain.  

A common approach to achieve this is the usage of frequency profiling (Gacitua et al. 

2011; Goldin and Berry 1997; Sawyer et al. 2002). In its basic form, frequency profiling 

is based on the idea that the importance of a word in a text is proportional to its 

frequency of occurrence (Goldin and Berry 1997). Consequently, the most frequently 

used words in a requirements document (apart from stop words) are identified as 

candidate abstractions, of which a requirements analyst could manually pick the final 

set of abstractions.  

Although the usage of absolute frequency numbers already provides good results 

(Wermter and Hahn 2006), it can be improved by analyzing the relative frequency of 

words in the given text. Sawyer et al. (2002) describe corpus-based frequency profiling 

which is based on the assumption that words which are significant to a domain will be 

revealed by an increased relative frequency of appearance in the text in comparison to a 

normative corpus. As a normative corpus, they apply a 2.3 million-word subset of the 

British National Corpus which contains transcripts of spoken English. Whenever a word 

is strongly overrepresented in the given text (in comparison to the normative corpus) it 

qualifies to be identified as an abstraction. While corpus-based frequency profiling 

works well for single words, it cannot be applied to multiword terms (e.g. “requirements 

engineer”). Therefore, Gacitua et al. (2011) suggest to calculate significance values for 

multiword terms by using weighted averages of the individual words log-likelihood
8
. 

Their results show that an according approach can successfully capture multiword terms 

and thus help to further automate abstraction identification. 

3.3.2.3 Techniques for the Interrelation of Requirements 

A large variety of methods has been used in alternative combinations to support the 

interrelation of requirement resulting in requirements models (Ambriola and Gervasi 

2006; Kof 2004; Mich 1996; Omoronyia et al. 2010). Instead of describing each 

technique in isolation, an exemplary approach to combine different methods as 

suggested by Kof (2004) is presented in the following. The interrelation of requirements 

                                                 
8
 Log-likelihood is a measure for the relative frequency of a word. 
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in a NLRR basically breaks down to an interrelation of single words within this 

resource. A first hint for an association between words in a document can be drawn 

from the structure of individual sentences. Kof (2004) suggests building parse trees 

from each sentence. In these parse trees, a sentence predicate and its subject and object 

are captured and linked to each other. The resulting set of trees is then clustered to 

derive further associations. First, parse trees of the same predicate are grouped into one 

cluster. Then, the resulting clusters are compared, searching for overlaps in their 

subjects or objects. Overlapping clusters are joined and result in initial taxonomies. In a 

last step, association mining (as suggested by Maedche and Staab (2000)) is applied. 

Words which often occur in the same sentences are assumed to be associated. 

Consequently, the taxonomies holding these words are linked to each other, resulting in 

an interrelated requirements model (or more specific an ontology). 

3.3.2.4 IR Techniques for the Identification and Classification of 

Requirements 

Web search engines (such as Google) are probably the most well-known applications of 

IR techniques. In response to a set of entered search terms, a web search engine 

generates a list of matching websites. Prior to the search, each of the websites has been 

indexed, resulting in a list of words associated with the site. During the search, instead 

of scanning entire websites, the search terms are applied to the lists of indexed terms 

resulting in a faster response time. 

The same principle can be applied to requirements identification. Requirements 

identification in a NLRR is basically about differentiating those words which represent 

requirements from further content which is non-relevant from a requirements point of 

view. To support this task, knowledge bases which contain requirements terms are 

provided. These terms are assigned to requirements categories (e.g. the term “credit card 

number” might be assigned to the category “data requirement”). Further details about 

knowledge bases will be presented in Section 3.4. Figure 10 shows how IR can be 

applied in this scenario to support requirements identification. Each term in a NLRR 

can be used as a search term. Using this search term, the IR algorithm strives to identify 

a matching requirements category by searching the requirements terms within the 
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knowledge base. A term will only be successfully identified as a requirement if this 

search is successful, meaning that a requirements category is associated with the search 

term with ample probability
9
. For classification, the requirements category with the 

highest probability is then assigned to the identified term. If no requirements category 

with sufficient probability is identified, the term remains unassigned. 

 

 

Figure 10: Comparison of IR Usage in Web Search Engines and RDS 

3.4 Design – Knowledge Base Characteristics 

As described earlier, many automation techniques used for requirements discovery 

require the existence of a knowledge base. Knowledge bases consist of knowledge items 

which are made up of terms and meta-information associated to these terms. Terms can 

be used during requirements identification to act as an index during the retrieval 

process. They are usually linked to further information, for example an assignment to a 

requirements category (Lemaigre et al. 2008; Sampaio et al. 2007). Knowledge bases 

can differ in the origin, volatility, structure and domain-specificity of the included 

knowledge which will be explained below. 

                                                 
9
 For this purpose usually a threshold probability is defined. 
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Figure 11: Knowledge Base Characteristics of RDS 

3.4.1 Origin and Volatility of Knowledge 

Knowledge origin describes the way the knowledge bases required for knowledge re-

use are populated. The creation of knowledge is either initiated by an upload of existing 

knowledge to the system (referred to as “imported knowledge”) or by knowledge 

retrieval from documents (referred to as “retrieved knowledge”) (Staab et al. 2001). In 

contrast to imported knowledge, retrieved knowledge can usually be acquired in 

combination with actual usage data.  

In the context of requirements discovery, this could be information about how often 

users have assigned a specific term to a specific requirements category. Retrieved 

knowledge can be added to the knowledge base as a byproduct of manual requirements 

discovery. For example, the data requirement “frequent flyer number” might have been 

overseen by automated requirements discovery and might then be identified and 

classified manually. This manual activity has two effects. First, it adds an additional 

requirement to the automatically discovered requirements from this resource. Second, it 

adds a potential new knowledge item to the knowledge base, consisting of the term 

“frequent flyer number” and the assignment to the category “data requirement”. 

Through this mechanism a constant flow of potentially new knowledge items is created. 

Consequently, it has been integrated into a number of existing RDS. Cleland-Huang et 

al. (2007), e.g. iteratively train their non-functional requirements classifier based on the 

analyst’s feedback. Kaiya and Saeki (2006) similarly consider a refinement of imported 

knowledge drawing on the information extracted from the requirements statements, thus 

incorporating retrieved knowledge. In contrast to the dynamic nature of retrieved 

knowledge provision, imported knowledge is only added if the responsible knowledge 
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engineer initiates a knowledge upload. Consequently, the creation of imported 

knowledge is rather static in comparison to the generation of retrieved knowledge. 

3.4.2 Structure and Domain-Specificity of Knowledge 

Knowledge bases can vary in structure and complexity. They often consist of either 

dictionaries (Lemaigre et al. 2008; Sampaio et al. 2007) which hold assignments of 

terms to requirements categories or ontologies (Kaiya and Saeki 2006; Vlas and 

Robinson 2012) which additionally include relations between different concepts. While 

dictionaries can help in the identification and classification of individual requirements, 

ontologies can be used to improve the overall discovery results. Kaiya and Saeki (2006), 

for example, use ontologies to improve the completeness and consistency of the 

discovered requirements. They achieve this by comparing the identified requirements 

with an existing domain ontology. For example, an analyst could manually map a 

requirement which specifies a train reservation capability to the “reserve” knowledge 

item in a domain ontology for reservation systems. In this ontology, the “reserve” item 

is related to the item “cancel” (it should be possible to cancel a reservation). Based on 

this information, the system would inform the requirements engineer to additionally 

consider a “cancel functionality” (if not already included in the NLRR). 

The discovery of requirements premises, to some extent, the existence and application 

of domain knowledge (Ambriola and Gervasi 2006; Hickey and Davis 2004). Data 

requirements such as “purchase order number” or “material group” might be of high 

relevance for the domain of procurement applications, while they would be irrelevant 

for a human resource application. Consequently, the automated discovery of this type of 

requirements can profit from a domain-specific knowledge base which already contains 

corresponding knowledge items. In contrast, other types of requirements, for example 

performance requirements, can be identified with less domain knowledge. The 

requirement “The response time for this function should be faster than 10 seconds”, for 

example, could be defined for an application in almost any kind of domain. In this case, 

related terms such as “response”, “time” and “second” would be typical examples for 

domain-unspecific knowledge items. Due to these differences in domain specificity 

across different requirements categories, there might be domain-specific and domain-
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unspecific contents within a single knowledge base (Lemaigre et al. 2008). Therefore, 

instead of an alternative classification in domain-specific and –unspecific knowledge 

bases, the proposed analysis framework allows both classifications at the same time. An 

example of a rather domain-unspecific knowledge base is described by Brasser and 

Vander Linden (2002) who present a system to capture interaction requirements, while 

an example for a domain-specific knowledge base is provided by Kaiya and Saeki 

(2006) (as depicted in the last paragraph). 

3.5 Evaluation 

RDS related research aims at knowledge contribution through the development and 

investigation of artifacts. It can therefore be associated to design research (Hevner et al. 

2004; Simon 1969). Works which follow a design research approach are usually 

characterized by two main research phases. In the build phase an artifact is designed. 

Then, in the evaluation phase, the effectiveness of the artifact is assessed. To enable a 

holistic assessment of RDS research work, the previously introduced framework 

therefore includes a dimension to describe the evaluation phase of these works. The 

according framework characteristics and their values are presented in the following. 

 

 

Figure 12: Evaluation Characteristics of RDS Research Works 

3.5.1 Evaluation Approach 

Hevner et al. (2004) distinguish two experimental design evaluation methods: A 

controlled experiment involves studying the presented system in a controlled 

environment which can be done e.g. by comparing the performance of an analyst using 

the system with the performance of an analyst devoid its support. In contrast, a 

simulation comprises the execution of the artifact with test data (Hevner et al. 2004). In 

the context of RDS, a performance evaluation based on a simulation is possible by 
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comparing a system’s output to a gold standard set of requirements, which is the output 

created manually by an expert or a group of experts.  

Additionally to experiment evaluations, two further types of evaluations are frequently 

applied in the context of RDS (Meth et al. 2013a): A mere demonstration of the 

presented system, e.g. by an application to a real-world example without data collection 

and analysis is classified as a proof of concept in the following, while an evaluation in 

practice, e.g. in an industrial environment, will be denoted as a case study. Accordingly, 

the identified works will be categorized to evaluate their approaches either by 1) a 

controlled experiment 2) a simulation 3) a proof of concept or 4) a case study. 

3.5.2 Evaluation Constructs and Measures 

To evaluate the effectiveness of RDS, the assessment of the completeness and 

correctness of the identified requirements is a common practice (Casamayor et al. 2010; 

Cleland-Huang et al. 2007; Rago et al. 2011). Completeness ensures that all the 

information required for a problem definition, i.e. all properties that are desired to hold 

true, are found within the specification (Zowghi and Gervasi 2003). The correctness of 

a requirements specification is determined by the included share of requirements which 

match existing needs. The IEEE Recommended Practices for Software Requirements 

classify a requirements specification as correct “if, and only if, every requirement stated 

therein is one that the software shall meet” (IEEE 1998, p.4). 

An operationalization of these constructs is possible by drawing on metrics from the 

information retrieval domain, specifically precision and recall (Salton and McGill 

1986). Recall is defined as the proportion of relevant items that are actually retrieved in 

answer to a search query and is very commonly used as a measure for completeness 

(Cleland-Huang et al. 2007; Kiyavitskaya and Zannone 2008; Sampaio et al. 2007). 

Precision is the proportion of retrieved items that are relevant to the query and is often 

used as a measure for correctness, usually in combination with recall. 

RDS strive to generate requirements descriptions with high recall and precision. 

However, improving recall and precision at the same time is a challenge, as maximizing 

the number of retrieved requirements to improve recall is often done at the cost of also 

retrieving more irrelevant items which reduces precision. Trading off precision for 
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recall or vice versa, one might argue that for RDS, recall is the more important measure 

of both, as errors of commission are easier to correct than errors of omission (Berry et 

al. 2012). While an omitted requirement needs to be identified within a potentially 

longer source document, requiring significant time for manual searching, a wrongly 

identified document can easily be deleted from the list of the all identified requirements. 

This requires, however, that the resulting list of requirements is significantly shorter 

than the source document. Accordingly, recall and precision are sometimes 

complemented with a third measure describing the summarization provided by the 

system. Summarization measures the volume of a system’s output in relation to the 

input document size. Systems providing a high level of summarization simplify manual 

corrections of automatically identified requirements as the analyst can concentrate on 

reviewing the relatively short output of the system in contrast to its longer input 

document. Particularly for abstraction identification systems, summarization plays an 

important role, as this type of systems aims at distilling the key abstractions of an 

initially long document. In the analysis framework the concept summarization is 

subsumed under the category “Other (Constructs)” together with further concepts 

which are only seldom applied. 

In addition to measures for requirements quality, which represent the outcome of the 

discovery process, it is also worthwhile to observe the process leading to this outcome. 

In various works, process efficiency is assessed additionally to quality aspects (Cleland-

Huang et al. 2007; Kiyavitskaya and Zannone 2008; Sampaio et al. 2007). Discovery 

efficiency can be measured by the time required to transform an unstructured input 

document to a set of structured requirements. In the case of RDS, this time period can 

be split into two phases: the automation phase and the manual phase. While the duration 

of the automation phase is determined by the runtime of the automation algorithm, the 

duration of the manual phase represents the time for manual corrections of the 

algorithm’s findings. It can be argued that the duration of the automation phase is less 

critical than the duration for manual adaptions, as the automation can run in a 

background job without absorbing the analyst’s time. In contrast, the time for manual 

adaptions should be observed critically, especially in evaluations which compare 

automated with manual approaches. In summary, to enable a holistic evaluation of a 
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system’s effectiveness, the analysis framework considers both aspects (requirements 

mining quality and efficiency). 

3.6 Knowledge Exchange 

Through the description of an artifact’s design and evaluation, design research 

contributes to the body of knowledge. However, an increase in knowledge contribution 

can be achieved if design research is based on existing theories or even contributes 

theory itself (Gregor and Hevner 2013). Thorough theory grounding can extensively 

leverage existing knowledge and thereby increase the likelihood of designs that are 

actually effective. Codification and abstraction of results in a design theory can help to 

generalize the findings of design research. An according conceptualization extends the 

contribution of design research beyond the search of specific solutions to specific 

problems and has been intensively discussed in DSR (Baskerville and Pries-Heje 2010; 

Gregor and Jones 2007). Both the knowledge grounding and contribution are 

summarized in a fourth dimension of the analysis framework, entitled “Knowledge 

Exchange”. 

 

 

Figure 13: Knowledge Exchange Characteristics of RDS Research Works 

3.6.1 Knowledge Grounding 

In accordance with Gaß et al. (2012) four categories of knowledge to ground design 

research are differentiated: 1) formal theories 2) mid-range theories 3) design theories 

and 4) general knowledge. Formal theories (sometimes also referred to as “Kernel 

Theories”) represent theories from within and outside the IS field, but mainly from 

natural and social science (Walls et al. 1992). They are mainly descriptive theories 

which can be used to guide the design and derive testable propositions for the 

evaluation of the artifact (Kuechler and Vaishnavi 2008; Walls et al. 1992). While the 
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grounding on kernel theories is generally regarded as a rigorous basis of DSR, it is often 

difficult to apply them to the specific, practical context of an artifact (Baskerville and 

Pries-Heje 2010). Therefore, Kuechler and Vaishnavi (2008) suggest mid-range 

theories which are based on formal theories but provide additional explanatory 

knowledge to increase applicability to practical problems. While formal and mid-range 

theories do not originate from actual design activities, the knowledge grounding can 

also be based on previous design theories. Gregor and Hevner (2013) refer to this reuse 

of prescriptive design knowledge as “exaptation”, the extension of known solutions to 

new problems. Exaptation is appropriate in scenarios, where an artifact in one field is 

not available or suboptimal and is designed by applying prescriptive knowledge from 

artifacts of a different field. Finally, empirical and non-empirical general knowledge can 

be used to ground design research. Kuechler and Vaishnavi (2012) refer to this type of 

knowledge as “tacit theory”, consisting of “insights or evidence/experience-based 

justifications for pursuing a novel design” (Kuechler and Vaishnavi 2012, p. 404). This 

informal type of knowledge enables DSR to explore domains in which more formal 

knowledge does not exist or is sparse (Kuechler and Vaishnavi 2012). 

3.6.2 Knowledge Contribution 

Kuechler and Vaishnavi (2012) classify DSR works concerning their knowledge 

contribution into three different groups. The first group consists of works which only 

present the implemented artifact, without further discussing how and why it works and 

which design practices have been employed in its implementation. Design knowledge 

and justification of design features in these works remain tacit and the entire knowledge 

is captured within the artifact. The authors state that this type of knowledge contribution 

is appropriate for groundbreaking innovations in which the artifact itself provides 

sufficient novelty to compensate scarce theoretical contributions. 

The second group of works contributes additional knowledge in the form of an 

Information System Design Theory (ISDT). An ISDT as suggested by Walls et al. 

(1992) abstracts the design efforts to meta-requirements and design principles (meta-

design) which prescriptively support the design of future instantiations within the same 

class of systems. Moreover, an ISDT explicitly codifies the knowledge which is 
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captured in an artifact which allows other researchers as well as practitioners to leverage 

the generated knowledge without the need to analyze the artifact itself. 

As a third type of knowledge contribution (and a potential third group), Kuechler and 

Vaishnavi (2012) suggest the construction of a mid-range theory which they refer to as 

design relevant explanatory/predictive theory (DREPT). A DREPT should capture 

knowledge which cannot be adequately presented in an ISDT, namely the linking 

effects between kernel theory constructs and ISDT constructs. An ISDT is mainly 

occupied with the explanation of the build process. In contrast, a DREPT focuses on the 

explanation of the how and why of the observed effects. 

Similarly, Gregor and Hevner (2013) differentiate three levels of knowledge 

contribution for DSR. Level one represents the specific implementation of an artifact in 

a specific context. Knowledge can be contributed, for example by a specific software 

product or process. Level two comprises more general and abstract descriptions of the 

design, referred to as nascent design theory. On this level, knowledge is contributed in 

the form of general operational principles or a general architecture rather than of 

specific characteristics and features. Components of nascent design theory might by 

constructs, design principles, models, methods or technological rules. Level three 

represents a knowledge contribution about the embedded phenomena, referred to as 

well-developed design theory. DSR projects resulting in mid-range or grand theories 

would be examples for this type of contribution. The different levels supposed by 

Gregor and Hevner (2013) are associated with increasing degrees of abstraction and 

knowledge maturity (rising from level one to level three). 

The typology suggested by Gregor and Hevner (2013) is similarly utilized in the 

analysis framework for RDS works. However, on the first contribution level 

additionally to the artifact itself an informal description of the artifact in the 

corresponding paper is expected (which is usually part of the publication). 

3.7 Results of Analysis 

In this thesis, the design and evaluation of a Requirements Mining System (RMS) is 

described. Therefore, in the following description of related work, this type of RDS is 

focused on. The analysis comprises a detailed description of the four RMS which were 
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briefly introduced in section 3.2.4 and a depiction of the research gap which will be 

addressed. 

3.7.1 Application of Analysis Framework to RMS Research Works 

The system presented by Cleland-Huang et al. (2007) referred to as “NFR-classifier” 

supports the identification and classification of non-functional requirements. 

Furthermore, through the identification of abstractions it enables the creation of 

retrieved knowledge. Requirements statements are processed semi-automatically. 

Requirements can be categorized manually as well as through automation algorithms 

which employ IR and NLP techniques. Based on a first provision of imported 

knowledge, the knowledge base is iteratively extended through requirements engineers’ 

feedback to the automation results. The knowledge base is structured as a simple 

dictionary consisting of a list of terms assigned to different sub-categories of NFR. 

Although the initially imported knowledge is domain-independent, the knowledge base 

can be customized to a domain through retrieved knowledge. The system is evaluated in 

a series of simulations, comparing the artifacts automatic results with a predefined gold 

standard. The evaluation uses recall and precision as measures for the completeness and 

correctness of the results and one additional measure (specificity). While the authors 

mention the time necessary to manually classify their sample set of requirements, they 

do not include an analysis of the time using their approach. The design is only grounded 

on general knowledge and contributions are restricted to a description of the artifact, 

without further abstraction or codification of the design. Figure 14 depicts the overall 

analysis result. 
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Figure 14: Analysis Result for Cleland-Huang et al. (2007) 

 

The approach suggested by Casamayor et al. (2010) possesses a lot of similarities to the 

work presented by Cleland-Huang et al. (2007). It also aims at the identification and 

classification of NFR in a semi-automatic approach and uses a similar knowledge base 

and knowledge creation approach. However, their approach differs in its processing 

characteristics. The authors complement IR and NLP techniques with an Expectation 

Maximization algorithm (EM). The core idea of this algorithm in the context of RMS is 

the creation of knowledge from both classified and unclassified requirements. Unlike 

other mechanisms it requires only a very small number of previously classified 

requirements in the knowledge base. The proposed system is evaluated in a simulation 

measuring precision and recall (to assess correctness and completeness), f-measure (a 

combination of precision and recall in one variable) and accuracy (the proportion of true 

results; both true positives and true negatives; in the population.). Again, the design is 

only grounded on general knowledge and contributions are restricted to a description of 

the artifact without further abstraction or codification of the design.  
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QAMiner, the system presented by Rago et al. (2011) similarly aims at the identification 

and classification of NFR in a semi-automated approach. However, their system follows 

a different knowledge base approach. Instead of a dictionary, QAMiner utilizes domain-

specific ontologies, which are imported to the system before discovery starts. To 

evaluate their system, a simulation using the standard measurements of precision, recall 

and accuracy is conducted once again. Knowledge exchange is restricted to the usage of 

general knowledge and a description of the artifact without further theorizing. Figure 15 

depicts the overall analysis result. 

 

 

Figure 15: Analysis Result for Rago et al. (2011) 

 

Finally, in the work by Vlas and Robinson (2012), a system to support the identification 

and classification of requirements for open source software is presented. Unlike the 

former related works, this system is not restricted to NFR and works in a fully 

automated fashion. It applies IR and NLP techniques, extended by additional methods 

to support classification. Imported knowledge in form of ontologies can be used, 

allowing both domain-specific and domain-independent knowledge items. The system 

is evaluated in a simulation measuring recall, precision and f-measure. In addition, the 
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time needed for the automation is measured to assess the efficiency of the approach. 

Although the authors explicitly claim to follow a DSR approach, knowledge exchange 

is restricted to the usage of general knowledge and a description of the artifact. 

3.7.2 Research Gap Identification 

Figure 16 shows the aggregated results for all four works within this analysis. Different 

shades of red visualize if a characteristic can be observed in many works (dark red), few 

works (lighter red) or no work (white). 

 

 

Figure 16: Aggregated Analysis Results for Related Work 

The result of the analysis is twofold, showing a heterogeneous picture for the 

investigated design choices and a homogenous picture for the evaluation and knowledge 

exchange in the analyzed works. While apparently many different design choices have 

been investigated, evaluations are focused on simulations comparing the results of the 

presented system with a previously defined gold standard. Even though these 

evaluations allow precise measurements of absolute quality criteria, they do not allow a 

comparison to the as-is situation of manual discovery. Consequently, the question of 

whether the systems really improve requirements quality and requirements mining 
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efficiency cannot be answered. Unlike first intuition would tell us, even efficiently 

working automated requirements mining does not necessarily outperform manual 

requirements mining. Due to the ambiguity and inconsistency of NLRR, results of 

automated requirements mining in most cases require manual rework to correct 

mistakes of the automatism, adapt its findings, or add requirements which were 

overlooked (Cleland-Huang et al. 2007). Therefore, even automated approaches 

resulting in high (but not 100%) initial recall and precision might generate larger total 

efforts as manual discovery if times for rework are also taken into account. 

Consequently, the mentioned works could be complemented with a study investigating 

whether the use of an accordant system actually improves individual performance by 

comparing it to a manual approach. 

Furthermore, while the analyzed works include detailed descriptions of their specific 

implementations, a codification and abstraction of the demands to be fulfilled by the 

system and the concepts addressing each of these demands is missing. A corresponding 

conceptualization has been intensively discussed in DSR (Baskerville and Pries-Heje 

2010; Gregor and Jones 2007) and enables a generalization of design approaches going 

beyond the description of specific solutions to specific problems. Applying this 

approach to RMS, the theoretical contribution drawn from previous works can be 

extended substantially. 

Finally, the suggested systems are not theoretically grounded. They are based on 

general empirical and non-empirical knowledge drawn from prior studies. These studies 

might report on situational and non-generalizable settings and experiences and thus do 

not provide an appropriate basis to conceptualize a design theory with significant reach. 

The work described in this thesis intends to address these gaps by 1) deriving a design 

theory for RMS based on knowledge drawn from both theoretical and non-theoretical 

sources, 2) implementing an artifact according to this theory, and 3) testing the theory 

through an evaluation of the artifact comparing a requirements engineer’s system-

supported mining productivity with manual discovery. 
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3.8 Summary 

In this chapter, an analysis framework for RDS has been conceptualized and applied to 

RMS as sub-class of systems. Following an overview, the framework, individual 

dimensions and characteristics have been introduced and exemplified with existing 

research. This comprised a depiction of alternative purposes, processing and knowledge 

base characteristics of RDS as well as different evaluation and knowledge exchange 

approaches in RDS research. Finally, the framework has been applied to RMS which 

represent the class of systems to be focused on in the context of this thesis. Finally, the 

results of this analysis were used to define research gaps which will be addressed in this 

thesis. 
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4 Methodology 

DSR has become an established approach to enable the conduction of rigorous, design-

oriented research in the IS domain. This thesis strives to gain theoretical design 

knowledge about RMS based on rigorous methodology. Therefore, a DSR approach is 

followed which will be explicated in the following chapter. For this purpose, first an 

overview of DSR in IS is provided, discussing artifacts and theories as potential 

outcomes (or products) of DSR and their conceptualization in the design process. The 

dualist nature of design as product and process is then further elaborated presenting 

examples of process-oriented and product-oriented frameworks to conduct DSR, 

including a selection of frameworks to be applied in this thesis project. Using the 

selected process-oriented framework, the research design of the thesis is then presented 

and finally reflected from an ontological and epistemological perspective. 

4.1 Design Science Research in IS 

Design Science is rooted in the seminal work by Simon (1969) in which the idea of a 

science of the artificial to complement natural science is propagated. This science 

centers around the design (or synthesis) of artifacts by humans and was subsequently 

applied to IS. In the IS context, different types of artifacts can be differentiated, such as 

constructs, models, methods and instantiations (March and Smith 1995). According to 

March and Smith (1995), constructs provide the vocabulary of a domain. For example, 

tables and relationships are constructs within entity relationship (ER) modeling (Gregor 

and Jones 2007). Models visualize relationships among constructs. For example, the ER 

model of an entire database system is a model. Methods can be understood as activities 

or steps to perform a task. For example, this may be an algorithm to sort data or a 

guideline to be followed when loading data to a system. Finally, instantiations represent 

the implementation of artifacts in IS and software development systems (March and 

Smith 1995). In the context of this thesis, using the taxonomy, an instantiation of a 

RMS will be designed. 

While some scholars characterized DSR as a paradigm which primarily aims at 

problem-solving through the creation of innovative artifacts (Hevner et al. 2004; March 
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and Smith 1995), other researchers emphasized the value of a design theory as the core 

contribution of DSR (Gregor and Jones 2007; Walls et al. 1992). As early 

representatives of the latter group, Walls et al. (1992) specifically called for the 

development of design theories, articulating prescriptive knowledge based on theoretical 

grounds. These prescriptions should describe how an artifact shall be designed in order 

to achieve a given goal. In response to this call, design theories have been articulated for 

a diverse range of systems, for example systems to support emergent knowledge 

processes (Markus et al. 2002), systems that support convergent and divergent thinking 

(Müller-Wienbergen et al. 2011) or process-based knowledge management systems 

(Sarnikar and Deokar 2009). Although the call for theoretical contributions of DSR has 

been emphasized in the current DSR discourse (Gregor and Hevner 2013; Kuechler and 

Vaishnavi 2012) other scholars have suggested to reduce the complexity of design 

theories (Baskerville and Pries-Heje 2010) or even questioned the concept of a design 

theory itself (Hooker 2004). In line with the argumentation of Gregor and Hevner 

(2013) the author of this thesis takes up the stance that through the abstraction and 

codification of prescriptive knowledge in a design theory the knowledge contribution 

and impact of DSR can be significantly improved. Therefore in this thesis, additionally 

to a RMS instantiation, a design theory for RMS is derived. 

The core of the design process comprises a stepwise refinement process in which 

designers strive to map needs (specified in the function space) to solutions (specified in 

the attribute space) (Takeda and Veerkamp 1990). The elements of both: the function 

and attribute space appear, in different terminology, in many design theory frameworks. 

While elements of the function space are referred to as meta-requirements (Walls et al. 

1992), general requirements (Baskerville and Pries-Heje 2010) or design requirements 

(Müller-Wienbergen et al. 2011), elements of the attribute space are referred to as meta-

design (Walls et al. 1992), general components (Baskerville and Pries-Heje 2010) or 

design principles (Markus et al. 2002; Müller-Wienbergen et al. 2011). In the context of 

this thesis, the terms design requirement and design principle will be used. While design 

principles characterize solutions in a technology-agnostic fashion, the implementation 

of an artifact requires an additional mapping process to technology-dependent features 
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of the artifact. In the following, the outcome of this process will be referred to as design 

features. 

4.2 Framework Selection and Adaption 

Various frameworks have been proposed, describing how DSR should be conducted. 

While some frameworks take a process perspective, depicting for example different 

phases of DSR research (Nunamaker et al. 1990; Peffers et al. 2007; Sein et al. 2011; 

Takeda and Veerkamp 1990; Vaishnavi and Kuechler 2007) others provide a product-

oriented structure, suggesting different components which should be included in the 

resulting design theory (Baskerville and Pries-Heje 2010; Gregor and Hevner 2013; 

Gregor and Jones 2007; Kuechler and Vaishnavi 2012; Walls et al. 1992). Baskerville 

and Pries-Heje (2010) draw an analogy from these two perspectives to the dual nature of 

theory versus theorizing. In this analogy, a design theory represents the product of 

theorizing about a specific artifact. 

This dualist nature is also inherent to the structure of this thesis: While the research 

design will be described along the phases of a process-oriented framework, the resulting 

design theory will be depicted using a product-oriented framework. To choose 

appropriate process- and product-oriented frameworks, different alternatives have been 

analyzed. This analysis process, the reasons for selection and the performed adaptions 

of the original frameworks for the research design of this thesis will be described further 

on.  

4.2.1 Process-oriented Frameworks 

Process-oriented frameworks describe DSR from a procedural perspective, 

differentiating different phases, their sequence and the associated knowledge flows.  

An early approach to structure the design process accordingly was presented by 

Nunamaker et al. (1990). The authors argue that system development represents a 

valuable research methodology which can complement existing IS research. Their 

Process for Systems Development Research consists of five phases: 1) Construction of a 

conceptual framework, including an investigation of requirements and the search for 

new approaches and ideas 2) Development of a system architecture, including the 
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definition of functionalities, components and their interrelation 3) System analysis & 

design, including the investigation of different design alternatives 4) Implementation of 

the system (or a prototype), including the actual system development and 5) 

Observation of system use and experimental evaluation of the system, investigating 

effects of the system’s usage. 

The process provided by Nunamaker et al. (1990) represents an abstract model to 

structure DSR activities in distinct phases. However, the actual conduction of DSR is 

not further explicated and therefore leaves many questions open (Peffers et al. 2007). 

As a consequence, in a more recent work, Peffers et al. (2007) suggest their Design 

Science Research Methodology (DSRM). The comprehensive framework includes 

principles, practices, and procedures and is made up of six sequential phases: 1) 

Problem identification and motivation 2) Definition of the solution objective 3) Design 

and Development 4) Demonstration of the artifact 5) Evaluation of the artifact and 6) 

Communication of the research results. The authors point out that DSR projects can be 

initiated from different entry points: problem-centered, objective-centered, design and 

development-centered and client/context-centered. In contrast to other frameworks, 

Peffers et al. (2007) explicitly point out the importance of communicating disciplinary 

knowledge to both research and practice communities in form of publications geared 

towards each target group. 

Moreover, they differentiate the demonstration of the artifact in a suitable context from 

the artifact evaluation in which its effectiveness and efficiency are measured. In the 

framework applied in this thesis, the latter aspect will be explicitly considered through a 

distinct demonstration phase between the development and evaluation of the artifact. 

The framework which guided the design process of this thesis is based on the General 

Methodology of Design Science Research (GMDSR) as suggested by Vaishnavi and 

Kuechler (2007). The framework is an extension of the design cycle proposed by 

Takeda and Veerkamp (1990). It includes process steps, their outputs and the related 

knowledge flows. Starting with the “Awareness of Problem” phase, in which the 

motivation for the DSR project is drawn from a real-world problem, a tentative design is 

conceptualized in the “Suggestion” phase. Based on this concept, in the “Development” 

phase the artifact is implemented. After measuring the artifact’s effectiveness in the 
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“Evaluation” phase, a final conclusion is drawn from the results and fed back to the first 

phase to re-iterate. 

Similarly to the DSRM, Vaishnavi and Kuechler (2007) give explicit prescriptions 

about the conduction of DSR. In addition, the authors emphasize the explicit reflection 

of design principles and other design results as well as an iterative, evaluation-driven 

approach. These two characteristics properly match the goals of the research project at 

hand. First, through the continuous reflection and adaption of design results, an 

appropriate mechanism to derive a sound design theory is provided. Second, through 

multiple iterative evaluations, a tight integration of potential users can be accomplished 

which eases the accomplishment of the artifact’s final goal to increase requirements 

mining productivity. Therefore, the GMDSR was selected as guiding overall approach 

for this research project. For the context of this thesis, the GMDSR was slightly 

extended by a demonstration phase between the development and evaluation of the 

artifact, as suggested by Peffers et al. (2007). This demonstration phase allows the 

collection of informal feedback from experts in addition to formal evaluations. The 

resulting process-oriented framework is depicted in Figure 17. 

 

 

Figure 17: Adapted GMDSR, Based on Vaishnavi and Kuechler (2007) 
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4.2.2 Product-oriented Frameworks 

The need for an ISDT was first articulated by Walls et al. (1992). Following Simon’s 

call to develop a science of the artificial (Simon 1969), they argue that the IS discipline 

should articulate and develop prescriptive theories to enable the development of more 

effective IS. The according theories should integrate normative and descriptive theories 

and describe design paths to be followed. Due to their prescriptive nature, ISDT are 

different from explanatory and predictive theories. Walls et al. (1992) propose seven 

components of an ISDT out of which four describe the design product:  

 Meta-Requirements which describe the class of goals the theory should be 

applied to. 

 Meta-Design characterizing the class of artifacts to address the meta-

requirements. 

 Kernel theories including theories from natural and social science which can 

guide the design. 

 Testable design product hypotheses which can be utilized to test if the meta-

design actually addresses the meta-requirements. 

The ISDT proposed by Walls et al. (1992) provided the common basis for various other 

product-oriented DSR frameworks. Gregor and Jones (2007) argue that although design 

work and design knowledge in IS are important for both research and practice, little 

attention has been paid to the problem of specifying design theory. Based on the ISDT 

proposed by Walls et al. (1992) and further streams of thought on design research (e.g., 

Simon's (1969) reflections on a science of the artificial) they suggest an anatomy of a 

design theory consisting of eight separate components: 1) Purpose and scope: This 

component describes “what the system is for” by depicting the set of meta-requirements 

or goals that specify the class of artifact to which the theory applies. Furthermore the 

scope, or boundaries, of the theory are defined. 2) Constructs: The theory’s entities of 

interest, for example relations would be constructs in a design theory of relational 

databases. 3) Principles of form and function: The abstract “blueprint” or architecture of 

the associated IS artifact. 4) Artifact mutability: The extent to which changes to the 

artifact are encompassed by the theory 5) Testable propositions: Truth statements about 
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the design theory (e.g., predictions about outcomes that can be tested in experiments). 6) 

Justificatory knowledge: Underlying knowledge or theory to give a basis and 

explanation for the design. 7) Principles of implementation: A description of how to 

implement the theory in specific organizational contexts 8) Expository instantiation: 

The implementation of the artifact, providing both a physical representation of the 

theory and a vehicle to test it.  

Baskerville and Pries-Heje (2010) argue that characteristics of design theories as they 

are discussed in other papers are overly complicated and show that for example the 

incorporation of kernel theories and testable propositions into design theories might not 

be applicable or beneficial to all DSR projects. In contrast, the authors seek the simplest 

possible delineation of a design theory and do this by differentiating between design 

practice theories which describe the building process of the artifact and explanatory 

design theories, describing the artifact itself. To determine the minimal components of 

an explanatory design theory, they collect design theory characteristics from several 

works. According to their analysis, design theory is assumed to be  

 prescriptive, focusing on improving things in contrast to understanding things 

 practical, being a basis for action to solve problems  

 principles based, defining principles both to guide the development process as 

well as the architecture of the artifact  

 a dualist construction, describing both a process and a product.  

Explanatory design theories only describe the product part of this dualist construction 

and are limited to two components: General requirements and general components. 

General requirements can be described as conditions or capabilities that must be met by 

the artifact. General components describe the abilities or qualities which represent a 

generalized solution meeting the general requirements.  

The resulting design theory of this thesis is presented along the eight components 

suggested by Gregor and Jones (2007). Unlike other product-oriented frameworks, this 

structure allows a complete and transparent coverage of outcomes from all phases of a 

DSR project. Table 1 depicts the differences. The theory components suggested by 

Walls et al. (1992) can only be related to three of the six phases (Awareness of the 

Problem, Suggestion, Evaluation). Similarly, the structure suggested by Baskerville and 
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Pries-Heje (2010) can only be used to describe the outcomes of two phases (Awareness 

of the Problem, Suggestion). In contrast, the theory components of Gregor and Jones 

(2007) can be mapped to each of the DSR phases, allowing a holistic description of 

design outcomes. 

 
Design research 

phases
10

 

Design Theory Components 

 Walls et al. (1992) Gregor and Jones (2007) Baskerville and Pries-

Heje (2010) 

Awareness of 

Problem 

Meta-requirements Purpose and scope, Justificatory 

knowledge 

General requirements 

Suggestion Kernel theories, 

Meta-design 

Justificatory knowledge, 

Principles of form and function 

General components 

Development - Constructs, Expository 

instantiation 

- 

Demonstration - Constructs, Expository 

instantiation 

- 

Evaluation Testable design 

product hypotheses 

Testable propositions - 

Conclusion - Artifact mutability, Principles of 

implementation 

- 

Table 1: Assignment of DSR Theory Components to Design Phases 

4.3 Research Design 

In the following, the overall research design of this thesis project will be described 

along the phases of the adapted GMDSR. Further details on the artifact design process 

will be provided in chapter 5. Details on the methodology for the artifact evaluation will 

be provided in chapter 6. 

Design research suggests to design artifacts in an iterative fashion enabling continuous 

reflection and incremental refinement of the design results (Hevner et al. 2004; Takeda 

and Veerkamp 1990). Consequently, in this thesis project, two design cycles have been 

                                                 
10

 Design research phases based on the GMDSR by Vaishnavi and Kuechler (2007). 
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conducted as depicted in Figure 18. In the following, the utilized methods and 

performed activities in each of the design cycles are depicted in more detail. 

 

 

Figure 18: Research Design
11

 

4.3.1 Prototype Design Cycle 

The prototype design cycle of the research project was initiated by an intensive 

literature review to create problem awareness resulting in design requirements for the 

artifact to be built. Based on these design requirements, a second literature review was 

conducted to identify general knowledge and theories which can be applied to address 

the identified problem. Using this knowledge, preliminary design principles were 

conceptualized in the suggestion phase. These design principles were then mapped to 

design features and were finally implemented in a prototype version of the artifact 

during the development phase. To collect informal feedback on the artifact’s usefulness, 

it was then presented to requirements engineering experts in several demonstration 

sessions. In the following, the prototype was analyzed in a quantitative evaluation. This 

evaluation focused on the interplay of the two main design principles which was 

investigated in multiple simulation runs. Results of the evaluation and the 

                                                 
11

 The structure of the research design follows the GMDSR by Vaishnavi and Kuechler (2007). 



4.4 Ontological and Epistemological Reflections 53 

 

demonstration sessions were analyzed and reflected (along with the design results) 

during the conclusion phase. 

4.3.2 Final Design Cycle 

During the final design cycle, the initial problem definition and conceptualization were 

adapted based on the design, demonstration and evaluation results of the previous cycle. 

This led to an adjustment of the initial design requirements and design principles. The 

adapted design principles were again mapped to design features resulting in a 

modification of the artifact. To improve the artifact’s ease of use, it was presented to 

usability experts in several demonstration sessions which resulted in multiple small 

adaptions. Then the final artifact version was evaluated in an experiment. This 

evaluation consisted of a lab experiment, conducted with students and a replication of 

the experiment in a field environment, involving experts. By these experiments, the 

effects of each design principle on the performance of individual requirements 

engineers were measured. Finally, the design and evaluation results were again 

abstracted and contextualized. 

4.4 Ontological and Epistemological Reflections 

In the following, the presented research design shall be reflected from an ontological 

and epistemological point of view to point out the core assumptions of the research. In 

this context following the definitions by Vaishnavi and Kuechler (2007), an ontological 

stance describes the underlying assumption about the nature of reality (e.g., what is real 

and what is not) while an epistemological stance describes the underlying assumption 

about the nature of knowledge (e.g., how knowledge can be derived). 

In DSR projects, questions of ontology and epistemology are often treated rather 

implicitly (Niehaves 2007). Nevertheless, in the existing discourse, some scholars see 

Design Science as a third paradigm in addition to positivism and interpretivism 

(Vaishnavi and Kuechler 2007). Other researchers emphasize the compatibility of DSR 

with existing research paradigms, for example positivism (Marshall and Mckay 2005; 

Niehaves 2007). An argument for the former view is that design science aims at gaining 
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knowledge through the creation of artifacts which is epistemologically different from 

other paradigms (Vaishnavi and Kuechler 2007).  

However, as Niehaves (2007) points out, the prescriptive knowledge gained in DSR is 

inevitably embedded in further types of justificatory knowledge such as theoretical, 

descriptive and empirical knowledge. Additionally, the knowledge contribution of DSR 

is often not restricted to the knowledge embedded in the artifact as explained in section 

3.6.2 but can also comprise theoretical knowledge. Consequently, depending on the 

approach to gain this theoretical knowledge, DSR can be conducted following a 

positivistic approach (Hevner et al. 2004; March and Smith 1995) or other existing 

paradigms. Marshall and Mckay (2005) for example point out that interpretive or 

critical approaches to DSR, which aim at understanding and analyzing the impacts of an 

artifact’s introduction and usage in the field, can similarly be applied.  

The research in this thesis follows a positivistic paradigm which will be explained in the 

following, analyzing the general ontological assumption and the epistemological stance 

of this research. The basic ontological assumption of positivistic research is the 

existence of a single, objective reality, which comprises facts that can be accessed and 

observed by the researcher (Carson et al. 2001; Vaishnavi and Kuechler 2007; Weber 

2004). In the presented research design, the identified NLR and their classification, as 

well as characteristics of the discovery process itself (e.g., the time needed to 

accomplish requirements discovery) can be seen as facts which are directly observable 

by the researchers. This stance is also expressed in the choice of quantitative evaluation 

methods like simulations and experiments which are generally associated with 

positivistic research (Marshall and Mckay 2005). 

From an epistemological perspective, positivistic research predominantly aims at 

deriving theoretical knowledge through the definition and test of hypotheses and a 

research focus on generalization and abstraction (Carson et al. 2001). Furthermore, there 

is a concentration on description and explanation, while for example interpretative 

approaches rather focus on understanding and interpretation (Carson et al. 2001; 

Vaishnavi and Kuechler 2007). In the research at hand, assumed effects of design 

principles on requirements mining productivity will be formulated as hypotheses. 

Subsequently, through the instantiation of these design principles in an artifact, the 
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hypotheses can be tested. The conceptualization of the artifact using generic design 

principles for a class of systems (RMS) favors the generalization and abstraction of the 

results. The derived theoretical knowledge can help to explain how these design 

principles, when implemented in an artifact, can affect requirements mining 

productivity. 

Table 2 summarizes the ontological and epistemological stance of this thesis. 

 

Perspective Thesis Stance 

Ontological Single, objective reality exists 

Facts can be accessed and observed by the researcher 

Epistemological Derive theoretical knowledge through the definition and test of hypotheses 

Research focus on generalization and abstraction 

Concentration on description and explanation 

Table 2: Ontological and Epistemological Stance of the Thesis 

4.5 Summary 

In this chapter, an overview of DSR as the overall methodology of this thesis was 

provided. Design science terminology to describe different types of artifacts and 

elements of their conceptualization (e.g., design requirements) in the context of this 

thesis has been introduced. Moreover, the dualist nature of design, being both a process 

and a product has been discussed along the historic development of the DSR paradigm. 

Subsequently, process- and product-oriented DSR frameworks were presented. This 

illustration resulted in a selection of two frameworks which will be used in the context 

of this thesis, an adapted version of the GMDSR suggested by Vaishnavi and Kuechler 

(2007), to structure the design process and the eight components of a design theory 

proposed by Gregor and Jones (2007) to structure the design product. Afterwards, the 

research design of this thesis was depicted using the adapted GMDSR as a blueprint for 

two design cycles. Finally, the ontological and epistemological stance of the thesis was 

discussed, characterizing the positivistic nature of the study. 
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5 Artifact Design
12

 

As previously introduced, Gregor and Jones (2007) distinguish eight components of an 

ISDT: (1) purpose and scope of the theory, (2) the constructs that are of interest to the 

theory, (3) the principles of form and function (the blueprint or architecture of the 

artifact), (4) the artifact’s mutability (the extent to which changes to the artifact are 

encompassed by the theory), (5) a set of testable propositions or hypotheses, (6) 

justificatory knowledge to give a basis and explanation for the design, (7) principles of 

implementation, and (8) a physical instantiation of the artifact. 

This thesis presents each of these eight components for a RMS design theory yet in a 

slightly adapted order and naming. The order was changed to be able to trace the 

artifact’s conceptualization in its actual sequence. The naming was adapted to provide a 

consistent and homogenous terminology for the outcomes of each conceptualization 

phase: design requirements
13

 as the outcome of the problem awareness phase, design 

principles
14

 as the result of the suggestion phase and design features
15

 as the capabilities 

of the artifact implemented in the development phase. These changes result in the 

following structure: In section 5.1, based on justificatory knowledge, the purpose and 

scope of the theory’s artifact is presented and distilled to distinct design requirements. 

From these design requirements, applying additional justificatory knowledge, design 

principles are derived in section 5.2. In the final artifact conceptualization step, design 

principles are mapped to specific design features which are presented within their 

expository instantiation, including a summary of the conducted demonstration sessions 

(section 5.3). The depiction of the design theory will be completed with a description of 

the principles of implementation, the artifact’s mutability and the testable hypotheses 

for the experiment evaluation of the artifact (sections 5.4 to 5.6). 

                                                 
12

 Parts of this chapter have been published in Meth et al. (2012b). 
13

 Design requirements are referred to as meta-requirements by Gregor and Jones (2007). 
14

 Design principles are referred to as principles of form and function by Gregor and Jones (2007). 
15

 Design features are referred to as constructs by Gregor and Jones (2007). 
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5.1 Purpose and Scope 

The proposed design theory has the purpose to give explicit prescriptions about how to 

develop systems that support requirements mining from NLRR to improve requirements 

mining productivity. Productivity is usually conceptualized as an input-output ratio with 

the work output as the numerator and the work input as the denominator of the ratio 

(Cosmetatos and Eilon 1983). In the case of requirements mining, the quality of the 

elicited requirements represents the work output whereas the invested mining effort 

represents the work input. The quality of requirements determined by RMS is usually 

assessed by a combined measurement of requirements’ completeness and correctness 

(Casamayor et al. 2010; Cleland-Huang et al. 2007; Gacitua et al. 2011). The invested 

mining effort can be measured by the time required for the mining process. In general, 

mining productivity will be improved when either a) the requirements quality is 

increased or b) the mining effort is decreased. The conceptualization in the following 

sections will derive design requirements, design principles and design features for a 

RMS serving this purpose. 

The proposed class of systems might be applied to a wide range of NLRR. Sources 

include the outcomes of formal requirements collections (e.g., from interviews or 

workshops), informal requirements requests (e.g., emails or blog entries), or texts which 

were originally created for other purposes (e.g., test protocols or support messages).  

Furthermore, RMS can be applied in the context of various software and requirements 

engineering methodologies. For example, as outlined in section 2.2, the systems can 

support requirements mining in user-centric approaches focusing on a tight integration 

of users in the development project as well as market-driven approaches in which a 

myriad of informal requirements statements is submitted rather anonymously. In both 

cases the nature of the requirements mining task remains the same: A requirements 

engineer (or a system) needs to scan through the provided NLRR to identify and 

classify requirements. Doing this, two questions are repeatedly answered for the 

processed texts: Does this text passage, sentence or word represent a requirement? And 

if so, which kind of requirement is it? In the following section, this iterative process is 

further investigated, focusing specifically on system-supported requirements mining. 
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5.1.1 Justificatory Knowledge 

Figure 19 depicts the basic steps of system-supported requirements mining which the 

thesis is based on. Starting from the provision of NLRR, requirements are identified and 

classified by the RMS in a background process resulting in proposed requirements. In 

the following, an interactive approval process is performed, driven by the requirements 

engineer. This process results in approved (and rejected) requirements.  

 

 

Figure 19: RMS-Supported Requirements Mining Process 

 

Through the determination of proposed requirements, the RMS supports requirements 

engineers in answering the two previously formulated questions: RMS advise 

requirements engineers concerning what is a requirement and how to classify it. 

Therefore, on an abstract level, the process can be seen as a series of consecutive 

decision tasks in which the RMS acts as an advisor and a requirements engineer as the 

advice-taker. In this analogy, the assignment of a text passage to a specific requirements 

category can be seen as a single decision task which is repeatedly performed throughout 

a NLRR. Decision making theory characterizes decision tasks according to multiple 

characteristics, amongst others the decision task type (choice vs. judgment tasks), the 

number of advisors (one vs. multiple), the advice trigger (solicited vs. unsolicited 

advice) and the degree of interaction between advisor and judge (low vs. high 

interaction) (Bonaccio and Dalal 2006). Reflecting on the characteristics introduced 

above, RMS’ support of requirements mining can be characterized as a decision process 

consisting of choice tasks (assignment of distinct requirements categories) given by a 

single advisor (the RMS) following a solicited but low interaction.  
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To derive specific design requirements for RMS, it is important to understand the 

general goals associated with the requirements mining process. The generalization and 

abstraction of the process to a series of decision making tasks, provides an approach to 

identify these general goals. Decision makers follow different goals when confronted 

with a decision task. First, they strive to reach a good or even optimal decision. 

Therefore, different strategies to optimize decision quality have been proposed (Wang 

and Benbasat 2009). However, additionally to decision quality, the idea that decision 

making is also influenced by considerations of cognitive effort has been discussed since 

the seminal works of Simon (1957). Simon coined the concept of Bounded Rationality 

which suggests that human decision makers are limited by multiple factors impeding the 

achievement of an optimal decision, including their cognitive processing capacities 

(Simon 1957). While Simon discusses cognitive efforts rather as a limitation leading to 

suboptimal decision results, cognitive efforts were found to also influence the choice of 

a decision strategy. Decision strategy selection is often explained using contingency 

models in which a cost and benefit tradeoff determines strategy choice (Beach and 

Mitchell 1978; Payne 1982). According to these models, decision makers follow the 

dual goal to maximize decision quality and at the same time minimize their cognitive 

effort. 

To optimize the outcomes of this tradeoff, different types of decision support systems 

(DSS) have been proposed (Silver 1991) and effects of the usage of DSS on decision 

behavior have been investigated (Todd and Benbasat 1991, 1999). DSS aim at 

improving decision results through the provision of advice
16

, building on the idea that 

advice characterized by high advice quality will result in decisions with a high decision 

quality (Gardner and Berry 1995; Yaniv 2004). Ideally, at the same time cognitive effort 

will decrease, as the DSS already prepares the decision and the relevant information for 

the decision maker. However, while DSS can improve decision quality and reduce 

cognitive effort, the systems may also restrict users in their decision behavior which has 

been termed as “system restrictiveness” (Silver 1988). System restrictiveness is defined 

as the extent to which decision strategies are pre-selected through the DSS, offering the 

                                                 
16

 In most studies advice is defined as a type of recommendation from the advisor, favoring a particular 

   option (Bonaccio and Dalal 2006). 
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decision maker only a limited choice of strategies which may not include his (or her) 

preferred ones (Silver 1988). Therefore, when implementing decision aids, designers 

need to carefully consider that the benefits of a decision aid (e.g., reduced cognitive 

effort) are not overcompensated by its restrictions. 

Table 3 summarizes goals of human decision makers and design requirements of DSS 

addressing them. 

 

Goals of Human Decision Makers Design Requirements of DSS 

Maximize decision quality Increase decision quality by providing advice with high 

advice quality 

Minimize cognitive effort Reduce cognitive effort of human decision maker by 

providing decision support 

Maintain control over decision strategy 

selection 

Minimize system restrictiveness by allowing users to control 

the strategy selection 

Table 3: Goals of Human Decision Makers and Design Requirements of DSS 

 

Wang and Benbasat (2009) investigated each of these design requirements as a 

perceived factor determining the intention to use decision aids. In their study, decision 

aids are components of e-commerce platforms which are used to elicit consumer 

preferences, automate their processing, and provide corresponding product advice. They 

hypothesize that perceived advice quality, perceived cognitive effort and perceived 

restrictiveness determine the intention to use decision aids. Based on their experimental 

results, all three factors showed significant effects on the intention to use a decision aid. 

 

As previously depicted, the requirements mining process can be seen as a series of 

consecutive decision tasks in which the RMS acts as an advisor and a requirements 

engineer as the advice-taker. Therefore, the identified design requirements for systems 

supporting decision making in general are assumed to also be applicable to systems 

supporting decision making in the context of requirements mining. Consequently, in the 

following the identified design requirements for DSS will be related to the specific 

context of requirements mining, treating RMS as a sub-class of DSS. 
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5.1.2 Design Requirements of RMS 

DSS aim at improving decision quality through the provision of high quality advice. 

Analogously, the quality of requirements proposed by a RMS can be expected to 

determine the quality of requirements approved by the requirements engineer. As 

introduced earlier, RMS require a knowledge base to be able to identify and categorize 

proposed requirements. In general, the quality of requirements proposed by RMS 

mainly depends on the contents of the knowledge base used for the background mining 

process (Casamayor et al. 2010; Cleland-Huang et al. 2007). An extensive knowledge 

base with correctly classified requirements has been found to result in a high quality of 

proposed requirements (Casamayor et al. 2010; Cleland-Huang et al. 2007). Therefore, 

the design focus of many RDS has been put on the improvement of advice quality 

through the provision of high quality proposed requirements (Gacitua et al. 2011; 

Goldin and Berry 1997; Kiyavitskaya and Zannone 2008). However, revisiting the 

analogy to decision making, high quality proposed requirements only represent a 

prerequisite but not the final goal of the process. Only an increase in the quality of 

approved requirements will address requirements engineers’ goal of achieving a high 

decision quality. As a consequence, the following design requirement is derived: 

 

DR1. Increase quality of approved requirements. The requirements mining 

process should be supported by systems which aim at improving the quality of 

approved requirements. 

 

To reduce the cognitive effort of requirements engineers during the requirements mining 

process, first the question needs to be answered which phases of this process depend on 

human cognition. Most RDS implement advice-giving in a background process without 

any user interaction. The proposed requirements resulting from this background process 

are then presented to the requirements engineer for manual approval. Consequently, 

during the actual mining process, the cognitive effort of the requirements engineer is 

only determined by the efforts to transform proposed requirements into approved 

requirements. In some cases, this might still involve intensive reflection. However, in 
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most cases, cognitive efforts will be reduced from an active consideration of all decision 

options to a rather passive approval of the given advice.  

Additionally to the actual decision making process, taking a holistic view on the 

cognitive effort of the requirements engineer, manual efforts to create and maintain the 

knowledge base have to be taken into account as well and should be minimized. In 

summary, the following design requirement is derived: 

 

DR2. Decrease cognitive effort to execute and prepare requirements mining. 

The requirements mining process should be supported by systems aiming at a 

decrease of the cognitive effort to transform proposed requirements into 

approved requirements as well as the cognitive efforts to create and maintain 

the underlying knowledge base. 

 

As presented in section 3.3.1, RDS can provide different degrees of automation. Some 

systems only support manual requirements discovery (Abrams et al. 2006; Ossher et al. 

2009), while others restrict requirements engineers to use the system in a fully 

automated mode (Gacitua et al. 2011; Goldin and Berry 1997; Kiyavitskaya and 

Zannone 2008). Recapturing decision makers’ goal to maintain control over the 

decision strategy selection and limit system restrictiveness, RMS should allow 

requirements engineers enough flexibility to choose an appropriate type of processing 

support.  

Furthermore, system restrictiveness should also be limited concerning the knowledge to 

be used during requirements mining. As introduced in section 3.4, RDS can use 

different types of knowledge (e.g., imported knowledge vs. retrieved knowledge). To 

limit system restrictiveness, different types of knowledge should be usable during 

requirements mining. Consequently: 

 

DR3. Limit system restrictiveness during requirements mining. The 

requirements mining process should be supported by systems aiming at minimal 

processing restrictions concerning the conduction of requirements mining. 
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In the following, the process of deriving design principles from the previously identified 

design requirements is described. 

5.2 Conceptualization 

Similarly to the previous section, to derive design principles for RMS, an analogy to 

decision making is drawn, based on existing theory on decisional guidance. 

5.2.1 Justificatory Knowledge 

To address the design requirements formulated in the last section, the question arises 

which type of system support to choose. Previously, the requirements mining process 

was abstracted to a general decision making process and an analogy between RMS and 

DSS was drawn. This analogy shall be further elaborated in the following, introducing 

types of decisional guidance implemented in DSS from an existing typology. For the 

further conceptualization, those types of guidance will be identified, which match the 

previously described design requirements. Based on this selection, design principles 

will be derived in the subsequent sections 

5.2.1.1 Types of Decisional Guidance 

Silver (1991) describes decisional guidance (DG) as the way a DSS informs or 

influences decision makers in the structuring and execution of decision tasks. The 

author defines a typology of DG based on three different characteristics. First, a 

differentiation concerning the targets of guidance can be made. Silver (1991) 

distinguishes DG to structure the decision making process and DG to execute it. The 

former supports decision makers in selecting the right approach, method or strategy to 

make a decision. For example, structural guidance could support choosing an existing 

decision strategy such as additive compensation or elimination by aspects
17

. Subsequent 
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 According to Todd and Benbasat (1999), additive compensation is a strategy in which each alternative 

is evaluated individually along all relevant attributes. The decision maker assigns a weight and a value to 

each attribute and then determines the total score of an alternative. Elimination of aspects is a strategy 

based on a comparison of attribute values to threshold values. Alternatives are eliminated if one of their 

attributes does not meet a threshold  
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to strategy selection, executional guidance can help decision makers in the operational 

conduction of the decision task. For example, the system could prompt the user to enter 

values or calculate the overall value of an alternative. Second, the typology 

differentiates alternative forms of guidance. DG might be implemented in a suggestive 

or informative way. Suggestive guidance recommends decision makers which strategy 

to choose or which values to enter. Informative guidance on the contrary only provides 

decision makers with decision-relevant information without recommending a choice. 

For example, a description of the range of possible input values could be regarded as 

informative guidance. Finally, Silver (1991) distinguishes different modes of guidance, 

describing the ways DG is generated. DG can be predefined, dynamic or participative. 

Predefined guidance consists of context-specific information or recommendations 

which are defined upfront by experts or regular users and imported into a knowledge 

base. In contrast, dynamic guidance is an adaptive mechanism which generates 

information and recommendation based on the actual system usage. DG (similarly to 

RMS) usually utilizes knowledge bases to generate advice. Dynamic guidance 

iteratively builds up additional knowledge base contents. Finally, participative guidance 

puts a stronger focus on users’ participation in the determination of guidance-specific 

content. For instance, in a decision task based on a decision table with different 

alternatives, participative guidance could be implemented by adding functionality to 

manipulate the table through ordering or summation. In the following, the presented 

types of guidance will be associated with the requirements mining process and the 

identified design requirements. 

5.2.1.2 Associating Decisional Guidance to Requirements Mining 

Investigating the targets of guidance in the context of requirements mining, it is 

worthwhile revisiting the process to be conducted. Requirements mining, as previously 

introduced, can be seen as a series of consecutive decision tasks in which the 

assignment of a text passage to a specific requirements category represents a single 

decision task which is repeatedly performed. Although this task requires substantial 

knowledge in requirements engineering and the corresponding business domain, it is a 

standardized procedure, executed rather similarly every time it is performed. Therefore, 
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unlike other decision tasks, it does hardly require support to structure the decision task 

in advance of each single decision. But, especially due to the large number of decisions 

to be made, it definitely requires execution support to reduce requirements engineers’ 

cognitive efforts and maintain a high level of quality. 

To determine appropriate forms of guidance, an empirical study conducted by Parikh et 

al. (2001) provides interesting results. The authors investigated how different forms of 

guidance influence decision quality and decision efficiency in an experiment study 

involving 141 participants. In this study, participants were asked to examine a historical 

data set and identify key characteristics of it. Based on the identified characteristics, 

they should assign a suitable forecasting model to process this data set. In its basic 

constituents (identification of decision-relevant information and subsequent 

classification of this information) the decision task resembles the decisions involved in 

the requirements mining process. Parikh et al. (2001) found out that suggestive 

guidance outperformed informative guidance concerning both, decision quality and 

decision efficiency. The two dependent variables used in their study (decision quality 

and decision efficiency) can be associated with the previously derived design 

requirements DR1 and DR2. Revisiting the introduced analogy to requirements mining, 

increased decision quality is associated with increased quality of approved requirements 

and increased decision efficiency can be associated with a decrease in mining efforts. 

Therefore, suggestive guidance is expected to be an appropriate means to address DR1 

and DR2. 

In the same study, Parikh et al. (2001) analyzed how different modes of guidance affect 

decision quality and decision efficiency. Their central finding was that dynamic 

guidance outperformed predefined guidance concerning decision quality and decision 

efficiency. In analogy to the argumentation for the form of guidance, by associating 

decision quality and decision efficiency with DR1 and DR2, dynamic guidance can be 

expected to result in an increased quality of approved requirements and a decrease of 

mining efforts. Parikh et al. (2001) investigated different modes of guidance as 

exclusive alternatives. However, dynamic, predefined and participative guidance can 

also be combined to improve results. When applied complementary to dynamic 

guidance, predefined and participatory guidance can provide additional advice and 
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hereby further increase decision quality and decision efficiency. Furthermore, revisiting 

the design requirement DR3, additionally applied participative guidance can allow a 

higher degree of freedom to the final decision maker which might reduce his perceived 

system restrictiveness. Therefore, in the context of requirements mining a 

complementary use of different modes of guidance is proposed. 

 

 

Figure 20: Associating Design Requirements to Different Types of DG 

5.2.2 Design Principles of RMS 

Which design principles can be derived from the identified types of DG to address the 

initial design requirements? In the context of requirements mining, suggestive guidance 

can be accomplished by means of automation, resulting in a set of requirements 

proposed by the automation algorithm. During the mining of requirements from NLRR, 

a text is analyzed to identify relevant words and assign them to requirements categories. 

This process can be decomposed into single steps which are repeatedly performed and 

follow specific rules (Ambriola and Gervasi 2006). Consequently, they can be translated 

into algorithms that can automatically be executed by a computer. Automation 

addresses the first two design requirements identified in the previous section. First, 
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automation can increase the quality of approved requirements. Reflecting the analogy to 

decision making, the quality of approved requirements can be expected to be positively 

affected by the quality of proposed requirements. A carefully developed algorithm can 

identify a significant percentage of the requirements within a natural language 

document and can identify requirements which may have been overlooked in a pure 

manual discovery process (Berry et al. 2012). Moreover, as the algorithm will not suffer 

from fatigue or decreasing motivation as a human being might do, each part of a 

document will be treated with equal attention which can additionally contribute to a 

more complete set of requirements. Second, automation should lead to a decrease in 

cognitive efforts, as each automatically classified requirement does not need to be 

identified and categorized manually by the requirements engineer. 

During the manual approval of proposed requirements, the requirements engineer 

decides whether to follow the advice of the RMS or not. In the case of requirements 

mining, the ambiguity and inconsistency of NLRR often requires a third option: 

Requirements need to be adapted or added. In these cases, the automatism needs to be 

complemented with functionality supporting manual discovery (Berry et al. 2012; 

Kiyavitskaya and Zannone 2008). However, any manual adaptation of automatically 

identified requirements represents additional effort for the requirements engineer. To 

limit this effect, functionality for manual identification and classification should provide 

a high level of usability to enable efficient operations. Additionally to the effects on 

DR1 and DR2, capabilities for manual requirements identification and classification 

also represent a way to enable participative guidance. Allowing the requirements 

engineer further freedom in the mining process can hereby also minimize system 

restrictiveness (DR3). In summary, to support the mining process the following design 

principle is proposed:  

 

DP1. Semi-Automatic Requirements Mining: RMS should support efficient 

automatic and manual requirements mining within NLRR. 

 

As illustrated earlier, automated requirements mining requires an underlying knowledge 

base containing terms and a categorization of these terms. Revisiting the identified 
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design requirements and relating them to knowledge creation, a corresponding design 

principle should provide answers to the following questions: 1) How can the quality of 

knowledge be increased and 2) How can (cognitive) efforts of the requirements engineer 

to create knowledge be decreased? 

Starting with the first question, the quality of the knowledge base can be assessed by its 

completeness and correctness. A more extensive knowledge base will only conclude in 

better mining results if a sufficient level of correctness is sustained. One approach to 

augment the knowledge base with according knowledge is the supplementation of 

domain-specific knowledge. Documents that originate from the same domain share 

specific requirements elements which are not included in general knowledge (Lemaigre 

et al. 2008) (e.g., the data field “frequent flyer number” in the domain “traveling”). 

Similarly, specific writing styles or standards for single projects or entire organizations 

can result in needs to extend imported knowledge (Cleland-Huang et al. 2007). There 

are different ways how domain-specific knowledge can be generated. Addressing the 

design requirement behind the second question, the proposed design is supposed to 

support knowledge generation in a way that minimizes efforts for the requirements 

engineer. Therefore, additionally to predefined guidance, a mechanism to support 

dynamic guidance is needed. This can be realized by feeding back results of previous 

requirements mining activities into the knowledge base and hereby create and use 

retrieved knowledge additionally to imported knowledge. Although this process 

requires some supervision to sustain quality, this type of knowledge supplementation 

can be expected to be a lot more efficient than manual creation of domain-specific 

knowledge. Consequently, the following design principle is proposed: 

 

DP2. Usage of imported and retrieved knowledge: RMS should use both 

manually imported and automatically retrieved knowledge during automatic 

mining. 

 

An overview of the conceptualization process from design requirements via types of 

DG to design principles is provided in Figure 21. The figure shows how the identified 
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design requirements of RMS can be addressed by different types of DG. Furthermore, it 

outlines which design principle of RMS is associated with which type of DG. 

 

 

Figure 21: Deriving Design Principles from Design Requirements 

5.3 Expository Instantiation  

In the final step of the conceptualization, the identified design principles are mapped to 

design features. Design features are specific artifact capabilities to satisfy design 

principles, for example the algorithm chosen for automatic mining. Figure 22 

summarizes the design of the artifact from design requirements via design principles to 

design features and illustrates the mapping between these conceptualization steps. 

In allusion to the class of systems (namely RMS) and the process to be supported 

(requirements mining) the implemented system is referred to as “REMINER”. Similarly 

to former approaches (Casamayor et al. 2010; Cleland-Huang et al. 2007; Vlas and 

Robinson 2012), REMINER uses NLP and IR techniques to implement automatic 

requirements mining and additionally contains functionality to enable manual 

identification and classification. 
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Figure 22: Mapping Design Principles to Design Requirements and Design Features 

5.3.1 System Architecture 

REMINER is designed as a web based client-server system implementing a three-tier 

architecture comprising a data tier, an application tier and a presentation tier. Figure 23 

provides an overview of the system architecture. Each of the components was either 

implemented in the context of this thesis project or is publicly available as open source. 

 

 

Figure 23: REMINER System Architecture 
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The data tier consists of two components: one to store the data and one to map data 

elements to the objects of the application tier. For data storage, the database 

management system MySQL
18

 is used. MySQL was chosen due to its maturity, wide-

spread usage and open source availability. For the mapping between objects and the 

data storage, MyBatis
19

 is used. MyBatis allows encapsulating SQL
20

 statements in 

XML
21

 configuration files which drastically reduces the amount of necessary code in 

comparison to lower level Application Programming Interfaces (APIs) like JDBC
22

 or 

ODBC
23

. 

The application tier is implemented in Java following the object-oriented programming 

paradigm and comprises several Java classes which control and process all system 

functionalities. Methods for preprocessing, as well as manual and automatic 

requirements mining are modularized in an Application Programming Interface (API). 

This API also integrates an existing NLP framework (MorphAdorner
24

) which is used 

during preprocessing. There are various alternative open source NLP frameworks with 

similar functionality such as Apache OpenNLP
25

, Standford NLP
26

 or Mallet
27

. 

MorphAdorner was chosen due to its functional completeness and comparatively 

elaborate documentation. The application tier strongly interacts with the JavaBeans 

within the presentation tier. 

The presentation tier is based on Java Server Faces (JSF) and enables the user 

interaction and presentation of the results. JSF is a framework standard to develop 

graphical user interfaces for web applications. JSF was chosen as it enables a strict 

separation of behavior and presentation functionality, following a model-view-

controller pattern. Furthermore, JSF supports the development of rich internet 

applications which simulate a desktop-like user experience in web applications. 

                                                 
18

 http://www.mysql.de/ (10.4.2013). 
19

 http://mybatis.github.io/mybatis-3/ (10.4.2013). 
20

 Structured Query Language 
21

 Extensible Markup Language 
22

 Java Database Connectivity (JDBC) is a proprietary Java-based API to access database management 

    systems. 
23

 Open Database Connectivity (ODBC) is a standard C programming language middleware API to access 

    database management systems. 
24

 http://morphadorner.northwestern.edu (10.4.2013). 
25

 http://incubator.apache.org/opennlp (10.4.2013). 
26

 http://nlp.stanford.edu (10.4.2013). 
27

 http://mallet.cs.umass.edu (10.4.2013). 
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Multiple frameworks implement the JSF standard (e.g., ICEfaces
28

 or RichFaces
29

). For 

REMINER PrimeFaces
30

 was chosen due to its broad coverage of different JSF 

components. Choosing a JSF framework also determined the further components of the 

runtime environment: a web server and a servlet container which implement the JSF 

specifications. For this purpose, Apache Tomcat
31

 was selected being a very popular 

open-source web server and web container which implements JSF specifications. 

5.3.2 Processing 

Figure 24 provides an overview of the design features implemented in REMINER and a 

typical process to use them
32

. In practice, variations of this process are possible, for 

example the provision of imported knowledge (sub-process one) could be a one-time 

activity just to be able to process the very first NLRR. 

 

Figure 24: Requirements Mining Process Supported by REMINER 

 

                                                 
28

 http://www.icesoft.org/java/projects/ICEfaces/overview.jsf (10.4.2013). 
29

 http://www.jboss.org/richfaces (10.4.2013). 
30

 http://primefaces.org/ (10.4.2013). 
31

 http://tomcat.apache.org/ (10.4.2013). 
32

 In this figure any text in italics represents examples. 
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First, during manual knowledge creation, imported knowledge can be manually 

uploaded to the knowledge base by a knowledge engineer. Imported knowledge consists 

of terms which are associated with a specific requirements category (e.g., “credit card 

number” with the category “data requirement”). 

Second, during preprocessing, NLRR are transformed into single terms which serve as 

an input for the automatic mining algorithm. For this purpose, NLP techniques like 

Token Detection, Part of Speech (POS) Tagging, Stop Word Elimination and Word 

Lemmatizing were used. The result of this process is a set of tuples (term, POS tag), for 

example (“supplier”,”noun”). 

Third, automatic mining is enabled by an IR module that consists of various algorithms 

based on the vector space model as suggested by Baeza-Yates and Ribeiro-Neto (1999). 

The aim of the algorithms is to measure the similarity of terms extracted from the 

documents with terms from the knowledge base and hereby assign requirements 

categories. Therefore, the fundamental functioning of vector model-based search 

engines is adapted: The categories are indexed like documents and the terms are the 

search queries. Consequently, the similarity of a term to one of the categories is 

interpreted as the probability of the term belonging to this category. To index the 

categories, retrieved knowledge is used. The frequency in which a term has been 

assigned to a requirements category in retrieved knowledge determines its index value. 

Following this logic, probabilities for all terms in the NLRR are calculated based on 

retrieved knowledge (Step 3.a). Additionally, probabilities are calculated based on the 

POS of a term. For example, for a noun it is more likely to be assigned to the category 

“data” than to “activity”. POS probability values have to be defined before running the 

algorithm. The POS probabilities can be defined by using the percentage of assignments 

in the knowledge base. For instance, if 60% of all existing assignments for the first 

category were verbs, the weighting factor for a verb in the first category would be 0.6 

(Step 3.b). Finally, probabilities are calculated based on imported knowledge. By 

default, for a term which is assigned to a requirements category in imported knowledge, 

a probability of 1 (to belong to this category) is calculated (Step 3.c). The three 

probability values calculated in 3.a to 3.c are then integrated into a single, total 

probability value for each category (Step 3.d). The total value of the category with the 
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highest probability is subsequently compared to a threshold (which can be customized 

to a value between 0 and 1). In case the total probability exceeds the threshold, the term 

will be assigned to the corresponding category (and otherwise will not). Figure 25 

summarizes the individual processing steps during automatic mining. 

 

 

Figure 25: Individual Processing Steps During Automatic Mining 

 

Fourth, during manual mining, the results of the automation process are approved. 

During approval, requirements that have been suggested by the algorithm can be 

changed or even deleted. Figure 26 shows a screenshot of the user interface for manual 

mining. Requirements are highlighted within NLRR like interview transcripts, 

workshop memos or narrative scenarios. Different requirements categories are 

represented by different highlighter colors, incorporating the metaphor of using text 

markers in physical documents. The initial list of requirements categories and thus 

different highlighting colors is based on the main requirements types described by 

(Robertson and Robertson (2006) in their Volere requirements process. Accordingly, 

functional requirements and non-functional requirements are differentiated. The former 

one is further split into the categories “data” (for text passages describing data fields or 

objects) and “activity” (for text passages describing a behavior of either the user or the 

system). Additionally, the category “actor” can be used to indicate if a requirement is 

rather associated to a user activity or a system activity. The text in the figure (in this 

case an interview transcript) contains highlightings, marking single words or entire text 
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passages with the highlighter color of a specific category. Users can choose a 

highlighter color and highlight words with a single click. Another single click deletes 

the highlighting again.  

 

 

Figure 26: REMINER Screenshot: User interface for Manual Mining 

 

Moreover, further requirements can be added. The finally approved requirements are 

then used for automatic knowledge creation of retrieved knowledge. Retrieved 

knowledge consists of terms and their associated requirements categories and POS tags. 

Categories are assigned through the manual mining process. For example, if one 

specific term or POS is often highlighted manually as one category within a domain, 

this category is characterized through the term or POS. As the same term could be 

manually assigned to different categories (e.g., by different requirements engineers), the 

mining algorithm can only calculate probabilities for assignments of terms to categories, 

based on the number of previous manual assignments. As shown in the related work 

chapter, most existing works concentrate on either building up requirements knowledge 

from NLRR (Gacitua et al. 2011; Goldin and Berry 1997; Kof 2004; Rayson et al. 2000) 

or use imported knowledge to support the mining itself (Ambriola and Gervasi 2006; 

Kiyavitskaya and Zannone 2008). In the concept presented in this thesis, these two 

approaches are combined in a closed loop to reduce knowledge creation efforts.  
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5.3.3 Artifact Demonstration 

Closely aligned with the artifact’s instantiation, it was demonstrated to experts to gather 

feedback. In the following, the procedure and results of the demonstration sessions are 

summarized.  

In the prototype design cycle, the artifact was presented to requirements engineering 

experts to gather formative feedback towards the artifact’s usefulness. To accomplish 

this, seven demonstration sessions were organized, involving one to four requirements 

engineering experts and two researchers each. In total 11 experts participated, all of 

them having extensive experience in requirements engineering (on average 9.7 years). 

The sessions lasted for about 1.5 hours and included a pre-questionnaire, the 

presentation of the prototype and its discussion with the experts. Each of the feedback 

items was traced back to the related design feature and design principle if possible. In 

the final design cycle the artifact’s ease of use was assessed by usability experts, 

including usability consultants and professors for human computer interaction. An 

overall number of five sessions with 9 experts was conducted. Again, the sample 

consisted of experienced participants (on average 4.7 years of experience in usability 

engineering). The sessions were lasting for about 1.5 hours and were organized 

analogically to the demonstrations in the prototype cycle. 

An overall number of 197 feedback items was collected during the demonstration 

workshops. In the following, two examples of such feedback items will be given: one 

from the first cycle of demonstrations (focusing on usefulness) and one from the second 

(focusing on ease-of use).  

Concerning the functionality for requirements mining, requirements experts pointed out 

that for ERP
33

 implementation projects it would be helpful to compare requested data 

fields with existing data fields of an ERP system. This feedback can be linked to the 

second design principle (Usage of imported and retrieved knowledge). Using both types 

of knowledge, general information about existing data fields of an ERP system could be 

uploaded as imported knowledge, while company- or project-specific ERP information 

could be passed from one implementation project to the next one, using retrieved 

knowledge. Through the provision of this knowledge, the requirements mining 

                                                 
33

 Enterprise Resource Planning. 
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algorithm automatically compares the data fields requested in a NLRR with existing 

data fields of an ERP system. This feedback item was also used in the preparation of the 

artifact’s evaluation sessions. In the experiment as well as in the simulation, information 

about SAP data fields was used as a source for imported knowledge.  

The demonstration of the artifact to usability experts led to multiple improvements of 

the design features for manual requirements mining. For example, the mechanism to 

create or delete highlightings by a single click on a word in the NLRR was suggested in 

one of the sessions to increase the efficiency of manual requirements mining. 

In summary, the provided response in the demonstrations was primarily technology-

focused and gave only few hints to the underlying design principles. However, the 

demonstrations provided valuable and extensive feedback to optimize specific design 

features of the presented artifact and hereby usefully complemented the development 

activities. 

5.4 Principles of Implementation 

Gregor and Jones (2007) describe principles of implementation as a design theory 

component that comprises the processes and means by which a design is introduced in a 

specific context. Related to REMINER, these principles could be guidelines for pilot 

projects within an organizational setting. As REMINER has not been implemented in 

according projects yet, the following principles are preliminary and subject to revision 

after pilot projects have been actually conducted. 

Reflecting the derived design principle of semi-automatic requirements mining (DP1), 

the proposed interplay of automatic and manual activities should be a central component 

of accompanying training activities during the introduction of the system. Users of the 

system should be sensitized that although the RMS can propose requirements of high 

quality, a final manual approval of the results should be mandatory. Additionally to an 

improvement of the results within a specific document, manually added requirements 

also increase the quality of the knowledge base (through DP2). Concerning the second 

design principle (usage of imported and retrieved knowledge), organizations should take 

care to organize continuous supervisions of the knowledge base contents. As more 

retrieved knowledge will be automatically supplemented, a supervision of this 
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knowledge is mandatory to sustain a high level of quality of the knowledge base 

contents. 

5.5 Artifact Mutability 

When introduced into specific organizational contexts, for example during a pilot 

project at a software vendor, different adaptions of the artifact can be expected. Due to 

the semi-automatic supplementation of knowledge, the initially domain-independent 

knowledge base will be significantly changed by domain-specific knowledge. The 

dynamics and scope of changes depend on individual usage and access rules of the 

organizational context. For example, a company could use the artifact only in selected 

domains or companywide. Similarly, access could be restricted to domain experts or be 

open to all participants of a software development project. Additionally to the 

underlying knowledge base, it can be expected that the initial set of requirements 

categories will be extended or changed to cope with a specific context. For instance, the 

development of an application with high security standards might lead to a more 

detailed sub-categorization of security requirements. Similar to the principles of 

implementation, the expected adaptions which were described here are preliminary and 

subject to revision after the conduction of actual implementation projects. 

5.6 Testable Hypotheses 

Gregor and Jones (2007) suggest the formulation of testable propositions to be able to 

evaluate the presented design. In this thesis, going beyond the suggestion of Gregor and 

Jones (2007), specific hypotheses will be formulated. While propositions describe the 

relationship between general constructs, hypotheses depict relationships between 

specific variables (Bacharach 1989). In the following, hypotheses for the evaluation of 

REMINER and its underlying design will be derived. More specifically, the research 

model which is presented subsequently strives to measure effects of alternative 

combinations of the depicted design principles on multiple dependent variables. The 

research model is tailored to the evaluation of the final artifact version which was 
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conducted as an experiment. For the simulation, which was performed during the 

prototype design cycle, a separate model will be presented in section 6.1.2. 

As introduced earlier, requirements mining productivity is conceptualized as an input-

output ratio wherein the quality of the identified and classified requirements serves as 

the output part (numerator of the ratio) and the invested mining effort as the input part 

(denominator). This ratio is used as the dependent variable of this study. To evaluate the 

quality of automatically identified requirements, precision and recall are common 

measures which are similarly employed here (Casamayor et al. 2010; Cleland-Huang et 

al. 2007; Gacitua et al. 2011). They are calculated by comparing participants’ 

requirements mining outputs with expert solutions (Kiyavitskaya and Zannone 2008; 

Vlas and Robinson 2012). Recall can be seen as a measure of completeness, comparing 

the number of correctly identified requirements with the total number of requirements 

existing in a NLRR. Precision represents a measure of correctness and is calculated as 

the proportion of correctly identified requirements in comparison to the number of 

identified requirements in a NLRR. 

 

Variable Explanation 

Recall 

 

Precision 

 

Table 4: Measurements of Recall and Precision in the Context of RMS 

 

The input factor requirements mining effort can be measured by the time required by a 

requirements engineer to conduct the mining task, i.e. transforming an unstructured 

input document into a set of classified requirements. As the evaluation was based on an 

experiment with a fixed time schedule, requirements mining effort was also fixed and 

only the differences in recall and precision (i.e., the quality of the identified 

requirements) were measured. Consequently, the evaluation measured productivity in a 

fixed time period, similar to the studies done by Diehl and Stroebe (1991) and Gallupe 

and McKeen (1990).  
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The conceptualization of the independent variable is directly linked to the design 

principles of the artifact. Both design principles can be switched on and off resulting in 

different RMS configurations that can be evaluated separately. For example, semi-

automatic requirements mining (DP1) would be switched on, while the usage of 

retrieved knowledge (DP2) would be switched off. While DP1 can be switched on 

independently from DP2, DP2 can only be activated when DP1 is switched on. Through 

the separate activation of design principles, the effects of each of them can be measured 

individually. The resulting three RMS configurations are depicted in Table 5. 

 

RMS configuration Design Principle Activation 

 DP1 DP2 

(1) Manual mining   

(2) Semi-automatic mining with imported knowledge X  

(3) Semi-automatic mining with imported and retrieved 

knowledge 
X X 

Table 5: RMS Configurations 

Various effects of the design principles of the artifact on requirements mining 

productivity are expected. 

5.6.1 Expected Productivity Effects of DP1 Related to Recall 

Process automation is a well-known mechanism to improve productivity both for IT 

supported processes as well as for non-IT supported processes (Atkinson and Kuhne 

2003; Jämsä-Jounela 2007). In the case of automated requirements mining, it can be 

expected that productivity (measured by recall in a fixed time period) will similarly 

improve, as an algorithm can automatically identify a large percentage of requirements 

without spending the requirements engineer’s time during the analysis (Cleland-Huang 

et al. 2007; Kiyavitskaya and Zannone 2008; Vlas and Robinson 2012).  

Investigating this assumption from a theoretical point of view, it is worthwhile 

revisiting the analogy to decision making, which was introduced in the 

conceptualization. Automatically proposed requirements represent one possible form of 

suggestive guidance. In their experimental study, Parikh et al. (2001) showed that 

participants with DG outperformed participants without DG concerning the achieved 
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decision quality and efficiency. Furthermore, suggestive guidance resulted in an 

increase of decision quality and efficiency in comparison to informative guidance. 

Being a specific instance of a decision making process, in requirements mining the 

application of automation mechanisms should similarly result in improvements of 

requirements quality and efficiency in comparison to manual requirements mining. 

Investigating the assumption from a process point of view, the recall using a semi-

automatic RMS can be seen as a sum of the automatism’s initial recall and the recall 

resulting from subsequent manual adaptions and extensions. These subsequent manual 

activities are comparable to using a purely manual RMS: a requirements engineer needs 

to read a natural language text document, mark passages containing requirements and 

assign requirements categories to them. Therefore, no significant recall difference 

between semi-automatic and manual RMS is expected from these manual activities. In 

contrast, the initial recall provided by the automatism will remain and can be expected 

to have a significant effect. Consequently, the following hypothesis is derived:  

 

H1: In a fixed time period, the use of RMS that support semi-automatic 

requirements mining with imported knowledge will result in higher recall than 

the use of RMS that only support manual requirements mining. 

5.6.2 Expected Productivity Effects of DP2 Related to Recall 

As described above, automated requirements mining requires a knowledge base 

containing requirements and a categorization of these elements. Each automatically 

identified requirement can be traced back to a specific entry in this knowledge base. 

Accordingly, a more elaborate and extensive knowledge base can generally be expected 

to result in a higher percentage of identified requirements and therefore a reduction of 

manual efforts (Cleland-Huang et al. 2007). In their empirical study on the effects of 

DG, Parikh et al. (2001) observed similar effects concerning the usage of dynamic 

guidance. Dynamic guidance which is based on knowledge that is dynamically created 

through the usage process, outperformed predefined guidance concerning decision 

quality and decision efficiency. 
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Additionally to the size of the knowledge base, the domain-specificity of the knowledge 

plays an important role in the requirements mining process (Casamayor et al. 2010). 

Generally, a higher degree of domain-specificity is expected to deliver better mining 

results (Lemaigre et al. 2008), for example by including domain-specific requirements 

(like “physician” or “nurse”) additionally to domain-independent ones (like “manager” 

or “worker”). As depicted earlier, two sources of knowledge to fill the knowledge base 

are proposed. Additionally to manually imported knowledge, which is commonly used 

in existing RMS (Kiyavitskaya and Zannone 2008; Vlas and Robinson 2012), the 

content of the knowledge base can be extended by automatically retrieved knowledge 

originating from documents that have been processed before. As described in the 

conceptualization of DP2, this should increase the size and domain-specificity of the 

knowledge base. Therefore the following hypothesis is derived: 

 

H2: In a fixed time period, the use of RMS that support semi-automatic 

requirements mining with imported and retrieved knowledge will result in higher 

recall than the use of RMS that only support semi-automatic requirements 

mining with imported knowledge. 

5.6.3 Expected Productivity Effects of DP1 and DP2 Related to 

Precision 

As described earlier, both recall and precision determine requirements quality and 

therefore are of utmost importance for the overall requirements mining process. 

However, in automated requirements mining from NLRR, recall is significantly more 

important than precision, as it is a much simpler activity for a requirements engineer to 

evaluate a set of candidate requirements and reject the unwanted ones than it is to 

browse through an entire document looking for entirely missed ones (Cleland-Huang et 

al. 2007). The same argument is used by Berry et al. (2012) who state that requirements 

engineering tools that treat NLRR “should be tuned to favor recall over precision 

because errors of commission are generally easier to correct than errors of omission” 

(Berry et al. 2012, p.213). Because of that, the design principles of the artifact primarily 

address an improvement of the recall rate and do not target precision improvements. 
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Moreover, while the recall rate is predominantly determined by the automatism’s ability 

to find as many relevant words and text passages as possible, the precision rate is 

strongly linked to the quality of the judgments following the identification of a 

word/text passage. A significant precision improvement could therefore only be realized 

if the algorithm provided better judgments than a human. However, as the requirements 

proposed by the RMS are based on knowledge created by humans, this cannot be 

expected.  

 

Therefore the following hypothesis is derived: 

 

H3: In a fixed time period, the use of manual RMS, RMS that support semi-

automatic requirements mining with imported knowledge and RMS that support 

semi-automatic requirements mining with imported and retrieved knowledge 

does not result in significant differences in precision. 

 

Figure 27 summarizes the hypotheses in a comprehensive research model. 

 

Figure 27: Research Model for Ex-Post Evaluation 

5.7 Summary 

In this chapter a design theory for RMS was presented, along the design theory 

components proposed by Gregor and Jones (2007). Starting with the purpose and scope 

of the artifact, distinct design requirements were derived based on decision making 

theory. The decision making process provides a significant analogy to requirements 

mining which has been exploited for the justification of the proposed design. In the 

subsequent conceptualization step, design principles were mapped to the requirements, 
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again utilizing justificatory knowledge from decision making theory. Then, design 

principles were mapped to actual design features of an artifact which has been 

instantiated as part of this thesis project. Subsequently, principles of implementation 

and the artifact’s mutability were described. Finally, the proposed research model 

consisting of three hypotheses was conceptualized. Table 6 summarizes the contents of 

the derived theory and relates it to the original design theory components of Gregor and 

Jones (2007). 

 

Design Theory Component
34

 Reference to this component in the presented theory 

(1) Purpose and scope The presented design theory aims to give explicit prescriptions 

about how to develop systems that support requirements mining 

from NLRR to improve requirements mining productivity. The 

proposed class of systems might be applied to a wide range of 

NLRR and in the context of various software and requirements 

engineering methodologies. 

According to this purpose and scope, design requirements have 

been derived. 

(2) Constructs Specific design features for RMS have been presented. 

(3) Principles of form and 

function 

Design principles to support the requirements mining process as 

well as knowledge creation and maintenance processes have been 

derived. 

(4) Artifact mutability Contents of the knowledge base used for automatic mining as 

well as the underlying scheme for requirements categorization 

depend on the context of use and can therefore be adapted. 

(5) Testable propositions Three hypotheses were formulated to test the effects of different 

configurations of design principles on requirements mining recall 

and precision. 

(6) Justificatory knowledge Design requirements and design principles were derived from 

decision making theory and general requirements mining 

knowledge. 

(7) Principles of 

implementation 

Two principles of implementation were formulated: Mandatory 

final approval of the results and the organization of continuous 

supervisions of the knowledge base contents. 

(8) Expository instantiation REMINER, an expository instantiation of an RMS has been 

presented, including a depiction of its system architecture and a 

typical process to conduct system-supported requirements 

mining. 

Table 6: Components of a Design Theory for RMS

                                                 
34

 According to Gregor and Jones (2007). 
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6 Artifact Evaluation 

Pries-Heje et al. (2008) distinguish two types of DSR evaluation approaches, depending 

on the time they are conducted: ex ante and ex post evaluations. While ex ante 

evaluations are performed before the system is implemented, ex post evaluations take 

place after the system construction (Pries-Heje et al. 2008). However, in DSR projects 

consisting of multiple iteration cycles, a third form of evaluation takes place which will 

be referred to as interim evaluation. This type of evaluation is conducted on the basis of 

an artifact prototype version. Although a prototype may already be an implemented 

artifact, it does not represent the final design product (and therefore would not qualify 

for an ex post evaluation).  

The design theory presented in chapter 5 represents the result of the final design cycle. 

However, as depicted in section 4.3, the artifact in this thesis project was designed in 

two iteration cycles, with two separate evaluations. Therefore, in the following, the 

methodology and results of both evaluations will be presented. The former represents 

the assessment of the artifact prototype version (an interim evaluation), while the latter 

represents the artifact’s ex post evaluation. 

6.1 Interim Evaluation
35

 

The interim evaluation was carried out to investigate the interplay of the preliminary 

design principles
36

. More specifically, the effects of different amounts and types of 

knowledge in corporation with the usage of automatic requirements mining were 

investigated.  

The decision to perform this evaluation in form of a simulation was based on two 

factors: First, a simulation allows precise measurements of effects in a laboratory 

environment, whilst controlling other factors which are not of interest. Second, in 

comparison to evaluation approaches which rely on human interaction, simulations 

provide the flexibility to explore different factors (in this case different amounts and 

types of knowledge) with comparatively low effort. 

                                                 
35

 Parts of this section are based on Meth et al. (2013b). 
36

 The design principles presented in 5.2.2 represent the final conceptualization as a result of the final 

design cycle. In the preceding prototype design cycle, preliminary design principles were derived. 



6.1 Interim Evaluation 86 

 

Prior to the description of the evaluation results, the simulation setup will be outlined in 

the following section, including the utilized evaluation dataset, the underlying research 

model for the simulation and the procedure to conduct the simulation. 

6.1.1 Dataset 

The simulation was based on a dataset
37

 which is made up of multiple natural language 

requirements documents and the knowledge to be used for automatic requirements 

mining. Furthermore, a gold standard has been used which is the expert solution to 

assess the results of automatic requirements mining. 

The natural language requirements documents consisted of previously conducted 

interview transcripts. These interviews were carried out with 12 potential end-users to 

gather their requirements for two projects. Both projects intend to implement 

smartphone apps associated with the “travel management” domain. The first application 

is a train reservation app which allows users to make reservations for regional and 

national trains, while the second application is a car sharing app which allows users to 

get in touch with other people for the purpose of joint car drives to similar destinations. 

To demonstrate the commonalities of these two apps and how they are both associated 

to the traveling domain, it is worthwhile to investigate corresponding example websites 

for train reservations
38

 and car sharing
39

. The main functionality of both websites is 

very similar: they offer functionality to enter information about the origin and 

destination of the travel, the start date and time and whether a direct connection is 

required. However, beyond these domain-specific similarities (which would also be 

typical for a flight reservation website as another example for a traveling app), there are 

also differences. For example, on the train reservation website, different types of rail 

cards can be selected and the option to use a sleeper train can be chosen. Similarly, on 

the car sharing website features to select “women-only lifts” or “smoking allowed lifts” 

are provided. 

                                                 
37

 Appendix B and C of this thesis contains the interview transcripts and imported knowledge of the 

    dataset which was used in the simulation. Parts of this dataset were also used for the experiment 

    evaluation.  
38

 http://www.nationalrail.co.uk/ (28.01.2013). 
39

 http://www.carpooling.co.uk (28.01.2013). 
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In the interviews, participants should verbalize their requirements using scenario 

methodology, describing a typical process of using the smartphone app. This description 

should comprise each single interaction step and include the data to be exchanged, the 

activities to be performed and the non-functional aspects which are of importance (e.g., 

usability concerns). Each interview lasted 5-10 minutes and transcripts of about one 

page per interview were created. The participants were students, who had no specific 

requirements engineering knowledge. They were on average 23.7 years old, six of them 

male and six female. From the 12 conducted interviews, 9 were finally selected for the 

simulation, four of them referring to a train reservation project and five to a car sharing 

project.  

The knowledge used for the automation algorithm consisted of both imported and 

retrieved knowledge. Imported knowledge was uploaded from different data sources, 

depending on the requirements category: for the role category, a list of pronouns from 

the Oxford Dictionary was extracted. For the activity category, a list of action verbs 

from Hart (2004) was used. For the data category the master data of a SAP Travel 

Management application was used (SAP AG 2012). For the non-functional category, an 

extract of usability goals and design behaviors from Sharp et al. (2007) was imported. 

Two different sets of retrieved knowledge were applied: one set was retrieved from 

texts about the train reservation app and one set from texts about the car sharing app. 

To derive a gold standard, each of the 9 interviews was manually highlighted by three 

requirements engineering experts. After resolving conflicts and contradictions, the final 

agreed-upon solution of the experts was taken as the gold standard. 

6.1.2 Research Model for Interim Evaluation 

As explained earlier, the research model, which was derived in section 5.6 is tailored to 

the evaluation of the final artifact version which was conducted as an experiment. For 

the simulation described here, a separate model has been developed and will be 

presented in the following. 

The goal of this evaluation was to investigate how the amount and type of knowledge 

which is used for automated requirements mining affects the quality of the results. As 

described earlier, to evaluate the requirements mining quality, recall is a common 
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measure (Casamayor et al. 2010; Cleland-Huang et al. 2007; Gacitua et al. 2011) which 

was equally applied in this evaluation. It was calculated by comparing the automatism’s 

outputs with the gold standard introduced in the last section. In the simulation 

conducted here, requirements mining efficiency was not of interest, as the evaluation 

focused on the outcomes of automatic requirements mining and therefore did not 

involve human interaction through requirements engineers. 

The independent variable amount of knowledge is operationalized by the number of 

documents used to build up the knowledge base. The study thereby simulates how 

knowledge would probably be extended in practice: starting from an initial, imported 

amount of knowledge, the knowledge base would be gradually augmented through 

retrieved knowledge from already processed NLRR. 

The type of knowledge is represented by two independent variables: Origin and project-

specificity of knowledge. Origin of knowledge is operationalized by using different 

contents within the knowledge base: only imported knowledge, only retrieved 

knowledge, or a combination of both. Project-specificity of knowledge is 

operationalized by using retrieved knowledge for either the same or a different project. 

Both projects, however, belong to the same domain as projects from different domains 

may restrict reuse of knowledge to specific types of requirements (e.g. non-functional 

requirements). The resulting evaluation model is depicted in Figure 28. 

 

 

Figure 28: Research Model for Interim Evaluation 
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6.1.3 Evaluation Procedure 

Based on the introduced dataset and evaluation model, two simulations were per-

formed. In both simulations, requirements were automatically elicited from four 

exemplary interview transcripts. The resulting recall rates were then averaged to a 

single result. Subsequently, the simulations were repeated with a different amount of 

retrieved knowledge. For each result, the recall rate was examined by comparing the 

results of the automatism to the gold standard. 

The first series of simulations focused on the effects of different origins of knowledge 

on requirements mining quality. Additionally to the origin of knowledge, the amount of 

retrieved knowledge was varied by using a different number of texts to populate the 

knowledge base with retrieved knowledge. This resulted in a series of 11 different 

simulation runs. The first run only used imported knowledge, the following five runs 

only used retrieved knowledge (for 0-4 texts) and the final five runs a combination of 

both (for 0-4 texts). The analyzed natural language documents as well as the retrieved 

knowledge for this series of simulation originated from the project for the car sharing 

application, resulting in a constantly high project-specificity of the knowledge. Table 7 

summarizes the performed simulation runs. 

 
Simulation Run # Origin of Knowledge Number of texts

40
 

1 Imported Knowledge - 

2 to 6 Retrieved Knowledge 0 to 4 

7 to 11 Imported & Retrieved Knowledge 0 to 4 

Table 7: Simulation Runs for Variable Origin of Knowledge 

 

The second series of simulations (Table 8) focused on the effects of project-specificity 

of knowledge on requirements mining quality. For the project-specific simulation runs, 

only retrieved knowledge from the car sharing project was taken. For the project-

independent runs, only retrieved knowledge from the train reservation project was 

taken. The interviews to be analyzed were related to the car sharing project. Similar to 

the first series, the amount of retrieved knowledge was additionally varied. This resulted 

in a series of 10 different simulation runs. The first five runs simulated a project-

                                                 
40

 Only related to Retrieved Knowledge. 
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specific knowledge base (for 0-4 texts) the next five runs simulated a knowledge base 

with knowledge from a different project (for 0-4 texts). In this series, the origin of 

knowledge was kept constant, as only retrieved knowledge was used. 

 

Simulation Run # Project-Specificity Number of texts
3
 

1 to 5 Project-Specific Knowledge 0 to 4 

6 to 10 Project-Independent Knowledge 0 to 4 

Table 8: Simulation Runs for Variable Project-Specificity of Knowledge 

6.1.4 Evaluation Results 

Figure 29 depicts the results of the first series of simulation runs which focused on the 

effects of different origins of knowledge on mining quality. As expected, the results 

suggest that a positive correlation between the number of texts used for the creation of 

the retrieved knowledge and the resulting recall rate can be assumed. In addition, it can 

be observed that for new projects, which have not identified requirements from NLRR 

yet, an initial amount of imported knowledge is necessary to achieve a relevant recall 

rate. However, it can be seen that in the conducted simulation the recall from retrieved 

knowledge approximately equaled the recall from imported knowledge after three 

documents had been analyzed and outperformed it for more than three documents. 

Additionally, it is interesting to notice, that imported knowledge in the simulation 

seemed to have no further effect if more than three documents had been used for 

retrieved knowledge: The recall rate for the combination of imported and retrieved 

knowledge approximately equals the recall rate for retrieved knowledge if more than 

three documents had been used. 
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Figure 29: Effects of Origin of Knowledge on Requirements Mining Quality 

 

Figure 30 depicts the results of the second series of simulation runs which focused on 

the effects of project-specificity of knowledge on mining quality.  

 

 

Figure 30: Effects of Project-Specificity of Knowledge on Req. Mining Quality 

 

Interestingly, in the conducted simulation series, project-specificity of knowledge had 

an ambiguous effect. Recall rates again seem to develop in positive correlation with the 
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amount of knowledge, but no clear difference could be observed concerning project-

specificity itself. Even though both projects are related to the same domain (travel 

management), this was an unexpected result, as the two applications which the 

interviews based on (a train reservation and a car sharing application) provided 

significant differences. These observations allow the interpretation that automated 

requirements mining can significantly benefit from an exchange of requirements 

knowledge across projects within the same domain. In section 7.1.1, the results of the 

simulation will be discussed in more detail. 

6.2 Ex-Post Evaluation
 41

 

The ex-post evaluation was carried out to test the effect of the two (final) design 

principles (DP1, DP2) on requirements mining productivity. As described in the related 

work chapter, previous research on RMS evaluations focused on simulations, 

comparing the results of the corresponding systems with a previously defined gold 

standard. Although simulations allow precise measurements of dependent variables in a 

controlled setting, they do not incorporate human interaction. RMS are supposed to be 

used by requirements engineers, who should be consequently involved in the evaluation 

of the systems to be able to compare the outcomes of system-supported requirements 

mining with the as-is situation of manual discovery. Therefore, for the ex-post 

evaluation of REMINER, an experiment evaluation as suggested by Hevner and 

Chatterjee (2010) was conducted. By using a laboratory experiment, design principles 

can be accurately adjusted and their impacts on requirements mining productivity can be 

measured while controlling for potential influential factors (e.g., requirements mining 

knowledge, motivation). The results achieved through system-supported requirements 

mining can then be compared to manual discovery, addressing the research gap 

described above.  

The ex-post evaluation was based on the hypotheses and research model derived in the 

previous chapter. Following these hypotheses, the identified design principles (DP1 and 

DP2) were expected to improve requirements mining productivity. The actual outcomes 

                                                 
41

 Parts of this section have been published in Meth et al. (2012a). 
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of the experiment will be specified in the following, after a description of the evaluation 

methodology. 

6.2.1 Evaluation Methodology 

The overall experiment consisted of a laboratory experiment and a field experiment. 

First, the artifact was evaluated in a laboratory setting with student participants. By 

using student participants, a relatively large sample size can be obtained with reasonable 

efforts and adequate statistical power can be achieved (Gallupe and McKeen 1990). 

Second, to evaluate the generalizability of findings from the student participants, the 

same experiment was carried out with a small sample of requirements engineers in a 

field setting. By comparing the behavioral patterns of the two groups of participants, the 

external validity of the results from the laboratory setting can be evaluated. It should be 

noted that it was not intended to merge the two samples to test the hypotheses, but only 

to use the results of the small sample of requirements engineers as an examination of the 

student sample’s external validity. All conclusions from the experiment should be 

reliably drawn from the relatively large sample of students. 

A single factor within-subject design was used for both the laboratory experiment and 

the field experiment to increase statistical power for each experimental setting and 

reduce error variance introduced by individual differences (Hill and Lewicki 2006). The 

within-subject factor is the RMS configuration. This factor has three levels: manual 

requirements mining, semi-automatic requirements mining with imported knowledge, 

and semi-automatic requirements mining with imported and retrieved knowledge. 

6.2.1.1 Pilot Test 

A pilot test was conducted to estimate the necessary sample size and appropriate length 

of the interview transcripts used in the experimental tasks. The same single factor 

within-subject design was applied in the pilot test as in the main experiment, and three 

graduate students participated in the pilot test. The results indicated that the lowest 

correlation among the repeated measures was 0.35. Calculated with G*Power 3 (Faul et 

al. 2007) to detect a medium effect (f= 0.25) at the significance level of 0.05 with a 

sufficient statistical power (about 0.80) (Cohen 1988) the sample size should be at least 
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35. Thus, the sample size for the laboratory experiment was set to be 40 to detect a 

medium effect on recall and on precision.  

In the pilot test, within the experimental time for each task (5 minutes), the maximum 

amount of words that the participants processed was 247, 277, and 328 for manual 

requirements mining, semi-automatic requirements mining with imported knowledge, 

and semi-automatic requirements mining with imported and retrieved knowledge 

respectively. Accordingly, the length of the interview transcripts used in the main 

experiment was set to be 325 words. With this length, most of the participants are 

expected not to be able to completely process all the text within the experimental time, 

but they can achieve their optimal recall and precision while working at their normal 

pace. A very small number of participants might be extraordinarily fast in requirements 

mining and be able to complete the first round of requirements mining within the 

experimental time, allowing them to further improve recall and precision in the 

remaining time by checking the first round results. The interview transcripts were not 

set up to be of a length that no participant could possibly complete the first round of 

requirements mining because the impact of the automatically mined requirements on the 

achieved recall and precision should be limited. Participants should be able to read and 

check the automatically mined requirements within the task time which aligns to the 

application situation in practice. 

6.2.1.2 Participants 

According to the sample size calculation, 40 participants were recruited for the 

laboratory experiment. The participants were graduate students enrolled in a master 

level IS course in a public university at an average age of 25.4 years (SD=2.07).  

 

Age Gender Major Computer 

Experience 

Experience in 

Requirements 

Mining 

25.4 years 

(avg.) 

Male: 32 

students 

Female: 8 

students 

Master of Business 

Informatics: 36 students 

Master of Management: 4 

students 

4.75  

(avg. of max. 5) 

1.79 

(avg. of max. 5) 

Table 9: Participants' Descriptive Data (Average Values) 
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Thirty-two of the participants were male and eight of them were female. Most of the 

students (36 of 40) are pursuing a master of business informatics, while four students 

are enrolled in a master of management program. The participants have a comparatively 

extensive general computer experience (on average 4.75 points on a five point Likert 

scale) and low requirements mining experience (1.78 point on a five point Likert scale). 

Participants were evenly assigned to six time slots on three experimental days, with 6 or 

7 participants per time slot. 

6.2.1.3 Experimental Procedure 

The experiment was carried out in a multimedia classroom at the university. A lecturer 

of the IS course introduced the experiment as an exercise for a course-related 

assignment with the objectives of understanding different requirements categories 

relevant for Business Intelligence and learning how to use a web application to perform 

requirements mining from text documents. No participant had access to the RMS before 

the experiment and all participants were unaware of the purpose of the experiment. 

 

 

Figure 31: Experimental Procedure 
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To teach how to perform requirements mining and how to use the web application for 

this purpose, the lecturer presented a tutorial video to the participants. Then, the 

participants were asked to fill in a brief questionnaire about their demographic 

information, computer experience and requirements mining experience. Next, the 

lecturer guided the participants through a training session to make them familiar with 

requirements mining. The participants were asked to perform requirements mining 

using an interview transcript about requirements of a train reservation application for 

smartphones. The transcript was chosen from the series of transcribed interviews, which 

were described in 6.1.1. In the first five minutes, participants conducted requirements 

mining manually. In the next five minutes, they performed requirements mining within 

the same transcripts again but with a few automatically mined requirements at the 

beginning. Afterwards, the lecturer presented the expert requirements mining results for 

the transcript and answered any question raised by the participants. Then the 

participants were allowed a five-minute break. 

After the break, the lecturer asked the participants to practice their requirements mining 

skills with a different set of interview transcripts which contained three transcripts about 

requirements of a car sharing application for smartphones. Again, these transcripts were 

chosen from the series of transcribed interviews described in 6.1.1. By design, 

requirements mining within the three interview transcripts was supported with three 

different RMS configurations. To compensate for learning and fatigue effects in the 

within-subject design, the presentation order of the three RMS configurations was fully 

counterbalanced across the participants, yielding a total of six orders. The participants 

were randomly assigned into one of the six orders of RMS configurations. For each 

interview transcript, the participants were given five minutes to perform the 

requirements mining. Then they were instructed to switch to the next interview 

transcript and start requirements mining on it. 

In the field experiment, participants were five requirements engineers (targeted users of 

the RMS) recruited from a large high-tech company. The practitioner sample consisted 

of three males and two females at an average age of 34.8 (SD=3.56) and an average 

experience of 5.0 years (SD=5.83) and 3.6 years (SD= 1.14) in requirements 

engineering and requirements mining respectively. The participants in the field 
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experiment followed similar experimental procedures as the ones in the laboratory 

experiment, with a few necessary modifications. Firstly, the participants were randomly 

assigned into one of the orders of the RMS configurations. Since only five participants 

were involved in the field experiment and each participant got a different order of the 

RMS configurations through randomization, five among the six orders of the RMS 

configurations were covered in the field experiment. Secondly, the purpose of the study 

was introduced as “to get experts’ opinions on future design of RMS”. No participant 

had access to the RMS before the experimental tasks and the participants were unaware 

of the real purpose of the experiment. The participants were told to work at their normal 

working pace in different tasks. All the other procedures in the field experiment were 

the same as the ones in the laboratory experiment. 

6.2.1.4 Experimental Tasks and Materials 

To set up the experimental tasks, the following three steps were performed: choose a 

knowledge domain, select interview transcripts, and set up the semi-automatic 

requirements mining. 

A knowledge domain determines the area of knowledge that participants and the semi-

automatic RMS rely on in order to identify and classify requirements. Some knowledge 

domains require specialized knowledge and expertise (e.g., computer aided design), 

while others only require routine knowledge that can be easily acquired in ordinary life 

(e.g., online shopping). Similarly to the simulation, in the experiment, “travel 

management” was chosen as the knowledge domain, since this domain does not require 

specialized knowledge, and the student participants would be able to identify and 

classify requirements by their routine knowledge. 

In the experiment, participants were provided a training session to get used to the RMS 

before the experimental tasks. To reduce the practice effect, interview transcripts on 

different applications were specified for the training and for the experimental tasks 

respectively. As already mentioned, transcripts were selected from the interviews 

described in 6.1.1. These interviews included requirements descriptions for two 

smartphone applications, one for car sharing and one for train reservations. In the 

training, a short transcript about requirements of the train reservation application was 
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provided (238 words). In the experimental tasks, transcripts about requirements of the 

car sharing application were used. For the transcripts used in the experimental tasks, the 

length, readability, and the distribution of requirements were controlled on. Each 

transcript was edited to contain 325 words without sacrificing the integrity and 

meaningfulness of the interview content. Examined by the Flesch-Kincaid score, the 

three transcripts have similar and high readability (M=75.1, SD=3.50) which indicates 

that all the transcripts were highly readable for university students at master level 

(Kincaid et al. 1975). To examine the distribution of the requirements in the transcripts, 

two requirements mining experts analyzed the transcripts independently. Their 

requirements mining results were compared and any inconsistency was discussed and 

resolved. The converged expert solutions showed that the three transcripts contained a 

relatively equal amount of requirements (M=70.3, SD=2.09) and that the requirements 

were evenly distributed across the complete text of each transcript. 

Finally, semi-automatic requirements mining was set up within the “travel 

management” requirements domain. Participants were instructed to perform 

requirements mining within interview transcripts using three different RMS 

configurations: 1) Manual mining 2) Semi-automatic mining with imported knowledge 

and 3) Semi-automatic mining with imported and retrieved knowledge. The first 

configuration was based on unprocessed interview transcripts, no automatically mined 

requirements. In contrast, the second and third configurations were based on transcripts 

which already contained automatically generated requirements. Due to the additional 

retrieved knowledge utilized in configuration 3, the according setup resulted in more 

proposed requirements than configuration 2 which is depicted in Figures 32 and 33. 

To prepare semi-automatic requirements mining, the same imported knowledge which 

was used in the interim evaluation, was employed in this evaluation. After knowledge 

import, automatic requirements mining was performed to generate requirements in the 

selected interview transcripts for the experimental task. The resulting average recall and 

precision was 54.0% (SD=9.4%) and 79.0% (SD=6.9%) respectively. 
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Figure 32: Requirements Document After Automatic Processing in Configuration 2 

 

 

Figure 33: Requirements Document After Automatic Processing in Configuration 3 

 

In contrast to imported knowledge, retrieved knowledge does not require additional 

efforts to be acquired. Retrieved knowledge for a requirements domain is acquired 

automatically by the RMS when users perform requirements mining on any text 

document within the specific requirements domain. To acquire the retrieved knowledge 

for the “travel management” requirements domain, one requirements mining expert 

performed requirements mining with the RMS on a set of interview transcripts about the 

train reservation application. The choice of the transcripts ensured that knowledge was 
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retrieved within the same knowledge domain (travel management), but for an 

application different from the car sharing application used in the experimental tasks 

which made the knowledge retrieving process closely aligned to the real situation in 

practice. With imported and retrieved knowledge, an average recall of 75.0% 

(SD=4.2%) and an average precision of 75.0% (SD=4.0%) was achieved after running 

the automatic requirements mining on the three interview transcripts for the car sharing 

application. In the experimental tasks, the order of the three interview transcripts was 

randomized across the participants. 

6.2.1.5 Measurements of the Dependent Variables 

As illustrated earlier in the description of the research model, requirements mining 

productivity was measured by the achieved quality within a fixed time frame. 

Participants’ requirements mining quality was evaluated with two variables: recall and 

precision. Following the approach by Kiyavitskaya and Zannone (2008) and Vlas and 

Robinson (2012), recall and precision were obtained by comparing participants’ 

requirements mining outputs with the expert solutions. Within a text document, if a 

participant identified a text segment as one requirement, no matter in which 

requirements category the participant classified this requirement, it was counted as one 

“identified requirement.” If the participant identified a text segment as one requirement 

and assigned it to a requirements category in the same way as shown in the expert 

solution, this requirement was counted as one “correctly identified requirement.” As 

shown in Table 10, a participant’s achieved recall for a text document was calculated as 

a ratio of the number of correctly identified requirements by the participant to the total 

number of requirements contained in this text document according to the expert 

solution. A participant’s achieved precision for a text document was calculated as a ratio 

of the number of correctly identified requirements by the participant to the total number 

of identified requirements by the participant. To reduce the bias introduced by 

document analysts, two requirements mining experts analyzed 10% of the participants’ 

outputs independently and achieved an inter-rater reliability of 98.97%; afterwards, the 

two experts spilt the remaining outputs and analyzed them separately. 

  



6.2 Ex-Post Evaluation 101 

 

 

Variable Explanation 

Recall 

 

Precision 

 

Table 10: Measurements of the Dependent Variables 

6.2.2 Data Analysis and Results 

All the data analysis was conducted using SPSS for Windows Version 16.0. First, the 

data obtained from the laboratory experiment was examined and used to test the 

hypotheses. Then, as an estimation of the external validity of the laboratory experiment, 

the data from the field experiment was analyzed and compared with the data from the 

laboratory experiment. 

6.2.2.1 Preliminary Analysis 

Table 11 presents the means and standard deviations of the dependent variables in 

different experimental conditions for the laboratory experiment and the field experiment 

respectively. For manual requirements mining, the practitioner sample appeared to 

achieve a relatively lower recall than the student sample. The reasons could be that the 

students were more motivated and concentrated during the experimental task than the 

practitioners, or the small sample of practitioners might not be evenly distributed on 

both sides of the true value of the population mean. In hypotheses testing, only the data 

from the laboratory experiment was used to achieve a sufficient power and get reliable 

conclusions. 

As explained in the research model, requirements mining recall and precision are 

conceptually independent variables. The hypotheses predict that the RMS 

configurations exert effects on recall and precision in different directions. Thus 

hypotheses on recall and precision should be tested separately with univariate repeated 

measures of analysis of variance (RMANOVA) (Huberty and Morris 1989). 
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 Manual Semi-automatic with 

imported knowledge 

Semi-automatic with 

imported and retrieved 

knowledge 

Mean SD Mean SD Mean SD 

Lab experiment (student participants, N=40) 

Recall 50.7% 12.0% 69.8% 9.8% 79.5% 8.0% 

Precision 71.0% 8.5% 72.0% 6.7% 73.2% 6.5% 

Field experiment (practitioner participants, N=5) 

Recall 37.6% 12.9% 68.6% 6.0% 77.8% 3.9% 

Precision 70.1% 14.5% 72.7% 3.5% 68.5% 5.3% 

Table 11: Recall and Precision for Different RMS Configurations 

6.2.2.2 Hypotheses Testing 

With the data from the laboratory experiment, RMANOVA was performed to examine 

the impacts of the design principles on requirements mining recall and on precision 

respectively. 

As shown in Table 12, participants’ recall was significantly influenced by the RMS 

configurations at the significance level of 0.05. To test hypothesis 1 and hypothesis 2, 

pairwise comparisons were performed on the main effects of RMS configurations. A 

Bonferroni correction was applied to control on the family-wise error rate (Vasey and 

Thayer 1987). The multiple comparisons results are shown in Table 13. All the pairwise 

comparisons were significant at the level of 0.05: participants using semi-automatic 

requirements mining with imported knowledge achieved significantly higher recall than 

using manual requirements mining, and using semi-automatic requirements mining with 

imported and retrieved knowledge achieved significantly higher recall than using semi-

automatic requirements mining with imported knowledge only. Thus, hypothesis 1 and 

hypothesis 2 are supported. 

Hypothesis 3 was also supported by the RMANOVA on precision (see Table 12): no 

significant difference in precision across the three RMS configurations was detected in 

the experiment. 
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DV Source DF MS F p η
2 

Cohen’s f 

Recall RMS Config. 2 0.861 129.76 < .001 .77 1.82 

Error 78 0.007     

Precision RMS Config. 2 0.005 1.36 .263 .03 0.19 

Error 78 0.004     

Table 12: Results of RMANOVA for Recall and Precision 

 

Pair comparison Mean 

difference 

p* 95% confidence 

interval* 

Lower Upper 

Semi-automatic with imported 

knowledge 

Manual 19.2% < .001 14.4% 

 

23.9% 

Semi-automatic with imported 

and retrieved knowledge 

Semi-automatic with 

imported knowledge 

9.7% < .001 5.8% 13.6% 

Table 13: Results of Pairwise Comparisons for Recall 

6.2.2.3 External Validity Evaluation 

In the previous section, the hypotheses were tested with the data obtained from student 

participants in a laboratory setting. Since the results shall be generalized to requirements 

engineers who carry out requirements mining activities in workplaces, external validity 

is a concern for the laboratory experiment with students. However, prior studies suggest 

that causal relationships are more generalizable across populations than specific 

characteristics (Pedhazur and Schmelkin 1991) which indicates that the causal 

relationships between the design principles of RMS and improved requirements mining 

productivity may remain across different samples. 

A RMANOVA on recall was performed to compare the effects of different RMS 

configurations. The result showed a significant difference on participants’ recall when 

the RMS configuration varied (F (2, 8) = 31.74, p < .001, η2 = .89, f =2.82). The 

pairwise comparisons with Bonferroni corrections indicated that semi-automatic 

requirements mining with imported knowledge outperformed manual requirements 

mining on recall (mean difference = 31.0, p = .007, 95% CI [13.4%, 48.7%]), but no 

significant difference was detected between semi-automatic requirements mining with 

imported knowledge and semi-automatic requirements mining with imported and 

retrieved knowledge (mean difference = 9.1%, p = .301, 95% CI [-7.8%, 26.1%]). When 
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analyzed with a more powerful paired t-test, the difference between the two semi-

automatic RMS configurations was marginally significant (t(4) = 2.13, p = .100, 95% CI 

[-2.8%, 21.0%], d = 0.95). The observed effect size was classified as a large effect 

according to Cohen (1988). Thus, the insignificant result might stem from the very 

small sample size used in the field experiment. A post-hoc power analysis was 

conducted with G*Power 3 (Faul et al. 2007). The result showed that to detect this 

effect size (d = 0.95) with paired t-test, a sufficient power (e.g., 0.80) can be achieved 

by adding 7 more participants to the practitioner sample, resulting in a total sample size 

of 12. As expected, no significant difference was detected on precision with the 

practitioner sample analyzed by RMANOVA (F (2, 8) = 0.34, p = .723, η2 = .08, f = 

0.29). 

In addition, a RMANOVA was performed with the pooled data from the laboratory and 

the field experiment and specified “role” as a between-subject factor to differentiate the 

student sample and the practitioner sample. Not surprisingly, at the significance level of 

0.05, RMS configurations demonstrated the same significant effects on recall (F (2, 86) 

= 84.78, p < .001) and no effects on precision (F (2, 86) = 0.39, p = .682); neither a 

main effect of role nor an interaction effect between the RMS configurations and role 

was detected on recall and precision. 

The above analyses did not reveal evidence that the practitioner sample demonstrated a 

different behavioral pattern on recall and precision when using the different RMS 

configurations compared with the student sample. There was no evidence showing that 

the conclusions drawn from the laboratory experiment could not be generalized to 

practitioners in a field setting. However, due to the small size of the practitioner sample 

used in the field experiment, the results have to be treated with caution. 

6.2.2.4 Analysis of Additional Data 

Based on the previously introduced definition, requirements mining productivity is the 

quality of the identified requirements divided by the invested requirements mining 

effort. Since the invested requirements mining effort was measured with time and was 

kept constant in the experiment, the results support that the deployment of the two 

design principles can improve requirements mining productivity. Alternatively, the 
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invested requirements mining effort can also be measured by the frequency of 

keystrokes and mouse clicks which is often termed as physical effort (Tamir et al. 

2008). In the student experiment, a screen capture tool was installed on participants’ 

computers that automatically captured their keystrokes and mouse clicks during the 

experiment. Tested with RMANOVA, the frequency of keystrokes and mouse clicks 

was significantly different across different RMS configurations (F (2, 78) = 50.15, p < 

.001, η2 = .56, f = 1.14). The pairwise comparisons with Bonferroni corrections showed 

that the use of semi-automatic requirements mining with imported knowledge 

significantly reduced the frequency of keystrokes and mouse clicks from an average of 

251.2 (SD = 62.61) to an average of 185.0 (SD = 55.94) (mean difference = 66.2, p < 

.001, 95% CI [42.2, 90.2]). The use of semi-automatic requirements mining with 

imported and retrieved knowledge further reduced the frequency of keystrokes and 

mouse clicks to an average of 157.1 (SD = 50.58) (mean difference = 28.0, p = .013, 

95% CI [4.9, 51.0]). The invested requirements mining effort measured by frequency of 

keystrokes and mouse clicks was reduced by 37.5% with the deployment of the two 

design principles. Consequently, requirements mining productivity measured by recall 

per keystroke or mouse click was significantly improved by the use of semi-automatic 

requirements mining with imported knowledge (mean difference = 0.20%, p < .001, 

95% CI [0.15%, 0.25%]) and further improved by the use of semi-automatic 

requirements mining with imported and retrieved knowledge (mean difference = 0.21%, 

p = 0.025, 95% CI [0.02%, 0.39%]). This finding confirms the improvement of 

requirements mining productivity by the deployment of the two design principles and 

provides support for reduction of physical efforts by the design principles. Overall, to 

achieve a certain level of quality of the identified requirements, participants with the 

semi-automatic RMS require shorter time and invest lower physical effort. 

6.3 Summary 

In this chapter, the methodology and results of two evaluations were presented: an 

interim evaluation, conducted as a simulation and an ex post evaluation, conducted as 

an experiment.  
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The simulation investigated the interplay of RMS’ knowledge base characteristics and 

processing characteristics. More specifically, it was explored how the amount and type 

of knowledge affect requirements mining quality in two consecutive simulations. While 

the amount and origin of knowledge significantly affected requirements mining quality, 

results for the effects of project-specific knowledge were ambiguous.  

The experiment evaluation focused on an analysis of the final artifact version’s 

effectiveness. More concretely, it was investigated how the design principles of RMS 

described in section 5.2.2 affect requirements mining productivity. Results indicate that 

both design principles, semi-automatic requirements mining (DP1) and the usage of 

imported and retrieved knowledge (DP2) have significant positive effects on 

requirements mining productivity. The outcomes of these evaluations as well as the 

results of the prior artifact design will be discussed in the following chapter. 
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7 Discussion 

In this chapter, first the evaluation results and then the general results of this research 

will be discussed. The chapter will accordingly be structured along three guiding 

questions: First, how can the evaluation results be explained and what can be learned 

from them? Second, how can the overall results of the study be assessed? And third, to 

which extent did the research address the depicted research gaps? 

7.1 Discussion of Evaluation Results 

How can the evaluation results be explained and what can be learned from them? To 

answer this question, first the simulation results and then the experiment results will be 

reflected. 

7.1.1 Simulation Results
42

 

The first series of simulation runs demonstrated the effects of the variable “origin of 

knowledge” on requirements mining quality. Interestingly, the simulation results 

showed that the usage of retrieved knowledge outperformed the usage of imported 

knowledge already after three documents. A possible explanation for this can be derived 

from the different degrees of domain-specificity of the utilized knowledge. Retrieved 

knowledge can potentially provide a higher degree of domain-specificity than imported 

knowledge. While imported knowledge provides a solid basis of terms generally 

associated to the core domain (in this case travel management), this domain can be 

divided into sub-domains using their own vocabulary. In the exemplary travel 

management domain, terms like “destination”, “start date” or “direct connection” can be 

associated to general domain knowledge. However, more specific terms like “type of 

rail card” or “smoking allowed lifts” are specific to the sub-domains of train transport 

and shared car transport. Consequently, while imported knowledge can be used to 

correctly identify and classify a core set of general requirements (resulting in a recall of 

almost 0.4 in the simulation), more specific requirements (which required sub-domain 

knowledge) were only captured after using retrieved knowledge. 

                                                 
42

 Parts of this section are based on Meth et al. (2013b). 
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In the second series of simulation runs, it was investigated how the project-specificity of 

knowledge affected requirements quality. Although one could expect that the usage of 

project-specific knowledge would outperform project-independent knowledge, this 

effect was surprisingly not observable in the conducted simulation. An explanation for 

the different outcomes of the second simulation series could be that the project-specific 

texts used in the simulations did not provide sufficient additional knowledge which was 

not already contained in the project-independent documents. This interpretation is 

depicted in Figure 34.  

 

Figure 34: Distribution of Relevant Knowledge 

 

In general, for each NLRR to be analyzed, some knowledge items in the knowledge 

base are relevant and others not. By using project-specific knowledge, the amount of 

relevant knowledge for a specific NLRR can rise, but does not have to. As depicted in 

Figure 34, before conducting the simulation, it was expected that project-specific 

knowledge would contain a larger amount of relevant knowledge than project-

independent knowledge. This would have resulted in an increased recall. Figure 34 also 

shows a possible explanation why this effect has not been observed. For the documents 
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used in the simulation, the differences in relevant knowledge might have been smaller 

than expected. Consequently, this resulted in small recall differences as well. 

The question whether to build knowledge “bottom-up” by a group of regular project-

members (as conducted in the simulation with retrieved knowledge) or “top-down” by 

individual domain experts (as conducted in the simulation with imported knowledge) 

has been widely discussed in general knowledge engineering and knowledge 

management literature (Alavi and Leidner 2013; Markus 2001; Schreiber et al. 1999). 

Initially, the knowledge engineering field proposed a systematic top-down approach to 

acquire and maintain knowledge from stakeholders. Various knowledge engineering 

methodologies, such as Common-KADS (Schreiber et al. 1994) and tools such as 

Protégé (Eriksson and Musen 1993) have been suggested. To reduce knowledge 

acquisition efforts, one important principle from the very early beginning was the 

establishment of reusable knowledge bases (Patil et al. 1997). Complementing manual 

knowledge engineering, advanced knowledge discovery techniques to extract 

knowledge from source data such as documents have been suggested. For example, the 

field of ontology learning (Maedche and Staab 2001) extracts and suggests ontological 

structures from existing domain data to the knowledge engineer. Recently, the rather 

expert-driven knowledge engineering approach for establishing knowledge has been 

complemented by an end-user-driven bottom-up approach following a Web 2.0 

paradigm; user-generated classifications, also known as folksonomies (Wu et al. 2006) 

represent one important example. Following this approach, users incrementally build 

knowledge bases by themselves. These bottom-up knowledge bases can be leveraged to 

create suggestions. An according approach is followed by the social bookmarking and 

citation management system Bibsonomy (Benz et al. 2010). 

Looking at these different paradigms, the question arises how to build and maintain 

knowledge for advanced RMS. The evaluation results provide evidence for the major 

potential of following a bottom-up approach. Supplying an initial knowledge base 

positively impacts recall at the beginning of a requirements mining process. However, 

the bottom-up approach outperformed the top-down pre-defined knowledge base 

approach already after three documents. The second interesting insight of the results is 

that reusing knowledge across different software development projects within the same 
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or similar domains seems to be a promising approach. Both, software vendors and 

customer companies may leverage this potential. First, from a vendor perspective, 

software development projects can reuse knowledge across releases. Second, from a 

customer perspective, knowledge can be accumulated within a Line-of-Business such as 

a procurement department running multiple IS implementation projects within this 

domain. While the simulation, using a small dataset, already resulted in recall rates 

about 60%, even larger values are possible using more extensive datasets (Casamayor et 

al. 2011; Cleland-Huang et al. 2007). Although these results show that automated 

requirements mining cannot fully replace manual efforts performed by a requirements 

engineer, it can significantly support humans and thereby reduce the number of 

overseen and omitted requirements (Berry et al. 2012). 

7.1.2 Experiment Results
43

 

The evaluation aimed at measuring the effects of different design principles of RMS on 

requirements mining productivity in comparison to manual requirements mining. More 

specifically, it was investigated how semi-automatic requirements mining (DP1) and the 

combined usage of imported and retrieved knowledge (DP2) affect requirements mining 

recall and precision in a fixed time period. 

Concerning DP1, it was found that the use of semi-automatic requirements mining 

significantly improved requirements mining recall. Different explanation patterns can be 

applied to this result. First, the automation process provided the participants with an 

initial set of identified requirements that already represented a substantial recall 

(54.0%). Therefore, in comparison to the manual requirements mining task, in which 

participants started with an unprocessed document, a higher final recall could be 

assumed, provided that participants trust the suggestions of the automatism. The 

increase of recall from the initial 54.0% (provided by the automatism) to the final 

69.8% indicates that participants trusted the recommendations of the automatism 

sufficiently enough to let them use at least a part of their time to increase recall through 

manual requirements mining of additional requirements (rather than using the entire 

time to correct potential mistakes of the automatism). 

                                                 
43

 Parts of this section have been published in Meth et al. (2012a). 
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As expected, DP1 did not significantly affect precision. The automatism resulted in an 

initial precision of 79.0% using imported knowledge which is comparable to the 

average precision value achieved during the manual requirements mining task (71.0%). 

Manual adaptations and extensions that were made during the experiment task slightly 

reduced the initial precision, resulting in a value of 72.0%. This value is between the 

precision values of the automatism and the value of manual requirements mining which 

reflects the semi-automatic nature of the task. 

Concerning DP2, it was found that the additional use of extracted knowledge further 

improved requirements mining recall. A possible explanation for this effect is that a 

more extensive and domain-specific knowledge base results in a higher initial recall 

provided by the automatism. This assumption could be confirmed, as the initial recall of 

the automatism rose from 54.0% to 75.0% through the activation of DP2. To assess the 

generalizability of these results, it is important to revisit the corresponding 

preconditions of the findings. The extension of the knowledge base through extracted 

knowledge resulted from a previous, manual requirements mining conducted by a 

domain expert. This manual requirements mining was based on different documents and 

a different application context than the experiment itself, but referred to a similar 

domain (travelling). These quality pre-conditions (extension of knowledge done by an 

expert and using documents of the same domain) enabled the automatism to determine 

requirements with significantly increased recall and with a precision comparable to 

manual requirements mining. Consequently, the final result also showed this 

recall/precision pattern. To achieve comparable results in a field setting, it is therefore 

important to enforce the described quality pre-conditions which can be supported by the 

RMS itself (e.g., through specific expert user roles and the mandatory assignment of 

documents to domains), or by organizational enforcement (e.g., through recurrent, 

mandatory quality checks of the knowledge base). 

Similar to DP1, DP2 did not significantly affect precision. The automatism resulted in 

an initial precision of 75.0% using imported knowledge which is again comparable to 

the average precision value achieved during the manual requirements mining task 

(71.0%) and therefore can be explained analogously. 
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7.2 Discussion of Overall Results 

How can the overall results of the thesis project be assessed? Similar to the analysis of 

related work in section 3.7, the research presented in this thesis will be analyzed using 

the conceptualized analysis framework for RDS research works (see Figure 35). 

 

 

Figure 35: Analysis Result for Research Conducted in Thesis Project 

 

The presented artifact REMINER aims at the identification and classification of 

requirements. Like former approaches, the system identifies abstractions to enrich the 

knowledge base. To improve requirements mining productivity, semi-automatic 

processing of NLRR is supported. Requirements are proposed by an automated 

algorithm applying IR and NLP techniques and can then be manually adapted. The 

provided knowledge base holds imported, static knowledge which is subsequently 

complemented with retrieved, dynamic knowledge items. The knowledge base is 

structured as a dictionary and holds both domain-specific and domain-independent 

knowledge. The implemented artifact has been evaluated in a simulation, investigating 

the interplay of processing and knowledge base characteristics during the first design 

cycle. In the second design cycle the final design principles of the system have been 
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evaluated in a controlled experiment, including actual system usage. In the simulation, 

requirements completeness has been evaluated through the measurement of recall. In the 

experiment, requirements mining productivity has been assessed, combing 

measurements of requirements completeness (recall) and requirements correctness 

(precision) both in a fixed time frame (to incorporate requirements mining efficiency). 

 

Different types of knowledge have been used to justify and ground the artifact design. 

Based on formal, behavioral decision theory, goals of decision makers have been 

identified and the basic relationship between advice quality and decision quality has 

been explained to derive design requirements. Subsequently, design and mid-range 

theory on DSS has been utilized as an analogy to predict the impact of different types of 

DG on the requirements mining process and its outcome. From this theoretical basis, 

applying additional general knowledge to the requirements mining process and the 

design of RMS, design principles for RMS have been derived.  

The contributed knowledge exceeds a pure description of the artifact. The design 

product has been abstracted and generalized, presenting knowledge as operational 

principles and a blueprint architecture. Components of a nascent design theory such as 

design requirements, principles, features and constructs have been presented. Going 

beyond the typical constituents of nascent design theory, testable hypotheses have been 

derived and tested. Possible extensions to this research to further develop the proposed 

design theory will be described in section 8.2. 

7.3 Discussion of Research Gap Congruence 

To which extent does the research address the depicted research gap? Based on the 

analysis of the overall results, the three research gaps identified in 3.7.2 shall be 

revisited to assess congruence with them.  

The first research gap, referred to the current state of RMS evaluation. Related work in 

the area of RMS has been evaluated through simulations, comparing the results of 

automated requirements mining with a predefined gold standard. Comparative 

evaluation results, investigating if RMS improve requirements quality and requirements 
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mining efficiency in comparison to manual discovery, are hardly available. This thesis 

project addresses this gap by conducting a comparative, experiment-based evaluation. 

The second research gap was related to the knowledge contribution of existing RMS 

publications. While the related work which has been analyzed contains detailed 

descriptions of specific implementations, a codification and abstraction of the demands 

to be fulfilled by RMS and the concepts addressing these demands is missing. In this 

thesis project, RMS design has been abstracted and generalized to design requirements 

and design principles which are applicable to different instantiations of RMS and which 

are independent of a specific technology. Although the general design has been 

instantiated in concrete design features of an artifact, the design requirements and 

principles are transferable to other systems of this class. 

Finally, the third research gap referred to the theoretical grounding of existing RMS. 

Related work in the field of RMS is based on general empirical and non-empirical 

knowledge, but lacks theoretical justification. Therefore, it is difficult to assess if the 

proposed design approaches really provide good or even optimal solutions for the given 

problem. In this thesis project, the artifact design is grounded on a broad basis of 

different types of knowledge from formal theories to practical requirements mining 

experiences. 

Decision making theory has been used to deriving design requirements for RMS from 

general goals of human decision makers. Subsequently, design principles addressing 

these requirements were identified based on the application of different types of DG to 

the requirements mining process. Furthermore, results of existing RMS research have 

been incorporated, providing additional general and design knowledge. 

7.4 Summary 

In this chapter, results of both the simulation and the experiment evaluation have been 

reflected, discussing possible explanations for the observations and providing additional 

evidence corroborating the findings. Then, the analysis framework conceptualized in 

chapter 3 has been applied to the research presented in this thesis to discuss the overall 

results and assess congruence with the identified research gaps. In the next chapter, 

concluding thoughts on this thesis project will be shared. 
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8 Conclusion 

In this chapter, the results of this thesis will be summarized, limitations and future work 

will be discussed and contributions of the conducted research will be outlined. 

8.1 Summary 

As depicted in the introduction chapter, this research project aimed at attaining three 

goals. First, a theoretically grounded design theory for RMS should be derived. Second, 

an artifact based on this design theory should be implemented. Third, it should be 

evaluated, if requirements mining supported by this artifact actually results in an 

increased productivity (in comparison to manual discovery). These three goals were 

summarized in the following research question: How can a system be designed, which 

aims at improving requirements mining productivity over manual discovery? 

To answer this question, chapter 2 provided a conceptual basis. First, general definitions 

of requirements, requirements engineering and the specific process of requirements 

discovery were provided. Then, requirements discovery was related to existing software 

development and requirements engineering approaches to outline contextual differences 

and specificities. 

In the third chapter, an analysis framework for RDS was developed, introducing 

different dimensions and characteristics and exemplifying them with existing RDS 

research. The framework classifies RDS according to their purpose, processing and 

knowledge base characteristics. Moreover, RDS research can be categorized concerning 

its different evaluation and knowledge exchange approaches. The presented framework 

has then been applied to existing RMS research, summarizing the related work for this 

thesis and outlining the research gaps to be addressed. 

In chapter four, the methodology applied in this research project was presented. Starting 

from an introduction to DSR as the underlying research paradigm, the dualist nature of 

design as a process and a product has been discussed. Building on this differentiation, 

alternative process- and product-oriented DSR frameworks were presented, resulting in 

a selection of two frameworks to be applied in this thesis: one process-oriented 

framework and one product-oriented. In the following, the specific research design of 
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the thesis was depicted followed by an ontological and an epistemological reflection of 

this approach. 

Chapter five presented one of the core contributions of the thesis, a design theory for 

RMS. The presentation was structured along the eight design theory components 

proposed by Gregor and Jones (2007). Based on decision making theory, design 

requirements and design principles for RMS were derived. Then these principles were 

implemented in actual design features of an expository instantiation. Additionally to the 

conceptualization of this artifact, principles of implementation and the artifact’s 

mutability were described. Finally, a research model, consisting of three testable 

hypotheses was conceptualized based on decision making theory and general 

requirements mining knowledge. 

In chapter six, the specific methodology and results of two artifact evaluations were 

presented. First, the results of a simulation, representing an interim evaluation, were 

provided. In this simulation, the interplay of RMS’ knowledge base and processing 

characteristics was investigated, exploring the effects of different amount and types of 

knowledge on requirements mining quality. Eventually, the experiment results, 

investigating the artifact’s effectiveness, were described. In this experiment, the effects 

of different RMS design principles on requirements mining productivity were analyzed. 

Both design principles were found to improve requirements engineers’ individual 

requirements mining productivity. 

In chapter seven, results of the two evaluations were reflected, discussing possible 

explanations. Subsequently, the analysis framework introduced in chapter 3 was applied 

to the research presented in this thesis to discuss the overall results and assess 

congruence with the identified research gaps. 

8.2 Limitations and Future Research 

In order to adequately interpret the implications of the findings, the following 

limitations of the thesis need to be considered. The discussion of the limitations will be 

oriented towards the structure and outcomes of the study starting with the analysis 

framework for RDS and its content, via the conceptualized design theory to the final 

evaluations in a simulation and an experiment. 
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Reflecting the presented analysis framework for RDS and its content, it needs to be 

considered, that the classification of the related work was based on the author’s specific 

judgment and experience and that other researchers might have judged differently. In 

addition, the content and structure of the analysis framework itself can only represent an 

excerpt of interesting characteristics to be investigated. Future research might 

complement the literature analysis, classifying the same or similar sets of papers 

according to additional dimensions and characteristics. 

In the conceptualization of the design theory, leveraging decision making theory, a 

specific theoretical viewpoint was applied to underpin design requirements and design 

principles. Choosing alternative theoretical viewpoints could result in additional design 

requirements and principles. However, the results of the evaluation confirm that 1) both 

design principles positively affected the quality of approved requirements and 2) the 

quality of approved requirements (the decision which has been taken) was strongly 

determined by the quality of proposed requirements (the given advice) which is in 

accordance with decision making theory. Therefore, there is evidence that the theory 

provides an appropriate basis for the design of RMS and the derivation of meaningful 

design requirements and design principles. Concerning the knowledge contribution, the 

self-assessment of this research project presented in section 7.2 classified the derived 

theory as a “nascent design theory”. To reach the next level of knowledge contribution 

in the analysis framework (a transformation to a well-developed design theory), 

additional research could be conducted. For example, further behavioral aspects of 

requirements mining, such as trust, could be investigated, aiming to extend the 

explanatory power of the design theory and increase the understanding of embedded 

phenomena. 

Additional limitations apply to the conducted simulation. First, assessing external 

validity, the conducted simulation series was performed using one specific system 

(REMINER) which might limit generalizability. However, due to the generic design 

principles which were followed in the conceptualization of the system, results should be 

generalizable to other knowledge-based RMS. Furthermore, although a specific domain 

(travel management) was used, this domain is comparable to a large amount of other 

domains of similar complexity. Future work could complement the conducted study by 
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a replication of the simulations in a more complex domain. Second, evaluating internal 

validity, the model did not include variables which capture additional characteristics of 

the utilized requirements documents (like readability and length). Instead of varying 

these variables, documents of comparable readability and length were used. Future 

research, however, might investigate how these two variables affect requirements 

mining quality. Moreover, the definition of the gold standard used in the simulations 

involves subjective interpretations. This risk was mitigated by involving three different 

experts in the definition. Third, assessing construct validity, the number of documents 

was used as a measure for the amount of knowledge. Although it can be assumed that 

additional documents added further knowledge and the results show that in fact more 

documents led to a larger amount of recognized requirements, alternative measurements 

(e.g. a direct variation of the number of knowledge items) could be applied. However, 

these alternatives were not chosen in order to approximate the simulation to real life 

conditions in which entire documents instead of single knowledge items would be 

added to retrieved knowledge. Nevertheless, future work might investigate if a more 

direct alteration of the amount of knowledge through the number of knowledge items 

results in the same effects as the presented simulation. 

Reflecting the conduction of the experiment evaluation, a further limitation can be seen 

in the fact that the laboratory experiment sessions were conducted with master IS 

students, not with experts, which constrains the external validity of the findings. 

However, the replication of the experiment with a small group of experts showed 

evidence that the same results pattern which has been observed in the laboratory setting 

can be expected in a field setting as well. Another limitation can be seen in the analysis 

of the experiment text data which was based on manual document analysis. Although 

this analysis was thoroughly conducted, manual analysis is error-prone and can reduce 

reliability. Yet, the fact that results were analyzed by two researchers independently and 

with a high inter-rater reliability (98.97% in the documents which were coded twice) 

provides evidence that this did not have a major impact. 

There are many possible extensions to this work. Agreeing with Hevner et al. (2004) 

that DSR is inherently iterative, future research could extend the presented theory 

through the conduction of additional design cycles. During these cycles, alternative 
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theoretical lenses could be applied or a more intensive observation of the artifact’s 

usage in an actual implementation project (for example in form of a case study) could 

be performed. Both extensions promise interesting adaptions and enrichments of the 

identified design theory components. From an evaluation point of view, a replication of 

the experiment study in a different domain could also add interesting insights. In the 

experiment, the traveling domain was adopted which is reusable for a wide range of 

applications. When the domain is highly specific and dynamic, domain-specific 

knowledge becomes scarce and cannot easily be acquired and imported into the RMS. 

In this case, the RMS might be less useful since many requirements need to be manually 

established and might not be reused in further requirements elicitation. Future research 

could use a more sophisticated domain and differentiate participants according to their 

domain knowledge, specifically examining the moderating effects of participants’ 

domain knowledge on the relationships between design principles and requirements 

elicitation productivity. 

Furthermore, an extension of the artifact’s functional scope could be investigated. For 

example, the artifact could be augmented to support an integration of the outcomes of 

requirements mining to subsequent requirements engineering or general software 

development activities. Reflecting the specificities of different software development 

approaches presented in 2.2, it would be interesting to find out, how requirements 

mining outcomes need to be modified or extended to enable a seamless integration into 

these specific processes. For instance, user-centered approaches, which often follow a 

task-oriented approach to requirements elicitation, might need other requirements 

categories than system-centered approaches.  

8.3 Contributions 

The contributions of this thesis will be summarized in the following from a theoretical 

and practical point of view.  

8.3.1 Theoretical Contributions 

From a theoretical perspective, the study provides the following key contributions: First, 

it derives an analysis framework for works in the area of RDS, going beyond the basic 
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classification provided by Berry et al. (2012). Besides the application in this paper, the 

framework might be used to classify and evaluate future research in this area. Based on 

this framework, the current state of the art in RMS has been depicted. Providing an 

overview of existing works, this compilation might be useful as a starting point for 

scholars who are about to research in this area. 

Second, the results of the thesis extend the design theory body of knowledge for 

software development systems. More specifically, a design theory for RMS has been 

conducted. Due to the abstraction and codification of the design to generic design 

requirements and design principles, the findings are generalizable from the specific 

artifact to the class of RMS. The prescriptive theoretical findings of the study may guide 

future research in designing efficient RMS.  

Third, as described earlier, RMS should improve requirements engineers’ productivity 

in the corresponding process to provide an added value in comparison to manual 

requirements mining. The conducted study complements existing research on RMS, 

investigating if this expected productivity improvement can actually be observed. 

Complementing these experiment results, the outcomes of the conducted simulation 

series provide further insights about the impact of different forms of background 

knowledge on requirements mining quality (which is one of the determinants of 

productivity). 

Finally, beyond the topical aspects of the thesis, a contribution to the ongoing 

methodological discussion in the design science context is aspired. Based on the 

conceptualization of design principles, an experimental evaluation was designed and 

conducted that allows quantifying the effects of each principle on a dependent variable. 

Going beyond an assessment of the artifact’s overall effect, this procedure allows 

precise inference from the evaluation back to the design process. This approach could 

inform other design researchers in the evaluation of their artifacts and the underlying 

design principles. 

8.3.2 Practical Contributions 

From a practical point of view, software vendors and customer companies can use the 

following results and insights of the thesis. 
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First, the overview of different RDS capabilities provided in the related work chapter of 

this thesis can be used by requirements engineering software vendors to get an overview 

of existing research about systems supporting requirements discovery. This state-of-the-

art overview could help them to identify worthwhile areas for the functional extension 

of their products. While the related work (in contrast to the derived design theory) does 

not provide technological details of each class of RDS, it could still be used to gather 

information for strategic decisions, for example as an additional input for portfolio 

management sessions or to complement market research. 

Second, the simulation and the experiment showed the potential benefits of integrating 

requirements and knowledge engineering activities. The evaluations provide evidence 

that the reuse of knowledge across different software development projects within the 

same or similar domains can result in better requirements specifications. Software 

vendors could accordingly benefit from reusing knowledge across different products of 

the same product group. Similarly, customer companies could share knowledge across 

different applications of the same Line-of-Business. Apart from using an RMS, 

knowledge reuse in requirements engineering can also be fostered by other technologies 

(e.g., domain-specific wikis), directories (e.g., glossaries) or organizational means (e.g., 

lessons learned sessions or specific roles in the development team). 

Finally, the conducted study can help requirements engineering software vendors to 

improve their software packages with regard to automated requirements mining 

capabilities. While support for manual requirements mining has been incorporated to 

selected commercial software packages (e.g., IBM Rational Doors), automated mining 

support is still scarce. The depicted design theory can inspire and guide future 

commercial implementations by constraining the solution space for RMS and hereby 

improving design outcomes. When implemented in commercially available software 

and applied in a requirements mining process, the design prescriptions of the derived 

design theory can help to increase the individual productivity of requirements engineers 

and hereby address a considerable problem of current requirements engineering 

practice. 
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Car Sharing Interview 1 

INT: So, let's start. Just explain how the app looks like. 

VPN2: My main goal is to publish my trip very easy and very fast, so for me an app 

looks like an easy welcome interface. Then I can select "driver" or "passenger". For me, 

I will use "driver". After this interface I can fill another UI with login information like 

user-name and password. 

INT: So you are already registered? How works that? 

VPN2: Good question. If my acc doesn’t exists, I have the opportunity to create a new 

one. The app needs special information like first name and surname (only real names 

are accepted!), nickname, age, my hometown (maybe with real address-information to 

check if the person is real). Also care information (seats, size,.. maybe for the girls the 

colour). My email address and very important, my cell phone number. 

INT: Okay, so you enter these information for the registration or for your driving offer? 

VPN2: I have only one care and only one phone and then its easier for me to enter once 

these information and the app can use these for all my offers. 

INT: Okay. So what happens exactly if you want to start a new offer? 

VPN2: I have the choice between options: create a new offer or edit previous offer to 

create with this information a new offer because the most drivers have all time an 

similar trip. Like students travelling between university and their parents. If I select 

"new offer", the app needs the start and destination location. ;Maybe I can give further 

locations which I will cross like time, additional information, costs, if it is an round trip 

or not. 

INT: Okay, so now you started your offer and what will happens after that? 

VPN2: After I created and published my offer, I should wait to get requests. Every 

interested people can write me a message via email, sms or call. Ah, one additional 

point for "creating offer": For me it will be perfect if I have the chance to give some 

criteria like whether pets are allowed, whether I prefer more male or female passengers 
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and that stuff. 

INT: Okay, fine. Does the process end after somebody found you and sent you a 

message or are there other steps? 

VPN2: yes. There are more steps like I could cancel the offer or maybe the app/portal 

have a comment or ranking system to check the persons like at couchsurfing. Because 

nobody trusts an unknown person. 

INT: Ah okay, I see. So after the drive, the driver and the passengers leave references at 

each other? 

VPN2: Exactly. 

INT: Okay, that's all? 

VPN2: Yes. Now I have the main functionalities included. 

INT: Okay, that's perfectly fine. Thank you. 

 

Car Sharing Interview 2 

INT: Okay, let’s start. Just start explaining what happens if you open the app on your 

iPhone? 

VPN3: Okay. I have the app new so I first need to registrate in the system and I have a 

car so I would like to be the driver. So first I make the rest of the registration and then I 

am a member of the community. 

INT: What do you fill out for the registration? 

VPN3: The name and the place where I am living now and the two places between 

which I will drive, on which time and at which date I normally drive. Maybe my gender. 

My age. Maybe also preferences concerning the guys I will take with me, for example if 

I only want to take girls with me. 

INT: Also your contact information? 

VPN3: Ahm…it depends. If it is public for all, I wouldn’t do it. Only if is in the system 

but not everyone who enters the homepage can see my contact details. Then I am in the 

system and for me it’s important that the app is well-structured because if not it’s too 

complicated to get through the system and you could get lost in all the information. 

Also important for me is that it runs fast and that it doesn’t take too long to load up 

things. And it should also be nice to look at. 
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INT: Okay. And after you logged in to your account, what do you do then? 

VPN3: I will first enter the dates and the rides I will make in the next weeks or months 

if I know them already. 

INT: So at the registration you already mentioned your data, so do you have to write 

them new or can you take them over from these information? 

VPN3: No I would say the registration is only to get a little overview over it. Okay. The 

users can see like I am driving home each Saturday normally. But to get concrete 

information they need to go to a site or so. 

INT: And then after entering your information, what kind of other information is 

necessary? 

VPN3: It’s important the date, then when will I leave, which cities will I pass through or 

which cities I will pass but not stop or maybe how many places are available in my car. 

If I want to take people with me: who are smokers or not. 

INT: Okay, and then? 

VPN3: After that when I put up all my information in the system, I would click enter 

and hope that some guys will call me. 

INT: Okay, if they find you, what can they do then? 

VPN3: They can write me a personal message. I think it’s a good opportunity to get to 

know each other on a personal way. So maybe you think: Oh the message doesn’t look 

very nice, I won’t take him with me.  

INT: Okay. Do you have any other option besides the email and messages? 

VPN3: Yeah, maybe if you have some friends or some guys you had contact with them 

for a longer period, you can have like in your email account a folder with all your 

friends. You could put them in so you know: Ah it’s your friend, you can trust him and 

can go with him. 

INT: Okay, so we are done. Thank you! 

 

Car Sharing Interview 3 

INT: Just explain what will happen after you open the app! 

VPN6: As a driver I would expect a start page. But it does not matter what is the start 
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page. I think the main point for a driver is to have an easy access to insert your ride. So, 

if you want to add a ride to have a menu item to add a ride or something like that. 

INT: Can you click on that one? 

VPN6: Yeah. 

INT: Ok, and then? 

VPN6: And then you have a few data fields, that you can really easy and intuitive add a 

ride and you need starting position, destination and the time and date. I don‘t think, that 

you need more information for inserting a ride. You just have to say where you want to 

start and where to go to and when you want to drive. I would prefer if you also can 

specify the exact position which is nowadays realized at mitfahrgelegenheit.de. So, for 

example if you have as starting point Mannheim you can choose in a drop-down-menu 

or in the i-phone in the menu some positions like nearly 90% of the rides start at the 

post office. So, you can choose Mannheim as position and then the exact position would 

be the post office. And that would be perfect if they have some recommendations. 

INT: Do they also have to specify additional data like contact-details? 

VPN6: As I think in the app the insert fields should be very few, so it should be easy to 

add something like that. I would have something like a management-function. You have 

least information what car do you have or what license you have, that the others find 

you. These information you have to insert only once. So, you would have something 

like management fields, menu item, where you can add this information and when you 

later add an ride the others will always see the same. 

INT: And after you inserted your ride, what happens then if somebody finds you? 

VPN6: You would also insert your phone number in this management area, so the 

others will see the number. You can choose in this area which numbers you will show, 

for example only the cellphone number or something like that and then the other will 

contact you. Perfectly it would be if you could also include this booking-service of 

mitfahrgelegenheit.de. So the others could simply book your ride. That you can see this 

person booked your ride and you get something like a push message. 

INT: What do you have to do for booking a ride? 

VPN6: As someone who wants to get a ride? 

INT: Yes. 
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VPN6: He has to search for a ride. So, I want from this to this position at this time, we 

have a time slot most of the case. You can‘t write, I want to go at 3 p.m. or something 

like that, but between 1 and 4. And then you see all the drivers and you can see how 

many free places are in the car and you can simply book the ride. The driver will get a 

booked-message and will know, ok, he booked the ride. The problem here is that you 

don‘t have the context. If somebody calls you, you have at least one minute to talk to 

this person, who will take a ride, but if you have simply this booking-system you don‘t 

have any contact before the ride. The problem is, that you don‘t know which person will 

show up. This problem could probably been solved by this new identity card, where you 

have to insert real data in your account with your real name or something like that.  

INT: And after the ride, is there any additional functionality? 

VPN6: You could include something like a rating-system like holiday-check, but really 

easy to use. Like he is a nice guy and he has a clean car. Not is he nice or is he good-

looking. Just the facts you need. The car is ok and nothing special.  

INT: Ok, that‘s all. Thank you. 

VPN6: No problem. 

 

Car Sharing Interview 4 

INT: Okay. So, what happens if you open the app? 

VPN10: Okay. First I need to enter where I am going. So I like it if it is very easy to 

enter this. So it should go from difficult into simple or from overview into detail. So it 

should start with I enter whether I do this drive regularly or only once. And this should 

be like once I selected, it should automatically switch to the next category so I do not 

need to push another enter button.  

INT: Okay. 

VPN10: And from there I can enter if it is in Germany or in Europe. And then I can 

enter the concrete start and end point and which points are in between. And I would like 

it if, I mean I have my own account. So I like it if they memorize what route I usually 

drive so that they could propose it to me. So I don’t have to type in Mannheim over 

Nuremberg to Erlangen every time I enter and I drive. 

INT: Okay. Then you click on the button? 
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VPN10: Yah. And then I click on the next button and then it shows all my telephone 

number and email.  

INT: So these are already stored in the system? 

VPN10: Yes, these are already stored but I would like to be able to change with 

numbers are shown by default. I don’t like to deactivate every number over again. 

Because there are more numbers in my case and in the application. And then I like it if 

it is very easy if the application automatically adds the location in Google maps so I 

don’t need to that. I just need to say if I want to do this or not. And would be really 

useful for me as a driver is that I have an easy access to my announce or my offer. And 

once I have somebody who told me that he is going with me, I can decrease the amount 

of people I can take with me to one or to zero. 

INT: So you have an overview about everybody who wants to join you?  

VPN10: No. I mean I have an overview by myself but I don’t want to be called by 

people if my seats are already full. 

INT: Ah okay. 

VPN10: So it would be perfect. And right now I am not doing it this because I need to 

log in again and search for my offer and then click on alter and click on only one seat 

left. And that takes just too much time. So I want to do that really quick. 

INT: And do you want to do the booking over the application or by telephone? 

VPN10: I would like to have it by telephone. Because I mean I need to talk to them 

anyway, then I can remember how many people. But I would like to have it shown. I 

don’t know if I do it over the application with the booking. If it then shows online that 

my drive is already full. 

INT: Okay. And after the drive, is there anything to do after that? 

VPN10: For me not. But for somebody who drives with me it might me a good idea to 

automatically remind him that he can rate me. So he can say how well I drove or if it 

was expensive or if I was in time. And I mean, maybe I can give some feedback on the 

people who drove with me. So other drivers can see if they should take that person with 

them. 

INT: Okay, that’s all. Thank you! 
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Car Sharing Interview 5 

INT: Okay, let's start. Just explain what happens after you opened the app. 

VPN4: Now, after opening the app, it shows a nice welcome screen where I can enter 

my location and the destination. My Smartphone hopefully will insert my actual 

position and fill out the first text field "from", so that I can instantly fill out my 

destination. Having pressed "Enter", I get a list of persons with cars who are going to 

my destination until the next 7 days. 

INT: What happens if you click on one of them? 

VPN4: Some data opens up, containing the estimated departure date and time, possibly 

the price the driver proposes, the car or at least type of car he has and how many 

persons are on board at the moment. The exact departure location would also be nice. 

INT: Okay, what happens then? 

VPN4: With a tip of a button one can immediately contact the person by mail. For 

example the website sends a mail with my personal data, so the person can call me back 

or write me a mail. 

INT: Fine. Now after you contacted the person and finally made the trip, could you 

imagine some steps afterwards like a reference system? 

VPN4: That would be a good idea, one could give feedback, how his way of driving 

was or how the price was. A similar system to ebay's reference system would be 

satisfying, I think.  

INT: Could you please specify that? 

VPN4: That means a system from one to five and a short text field. This could be 

realized in a list in the app, where all trips are listed one made. 

INT: Sounds good. And in general, do you have any requirements concerning the 

usability and user interface of the app? 

VPN4: Not really, it should be simple and clearly arranged, so that you can quickly find 

persons with cars who drive at the same time to your destination. Same situation, when I 

am the one who offers a seat in my car. Just a simple form with date, from, to, type of 

car, and just finished 

INT: Okay, I think that's all. Thank you! 
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Train Reservation Interview 1 

INT: So, what happens after you opened the app? 

VPN7: A field where I can enter my departure location and my arrival as well as 

destination location opens. 

INT: So you enter these and what is your next step? 

VPN7: Then I enter the departure time and date. 

INT: Okay, after this, you click on a button? 

VPN7: Yes, I press enter and possible connections appear. This should happen quite fast 

(performance). 

INT: How are these connections displayed? 

VPN7: All connections within a period of one hour compared to the entered time should 

appear. The duration of the journey, the departure and arrival time, the type of train like 

ICE or RE should be displayed in a suitable design so that I have a good overview. 

INT: Can you please specify suitable design? Is it a list? 

VPN7: I think a list would be best in a chronological order depending on departure 

time. 

INT: Okay! Now you found a suitable train, what happens after that? 

VPN7: I forgot to mention something. So I would like to have the option to see where 

and how long the trains stops if I select a possible connection. 

INT: Okay. 

VPN7: After I found a suitable train I would like to have the option to either book the 

train and to get something like an alternative in case the train is too late. Or just to set an 

alter in case I want to buy the ticket at the train station. 

INT: I see. How works the booking of a train? 

VPN7: I select number of persons, age, possible reductions with BahnCard. Then I 

should have the possibility to decide if I want to pay with credit or deposit card and 

enter details. 

INT: Which details do you have to enter? 

VPN7: Credit card number and type, security number on the back and expiration date. 

INT: OK. And after entering all your details? 

VPN7: I confirm and then I have the choice to save the electronic ticket or send it via 
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email. 

INT: So you can click on a button to save it? Any other functionality? 

VPN7: Before I confirm I would like to have an overview of the entered data just to 

make sure. And as I already said I would like to have an automatic alert in case the train 

is too late. All the functionality should happen in a fast way and in a comprehensible 

manner. 

INT: Okay, so in the end you confirm and then your booking is done, right? 

VPN7: Correct. 

INT: That's all. Thank you! 

 

Train Reservation Interview 2 

INT: Just start to explain what happens after you opened the app and what you can do 

then? 

VPN8: Well, first of all it is important that the app starts quickly so I don’t have to wait 

very long. And once the app is started, I want a quick overview over the possible fields, 

like where to start the travel, where it ends, of course possible time to start for the travel. 

Maybe some options to select the train. So is it a local train or a fast train, that is very 

important. What else? Maybe some options to indicate whether I have a bonus card or 

not. So that the actual price calculation is already calculated right. And after all this is 

entered, I want to have a clear big button to push on to see the possible connections. 

INT: Okay. Now you clicked on the button and what happens then? 

VPN8: Well after I entered all the information and after I clicked the button, I want to 

see the possible connections. All possible connections. And of course it would be 

helpful if those connections would be displayed which I do not have to switch the trains 

very often. That should be displayed properly. And of course in an easy to view manner. 

So not very complex so that I can quickly see all connections. Of course in a list so that 

I can scroll down. 

INT: And after that? 

VPN8: After that I want to pick one connection. Maybe that I can see further 

information for that connection. So the starting time, end time and maybe possible inter 

connections. And after selecting that one, I want that it comes quickly to the booking 
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options. 

INT: Okay. And what kind of booking options do you have? 

VPN8: Well, of course maybe there is the possibility to set up an account so I can login 

and I don’t need to or have to enter all information every time from beginning. If that is 

the case, well, it would be perfect if there is some kind of one-click-solution like we 

know it from Amazon. So that all my data, name and all the stuff is already entered and 

I just need to confirm with the travel request. And then it should be quickly again. So 

not ten buttons. Like confirm here, confirm there. I just want to pick one option and 

then get a quick confirmation. 

INT: And if you are not registered yet? 

VPN8: Well of course there need to be the necessary fields to enter the credit card 

number or other payment options. 

INT: What fields do you have to enter? 

VPN8: Well, a radio button first to select the different options of payment. Maybe a 

transaction or credit card and after selecting one option further fields for the credit card 

number and expiration date and the CV code and other things. 

INT: Okay. Then you fulfill the registration and then you get the ticket by email or how 

does it work? 

VPN8: Yeah, of course via email is very essential and in an optimal case it would be 

great if there is some kind of QA code which is sent by SMS so that I have the ticket 

directly on my mobile phone and do not need to print out any further information 

because it is not always the case that one has access to a printer. So when I use a mobile 

app, of course I want to have the final ticket directly on my mobile phone. 

INT: Okay, I think that’s all. Thank you! 
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Train Reservation Interview 3 

INT: If you open the app on your mobile phone, what do you see and what happens 

then? 

VPN9: Oh, I think first when you see it on your iPhone, occasionally it should pop up 

deals like top offers, something like that. If you open it, it should be fast. But it should 

be like clear and it should be really easy if you open and use. So be user-friendly. And I 

think it will be helpful if you could just type in like when you need to go. And it would 

pull up like, you know, eventually the settings such as where do you need to go. How 

fast do you need to get there. And then where. And then obviously by price. 

INT: So you get a result list? 

VPN9: Yah. I think you should. But for me, I think it would be good to get the top 

results for one. Because you things as fast as you can. So I think you just need to type in 

when you need to leave, so like you can give a date or a time and then you drop the 

search options. As far as I can see, for design is like red. 

INT: Okay. So you have a listing of all your trains and select one. What happens then? 

VPN9: It would forward you to booking. I think if you have an iPhone now, it would be 

kind of cool if you could already have your billing information. Now I know that would 

be intense if you lost your iPhone. But I think there could be some kind of special like 

login so you could just click by, by, by. Maybe like within 30 seconds. You even don’t 

have to type in your credit card number. It would be somehow safe. So but it have to be 

secure that nobody can just type in and order your own train on your phone. 

INT: Okay. And after you entered all your details, what happens then or what do you 

have to do? 

VPN9: It should give you an automatic receipt via email, I think. Saying that you 

bought it. At first a screenshot. It should show you like an example of exactly how it 

looks like if you would pick it up at the station and also how it would look like online. 

So it would show you like here is what it looks like if you print it out and here is what it 

looks like if you pick it up at the station and give you like further information. 

INT: So you can print it out or pick it up on the station, you have the choice? 

VPN9: Mhm, Yes. 

INT: And any other options like, you know, send it via email or anything else? 
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VPN9: I think that maybe, if there are any updates like say your train is too late. It 

should pop up on the app itself. Or if any other interferences so like say that there is 

some kind of strike in Italy. Because last time we were in Italy there was a strike. It 

would tell you so you would know like here you need to refund it today.  

INT: So could you also have some refund options? How would look that like? 

VPN9: I think if you buy in person. If you picked it up in person, I think you should get 

your cash back in person. But there should also be a way to just put it directly back on 

your credit card. So if you missed your train there will be like an option on there like a 

pull-down that says like past rides, I guess. So you could see like if you missed this one 

and ask to refund it. And they would forward you to refunding. 

INT: Ah, okay, I see. That’s all. Thank you! 

 

Train Reservation Interview 4 

INT: So just start to explain what happens after you opened the app. 

VPN11: So just opened the website. You have to enter your destination and where you 

start and where you want to go. And you just choose the time. And they will show you a 

timetable. 

INT: So you have to click on Enter or Search first? 

VPN11: Yah. At the date, you just press a button and they will show you a calendar 

where you can choose which date you want to travel. And also there is a selection you 

can just choose where and when like 12 o’clock. And if you search, they can show you 

all the results. And if you pick one result, they can show you how long do you have to 

go there and when do you have to change trains and where.  

INT: So these are all listed in one table? 

VPN11: Yah, in one table. And I think the better one is if there is a map, you can just 

press and they can show you a map like where you have to go. Like you are here and the 

destination is there and they can just show you how you go there. And also where you 

have to change your train on a map. And especially the city centers. So if you press 

Mannheim, they can show you a little bit around the main railway station. Ah okay. 

They will make it the customer easy to find if that is really where they want to go. 

INT: Ah okay. So you click on a name of a city and then it opens a map? 
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VPN11: Yes, they can just show you. You just press the button and they can show you 

detail information. And if you just press this one I want to buy, they can show you all 

the prices they offer. So if you are student and they have these special offers for 

students, you can just press which one you can buy.  

INT: Okay. So you have some reduced prices and you click on them and then you get 

an explanation about differences.  

VPN11: Yeah, they are just afraid if somebody buys the wrong ticket. 

INT: Ah, okay. 

VPN11: And then, maybe you can combine some like an insurance or car rental at the 

next step. 

INT: And if you want to buy one of these tickets, how works that? 

VPN11: First to login. If you have an account you can log in. And if you log in they can 

show you detail information and they can check if this address is really your address or 

email address or your telephone. I think the better kind is that you can choose if you 

want to that they send tickets or on mobile phone or something like that to show you 

your ticket. And also you have to insert like your name. They have to confirm your 

credit card information. 

INT: So what do you have to enter for that? 

VPN11: Your name and also your telephone, your birthday. To confirm that is really 

you booked the ticket, for security. 

INT: And then you click on the button and what happens after that? 

VPN11: After that, they will confirm the payment way, how you will pay the ticket.  

INT: And how do you receive the ticket then? 

VPN11: Maybe one is, you can just pick the ticket on the main entrance station. Or they 

can send you. Or just use the email. Or use the mobile phone. 

INT: Okay, that’s all. Thank you! 
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Term Requirements Category 

he actor 

I actor 

it actor 

she actor 

they actor 

we actor 

you actor 

accept activity 

adapt activity 

add activity 

analyze activity 

approve activity 

arrange activity 

assign activity 

build activity 

cancel activity 

choose activity 

click activity 

collaborate activity 

collect activity 

compare activity 

compute activity 

conduct activity 

confirm activity 

create activity 

design activity 

detect activity 

edit activity 

enter activity 

establish activity 

evaluate activity 

examine activity 

execute activity 

experiment activity 

fill activity 

                                                 
45

 Parts of this data have been utilized in Meth et al. (2012a) and Meth et al. (2013b). 
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insert activity 

install activity 

interact activity 

join activity 

list activity 

maintain activity 

manage activity 

mark activity 

model activity 

observe activity 

open activity 

operate activity 

perform activity 

pick activity 

plan activity 

present activity 

press activity 

put activity 

report activity 

review activity 

search activity 

see activity 

select activity 

show activity 

test activity 

write activity 

accommodation data 

address data 

address data 

attribute data 

bank data 

card data 

cost data 

credit data 

data data 

date data 

date data 

deduction data 

departure data 

destination data 

entry data 
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km data 

location data 

meal data 

miles data 

name data 

number data 

numbers data 

order data 

phone data 

position data 

price data 

privileges data 

receipt data 

stopover data 

text data 

time data 

travel data 

trip data 

vehicle data 

easy non-functional 

effective non-functional 

effectiveness non-functional 

efficiency non-functional 

efficient non-functional 

learn non-functional 

learnability non-functional 

memorability non-functional 

safe non-functional 

simple non-functional 

simply non-functional 

utility non-functional 

Table 14: Imported Knowledge Used for Simulation and Experiment 
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