

A DESIGN THEORY FOR

REQUIREMENTS MINING SYSTEMS

I n a u g u r a l d i s s e r t a t i o n

zur Erlangung des akademischen Grades eines Doktors der

Wirtschaftswissenschaften der Universität Mannheim

vorgelegt

von

Hendrik Meth

im FSS 2013

Dr. Jürgen M. Schneider (Dekan)

Prof. Dr. A. Mädche (Referent)

Prof. Dr. A. Heinzl (Korreferent)

10.06.2013 (Tag der mündlichen Prüfung)

für Marga

iii

Table of Contents

List of Figures ... vii

List of Tables .. ix

List of Abbreviations .. x

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Research Goals ... 2

1.3 Structure of the Work ... 4

2 Foundations ... 5

2.1 Defining Requirements Discovery ... 5

2.2 Relating Requirements Discovery to IS Development ... 8

2.2.1 Traditional Requirements Discovery ... 8

2.2.2 Market-Driven Requirements Discovery ... 11

2.2.3 Agile Requirements Discovery .. 12

2.2.4 Distributed Requirements Discovery ... 14

2.2.5 User-Centered Requirements Discovery .. 15

2.3 Summary ... 17

3 Related Work .. 18

3.1 Analysis Framework ... 18

3.2 Purpose ... 19

3.2.1 Abstraction Identification Systems .. 20

3.2.2 Requirements Identification Systems ... 20

3.2.3 Requirements Modeling Systems ... 21

3.2.4 Requirements Mining Systems .. 22

3.3 Design – Processing Characteristics ... 22

3.3.1 Degree of Automation .. 23

iv

3.3.2 Automation Technology ... 24

3.4 Design – Knowledge Base Characteristics ... 29

3.4.1 Origin and Volatility of Knowledge .. 30

3.4.2 Structure and Domain-Specificity of Knowledge .. 31

3.5 Evaluation ... 32

3.5.1 Evaluation Approach .. 32

3.5.2 Evaluation Constructs and Measures ... 33

3.6 Knowledge Exchange ... 35

3.6.1 Knowledge Grounding ... 35

3.6.2 Knowledge Contribution .. 36

3.7 Results of Analysis ... 37

3.7.1 Application of Analysis Framework to RMS Research Works 38

3.7.2 Research Gap Identification ... 41

3.8 Summary ... 43

4 Methodology .. 44

4.1 Design Science Research in IS ... 44

4.2 Framework Selection and Adaption ... 46

4.2.1 Process-oriented Frameworks .. 46

4.2.2 Product-oriented Frameworks .. 49

4.3 Research Design ... 51

4.3.1 Prototype Design Cycle .. 52

4.3.2 Final Design Cycle ... 53

4.4 Ontological and Epistemological Reflections .. 53

4.5 Summary ... 55

5 Artifact Design .. 56

5.1 Purpose and Scope .. 57

5.1.1 Justificatory Knowledge ... 58

5.1.2 Design Requirements of RMS ... 61

v

5.2 Conceptualization ... 63

5.2.1 Justificatory Knowledge ... 63

5.2.2 Design Principles of RMS .. 66

5.3 Expository Instantiation .. 69

5.3.1 System Architecture ... 70

5.3.2 Processing .. 72

5.3.3 Artifact Demonstration ... 76

5.4 Principles of Implementation ... 77

5.5 Artifact Mutability .. 78

5.6 Testable Hypotheses ... 78

5.6.1 Expected Productivity Effects of DP1 Related to Recall 80

5.6.2 Expected Productivity Effects of DP2 Related to Recall 81

5.6.3 Expected Productivity Effects of DP1 and DP2 Related to Precision 82

5.7 Summary ... 83

6 Artifact Evaluation ... 85

6.1 Interim Evaluation .. 85

6.1.1 Dataset .. 86

6.1.2 Research Model for Interim Evaluation ... 87

6.1.3 Evaluation Procedure ... 89

6.1.4 Evaluation Results .. 90

6.2 Ex-Post Evaluation ... 92

6.2.1 Evaluation Methodology .. 93

6.2.2 Data Analysis and Results .. 101

6.3 Summary ... 105

7 Discussion .. 107

7.1 Discussion of Evaluation Results ... 107

7.1.1 Simulation Results ... 107

7.1.2 Experiment Results .. 110

7.2 Discussion of Overall Results... 112

vi

7.3 Discussion of Research Gap Congruence ... 113

7.4 Summary ... 114

8 Conclusion ... 115

8.1 Summary ... 115

8.2 Limitations and Future Research .. 116

8.3 Contributions .. 119

8.3.1 Theoretical Contributions ... 119

8.3.2 Practical Contributions ... 120

Appendix A: Publications .. xii

Appendix B: Interview Transcripts ... xiv

Appendix C: Imported Knowledge ... xxvii

Bibliography .. xxx

vii

List of Figures

Figure 1: Requirements Engineering Processes.. 9

Figure 2: Human-Centered Design Process .. 16

Figure 3: An Analysis Framework for RDS Research Works ... 19

Figure 4: Characterization of Abstraction Identification Systems 20

Figure 5: Characterization of Requirements Identification Systems 20

Figure 6: Characterization of Requirements Modeling Systems 21

Figure 7: Characterization of Requirements Mining Systems ... 22

Figure 8: Processing Characteristics of RDS .. 23

Figure 9: Linguistic Preprocessing Using NLP and IR Techniques 26

Figure 10: Comparison of IR Usage in Web Search Engines and RDS 29

Figure 11: Knowledge Base Characteristics of RDS.. 30

Figure 12: Evaluation Characteristics of RDS Research Works .. 32

Figure 13: Knowledge Exchange Characteristics of RDS Research Works 35

Figure 14: Analysis Result for Cleland-Huang et al. (2007) .. 39

Figure 15: Analysis Result for Rago et al. (2011) .. 40

Figure 16: Aggregated Analysis Results for Related Work ... 41

Figure 17: Adapted GMDSR, Based on Vaishnavi and Kuechler (2007) 48

Figure 18: Research Design .. 52

Figure 19: RMS-Supported Requirements Mining Process ... 58

Figure 20: Associating Design Requirements to Different Types of DG 66

Figure 21: Deriving Design Principles from Design Requirements 69

Figure 22: Mapping Design Principles to Design Requirements and Design Features 70

Figure 23: REMINER System Architecture ... 70

Figure 24: Requirements Mining Process Supported by REMINER 72

Figure 25: Individual Processing Steps During Automatic Mining 74

Figure 26: REMINER Screenshot: User interface for Manual Mining 75

Figure 27: Research Model for Ex-Post Evaluation ... 83

Figure 28: Research Model for Interim Evaluation .. 88

Figure 29: Effects of Origin of Knowledge on Requirements Mining Quality 91

viii

Figure 30: Effects of Project-Specificity of Knowledge on Req. Mining Quality 91

Figure 31: Experimental Procedure .. 95

Figure 32: Requirements Document After Automatic Processing in Configuration 2 99

Figure 33: Requirements Document After Automatic Processing in Configuration 3 99

Figure 34: Distribution of Relevant Knowledge .. 108

Figure 35: Analysis Result for Research Conducted in Thesis Project 112

ix

List of Tables

Table 1: Assignment of DSR Theory Components to Design Phases 51

Table 2: Ontological and Epistemological Stance of the Thesis .. 55

Table 3: Goals of Human Decision Makers and Design Requirements of DSS 60

Table 4: Measurements of Recall and Precision in the Context of RMS 79

Table 5: RMS Configurations ... 80

Table 6: Components of a Design Theory for RMS ... 84

Table 7: Simulation Runs for Variable Origin of Knowledge ... 89

Table 8: Simulation Runs for Variable Project-Specificity of Knowledge 90

Table 9: Participants' Descriptive Data (Average Values) ... 94

Table 10: Measurements of the Dependent Variables .. 101

Table 11: Recall and Precision for Different RMS Configurations 102

Table 12: Results of RMANOVA for Recall and Precision .. 103

Table 13: Results of Pairwise Comparisons for Recall .. 103

Table 14: Imported Knowledge Used for Simulation and Experiment xxix

x

List of Abbreviations

API Application Programming Interface

DF Design Feature

DG Decisional Guidance

DP Design Principle

DR Design Requirement

DREPT Design Relevant Explanatory/ Predictive Theory

DSR Design Science Research

DSS Decision Support Systems

ERP Enterprise Resource Planning

GMDSR General Methodology of Design Science Research

IR Information Retrieval

IS Information Systems

ISDT Information System Design Theory

IT Information Technology

JDBC Java Database Connectivity

JSF Java Server Faces

M Mean

NFR Non-Functional Requirement

NLP Natural Language Processing

NLR Natural Language Requirement

NLRR Natural Language Requirements Resource

ODBC Open Database Connectivity

POS Part-Of-Speech

RDS Requirements Discovery Systems

RE Requirements Engineering

RMANCOVA Repeated Measures of Analysis of Covariance

RMANOVA Repeated Measures of Analysis of Variance

RMS Requirements Mining Systems

xi

SD Standard Deviation

SPSS Statistical Package for the Social Sciences

SQL Structured Query Language

UML Unified Modeling Language

XML Extensible Markup Language

1

1 Introduction

1.1 Motivation

In consequence of the pervasive existence of information technology in modern life, the

development of software became increasingly important within the software industry

and other industrial sectors. Contemporary software development is confronted with

significant challenges including increased innovation, cost and time pressure, soaring

complexity and high quality demands (Pohl 2010). Many software development projects

cannot cope with these challenges. According to a recent study, issued by the Standish

Group, only 32% of all software development projects are finished successfully, while

the remaining projects invest more resources than planned, reduce their original

functional scope or entirely fail (Standish 2009).

The success of IS
1
 development highly depends on the accuracy of the requirements

gathered from users and other stakeholders (Appan and Browne 2012; Hickey and

Davis 2004). Requirements which have been overlooked, misinterpreted or

incompletely specified can cause high costs. Boehm and Basili (2001) estimate that the

detection and removal of a software problem after delivery is 100 times more expensive

than the correction of a problem during the requirements or design phase. Therefore, the

efficient determination of complete and correct software requirements is of utmost

importance.

Approximately 80% of software requirements are recorded in natural language (Mich et

al. 2004; Neill and Laplante 2003), within informal requirements documents, interview

transcripts, discussion forums, or narrative scenarios. Natural language is inherently

powerful and expressive and can thus be used to communicate between a broad range of

stakeholders and users (Casamayor et al. 2011). Even though it appears to be a well-

suited means to articulate and discuss requirements, severe problems emerge when

using natural language in specification documents as they might be ambiguous,

inconsistent and incomplete (Wilson et al. 1997). Moreover, a direct interpretation of

these documents by subsequent development tools is almost impossible. Accordingly,

1
 Information Systems.

1.2 Research Goals 2

natural language requirements are usually transformed from initially informal

statements into more consistent and unambiguous representations (Tichy and Koerner

2010). This process is referred to as requirements discovery in the context of this

doctoral thesis
2
.

Especially in large IS development projects, requirements discovery is a challenging

task as a huge number of natural language requirements becomes available and needs to

be analyzed. In these cases, manual requirements discovery can become time-

consuming, error-prone, and monotonous, especially if it has to be repeated multiple

times when updates to previously existing documents become available (Ambriola and

Gervasi 2006; Huffman Hayes et al. 2005). These problems lead to a low individual

performance and more specifically to a low productivity of requirements engineers

involved in this process. As a consequence, the question can be raised if and how

requirements discovery can be supported by software development systems.

1.2 Research Goals

Many systems have been suggested to support requirements discovery by the means of

technology (Ambriola and Gervasi 2006; Casamayor et al. 2010; Cleland-Huang et al.

2007; Gacitua et al. 2011) and ultimately to improve requirements engineers’

productivity. Additionally to a first identification of requirements or requirements

abstractions, these systems also support different processing steps such as requirements

interrelation (Ambriola and Gervasi 2006; Harmain and Gaizauskas 2003; Sampaio et

al. 2007) or requirements classification (Casamayor et al. 2010; Cleland-Huang et al.

2007; Vlas and Robinson 2012). The latter class of systems (systems to support

requirements identification and classification) is focused in the context of this thesis and

referred to as Requirements Mining Systems (RMS).

Although former works made major progress in the technical development of RMS, few

efforts have been made to systematically capture the prescriptive knowledge gained. An

according codification and abstraction of results in a design theory could significantly

extend the requirements discovery knowledge base and guide future research in this

2
 In the following, this doctoral thesis will be simply referred to as „thesis“.

1.2 Research Goals 3

area. To increase the probability of an effective design, this theory should be grounded

on practical experiences in the area of requirements discovery on the one hand and

existing kernel theories which are relevant in this context on the other. Furthermore,

existing RMS have been mainly evaluated through simulations, comparing the results of

the presented system with a previously defined gold standard. Even though these

evaluations allow precise measurements of absolute quality criteria, they do not allow a

comparison to the as-is situation of manual discovery. More specifically, the question if

RMS improve a requirements engineer’s individual productivity is hardly answered yet.

As a consequence, this research project aims at 1) deriving a theoretically grounded

design theory for RMS 2) implementing an artifact based on this design theory and 3)

evaluating if requirements mining supported by this artifact results in increased

productivity (in comparison to manual discovery). The leading research question to

attain these goals is: How can a system be designed which aims at improving

requirements mining productivity over manual discovery?

Following a Design Science approach, the theory which shall be derived is structured

according to the eight components of a design theory suggested by Gregor and Jones

(2007). Design requirements are identified based on general knowledge and kernel

theories, design principles are conceptualized and mapped to design features which are

then instantiated in an artifact. The artifact is used to measure effects of the identified

design principles on requirements mining productivity in two experiments: one in a

laboratory and one in a field setting. This thesis contributes to the design theory body of

knowledge by providing a design theory for RMS. The design theory is a contribution to

the IS literature because RMS represent an important class of design situations that have

not been adequately described yet by existing works. From a practical point of view, the

study can help commercial providers of requirements engineering software packages in

the design of their applications. Applied to commercial software development, the

design theory can guide developers by reducing the range of possible system features

and development activities to a more manageable set, and thus increase the probability

of success.

1.3 Structure of the Work 4

1.3 Structure of the Work

The remainder of this thesis is organized in the following chapters: Chapter two

summarizes the foundations of this research. In this chapter, first requirements

discovery as the superordinate process of requirements mining is defined and related to

different requirements engineering and software development approaches. Then

different types of requirements discovery systems and their technological characteristics

are presented.

In the third chapter, an analysis framework for the related work of this thesis is

conceptualized. The analysis framework is then applied to research works in the area of

RMS which represent the related work of this thesis. This analysis results in the

identification of research gaps to be addressed in this thesis.

In the fourth chapter, the overall methodology which is applied in this thesis is

presented, including an introduction to the concepts of Design Science Research (DSR),

the research paradigm which is followed here.

Chapter five then describes the first main result of this thesis, a design theory for RMS.

The description is structured along the eight components of an IS design theory

suggested by Gregor and Jones (2007), including a presentation of the designed artifact.

In chapter six, the results of two quantitative evaluations which have been conducted

over the course of this thesis project are depicted. The first evaluation was performed

during the design of the artifact while the second evaluation was conducted based on the

artifact’s final version.

In the subsequent chapter seven, results of both evaluations and the overall research

project are discussed.

Finally, in chapter eight, the contents of this thesis are summarized, limitations and

future research opportunities are outlined and both research and practice contributions

are depicted.

5

2 Foundations

In the following sections, requirements discovery and related terms are defined and

characterized. Subsequently, requirements discovery is related to existing software

development and requirements determination approaches.

2.1 Defining Requirements Discovery

In general, a requirement is “a condition or capability that must be met or possessed by

a system or system component to satisfy a contract, standard, specification, or other

formally imposed documents” (IEEE 1990, p. 62). Requirements can include

"specifications of the service the system should provide, the constraints on the system

and background information which is necessary to develop the system" (Rayson et al.

2000, p. 1363). Following the suggestion of Ambriola and Gervasi (1997) in the context

of this work, the term “requirement” is used for the final product of requirements

determination as well as for early incarnations of the same information.

The determination and management of requirements is generally associated with the

Requirements Engineering (RE) discipline. Pohl (2010, p.48) characterizes RE as a

“cooperative, iterative and incremental process” aiming at 1) gathering and

understanding all requirements 2) agreeing on requirements between all stakeholders

and 3) documenting requirements complying to defined specification formats and rules.

Requirements can be documented in natural language (e.g., a narrative scenario), in

models (e.g., UML
3
 models) or even figures (e.g., a drawn user interface mockup) (Pohl

2010). This thesis focuses on natural language requirements (NLR). NLR can be

expressed in documents (e.g., informal requirements specifications, interview

transcripts, workshop memos, or narrative scenarios) as well as in other resources (e.g.,

entries in issue tracking or test case management systems, support databases or

discussion forums) (Vlas and Robinson 2012). Therefore, in the following the term

“natural language requirements resources” (NLRR) is used instead of “natural language

documents”.

3
 Unified Modeling Language.

2.1 Defining Requirements Discovery 6

As depicted in the introduction, NLR are usually transformed from initially informal

statements into a more consistent and unambiguous representation, often containing

additional information about a requirement’s category or interrelation to other

requirements. In RE research there are different terms describing this process as

requirements elicitation (Castro-Herrera et al. 2009), requirements analysis (Ambriola

and Gervasi 2006), requirements identification (Casamayor et al. 2010) or requirements

classification (Cleland-Huang et al. 2007). In absence of an agreed-upon term and in

analogy to the Knowledge Discovery process (Fayyad et al. 1996) which proceeds

similarly, this process is referred to as “Requirements Discovery” in the context of this

thesis. Within requirements discovery, two main process steps can be differentiated:

requirements identification and requirements transformation (Cleland-Huang et al.

2007; Vlas and Robinson 2012). Both the identification as well as the transformation of

requirements can be performed with and without system support. These two steps are

looked upon in detail in the following.

Within a NLRR, a requirement may be represented by anything from single words (e.g.,

a data field to be implemented), over an entire sentence (e.g. the description of a

function) to a sequence of sentences (e.g. to specify a non-functional requirement).

Requirements identification mainly serves two purposes: First, it separates text that

describes requirements from text which is not relevant from a requirements point of

view. Second, it delimits each requirement within the document, resulting in multiple,

individual requirements statements (Vlas and Robinson 2012). Depending on the text’s

degree of structure and preprocessing, the amount of irrelevant content can largely vary.

In Open Source Software Development, for example, requirements are often identified

from forums containing thousands of lines of social communications, code segments or

slang which do not contain any requirements (Cleland-Huang et al. 2007). At the other

end of the spectrum, requirements could be identified within already pre-processed,

semi-structured use case descriptions which contain requirements in a very condensed

form. By ignoring or even eliminating non-relevant passages of a requirements

description, the requirements identification also results in a summarization of the source

information. In addition to this document-wide summarization, requirements

descriptions can also be abstracted to derive the main concepts and most significant

2.1 Defining Requirements Discovery 7

terms of the domain under investigation. From the requirement “The user interface

should provide information about the flight number, gate and departure time” for

example, the abstractions “flight number”, “gate” and “departure time” could be

extracted to build up domain-specific knowledge for traveling applications.

Abstractions can be used to support subsequent identifications and transformations or to

provide a value in itself. They can be used for example in early requirements elicitation

steps to assist an analyst in gaining an understanding of an unfamiliar domain by

providing a collection of the core terminology (Goldin and Berry 1997).

Based on the identification of individual requirements, a subsequent transformation can

be conducted. Requirements transformation can include multiple, non-exclusive

transformation steps which are introduced in the following. A widespread way to enrich

requirements with additional semantics is the classification into distinct categories

(Casamayor et al. 2010; Cleland-Huang et al. 2007; Vlas and Robinson 2012). By using

requirements templates (e.g. the Volere requirements template
4
), requirements are

classified into categories such as functional or non-functional requirements and sub-

categories of these (e.g. performance requirements as a sub-category of non-functional

requirements). An according classification can simplify (or even be a prerequisite for)

subsequent modeling activities. Classified requirements can be grouped together to

derive specific model types (e.g., a data model). In addition, a classification structure

which is envisioned in a template can help to avoid omitting certain aspects of software

(e.g., usability requirements).

After individual requirements have been identified, they can be interrelated to create

models. A requirements specification for a purchasing application for example could

describe individual data requirements for a user interface (e.g., “The user interface to

enter purchase orders should include a data field to select a purchasing organization. In

case a purchasing organization is subdivided, it should also be possible to select a

purchasing group”). During requirements interrelation, these two individual

requirements could be linked in a data model, in which the according relationship

between purchasing organizations and purchasing groups is depicted. Requirements

4
 http://www.volere.co.uk/template.htm (5.2.2013).

2.2 Relating Requirements Discovery to IS Development 8

interrelation is based on abstract terms, and therefore is usually performed after

requirements abstraction has been conducted (Kof 2004; Mich and Garigliano 2002).

2.2 Relating Requirements Discovery to IS Development

In traditional IS development approaches, requirements discovery is associated with a

formal process and distinct phases summarized as Requirements Engineering

(Sommerville 2010). In the following, traditional RE is characterized with a focus on

the relation to requirements discovery activities. Even though traditional RE is still a

widely-followed approach, various alternative development approaches (e.g., market-

driven development) have emerged in recent years, resulting in different settings and

challenges for requirements discovery. Therefore, in addition to traditional RE,

requirements discovery is also related to alternative development and requirements

determination approaches.

2.2.1 Traditional Requirements Discovery

Traditional RE differentiates between two main processes, requirements determination

and requirements management (Davis 1982; Pohl 2010). Requirements determination

includes the elicitation, analysis, negotiation, specification and validation of

requirements (Davis 1982; Pohl 2010). Requirements management includes change,

traceability and release management for requirements (Pohl 2010; Sommerville 2010)

(Figure 1).

There is no general agreement to which phase requirements discovery should be

assigned. While some authors relate it to requirements elicitation (Castro-Herrera et al.

2009; John and Dörr 2003; Kaiya and Saeki 2006; Kiyavitskaya and Zannone 2008;

Shibaoka et al. 2007), others assign it to requirements analysis (Cybulski and Reed

1998; Mich and Garigliano 2002; Park et al. 2000; Seresht et al. 2008). While one could

argue that it contains aspects of both phases (associating the identification task with

elicitation and the transformation task with analysis), this apparent inconsistency could

also be caused by the inconsistency in definitions of the phases themselves. For

example, Pohl (2010) regards analysis activities to be part of elicitation, without being a

phase on its own. Sommerville (2010) similarly sees elicitation and analysis tightly

2.2 Relating Requirements Discovery to IS Development 9

interwoven and combines them in one phase called “elicitation and analysis”. Hickey

and Davis (2004) in contrast see them as two separate phases. Moreover, the term

“requirements analysis” is often used as a synonym for “requirements engineering” in

the RE literature (Cao and Ramesh 2008).

Figure 1: Requirements Engineering Processes

Despite this disagreement in allocation, the discovery of requirements depends on the

provision of unstructured or semi-structured requirements descriptions which are

usually gained through elicitation methods in the context of traditional RE (Pohl 2010).

The majority of these methods involves a direct interaction between requirements

owners and requirements producers (Goguen and Linde 1993). Requirements owners

are usually stakeholders and users of the software who provide requirements.

Requirements producers conduct a first documentation of requirements and are

generally part of the product or development team. Ideally, requirements elicitation

would ultimately result in a set of complete and correct requirements. However, due to

cognitive, motivational and communicative issues in the exchange between

requirements owners and producers, this is often not the case (Davis 1982; Valusek and

Fryback 1985). For example, when a user is asked concerning his requirements for a

new system, he is challenged to verbalize his implicit knowledge. This requires an

immediate mental compilation and structuration of previously unordered information

2.2 Relating Requirements Discovery to IS Development 10

resulting in significant cognitive work. Instead of delivering an optimal solution to this

task, users tend to be satisfied with a "good enough" one (Valusek and Fryback 1985).

To respond to these issues, a plethora of methods such as interviewing, focus groups,

observations, document analysis or repertory grids have been researched and practiced

(Davis et al. 2006; Goguen and Linde 1993; Tuunanen 2003). Even though some

authors propose the usage of one single method in any possible situation, an approach

fitting every domain, application and requirements context is yet to be found. Instead,

Hickey and Davis (2004) suggest an active selection process for elicitation methods,

incorporating problem, solution, and project domain characteristics as well as the state

of the requirements.

Many methods used during requirements elicitation result in unstructured or semi-

structured NLRR. Interview outcomes for example are summarized in interview notes

or even transcripts and results of focus groups are documented in meeting protocols or

in a simple email. In a subsequent requirements discovery these documents are analyzed

to identify single requirements and transform them into a more formal representation.

Therefore requirements discovery can be seen as a connecting activity between the

requirements elicitation phase and subsequent phases.

The traditional RE approach is characterized by distinct, sequential phases and an

upfront and “en bloc” determination of requirements (Sillitti et al. 2005). Each of the

phases is self-contained, and the process does not move to the next phase until the

previous phase is completed. Furthermore, it is subject to a high degree of formality,

enforcing standards at the hand-off between different phases and involving an

abundance of documentation (Robey et al. 2001). Although this is still a widely-

followed approach (particularly in custom software development), various alternative

development approaches have emerged in recent years and became increasingly

important (Ramesh et al. 2007; Sharp et al. 2007; Vlas and Robinson 2012; van de

Weerd et al. 2006). Caused by different delivery models (such as packaged or open

source software) or alternative development paradigms (such as agile or user-centered

development), requirements discovery is often performed in a different setting than in

the traditional development approaches. In the following, these differences and their

consequences are pointed out.

2.2 Relating Requirements Discovery to IS Development 11

2.2.2 Market-Driven Requirements Discovery

Software is increasingly developed by specialized companies (software vendors)

implementing packaged software (Sawyer 2000). Packaged software (also known as

commercial-off-the-shelf or commercial software) includes all types of software sold as

tradable products (purchased from vendors, distributors or stores) for multiple types of

hardware and operating systems (Carmel 1997). In contrast to custom-built software,

packaged software is usually licensed, instead of sold (Sawyer 2000).

The development of packaged software (sometimes also called market-driven

development) aims at implementing standardized software products for markets

consisting of a potentially large number of different customers (Karlsson et al. 2002). In

contrast to traditional RE, in this development approach a clear differentiation between

requirements owners and producers is often not possible. Users often act as

requirements producers: customer wishes (which later evolve into market-driven

requirements) are directly articulated and described in natural language through

customers using issue tracking systems, emails or similar electronic communication

means (Regnell et al. 1998). Similarly, developers frequently act as requirements

owners: technology-driven requirements are “invented” by developers or product

managers of the software company to differentiate the own product from a competitive

market (Karlsson et al. 2002; Regnell et al. 1998). The relative ease of requirements

creation in combination with a development model which aims at a large number of

customers can easily result in a big and continuous flow of incoming requirements, a

situation which is referred to as “requirements overload” (Karlsson et al. 2002). In

addition, due to requirements owners from different companies, requirements are not

synchronized between different stakeholders resulting in a high probability of

requirements duplicates, overlaps and contradictions (van de Weerd et al. 2006). Even

for requirements without interdependencies, the initial description quality is often poor

(Regnell et al. 1998). Prior to the first inspection through the software vendor,

requirements do usually not pass any quality control, do not adhere to specification

standards and are often formulated by authors not familiar with requirements

specification (Regnell et al. 1998).

2.2 Relating Requirements Discovery to IS Development 12

Consequently, product owners and other employees responsible for requirements

discovery at software vendors are facing two major challenges. First, during

requirements identification, the main issue is the sheer amount of different NLRR to be

analyzed (Karlsson et al. 2002). Second, during requirements transformation, potentially

inconsistent customer wishes need to be processed into consolidated product

requirements (Natt och Dag et al. 2004). Consolidation is further impeded by the

continuous arrival of new requirements and the changes applied by customers to already

processed ones.

2.2.3 Agile Requirements Discovery

Traditional RE approaches face the problem that requirements are often changed, added

or dismissed during the course of a development project, a circumstance which cannot

be adequately handled in a linear, sequential development model (Rajlich 2006). As a

consequence, the resulting software often does not match the users’ needs after

deployment on the one hand, while on the other, implemented features are sometimes

not used (Petersen and Wohlin 2010). Addressing this issue, Agile Software

Development became increasingly popular in the last decade. It propagates an iterative

and incremental software development approach (Larman and Basili 2003) and the

compliance to a set of principles expressed in the Agile Manifesto:

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan”

The Agile Manifesto (Beck et al. 2001)

These principles are also applied to requirements determination and manifest in the

following differences to traditional RE. First, instead of formal specifications,

requirements are mainly specified via face to face communication and narrative user

stories (De Lucia and Qusef 2010). The latter represent short, natural language feature

descriptions of the system to be built (Cohn 2004). In contrast to use cases, user stories

2.2 Relating Requirements Discovery to IS Development 13

describe a single requirement to be fulfilled instead of a complete scenario (Leffingwell

2011). User stories are written from the user’s perspective, addressing the strong

customer focus of the agile principles. A typical way to formulate a user story is the

“role-activity-business value” form, in which a stakeholder describes in one sentence, in

which role he interacts with the system during an activity to achieve a business value

(Cohn 2004). While the choice of lean documentation can increase responsiveness to

customers’ needs and reduce time efforts for documentation, it becomes problematic

when customers are not available or cannot come to consensus (in case of multiple

customers) (Cao and Ramesh 2008). Furthermore, when people are leaving the

development team (or even the company) their work and knowledge is hardly

reproducible from documentation.

Second, instead of an initial upfront elicitation, requirements are determined iteratively

(Ramesh et al. 2007). As customers often do not have a complete picture of the set of

requirements at the beginning of a project, this approach offers the opportunity to

explore requirements incrementally (Leffingwell 2011). While the elicitation quality of

functional requirements can benefit from iterative elicitation, there is, however, a strong

concern that it neglects certain non-functional requirements, such as scalability,

maintainability, portability, safety, or performance (Cao and Ramesh 2008). In

traditional RE, these technical requirements are often contributed by developers or

architects, also viewing the system from a technical perspective, which can get lost

when elicitation strictly focuses on the user perspective.

For requirements discovery, the focus on face to face communication reduces the

amount of documented NLR, which are necessary for requirements discovery.

Accordingly, the added value of requirements discovery in an agile setting can be

questioned. However, as previously described, continuous, extensive and direct

customer integration is an ideal which can often not be realized in practice. In cases

customers cannot be physically present for face to face communication, requirements

are still formulated and discussed using information and communication technology

(e.g., through emails, ticket systems or similar means). To complement requirements

information from face to face communication, these sources therefore additionally need

to be considered and can be adequately analyzed by requirements discovery. An

2.2 Relating Requirements Discovery to IS Development 14

according strategy to combine personally with electronically communicated

requirements becomes even more important when the agile principle of iterative and

incremental requirements elicitation is applied and requirements discovery is a

continuous activity.

2.2.4 Distributed Requirements Discovery

Distributed development is a major trend in software engineering (Agerfalk et al. 2009;

Pries-Heje and Pries-Heje 2011). It is usually conducted by virtual teams which are

working together but without being co-located (Casey and Richardson 2006). Virtual

teams can collaborate across geographical and organizational boundaries and are usually

linked by communication and information technology (Lipnack and Stamp 1997).

According to a study by Robinson and Kalakota (2004), over 95% of the Fortune 1,000

firms utilize globally distributed development teams. Multiple advantages are associated

with an according approach, including decreased costs through wage differences

between countries, a better access to highly qualified employees through global

sourcing and reduced implementation times as a result of working “around the clock” in

different time zones (Herbsleb and Moitra 2001; Holmström et al. 2006). However, it

also creates new challenges, due to increased complexity. Working in a virtual team, the

complexity of communication, coordination and collaboration can increase, e.g. due to

different cultural backgrounds and differing work practices (Agerfalk et al. 2009; Li and

Maedche 2012).

In distributed RE, methods which rely on face to face, synchronous communication are

often replaced by electronically mediated, asynchronous communication (Menten et al.

2010). Electronically identified requirements enable the assurance of traceability and

rationale management which are of utmost importance for overall distributed

development and specifically for distributed RE (Geisser et al. 2007; Hildenbrand et al.

2009). In recent years, using internet technology, multiple types of information and

communication support have been established to support distributed requirements

elicitation. Using wikis (Geisser et al. 2007), forums, issue tracking systems (Scacchi

2002) or similar technologies, a lean early documentation of requirements, often in

natural language, can be achieved. For requirements discovery, these NLRR provide

2.2 Relating Requirements Discovery to IS Development 15

abundant material for the identification of requirements. In this setting, the

consolidation of requirements is a major challenge, as requirements statements can be

spread across different sources and media. To support this consolidation, systems which

enable an identification and classification of individual requirements have been

suggested (Vlas and Robinson 2012).

2.2.5 User-Centered Requirements Discovery

The idea of a “User-centered design” was first propagated by Donald Norman in the

1980s and became popular after the publication of two books (Norman and Draper

1986; Norman 1988) in which the author explains how the usability of products can be

improved by putting the user (and not the system) into the center of all design activities.

In this approach designers have the primary role of simplifying the user-system

interaction and make sure that the actual system usage equals (or at least comes close

to) the intended usage. This aspired congruence prerequisites an extensive

understanding of the users and their tasks which shall be accomplished by a strong

integration of users in all development phases. Additionally to user-centricity, Gould

and Lewis (1985) recommend two further principles which have been incorporated in

most user-centered procedure models, namely “empirical measurements” and an

“iterative design”. While the first principle recommends evaluating prototypes of the

software in early development stages through actual users, the second suggests to

continuously design, test and measure to be able to fix usability problems. To apply

user-centered design in practice, different procedure models have been proposed (e.g.,

the “Star Lifecycle Model” (Hartson and Hix 1989), the “Usability Engineering

Lifecycle” (Mayhew 1999), or “Goal Directed Design” (Cooper et al. 2007)).

Furthermore a “Human-Centered Design Process” has been normed by ISO

standardization (see Figure 2).

2.2 Relating Requirements Discovery to IS Development 16

Figure 2: Human-Centered Design Process
5

One of the distinguishing elements in comparison to other software engineering

approaches is the initial activity “Understand and specify the Context of Use” before the

specification of user requirements. Revisiting the goal of user-centered design to

increase usability, this activity reflects the fact that usability is no generic attribute, but

defines “[t]he extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context of

use.” (ISO 1998)

An established method to capture the specific context of use is the contextual analysis,

proposed by (Beyer and Holtzblatt 1998). The basic principle of contextual analysis is

the observation and inquiry of users at their actual workplace and during their daily

work activities. Applying this method, requirements or usability engineers learn which

aspects of the current work practices (including the utilized IS) are helpful or hindering.

Furthermore, it can be clarified which features of an IS are important or less important

5
 According to ISO 9241-210 (ISO 2010).

2.3 Summary 17

for a user. To get a comprehensive picture, contextual analyses are usually conducted

with multiple users (even in similar working contexts) (Wixon et al. 1990).

Requirements Engineers should remain passive during contextual analyses, taking the

role of an apprentice who learns the users work context from him (Beyer and Holtzblatt

1998). Learning how and why something is done or not is one of the main goals of this

exercise.

During the specification of the context of use, a plethora of unstructured and semi-

structured documents and materials is compiled which can be analyzed during

requirements discovery. This includes interview transcripts, observation notes or first,

narrative scenario descriptions describing a typical work practice (Sharp et al. 2007).

Contextual analyses which involve observations may also result in audio or video

material containing requirements information. The combined analysis of textual and

non-textual information therefore represents an additional challenge in user-centered

requirements discovery.

2.3 Summary

In this chapter, topic-specific terms and concepts which are relevant in the context of

this thesis were introduced. Starting with general definitions of requirements and

requirements engineering, the specific process of requirements discovery was defined

and conceptualized. This specific process has then been related to existing approaches

to develop software and determine requirements, highlighting the specific impact and

context of requirements discovery.

18

3 Related Work
 6

In this chapter, an analysis framework for related research works on Requirements

Discovery Systems (RDS) is presented. First, an overview of the analysis framework is

depicted. Then each of the framework’s dimensions and characteristics is presented in

detail. In the last section of the chapter, the framework is applied to research in the area

of Requirements Mining Systems (the focus of this thesis) and the research gap which

will be referred to is outlined.

3.1 Analysis Framework

As previously described, unassisted requirements discovery can be time-consuming and

error prone. Therefore a plethora of systems have been proposed to support the process

(Meth et al. 2013a). These systems are referred to as RDS in the following and are

analyzed along a multi-dimensional analysis framework, which is depicted in Figure 3.

The framework consists of multiple dimensions (e.g., purpose), characteristics which

are assigned to a dimension (e.g. “evaluation approach” is assigned to “evaluation”) and

values for characteristics (e.g. the characteristic “evaluation approach” can have the

value “controlled experiment”). The first two dimensions (purpose and design) are used

to analyze RDS from a technological point of view. First, analyzing the purpose of the

systems, a differentiation concerning the output of the systems is made. Second,

investigating the design of the systems, characteristics of the employed technology are

distinguished. The third and fourth dimension (evaluation and knowledge exchange)

complement the framework to enable a holistic assessment of RDS research works. This

includes an analysis of the chosen evaluation approaches and constructs as well as a

classification of the type of knowledge exchange applied in the research work. Each of

the dimensions, their related characteristics and the different values of these

characteristics will be explained in detail in the following.

6
 Parts of this chapter of the thesis are based on Meth et al. (2013a).

3.2 Purpose 19

Figure 3: An Analysis Framework for RDS Research Works

3.2 Purpose

The purpose of RDS is the support of the requirements discovery process in the

identification and transformation of requirements from NLRR (e.g., documents, issue

tracking databases or emails). In 2.1, different types of identification, namely

requirements identification and abstraction identification and different types of

transformation, namely requirements classification and requirements interrelation have

been introduced. In the following, these characteristics of the discovery process are used

to characterize different classes of RDS.

3.2 Purpose 20

3.2.1 Abstraction Identification Systems

Figure 4: Characterization of Abstraction Identification Systems

Abstraction Identification Systems aim at the identification of abstractions from NLRR

which will, for example, assist a requirements engineer in gaining an understanding of

an unfamiliar domain (Berry et al. 2012). In this context, abstractions are single words

within the requirements document which represent the main concepts and most

significant terms of the problem and application domain (Gacitua et al. 2011). This

domain knowledge can then be used as a reference and a starting point during further

requirements discovery. In particular the knowledge can help to avoid information

overload and to overlook important aspects that might evolve into requirements (Berry

et al. 2012). Systems that support abstraction identification through automatisms have

been proposed by Gacitua et al. (2011) Goldin and Berry (1997) and Sawyer et al.

(2002).

3.2.2 Requirements Identification Systems

Figure 5: Characterization of Requirements Identification Systems

Requirements Identification Systems focus on the pure identification of requirements,

without subsequent discovery steps. However, most of the systems support additional

activities related to requirements determination. For example, in the system presented

by Kaiya and Saeki (2006), NLRR are preprocessed to identify requirements and the

related concepts. A requirements engineer then manually maps these concepts to items

of an ontology from the same domain (if possible). Based on these mappings, the

3.2 Purpose 21

system then recommends further requirements to be added. Through this procedure, the

overall completeness and correctness of requirements descriptions shall be improved.

An enhanced version of this system is presented in Shibaoka et al. (2007). Another

example is the system developed by Castro-Herrera et al. (2009). It supports the

identification of requirements themes. On the basis of initial statements, which are

entered manually by the customers into a web-based tool, a linguistic processing is

conducted to tag each statement with illustrative terms. Based on these tags, the

statements are clustered to requirements themes. For each requirements theme, a

discussion forum is created to foster further discussions among stakeholders.

3.2.3 Requirements Modeling Systems

Figure 6: Characterization of Requirements Modeling Systems

Requirements Modeling Systems identify, abstract and interrelate requirements. The

resulting models and their graphical representation can foster the discussion of

requirements with stakeholders and enable a direct transition between requirements and

design activities (Sommerville 2010). A plethora of systems has been proposed to

support requirements modeling: While some systems generate standardized UML

models (Ambriola and Gervasi 2006; Harmain and Gaizauskas 2003; Sampaio et al.

2007), others produce proprietary object-oriented models (Mich and Garigliano 2002),

models specifically tailored to security requirements (Kiyavitskaya and Zannone 2008)

or models to describe the interaction of the user with the system’s user interface

(Brasser and Vander Linden 2002; Lemaigre et al. 2008; Tam et al. 1998).

3.3 Design – Processing Characteristics 22

3.2.4 Requirements Mining Systems

Figure 7: Characterization of Requirements Mining Systems

Requirements Mining Systems identify requirements and classify them according to an

existing taxonomy. Depending on the type of knowledge generation (see 3.4.1), they

can also include functionality for abstraction identification. Cleland-Huang et al. (2007)

focus on non-functional requirements (NFR) as e.g. security, performance or usability

requirements. Based on the notion that each sub-group of NFR has its unique keywords,

the system uses different knowledge base items to find and classify NFR from each sub

group. Casamayor et al. (2010) similarly aim at the detection of NFR, and employ a

semi-supervised categorization approach that only needs a small set of manually

classified requirements for the initial training of the classifier. In their system, the

classification model is iteratively enhanced based on the users’ feedback on the

artifact’s output. Rago et al. (2011) present QAMiner, a system that also aims at

discovering NFR. The system, however, analyzes use case specifications, and relates

requirements to pre-defined quality attributes (e.g., modifiability, performance,

availability, etc.) to avoid that these non-functional aspects are understated in the

resulting requirements specifications. Vlas and Robinson (2012) present an automated

approach for the identification and classification of both functional and non-functional

requirements in natural language feature requests of open source software projects.
7

3.3 Design – Processing Characteristics

To fulfill the previously described purposes of different types of RDS, the systems

provide alternative processing characteristics which will be presented in the following.

The characterization is centered on the concept of automation, being the core processing

concept of RDS (Cleland-Huang et al. 2007; Natt och Dag et al. 2002; Pérez-González

7
 Each of the four systems will be analyzed in more detail in the related work paragraph.

3.3 Design – Processing Characteristics 23

and Kalita 2002; Sampaio et al. 2007). First, a differentiation of approaches along

different degrees of automation is made. After that the underlying technology to enable

automation is introduced.

Figure 8: Processing Characteristics of RDS

3.3.1 Degree of Automation

While there are some research works, which present system support for purely manual

requirements discovery (Abrams et al. 2006; Ossher et al. 2009), most RDS incorporate

capabilities to at least partially automate the process. However, existing works show

differences concerning the degree of automation provided. Research suggests that while

system support can cause an efficiency advantage in comparison to a purely manual

discovery (Cheng and Atlee 2007), a complete automation of requirements discovery

tasks can lead to a loss of information or erroneous results (Goldin and Berry 1997).

Berry et al. (2012) point out that the cognitive aspects of requirements discovery should

not be underestimated, as RDS may omit important requirements, and fail to detect

logically correct, but questionable requirements. Thus, automation approaches should

additionally involve human interaction. This indicates a conflict between the benefits of

automation and the necessity of human intervention. According to Parasuraman et al.

(2001), the appropriate degree of automation in the support of human tasks should be

chosen according to a variety of evaluative criteria, including the reliability of the

automation and the costs of decision outcomes. While a full automation would replace

the human analyst, a semi-automated approach would merely support him and thus

rationalize requirements discovery, while still requiring an interaction with the system.

In contrast to (semi-)automatic approaches, during manual requirements discovery an

analyst would start the analysis from scratch, without any potential requirements

recommended by the system. This said, it should be noted that in practice the degree of

automation should rather be seen as a continuum than as a categorical concept. While a

3.3 Design – Processing Characteristics 24

fully automated approach might target to replace any manual requirements mining

activity, in most cases an analyst will still double-check at least parts of the results of

the automatism to make sure that requirements have been captured correctly. In this

sense the differentiation between semi-automation and full automation which will be

made in the framework should rather be understood as the design and usage focus of a

system. Examples for semi-automatic RDS include the systems presented by Ambriola

and Gervasi (2006), Casamayor et al. (2010), Rago et al. (2011) and Sawyer et al.

(2002), examples for entirely automatic approaches are presented by Gacitua et al.

(2011), Goldin and Berry (1997), Kiyavitskaya and Zannone (2008) and Vlas and

Robinson (2012).

3.3.2 Automation Technology

Most RDS use Natural Language Processing (NLP) or Information Retrieval (IR)

techniques to automate requirements discovery (Berry et al. 2012; Cheng and Atlee

2007). The according techniques can be employed to achieve each of the previously

described requirements discovery purposes, which will be outlined in the following.

There is plethora of different techniques from NLP, IR and other research fields which

have been applied to RDS. The subsequent assembly therefore does not claim

completeness, but should rather be seen as a compilation of prominent design choices

for RDS systems.

3.3.2.1 Linguistic Preprocessing to Prepare Requirements Discovery

Before search techniques or other automated discovery techniques can be applied, the

provided NLRRs need to be preprocessed. In this preprocessing, the texts are broken

down to a list of relevant, individual and harmonized words (or even parts of words).

This process is described in more detail in the following.

First, the text is split into single sentences and words, applying sentence segmentation

and tokenization (Palmer 2000). Sentence segmentation aims at identifying sentence

boundaries, which are usually indicated by punctuation marks. During tokenization,

word boundaries are localized and used to further segment the text into single words.

Even though in English texts in most cases word segmentation can be performed after

3.3 Design – Processing Characteristics 25

each space, there are some exceptions to this heuristic. For example, a genitive “s” (e.g.

John’s desk) is part of the previous word while an apostrophe “s” in verb contractions

(e.g. she’s) represents an additional word (is) which needs to be separated (Palmer

2000).

After tokenization has been performed, irrelevant words need to be eliminated to

improve the performance and precision of subsequent processing, a process step

referred to as stop word removal (Silva and Ribeiro 2003). Stop words represent words

which are extremely common and therefore not helpful for NLP or IR processing

(Manning et al. 2008). Examples for English stop words are “a”, “of” or “the”.

Finally, the remaining words usually need to be harmonized. Harmonization can help to

detect duplicates and improve the results of subsequent processing steps. During

searches, for example, using the exact same words as they originally occurred in a

NLRR generates multiple problems. Semantically similar words might appear in

varying forms, e.g. due to grammatical conjugation and declination, different spelling

(e.g., American vs. British spelling) or inconsistent capitalization of words (Manning et

al. 2008). Without harmonization these words would not be recognized as similar,

resulting in an unsuccessful search. Thus different harmonization techniques can be

employed which will be summarized in the following. First, during normalization, the

capitalization of words is harmonized and accents, diacritics and hyphens are eliminated

(Manning et al. 2008). Second, during stemming, words are reduced to their stems

(Salton and McGill 1986). Word stems in contrast to original words do not contain

grammatical alterations like plurals, gerund forms or tense suffixes.

Even though normalization and stemming can increase information retrieval success,

they can come to limits if words have multiple meanings depending on their actual word

class. For example, the word “order” can be used as a verb (“The system should provide

functionality to order catering services”) or as a noun (“The system should display

details of an order”). Whereas in the first example “order” is part of an activity which

should be supported by the system, in the second example “order” describes an object or

data element. Similarly, it is difficult to apply stemming to irregular verbs, for example

the word “went” has no common stem with “go” although they just represent different

conjugations of the same verb. Therefore, alternatively to normalization and stemming,

3.3 Design – Processing Characteristics 26

the NLP technique of lemmatization can be employed. While normalization and

stemming aim at the reduction of words to a common part (e.g. “production” is reduced

to “produc”), lemmatization replaces the original word with a lemma. A lemma is a

word, which serves as a proxy for an entire set of forms taken by this word. For

example, the conjugations “choose, chose and chosen” would all be replaced by the

lemma “choose”.

Lemmatizers usually require an input tuple of a) the word to be replaced and b) the

word class associated with this word (e.g. noun, verb, adjective). In computer

linguistics, these word classes are referred to as part-of-speech (POS) (Voutilainen

2003). POS tagging is the process of assigning part-of-speech labels to words (Jurafsky

and Martin 2009). Additionally to the use in lemmatizers, POS tags can also be used to

improve IR results (which will be described later on). Figure 9 gives an overview of the

described NLP and IR techniques for linguistic preprocessing.

Figure 9: Linguistic Preprocessing Using NLP and IR Techniques

3.3.2.2 Frequency Profiling for Abstraction Identification

As described earlier, abstraction identification aims at identifying the main concepts and

most significant terms of a requirements domain. The previously described techniques

for linguistic preprocessing can help to identify and harmonize individual words within

3.3 Design – Processing Characteristics 27

a NLRR. However, apart from stop word removal, no filtering or selection is applied to

reduce the set of words to the most important ones for a specific domain.

A common approach to achieve this is the usage of frequency profiling (Gacitua et al.

2011; Goldin and Berry 1997; Sawyer et al. 2002). In its basic form, frequency profiling

is based on the idea that the importance of a word in a text is proportional to its

frequency of occurrence (Goldin and Berry 1997). Consequently, the most frequently

used words in a requirements document (apart from stop words) are identified as

candidate abstractions, of which a requirements analyst could manually pick the final

set of abstractions.

Although the usage of absolute frequency numbers already provides good results

(Wermter and Hahn 2006), it can be improved by analyzing the relative frequency of

words in the given text. Sawyer et al. (2002) describe corpus-based frequency profiling

which is based on the assumption that words which are significant to a domain will be

revealed by an increased relative frequency of appearance in the text in comparison to a

normative corpus. As a normative corpus, they apply a 2.3 million-word subset of the

British National Corpus which contains transcripts of spoken English. Whenever a word

is strongly overrepresented in the given text (in comparison to the normative corpus) it

qualifies to be identified as an abstraction. While corpus-based frequency profiling

works well for single words, it cannot be applied to multiword terms (e.g. “requirements

engineer”). Therefore, Gacitua et al. (2011) suggest to calculate significance values for

multiword terms by using weighted averages of the individual words log-likelihood
8
.

Their results show that an according approach can successfully capture multiword terms

and thus help to further automate abstraction identification.

3.3.2.3 Techniques for the Interrelation of Requirements

A large variety of methods has been used in alternative combinations to support the

interrelation of requirement resulting in requirements models (Ambriola and Gervasi

2006; Kof 2004; Mich 1996; Omoronyia et al. 2010). Instead of describing each

technique in isolation, an exemplary approach to combine different methods as

suggested by Kof (2004) is presented in the following. The interrelation of requirements

8
 Log-likelihood is a measure for the relative frequency of a word.

3.3 Design – Processing Characteristics 28

in a NLRR basically breaks down to an interrelation of single words within this

resource. A first hint for an association between words in a document can be drawn

from the structure of individual sentences. Kof (2004) suggests building parse trees

from each sentence. In these parse trees, a sentence predicate and its subject and object

are captured and linked to each other. The resulting set of trees is then clustered to

derive further associations. First, parse trees of the same predicate are grouped into one

cluster. Then, the resulting clusters are compared, searching for overlaps in their

subjects or objects. Overlapping clusters are joined and result in initial taxonomies. In a

last step, association mining (as suggested by Maedche and Staab (2000)) is applied.

Words which often occur in the same sentences are assumed to be associated.

Consequently, the taxonomies holding these words are linked to each other, resulting in

an interrelated requirements model (or more specific an ontology).

3.3.2.4 IR Techniques for the Identification and Classification of

Requirements

Web search engines (such as Google) are probably the most well-known applications of

IR techniques. In response to a set of entered search terms, a web search engine

generates a list of matching websites. Prior to the search, each of the websites has been

indexed, resulting in a list of words associated with the site. During the search, instead

of scanning entire websites, the search terms are applied to the lists of indexed terms

resulting in a faster response time.

The same principle can be applied to requirements identification. Requirements

identification in a NLRR is basically about differentiating those words which represent

requirements from further content which is non-relevant from a requirements point of

view. To support this task, knowledge bases which contain requirements terms are

provided. These terms are assigned to requirements categories (e.g. the term “credit card

number” might be assigned to the category “data requirement”). Further details about

knowledge bases will be presented in Section 3.4. Figure 10 shows how IR can be

applied in this scenario to support requirements identification. Each term in a NLRR

can be used as a search term. Using this search term, the IR algorithm strives to identify

a matching requirements category by searching the requirements terms within the

3.4 Design – Knowledge Base Characteristics 29

knowledge base. A term will only be successfully identified as a requirement if this

search is successful, meaning that a requirements category is associated with the search

term with ample probability
9
. For classification, the requirements category with the

highest probability is then assigned to the identified term. If no requirements category

with sufficient probability is identified, the term remains unassigned.

Figure 10: Comparison of IR Usage in Web Search Engines and RDS

3.4 Design – Knowledge Base Characteristics

As described earlier, many automation techniques used for requirements discovery

require the existence of a knowledge base. Knowledge bases consist of knowledge items

which are made up of terms and meta-information associated to these terms. Terms can

be used during requirements identification to act as an index during the retrieval

process. They are usually linked to further information, for example an assignment to a

requirements category (Lemaigre et al. 2008; Sampaio et al. 2007). Knowledge bases

can differ in the origin, volatility, structure and domain-specificity of the included

knowledge which will be explained below.

9
 For this purpose usually a threshold probability is defined.

3.4 Design – Knowledge Base Characteristics 30

Figure 11: Knowledge Base Characteristics of RDS

3.4.1 Origin and Volatility of Knowledge

Knowledge origin describes the way the knowledge bases required for knowledge re-

use are populated. The creation of knowledge is either initiated by an upload of existing

knowledge to the system (referred to as “imported knowledge”) or by knowledge

retrieval from documents (referred to as “retrieved knowledge”) (Staab et al. 2001). In

contrast to imported knowledge, retrieved knowledge can usually be acquired in

combination with actual usage data.

In the context of requirements discovery, this could be information about how often

users have assigned a specific term to a specific requirements category. Retrieved

knowledge can be added to the knowledge base as a byproduct of manual requirements

discovery. For example, the data requirement “frequent flyer number” might have been

overseen by automated requirements discovery and might then be identified and

classified manually. This manual activity has two effects. First, it adds an additional

requirement to the automatically discovered requirements from this resource. Second, it

adds a potential new knowledge item to the knowledge base, consisting of the term

“frequent flyer number” and the assignment to the category “data requirement”.

Through this mechanism a constant flow of potentially new knowledge items is created.

Consequently, it has been integrated into a number of existing RDS. Cleland-Huang et

al. (2007), e.g. iteratively train their non-functional requirements classifier based on the

analyst’s feedback. Kaiya and Saeki (2006) similarly consider a refinement of imported

knowledge drawing on the information extracted from the requirements statements, thus

incorporating retrieved knowledge. In contrast to the dynamic nature of retrieved

knowledge provision, imported knowledge is only added if the responsible knowledge

3.4 Design – Knowledge Base Characteristics 31

engineer initiates a knowledge upload. Consequently, the creation of imported

knowledge is rather static in comparison to the generation of retrieved knowledge.

3.4.2 Structure and Domain-Specificity of Knowledge

Knowledge bases can vary in structure and complexity. They often consist of either

dictionaries (Lemaigre et al. 2008; Sampaio et al. 2007) which hold assignments of

terms to requirements categories or ontologies (Kaiya and Saeki 2006; Vlas and

Robinson 2012) which additionally include relations between different concepts. While

dictionaries can help in the identification and classification of individual requirements,

ontologies can be used to improve the overall discovery results. Kaiya and Saeki (2006),

for example, use ontologies to improve the completeness and consistency of the

discovered requirements. They achieve this by comparing the identified requirements

with an existing domain ontology. For example, an analyst could manually map a

requirement which specifies a train reservation capability to the “reserve” knowledge

item in a domain ontology for reservation systems. In this ontology, the “reserve” item

is related to the item “cancel” (it should be possible to cancel a reservation). Based on

this information, the system would inform the requirements engineer to additionally

consider a “cancel functionality” (if not already included in the NLRR).

The discovery of requirements premises, to some extent, the existence and application

of domain knowledge (Ambriola and Gervasi 2006; Hickey and Davis 2004). Data

requirements such as “purchase order number” or “material group” might be of high

relevance for the domain of procurement applications, while they would be irrelevant

for a human resource application. Consequently, the automated discovery of this type of

requirements can profit from a domain-specific knowledge base which already contains

corresponding knowledge items. In contrast, other types of requirements, for example

performance requirements, can be identified with less domain knowledge. The

requirement “The response time for this function should be faster than 10 seconds”, for

example, could be defined for an application in almost any kind of domain. In this case,

related terms such as “response”, “time” and “second” would be typical examples for

domain-unspecific knowledge items. Due to these differences in domain specificity

across different requirements categories, there might be domain-specific and domain-

3.5 Evaluation 32

unspecific contents within a single knowledge base (Lemaigre et al. 2008). Therefore,

instead of an alternative classification in domain-specific and –unspecific knowledge

bases, the proposed analysis framework allows both classifications at the same time. An

example of a rather domain-unspecific knowledge base is described by Brasser and

Vander Linden (2002) who present a system to capture interaction requirements, while

an example for a domain-specific knowledge base is provided by Kaiya and Saeki

(2006) (as depicted in the last paragraph).

3.5 Evaluation

RDS related research aims at knowledge contribution through the development and

investigation of artifacts. It can therefore be associated to design research (Hevner et al.

2004; Simon 1969). Works which follow a design research approach are usually

characterized by two main research phases. In the build phase an artifact is designed.

Then, in the evaluation phase, the effectiveness of the artifact is assessed. To enable a

holistic assessment of RDS research work, the previously introduced framework

therefore includes a dimension to describe the evaluation phase of these works. The

according framework characteristics and their values are presented in the following.

Figure 12: Evaluation Characteristics of RDS Research Works

3.5.1 Evaluation Approach

Hevner et al. (2004) distinguish two experimental design evaluation methods: A

controlled experiment involves studying the presented system in a controlled

environment which can be done e.g. by comparing the performance of an analyst using

the system with the performance of an analyst devoid its support. In contrast, a

simulation comprises the execution of the artifact with test data (Hevner et al. 2004). In

the context of RDS, a performance evaluation based on a simulation is possible by

3.5 Evaluation 33

comparing a system’s output to a gold standard set of requirements, which is the output

created manually by an expert or a group of experts.

Additionally to experiment evaluations, two further types of evaluations are frequently

applied in the context of RDS (Meth et al. 2013a): A mere demonstration of the

presented system, e.g. by an application to a real-world example without data collection

and analysis is classified as a proof of concept in the following, while an evaluation in

practice, e.g. in an industrial environment, will be denoted as a case study. Accordingly,

the identified works will be categorized to evaluate their approaches either by 1) a

controlled experiment 2) a simulation 3) a proof of concept or 4) a case study.

3.5.2 Evaluation Constructs and Measures

To evaluate the effectiveness of RDS, the assessment of the completeness and

correctness of the identified requirements is a common practice (Casamayor et al. 2010;

Cleland-Huang et al. 2007; Rago et al. 2011). Completeness ensures that all the

information required for a problem definition, i.e. all properties that are desired to hold

true, are found within the specification (Zowghi and Gervasi 2003). The correctness of

a requirements specification is determined by the included share of requirements which

match existing needs. The IEEE Recommended Practices for Software Requirements

classify a requirements specification as correct “if, and only if, every requirement stated

therein is one that the software shall meet” (IEEE 1998, p.4).

An operationalization of these constructs is possible by drawing on metrics from the

information retrieval domain, specifically precision and recall (Salton and McGill

1986). Recall is defined as the proportion of relevant items that are actually retrieved in

answer to a search query and is very commonly used as a measure for completeness

(Cleland-Huang et al. 2007; Kiyavitskaya and Zannone 2008; Sampaio et al. 2007).

Precision is the proportion of retrieved items that are relevant to the query and is often

used as a measure for correctness, usually in combination with recall.

RDS strive to generate requirements descriptions with high recall and precision.

However, improving recall and precision at the same time is a challenge, as maximizing

the number of retrieved requirements to improve recall is often done at the cost of also

retrieving more irrelevant items which reduces precision. Trading off precision for

3.5 Evaluation 34

recall or vice versa, one might argue that for RDS, recall is the more important measure

of both, as errors of commission are easier to correct than errors of omission (Berry et

al. 2012). While an omitted requirement needs to be identified within a potentially

longer source document, requiring significant time for manual searching, a wrongly

identified document can easily be deleted from the list of the all identified requirements.

This requires, however, that the resulting list of requirements is significantly shorter

than the source document. Accordingly, recall and precision are sometimes

complemented with a third measure describing the summarization provided by the

system. Summarization measures the volume of a system’s output in relation to the

input document size. Systems providing a high level of summarization simplify manual

corrections of automatically identified requirements as the analyst can concentrate on

reviewing the relatively short output of the system in contrast to its longer input

document. Particularly for abstraction identification systems, summarization plays an

important role, as this type of systems aims at distilling the key abstractions of an

initially long document. In the analysis framework the concept summarization is

subsumed under the category “Other (Constructs)” together with further concepts

which are only seldom applied.

In addition to measures for requirements quality, which represent the outcome of the

discovery process, it is also worthwhile to observe the process leading to this outcome.

In various works, process efficiency is assessed additionally to quality aspects (Cleland-

Huang et al. 2007; Kiyavitskaya and Zannone 2008; Sampaio et al. 2007). Discovery

efficiency can be measured by the time required to transform an unstructured input

document to a set of structured requirements. In the case of RDS, this time period can

be split into two phases: the automation phase and the manual phase. While the duration

of the automation phase is determined by the runtime of the automation algorithm, the

duration of the manual phase represents the time for manual corrections of the

algorithm’s findings. It can be argued that the duration of the automation phase is less

critical than the duration for manual adaptions, as the automation can run in a

background job without absorbing the analyst’s time. In contrast, the time for manual

adaptions should be observed critically, especially in evaluations which compare

automated with manual approaches. In summary, to enable a holistic evaluation of a

3.6 Knowledge Exchange 35

system’s effectiveness, the analysis framework considers both aspects (requirements

mining quality and efficiency).

3.6 Knowledge Exchange

Through the description of an artifact’s design and evaluation, design research

contributes to the body of knowledge. However, an increase in knowledge contribution

can be achieved if design research is based on existing theories or even contributes

theory itself (Gregor and Hevner 2013). Thorough theory grounding can extensively

leverage existing knowledge and thereby increase the likelihood of designs that are

actually effective. Codification and abstraction of results in a design theory can help to

generalize the findings of design research. An according conceptualization extends the

contribution of design research beyond the search of specific solutions to specific

problems and has been intensively discussed in DSR (Baskerville and Pries-Heje 2010;

Gregor and Jones 2007). Both the knowledge grounding and contribution are

summarized in a fourth dimension of the analysis framework, entitled “Knowledge

Exchange”.

Figure 13: Knowledge Exchange Characteristics of RDS Research Works

3.6.1 Knowledge Grounding

In accordance with Gaß et al. (2012) four categories of knowledge to ground design

research are differentiated: 1) formal theories 2) mid-range theories 3) design theories

and 4) general knowledge. Formal theories (sometimes also referred to as “Kernel

Theories”) represent theories from within and outside the IS field, but mainly from

natural and social science (Walls et al. 1992). They are mainly descriptive theories

which can be used to guide the design and derive testable propositions for the

evaluation of the artifact (Kuechler and Vaishnavi 2008; Walls et al. 1992). While the

3.6 Knowledge Exchange 36

grounding on kernel theories is generally regarded as a rigorous basis of DSR, it is often

difficult to apply them to the specific, practical context of an artifact (Baskerville and

Pries-Heje 2010). Therefore, Kuechler and Vaishnavi (2008) suggest mid-range

theories which are based on formal theories but provide additional explanatory

knowledge to increase applicability to practical problems. While formal and mid-range

theories do not originate from actual design activities, the knowledge grounding can

also be based on previous design theories. Gregor and Hevner (2013) refer to this reuse

of prescriptive design knowledge as “exaptation”, the extension of known solutions to

new problems. Exaptation is appropriate in scenarios, where an artifact in one field is

not available or suboptimal and is designed by applying prescriptive knowledge from

artifacts of a different field. Finally, empirical and non-empirical general knowledge can

be used to ground design research. Kuechler and Vaishnavi (2012) refer to this type of

knowledge as “tacit theory”, consisting of “insights or evidence/experience-based

justifications for pursuing a novel design” (Kuechler and Vaishnavi 2012, p. 404). This

informal type of knowledge enables DSR to explore domains in which more formal

knowledge does not exist or is sparse (Kuechler and Vaishnavi 2012).

3.6.2 Knowledge Contribution

Kuechler and Vaishnavi (2012) classify DSR works concerning their knowledge

contribution into three different groups. The first group consists of works which only

present the implemented artifact, without further discussing how and why it works and

which design practices have been employed in its implementation. Design knowledge

and justification of design features in these works remain tacit and the entire knowledge

is captured within the artifact. The authors state that this type of knowledge contribution

is appropriate for groundbreaking innovations in which the artifact itself provides

sufficient novelty to compensate scarce theoretical contributions.

The second group of works contributes additional knowledge in the form of an

Information System Design Theory (ISDT). An ISDT as suggested by Walls et al.

(1992) abstracts the design efforts to meta-requirements and design principles (meta-

design) which prescriptively support the design of future instantiations within the same

class of systems. Moreover, an ISDT explicitly codifies the knowledge which is

3.7 Results of Analysis 37

captured in an artifact which allows other researchers as well as practitioners to leverage

the generated knowledge without the need to analyze the artifact itself.

As a third type of knowledge contribution (and a potential third group), Kuechler and

Vaishnavi (2012) suggest the construction of a mid-range theory which they refer to as

design relevant explanatory/predictive theory (DREPT). A DREPT should capture

knowledge which cannot be adequately presented in an ISDT, namely the linking

effects between kernel theory constructs and ISDT constructs. An ISDT is mainly

occupied with the explanation of the build process. In contrast, a DREPT focuses on the

explanation of the how and why of the observed effects.

Similarly, Gregor and Hevner (2013) differentiate three levels of knowledge

contribution for DSR. Level one represents the specific implementation of an artifact in

a specific context. Knowledge can be contributed, for example by a specific software

product or process. Level two comprises more general and abstract descriptions of the

design, referred to as nascent design theory. On this level, knowledge is contributed in

the form of general operational principles or a general architecture rather than of

specific characteristics and features. Components of nascent design theory might by

constructs, design principles, models, methods or technological rules. Level three

represents a knowledge contribution about the embedded phenomena, referred to as

well-developed design theory. DSR projects resulting in mid-range or grand theories

would be examples for this type of contribution. The different levels supposed by

Gregor and Hevner (2013) are associated with increasing degrees of abstraction and

knowledge maturity (rising from level one to level three).

The typology suggested by Gregor and Hevner (2013) is similarly utilized in the

analysis framework for RDS works. However, on the first contribution level

additionally to the artifact itself an informal description of the artifact in the

corresponding paper is expected (which is usually part of the publication).

3.7 Results of Analysis

In this thesis, the design and evaluation of a Requirements Mining System (RMS) is

described. Therefore, in the following description of related work, this type of RDS is

focused on. The analysis comprises a detailed description of the four RMS which were

3.7 Results of Analysis 38

briefly introduced in section 3.2.4 and a depiction of the research gap which will be

addressed.

3.7.1 Application of Analysis Framework to RMS Research Works

The system presented by Cleland-Huang et al. (2007) referred to as “NFR-classifier”

supports the identification and classification of non-functional requirements.

Furthermore, through the identification of abstractions it enables the creation of

retrieved knowledge. Requirements statements are processed semi-automatically.

Requirements can be categorized manually as well as through automation algorithms

which employ IR and NLP techniques. Based on a first provision of imported

knowledge, the knowledge base is iteratively extended through requirements engineers’

feedback to the automation results. The knowledge base is structured as a simple

dictionary consisting of a list of terms assigned to different sub-categories of NFR.

Although the initially imported knowledge is domain-independent, the knowledge base

can be customized to a domain through retrieved knowledge. The system is evaluated in

a series of simulations, comparing the artifacts automatic results with a predefined gold

standard. The evaluation uses recall and precision as measures for the completeness and

correctness of the results and one additional measure (specificity). While the authors

mention the time necessary to manually classify their sample set of requirements, they

do not include an analysis of the time using their approach. The design is only grounded

on general knowledge and contributions are restricted to a description of the artifact,

without further abstraction or codification of the design. Figure 14 depicts the overall

analysis result.

3.7 Results of Analysis 39

Figure 14: Analysis Result for Cleland-Huang et al. (2007)

The approach suggested by Casamayor et al. (2010) possesses a lot of similarities to the

work presented by Cleland-Huang et al. (2007). It also aims at the identification and

classification of NFR in a semi-automatic approach and uses a similar knowledge base

and knowledge creation approach. However, their approach differs in its processing

characteristics. The authors complement IR and NLP techniques with an Expectation

Maximization algorithm (EM). The core idea of this algorithm in the context of RMS is

the creation of knowledge from both classified and unclassified requirements. Unlike

other mechanisms it requires only a very small number of previously classified

requirements in the knowledge base. The proposed system is evaluated in a simulation

measuring precision and recall (to assess correctness and completeness), f-measure (a

combination of precision and recall in one variable) and accuracy (the proportion of true

results; both true positives and true negatives; in the population.). Again, the design is

only grounded on general knowledge and contributions are restricted to a description of

the artifact without further abstraction or codification of the design.

3.7 Results of Analysis 40

QAMiner, the system presented by Rago et al. (2011) similarly aims at the identification

and classification of NFR in a semi-automated approach. However, their system follows

a different knowledge base approach. Instead of a dictionary, QAMiner utilizes domain-

specific ontologies, which are imported to the system before discovery starts. To

evaluate their system, a simulation using the standard measurements of precision, recall

and accuracy is conducted once again. Knowledge exchange is restricted to the usage of

general knowledge and a description of the artifact without further theorizing. Figure 15

depicts the overall analysis result.

Figure 15: Analysis Result for Rago et al. (2011)

Finally, in the work by Vlas and Robinson (2012), a system to support the identification

and classification of requirements for open source software is presented. Unlike the

former related works, this system is not restricted to NFR and works in a fully

automated fashion. It applies IR and NLP techniques, extended by additional methods

to support classification. Imported knowledge in form of ontologies can be used,

allowing both domain-specific and domain-independent knowledge items. The system

is evaluated in a simulation measuring recall, precision and f-measure. In addition, the

3.7 Results of Analysis 41

time needed for the automation is measured to assess the efficiency of the approach.

Although the authors explicitly claim to follow a DSR approach, knowledge exchange

is restricted to the usage of general knowledge and a description of the artifact.

3.7.2 Research Gap Identification

Figure 16 shows the aggregated results for all four works within this analysis. Different

shades of red visualize if a characteristic can be observed in many works (dark red), few

works (lighter red) or no work (white).

Figure 16: Aggregated Analysis Results for Related Work

The result of the analysis is twofold, showing a heterogeneous picture for the

investigated design choices and a homogenous picture for the evaluation and knowledge

exchange in the analyzed works. While apparently many different design choices have

been investigated, evaluations are focused on simulations comparing the results of the

presented system with a previously defined gold standard. Even though these

evaluations allow precise measurements of absolute quality criteria, they do not allow a

comparison to the as-is situation of manual discovery. Consequently, the question of

whether the systems really improve requirements quality and requirements mining

3.7 Results of Analysis 42

efficiency cannot be answered. Unlike first intuition would tell us, even efficiently

working automated requirements mining does not necessarily outperform manual

requirements mining. Due to the ambiguity and inconsistency of NLRR, results of

automated requirements mining in most cases require manual rework to correct

mistakes of the automatism, adapt its findings, or add requirements which were

overlooked (Cleland-Huang et al. 2007). Therefore, even automated approaches

resulting in high (but not 100%) initial recall and precision might generate larger total

efforts as manual discovery if times for rework are also taken into account.

Consequently, the mentioned works could be complemented with a study investigating

whether the use of an accordant system actually improves individual performance by

comparing it to a manual approach.

Furthermore, while the analyzed works include detailed descriptions of their specific

implementations, a codification and abstraction of the demands to be fulfilled by the

system and the concepts addressing each of these demands is missing. A corresponding

conceptualization has been intensively discussed in DSR (Baskerville and Pries-Heje

2010; Gregor and Jones 2007) and enables a generalization of design approaches going

beyond the description of specific solutions to specific problems. Applying this

approach to RMS, the theoretical contribution drawn from previous works can be

extended substantially.

Finally, the suggested systems are not theoretically grounded. They are based on

general empirical and non-empirical knowledge drawn from prior studies. These studies

might report on situational and non-generalizable settings and experiences and thus do

not provide an appropriate basis to conceptualize a design theory with significant reach.

The work described in this thesis intends to address these gaps by 1) deriving a design

theory for RMS based on knowledge drawn from both theoretical and non-theoretical

sources, 2) implementing an artifact according to this theory, and 3) testing the theory

through an evaluation of the artifact comparing a requirements engineer’s system-

supported mining productivity with manual discovery.

3.8 Summary 43

3.8 Summary

In this chapter, an analysis framework for RDS has been conceptualized and applied to

RMS as sub-class of systems. Following an overview, the framework, individual

dimensions and characteristics have been introduced and exemplified with existing

research. This comprised a depiction of alternative purposes, processing and knowledge

base characteristics of RDS as well as different evaluation and knowledge exchange

approaches in RDS research. Finally, the framework has been applied to RMS which

represent the class of systems to be focused on in the context of this thesis. Finally, the

results of this analysis were used to define research gaps which will be addressed in this

thesis.

44

4 Methodology

DSR has become an established approach to enable the conduction of rigorous, design-

oriented research in the IS domain. This thesis strives to gain theoretical design

knowledge about RMS based on rigorous methodology. Therefore, a DSR approach is

followed which will be explicated in the following chapter. For this purpose, first an

overview of DSR in IS is provided, discussing artifacts and theories as potential

outcomes (or products) of DSR and their conceptualization in the design process. The

dualist nature of design as product and process is then further elaborated presenting

examples of process-oriented and product-oriented frameworks to conduct DSR,

including a selection of frameworks to be applied in this thesis project. Using the

selected process-oriented framework, the research design of the thesis is then presented

and finally reflected from an ontological and epistemological perspective.

4.1 Design Science Research in IS

Design Science is rooted in the seminal work by Simon (1969) in which the idea of a

science of the artificial to complement natural science is propagated. This science

centers around the design (or synthesis) of artifacts by humans and was subsequently

applied to IS. In the IS context, different types of artifacts can be differentiated, such as

constructs, models, methods and instantiations (March and Smith 1995). According to

March and Smith (1995), constructs provide the vocabulary of a domain. For example,

tables and relationships are constructs within entity relationship (ER) modeling (Gregor

and Jones 2007). Models visualize relationships among constructs. For example, the ER

model of an entire database system is a model. Methods can be understood as activities

or steps to perform a task. For example, this may be an algorithm to sort data or a

guideline to be followed when loading data to a system. Finally, instantiations represent

the implementation of artifacts in IS and software development systems (March and

Smith 1995). In the context of this thesis, using the taxonomy, an instantiation of a

RMS will be designed.

While some scholars characterized DSR as a paradigm which primarily aims at

problem-solving through the creation of innovative artifacts (Hevner et al. 2004; March

4.1 Design Science Research in IS 45

and Smith 1995), other researchers emphasized the value of a design theory as the core

contribution of DSR (Gregor and Jones 2007; Walls et al. 1992). As early

representatives of the latter group, Walls et al. (1992) specifically called for the

development of design theories, articulating prescriptive knowledge based on theoretical

grounds. These prescriptions should describe how an artifact shall be designed in order

to achieve a given goal. In response to this call, design theories have been articulated for

a diverse range of systems, for example systems to support emergent knowledge

processes (Markus et al. 2002), systems that support convergent and divergent thinking

(Müller-Wienbergen et al. 2011) or process-based knowledge management systems

(Sarnikar and Deokar 2009). Although the call for theoretical contributions of DSR has

been emphasized in the current DSR discourse (Gregor and Hevner 2013; Kuechler and

Vaishnavi 2012) other scholars have suggested to reduce the complexity of design

theories (Baskerville and Pries-Heje 2010) or even questioned the concept of a design

theory itself (Hooker 2004). In line with the argumentation of Gregor and Hevner

(2013) the author of this thesis takes up the stance that through the abstraction and

codification of prescriptive knowledge in a design theory the knowledge contribution

and impact of DSR can be significantly improved. Therefore in this thesis, additionally

to a RMS instantiation, a design theory for RMS is derived.

The core of the design process comprises a stepwise refinement process in which

designers strive to map needs (specified in the function space) to solutions (specified in

the attribute space) (Takeda and Veerkamp 1990). The elements of both: the function

and attribute space appear, in different terminology, in many design theory frameworks.

While elements of the function space are referred to as meta-requirements (Walls et al.

1992), general requirements (Baskerville and Pries-Heje 2010) or design requirements

(Müller-Wienbergen et al. 2011), elements of the attribute space are referred to as meta-

design (Walls et al. 1992), general components (Baskerville and Pries-Heje 2010) or

design principles (Markus et al. 2002; Müller-Wienbergen et al. 2011). In the context of

this thesis, the terms design requirement and design principle will be used. While design

principles characterize solutions in a technology-agnostic fashion, the implementation

of an artifact requires an additional mapping process to technology-dependent features

4.2 Framework Selection and Adaption 46

of the artifact. In the following, the outcome of this process will be referred to as design

features.

4.2 Framework Selection and Adaption

Various frameworks have been proposed, describing how DSR should be conducted.

While some frameworks take a process perspective, depicting for example different

phases of DSR research (Nunamaker et al. 1990; Peffers et al. 2007; Sein et al. 2011;

Takeda and Veerkamp 1990; Vaishnavi and Kuechler 2007) others provide a product-

oriented structure, suggesting different components which should be included in the

resulting design theory (Baskerville and Pries-Heje 2010; Gregor and Hevner 2013;

Gregor and Jones 2007; Kuechler and Vaishnavi 2012; Walls et al. 1992). Baskerville

and Pries-Heje (2010) draw an analogy from these two perspectives to the dual nature of

theory versus theorizing. In this analogy, a design theory represents the product of

theorizing about a specific artifact.

This dualist nature is also inherent to the structure of this thesis: While the research

design will be described along the phases of a process-oriented framework, the resulting

design theory will be depicted using a product-oriented framework. To choose

appropriate process- and product-oriented frameworks, different alternatives have been

analyzed. This analysis process, the reasons for selection and the performed adaptions

of the original frameworks for the research design of this thesis will be described further

on.

4.2.1 Process-oriented Frameworks

Process-oriented frameworks describe DSR from a procedural perspective,

differentiating different phases, their sequence and the associated knowledge flows.

An early approach to structure the design process accordingly was presented by

Nunamaker et al. (1990). The authors argue that system development represents a

valuable research methodology which can complement existing IS research. Their

Process for Systems Development Research consists of five phases: 1) Construction of a

conceptual framework, including an investigation of requirements and the search for

new approaches and ideas 2) Development of a system architecture, including the

4.2 Framework Selection and Adaption 47

definition of functionalities, components and their interrelation 3) System analysis &

design, including the investigation of different design alternatives 4) Implementation of

the system (or a prototype), including the actual system development and 5)

Observation of system use and experimental evaluation of the system, investigating

effects of the system’s usage.

The process provided by Nunamaker et al. (1990) represents an abstract model to

structure DSR activities in distinct phases. However, the actual conduction of DSR is

not further explicated and therefore leaves many questions open (Peffers et al. 2007).

As a consequence, in a more recent work, Peffers et al. (2007) suggest their Design

Science Research Methodology (DSRM). The comprehensive framework includes

principles, practices, and procedures and is made up of six sequential phases: 1)

Problem identification and motivation 2) Definition of the solution objective 3) Design

and Development 4) Demonstration of the artifact 5) Evaluation of the artifact and 6)

Communication of the research results. The authors point out that DSR projects can be

initiated from different entry points: problem-centered, objective-centered, design and

development-centered and client/context-centered. In contrast to other frameworks,

Peffers et al. (2007) explicitly point out the importance of communicating disciplinary

knowledge to both research and practice communities in form of publications geared

towards each target group.

Moreover, they differentiate the demonstration of the artifact in a suitable context from

the artifact evaluation in which its effectiveness and efficiency are measured. In the

framework applied in this thesis, the latter aspect will be explicitly considered through a

distinct demonstration phase between the development and evaluation of the artifact.

The framework which guided the design process of this thesis is based on the General

Methodology of Design Science Research (GMDSR) as suggested by Vaishnavi and

Kuechler (2007). The framework is an extension of the design cycle proposed by

Takeda and Veerkamp (1990). It includes process steps, their outputs and the related

knowledge flows. Starting with the “Awareness of Problem” phase, in which the

motivation for the DSR project is drawn from a real-world problem, a tentative design is

conceptualized in the “Suggestion” phase. Based on this concept, in the “Development”

phase the artifact is implemented. After measuring the artifact’s effectiveness in the

4.2 Framework Selection and Adaption 48

“Evaluation” phase, a final conclusion is drawn from the results and fed back to the first

phase to re-iterate.

Similarly to the DSRM, Vaishnavi and Kuechler (2007) give explicit prescriptions

about the conduction of DSR. In addition, the authors emphasize the explicit reflection

of design principles and other design results as well as an iterative, evaluation-driven

approach. These two characteristics properly match the goals of the research project at

hand. First, through the continuous reflection and adaption of design results, an

appropriate mechanism to derive a sound design theory is provided. Second, through

multiple iterative evaluations, a tight integration of potential users can be accomplished

which eases the accomplishment of the artifact’s final goal to increase requirements

mining productivity. Therefore, the GMDSR was selected as guiding overall approach

for this research project. For the context of this thesis, the GMDSR was slightly

extended by a demonstration phase between the development and evaluation of the

artifact, as suggested by Peffers et al. (2007). This demonstration phase allows the

collection of informal feedback from experts in addition to formal evaluations. The

resulting process-oriented framework is depicted in Figure 17.

Figure 17: Adapted GMDSR, Based on Vaishnavi and Kuechler (2007)

4.2 Framework Selection and Adaption 49

4.2.2 Product-oriented Frameworks

The need for an ISDT was first articulated by Walls et al. (1992). Following Simon’s

call to develop a science of the artificial (Simon 1969), they argue that the IS discipline

should articulate and develop prescriptive theories to enable the development of more

effective IS. The according theories should integrate normative and descriptive theories

and describe design paths to be followed. Due to their prescriptive nature, ISDT are

different from explanatory and predictive theories. Walls et al. (1992) propose seven

components of an ISDT out of which four describe the design product:

 Meta-Requirements which describe the class of goals the theory should be

applied to.

 Meta-Design characterizing the class of artifacts to address the meta-

requirements.

 Kernel theories including theories from natural and social science which can

guide the design.

 Testable design product hypotheses which can be utilized to test if the meta-

design actually addresses the meta-requirements.

The ISDT proposed by Walls et al. (1992) provided the common basis for various other

product-oriented DSR frameworks. Gregor and Jones (2007) argue that although design

work and design knowledge in IS are important for both research and practice, little

attention has been paid to the problem of specifying design theory. Based on the ISDT

proposed by Walls et al. (1992) and further streams of thought on design research (e.g.,

Simon's (1969) reflections on a science of the artificial) they suggest an anatomy of a

design theory consisting of eight separate components: 1) Purpose and scope: This

component describes “what the system is for” by depicting the set of meta-requirements

or goals that specify the class of artifact to which the theory applies. Furthermore the

scope, or boundaries, of the theory are defined. 2) Constructs: The theory’s entities of

interest, for example relations would be constructs in a design theory of relational

databases. 3) Principles of form and function: The abstract “blueprint” or architecture of

the associated IS artifact. 4) Artifact mutability: The extent to which changes to the

artifact are encompassed by the theory 5) Testable propositions: Truth statements about

4.2 Framework Selection and Adaption 50

the design theory (e.g., predictions about outcomes that can be tested in experiments). 6)

Justificatory knowledge: Underlying knowledge or theory to give a basis and

explanation for the design. 7) Principles of implementation: A description of how to

implement the theory in specific organizational contexts 8) Expository instantiation:

The implementation of the artifact, providing both a physical representation of the

theory and a vehicle to test it.

Baskerville and Pries-Heje (2010) argue that characteristics of design theories as they

are discussed in other papers are overly complicated and show that for example the

incorporation of kernel theories and testable propositions into design theories might not

be applicable or beneficial to all DSR projects. In contrast, the authors seek the simplest

possible delineation of a design theory and do this by differentiating between design

practice theories which describe the building process of the artifact and explanatory

design theories, describing the artifact itself. To determine the minimal components of

an explanatory design theory, they collect design theory characteristics from several

works. According to their analysis, design theory is assumed to be

 prescriptive, focusing on improving things in contrast to understanding things

 practical, being a basis for action to solve problems

 principles based, defining principles both to guide the development process as

well as the architecture of the artifact

 a dualist construction, describing both a process and a product.

Explanatory design theories only describe the product part of this dualist construction

and are limited to two components: General requirements and general components.

General requirements can be described as conditions or capabilities that must be met by

the artifact. General components describe the abilities or qualities which represent a

generalized solution meeting the general requirements.

The resulting design theory of this thesis is presented along the eight components

suggested by Gregor and Jones (2007). Unlike other product-oriented frameworks, this

structure allows a complete and transparent coverage of outcomes from all phases of a

DSR project. Table 1 depicts the differences. The theory components suggested by

Walls et al. (1992) can only be related to three of the six phases (Awareness of the

Problem, Suggestion, Evaluation). Similarly, the structure suggested by Baskerville and

4.3 Research Design 51

Pries-Heje (2010) can only be used to describe the outcomes of two phases (Awareness

of the Problem, Suggestion). In contrast, the theory components of Gregor and Jones

(2007) can be mapped to each of the DSR phases, allowing a holistic description of

design outcomes.

Design research

phases
10

Design Theory Components

 Walls et al. (1992) Gregor and Jones (2007) Baskerville and Pries-

Heje (2010)

Awareness of

Problem

Meta-requirements Purpose and scope, Justificatory

knowledge

General requirements

Suggestion Kernel theories,

Meta-design

Justificatory knowledge,

Principles of form and function

General components

Development - Constructs, Expository

instantiation

-

Demonstration - Constructs, Expository

instantiation

-

Evaluation Testable design

product hypotheses

Testable propositions -

Conclusion - Artifact mutability, Principles of

implementation

-

Table 1: Assignment of DSR Theory Components to Design Phases

4.3 Research Design

In the following, the overall research design of this thesis project will be described

along the phases of the adapted GMDSR. Further details on the artifact design process

will be provided in chapter 5. Details on the methodology for the artifact evaluation will

be provided in chapter 6.

Design research suggests to design artifacts in an iterative fashion enabling continuous

reflection and incremental refinement of the design results (Hevner et al. 2004; Takeda

and Veerkamp 1990). Consequently, in this thesis project, two design cycles have been

10

 Design research phases based on the GMDSR by Vaishnavi and Kuechler (2007).

4.3 Research Design 52

conducted as depicted in Figure 18. In the following, the utilized methods and

performed activities in each of the design cycles are depicted in more detail.

Figure 18: Research Design
11

4.3.1 Prototype Design Cycle

The prototype design cycle of the research project was initiated by an intensive

literature review to create problem awareness resulting in design requirements for the

artifact to be built. Based on these design requirements, a second literature review was

conducted to identify general knowledge and theories which can be applied to address

the identified problem. Using this knowledge, preliminary design principles were

conceptualized in the suggestion phase. These design principles were then mapped to

design features and were finally implemented in a prototype version of the artifact

during the development phase. To collect informal feedback on the artifact’s usefulness,

it was then presented to requirements engineering experts in several demonstration

sessions. In the following, the prototype was analyzed in a quantitative evaluation. This

evaluation focused on the interplay of the two main design principles which was

investigated in multiple simulation runs. Results of the evaluation and the

11

 The structure of the research design follows the GMDSR by Vaishnavi and Kuechler (2007).

4.4 Ontological and Epistemological Reflections 53

demonstration sessions were analyzed and reflected (along with the design results)

during the conclusion phase.

4.3.2 Final Design Cycle

During the final design cycle, the initial problem definition and conceptualization were

adapted based on the design, demonstration and evaluation results of the previous cycle.

This led to an adjustment of the initial design requirements and design principles. The

adapted design principles were again mapped to design features resulting in a

modification of the artifact. To improve the artifact’s ease of use, it was presented to

usability experts in several demonstration sessions which resulted in multiple small

adaptions. Then the final artifact version was evaluated in an experiment. This

evaluation consisted of a lab experiment, conducted with students and a replication of

the experiment in a field environment, involving experts. By these experiments, the

effects of each design principle on the performance of individual requirements

engineers were measured. Finally, the design and evaluation results were again

abstracted and contextualized.

4.4 Ontological and Epistemological Reflections

In the following, the presented research design shall be reflected from an ontological

and epistemological point of view to point out the core assumptions of the research. In

this context following the definitions by Vaishnavi and Kuechler (2007), an ontological

stance describes the underlying assumption about the nature of reality (e.g., what is real

and what is not) while an epistemological stance describes the underlying assumption

about the nature of knowledge (e.g., how knowledge can be derived).

In DSR projects, questions of ontology and epistemology are often treated rather

implicitly (Niehaves 2007). Nevertheless, in the existing discourse, some scholars see

Design Science as a third paradigm in addition to positivism and interpretivism

(Vaishnavi and Kuechler 2007). Other researchers emphasize the compatibility of DSR

with existing research paradigms, for example positivism (Marshall and Mckay 2005;

Niehaves 2007). An argument for the former view is that design science aims at gaining

4.4 Ontological and Epistemological Reflections 54

knowledge through the creation of artifacts which is epistemologically different from

other paradigms (Vaishnavi and Kuechler 2007).

However, as Niehaves (2007) points out, the prescriptive knowledge gained in DSR is

inevitably embedded in further types of justificatory knowledge such as theoretical,

descriptive and empirical knowledge. Additionally, the knowledge contribution of DSR

is often not restricted to the knowledge embedded in the artifact as explained in section

3.6.2 but can also comprise theoretical knowledge. Consequently, depending on the

approach to gain this theoretical knowledge, DSR can be conducted following a

positivistic approach (Hevner et al. 2004; March and Smith 1995) or other existing

paradigms. Marshall and Mckay (2005) for example point out that interpretive or

critical approaches to DSR, which aim at understanding and analyzing the impacts of an

artifact’s introduction and usage in the field, can similarly be applied.

The research in this thesis follows a positivistic paradigm which will be explained in the

following, analyzing the general ontological assumption and the epistemological stance

of this research. The basic ontological assumption of positivistic research is the

existence of a single, objective reality, which comprises facts that can be accessed and

observed by the researcher (Carson et al. 2001; Vaishnavi and Kuechler 2007; Weber

2004). In the presented research design, the identified NLR and their classification, as

well as characteristics of the discovery process itself (e.g., the time needed to

accomplish requirements discovery) can be seen as facts which are directly observable

by the researchers. This stance is also expressed in the choice of quantitative evaluation

methods like simulations and experiments which are generally associated with

positivistic research (Marshall and Mckay 2005).

From an epistemological perspective, positivistic research predominantly aims at

deriving theoretical knowledge through the definition and test of hypotheses and a

research focus on generalization and abstraction (Carson et al. 2001). Furthermore, there

is a concentration on description and explanation, while for example interpretative

approaches rather focus on understanding and interpretation (Carson et al. 2001;

Vaishnavi and Kuechler 2007). In the research at hand, assumed effects of design

principles on requirements mining productivity will be formulated as hypotheses.

Subsequently, through the instantiation of these design principles in an artifact, the

4.5 Summary 55

hypotheses can be tested. The conceptualization of the artifact using generic design

principles for a class of systems (RMS) favors the generalization and abstraction of the

results. The derived theoretical knowledge can help to explain how these design

principles, when implemented in an artifact, can affect requirements mining

productivity.

Table 2 summarizes the ontological and epistemological stance of this thesis.

Perspective Thesis Stance

Ontological Single, objective reality exists

Facts can be accessed and observed by the researcher

Epistemological Derive theoretical knowledge through the definition and test of hypotheses

Research focus on generalization and abstraction

Concentration on description and explanation

Table 2: Ontological and Epistemological Stance of the Thesis

4.5 Summary

In this chapter, an overview of DSR as the overall methodology of this thesis was

provided. Design science terminology to describe different types of artifacts and

elements of their conceptualization (e.g., design requirements) in the context of this

thesis has been introduced. Moreover, the dualist nature of design, being both a process

and a product has been discussed along the historic development of the DSR paradigm.

Subsequently, process- and product-oriented DSR frameworks were presented. This

illustration resulted in a selection of two frameworks which will be used in the context

of this thesis, an adapted version of the GMDSR suggested by Vaishnavi and Kuechler

(2007), to structure the design process and the eight components of a design theory

proposed by Gregor and Jones (2007) to structure the design product. Afterwards, the

research design of this thesis was depicted using the adapted GMDSR as a blueprint for

two design cycles. Finally, the ontological and epistemological stance of the thesis was

discussed, characterizing the positivistic nature of the study.

56

5 Artifact Design
12

As previously introduced, Gregor and Jones (2007) distinguish eight components of an

ISDT: (1) purpose and scope of the theory, (2) the constructs that are of interest to the

theory, (3) the principles of form and function (the blueprint or architecture of the

artifact), (4) the artifact’s mutability (the extent to which changes to the artifact are

encompassed by the theory), (5) a set of testable propositions or hypotheses, (6)

justificatory knowledge to give a basis and explanation for the design, (7) principles of

implementation, and (8) a physical instantiation of the artifact.

This thesis presents each of these eight components for a RMS design theory yet in a

slightly adapted order and naming. The order was changed to be able to trace the

artifact’s conceptualization in its actual sequence. The naming was adapted to provide a

consistent and homogenous terminology for the outcomes of each conceptualization

phase: design requirements
13

 as the outcome of the problem awareness phase, design

principles
14

 as the result of the suggestion phase and design features
15

 as the capabilities

of the artifact implemented in the development phase. These changes result in the

following structure: In section 5.1, based on justificatory knowledge, the purpose and

scope of the theory’s artifact is presented and distilled to distinct design requirements.

From these design requirements, applying additional justificatory knowledge, design

principles are derived in section 5.2. In the final artifact conceptualization step, design

principles are mapped to specific design features which are presented within their

expository instantiation, including a summary of the conducted demonstration sessions

(section 5.3). The depiction of the design theory will be completed with a description of

the principles of implementation, the artifact’s mutability and the testable hypotheses

for the experiment evaluation of the artifact (sections 5.4 to 5.6).

12

 Parts of this chapter have been published in Meth et al. (2012b).
13

 Design requirements are referred to as meta-requirements by Gregor and Jones (2007).
14

 Design principles are referred to as principles of form and function by Gregor and Jones (2007).
15

 Design features are referred to as constructs by Gregor and Jones (2007).

5.1 Purpose and Scope 57

5.1 Purpose and Scope

The proposed design theory has the purpose to give explicit prescriptions about how to

develop systems that support requirements mining from NLRR to improve requirements

mining productivity. Productivity is usually conceptualized as an input-output ratio with

the work output as the numerator and the work input as the denominator of the ratio

(Cosmetatos and Eilon 1983). In the case of requirements mining, the quality of the

elicited requirements represents the work output whereas the invested mining effort

represents the work input. The quality of requirements determined by RMS is usually

assessed by a combined measurement of requirements’ completeness and correctness

(Casamayor et al. 2010; Cleland-Huang et al. 2007; Gacitua et al. 2011). The invested

mining effort can be measured by the time required for the mining process. In general,

mining productivity will be improved when either a) the requirements quality is

increased or b) the mining effort is decreased. The conceptualization in the following

sections will derive design requirements, design principles and design features for a

RMS serving this purpose.

The proposed class of systems might be applied to a wide range of NLRR. Sources

include the outcomes of formal requirements collections (e.g., from interviews or

workshops), informal requirements requests (e.g., emails or blog entries), or texts which

were originally created for other purposes (e.g., test protocols or support messages).

Furthermore, RMS can be applied in the context of various software and requirements

engineering methodologies. For example, as outlined in section 2.2, the systems can

support requirements mining in user-centric approaches focusing on a tight integration

of users in the development project as well as market-driven approaches in which a

myriad of informal requirements statements is submitted rather anonymously. In both

cases the nature of the requirements mining task remains the same: A requirements

engineer (or a system) needs to scan through the provided NLRR to identify and

classify requirements. Doing this, two questions are repeatedly answered for the

processed texts: Does this text passage, sentence or word represent a requirement? And

if so, which kind of requirement is it? In the following section, this iterative process is

further investigated, focusing specifically on system-supported requirements mining.

5.1 Purpose and Scope 58

5.1.1 Justificatory Knowledge

Figure 19 depicts the basic steps of system-supported requirements mining which the

thesis is based on. Starting from the provision of NLRR, requirements are identified and

classified by the RMS in a background process resulting in proposed requirements. In

the following, an interactive approval process is performed, driven by the requirements

engineer. This process results in approved (and rejected) requirements.

Figure 19: RMS-Supported Requirements Mining Process

Through the determination of proposed requirements, the RMS supports requirements

engineers in answering the two previously formulated questions: RMS advise

requirements engineers concerning what is a requirement and how to classify it.

Therefore, on an abstract level, the process can be seen as a series of consecutive

decision tasks in which the RMS acts as an advisor and a requirements engineer as the

advice-taker. In this analogy, the assignment of a text passage to a specific requirements

category can be seen as a single decision task which is repeatedly performed throughout

a NLRR. Decision making theory characterizes decision tasks according to multiple

characteristics, amongst others the decision task type (choice vs. judgment tasks), the

number of advisors (one vs. multiple), the advice trigger (solicited vs. unsolicited

advice) and the degree of interaction between advisor and judge (low vs. high

interaction) (Bonaccio and Dalal 2006). Reflecting on the characteristics introduced

above, RMS’ support of requirements mining can be characterized as a decision process

consisting of choice tasks (assignment of distinct requirements categories) given by a

single advisor (the RMS) following a solicited but low interaction.

5.1 Purpose and Scope 59

To derive specific design requirements for RMS, it is important to understand the

general goals associated with the requirements mining process. The generalization and

abstraction of the process to a series of decision making tasks, provides an approach to

identify these general goals. Decision makers follow different goals when confronted

with a decision task. First, they strive to reach a good or even optimal decision.

Therefore, different strategies to optimize decision quality have been proposed (Wang

and Benbasat 2009). However, additionally to decision quality, the idea that decision

making is also influenced by considerations of cognitive effort has been discussed since

the seminal works of Simon (1957). Simon coined the concept of Bounded Rationality

which suggests that human decision makers are limited by multiple factors impeding the

achievement of an optimal decision, including their cognitive processing capacities

(Simon 1957). While Simon discusses cognitive efforts rather as a limitation leading to

suboptimal decision results, cognitive efforts were found to also influence the choice of

a decision strategy. Decision strategy selection is often explained using contingency

models in which a cost and benefit tradeoff determines strategy choice (Beach and

Mitchell 1978; Payne 1982). According to these models, decision makers follow the

dual goal to maximize decision quality and at the same time minimize their cognitive

effort.

To optimize the outcomes of this tradeoff, different types of decision support systems

(DSS) have been proposed (Silver 1991) and effects of the usage of DSS on decision

behavior have been investigated (Todd and Benbasat 1991, 1999). DSS aim at

improving decision results through the provision of advice
16

, building on the idea that

advice characterized by high advice quality will result in decisions with a high decision

quality (Gardner and Berry 1995; Yaniv 2004). Ideally, at the same time cognitive effort

will decrease, as the DSS already prepares the decision and the relevant information for

the decision maker. However, while DSS can improve decision quality and reduce

cognitive effort, the systems may also restrict users in their decision behavior which has

been termed as “system restrictiveness” (Silver 1988). System restrictiveness is defined

as the extent to which decision strategies are pre-selected through the DSS, offering the

16

 In most studies advice is defined as a type of recommendation from the advisor, favoring a particular

 option (Bonaccio and Dalal 2006).

5.1 Purpose and Scope 60

decision maker only a limited choice of strategies which may not include his (or her)

preferred ones (Silver 1988). Therefore, when implementing decision aids, designers

need to carefully consider that the benefits of a decision aid (e.g., reduced cognitive

effort) are not overcompensated by its restrictions.

Table 3 summarizes goals of human decision makers and design requirements of DSS

addressing them.

Goals of Human Decision Makers Design Requirements of DSS

Maximize decision quality Increase decision quality by providing advice with high

advice quality

Minimize cognitive effort Reduce cognitive effort of human decision maker by

providing decision support

Maintain control over decision strategy

selection

Minimize system restrictiveness by allowing users to control

the strategy selection

Table 3: Goals of Human Decision Makers and Design Requirements of DSS

Wang and Benbasat (2009) investigated each of these design requirements as a

perceived factor determining the intention to use decision aids. In their study, decision

aids are components of e-commerce platforms which are used to elicit consumer

preferences, automate their processing, and provide corresponding product advice. They

hypothesize that perceived advice quality, perceived cognitive effort and perceived

restrictiveness determine the intention to use decision aids. Based on their experimental

results, all three factors showed significant effects on the intention to use a decision aid.

As previously depicted, the requirements mining process can be seen as a series of

consecutive decision tasks in which the RMS acts as an advisor and a requirements

engineer as the advice-taker. Therefore, the identified design requirements for systems

supporting decision making in general are assumed to also be applicable to systems

supporting decision making in the context of requirements mining. Consequently, in the

following the identified design requirements for DSS will be related to the specific

context of requirements mining, treating RMS as a sub-class of DSS.

5.1 Purpose and Scope 61

5.1.2 Design Requirements of RMS

DSS aim at improving decision quality through the provision of high quality advice.

Analogously, the quality of requirements proposed by a RMS can be expected to

determine the quality of requirements approved by the requirements engineer. As

introduced earlier, RMS require a knowledge base to be able to identify and categorize

proposed requirements. In general, the quality of requirements proposed by RMS

mainly depends on the contents of the knowledge base used for the background mining

process (Casamayor et al. 2010; Cleland-Huang et al. 2007). An extensive knowledge

base with correctly classified requirements has been found to result in a high quality of

proposed requirements (Casamayor et al. 2010; Cleland-Huang et al. 2007). Therefore,

the design focus of many RDS has been put on the improvement of advice quality

through the provision of high quality proposed requirements (Gacitua et al. 2011;

Goldin and Berry 1997; Kiyavitskaya and Zannone 2008). However, revisiting the

analogy to decision making, high quality proposed requirements only represent a

prerequisite but not the final goal of the process. Only an increase in the quality of

approved requirements will address requirements engineers’ goal of achieving a high

decision quality. As a consequence, the following design requirement is derived:

DR1. Increase quality of approved requirements. The requirements mining

process should be supported by systems which aim at improving the quality of

approved requirements.

To reduce the cognitive effort of requirements engineers during the requirements mining

process, first the question needs to be answered which phases of this process depend on

human cognition. Most RDS implement advice-giving in a background process without

any user interaction. The proposed requirements resulting from this background process

are then presented to the requirements engineer for manual approval. Consequently,

during the actual mining process, the cognitive effort of the requirements engineer is

only determined by the efforts to transform proposed requirements into approved

requirements. In some cases, this might still involve intensive reflection. However, in

5.1 Purpose and Scope 62

most cases, cognitive efforts will be reduced from an active consideration of all decision

options to a rather passive approval of the given advice.

Additionally to the actual decision making process, taking a holistic view on the

cognitive effort of the requirements engineer, manual efforts to create and maintain the

knowledge base have to be taken into account as well and should be minimized. In

summary, the following design requirement is derived:

DR2. Decrease cognitive effort to execute and prepare requirements mining.

The requirements mining process should be supported by systems aiming at a

decrease of the cognitive effort to transform proposed requirements into

approved requirements as well as the cognitive efforts to create and maintain

the underlying knowledge base.

As presented in section 3.3.1, RDS can provide different degrees of automation. Some

systems only support manual requirements discovery (Abrams et al. 2006; Ossher et al.

2009), while others restrict requirements engineers to use the system in a fully

automated mode (Gacitua et al. 2011; Goldin and Berry 1997; Kiyavitskaya and

Zannone 2008). Recapturing decision makers’ goal to maintain control over the

decision strategy selection and limit system restrictiveness, RMS should allow

requirements engineers enough flexibility to choose an appropriate type of processing

support.

Furthermore, system restrictiveness should also be limited concerning the knowledge to

be used during requirements mining. As introduced in section 3.4, RDS can use

different types of knowledge (e.g., imported knowledge vs. retrieved knowledge). To

limit system restrictiveness, different types of knowledge should be usable during

requirements mining. Consequently:

DR3. Limit system restrictiveness during requirements mining. The

requirements mining process should be supported by systems aiming at minimal

processing restrictions concerning the conduction of requirements mining.

5.2 Conceptualization 63

In the following, the process of deriving design principles from the previously identified

design requirements is described.

5.2 Conceptualization

Similarly to the previous section, to derive design principles for RMS, an analogy to

decision making is drawn, based on existing theory on decisional guidance.

5.2.1 Justificatory Knowledge

To address the design requirements formulated in the last section, the question arises

which type of system support to choose. Previously, the requirements mining process

was abstracted to a general decision making process and an analogy between RMS and

DSS was drawn. This analogy shall be further elaborated in the following, introducing

types of decisional guidance implemented in DSS from an existing typology. For the

further conceptualization, those types of guidance will be identified, which match the

previously described design requirements. Based on this selection, design principles

will be derived in the subsequent sections

5.2.1.1 Types of Decisional Guidance

Silver (1991) describes decisional guidance (DG) as the way a DSS informs or

influences decision makers in the structuring and execution of decision tasks. The

author defines a typology of DG based on three different characteristics. First, a

differentiation concerning the targets of guidance can be made. Silver (1991)

distinguishes DG to structure the decision making process and DG to execute it. The

former supports decision makers in selecting the right approach, method or strategy to

make a decision. For example, structural guidance could support choosing an existing

decision strategy such as additive compensation or elimination by aspects
17

. Subsequent

17

 According to Todd and Benbasat (1999), additive compensation is a strategy in which each alternative

is evaluated individually along all relevant attributes. The decision maker assigns a weight and a value to

each attribute and then determines the total score of an alternative. Elimination of aspects is a strategy

based on a comparison of attribute values to threshold values. Alternatives are eliminated if one of their

attributes does not meet a threshold

5.2 Conceptualization 64

to strategy selection, executional guidance can help decision makers in the operational

conduction of the decision task. For example, the system could prompt the user to enter

values or calculate the overall value of an alternative. Second, the typology

differentiates alternative forms of guidance. DG might be implemented in a suggestive

or informative way. Suggestive guidance recommends decision makers which strategy

to choose or which values to enter. Informative guidance on the contrary only provides

decision makers with decision-relevant information without recommending a choice.

For example, a description of the range of possible input values could be regarded as

informative guidance. Finally, Silver (1991) distinguishes different modes of guidance,

describing the ways DG is generated. DG can be predefined, dynamic or participative.

Predefined guidance consists of context-specific information or recommendations

which are defined upfront by experts or regular users and imported into a knowledge

base. In contrast, dynamic guidance is an adaptive mechanism which generates

information and recommendation based on the actual system usage. DG (similarly to

RMS) usually utilizes knowledge bases to generate advice. Dynamic guidance

iteratively builds up additional knowledge base contents. Finally, participative guidance

puts a stronger focus on users’ participation in the determination of guidance-specific

content. For instance, in a decision task based on a decision table with different

alternatives, participative guidance could be implemented by adding functionality to

manipulate the table through ordering or summation. In the following, the presented

types of guidance will be associated with the requirements mining process and the

identified design requirements.

5.2.1.2 Associating Decisional Guidance to Requirements Mining

Investigating the targets of guidance in the context of requirements mining, it is

worthwhile revisiting the process to be conducted. Requirements mining, as previously

introduced, can be seen as a series of consecutive decision tasks in which the

assignment of a text passage to a specific requirements category represents a single

decision task which is repeatedly performed. Although this task requires substantial

knowledge in requirements engineering and the corresponding business domain, it is a

standardized procedure, executed rather similarly every time it is performed. Therefore,

5.2 Conceptualization 65

unlike other decision tasks, it does hardly require support to structure the decision task

in advance of each single decision. But, especially due to the large number of decisions

to be made, it definitely requires execution support to reduce requirements engineers’

cognitive efforts and maintain a high level of quality.

To determine appropriate forms of guidance, an empirical study conducted by Parikh et

al. (2001) provides interesting results. The authors investigated how different forms of

guidance influence decision quality and decision efficiency in an experiment study

involving 141 participants. In this study, participants were asked to examine a historical

data set and identify key characteristics of it. Based on the identified characteristics,

they should assign a suitable forecasting model to process this data set. In its basic

constituents (identification of decision-relevant information and subsequent

classification of this information) the decision task resembles the decisions involved in

the requirements mining process. Parikh et al. (2001) found out that suggestive

guidance outperformed informative guidance concerning both, decision quality and

decision efficiency. The two dependent variables used in their study (decision quality

and decision efficiency) can be associated with the previously derived design

requirements DR1 and DR2. Revisiting the introduced analogy to requirements mining,

increased decision quality is associated with increased quality of approved requirements

and increased decision efficiency can be associated with a decrease in mining efforts.

Therefore, suggestive guidance is expected to be an appropriate means to address DR1

and DR2.

In the same study, Parikh et al. (2001) analyzed how different modes of guidance affect

decision quality and decision efficiency. Their central finding was that dynamic

guidance outperformed predefined guidance concerning decision quality and decision

efficiency. In analogy to the argumentation for the form of guidance, by associating

decision quality and decision efficiency with DR1 and DR2, dynamic guidance can be

expected to result in an increased quality of approved requirements and a decrease of

mining efforts. Parikh et al. (2001) investigated different modes of guidance as

exclusive alternatives. However, dynamic, predefined and participative guidance can

also be combined to improve results. When applied complementary to dynamic

guidance, predefined and participatory guidance can provide additional advice and

5.2 Conceptualization 66

hereby further increase decision quality and decision efficiency. Furthermore, revisiting

the design requirement DR3, additionally applied participative guidance can allow a

higher degree of freedom to the final decision maker which might reduce his perceived

system restrictiveness. Therefore, in the context of requirements mining a

complementary use of different modes of guidance is proposed.

Figure 20: Associating Design Requirements to Different Types of DG

5.2.2 Design Principles of RMS

Which design principles can be derived from the identified types of DG to address the

initial design requirements? In the context of requirements mining, suggestive guidance

can be accomplished by means of automation, resulting in a set of requirements

proposed by the automation algorithm. During the mining of requirements from NLRR,

a text is analyzed to identify relevant words and assign them to requirements categories.

This process can be decomposed into single steps which are repeatedly performed and

follow specific rules (Ambriola and Gervasi 2006). Consequently, they can be translated

into algorithms that can automatically be executed by a computer. Automation

addresses the first two design requirements identified in the previous section. First,

5.2 Conceptualization 67

automation can increase the quality of approved requirements. Reflecting the analogy to

decision making, the quality of approved requirements can be expected to be positively

affected by the quality of proposed requirements. A carefully developed algorithm can

identify a significant percentage of the requirements within a natural language

document and can identify requirements which may have been overlooked in a pure

manual discovery process (Berry et al. 2012). Moreover, as the algorithm will not suffer

from fatigue or decreasing motivation as a human being might do, each part of a

document will be treated with equal attention which can additionally contribute to a

more complete set of requirements. Second, automation should lead to a decrease in

cognitive efforts, as each automatically classified requirement does not need to be

identified and categorized manually by the requirements engineer.

During the manual approval of proposed requirements, the requirements engineer

decides whether to follow the advice of the RMS or not. In the case of requirements

mining, the ambiguity and inconsistency of NLRR often requires a third option:

Requirements need to be adapted or added. In these cases, the automatism needs to be

complemented with functionality supporting manual discovery (Berry et al. 2012;

Kiyavitskaya and Zannone 2008). However, any manual adaptation of automatically

identified requirements represents additional effort for the requirements engineer. To

limit this effect, functionality for manual identification and classification should provide

a high level of usability to enable efficient operations. Additionally to the effects on

DR1 and DR2, capabilities for manual requirements identification and classification

also represent a way to enable participative guidance. Allowing the requirements

engineer further freedom in the mining process can hereby also minimize system

restrictiveness (DR3). In summary, to support the mining process the following design

principle is proposed:

DP1. Semi-Automatic Requirements Mining: RMS should support efficient

automatic and manual requirements mining within NLRR.

As illustrated earlier, automated requirements mining requires an underlying knowledge

base containing terms and a categorization of these terms. Revisiting the identified

5.2 Conceptualization 68

design requirements and relating them to knowledge creation, a corresponding design

principle should provide answers to the following questions: 1) How can the quality of

knowledge be increased and 2) How can (cognitive) efforts of the requirements engineer

to create knowledge be decreased?

Starting with the first question, the quality of the knowledge base can be assessed by its

completeness and correctness. A more extensive knowledge base will only conclude in

better mining results if a sufficient level of correctness is sustained. One approach to

augment the knowledge base with according knowledge is the supplementation of

domain-specific knowledge. Documents that originate from the same domain share

specific requirements elements which are not included in general knowledge (Lemaigre

et al. 2008) (e.g., the data field “frequent flyer number” in the domain “traveling”).

Similarly, specific writing styles or standards for single projects or entire organizations

can result in needs to extend imported knowledge (Cleland-Huang et al. 2007). There

are different ways how domain-specific knowledge can be generated. Addressing the

design requirement behind the second question, the proposed design is supposed to

support knowledge generation in a way that minimizes efforts for the requirements

engineer. Therefore, additionally to predefined guidance, a mechanism to support

dynamic guidance is needed. This can be realized by feeding back results of previous

requirements mining activities into the knowledge base and hereby create and use

retrieved knowledge additionally to imported knowledge. Although this process

requires some supervision to sustain quality, this type of knowledge supplementation

can be expected to be a lot more efficient than manual creation of domain-specific

knowledge. Consequently, the following design principle is proposed:

DP2. Usage of imported and retrieved knowledge: RMS should use both

manually imported and automatically retrieved knowledge during automatic

mining.

An overview of the conceptualization process from design requirements via types of

DG to design principles is provided in Figure 21. The figure shows how the identified

5.3 Expository Instantiation 69

design requirements of RMS can be addressed by different types of DG. Furthermore, it

outlines which design principle of RMS is associated with which type of DG.

Figure 21: Deriving Design Principles from Design Requirements

5.3 Expository Instantiation

In the final step of the conceptualization, the identified design principles are mapped to

design features. Design features are specific artifact capabilities to satisfy design

principles, for example the algorithm chosen for automatic mining. Figure 22

summarizes the design of the artifact from design requirements via design principles to

design features and illustrates the mapping between these conceptualization steps.

In allusion to the class of systems (namely RMS) and the process to be supported

(requirements mining) the implemented system is referred to as “REMINER”. Similarly

to former approaches (Casamayor et al. 2010; Cleland-Huang et al. 2007; Vlas and

Robinson 2012), REMINER uses NLP and IR techniques to implement automatic

requirements mining and additionally contains functionality to enable manual

identification and classification.

5.3 Expository Instantiation 70

Figure 22: Mapping Design Principles to Design Requirements and Design Features

5.3.1 System Architecture

REMINER is designed as a web based client-server system implementing a three-tier

architecture comprising a data tier, an application tier and a presentation tier. Figure 23

provides an overview of the system architecture. Each of the components was either

implemented in the context of this thesis project or is publicly available as open source.

Figure 23: REMINER System Architecture

5.3 Expository Instantiation 71

The data tier consists of two components: one to store the data and one to map data

elements to the objects of the application tier. For data storage, the database

management system MySQL
18

 is used. MySQL was chosen due to its maturity, wide-

spread usage and open source availability. For the mapping between objects and the

data storage, MyBatis
19

 is used. MyBatis allows encapsulating SQL
20

 statements in

XML
21

 configuration files which drastically reduces the amount of necessary code in

comparison to lower level Application Programming Interfaces (APIs) like JDBC
22

 or

ODBC
23

.

The application tier is implemented in Java following the object-oriented programming

paradigm and comprises several Java classes which control and process all system

functionalities. Methods for preprocessing, as well as manual and automatic

requirements mining are modularized in an Application Programming Interface (API).

This API also integrates an existing NLP framework (MorphAdorner
24

) which is used

during preprocessing. There are various alternative open source NLP frameworks with

similar functionality such as Apache OpenNLP
25

, Standford NLP
26

 or Mallet
27

.

MorphAdorner was chosen due to its functional completeness and comparatively

elaborate documentation. The application tier strongly interacts with the JavaBeans

within the presentation tier.

The presentation tier is based on Java Server Faces (JSF) and enables the user

interaction and presentation of the results. JSF is a framework standard to develop

graphical user interfaces for web applications. JSF was chosen as it enables a strict

separation of behavior and presentation functionality, following a model-view-

controller pattern. Furthermore, JSF supports the development of rich internet

applications which simulate a desktop-like user experience in web applications.

18

 http://www.mysql.de/ (10.4.2013).
19

 http://mybatis.github.io/mybatis-3/ (10.4.2013).
20

 Structured Query Language
21

 Extensible Markup Language
22

 Java Database Connectivity (JDBC) is a proprietary Java-based API to access database management

 systems.
23

 Open Database Connectivity (ODBC) is a standard C programming language middleware API to access

 database management systems.
24

 http://morphadorner.northwestern.edu (10.4.2013).
25

 http://incubator.apache.org/opennlp (10.4.2013).
26

 http://nlp.stanford.edu (10.4.2013).
27

 http://mallet.cs.umass.edu (10.4.2013).

http://en.wikipedia.org/wiki/JDBC
http://en.wikipedia.org/wiki/ODBC

5.3 Expository Instantiation 72

Multiple frameworks implement the JSF standard (e.g., ICEfaces
28

 or RichFaces
29

). For

REMINER PrimeFaces
30

 was chosen due to its broad coverage of different JSF

components. Choosing a JSF framework also determined the further components of the

runtime environment: a web server and a servlet container which implement the JSF

specifications. For this purpose, Apache Tomcat
31

 was selected being a very popular

open-source web server and web container which implements JSF specifications.

5.3.2 Processing

Figure 24 provides an overview of the design features implemented in REMINER and a

typical process to use them
32

. In practice, variations of this process are possible, for

example the provision of imported knowledge (sub-process one) could be a one-time

activity just to be able to process the very first NLRR.

Figure 24: Requirements Mining Process Supported by REMINER

28

 http://www.icesoft.org/java/projects/ICEfaces/overview.jsf (10.4.2013).
29

 http://www.jboss.org/richfaces (10.4.2013).
30

 http://primefaces.org/ (10.4.2013).
31

 http://tomcat.apache.org/ (10.4.2013).
32

 In this figure any text in italics represents examples.

5.3 Expository Instantiation 73

First, during manual knowledge creation, imported knowledge can be manually

uploaded to the knowledge base by a knowledge engineer. Imported knowledge consists

of terms which are associated with a specific requirements category (e.g., “credit card

number” with the category “data requirement”).

Second, during preprocessing, NLRR are transformed into single terms which serve as

an input for the automatic mining algorithm. For this purpose, NLP techniques like

Token Detection, Part of Speech (POS) Tagging, Stop Word Elimination and Word

Lemmatizing were used. The result of this process is a set of tuples (term, POS tag), for

example (“supplier”,”noun”).

Third, automatic mining is enabled by an IR module that consists of various algorithms

based on the vector space model as suggested by Baeza-Yates and Ribeiro-Neto (1999).

The aim of the algorithms is to measure the similarity of terms extracted from the

documents with terms from the knowledge base and hereby assign requirements

categories. Therefore, the fundamental functioning of vector model-based search

engines is adapted: The categories are indexed like documents and the terms are the

search queries. Consequently, the similarity of a term to one of the categories is

interpreted as the probability of the term belonging to this category. To index the

categories, retrieved knowledge is used. The frequency in which a term has been

assigned to a requirements category in retrieved knowledge determines its index value.

Following this logic, probabilities for all terms in the NLRR are calculated based on

retrieved knowledge (Step 3.a). Additionally, probabilities are calculated based on the

POS of a term. For example, for a noun it is more likely to be assigned to the category

“data” than to “activity”. POS probability values have to be defined before running the

algorithm. The POS probabilities can be defined by using the percentage of assignments

in the knowledge base. For instance, if 60% of all existing assignments for the first

category were verbs, the weighting factor for a verb in the first category would be 0.6

(Step 3.b). Finally, probabilities are calculated based on imported knowledge. By

default, for a term which is assigned to a requirements category in imported knowledge,

a probability of 1 (to belong to this category) is calculated (Step 3.c). The three

probability values calculated in 3.a to 3.c are then integrated into a single, total

probability value for each category (Step 3.d). The total value of the category with the

5.3 Expository Instantiation 74

highest probability is subsequently compared to a threshold (which can be customized

to a value between 0 and 1). In case the total probability exceeds the threshold, the term

will be assigned to the corresponding category (and otherwise will not). Figure 25

summarizes the individual processing steps during automatic mining.

Figure 25: Individual Processing Steps During Automatic Mining

Fourth, during manual mining, the results of the automation process are approved.

During approval, requirements that have been suggested by the algorithm can be

changed or even deleted. Figure 26 shows a screenshot of the user interface for manual

mining. Requirements are highlighted within NLRR like interview transcripts,

workshop memos or narrative scenarios. Different requirements categories are

represented by different highlighter colors, incorporating the metaphor of using text

markers in physical documents. The initial list of requirements categories and thus

different highlighting colors is based on the main requirements types described by

(Robertson and Robertson (2006) in their Volere requirements process. Accordingly,

functional requirements and non-functional requirements are differentiated. The former

one is further split into the categories “data” (for text passages describing data fields or

objects) and “activity” (for text passages describing a behavior of either the user or the

system). Additionally, the category “actor” can be used to indicate if a requirement is

rather associated to a user activity or a system activity. The text in the figure (in this

case an interview transcript) contains highlightings, marking single words or entire text

5.3 Expository Instantiation 75

passages with the highlighter color of a specific category. Users can choose a

highlighter color and highlight words with a single click. Another single click deletes

the highlighting again.

Figure 26: REMINER Screenshot: User interface for Manual Mining

Moreover, further requirements can be added. The finally approved requirements are

then used for automatic knowledge creation of retrieved knowledge. Retrieved

knowledge consists of terms and their associated requirements categories and POS tags.

Categories are assigned through the manual mining process. For example, if one

specific term or POS is often highlighted manually as one category within a domain,

this category is characterized through the term or POS. As the same term could be

manually assigned to different categories (e.g., by different requirements engineers), the

mining algorithm can only calculate probabilities for assignments of terms to categories,

based on the number of previous manual assignments. As shown in the related work

chapter, most existing works concentrate on either building up requirements knowledge

from NLRR (Gacitua et al. 2011; Goldin and Berry 1997; Kof 2004; Rayson et al. 2000)

or use imported knowledge to support the mining itself (Ambriola and Gervasi 2006;

Kiyavitskaya and Zannone 2008). In the concept presented in this thesis, these two

approaches are combined in a closed loop to reduce knowledge creation efforts.

5.3 Expository Instantiation 76

5.3.3 Artifact Demonstration

Closely aligned with the artifact’s instantiation, it was demonstrated to experts to gather

feedback. In the following, the procedure and results of the demonstration sessions are

summarized.

In the prototype design cycle, the artifact was presented to requirements engineering

experts to gather formative feedback towards the artifact’s usefulness. To accomplish

this, seven demonstration sessions were organized, involving one to four requirements

engineering experts and two researchers each. In total 11 experts participated, all of

them having extensive experience in requirements engineering (on average 9.7 years).

The sessions lasted for about 1.5 hours and included a pre-questionnaire, the

presentation of the prototype and its discussion with the experts. Each of the feedback

items was traced back to the related design feature and design principle if possible. In

the final design cycle the artifact’s ease of use was assessed by usability experts,

including usability consultants and professors for human computer interaction. An

overall number of five sessions with 9 experts was conducted. Again, the sample

consisted of experienced participants (on average 4.7 years of experience in usability

engineering). The sessions were lasting for about 1.5 hours and were organized

analogically to the demonstrations in the prototype cycle.

An overall number of 197 feedback items was collected during the demonstration

workshops. In the following, two examples of such feedback items will be given: one

from the first cycle of demonstrations (focusing on usefulness) and one from the second

(focusing on ease-of use).

Concerning the functionality for requirements mining, requirements experts pointed out

that for ERP
33

 implementation projects it would be helpful to compare requested data

fields with existing data fields of an ERP system. This feedback can be linked to the

second design principle (Usage of imported and retrieved knowledge). Using both types

of knowledge, general information about existing data fields of an ERP system could be

uploaded as imported knowledge, while company- or project-specific ERP information

could be passed from one implementation project to the next one, using retrieved

knowledge. Through the provision of this knowledge, the requirements mining

33

 Enterprise Resource Planning.

5.4 Principles of Implementation 77

algorithm automatically compares the data fields requested in a NLRR with existing

data fields of an ERP system. This feedback item was also used in the preparation of the

artifact’s evaluation sessions. In the experiment as well as in the simulation, information

about SAP data fields was used as a source for imported knowledge.

The demonstration of the artifact to usability experts led to multiple improvements of

the design features for manual requirements mining. For example, the mechanism to

create or delete highlightings by a single click on a word in the NLRR was suggested in

one of the sessions to increase the efficiency of manual requirements mining.

In summary, the provided response in the demonstrations was primarily technology-

focused and gave only few hints to the underlying design principles. However, the

demonstrations provided valuable and extensive feedback to optimize specific design

features of the presented artifact and hereby usefully complemented the development

activities.

5.4 Principles of Implementation

Gregor and Jones (2007) describe principles of implementation as a design theory

component that comprises the processes and means by which a design is introduced in a

specific context. Related to REMINER, these principles could be guidelines for pilot

projects within an organizational setting. As REMINER has not been implemented in

according projects yet, the following principles are preliminary and subject to revision

after pilot projects have been actually conducted.

Reflecting the derived design principle of semi-automatic requirements mining (DP1),

the proposed interplay of automatic and manual activities should be a central component

of accompanying training activities during the introduction of the system. Users of the

system should be sensitized that although the RMS can propose requirements of high

quality, a final manual approval of the results should be mandatory. Additionally to an

improvement of the results within a specific document, manually added requirements

also increase the quality of the knowledge base (through DP2). Concerning the second

design principle (usage of imported and retrieved knowledge), organizations should take

care to organize continuous supervisions of the knowledge base contents. As more

retrieved knowledge will be automatically supplemented, a supervision of this

5.5 Artifact Mutability 78

knowledge is mandatory to sustain a high level of quality of the knowledge base

contents.

5.5 Artifact Mutability

When introduced into specific organizational contexts, for example during a pilot

project at a software vendor, different adaptions of the artifact can be expected. Due to

the semi-automatic supplementation of knowledge, the initially domain-independent

knowledge base will be significantly changed by domain-specific knowledge. The

dynamics and scope of changes depend on individual usage and access rules of the

organizational context. For example, a company could use the artifact only in selected

domains or companywide. Similarly, access could be restricted to domain experts or be

open to all participants of a software development project. Additionally to the

underlying knowledge base, it can be expected that the initial set of requirements

categories will be extended or changed to cope with a specific context. For instance, the

development of an application with high security standards might lead to a more

detailed sub-categorization of security requirements. Similar to the principles of

implementation, the expected adaptions which were described here are preliminary and

subject to revision after the conduction of actual implementation projects.

5.6 Testable Hypotheses

Gregor and Jones (2007) suggest the formulation of testable propositions to be able to

evaluate the presented design. In this thesis, going beyond the suggestion of Gregor and

Jones (2007), specific hypotheses will be formulated. While propositions describe the

relationship between general constructs, hypotheses depict relationships between

specific variables (Bacharach 1989). In the following, hypotheses for the evaluation of

REMINER and its underlying design will be derived. More specifically, the research

model which is presented subsequently strives to measure effects of alternative

combinations of the depicted design principles on multiple dependent variables. The

research model is tailored to the evaluation of the final artifact version which was

5.6 Testable Hypotheses 79

conducted as an experiment. For the simulation, which was performed during the

prototype design cycle, a separate model will be presented in section 6.1.2.

As introduced earlier, requirements mining productivity is conceptualized as an input-

output ratio wherein the quality of the identified and classified requirements serves as

the output part (numerator of the ratio) and the invested mining effort as the input part

(denominator). This ratio is used as the dependent variable of this study. To evaluate the

quality of automatically identified requirements, precision and recall are common

measures which are similarly employed here (Casamayor et al. 2010; Cleland-Huang et

al. 2007; Gacitua et al. 2011). They are calculated by comparing participants’

requirements mining outputs with expert solutions (Kiyavitskaya and Zannone 2008;

Vlas and Robinson 2012). Recall can be seen as a measure of completeness, comparing

the number of correctly identified requirements with the total number of requirements

existing in a NLRR. Precision represents a measure of correctness and is calculated as

the proportion of correctly identified requirements in comparison to the number of

identified requirements in a NLRR.

Variable Explanation

Recall

Precision

Table 4: Measurements of Recall and Precision in the Context of RMS

The input factor requirements mining effort can be measured by the time required by a

requirements engineer to conduct the mining task, i.e. transforming an unstructured

input document into a set of classified requirements. As the evaluation was based on an

experiment with a fixed time schedule, requirements mining effort was also fixed and

only the differences in recall and precision (i.e., the quality of the identified

requirements) were measured. Consequently, the evaluation measured productivity in a

fixed time period, similar to the studies done by Diehl and Stroebe (1991) and Gallupe

and McKeen (1990).

5.6 Testable Hypotheses 80

The conceptualization of the independent variable is directly linked to the design

principles of the artifact. Both design principles can be switched on and off resulting in

different RMS configurations that can be evaluated separately. For example, semi-

automatic requirements mining (DP1) would be switched on, while the usage of

retrieved knowledge (DP2) would be switched off. While DP1 can be switched on

independently from DP2, DP2 can only be activated when DP1 is switched on. Through

the separate activation of design principles, the effects of each of them can be measured

individually. The resulting three RMS configurations are depicted in Table 5.

RMS configuration Design Principle Activation

 DP1 DP2

(1) Manual mining

(2) Semi-automatic mining with imported knowledge X

(3) Semi-automatic mining with imported and retrieved

knowledge
X X

Table 5: RMS Configurations

Various effects of the design principles of the artifact on requirements mining

productivity are expected.

5.6.1 Expected Productivity Effects of DP1 Related to Recall

Process automation is a well-known mechanism to improve productivity both for IT

supported processes as well as for non-IT supported processes (Atkinson and Kuhne

2003; Jämsä-Jounela 2007). In the case of automated requirements mining, it can be

expected that productivity (measured by recall in a fixed time period) will similarly

improve, as an algorithm can automatically identify a large percentage of requirements

without spending the requirements engineer’s time during the analysis (Cleland-Huang

et al. 2007; Kiyavitskaya and Zannone 2008; Vlas and Robinson 2012).

Investigating this assumption from a theoretical point of view, it is worthwhile

revisiting the analogy to decision making, which was introduced in the

conceptualization. Automatically proposed requirements represent one possible form of

suggestive guidance. In their experimental study, Parikh et al. (2001) showed that

participants with DG outperformed participants without DG concerning the achieved

5.6 Testable Hypotheses 81

decision quality and efficiency. Furthermore, suggestive guidance resulted in an

increase of decision quality and efficiency in comparison to informative guidance.

Being a specific instance of a decision making process, in requirements mining the

application of automation mechanisms should similarly result in improvements of

requirements quality and efficiency in comparison to manual requirements mining.

Investigating the assumption from a process point of view, the recall using a semi-

automatic RMS can be seen as a sum of the automatism’s initial recall and the recall

resulting from subsequent manual adaptions and extensions. These subsequent manual

activities are comparable to using a purely manual RMS: a requirements engineer needs

to read a natural language text document, mark passages containing requirements and

assign requirements categories to them. Therefore, no significant recall difference

between semi-automatic and manual RMS is expected from these manual activities. In

contrast, the initial recall provided by the automatism will remain and can be expected

to have a significant effect. Consequently, the following hypothesis is derived:

H1: In a fixed time period, the use of RMS that support semi-automatic

requirements mining with imported knowledge will result in higher recall than

the use of RMS that only support manual requirements mining.

5.6.2 Expected Productivity Effects of DP2 Related to Recall

As described above, automated requirements mining requires a knowledge base

containing requirements and a categorization of these elements. Each automatically

identified requirement can be traced back to a specific entry in this knowledge base.

Accordingly, a more elaborate and extensive knowledge base can generally be expected

to result in a higher percentage of identified requirements and therefore a reduction of

manual efforts (Cleland-Huang et al. 2007). In their empirical study on the effects of

DG, Parikh et al. (2001) observed similar effects concerning the usage of dynamic

guidance. Dynamic guidance which is based on knowledge that is dynamically created

through the usage process, outperformed predefined guidance concerning decision

quality and decision efficiency.

5.6 Testable Hypotheses 82

Additionally to the size of the knowledge base, the domain-specificity of the knowledge

plays an important role in the requirements mining process (Casamayor et al. 2010).

Generally, a higher degree of domain-specificity is expected to deliver better mining

results (Lemaigre et al. 2008), for example by including domain-specific requirements

(like “physician” or “nurse”) additionally to domain-independent ones (like “manager”

or “worker”). As depicted earlier, two sources of knowledge to fill the knowledge base

are proposed. Additionally to manually imported knowledge, which is commonly used

in existing RMS (Kiyavitskaya and Zannone 2008; Vlas and Robinson 2012), the

content of the knowledge base can be extended by automatically retrieved knowledge

originating from documents that have been processed before. As described in the

conceptualization of DP2, this should increase the size and domain-specificity of the

knowledge base. Therefore the following hypothesis is derived:

H2: In a fixed time period, the use of RMS that support semi-automatic

requirements mining with imported and retrieved knowledge will result in higher

recall than the use of RMS that only support semi-automatic requirements

mining with imported knowledge.

5.6.3 Expected Productivity Effects of DP1 and DP2 Related to

Precision

As described earlier, both recall and precision determine requirements quality and

therefore are of utmost importance for the overall requirements mining process.

However, in automated requirements mining from NLRR, recall is significantly more

important than precision, as it is a much simpler activity for a requirements engineer to

evaluate a set of candidate requirements and reject the unwanted ones than it is to

browse through an entire document looking for entirely missed ones (Cleland-Huang et

al. 2007). The same argument is used by Berry et al. (2012) who state that requirements

engineering tools that treat NLRR “should be tuned to favor recall over precision

because errors of commission are generally easier to correct than errors of omission”

(Berry et al. 2012, p.213). Because of that, the design principles of the artifact primarily

address an improvement of the recall rate and do not target precision improvements.

5.7 Summary 83

Moreover, while the recall rate is predominantly determined by the automatism’s ability

to find as many relevant words and text passages as possible, the precision rate is

strongly linked to the quality of the judgments following the identification of a

word/text passage. A significant precision improvement could therefore only be realized

if the algorithm provided better judgments than a human. However, as the requirements

proposed by the RMS are based on knowledge created by humans, this cannot be

expected.

Therefore the following hypothesis is derived:

H3: In a fixed time period, the use of manual RMS, RMS that support semi-

automatic requirements mining with imported knowledge and RMS that support

semi-automatic requirements mining with imported and retrieved knowledge

does not result in significant differences in precision.

Figure 27 summarizes the hypotheses in a comprehensive research model.

Figure 27: Research Model for Ex-Post Evaluation

5.7 Summary

In this chapter a design theory for RMS was presented, along the design theory

components proposed by Gregor and Jones (2007). Starting with the purpose and scope

of the artifact, distinct design requirements were derived based on decision making

theory. The decision making process provides a significant analogy to requirements

mining which has been exploited for the justification of the proposed design. In the

subsequent conceptualization step, design principles were mapped to the requirements,

5.7 Summary 84

again utilizing justificatory knowledge from decision making theory. Then, design

principles were mapped to actual design features of an artifact which has been

instantiated as part of this thesis project. Subsequently, principles of implementation

and the artifact’s mutability were described. Finally, the proposed research model

consisting of three hypotheses was conceptualized. Table 6 summarizes the contents of

the derived theory and relates it to the original design theory components of Gregor and

Jones (2007).

Design Theory Component
34

 Reference to this component in the presented theory

(1) Purpose and scope The presented design theory aims to give explicit prescriptions

about how to develop systems that support requirements mining

from NLRR to improve requirements mining productivity. The

proposed class of systems might be applied to a wide range of

NLRR and in the context of various software and requirements

engineering methodologies.

According to this purpose and scope, design requirements have

been derived.

(2) Constructs Specific design features for RMS have been presented.

(3) Principles of form and

function

Design principles to support the requirements mining process as

well as knowledge creation and maintenance processes have been

derived.

(4) Artifact mutability Contents of the knowledge base used for automatic mining as

well as the underlying scheme for requirements categorization

depend on the context of use and can therefore be adapted.

(5) Testable propositions Three hypotheses were formulated to test the effects of different

configurations of design principles on requirements mining recall

and precision.

(6) Justificatory knowledge Design requirements and design principles were derived from

decision making theory and general requirements mining

knowledge.

(7) Principles of

implementation

Two principles of implementation were formulated: Mandatory

final approval of the results and the organization of continuous

supervisions of the knowledge base contents.

(8) Expository instantiation REMINER, an expository instantiation of an RMS has been

presented, including a depiction of its system architecture and a

typical process to conduct system-supported requirements

mining.

Table 6: Components of a Design Theory for RMS

34

 According to Gregor and Jones (2007).

85

6 Artifact Evaluation

Pries-Heje et al. (2008) distinguish two types of DSR evaluation approaches, depending

on the time they are conducted: ex ante and ex post evaluations. While ex ante

evaluations are performed before the system is implemented, ex post evaluations take

place after the system construction (Pries-Heje et al. 2008). However, in DSR projects

consisting of multiple iteration cycles, a third form of evaluation takes place which will

be referred to as interim evaluation. This type of evaluation is conducted on the basis of

an artifact prototype version. Although a prototype may already be an implemented

artifact, it does not represent the final design product (and therefore would not qualify

for an ex post evaluation).

The design theory presented in chapter 5 represents the result of the final design cycle.

However, as depicted in section 4.3, the artifact in this thesis project was designed in

two iteration cycles, with two separate evaluations. Therefore, in the following, the

methodology and results of both evaluations will be presented. The former represents

the assessment of the artifact prototype version (an interim evaluation), while the latter

represents the artifact’s ex post evaluation.

6.1 Interim Evaluation
35

The interim evaluation was carried out to investigate the interplay of the preliminary

design principles
36

. More specifically, the effects of different amounts and types of

knowledge in corporation with the usage of automatic requirements mining were

investigated.

The decision to perform this evaluation in form of a simulation was based on two

factors: First, a simulation allows precise measurements of effects in a laboratory

environment, whilst controlling other factors which are not of interest. Second, in

comparison to evaluation approaches which rely on human interaction, simulations

provide the flexibility to explore different factors (in this case different amounts and

types of knowledge) with comparatively low effort.

35

 Parts of this section are based on Meth et al. (2013b).
36

 The design principles presented in 5.2.2 represent the final conceptualization as a result of the final

design cycle. In the preceding prototype design cycle, preliminary design principles were derived.

6.1 Interim Evaluation 86

Prior to the description of the evaluation results, the simulation setup will be outlined in

the following section, including the utilized evaluation dataset, the underlying research

model for the simulation and the procedure to conduct the simulation.

6.1.1 Dataset

The simulation was based on a dataset
37

 which is made up of multiple natural language

requirements documents and the knowledge to be used for automatic requirements

mining. Furthermore, a gold standard has been used which is the expert solution to

assess the results of automatic requirements mining.

The natural language requirements documents consisted of previously conducted

interview transcripts. These interviews were carried out with 12 potential end-users to

gather their requirements for two projects. Both projects intend to implement

smartphone apps associated with the “travel management” domain. The first application

is a train reservation app which allows users to make reservations for regional and

national trains, while the second application is a car sharing app which allows users to

get in touch with other people for the purpose of joint car drives to similar destinations.

To demonstrate the commonalities of these two apps and how they are both associated

to the traveling domain, it is worthwhile to investigate corresponding example websites

for train reservations
38

 and car sharing
39

. The main functionality of both websites is

very similar: they offer functionality to enter information about the origin and

destination of the travel, the start date and time and whether a direct connection is

required. However, beyond these domain-specific similarities (which would also be

typical for a flight reservation website as another example for a traveling app), there are

also differences. For example, on the train reservation website, different types of rail

cards can be selected and the option to use a sleeper train can be chosen. Similarly, on

the car sharing website features to select “women-only lifts” or “smoking allowed lifts”

are provided.

37

 Appendix B and C of this thesis contains the interview transcripts and imported knowledge of the

 dataset which was used in the simulation. Parts of this dataset were also used for the experiment

 evaluation.
38

 http://www.nationalrail.co.uk/ (28.01.2013).
39

 http://www.carpooling.co.uk (28.01.2013).

6.1 Interim Evaluation 87

In the interviews, participants should verbalize their requirements using scenario

methodology, describing a typical process of using the smartphone app. This description

should comprise each single interaction step and include the data to be exchanged, the

activities to be performed and the non-functional aspects which are of importance (e.g.,

usability concerns). Each interview lasted 5-10 minutes and transcripts of about one

page per interview were created. The participants were students, who had no specific

requirements engineering knowledge. They were on average 23.7 years old, six of them

male and six female. From the 12 conducted interviews, 9 were finally selected for the

simulation, four of them referring to a train reservation project and five to a car sharing

project.

The knowledge used for the automation algorithm consisted of both imported and

retrieved knowledge. Imported knowledge was uploaded from different data sources,

depending on the requirements category: for the role category, a list of pronouns from

the Oxford Dictionary was extracted. For the activity category, a list of action verbs

from Hart (2004) was used. For the data category the master data of a SAP Travel

Management application was used (SAP AG 2012). For the non-functional category, an

extract of usability goals and design behaviors from Sharp et al. (2007) was imported.

Two different sets of retrieved knowledge were applied: one set was retrieved from

texts about the train reservation app and one set from texts about the car sharing app.

To derive a gold standard, each of the 9 interviews was manually highlighted by three

requirements engineering experts. After resolving conflicts and contradictions, the final

agreed-upon solution of the experts was taken as the gold standard.

6.1.2 Research Model for Interim Evaluation

As explained earlier, the research model, which was derived in section 5.6 is tailored to

the evaluation of the final artifact version which was conducted as an experiment. For

the simulation described here, a separate model has been developed and will be

presented in the following.

The goal of this evaluation was to investigate how the amount and type of knowledge

which is used for automated requirements mining affects the quality of the results. As

described earlier, to evaluate the requirements mining quality, recall is a common

6.1 Interim Evaluation 88

measure (Casamayor et al. 2010; Cleland-Huang et al. 2007; Gacitua et al. 2011) which

was equally applied in this evaluation. It was calculated by comparing the automatism’s

outputs with the gold standard introduced in the last section. In the simulation

conducted here, requirements mining efficiency was not of interest, as the evaluation

focused on the outcomes of automatic requirements mining and therefore did not

involve human interaction through requirements engineers.

The independent variable amount of knowledge is operationalized by the number of

documents used to build up the knowledge base. The study thereby simulates how

knowledge would probably be extended in practice: starting from an initial, imported

amount of knowledge, the knowledge base would be gradually augmented through

retrieved knowledge from already processed NLRR.

The type of knowledge is represented by two independent variables: Origin and project-

specificity of knowledge. Origin of knowledge is operationalized by using different

contents within the knowledge base: only imported knowledge, only retrieved

knowledge, or a combination of both. Project-specificity of knowledge is

operationalized by using retrieved knowledge for either the same or a different project.

Both projects, however, belong to the same domain as projects from different domains

may restrict reuse of knowledge to specific types of requirements (e.g. non-functional

requirements). The resulting evaluation model is depicted in Figure 28.

Figure 28: Research Model for Interim Evaluation

6.1 Interim Evaluation 89

6.1.3 Evaluation Procedure

Based on the introduced dataset and evaluation model, two simulations were per-

formed. In both simulations, requirements were automatically elicited from four

exemplary interview transcripts. The resulting recall rates were then averaged to a

single result. Subsequently, the simulations were repeated with a different amount of

retrieved knowledge. For each result, the recall rate was examined by comparing the

results of the automatism to the gold standard.

The first series of simulations focused on the effects of different origins of knowledge

on requirements mining quality. Additionally to the origin of knowledge, the amount of

retrieved knowledge was varied by using a different number of texts to populate the

knowledge base with retrieved knowledge. This resulted in a series of 11 different

simulation runs. The first run only used imported knowledge, the following five runs

only used retrieved knowledge (for 0-4 texts) and the final five runs a combination of

both (for 0-4 texts). The analyzed natural language documents as well as the retrieved

knowledge for this series of simulation originated from the project for the car sharing

application, resulting in a constantly high project-specificity of the knowledge. Table 7

summarizes the performed simulation runs.

Simulation Run # Origin of Knowledge Number of texts

40

1 Imported Knowledge -

2 to 6 Retrieved Knowledge 0 to 4

7 to 11 Imported & Retrieved Knowledge 0 to 4

Table 7: Simulation Runs for Variable Origin of Knowledge

The second series of simulations (Table 8) focused on the effects of project-specificity

of knowledge on requirements mining quality. For the project-specific simulation runs,

only retrieved knowledge from the car sharing project was taken. For the project-

independent runs, only retrieved knowledge from the train reservation project was

taken. The interviews to be analyzed were related to the car sharing project. Similar to

the first series, the amount of retrieved knowledge was additionally varied. This resulted

in a series of 10 different simulation runs. The first five runs simulated a project-

40

 Only related to Retrieved Knowledge.

6.1 Interim Evaluation 90

specific knowledge base (for 0-4 texts) the next five runs simulated a knowledge base

with knowledge from a different project (for 0-4 texts). In this series, the origin of

knowledge was kept constant, as only retrieved knowledge was used.

Simulation Run # Project-Specificity Number of texts
3

1 to 5 Project-Specific Knowledge 0 to 4

6 to 10 Project-Independent Knowledge 0 to 4

Table 8: Simulation Runs for Variable Project-Specificity of Knowledge

6.1.4 Evaluation Results

Figure 29 depicts the results of the first series of simulation runs which focused on the

effects of different origins of knowledge on mining quality. As expected, the results

suggest that a positive correlation between the number of texts used for the creation of

the retrieved knowledge and the resulting recall rate can be assumed. In addition, it can

be observed that for new projects, which have not identified requirements from NLRR

yet, an initial amount of imported knowledge is necessary to achieve a relevant recall

rate. However, it can be seen that in the conducted simulation the recall from retrieved

knowledge approximately equaled the recall from imported knowledge after three

documents had been analyzed and outperformed it for more than three documents.

Additionally, it is interesting to notice, that imported knowledge in the simulation

seemed to have no further effect if more than three documents had been used for

retrieved knowledge: The recall rate for the combination of imported and retrieved

knowledge approximately equals the recall rate for retrieved knowledge if more than

three documents had been used.

6.1 Interim Evaluation 91

Figure 29: Effects of Origin of Knowledge on Requirements Mining Quality

Figure 30 depicts the results of the second series of simulation runs which focused on

the effects of project-specificity of knowledge on mining quality.

Figure 30: Effects of Project-Specificity of Knowledge on Req. Mining Quality

Interestingly, in the conducted simulation series, project-specificity of knowledge had

an ambiguous effect. Recall rates again seem to develop in positive correlation with the

6.2 Ex-Post Evaluation 92

amount of knowledge, but no clear difference could be observed concerning project-

specificity itself. Even though both projects are related to the same domain (travel

management), this was an unexpected result, as the two applications which the

interviews based on (a train reservation and a car sharing application) provided

significant differences. These observations allow the interpretation that automated

requirements mining can significantly benefit from an exchange of requirements

knowledge across projects within the same domain. In section 7.1.1, the results of the

simulation will be discussed in more detail.

6.2 Ex-Post Evaluation
 41

The ex-post evaluation was carried out to test the effect of the two (final) design

principles (DP1, DP2) on requirements mining productivity. As described in the related

work chapter, previous research on RMS evaluations focused on simulations,

comparing the results of the corresponding systems with a previously defined gold

standard. Although simulations allow precise measurements of dependent variables in a

controlled setting, they do not incorporate human interaction. RMS are supposed to be

used by requirements engineers, who should be consequently involved in the evaluation

of the systems to be able to compare the outcomes of system-supported requirements

mining with the as-is situation of manual discovery. Therefore, for the ex-post

evaluation of REMINER, an experiment evaluation as suggested by Hevner and

Chatterjee (2010) was conducted. By using a laboratory experiment, design principles

can be accurately adjusted and their impacts on requirements mining productivity can be

measured while controlling for potential influential factors (e.g., requirements mining

knowledge, motivation). The results achieved through system-supported requirements

mining can then be compared to manual discovery, addressing the research gap

described above.

The ex-post evaluation was based on the hypotheses and research model derived in the

previous chapter. Following these hypotheses, the identified design principles (DP1 and

DP2) were expected to improve requirements mining productivity. The actual outcomes

41

 Parts of this section have been published in Meth et al. (2012a).

6.2 Ex-Post Evaluation 93

of the experiment will be specified in the following, after a description of the evaluation

methodology.

6.2.1 Evaluation Methodology

The overall experiment consisted of a laboratory experiment and a field experiment.

First, the artifact was evaluated in a laboratory setting with student participants. By

using student participants, a relatively large sample size can be obtained with reasonable

efforts and adequate statistical power can be achieved (Gallupe and McKeen 1990).

Second, to evaluate the generalizability of findings from the student participants, the

same experiment was carried out with a small sample of requirements engineers in a

field setting. By comparing the behavioral patterns of the two groups of participants, the

external validity of the results from the laboratory setting can be evaluated. It should be

noted that it was not intended to merge the two samples to test the hypotheses, but only

to use the results of the small sample of requirements engineers as an examination of the

student sample’s external validity. All conclusions from the experiment should be

reliably drawn from the relatively large sample of students.

A single factor within-subject design was used for both the laboratory experiment and

the field experiment to increase statistical power for each experimental setting and

reduce error variance introduced by individual differences (Hill and Lewicki 2006). The

within-subject factor is the RMS configuration. This factor has three levels: manual

requirements mining, semi-automatic requirements mining with imported knowledge,

and semi-automatic requirements mining with imported and retrieved knowledge.

6.2.1.1 Pilot Test

A pilot test was conducted to estimate the necessary sample size and appropriate length

of the interview transcripts used in the experimental tasks. The same single factor

within-subject design was applied in the pilot test as in the main experiment, and three

graduate students participated in the pilot test. The results indicated that the lowest

correlation among the repeated measures was 0.35. Calculated with G*Power 3 (Faul et

al. 2007) to detect a medium effect (f= 0.25) at the significance level of 0.05 with a

sufficient statistical power (about 0.80) (Cohen 1988) the sample size should be at least

6.2 Ex-Post Evaluation 94

35. Thus, the sample size for the laboratory experiment was set to be 40 to detect a

medium effect on recall and on precision.

In the pilot test, within the experimental time for each task (5 minutes), the maximum

amount of words that the participants processed was 247, 277, and 328 for manual

requirements mining, semi-automatic requirements mining with imported knowledge,

and semi-automatic requirements mining with imported and retrieved knowledge

respectively. Accordingly, the length of the interview transcripts used in the main

experiment was set to be 325 words. With this length, most of the participants are

expected not to be able to completely process all the text within the experimental time,

but they can achieve their optimal recall and precision while working at their normal

pace. A very small number of participants might be extraordinarily fast in requirements

mining and be able to complete the first round of requirements mining within the

experimental time, allowing them to further improve recall and precision in the

remaining time by checking the first round results. The interview transcripts were not

set up to be of a length that no participant could possibly complete the first round of

requirements mining because the impact of the automatically mined requirements on the

achieved recall and precision should be limited. Participants should be able to read and

check the automatically mined requirements within the task time which aligns to the

application situation in practice.

6.2.1.2 Participants

According to the sample size calculation, 40 participants were recruited for the

laboratory experiment. The participants were graduate students enrolled in a master

level IS course in a public university at an average age of 25.4 years (SD=2.07).

Age Gender Major Computer

Experience

Experience in

Requirements

Mining

25.4 years

(avg.)

Male: 32

students

Female: 8

students

Master of Business

Informatics: 36 students

Master of Management: 4

students

4.75

(avg. of max. 5)

1.79

(avg. of max. 5)

Table 9: Participants' Descriptive Data (Average Values)

6.2 Ex-Post Evaluation 95

Thirty-two of the participants were male and eight of them were female. Most of the

students (36 of 40) are pursuing a master of business informatics, while four students

are enrolled in a master of management program. The participants have a comparatively

extensive general computer experience (on average 4.75 points on a five point Likert

scale) and low requirements mining experience (1.78 point on a five point Likert scale).

Participants were evenly assigned to six time slots on three experimental days, with 6 or

7 participants per time slot.

6.2.1.3 Experimental Procedure

The experiment was carried out in a multimedia classroom at the university. A lecturer

of the IS course introduced the experiment as an exercise for a course-related

assignment with the objectives of understanding different requirements categories

relevant for Business Intelligence and learning how to use a web application to perform

requirements mining from text documents. No participant had access to the RMS before

the experiment and all participants were unaware of the purpose of the experiment.

Figure 31: Experimental Procedure

6.2 Ex-Post Evaluation 96

To teach how to perform requirements mining and how to use the web application for

this purpose, the lecturer presented a tutorial video to the participants. Then, the

participants were asked to fill in a brief questionnaire about their demographic

information, computer experience and requirements mining experience. Next, the

lecturer guided the participants through a training session to make them familiar with

requirements mining. The participants were asked to perform requirements mining

using an interview transcript about requirements of a train reservation application for

smartphones. The transcript was chosen from the series of transcribed interviews, which

were described in 6.1.1. In the first five minutes, participants conducted requirements

mining manually. In the next five minutes, they performed requirements mining within

the same transcripts again but with a few automatically mined requirements at the

beginning. Afterwards, the lecturer presented the expert requirements mining results for

the transcript and answered any question raised by the participants. Then the

participants were allowed a five-minute break.

After the break, the lecturer asked the participants to practice their requirements mining

skills with a different set of interview transcripts which contained three transcripts about

requirements of a car sharing application for smartphones. Again, these transcripts were

chosen from the series of transcribed interviews described in 6.1.1. By design,

requirements mining within the three interview transcripts was supported with three

different RMS configurations. To compensate for learning and fatigue effects in the

within-subject design, the presentation order of the three RMS configurations was fully

counterbalanced across the participants, yielding a total of six orders. The participants

were randomly assigned into one of the six orders of RMS configurations. For each

interview transcript, the participants were given five minutes to perform the

requirements mining. Then they were instructed to switch to the next interview

transcript and start requirements mining on it.

In the field experiment, participants were five requirements engineers (targeted users of

the RMS) recruited from a large high-tech company. The practitioner sample consisted

of three males and two females at an average age of 34.8 (SD=3.56) and an average

experience of 5.0 years (SD=5.83) and 3.6 years (SD= 1.14) in requirements

engineering and requirements mining respectively. The participants in the field

6.2 Ex-Post Evaluation 97

experiment followed similar experimental procedures as the ones in the laboratory

experiment, with a few necessary modifications. Firstly, the participants were randomly

assigned into one of the orders of the RMS configurations. Since only five participants

were involved in the field experiment and each participant got a different order of the

RMS configurations through randomization, five among the six orders of the RMS

configurations were covered in the field experiment. Secondly, the purpose of the study

was introduced as “to get experts’ opinions on future design of RMS”. No participant

had access to the RMS before the experimental tasks and the participants were unaware

of the real purpose of the experiment. The participants were told to work at their normal

working pace in different tasks. All the other procedures in the field experiment were

the same as the ones in the laboratory experiment.

6.2.1.4 Experimental Tasks and Materials

To set up the experimental tasks, the following three steps were performed: choose a

knowledge domain, select interview transcripts, and set up the semi-automatic

requirements mining.

A knowledge domain determines the area of knowledge that participants and the semi-

automatic RMS rely on in order to identify and classify requirements. Some knowledge

domains require specialized knowledge and expertise (e.g., computer aided design),

while others only require routine knowledge that can be easily acquired in ordinary life

(e.g., online shopping). Similarly to the simulation, in the experiment, “travel

management” was chosen as the knowledge domain, since this domain does not require

specialized knowledge, and the student participants would be able to identify and

classify requirements by their routine knowledge.

In the experiment, participants were provided a training session to get used to the RMS

before the experimental tasks. To reduce the practice effect, interview transcripts on

different applications were specified for the training and for the experimental tasks

respectively. As already mentioned, transcripts were selected from the interviews

described in 6.1.1. These interviews included requirements descriptions for two

smartphone applications, one for car sharing and one for train reservations. In the

training, a short transcript about requirements of the train reservation application was

6.2 Ex-Post Evaluation 98

provided (238 words). In the experimental tasks, transcripts about requirements of the

car sharing application were used. For the transcripts used in the experimental tasks, the

length, readability, and the distribution of requirements were controlled on. Each

transcript was edited to contain 325 words without sacrificing the integrity and

meaningfulness of the interview content. Examined by the Flesch-Kincaid score, the

three transcripts have similar and high readability (M=75.1, SD=3.50) which indicates

that all the transcripts were highly readable for university students at master level

(Kincaid et al. 1975). To examine the distribution of the requirements in the transcripts,

two requirements mining experts analyzed the transcripts independently. Their

requirements mining results were compared and any inconsistency was discussed and

resolved. The converged expert solutions showed that the three transcripts contained a

relatively equal amount of requirements (M=70.3, SD=2.09) and that the requirements

were evenly distributed across the complete text of each transcript.

Finally, semi-automatic requirements mining was set up within the “travel

management” requirements domain. Participants were instructed to perform

requirements mining within interview transcripts using three different RMS

configurations: 1) Manual mining 2) Semi-automatic mining with imported knowledge

and 3) Semi-automatic mining with imported and retrieved knowledge. The first

configuration was based on unprocessed interview transcripts, no automatically mined

requirements. In contrast, the second and third configurations were based on transcripts

which already contained automatically generated requirements. Due to the additional

retrieved knowledge utilized in configuration 3, the according setup resulted in more

proposed requirements than configuration 2 which is depicted in Figures 32 and 33.

To prepare semi-automatic requirements mining, the same imported knowledge which

was used in the interim evaluation, was employed in this evaluation. After knowledge

import, automatic requirements mining was performed to generate requirements in the

selected interview transcripts for the experimental task. The resulting average recall and

precision was 54.0% (SD=9.4%) and 79.0% (SD=6.9%) respectively.

6.2 Ex-Post Evaluation 99

Figure 32: Requirements Document After Automatic Processing in Configuration 2

Figure 33: Requirements Document After Automatic Processing in Configuration 3

In contrast to imported knowledge, retrieved knowledge does not require additional

efforts to be acquired. Retrieved knowledge for a requirements domain is acquired

automatically by the RMS when users perform requirements mining on any text

document within the specific requirements domain. To acquire the retrieved knowledge

for the “travel management” requirements domain, one requirements mining expert

performed requirements mining with the RMS on a set of interview transcripts about the

train reservation application. The choice of the transcripts ensured that knowledge was

6.2 Ex-Post Evaluation 100

retrieved within the same knowledge domain (travel management), but for an

application different from the car sharing application used in the experimental tasks

which made the knowledge retrieving process closely aligned to the real situation in

practice. With imported and retrieved knowledge, an average recall of 75.0%

(SD=4.2%) and an average precision of 75.0% (SD=4.0%) was achieved after running

the automatic requirements mining on the three interview transcripts for the car sharing

application. In the experimental tasks, the order of the three interview transcripts was

randomized across the participants.

6.2.1.5 Measurements of the Dependent Variables

As illustrated earlier in the description of the research model, requirements mining

productivity was measured by the achieved quality within a fixed time frame.

Participants’ requirements mining quality was evaluated with two variables: recall and

precision. Following the approach by Kiyavitskaya and Zannone (2008) and Vlas and

Robinson (2012), recall and precision were obtained by comparing participants’

requirements mining outputs with the expert solutions. Within a text document, if a

participant identified a text segment as one requirement, no matter in which

requirements category the participant classified this requirement, it was counted as one

“identified requirement.” If the participant identified a text segment as one requirement

and assigned it to a requirements category in the same way as shown in the expert

solution, this requirement was counted as one “correctly identified requirement.” As

shown in Table 10, a participant’s achieved recall for a text document was calculated as

a ratio of the number of correctly identified requirements by the participant to the total

number of requirements contained in this text document according to the expert

solution. A participant’s achieved precision for a text document was calculated as a ratio

of the number of correctly identified requirements by the participant to the total number

of identified requirements by the participant. To reduce the bias introduced by

document analysts, two requirements mining experts analyzed 10% of the participants’

outputs independently and achieved an inter-rater reliability of 98.97%; afterwards, the

two experts spilt the remaining outputs and analyzed them separately.

6.2 Ex-Post Evaluation 101

Variable Explanation

Recall

Precision

Table 10: Measurements of the Dependent Variables

6.2.2 Data Analysis and Results

All the data analysis was conducted using SPSS for Windows Version 16.0. First, the

data obtained from the laboratory experiment was examined and used to test the

hypotheses. Then, as an estimation of the external validity of the laboratory experiment,

the data from the field experiment was analyzed and compared with the data from the

laboratory experiment.

6.2.2.1 Preliminary Analysis

Table 11 presents the means and standard deviations of the dependent variables in

different experimental conditions for the laboratory experiment and the field experiment

respectively. For manual requirements mining, the practitioner sample appeared to

achieve a relatively lower recall than the student sample. The reasons could be that the

students were more motivated and concentrated during the experimental task than the

practitioners, or the small sample of practitioners might not be evenly distributed on

both sides of the true value of the population mean. In hypotheses testing, only the data

from the laboratory experiment was used to achieve a sufficient power and get reliable

conclusions.

As explained in the research model, requirements mining recall and precision are

conceptually independent variables. The hypotheses predict that the RMS

configurations exert effects on recall and precision in different directions. Thus

hypotheses on recall and precision should be tested separately with univariate repeated

measures of analysis of variance (RMANOVA) (Huberty and Morris 1989).

6.2 Ex-Post Evaluation 102

 Manual Semi-automatic with

imported knowledge

Semi-automatic with

imported and retrieved

knowledge

Mean SD Mean SD Mean SD

Lab experiment (student participants, N=40)

Recall 50.7% 12.0% 69.8% 9.8% 79.5% 8.0%

Precision 71.0% 8.5% 72.0% 6.7% 73.2% 6.5%

Field experiment (practitioner participants, N=5)

Recall 37.6% 12.9% 68.6% 6.0% 77.8% 3.9%

Precision 70.1% 14.5% 72.7% 3.5% 68.5% 5.3%

Table 11: Recall and Precision for Different RMS Configurations

6.2.2.2 Hypotheses Testing

With the data from the laboratory experiment, RMANOVA was performed to examine

the impacts of the design principles on requirements mining recall and on precision

respectively.

As shown in Table 12, participants’ recall was significantly influenced by the RMS

configurations at the significance level of 0.05. To test hypothesis 1 and hypothesis 2,

pairwise comparisons were performed on the main effects of RMS configurations. A

Bonferroni correction was applied to control on the family-wise error rate (Vasey and

Thayer 1987). The multiple comparisons results are shown in Table 13. All the pairwise

comparisons were significant at the level of 0.05: participants using semi-automatic

requirements mining with imported knowledge achieved significantly higher recall than

using manual requirements mining, and using semi-automatic requirements mining with

imported and retrieved knowledge achieved significantly higher recall than using semi-

automatic requirements mining with imported knowledge only. Thus, hypothesis 1 and

hypothesis 2 are supported.

Hypothesis 3 was also supported by the RMANOVA on precision (see Table 12): no

significant difference in precision across the three RMS configurations was detected in

the experiment.

6.2 Ex-Post Evaluation 103

DV Source DF MS F p η
2

Cohen’s f

Recall RMS Config. 2 0.861 129.76 < .001 .77 1.82

Error 78 0.007

Precision RMS Config. 2 0.005 1.36 .263 .03 0.19

Error 78 0.004

Table 12: Results of RMANOVA for Recall and Precision

Pair comparison Mean

difference

p* 95% confidence

interval*

Lower Upper

Semi-automatic with imported

knowledge

Manual 19.2% < .001 14.4%

23.9%

Semi-automatic with imported

and retrieved knowledge

Semi-automatic with

imported knowledge

9.7% < .001 5.8% 13.6%

Table 13: Results of Pairwise Comparisons for Recall

6.2.2.3 External Validity Evaluation

In the previous section, the hypotheses were tested with the data obtained from student

participants in a laboratory setting. Since the results shall be generalized to requirements

engineers who carry out requirements mining activities in workplaces, external validity

is a concern for the laboratory experiment with students. However, prior studies suggest

that causal relationships are more generalizable across populations than specific

characteristics (Pedhazur and Schmelkin 1991) which indicates that the causal

relationships between the design principles of RMS and improved requirements mining

productivity may remain across different samples.

A RMANOVA on recall was performed to compare the effects of different RMS

configurations. The result showed a significant difference on participants’ recall when

the RMS configuration varied (F (2, 8) = 31.74, p < .001, η2 = .89, f =2.82). The

pairwise comparisons with Bonferroni corrections indicated that semi-automatic

requirements mining with imported knowledge outperformed manual requirements

mining on recall (mean difference = 31.0, p = .007, 95% CI [13.4%, 48.7%]), but no

significant difference was detected between semi-automatic requirements mining with

imported knowledge and semi-automatic requirements mining with imported and

retrieved knowledge (mean difference = 9.1%, p = .301, 95% CI [-7.8%, 26.1%]). When

6.2 Ex-Post Evaluation 104

analyzed with a more powerful paired t-test, the difference between the two semi-

automatic RMS configurations was marginally significant (t(4) = 2.13, p = .100, 95% CI

[-2.8%, 21.0%], d = 0.95). The observed effect size was classified as a large effect

according to Cohen (1988). Thus, the insignificant result might stem from the very

small sample size used in the field experiment. A post-hoc power analysis was

conducted with G*Power 3 (Faul et al. 2007). The result showed that to detect this

effect size (d = 0.95) with paired t-test, a sufficient power (e.g., 0.80) can be achieved

by adding 7 more participants to the practitioner sample, resulting in a total sample size

of 12. As expected, no significant difference was detected on precision with the

practitioner sample analyzed by RMANOVA (F (2, 8) = 0.34, p = .723, η2 = .08, f =

0.29).

In addition, a RMANOVA was performed with the pooled data from the laboratory and

the field experiment and specified “role” as a between-subject factor to differentiate the

student sample and the practitioner sample. Not surprisingly, at the significance level of

0.05, RMS configurations demonstrated the same significant effects on recall (F (2, 86)

= 84.78, p < .001) and no effects on precision (F (2, 86) = 0.39, p = .682); neither a

main effect of role nor an interaction effect between the RMS configurations and role

was detected on recall and precision.

The above analyses did not reveal evidence that the practitioner sample demonstrated a

different behavioral pattern on recall and precision when using the different RMS

configurations compared with the student sample. There was no evidence showing that

the conclusions drawn from the laboratory experiment could not be generalized to

practitioners in a field setting. However, due to the small size of the practitioner sample

used in the field experiment, the results have to be treated with caution.

6.2.2.4 Analysis of Additional Data

Based on the previously introduced definition, requirements mining productivity is the

quality of the identified requirements divided by the invested requirements mining

effort. Since the invested requirements mining effort was measured with time and was

kept constant in the experiment, the results support that the deployment of the two

design principles can improve requirements mining productivity. Alternatively, the

6.3 Summary 105

invested requirements mining effort can also be measured by the frequency of

keystrokes and mouse clicks which is often termed as physical effort (Tamir et al.

2008). In the student experiment, a screen capture tool was installed on participants’

computers that automatically captured their keystrokes and mouse clicks during the

experiment. Tested with RMANOVA, the frequency of keystrokes and mouse clicks

was significantly different across different RMS configurations (F (2, 78) = 50.15, p <

.001, η2 = .56, f = 1.14). The pairwise comparisons with Bonferroni corrections showed

that the use of semi-automatic requirements mining with imported knowledge

significantly reduced the frequency of keystrokes and mouse clicks from an average of

251.2 (SD = 62.61) to an average of 185.0 (SD = 55.94) (mean difference = 66.2, p <

.001, 95% CI [42.2, 90.2]). The use of semi-automatic requirements mining with

imported and retrieved knowledge further reduced the frequency of keystrokes and

mouse clicks to an average of 157.1 (SD = 50.58) (mean difference = 28.0, p = .013,

95% CI [4.9, 51.0]). The invested requirements mining effort measured by frequency of

keystrokes and mouse clicks was reduced by 37.5% with the deployment of the two

design principles. Consequently, requirements mining productivity measured by recall

per keystroke or mouse click was significantly improved by the use of semi-automatic

requirements mining with imported knowledge (mean difference = 0.20%, p < .001,

95% CI [0.15%, 0.25%]) and further improved by the use of semi-automatic

requirements mining with imported and retrieved knowledge (mean difference = 0.21%,

p = 0.025, 95% CI [0.02%, 0.39%]). This finding confirms the improvement of

requirements mining productivity by the deployment of the two design principles and

provides support for reduction of physical efforts by the design principles. Overall, to

achieve a certain level of quality of the identified requirements, participants with the

semi-automatic RMS require shorter time and invest lower physical effort.

6.3 Summary

In this chapter, the methodology and results of two evaluations were presented: an

interim evaluation, conducted as a simulation and an ex post evaluation, conducted as

an experiment.

6.3 Summary 106

The simulation investigated the interplay of RMS’ knowledge base characteristics and

processing characteristics. More specifically, it was explored how the amount and type

of knowledge affect requirements mining quality in two consecutive simulations. While

the amount and origin of knowledge significantly affected requirements mining quality,

results for the effects of project-specific knowledge were ambiguous.

The experiment evaluation focused on an analysis of the final artifact version’s

effectiveness. More concretely, it was investigated how the design principles of RMS

described in section 5.2.2 affect requirements mining productivity. Results indicate that

both design principles, semi-automatic requirements mining (DP1) and the usage of

imported and retrieved knowledge (DP2) have significant positive effects on

requirements mining productivity. The outcomes of these evaluations as well as the

results of the prior artifact design will be discussed in the following chapter.

107

7 Discussion

In this chapter, first the evaluation results and then the general results of this research

will be discussed. The chapter will accordingly be structured along three guiding

questions: First, how can the evaluation results be explained and what can be learned

from them? Second, how can the overall results of the study be assessed? And third, to

which extent did the research address the depicted research gaps?

7.1 Discussion of Evaluation Results

How can the evaluation results be explained and what can be learned from them? To

answer this question, first the simulation results and then the experiment results will be

reflected.

7.1.1 Simulation Results
42

The first series of simulation runs demonstrated the effects of the variable “origin of

knowledge” on requirements mining quality. Interestingly, the simulation results

showed that the usage of retrieved knowledge outperformed the usage of imported

knowledge already after three documents. A possible explanation for this can be derived

from the different degrees of domain-specificity of the utilized knowledge. Retrieved

knowledge can potentially provide a higher degree of domain-specificity than imported

knowledge. While imported knowledge provides a solid basis of terms generally

associated to the core domain (in this case travel management), this domain can be

divided into sub-domains using their own vocabulary. In the exemplary travel

management domain, terms like “destination”, “start date” or “direct connection” can be

associated to general domain knowledge. However, more specific terms like “type of

rail card” or “smoking allowed lifts” are specific to the sub-domains of train transport

and shared car transport. Consequently, while imported knowledge can be used to

correctly identify and classify a core set of general requirements (resulting in a recall of

almost 0.4 in the simulation), more specific requirements (which required sub-domain

knowledge) were only captured after using retrieved knowledge.

42

 Parts of this section are based on Meth et al. (2013b).

7.1 Discussion of Evaluation Results 108

In the second series of simulation runs, it was investigated how the project-specificity of

knowledge affected requirements quality. Although one could expect that the usage of

project-specific knowledge would outperform project-independent knowledge, this

effect was surprisingly not observable in the conducted simulation. An explanation for

the different outcomes of the second simulation series could be that the project-specific

texts used in the simulations did not provide sufficient additional knowledge which was

not already contained in the project-independent documents. This interpretation is

depicted in Figure 34.

Figure 34: Distribution of Relevant Knowledge

In general, for each NLRR to be analyzed, some knowledge items in the knowledge

base are relevant and others not. By using project-specific knowledge, the amount of

relevant knowledge for a specific NLRR can rise, but does not have to. As depicted in

Figure 34, before conducting the simulation, it was expected that project-specific

knowledge would contain a larger amount of relevant knowledge than project-

independent knowledge. This would have resulted in an increased recall. Figure 34 also

shows a possible explanation why this effect has not been observed. For the documents

7.1 Discussion of Evaluation Results 109

used in the simulation, the differences in relevant knowledge might have been smaller

than expected. Consequently, this resulted in small recall differences as well.

The question whether to build knowledge “bottom-up” by a group of regular project-

members (as conducted in the simulation with retrieved knowledge) or “top-down” by

individual domain experts (as conducted in the simulation with imported knowledge)

has been widely discussed in general knowledge engineering and knowledge

management literature (Alavi and Leidner 2013; Markus 2001; Schreiber et al. 1999).

Initially, the knowledge engineering field proposed a systematic top-down approach to

acquire and maintain knowledge from stakeholders. Various knowledge engineering

methodologies, such as Common-KADS (Schreiber et al. 1994) and tools such as

Protégé (Eriksson and Musen 1993) have been suggested. To reduce knowledge

acquisition efforts, one important principle from the very early beginning was the

establishment of reusable knowledge bases (Patil et al. 1997). Complementing manual

knowledge engineering, advanced knowledge discovery techniques to extract

knowledge from source data such as documents have been suggested. For example, the

field of ontology learning (Maedche and Staab 2001) extracts and suggests ontological

structures from existing domain data to the knowledge engineer. Recently, the rather

expert-driven knowledge engineering approach for establishing knowledge has been

complemented by an end-user-driven bottom-up approach following a Web 2.0

paradigm; user-generated classifications, also known as folksonomies (Wu et al. 2006)

represent one important example. Following this approach, users incrementally build

knowledge bases by themselves. These bottom-up knowledge bases can be leveraged to

create suggestions. An according approach is followed by the social bookmarking and

citation management system Bibsonomy (Benz et al. 2010).

Looking at these different paradigms, the question arises how to build and maintain

knowledge for advanced RMS. The evaluation results provide evidence for the major

potential of following a bottom-up approach. Supplying an initial knowledge base

positively impacts recall at the beginning of a requirements mining process. However,

the bottom-up approach outperformed the top-down pre-defined knowledge base

approach already after three documents. The second interesting insight of the results is

that reusing knowledge across different software development projects within the same

7.1 Discussion of Evaluation Results 110

or similar domains seems to be a promising approach. Both, software vendors and

customer companies may leverage this potential. First, from a vendor perspective,

software development projects can reuse knowledge across releases. Second, from a

customer perspective, knowledge can be accumulated within a Line-of-Business such as

a procurement department running multiple IS implementation projects within this

domain. While the simulation, using a small dataset, already resulted in recall rates

about 60%, even larger values are possible using more extensive datasets (Casamayor et

al. 2011; Cleland-Huang et al. 2007). Although these results show that automated

requirements mining cannot fully replace manual efforts performed by a requirements

engineer, it can significantly support humans and thereby reduce the number of

overseen and omitted requirements (Berry et al. 2012).

7.1.2 Experiment Results
43

The evaluation aimed at measuring the effects of different design principles of RMS on

requirements mining productivity in comparison to manual requirements mining. More

specifically, it was investigated how semi-automatic requirements mining (DP1) and the

combined usage of imported and retrieved knowledge (DP2) affect requirements mining

recall and precision in a fixed time period.

Concerning DP1, it was found that the use of semi-automatic requirements mining

significantly improved requirements mining recall. Different explanation patterns can be

applied to this result. First, the automation process provided the participants with an

initial set of identified requirements that already represented a substantial recall

(54.0%). Therefore, in comparison to the manual requirements mining task, in which

participants started with an unprocessed document, a higher final recall could be

assumed, provided that participants trust the suggestions of the automatism. The

increase of recall from the initial 54.0% (provided by the automatism) to the final

69.8% indicates that participants trusted the recommendations of the automatism

sufficiently enough to let them use at least a part of their time to increase recall through

manual requirements mining of additional requirements (rather than using the entire

time to correct potential mistakes of the automatism).

43

 Parts of this section have been published in Meth et al. (2012a).

7.1 Discussion of Evaluation Results 111

As expected, DP1 did not significantly affect precision. The automatism resulted in an

initial precision of 79.0% using imported knowledge which is comparable to the

average precision value achieved during the manual requirements mining task (71.0%).

Manual adaptations and extensions that were made during the experiment task slightly

reduced the initial precision, resulting in a value of 72.0%. This value is between the

precision values of the automatism and the value of manual requirements mining which

reflects the semi-automatic nature of the task.

Concerning DP2, it was found that the additional use of extracted knowledge further

improved requirements mining recall. A possible explanation for this effect is that a

more extensive and domain-specific knowledge base results in a higher initial recall

provided by the automatism. This assumption could be confirmed, as the initial recall of

the automatism rose from 54.0% to 75.0% through the activation of DP2. To assess the

generalizability of these results, it is important to revisit the corresponding

preconditions of the findings. The extension of the knowledge base through extracted

knowledge resulted from a previous, manual requirements mining conducted by a

domain expert. This manual requirements mining was based on different documents and

a different application context than the experiment itself, but referred to a similar

domain (travelling). These quality pre-conditions (extension of knowledge done by an

expert and using documents of the same domain) enabled the automatism to determine

requirements with significantly increased recall and with a precision comparable to

manual requirements mining. Consequently, the final result also showed this

recall/precision pattern. To achieve comparable results in a field setting, it is therefore

important to enforce the described quality pre-conditions which can be supported by the

RMS itself (e.g., through specific expert user roles and the mandatory assignment of

documents to domains), or by organizational enforcement (e.g., through recurrent,

mandatory quality checks of the knowledge base).

Similar to DP1, DP2 did not significantly affect precision. The automatism resulted in

an initial precision of 75.0% using imported knowledge which is again comparable to

the average precision value achieved during the manual requirements mining task

(71.0%) and therefore can be explained analogously.

7.2 Discussion of Overall Results 112

7.2 Discussion of Overall Results

How can the overall results of the thesis project be assessed? Similar to the analysis of

related work in section 3.7, the research presented in this thesis will be analyzed using

the conceptualized analysis framework for RDS research works (see Figure 35).

Figure 35: Analysis Result for Research Conducted in Thesis Project

The presented artifact REMINER aims at the identification and classification of

requirements. Like former approaches, the system identifies abstractions to enrich the

knowledge base. To improve requirements mining productivity, semi-automatic

processing of NLRR is supported. Requirements are proposed by an automated

algorithm applying IR and NLP techniques and can then be manually adapted. The

provided knowledge base holds imported, static knowledge which is subsequently

complemented with retrieved, dynamic knowledge items. The knowledge base is

structured as a dictionary and holds both domain-specific and domain-independent

knowledge. The implemented artifact has been evaluated in a simulation, investigating

the interplay of processing and knowledge base characteristics during the first design

cycle. In the second design cycle the final design principles of the system have been

7.3 Discussion of Research Gap Congruence 113

evaluated in a controlled experiment, including actual system usage. In the simulation,

requirements completeness has been evaluated through the measurement of recall. In the

experiment, requirements mining productivity has been assessed, combing

measurements of requirements completeness (recall) and requirements correctness

(precision) both in a fixed time frame (to incorporate requirements mining efficiency).

Different types of knowledge have been used to justify and ground the artifact design.

Based on formal, behavioral decision theory, goals of decision makers have been

identified and the basic relationship between advice quality and decision quality has

been explained to derive design requirements. Subsequently, design and mid-range

theory on DSS has been utilized as an analogy to predict the impact of different types of

DG on the requirements mining process and its outcome. From this theoretical basis,

applying additional general knowledge to the requirements mining process and the

design of RMS, design principles for RMS have been derived.

The contributed knowledge exceeds a pure description of the artifact. The design

product has been abstracted and generalized, presenting knowledge as operational

principles and a blueprint architecture. Components of a nascent design theory such as

design requirements, principles, features and constructs have been presented. Going

beyond the typical constituents of nascent design theory, testable hypotheses have been

derived and tested. Possible extensions to this research to further develop the proposed

design theory will be described in section 8.2.

7.3 Discussion of Research Gap Congruence

To which extent does the research address the depicted research gap? Based on the

analysis of the overall results, the three research gaps identified in 3.7.2 shall be

revisited to assess congruence with them.

The first research gap, referred to the current state of RMS evaluation. Related work in

the area of RMS has been evaluated through simulations, comparing the results of

automated requirements mining with a predefined gold standard. Comparative

evaluation results, investigating if RMS improve requirements quality and requirements

7.4 Summary 114

mining efficiency in comparison to manual discovery, are hardly available. This thesis

project addresses this gap by conducting a comparative, experiment-based evaluation.

The second research gap was related to the knowledge contribution of existing RMS

publications. While the related work which has been analyzed contains detailed

descriptions of specific implementations, a codification and abstraction of the demands

to be fulfilled by RMS and the concepts addressing these demands is missing. In this

thesis project, RMS design has been abstracted and generalized to design requirements

and design principles which are applicable to different instantiations of RMS and which

are independent of a specific technology. Although the general design has been

instantiated in concrete design features of an artifact, the design requirements and

principles are transferable to other systems of this class.

Finally, the third research gap referred to the theoretical grounding of existing RMS.

Related work in the field of RMS is based on general empirical and non-empirical

knowledge, but lacks theoretical justification. Therefore, it is difficult to assess if the

proposed design approaches really provide good or even optimal solutions for the given

problem. In this thesis project, the artifact design is grounded on a broad basis of

different types of knowledge from formal theories to practical requirements mining

experiences.

Decision making theory has been used to deriving design requirements for RMS from

general goals of human decision makers. Subsequently, design principles addressing

these requirements were identified based on the application of different types of DG to

the requirements mining process. Furthermore, results of existing RMS research have

been incorporated, providing additional general and design knowledge.

7.4 Summary

In this chapter, results of both the simulation and the experiment evaluation have been

reflected, discussing possible explanations for the observations and providing additional

evidence corroborating the findings. Then, the analysis framework conceptualized in

chapter 3 has been applied to the research presented in this thesis to discuss the overall

results and assess congruence with the identified research gaps. In the next chapter,

concluding thoughts on this thesis project will be shared.

115

8 Conclusion

In this chapter, the results of this thesis will be summarized, limitations and future work

will be discussed and contributions of the conducted research will be outlined.

8.1 Summary

As depicted in the introduction chapter, this research project aimed at attaining three

goals. First, a theoretically grounded design theory for RMS should be derived. Second,

an artifact based on this design theory should be implemented. Third, it should be

evaluated, if requirements mining supported by this artifact actually results in an

increased productivity (in comparison to manual discovery). These three goals were

summarized in the following research question: How can a system be designed, which

aims at improving requirements mining productivity over manual discovery?

To answer this question, chapter 2 provided a conceptual basis. First, general definitions

of requirements, requirements engineering and the specific process of requirements

discovery were provided. Then, requirements discovery was related to existing software

development and requirements engineering approaches to outline contextual differences

and specificities.

In the third chapter, an analysis framework for RDS was developed, introducing

different dimensions and characteristics and exemplifying them with existing RDS

research. The framework classifies RDS according to their purpose, processing and

knowledge base characteristics. Moreover, RDS research can be categorized concerning

its different evaluation and knowledge exchange approaches. The presented framework

has then been applied to existing RMS research, summarizing the related work for this

thesis and outlining the research gaps to be addressed.

In chapter four, the methodology applied in this research project was presented. Starting

from an introduction to DSR as the underlying research paradigm, the dualist nature of

design as a process and a product has been discussed. Building on this differentiation,

alternative process- and product-oriented DSR frameworks were presented, resulting in

a selection of two frameworks to be applied in this thesis: one process-oriented

framework and one product-oriented. In the following, the specific research design of

8.2 Limitations and Future Research 116

the thesis was depicted followed by an ontological and an epistemological reflection of

this approach.

Chapter five presented one of the core contributions of the thesis, a design theory for

RMS. The presentation was structured along the eight design theory components

proposed by Gregor and Jones (2007). Based on decision making theory, design

requirements and design principles for RMS were derived. Then these principles were

implemented in actual design features of an expository instantiation. Additionally to the

conceptualization of this artifact, principles of implementation and the artifact’s

mutability were described. Finally, a research model, consisting of three testable

hypotheses was conceptualized based on decision making theory and general

requirements mining knowledge.

In chapter six, the specific methodology and results of two artifact evaluations were

presented. First, the results of a simulation, representing an interim evaluation, were

provided. In this simulation, the interplay of RMS’ knowledge base and processing

characteristics was investigated, exploring the effects of different amount and types of

knowledge on requirements mining quality. Eventually, the experiment results,

investigating the artifact’s effectiveness, were described. In this experiment, the effects

of different RMS design principles on requirements mining productivity were analyzed.

Both design principles were found to improve requirements engineers’ individual

requirements mining productivity.

In chapter seven, results of the two evaluations were reflected, discussing possible

explanations. Subsequently, the analysis framework introduced in chapter 3 was applied

to the research presented in this thesis to discuss the overall results and assess

congruence with the identified research gaps.

8.2 Limitations and Future Research

In order to adequately interpret the implications of the findings, the following

limitations of the thesis need to be considered. The discussion of the limitations will be

oriented towards the structure and outcomes of the study starting with the analysis

framework for RDS and its content, via the conceptualized design theory to the final

evaluations in a simulation and an experiment.

8.2 Limitations and Future Research 117

Reflecting the presented analysis framework for RDS and its content, it needs to be

considered, that the classification of the related work was based on the author’s specific

judgment and experience and that other researchers might have judged differently. In

addition, the content and structure of the analysis framework itself can only represent an

excerpt of interesting characteristics to be investigated. Future research might

complement the literature analysis, classifying the same or similar sets of papers

according to additional dimensions and characteristics.

In the conceptualization of the design theory, leveraging decision making theory, a

specific theoretical viewpoint was applied to underpin design requirements and design

principles. Choosing alternative theoretical viewpoints could result in additional design

requirements and principles. However, the results of the evaluation confirm that 1) both

design principles positively affected the quality of approved requirements and 2) the

quality of approved requirements (the decision which has been taken) was strongly

determined by the quality of proposed requirements (the given advice) which is in

accordance with decision making theory. Therefore, there is evidence that the theory

provides an appropriate basis for the design of RMS and the derivation of meaningful

design requirements and design principles. Concerning the knowledge contribution, the

self-assessment of this research project presented in section 7.2 classified the derived

theory as a “nascent design theory”. To reach the next level of knowledge contribution

in the analysis framework (a transformation to a well-developed design theory),

additional research could be conducted. For example, further behavioral aspects of

requirements mining, such as trust, could be investigated, aiming to extend the

explanatory power of the design theory and increase the understanding of embedded

phenomena.

Additional limitations apply to the conducted simulation. First, assessing external

validity, the conducted simulation series was performed using one specific system

(REMINER) which might limit generalizability. However, due to the generic design

principles which were followed in the conceptualization of the system, results should be

generalizable to other knowledge-based RMS. Furthermore, although a specific domain

(travel management) was used, this domain is comparable to a large amount of other

domains of similar complexity. Future work could complement the conducted study by

8.2 Limitations and Future Research 118

a replication of the simulations in a more complex domain. Second, evaluating internal

validity, the model did not include variables which capture additional characteristics of

the utilized requirements documents (like readability and length). Instead of varying

these variables, documents of comparable readability and length were used. Future

research, however, might investigate how these two variables affect requirements

mining quality. Moreover, the definition of the gold standard used in the simulations

involves subjective interpretations. This risk was mitigated by involving three different

experts in the definition. Third, assessing construct validity, the number of documents

was used as a measure for the amount of knowledge. Although it can be assumed that

additional documents added further knowledge and the results show that in fact more

documents led to a larger amount of recognized requirements, alternative measurements

(e.g. a direct variation of the number of knowledge items) could be applied. However,

these alternatives were not chosen in order to approximate the simulation to real life

conditions in which entire documents instead of single knowledge items would be

added to retrieved knowledge. Nevertheless, future work might investigate if a more

direct alteration of the amount of knowledge through the number of knowledge items

results in the same effects as the presented simulation.

Reflecting the conduction of the experiment evaluation, a further limitation can be seen

in the fact that the laboratory experiment sessions were conducted with master IS

students, not with experts, which constrains the external validity of the findings.

However, the replication of the experiment with a small group of experts showed

evidence that the same results pattern which has been observed in the laboratory setting

can be expected in a field setting as well. Another limitation can be seen in the analysis

of the experiment text data which was based on manual document analysis. Although

this analysis was thoroughly conducted, manual analysis is error-prone and can reduce

reliability. Yet, the fact that results were analyzed by two researchers independently and

with a high inter-rater reliability (98.97% in the documents which were coded twice)

provides evidence that this did not have a major impact.

There are many possible extensions to this work. Agreeing with Hevner et al. (2004)

that DSR is inherently iterative, future research could extend the presented theory

through the conduction of additional design cycles. During these cycles, alternative

8.3 Contributions 119

theoretical lenses could be applied or a more intensive observation of the artifact’s

usage in an actual implementation project (for example in form of a case study) could

be performed. Both extensions promise interesting adaptions and enrichments of the

identified design theory components. From an evaluation point of view, a replication of

the experiment study in a different domain could also add interesting insights. In the

experiment, the traveling domain was adopted which is reusable for a wide range of

applications. When the domain is highly specific and dynamic, domain-specific

knowledge becomes scarce and cannot easily be acquired and imported into the RMS.

In this case, the RMS might be less useful since many requirements need to be manually

established and might not be reused in further requirements elicitation. Future research

could use a more sophisticated domain and differentiate participants according to their

domain knowledge, specifically examining the moderating effects of participants’

domain knowledge on the relationships between design principles and requirements

elicitation productivity.

Furthermore, an extension of the artifact’s functional scope could be investigated. For

example, the artifact could be augmented to support an integration of the outcomes of

requirements mining to subsequent requirements engineering or general software

development activities. Reflecting the specificities of different software development

approaches presented in 2.2, it would be interesting to find out, how requirements

mining outcomes need to be modified or extended to enable a seamless integration into

these specific processes. For instance, user-centered approaches, which often follow a

task-oriented approach to requirements elicitation, might need other requirements

categories than system-centered approaches.

8.3 Contributions

The contributions of this thesis will be summarized in the following from a theoretical

and practical point of view.

8.3.1 Theoretical Contributions

From a theoretical perspective, the study provides the following key contributions: First,

it derives an analysis framework for works in the area of RDS, going beyond the basic

8.3 Contributions 120

classification provided by Berry et al. (2012). Besides the application in this paper, the

framework might be used to classify and evaluate future research in this area. Based on

this framework, the current state of the art in RMS has been depicted. Providing an

overview of existing works, this compilation might be useful as a starting point for

scholars who are about to research in this area.

Second, the results of the thesis extend the design theory body of knowledge for

software development systems. More specifically, a design theory for RMS has been

conducted. Due to the abstraction and codification of the design to generic design

requirements and design principles, the findings are generalizable from the specific

artifact to the class of RMS. The prescriptive theoretical findings of the study may guide

future research in designing efficient RMS.

Third, as described earlier, RMS should improve requirements engineers’ productivity

in the corresponding process to provide an added value in comparison to manual

requirements mining. The conducted study complements existing research on RMS,

investigating if this expected productivity improvement can actually be observed.

Complementing these experiment results, the outcomes of the conducted simulation

series provide further insights about the impact of different forms of background

knowledge on requirements mining quality (which is one of the determinants of

productivity).

Finally, beyond the topical aspects of the thesis, a contribution to the ongoing

methodological discussion in the design science context is aspired. Based on the

conceptualization of design principles, an experimental evaluation was designed and

conducted that allows quantifying the effects of each principle on a dependent variable.

Going beyond an assessment of the artifact’s overall effect, this procedure allows

precise inference from the evaluation back to the design process. This approach could

inform other design researchers in the evaluation of their artifacts and the underlying

design principles.

8.3.2 Practical Contributions

From a practical point of view, software vendors and customer companies can use the

following results and insights of the thesis.

8.3 Contributions 121

First, the overview of different RDS capabilities provided in the related work chapter of

this thesis can be used by requirements engineering software vendors to get an overview

of existing research about systems supporting requirements discovery. This state-of-the-

art overview could help them to identify worthwhile areas for the functional extension

of their products. While the related work (in contrast to the derived design theory) does

not provide technological details of each class of RDS, it could still be used to gather

information for strategic decisions, for example as an additional input for portfolio

management sessions or to complement market research.

Second, the simulation and the experiment showed the potential benefits of integrating

requirements and knowledge engineering activities. The evaluations provide evidence

that the reuse of knowledge across different software development projects within the

same or similar domains can result in better requirements specifications. Software

vendors could accordingly benefit from reusing knowledge across different products of

the same product group. Similarly, customer companies could share knowledge across

different applications of the same Line-of-Business. Apart from using an RMS,

knowledge reuse in requirements engineering can also be fostered by other technologies

(e.g., domain-specific wikis), directories (e.g., glossaries) or organizational means (e.g.,

lessons learned sessions or specific roles in the development team).

Finally, the conducted study can help requirements engineering software vendors to

improve their software packages with regard to automated requirements mining

capabilities. While support for manual requirements mining has been incorporated to

selected commercial software packages (e.g., IBM Rational Doors), automated mining

support is still scarce. The depicted design theory can inspire and guide future

commercial implementations by constraining the solution space for RMS and hereby

improving design outcomes. When implemented in commercially available software

and applied in a requirements mining process, the design prescriptions of the derived

design theory can help to increase the individual productivity of requirements engineers

and hereby address a considerable problem of current requirements engineering

practice.

xii

Appendix A: Publications

Publications related to this thesis

1. Meth, H., Maedche, A., and Einoeder, M. 2012. "Exploring Design Principles of

Task Elicitation Systems for Unrestricted Natural Language Documents,” in

Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing

systems, pp. 205-210.

2. Meth, H., Li, Y., Maedche, A., and Mueller, B. 2012. "Advancing Task

Elicitation Systems - An Experimental Evaluation of Design Principles," in Proceedings

of the International Conference on Information Systems (ICIS 2012), Paper 3.

3. Meth, H., Li, Y., Maedche, A., and Mueller, B. 2012. "Understanding Design

Principles of Task Elicitation Systems - An Experimental Evaluation," in Proceedings

of JAIS Theory Development Workshop, Paper 22.

4. Meth, H., Brhel, M., and Maedche, M. 2013. "The State of the Art in Automated

Requirements Elicitation," Information and Software Technology, forthcoming.

5. Meth, H., Maedche, A., and Einoeder, M. 2013. "Is Knowledge Power? The

Role of Knowledge in Automated Requirements Elicitation," in Proceedings of the 25th

International Conference on Advanced Information Systems Engineering (CAiSE 2013),

forthcoming.

Further Publications

1. Meth, H., Maedche, A. 2010. "User-centered requirements elicitation for

Business Intelligence solutions," in Proceedings of the FKBI 10, pp. 39-44.

2. Botzenhardt, A., Meth, H., Maedche, A. 2011. "Cross-Functional Integration of

Product Management and Product Design in Application Software Development:

Exploration of Success Factors," in Proceedings of the International Conference on

Information Systems (ICIS 2011), Paper 10.

3. Maedche, A., Botzenhardt, A., and Meth, H. 2012. "Usability und User-Centered

Design," Das Wirtschaftsstudium : WISU (41:8/9), pp. 1074-1077.

Appendix A: Publications xiii

4. Scheiber, F., Wruk, D., Oberg, A., Britsch, J., Woywode, M., Maedche, A.,

Kahrau, F., Meth, H., Wallach, D., and Plach, M. 2012. "Software Usability in Small

and Medium Sized Enterprises in Germany: An Empirical Study," in Software for

People. 1st Edition. Berlin, Germany: Springer, pp. 39-52.

5. Gaß, O., Meth, H., Maedche, A. 2013. “PaaS characteristics for productive

software development - An evaluation framework,” IEEE Internet Computing,

forthcoming.

xiv

Appendix B: Interview Transcripts
44

Car Sharing Interview 1

INT: So, let's start. Just explain how the app looks like.

VPN2: My main goal is to publish my trip very easy and very fast, so for me an app

looks like an easy welcome interface. Then I can select "driver" or "passenger". For me,

I will use "driver". After this interface I can fill another UI with login information like

user-name and password.

INT: So you are already registered? How works that?

VPN2: Good question. If my acc doesn’t exists, I have the opportunity to create a new

one. The app needs special information like first name and surname (only real names

are accepted!), nickname, age, my hometown (maybe with real address-information to

check if the person is real). Also care information (seats, size,.. maybe for the girls the

colour). My email address and very important, my cell phone number.

INT: Okay, so you enter these information for the registration or for your driving offer?

VPN2: I have only one care and only one phone and then its easier for me to enter once

these information and the app can use these for all my offers.

INT: Okay. So what happens exactly if you want to start a new offer?

VPN2: I have the choice between options: create a new offer or edit previous offer to

create with this information a new offer because the most drivers have all time an

similar trip. Like students travelling between university and their parents. If I select

"new offer", the app needs the start and destination location. ;Maybe I can give further

locations which I will cross like time, additional information, costs, if it is an round trip

or not.

INT: Okay, so now you started your offer and what will happens after that?

VPN2: After I created and published my offer, I should wait to get requests. Every

interested people can write me a message via email, sms or call. Ah, one additional

point for "creating offer": For me it will be perfect if I have the chance to give some

criteria like whether pets are allowed, whether I prefer more male or female passengers

44

 Parts of this data have been utilized in Meth et al. (2012a) and Meth et al. (2013b).

Appendix B: Interview Transcripts xv

and that stuff.

INT: Okay, fine. Does the process end after somebody found you and sent you a

message or are there other steps?

VPN2: yes. There are more steps like I could cancel the offer or maybe the app/portal

have a comment or ranking system to check the persons like at couchsurfing. Because

nobody trusts an unknown person.

INT: Ah okay, I see. So after the drive, the driver and the passengers leave references at

each other?

VPN2: Exactly.

INT: Okay, that's all?

VPN2: Yes. Now I have the main functionalities included.

INT: Okay, that's perfectly fine. Thank you.

Car Sharing Interview 2

INT: Okay, let’s start. Just start explaining what happens if you open the app on your

iPhone?

VPN3: Okay. I have the app new so I first need to registrate in the system and I have a

car so I would like to be the driver. So first I make the rest of the registration and then I

am a member of the community.

INT: What do you fill out for the registration?

VPN3: The name and the place where I am living now and the two places between

which I will drive, on which time and at which date I normally drive. Maybe my gender.

My age. Maybe also preferences concerning the guys I will take with me, for example if

I only want to take girls with me.

INT: Also your contact information?

VPN3: Ahm…it depends. If it is public for all, I wouldn’t do it. Only if is in the system

but not everyone who enters the homepage can see my contact details. Then I am in the

system and for me it’s important that the app is well-structured because if not it’s too

complicated to get through the system and you could get lost in all the information.

Also important for me is that it runs fast and that it doesn’t take too long to load up

things. And it should also be nice to look at.

Appendix B: Interview Transcripts xvi

INT: Okay. And after you logged in to your account, what do you do then?

VPN3: I will first enter the dates and the rides I will make in the next weeks or months

if I know them already.

INT: So at the registration you already mentioned your data, so do you have to write

them new or can you take them over from these information?

VPN3: No I would say the registration is only to get a little overview over it. Okay. The

users can see like I am driving home each Saturday normally. But to get concrete

information they need to go to a site or so.

INT: And then after entering your information, what kind of other information is

necessary?

VPN3: It’s important the date, then when will I leave, which cities will I pass through or

which cities I will pass but not stop or maybe how many places are available in my car.

If I want to take people with me: who are smokers or not.

INT: Okay, and then?

VPN3: After that when I put up all my information in the system, I would click enter

and hope that some guys will call me.

INT: Okay, if they find you, what can they do then?

VPN3: They can write me a personal message. I think it’s a good opportunity to get to

know each other on a personal way. So maybe you think: Oh the message doesn’t look

very nice, I won’t take him with me.

INT: Okay. Do you have any other option besides the email and messages?

VPN3: Yeah, maybe if you have some friends or some guys you had contact with them

for a longer period, you can have like in your email account a folder with all your

friends. You could put them in so you know: Ah it’s your friend, you can trust him and

can go with him.

INT: Okay, so we are done. Thank you!

Car Sharing Interview 3

INT: Just explain what will happen after you open the app!

VPN6: As a driver I would expect a start page. But it does not matter what is the start

Appendix B: Interview Transcripts xvii

page. I think the main point for a driver is to have an easy access to insert your ride. So,

if you want to add a ride to have a menu item to add a ride or something like that.

INT: Can you click on that one?

VPN6: Yeah.

INT: Ok, and then?

VPN6: And then you have a few data fields, that you can really easy and intuitive add a

ride and you need starting position, destination and the time and date. I don‘t think, that

you need more information for inserting a ride. You just have to say where you want to

start and where to go to and when you want to drive. I would prefer if you also can

specify the exact position which is nowadays realized at mitfahrgelegenheit.de. So, for

example if you have as starting point Mannheim you can choose in a drop-down-menu

or in the i-phone in the menu some positions like nearly 90% of the rides start at the

post office. So, you can choose Mannheim as position and then the exact position would

be the post office. And that would be perfect if they have some recommendations.

INT: Do they also have to specify additional data like contact-details?

VPN6: As I think in the app the insert fields should be very few, so it should be easy to

add something like that. I would have something like a management-function. You have

least information what car do you have or what license you have, that the others find

you. These information you have to insert only once. So, you would have something

like management fields, menu item, where you can add this information and when you

later add an ride the others will always see the same.

INT: And after you inserted your ride, what happens then if somebody finds you?

VPN6: You would also insert your phone number in this management area, so the

others will see the number. You can choose in this area which numbers you will show,

for example only the cellphone number or something like that and then the other will

contact you. Perfectly it would be if you could also include this booking-service of

mitfahrgelegenheit.de. So the others could simply book your ride. That you can see this

person booked your ride and you get something like a push message.

INT: What do you have to do for booking a ride?

VPN6: As someone who wants to get a ride?

INT: Yes.

Appendix B: Interview Transcripts xviii

VPN6: He has to search for a ride. So, I want from this to this position at this time, we

have a time slot most of the case. You can‘t write, I want to go at 3 p.m. or something

like that, but between 1 and 4. And then you see all the drivers and you can see how

many free places are in the car and you can simply book the ride. The driver will get a

booked-message and will know, ok, he booked the ride. The problem here is that you

don‘t have the context. If somebody calls you, you have at least one minute to talk to

this person, who will take a ride, but if you have simply this booking-system you don‘t

have any contact before the ride. The problem is, that you don‘t know which person will

show up. This problem could probably been solved by this new identity card, where you

have to insert real data in your account with your real name or something like that.

INT: And after the ride, is there any additional functionality?

VPN6: You could include something like a rating-system like holiday-check, but really

easy to use. Like he is a nice guy and he has a clean car. Not is he nice or is he good-

looking. Just the facts you need. The car is ok and nothing special.

INT: Ok, that‘s all. Thank you.

VPN6: No problem.

Car Sharing Interview 4

INT: Okay. So, what happens if you open the app?

VPN10: Okay. First I need to enter where I am going. So I like it if it is very easy to

enter this. So it should go from difficult into simple or from overview into detail. So it

should start with I enter whether I do this drive regularly or only once. And this should

be like once I selected, it should automatically switch to the next category so I do not

need to push another enter button.

INT: Okay.

VPN10: And from there I can enter if it is in Germany or in Europe. And then I can

enter the concrete start and end point and which points are in between. And I would like

it if, I mean I have my own account. So I like it if they memorize what route I usually

drive so that they could propose it to me. So I don’t have to type in Mannheim over

Nuremberg to Erlangen every time I enter and I drive.

INT: Okay. Then you click on the button?

Appendix B: Interview Transcripts xix

VPN10: Yah. And then I click on the next button and then it shows all my telephone

number and email.

INT: So these are already stored in the system?

VPN10: Yes, these are already stored but I would like to be able to change with

numbers are shown by default. I don’t like to deactivate every number over again.

Because there are more numbers in my case and in the application. And then I like it if

it is very easy if the application automatically adds the location in Google maps so I

don’t need to that. I just need to say if I want to do this or not. And would be really

useful for me as a driver is that I have an easy access to my announce or my offer. And

once I have somebody who told me that he is going with me, I can decrease the amount

of people I can take with me to one or to zero.

INT: So you have an overview about everybody who wants to join you?

VPN10: No. I mean I have an overview by myself but I don’t want to be called by

people if my seats are already full.

INT: Ah okay.

VPN10: So it would be perfect. And right now I am not doing it this because I need to

log in again and search for my offer and then click on alter and click on only one seat

left. And that takes just too much time. So I want to do that really quick.

INT: And do you want to do the booking over the application or by telephone?

VPN10: I would like to have it by telephone. Because I mean I need to talk to them

anyway, then I can remember how many people. But I would like to have it shown. I

don’t know if I do it over the application with the booking. If it then shows online that

my drive is already full.

INT: Okay. And after the drive, is there anything to do after that?

VPN10: For me not. But for somebody who drives with me it might me a good idea to

automatically remind him that he can rate me. So he can say how well I drove or if it

was expensive or if I was in time. And I mean, maybe I can give some feedback on the

people who drove with me. So other drivers can see if they should take that person with

them.

INT: Okay, that’s all. Thank you!

Appendix B: Interview Transcripts xx

Car Sharing Interview 5

INT: Okay, let's start. Just explain what happens after you opened the app.

VPN4: Now, after opening the app, it shows a nice welcome screen where I can enter

my location and the destination. My Smartphone hopefully will insert my actual

position and fill out the first text field "from", so that I can instantly fill out my

destination. Having pressed "Enter", I get a list of persons with cars who are going to

my destination until the next 7 days.

INT: What happens if you click on one of them?

VPN4: Some data opens up, containing the estimated departure date and time, possibly

the price the driver proposes, the car or at least type of car he has and how many

persons are on board at the moment. The exact departure location would also be nice.

INT: Okay, what happens then?

VPN4: With a tip of a button one can immediately contact the person by mail. For

example the website sends a mail with my personal data, so the person can call me back

or write me a mail.

INT: Fine. Now after you contacted the person and finally made the trip, could you

imagine some steps afterwards like a reference system?

VPN4: That would be a good idea, one could give feedback, how his way of driving

was or how the price was. A similar system to ebay's reference system would be

satisfying, I think.

INT: Could you please specify that?

VPN4: That means a system from one to five and a short text field. This could be

realized in a list in the app, where all trips are listed one made.

INT: Sounds good. And in general, do you have any requirements concerning the

usability and user interface of the app?

VPN4: Not really, it should be simple and clearly arranged, so that you can quickly find

persons with cars who drive at the same time to your destination. Same situation, when I

am the one who offers a seat in my car. Just a simple form with date, from, to, type of

car, and just finished

INT: Okay, I think that's all. Thank you!

Appendix B: Interview Transcripts xxi

Train Reservation Interview 1

INT: So, what happens after you opened the app?

VPN7: A field where I can enter my departure location and my arrival as well as

destination location opens.

INT: So you enter these and what is your next step?

VPN7: Then I enter the departure time and date.

INT: Okay, after this, you click on a button?

VPN7: Yes, I press enter and possible connections appear. This should happen quite fast

(performance).

INT: How are these connections displayed?

VPN7: All connections within a period of one hour compared to the entered time should

appear. The duration of the journey, the departure and arrival time, the type of train like

ICE or RE should be displayed in a suitable design so that I have a good overview.

INT: Can you please specify suitable design? Is it a list?

VPN7: I think a list would be best in a chronological order depending on departure

time.

INT: Okay! Now you found a suitable train, what happens after that?

VPN7: I forgot to mention something. So I would like to have the option to see where

and how long the trains stops if I select a possible connection.

INT: Okay.

VPN7: After I found a suitable train I would like to have the option to either book the

train and to get something like an alternative in case the train is too late. Or just to set an

alter in case I want to buy the ticket at the train station.

INT: I see. How works the booking of a train?

VPN7: I select number of persons, age, possible reductions with BahnCard. Then I

should have the possibility to decide if I want to pay with credit or deposit card and

enter details.

INT: Which details do you have to enter?

VPN7: Credit card number and type, security number on the back and expiration date.

INT: OK. And after entering all your details?

VPN7: I confirm and then I have the choice to save the electronic ticket or send it via

Appendix B: Interview Transcripts xxii

email.

INT: So you can click on a button to save it? Any other functionality?

VPN7: Before I confirm I would like to have an overview of the entered data just to

make sure. And as I already said I would like to have an automatic alert in case the train

is too late. All the functionality should happen in a fast way and in a comprehensible

manner.

INT: Okay, so in the end you confirm and then your booking is done, right?

VPN7: Correct.

INT: That's all. Thank you!

Train Reservation Interview 2

INT: Just start to explain what happens after you opened the app and what you can do

then?

VPN8: Well, first of all it is important that the app starts quickly so I don’t have to wait

very long. And once the app is started, I want a quick overview over the possible fields,

like where to start the travel, where it ends, of course possible time to start for the travel.

Maybe some options to select the train. So is it a local train or a fast train, that is very

important. What else? Maybe some options to indicate whether I have a bonus card or

not. So that the actual price calculation is already calculated right. And after all this is

entered, I want to have a clear big button to push on to see the possible connections.

INT: Okay. Now you clicked on the button and what happens then?

VPN8: Well after I entered all the information and after I clicked the button, I want to

see the possible connections. All possible connections. And of course it would be

helpful if those connections would be displayed which I do not have to switch the trains

very often. That should be displayed properly. And of course in an easy to view manner.

So not very complex so that I can quickly see all connections. Of course in a list so that

I can scroll down.

INT: And after that?

VPN8: After that I want to pick one connection. Maybe that I can see further

information for that connection. So the starting time, end time and maybe possible inter

connections. And after selecting that one, I want that it comes quickly to the booking

Appendix B: Interview Transcripts xxiii

options.

INT: Okay. And what kind of booking options do you have?

VPN8: Well, of course maybe there is the possibility to set up an account so I can login

and I don’t need to or have to enter all information every time from beginning. If that is

the case, well, it would be perfect if there is some kind of one-click-solution like we

know it from Amazon. So that all my data, name and all the stuff is already entered and

I just need to confirm with the travel request. And then it should be quickly again. So

not ten buttons. Like confirm here, confirm there. I just want to pick one option and

then get a quick confirmation.

INT: And if you are not registered yet?

VPN8: Well of course there need to be the necessary fields to enter the credit card

number or other payment options.

INT: What fields do you have to enter?

VPN8: Well, a radio button first to select the different options of payment. Maybe a

transaction or credit card and after selecting one option further fields for the credit card

number and expiration date and the CV code and other things.

INT: Okay. Then you fulfill the registration and then you get the ticket by email or how

does it work?

VPN8: Yeah, of course via email is very essential and in an optimal case it would be

great if there is some kind of QA code which is sent by SMS so that I have the ticket

directly on my mobile phone and do not need to print out any further information

because it is not always the case that one has access to a printer. So when I use a mobile

app, of course I want to have the final ticket directly on my mobile phone.

INT: Okay, I think that’s all. Thank you!

Appendix B: Interview Transcripts xxiv

Train Reservation Interview 3

INT: If you open the app on your mobile phone, what do you see and what happens

then?

VPN9: Oh, I think first when you see it on your iPhone, occasionally it should pop up

deals like top offers, something like that. If you open it, it should be fast. But it should

be like clear and it should be really easy if you open and use. So be user-friendly. And I

think it will be helpful if you could just type in like when you need to go. And it would

pull up like, you know, eventually the settings such as where do you need to go. How

fast do you need to get there. And then where. And then obviously by price.

INT: So you get a result list?

VPN9: Yah. I think you should. But for me, I think it would be good to get the top

results for one. Because you things as fast as you can. So I think you just need to type in

when you need to leave, so like you can give a date or a time and then you drop the

search options. As far as I can see, for design is like red.

INT: Okay. So you have a listing of all your trains and select one. What happens then?

VPN9: It would forward you to booking. I think if you have an iPhone now, it would be

kind of cool if you could already have your billing information. Now I know that would

be intense if you lost your iPhone. But I think there could be some kind of special like

login so you could just click by, by, by. Maybe like within 30 seconds. You even don’t

have to type in your credit card number. It would be somehow safe. So but it have to be

secure that nobody can just type in and order your own train on your phone.

INT: Okay. And after you entered all your details, what happens then or what do you

have to do?

VPN9: It should give you an automatic receipt via email, I think. Saying that you

bought it. At first a screenshot. It should show you like an example of exactly how it

looks like if you would pick it up at the station and also how it would look like online.

So it would show you like here is what it looks like if you print it out and here is what it

looks like if you pick it up at the station and give you like further information.

INT: So you can print it out or pick it up on the station, you have the choice?

VPN9: Mhm, Yes.

INT: And any other options like, you know, send it via email or anything else?

Appendix B: Interview Transcripts xxv

VPN9: I think that maybe, if there are any updates like say your train is too late. It

should pop up on the app itself. Or if any other interferences so like say that there is

some kind of strike in Italy. Because last time we were in Italy there was a strike. It

would tell you so you would know like here you need to refund it today.

INT: So could you also have some refund options? How would look that like?

VPN9: I think if you buy in person. If you picked it up in person, I think you should get

your cash back in person. But there should also be a way to just put it directly back on

your credit card. So if you missed your train there will be like an option on there like a

pull-down that says like past rides, I guess. So you could see like if you missed this one

and ask to refund it. And they would forward you to refunding.

INT: Ah, okay, I see. That’s all. Thank you!

Train Reservation Interview 4

INT: So just start to explain what happens after you opened the app.

VPN11: So just opened the website. You have to enter your destination and where you

start and where you want to go. And you just choose the time. And they will show you a

timetable.

INT: So you have to click on Enter or Search first?

VPN11: Yah. At the date, you just press a button and they will show you a calendar

where you can choose which date you want to travel. And also there is a selection you

can just choose where and when like 12 o’clock. And if you search, they can show you

all the results. And if you pick one result, they can show you how long do you have to

go there and when do you have to change trains and where.

INT: So these are all listed in one table?

VPN11: Yah, in one table. And I think the better one is if there is a map, you can just

press and they can show you a map like where you have to go. Like you are here and the

destination is there and they can just show you how you go there. And also where you

have to change your train on a map. And especially the city centers. So if you press

Mannheim, they can show you a little bit around the main railway station. Ah okay.

They will make it the customer easy to find if that is really where they want to go.

INT: Ah okay. So you click on a name of a city and then it opens a map?

Appendix B: Interview Transcripts xxvi

VPN11: Yes, they can just show you. You just press the button and they can show you

detail information. And if you just press this one I want to buy, they can show you all

the prices they offer. So if you are student and they have these special offers for

students, you can just press which one you can buy.

INT: Okay. So you have some reduced prices and you click on them and then you get

an explanation about differences.

VPN11: Yeah, they are just afraid if somebody buys the wrong ticket.

INT: Ah, okay.

VPN11: And then, maybe you can combine some like an insurance or car rental at the

next step.

INT: And if you want to buy one of these tickets, how works that?

VPN11: First to login. If you have an account you can log in. And if you log in they can

show you detail information and they can check if this address is really your address or

email address or your telephone. I think the better kind is that you can choose if you

want to that they send tickets or on mobile phone or something like that to show you

your ticket. And also you have to insert like your name. They have to confirm your

credit card information.

INT: So what do you have to enter for that?

VPN11: Your name and also your telephone, your birthday. To confirm that is really

you booked the ticket, for security.

INT: And then you click on the button and what happens after that?

VPN11: After that, they will confirm the payment way, how you will pay the ticket.

INT: And how do you receive the ticket then?

VPN11: Maybe one is, you can just pick the ticket on the main entrance station. Or they

can send you. Or just use the email. Or use the mobile phone.

INT: Okay, that’s all. Thank you!

xxvii

Appendix C: Imported Knowledge
45

Term Requirements Category

he actor

I actor

it actor

she actor

they actor

we actor

you actor

accept activity

adapt activity

add activity

analyze activity

approve activity

arrange activity

assign activity

build activity

cancel activity

choose activity

click activity

collaborate activity

collect activity

compare activity

compute activity

conduct activity

confirm activity

create activity

design activity

detect activity

edit activity

enter activity

establish activity

evaluate activity

examine activity

execute activity

experiment activity

fill activity

45

 Parts of this data have been utilized in Meth et al. (2012a) and Meth et al. (2013b).

Appendix C: Imported Knowledge xxviii

insert activity

install activity

interact activity

join activity

list activity

maintain activity

manage activity

mark activity

model activity

observe activity

open activity

operate activity

perform activity

pick activity

plan activity

present activity

press activity

put activity

report activity

review activity

search activity

see activity

select activity

show activity

test activity

write activity

accommodation data

address data

address data

attribute data

bank data

card data

cost data

credit data

data data

date data

date data

deduction data

departure data

destination data

entry data

Appendix C: Imported Knowledge xxix

km data

location data

meal data

miles data

name data

number data

numbers data

order data

phone data

position data

price data

privileges data

receipt data

stopover data

text data

time data

travel data

trip data

vehicle data

easy non-functional

effective non-functional

effectiveness non-functional

efficiency non-functional

efficient non-functional

learn non-functional

learnability non-functional

memorability non-functional

safe non-functional

simple non-functional

simply non-functional

utility non-functional

Table 14: Imported Knowledge Used for Simulation and Experiment

xxx

Bibliography

[Abrams et al. 2006]

Abrams, S., Bloom, B., Keyser, P., Kimelman, D., Nelson, E., Neuberger, W.,

Roth, T., Simmonds, I., Tang, S., and Vlissides, J. 2006. “Architectural thinking

and modeling with the Architects’ Workbench,” IBM Systems Journal (45:3),

pp. 481-500.

[Agerfalk et al. 2009]

Agerfalk, P. J., Fitzgerald, B., and Slaughter, S. 2009. “Introduction to the

Special Issue - Flexible and Distributed Information Systems Development:

State of the Art and Research Challenges,” Information Systems Research

(20:3), pp. 317-328.

[Alavi and Leidner 2013]

Alavi, M., and Leidner, D. E. 2013. “Knowledge Management and Knowledge

Management Systems: Conceptual Foundations,” MIS Quarterly (25:1), pp. 107-

136.

[Ambriola and Gervasi 1997]

Ambriola, V., and Gervasi, V. 1997. “Processing Natural Language

Requirements,” in Proceedings of the 12th IEEE International Conference on

Automated Software Engineering, pp. 36-45.

[Ambriola and Gervasi 2006]

Ambriola, V., and Gervasi, V. 2006. “On the Systematic Analysis of Natural

Language Requirements with CIRCE,” Automated Software Engineering (13:1),

pp. 107-167.

[Appan and Browne 2012]

Appan, R., and Browne, G. J. 2012. “The Impact of Analyst-Induced

Misinformation on the Requirements Elicitation Process,” MIS Quarterly (36:1),

pp. 85-106.

[Atkinson and Kuhne 2003]

Atkinson, C., and Kuhne, T. 2003. “Model-driven development: a metamodeling

foundation,” IEEE Software (20:5), pp. 36-41.

[Bacharach 1989]

Bacharach, S. B. 1989. “Organizational Theories : Some Criteria for

Evaluation,” Academy of Management Review (14:4), pp. 496-515.

Bibliography xxxi

[Baeza-Yates and Ribeiro-Neto 1999]

Baeza-Yates, R., and Ribeiro-Neto, B. 1999. Modern Information Retrieval. 1st

Edition. Boston, USA: Addison Wesley.

[Baskerville and Pries-Heje 2010]

Baskerville, R., and Pries-Heje, J. 2010. “Explanatory Design Theory,” Business

& Information Systems Engineering (2:5), pp. 271-282.

[Beach and Mitchell 1978]

Beach, L., and Mitchell, T. 1978. “A Contingency Model for the Selection of

Decision Strategies,” The Academy of Management Review (3:3), pp. 439-449.

[Beck et al. 2001]

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick,

B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D.

2001. “Manifesto for Agile Software Development”. http://agilemanifesto.org.

Accessed on 04/16/2013.

[Benz et al. 2010]

Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., and

Stumme, G. 2010. “The social bookmark and publication management system

bibsonomy,” The VLDB Journal (19:6), pp. 849-875.

[Berry et al. 2012]

Berry, D., Gacitua, R., Sawyer, P., and Tjong, S. F. 2012. “The Case for Dumb

Requirements Engineering Tools,” in Requirements Engineering: Foundation

for Software Quality. 2012 Edition. Berlin / Heidelberg, Germany: Springer, pp.

211-217.

[Beyer and Holtzblatt 1998]

Beyer, H., and Holtzblatt, K. 1998. “Contextual design: defining customer-

centered systems,” in Proceedings of the SIGCHI conference on Human factors

in computing systems CHI ’90, pp. 329-336.

[Boehm and Basili 2001]

Boehm, B., and Basili, V. 2001. “Software Defect Reduction Top 10 List,” IEEE

Computer (34:1), pp. 135-137.

[Bonaccio and Dalal 2006]

Bonaccio, S., and Dalal, R. S. 2006. “Advice taking and decision-making: An

integrative literature review, and implications for the organizational sciences,”

Organizational Behavior and Human Decision Processes (101:2), pp. 127-151.

Bibliography xxxii

[Brasser and Vander Linden 2002]

Brasser, M., and Vander Linden, K. 2002. “Automatically eliciting task models

from written task narratives,” in Proceedings of the 4th International

Conference on Computer-Aided Design of User Interfaces, pp. 1-6.

[Cao and Ramesh 2008]

Cao, L., and Ramesh, B. 2008. “Agile Requirements Engineering Practices: An

Empirical Study,” IEEE Software (25:1), pp. 60-67.

[Carmel 1997]

Carmel, E. 1997. “American Hegemony in Packaged Software Trade and the

‘Culture of Software’,” The Information Society (13:1), pp. 125-142.

[Carson et al. 2001]

Carson, D., Gilmore, A., Perry, C., and Gronhaug, K. 2001. Qualitative

Marketing Research. 1st Edition. London, England: SAGE Publications Ltd.

[Casamayor et al. 2010]

Casamayor, A., Godoy, D., and Campo, M. 2010. “Identification of non-

functional requirements in textual specifications: A semi-supervised learning

approach,” Information and Software Technology (52:4), pp. 436-445.

[Casamayor et al. 2011]

Casamayor, A., Godoy, D., and Campo, M. 2011. “Mining textual requirements

to assist architectural software design: a state of the art review,” Artificial

Intelligence Review (38:3), pp. 173-191.

[Casey and Richardson 2006]

Casey, V., and Richardson, I. 2006. “Uncovering the Reality Within Virtual

Software Teams,” in Proceedings of the 2006 international workshop on Global

software development for the practitioner, pp. 66-72.

[Castro-Herrera et al. 2009]

Castro-Herrera, C., Duan, C., Cleland-Huang, J., and Mobasher, B. 2009. “A

recommender system for requirements elicitation in large-scale software

projects,” in Proceedings of the 2009 ACM symposium on Applied Computing -

SAC ’09, pp. 1419-1426.

[Cheng and Atlee 2007]

Cheng, B. H. C., and Atlee, J. M. 2007. “Research Directions in Requirements

Engineering Research Directions in Requirements Engineering,” in Proceedings

of the 2007 Future of Software Engineering (FOSE ’07), pp. 285-303.

Bibliography xxxiii

[Cleland-Huang et al. 2007]

Cleland-Huang, J., Settimi, R., Zou, X., and Solc, P. 2007. “Automated

classification of non-functional requirements,” Requirements Engineering

(12:2), pp. 103-120.

[Cohen 1988]

Cohen, J. 1988. Statistical Power for the Behavioral Sciences. 2nd Edition.

Hillsdale, USA: Lawrence Erlbaum Associates, Inc.

[Cohn 2004]

Cohn, M. 2004. User stories applied: For agile software development. 1st

Edition. Boston, USA: Addison-Wesley.

[Cooper et al. 2007]

Cooper, A., Reimann, R., and Cronin, D. 2007. About Face 3: The Essentials of

Interaction Design. 3rd Edition. Indianapolis, USA:Wiley.

[Cosmetatos and Eilon 1983]

Cosmetatos, G. P., and Eilon, S. 1983. “Effects of productivity definition and

measurement on performance evaluation,” European Journal of Operational

Research (14:1), pp. 31-35.

[Cybulski and Reed 1998]

Cybulski, J. L., and Reed, K. 1998. “Computer-assisted analysis and refinement

of informal software requirements documents,” in Proceedings of the 1998 Asia

Pacific Software Engineering Conference, pp. 128-135.

[Davis 1982]

Davis, B. 1982. “Strategies for information requirements determination,” IBM

Systems Journal (21:1), pp. 4-30.

[Davis et al. 2006]

Davis, A. M., Dieste, O., Hickey, A., Juristo, N., and Moreno, A. M. 2006.

“Effectiveness of requirements elicitation techniques: Empirical results derived

from a systematic review,” in Proceedings of the 14th IEEE International

Requirements Engineering Conference (RE’06), pp. 176-185.

[De Lucia and Qusef 2010]

De Lucia, A., and Qusef, A. 2010. “Requirements Engineering in Agile

Software Development,” Journal of Emerging Technologies in Web Intelligence

(2:3), pp. 212-220.

[Diehl and Stroebe 1991]

Diehl, M., and Stroebe, W. 1991. “Productivity loss in idea-generating groups:

Tracking down the blocking effect,” Journal of personality and social

psychology (61:3), pp. 392-403.

Bibliography xxxiv

[Eriksson, H., and Musen 1993]

Eriksson, H., and Musen, M. 1993. “Metatools for knowledge acquisition,”

IEEE Software (10:3), pp. 23-29.

[Faul et al. 2007]

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. 2007. “G*Power 3: a

flexible statistical power analysis program for the social, behavioral, and

biomedical sciences,” Behavior Research Methods (39:2), pp. 175-91.

[Fayyad et al. 1996]

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. 1996. “Knowledge Discovery

and Data Mining : Towards a Unifying Framework,” in Proceedings of the

KDD-96, pp. 82-88.

[Gacitua et al. 2011]

Gacitua, R., Sawyer, P., and Gervasi, V. 2011. “Relevance-based abstraction

identification: technique and evaluation,” Requirements Engineering (16:3), pp.

251-265.

[Gallupe and McKeen 1990]

Gallupe, R. B., and McKeen, J. D. 1990. “Enhancing Computer-Mediated

Communication: An experimental investigation into the use of a Group Decision

Support System for face-to-face versus remote meetings,” Information &

Management (18:1), pp. 1-13.

[Gardner and Berry 1995]

Gardner, P. H., and Berry, D. C. 1995. “The Effect of Different Forms of Advice

on the Control of a Simulated Complex System,” Applied Cognitive Psychology

(9:7), pp. 55-79.

[Gaß et al. 2012]

Gaß, O., Koppenhagen, N., Biegel, H., Maedche, A., and Müller, B. 2012.

“Anatomy of Knowledge Bases used in Design Science Research,” in

Proceedings of the 7th International Conference on Design Science Research in

Information Systems (DESRIST 2012), pp. 328-344.

[Geisser et al. 2007]

Geisser, M., Heinzl, A., Hildenbrand, T., and Rothlauf, F. 2007. “Verteiltes,

internetbasiertes Requirements-Engineering,” Wirtschaftsinformatik (49:3), pp.

199-207.

[Goguen and Linde 1993]

Goguen, J., and Linde, C. 1993. “Techniques for Requirements Elicitation,” in

Proceedings of IEEE International Symposium on Requirements Engineering,

pp. 152-164.

Bibliography xxxv

[Goldin and Berry 1997]

Goldin, L., and Berry, D. M. 1997. “AbstFinder, A Prototype Natural Language

Text Abstraction Finder for Use in Requirements Elicitation,” Automated

Software Engineering (4:4), pp. 375-412.

[Gould and Lewis 1985]

Gould, J. D., and Lewis, C. 1985. “Designing for Usability : Key Principles and

What Designers Think,” Communications of the ACM (28:3), pp. 300-311.

[Gregor and Hevner 2013]

Gregor, S., and Hevner, A. R. 2013. “Positioning and Presenting Design Science

Research for Maximum Impact,” MIS Quarterly (37:2), forthcoming.

[Gregor and Jones 2007]

Gregor, S., and Jones, D. 2007. “The anatomy of a design theory,” Journal of

the Association for Information Systems (8:5), pp. 312–335.

[Harmain and Gaizauskas 2003]

Harmain, H. M., and Gaizauskas, R. J. 2003. “CM-Builder : A Natural

Language-Based CASE Tool for Object-Oriented Analysis,” Automated

Software Engineering (10:2), pp. 157-181.

[Hart 2004]

Hart, A. 2004. 801 Action Verbs for Communicators: Position Yourself First

with Action Verbs for Journalists, Speakers, Educators, Students, Resume-

Writers, Editors & Travelers. Lincoln, USA: iUniverse.

[Hartson and Hix 1989]

Hartson, H. R., and Hix, D. 1989. “Toward empirically derived methodologies

and tools for human-computer interface development,” International Journal of

Man-Machine Studies (31:4), pp. 477-494.

[Herbsleb and Moitra 2001]

Herbsleb, J., and Moitra, D. 2001. “Global Software Development,” IEEE

Software (18:2), pp. 16-20.

[Hevner et al. 2004]

Hevner, A. R., March, S. T., Park, J., and Ram, S. 2004. “Design science in

information systems research,” MIS Quarterly (28:1), pp. 75-105.

[Hevner and Chatterjee 2010]

Hevner, A., and Chatterjee, S. 2010. “Design science research in information

systems,” in Design Research in Information Systems. 2010 Edition. Boston,

USA: Springer, pp. 9-22.

Bibliography xxxvi

[Hickey and Davis 2004]

Hickey, A. M., and Davis, A. M. 2004. “A unified model of requirements

elicitation,” Journal of Management Information Systems (20:4), pp. 65-84.

[Hildenbrand et al. 2009]

Hildenbrand, T., Heinzl, A., Geisser, M., Klimpke, L., and Acker, T. 2009. “A

Visual Approach to Traceability and Rationale Management in Distributed

Collaborative Software Development,” in Lecture Notes in Informatics -

PRIMIUM - Process Innovation for Enterprise Software, Bonn, Germany:

Koellen-Verlag, pp. 161-178.

[Hill and Lewicki 2006]

Hill, T., and Lewicki, P. 2006. Statistics: Methods and Applications. Tulsa,

USA: StatSoft.

[Holmström et al. 2006]

Holmström, H., Fitzgerald, B., Ågerfalk, P. J., and Conchúir, E. Ó. 2006. “Agile

Practices Reduce Distance in Global Software Development,” Information

Systems Management (23:3), pp. 7-18.

[Hooker 2004]

Hooker, J. N. 2004. “Is Design Theory Possible ?,” Journal of Information

Technology Theory and Application (6:2), pp. 73-82.

[Huberty and Morris 1989]

Huberty, C. J., and Morris, J. D. 1989. “Multivariate analysis versus multiple

univariate analyses,” Psychological Bulletin (105:2), pp. 302-308.

[Huffman Hayes et al. 2005]

Huffman Hayes, J., Dekhtyar, A., and Sundaram, S. 2005. “Text Mining for

Software Engineering : How Analyst Feedback Impacts Final Results,” in

Proceedings of the 2005 International Workshop on Mining Software

Repositories (MSR ’05), pp. 1-5.

[IEEE 1990]

IEEE. 1990. “610.12-1990 - IEEE Standard Glossary of Software Engineering

Terminology”. http://standards.ieee.org/findstds/standard/610.12-1990.html.

Accessed on 04/12/2013.

[IEEE 1998]

IEEE. 1998. “830-1998 - IEEE Recommended Practice for Software

Requirements Specifications”. http://standards.ieee.org/findstds/standard/830-

1998.html. Accessed on 04/12/2013.

Bibliography xxxvii

[ISO 1998]

ISO. 1998. “Ergonomic requirements for office work with visual display

terminals (VDTs) - Part 11: Guidance on usability,” http://www.iso.org/iso

/catalogue_detail. htm?csnumber=16883. Accessed on 04/16/2013.

[ISO 2010]

ISO. 2010. “Ergonomics of human-system interaction - Part 210: Human-

centred design for interactive systems,” http://www.iso.org/iso/

catalogue_detail.htm?csnumber=52075. Accessed on 04/16/2013.

[Jämsä-Jounela 2007]

Jämsä-Jounela, S.-L. 2007. “Future trends in process automation,” Annual

Reviews in Control (31:2), pp. 211-220.

[John and Dörr 2003]

John, I., and Dörr, J. 2003. “Elicitation of Requirements from User

Documentation,” in Proceedings of the 9th International Workshop on

Requirements Engineering - Foundation of Software Quality (REFSQ’03), pp.

17-26.

[Jurafsky and Martin 2009]

Jurafsky, D., and Martin, J. H. 2009. Speech and Language Processing. 2nd

Edition. New Yersey, USA: Pearson Prentice Hall.

[Kaiya and Saeki 2006]

Kaiya, H., and Saeki, M. 2006. “Using Domain Ontology as Domain Knowledge

for Requirements Elicitation,” in Proceedings of the 14th IEEE International

Requirements Engineering Conference (RE’06), pp. 189-198.

[Karlsson et al. 2002]

Karlsson, L., Dahlstedt, Å. G., Natt och Dag, J., Regnell, B., and Persson, A.

2002. “Challenges in Market-Driven Requirements Engineering - an Industrial

Interview Study,” in Proceedings of the Eights International Workshop on

Requirements Engineering: Foundation for Software Quality, pp. 101-112.

[Kincaid et al. 1975]

Kincaid, J. P., Fishburn, R. P., Rogers, R. L., and Chissom, B. S. 1975.

Derivation of New Readability Formulas (Automated Readability Index, Fog

Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel

Research Branch Report. Millington, USA: National Technical Information

Service.

Bibliography xxxviii

[Kiyavitskaya and Zannone 2008]

Kiyavitskaya, N., and Zannone, N. 2008. “Requirements model generation to

support requirements elicitation: the Secure Tropos experience,” Automated

Software Engineering (15:2), pp. 149-173.

[Kof 2004]

Kof, L. 2004. “An Application of Natural Language Processing to Domain

Modelling – Two Case Studies,” International Journal on Computer Systems

Science Engineering (20:1), pp. 37-52.

[Kuechler and Vaishnavi 2008]

Kuechler, B., and Vaishnavi, V. 2008. “On theory development in design

science research: anatomy of a research project,” European Journal of

Information Systems (17:5), pp. 489-504.

[Kuechler and Vaishnavi 2012]

Kuechler, W., and Vaishnavi, V. 2012. “A Framework for Theory Development

in Design Science Research: Multiple Perspectives,” Journal of the Association

for Information Systems (13:6), pp. 395-423.

[Larman and Basili 2003]

Larman, C., and Basili, V. R. 2003. “Iterative and incremental developments. a

brief history,” IEEE Computer (36:6), pp. 47-56.

[Leffingwell 2011]

Leffingwell, D. 2011. Agile Software Requirements: Lean Requirements

Practices for Teams, Programs, and the Enterprise. 1st Edition. Boston, USA:

Addison-Wesley Professional.

[Lemaigre and Vanderdonckt 2008]

Lemaigre, C., García, J. G., and Vanderdonckt, J. 2008. “Interface Model

Elicitation from Textual Scenarios,” in Proceedings of the Human-Computer

Interaction Symposium, pp. 53-66.

[Li and Maedche 2012]

Li, Y., and Maedche, A. 2012. “Formulating Effective Coordination Strategies

in Agile Global Software Development Teams,” in Proceedings of the

International Conference on Information Systems (ICIS 2012). Paper 36.

[Lipnack and Stamp 1997]

Lipnack, J., and Stamp, J. 1997. Virtual Teams: Reaching Across Space, Time

And Originating With Technology. 1st Edition. New York, USA: John Wiley &

Sons.

Bibliography xxxix

[Maedche and Staab 2000]

Maedche, A., and Staab, S. 2000. “Discovering conceptual relations from text,”

in Proceedings of the 14th European Conference on Artificial Intelligence, pp.

321-325.

[Maedche and Staab 2001]

Maedche, A., and Staab, S. 2001. “Ontology learning for the Semantic Web,”

IEEE Intelligent Systems (16:2), pp. 72-79.

[Manning et al. 2008]

Manning, C. D., Raghavan, P., and Schuetze, H. 2008. Introduction to

Information Retrieval. 1st Edition. Cambridge, England: Cambridge University

Press.

[March and Smith 1995]

March, S. T., and Smith, G. F. 1995. “Design and natural science research on

information technology,” Decision Support Systems (15:4), pp. 251-266.

[Markus 2001]

Markus, M. L. 2001. “Toward A Theory of Knowledge Reuse : Types of

Knowledge Reuse Situations and Factors in Reuse Success,” Journal of

Management Information Systems (18:1), pp. 57-93.

[Markus et al. 2002]

Markus, M. L., Majchrzak, A., and Gasser, L. 2002. “A design theory for

systems that support emergent knowledge processes,” MIS Quarterly (26:3), pp.

179–212.

[Marshall and Mckay 2005]

Marshall, J., and Mckay, P. 2005. “A Review of Design Science in Information

Systems,” in Proceedings of the ACIS 2005. Paper 5.

[Mayhew 1999]

Mayhew, D. J. 1999. The usability engineering lifecycle: a practitioner’s

handbook for user interface design. 1st Edition. San Francisco, USA: Morgan

Kaufmann.

[Menten et al. 2010]

Menten, A., Scheibmayr, S., and Klimpke, L. 2010. “Using Audio and

Collaboration Technologies for Distributed Requirements Elicitation and

Documentation,” in Proceedings of the Third International Workshop on

Managing Requirements Knowledge (MARK), pp. 51-59.

Bibliography xl

[Meth et al. 2012a]

Meth, H., Li, Y., Maedche, A., and Mueller, B. 2012. “Advancing Task

Elicitation Systems – An Experimental Evaluation of Design Principles,” in

Proceedings of the ICIS 2012. Paper 3.

[Meth et al. 2012b]

Meth, H., Li, Y., Maedche, A., and Mueller, B. 2012. “Understanding Design

Principles of Task Elicitation Systems - An Experimental Evaluation,” in

Proceedings of the JAIS Theory Development Workshop 2012. Paper 22.

[Meth et al. 2013a]

Meth, H., Brhel, M., and Maedche, A. 2013. “The State of the Art in Automated

Requirements Elicitation,” Information and Software Technology, forthcoming.

[Meth et al. 2013b]

Meth, H., Maedche, A., and Einoeder, M. 2013. “Is Knowledge Power? The

Role of Knowledge in Automated Requirements Elicitation,” in Proceedings of

the 25th International Conference on Advanced Information Systems

Engineering (CAiSE 2013), forthcoming.

[Mich 1996]

Mich, L. 1996. “NL-OOPS: from natural language to object oriented

requirements using the natural language processing system LOLITA,” Natural

Language Engineering (2:2), pp. 161-187.

[Mich et al. 2004]

Mich, L., Franch, M., and Novi, I. P. 2004. “Market research for requirements

analysis using linguistic tools,” Requirements Engineering (9:1), pp. 40-56.

[Mich and Garigliano 2002]

Mich, L., and Garigliano, R. 2002. “NL-OOPS : a requirements analysis tool

based on natural language processing,” in Data Mining III. Southampton, UK:

WIT Press, pp. 321-330.

[Müller-Wienbergen et al. 2011]

Müller-Wienbergen, F., Müller, O., Seidel, S., and Becker, J. 2011. “Leaving the

Beaten Tracks in Creative Work–A Design Theory for Systems that Support

Convergent and Divergent Thinking,” Journal of the Association for

Information Systems (12:11), pp. 714-740.

[Natt och Dag et al. 2002]

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., and Karlsson, J.

2002. “A Feasibility Study of Automated Natural Language Requirements

Analysis in Market-Driven Development,” Requirements Engineering (7:1), pp.

20-33.

Bibliography xli

[Natt och Dag et al. 2004]

Natt och Dag, J., Gervasi, V., Brinkkemper, S., and Regnell, B. 2004. “Speeding

up Requirements Management in a Product Software Company : Linking

Customer Wishes to Product Requirements through Linguistic Engineering,” in

Proceedings of the 12th IEEE International Requirements Engineering

Conference, pp. 283-294.

[Neill and Laplante 2003]

Neill, C. J., and Laplante, P. A. 2003. “Requirements Engineering: The State of

the Practice,” IEEE Software (20:6), pp. 40-45.

[Niehaves 2007]

Niehaves, B. 2007. “On Epistemological Pluralism in Design Science,”

Scandinavian Journal of Information Systems (19:2), pp. 93-104.

[Norman 1988]

Norman, D. 1988. The Psychology of Everyday Things. 1st Edition. New York,

USA: Basic books.

[Norman and Draper 1986]

Norman, D., and Draper, S. W. 1986. User centered system design; new

perspectives on human-computer interaction. 1st Edition. Hillsdale, USA: L.

Erlbaum Associates Inc.

[Nunamaker et al. 1990]

Nunamaker, J. F., Chen, M., and Purdin, T. 1990. “Systems Development in

Information Systems Research,” in Proceedings of the Twenty-Third Annual

Hawaii International Conference on System Sciences, pp. 631-640.

[Omoronyia et al. 2010]

Omoronyia, I., Sindre, G., Stålhane, T., Biffl, S., Moser, T., and Sunindyo, W.

2010. “A Domain Ontology Building Process for Guiding Requirements

Elicitation,” in Requirements Engineering: Foundation for Software Quality.

2010 Edition. Berlin / Heidelberg, Germany: Springer, pp. 188-202.

[Ossher et al. 2009]

Ossher, H., Amid, D., Anaby-Tavor, A., Bellamy, R., Callery, M., Desmond,

M., De Vries, J., Fisher, A., Krasikov, S., Simmonds, I., and Swart, C. 2009.

“Using tagging to identify and organize concerns during pre-requirements

analysis,” in Proceedings of the 2009 ICSE Workshop on Aspect-Oriented

Requirements Engineering and Architecture Design, pp. 25-30.

[Palmer 2000]

Palmer, D. 2000. “Tokenisation and Sentence Segmentation,” in Handbook of

natural language processing. 1st Edition. CRC Press, pp. 11-36.

Bibliography xlii

[Parasuraman et al. 2001]

Parasuraman, R., Sheridan, T. B., and Wickens, C. D. 2001. “A model for types

and levels of human interaction with automation,” IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans (30:3), pp. 286-

297.

[Parikh et al. 2001]

Parikh, M., Fazlollah, B., and Verma, S. 2001. “The Effectiveness of Decisional

Guidance : An Empirical Evaluation,” Decision Sciences (32:2), pp. 303-331.

[Park et al. 2000]

Park, S., Kim, H., Ko, Y., and Seo, J. 2000. “Implementation of an efficient

requirements-analysis supporting system using similarity measure techniques,”

Information and Software Technology (42:6), pp. 429-438.

[Patil et al. 1997]

Patil, R. S., Fikes, R. E., Patel-Schneider, P. F., McKay, D., Finin, T., Gruber,

T., and Neches, R. 1997. “The DARPA knowledge sharing effort: progress

report,” in Readings in agents. 1st Edition. San Francisco, USA: Morgan

Kaufmann Publishers Inc., pp. 243-254.

[Payne 1982]

Payne, J. W. 1982. “Contingent decision behavior.,” Psychological Bulletin

(92:2), pp. 382-402.

[Pedhazur and Schmelkin 1991]

Pedhazur, E., and Schmelkin, L. 1991. Measurement, design, and analysis: An

integrated approach. Student Edition. Hillsdale, USA: Lawrence Erlbaum

Associates, Inc.

[Peffers et al. 2007]

Peffers, K., Tuunanen, T., Rothenberger, M. a., and Chatterjee, S. 2007. “A

Design Science Research Methodology for Information Systems Research,”

Journal of Management Information Systems (24:3), pp. 45-77.

[Pérez-González and Kalita 2002]

Pérez-González, H. G., and Kalita, J. K. 2002. “Automatically generating object

models from natural language analysis,” in Proceedings of the 17th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications - OOPSLA ’02, pp. 86-87.

[Petersen and Wohlin 2010]

Petersen, K., and Wohlin, C. 2010. “The effect of moving from a plan-driven to

an incremental software development approach with agile practices,” Empirical

Software Engineering (15:6), pp. 654-693.

Bibliography xliii

[Pohl 2010]

Pohl, K. 2010. Requirements Engineering: Fundamentals, Principles, and

Techniques. 2010 Edition. Berlin / Heidelberg: Springer.

[Pries-Heje et al. 2008]

Pries-Heje, J., Baskerville, R., and Venable, J. R. 2008. “Strategies for Design

Science Research Evaluation,” in Proceedings of the ECIS 2008. Paper 87.

[Pries-Heje and Pries-Heje 2011]

Pries-Heje, L., and Pries-Heje, J. 2011. “Agile & Distributed Project

Management: A Case Study revealing why SCRUM is useful,” in Proceedings

of the ECIS 2011. Paper 217.

[Rago et al. 2011]

Rago, A., Marcos, C., and Diaz-Pace, J. A. 2011. “Uncovering quality-attribute

concerns in use case specifications via early aspect mining,” Requirements

Engineering (18:1), pp. 67-84.

[Rajlich 2006]

Rajlich, V. 2006. “Changing the paradigm of software engineering,”

Communications of the ACM (49:8), pp. 67-70.

[Ramesh et al. 2007]

Ramesh, B., Cao, L., and Baskerville, R. 2007. “Agile requirements engineering

practices and challenges: an empirical study,” Information Systems Journal

(20:5), pp. 449-480.

[Rayson et al. 2000]

Rayson, P., Garside, R., and Sawyer, P. 2000. “Assisting requirements

engineering with semantic document analysis,” in Proceedings of the RIAO

2000, pp. 1363-1371.

[Regnell et al. 1998]

Regnell, B., Beremark, P., and Eklundh, O. 1998. “A market-driven

requirements engineering process: Results from an industrial process

improvement program,” Requirements Engineering (3:2), pp. 121-129.

[Robertson and Robertson 2006]

Robertson, S., and Robertson, J. 2006. Mastering the Requirements Process. 2nd

Edition. Boston, USA: Pearson Education.

[Robey et al. 2001]

Robey, D., Welke, R., and Turk, D. 2001. “Traditional, iterative, and

component-based development: A social analysis of software development

paradigms,” Information Technology and Management (2:1), pp. 53-70.

Bibliography xliv

[Robinson and Kalakota 2004]

Robinson, M., and Kalakota, R. 2004. Offshore Outsourcing: Business Models,

ROI and Best Practices. 2nd Edition. Alpharetta, USA: Mivar Press.

[Salton and McGill 1986]

Salton, G., and McGill, M. J. 1986. Introduction to Modern Information

Retrieval. New York, USA: McGraw-Hill Book Company.

[Sampaio et al. 2007]

Sampaio, A., Rashid, A., Chitchyan, R., and Rayson, P. 2007. “EA-Miner:

Towards Automation in Aspect-Oriented Requirements Engineering,” in

Transactions on Aspect-Oriented Software Development III, Berlin / Heidelberg:

Springer, pp. 4-39.

[SAP AG 2012]

SAP AG. 2012. “SAP Travel Management application” http://help.sap.com/

printdocu/core/print46c/en/data/pdf/FITVPLAN/FITVGENERIC.pdf. Accessed

on 01/02/ 2012.

[Sarnikar and Deokar 2009]

Sarnikar, S., and Deokar, A. 2009. “Towards a Design Theory for Process-Based

Knowledge Management Systems,” in Proceedings of the ICIS 2009, pp. 1-10.

[Sawyer et al. 2002]

Sawyer, P., Rayson, P., and Garside, R. 2002. “REVERE: Support for

Requirements Synthesis from Documents,” Information Systems Frontiers (4:3),

pp. 343-353.

[Sawyer 2000]

Sawyer, S. 2000. “Packaged Software : Implications of the Differences from

Custom Approaches to Software Development,” European Journal of

Information Systems (9:1), pp. 47-58.

[Scacchi 2002]

Scacchi, W. 2002. “Understanding the requirements for developing open source

software systems,” IEE Proceedings Software (149:1), pp. 24-39.

[Schreiber et al. 1994]

Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H., and Van de Velde, W.

1994. “CommonKADS: a comprehensive methodology for KBS development,”

IEEE Expert (9:6), pp. 28-37.

Bibliography xlv

[Schreiber et al. 1999]

Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R. de D., Shadbolt, N.

R., Velde, W. van V. de, and Wielinga, B. J. 1999. Knowledge Engineering and

Management: The Common KADS Methodology. Cambridge, USA: The MIT

Press.

[Sein et al. 2011]

Sein, M. K., Henfridsson, O., and Rossi, M. 2011. “Action Design Research,”

MIS Quarterly (35:1), pp. 37-56.

[Seresht et al. 2008]

Seresht, S. M., Ormandjieva, O., and Sabra, S. 2008. “Automatic Conceptual

Analysis of User Requirements with the Requirements Engineering Assistance

Diagnostic (READ) Tool,” in Proceedings of the Sixth International Conference

on Software Engineering Research, Management and Applications, pp. 133-142.

[Sharp et al. 2007]

Sharp, H., Rogers, Y., and Preece, J. 2007. Interaction design: beyond human-

computer interaction. 2nd Edition. Chichester, USA: John Willey & Sons Ltd.

[Shibaoka et al. 2007]

Shibaoka, M., Kaiya, H., and Saeki, M. 2007. “GOORE : Goal-Oriented and

Ontology Driven Requirements Elicitation Method,” in Advances in Conceptual

Modeling – Foundations and Applications. 2007 Edition. Berlin / Heidelberg:

Springer, pp. 225-234.

[Sillitti et al. 2005]

Sillitti, A., Ceschi, M., Russo, B., and Succi, G. 2005. “Managing Uncertainty in

Requirements : a Survey in Documentation-driven and Agile Companies,” in

Proceedings of the 11th IEEE International Symposium on Software Metrics, pp.

10-17.

[Silva and Ribeiro 2003]

Silva, C., and Ribeiro, B. 2003. “The Importance of Stop Word Removal on

Recall Values in Text Categorization,” in Proceedings of the International Joint

Conference on Neural Networks, pp. 1661-1666.

[Silver 1988]

Silver, M. S. 1988. “User perceptions of DSS restrictiveness: an experiment,” in

Proceedings of the Twenty-First Annual Hawaii International Conference on

System Sciences, pp. 116-124.

[Silver 1991]

Silver, M. S. 1991. “Decisional Guidance for Computer-Based Decision

Support,” MIS Quarterly (15:1), pp. 105-122.

Bibliography xlvi

[Simon 1957]

Simon, H. A. 1957. Models of Man. 1st Edition. New York , USA: Wiley.

[Simon 1969]

Simon, H. A. 1969. The sciences of the artificial. 1st Edition. Cambridge, USA:

M.I.T. Press.

[Sommerville 2010]

Sommerville, I. 2010. Software Engineering. 9th Edition. Boston, USA:

Addison-Wesley.

[Staab et al. 2001]

Staab, S., Studer, R., Schnurr, H.-P., and Sure, Y. 2001. “Knowledge Processes

and Ontologies,” IEEE Intelligent Systems (16:1), pp. 26-34.

[Standish 2009]

Standish. 2009. http://www.standishgroup.com. Accessed on 03/03/2012.

[Takeda and Veerkamp 1990]

Takeda, H., and Veerkamp, P. 1990. “Modeling Design Processes,” AI

Magazine (11:4), pp. 37-48.

[Tam et al. 1998]

Tam, R. C., Maulsby, D., and Puerta, A. R. 1998. “U-TEL: A Tool for Eliciting

User Task Models from Domain Experts,” in Proceedings of the 3rd

international conference on Intelligent user interfaces, pp. 77-80.

[Tamir et al. 2008]

Tamir, D., Marcos, S., and Mueller, C. J. 2008. “An Effort and Time Based

Measure of Usability,” in Proceedings of the 6th international workshop on

Software Quality, pp. 47-52.

[Tichy and Koerner 2010]

Tichy, W. F., and Koerner, S. J. 2010. “Text to software: developing tools to

close the gaps in software engineering,” in Proceedings of the FSE/SDP

workshop on Future of software engineering research (FoSER ’10), pp. 379-

384.

[Todd and Benbasat 1991]

Todd, P., and Benbasat, I. 1991. “An Experimental Investigation of the Impact

of Computer Based Decision Aids on Decision Making Strategies,” Information

Systems Research (2:2), pp. 87-115.

Bibliography xlvii

[Todd and Benbasat 1999]

Todd, P., and Benbasat, I. 1999. “Evaluating the Impact of DSS , Cognitive

Effort , and Incentives on Strategy Selection,” Information Systems Research

(10:4), pp. 356-374.

[Tuunanen 2003]

Tuunanen, T. 2003. “A new perspective on Requirements Elicitation Methods,”

Journal of Information Technology Theory and Application (5:3), pp. 45-72.

[Vaishnavi and Kuechler 2007]

Vaishnavi, V. K., and Kuechler, W. 2007. Design Science Research Methods

and Patterns: Innovating Information and Communication Technology. New

York, USA: Auerbach.

[Valusek and Fryback 1985]

Valusek, J., and Fryback, D. 1985. “Information requirements determination:

obstacles within, among and between participants,” in Proceedings of the

twenty-first annual conference on Computer Personnel Research, pp. 103-111.

[van de Weerd et al. 2006]

van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., and

Bijlsma, L. 2006. “Towards a Reference Framework for Software Product

Management,” in Proceedings of the 14th IEEE International Requirements

Engineering Conference, pp. 319-322.

[Vasey and Thayer 1987]

Vasey, M. W., and Thayer, J. F. 1987. “The Continuing Problem of False

Positives in Repeated Measures ANOVA in Psychophysiology: A Multivariate

Solution,” Psychophysiology (24:4), pp. 479-486.

[Vlas and Robinson 2012]

Vlas, R. E., and Robinson, W. N. 2012. “Two Rule-Based Natural Language

Strategies for Requirements Discovery and Classification in Open Source

Software Development Projects,” Journal of Management Information Systems

(28:4), pp. 11-38.

[Voutilainen 2003]

Voutilainen, A. 2003. “Part-of-speech tagging,” in The Oxford handbook of

computational linguistics. Oxford University Press, pp. 219-232.

[Walls et al. 1992]

Walls, J. G., Widmeyer, G. R., and El Sawy, O. A. 1992. “Building an

information system design theory for vigilant EIS,” Information Systems

Research (3:1), pp. 36–59.

Bibliography xlviii

[Wang and Benbasat 2009]

Wang, W., and Benbasat, I. 2009. “Interactive decision aids for consumer

decision making in e-commerce: The influence of perceived strategy

restrictiveness,” MIS Quarterly (33:2), pp. 293-320.

[Weber 2004]

Weber, R. 2004. “The Rhetoric of Positivism versus Interpretivism : A Personal

View,” MIS Quarterly (28:1), pp. iii-xii.

[Wermter and Hahn 2006]

Wermter, J., and Hahn, U. 2006. “You can’t beat frequency (unless you use

linguistic knowledge),” in Proceedings of the 21st International Conference on

Computational Linguistics, pp. 785-792.

[Wilson et al. 1997]

Wilson, W. M., Rosenberg, L. H., and Hyatt, L. E. 1997. “Automated analysis of

requirement specifications,” in Proceedings of the 19th international conference

on Software engineering (ICSE ’97), pp. 161-171.

[Wixon et al. 1990]

Wixon, D., Holtzblatt, K., and Knox, S. 1990. “Contextual design: an emergent

view of system design,” in Proceedings of the SIGCHI conference on Human

factors in computing systems, pp. 329-336.

[Wu et al. 2006]

Wu, H., Zubair, M., and Maly, K. 2006. “Harvesting social knowledge from

folksonomies,” in Proceedings of the seventeenth conference on Hypertext and

hypermedia, pp. 111-114.

[Yaniv 2004]

Yaniv, I. 2004. “The Benefit of Additional Opinions,” Current Directions in

Psychological Science (13:2), pp. 75-78.

[Zowghi and Gervasi 2003]

Zowghi, D., and Gervasi, V. 2003. “On the interplay between consistency,

completeness, and correctness in requirements evolution,” Information and

Software Technology (45:14), pp. 993-1009.

Lebenslauf
Hendrik Meth

1995 - 2001

2002 - 2010

Universität Mannheim

Diplomstudiengang Wirtschaftsinformatik, Abschluss: 11/2001 als

Diplom-Wirtschaftsinformatiker

Robert Bosch GmbH und Icon GmbH

Projektleiter, Produktmanager und Berater im Bereich Business

Intelligence

2010 - heute Universität Mannheim

Doktorand am Lehrstuhl für Wirtschaftsinformatik IV, Prof. Mädche

