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1 Introduction 

1.1 Motivation  

In consequence of the pervasive existence of information technology in modern life, the 

development of software became increasingly important within the software industry 

and other industrial sectors. Contemporary software development is confronted with 

significant challenges including increased innovation, cost and time pressure, soaring 

complexity and high quality demands (Pohl 2010). Many software development projects 

cannot cope with these challenges. According to a recent study, issued by the Standish 

Group, only 32% of all software development projects are finished successfully, while 

the remaining projects invest more resources than planned, reduce their original 

functional scope or entirely fail (Standish 2009).  

The success of IS
1
 development highly depends on the accuracy of the requirements 

gathered from users and other stakeholders (Appan and Browne 2012; Hickey and 

Davis 2004). Requirements which have been overlooked, misinterpreted or 

incompletely specified can cause high costs. Boehm and Basili (2001) estimate that the 

detection and removal of a software problem after delivery is 100 times more expensive 

than the correction of a problem during the requirements or design phase. Therefore, the 

efficient determination of complete and correct software requirements is of utmost 

importance. 

Approximately 80% of software requirements are recorded in natural language (Mich et 

al. 2004; Neill and Laplante 2003), within informal requirements documents, interview 

transcripts, discussion forums, or narrative scenarios. Natural language is inherently 

powerful and expressive and can thus be used to communicate between a broad range of 

stakeholders and users (Casamayor et al. 2011). Even though it appears to be a well-

suited means to articulate and discuss requirements, severe problems emerge when 

using natural language in specification documents as they might be ambiguous, 

inconsistent and incomplete (Wilson et al. 1997). Moreover, a direct interpretation of 

these documents by subsequent development tools is almost impossible. Accordingly, 

                                                 
1
 Information Systems. 
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natural language requirements are usually transformed from initially informal 

statements into more consistent and unambiguous representations (Tichy and Koerner 

2010). This process is referred to as requirements discovery in the context of this 

doctoral thesis
2
. 

Especially in large IS development projects, requirements discovery is a challenging 

task as a huge number of natural language requirements becomes available and needs to 

be analyzed. In these cases, manual requirements discovery can become time-

consuming, error-prone, and monotonous, especially if it has to be repeated multiple 

times when updates to previously existing documents become available (Ambriola and 

Gervasi 2006; Huffman Hayes et al. 2005). These problems lead to a low individual 

performance and more specifically to a low productivity of requirements engineers 

involved in this process. As a consequence, the question can be raised if and how 

requirements discovery can be supported by software development systems. 

1.2 Research Goals 

Many systems have been suggested to support requirements discovery by the means of 

technology (Ambriola and Gervasi 2006; Casamayor et al. 2010; Cleland-Huang et al. 

2007; Gacitua et al. 2011) and ultimately to improve requirements engineersô 

productivity. Additionally to a first identification of requirements or requirements 

abstractions, these systems also support different processing steps such as requirements 

interrelation (Ambriola and Gervasi 2006; Harmain and Gaizauskas 2003; Sampaio et 

al. 2007) or requirements classification (Casamayor et al. 2010; Cleland-Huang et al. 

2007; Vlas and Robinson 2012). The latter class of systems (systems to support 

requirements identification and classification) is focused in the context of this thesis and 

referred to as Requirements Mining Systems (RMS).  

Although former works made major progress in the technical development of RMS, few 

efforts have been made to systematically capture the prescriptive knowledge gained. An 

according codification and abstraction of results in a design theory could significantly 

extend the requirements discovery knowledge base and guide future research in this 

                                                 
2
 In the following, this doctoral thesis will be simply referred to as Ăthesisñ. 
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area. To increase the probability of an effective design, this theory should be grounded 

on practical experiences in the area of requirements discovery on the one hand and 

existing kernel theories which are relevant in this context on the other. Furthermore, 

existing RMS have been mainly evaluated through simulations, comparing the results of 

the presented system with a previously defined gold standard. Even though these 

evaluations allow precise measurements of absolute quality criteria, they do not allow a 

comparison to the as-is situation of manual discovery. More specifically, the question if 

RMS improve a requirements engineerôs individual productivity is hardly answered yet. 

As a consequence, this research project aims at 1) deriving a theoretically grounded 

design theory for RMS 2) implementing an artifact based on this design theory and 3) 

evaluating if requirements mining supported by this artifact results in increased 

productivity (in comparison to manual discovery). The leading research question to 

attain these goals is: How can a system be designed which aims at improving 

requirements mining productivity over manual discovery?  

Following a Design Science approach, the theory which shall be derived is structured 

according to the eight components of a design theory suggested by Gregor and Jones 

(2007). Design requirements are identified based on general knowledge and kernel 

theories, design principles are conceptualized and mapped to design features which are 

then instantiated in an artifact. The artifact is used to measure effects of the identified 

design principles on requirements mining productivity in two experiments: one in a 

laboratory and one in a field setting. This thesis contributes to the design theory body of 

knowledge by providing a design theory for RMS. The design theory is a contribution to 

the IS literature because RMS represent an important class of design situations that have 

not been adequately described yet by existing works. From a practical point of view, the 

study can help commercial providers of requirements engineering software packages in 

the design of their applications. Applied to commercial software development, the 

design theory can guide developers by reducing the range of possible system features 

and development activities to a more manageable set, and thus increase the probability 

of success. 
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1.3 Structure of the Work 

The remainder of this thesis is organized in the following chapters: Chapter two 

summarizes the foundations of this research. In this chapter, first requirements 

discovery as the superordinate process of requirements mining is defined and related to 

different requirements engineering and software development approaches. Then 

different types of requirements discovery systems and their technological characteristics 

are presented.  

In the third chapter, an analysis framework for the related work of this thesis is 

conceptualized. The analysis framework is then applied to research works in the area of 

RMS which represent the related work of this thesis. This analysis results in the 

identification of research gaps to be addressed in this thesis.  

In the fourth chapter, the overall methodology which is applied in this thesis is 

presented, including an introduction to the concepts of Design Science Research (DSR), 

the research paradigm which is followed here.  

Chapter five then describes the first main result of this thesis, a design theory for RMS. 

The description is structured along the eight components of an IS design theory 

suggested by Gregor and Jones (2007), including a presentation of the designed artifact.  

In chapter six, the results of two quantitative evaluations which have been conducted 

over the course of this thesis project are depicted. The first evaluation was performed 

during the design of the artifact while the second evaluation was conducted based on the 

artifactôs final version.  

In the subsequent chapter seven, results of both evaluations and the overall research 

project are discussed.  

Finally, in chapter eight, the contents of this thesis are summarized, limitations and 

future research opportunities are outlined and both research and practice contributions 

are depicted. 



5 

2 Foundations 

In the following sections, requirements discovery and related terms are defined and 

characterized. Subsequently, requirements discovery is related to existing software 

development and requirements determination approaches. 

2.1 Defining Requirements Discovery 

In general, a requirement is ña condition or capability that must be met or possessed by 

a system or system component to satisfy a contract, standard, specification, or other 

formally imposed documentsò (IEEE 1990, p. 62). Requirements can include 

"specifications of the service the system should provide, the constraints on the system 

and background information which is necessary to develop the system" (Rayson et al. 

2000, p. 1363). Following the suggestion of Ambriola and Gervasi (1997) in the context 

of this work, the term ñrequirementò is used for the final product of requirements 

determination as well as for early incarnations of the same information. 

The determination and management of requirements is generally associated with the 

Requirements Engineering (RE) discipline. Pohl (2010, p.48) characterizes RE as a 

ñcooperative, iterative and incremental processò aiming at 1) gathering and 

understanding all requirements 2) agreeing on requirements between all stakeholders 

and 3) documenting requirements complying to defined specification formats and rules. 

Requirements can be documented in natural language (e.g., a narrative scenario), in 

models (e.g., UML
3
 models) or even figures (e.g., a drawn user interface mockup) (Pohl 

2010). This thesis focuses on natural language requirements (NLR). NLR can be 

expressed in documents (e.g., informal requirements specifications, interview 

transcripts, workshop memos, or narrative scenarios) as well as in other resources (e.g., 

entries in issue tracking or test case management systems, support databases or 

discussion forums) (Vlas and Robinson 2012). Therefore, in the following the term 

ñnatural language requirements resourcesò (NLRR) is used instead of ñnatural language 

documentsò. 

                                                 
3
 Unified Modeling Language. 
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As depicted in the introduction, NLR are usually transformed from initially informal 

statements into a more consistent and unambiguous representation, often containing 

additional information about a requirementôs category or interrelation to other 

requirements. In RE research there are different terms describing this process as 

requirements elicitation (Castro-Herrera et al. 2009), requirements analysis (Ambriola 

and Gervasi 2006), requirements identification (Casamayor et al. 2010) or requirements 

classification (Cleland-Huang et al. 2007). In absence of an agreed-upon term and in 

analogy to the Knowledge Discovery process (Fayyad et al. 1996) which proceeds 

similarly, this process is referred to as ñRequirements Discoveryò in the context of this 

thesis. Within requirements discovery, two main process steps can be differentiated: 

requirements identification and requirements transformation (Cleland-Huang et al. 

2007; Vlas and Robinson 2012). Both the identification as well as the transformation of 

requirements can be performed with and without system support. These two steps are 

looked upon in detail in the following. 

Within a NLRR, a requirement may be represented by anything from single words (e.g., 

a data field to be implemented), over an entire sentence (e.g. the description of a 

function) to a sequence of sentences (e.g. to specify a non-functional requirement). 

Requirements identification mainly serves two purposes: First, it separates text that 

describes requirements from text which is not relevant from a requirements point of 

view. Second, it delimits each requirement within the document, resulting in multiple, 

individual requirements statements (Vlas and Robinson 2012). Depending on the textôs 

degree of structure and preprocessing, the amount of irrelevant content can largely vary. 

In Open Source Software Development, for example, requirements are often identified 

from forums containing thousands of lines of social communications, code segments or 

slang which do not contain any requirements (Cleland-Huang et al. 2007). At the other 

end of the spectrum, requirements could be identified within already pre-processed, 

semi-structured use case descriptions which contain requirements in a very condensed 

form. By ignoring or even eliminating non-relevant passages of a requirements 

description, the requirements identification also results in a summarization of the source 

information. In addition to this document-wide summarization, requirements 

descriptions can also be abstracted to derive the main concepts and most significant 
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terms of the domain under investigation. From the requirement ñThe user interface 

should provide information about the flight number, gate and departure timeò for 

example, the abstractions ñflight numberò, ñgateò and ñdeparture timeò could be 

extracted to build up domain-specific knowledge for traveling applications. 

Abstractions can be used to support subsequent identifications and transformations or to 

provide a value in itself. They can be used for example in early requirements elicitation 

steps to assist an analyst in gaining an understanding of an unfamiliar domain by 

providing a collection of the core terminology (Goldin and Berry 1997).  

Based on the identification of individual requirements, a subsequent transformation can 

be conducted. Requirements transformation can include multiple, non-exclusive 

transformation steps which are introduced in the following. A widespread way to enrich 

requirements with additional semantics is the classification into distinct categories 

(Casamayor et al. 2010; Cleland-Huang et al. 2007; Vlas and Robinson 2012). By using 

requirements templates (e.g. the Volere requirements template
4
), requirements are 

classified into categories such as functional or non-functional requirements and sub-

categories of these (e.g. performance requirements as a sub-category of non-functional 

requirements). An according classification can simplify (or even be a prerequisite for) 

subsequent modeling activities. Classified requirements can be grouped together to 

derive specific model types (e.g., a data model). In addition, a classification structure 

which is envisioned in a template can help to avoid omitting certain aspects of software 

(e.g., usability requirements). 

After individual requirements have been identified, they can be interrelated to create 

models. A requirements specification for a purchasing application for example could 

describe individual data requirements for a user interface (e.g., ñThe user interface to 

enter purchase orders should include a data field to select a purchasing organization. In 

case a purchasing organization is subdivided, it should also be possible to select a 

purchasing groupò). During requirements interrelation, these two individual 

requirements could be linked in a data model, in which the according relationship 

between purchasing organizations and purchasing groups is depicted. Requirements 

                                                 
4
 http://www.volere.co.uk/template.htm (5.2.2013). 
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interrelation is based on abstract terms, and therefore is usually performed after 

requirements abstraction has been conducted (Kof 2004; Mich and Garigliano 2002).  

2.2 Relating Requirements Discovery to IS Development 

In traditional IS development approaches, requirements discovery is associated with a 

formal process and distinct phases summarized as Requirements Engineering 

(Sommerville 2010). In the following, traditional RE is characterized with a focus on 

the relation to requirements discovery activities. Even though traditional RE is still a 

widely-followed approach, various alternative development approaches (e.g., market-

driven development) have emerged in recent years, resulting in different settings and 

challenges for requirements discovery. Therefore, in addition to traditional RE, 

requirements discovery is also related to alternative development and requirements 

determination approaches. 

2.2.1 Traditional Requirements Discovery 

Traditional RE differentiates between two main processes, requirements determination 

and requirements management (Davis 1982; Pohl 2010). Requirements determination 

includes the elicitation, analysis, negotiation, specification and validation of 

requirements (Davis 1982; Pohl 2010). Requirements management includes change, 

traceability and release management for requirements (Pohl 2010; Sommerville 2010) 

(Figure 1).  

There is no general agreement to which phase requirements discovery should be 

assigned. While some authors relate it to requirements elicitation (Castro-Herrera et al. 

2009; John and Dörr 2003; Kaiya and Saeki 2006; Kiyavitskaya and Zannone 2008; 

Shibaoka et al. 2007), others assign it to requirements analysis (Cybulski and Reed 

1998; Mich and Garigliano 2002; Park et al. 2000; Seresht et al. 2008). While one could 

argue that it contains aspects of both phases (associating the identification task with 

elicitation and the transformation task with analysis), this apparent inconsistency could 

also be caused by the inconsistency in definitions of the phases themselves. For 

example, Pohl (2010) regards analysis activities to be part of elicitation, without being a 

phase on its own. Sommerville (2010) similarly sees elicitation and analysis tightly 
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interwoven and combines them in one phase called ñelicitation and analysisò. Hickey 

and Davis (2004) in contrast see them as two separate phases. Moreover, the term 

ñrequirements analysisò is often used as a synonym for ñrequirements engineeringò in 

the RE literature (Cao and Ramesh 2008). 

 

 

Figure 1: Requirements Engineering Processes 

 

Despite this disagreement in allocation, the discovery of requirements depends on the 

provision of unstructured or semi-structured requirements descriptions which are 

usually gained through elicitation methods in the context of traditional RE (Pohl 2010). 

The majority of these methods involves a direct interaction between requirements 

owners and requirements producers (Goguen and Linde 1993). Requirements owners 

are usually stakeholders and users of the software who provide requirements. 

Requirements producers conduct a first documentation of requirements and are 

generally part of the product or development team. Ideally, requirements elicitation 

would ultimately result in a set of complete and correct requirements. However, due to 

cognitive, motivational and communicative issues in the exchange between 

requirements owners and producers, this is often not the case (Davis 1982; Valusek and 

Fryback 1985). For example, when a user is asked concerning his requirements for a 

new system, he is challenged to verbalize his implicit knowledge. This requires an 

immediate mental compilation and structuration of previously unordered information 
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resulting in significant cognitive work. Instead of delivering an optimal solution to this 

task, users tend to be satisfied with a "good enough" one (Valusek and Fryback 1985). 

To respond to these issues, a plethora of methods such as interviewing, focus groups, 

observations, document analysis or repertory grids have been researched and practiced 

(Davis et al. 2006; Goguen and Linde 1993; Tuunanen 2003). Even though some 

authors propose the usage of one single method in any possible situation, an approach 

fitting every domain, application and requirements context is yet to be found. Instead, 

Hickey and Davis (2004) suggest an active selection process for elicitation methods, 

incorporating problem, solution, and project domain characteristics as well as the state 

of the requirements. 

Many methods used during requirements elicitation result in unstructured or semi-

structured NLRR. Interview outcomes for example are summarized in interview notes 

or even transcripts and results of focus groups are documented in meeting protocols or 

in a simple email. In a subsequent requirements discovery these documents are analyzed 

to identify single requirements and transform them into a more formal representation. 

Therefore requirements discovery can be seen as a connecting activity between the 

requirements elicitation phase and subsequent phases. 

The traditional RE approach is characterized by distinct, sequential phases and an 

upfront and ñen blocò determination of requirements (Sillitti et al. 2005). Each of the 

phases is self-contained, and the process does not move to the next phase until the 

previous phase is completed. Furthermore, it is subject to a high degree of formality, 

enforcing standards at the hand-off between different phases and involving an 

abundance of documentation (Robey et al. 2001). Although this is still a widely-

followed approach (particularly in custom software development), various alternative 

development approaches have emerged in recent years and became increasingly 

important (Ramesh et al. 2007; Sharp et al. 2007; Vlas and Robinson 2012; van de 

Weerd et al. 2006). Caused by different delivery models (such as packaged or open 

source software) or alternative development paradigms (such as agile or user-centered 

development), requirements discovery is often performed in a different setting than in 

the traditional development approaches. In the following, these differences and their 

consequences are pointed out. 
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2.2.2 Market -Driven Requirements Discovery  

Software is increasingly developed by specialized companies (software vendors) 

implementing packaged software (Sawyer 2000). Packaged software (also known as 

commercial-off-the-shelf or commercial software) includes all types of software sold as 

tradable products (purchased from vendors, distributors or stores) for multiple types of 

hardware and operating systems (Carmel 1997). In contrast to custom-built software, 

packaged software is usually licensed, instead of sold (Sawyer 2000). 

The development of packaged software (sometimes also called market-driven 

development) aims at implementing standardized software products for markets 

consisting of a potentially large number of different customers (Karlsson et al. 2002). In 

contrast to traditional RE, in this development approach a clear differentiation between 

requirements owners and producers is often not possible. Users often act as 

requirements producers: customer wishes (which later evolve into market-driven 

requirements) are directly articulated and described in natural language through 

customers using issue tracking systems, emails or similar electronic communication 

means (Regnell et al. 1998). Similarly, developers frequently act as requirements 

owners: technology-driven requirements are ñinventedò by developers or product 

managers of the software company to differentiate the own product from a competitive 

market (Karlsson et al. 2002; Regnell et al. 1998). The relative ease of requirements 

creation in combination with a development model which aims at a large number of 

customers can easily result in a big and continuous flow of incoming requirements, a 

situation which is referred to as ñrequirements overloadò (Karlsson et al. 2002). In 

addition, due to requirements owners from different companies, requirements are not 

synchronized between different stakeholders resulting in a high probability of 

requirements duplicates, overlaps and contradictions (van de Weerd et al. 2006). Even 

for requirements without interdependencies, the initial description quality is often poor 

(Regnell et al. 1998). Prior to the first inspection through the software vendor, 

requirements do usually not pass any quality control, do not adhere to specification 

standards and are often formulated by authors not familiar with requirements 

specification (Regnell et al. 1998).  
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Consequently, product owners and other employees responsible for requirements 

discovery at software vendors are facing two major challenges. First, during 

requirements identification, the main issue is the sheer amount of different NLRR to be 

analyzed (Karlsson et al. 2002). Second, during requirements transformation, potentially 

inconsistent customer wishes need to be processed into consolidated product 

requirements (Natt och Dag et al. 2004). Consolidation is further impeded by the 

continuous arrival of new requirements and the changes applied by customers to already 

processed ones. 

2.2.3 Agile Requirements Discovery 

Traditional RE approaches face the problem that requirements are often changed, added 

or dismissed during the course of a development project, a circumstance which cannot 

be adequately handled in a linear, sequential development model (Rajlich 2006). As a 

consequence, the resulting software often does not match the usersô needs after 

deployment on the one hand, while on the other, implemented features are sometimes 

not used (Petersen and Wohlin 2010). Addressing this issue, Agile Software 

Development became increasingly popular in the last decade. It propagates an iterative 

and incremental software development approach (Larman and Basili 2003) and the 

compliance to a set of principles expressed in the Agile Manifesto: 

 

ñIndividuals and interactions over processes and tools 

Working software over comprehensive documentation 

Customer collaboration over contract negotiation 

Responding to change over following a planò  

The Agile Manifesto (Beck et al. 2001) 

 

These principles are also applied to requirements determination and manifest in the 

following differences to traditional RE. First, instead of formal specifications, 

requirements are mainly specified via face to face communication and narrative user 

stories (De Lucia and Qusef 2010). The latter represent short, natural language feature 

descriptions of the system to be built (Cohn 2004). In contrast to use cases, user stories 
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describe a single requirement to be fulfilled instead of a complete scenario (Leffingwell 

2011). User stories are written from the userôs perspective, addressing the strong 

customer focus of the agile principles. A typical way to formulate a user story is the 

ñrole-activity-business valueò form, in which a stakeholder describes in one sentence, in 

which role he interacts with the system during an activity to achieve a business value 

(Cohn 2004). While the choice of lean documentation can increase responsiveness to 

customersô needs and reduce time efforts for documentation, it becomes problematic 

when customers are not available or cannot come to consensus (in case of multiple 

customers) (Cao and Ramesh 2008). Furthermore, when people are leaving the 

development team (or even the company) their work and knowledge is hardly 

reproducible from documentation.  

Second, instead of an initial upfront elicitation, requirements are determined iteratively 

(Ramesh et al. 2007). As customers often do not have a complete picture of the set of 

requirements at the beginning of a project, this approach offers the opportunity to 

explore requirements incrementally (Leffingwell 2011). While the elicitation quality of 

functional requirements can benefit from iterative elicitation, there is, however, a strong 

concern that it neglects certain non-functional requirements, such as scalability, 

maintainability, portability, safety, or performance (Cao and Ramesh 2008). In 

traditional RE, these technical requirements are often contributed by developers or 

architects, also viewing the system from a technical perspective, which can get lost 

when elicitation strictly focuses on the user perspective. 

For requirements discovery, the focus on face to face communication reduces the 

amount of documented NLR, which are necessary for requirements discovery. 

Accordingly, the added value of requirements discovery in an agile setting can be 

questioned. However, as previously described, continuous, extensive and direct 

customer integration is an ideal which can often not be realized in practice. In cases 

customers cannot be physically present for face to face communication, requirements 

are still formulated and discussed using information and communication technology 

(e.g., through emails, ticket systems or similar means). To complement requirements 

information from face to face communication, these sources therefore additionally need 

to be considered and can be adequately analyzed by requirements discovery. An 



2.2 Relating Requirements Discovery to IS Development 14 

 

according strategy to combine personally with electronically communicated 

requirements becomes even more important when the agile principle of iterative and 

incremental requirements elicitation is applied and requirements discovery is a 

continuous activity. 

2.2.4 Distributed Requirements Discovery 

Distributed development is a major trend in software engineering (Agerfalk et al. 2009; 

Pries-Heje and Pries-Heje 2011). It is usually conducted by virtual teams which are 

working together but without being co-located (Casey and Richardson 2006). Virtual 

teams can collaborate across geographical and organizational boundaries and are usually 

linked by communication and information technology (Lipnack and Stamp 1997). 

According to a study by Robinson and Kalakota (2004), over 95% of the Fortune 1,000 

firms utilize globally distributed development teams. Multiple advantages are associated 

with an according approach, including decreased costs through wage differences 

between countries, a better access to highly qualified employees through global 

sourcing and reduced implementation times as a result of working ñaround the clockò in 

different time zones (Herbsleb and Moitra 2001; Holmström et al. 2006). However, it 

also creates new challenges, due to increased complexity. Working in a virtual team, the 

complexity of communication, coordination and collaboration can increase, e.g. due to 

different cultural backgrounds and differing work practices (Agerfalk et al. 2009; Li and 

Maedche 2012). 

In distributed RE, methods which rely on face to face, synchronous communication are 

often replaced by electronically mediated, asynchronous communication (Menten et al. 

2010). Electronically identified requirements enable the assurance of traceability and 

rationale management which are of utmost importance for overall distributed 

development and specifically for distributed RE (Geisser et al. 2007; Hildenbrand et al. 

2009). In recent years, using internet technology, multiple types of information and 

communication support have been established to support distributed requirements 

elicitation. Using wikis (Geisser et al. 2007), forums, issue tracking systems (Scacchi 

2002) or similar technologies, a lean early documentation of requirements, often in 

natural language, can be achieved. For requirements discovery, these NLRR provide 
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abundant material for the identification of requirements. In this setting, the 

consolidation of requirements is a major challenge, as requirements statements can be 

spread across different sources and media. To support this consolidation, systems which 

enable an identification and classification of individual requirements have been 

suggested (Vlas and Robinson 2012). 

2.2.5 User-Centered Requirements Discovery 

The idea of a ñUser-centered designò was first propagated by Donald Norman in the 

1980s and became popular after the publication of two books (Norman and Draper 

1986; Norman 1988) in which the author explains how the usability of products can be 

improved by putting the user (and not the system) into the center of all design activities. 

In this approach designers have the primary role of simplifying the user-system 

interaction and make sure that the actual system usage equals (or at least comes close 

to) the intended usage. This aspired congruence prerequisites an extensive 

understanding of the users and their tasks which shall be accomplished by a strong 

integration of users in all development phases. Additionally to user-centricity, Gould 

and Lewis (1985) recommend two further principles which have been incorporated in 

most user-centered procedure models, namely ñempirical measurementsò and an 

ñiterative designò. While the first principle recommends evaluating prototypes of the 

software in early development stages through actual users, the second suggests to 

continuously design, test and measure to be able to fix usability problems. To apply 

user-centered design in practice, different procedure models have been proposed (e.g., 

the ñStar Lifecycle Modelò (Hartson and Hix 1989), the ñUsability Engineering 

Lifecycleò (Mayhew 1999), or ñGoal Directed Designò (Cooper et al. 2007)). 

Furthermore a ñHuman-Centered Design Processò has been normed by ISO 

standardization (see Figure 2). 
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Figure 2: Human-Centered Design Process
5
 

 

One of the distinguishing elements in comparison to other software engineering 

approaches is the initial activity ñUnderstand and specify the Context of Useò before the 

specification of user requirements. Revisiting the goal of user-centered design to 

increase usability, this activity reflects the fact that usability is no generic attribute, but 

defines ñ[t]he extent to which a product can be used by speciýed users to achieve 

speciýed goals with effectiveness, efýciency and satisfaction in a speciýed context of 

use.ò (ISO 1998) 

An established method to capture the specific context of use is the contextual analysis, 

proposed by (Beyer and Holtzblatt 1998). The basic principle of contextual analysis is 

the observation and inquiry of users at their actual workplace and during their daily 

work activities. Applying this method, requirements or usability engineers learn which 

aspects of the current work practices (including the utilized IS) are helpful or hindering. 

Furthermore, it can be clarified which features of an IS are important or less important 

                                                 
5
 According to ISO 9241-210 (ISO 2010). 
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for a user. To get a comprehensive picture, contextual analyses are usually conducted 

with multiple users (even in similar working contexts) (Wixon et al. 1990). 

Requirements Engineers should remain passive during contextual analyses, taking the 

role of an apprentice who learns the users work context from him (Beyer and Holtzblatt 

1998). Learning how and why something is done or not is one of the main goals of this 

exercise. 

During the specification of the context of use, a plethora of unstructured and semi-

structured documents and materials is compiled which can be analyzed during 

requirements discovery. This includes interview transcripts, observation notes or first, 

narrative scenario descriptions describing a typical work practice (Sharp et al. 2007). 

Contextual analyses which involve observations may also result in audio or video 

material containing requirements information. The combined analysis of textual and 

non-textual information therefore represents an additional challenge in user-centered 

requirements discovery. 

2.3 Summary 

In this chapter, topic-specific terms and concepts which are relevant in the context of 

this thesis were introduced. Starting with general definitions of requirements and 

requirements engineering, the specific process of requirements discovery was defined 

and conceptualized. This specific process has then been related to existing approaches 

to develop software and determine requirements, highlighting the specific impact and 

context of requirements discovery.  
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3 Related Work
 6
 

In this chapter, an analysis framework for related research works on Requirements 

Discovery Systems (RDS) is presented. First, an overview of the analysis framework is 

depicted. Then each of the frameworkôs dimensions and characteristics is presented in 

detail. In the last section of the chapter, the framework is applied to research in the area 

of Requirements Mining Systems (the focus of this thesis) and the research gap which 

will be referred to is outlined. 

3.1 Analysis Framework 

As previously described, unassisted requirements discovery can be time-consuming and 

error prone. Therefore a plethora of systems have been proposed to support the process 

(Meth et al. 2013a). These systems are referred to as RDS in the following and are 

analyzed along a multi-dimensional analysis framework, which is depicted in Figure 3. 

The framework consists of multiple dimensions (e.g., purpose), characteristics which 

are assigned to a dimension (e.g. ñevaluation approachò is assigned to ñevaluationò) and 

values for characteristics (e.g. the characteristic ñevaluation approachò can have the 

value ñcontrolled experimentò). The first two dimensions (purpose and design) are used 

to analyze RDS from a technological point of view. First, analyzing the purpose of the 

systems, a differentiation concerning the output of the systems is made. Second, 

investigating the design of the systems, characteristics of the employed technology are 

distinguished. The third and fourth dimension (evaluation and knowledge exchange) 

complement the framework to enable a holistic assessment of RDS research works. This 

includes an analysis of the chosen evaluation approaches and constructs as well as a 

classification of the type of knowledge exchange applied in the research work. Each of 

the dimensions, their related characteristics and the different values of these 

characteristics will be explained in detail in the following. 

  

                                                 
6
 Parts of this chapter of the thesis are based on Meth et al. (2013a). 
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Figure 3: An Analysis Framework for RDS Research Works 

3.2 Purpose 

The purpose of RDS is the support of the requirements discovery process in the 

identification and transformation of requirements from NLRR (e.g., documents, issue 

tracking databases or emails). In 2.1, different types of identification, namely 

requirements identification and abstraction identification and different types of 

transformation, namely requirements classification and requirements interrelation have 

been introduced. In the following, these characteristics of the discovery process are used 

to characterize different classes of RDS. 
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3.2.1 Abstraction Identification Systems 

 

Figure 4: Characterization of Abstraction Identification Systems 

 

Abstraction Identification Systems aim at the identification of abstractions from NLRR 

which will, for example, assist a requirements engineer in gaining an understanding of 

an unfamiliar domain (Berry et al. 2012). In this context, abstractions are single words 

within the requirements document which represent the main concepts and most 

significant terms of the problem and application domain (Gacitua et al. 2011). This 

domain knowledge can then be used as a reference and a starting point during further 

requirements discovery. In particular the knowledge can help to avoid information 

overload and to overlook important aspects that might evolve into requirements (Berry 

et al. 2012). Systems that support abstraction identification through automatisms have 

been proposed by Gacitua et al. (2011) Goldin and Berry (1997) and Sawyer et al. 

(2002). 

3.2.2 Requirements Identification Systems 

 

Figure 5: Characterization of Requirements Identification Systems 

 

Requirements Identification Systems focus on the pure identification of requirements, 

without subsequent discovery steps. However, most of the systems support additional 

activities related to requirements determination. For example, in the system presented 

by Kaiya and Saeki (2006), NLRR are preprocessed to identify requirements and the 

related concepts. A requirements engineer then manually maps these concepts to items 

of an ontology from the same domain (if possible). Based on these mappings, the 
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system then recommends further requirements to be added. Through this procedure, the 

overall completeness and correctness of requirements descriptions shall be improved. 

An enhanced version of this system is presented in Shibaoka et al. (2007). Another 

example is the system developed by Castro-Herrera et al. (2009). It supports the 

identification of requirements themes. On the basis of initial statements, which are 

entered manually by the customers into a web-based tool, a linguistic processing is 

conducted to tag each statement with illustrative terms. Based on these tags, the 

statements are clustered to requirements themes. For each requirements theme, a 

discussion forum is created to foster further discussions among stakeholders. 

3.2.3 Requirements Modeling Systems 

 

Figure 6: Characterization of Requirements Modeling Systems 

 

Requirements Modeling Systems identify, abstract and interrelate requirements. The 

resulting models and their graphical representation can foster the discussion of 

requirements with stakeholders and enable a direct transition between requirements and 

design activities (Sommerville 2010). A plethora of systems has been proposed to 

support requirements modeling: While some systems generate standardized UML 

models (Ambriola and Gervasi 2006; Harmain and Gaizauskas 2003; Sampaio et al. 

2007), others produce proprietary object-oriented models (Mich and Garigliano 2002), 

models specifically tailored to security requirements (Kiyavitskaya and Zannone 2008) 

or models to describe the interaction of the user with the systemôs user interface 

(Brasser and Vander Linden 2002; Lemaigre et al. 2008; Tam et al. 1998). 
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3.2.4 Requirements Mining  Systems 

 

Figure 7: Characterization of Requirements Mining  Systems 

 

Requirements Mining Systems identify requirements and classify them according to an 

existing taxonomy. Depending on the type of knowledge generation (see 3.4.1), they 

can also include functionality for abstraction identification. Cleland-Huang et al. (2007) 

focus on non-functional requirements (NFR) as e.g. security, performance or usability 

requirements. Based on the notion that each sub-group of NFR has its unique keywords, 

the system uses different knowledge base items to find and classify NFR from each sub 

group. Casamayor et al. (2010) similarly aim at the detection of NFR, and employ a 

semi-supervised categorization approach that only needs a small set of manually 

classified requirements for the initial training of the classifier. In their system, the 

classification model is iteratively enhanced based on the usersô feedback on the 

artifactôs output. Rago et al. (2011) present QAMiner, a system that also aims at 

discovering NFR. The system, however, analyzes use case specifications, and relates 

requirements to pre-defined quality attributes (e.g., modifiability, performance, 

availability, etc.) to avoid that these non-functional aspects are understated in the 

resulting requirements specifications. Vlas and Robinson (2012) present an automated 

approach for the identification and classification of both functional and non-functional 

requirements in natural language feature requests of open source software projects.
7
 

3.3 Design ï Processing Characteristics 

To fulfill the previously described purposes of different types of RDS, the systems 

provide alternative processing characteristics which will be presented in the following. 

The characterization is centered on the concept of automation, being the core processing 

concept of RDS (Cleland-Huang et al. 2007; Natt och Dag et al. 2002; Pérez-González 

                                                 
7
 Each of the four systems will be analyzed in more detail in the related work paragraph. 
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and Kalita 2002; Sampaio et al. 2007). First, a differentiation of approaches along 

different degrees of automation is made. After that the underlying technology to enable 

automation is introduced. 

 

 

Figure 8: Processing Characteristics of RDS 

3.3.1 Degree of Automation 

While there are some research works, which present system support for purely manual 

requirements discovery (Abrams et al. 2006; Ossher et al. 2009), most RDS incorporate 

capabilities to at least partially automate the process. However, existing works show 

differences concerning the degree of automation provided. Research suggests that while 

system support can cause an efficiency advantage in comparison to a purely manual 

discovery (Cheng and Atlee 2007), a complete automation of requirements discovery 

tasks can lead to a loss of information or erroneous results (Goldin and Berry 1997). 

Berry et al. (2012) point out that the cognitive aspects of requirements discovery should 

not be underestimated, as RDS may omit important requirements, and fail to detect 

logically correct, but questionable requirements. Thus, automation approaches should 

additionally involve human interaction. This indicates a conflict between the benefits of 

automation and the necessity of human intervention. According to Parasuraman et al. 

(2001), the appropriate degree of automation in the support of human tasks should be 

chosen according to a variety of evaluative criteria, including the reliability of the 

automation and the costs of decision outcomes. While a full automation would replace 

the human analyst, a semi-automated approach would merely support him and thus 

rationalize requirements discovery, while still requiring an interaction with the system. 

In contrast to (semi-)automatic approaches, during manual requirements discovery an 

analyst would start the analysis from scratch, without any potential requirements 

recommended by the system. This said, it should be noted that in practice the degree of 

automation should rather be seen as a continuum than as a categorical concept. While a 
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fully automated approach might target to replace any manual requirements mining 

activity, in most cases an analyst will still double-check at least parts of the results of 

the automatism to make sure that requirements have been captured correctly. In this 

sense the differentiation between semi-automation and full automation which will be 

made in the framework should rather be understood as the design and usage focus of a 

system. Examples for semi-automatic RDS include the systems presented by Ambriola 

and Gervasi (2006), Casamayor et al. (2010), Rago et al. (2011) and Sawyer et al. 

(2002), examples for entirely automatic approaches are presented by Gacitua et al. 

(2011), Goldin and Berry (1997), Kiyavitskaya and Zannone (2008) and Vlas and 

Robinson (2012). 

3.3.2 Automation Technology 

Most RDS use Natural Language Processing (NLP) or Information Retrieval (IR) 

techniques to automate requirements discovery (Berry et al. 2012; Cheng and Atlee 

2007). The according techniques can be employed to achieve each of the previously 

described requirements discovery purposes, which will be outlined in the following. 

There is plethora of different techniques from NLP, IR and other research fields which 

have been applied to RDS. The subsequent assembly therefore does not claim 

completeness, but should rather be seen as a compilation of prominent design choices 

for RDS systems. 

3.3.2.1 Linguistic Preprocessing to Prepare Requirements Discovery 

Before search techniques or other automated discovery techniques can be applied, the 

provided NLRRs need to be preprocessed. In this preprocessing, the texts are broken 

down to a list of relevant, individual and harmonized words (or even parts of words). 

This process is described in more detail in the following. 

First, the text is split into single sentences and words, applying sentence segmentation 

and tokenization (Palmer 2000). Sentence segmentation aims at identifying sentence 

boundaries, which are usually indicated by punctuation marks. During tokenization, 

word boundaries are localized and used to further segment the text into single words. 

Even though in English texts in most cases word segmentation can be performed after 
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each space, there are some exceptions to this heuristic. For example, a genitive ñsò (e.g. 

Johnôs desk) is part of the previous word while an apostrophe ñsò in verb contractions 

(e.g. sheôs) represents an additional word (is) which needs to be separated (Palmer 

2000). 

After tokenization has been performed, irrelevant words need to be eliminated to 

improve the performance and precision of subsequent processing, a process step 

referred to as stop word removal (Silva and Ribeiro 2003). Stop words represent words 

which are extremely common and therefore not helpful for NLP or IR processing 

(Manning et al. 2008). Examples for English stop words are ñaò, ñofò or ñtheò. 

Finally, the remaining words usually need to be harmonized. Harmonization can help to 

detect duplicates and improve the results of subsequent processing steps. During 

searches, for example, using the exact same words as they originally occurred in a 

NLRR generates multiple problems. Semantically similar words might appear in 

varying forms, e.g. due to grammatical conjugation and declination, different spelling 

(e.g., American vs. British spelling) or inconsistent capitalization of words (Manning et 

al. 2008). Without harmonization these words would not be recognized as similar, 

resulting in an unsuccessful search. Thus different harmonization techniques can be 

employed which will be summarized in the following. First, during normalization, the 

capitalization of words is harmonized and accents, diacritics and hyphens are eliminated 

(Manning et al. 2008). Second, during stemming, words are reduced to their stems 

(Salton and McGill 1986). Word stems in contrast to original words do not contain 

grammatical alterations like plurals, gerund forms or tense suffixes. 

Even though normalization and stemming can increase information retrieval success, 

they can come to limits if words have multiple meanings depending on their actual word 

class. For example, the word ñorderò can be used as a verb (ñThe system should provide 

functionality to order catering servicesò) or as a noun (ñThe system should display 

details of an orderò). Whereas in the first example ñorderò is part of an activity which 

should be supported by the system, in the second example ñorderò describes an object or 

data element. Similarly, it is difficult to apply stemming to irregular verbs, for example 

the word ñwentò has no common stem with ñgoò although they just represent different 

conjugations of the same verb. Therefore, alternatively to normalization and stemming, 
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the NLP technique of lemmatization can be employed. While normalization and 

stemming aim at the reduction of words to a common part (e.g. ñproductionò is reduced 

to ñproducò), lemmatization replaces the original word with a lemma. A lemma is a 

word, which serves as a proxy for an entire set of forms taken by this word. For 

example, the conjugations ñchoose, chose and chosenò would all be replaced by the 

lemma ñchooseò.  

Lemmatizers usually require an input tuple of a) the word to be replaced and b) the 

word class associated with this word (e.g. noun, verb, adjective). In computer 

linguistics, these word classes are referred to as part-of-speech (POS) (Voutilainen 

2003). POS tagging is the process of assigning part-of-speech labels to words (Jurafsky 

and Martin 2009). Additionally to the use in lemmatizers, POS tags can also be used to 

improve IR results (which will be described later on). Figure 9 gives an overview of the 

described NLP and IR techniques for linguistic preprocessing. 

 

 

Figure 9: Li nguistic Preprocessing Using NLP and IR Techniques 

3.3.2.2 Frequency Profiling  for Abstraction Identification  

As described earlier, abstraction identification aims at identifying the main concepts and 

most significant terms of a requirements domain. The previously described techniques 

for linguistic preprocessing can help to identify and harmonize individual words within 
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a NLRR. However, apart from stop word removal, no filtering or selection is applied to 

reduce the set of words to the most important ones for a specific domain.  

A common approach to achieve this is the usage of frequency profiling (Gacitua et al. 

2011; Goldin and Berry 1997; Sawyer et al. 2002). In its basic form, frequency profiling 

is based on the idea that the importance of a word in a text is proportional to its 

frequency of occurrence (Goldin and Berry 1997). Consequently, the most frequently 

used words in a requirements document (apart from stop words) are identified as 

candidate abstractions, of which a requirements analyst could manually pick the final 

set of abstractions.  

Although the usage of absolute frequency numbers already provides good results 

(Wermter and Hahn 2006), it can be improved by analyzing the relative frequency of 

words in the given text. Sawyer et al. (2002) describe corpus-based frequency profiling 

which is based on the assumption that words which are significant to a domain will be 

revealed by an increased relative frequency of appearance in the text in comparison to a 

normative corpus. As a normative corpus, they apply a 2.3 million-word subset of the 

British National Corpus which contains transcripts of spoken English. Whenever a word 

is strongly overrepresented in the given text (in comparison to the normative corpus) it 

qualifies to be identified as an abstraction. While corpus-based frequency profiling 

works well for single words, it cannot be applied to multiword terms (e.g. ñrequirements 

engineerò). Therefore, Gacitua et al. (2011) suggest to calculate significance values for 

multiword terms by using weighted averages of the individual words log-likelihood
8
. 

Their results show that an according approach can successfully capture multiword terms 

and thus help to further automate abstraction identification. 

3.3.2.3 Techniques for the Interrelation of Requirements 

A large variety of methods has been used in alternative combinations to support the 

interrelation of requirement resulting in requirements models (Ambriola and Gervasi 

2006; Kof 2004; Mich 1996; Omoronyia et al. 2010). Instead of describing each 

technique in isolation, an exemplary approach to combine different methods as 

suggested by Kof (2004) is presented in the following. The interrelation of requirements 

                                                 
8
 Log-likelihood is a measure for the relative frequency of a word. 
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in a NLRR basically breaks down to an interrelation of single words within this 

resource. A first hint for an association between words in a document can be drawn 

from the structure of individual sentences. Kof (2004) suggests building parse trees 

from each sentence. In these parse trees, a sentence predicate and its subject and object 

are captured and linked to each other. The resulting set of trees is then clustered to 

derive further associations. First, parse trees of the same predicate are grouped into one 

cluster. Then, the resulting clusters are compared, searching for overlaps in their 

subjects or objects. Overlapping clusters are joined and result in initial taxonomies. In a 

last step, association mining (as suggested by Maedche and Staab (2000)) is applied. 

Words which often occur in the same sentences are assumed to be associated. 

Consequently, the taxonomies holding these words are linked to each other, resulting in 

an interrelated requirements model (or more specific an ontology). 

3.3.2.4 IR Techniques for the Identification and Classification of 

Requirements 

Web search engines (such as Google) are probably the most well-known applications of 

IR techniques. In response to a set of entered search terms, a web search engine 

generates a list of matching websites. Prior to the search, each of the websites has been 

indexed, resulting in a list of words associated with the site. During the search, instead 

of scanning entire websites, the search terms are applied to the lists of indexed terms 

resulting in a faster response time. 

The same principle can be applied to requirements identification. Requirements 

identification in a NLRR is basically about differentiating those words which represent 

requirements from further content which is non-relevant from a requirements point of 

view. To support this task, knowledge bases which contain requirements terms are 

provided. These terms are assigned to requirements categories (e.g. the term ñcredit card 

numberò might be assigned to the category ñdata requirementò). Further details about 

knowledge bases will be presented in Section 3.4. Figure 10 shows how IR can be 

applied in this scenario to support requirements identification. Each term in a NLRR 

can be used as a search term. Using this search term, the IR algorithm strives to identify 

a matching requirements category by searching the requirements terms within the 
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knowledge base. A term will  only be successfully identified as a requirement if this 

search is successful, meaning that a requirements category is associated with the search 

term with ample probability
9
. For classification, the requirements category with the 

highest probability is then assigned to the identified term. If no requirements category 

with sufficient probability is identified, the term remains unassigned. 

 

 

Figure 10: Comparison of IR Usage in Web Search Engines and RDS 

3.4 Design ï Knowledge Base Characteristics 

As described earlier, many automation techniques used for requirements discovery 

require the existence of a knowledge base. Knowledge bases consist of knowledge items 

which are made up of terms and meta-information associated to these terms. Terms can 

be used during requirements identification to act as an index during the retrieval 

process. They are usually linked to further information, for example an assignment to a 

requirements category (Lemaigre et al. 2008; Sampaio et al. 2007). Knowledge bases 

can differ in the origin, volatility, structure and domain-specificity of the included 

knowledge which will be explained below. 

                                                 
9
 For this purpose usually a threshold probability is defined. 
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Figure 11: Knowledge Base Characteristics of RDS 

3.4.1 Origin and Volatility of Knowledge 

Knowledge origin describes the way the knowledge bases required for knowledge re-

use are populated. The creation of knowledge is either initiated by an upload of existing 

knowledge to the system (referred to as ñimported knowledgeò) or by knowledge 

retrieval from documents (referred to as ñretrieved knowledgeò) (Staab et al. 2001). In 

contrast to imported knowledge, retrieved knowledge can usually be acquired in 

combination with actual usage data.  

In the context of requirements discovery, this could be information about how often 

users have assigned a specific term to a specific requirements category. Retrieved 

knowledge can be added to the knowledge base as a byproduct of manual requirements 

discovery. For example, the data requirement ñfrequent flyer numberò might have been 

overseen by automated requirements discovery and might then be identified and 

classified manually. This manual activity has two effects. First, it adds an additional 

requirement to the automatically discovered requirements from this resource. Second, it 

adds a potential new knowledge item to the knowledge base, consisting of the term 

ñfrequent flyer numberò and the assignment to the category ñdata requirementò. 

Through this mechanism a constant flow of potentially new knowledge items is created. 

Consequently, it has been integrated into a number of existing RDS. Cleland-Huang et 

al. (2007), e.g. iteratively train their non-functional requirements classifier based on the 

analystôs feedback. Kaiya and Saeki (2006) similarly consider a refinement of imported 

knowledge drawing on the information extracted from the requirements statements, thus 

incorporating retrieved knowledge. In contrast to the dynamic nature of retrieved 

knowledge provision, imported knowledge is only added if the responsible knowledge 
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engineer initiates a knowledge upload. Consequently, the creation of imported 

knowledge is rather static in comparison to the generation of retrieved knowledge. 

3.4.2 Structure and Domain-Specificity of Knowledge 

Knowledge bases can vary in structure and complexity. They often consist of either 

dictionaries (Lemaigre et al. 2008; Sampaio et al. 2007) which hold assignments of 

terms to requirements categories or ontologies (Kaiya and Saeki 2006; Vlas and 

Robinson 2012) which additionally include relations between different concepts. While 

dictionaries can help in the identification and classification of individual requirements, 

ontologies can be used to improve the overall discovery results. Kaiya and Saeki (2006), 

for example, use ontologies to improve the completeness and consistency of the 

discovered requirements. They achieve this by comparing the identified requirements 

with an existing domain ontology. For example, an analyst could manually map a 

requirement which specifies a train reservation capability to the ñreserveò knowledge 

item in a domain ontology for reservation systems. In this ontology, the ñreserveò item 

is related to the item ñcancelò (it should be possible to cancel a reservation). Based on 

this information, the system would inform the requirements engineer to additionally 

consider a ñcancel functionalityò (if not already included in the NLRR). 

The discovery of requirements premises, to some extent, the existence and application 

of domain knowledge (Ambriola and Gervasi 2006; Hickey and Davis 2004). Data 

requirements such as ñpurchase order numberò or ñmaterial groupò might be of high 

relevance for the domain of procurement applications, while they would be irrelevant 

for a human resource application. Consequently, the automated discovery of this type of 

requirements can profit from a domain-specific knowledge base which already contains 

corresponding knowledge items. In contrast, other types of requirements, for example 

performance requirements, can be identified with less domain knowledge. The 

requirement ñThe response time for this function should be faster than 10 secondsò, for 

example, could be defined for an application in almost any kind of domain. In this case, 

related terms such as ñresponseò, ñtimeò and ñsecondò would be typical examples for 

domain-unspecific knowledge items. Due to these differences in domain specificity 

across different requirements categories, there might be domain-specific and domain-
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unspecific contents within a single knowledge base (Lemaigre et al. 2008). Therefore, 

instead of an alternative classification in domain-specific and ïunspecific knowledge 

bases, the proposed analysis framework allows both classifications at the same time. An 

example of a rather domain-unspecific knowledge base is described by Brasser and 

Vander Linden (2002) who present a system to capture interaction requirements, while 

an example for a domain-specific knowledge base is provided by Kaiya and Saeki 

(2006) (as depicted in the last paragraph). 

3.5 Evaluation 

RDS related research aims at knowledge contribution through the development and 

investigation of artifacts. It can therefore be associated to design research (Hevner et al. 

2004; Simon 1969). Works which follow a design research approach are usually 

characterized by two main research phases. In the build phase an artifact is designed. 

Then, in the evaluation phase, the effectiveness of the artifact is assessed. To enable a 

holistic assessment of RDS research work, the previously introduced framework 

therefore includes a dimension to describe the evaluation phase of these works. The 

according framework characteristics and their values are presented in the following. 

 

 

Figure 12: Evaluation Characteristics of RDS Research Works 

3.5.1 Evaluation Approach 

Hevner et al. (2004) distinguish two experimental design evaluation methods: A 

controlled experiment involves studying the presented system in a controlled 

environment which can be done e.g. by comparing the performance of an analyst using 

the system with the performance of an analyst devoid its support. In contrast, a 

simulation comprises the execution of the artifact with test data (Hevner et al. 2004). In 

the context of RDS, a performance evaluation based on a simulation is possible by 
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comparing a systemôs output to a gold standard set of requirements, which is the output 

created manually by an expert or a group of experts.  

Additionally to experiment evaluations, two further types of evaluations are frequently 

applied in the context of RDS (Meth et al. 2013a): A mere demonstration of the 

presented system, e.g. by an application to a real-world example without data collection 

and analysis is classified as a proof of concept in the following, while an evaluation in 

practice, e.g. in an industrial environment, will be denoted as a case study. Accordingly, 

the identified works will be categorized to evaluate their approaches either by 1) a 

controlled experiment 2) a simulation 3) a proof of concept or 4) a case study. 

3.5.2 Evaluation Constructs and Measures 

To evaluate the effectiveness of RDS, the assessment of the completeness and 

correctness of the identified requirements is a common practice (Casamayor et al. 2010; 

Cleland-Huang et al. 2007; Rago et al. 2011). Completeness ensures that all the 

information required for a problem definition, i.e. all properties that are desired to hold 

true, are found within the speciýcation (Zowghi and Gervasi 2003). The correctness of 

a requirements specification is determined by the included share of requirements which 

match existing needs. The IEEE Recommended Practices for Software Requirements 

classify a requirements specification as correct ñif, and only if, every requirement stated 

therein is one that the software shall meetò (IEEE 1998, p.4). 

An operationalization of these constructs is possible by drawing on metrics from the 

information retrieval domain, specifically precision and recall (Salton and McGill 

1986). Recall is defined as the proportion of relevant items that are actually retrieved in 

answer to a search query and is very commonly used as a measure for completeness 

(Cleland-Huang et al. 2007; Kiyavitskaya and Zannone 2008; Sampaio et al. 2007). 

Precision is the proportion of retrieved items that are relevant to the query and is often 

used as a measure for correctness, usually in combination with recall. 

RDS strive to generate requirements descriptions with high recall and precision. 

However, improving recall and precision at the same time is a challenge, as maximizing 

the number of retrieved requirements to improve recall is often done at the cost of also 

retrieving more irrelevant items which reduces precision. Trading off precision for 
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recall or vice versa, one might argue that for RDS, recall is the more important measure 

of both, as errors of commission are easier to correct than errors of omission (Berry et 

al. 2012). While an omitted requirement needs to be identified within a potentially 

longer source document, requiring significant time for manual searching, a wrongly 

identified document can easily be deleted from the list of the all identified requirements. 

This requires, however, that the resulting list of requirements is significantly shorter 

than the source document. Accordingly, recall and precision are sometimes 

complemented with a third measure describing the summarization provided by the 

system. Summarization measures the volume of a systemôs output in relation to the 

input document size. Systems providing a high level of summarization simplify manual 

corrections of automatically identified requirements as the analyst can concentrate on 

reviewing the relatively short output of the system in contrast to its longer input 

document. Particularly for abstraction identification systems, summarization plays an 

important role, as this type of systems aims at distilling the key abstractions of an 

initiall y long document. In the analysis framework the concept summarization is 

subsumed under the category ñOther (Constructs)ò together with further concepts 

which are only seldom applied. 

In addition to measures for requirements quality, which represent the outcome of the 

discovery process, it is also worthwhile to observe the process leading to this outcome. 

In various works, process efficiency is assessed additionally to quality aspects (Cleland-

Huang et al. 2007; Kiyavitskaya and Zannone 2008; Sampaio et al. 2007). Discovery 

efficiency can be measured by the time required to transform an unstructured input 

document to a set of structured requirements. In the case of RDS, this time period can 

be split into two phases: the automation phase and the manual phase. While the duration 

of the automation phase is determined by the runtime of the automation algorithm, the 

duration of the manual phase represents the time for manual corrections of the 

algorithmôs findings. It can be argued that the duration of the automation phase is less 

critical than the duration for manual adaptions, as the automation can run in a 

background job without absorbing the analystôs time. In contrast, the time for manual 

adaptions should be observed critically, especially in evaluations which compare 

automated with manual approaches. In summary, to enable a holistic evaluation of a 
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systemôs effectiveness, the analysis framework considers both aspects (requirements 

mining quality and efficiency). 

3.6 Knowledge Exchange 

Through the description of an artifactôs design and evaluation, design research 

contributes to the body of knowledge. However, an increase in knowledge contribution 

can be achieved if design research is based on existing theories or even contributes 

theory itself (Gregor and Hevner 2013). Thorough theory grounding can extensively 

leverage existing knowledge and thereby increase the likelihood of designs that are 

actually effective. Codification and abstraction of results in a design theory can help to 

generalize the findings of design research. An according conceptualization extends the 

contribution of design research beyond the search of specific solutions to specific 

problems and has been intensively discussed in DSR (Baskerville and Pries-Heje 2010; 

Gregor and Jones 2007). Both the knowledge grounding and contribution are 

summarized in a fourth dimension of the analysis framework, entitled ñKnowledge 

Exchangeò. 

 

 

Figure 13: Knowledge Exchange Characteristics of RDS Research Works 

3.6.1 Knowledge Grounding 

In accordance with Gaß et al. (2012) four categories of knowledge to ground design 

research are differentiated: 1) formal theories 2) mid-range theories 3) design theories 

and 4) general knowledge. Formal theories (sometimes also referred to as ñKernel 

Theoriesò) represent theories from within and outside the IS field, but mainly from 

natural and social science (Walls et al. 1992). They are mainly descriptive theories 

which can be used to guide the design and derive testable propositions for the 

evaluation of the artifact (Kuechler and Vaishnavi 2008; Walls et al. 1992). While the 
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grounding on kernel theories is generally regarded as a rigorous basis of DSR, it is often 

difficult to apply them to the specific, practical context of an artifact (Baskerville and 

Pries-Heje 2010). Therefore, Kuechler and Vaishnavi (2008) suggest mid-range 

theories which are based on formal theories but provide additional explanatory 

knowledge to increase applicability to practical problems. While formal and mid-range 

theories do not originate from actual design activities, the knowledge grounding can 

also be based on previous design theories. Gregor and Hevner (2013) refer to this reuse 

of prescriptive design knowledge as ñexaptationò, the extension of known solutions to 

new problems. Exaptation is appropriate in scenarios, where an artifact in one field is 

not available or suboptimal and is designed by applying prescriptive knowledge from 

artifacts of a different field. Finally, empirical and non-empirical general knowledge can 

be used to ground design research. Kuechler and Vaishnavi (2012) refer to this type of 

knowledge as ñtacit theoryò, consisting of ñinsights or evidence/experience-based 

justifications for pursuing a novel designò (Kuechler and Vaishnavi 2012, p. 404). This 

informal type of knowledge enables DSR to explore domains in which more formal 

knowledge does not exist or is sparse (Kuechler and Vaishnavi 2012). 

3.6.2 Knowledge Contribution  

Kuechler and Vaishnavi (2012) classify DSR works concerning their knowledge 

contribution into three different groups. The first group consists of works which only 

present the implemented artifact, without further discussing how and why it works and 

which design practices have been employed in its implementation. Design knowledge 

and justification of design features in these works remain tacit and the entire knowledge 

is captured within the artifact. The authors state that this type of knowledge contribution 

is appropriate for groundbreaking innovations in which the artifact itself provides 

sufficient novelty to compensate scarce theoretical contributions. 

The second group of works contributes additional knowledge in the form of an 

Information System Design Theory (ISDT). An ISDT as suggested by Walls et al. 

(1992) abstracts the design efforts to meta-requirements and design principles (meta-

design) which prescriptively support the design of future instantiations within the same 

class of systems. Moreover, an ISDT explicitly codifies the knowledge which is 
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captured in an artifact which allows other researchers as well as practitioners to leverage 

the generated knowledge without the need to analyze the artifact itself. 

As a third type of knowledge contribution (and a potential third group), Kuechler and 

Vaishnavi (2012) suggest the construction of a mid-range theory which they refer to as 

design relevant explanatory/predictive theory (DREPT). A DREPT should capture 

knowledge which cannot be adequately presented in an ISDT, namely the linking 

effects between kernel theory constructs and ISDT constructs. An ISDT is mainly 

occupied with the explanation of the build process. In contrast, a DREPT focuses on the 

explanation of the how and why of the observed effects. 

Similarly, Gregor and Hevner (2013) differentiate three levels of knowledge 

contribution for DSR. Level one represents the specific implementation of an artifact in 

a specific context. Knowledge can be contributed, for example by a specific software 

product or process. Level two comprises more general and abstract descriptions of the 

design, referred to as nascent design theory. On this level, knowledge is contributed in 

the form of general operational principles or a general architecture rather than of 

specific characteristics and features. Components of nascent design theory might by 

constructs, design principles, models, methods or technological rules. Level three 

represents a knowledge contribution about the embedded phenomena, referred to as 

well-developed design theory. DSR projects resulting in mid-range or grand theories 

would be examples for this type of contribution. The different levels supposed by 

Gregor and Hevner (2013) are associated with increasing degrees of abstraction and 

knowledge maturity (rising from level one to level three). 

The typology suggested by Gregor and Hevner (2013) is similarly utilized in the 

analysis framework for RDS works. However, on the first contribution level 

additionally to the artifact itself an informal description of the artifact in the 

corresponding paper is expected (which is usually part of the publication). 

3.7 Results of Analysis 

In this thesis, the design and evaluation of a Requirements Mining System (RMS) is 

described. Therefore, in the following description of related work, this type of RDS is 

focused on. The analysis comprises a detailed description of the four RMS which were 
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briefly introduced in section 3.2.4 and a depiction of the research gap which will be 

addressed. 

3.7.1 Application of Analysis Framework to RMS Research Works 

The system presented by Cleland-Huang et al. (2007) referred to as ñNFR-classifierò 

supports the identification and classification of non-functional requirements. 

Furthermore, through the identification of abstractions it enables the creation of 

retrieved knowledge. Requirements statements are processed semi-automatically. 

Requirements can be categorized manually as well as through automation algorithms 

which employ IR and NLP techniques. Based on a first provision of imported 

knowledge, the knowledge base is iteratively extended through requirements engineersô 

feedback to the automation results. The knowledge base is structured as a simple 

dictionary consisting of a list of terms assigned to different sub-categories of NFR. 

Although the initially imported knowledge is domain-independent, the knowledge base 

can be customized to a domain through retrieved knowledge. The system is evaluated in 

a series of simulations, comparing the artifacts automatic results with a predefined gold 

standard. The evaluation uses recall and precision as measures for the completeness and 

correctness of the results and one additional measure (specificity). While the authors 

mention the time necessary to manually classify their sample set of requirements, they 

do not include an analysis of the time using their approach. The design is only grounded 

on general knowledge and contributions are restricted to a description of the artifact, 

without further abstraction or codification of the design. Figure 14 depicts the overall 

analysis result. 

  



3.7 Results of Analysis 39 

 

 

 

Figure 14: Analysis Result for Cleland-Huang et al. (2007) 

 

The approach suggested by Casamayor et al. (2010) possesses a lot of similarities to the 

work presented by Cleland-Huang et al. (2007). It also aims at the identification and 

classification of NFR in a semi-automatic approach and uses a similar knowledge base 

and knowledge creation approach. However, their approach differs in its processing 

characteristics. The authors complement IR and NLP techniques with an Expectation 

Maximization algorithm (EM). The core idea of this algorithm in the context of RMS is 

the creation of knowledge from both classified and unclassified requirements. Unlike 

other mechanisms it requires only a very small number of previously classified 

requirements in the knowledge base. The proposed system is evaluated in a simulation 

measuring precision and recall (to assess correctness and completeness), f-measure (a 

combination of precision and recall in one variable) and accuracy (the proportion of true 

results; both true positives and true negatives; in the population.). Again, the design is 

only grounded on general knowledge and contributions are restricted to a description of 

the artifact without further abstraction or codification of the design.  
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QAMiner, the system presented by Rago et al. (2011) similarly aims at the identification 

and classification of NFR in a semi-automated approach. However, their system follows 

a different knowledge base approach. Instead of a dictionary, QAMiner utilizes domain-

specific ontologies, which are imported to the system before discovery starts. To 

evaluate their system, a simulation using the standard measurements of precision, recall 

and accuracy is conducted once again. Knowledge exchange is restricted to the usage of 

general knowledge and a description of the artifact without further theorizing. Figure 15 

depicts the overall analysis result. 

 

 

Figure 15: Analysis Result for Rago et al. (2011) 

 

Finally, in the work by Vlas and Robinson (2012), a system to support the identification 

and classification of requirements for open source software is presented. Unlike the 

former related works, this system is not restricted to NFR and works in a fully 

automated fashion. It applies IR and NLP techniques, extended by additional methods 

to support classification. Imported knowledge in form of ontologies can be used, 

allowing both domain-specific and domain-independent knowledge items. The system 

is evaluated in a simulation measuring recall, precision and f-measure. In addition, the 
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time needed for the automation is measured to assess the efficiency of the approach. 

Although the authors explicitly claim to follow a DSR approach, knowledge exchange 

is restricted to the usage of general knowledge and a description of the artifact. 

3.7.2 Research Gap Identification 

Figure 16 shows the aggregated results for all four works within this analysis. Different 

shades of red visualize if a characteristic can be observed in many works (dark red), few 

works (lighter red) or no work (white). 

 

 

Figure 16: Aggregated Analysis Results for Related Work 

The result of the analysis is twofold, showing a heterogeneous picture for the 

investigated design choices and a homogenous picture for the evaluation and knowledge 

exchange in the analyzed works. While apparently many different design choices have 

been investigated, evaluations are focused on simulations comparing the results of the 

presented system with a previously defined gold standard. Even though these 

evaluations allow precise measurements of absolute quality criteria, they do not allow a 

comparison to the as-is situation of manual discovery. Consequently, the question of 

whether the systems really improve requirements quality and requirements mining 
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efficiency cannot be answered. Unlike first intuition would tell us, even efficiently 

working automated requirements mining does not necessarily outperform manual 

requirements mining. Due to the ambiguity and inconsistency of NLRR, results of 

automated requirements mining in most cases require manual rework to correct 

mistakes of the automatism, adapt its findings, or add requirements which were 

overlooked (Cleland-Huang et al. 2007). Therefore, even automated approaches 

resulting in high (but not 100%) initial recall and precision might generate larger total 

efforts as manual discovery if times for rework are also taken into account. 

Consequently, the mentioned works could be complemented with a study investigating 

whether the use of an accordant system actually improves individual performance by 

comparing it to a manual approach. 

Furthermore, while the analyzed works include detailed descriptions of their specific 

implementations, a codification and abstraction of the demands to be fulfilled by the 

system and the concepts addressing each of these demands is missing. A corresponding 

conceptualization has been intensively discussed in DSR (Baskerville and Pries-Heje 

2010; Gregor and Jones 2007) and enables a generalization of design approaches going 

beyond the description of specific solutions to specific problems. Applying this 

approach to RMS, the theoretical contribution drawn from previous works can be 

extended substantially. 

Finally, the suggested systems are not theoretically grounded. They are based on 

general empirical and non-empirical knowledge drawn from prior studies. These studies 

might report on situational and non-generalizable settings and experiences and thus do 

not provide an appropriate basis to conceptualize a design theory with significant reach. 

The work described in this thesis intends to address these gaps by 1) deriving a design 

theory for RMS based on knowledge drawn from both theoretical and non-theoretical 

sources, 2) implementing an artifact according to this theory, and 3) testing the theory 

through an evaluation of the artifact comparing a requirements engineerôs system-

supported mining productivity with manual discovery. 
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3.8 Summary 

In this chapter, an analysis framework for RDS has been conceptualized and applied to 

RMS as sub-class of systems. Following an overview, the framework, individual 

dimensions and characteristics have been introduced and exemplified with existing 

research. This comprised a depiction of alternative purposes, processing and knowledge 

base characteristics of RDS as well as different evaluation and knowledge exchange 

approaches in RDS research. Finally, the framework has been applied to RMS which 

represent the class of systems to be focused on in the context of this thesis. Finally, the 

results of this analysis were used to define research gaps which will be addressed in this 

thesis. 
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4 Methodology 

DSR has become an established approach to enable the conduction of rigorous, design-

oriented research in the IS domain. This thesis strives to gain theoretical design 

knowledge about RMS based on rigorous methodology. Therefore, a DSR approach is 

followed which will be explicated in the following chapter. For this purpose, first an 

overview of DSR in IS is provided, discussing artifacts and theories as potential 

outcomes (or products) of DSR and their conceptualization in the design process. The 

dualist nature of design as product and process is then further elaborated presenting 

examples of process-oriented and product-oriented frameworks to conduct DSR, 

including a selection of frameworks to be applied in this thesis project. Using the 

selected process-oriented framework, the research design of the thesis is then presented 

and finally reflected from an ontological and epistemological perspective. 

4.1 Design Science Research in IS 

Design Science is rooted in the seminal work by Simon (1969) in which the idea of a 

science of the artificial to complement natural science is propagated. This science 

centers around the design (or synthesis) of artifacts by humans and was subsequently 

applied to IS. In the IS context, different types of artifacts can be differentiated, such as 

constructs, models, methods and instantiations (March and Smith 1995). According to 

March and Smith (1995), constructs provide the vocabulary of a domain. For example, 

tables and relationships are constructs within entity relationship (ER) modeling (Gregor 

and Jones 2007). Models visualize relationships among constructs. For example, the ER 

model of an entire database system is a model. Methods can be understood as activities 

or steps to perform a task. For example, this may be an algorithm to sort data or a 

guideline to be followed when loading data to a system. Finally, instantiations represent 

the implementation of artifacts in IS and software development systems (March and 

Smith 1995). In the context of this thesis, using the taxonomy, an instantiation of a 

RMS will be designed. 

While some scholars characterized DSR as a paradigm which primarily aims at 

problem-solving through the creation of innovative artifacts (Hevner et al. 2004; March 
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and Smith 1995), other researchers emphasized the value of a design theory as the core 

contribution of DSR (Gregor and Jones 2007; Walls et al. 1992). As early 

representatives of the latter group, Walls et al. (1992) specifically called for the 

development of design theories, articulating prescriptive knowledge based on theoretical 

grounds. These prescriptions should describe how an artifact shall be designed in order 

to achieve a given goal. In response to this call, design theories have been articulated for 

a diverse range of systems, for example systems to support emergent knowledge 

processes (Markus et al. 2002), systems that support convergent and divergent thinking 

(Müller-Wienbergen et al. 2011) or process-based knowledge management systems 

(Sarnikar and Deokar 2009). Although the call for theoretical contributions of DSR has 

been emphasized in the current DSR discourse (Gregor and Hevner 2013; Kuechler and 

Vaishnavi 2012) other scholars have suggested to reduce the complexity of design 

theories (Baskerville and Pries-Heje 2010) or even questioned the concept of a design 

theory itself (Hooker 2004). In line with the argumentation of Gregor and Hevner 

(2013) the author of this thesis takes up the stance that through the abstraction and 

codification of prescriptive knowledge in a design theory the knowledge contribution 

and impact of DSR can be significantly improved. Therefore in this thesis, additionally 

to a RMS instantiation, a design theory for RMS is derived. 

The core of the design process comprises a stepwise refinement process in which 

designers strive to map needs (specified in the function space) to solutions (specified in 

the attribute space) (Takeda and Veerkamp 1990). The elements of both: the function 

and attribute space appear, in different terminology, in many design theory frameworks. 

While elements of the function space are referred to as meta-requirements (Walls et al. 

1992), general requirements (Baskerville and Pries-Heje 2010) or design requirements 

(Müller-Wienbergen et al. 2011), elements of the attribute space are referred to as meta-

design (Walls et al. 1992), general components (Baskerville and Pries-Heje 2010) or 

design principles (Markus et al. 2002; Müller-Wienbergen et al. 2011). In the context of 

this thesis, the terms design requirement and design principle will be used. While design 

principles characterize solutions in a technology-agnostic fashion, the implementation 

of an artifact requires an additional mapping process to technology-dependent features 
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of the artifact. In the following, the outcome of this process will be referred to as design 

features. 

4.2 Framework Selection and Adaption 

Various frameworks have been proposed, describing how DSR should be conducted. 

While some frameworks take a process perspective, depicting for example different 

phases of DSR research (Nunamaker et al. 1990; Peffers et al. 2007; Sein et al. 2011; 

Takeda and Veerkamp 1990; Vaishnavi and Kuechler 2007) others provide a product-

oriented structure, suggesting different components which should be included in the 

resulting design theory (Baskerville and Pries-Heje 2010; Gregor and Hevner 2013; 

Gregor and Jones 2007; Kuechler and Vaishnavi 2012; Walls et al. 1992). Baskerville 

and Pries-Heje (2010) draw an analogy from these two perspectives to the dual nature of 

theory versus theorizing. In this analogy, a design theory represents the product of 

theorizing about a specific artifact. 

This dualist nature is also inherent to the structure of this thesis: While the research 

design will be described along the phases of a process-oriented framework, the resulting 

design theory will be depicted using a product-oriented framework. To choose 

appropriate process- and product-oriented frameworks, different alternatives have been 

analyzed. This analysis process, the reasons for selection and the performed adaptions 

of the original frameworks for the research design of this thesis will be described further 

on.  

4.2.1 Process-oriented Frameworks 

Process-oriented frameworks describe DSR from a procedural perspective, 

differentiating different phases, their sequence and the associated knowledge flows.  

An early approach to structure the design process accordingly was presented by 

Nunamaker et al. (1990). The authors argue that system development represents a 

valuable research methodology which can complement existing IS research. Their 

Process for Systems Development Research consists of five phases: 1) Construction of a 

conceptual framework, including an investigation of requirements and the search for 

new approaches and ideas 2) Development of a system architecture, including the 
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definition of functionalities, components and their interrelation 3) System analysis & 

design, including the investigation of different design alternatives 4) Implementation of 

the system (or a prototype), including the actual system development and 5) 

Observation of system use and experimental evaluation of the system, investigating 

effects of the systemôs usage. 

The process provided by Nunamaker et al. (1990) represents an abstract model to 

structure DSR activities in distinct phases. However, the actual conduction of DSR is 

not further explicated and therefore leaves many questions open (Peffers et al. 2007). 

As a consequence, in a more recent work, Peffers et al. (2007) suggest their Design 

Science Research Methodology (DSRM). The comprehensive framework includes 

principles, practices, and procedures and is made up of six sequential phases: 1) 

Problem identification and motivation 2) Definition of the solution objective 3) Design 

and Development 4) Demonstration of the artifact 5) Evaluation of the artifact and 6) 

Communication of the research results. The authors point out that DSR projects can be 

initiated from different entry points: problem-centered, objective-centered, design and 

development-centered and client/context-centered. In contrast to other frameworks, 

Peffers et al. (2007) explicitly point out the importance of communicating disciplinary 

knowledge to both research and practice communities in form of publications geared 

towards each target group. 

Moreover, they differentiate the demonstration of the artifact in a suitable context from 

the artifact evaluation in which its effectiveness and efficiency are measured. In the 

framework applied in this thesis, the latter aspect will be explicitly considered through a 

distinct demonstration phase between the development and evaluation of the artifact. 

The framework which guided the design process of this thesis is based on the General 

Methodology of Design Science Research (GMDSR) as suggested by Vaishnavi and 

Kuechler (2007). The framework is an extension of the design cycle proposed by 

Takeda and Veerkamp (1990). It includes process steps, their outputs and the related 

knowledge flows. Starting with the ñAwareness of Problemò phase, in which the 

motivation for the DSR project is drawn from a real-world problem, a tentative design is 

conceptualized in the ñSuggestionò phase. Based on this concept, in the ñDevelopmentò 

phase the artifact is implemented. After measuring the artifactôs effectiveness in the 
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ñEvaluationò phase, a final conclusion is drawn from the results and fed back to the first 

phase to re-iterate. 

Similarly to the DSRM, Vaishnavi and Kuechler (2007) give explicit prescriptions 

about the conduction of DSR. In addition, the authors emphasize the explicit reflection 

of design principles and other design results as well as an iterative, evaluation-driven 

approach. These two characteristics properly match the goals of the research project at 

hand. First, through the continuous reflection and adaption of design results, an 

appropriate mechanism to derive a sound design theory is provided. Second, through 

multiple iterative evaluations, a tight integration of potential users can be accomplished 

which eases the accomplishment of the artifactôs final goal to increase requirements 

mining productivity. Therefore, the GMDSR was selected as guiding overall approach 

for this research project. For the context of this thesis, the GMDSR was slightly 

extended by a demonstration phase between the development and evaluation of the 

artifact, as suggested by Peffers et al. (2007). This demonstration phase allows the 

collection of informal feedback from experts in addition to formal evaluations. The 

resulting process-oriented framework is depicted in Figure 17. 

 

 

Figure 17: Adapted GMDSR, Based on Vaishnavi and Kuechler (2007) 
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4.2.2 Product-oriented Frameworks 

The need for an ISDT was first articulated by Walls et al. (1992). Following Simonôs 

call to develop a science of the artificial (Simon 1969), they argue that the IS discipline 

should articulate and develop prescriptive theories to enable the development of more 

effective IS. The according theories should integrate normative and descriptive theories 

and describe design paths to be followed. Due to their prescriptive nature, ISDT are 

different from explanatory and predictive theories. Walls et al. (1992) propose seven 

components of an ISDT out of which four describe the design product:  

¶ Meta-Requirements which describe the class of goals the theory should be 

applied to. 

¶ Meta-Design characterizing the class of artifacts to address the meta-

requirements. 

¶ Kernel theories including theories from natural and social science which can 

guide the design. 

¶ Testable design product hypotheses which can be utilized to test if the meta-

design actually addresses the meta-requirements. 

The ISDT proposed by Walls et al. (1992) provided the common basis for various other 

product-oriented DSR frameworks. Gregor and Jones (2007) argue that although design 

work and design knowledge in IS are important for both research and practice, little 

attention has been paid to the problem of specifying design theory. Based on the ISDT 

proposed by Walls et al. (1992) and further streams of thought on design research (e.g., 

Simon's (1969) reflections on a science of the artificial ) they suggest an anatomy of a 

design theory consisting of eight separate components: 1) Purpose and scope: This 

component describes ñwhat the system is forò by depicting the set of meta-requirements 

or goals that specify the class of artifact to which the theory applies. Furthermore the 

scope, or boundaries, of the theory are defined. 2) Constructs: The theoryôs entities of 

interest, for example relations would be constructs in a design theory of relational 

databases. 3) Principles of form and function: The abstract ñblueprintò or architecture of 

the associated IS artifact. 4) Artifact mutability: The extent to which changes to the 

artifact are encompassed by the theory 5) Testable propositions: Truth statements about 
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the design theory (e.g., predictions about outcomes that can be tested in experiments). 6) 

Justificatory knowledge: Underlying knowledge or theory to give a basis and 

explanation for the design. 7) Principles of implementation: A description of how to 

implement the theory in specific organizational contexts 8) Expository instantiation: 

The implementation of the artifact, providing both a physical representation of the 

theory and a vehicle to test it.  

Baskerville and Pries-Heje (2010) argue that characteristics of design theories as they 

are discussed in other papers are overly complicated and show that for example the 

incorporation of kernel theories and testable propositions into design theories might not 

be applicable or beneficial to all DSR projects. In contrast, the authors seek the simplest 

possible delineation of a design theory and do this by differentiating between design 

practice theories which describe the building process of the artifact and explanatory 

design theories, describing the artifact itself. To determine the minimal components of 

an explanatory design theory, they collect design theory characteristics from several 

works. According to their analysis, design theory is assumed to be  

¶ prescriptive, focusing on improving things in contrast to understanding things 

¶ practical, being a basis for action to solve problems  

¶ principles based, defining principles both to guide the development process as 

well as the architecture of the artifact  

¶ a dualist construction, describing both a process and a product.  

Explanatory design theories only describe the product part of this dualist construction 

and are limited to two components: General requirements and general components. 

General requirements can be described as conditions or capabilities that must be met by 

the artifact. General components describe the abilities or qualities which represent a 

generalized solution meeting the general requirements.  

The resulting design theory of this thesis is presented along the eight components 

suggested by Gregor and Jones (2007). Unlike other product-oriented frameworks, this 

structure allows a complete and transparent coverage of outcomes from all phases of a 

DSR project. Table 1 depicts the differences. The theory components suggested by 

Walls et al. (1992) can only be related to three of the six phases (Awareness of the 

Problem, Suggestion, Evaluation). Similarly, the structure suggested by Baskerville and 
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Pries-Heje (2010) can only be used to describe the outcomes of two phases (Awareness 

of the Problem, Suggestion). In contrast, the theory components of Gregor and Jones 

(2007) can be mapped to each of the DSR phases, allowing a holistic description of 

design outcomes. 

 
Design research 

phases
10

 

Design Theory Components 

 Walls et al. (1992) Gregor and Jones (2007) Baskerville and Pries-

Heje (2010) 

Awareness of 

Problem 

Meta-requirements Purpose and scope, Justificatory 

knowledge 

General requirements 

Suggestion Kernel theories, 

Meta-design 

Justificatory knowledge, 

Principles of form and function 

General components 

Development - Constructs, Expository 

instantiation 

- 

Demonstration - Constructs, Expository 

instantiation 

- 

Evaluation Testable design 

product hypotheses 

Testable propositions - 

Conclusion - Artifact mutability, Principles of 

implementation 

- 

Table 1: Assignment of DSR Theory Components to Design Phases 

4.3 Research Design 

In the following, the overall research design of this thesis project will be described 

along the phases of the adapted GMDSR. Further details on the artifact design process 

will be provided in chapter 5. Details on the methodology for the artifact evaluation will 

be provided in chapter 6. 

Design research suggests to design artifacts in an iterative fashion enabling continuous 

reflection and incremental refinement of the design results (Hevner et al. 2004; Takeda 

and Veerkamp 1990). Consequently, in this thesis project, two design cycles have been 

                                                 
10

 Design research phases based on the GMDSR by Vaishnavi and Kuechler (2007). 
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conducted as depicted in Figure 18. In the following, the utilized methods and 

performed activities in each of the design cycles are depicted in more detail. 

 

 

Figure 18: Research Design
11

 

4.3.1 Prototype Design Cycle 

The prototype design cycle of the research project was initiated by an intensive 

literature review to create problem awareness resulting in design requirements for the 

artifact to be built. Based on these design requirements, a second literature review was 

conducted to identify general knowledge and theories which can be applied to address 

the identified problem. Using this knowledge, preliminary design principles were 

conceptualized in the suggestion phase. These design principles were then mapped to 

design features and were finally implemented in a prototype version of the artifact 

during the development phase. To collect informal feedback on the artifactôs usefulness, 

it was then presented to requirements engineering experts in several demonstration 

sessions. In the following, the prototype was analyzed in a quantitative evaluation. This 

evaluation focused on the interplay of the two main design principles which was 

investigated in multiple simulation runs. Results of the evaluation and the 

                                                 
11

 The structure of the research design follows the GMDSR by Vaishnavi and Kuechler (2007). 
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demonstration sessions were analyzed and reflected (along with the design results) 

during the conclusion phase. 

4.3.2 Final Design Cycle 

During the final design cycle, the initial problem definition and conceptualization were 

adapted based on the design, demonstration and evaluation results of the previous cycle. 

This led to an adjustment of the initial design requirements and design principles. The 

adapted design principles were again mapped to design features resulting in a 

modification of the artifact. To improve the artifactôs ease of use, it was presented to 

usability experts in several demonstration sessions which resulted in multiple small 

adaptions. Then the final artifact version was evaluated in an experiment. This 

evaluation consisted of a lab experiment, conducted with students and a replication of 

the experiment in a field environment, involving experts. By these experiments, the 

effects of each design principle on the performance of individual requirements 

engineers were measured. Finally, the design and evaluation results were again 

abstracted and contextualized. 

4.4 Ontological and Epistemological Reflections 

In the following, the presented research design shall be reflected from an ontological 

and epistemological point of view to point out the core assumptions of the research. In 

this context following the definitions by Vaishnavi and Kuechler (2007), an ontological 

stance describes the underlying assumption about the nature of reality (e.g., what is real 

and what is not) while an epistemological stance describes the underlying assumption 

about the nature of knowledge (e.g., how knowledge can be derived). 

In DSR projects, questions of ontology and epistemology are often treated rather 

implicitly (Niehaves 2007). Nevertheless, in the existing discourse, some scholars see 

Design Science as a third paradigm in addition to positivism and interpretivism 

(Vaishnavi and Kuechler 2007). Other researchers emphasize the compatibility of DSR 

with existing research paradigms, for example positivism (Marshall and Mckay 2005; 

Niehaves 2007). An argument for the former view is that design science aims at gaining 
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knowledge through the creation of artifacts which is epistemologically different from 

other paradigms (Vaishnavi and Kuechler 2007).  

However, as Niehaves (2007) points out, the prescriptive knowledge gained in DSR is 

inevitably embedded in further types of justificatory knowledge such as theoretical, 

descriptive and empirical knowledge. Additionally, the knowledge contribution of DSR 

is often not restricted to the knowledge embedded in the artifact as explained in section 

3.6.2 but can also comprise theoretical knowledge. Consequently, depending on the 

approach to gain this theoretical knowledge, DSR can be conducted following a 

positivistic approach (Hevner et al. 2004; March and Smith 1995) or other existing 

paradigms. Marshall and Mckay (2005) for example point out that interpretive or 

critical approaches to DSR, which aim at understanding and analyzing the impacts of an 

artifactôs introduction and usage in the field, can similarly be applied.  

The research in this thesis follows a positivistic paradigm which will be explained in the 

following, analyzing the general ontological assumption and the epistemological stance 

of this research. The basic ontological assumption of positivistic research is the 

existence of a single, objective reality, which comprises facts that can be accessed and 

observed by the researcher (Carson et al. 2001; Vaishnavi and Kuechler 2007; Weber 

2004). In the presented research design, the identified NLR and their classification, as 

well as characteristics of the discovery process itself (e.g., the time needed to 

accomplish requirements discovery) can be seen as facts which are directly observable 

by the researchers. This stance is also expressed in the choice of quantitative evaluation 

methods like simulations and experiments which are generally associated with 

positivistic research (Marshall and Mckay 2005). 

From an epistemological perspective, positivistic research predominantly aims at 

deriving theoretical knowledge through the definition and test of hypotheses and a 

research focus on generalization and abstraction (Carson et al. 2001). Furthermore, there 

is a concentration on description and explanation, while for example interpretative 

approaches rather focus on understanding and interpretation (Carson et al. 2001; 

Vaishnavi and Kuechler 2007). In the research at hand, assumed effects of design 

principles on requirements mining productivity will be formulated as hypotheses. 

Subsequently, through the instantiation of these design principles in an artifact, the 
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hypotheses can be tested. The conceptualization of the artifact using generic design 

principles for a class of systems (RMS) favors the generalization and abstraction of the 

results. The derived theoretical knowledge can help to explain how these design 

principles, when implemented in an artifact, can affect requirements mining 

productivity. 

Table 2 summarizes the ontological and epistemological stance of this thesis. 

 

Perspective Thesis Stance 

Ontological Single, objective reality exists 

Facts can be accessed and observed by the researcher 

Epistemological Derive theoretical knowledge through the definition and test of hypotheses 

Research focus on generalization and abstraction 

Concentration on description and explanation 

Table 2: Ontological and Epistemological Stance of the Thesis 

4.5 Summary 

In this chapter, an overview of DSR as the overall methodology of this thesis was 

provided. Design science terminology to describe different types of artifacts and 

elements of their conceptualization (e.g., design requirements) in the context of this 

thesis has been introduced. Moreover, the dualist nature of design, being both a process 

and a product has been discussed along the historic development of the DSR paradigm. 

Subsequently, process- and product-oriented DSR frameworks were presented. This 

illustration resulted in a selection of two frameworks which will be used in the context 

of this thesis, an adapted version of the GMDSR suggested by Vaishnavi and Kuechler 

(2007), to structure the design process and the eight components of a design theory 

proposed by Gregor and Jones (2007) to structure the design product. Afterwards, the 

research design of this thesis was depicted using the adapted GMDSR as a blueprint for 

two design cycles. Finally, the ontological and epistemological stance of the thesis was 

discussed, characterizing the positivistic nature of the study. 
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5 Artifact Design
12

 

As previously introduced, Gregor and Jones (2007) distinguish eight components of an 

ISDT: (1) purpose and scope of the theory, (2) the constructs that are of interest to the 

theory, (3) the principles of form and function (the blueprint or architecture of the 

artifact), (4) the artifactôs mutability (the extent to which changes to the artifact are 

encompassed by the theory), (5) a set of testable propositions or hypotheses, (6) 

justificatory knowledge to give a basis and explanation for the design, (7) principles of 

implementation, and (8) a physical instantiation of the artifact. 

This thesis presents each of these eight components for a RMS design theory yet in a 

slightly adapted order and naming. The order was changed to be able to trace the 

artifactôs conceptualization in its actual sequence. The naming was adapted to provide a 

consistent and homogenous terminology for the outcomes of each conceptualization 

phase: design requirements
13

 as the outcome of the problem awareness phase, design 

principles
14

 as the result of the suggestion phase and design features
15

 as the capabilities 

of the artifact implemented in the development phase. These changes result in the 

following structure: In section 5.1, based on justificatory knowledge, the purpose and 

scope of the theoryôs artifact is presented and distilled to distinct design requirements. 

From these design requirements, applying additional justificatory knowledge, design 

principles are derived in section 5.2. In the final artifact conceptualization step, design 

principles are mapped to specific design features which are presented within their 

expository instantiation, including a summary of the conducted demonstration sessions 

(section 5.3). The depiction of the design theory will be completed with a description of 

the principles of implementation, the artifactôs mutability and the testable hypotheses 

for the experiment evaluation of the artifact (sections 5.4 to 5.6). 

                                                 
12

 Parts of this chapter have been published in Meth et al. (2012b). 
13

 Design requirements are referred to as meta-requirements by Gregor and Jones (2007). 
14

 Design principles are referred to as principles of form and function by Gregor and Jones (2007). 
15

 Design features are referred to as constructs by Gregor and Jones (2007). 
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5.1 Purpose and Scope 

The proposed design theory has the purpose to give explicit prescriptions about how to 

develop systems that support requirements mining from NLRR to improve requirements 

mining productivity. Productivity is usually conceptualized as an input-output ratio with 

the work output as the numerator and the work input as the denominator of the ratio 

(Cosmetatos and Eilon 1983). In the case of requirements mining, the quality of the 

elicited requirements represents the work output whereas the invested mining effort 

represents the work input. The quality of requirements determined by RMS is usually 

assessed by a combined measurement of requirementsô completeness and correctness 

(Casamayor et al. 2010; Cleland-Huang et al. 2007; Gacitua et al. 2011). The invested 

mining effort can be measured by the time required for the mining process. In general, 

mining productivity will be improved when either a) the requirements quality is 

increased or b) the mining effort is decreased. The conceptualization in the following 

sections will derive design requirements, design principles and design features for a 

RMS serving this purpose. 

The proposed class of systems might be applied to a wide range of NLRR. Sources 

include the outcomes of formal requirements collections (e.g., from interviews or 

workshops), informal requirements requests (e.g., emails or blog entries), or texts which 

were originally created for other purposes (e.g., test protocols or support messages).  

Furthermore, RMS can be applied in the context of various software and requirements 

engineering methodologies. For example, as outlined in section 2.2, the systems can 

support requirements mining in user-centric approaches focusing on a tight integration 

of users in the development project as well as market-driven approaches in which a 

myriad of informal requirements statements is submitted rather anonymously. In both 

cases the nature of the requirements mining task remains the same: A requirements 

engineer (or a system) needs to scan through the provided NLRR to identify and 

classify requirements. Doing this, two questions are repeatedly answered for the 

processed texts: Does this text passage, sentence or word represent a requirement? And 

if so, which kind of requirement is it? In the following section, this iterative process is 

further investigated, focusing specifically on system-supported requirements mining. 
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5.1.1 Justificatory Knowledge 

Figure 19 depicts the basic steps of system-supported requirements mining which the 

thesis is based on. Starting from the provision of NLRR, requirements are identified and 

classified by the RMS in a background process resulting in proposed requirements. In 

the following, an interactive approval process is performed, driven by the requirements 

engineer. This process results in approved (and rejected) requirements.  

 

 

Figure 19: RMS-Supported Requirements Mining Process 

 

Through the determination of proposed requirements, the RMS supports requirements 

engineers in answering the two previously formulated questions: RMS advise 

requirements engineers concerning what is a requirement and how to classify it. 

Therefore, on an abstract level, the process can be seen as a series of consecutive 

decision tasks in which the RMS acts as an advisor and a requirements engineer as the 

advice-taker. In this analogy, the assignment of a text passage to a specific requirements 

category can be seen as a single decision task which is repeatedly performed throughout 

a NLRR. Decision making theory characterizes decision tasks according to multiple 

characteristics, amongst others the decision task type (choice vs. judgment tasks), the 

number of advisors (one vs. multiple), the advice trigger (solicited vs. unsolicited 

advice) and the degree of interaction between advisor and judge (low vs. high 

interaction) (Bonaccio and Dalal 2006). Reflecting on the characteristics introduced 

above, RMSô support of requirements mining can be characterized as a decision process 

consisting of choice tasks (assignment of distinct requirements categories) given by a 

single advisor (the RMS) following a solicited but low interaction.  
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To derive specific design requirements for RMS, it is important to understand the 

general goals associated with the requirements mining process. The generalization and 

abstraction of the process to a series of decision making tasks, provides an approach to 

identify these general goals. Decision makers follow different goals when confronted 

with a decision task. First, they strive to reach a good or even optimal decision. 

Therefore, different strategies to optimize decision quality have been proposed (Wang 

and Benbasat 2009). However, additionally to decision quality, the idea that decision 

making is also influenced by considerations of cognitive effort has been discussed since 

the seminal works of Simon (1957). Simon coined the concept of Bounded Rationality 

which suggests that human decision makers are limited by multiple factors impeding the 

achievement of an optimal decision, including their cognitive processing capacities 

(Simon 1957). While Simon discusses cognitive efforts rather as a limitation leading to 

suboptimal decision results, cognitive efforts were found to also influence the choice of 

a decision strategy. Decision strategy selection is often explained using contingency 

models in which a cost and benefit tradeoff determines strategy choice (Beach and 

Mitchell 1978; Payne 1982). According to these models, decision makers follow the 

dual goal to maximize decision quality and at the same time minimize their cognitive 

effort. 

To optimize the outcomes of this tradeoff, different types of decision support systems 

(DSS) have been proposed (Silver 1991) and effects of the usage of DSS on decision 

behavior have been investigated (Todd and Benbasat 1991, 1999). DSS aim at 

improving decision results through the provision of advice
16

, building on the idea that 

advice characterized by high advice quality will result in decisions with a high decision 

quality (Gardner and Berry 1995; Yaniv 2004). Ideally, at the same time cognitive effort 

will decrease, as the DSS already prepares the decision and the relevant information for 

the decision maker. However, while DSS can improve decision quality and reduce 

cognitive effort, the systems may also restrict users in their decision behavior which has 

been termed as ñsystem restrictivenessò (Silver 1988). System restrictiveness is defined 

as the extent to which decision strategies are pre-selected through the DSS, offering the 

                                                 
16

 In most studies advice is defined as a type of recommendation from the advisor, favoring a particular 

   option (Bonaccio and Dalal 2006). 
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decision maker only a limited choice of strategies which may not include his (or her) 

preferred ones (Silver 1988). Therefore, when implementing decision aids, designers 

need to carefully consider that the benefits of a decision aid (e.g., reduced cognitive 

effort) are not overcompensated by its restrictions. 

Table 3 summarizes goals of human decision makers and design requirements of DSS 

addressing them. 

 

Goals of Human Decision Makers Design Requirements of DSS 

Maximize decision quality Increase decision quality by providing advice with high 

advice quality 

Minimize cognitive effort Reduce cognitive effort of human decision maker by 

providing decision support 

Maintain control over decision strategy 

selection 

Minimize system restrictiveness by allowing users to control 

the strategy selection 

Table 3: Goals of Human Decision Makers and Design Requirements of DSS 

 

Wang and Benbasat (2009) investigated each of these design requirements as a 

perceived factor determining the intention to use decision aids. In their study, decision 

aids are components of e-commerce platforms which are used to elicit consumer 

preferences, automate their processing, and provide corresponding product advice. They 

hypothesize that perceived advice quality, perceived cognitive effort and perceived 

restrictiveness determine the intention to use decision aids. Based on their experimental 

results, all three factors showed significant effects on the intention to use a decision aid. 

 

As previously depicted, the requirements mining process can be seen as a series of 

consecutive decision tasks in which the RMS acts as an advisor and a requirements 

engineer as the advice-taker. Therefore, the identified design requirements for systems 

supporting decision making in general are assumed to also be applicable to systems 

supporting decision making in the context of requirements mining. Consequently, in the 

following the identified design requirements for DSS will be related to the specific 

context of requirements mining, treating RMS as a sub-class of DSS. 
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5.1.2 Design Requirements of RMS 

DSS aim at improving decision quality through the provision of high quality advice. 

Analogously, the quality of requirements proposed by a RMS can be expected to 

determine the quality of requirements approved by the requirements engineer. As 

introduced earlier, RMS require a knowledge base to be able to identify and categorize 

proposed requirements. In general, the quality of requirements proposed by RMS 

mainly depends on the contents of the knowledge base used for the background mining 

process (Casamayor et al. 2010; Cleland-Huang et al. 2007). An extensive knowledge 

base with correctly classified requirements has been found to result in a high quality of 

proposed requirements (Casamayor et al. 2010; Cleland-Huang et al. 2007). Therefore, 

the design focus of many RDS has been put on the improvement of advice quality 

through the provision of high quality proposed requirements (Gacitua et al. 2011; 

Goldin and Berry 1997; Kiyavitskaya and Zannone 2008). However, revisiting the 

analogy to decision making, high quality proposed requirements only represent a 

prerequisite but not the final goal of the process. Only an increase in the quality of 

approved requirements will address requirements engineersô goal of achieving a high 

decision quality. As a consequence, the following design requirement is derived: 

 

DR1. Increase quality of approved requirements. The requirements mining 

process should be supported by systems which aim at improving the quality of 

approved requirements. 

 

To reduce the cognitive effort of requirements engineers during the requirements mining 

process, first the question needs to be answered which phases of this process depend on 

human cognition. Most RDS implement advice-giving in a background process without 

any user interaction. The proposed requirements resulting from this background process 

are then presented to the requirements engineer for manual approval. Consequently, 

during the actual mining process, the cognitive effort of the requirements engineer is 

only determined by the efforts to transform proposed requirements into approved 

requirements. In some cases, this might still involve intensive reflection. However, in 
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most cases, cognitive efforts will be reduced from an active consideration of all decision 

options to a rather passive approval of the given advice.  

Additionally to the actual decision making process, taking a holistic view on the 

cognitive effort of the requirements engineer, manual efforts to create and maintain the 

knowledge base have to be taken into account as well and should be minimized. In 

summary, the following design requirement is derived: 

 

DR2. Decrease cognitive effort  to execute and prepare requirements mining. 

The requirements mining process should be supported by systems aiming at a 

decrease of the cognitive effort to transform proposed requirements into 

approved requirements as well as the cognitive efforts to create and maintain 

the underlying knowledge base. 

 

As presented in section 3.3.1, RDS can provide different degrees of automation. Some 

systems only support manual requirements discovery (Abrams et al. 2006; Ossher et al. 

2009), while others restrict requirements engineers to use the system in a fully 

automated mode (Gacitua et al. 2011; Goldin and Berry 1997; Kiyavitskaya and 

Zannone 2008). Recapturing decision makersô goal to maintain control over the 

decision strategy selection and limit system restrictiveness, RMS should allow 

requirements engineers enough flexibility to choose an appropriate type of processing 

support.  

Furthermore, system restrictiveness should also be limited concerning the knowledge to 

be used during requirements mining. As introduced in section 3.4, RDS can use 

different types of knowledge (e.g., imported knowledge vs. retrieved knowledge). To 

limit system restrictiveness, different types of knowledge should be usable during 

requirements mining. Consequently: 

 

DR3. Limit system restrictiveness during requirements mining. The 

requirements mining process should be supported by systems aiming at minimal 

processing restrictions concerning the conduction of requirements mining. 
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In the following, the process of deriving design principles from the previously identified 

design requirements is described. 

5.2 Conceptualization 

Similarly to the previous section, to derive design principles for RMS, an analogy to 

decision making is drawn, based on existing theory on decisional guidance. 

5.2.1 Justificatory Knowledge 

To address the design requirements formulated in the last section, the question arises 

which type of system support to choose. Previously, the requirements mining process 

was abstracted to a general decision making process and an analogy between RMS and 

DSS was drawn. This analogy shall be further elaborated in the following, introducing 

types of decisional guidance implemented in DSS from an existing typology. For the 

further conceptualization, those types of guidance will be identified, which match the 

previously described design requirements. Based on this selection, design principles 

wil l be derived in the subsequent sections 

5.2.1.1 Types of Decisional Guidance 

Silver (1991) describes decisional guidance (DG) as the way a DSS informs or 

influences decision makers in the structuring and execution of decision tasks. The 

author defines a typology of DG based on three different characteristics. First, a 

differentiation concerning the targets of guidance can be made. Silver (1991) 

distinguishes DG to structure the decision making process and DG to execute it. The 

former supports decision makers in selecting the right approach, method or strategy to 

make a decision. For example, structural guidance could support choosing an existing 

decision strategy such as additive compensation or elimination by aspects
17

. Subsequent 
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 According to Todd and Benbasat (1999), additive compensation is a strategy in which each alternative 

is evaluated individually along all relevant attributes. The decision maker assigns a weight and a value to 

each attribute and then determines the total score of an alternative. Elimination of aspects is a strategy 

based on a comparison of attribute values to threshold values. Alternatives are eliminated if one of their 

attributes does not meet a threshold  
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to strategy selection, executional guidance can help decision makers in the operational 

conduction of the decision task. For example, the system could prompt the user to enter 

values or calculate the overall value of an alternative. Second, the typology 

differentiates alternative forms of guidance. DG might be implemented in a suggestive 

or informative way. Suggestive guidance recommends decision makers which strategy 

to choose or which values to enter. Informative guidance on the contrary only provides 

decision makers with decision-relevant information without recommending a choice. 

For example, a description of the range of possible input values could be regarded as 

informative guidance. Finally, Silver (1991) distinguishes different modes of guidance, 

describing the ways DG is generated. DG can be predefined, dynamic or participative. 

Predefined guidance consists of context-specific information or recommendations 

which are defined upfront by experts or regular users and imported into a knowledge 

base. In contrast, dynamic guidance is an adaptive mechanism which generates 

information and recommendation based on the actual system usage. DG (similarly to 

RMS) usually utilizes knowledge bases to generate advice. Dynamic guidance 

iteratively builds up additional knowledge base contents. Finally, participative guidance 

puts a stronger focus on usersô participation in the determination of guidance-specific 

content. For instance, in a decision task based on a decision table with different 

alternatives, participative guidance could be implemented by adding functionality to 

manipulate the table through ordering or summation. In the following, the presented 

types of guidance will be associated with the requirements mining process and the 

identified design requirements. 

5.2.1.2 Associating Decisional Guidance to Requirements Mining 

Investigating the targets of guidance in the context of requirements mining, it is 

worthwhile revisiting the process to be conducted. Requirements mining, as previously 

introduced, can be seen as a series of consecutive decision tasks in which the 

assignment of a text passage to a specific requirements category represents a single 

decision task which is repeatedly performed. Although this task requires substantial 

knowledge in requirements engineering and the corresponding business domain, it is a 

standardized procedure, executed rather similarly every time it is performed. Therefore, 
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unlike other decision tasks, it does hardly require support to structure the decision task 

in advance of each single decision. But, especially due to the large number of decisions 

to be made, it definitely requires execution support to reduce requirements engineersô 

cognitive efforts and maintain a high level of quality. 

To determine appropriate forms of guidance, an empirical study conducted by Parikh et 

al. (2001) provides interesting results. The authors investigated how different forms of 

guidance influence decision quality and decision efficiency in an experiment study 

involving 141 participants. In this study, participants were asked to examine a historical 

data set and identify key characteristics of it. Based on the identified characteristics, 

they should assign a suitable forecasting model to process this data set. In its basic 

constituents (identification of decision-relevant information and subsequent 

classification of this information) the decision task resembles the decisions involved in 

the requirements mining process. Parikh et al. (2001) found out that suggestive 

guidance outperformed informative guidance concerning both, decision quality and 

decision efficiency. The two dependent variables used in their study (decision quality 

and decision efficiency) can be associated with the previously derived design 

requirements DR1 and DR2. Revisiting the introduced analogy to requirements mining, 

increased decision quality is associated with increased quality of approved requirements 

and increased decision efficiency can be associated with a decrease in mining efforts. 

Therefore, suggestive guidance is expected to be an appropriate means to address DR1 

and DR2. 

In the same study, Parikh et al. (2001) analyzed how different modes of guidance affect 

decision quality and decision efficiency. Their central finding was that dynamic 

guidance outperformed predefined guidance concerning decision quality and decision 

efficiency. In analogy to the argumentation for the form of guidance, by associating 

decision quality and decision efficiency with DR1 and DR2, dynamic guidance can be 

expected to result in an increased quality of approved requirements and a decrease of 

mining efforts. Parikh et al. (2001) investigated different modes of guidance as 

exclusive alternatives. However, dynamic, predefined and participative guidance can 

also be combined to improve results. When applied complementary to dynamic 

guidance, predefined and participatory guidance can provide additional advice and 



5.2 Conceptualization 66 

 

hereby further increase decision quality and decision efficiency. Furthermore, revisiting 

the design requirement DR3, additionally applied participative guidance can allow a 

higher degree of freedom to the final decision maker which might reduce his perceived 

system restrictiveness. Therefore, in the context of requirements mining a 

complementary use of different modes of guidance is proposed. 

 

 

Figure 20: Associating Design Requirements to Different T ypes of DG 

5.2.2 Design Principles of RMS 

Which design principles can be derived from the identified types of DG to address the 

initial design requirements? In the context of requirements mining, suggestive guidance 

can be accomplished by means of automation, resulting in a set of requirements 

proposed by the automation algorithm. During the mining of requirements from NLRR, 

a text is analyzed to identify relevant words and assign them to requirements categories. 

This process can be decomposed into single steps which are repeatedly performed and 

follow specific rules (Ambriola and Gervasi 2006). Consequently, they can be translated 

into algorithms that can automatically be executed by a computer. Automation 

addresses the first two design requirements identified in the previous section. First, 
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automation can increase the quality of approved requirements. Reflecting the analogy to 

decision making, the quality of approved requirements can be expected to be positively 

affected by the quality of proposed requirements. A carefully developed algorithm can 

identify a significant percentage of the requirements within a natural language 

document and can identify requirements which may have been overlooked in a pure 

manual discovery process (Berry et al. 2012). Moreover, as the algorithm will not suffer 

from fatigue or decreasing motivation as a human being might do, each part of a 

document will be treated with equal attention which can additionally contribute to a 

more complete set of requirements. Second, automation should lead to a decrease in 

cognitive efforts, as each automatically classified requirement does not need to be 

identified and categorized manually by the requirements engineer. 

During the manual approval of proposed requirements, the requirements engineer 

decides whether to follow the advice of the RMS or not. In the case of requirements 

mining, the ambiguity and inconsistency of NLRR often requires a third option: 

Requirements need to be adapted or added. In these cases, the automatism needs to be 

complemented with functionality supporting manual discovery (Berry et al. 2012; 

Kiyavitskaya and Zannone 2008). However, any manual adaptation of automatically 

identified requirements represents additional effort for the requirements engineer. To 

limit this effect, functionality for manual identification and classification should provide 

a high level of usability to enable efficient operations. Additionally to the effects on 

DR1 and DR2, capabilities for manual requirements identification and classification 

also represent a way to enable participative guidance. Allowing the requirements 

engineer further freedom in the mining process can hereby also minimize system 

restrictiveness (DR3). In summary, to support the mining process the following design 

principle is proposed:  

 

DP1. Semi-Automatic Requirements Mining: RMS should support efficient 

automatic and manual requirements mining within NLRR. 

 

As illustrated earlier, automated requirements mining requires an underlying knowledge 

base containing terms and a categorization of these terms. Revisiting the identified 
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design requirements and relating them to knowledge creation, a corresponding design 

principle should provide answers to the following questions: 1) How can the quality of 

knowledge be increased and 2) How can (cognitive) efforts of the requirements engineer 

to create knowledge be decreased? 

Starting with the first question, the quality of the knowledge base can be assessed by its 

completeness and correctness. A more extensive knowledge base will only conclude in 

better mining results if a sufficient level of correctness is sustained. One approach to 

augment the knowledge base with according knowledge is the supplementation of 

domain-specific knowledge. Documents that originate from the same domain share 

specific requirements elements which are not included in general knowledge (Lemaigre 

et al. 2008) (e.g., the data field ñfrequent flyer numberò in the domain ñtravelingò). 

Similarly, specific writing styles or standards for single projects or entire organizations 

can result in needs to extend imported knowledge (Cleland-Huang et al. 2007). There 

are different ways how domain-specific knowledge can be generated. Addressing the 

design requirement behind the second question, the proposed design is supposed to 

support knowledge generation in a way that minimizes efforts for the requirements 

engineer. Therefore, additionally to predefined guidance, a mechanism to support 

dynamic guidance is needed. This can be realized by feeding back results of previous 

requirements mining activities into the knowledge base and hereby create and use 

retrieved knowledge additionally to imported knowledge. Although this process 

requires some supervision to sustain quality, this type of knowledge supplementation 

can be expected to be a lot more efficient than manual creation of domain-specific 

knowledge. Consequently, the following design principle is proposed: 

 

DP2. Usage of imported and retrieved knowledge: RMS should use both 

manually imported and automatically retrieved knowledge during automatic 

mining. 

 

An overview of the conceptualization process from design requirements via types of 

DG to design principles is provided in Figure 21. The figure shows how the identified 
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design requirements of RMS can be addressed by different types of DG. Furthermore, it 

outlines which design principle of RMS is associated with which type of DG. 

 

 

Figure 21: Deriving Design Principles from Design Requirements 

5.3 Expository Instantiation  

In the final step of the conceptualization, the identified design principles are mapped to 

design features. Design features are specific artifact capabilities to satisfy design 

principles, for example the algorithm chosen for automatic mining. Figure 22 

summarizes the design of the artifact from design requirements via design principles to 

design features and illustrates the mapping between these conceptualization steps. 

In allusion to the class of systems (namely RMS) and the process to be supported 

(requirements mining) the implemented system is referred to as ñREMINERò. Similarly 

to former approaches (Casamayor et al. 2010; Cleland-Huang et al. 2007; Vlas and 

Robinson 2012), REMINER uses NLP and IR techniques to implement automatic 

requirements mining and additionally contains functionality to enable manual 

identification and classification. 

  
















































































































































