Complexity Results for Reachability in
Cooperating Systems and
Approximated Reachability by

Abstract Over-Approximations

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universitat Mannheim

vorgelegt von

Nils Semmelrock

aus Hamburg

Mannheim, 2013

Dekan: Professor Dr. Heinz Jiirgen Miiller, Universitit Mannheim
Referent: Professor Dr. Mila Majster-Cederbaum, Universitdt Mannheim

Korreferent: Professor Dr. Matthias Krause, Universitdt Mannheim

Tag der miindlichen Priifung: 11. Juni 2013

Abstract

This work deals with theoretic aspects of cooperating systems, i.e., systems
that consists of cooperating subsystems. Our main focus lies on the com-
plexity theoretic classification of deciding the reachability problem and on
efficiently establishing deadlock-freedom in models of cooperating systems.
The formal verification of system properties is an active field of research,
first attempts of which go back to the late 60’s. The behavior of cooperating
systems suffers from the state space explosion problem and can become very
large. This is, techniques that are based on an analysis of the reachable
state space have a runtime exponential in the number of subsystems. The
consequence is that even modern techniques that decide whether or not a

system property holds in a system can become unfeasible.

We use interaction systems, introduced by Sifakis et al. in 2003 [GS03], as
a formalism to model cooperating systems. The reachability problem and
deciding deadlock-freedom in interaction systems was proved to be PSPACE-
complete [MCMO08¢|. An approach to deal with this issue is to investigate
subclasses of systems in which these problems can be treated efficiently.
We show here that the reachability problem remains PSPACE-complete in
subclasses of interaction systems with a restricted communication structure.
We consider structures that from trees, stars and linear arrangements of
subsystems. Our result motivates the research of techniques that treat the
reachability problem in these subclasses based on sufficient conditions which
exploit characteristics of the structural restrictions [Mar09, Hoa85, BR91,
BHH'06, BCD02, MCMO08a).

In a second part of this work we investigate an approach to efficiently es-
tablish the reachability of states and deadlock-freedom in general interaction
systems. We introduce abstract over-approximations — a concept of compact
representations of over-approximations of the reachable behavior of interac-
tion systems. Families of abstract over-approximations are the basis for our
approach to establish deadlock-freedom in interaction systems in polyno-

mial time in the size of the underlying interaction system. We introduce an

operator called Edge-Match for refining abstract over-approximations. The
strength of our approach is illustrated on various parametrized instances of
interaction systems. Furthermore, we establish a link between our refine-
ment approach and the field of relational database theory and use this link

in order to make a preciseness statement about our refinement approach.

Zusammenfassung

Diese Arbeit beschéaftigt sich mit theoretischen Aspekten von kooperieren-
den Systemen, d.h. Systemen, die aus kooperierenden Subsystemen beste-
hen. Unser Augenmerk liegt hauptséchlich auf der komplexitatstheoretischen
Klassifizierung des Erreichbarkeitsproblem und dem effizienten Nachweis von
Verklemmungsfreiheit in Modellen von kooperierenden Systemen. Die forma-
le Verifikation von Systemeigenschaften ist ein aktives Forschungsfeld dessen
Anféange in die spiten sechziger Jahre zuriickreichen. Kooperierende Systeme
leiden unter dem Problem der Zustandsraumexplosion und konnen ein sehr
komplexes Verhalten besitzen. Techniken, die auf der Analyse des erreichba-
ren Zustandsraumes basieren weisen hier eine Laufzeit auf, die exponentiell
in der Anzahl der Subsysteme ist. Die Konsequenz ist, dass selbst aktuelle

Techniken, die Systemeigenschaften entscheiden, an ihre Grenzen geraten.

Wir benutzen den von Sifakis et al. 2003 [GS03] eingefiihrten Formalis-
mus der Interaktionssysteme um kooperierende Systeme zu modellieren.
Das Erreichbarkeitsprobelm und das Problem der Verklemmungsfreiheit in
Interaktionssystemen ist PSPACE-vollstindig [MCMO08c|. Ein Ansatz die-
ses Problem anzugehen ist die Betrachtung von Teilklassen, in denen die-
se Probleme effizient behandelt werden konnen. Wir zeigen hier, dass das
Erreichbarkeitsproblem auch in Teilklassen mit eingeschriankter Kommu-
nikationsstruktur PSPACE-vollstindig ist. Wir betrachten Strukturen, die
Béume, Sterne und lineare Anordnungen aus Subsystemen darstellen. Un-
sere Ergebnisse motivieren die Untersuchung von Techniken die das Er-
reichbarkeitsproblem in diesen Teilklassen, basierend auf hinreichenden Be-
dingungen welche die strukturellen Charakteristiken ausnutzen, behandeln
[Mar09, Hoa85, BR91, BHH 06, BCD02, MCM08a].

In einem zweiten Teil dieser Arbeit stellen wir einen Ansatz vor, der es
ermoglicht die Erreichbarkeit von Zustédnden und Verklemmungsfreiheit in
Interaktionssystemen festzustellen. Dafiir fithren wir abstrakte Uberappro-
ximationen ein. Dies sind kompakte Reprisentationen von Uberapproxima-

tionen des erreichbaren Verhaltens von Interaktionssystemen. Familien von

abstrakten Uberapproximationen sind die Basis fiir unseren Ansatz in poly-
nomieller Zeit Verklemmungsfreiheit in Interaktionssystemen festzustellen.
Wir benutzen einen Operator, den wir Edge-Match nennen, um abstrakte
Uberapproximationen zu verfeinern. Die Stirke unserer Ansiitze demonstrie-
ren wir anhand von verschiedenen parametrisierten Modellen von Interakti-
onssystemen. Dariiber hinaus ziehen wir eine Verbindung zwischen unserem
Ansatz der Verfeinerung von abstrakten Uberapproximationen und dem Ge-
biet der relationalen Datenbanktheorie. Wir benutzen diese Verbindung um

eine Aussage iiber die Giite unseres Verfeinerungsansatzes zu machen.

Contents

Glossary of Symbols

1 Introduction
1.1 Motivation
1.1.1 Formal Verification
1.1.2 Model Checking Cooperating Systems
1.1.3 Dealing with Complexity Issues
1.2 Contribution
1.3 Road Map o .
1.4 Interaction Systems L.
1.4.1 Related Formalisms
1.4.2 Definitions oo

2 Architectural Constraints & Reachability

2.1 Introduction
2.2 Definitions L
2.3 PSPACE-completeness of Reachability in Tree-Like Systems
2.4 Reachability of Local States
2.5 PSPACE-completeness of Reachability in Linear Systems . .
2.6 PSPACE-completeness of Reachability in Star-Like Systems
2.7 PSPACE-completeness of Progress in Systems with a Re-

stricted Communication Structure

2.8 Conclusion

vi

0 O = o

16
19
20
21
23

31
31
35
39
93
%)
59

A Refinement Technique for Over-Approximations

3.1 Introduction

3.2 Abstract Over-Approximations and their Refinement

3.3 Preciseness and Application
3.3.1 Preciseness
3.3.2 A Fixed-Point of a Family of Over-Approximations .

3.4 Conclusion and Related Work

Establishing Deadlock-Freedom

4.1 Introduction

4.2 Safety Properties and Over-Approximations

4.3 An Approach to Establish Deadlock-Freedom
4.3.1 Projected Deadlocks
4.3.2 Comparison to the Waiting Chain Approach

4.4 Conclusiono

Results

5.1 Introduction L.
5.2 Measurement-Grid L oL
5.3 Tanenbaum’s Philosophers
5.4 A Chain of Components
5.5 A Circle of Components
5.6 Production Cell,

5.7 Conclusion

A Connection to Relational Algebraic Operators

6.1 Introduction
6.2 Relational Algebra
6.3 The Relational Edge-Match Operator
6.4 A Preciseness Condition

6.5 Conclusion
Conclusion

i

71
71
73
83
84
86
95

99

99
101
106
111
121
129

131
131
134
138
142
147
153
160

163
163
165
167
171
174

177

Appendix A Proofs

A.1 Proofs from Chapter 2
A.2 Proofs from Chapter 3
A.3 Proofs from Chapter 6

Appendix B Source Code

B.1 A Description Language for Interaction Systems

B.2 Java Source Code
Bibliography

Index

iii

183
183
196
203

207
207
209

213

232

iv

Acknowledgements

First, I am grateful to Professor Mila Majster-Cederbaum for introducing
me to this new area of research and for being a great supervisor. Apart
from her helpful technical guidance, I thank her for her kind and supportive
nature. She was always approachable, provided helpful comments and ideas
for further research and still allowed for unsupervised phases whenever I felt

I needed to work things out on my own.

I also thank the second referee Professor Matthias Krause and the third

examiner Professor Frederik Armknecht for taking time to review my thesis.

Thanks to my former and current fellow workers Christoph, Moritz and
Christian for making my time very enjoyable. The same goes to all other

fellow scientists I met at the faculty.

Finally, I thank my family for just being there for me.

vi

(Glossary of Symbols

Interaction Systems

A, The set of ports of a component 7. 23
« An interaction. 23

a; A port of a component i. 23

C A domain. 82

en(q) The operator that yields all labels that are enabled in the state ¢ of

a transition system. 26
E(R) The global extension of the transition system R. 75
i(ar) The port of component i that participates in the interaction . 23
IM An interaction model. 23
Int A set of interactions. 23
[Sgenerat The class of general interaction systems. 35
IS}, The subclass of linear interaction systems. 35
IS The subclass of star-like interaction systems. 35
[Si;ee The subclass of tree-like interaction systems. 35

K A set of components. 23

vii

7 A path in a transition system. 101

Q- Cartesian product of the local state spaces of the components in C'. 74
g4 The projection of the global state ¢ on the components in C'. 74

g% Tuple that consists of the local initial states of the components in C. 74
gdcdp The projection of the state g- on the components in D. 81

@,; The state space of the local behavior of a component 7. 27

¢? The initial state of the local behavior of a component . 27

Sc An abstract over-approximation that is constructed as in Lemma 3.2.
7

Sys An interaction system. 27
T; Transition system that models the local behavior of a component ¢. 27

—; The transition relation of the local behavior of a component . 27

Relational Algebra

A An attribute. 165

D; The domain of the attribute A;. 165

dom(A;) Yields the domain D; of the attribute A;. 165

D(R) Union of the domains of all attributes of the relational scheme R. 165
R A relational scheme. 165

r(R) A relation on the relational scheme R. 165

t A tuple. 165

viil

Misc

25 The powerset of the set K. 82

AP A set of atomic propositions. 102

b The blanc symbol. 55

0 The transition function of a Turing machine. 55
I' A set of tape symbols. 55

oo The operator that, applied on a set, yields all finite and infinite concate-

nations of the elements in the set. 102

Lg A labeling functions that assigns atomic propositions to the states of the

transition system S. 102
M A Turing machine. 55

= A binary relation on transition systems and system properties that states

that a transition system satisfies a property. 102
P A system property. 100
P The state space of a Turing machine. 55
p” The initial state of a Turing machine. 55

Path(S) The set of all finite and infinite paths of the transition system S.
102

Path;,(S) The set of all finite paths of the transition system S. 102
p™ A halting state of a Turing machine. 55
p” A halting state of a Turing machine. 55

RIST The set of instances of the reachability problem in tree-like interac-

tion systems. 42

RT Operator that yields all reachable transitions of a transition system. 74

ix

33 A set of input symbols. 55

T A variable for the movement of the tape head of a Turing machine (T €
{—=1,1}). 57

TQBF The set of true QBF instances. 40
trace(m) The trace of the path . 102

Traces(S) The set of all infinite and maximal finite traces of the transition

system S. 102
Tracesy;,,(S) The set of all finite traces of the transition system S. 102

TRIST The set of all tuples consisting of a tree-like interaction systems
and a reachable global state. 42

Chapter 1

Introduction

1.1 Motivation

This work deals with a complexity theoretic classification of deciding certain
system properties in subclasses of cooperating systems and introduces an
approach for establishing deadlock-freedom in cooperating systems. In the
following we put this work into context and motivate the relevance of our
results. [WRS"08]

1.1.1 Formal Verification

“Complete formal verification is the only known way to guarantee

that a system is free of programming errors.”*

Formal verification of systems refers in the widest sense to techniques that
show or refute desired behavior of systems by formal methods. From today’s

perspective, this means a formal verification technique shows or refutes that

1Opening of the paper [KEH+09] from Klein et al. in which they discuss the formal

verification of the slE/ microkernel.

CHAPTER 1. INTRODUCTION

a formal model of a system meets desired properties by using formal methods

of mathematics.

System properties describe that the behavior of a system should satisfy cer-
tain requirements, e.g., a certain situation must or must not occur or that
it is always possible to evoke a certain situation. Particularly systems that
operate in environments where a system failure can cause harm to people or
result in huge financial losses are crucially required to satisfy certain proper-
ties. For example, an error in the control system of a nuclear power plant or
in a guidance system on a plane can become fatal, a flawed central process-
ing unit in large-scale production can result in an expensive recall campaign.
An, in general, unwanted situation in a system is a situation where the sys-
tem gets stuck and is unable to continue its desired behavior. For example,
an operation system that crashes is at least unpleasant and a control system
of a nuclear power plant that is not able to react to a critical incident can
lead to a dangerous situation. A system state like that is called a deadlock
and a system that can not get into a deadlock state is called deadlock-free.
The system property of deadlock-freedom is given a particular significance
as the problem of verifying safety properties (an important class of system
properties that we discuss in detail in Chapter 4) in cooperating systems can
be reduced to the detection of deadlocks [GW92|. The authors of [GW92]
introduce a technique to detect deadlocks in cooperating systems and show

how the technique can be used to verify an arbitrary safety property.

One way to describe system properties is based on temporal logic such as
LTL [Pnu77] and CTL [CES81| or the more general modal logic p-calculus
[Koz82|. Another approach that differs from a description by a modal logic
is based on equivalence relations on the behavior of systems like bisimulation
or observational equivalence as discussed in [Mil89]. The idea is to describe a
system and a system property in the same formalism. If the descriptions are
equivalent then the system fulfills the property. Techniques that automati-
cally check equivalences are for example published in [KS83, PT87, CS01].
In the following we take a closer look at the temporal logics LTL and CTL

1.1. MOTIVATION

and techniques that automatically check whether a system fulfills a property

described in these logics.

Prior [Pri57] introduced in 1957 a modal logic with the operators F' (“eventu-
ally”) and P (“previously”) that states that a proposition eventually becomes
true in the future respectively a proposition was true in the past. Thus, this
first attempt assumes that time is linear. In correspondence with Kripke,
who mentioned that a linear view of time might not always be enough, Prior
developed two branching time logics that are suited to express that a propo-
sition becomes true in all or at least one possible future. For example “only
one process of the system will enter it’s critical section at one point in time”,
“a customer can only withdraw money from the ATM if the pin was entered

correctly”, “if the reactor becomes to hot, it will shut down eventually” or “if

a user is logged into the ATM, the user has always the possibility to logout”.

In 1977 Pnueli introduced linear temporal logic (LTL) a temporal logic for
specifying system properties [Pnu77, Pnu79]. The idea is that a system that
is executed runs through a (possible infinite) sequence of states where in each
state atomic propositions hold, i.e., an execution induces a sequence of sets of
atomic propositions. An LTL formula specifies a set of permitted sequences
of sets of atomic propositions and a system models an LTL formula if the
induced sequence of atomic system properties of each possible execution is
permitted. “a customer can only withdraw money from the ATM if the pin
was entered correctly” is an example for a property that can be specified by
LTL.

In 1981 Clarke and Emerson introduced computational tree logic (CTL) a
branching time logic [CE81|. In contrast to LTL, a CTL formula does not
deal with sequences of sets of atomic propositions but with trees the nodes of
which are sets of atomic propositions. A system induces a (possible infinite)
computational tree, i.e., a tree that describes all possible executions of the
system. A system fulfills a CTL formula if the induced computational tree

is a tree that is described by the formula. “If a user is logged into the ATM,

CHAPTER 1. INTRODUCTION

the user has always the possibility to logout” is an example for a system
property that can be described by CTL as this property specifies that for
each system state where a user is logged into the ATM there is a sequence

of actions that leads to a state where the user can logout.

LTL and CTL are suited to express important system properties. Especially
the system property of deadlock-freedom can be described by LTL and CTL.

Among the first attempts of formal verification is the deductive program
verification which started with the Floyd-Hoare logic where pre- and post-
conditions are assigned to commands in computer programs. A set of in-
ference rules is used in order to deduce pre- and postconditions of larger
code fragments. This work was published in [Hoa69| and was influenced by
[Flo67] where a similar approach is described for flowcharts. The introduced
approach is suited to prove partial correctness of programs, i.e., for a given
precondition this approach can be used to show that a program meets de-
sired postconditions but this approach does not prove termination of the

program.

Techniques that automatically check whether a system models a CTL re-
spectively LTL formula are subsumed under the term CTL respectively LTL
model checking. The input of a CTL or LTL model checking technique is the
description of a system and an LTL respectively CTL formula. The costs of
a CTL or LTL model checking technique are given in relation to the input
size, i.e., if the system is given by a labeled transition systems then the size
of the system corresponds to the number of contained states and transitions
and the size of an LTL or CTL formula corresponds to the number of con-
tained subformulas. In addition to introducing CTL, Clarke and Emerson
provided in [CE81]| a technique that automatically checks whether or not a
system, given as a transition system, models a CTL formula. Quielle and
Sifakis described the same (for a temporal logic similar to CTL) [QS82].
The technique in [CES81]| is polynomial in the size of the transition system

and the size of the CTL formula (the number of subformulas). This bound

4

1.1. MOTIVATION

is improved in [CES86| by an algorithm that decides whether or not a CTL
formula in a transition system holds in time linear in the size of the system
and the formula, i.e., for a transition system S and a CTL formula ® the
technique runs in O(|S]| - |®|) where |S| denotes the size of S and |®| the
size of ®. In [VW86] Vardi and Wolper introduced a technique for auto-
matic checking whether an LTL formula is modeled by a system given as
a transition system. The technique by Vardi and Wolper is linear in the
size of the transition system but exponential in the size of the LTL formula,
i.e., for a transition system S and an LTL formula ¢ the technique runs in
O(]S] - 2'%1). See [Sch02] for an overview of the complexity of temporal logic
model checking. Algorithms that implement LTL and CTL model checking
exhibit these runtime and are in use in popular model checking tools — see
for example Spin for LTL model checking [Hol97|. Thus, algorithms in use
today are linear in the number of states and transitions of the transition

systems in consideration.

Burch, Clarke, et al. described in [BCM 92| how a symbolic representation
of labeled transition systems by binary decision diagrams (BDDs) [Bry86]
allows for model checking large systems in a reasonable time. As the title of
[BCM™92] states, this approach permits the verification of system properties
in systems with 10* states and beyond. This number was improved in the
subsequent years, e.g., in [BCL91| Burch et al. reported about a technique
based on symbolic model checking that manages systems with 10'° states.
Note that these numbers refer to computer performance at respective times.
Although, symbolic model checking is superior to model checking on systems
that are represented explicitly, this technique does not improve the asymp-
totic bounds of CTL and LTL model checking algorithms. In [BCCZ99|
Clarke et al. introduced bounded model checking, a technique where LTL
model checking is reduced symbolically to the satisfiability problem of propo-

sitional logic formulas.

CHAPTER 1. INTRODUCTION

1.1.2 Model Checking Cooperating Systems

A cooperating system is a system that consists of subsystems which work
together, i.e., a cooperating system is specified by its subsystems and by
a description of how these subsystems interact among each other — this
description is called the “glue-code” of the system. Compared to the size
of the subsystems and the glue-code, the global behavior that results from
such a specification can become quite complex and thus hard to analyze.
This problem is called the state space explosion problem [BKOS§|, i.e., the
phenomenon that the state space of a system grows exponentially in the
number of subsystems that work in parallel. The subsystems of a cooperating
system operate in parallel where each subsystem features its own state space,
i.e., the state space of a cooperating system consists of the Cartesian product
of the state spaces of the subsystems. The glue-code connects the subsystem
by specifying a dependency between the state transitions of the subsystems,
i.e., the state transition that is offered by a certain subsystem is depending
on other subsystems being in particular states. Thus, the glue-code restricts
the reachable state space of a cooperating system. Nevertheless, the size of
the state space is exponential in the number of subsystems and the size of

the reachable state space might be as well.

There are several formalisms that model cooperating systems including Petri
nets [Pet67] or UML [RJB99| (graphical languages), CSP [Hoa85| or CCS
[Mil82] (process algebras), Linda [ACG86| or Reo [Arb04| (coordination lan-
guages) or even actual programming language as Java or C/C++ and the
formalism of interaction systems [GS03] that we introduce in Section 1.4 of
this chapter and use in the remainder to model cooperating systems. Fur-
ther models, that are similar to the formalism of interaction systems, are
described in Section 1.4.1.

A cooperating system satisfies a system property that is given by an LTL
or CTL formula if and only if the global behavior of the system satisfies
the formula. LTL and CTL model checking algorithms are linear in the

1.1. MOTIVATION

size of the system in consideration, i.e., model checking a cooperating sys-
tem by those algorithms requires time exponential in the number of sub-
systems. This, observation is backed up by [BVWO94| (extended abstract
of [KVWO00]) and [Kup95] where it was proven that LTL and CTL model
checking for concurrent programs [Pnu79|, a formalism for modeling coop-
erating systems, is PSPACE-complete in the size of the input system and
the respective temporal logic formula (see [VU98| for a summary of com-
plexity theoretic classifications regarding LTL and CTL model checking).
The authors even strengthened this statement by showing that the same
complexity theoretic classification holds if the temporal logic formula is con-
sidered to be arbitrary but fixed, i.e., the PSPACE-completeness result does
not depend on the LTL or CTL formula. Note that these results do not
imply the PSPACE-completeness of the problem to model check a partic-
ular system property described in LTL or CTL in a cooperating system.
However, the complexity theoretic classification of the problem to check
whether or not a particular system property holds in a system has been
researched for various formalisms that model cooperating systems and var-
ious important system properties. For example, the PSPACE-completeness
of deciding reachability, deadlock-freedom and liveness in 1-safe Petri nets
was shown in [CEP95]. The PSPACE-completeness of deciding reachabil-
ity, deadlock-freedom, progress and availability in interaction systems was
shown in [MCMO08c|. See [AKY99] for results in communicating finite state

machines and [CEP95, EN94| for results in various subclasses of Petri nets.

Even though LTL and CTL model checking allow for an automatic checking
of important system properties in complex systems, there are still systems
that are relevant in real life where it is not feasible to check certain sys-
tem properties because of the sheer size of the reachable state space. This
is, checking whether a property holds in a cooperating system can become
unfeasible if the number of subsystems or the size of individual subsystems
increases. Symbolic model checking [BCM™92| allows for dealing with sys-

tems with 10% states and beyond, e.g., cooperating systems that consists

7

CHAPTER 1. INTRODUCTION

of 20 subsystems with each 10 states. The improved approach by Burch et
al. [BCL91] can deal with systems with 10'* states, e.g., 120 subsystems
with each 10 states. In [HKW12| the authors analyze the control software
of the CERN Compact Muon Solenoid experiment which consists of over
30,000 cooperating finite state machines, i.e., a relevant system that is far
too large for a direct application of model checking techniques. The authors
only consider systems properties that can be verified by considering sub-
systems consisting of reasonable numbers of state machines. In Chapter 4
we introduce an approach, based on a sufficient condition, that establishes
deadlock-freedom in cooperating systems in time polynomial in the size of
the input system. In order to illustrate our results we introduce in Chapter
5 several parameterized examples the state space of which is considerable

120

larger than 10", e.g., we consider a model consisting of 1,200 subsystems

with at least 2 states in each subsystem.

1.1.3 Dealing with Complexity Issues

If a system is very complex then a formal verification can become unfeasible
because even a computer aided application of known techniques can require
too much resources. This effect is supported by various complexity theoretic
results regarding various formalisms, for modeling cooperating systems, and
system properties which prove that a verification can not be achieved in
polynomial time in the size of the input system. Approaches to circumvent

this issue include the following items.

e Exploiting characteristics of subclasses of systems. Even if a com-
plexity result states that we can not expect to decide whether or not
a certain system property holds in polynomial time there might be

interesting subclasses where this can be achieved.

e A modification of the input system such that known techniques need

less resources. One approach is to reduce the size of the system in con-

1.1. MOTIVATION

sideration while preserving whether or not a system property holds in
the modified system. Techniques that follow this approach are widely

referred to as state space reduction techniques.

e Another approach is to consider verification techniques that are based
on sufficient conditions and require less resources, i.e., if a technique
like this succeeds then a property is guaranteed, if not then we cannot

conclude whether or not the property holds.

These concepts are not mutually exclusive from each other, i.e., a technique
can be based on several of these concepts. In the following we discuss tech-

niques that are based on these approaches.

Subclasses

Decision problems that are complete in a complexity class that indicates
that we can not expect that there is an algorithm that decides the problem
in polynomial time might include “interesting” subclasses where the deci-
sion problem is decidable in polynomial time. A well known example is
the Boolean satisfiability problem where 3SAT is NP-complete and 2SAT
is decidable in polynomial time. The problem HORNSAT (the problem of
deciding whether a given set of propositional Horn clauses is satisfiable)
is even decidable in linear time. Similarly, the quantified 3SAT problem is
PSPACE-complete, whereas the quantified 2SAT problem and the quantified
HORNSAT problem [KBS88| is decidable in polynomial time. See [GJ79] for
descriptions and more examples. In context of system properties for which
it is hard (e.g., PSPACE-complete) to decide whether or not they hold in a
system, the examples above rise the question whether there are interesting
subclasses of systems where we can decide in polynomial time whether or

not the system property holds.

If we show that a property P is decidable in polynomial time in a sub-

class then this subclass is interesting if the subclass consists of systems that

CHAPTER 1. INTRODUCTION

are relevant in practice. If, on the other hand, we show that deciding P
is PSPACE-complete in a certain subclass then this subclass is interest-
ing if it is as restricted as possible. This is because we can conclude that
deciding P in each superclass is PSPACE-hard. Furthermore, the PSPACE-
completeness of deciding P in a subclass justifies the research of techniques,
based on sufficient, conditions, that establish P in this class and can be tested

in polynomial time (we discuss some of these approaches in the following).

An important approach in the design of cooperating systems is the so-called
correctness by construction approach, i.e., the design of modeling rules that
ensure that a system model fulfills certain properties. This can be general-
ized by providing a set of modeling rules that ensure that a certain system
property can be decided or ensured efficiently in a cooperating system that
is constructed by these rules. This is, a result that shows that a system
property can be decided or ensured efficiently in a subclass of cooperating

systems can be used to design correctness by construction techniques.

Many complexity results have been published for various subclasses of Petri
nets. They show that various decision problems that are EXPSPACE-hard
in general Petri nets become PSPACE-complete in interesting subclasses.
In the same way various problems that are PSPACE-complete in general
Petri nets become NP-complete in respective subclasses. [JLL77]| considered
reachability, liveness and boundedness in free choice Petri nets, conflict free
Petri nets and conservative Petri nets and [HJR93| boundedness, reachabil-
ity, containment and equivalence problems in single path Petri nets. A more
recent results can be found in [PL0O8| where it was shown that the reachabil-
ity problem is PSPACE-complete in Petri nets with fast growing markings
(the best known lower bound in general Petri nets needs exponential space
[Lip76]). However, in [Esp98| Esparza summarizes various results regarding

various subclasses of Petri nets and sets up the following rule of thumb:

“Many questions about marked graphs are solvable in polynomial

time. Almost no questions about Petri net classes substantially

10

1.1. MOTIVATION

larger than marked graphs are solvable in polynomial time.”

Marked graphs are a very basic subclass of Petri nets that is included in all
above mentioned subclasses A marked graph is a Petri net where each place

has exactly one incoming and one outgoing arc.

Various works deal with subclasses of cooperating systems that are defined
by architectural constraints. For this a graph structure is defined which rep-
resents the communication structure among the subsystems. In this graph,
the nodes are the subsystems and an undirected edge connects two sub-
systems if the glue-code specifies a cooperation between these subsystems.
Based on this structure one can define subclasses of systems the commu-
nication structure of which forms, for example, a tree, a star or a linear
arrangement of subsystems. Several works considered tree-like communica-
tion patterns and in particular established conditions that ensure deadlock-
freedom. Communicating Sequential Processes are introduced in [Hoa85|
where a directed communication structure based on input/output commu-
nication is considered. It is argued that communicating processes, if the
directed input/output communication structure forms a rooted tree, can
not deadlock. [BR91| describes a general communication graph for CSP
models and provides conditions that guarantee deadlock-freedom in systems
the communication graph of which forms a tree. [BCD02] examined a pro-
cess algebra based on an architectural description language called PADL
and considers deadlock-freedom in systems with a tree-like communication
pattern (a proper superclass of systems with a star-like or linear pattern).
The technique is based on a compatibility condition that is tested among
pairs of cooperating subsystems, i.e., the composite behavior of two sub-
systems is weak bisimilar to the behavior of one of the components. An
efficient technique based on a sufficient conditions for establishing deadlock-
freedom in interaction systems with a star-like communication pattern is
introduced in [Lam09] where, similar to [BCDO02|, a compatibility condi-
tion based on branching bisimilarity is tested. A sufficient condition for

establishing deadlock-freedom for the subclass of tree-like interaction sys-

11

CHAPTER 1. INTRODUCTION

tems is described in [MCMO08a| where a condition is tested on the reachable
state spaces of pairs of interacting subsystems. In [LMC11] the condition in
[MCMO08a| is extended such that deadlock-freedom can be established in a
proper superclass of tree-like interaction systems. Hennicker et al. proposed
in [BHH'06, HJK10] a technique to construct so called observable behavior
of a cooperating system with an acyclic communication pattern which can

be used to establish certain system properties.

State Space Reduction

In order to circumvent the state space explosion problem in cooperating
systems one can apply so-called state space reduction techniques in order
to reduce the size of the reachable state space. These techniques include
various methods that remove states or entire subsystems from a system or
providing an associated system with a smaller state space. Given a system

and a desired property, the idea is to construct a modified system such that

1. the state space of the modified system is small enough such that a
technique can be applied to check whether the property holds in a

reasonable amount of time and

2. if the property holds in the modified system then the property holds

in the original system.

Three approaches which follow these requirements are techniques that ex-
ploit symmetries in a system, partial order reduction and abstract interpre-

tation.

The idea behind exploiting the symmetry of a system is to compress the state
space of a system by combining states into equivalence classes based on an
equivalence relation. The equivalence relation is chosen such that paths in
the original system correspond to paths in the compressed system and vice
versa. The compression ratio and the properties that can be established by

examining the compressed system is highly depending on the choice of the

12

1.1. MOTIVATION

equivalence relation. In [ID96] this idea is used to check whether a state is
reachable in a system and for establishing deadlock-freedom. [ES96] uses this
method on cooperating systems with identical or isomorphic subsystems and
establishes system properties in CTL* in the compressed systems. [CJEF96]
provides a state space reduction based on symmetries for a system which
transition relation is given symbolically as a BDD and identifies a subclass
of temporal logic formulas that is preserved by this reduction. [Jen96] uses

this method to compress the state space of colored Petri nets.

Partial order reduction exploits that a state in a cooperating system might
be reached by executing actions in different orders. The idea is that in the
process of checking a suitable system property only one of these paths needs
to be examined. [Pel93] introduces so-called model checking with represen-
tatives. An equivalence relation on the paths in a cooperating system is
considered such that either all or none of the paths in a class model a for-
mula in LTL. Based on this equivalence relation a labeled transition system
is constructed such that for each equivalence class there is at least one path
in this class (called representative) present in this system. The resulting sys-
tem can become considerable smaller and if the resulting system satisfies an
LTL formula then the respective cooperating systems in consideration mod-
els this LTL formula as well. [GW92] presents an algorithm that uses partial
order reduction and checks deadlock-freedom in concurrent finite state sys-
tems. Furthermore, [GW92| shows how the algorithm can be used to check
a certain class of system properties in concurrent finite state systems. A
description of an application of techniques that use partial order reduction

on practical relevant systems can be found in [GPS96].

Abstract interpretation is based on the idea to neglect parts of a system
that do not have an impact on whether or not a desired system property
holds by applying a more abstract semantic to the specifications of a system.
The most frequently mentioned example is the abstraction of data values
by bounded intervals. Abstract interpretation was introduced in [CC77|.

Formally, the method consists of defining an abstraction function o : L — L'

13

CHAPTER 1. INTRODUCTION

and a concretization function v : L' — L where L is the concrete state space,
i.e., the state space of the original system and L' is the (desirable smaller)
abstract state space on which one can perform model checking techniques.
Many results request that (o,) is a Galois-connection from L to L' [CGL94,
GS97, Lon93].

Sufficient Conditions

Consider an arbitrary decision problem. A sufficient condition on instances
of the problem guarantees that the answer of the decision problem on an
instance is “yes” if the condition holds for the instance. On the other hand,
if the condition does not hold for an instance then we can not conclude the
answer of the decision problem for the instance. Techniques that are based
on a sufficient condition are useful if checking the condition requires much
less resources as techniques that actually decide the problem, e.g., if deciding
the problem is PSPACE-complete and applying the sufficient condition can
be achieved in polynomial time in the size of the input. In our context an
instance consists of a cooperating system and a system property and the

question is whether or not the property holds in the system.

Several formal verification techniques that are based on sufficient conditions
establish system properties by analyzing approximations of the global state
space or the global behavior of a cooperating system. An approximation is
called under-approximation if it describes a subset of the reachable states
or transitions of the system in consideration. An over-approximation on
the other hand describes a superset of the reachable states or transitions.
Depending on the system property in consideration an under- or an over-ap-
proximation is needed to establish the property. For example, if the property
specifies that certain states are not reachable and these states are not reach-
able in an over-approximation then these states are not reachable in the
behavior of the system as well. If a property on the other hand requires that

certain states are reachable then these states are reachable in the global be-

14

1.1. MOTIVATION

havior if they are reachable in an under-approximation of the system. A well
researched class of system properties are so-called safety properties which
state that “something bad does never happen” [Lam77, LS85]. Properties of
this kind can be established in over-approximations of a cooperating system.
If something bad does never happen in an over-approximation of a system
then it certainly does never happen in the behavior of the system. Especially
deadlock-freedom and the negated reachability property (deciding whether

a certain state is not reachable) are safety properties.

Of course, if a property does not hold in an under-approximation respectively
over-approximation then we can not make any statement as to whether the
property in consideration holds in the system. In this case a refinement ap-
proach might help in order to modify an approximation such that a property
can be established by analyzing a modified approximation. Refining under-
approximations of cooperating systems means here to add states or transi-
tions such that the resulting object remains to be an under-approximation.
Whereas states or transitions are removed in over-approximations when re-
finement is applied. Clearly, if a technique fails to establish a property in
an under-approximation respectively over-approximation then the technique

might succeed in respective refined approximations.

Techniques based on over-approximations are, for example, introduced in
[AC05, GDHH98, GD99, CHM ™93, CGL94, Kur94]. [CCQ94] constructs
over-approximations by an approximative forward state space exploration
that is refined by an exact backward exploration. Moon et al. [MJH'98]
supports CTL model checking by using over-approximations that are con-
structed by approximative forward traversal. [LPJ*96] uses an approxi-
mative backward-analysis in order to construct over-approximations and
refines them until an ACTL or ECTL formula can be proved or refuted.
Over-Approximations of interaction systems are considered in [MCMMO7|
for establishing deadlock-freedom (the over-approximations are described in
more detail in [MMCO09b]). Under-approximations are for example consid-

ered in [PH98|. In Chapter 3 we describe an approach to efficiently represent

15

CHAPTER 1. INTRODUCTION

and refine over-approximations of interaction systems and in Chapter 4 we
introduce a technique to establish deadlock-freedom in interaction systems
that exploits over-approximations and is based on a sufficient condition that

can be applied in polynomial time.

[AGI7] describes an approach that tests a condition on the glue-code of a
cooperating system in order to guarantee the construction of deadlock-free
systems, i.e., this approach does not make use of under- or over-approxi-
mations. A technique based on a sufficient condition that is introduced
in [TUO1| uses partial equivalence relations between graphs constructed from
the subsystems of a cooperation system without any state space exploration.
An approach based on a sufficient condition for establishing liveness in in-
teraction systems is described in [MCMMO8]|.

1.2 Contribution

The contribution of this work consists of two parts. In the first part we
discuss, how cooperating systems can be classified in order to describe in-
teresting subclasses with respect to a complexity theoretic examination of
deciding system properties in these subclasses. We describe several basic
subclasses that are based on constraints regarding the communication struc-
ture between the subsystems and are relevant in practice. We show that de-
ciding the reachability problem in these classes is PSPACE-complete. Thus,
we cannot expect that there is a technique that decides the reachability
problem in these classes in polynomial time. Our results justify correctness
by constructions approaches that exploit characteristics of these subclasses
and the application of techniques that are based on sufficient conditions
and establish the reachability problem in these classes in polynomial time
[Hoa85, BR91, BCD02, MCM08a, Lam09, HJK10]. In addition, the results
motivate the research of further sufficient conditions, that exploit the indi-

vidual characteristics of our subclasses, in order to construct more efficient

16

1.2. CONTRIBUTION

techniques that tests for the reachability of states.

In a second part, which makes up the larger part of this work, we intro-
duce a technique for establishing deadlock-freedom in cooperating systems
that is based on a sufficient condition and can be tested in polynomial time.
Our approach is based on the analysis of compact representations of over-
approximations of the reachable global behavior of a cooperating system.
We call these representations abstract over-approrimations. An abstract
over-approximation is based on a subset of subsystems and induces an over-
approximation of the global behavior. Thus, we argue that our abstract
over-approximations have the potential to be the basis of techniques that
establish safety properties in cooperating systems based on a sufficient con-
dition. We introduce an operator called Edge-Match that we use to refine a
family of abstract over-approximations by a pairwise comparison. Our def-
inition of abstract over-approximations and our approach of refining these
can, in a certain way, be seen as a state space reduction approach. The sum
of the sizes of all abstract over-approximations in our approach is usually
significantly smaller than the size of the global behavior of a cooperating
system, i.e., we apply our approach to establish deadlock-freedom to ob-
jects that are significantly smaller than the global behavior of the system
in consideration. On the other hand, in comparison to state space reduc-
tion techniques, our abstract over-approximations are not suited to directly

apply known model checking techniques.

To circumvent complexity issues regarding the verification of system prop-
erties in cooperating systems we proceed as follows. In order to establish a
safety property P of a complex cooperating system, we propose a three step

approach:

1. The construction of polynomially many so-called abstract over-appro-
ximations of the reachable state space such that each abstract over-ap-
proximation is of polynomial size and induces an over-approximation

of the system. This topic is discussed in Chapter 3.

17

CHAPTER 1. INTRODUCTION

2. The refinement of the abstract over-approximations by a pairwise com-
parison with an operator that we call Edge-Match which can be per-
formed in polynomial time. This refinement approach is introduced in
Chapter 3.

3. The construction of a predicate P’ on the abstract over-approximations
such that

i) P holds if P' holds for all abstract over-approximations and

ii) P’ can be checked in polynomial time.

This concept is discussed for the system property of deadlock-freedom

in Chapter 4.

Viewed abstractly our method establishes a sufficient condition for the va-

lidity of property P. This condition can be checked in polynomial time.

To the best of our knowledge there are very few other approaches that deal
with the refinement of over-approximations of cooperating systems in our
sense that are based on subsets of subsystems. Approaches that are sim-
ilar or related to our work are Minnameier’s Cross-Checking operator for
the refinement of overlapping over-approximations of the reachable state-
space of interaction systems [MMCO09b]|, the work of Govindaraju et al.
[GDHH98, GD99| that concerns approximative reachability in cooperating
systems and establishing invariants (a subclass of safety properties) in syn-
chronous hardware modeled by Mealy machines and Attie and Chockler’s
approach to establish deadlock-freedom in cooperating systems [AC05| by
analyzing over-approximations that are based on subsets of three subsystems

each. These approaches are discussed in detail in Chapter 3 in Section 3.4.

18

1.3. ROAD MAP

1.3 Road Map

This work is structured as follows. In the next section we introduce the
formalism of interaction systems — a formalism for modeling cooperating
systems that was introduced by Sifakis and Gossler in [GS03|. In the re-

mainder of this work we use this formalism to model cooperating systems.

In the second chapter we present several reductions which prove that de-
ciding important system properties in certain subclasses of interaction sys-
tems is PSPACE-complete. These subclasses are defined by restricting the
topology that is induced by the glue-code of a cooperating system, i.e., the

communication structure between the subsystems.

In Chapter 3 we consider a concept of over-approximations of the global
behavior of interaction systems. These over-approximations are suited as a
basis for techniques that establish safety properties in interaction systems,
i.e., one can directly apply model checking techniques for safety properties.
These over-approximations suffer from the state space explosion problem
just like the global behavior of an interaction system, i.e., they are not
suited for an approach that efficiently ensures a system property the veri-
fication of which requires the examination of the reachable state space. To
circumvent this problem we introduce a special kind of over-approximations
— abstract over-approximations. An abstract over-approximation is a com-
pact representation of an over-approximation and, suitably chosen, it is of
polynomial size with respect to the parameters of the underlying interaction
system. This is, an abstract over-approximation induces an over-approxi-
mation of the global behavior of an interaction system. We use abstract
over-approximations as a basis for an approach to establish the safety prop-
erty of deadlock-freedom in interaction systems in polynomial time in the
size of an underlying interaction system. This approach is introduced in
Chapter 4. The approach consists of a condition that is tested on a fam-
ily of abstract over-approximations which, if true, guarantees that there is

a deadlock-free over-approximation of the global behavior, i.e., the global

19

CHAPTER 1. INTRODUCTION

behavior is deadlock-free as well. Moreover, in case our approach fails, we
exemplify how we can use information that was produced in our approach in
order to modify a system such that our approach ensures deadlock-freedom.
If our approach fails and the system in consideration is in fact deadlock-free
then a refinement of the abstract over-approximations, i.e., the removal of
states and transitions such that the result remains to be an abstract over-
approximation, might result in a family of abstract over-approximations on
which our approach succeeds. For this purpose we introduce in Chapter 3
an operator that refines abstract over-approximations by a pairwise compar-
ison and propose an approach to calculate a fixed-point with respect to an
application of this operator on a family of abstract over-approximations in
polynomial time in the size of the underlying interaction system. In Chap-
ter 5 we describe a tool that implements our techniques, introduce several
complex and parameterized examples and provide results of our refinement
approach. Chapter 6 establishes a connection between our concept of ab-
stract over-approximations and their refinement and the field of database
theory. Besides of pointing out this interesting connection, we use results
from this field in order to make preciseness statements about our refinement

approach.

Chapter 7 provides an overall conclusion of this thesis.

1.4 Interaction Systems

Here we give a brief introduction to interaction systems that have been pro-
posed by Sifakis and Gossler in [GS03, Sif05] to model component based sys-
tems. The model was studied, e.g., in [BBSN08, BBG11, LMC11, MCMMO07,
MCMO08a, MCMMO08, MMC09a, BBNS09, BGL"11, GGMC™"06], has been
used to model, e.g., biochemical reactions [MCSWO07]| and was integrated in
the BIP framework [BBS06].

An interaction system consists of subsystems called components that offer

20

1.4. INTERACTION SYSTEMS

interfaces for a cooperation among them. The cooperation is specified by a
glue-code that connects interfaces of different components. The glue-code
is modeled by so called interactions. An interaction specifies a multiway
cooperation among components by connecting different interfaces (called
ports) of different components. The model is defined in two layers. The first
layer, the interaction model, provides the names of the components, their
interfaces and the glue-code. In the second layer, the interaction system,
in addition the behavior of the components by labeled transition systems
is described. Thus, the description of the glue-code and of the behavior
of the components are clearly separated. In our context, this separation is
important because many results in this work are based on the glue-code of

interaction systems and independent of the behavior of the components.

In this work, we use interaction systems as a formalism to model cooperating
systems. This is, all our results and techniques are based on this formalism.
Nevertheless, we want to point out that all our techniques can be easily
applied to other formalisms that model cooperating systems. This can be
achieved by either adapting our techniques or by using a mapping among
formalisms — see, e.g., [MCMO8b| for a mapping between interaction systems
and 1-safe Petri nets. In the following we discuss some formalisms that can

be used to model cooperating systems and are similar to interaction systems.

1.4.1 Related Formalisms

The formalism of interaction systems is a very general formalism for model-
ing cooperating systems and abstracts from data values, timed behavior, the
description of input/output relations, probabilistic behavior or guarded com-
mands. Some formalisms for modeling cooperating systems that are similar
to interaction systems are Pnueli’s concurrent programs [Pnu79|, Lynch’s
I/0 automata (Input/Output automata) [LT87, CCK'05, KLSV06] and
Henzinger’s and de Alfaro’s interface automata [{AHO1]. These formalisms

are briefly discussed in the following.

21

CHAPTER 1. INTRODUCTION

Pnueli uses concurrent programs in order to introduce the temporal logic
LTL in concurrent systems. The behavior of n € N processes that share
a set of variables is described by labeled transition systems the edges of
which are labeled by commands and guards. A command can be executed
if a predicate, named guard, on the shared variables is true. Guards are
obsolete if each guard represents the value true. A command is an assignment
that changes the values of a set of shared program variables (if there are
no shared variables then each command is empty). A state change in the
overall behavior of the processes corresponds to the execution of a transition
of exactly one process. The model is used in [BVW94] in order to prove
the PSPACE-completeness of CTL and LTL model checking in concurrent

programs.

An I/O automaton is given by a labeled transition system the edges of which
are labeled by actions. The authors distinguish between input, output and
internal actions and demand that in each state of an I/O automaton each in-
put action is available, i.e., an I/O automaton is always ready to receive any
input. The cooperation among several I/O automata is achieved by an as-
sociative composition which depends on a pairwise composability condition,
i.e., two I/O automata are composable if their actions are disjoint, except
that input actions of one may coincide with output actions of the other. The
cooperation takes place on the shared input/output actions which become
internal actions in the composed system. There are extensions that extend
the expressive strength of the formalism of I/O automata by the ability to
model, e.g., probabilistic [CCK™05] or time dependent [KLSV06] behavior.
An interface automaton is an I/O automaton without the restriction that in

each state each input action must be available.

Other formalisms that are similar to interaction systems are Arnold’s syn-
chronous product of labeled transition systems [Arn94|, team automata [EN97,
TBEKRO3] and even finite state machines as Mealy machines [Mea55| or
Moore machines [Moo56| can be used to model cooperating systems by con-

sidering sets of states variables (see, e.g., [GDHH98, GD99| for an approach

22

1.4. INTERACTION SYSTEMS

to analyze synchronous hardware modeled by Mealy machines).

1.4.2 Definitions

In the following we formally describe the formalism of interaction systems

and provide illustrative examples.

Definition 1.1:
Let K be a set of components and {4;},cx a family of pairwise disjunct
sets. A, is the port set of component i € K. We denote components
by lowercase letters i, j,k or [and, if not stated otherwise, assume that
K ={1,2,...,n}. A port is denoted by the lowercase letter a indexed by
the respective component, i.e., a;. An interaction « is a nonempty set of
ports from different components, i.e.,
a) a C (J A, and

€K

b) for all : € K holds that |a N A;| < 1.

An interaction o; = {a; ,a;,,...,

a;, t with a; € A;, (1 < j < k) denotes
a possible cooperation among the components 7, ..., via their respective
ports. For an interaction o and a component i € K let i(a) = A; N . Note
that b) ensures that |i(a)| < 1. If i(«) # 0, i.e., i(c) is a set that consists
of exactly one port a; € A;, then we say that ¢ participates in o and q;
is the port of ¢ that participates in . If i(a) = () then we say i does not

participate in a.

A set Int of interactions is called interaction set (for K), if each port

appears in at least one interaction in Int, i.e., |J A, = |J «. The tuple
€K aclnt
IM = (K,{A;}ick, Int) is called interaction model if Int is an interaction

set for K.

The glue-code among the components, that is modeled by interactions, al-
lows for a multiway cooperation, i.e., an interaction can contain ports of

more than two components. This is in contrast to other formalisms that

23

CHAPTER 1. INTRODUCTION

model cooperating systems and only allow a cooperation between two sub-
systems. The concept of multiway cooperation among subsystems is called
global synchronous communication in [Osal2] and is listed as a design guide-
line that can result in a substantially reduced number of states in the global
behavior of a system compared to a design guideline that only allows a co-
operation among two subsystems. For example I/O automata respectively
interface automata only allow cooperation between the input action of one
automaton and the output action of another. Other well-known formalisms
with a two-way communication are, e.g., the process algebras CCS [Mil82]
where communication takes place between an action a and a counterpart a
and CSP |Hoa85| where communication occurs between an input and an out-
put channel. Many process algebras that are based on CCS or CSP pursue
this restriction, e.g., PEPA [Hil96] or the m-calculus [MPW92a, MPW92b)].
Multiway communication can be found in, e.g., Petri nets [Pet67| where one
transition can move several tokens among multiple places or in the process

algebra LoCo [vWO08] which is inspired by Petri nets.

We introduce here a simple example that we use as a running example in
the remainder of this work in order to illustrate our techniques.

Example 1.1:

Users login into terminals (TER,;, TER,, ..., TER}) in order to retrieve in-
formation. The terminals are connected to a gateway server (GS) that con-
nects to an authentication database (ADB) in order to validate a user re-
quest. The ADB sends a confirmation to a database (DB) which transfers
the requested information to the GS which in turn forwards the information

to the terminal from which the request was initiated.

For ease of presentation, we model here a system with only two terminals.
Note that the results and observations in this work can be adapted to models

with an arbitrary number k of terminals. Let
K = {TER,, TER,, GS, ADB, DB}
be a set of components. From a terminal TER,; (¢ = 1,2) a user can request

24

1.4. INTERACTION SYSTEMS

(reg;) an information and get an information (get;) if the authentication
process is finished. The gateway server GS can get a request (get req) for
an information, request an authentication (req auth) of a user, get a value
(get _wal) that represents the requested information and send a value (send)
to the user. The authentication database ADB can get an authentication
request (get _auth req) and authenticate a user (auth). The database DB
can get an authentication (get auth) and send a value (send_wal). Thus,

the sets of ports for the components in K are defined as follows.

Arpr, = {req;, get;} (i=1,2)

Aqs = {get_req,req_auth, get _val, send}
Appp = {get_auth_req, auth}

Apg = {get_auth, send_val}

Let Int be a set, consisting of the following interactions. Note that Int is

an interaction set for K.

send_req; = {req;,get _req} (i =1,2)
ask _auth = {req _auth, get _auth req}
authorize = {auth, get _auth}

send_data = {send_wval, get val}

get _replay; = {send, get;} (i =1,2)

IM = (K, {A;}ick, Int) is a well defined interaction model. We display an
interaction model graphically by drawing the components as squares that
are labeled by the names of the components. On the edge of the squares
we draw the ports as black dots that are labeled by the names of the ports.
The interactions are depicted as lines, labeled by the names of the inter-
actions, that connect the appropriated ports. Figure 1.1 shows a graphical

representation of IM.

An interaction model gives the names of components of a cooperating sys-
tem, their ports and specifies the cooperation between the components via

ports. An interaction system extends this specification by assigning a be-

25

CHAPTER 1. INTRODUCTION

ask auth get _auth_req

ADB
auth
reg; send_req; get_req req_auth
TER; authorize
get; get replay; send
Z ' get_val get _auth

send_data send_val ﬂ

Figure 1.1: Graphical representation of the interaction model IM from Ex-
ample 1.1. For ease of presentation the two components TER,; and TER,

are depicted as one box TER,; (i = 1,2) with respective ports.

havior to each component in form of a labeled transition system. We use
the following definition of labeled transition systems.

Definition 1.2:

A labeled transition system is a tuple S = (Q, A, —g,¢"). The set Q
is the state space of S, A a set of labels, -¢C @ x A x) a transition
relation and ¢° € @ the initial state. An element ¢ € Q is called state and
an element (g, a, q') of =4 is called transition. Instead of (¢, a,q') €—¢ we
use the notation ¢ =4 ¢’. In graphical representations of labeled transition
systems we mark the initial state by an incoming arrow (see, e.g., Figure 1.2

in Example 1.2).
For a state g € @ let

en(q) = {a € A3 /o0 s d'}-
We say the label a € en(q) is enabled in q.

We use the standard definition of reachability in transition systems, i.e., a
state ¢ € @ is reachable in S if ¢ = ¢° or there is a sequence of transitions

n

0a 1 1 a 2 2.4 3 —1 Oy
¢ 50,0 500 500" s q"
with n > 1 and ¢" = ¢. This is, a sequence that starts in the initial state

and ends in ¢. A transition ¢ %4 ¢ is reachable if ¢ is reachable. The set

of reachable transitions in S is called the reachable behavior of S.

26

1.4. INTERACTION SYSTEMS

Tapp:

get _auth req
send_wal

Figure 1.2: Behavior of the components in Example 1.1. Trgg, is depicted
fori=1,2.

A state ¢ € @ is called a deadlock if en(q) = (), i.e., if no label is enabled
in g. S is called deadlock-free if no deadlock is reachable in S.

Definition 1.3:

Let IM = (K,{A,}ick,Int) be an interaction model. The tuple Sys =
(IM, {T;};cxc) is called interaction system where T, = (Q;, A;, —;, ¢}) for
1 € K is a labeled transition system. In the following, for : € K, we refer to
T; as the local behavior, to (); as the local state space, —, as the local

transition relation and to ¢¥ as the local initial state of component i.

The following example provides local behaviors for the components in Ex-

ample 1.1.
Example 1.2:

Figure 1.2 gives local behaviors to the components from Example 1.1. The
interaction model IM that was defined in Example 1.1 together with the
local behavior given by the transition systems in Figure 1.2 forms a well
defined interaction system Sys = (IM, {7} }icx)-

From the local behavior of the components of an interaction system Sys and
the interaction set we can determine the global behavior of Sys, in form of

a transition system, as follows.

Definition 1.4:
Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K, {A,;}ick, Int) and the set of components K = {1,2,...,n}.

27

CHAPTER 1. INTRODUCTION

The global behavior of Sys is the transition system T = (Q, Int, =7, q")

where

o the Cartesian product Q) = [[,.x @;, which we consider to be indepen-

dent from the order of the components, is the global state space,

e " =1(q),...,q) is the global initial state and

o —,C Q x Int x Q is the global transition relation with ¢ =, ¢ if
for all i € K:

—ifan AZ = {a,} then q; &)i q; and
— if anA; =0 then ¢; = ¢..

If K ={1,2,...,n} then a global state ¢ € @ has the form ¢ = (¢1, 2, - - -, qp)-
If we consider a global state ¢ €) then we denote the local state of compo-

nent ¢ € K in ¢q by g;.

The interaction system Sys is called deadlock-free if there is no reachable
state ¢ €) in the global behavior T" such that ¢ is a deadlock.

Globally a transition ¢ <7 ¢’ can be performed if each port in « is enabled

in the state of the local behavior of its respective component.

Remark 1.1:

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K, {A;},cx, Int) and global behavior T' = (Q, Int, —r,¢°). In this
work we only consider interaction systems where K and each A; and Q); for

1 € K are finite.

The size of Sys is given by the sum over the sizes of K, Int and A;,); and
—; fori € K.

Example 1.3:

The interaction system introduced in Example 1.1 and 1.2 consists of five
components where the local behavior of four components (Trpr,, Trgr,,

Txpg and Tpg) contains exactly two states and the local behavior of one

28

1.4. INTERACTION SYSTEMS

authorize send_data
T~ — a
1 (0] 2 0 1 1 0 2 1 6) 1 1 2 (0] 1 1 1 3 0) 0 0 1 1 6)
41,92:93,945 95 91:92-935>94595 41,92:93,945 95 91:92-4935,94595 d15>92-93594595
send_data ask_auth get_replayy get_replay; authorize
1 0O 3 0 O 1 0 1 0 0 h . 1 0O 0 0 O 0O 1 0 0 O o o0 1 0o 1
91,492,493,494, 45 41,492,49354945 95 authorize (qy,95,93,494,95 91,492,493,4945 95 41,4925,4935,4945 45
get _replayy send_req send_reqs send_req; ask_auth
0O 0 O 0 O 1 1 2 1 0 1 1 1 0 O 0o o0 2 1 1
91-92,93,94,95 91:925>93594, 95 91:92-935,94595 d15>92,93594595
~_ —

ask auth
send_reqg get _replayy - send data

send_reqy

J \ —
0o 1 1 0 O o 1 3 0 O 0 1 0o 1 1 1 1 1 1 1 0O 0 3 1 6)
@1711271137(147(19 @14}24]3414"1{9 @17‘127‘1371147(19 @14}24}34}4"]{9 d15>92,93594595

ask_auth send_data get__replay; send_reqy authorize
0 1 2 1 0 0 1 2 0 1 1 1 3 1 1 1 0 0 1 1 0 0 3 0 1
d1,92,93,94595 91-92,93594,95 91,92,93,94,95 91-92,93594,95 91-92,93594,95
—_ — —
authorize get_replayy

Figure 1.3: Part of the global behavior 7" in Example 1.3.

component (Tgg) exactly four states. It follows that the global behavior
T = (Q,Int, =, ¢") has a state space @ that consists of 2* - 4 = 64 states.
The set of reachable states of this system is relatively small and consists of
only nine reachable states. The reachable transitions of 7" and some of the
unreachable transitions are depicted in Figure 1.3. For better readability,
in Figure 1.3, the local states are indexed by the numbers 1 to 5, where 1
corresponds to TER,, 2 to TER,, 3 to GS, 4 to ADB and 5 to DB. Note
that, in each state in the reachable state space of T', there is an enabled
interaction and there are states in the unreachable state space where no
interaction is enabled. This is, the reachable behavior of T" and thus 7T itself

is deadlock-free. Nevertheless, note that there are unreachable deadlocks.

29

CHAPTER 1.

INTRODUCTION

30

Chapter 2

Architectural Constraints &
Reachability

2.1 Introduction

In this chapter we explore the complexity theoretic classification of the reach-
ability problem in subclasses of cooperating systems, i.e., the problem of
deciding whether or not a certain state is reachable in a cooperating sys-
tem. We use the formalism of interaction systems that was introduced in
Chapter 1 to model cooperating systems. Deciding reachability in general
interaction systems was proven to be PSPACE-complete [MCMO08¢|. Here
we define different subclasses of interaction systems by architectural con-
straints and show that deciding the reachability problem in these subclasses
remains PSPACE-complete.

Popular decision problems that are complete in NP or even in PSPACE
are decidable in polynomial time in certain subclasses of instances. Maybe
the most popular example is the Boolean satisfiability problem where 3SAT
is NP-complete and 2SAT is decidable in polynomial time. The problem
HORNSAT (the problem of deciding whether a given set of propositional

31

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

Horn clauses is satisfiable) is even decidable in linear time. Similarly, the
quantified 3SAT problem is PSPACE-complete, whereas the quantified 2SAT
problem is also decidable in polynomial time. See [GJ79| for descriptions and
more examples. These examples raise the question whether there are “inter-
esting” classes of cooperating systems for which the reachability problem is
efficiently decidable.

There are various starting points to specify subclasses of cooperating sys-

tems.
1. Restrictions regarding the behavior of the subsystems.

2. The degree of synchronization among the subsystems as systems with a
very high degree of synchronization tend to display a smaller reachable

state space.

3. The glue-code, i.e., the structure of the interaction among the subsys-

tems.

Here, our concern lies on the latter. In this chapter we examine restrictions
with respect to the interactions of a system, i.e., restrictions regarding the
communication structure. We show that deciding the reachability problem
remains PSPACE-complete even if we strongly restrict the communication
structure between the components in various ways. For this purpose we
define an undirected graph such that the nodes are the components of an
interaction system and two components are connected by an edge if there
is an interaction in which both components participate — we call this graph
interaction graph. By the structure of an interaction graph we can define
subclasses of systems. Basic graph structures of an undirected graph G =
(V,E) are, e.g.,

e trees — (5 is connected and acyclic,

e stars — one node is of degree |V| — 1 and all other nodes are of degree
1

Y

32

2.1. INTRODUCTION

e lines — (G is connected, exactly two nodes are of degree 1 and all other

nodes are of degree 2.

Especially systems with a tree-like communication structure induce an im-
portant class of cooperating systems. Many interesting systems belong to
this class, e.g., hierarchical systems or networks built by a master-slave op-
erator. This class has been early studied, e.g., in [Hoa85, BR91| and more
recently, e.g., in [BHH*06, BCD02, MCMO08a|. Star structures appear in
practice in, e.g., client /server systems as banking or booking systems. Prop-
erties of cooperating systems with a communication pattern that forms a
star were considered for example in [Lam09, BCD02, GSM07|. Cooperating
systems with a linear structures appear in, e.g., pipeline systems as instruc-

tion pipelines or general queue based algorithms.

We show the PSPACE-hardness of deciding the reachability problem in sub-
classes of systems with a tree-like communication pattern (i.e., the inter-
action graph is a tree) by providing a detailed reduction from the trueness
problem of quantified Boolean formulas. Moreover we strengthen this re-
sult and show that the same complexity holds for even simpler systems with
a linear and a star-like communication pattern. The PSPACE-hardness of
deciding the reachability problem in systems with a linear pattern is ac-
complished by a reduction from the acceptance problem in linear bounded
Turing machines and in systems with a star-like pattern by a reduction from

the reachability problem in general interaction systems.

Additionally, we modify our reduction for systems with a tree-like communi-
cation pattern to proof that deciding progress in such systems is PSPACE-

complete as well.

A communication structure that forms a line respectively a star forms par-
ticularly a tree, i.e., our PSPACE-completeness results of deciding the reach-
ability problem in cooperating systems with a linear respectively star struc-
ture imply the PSPACE-hardness of deciding the reachability problem in sys-

tems with a communication structure that forms a tree. When we started to

33

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

think about the complexity theoretic classification of the reachability prob-
lem in cooperating systems with a tree-like communication structure, our
question in mind was whether techniques based on sufficient conditions that
establish reachability or reachability based systems properties in such sys-
tems are justified [Mar09, Hoa85, BR91, BHH" 06, BCD02, MCMO08a], i.e.,
could it be the case that the reachability problem in such systems can be de-
cided efficiently? The generalization of the tree-like result to systems with
a linear and star-like communication structure was considered by us at a
later stage. This is, we introduce our reduction to systems with a tree-like
communication pattern for the sake of completeness. On the other hand our
reduction to systems with a tree-like communication pattern brought up a
general technique of propagating information through a system while avoid-
ing circles in the communication structure, i.e., the cooperation between two
subsystems in a system which communication structure forms circle can be
remodeled by propagating the cooperation among the other subsystems on
the circle. We refer to this technique in our proof that deciding the reacha-
bility problem in linear and star-like systems is PSPACE-hard. Furthermore,
we use our proof of the PSPACE-hardness of deciding the reachability prob-
lem in tree-like systems in order to show that the decision problem whether
a global state is reachable where a fixed component is in a fixed local state

can not be decided in polynomial time.

This chapter is organized as follows. In Section 2.2 we provide definitions
that we need in the remainder of this chapter. In Section 2.3 we show that
the reachability problem in tree-like systems is in PSPACE and present a
reduction that proves the PSPACE-hardness of this problem [MCS10]. In
Section 2.4 we argue why deciding whether a global state is reachable in
the behavior of a tree-like interaction system that contains a certain fixed
local state of a fixed component can not be decided in polynomial time. Sec-
tion 2.5 and 2.6 provide reductions that show that the reachability problem
remains PSPACE-hard in linear respectively star-like interaction systems

[MCS13b]. In Section 2.7 we outline why deciding progress in tree-like inter-

34

2.2. DEFINITIONS

action systems is PSPACE-complete. A conclusion can be found in Section
2.8.

2.2 Definitions

We focus on structural constraints on interaction systems. By this we mean
constraints concerning the communication structure of a system. We first
consider systems with a tree-like communication pattern. Then we further
restrict the pattern to linear and star-like communication. The following
definition introduces the interaction graph of an interaction model. This
graph is the basis of our approach to define subclasses with respect to a
certain communication structure. The nodes of this undirected graph are
the components of an interaction model and two nodes are connected if there

is an interaction in which both respective components participate.

Definition 2.1:

Let IM = (K, {A;};ck,Int) be an interaction model with |K| = n. The
interaction graph G = (K, F) of IM is an undirected graph with {7, j} € £
if and only if there is an interaction o € Int with i(a) # 0 and j(a) # 0.

Let Sys be an interaction system with interaction model IM. Let G be the
interaction graph of IM. We call IM respectively Sys

e tree-like if and only if GG is a tree, i.e., G is connected and acyclic,

e star-like if and only if GG is a star, i.e., exactly one node is of degree

n — 1 and all other nodes are of degree 1 and

e linear if and only if GG is connected and exactly two nodes have degree

1 and any other node degree 2.

Let ISgenerar be the class of all interaction systems with no restrictions to
G, i.e., the set of all interaction systems, IS, the subclass of all tree-like
interaction systems, IS, the subclass of all star-like systems and ISj;,, the

subclass of all linear systems.

35

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

TER, ADB

GS

TER, DB

Figure 2.1: Interaction graph G of IM in Example 1.1.

Remark 2.1:
Note that tree-like, star-like and linear interaction systems with a set Int of

interactions imply that for all a € Int |o| < 2.
Remark 2.2:

For the subclasses defined in Definition 2.1 the following set inclusions hold.
Obviously, IS;;ee, ISsar and ISy, are all included in IS,q;eq- The subclasses
[Sgtar and ISy, are included in IS;,... The intersection of ISy, and ISy, is

not empty, and neither IS, \ ISy, nor ISy, \ IS, is empty.

Here we give three examples of interaction systems and their respective

interaction graphs.

Example 2.1:

Consider Example 1.1 that was introduced in Chapter 1. The interaction
graph G of the interaction model in Example 1.1 is depicted in Figure 2.1.
The graph G contains a cycle, i.e., an interaction system based on the inter-

action model from Example 1.1 is not included in IS;, .., ISy, or IS¢a.-

Example 2.2:

This example illustrates a simple component based client/server model. A
server offers a service that can be requested by a client. Let s be a component
that models a server then this component offers the ports o, (offer a service)
and f, (finish a service). A component ¢ that models a client in need of

a certain service features the ports r, (request a service) and g. (gained

36

2.2. DEFINITIONS

1 by

Pii|--- | Pra Pig |-+ | Prt

Figure 2.2: Interaction graph G of IM, ; in Example 2.2.

a service). We consider here components that are able to both offer and

request services.

In the following we consider a parameterized instance of a client/server
model. Let IM,, = (K, {A;};cx,Int) be an interaction model with r,¢ > 0
where

K={p|1<i<r1<j<t}U{p]l <j<t}U{p}.

For 1 < ¢ < rand 1 < j < { a component p,; models a process that
,gp”,}. Forl1 < j<ta

component p; models a process that has a client and a server function, i.e.,

has a client function only, i.e., let Ap”, = {rpij

let Apj = {rpj »9p; > Op;» fpj}. The component p models a process with a server

function only, i.e., A, = {0,, f,,}.

For 1 <¢ < rand 1 < j <t component p,; needs the service that is
offered by component p;. The component p; on the other hand is in need of
the service that is offered by p. Thus, the interaction set of IM is given as

follows.

Int = {{r, .00} {0, fp,}1<i<r1<j<t}U
{{ij’op}7 {gpja fp}|1 S j S t}

The interaction graph G of the interaction model IM, ; is given in Figure 2.2
and apparently a tree, i.e., an interaction system Sys with interaction model
IM,., is tree-like and thus included in IS,.

37

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

Example 2.3:

This example illustrates a linear interaction system. We consider a sim-
ple communication pipeline consisting of n stations. Station one initiates
passing a message to station two, station two passes the message to station
three and so on. If the message arrives at station n then station n passes an

acknowledge message, on the same way, back to station one.

Let IM = (K, {A,;}ick, Int) be the interaction model with components K =
{51, 82,...,8,} for n > 2 where s; models station i for 1 < i < n. A sta-
tion s; with 1 < ¢ < n can receive a message (rec_m,), pass the message
forward (send_m;), receive an acknowledge (rec_a;) and pass the acknowl-
edge forward (send_a;). Station s; can only send the initial message and
receive the acknowledge and station s,, can only receive a message and send
an acknowledge. This is, the port sets of the components are defined as

follows.

As = {send_my,rec_ay}
A, {rec_m;, send_m;,rec_a;, send _a;}, 1 <i<mn
A, = {rec_m,,send_a,}

The interaction set Int is given by the following interactions.

send_message; = {send_mj,rec_m; 1}, 1 <i<n

send__acknowledge; = {send a;,rec_a;, 1}, 1 <i<mn

Let Sys = (IM,{T;};cx) be the interaction system with local behavior
depicted in Figure 2.3.

The interaction graph G of IM is depicted in Figure 2.4. G forms a line
of components. Thus, IM is a linear interaction model and Sys is a linear

interaction system.

38

2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKE

SYSTEMS
send_a; rec_m;
rec_aj send _my send_a,, Tec_ My
rec_a; send_m;
(a) T, (b) T,,, 1 < (c) T,
t<n

Figure 2.3: Local behavior of the components in a simple communication

pipeline.

Figure 2.4: Interaction graph G for the interaction model IM in Example
2.3.

2.3 PSPACE-completeness of Reachability in
Tree-Like Systems

Here we show that deciding the reachability problem in tree-like interaction
systems is PSPACE-complete. We show the PSPACE-hardness by providing
a reduction from the trueness problem of quantified Boolean formulas (QBF)
[GJ79], i.e., we describe how a quantified Boolean formula H can be mapped
to a tree-like interaction system Sys; and a state ¢ in the global behavior T
of Sysy in polynomial time such that deciding the reachability problem for

q in Sysy corresponds to deciding whether or not H is true.

First we formally introduce the trueness problem of quantified Boolean for-
mulas and the reachability problem in tree-like interaction systems and show
that deciding this problem is in PSPACE. In a second part we define a tree-
like interaction system Sysy for a quantified Boolean formula H by specify-
ing the components, the ports of the components, the interactions and the
local behavior of the components. In the last part we prove in detail that
deciding the reachability problem for a certain state in the global behavior

of Sysy corresponds to deciding whether H is true.

39

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

QBF and RIST
QBF

A quantified Boolean formula (QBF) (see [GJ79] for details) consists of
a Boolean formula f over variables z,, ..., x,, where each variable is bounded
by a quantifier V or 3. For example, in prenex normal form, i.e., the string
representation of a formula in which all quantifiers are written in front of

the Boolean formula, the formula

P=(Qi0,)(Qa,) - Qs)f

is a QBF where Q; is either an existential quantifier 3 or an universal quan-
tifier V for 1 <1 <n.

If Pis a QBF then P is a subformula of P. If P’ is a subformula of P
and P’ is of the form P’ = @©P”, where @ is an unary operator (e.g.
P' = =P" or P' = 32.P") then P" is a subformula of P. If P is of the
form P’ = P, ® P,, where ® is a binary operator (e.g., P = P, V P, or
P' = P, A B,) then P, and P, are subformulas of P. The size of a QBF P

is the number of subformulas of P.

Each QBF instance P’ can be rewritten into an equivalent instance P over

the grammar
P ::=xz|-P|P A P|3x.P.

The rewriting can be achieved in polynomial time in the size of P’ by parsing
the subformulas of P’ top down, starting with P’, and applying respective
equivalences. Without loss of generality, in the following we only consider
QBF instances that are rewritten over this grammar. Let P be a QBF then
the question is whether P is true. The language TQBF is defined as the
set of true QBF instances and it is well known that the decision problem
whether a QBF is in TQBF is PSPACE-complete (|GJ79]).

In order to determine whether a QBF P is true or false we introduce the

straightforward, recursive Algorithm 1 called eval. This algorithm is used in

40

2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKE
SYSTEMS

the remainder to illustrate our reduction. The algorithm recursively parses a
QBF P and evaluates each subformula for each combination of truth assign-
ments to the variables. In Line 1 and 2 a subformula of the form P = Jx.P’
is parsed. The term P,_, . respectively P;::false denotes the subformula
P’ with true respectively false assigned to all occurrences of variable z in
P'. In Line 5 respectively 8 a subformula of the form P = =P’ respectively
P = P' A P" is parsed. In Line 11 a subformula that consists of a variable
is parsed. The function value(z) returns the truth value that is currently
assigned to the variable x. Remember that each variable in QBF is bounded
by a quantifier, i.e., in our case bounded by an existence quantifier. Thus,
before Line 11 is executed for variable z, Line 2 was executed where the
subformula that quantifies x was parsed and a truth value was assigned to
all occurrences of x. Obviously, P € TQBF if and only if eval(P) returns

true.

Algorithm 1 eval(P)

if P =32.P' then

2. return eval(P_;.,.)V eval(P;:false)
3: end if

4: if P = —P' then

5. return —eval(P')
6

7

8

9

—_

: end if
. if P = P’ A P" then
return eval(P') A eval(P")
: end if
10: {P = x is the only remaining possibility, i.e., P is a variable}

11: return value(x)

RIST

We now formally introduce the reachability problem in tree-like interaction

systems. For Sys € IS, let Q(Sys) be the state space of the global behavior

41

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

of Sys and Reach(Sys) C Q(Sys) be the set of reachable states in the global
behavior. Let

RIST = U ({Sys} x Q(Sys)) .

Sys€lS;ree
For (Sys, q) € RIST we want to decide whether g is reachable in the global
behavior of Sys. Let TRIST C RIST be the set of RIST instances of the
form (Sys, q) where ¢ is reachable in the global behavior of Sys, i.e.,

TRIST = U ({Sys} x Reach(Sys)) .
SyselIST

Deciding (Sys,q) € TRIST is in PSPACE. Given a tree-like interaction
system and a global state ¢ one can guess a sequence of interactions (because
PSPACE=NPSPACE [Sav70]) and check in linear space if it leads from the
initial state ¢° to ¢. At any time we store exactly one global state from

which we guess a successor state.

A Mapping from QBF to Tree-Like Interaction Systems

In the following we introduce for a QBF H a tree-like interaction system

Sysy (with an interaction model IMj) and a global state ¢* such that
i) H € TQBF < (Sysy,q') € TRIST and
ii) the size of Sysy is polynomial in the size of H.

The idea for the construction of Sys, can be sketched as follows: the in-
teraction system basically simulates the evaluation of the formula H, as in
Algorithm 1, based on the syntax tree of H. The subformulas of H are the
components of the system, and the interaction model describes the propa-
gation of truth values between the nodes of the syntax tree. Example 2.4
shows the interaction graph of an interaction model IMy with respect to a
QBF H that results from our reduction. If a subformula that models an

existential quantifier is called recursively during the evaluation of Algorithm

42

2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKE
SYSTEMS

o
H:‘—|P1
H:El[.PQ — 2]
Py /[\ Py
Py =1 —P;
Py [: 1’%

Figure 2.5: Interaction graph Gy of IMy in Example 2.4.

1 then a truth value is assigned to all occurrences of the respective quanti-
fied variable. In Example 2.4 this would suggest a communication between
the component that models the subformula 3z,.P, and the components that
model z7 respectively z7, i.e., modeling this interaction would result in an
interaction model such that the interaction graph of which is not a tree.
The idea to avoid these communications is to store the truth assignment
in an auxiliary component (2] in Example 2.4) and propagate the respec-
tive assignment down the tree to the components that model the respective

variables.

Example 2.4:

Consider the formula H = —3x,.(x; A—z;). The associated interaction graph
Gy of IMy is given in Figure 2.5. The syntax tree of H is contained in G.
Components with highlighted frames denote components that do not model

subformulas of H.

We now describe in detail how Sysy is constructed. First we introduce the
components of Sys;, then the ports of the components, followed by the

specification of the interactions and the local behavior of the components.

43

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

Components

Let H be a QBF over the variables z;,...,z,. Generally, there may be
several occurrences of a variable x; in H. Let z; occur k; timesfori =1,...,n
as a subformula in H, then we assume that the jth occurrence of variable
x; is renamed in H as xi for 1 < j < k;, e.g., in Example 2.4 the formula

—3z,.(z, A —zy) is renamed to —3z,. (2] A —z3).

Let Ky = Ky UK, U{H'} be a set of components such that
e K, = {P|P is a subformula of H} and
o Ky ={a,25,...,2),}.

In context of our intention to model the evaluation of Algorithm 1, the com-
ponents in K, store the current truth assignment to the variables during the
evaluation. The component H' is an auxiliary component that is used to
model the initialization and the termination of Algorithm 1. The compo-
nents in K; model the subformulas of H and have the same name as the
subformulas. In the following it is clear from the context whether we speak

about a subformula P of H or the component P that models this subformula.

Given a truth assignment to the variables, subformulas are evaluated to true
or to false. Therefore, when we mention an assignment to a component in
Ky then we refer to the current truth assignment to the respective vari-
able respectively the current evaluation of the respective subformula that is

modeled by this component.

In the following we introduce the port sets of the components in K;. Many
ports of different components model the same functionality and only differ

in their subscripts.

44

2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKE
SYSTEMS

Port sets of components modeling subformulas

Each component P € K, that models a subformula P has to offer the fol-

lowing functionalities in form of ports.

e ap abbreviates “activate P”: induces the evaluation of all subformulas

in P with respect to the current truth assignment to the variables.

e {p respectively fp: the current truth assignment of P is true respec-

tively false.

e rpx;t (rpx;f) abbreviates “ P receives instruction to set x; true (false)™

all occurrences of the variable z; in P shall be set to true (false).
e rpt: assign true to this subformula.

The following ports are offered by components that model subformulas P
that are not variables, i.e., P consists of an operator and one subformula P,
(e.g., P = —P)) or two subformulas (e.g., P = P, A P,).

e ¢p (¢7) abbreviates “evaluate P, (P,)” evaluate P, (P,) with respect

to the current truth assignment to the variables.

o subpt (subpt) respectively subpf (subpf) abbreviates “subformula P,
(P,) is true respectively false” P, (P,) was evaluated to true respec-

tively false.

e {prespectively fp: P was evaluated true respectively false with respect

to the current truth assignments of the variables.

o spx;t (spat) respectively spa,f (sha,f) abbreviates “set z; true (false)
in P, respectively P,”): all occurrences of the variable z; in P, (P,)

shall be set to true respectively false.
o spt (spt): assign true to P, (Py).

45

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

Fori=1,....,nand j =1,...,k; the component P = xf € K represents

the jth occurrence of variable z; in H. The set Ap of ports is given by
Ap =A{ap,tp, fp,rpt} U{rpat,rpr fll=1,...,n}.

A component modeling a negation, i.e., a subformula of the form P = -P;

has the following set of ports

AP = {6}37 ap, Sub}?tu SU‘b}:’fu tPu fP7 TPta S}Dt} U

1 1
{rpxit, rpaf, spait, spry fll=1,...,n}.

A component that models a conjunction, i.e., a subformula of the form
P = P, A P, has the set of ports

AP = {aPa 2}3, e%) SUb}Dta SUb}Dfa SUb?Dta SUb?:Jf, tP) .fP7 TPta S}Dta S?Dt} U

1 1 2 2
{Tletu TP'rlfu Slet7 SP'rlfu Slet7 Slef‘l = 17 cee 777,}.

A component that models a subformula of the form P = 3x;.P; (1 <1i < n)
needs to have access to the current truth assignment of the variable z;.
We store the current truth assignment of the variable x;, that can occur
multiple times in the QBF H, in the behavior of the component 2} € K,.
This component will exclusively interact with the component that models

P = 3z,.P,. The set of ports A is given by

Ax; = {’I"l‘it, Txifa ta:ia fxl}

t,, respectively f, models that true respectively false is assigned to all oc-
currences of variable x;. The port rz;t assigns true to ;. Analogously rx; f

switches the assignment to false.
The port set Ap for P = dx,. P, is given by
AP = {aP7 e}:’a SUb}:’ta SUb}:’fa tP) .fP7 xita xi.fa S:Eita S:L‘ifa TPta S}Dt} U
{rpait,rp,f, spat, spr fll=1,...,n}.

46

2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKE
SYSTEMS

ap, ¢p, subpt, subpf, tp and fp act similarly to the corresponding ports of
the other components specified above. The port x;t confirms that true is
assigned to all occurrences of the variable z;, and sx;t models that true is
assigned to all occurrences of z;. On the other hand z;f confirms that false

is assigned to x;, and sx;f assigns false to z;.

The component H' models the call to the algorithm eval and the termina-

tion. The set of ports A, is given by
A — Lo 1 1 1
g = 1¢y, subyt, suby f, st endy }.

All ports but end ;s have the same functionality as the ports described above.
We show that the formula H is in TQ)BF if and only if the component asso-
ciated with H is evaluated to true, i.e., sub}{/t becomes enabled eventually.
The port end, models that the simulated evaluation of Algorithm 1 termi-
nated. This port shall become enabled, either if H was evaluated to true or
to false. We use this port in order to prevent Sys, from being stuck after

the evaluation of H.

Interactions

We now define the interaction set Int of IMy. Let P € K; U{H'} model
a subformula which is not an occurrence of a variable. The component P
can model a subformula that consists of an operator and one subformula P,
(e.g., P = —P;) or two subformulas P, and P, (e.g., P = P, AP,). If P needs
the truth value of Py, k € {1,2}, to be evaluated then the evaluation in P,
needs to be activated. This is realized by the synchronization of ¢% and ap, .
Furthermore P can ask P, for its current truth value. These interactions are
realized by

eval P — P, = {eh, ap, }

P _ask P, true = {sub’}t,tpk}

P_ask_P, false = {sublf, fr.}

47

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

for k € {1,2}. These interactions connect all components in K; U{H'} and
result in an interaction graph that is related to the syntax tree of the QBF
H.

If a subformula of the form P = Jz,.P; (1 < i < n) needs all occurrences
of variable z; to be set to true or to false a direct interaction with the
components that model these variables would lead to a cycle in the associated
interaction graph. Therefore, P passes this information to its subformula P’
i.e., spx;t in P has to synchronize with rp,x;t in Py. The component P, needs
to pass on this information to the components that model the subformulas of
P, and so on. Let i € {1,...,n} and k € {1,2}. The following interactions
realize the synchronizations needed to propagate the information to assign

a truth value to a variable.

set_x; true_ P — P, = {s’f:,xit,rpkxit}

set_x; false P — P, = {slﬁ—,xif,rpkxif}

If the QBF H is true, we need all components to be in one designated state
— whether or not this global state is reachable corresponds to whether or
not H is true. If H was evaluated to true then the component H' reaches
a designated local state. To assure that all components can reach a corre-
sponding designated state, a similar technique as above is used. We propa-
gate, starting in the component H', the information through the tree that
all components shall reach their designated state that indicates that H is
true. A component P that models a subformula propagates this informa-
tion to the components that model the subformulas of P by the following
interaction. For k € {1,2} let

set P, true P — P, = {slfpt,rpkt}.

Consider a subformula of the form P = dz,.P, € K, and the associated
component z; € K,. The component that models P can assign true or false

to x; and can ask x; whether the current truth assignment is true or false.

48

2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKE
SYSTEMS

This is realized by

set_x, true = {sx;t,rz;t}
ask_truey = {x;t,t, }
set_x;_false = {sz;f,rz;f}
ask_ false,y, = {x;f, f..}

We model Sys;; such that if H' reaches a state that indicates that H was
evaluated to true or false, i.e., the simulation of the evaluation of H is
finished, then the unary interaction evaluated = {end,} becomes enabled

in the global behavior of Sys.

Let Int be the set of interactions given by

{eval P — P,|P € Ky U{H'} with succ. P,}u

{P _ask P, true|P € Ky U{H'} with succ. P,}U
{P_ask P, false|P € K; U{H'} with succ. P,}U
{set_a|_true, set_x;_false,ask_truey,ask_false|r; € Ky}U
{set P, true P — P,|P € K; U{H'} with succ. P,}U

{set _x; true P — P,|P € K, with succ. P,i € {1,...,n}}U
{set_x; false P — P,|P € K, with succ. P,,i€ {l,...,n}}U
{evaluated}.

Remark 2.3:
The interaction graph G, associated to IMy, is a tree, as it is constructed
along the syntax tree and augmented with the components H’ and 2 for

1 <4 < n without forming cycles.

Local Behavior

The local behavior of the components is given by labeled transition systems.
Every system has one state labeled ¢ and one labeled f. These states model
the fact that either true respectively false is assigned to this component or

it was evaluated to true respectively false.

49

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

th ap,

rpxlf(l <1< mn),

rpa f(l #19) te

;gfit’ rpz; f ra;t ra; f

bl a .

fgxl 51 <l<mn), Tz,

Tpl'lt(?é_l)

(a) P =] (b) 2}

Figure 2.6: Local behavior T ; for a component z? (2.6a), T, for 75 (2.6b)
and T for the component H' (2.6¢).

Figure 2.6a depicts the transition system of the component modeling the jth
occurrence of variable z;. Figure 2.6b gives the local behavior of a component
7; € Ky. The behavior of H' is given in Figure 2.6¢c. The transition systems
for a component that models a variable :cf respectively for x; € K, are self-
explanatory. If in T’ the port e}{/ is performed, i.e., component H needs
to be evaluated, then 7', waits to perform either sub}{/t or sub}{/ f. These
ports can only be performed if T} reaches its state labeled ¢ respectively f.
We show that this indicates whether the associated QBF is true respectively

false.

In Figure 2.7 the local behavior for a component of the form P = —P, is
depicted. Note that, for better readability, the transition system in Figure
2.7a is not completely shown. In Figure 2.7a the transitions and states
displayed in Figure 2.7b and 2.7c have to be included between the states
labeled t and f forl=1,...,n.

In Figure 2.8 the local behavior for a component of the form P = dz;.P;
is depicted. For better readability, the transition system in Figure 2.8a is
not completely shown. In Figure 2.8a the transitions and states displayed in
Figure 2.7b and 2.8b have to be included between the states labeled ¢ and
fforl=1 ... n.

In Figure 2.9 the local behavior for a component of the form P = P, A P, is

50

2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKE

SYSTEMS
s}at
1 NG iy
spryf
(b) Section of 2.7a and (c) Section of 2.7a

2.8a,for 1 <l <n

Figure 2.7: Main section of the transition systems T_p (2.7a), part of T_p
for 1 <1 <n (2.7b) and part of T_p (2.7c).

(b) Section of 2.8a

Figure 2.8: Main sections of the transition system 75, p (2.8a) and part of
Ts,. p, (2.8b).

ol

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

2

s}at . spt
9, O ®

1
spayf

(b) Section of (c) Section of 2.9a
2.9a,for 1 <l <n

Figure 2.9: Main sections of the transition system Tp ,p, (2.9a), part of
jﬁpl/\p2 (29b) and part of jﬁpl/\p2 (29C)

depicted. Note that the transition system in Figure 2.9a is not completely
shown. The transitions and states displayed in Figure 2.9b and 2.9¢ have to
be included between the states labeled ¢t and f for I =1,... n.

The resulting interaction system is denoted by Sysy = (IMy, {Tp} pex,,)-

H € TQBF < (Sysy,q') € TRIST

In order to show that the reachability problem in tree-like interaction systems
is PSPACE-hard we need to show that a quantified Boolean formula H is
true if and only if a designated state is reachable in the global behavior of
Sysy. This proposition is formulated in the following theorem.

Theorem 2.1:

Let H be a QBF over the grammar P ::= z|-~P|P A P|3z.P and Sysy the
associated interaction system obtained from the reduction. Let ¢' be the

global state in which all components are in their state labeled ¢, then

H € TQBF < (Sysy,q') € TRIST.

52

2.4. REACHABILITY OF LOCAL STATES

Proof. The proof can be found in Appendix A on Page 183. O

2.4 Reachability of Local States

In the previous section we discussed the complexity theoretic classification
of the reachability problem in tree-like interaction systems by introducing a
reduction from the trueness problem of quantified Boolean formulas. Here
we consider a special kind of the reachability problem in tree-like interaction
systems. Given a tree-like interaction system Sys with a set of components
K, a component i € K and a local state ¢; in the behavior T} of component
1 we discuss the question whether there is a state ¢ reachable in the global

behavior T" of Sys where component i is in the state g;.

We show that deciding this problem is PSPACE-complete in tree-like inter-

action systems. The reduction uses parts of the proof of Theorem 2.1.
First we formulate the respective decision problem.

Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K, {A;}ick, Int). We assume that the local state spaces of the com-
ponents in Sys are pairwise disjoint. Let Q;..(Sys) = |J @;, i.e., @oc(Sys)
is the union of all local state spaces of the Componentzsgi(n Sys. Remember

that IS, is the class of tree-like interaction systems. Let

RISTL= | ({Sys} X Quc(Sys)).

Sys€ISi ee

For (Sys, qi,.) € RISTL let qy,, € Q; for some i € K. We want to decide
whether a global state ¢ € @) is reachable in the global behavior of Sys such
that component i is in state g, in ¢. Let TRISTL C RISTL be the set of
RISTL instances where this is the case.

23

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

Let Sys € IS,,.. be a tree-like interaction system with a set of components K.
For i € K let ReachLocal;(Sys) C @Q; be the set of states ¢; € @; such that
there is a state ¢ reachable in the global behavior of Sys where component

¢ is in the state ¢;. Let

ReachLocal(Sys) = U ReachLocal;(Sys)

1€

be the union over all reachable local states in Sys then

TRISTL = U ({Sys} x ReachLocal(Sys)) .

Sys€IS; ee

The following corollary relates the question whether (Sys,q,.) € RISTL
is an instance of TRISTL to the question whether a quantified Boolean

formula is true.

Corollary 2.1:

Let H be a QBF and Sys;; the associated interaction system obtained from
the reduction given in Section 2.3. We assume that the local state spaces of
the components in Sysy are disjoint, e.g., each local state is indexed by the
name of the respective component. Consider the state ¢, of component H'
(this state is labeled ¢ in Figure 2.6¢), then

H e TQBF < (Sysy,ty) € TRISTL.
Proof. The proof can be found in Appendix A on Page 194. O

Analogously to the argument why deciding the reachability problem in tree-
like interaction systems is in PSPACE, it is easy to see that the problem of
deciding TRISTL is in PSPACE as well. Let (Sys, ¢,.) € RISTL where
K is the set of components in Sys and ¢, € Q, for i € K. We guess a
sequence of interactions and check in linear space whether it leads from the
global initial state ¢° to a state ¢ where ¢; = ¢y,.. Thus, by Corollary 2.1
follows that deciding whether there is a global state reachable where a fixed

component is in a fixed state is PSPACE-complete.

54

2.5. PSPACE-COMPLETENESS OF REACHABILITY IN LINEAR
SYSTEMS

2.5 PSPACE-completeness of Reachability in

Linear Systems

In the following we give a reduction from the acceptance problem in linear
bounded Turing machines to the reachability problem in linear interaction
systems. This reduction strengthens the result of the QBF reduction as the
subclass of component systems with a linear communication structure is a
proper subset of systems with a tree-like communication structure. We use
the following syntax for a Turing machine but we refrain from repeating the
well known semantics (see [GJ79] for details).

Definition 2.2:

A tuple M = (T', 3, P,) is called deterministic Turing machine (DTM)
with

I' is a finite set of tape symbols,

e 3 C I'is a set of input symbols with a distinguished blank symbol
bel\ %,

e P is a finite set of states, including a distinguished initial state p"

and two distinguished halt states p* and p" and

0 is the transition function of M, given by

6P\ {p",p") xT =P xT x{-1,+1}.

We consider a both-sided infinite tape with cells labeled by integers. Given
an input x € X written on the cells labeled 1 through |z| we assume M to
be initially in the initial state p° and the tape head pointing at cell 1. For a
string € ¥* with |2| = n we denote the ith letter in 2 by z* for 1 < i < n.

A DTM M is called linear bounded if no computation on M uses more than
n+ 1 tape cells, where n is the length of the input string. A configuration
of a bounded DTM M is denoted by (p; 7o, .--,%: - Vnt1) Where M is in

95

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

state p, vy, is the tape symbol in cell 0 < 7 < n + 1 and the tape head is on

cell 1.

Definition 2.3:

The problem linear space acceptance (LSA) has as input a linear bounded
DTM M and a finite string x over the input alphabet of M. The question
is whether M accepts z, i.e., does M halt in the state p* .

It is well known that the problem LSA is PSPACE-complete [GJ79).

The idea for our reduction is to model the cells of a DTM M by components
of an interaction system Sys,, and the transition function of M by inter-
actions such that a path in the global behavior of Sys,, corresponds to an
execution of M. In order for the transition function to calculate the next
configuration of M we need the current position of the tape head, the current
tape symbol in the respective cell and the current state of M. We model
all these informations in each cell, i.e., in order to model the calculation of
the next configuration we only need an interaction between the component
that models the cell with the tape head and the respective components that
model the neighboring cells.

Let M = (I',X,P,0) be a linear bounded DTM and z € ¥* an input with
|z| = n. Let Sys,; = (IM;,{7T;}ick) be an interaction system with interac-
tion model IM = (K, {4, };ck, Int) such that K ={0,...,n+ 1}.

The set of ports A; for a component ¢ € K with 1 <7 < n is given by

A ={p.7)i, 2, ilp e P\ {p" . p"},v €T}

A port (p, ’y)zl models that the tape head moves away from cell ¢ where 7 is

the current tape symbol in this cell and M is in state p. Analogously, (p, 7),2
models that the tape head moves onto cell ¢ where ~ is written on this cell

and M is in state p.

Because of M being linear bounded, we now that § does not move the tape

head from cell 0 to the left respectively from cell n 4+ 1 to the right. Thus,

26

2.5. PSPACE-COMPLETENESS OF REACHABILITY IN LINEAR
SYSTEMS

we can omit ports from A, and A, ,; that model a head movement from or

onto cell —1 and n + 2. The set of ports A, is given by

Ay = {olpeP\{p" "}y e, -3, 4(p.y) = (®,7,-1}U
{(pa 7)(2)|p el \ {pyapN}a’Y € Fa _Elpl’,y/d(p, ’Y) = (p/afyla]-)}

Analogously, for component n + 1 € K, i.e., for the rightmost used cell let

An+1 = {(p7 7)3Hr1|p € P \ {pyapN}a’Y € P) _'Hp',fy'(s(pa ’Y) = (p/afyla 1)} U
{(p,Nisalp € P\ {p",p"}, v €T, -3, d(p,7) = (0.7, —1)}.

The set of interactions is given by

Int = {{(p,)i, (0. Virr} 3y 6(0,7) = .7, T),0<i+T < n+1},

Fori € K let T, = (Q;, A;, =4, ¢)) be the local behavior of component i with
Q; ={(p,7)|p € PU {s},y € T'} where s is an auxiliary symbol that is not
included in P. The port (p,v) € Q; with p # s models that the tape head
is currently on cell 7 and the current tape symbol in this cell is 7. The port
(s,7) models that 7 is the content of cell i and the tape head is not on this
cell. The local initial states are derived from the initial word on the tape,
ie, g = (s,0), ¢ = (",2"), ¢ = (s5,2") for 2 < i <nand gypy = (s,b).
For i € K let —; be the union of the following transitions.

1
a) Forall v,~ € Dand p € P\ {p*,p"} let (p,7) ﬂ)z (5,7") if there are

p € Pand T € {—1,1} such that 6(p,v) = (p',7, T).

2
b) Forall 7,5 € T, p € P\ {p*,p"} and p' € P let (s,7) L%, (¢, 5) if

there are 4/ € ' and T € {—1,1} such that 6(p,v) = (p’, 7, T).

The transitions described in a) model the impact of the transition function
0 on cell 7 if the tape head is currently on this cell. Let M be in state p and
the tape head on cell i reading =, i.e., T} is in the state (p,~y). If 6(p,7y) =
(p',7/,T) then ~/ is written and the tape head moves to a neighboring cell,

i.e., T, moves to the state (s,v’). On the other hand, the transitions described

57

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

in b) model the impact of § on cell 7 if the tape head moves onto this cell.
Let 4 be the current tape symbol on cell 7, i.e., T} is in state (s,5) before
the head moves. After the movement let M changes its state to p/, i.e., T}

moves to the state (p',7).

Remark 2.4:

Note that in each component, local states of the form (p",~) and (p",~) do
not have outgoing transitions, i.e., a component that reaches one of these
states can never interact again. We can avoid this situation by specifying a
self-loop on these states that is labeled by a distinguished port. An inter-
action that consists of only this one port is permanently enabled if one of

these states is reached.

Remark 2.5:

Sys,, satisfies the conditions of an interaction system: every port of a com-
ponent occurs in at least one interaction. Let i € K, (p,7); € A; and
5(p,7) = (.7, T) then 0 < i+ T < n+1and {(p,7);, (p,7)ir} € Int. For

(p.7)i € A;is 0<i—T <n+1and {(p,7)i_r. (p,7);} € Int.

It is clear that Sys,, has a linear communication structure because every
component 1 < ¢ < n only interacts with its neighboring components ¢ — 1
and 7 + 1.

Remark 2.6:

The reduction is polynomial, since | Int | < |P| - |I'| and for all i € K |A;]| <
2 [P |I'| and |Q;] < (JP|+1) - |T'[.

Theorem 2.2:

Let M = (I',X,P,§) be a linear bounded DTM, = € ¥* with |z| = n an
input for M and Sys,, the associated linear interaction system. We have M
accepts x if and only if a global state ¢ = (qp, - . -, gn41) is reachable in Sys,,
such that there is ¢ € {0,...,n + 1} with ¢; = (p",7) for a tape symbol
vyel.

Proof. The proof can be found in Appendix A on Page 194. O

28

2.6. PSPACE-COMPLETENESS OF REACHABILITY IN STAR-LIKE
SYSTEMS

Remark 2.7:

An instance of the reachability problem in linear interaction systems is a
linear interaction system Sys and a global state ¢q. The interaction system
Sys,, for a linear bounded DTM M and an input x can be extended such
that a distinguished global state can be reached if M halts on x. This
can be achieved by the technique that was used in Section 2.3 in order
to reach a distinguished global state in tree-like interaction systems. The
idea is to invoke, starting from the component that reached (pY,fy), that
each component shall reach a distinguished state. This invocation can be

propagated through neighboring components.

The reachability problem in linear interaction systems is in PSPACE because
each linear interaction system is particularly a tree-like interaction system
and the reachability problem in tree-like interaction systems is in PSPACE.
It follows by Theorem 2.2 and Remark 2.7 that the reachability problem in

linear interaction systems is PSPACE-complete.

2.6 PSPACE-completeness of Reachability in
Star-Like Systems

Here we show that deciding the reachability problem in the class of star-
like interaction systems is PSPACE-complete. We show this by providing a
reduction from a general interaction systems Sys to a star-like systems Sys’.
The idea of the reduction is to construct a “control component” cc that forms
the center of the star structure in Sys’ and is surrounded by the components
of Sys. An interaction in Sys is modeled by multiple interactions in Sys’
where each consists of exactly two ports. The execution of an interaction in
Sys then corresponds to the execution of a sequence of interactions in Sys’
that is coordinated by cc and achieved in two steps. Let « be an interaction

in Sys.

29

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

a) In a first step cc interacts with each component that participates in «
and checks whether the respective port in « is enabled without changing
the local states of the components. If this check fails then cc returns to

its initial state.

b) If the check succeeds then cc interacts with each respective component
on the ports in «, i.e., a global transition in Sys that is labeled by « is

simulated.

Let @ = [[,cx @: be the global state space of Sys then we have a global
state space HiEKU{cc} Q; for Sys’ with the property that ¢ € @ is reachable
in Sys if and only if a state ¢ is reachable in Sys’ such that ¢’ equals ¢ up to
the local state of the component cc. Since reachability in general interaction
systems is PSPACE-complete, the consequence of this transformation is the

PSPACE-completeness of reachability in star-like interaction systems.

Let Sys = (IM, {7;};ck) be an interaction system with interaction model
IM = (K, {4;}ick, Int) and Sys" = (IM', {T}},_/) be an interaction system
with interaction model IM = (K', {4}}, _/, Int').

€K

Let K' = KU{cc}, where cc is a control component that coordinates se-
quences of interactions in Int’ that correspond to interactions in Int. For
i€ Klet Al = A, U{a?*, a;%%|a; € A;}. The port a* respectively a;°" mod-
els that component 7 enables respectively does not enable the port a; € A,.

The set of ports A.. of component cc is given by
Acc - {a’ nga a_iZcOka fzre|'l - 1) TV, Gy € Al} U {acc|a € Int}

Let i € K and a; € A; a port in i then a_i°" models that component i

currently enables a; and a_ 1., ok

models that a; is currently not enabled by
i. The port a_i%;,. models that component ¢ performs a transition labeled
by a;. For an interaction a € Int the port o, models the initiation of a
process that checks whether « is enabled by the respective components and,

if applicable, coordinates that all ports in « interact one after another.

60

2.6. PSPACE-COMPLETENESS OF REACHABILITY IN STAR-LIKE
SYSTEMS

. —ok :
a j a_j i
_]‘a]‘cc e

Figure 2.10: Parts of the local behavior of component cc.

The set of interactions Int’ is given by
Int' = {{a a_i%} {a; a_ i} {a;,a_il™Ya, € A;,i=1,...,n}U

{{ae}|a € Int}.

The local behavior of i € K is given by T} = (Q;, A}, —%,¢)) with

7

—i= = U{(q, i q)la; € Q; N a, € en(g;)}U
{(gi, 0" @)l a; € Qi Aa; ¢ en(q;)}.
T} extends T} such that for each port a; € A, there is a self-loop on each state
¢ € Q; that is labeled by a2 if ¢; enables a; and by a;°* otherwise. These
transitions are used to check whether or not each port of an interaction
a € Int is enabled in a global state of Sys’ without changing the local state

of the respective components.

J1?

Let Int = {a',0? ...,a"} and o/ = {q, SRL j‘} for j € {1,2...,k}.
Figure 2.10 depicts the local behavior Ty, = (Ques Aves —rees @) Of component
ce that coordinates a test that checks whether each port in o’ is enabled in

Sys’ and, if applicable, enables ports that can interact with each port in o

Remark 2.8:

Each port of Sys’ occurs in at least one interaction, i.e., Sys satisfies the

61

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

conditions of an interaction system. Furthermore, the size of Sys’ is polyno-
mial in the size of Sys because |K'| = |K|+1, |Int'| = |Int| + >, 3+ |4
and for i € K holds |A;| = 3-|A4;] and | —, | = | —; | +|Q,] - |A;]. For
cc € K' holds |A..| = |Int| + > icre 3+ JAil, 1Qeel = 1+ X e 2+] and
| —ee | = Lo (3 la] +1).

Theorem 2.3:

Let Sys = (IM,{T;}icx) be an interaction system with interaction model
IM = (K, {A;};cx, Int) and Sys’ the associated star-like interaction system.
A global state g is reachable in Sys if and only if a global state ¢’ is reachable
in Sys’ such that ¢; = ¢} for i € K and ¢, = ¢_.

Proof. The proof can be found in Appendix A on Page 195. O

The reachability problem in star-like interaction systems is in PSPACE be-
cause each star-like interaction system is particularly a tree-like interaction
system and the reachability problem in tree-like interaction systems is in
PSPACE. It follows by Theorem 2.3 that the reachability problem in star-
like interaction systems is PSPACE-complete.

2.7 PSPACE-completeness of Progress in Sys-
tems with a Restricted Communication

Structure

Given an interaction system Sys with components K and a component k €
K, an interesting question is, whether or not there are reachable states
in the global behavior of Sys from which & may never participate again
in an interaction. If, for example, components in an interaction system
model processes that can send requests among each other which need to be
answered by a respective response then an obvious question is whether or

not there are reachable global states where a request is never answered by

62

2.7. PSPACE-COMPLETENESS OF PROGRESS IN SYSTEMS WITH
A RESTRICTED COMMUNICATION STRUCTURE

a response. The progress problem consists of the question whether or not
a component k € K has to participate in infinitely many interactions from
every reachable state in the global behavior of Sys. Of course, if there is a
reachable global state where no interaction is enabled then this question is
obsolete because from such a state no further interaction is enabled in which
k may or may not participate. In [MCMO08¢| it was shown that in general

interaction systems deciding progress is PSPACE-complete.

By a minor modification of the reduction given in Section 2.3 it is possible
to show that deciding progress in tree-like interaction systems is PSPACE-
complete as well. First we provide some definitions in order to introduce
progress in interaction systems. We proceed by arguing why deciding this
property in the subclass of tree-like interaction systems is PSPACE-complete.
Furthermore, we provide two remarks about the PSPACE-completeness of
deciding progress in systems with a linear or star-like communication pat-
tern. Since deciding progress in general interaction systems is PSPACE-
complete, deciding progress in interaction systems with any restriction on

the communication structure is in PSPACE.
Definition 2.4:
Let Sys be a deadlock-free interaction system (see Definition 1.4) with global

behavior T' = (Q,Int, —7,¢"). A run of Sys is an infinite sequence o
¢ g g,

with ¢' € Q and oy € Int for [> 1.

Definition 2.5:

Let Sys be a deadlock-free interaction system with components K. A com-
ponent k£ € K may progress in Sys if for every run o the component k
participates infinitely often in ¢. This is, there are infinitely many interac-
tions « in o with k(a) # 0.

An instance of the progress problem in interaction systems is given by a tuple
(Sys, k) where Sys is a deadlock-free interaction system with components K

and k € K. The question is if £ may progress in Sys.

63

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

Figure 2.11: Transition system T, for the component pro.

In order to proof that deciding progress in tree-like interaction systems is
PSPACE-hard we extend our reduction from Section 2.3. Let H be a QBF
and Sys;; the associated tree-like interaction system, i.e., a certain global
state ¢’ is reachable in the global behavior T of Sys,; if and only if H is true.
The component H' reaches its state labeled ¢ only if H is true and f only if
H is false, i.e., exactly one of these local states is determined to be reached
in every run of Sys;. Both states only enable the port end, that self-loops
on these states (see Figure 2.6¢). The port end, is the only port in the
unary interaction evaluated, i.e., Sysy is deadlock-free because eventually
evaluated becomes enabled permanently. The state ¢’ is the global state
where the local behavior of each component is in its state labeled ¢t. Note
that this state is determined to be reached if and only if H is true and that

the only enabled interaction in this state is evaluated.

The idea is to construct a modified system Sys}; by introducing an additional
component called pro that may progress if and only if H is true. Let A, =
{t,o} be the set of ports of pro. The behavior is given by the transition
system 7)., in Figure 2.11.

pro

In addition we modify the component H’ as follows. The set of ports A,

of the component H' is now given by
Ay = {e}{/, sub}{/t, sub}{/ ,s}{/t, end_truey,end_ falsey},

i.e., end, is removed and the ports end_true, and end_ false, are added.
The modified behavior of H' is given by the transition system 7, in Figure
2.12.

In addition, the interaction evaluated is removed from the set Int of inter-

64

2.7. PSPACE-COMPLETENESS OF PROGRESS IN SYSTEMS WITH
A RESTRICTED COMMUNICATION STRUCTURE

end_ falsey

end_true gy

/

Figure 2.12: Modified transition system 77, for the component H".

actions, and the interactions

evaluated _true = {end_truey,t,,,} and

evaluated_false = {end_false, }

are added. Let H be a QBF and Sys); the interaction system that is con-

structed as in Section 2.3 with the above modifications.

Theorem 2.4:
The progress problem in tree-like interaction systems, i.e., the question
whether or not, given a tree-like interaction system Sys and a component k

in Sys, £ may progress in Sys, is PSPACE-complete.
Proof. The proof can be found in Appendix A on Page 196. O

In the following two remarks we argue why deciding progress in linear and

star-like interaction systems is PSPACE-complete as well.

Remark 2.9:

We argue the PSPACE-completeness of deciding progress in linear interac-
tion systems by describing how the reduction in 2.5 can be slightly modified
to show that a certain component may progress if and only if the respective
linear bounded Turing machine M accepts the respective input x. Let Sys,,
be the interaction system that results from the reduction in Section 2.5 for

a linear bounded Turing machine M and an input x for M. Note that our

65

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

reduction does not assure that Sys,, is deadlock-free. There are three cases

on how M acts on the input x:

1. If M does not halt on = then it is easy to see that Sys,, is deadlock-free

because the infinite execution of M is modeled by Sys,,.

2. If M actually decides that it does not accept x then M halts in the
state pV, ie., Sys,; reaches a global state where a component i €
{0,1,...,n+1} is in a state of the form (p",~). A global state of this
form is a deadlock. We argue that in each component each local state
of the form (p",~) can be extended by a self-loop that is labeled by a
distinguished port. Furthermore, for each component we assume there
is an interaction that consists only of this port, i.e., if this case is on

hand, then our assumption guarantees deadlock-freedom in Sys,,.

3. If M accepts x then Sys,, reaches a global state where a component
i€{0,1,...,n+1} is in a state of the form (p",~). In Remark 2.7 we
argued that we can modify Sys,, such that the linear communication
structure is preserved, while we can guarantee that a distinguished
global state is reached. We assume here that this state is of the form

q
(i € {0,1,...,n+1}) does not enable any port, i.e., ¢°* is a deadlock.

ol = <qgnd= (Ifma e ,qreﬁrdl)- For now we assume that a local state qz‘eml

Analogously as for tree-like interaction systems, we argue that Sys,, can
be extended by an additional component pro (that is defined as in Figure
2.11) that may progress if and only if ¢°"* is reachable in Sys,,. We extend
the component that models cell 0 by a self-loop on the state and that is
end}. Thus,

{t,r0, end} becomes enabled permanently if and only if ¢“" is reached, i.e.,

labeled by a port end and add the additional interaction {¢

pros

the component pro may progress if and only if M accepts z.

The extended version of the reduction still results in a linear interaction sys-
tem because component pro only interacts with the component that models

cell 0. Thus, deciding progress in linear interaction systems is PSPACE-

66

2.7. PSPACE-COMPLETENESS OF PROGRESS IN SYSTEMS WITH
A RESTRICTED COMMUNICATION STRUCTURE

complete.

Remark 2.10:

in Section 2.6, our transformation to star-like systems does not preserve
progress. Let a be an interaction that is not enabled in a global state ¢ in
the original system Sys. Let ¢’ be the corresponding state in the associated
star-like system Sys’. Starting in ¢’ there is a sequence of transitions in Sys’
that corresponds to a test of whether or not all ports in « are enabled. This
sequence can be repeated infinitely often. Let k& be a component that may
progress in Sys but does not participate in . This is, starting in ¢’ there
is a run in Sys’ such that k does not participate in the interactions in this
run, i.e., k may not progress in Sys’. The transformation can be extended
such that progress is preserved. The idea is to exclude an interaction in
Sys from being checked in Sys’ if it has been confirmed in Sys’ that this
interaction is not enabled in the corresponding state in Sys. Clearly, this
exclusion has to be revoked if a sequence of interactions was performed in

Sys’ that corresponds to an interaction in Sys.

We extend Sys’ as follows. For every interaction o in Sys we introduce a
component ¢, with A, = {b,, f,}. The port b, models that a check whether
a sequence of interactions in Sys’ that corresponds to a shall be blocked and
Jo revokes this block. The behavior T, is depicted in Figure 2.13b. For
each interaction a in Sys we extend the set of ports A, of component cc
by a port fo. that models that a block with respect to « shall be revoked.
Let Int = {a', 0o, ... ,ak} be the set of interactions in Sys. Figure 2.13a
depicts the extended behavior of component cc. Depicted is the part of the
behavior that coordinates a check whether a sequence of interactions that
corresponds to o = {a;,, ... ’aj\af\} for j € {1,2,...,k} is enabled in Sys’
and, if applicable, coordinates the execution of the respective ports. If T,

successfully coordinated the interaction with each port in o’, T,.. coordinates

the unblocking of each component ¢, for a € Int.

The set of interactions in Sys’ is modified as follows. For o € Int the port o,

67

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

r .
Qees T # J
”,

Figure 2.13: Local behavior of component ks for 1 < 7 < k and parts of

the behavior of component cc.

of component cc shall interact with the port b, of component c,, i.e., a,. can
not interact again until ¢, becomes unblocked. Thus, an interaction {a,.}
in Sys’ is replaced by an interaction {o,,,b,}. Furthermore, for o € Int we

introduce an interaction { fr, f,} that revokes a block.

It is easy to see that this extension of our reduction preserves progress, i.e.,

to decide progress in star-like interaction systems is PSPACE-complete.

2.8 Conclusion

We investigated complexity issues for component-based systems. In [CEP95]
the reachability in 1-safe Petri nets was proven to be PSPACE-complete
and in [MCMO8c¢| this result was used to show the PSPACE-completeness of
the reachability problem in general interaction systems. Here we restricted
ourselves to systems with certain communication pattern, such as tree-like,
star-like and linear communication structures, and showed that even in these
classes deciding reachability is PSPACE-complete. Given these complexity

issues it makes sense to look for conditions that can be tested in polynomial

68

2.8. CONCLUSION

time and guarantee a desired property that is related to reachability [Hoa85,
BRI1, BCD02, MCMO08a, Lam09, HJK10].

69

CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY

70

Chapter 3

A Refinement Technique for

Over-Approximations

3.1 Introduction

In this chapter we report about an approach to efficiently represent and
refine over-approximations of the global behavior of cooperating systems
[MCS13a]. An approach to circumvent complexity issues of checking var-
ious properties in cooperating systems, i.e., PSPACE-completeness results
of the reachability problem and various other properties in interaction sys-
tems [MCMO08c|, is to investigate techniques based on sufficient conditions
in order to establish those properties. In this context, an interesting sub-
class of system properties are safety properties which can be established
in over-approximations of a cooperating system (this topic is discussed in
detail in Chapter 4). Especially the system property of deadlock-freedom
and the negated reachability problem (the question whether or not a cer-
tain state is not reachable) are safety properties and can be established in
over-approximations of a cooperating system, i.e., if an over-approximation
of a cooperating system is deadlock-free then the behavior of the system in

consideration is deadlock-free as well. We introduce here a formal notion of

71

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

over-approximations of the global behavior of cooperating systems for the
formalism of interaction systems that was introduced in Chapter 1. The
global behavior of an interaction system is modeled by a labeled transition
system, thus, our over-approximations are labeled transition systems as well.
For complexity reasons these over-approximations are in general to large to
be handled efficiently because an over-approximation of the global behav-
ior of an interaction system suffers from the state space explosion problem
just like the global behavior. Thus, we introduce a compact representa-
tion of an over-approximation that we call abstract over-approrimation. An
abstract over-approximation is a transition system that induces an over-ap-
proximation of the global behavior of an interaction system while it can be
constructed in a way that it is of polynomial size in the size of the underlying

interaction system.

If a safety property does not hold in an over-approximation of an interaction
system then we can not conclude whether or not the underlying interaction
system fulfills this property. In this case it might help to refine an over-ap-
proximation by which we here mean to remove sates and transitions such
that the resulting object remains to be an over-approximation. This is,
if an over-approximation of an interaction system is not deadlock-free but
the refinement of this over-approximation results in an over-approximation
where all transitions that lead to reachable deadlocks are removed then the
underlying interaction system is deadlock-free. We introduce here a refine-
ment technique that is based on an operator that we call Edge-Match. This
operator compares pairs of abstract over-approximations and removes tran-
sitions such that the resulting transition system remains to be an abstract

over-approximation.

A family of abstract over-approximations can be used to establish certain
system properties in a cooperating system in polynomial time in the size of
the underlying interaction system. This statement is discussed in Chapter 4
where we show how abstract over-approximations can be used to establish

deadlock-freedom. In this chapter we treat exclusively the construction and

72

3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIR
REFINEMENT

refinement of abstract over-approximations.

This chapter is organized as follows. In Section 3.2 we formally define over-
approximations of the global behavior of interaction systems, our concept
of abstract over-approximations and illustrate how an abstract over-appro-
ximation induces an over-approximation of the global behavior of an in-
teraction system. Furthermore, we introduce the Edge-Match operator, a
refinement operator that works on pairs of abstract over-approximations.
In Section 3.3 we discuss preciseness aspects of the Edge-Match operator
and argue that we can not expect to calculate “exact” abstract over-appro-
ximations by any refinement operator in polynomial time in the size of the
underlying interaction system, i.e., abstract over-approximations where no
further refinement is possible. In a second part of Section 3.3 we introduce
an approach that refines a family of abstract over-approximations and argue
under which assumptions this approach works in polynomial time. Section

3.4 concludes this chapter.

3.2 Abstract Over-Approximations and their

Refinement

Here we introduce our concept of over-approximations of the reachable be-
havior of an interaction system Sys. As the global behavior of Sys is defined
by a transition system we define an over-approximation of the global be-
havior of Sys as a transition systems that “includes” the reachable behavior
of the global behavior of Sys, i.e., each reachable transition in the global
behavior of Sys is included in an over-approximation. If 7" is the global
behavior of Sys, then the size of the reachable behavior of T" might be expo-
nentially in the number of components in Sys, i.e., if Sys consists of a large
number of components (e.g., 2.000 components where the local behavior of
each component has 2 states) then it is not feasible to calculate the reach-

able behavior of T'. Certainly, in this case it is not feasible to consider an

73

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

over-approximation of the reachable behavior as well. What we do is that
we look at a transition system that “induces” an over-approximation of the

reachable behavior.

We define an over-approximation of a transition system as follows.

Definition 3.1:

Let RT be the operator that yields all reachable transitions of a transition
system. Let R = (Q, A, =, ¢") be a transition system with —,C Q x Ax Q.
A transition system U = (Q', A, =y, ¢°) with =, C Q' x A’ x Q' is called
an over-approximation (of the reachable behavior) of R if and only if
¢ = ¢° and RT(R) C RT(U). An over-approximation U of R is called
exact over-approximation of R if and only if RT'(R) = RT(U).

We consider here a special type of over-approximations, i.e., over-approxi-
mations that are induced by an abstract over-approximation that is based
on a subset of components. These abstract over-approximations are based
on the following definition.

Definition 3.2:

Let Sys = (IM, {T};}icx) be an interaction system with interaction model
IM = (K, {4, }ick, Int) and C' C K with C' # (). A transition system of the
form R = (Qc, Int, =g, q&) where

® Qc = HieC Qs
o qg = (on)iEC and
e »rC Qc x Int X Q¢

is called a transition system with respect to C. Let T' = (Q, Int, =
,qo) be the global behavior of Sys. For ¢ € () the projection of ¢ to
the components in C' is denoted by qlc € Qc, i.e., if ¢ = (¢;);cx then

e = (@)iec

In the following we define in which case a transition system with respect to

C, i.e., a transition system of the form R = (Q¢, Int, — 5, q(o;) is an abstract

74

3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIR
REFINEMENT

over-approximation of the global behavior T of an interaction system Sys.
In the immediately following lemma we justify the definition by showing
that an induced transition system that is constructed by “extending” R is an

over-approximation of 7" if and only if R is an abstract over-approximation
of T.

Definition 3.3:

Let T be the global behavior of an interaction system Sys with components
K and C a nonempty subset of K. Let 7" = (Q, Int, RT(T),¢°), i.e., the
transition relation — of T restricted to reachable transitions. Let 7" be
T' projected on the components in C, i.e., T" = (Qg, Int, =, q%) with
qc g>Tu qc if and only if there is a transition ¢ ﬁ>T/ ¢ in T with ¢lo = q¢
and ¢'lc = . We say a transition system R = (Qc, Int, =g, qo) is an
abstract over-approximation of 7' if and only if R is an over-approxi-

mation of T7”.

In other words, R is an abstract over-approximation of 7" if and only if each
reachable transition in the global behavior T projected on the components

in C is reachable in R.

Lemma 3.1:

Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K, {A;}ick, Int). Let C C K be a nonempty subset of components
and R = (Qc,Int,—p,q>) a transition system with respect to C. Let
T = (Q, Int,—7,q") be the global behavior of Sys. The global extension
of R is the transition system E(R) = (Q, Int, —>E(R),q0) such that for all
¢,¢ € Q and all a € Int the transition ¢ i>E(B) ¢ is in E(R) if and only if
a transition ¢o —p ¢r is in R with ¢lo = ¢o and ¢'lc = ¢&. Then: R is an
abstract over-approximation of 7" if and only if F(R) is an over-approxima-
tion of T'.

Proof. The proof can be found in Appendix A on Page 196. O

Remark 3.1:

If R is an abstract over-approximation of 7" then we call E(R), defined as in

75

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

send__data

qr ER1>QGSaQADBaQTER2>QDB) —g®Rr) Ur ER1>QGS>QADB>QTER2>QDB)

send data

4dTER, > QGSa QADBa QTER2> CJDB dTER; > CJGS> QADBa QTER2> CJD
4dTER, > QGSa QADBa QTER2> CJDB

(
(a1
send_data (
send_data (

(
(a1)
(a1) —Ew
(a1)

)
dTER; > QGS> QADBa QTER27 QDB)
)

l

4dTER, > QGSa QADBa QTER2> CJDB E(R) \4TER;> CJGS> QADBa QTER2> CJDB

Figure 3.1: Transitions in a global extension F(R) of R.

Lemma 3.1, the induced over-approximation of 7" with respect to R.

The following example shows some global extensions of a single transition.

Example 3.1:
Consider a subset of components C' = {TER,, GS, ADB} from the inter-
action system Sys presented in Examples 1.1 and 1.2 in Chapter 1. Let

= (Qc, Int, — g, q&) be a transition system and

send__data

1 2 1 1 3 1
(qTER,> 9CS> 9ADB) —— & (¢TER,> 4GS YADB)

a transition in R. The components TER, and DB are not in C. Figure 3.1
shows some (4 out of 16) transitions in F(R) that are extensions of the above
transition. For better readability, the local states of components not in C
are underlined. Note that the considered interaction send data includes
the port send wval from component DB. The only transition labeled by
. . 1 send_wal 0 . L. . .
send_wval in DB is qpg ——pp ¢pB, 1-€., the only transitions in Figure
3.1 that occur in the global behavior of Sys are those with ¢hg on the left

hand side and ¢bg on the right hand side.

E(R) is an induced over-approximation that is never constructed in any of
our methods as it can become exponentially large because of the state space
explosion problem. The refinement of F(R) is taking place on R. If E(R) is
an over-approximation of 7" then R can be seen as a compact representation
of E(R).

76

3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIR
REFINEMENT

The next lemma shows that transition systems that are abstract over-appro-
ximations can be easily constructed from the specification of an interaction
system. We use these transition systems as an initial point for our refinement

technique.

Lemma 3.2:

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K,{A;}ick, Int) and C C K a nonempty subset of components. Let
Sc = (Q¢, Int, —>Sc,qg) be the transition system with transition relation
defined as follows: go g, qp if for alli € C: if aN A, = {a,} then ¢, <>, g/
and if a N A; = () then ¢; = ¢;. Then S is an abstract over-approximation
of the global behavior T of Sys.

Proof. The proof can be found in Appendix A on Page 198. O

Remark 3.2:
The definition of the transition relation of S¢ is similar to the definition of

the global behavior of an interaction system (see Definition 1.4 in Chapter
1). Actually, Si equals the global behavior T if C' = K.

Note further that for an interaction o € Int, where for all ¢ € C we have
anA; =0, for each q- € Q. holds that ¢. i>SC dc, i.e., interactions that do
not include ports from a component in C' label a self-loop in S,. Actually,
in Sy each state in Qo has a self-loop for each interaction which does not

include ports from a component in C'.

In the following we discuss the refinement of abstract over-approximations.
A refinement by the Cross-Checking operator, as discussed in [Min10], con-
siders the refinement of over-approximations of the reachable global state
space of interaction systems and amounts to the removal of states from
the over-approximations. Here we consider the refinement of the reachable
global behavior of interaction systems. This is, we do not remove states from
abstract over-approximations but transitions. Of course, if we consider an

abstract over-approximation of the reachable global behavior and remove

7

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

transitions then the reachable state space might become smaller. In our

context we use the term “refinement” based on the following definition.

Definition 3.4:

Let U = (Q', A, =, ¢"°) be an over-approximation (of the reachable be-
havior) of the transition system R = (Q, A, —x,¢"). A transition system
U=(Q,A, -z q) is called a refinement of U (with respect to R) if U is
an over-approximation of U and U is an over-approximation of R. This is,
RT(R) C RT(U) C RT(U).

Remark 3.3:

Let Sys = (IM, {T}},cx) be an interaction system with interaction model
IM = (K,{A;}ick,Int) and C C K a nonempty subset of components.
Let R = (Q¢, Int, — 5, q(o;) be an abstract over-approximation of the global
behavior T of Sys, i.e., R is an over-approximation of the transition system
T" (see Definition 3.3). Thus, according to Definition 3.4, we call an abstract
over-approximation R = (Q¢, Int, =, q&) of T a refinement of R if R is

. . /
an over-approximation of .

A transition system S, with respect to a subset of components C' that is
constructed as in Lemma 3.2 can induce a relatively coarse over-approxi-
mation E(Sg) of the global behavior 7', i.e., there can be a great deal of
reachable transitions in E(S.) that are not reachable in the global behavior
T. In order to refine F(Ss) we modify S by removing transitions from S,
which only induce transitions in F(Sy) that are not reachable in 7. These
are exactly the reachable transitions in S that are not projections of reach-
able transitions in 7'. Transitions like these are called artifacts. Refining
Sc, 1.e., removing transitions that are artifacts can result in a smaller reach-
able state space in a refined version S¢ (and thus in E(S¢) as well). In the
following, an abstract over-approximation with respect to a subset of com-
ponents C' that is constructed as in Lemma 3.2 is denoted by an uppercase
S indexed by C, i.e., S..

The following example shows an abstract over-approximation of the global

78

3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIR
REFINEMENT

send _data

0 3 0 1 3 0
‘ITER17‘IG87‘1ADB ‘ITER17‘IG87‘1ADB
authorize authorize

Figure 3.2: The transition system S in Example 3.2.

behavior of the interaction system that was introduced in Example 1.1 and
1.2.

Example 3.2:

Consider the interaction system Sys defined in Example 1.1 and 1.2 in Chap-
ter 1 and the subset of components C' = {TER;, GS,ADB}. Figure 3.2
shows a transition system S = (Q¢, Int, =g, qe). For the clarity of Figure
3.2, the transition system S consists of parts of the behavior of the abstract
over-approximation S, that is constructed as in Lemma 3.2. Omitted in S

are
e all transitions that are not reachable in S,
e some, but not all, artifacts and

e all self-loops on the states that are labeled with interactions which do

not need a component in C' in order to participate.

Note that S is an abstract over-approximation if the self-loops are included.

We now give an example that demonstrates the idea of how a transition in an
abstract over-approximation can be identified as an artifact by a comparison
with another abstract over-approximation. Afterwards we formally define a

refinement operator that is based on this idea.

79

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

send_reqy,

get_reply;, \dGS, YADB; DB 4GS, YADB> 9DB
get _replys, ask _auth

3 0 0
4GS) YADB> DB

send__data authorize

4GS, 9ADB> 4DB

Figure 3.3: The transition system R in Example 3.3.

Example 3.3:

Consider the interaction system Sys defined in Examples 1.1 and 1.2 in
Chapter 1 and the subset of components D = {GS, ADB, DB}. Figure 3.3
shows a transition system R = (Qp, Intp, —g, q%). The transition system
R consists of parts of the behavior of the abstract over-approximation Sp
that is constructed as in Lemma 3.2. Omitted are all transitions that are
not reachable and all self-loops on the states that are labeled by interactions
which do not need a component in D in order to participate, i.e., R is an
abstract over-approximation of the global behavior T" of Sys if the self-loops

are included.

In the following we assume that S (Example 3.2 respectively Figure 3.2)
and R are abstract over-approximations of the global behavior T' of Sys,
i.e., there are self-loops on all states that are labeled by interactions which
do not include ports from components in C' and D respectively. We have
to assume that each transition that is reachable in S is the projection of a
transition that is reachable in the global behavior T" of Sys. Consider the

transition
1 2 1 send data 1 3 1

(QTERlaQGSa qADB) S (QTERla 4Gss ADB)
which is reachable in S and assume that this transition is the projection
send data

of a transition ¢ + ¢ that is reachable in 7. As R is an abstract

d_d
over-approximation as well, ¢l p send _data r ¢1p has to be reachable in R.
In g, the local behavior Tgg is in state gag and Thpg is in state gapg. The

only reachable state in R in which Tgg and Typg are in these local states

80

3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIR
REFINEMENT

send_data

is (qas, qapp: ¢op)- Thus, if ¢lp r ¢'l1p is reachable in R then
qlp equals (g&s, gapp, ¢op)- This state does not have an outgoing transition
labeled by send data that leads to a state that agrees with ¢’} on shared

d_dat .)
components. Thus, we can conclude that ¢lo et s ¢'lo is an artifact
as this transition cannot be the projection of a transition that is reachable

inT.

We now define the Edge-Match operator that removes transitions from a
transition system S by a comparison with another transition system R. The
subsequent theorem states that the result of the Edge-Match operator, if S
and R are abstract over-approximations of the global behavior 7" of an inter-
action system Sys, is a refined version of S, i.e., only artifacts are removed

from S.

Definition 3.5:

Let Sys be an interaction system with components K. Let C' and D be
nonempty subsets of K and S = (Qc, Int, —g,qe) and R = (Qp, Int, =5
,q%) transition systems with respect to C' respectively D. For a state q- €
Q¢ the state ol p € Qcnp denotes the projection of ¢- on the components
in D, i.e., if go = (¢;)icc then qodp = (¢;)iccnp- Note that g0l p yields the
empty tuple if C N D = (). The Edge-Match operator EM on S and R
yields a transition system S’ = EM (S, R) with S = (Q¢, Int, —, q2) such
that q¢ 3>S/ qo if and only if g0 S ¢¢ is reachable in S and a transition
Ip —p ¢p is reachable in R with qolp = qple and ¢-lp = dple-
Theorem 3.1:

Let Sys be an interaction system with components K and global behavior
T. Let C and D be nonempty subsets of K and S = (Q, Int, —g, q&) and
R = (Qp, Int,—p, ¢%) abstract over-approximations of 7', then EM(S, R)

is an abstract over-approximation of 7.
Proof. The proof can be found in Appendix A on Page 198. O

Given an interaction system Sys with a set of components K we use the

81

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

Edge-Match operator to refine a family of abstract over-approximations of
the global behavior T of Sys by a pairwise application. An abstract over-ap-
proximation is based on a subset C' of components in K. Thus, a family of
abstract over-approximations is indexed by a subset C of 2. We call this

set a domain.

Definition 3.6:
Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K,{A}icr, Int). A set C C 2\ {#} of subsets of components is

called a domain of IM.

The next example shows the result of the application of the Edge-Match
operator on a family of abstract over-approximations from the running ex-

ample.

Example 3.4:
Consider the interaction system Sys defined in Example 1.1 and 1.2 in Chap-
ter 1. Let {S¢}cec be the family of abstract over-approximations of 7' with

respect to the domain

C= {{TER,,GS,ADB},{GS,ADB, DB}, {TER,, GS, DB},
{TER,, GS, ADB}, {TER,, GS, TER, }, {GS, TER,, DB} }

that are constructed as in Lemma 3.2. Let {Ro}cec be the result of a
sequence of applications of the Edge-Match operator on {Sc}oec. Fig-
ure 3.4 depicts parts of the abstract over-approximation R, with C' =
{TER,, GS, ADB}. Omitted are all self-loops on the states that are la-
beled with interactions which do not need a component in C in order to
participate. Note that R is a refined abstract over-approximation of the
abstract over-approximation S described in Example 3.2. A total of 8 tran-
sitions that are in S are not included in R- at which 4 reachable states in

S become unreachable in R.

82

3.3. PRECISENESS AND APPLICATION

0 1 0 T T 0
4dTER, 9GS IADB 4dTER, 9GS»4ADB
ask_auth ask_auth
5 5 T send_reqq send_reqy T B) T
9TER, > 9GS>YIADB dTER, 9GS> 1ADB

0 0 0
dTER, 9GS> 9ADB
¥

1 2 0
dTER, 9GS> 9ADB
get _replyy
send _data

0 3 0 1 3 0
QTERI » 4GS 9ADB qTER,1 » 4GS 4ADB

authorize authorize

0 2 0
dTER, > 9GS> 9ADB

get_reply
send_data

Figure 3.4: Part of the transition system R, with C' = {TER,, GS, ADB}
in Example 3.4.

3.3 Preciseness and Application

In this section we discuss the preciseness of abstract over-approximations
that were refined by the Edge-Match operator, introduce how we apply our
refinement technique on a family of abstract over-approximations and ana-

lyze the runtime of this approach.

An obvious question is, whether we can construct exact abstract over-appro-
ximations (see Definition 3.1). Unfortunately, we show here that we cannot
expect to construct exact over-approximations by an algorithm that runs
in polynomial time in the size of the underlying interaction system. We
introduce here a weaker preciseness property of abstract over-approxima-
tions that we call legitimate. Roughly speaking, if we consider a family
of abstract over-approximations, then a transition in an abstract over-ap-
proximation is legitimate if there is a transition in each abstract over-ap-
proximation such that all these transitions agree on shared components.
Thus, a transition that is not legitimate is an artifact. A family of abstract
over-approximations is legitimate if in all abstract over-approximations all
transitions are legitimate. We argue that we cannot assume that a family of
abstract over-approximations that was refined by the Edge-Match operator

is legitimate. In Chapter 6 we show, by using results from the field of

83

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

relational databases, that for a certain subclass of families of abstract over-
approximations holds that a refined by the Edge-Match operator results in

a legitimate family of abstract over-approximations.

In a second part we formulate an algorithm that calculates a fixed-point of
a family of abstract over-approximations with respect to an application of
our refinement operator and give a detailed runtime analysis which describes
under which circumstances our algorithm runs in polynomial time in the size

of the underlying interaction system.

3.3.1 Preciseness

Here we discuss aspects regarding the preciseness of abstract over-approxi-
mations that were refined by the Edge-Match operator. By preciseness we
mean whether or not there are artifacts in the abstract over-approximations.

We consider here two questions:

1. Can we expect to construct exact abstract over-approximations in
polynomial time in the size of the underlying interaction system, i.e.,

abstract over-approximations without artifacts?

2. If there are artifacts that cannot be detected by the Edge-Match op-

erator, why does the operator fails here?

The following corollary shows that we cannot expect to generate exact ab-
stract over-approximations by using a technique that runs in polynomial
time in the size of the specification of an interaction system. This result is
a direct conclusion from the fact that the decision problem whether there is
a global state reachable where a fixed component is in a fixed local state is

PSPACE-complete. This result was shown in Chapter 2 in Section 2.5.

Lemma 3.3:
Let Sys = (IM, {T}};,cx) be an interaction system with interaction model

IM = (K,{A,}ick, Int). Let C € K be a nonempty subset of components.

84

3.3. PRECISENESS AND APPLICATION

Constructing an exact abstract over-approximation S = (Qc, Int, —g, ¢%)
can not be achieved in polynomial time in the size of the specification of

Sys.
Proof. The proof can be found in Appendix A on Page 199. O

Lemma 3.3 states that we have to assume that an abstract over-approxi-
mation that was constructed and refined in polynomial time in the size of
the specification of Sys contains artifacts. It is quite easy to characterize
certain artifacts the detection of which is not covered by the Edge-Match
operator. In the following we exemplify this claim and describe how these

residual artifacts can be characterized.

Let Sys = (IM, {T;};,cx) be an interaction system with interaction model
IM = (K,{A;}ick,Int), global behavior T" and let Ry, Rp and Rp, be
abstract over-approximations of T'. Let gp — Rp ¢p be a reachable transition
in the abstract over-approximation Rp and let gp, % Rp, qbl be the only

transition that is reachable in Rp and gp, i>RD q})2 in Rp, such that
2

QD\LDl = QDl\l/Da q;:)iDl = qlDl\l/Da quD2 = QDQ\LD and qg)iDQ = q;:)QiD-

Thus, ¢p i>BD dp is in EM(Rp, Rp,) and in EM(Rp, Rp,). If now either
qDliD2 #* QD2¢D1 or qgjliDQ #* q;:)QiDl then it is easy to see that ¢p g>RD qb
is an artifact and that qp 3>RD qp is not removed by the application of the

Edge-Match operator.

The following definition formalizes in which case a set of abstract over-ap-
proximations does not contain such artifacts. We define this property on
families of abstract over-approximations.

Definition 3.7:

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K,{A,}ick,Int). Let C be a domain of IM and {Rc}cec a family
of abstract over-approximations. A transition ¢o < ¢¢ (C € C) is called

legitimate if o 5 - qo is reachable in R, and there exists a transition

85

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

q¢ =7 ¢ in the global behavior T such that ¢lo = g and ¢l = ¢ and for
all D € C (D # C) holds that there exists a reachable transition g <, ¢p

in Rp with ¢lp = gp and ¢'}p = gp.

R is called legitimate if all reachable transitions in R are legitimate. The
family {Rc}cec is called legitimate if all abstract over-approximations in

{R¢}cec are legitimate.

In other words, a reachable transition in an abstract over-approximation Ro
is legitimate if we can find a reachable transition in each abstract over-ap-
proximation Rp for D € C such that all these transitions agree on shared
components. It follows that in this case there is a global transition that
agrees with all these transitions on shared components as well, i.e., if a
reachable transition in R is not legitimate then this transition is an artifact
as there cannot be a reachable global transition which projection is reachable

in Rc.

We argued that, in general, if {Rc}ccc resulted from a sequence of appli-
cations of the Edge-Match operator, we cannot assume that this family is
legitimate. This motivates the consideration of additional approaches in or-
der to identify and remove transitions in abstract over-approximations that
are not legitimate or to analyze under which assumptions we can use our
operator in order to generate a legitimate family of abstract over-approxima-
tions. In Chapter 6 we use a theorem from the field of relational database
theory to show that a fixed-point with respect to the application of the

Edge-Match operator is legitimate if C has a certain structure.

3.3.2 A Fixed-Point of a Family of Over-Approxima-

tions

A technique for establishing a system property that is based on a sufficient
condition and uses abstract over-approximations is not able conclude that

the property does not hold in the underlying interaction system. This is, if

86

3.3. PRECISENESS AND APPLICATION

the technique fails to establish the property then it is unknown whether or
not the property holds. A refinement of the abstract over-approximations
might help to establish the property, providing that the property actually
holds in the interaction system. This is, we are interested in refining abstract
over-approximations as much as possible by the Edge-Match operator. Given
an interaction system Sys with a set of components K and a domain C C 2%
we want to calculate a fixed-point of the family of abstract over-approxi-
mations {S¢}cec that are constructed as in Lemma 3.2, i.e., we want to
apply a sequence of applications of the Edge-Match operator on {S¢}eoec
such that no application of the Edge-Match operator on a pair of abstract
over-approximations in the resulting family { R }ccc vields any refinement.
After formally introducing in which case a family of abstract over-approxi-
mations is a fixed-point of the Edge-Match operator we proceed by showing
that two fixed-points that result from different sequences of applications
of the Edge-Match operator are identical, i.e., the quality of a fixed-point
that results from the refinement by the Edge-Match operator is independent
from the sequence of applications. We proceed by introducing an algorithm
that calculates the fixed-point with respect to the Edge-Match operator of a
family of abstract over-approximations and give a detailed runtime analysis.
Our runtime analysis shows that a polynomial runtime of our algorithm
completely depends on the choice of the domain of the family of abstract
over-approximations. We propose a class of domains such that our algorithm
runs in polynomial time on families that are based on these domains and
we provide two interesting lemmas which show that we can, under certain
conditions, modify a domain C while preserving the “information” in the
fixed-point of the family {Sc}cec that is constructed by the Edge-Match

operator.

Definition 3.8:
Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K,{A;}ick, Int) and C a domain of IM. Let {R;}cec be a fam-

ily of transition systems of the form Ro = (Q¢, Int, —p_, q2). The family

87

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

{Rc}cec is called a fixed-point with respect to the Edge-Match op-
erator if EM(Rq, Rp) = R for all C; D € C, i.e., no further application of
the Edge-Match operator on a pair of transition systems yields any refine-

ment.

First we show here that fixed-points with respect to the Edge-Match oper-
ator that result from different sequences of applications of the Edge-Match
operator on pairs of transition systems in a family are identical. This result
shows that we do not have to consider that there might be a sequence of

refinement steps that leads to a more refined fixed-point.

Lemma 3.4:

Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K,{A,}ick, Int) and C a domain of IM. Let {R;}cec be a family
of transition systems of the form Rqs = (Q¢, Int, —>R/c,qg). Let seq; and
seqs be sequences that describe applications of the Edge-Match operator
on {Rc}oec, i-e., sequences of tuples in C x C. Let seq; result in the
family {R¢:}oec and seq, in the family {R¢}oec. If {ReYeec and {RE}oec
are fixed-points with respect to the Edge-Match operator then {R¢}eee =

{R/(; ceC-

Proof. The proof can be found in Appendix A on Page 199. O

Definition 3.9:

Let Sys = (IM, {T};}icx) be an interaction system with interaction model
IM = (K,{A,}ick,Int) and C a domain of IM. Let {Rs}cec be a family
of transition systems of the form Rs = (Qc, Int, —>Rc,q(0;). If {R¢}eec is
the fixed-point with respect to the Edge-Match operator that resulted from
the application of a sequence of Edge-Match operations on {Rq}cec then
we call { R¢}oec the Edge-Match fixed-point of {R¢}ecc.

Note that from Theorem 3.1 follows that the Edge-Match fixed-point of a
family of abstract over-approximations is a family of abstract over-approxi-

mations.

88

3.3. PRECISENESS AND APPLICATION

An Algorithm for calculating the Edge-Match Fixed-Point

We now introduce an approach to calculate the Edge-Match fixed-point of
the family of abstract over-approximations { S} ccc that is constructed as in
Lemma 3.2. In our approach we successively apply the Edge-Match operator
on all pairs of abstract over-approximations, that share a nonempty set of
components, until no further application causes any refinement. Algorithm

2, called F'P, describes this approach in pseudocode.

Algorithm 2 FP({S¢}cec)

1: {Ro}eec « {Scteec

2: {Rc}oec + NIL

3: while {R¢}oec # {Re}eec do

4 {Rt}oec < {Retoec

5. forall C,D e C with C # D and CN D # () do
6 Ro+ EM(Re, Rp)

7. end for

8: end while

9: return {Rc}cec

In the following we discuss the runtime of Algorithm 2 and argue under
which assumption this runtime is polynomial in the size of the underlying
interaction system. The runtime analysis shows that we can ensure that
Algorithm 2 runs in polynomial time on {S¢}coec if the domain C consists
of a polynomial number of subsets and each subset consists of a number
of components that is bounded by a constant. Later we propose a class of

domains that fulfills these properties.

Runtime Analysis of Algorithm F'P

Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K, {A,}ick, Int) and C a domain of IM.

89

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

Let cpax = max{|C| |C € C}, i.e., the number of components in the largest
set in C and let m = max{|Q;| |i € K}, i.e., the size of the largest state
space among all components in K. Let C' € C be an arbitrary set in the
domain. The size of the state space ()~ of the abstract over-approximation
Sc is bounded by |Qo| < m . Thus, the size of the transition relation

—s, € Q¢ x Int X Q¢ is bounded by | =g, | < O

The cost of a reachability analysis on Si is bounded by [Qc| + [—g,| <
mfmex 4 m*mex . |Int| (a modified BFS).

The application of the Edge-Match operator on a pair of abstract over-appro-
ximations S and Sp, (C, D € C) consists of a comparison of each reachable
transition in S with each reachable transition in Sp. Thus, the cost of an
application corresponds to the costs of a reachability analysis on S and
Sp plus |=g,| - |—=g,|. It follows that the costs of an application of the
Edge-Match operator is bounded by

em = 2 (mm + m? Cmax . | Int|) + (mQ'cma" : |Int|)2.
where the first summand describes the worst case costs of the reachability
analysis on S~ and Sp and the second summand an upper bound for the

number of pairs of transitions in Sy and Sp.

There are |C| abstract over-approximations in {Sc}cec. The for-loop in
Line 5 to Line 7 performs an application of the Edge-Match operator on
each pair of abstract over-approximations, i.e., the costs of this process are
bounded by |C|* - em.

The number of all transitions in {S¢}cec is bounded by |C| - m*“max . [Int|.
In the while-loop in Line 3 to Line 8 at least one transition is removed by
the Edge-Match operator in each iteration. It follows that the runtime costs

of Algorithm 2 are altogether

|C| - m*max . | Int| - |C|* - em.

This runtime bound is polynomial in the size of the specifications of Sys if

90

3.3. PRECISENESS AND APPLICATION

1. cpax 18 @ constant, i.e., the number of components in each set in C is

bounded by a constant and
2. |C] is of polynomial size in the size of the specifications of Sys.

Thus, the requirement for Algorithm 2 to run in polynomial time in the
size of the specifications of Sys is completely depending on the choice of the

domain.

The size of a domain C C 2% is bounded by 2‘K|, i.e., the number of ab-
stract over-approximations in a family can be exponentially in the number of
components in an interaction system. Sure enough, a family consisting of an
exponential number of abstract over-approximations requires an exponential
number of applications of the Edge-Match operator in order to calculate the
fixed-point. In the following we propose a domain such that Algorithm 2
runs in polynomial time in the size of the specifications of Sys on a family

of abstract over-approximations that is based on this domain.

Let Sys be an interaction system with interaction model IM and a set of
components K. We assume here that the interaction graph G of IM is
connected. Consider the domain C C 2% that consists of all subsets of the
set of components K that are of a fixed constant size d < |K], i.e., all
subsets of the same constant size d which is considerable smaller than |K|.
For a domain like this holds that |C| = (‘5') < |K|* and each set in C is
of constant size, i.e., Algorithm 2 runs in polynomial time in the size of the
specifications of Sys on the family of abstract over-approximations {S¢}cec-
In the following we argue that, depending on the structure of the interaction

graph G, we can neglect certain sets in C.

A Sophisticated Domain

Let Sys be an interaction system with a set of components K and C C 2% a
domain. Let {S¢}cec be the family of abstract over-approximations that are

constructed as in Lemma 3.2. Let {R¢}cocc be the Edge-Match fixed-point

91

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

of {Sc}cec. The following lemmas show that, under certain conditions,
we can modify C by replacing subsets in C against others, that are not
included in C, or even removing entire subsets such that, roughly spoken,
the information in {Rs}occ is preserved in the Edge-Match fixed-point of
the family that is based on the modified domain.

The first lemma exploits the structure of the interaction graph of an in-
teraction model (see Definition 2.1 in Chapter 2) and shows that we can
restrict ourselves domains consisting of subsets of components such that the
interaction graph restricted to a subset is connected in a graph theoretic

sense.

Definition 3.10:

Let G = (V, F) be an undirected graph. A set of nodes V' C V is called
connected in G if any two nodes in V' are connected by a path and no
node in V' is connected by an edge to a node in V' \ V'. We say G = (V, E)

is connected if V is connected in G.

Let C C 2% be a domain with respect to an interaction system Sys with
a set of components K. Let G = (K, E) be the interaction graph of the
interaction model of Sys and D € C. We show that we can replace D by
a partition of D that consists of the connected subsets of components in GG

restricted to the components in D.

Lemma 3.5:

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K,{A,}ick,Int) and C a domain of IM. Let D € C where D is
the disjoint union of the sets Dy, D,, ..., D, such that D; (1 < i < k) is
connected in the interaction graph G of IM restricted to the components in
D.

Let C' = C\{D} and C = C'U{D;, D,, ..., D;}. Let {Rc}ccc be the Edge-
Match fixed-point of the family {S¢}eoec and {Rp}ocq be the Edge-Match
fixed-point of the family {S¢} ¢

92

3.3. PRECISENESS AND APPLICATION

Then the following two properties hold for the two families:
1. R = Ry for C € C' and

2. a transition ¢p — Rp qp is reachable in R, if and only if the transition
b, i>RID. C]b,. with ¢plp, = qp, and C]biD,. = C]b,. is reachable in R})i
for each 1 < < k.

Proof. The proof can be found in Appendix A on Page 200. O

The next lemma shows that we can remove a subset in a domain that is
included in another subset in the domain. Roughly spoken, the reason for
not including a subset in a domain is because the information that this
subset of components contributes to the refinement process is covered by

another subset of components already included in the domain.

Lemma 3.6:

Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K,{A;}ick,Int) and C a domain of IM. Let D;, D, € C with
Dy € Dyand C' = C\ {D;}. Let {Rc}cec be the Edge-Match fixed-point
of the family {Sc}cec and {R'C}Ce(c/ be the Edge-Match fixed-point of the

family {Sc}occr- Then we can conclude that
1. Ro = R for C € C" and
2. atransition gp, 3>RD1 qbl is reachable in Rp if and only if a transition
qp, 2>R,D2 qbQ with gp,dp, = qp, and qbQ¢D1 = qbl is reachable in R/DQ.

Proof. The proof can be found in Appendix A on Page 202. O

Let Sys be an interaction system with interaction model IM and a set of
components K and consider the domain C C 2% that consists of all subsets

of the set of components K that are of a fixed constant size d < |K].

Consider the domain C’ that results from C by removing all D € C where G
restricted to D is not connected and adding the connected sets in G restricted

to D, i.e., for each C € C' holds that G restricted to C' is connected. Let

93

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

{Rc}cec respectively {R/C’}Cec' be the Edge-Match fixed-points which are
calculated by Algorithm 2 from {S¢}cec respectively {S¢}oce- By Lemma
3.5 follows that for each D € C, if G restricted to D is connected, that
Rp = R}, and, if G restricted to D is not connected, that we can construct
Rp from the respective abstract over-approximations in {R'C}Ce(c/ that are

based on the connected sets in G restricted to D.

Consider now the domain C” that results from C’ by removing all D; € C’
if there is D, € C" with D; C D,. Let {R¢}oocr be the Edge-Match
fixed-point of {Sc},ccr that was calculated by Algorithm 2. By Lemma
3.6 follows that for each D € C' N C” holds that R}, = R}, and for each
D, € C"\ C" that we can construct R'Dl by projecting the transitions in an

. . 7 .
abstract over-approximation Rp, on D; where D, is a superset of D;.

The domain C” consists of all subsets C' of K with d components such that
the interaction graph G restricted to C' is connected. This domain is a
subset of the domain that consists of all subsets of size d, i.e., our runtime
analysis shows that Algorithm 2 runs in polynomial time in the size of the
specifications of Sys on a family of abstract over-approximations that is
based on this domain. Thus, this is the domain that we propose to use as a

basis for Algorithm 2.
Example 3.5:

The interaction graph G of the interaction model in Example 1.1 is depicted
in Figure 2.1 on Page 36. The Interaction model contains the set of compo-
nents K = {TER,;, TER,, GS, ADB, DB}, i.e., K consists of 5 components.

A domain C that consists of all subsets of size 3 includes (g) = 10 subsets.

The domain

C' = {{TER,,GS,ADB}, {GS, ADB, DB}, {TER,, GS, DB},
{TER,, GS, ADB}, {TER,, GS, TER, }, {GS, TER,, DB} }

consists of all subsets C' C K such that |C'| = 3 and the interaction graph G
restricted to C' is connected. This domain only consists of 6 subsets. If we

consider an interaction model with s > 2 terminals then a respective domain

94

3.4. CONCLUSION AND RELATED WORK

C that consists of all subsets of size 3 includes (5”;3) subsets (s terminals and
the 3 additional components GS, ADB and DB). If we consider a domain
that consists of all subsets C' C K with |C| = 3 and the interaction graph G
restricted to C'is connected then it is easy to see that each set consists of the

component GS and two arbitrary additional components. This is, there are

(sJ2r2 sJarQ)

less sets in this domain compared to the domain that consists of all subsets

) sets in this domain. In other words, in this example, there are (

of size 3.

Let Sys be an interaction systems with a set of components K. In summary,
we propose to use a domain C C 2% as a basis for a family of abstract
over-approximations in Algorithm 2 that consists of all subsets C of K such
that

1. C consists of d components for a constant d < |K| and

2. the interaction graph G with respect to the interaction model in con-

sideration restricted to the components in C' is connected.

There is no set in C that can be neglected by Lemma 3.5 or Lemma 3.6 and
each subset of K that consists of d components and is not in C is redundant
for the calculation of the fixed-point of a family of abstract over-approxima-

tions that is based on C.

A domain like that consists in the worst case of (‘5') < |K|* subsets and
each abstract over-approximation is of polynomial size in the size of the
specifications of Sys. By our runtime analysis of Algorithm 2 follows that
the algorithm runs in polynomial time in the size of the specifications of Sys

on a family of abstract over-approximations that is based on such a domain.

3.4 Conclusion and Related Work

In this chapter we presented a formal concept of over-approximations of

the global behavior of interaction systems. Such over-approximations suffer

95

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

from the state space explosion problem just like the global behavior that
is approximate. In order to circumvent this issue, we introduced abstract
over-approximations that are based on a subset of components of an inter-
action system and discussed that these abstract over-approximations induce
over-approximations of the global behavior of an interaction system while
they, depending on the size of the underlying subset of components, are of
polynomial size in the size of the specifications of the interaction system.
Furthermore, we described the Edge-Match operator that compares pairs
of abstract over-approximations in order to refine them and proposed an
algorithm that computes the fixed-point of a family of abstract over-ap-
proximations with respect to an application of this operator. We showed
under which assumptions our algorithm runs in polynomial time in the size
of the underlying interaction system. The assumptions relate to the number
of abstract over-approximations in a family and their individual size, i.e.,
the requirement for our algorithm to run in polynomial time is completely
depending on the domain of the family in consideration. We proposed a
subclass of families of abstract over-approximations that guarantees that we

can calculate the fixed-point in polynomial time.

The work most related to our abstract over-approximations which induce
over-approximations of a cooperating system modeled by the formalism of
interaction systems is [Min10]. Similar to our approach, [Min10| considers
not necessarily disjoint subsets of components of an interaction system and
introduces subsystems that are based on these subsets and the glue-code of
the system. The reachable state space of each subsystem is interpreted as
a compact representation of an over-approximation of the reachable state
space of the global behavior of the interaction system. In the following
we call these sets abstract state over-approrimations . Thus, the approach
deals with over-approximations of the set of reachable global states and not
with over-approximations of the reachable global behavior, i.e., reachable
global transitions. The abstract state over-approximations are refined by a

technique called Cross-Checking that, similar to the Edge-Match operator,

96

3.4. CONCLUSION AND RELATED WORK

compares pairs of abstract state over-approximations and removes a subsys-
tem state go if there is an abstract state over-approximation with no state
that agrees with g~ on shared components. This is, our refinement approach
uses a similar course of action while we use the information that is provided
by the glue-code in our techniques. Thus, it is easy to see that if we interpret
the sets of states in the Cross-Checking approach as abstract over-approxi-
mations in our setting then our approach results in more refined abstract
over-approximations. In Chapter 5 we introduce several examples and point
out the advantages of our approach over the Cross-Checking approach. In
addition [Min10] introduces an approach to establish deadlock-freedom in
interaction systems in polynomial time by an approach that is based on the
analysis of abstract state over-approximations. The approach is briefly in-
troduced in Chapter 4 in Section 4.3 as the waiting chain approach. We
show by examples that our approach to establish deadlock-freedom and the
waiting chain approach are incomparable, i.e., there are deadlock-free sys-
tems where our approach succeeds to establish deadlock-freedom and the

waiting chain approach fails and vice versa.

[CHM™ 93| considers a partitioning of all subsystems in a cooperating sys-
tem and performs reachability analyses on, so called, “subautomata” that are
based on a set in this partition. Like in our approach, these subautomata
are compact representations of over-approximations. The subautomata are
based on pairwise disjunct subsets of subsystems, i.e., there is no way to ap-
ply a refinement approach based on the Cross-Checking or the Edge-Match
operator. An approach that comes close to our approach is introduced in
[GDHHI8| where the reachable state space of synchronous hardware that
is modeled by Mealy machines [Mea55| is approximated. The Mealy ma-
chine formalism comes very close to the formalism of interaction systems.
The approach deals exclusively with the construction of compact representa-
tions of over-approximations. Similarly to our approach and the approach in
[Min10], the authors consider not necessarily disjoint subsets of subsystems

and interpret the reachable state space of a system based on one of these

97

CHAPTER 3. A REFINEMENT TECHNIQUE FOR
OVER-APPROXIMATIONS

subsets as a compact representation of an over-approximation of the reach-
able state space of the Mealy machine in consideration. Thus, the approach
constructs abstract state over-approximations of a Mealy machine. In con-
trast to [Min10] the reachable state spaces are constructed simultaneously
and the refinement of the abstract state over-approximations is achieved by
cofactoring with the so far explored state spaces. Similarly to [Min10] and
in contrast to our refinement approach, the approach in [GDHH98| consid-
ers the state transitions only for state space explorations and not for the
refinement process of the abstract state over-approximations, i.e., the ap-
proach considers only over-approximations of the reachable state space and
not over-approximations of the reachable transitions. In [GD99] the authors
use this approach in order to establish invariants (a subclass of safety prop-
erties) by a combined forward reachability analysis from the initial state of
a Mealy machine and backward reachability analysis from states that harm

an invariant in consideration.

Introduced in [ACO05] is a technique that is based on a sufficient condition
in order to establish deadlock-freedom in finite state concurrent programs
in polynomial time. The approach checks a condition that guarantees that
there is an over-approximation of the global behavior of a system in con-
sideration such that every time a subsystem changed its state it is ensured
that this subsystem either does not block any cooperation or can partici-
pate in a cooperation. If the initial state is deadlock-free then this condition
guarantees deadlock-freedom in a system. The condition is checked by an
analysis of all abstract over-approximations that are based on subsets of
3 subsystems such that the interaction graph restricted to a subset is con-
nected, i.e., in contrast to our approach the authors do not consider abstract
over-approximations based on d # 3 subsystems. Similarly to the waiting
chain approach in [Min10] the analysis of the abstract over-approximations
is based on the refutation of certain waiting conditions among local states

of the subsystems.

98

Chapter 4

Establishing Deadlock-Freedom

4.1 Introduction

Verifying properties of a system is a crucial part in the process of system
design. Given system specifications, in system design a model in a formal
language is constructed that should meet the specifications. Deciding various
properties in interaction systems is PSPACE-complete [MCMO08c]|, i.e., for
certain system properties, we can not expect that there is a technique that
decides this property in time polynomial in the size of an input interaction
system. Particularly, deciding the system property of deadlock-freedom is
PSPACE-complete, i.e., the property that states that there is no global
state reachable in the global behavior of an interaction system that is a
deadlock. Deadlock-freedom is an important and desirable system property
in cooperating systems. Especially systems that are critically required to
answer to unexpected or dangerous situations are crucially required to be
deadlock-free, e.g., a control component in a power plant that is in a deadlock

during an earthquake can block important safety precautions.

It is well known that the class of safety properties, i.e., properties that state

that “something bad does never happen” [Lam77, LS85], can be established

99

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

in a system by checking these properties in an over-approximation of the
system. This is, if “something bad does never happen” in an over-approxi-
mation of a system then it especially does never happen in the behavior of the
system. In particular, the property of deadlock-freedom is a safety property.
Thus, if an over-approximation of an interaction system is deadlock-free then
the there is no deadlock reachable in the global behavior as well. In Chapter
3 we introduced a concept of over-approximations of the global behavior of
an interaction system and abstract over-approximations that are based on a
subset of components and induce over-approximations of the global behavior.
In this chapter we describe how a family of abstract over-approximations can
be used in order to establish deadlock-freedom in interaction systems in time
polynomial in the size of an input interaction system. The general idea of
establishing an arbitrary system property is based on [Minl10]. Let Sys be
an interaction system with a set of components K, C C 2% a domain and
{R¢}cec a family of abstract over-approximations of the global behavior T’
of Sys. Let P be a system property and P’ a predicate on abstract over-
approximations such that from P'(R¢) is true for all C' € C follows that
P holds in Sys and the test whether P'(R) is true for all C' € C can be
achieved in polynomial time in the size of Sys. If P is a safety property, i.e.,
a property that states that “something bad will never happen” then we can
add the following intermediate step. If we can conclude from P'(R) is true
for all C' € C that there must be an over-approximation 7" of T such that
P holds for T' then we can conclude that P holds in T as well.

This chapter is organized as follows. In Section 4.2 we give a brief com-
pendium of definitions regarding linear time properties and safety proper-
ties. Section 4.3 introduces an approach for establishing deadlock-freedom in
interaction systems by analyzing a family of abstract over-approximations.
Furthermore, in Section 4.3 we compare our approach to an approach for
establishing deadlock-freedom in interaction systems that was introduced in

[Min10|. Section 4.4 concludes this chapter.

100

4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONS

4.2 Safety Properties and Over-Approximations

In this section we provide a brief compendium of the definitions of linear
time properties and the subclass of safety properties. We recapitulate the
well known theorem that states that safety properties can be established
in systems by testing these properties in over-approximations of the system
and we exemplify how a family of abstract over-approximations can be used
to guarantee that a safety property has to hold in an over-approximation of

a system. The notations in this section are based on [BKO08]'.

For a given transition system that describes the behavior of a system, we
have to define a labeling function that assigns sets of so called “atomic”
propositions to the states of the transition system, e.g., a system that models
an ATM has states to which we could assign atomic propositions like “a user

4

is logged in”, “a wrong pin was entered” or “ERROR 37 occurred”. These
are propositions that are guaranteed in a fixed state of the system and are
independent from states being visited previously or afterwards. The paths
of a system induce sequences of sets of atomic propositions. A linear time
property is defined by a set of sequences of sets of atomic propositions. A
path in a system fulfills a linear time property if the induced sequence of
propositions is included in the linear time property and a system fulfills a
linear time property if the induced sequence of each path is included in the

linear time property. In the following we formally introduce this concept.

Definition 4.1:

Let S = (Q, A, —g,¢") be a transition system with transition relation —¢C
Qx AxQ. A finite path in S is a finite sequence of states T = ¢°¢'¢* ..., ¢*
such that for each 0 < i < k — 1 there is a transition ¢' = ¢ in S.
Analogously, an infinite path in S is an infinite sequence of states 7" =
¢"¢"'¢* ... such that for i > 0 there is a transition ¢ = ¢'™* in S. Note that

a finite respectively infinite path starts in the initial state ¢°. A finite path

"In contrast to [BKO08] we allow a transition systems to contain reachable deadlocks,

i.e., in some points the following definitions differ from the concepts in [BK08].

101

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

is called maximal if it ends in a deadlock.

Let Pathy;,(S) be the set of all finite paths in S and Path(S) the set of all

infinite and maximal finite paths in 5.

If there are atomic propositions assigned to the states of a transition system
then a finite path in the system induces a sequence of sets of atomic propo-
sitions. These sequences are called traces. A linear time property is defined
by a set of sequences of sets of atomic propositions and a transition systems
fulfills a linear time property if all traces of the system are included in the
property.

Definition 4.2:

Let S = (Q, A, —>S,q0) be a transition system, AP a set of atomic propo-
sitions and Lg : Q — 27 a labeling function that assigns a set of atomic
propositions to each state in Q. Let 7 = ¢°¢'¢*....¢" € Pathsy;,(S) be a

finite path in .S, then the trace of 7 is the sequence

trace(r) = Ls(q") Ls(q") Ls(¢*) .. Ls(q").

Let Tracesy;,,(S) = {trace(r)|r € Paths,(S)} be the set of all traces
of finite paths in S. Analogously, for an infinite path 7" = ¢"¢'¢*...
let trace(n’) = Lg(q")Ls(¢")Lg(¢%) ... and Traces(S) = {trace(n)|r €
Paths(S)}, i.e., the set of all traces of all infinite and maximal finite paths

in S.

A linear time property (LT-property) P, is a subset of (27)> where
the oo operator yields all finite and infinite concatenations of elements in
24P A transition system S satisfies an LT-property P, if and only if
Traces(S) C P,. We denote S satisfies P, as S |= P.

A well investigated subclass of LT-properties is the subclass of safety proper-
ties. Roughly spoken, an LT-property is a safety property if we can confirm
that the trace of a path in a transition system violates the property by only
examine a finite prefix of the trace, i.e., even if the trace in consideration is

of infinite length. A state in a system that is reached if we follow a path

102

4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONS

that corresponds to a prefix like that is often interpreted as a “bad situa-
tion” because following this path violates the safety property. Thus, a safety
property states that “something bad does never happen” [Lam77, 1.S85].

Definition 4.3:

Let AP be a set of atomic propositions and P, C (2‘413)C>O an LT-property.
The property Py, is called a safety property if for each infinite word o in
(247)>°\ P, (i.e., a word that does not belong to P,) there is a finite prefix
o' of o such that all words o” in (27)> where o’ is a prefix of o” do not

belong to P, as well.
Remark 4.1:

In other words, if o is an infinite trace in a transition system S such that o is
not in a safety property P, then only a finite prefix of o has to be examined
in order to refute that S = P,.

In the following example we illustrate the negated reachability problem in
interaction systems in the presented notation of LT-properties and argue why
this property is in fact a safety property. The negated reachability problem
consists of the question, given an interaction system Sys and a global state

q, whether ¢ is not reachable in the global behavior T' of Sys.

Example 4.1:

Let Sys = (IM,{T;}icx) be an interaction system with a set of compo-
nents K = {1,2,...,n} and interaction model IM = (K, {4, };ck, Int). We
assume that the local state spaces of the local behaviors are pairwise dis-
joint. Let T = (Q,Int,—r,¢°) be the global behavior of Sys and ¢ =
(¢1,9,---,9,) € Q a global state in T. We want to establish whether ¢
is not reachable in 7. Let AP be the set of atomic propositions that con-
sists of all states of the local behaviors in Sys, i.e., AP = U;cg@;. Let
Ly : Q — 2* be a labeling function with Lr(d) = {q1, ¢, .. .,q,} for
qd = (¢, ¢, ..,q,) € Q, i.e., the atomic propositions that hold in a global
state coincide with the respective local states. The LT-property

P = {a|cr € <2AP a1 g, - "qn})w}

103

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

consists of all finite and infinite sequences o of subsets of AP where the set

{01, %, - - -, q,} does not occur in o. Clearly,

e P is a safety property because a sequence that is not in P has a finite

prefix that ends in {¢;, ¢, ..., q,} and

e T |= P if and only if ¢ is not reachable in T

It is well known that a safety property can be established in a system by
checking this property in an over-approximation of the system. This state-

ment is based on the following theorem.

Theorem 4.1:

Let S = (Qg, Ag, =5, ¢3) and T = (Qr, Ay, =7, ¢7) be transition systems,
AP a set of atomic propositions and Ly : Qp — 247 and Lg: Qg — 24P
labeling functions. Then Tracesy;,,(T) C Tracess;,(S) if and only if for
each safety property P holds S =P = T |= P.

Proof. A proof can be found in [BKO0S]. O

Let T = (Q,A,—=7,¢°) and S = (Q, A, —4,¢") be transition systems such
that S is an over-approximation of 7. Furthermore, let AP be a set of
atomic propositions and L : () — 24P 4 labeling function, then it is easy to
see that T'races;,(T) C Tracesy;,(S). This is because each finite path in 7'
is also a finite path in S and thus each trace of a finite path in 7" is included
in the set of finite traces of S as well. This means, if one can show that an
arbitrary safety property P holds in S then P holds in T" as well. Clearly, if
P does not hold in S then we do not know whether P does or does not hold
inT.

Note, if S is an over-approximation of 7', that we can not conclude that T’
satisfies an arbitrary LT-property P which is not a safety property if S = P,
i.e., if Traces(S) C P. A maximal finite path in 7" the trace of which is not
included in P might be a proper prefix of a maximal finite or infinite path

in S. This is, we can not assume that Traces(T) C Traces(S) and that

104

4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONS

Traces(T) C P if P is not a safety property.

We consider abstract over-approximations of an interaction system Sys which
induce over-approximations of the global behavior T of Sys. Because of the
state space explosion problem we want to avoid to analyze the over-approxi-
mation that is induced by an abstract over-approximation in order to ensure
a safety property P in Sys. What we do is that we formulate a predicate
P’ on a family of abstract over-approximations such that if P’ holds on the

family then we can conclude that there is an over-approximation S of 7" with
S = P. By Theorem 4.1 it follows then that 7' = P.

The following example illustrates, based on Example 4.1, how we can use
abstract over-approximations in order to conclude that there is an over-ap-
proximation of the global behavior of an interaction systems where a certain

global state is not reachable.

Example 4.2:

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K,{A,;}ick, Int) and global behavior T'. Let P be the safety property
that was described in Example 4.1 that holds in 7" if and only if the global
state ¢ = (q1, G2, - - -, Gn) € Q is not reachable in T

Let R- be an abstract over-approximation of 7" with respect to the subset
of components C' C K. If ¢ is reachable in 7" then it follows from Definition
3.3 that ¢l is reachable in R.. Note, if ¢l is reachable in R then we
cannot conclude whether or not ¢ is reachable in T'. If ¢ is not reachable
in R then we can conclude that ¢ is not reachable in the global extension
E(R¢) of Re (see Lemma 3.1), i.e., for the over-approximation F(R¢) of T
holds that E(R¢) = P. It follows by Theorem 4.1 that 7' = P as well.

Clearly, if gl is reachable in R, then a refinement by the Edge-Match
operator, with other abstract over-approximations, might result in a refined
version Ry where ¢l is not reachable, i.e., an abstract over-approximation
that suffice to establish that ¢ is not reachable in T'.

105

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

4.3 An Approach to Establish Deadlock-Freedom

In this section we discuss how we can establish whether there is no dead-
lock (see Definition 1.4) reachable in an interaction system by considering
a family of abstract over-approximations, i.e., we want to establish whether

an interaction system is deadlock-free.

Our approach deals with the identification of states in abstract over-appro-
ximations that cannot be projections of reachable deadlocks in the global
behavior T of an interaction system Sys. If there is one abstract over-ap-
proximation R of T" where no state can be the projection of a reachable
deadlock then we can conclude that there must be an over-approximation
T' of T where no reachable state is a deadlock. This is because the respective
projection of each reachable state in 7' is reachable in R. Deadlock-freedom
is a safety property, i.e., we can continue to conclude that T is deadlock-free

as well.

In the following we define the system property of deadlock-freedom in inter-
action systems as an LT-property. Let Sys = (IM, {T;},cx) be an interaction
system with interaction model IM = (K, {A,},cx, Int) and global behavior
T = (Q,Int,—)T,qO). Let AP = Int be a set of atomic propositions and
L:Q — 247 with

L(q) = {a € Int [Vicxi(a) # 0 = i(a) C en(q;)},

i.e.,, @ € L(q) if and only if in the global behavior T' the interaction « is
enabled in ¢q. The state ¢ is a deadlock if and only if no interaction is enabled
in ¢, i.e., if and only if L(q) = (. The interaction system Sys is deadlock-free
if there is no deadlock reachable in 7. Thus, deadlock-freedom of Sys can

be specified as an LT-property by

Pyy = {U‘U S <2AP \ {(Z)})Oo}a

i.e., all sequences of subsets of AP where () does not occur in the sequence.

Clearly, Py is a safety property, because a sequence of subsets of AP violates

106

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

Py if and only if this sequence has a finite prefix that ends in the empty
set. Thus, if S is an over-approximation of 7" and S | Py then it follows
by Theorem 4.1 that T' |= Py, i.e., we can test whether P, holds in T'
by checking whether P, ; holds in an over-approximation S of T'. Given an
abstract over-approximation R = (Q¢, Int, =g, ¢&) of T', we can construct
the induced over-approximation F(R) and check a safety property in E(R).
Clearly, this course of action is not feasible if 7', and thus E(R) as well,
is a complex transition system. We want to check Py efficiently on an
abstract over-approximation R of 7. Each reachable state in R could be
the projection of a deadlock that is reachable in T. Let ¢ € Q- be a
reachable state in R and E(qr) C @ be all states ¢ € @ with ¢lc = qc.
We can conclude that g~ cannot be the projection of a reachable deadlock
in T if there is no ¢ € F(qc) with L(q) = (. Clearly, Sys is deadlock-free
if this property holds for each reachable state in an abstract over-approxi-
mation. This is a rather strict and naive approach to establish deadlock-
freedom because a deadlock in E(q.) is not necessarily reachable in 7. In
the following we describe how this approach can be improved by comparing
different abstract over-approximations in a family of abstract over-approxi-

mations.

We illustrate our approach on the example of the Dining Philosophers Prob-
lem and show additionally how we can use the information that our ap-
proach collects in order to remove possible deadlocks in this example in a

non-automatic way.

Example 4.3:

In the remainder we demonstrate our approach to establish deadlock-freedom
on variations of the well known Dining Philosophers Problem that was in-
troduced by E. Dijkstra [Dij02]. The Dining Philosophers Problem is used
to describe parallel processes which share a bounded number of resources.
Basic version of this problem are not deadlock-free, i.e., the system might

reach a state where no further activity is possible.

107

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

The problem is described as follows. We have n > 2 philosophers, numbered
consecutively, sitting in an anticlockwise order around a table. Each philoso-
pher has a plate of food in front of himself. Placed between two philosophers
is a fork which has to be shared between these neighboring philosophers. A
philosopher can think or eat. If a philosopher thinks he does not have any
forks in his hands. If a philosopher wants to eat he needs both forks, left
and right, i.e., if a philosopher eats then the two neighboring philosophers
on his left and right cannot eat because the shared forks are in use. If a
philosopher already took one fork, either its left or right, then he will not
put it back on the table until he took the respective other fork and finished

eating.

If the philosophers are allowed to choose nondeterministically which fork
they take first (provided the respective fork lies on the table) then it is easy
to see that a model that is based on these specifications is not deadlock-free.
If all philosophers on the table are holding either their left respectively right
fork then each philosopher waits to take his right respectively left fork.

In the following we model the Dining Philosophers Problem with n philoso-
phers by an interaction system Sys,. Afterwards we describe abstract over-
approximations of the model and show which states indicate that the global
behavior T" of the Sys,, is not deadlock-free. Later we describe how we can
use these states in the abstract over-approximations in order to modify the

model such that it becomes deadlock-free.

Let Sys,, = (IM, {T;};cx) with n > 2 be an interaction system with interac-
tion model IM = (K, {4, };ck,Int). Let

K - {Phllo, Phlll, ceey Ph'l.lnfl, FOT/{JO, FOTle, ey FOTknil}

where Phil; models philosopher ¢ and Fork; models fork ¢ for 0 < i < n. We
assume that fork 7 is placed on the right of philosopher . The set of ports
Appg, respectively Ap,,,. for philosopher i respectively fork i with 0 <@ <n

is specified as follows.

108

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

Appy, = { take_left;, // take the left fork
take right;, // take the right fork
put_left,, // put the left fork on the table
put_right; // put the right fork on the table}

Apor, =1 take;, // take this fork
put; // put this fork back on the table}

Each philosopher can take the fork on his left respectively right and put these
forks back on the table. The following interactions model this cooperation
between philosopher Phil; and the fork on his left Fork; ; and the fork on
his right Fork; for 0 < i < n. Note that we assume a modulo n arithmetic,
i.e.,if i —1= —1 then 7 — 1 refers ton — 1 and if i + 1 = n then 7 4 1 refers
to 0.

tl; = {take_left; take;_ .}

tr; = {take_right; take;}

pl; = {put_left;,put;_}

pr; = {put_right;, put;}

Let Int = {tl;, tr;, pl;, pr;|0 < i < n} be the interaction set of Sys,. Figure
4.1 shows the local behavior of philosopher Phil; respectively Fork; for
0 <4 < n. The local behavior Tpy;. is depicted in 4.1a and T, in 4.1b.
Note, for ease of presentation, we subscript the states in Figure 4.1 by ¢

instead of Phil; respectively Fork;.

By this, Sys,, is fully specified. Figure 4.2 shows the interaction graph for
the interaction model of Sysg, i.e., for a model of the Dining Philosophers

Problem with 8 philosophers.

In the following we examine a family of abstract over-approximations of Sys,,
that is constructed and refined as described in Chapter 3. Let C be a domain
that consist of all subsets of K with 3 components where the interaction

graph restricted to these three components is connected. There are two

109

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

take left; take right;

(a) Tpha, (b) Trork,

Figure 4.1: Local behavior of component Phil; and Fork; (0 < i < n) in
Example 4.3.

Figure 4.2: Interaction graph for the interaction model of Sysg.

110

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

forms of subsets in C, these are C; = {Fork;, Phil,,,, Fork; .} and D; =
{Phil;, Fork;, Phil;,;} for 0 < i < n, i.e., two forks and one philosopher and
one fork and two philosophers. Let { Rc}ccc be the family of abstract over-
approximations that was constructed by Algorithm 2 (Chapter 3 on Page
89) from the family {Sc}cec (see Lemma 3.2), i.e., {Rc}coec is the Edge-
Match fixed-point of {Sc}cec. Figure 4.3 shows R., and Figure 4.4 Rp,
for 0 <7 < n. Not depicted are transitions that are labeled by interactions
in which no component in C; respectively D, participates. The local states

in the abstract over-approximation R¢. respectively Rp. are depicted in the
order Fork;, Phil; ,, Fork, , respectively Phil;, Fork;, Phil;, .

As mentioned, there are exactly two reachable deadlocks in the global be-
havior T" of Sys,,. These are the states where all philosophers have taken
their fork on the left respectively right. Certainly, the projections of these
states are reachable in the abstract over-approximations. In Figure 4.3
these are the states (¢;,¢iv1,¢1) (marked red) respectively (g, 71, Gist)
(marked blue). In Figure 4.4 these are (¢;,q;,¢iy1) (marked red) respec-
tively (¢, ¢, qi2+1) (marked blue). In the following we describe how we can
automatically exclude that some of the states in the abstract over-appro-
ximations are projections of reachable deadlocks in the global behavior of

Sys,,-

4.3.1 Projected Deadlocks

Given an interaction system Sys with a set of components K and a family
of abstract over-approximations { Rc}oec based on a domain C C 2\ {0}
we describe here an approach to identify states in the abstract over-appro-
ximations that cannot be projections of reachable deadlocks in the global
behavior T' of Sys. If for one abstract over-approximation Ry (C' € C) each
reachable state ¢~ € () was ruled out by this approach then we can conclude
that Sys is deadlock-free. This conclusion is justified by the fact that each
reachable state ¢ €) in T projected on C'is reachable in R,. Thus, if none

111

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

0 2 1
di>9i+15 9i+1
q17q1+1 Q1+1

m

pr; tr;

0 4 1
9i>9i4+1>9i4+1

tr; pr; pligo

tliyy

0 0 1
i dit159i41

gy

T 1 0
9ir9i4+1>9i+1

Figure 4.3: The abstract over-approximation Rg, (0 <i < n). Local states
are depicted in the order Fork;, Phil; ,, Fork;, .

112

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

Plivi

Plity

115
9i:9i: 90

Figure 4.4: The abstract over-approximation Rp (0 < i < n). Local states
are depicted in the order Phil;, Fork;, Phil; .

113

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

of the reachable states in Ry are projections of reachable deadlocks then
there is an over-approximation S of T" which is deadlock-free and thus, as of

Theorem 4.1, T' is deadlock-free as well.

The basic idea behind this approach is based on the following three obser-

vations. First we need one additional definition.

Definition 4.4:
Let Sys = (IM, {T}};,cx) be an interaction system with interaction model
IM = (K,{A;}ick, Int), C a nonempty subset of K and ¢ € Q. Let

enC(qe) = {a € Int [Viegi(a) #0 = (i € C Ni(a) Cen(g))}
We say that an interaction o € enC/(qo) is complete in ¢..

In other words, let go € Q¢ be a state then enC(q) consists of all interac-
tions o € Int in which only components in C' participate and each compo-
nent that participates in « enables its respective port. Note that each global

state that projected on C' equals g is assured to enable all « € enC(qc).

Observation 4.1:
If g0 € Q¢ is a state that is not reachable in R, then g~ cannot be the
projection of a reachable deadlock ¢ in T because a state ¢ with ¢l = q¢

is not reachable in 7" in the first place (see Definition 3.3).

Observation 4.2:

If o € Q¢ is reachable in R and enC(qn) # 0 then g cannot be the
projection of a reachable deadlock in 7". Let o € enC/(qc) then each port in
a is enabled by the respective components in .. These ports are enabled

in each global state ¢ with ¢lc = q¢ as well, i.e., a € en(q).
Observation 4.3:

If o € Q¢ is reachable in R and there is another abstract over-approxi-
mation Ry with D # C such that for each reachable state qp € Qp in Rp
with ¢olp = ¢plc holds that either

e it is confirmed that ¢y cannot be the projection of a reachable deadlock

in T or

114

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

e for the state qoup € Qcup With goupde = qc and qoupdp = ¢p holds
enC(goup) # 0

then g~ cannot be the projection of a reachable global deadlock as well.
This is because, for each state ¢ reachable in 7" with ¢l = ¢ holds that
either ¢l p is not the projection of a deadlock or ¢ is assured to enable an

interaction in which only components in C'U D participate.

Based on the above observations we can formulate an approach that identi-
fies states in a family of abstract over-approximations that can not be the
projection of a reachable deadlock in the global behavior of an interaction
system. Observation 4.1 and 4.2 affect only individual abstract over-appro-
ximations, i.e., there is no cross reference between pairs of abstract over-ap-
proximations. We use these two observations to construct an initial set of
states for each abstract over-approximation that we want to refine by Obser-
vation 4.3. Observation 4.3 considers pairs of abstract over-approximations.
Algorithm 3, named C'RIT, describes an approach in pseudocode, that ap-
plies the above observations on a family of abstract over-approximations in
order to construct a set of states for each abstract over-approximation in the
family that consists of states for which we cannot exclude that they are pro-
jections of reachable deadlocks. The family of abstract over-approximations

can be constructed as in Algorithm 2 (Chapter 3).

Observation 4.1 is applied in Line 1 in Algorithm 3 where ReachStates(R¢)
returns all reachable states in the abstract over-approximation R.. The
second observation is applied in Line 2 where complete(H) returns all states
qc in He for which enC/(qe) # 0. The third observation is used in the while-
loop in Line 4 to 20 where pairs of sets of states are compared. The for-loop
in Line 6 to 19 runs through all pairs C, D € C. For each state qo € Hy we
assume that this state is not the projection of a reachable deadlock — in Line
8 this is indicated by assigning true to the variable notCritical. The state
qc is then compared to each state qp € Hp, i.e., we only consider states

g and qp that can be projections of reachable deadlocks. In Line 12 the

115

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

algorithm checks whether there is an interaction that is complete in a state
qdcup With goupde = g0 and qoupdp = qp- If there is one such state where
no interaction is complete then we have to assume that g is the projection
of a reachable deadlock — this is marked in Line 12 where false is assigned

to the variable notCritical.

The while-loop terminates if there is no new state found that cannot be the

projection of a reachable deadlock.

Algorithm 3 CRIT({R¢}cec)
1: {Ho}oee {ReachStates(Re)}oec
2: {Hoteee < {He \ complete(He)}ceo
3: {Ho}oee + NIL
4: while {H¢}cec # {Hc}oec do

5. {Ht}oee + {Hc}eec

6: for C,D e C do

7 for gq- € Ho do

8: notCritical <—true

9 for qp € Hp do

10: if golp = qplc then

11: Let gcup € Qcup With geuple = qc and qeupdp = 4o
12: notCritical < notCritical A enC(qcup) = 0
13: end if

14: end for

15: if notCritical then

16: He + He \ {ac}

17: end if

18: end for

19: end for
20: end while

21: return {Hg}eoec

In Chapter 3 we discussed under which assumptions the fixed-point of a

116

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

family of abstract over-approximations with respect to an application of the
Edge-Match operator can be calculated in polynomial time. This is the case
if the family consists of polynomial many abstract over-approximations and
each abstract over-approximation is based on a number of components which
is bounded by a constant d. This implies that the number of states in each
abstract over-approximation is bounded polynomially in d. This means, if
we assume that a family of abstract over-approximations is conform to this
assumptions then Algorithm 3 runs in polynomial time. This is because
we start with polynomially many states that we consider to be possible
projections of deadlocks and in each execution of the while-loop in Line 4 to

20 at least one of these states is removed.

Remark 4.2:

In the following we say a state in an abstract over-approximation is marked
as critical if we have not yet ruled out that this state is the projection
of a reachable deadlock in the global behavior of the interaction system in

consideration.

Example 4.4:

If we apply Algorithm 3 on the family of abstract over-approximations of
our model of the Philosophers problem, described in Example 4.3, then we
start with 13 reachable states in an abstract over-approximation R¢. and 27
reachable states in an abstract over-approximation R for 0 < i < n (see
Line 1), i.e., He, contains 13 and Hp contains 27 critical states. After re-
moving all states from H¢, respectively Hp for 0 <i < n with enC(qc,) # 0
respectively enC/(qp,) # 0 the refined sets contain 3 respectively 7 remain-
ing critical states (see Line 2). After the while loop from Line 4 to Line
20 was executed, i.e., the refinement described in Observation 3 was ap-
plied, the updated set H¢, contains 3 critical states and Hp_ 4 critical states
(0 <i<n).

The returned family of sets of states consists of n sets of size 3 and n sets
of size 4. Remember that there are two reachable deadlocks in the global

behavior of a model of the Dining Philosophers problem — the states where

117

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

each philosopher picked up the fork on his left respectively right. This is, we
know that each abstract over-approximation contains exactly two states that
are actually projections of reachable deadlocks, i.e., this example shows that
we cannot expect to rule out all states that are not projections of reachable

deadlocks by this approach.

In summary, we presented an approach that can be used to establish deadlock

freedom in interaction systems by analyzing a family of abstract over-appro-
ximations of the system. In order for the approach to run in polynomial
time we propose to use a family of abstract over-approximations that are
constructed as described in Section 3.3 in Chapter 3. We exemplified our ap-
proach on a model of the Dining Philosophers problem. The global behavior
of this model is not deadlock-free. The example shows that our approach is
able to exclude a great amount of states from being critical, i.e., the excluded
states can not be projections of reachable global deadlocks. Nevertheless,
there are states in the example, that our approach has marked as critical,
which are not projections of reachable global deadlocks. However, we can
use the obtained information, i.e., the family of sets of critical states, in order
to modify the system such that our approach is successfully, i.e., such that
there is at least one abstract over-approximation where we can conclude that
no state could be the projection of a reachable deadlock. This approach can
make sense even if all states marked as critical are actually false-positives,
i.e., the system in consideration is deadlock-free. Our intention is, if the
system in consideration is far to complex to be verified by exact techniques
as LTL or CTL model checking then we modify the system such that the
modifications preserve the initial design specifications sufficiently while our

approach succeeds to establish deadlock-freedom.

The following example illustrates how we can modify our model of the Dining

Philosophers in order to establish deadlock-freedom by our approach.

Example 4.5:

Consider the family of sets of critical states { Ho }cec from Example 4.4, i.e.,

118

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

take right,

put__righty put_leftq

take left;

put_lefty put _righty

Figure 4.5: Modified behavior of philosopher Phil;.

the output of Algorithm 3 applied on the family of abstract over-approxi-
mations described in Example 4.3. In our example { Ho}ccc consists of sets
He and Hp for 0 <4 < n. Included in He, (Cy = {Forky, Phily, Fork,})
is the state (qé, qa, q}), i.e., the state where Fork, and Fork, are taken and
Phil; has taken only the fork on his left (this state is marked red in Figure
4.3). This state is the projection of the reachable global deadlock where each
philosopher took the fork on his left and waits to take the fork on his right.
We want to modify the system such that this state becomes unreachable
in R¢,, i.e., such that this state does not appear in H¢ . In R¢ the state
(¢o.q1.q1) can only be reached if philosopher Phil; took the fork Fork, on
his left side and the fork Fork; on his right side was obtained by philosopher
Phily (who is not included in Cj). In order to prevent this situation we can
modify the behavior of philosopher Phil; such that he takes the fork on his
left only if he already holds the fork on his right, i.e., we modify the behavior
of philosopher Phil; as depicted in Figure 4.5.

Roughly spoken, this modification prevents the deadlock in the global be-
havior where each philosopher took the fork on his left and waits for the
fork on his right, i.e., the deadlock where each philosopher took the fork on
his right and waits for the fork on his left should still be reachable in the

119

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

take left

put__righty put_leftg

take _rightg

put_lefty put_rightg

Figure 4.6: Modified behavior of philosopher Phil.

global behavior of this modified interaction system. Actually, if Algorithm
3 is applied on this modified system (where the family of abstract over-
approximations is constructed just like in the original system) then each
abstract over-approximation contains exactly one critical state. This state
is the projection of the deadlock where each philosopher took the fork on his
left and waits for the fork on his right. The reason for this is that the state
(qé, a,q) becomes unreachable in the abstract over-approximation R, and
other states that remained marked as critical in the original version are now

confirmed to be not projections of deadlocks with respect to Observation 3.

In the same manner we can modify, e.g., the behavior of philosopher Phil,
such that he only waits for the fork Fork, on his right if he already took the
fork Fork,_, on his left, i.e., we modify the behavior of philosopher Phil, as
depicted in Figure 4.6. This modification should prevent that the projection
of the (former) reachable global deadlock where each philosopher took the
fork on his right and waits for the fork on his left is reachable in the abstract

over-approximation with respect to C, of the modified system.

It is easy to see that the modified system is deadlock-free. And, as expected,
after our approach applied to this modified system there is no state marked

as critical in any abstract over-approximation, i.e., the modified system is

120

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

confirmed to be deadlock-free. Note that projections of the reachable global
deadlock where each philosopher holds the fork on his left respectively right
in the original system are still reachable in respective abstract over-approxi-
mations of the modified system. Nevertheless, our approach confirmed that

these projections can not be projections of reachable global deadlocks.

4.3.2 Comparison to the Waiting Chain Approach

In Chapter 3 in Section 3.4 we mentioned that our introduced refinement
approach is similar to an approach that was introduced in [Min10] where
objects are considered that are similar to abstract over-approximations. In
addition an approach for testing whether an interaction system is deadlock-
free is described in [Min10]. The approach exploits a waiting structure be-
tween local states in a deadlock and attempts to refute that there is a state
reachable in the global behavior that exhibits a certain waiting structure by
analyzing respective waiting structures in abstract over-approximations. In
the following we give a brief and merely informal description of the approach
in [Min10] and provide two examples that show that our approach and the
approach in [Min10| are incomparable, i.e., there are systems where our ap-
proach succeeds and the approach in [Min10] fails and vice versa. Thus, we
argue that one approaches can be applied if the other fails in order to estab-
lish deadlock-freedom in an interaction system. In the following we refer to

the approach in [Min10] as the waiting chain approach.

The waiting chain approach is based on the following waiting structure on
global states in an interaction system.

Definition 4.5:

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K, {4;};cx, Int) and global behavior T' = (Q, Int, =1, ¢°). Let ¢ € Q
be a global state. The waiting graph of ¢ is a directed graph G(q) = (V, E)

with V = {q1,q,...,¢,} for ¢ = (¢1,,-..,¢,) and (g;,¢;) € E if and only
if there is a € Int with

121

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

e i(a) # 0 and j(«) # 0 and
o i(a) C en(g;) and j(a) € en(g;).

This is, ¢; enables a port that is included in an interaction . Component
J features a port that is included in a as well, but ¢; does not enable this

port. This is interpreted as g; waits on g;.

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K, {4;}ick, Int) and global behavior T = (Q, Int, =, ¢°). We assume
here that for each component ¢ € K each local state ¢; € (); enables at least
one port, this is, en(g;) # 0. Let ¢ € @ be a deadlock then it is easy to
see that G(q) contains a directed cycle. Each local state in g enables a
port that is included in at least one interaction and, as ¢ is a deadlock, no
interaction is enabled in ¢ because at least one local state does not enable
its corresponding port, i.e., each local state waits on at least one other state.
Note that it is possible that a global state ¢ € () is not a deadlock even if

G(q) contains a directed cycle.

The waiting chain approach, interpreted in our setting and our notations,
works as follows. Let C be a domain that consists of all C C K with |C] = d
for d < |K| and {R¢}cec a family of abstract over-approximations. Let
g € @ be a global state that is a deadlock, i.e., G(¢) contains at least one
directed cycle. Assume that ¢ is reachable in the global behavior T" of Sys
and one directed cycle in G(q) consists of local states of the components in
D C K. The approach now distinguishes two cases |D| < d and |D| > d, i.e.,
there are less or equal d local states involved in the cyclic waiting relation

and there are more than d local states involved.

If |D| < d then there must be C' € C with D C C and there is ¢o € Q¢
reachable in Ry such that ¢lp = golp. Thus, the directed cycle in G(q)
can be found in a respective representation of the waiting structure in ¢..
It follows that, if in each abstract over-approximation Ry with C' € C there

is no reachable state where local states are in a cyclic waiting relation then

122

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

there can not be a state reachable in the global behavior T" where < d local

states are in a cyclic waiting relation.

If |D| > d then for each chain of d local states on the cycle there must be
an abstract over-approximation, based on the respective components, where
the projection of ¢ on these components is reachable. The chaining waiting
relation is apparent in this projection. A first conclusion is, if for each
C € C there is no state go € Q)¢ reachable in R such that the local states
in go are in a chaining waiting relation then there can not be a deadlock
reachable in the global behavior T" of Sys where more than d components are
involved in a cyclic waiting relation. This observation can be strengthened
as follows. Let C,Cy € C and C,Cy € D such that ¢le, and gle, are in a
chaining waiting relation then it is clear that ¢lc, and gl¢, agree on shared
components. Thus, if a reachable state g~ € () in the abstract over-ap-
proximation R is in a chaining waiting relation and there is no abstract
over-approximation R for C' € C where a state g € @ is reachable such
that the local states in g, are in a chaining waiting relation and g- and g
agree on shared components then the local states in g~ can not occur in a
waiting chain in a cyclic waiting relation of a global state. This observation
can be used in order to exclude a state in an abstract over-approximation

from being involved in a cyclic waiting relation in a global state q.

The waiting chain approach attempts to exclude separately that there are
reachable global states where less or equal d local states or more than d local
states are in a cyclic waiting relation. If this succeeds then it is clear that
there can not be a reachable global deadlock, i.e., the system in consideration

is deadlock-free.

The waiting chain approach and our approach, that was introduced in Sec-
tion 4.3, are incomparable. This is, there are interaction systems that are
deadlock-free where the waiting chain approach fails to establish deadlock-
freedom and our approach succeeds and vice versa. We show this claim

by providing two simple examples. Example 4.6 introduces an interaction

123

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

system the global behavior of which is deadlock-free where our approach suc-
ceeds to establish deadlock-freedom and the waiting chain approach fails. On
the other hand, in Example 4.7 we describe a deadlock-free interaction sys-
tem where our approach fails to establish deadlock-freedom and the waiting
chain approach succeeds. The consequence is that one approach can be ap-
plied on an interaction system if the other fails. Nevertheless, we recommend
to apply our approach first. This is because the output of our approach con-
sists of a family of states from abstract over-approximations that could be
projections of reachable global deadlocks. States that are not in this family
can not be projections of reachable deadlocks, i.e., there is no need to apply
the waiting chain approach on these states.

Example 4.6:

Let IM = (K,{A4,;},cx,Int) be an interaction model with K = {1,2,3,4}
and A; = {left;, right;,all;} for i € K. We assume that the components
are arranged circularly in an anticlockwise order. For ¢ € K the port left;
models a communication with the component on the left, right; models a
communication with the component on the right and the port all, models
a cooperation among all components in K. Thus, let Int consists of the

following interactions:
o comm; = {right;,left;,,} for i € K where i + 1 = 5 refers to 1 and
e all = {all;]i € K}.

Let Sys = (IM, {T;};ck) be an interaction system. The local behavior of the
components in Sys is depicted in Figure 4.7. 4.7a depicts the local behavior

T, of component 1 and 4.7b depicts the local behavior 7T; of component i for
i€{2,3,4}.

Figure 4.8 depicts the global behavior T' = (Q, Int, =, ¢") of Sys restricted

to reachable transitions. Apparently, 7" is deadlock-free.

Let C be the domain that consists of all subsets of K of size 3, i.e., C =

124

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

right; right;

right;
(a) Ty (b) T; with ¢ € {2,3,4}

Figure 4.7: Local behavior of the components in Example 4.6.

0 0 0 0
41,92,43,44 commy
I 1 1 1
41,492,935 44

comm

2 0 0 0
91,92,93544

commg

2 0 1 1 2 0 0 1
91,92,93,44 91,92,93544

Figure 4.8: Global behavior T" of Sys in Example 4.6.

comm

{Cy, Cy, C3,Cy} with

C,={1,2,3},
Cy={1,2,4},
C3={1,3,4} and
C,={2,3,4}.

Let {Sc}cec be the family of abstract over-approximations that is con-

structed as in Lemma 3.2 and {Rc}cec be the family of abstract over-ap-

proximations that resulted from our refinement approach that is described
in Chapter 3.

The waiting chain approach does not work on this example, i.e., the ap-

proach is not able to conclude whether or not the global behavior T of Sys

is deadlock-free. The waiting graph G(q°) of ¢° contains a directed cycle

because the state ¢! is waiting on ¢y with respect to the interaction comm;,

¢ is waiting on qg with respect to the interaction comms, and so on. The

125

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

@) (@)
@) @)

Figure 4.9: Waiting graph G(¢°) in Example 4.6.

comm, comm,

0 0 4 720 0 0 0 0 4 7270 0

41,92, 93 41,92, 93 comms (g1, 42,44 41,92, 44

all comms all comms

A,
1 1 1 2 0 1 1 1 1 2 0 1
41+ 92+ 93) comm, "\41: 92, 93 (1. 92, 48)—omm; ql,qz,qQ) comimy
(a) R, (b) Re,

Figure 4.10: The abstract over-approximations R, and R, in Example 4.6.

waiting graph G(¢") is depicted in Figure 4.9. The initial state ¢° is a reach-
able state in 7', this is, all combinations of three states that are in a chaining
waiting relation in G (qo) are reachable in the respective abstract over-appro-
ximation in {S¢}cec (and in all abstract over-approximations that resulted
from a refinement by the Edge-Match operator). Thus, the respective states
in the abstract over-approximations contain a chaining waiting relation and
the waiting chain approach can not exclude that any of these states appears
in a cyclic waiting relation that involves more than three local states in a

reachable global state.

Our approach on the other hand applied to this example concludes that the
global behavior T" of Sys is deadlock-free. Figure 4.10 depicts the behavior

of the abstract over-approximations B¢, and R, .

Let us take a closer look at the abstract over-approximation R . The
state (g1, gs, q3) enables the interaction comm, and the state (¢7, g5, ¢3) the
interaction comm,. Both interactions only consists of ports from the com-
ponents in Cy, i.e., comm, is complete in (g1, ¢s,¢3) and comms is complete

in (q%, 0, qgl,) Thus, this two states can not be the projections of reachable

126

4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM

global deadlocks.

The only reachable states in R, that agree with (qf, 0, qg) € (¢, on shared
components are (g7, g5, q1) and (g3, g5, 7). The state (g7, g5, qq) can not be
the projection of a reachable deadlock because the interaction comm, is
complete in (¢i,qy,qy). There is no interaction complete in (q7, g5, qs) but
the interaction comms is complete in (¢7, g5, g5, q1). Thus, (¢i,¢,¢3) can

not be the projection of a reachable global deadlock.

The only reachable state in R, that agrees with (q?, 0, qg) € (¢, on shared
components is (¢, ¢y, q}). There is no interaction complete in (¢}, q5, q3),
however, the interaction all is complete in (¢}, g5, ¢5, ¢3), i-e., (¢}, ¢, ¢}) can

not be the projection of a reachable global deadlock.

This is, all reachable states in the abstract over-approximation R, can not

be projections of reachable global deadlocks, i.e., T is deadlock-free.

Example 4.7:

Let IM = (K, {A;}ick, Int) be an interaction model with K = {1,2,...,7}
and A; = {all},all}} for i € K. For component i € K, all; and all} are ports
for a communication among all components in K. Thus, let Int consists of
the two interactions all' = {all}|i € K} and all* = {all?|i € K}. Note that
the interaction graph G of IM is complete because both interactions in Int

involve all components in K.

Let Sys = (IM, {T;};ck) be an interaction system. The local behavior of the
components is depicted in Figure 4.11. 4.11a depicts the local behavior T}

of component 1 and 4.11b depicts the local behavior T of component ¢ with
i€{2,3,...,7}.

It is easy to see that the global behavior T = (Q, Int, —>T,q0) of Sys has
no reachable deadlock. In the global initial state ¢° only the interaction
all' is enabled. If all' was performed then the only enabled interaction is
all® which, if performed, leads back to the global initial state. Thus, 7" has
exactly the two reachable states (q?, @, ..., q?) and (q%, Q... q?).

127

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

() ()

ally ' allf alll, ali?

@)

(a) T} (b) T, with i € {2,3,...,7}

Figure 4.11: Local behavior of the components in Example 4.7.

0 0 0O

allt

1 0 O

all?

Figure 4.12: Behavior of the abstract over-approximation Sy, j ;) in Example
4.7.

Let C be the domain that consists of all subsets of K of size 3 and {S¢}ccc be
the family of abstract over-approximations that is constructed as in Lemma,
3.2. Let i # j # k be components in K. If 1 # 4,5,k then Sy, ;) only
consists of the initial state (g}, q;-), qn) with a self-loop that is labeled by all'
and all®>. For 1 # j, k the abstract over-approximation S{1,5,,) 1s depicted in
Figure 4.12.

For the two interactions in Sys holds that |all'| = |all?’| = 7, i.e., there is
no reachable state g € Qo in any abstract over-approximation S, with
C € C that enables an interaction that is complete in q¢-. Furthermore, for
C,, Cy € Cwith C) # C, there is no pair of states go, € Q¢,, q¢, € Q¢, such
that the state go,uc, € Qc,uc, With qouede, = 40, and qe,uc,de, = e,
enables an interaction that is complete in g c,. This is because for all
C1,Cy € C holds that |C] U Cy] < 6 and both interactions in Int need all 7

components to participate. Thus, our approach fails on this system because

128

4.4. CONCLUSION

Figure 4.13: Waiting graph G(¢°) of the global initial state ¢” in Example
4.7.

the system is deadlock-free and we can not exclude any state in the abstract
over-approximations in {Sc}cec from being the projection of a reachable
global deadlock.

The waiting chain approach on the other hand, applied on the family of ab-
stract over-approximations succeeds. Figure 4.13 depicts the waiting graph
of the global initial state ¢" = (¢}, ¢3, . ..,qv) of T. The local states g5, ..., ¢>
are waiting on the state ¢! because they enable their respective port for in-

teraction all* and ¢! does not enable the port all?.

The waiting graph for the state (¢, ¢y, ..., gv) has the same structure as the
graph in Figure 4.13 because the states Q... ,q? are waiting on the state
qi with respect to the interaction all'. All projections of these two graphs
on a subset of three local states contain neither a cyclic waiting relation nor
a chaining waiting relation that involves the respective local states. Thus,
the waiting chain approach, applied on this example, establishes deadlock-

freedom in the global behavior of Sys.

4.4 Conclusion

In this chapter we introduced an approach that can be used in order to es-
tablish deadlock-freedom in interaction systems by analyzing a family of ab-

stract over-approximations. Our approach attempts to conclude that there

129

CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM

is an over-approximation of the global behavior of an interaction system
that is deadlock-free. As deadlock-freedom is a safety property it follows
that the global behavior of the system in consideration is deadlock-free as
well. We argued that our approach runs in polynomial time under cer-
tain assumptions on the family of abstract over-approximations. Moreover,
we described, using a version of the Dining Philosophers problem (which
is not deadlock-free), how we can use the information that is calculated
by our approach in order to modify a system such that we can guarantee
deadlock-freedom. Additionally, we provided two examples which show that
our approach and the waiting chain approach that is described in [Min10]
are incomparable, i.e., if one approach fails to establish deadlock-freedom in

an interaction system the other approach can be applied.

130

Chapter 5

Results

5.1 Introduction

We implemented our approach to refine abstract over-approximations and
our approach to establish deadlock-freedom in a tool. In our tool we model
the local behavior of components and abstract over-approximations by BDDs
[Bry86]. BDDs offer the possibility to accomplish reachability analyses and
applications of the Edge-Match operator efficiently by operations on BDDs.
The symbolic representation of finite automata by BDDs is also the basis
of the symbolic model checking approach [BCM™92| where operations on
BDDs are used to model check complex systems. Our tool takes as input
an interaction system Sys in a description language and a parameter d > 1
where d is the number of components in an abstract over-approximation.
An example for a system given in the description language and the methods
that implement the Edge-Match operator and the reachability analysis can
be found in Appendix B. The tool constructs all “reasonable” over-approxi-
mations with d components as described in Section 3.3.2. The calculation
of all subsets C' with d components where these components are connected
in the interaction graph G of Sys restricted to C' is achieved by a function
that is based on an algorithm that is described in [MNO6]. The following

131

CHAPTER 5. RESULTS

additional software is used in the tool.

e JavaCC/JJTree, a Java compiler compiler is used to parse our descrip-

tion language of interaction systems'.

e BuDDy, an efficient BDD library written in C/C++ and developed by
Jorn Lind-Nielsen®.

e Java Native Access (JNA), provides an interface to the native library
BuDDy”.

e Graphviz layout programs, for the visualization of transition systems

and graph structures”.

e GraphViz. java, asimple API to call dot from Java programs by Laszlo

Szathmary®.

In the following we introduce several parameterized examples of interaction
systems and present results of our approach regarding the refinement of ab-
stract over-approximations that is described in Chapter 3 and our approach
to establish deadlock-freedom that is described in Chapter 4. The experi-
ments were made on a computer with a dual-core 2.53GHz CPU and 4GiB
RAM.

After each introduced example, we give a table that summarizes benchmarks
regarding the application of our tool on various model instances. The in-
stances differ on parameters that influence the number of components and
the sizes of the local state spaces of the model. Additionally, we provide
results from the application of the Cross-Checking operator [Min10] on the
respective example in order to compare this refinement approach with our
Edge-Match operator. The columns are labeled by parameters that where

used in a specific model instance. The rows are labeled as follows.

'see http://javacc. java.net/
%see http://sourceforge.net/projects/buddy/

%see https://github.com/twall/jna/

*see http://www.graphviz.org/Documentation.php

®see http://www.loria.fr/-szathmar/off/projects/java/GraphVizAPI/index.php

132

5.1. INTRODUCTION

| K| denotes the number of components in the model instance.
| Int | denotes the number of interactions in the model instance.

|@| is the size of the state space of the model instance. This includes
reachable and unreachable states, i.e., the size of the Cartesian product

of the local state spaces.

|C| is the number of abstract over-approximations in the family on
which we apply our refinement technique. The domain of our initial
family of abstract over-approximations is constructed as described in
Chapter 3 in Section 3.3.2. The size of the individual sets in the domain

is indicated in the respective model description.

Y|Qc| denotes the sum over the sizes of all state spaces of the ab-
stract over-approximations. This number includes initially reachable

and unreachable states.

Y.Reach is the sum over the number of reachable states of all initial
abstract over-approximations, i.e., abstract over-approximations that
are constructed as in Chapter 3 Lemma 3.2. This is the number of
states in all abstract over-approximations on which we have to ap-
ply our approach to establish deadlock-freedom if we do not use any

refinement techniques.

YCC denotes the sum over all states that remain in the fixed-point
with respect to an application of the Cross-Checking operator on the

family of abstract over-approximations.

Y.EM denotes the sum over all states that remain in the fixed-point
with respect to an application of the Edge-Match operator on the

family of abstract over-approximations.

% is the percentage of states from X|Q| that is not reachable in the
fixed-point with respect to the Edge-Match operator. This number

indicates the strength of our refinement approach as attempts to es-

133

CHAPTER 5. RESULTS

tablish deadlock-freedom (or another safety property) by analyzing
abstract over-approximations do not have to deal with states that be-
come unreachable by our refinement approach. This is, our approach
to establish deadlock-freedom applied to the reachable states of the ab-
stract over-approximations is less possible to produce a false-negative
if there are less artifacts in the abstract over-approximations, i.e., if

there are less states reachable.

e time is the time milliseconds that it takes to calculate the fixed-point

with respect to the Edge-Match operator.

e crit is the sum over the number of states that remain critical in all
abstract over-approximations in the fixed-point with respect to the
Edge-Match operator after an application of our approach to establish
deadlock-freedom. Note, if this numbers equals zero then our approach

ensures deadlock-freedom for the respective model instance.

5.2 Measurement-Grid

This example describes a grid of data storages that allow to store measure-

ment results from adjacent neighboring measurement station.

We consider an m x n (m,n > 1) grid of data storages (DS). Two verti-
cally respectively horizontally adjacent DSs share a measurement station V
respectively H that is placed in between the two storages — the border of
the grid is surrounded by vertical respectively horizontal measurement sta-
tions that are each used by only one data storage. A storage DS can decide
to compare measurement values of their horizontally respectively vertically
adjacent stations. If so, DS waits for both stations to connect. When the
connections are established, then DS performs [(I > 1) work-steps with
each station. This is, our example is parametrized by [, m and n. After the

work-steps are completed, both stations disconnect from D.S.

134

5.2. MEASUREMENT-GRID

Interaction Model

As an instance of the Measurement Grid example we consider a 2 x 2 grid G
with [= 1 work-steps during a connection between a data storage and mea-

surement stations. Let IMg = (K, {A;}ick, Int) be an interaction model.

The set of components K is given by.

K = {DS;;li=0,1Nj=0,1}U //data storages
{Vi;li=0,1Aj=0,1,2} U //vertical measurement stations

{H;;]i=0,1,2Aj = 0,1} //horizontal measurement stations

So far we did not describe, how a data storage DS obtains access to two
adjacent vertical or horizontal measurement stations. This is regulated by
a coordination between adjacent data storages. A data storage DS may
access two vertically (horizontally) adjacent measurement stations if there
is no conflict with the access of any of these stations by some other data

storages.

For + = 0,1 and j = 0,1 the set of ports ADSM, for DS, ; consists of the

following ports.

vp; ; : obtain vertical priority

hp; ; - obtain horizontal priority
;.; © a vertical station connects
hc; ; : a horizontal station connects

,J *
if;; : this storage is idling

vce

vw, ;. work-step with a vertical station

i
hw
vd; ;

hd

;.;1 work-step with a horizontal station
a vertical stations disconnects

;.; - a horizontal stations disconnects
For i = 0,1 and j = 0,1,2 the set of ports AVM, for V;; consists of the

135

CHAPTER 5. RESULTS

following ports.

cv; ; » connect to a data storage

i,J
wv; j: work with a data storage

dv; ; : disconnect from a data storage

The sets of ports AH”- for H;; (i =0,1,2 and j = 0, 1) are specified analo-
gously.

The interactions of IM are specified for ¢ = 0,1 and j = 0,1 as follows.

getPriorV, ; = {wpijiifij Z'fz}jJrl}l
getPriorH, ; = {hpi,ja i fic1 s ifi+1,j}1
connlLeft; ; = {heiji chi;}
connRight,; ; = {hecij chipi;}
connUp; = {vej,cvi i}
connDownM = {'Uci,ja Cvi,jJrl}
workLeft; ; = {hw;;,wh,;}
workRight; ; = {hw;;,whiy;}
workUp; = {vw; ;, wo;;}
workDown, = {'Uwi,ja wvi,j+1}
disConnLeft;; = {hd,; dh;;}
disConnRight; ; = {hd,;,dh;;}
disConnUp, = {vd,;,dv, ;}
disConnDown; ; = {vd;;, dv; 1}

Note: *: i f; j—1 is not included if j —1 < 0. Same goes for i f; ;1 if j+1 =mn,
Z.fl'*l,j lf'l — 1 < O and ,ifi+1,j lf ’l -+ 1 =nNn.

Let Int be the set that consists of these interactions for 2 = 0,1 and j = 0, 1.

Figure 5.1 shows the components of a 2 x 2 grid.

136

5.2. MEASUREMENT-GRID

Vo0 Vio

Hy o DSy 0 Hy DSy Hy g

Vo1 Via

Hg DSy 1 Hy DSy Hy

Vo,2 Vi

Figure 5.1: Components of a 2 x 2 grid.

Figure 5.2: Behavior of the components of Sys,.

Interaction System

Let Sysg = (IMg, {7} }ick) be the interaction system where the local behav-
ior of the components is specified as follows. Figure 5.2 shows the behavior
of the components of Sys. For better readability, we omitted the subscripts
in the port names. Figure 5.2a shows the behavior TDSM_ for i = 0,1 and
7 =0,1, Figure 5.2b the behavior Tvm_ fori=0,1and j =0,1,2 and Figure
5.2c the behavior Ty, fori=0,1,2and j =0,1.

Results & Discussion

Table 5.1 shows benchmarks of the Measurement-Grid Example for d = 3,
i.e., for each instance we considered a domain where all subsets of com-

ponents are of size d = 3. The columns are labeled by (n,m,l), i.e., an

137

CHAPTER 5. RESULTS

instance is an n X m grid with [working steps during a connection to a
data storage. For each family of abstract over-approximations holds, after
an application of our approach to establish deadlock-freedom, that there is
no critical state in any abstract over-approximation, this is, our approach
succeeds and guarantees that there is no reachable deadlock in the global
behavior of our model instances. Our refinement approach has an advantage
over the Cross-Checking approach for each instance. In fact, there is no state
removed from the initial reachable states by the Cross-Checking operator,

i.e., the Cross-Checking approach does not cause any refinement at all.

System | (2,2, 1) (5,5,5) | (10,4,6) (7,7,5) | (10,10,5)
K| 16 85 134 161 320
| Int | 56 350 560 636 1,400
|Q| 233.82 2289.89 2483.78 2552.46 21103.42
C| 56 946 1,610 2,150 4,856
S|Qo| | 25,792 | 10,005,754 | 25,837,020 | 24, 443,462 | 57,657, 104
SReach | 19,024 | 7,862,298 | 20,339, 164 | 19,395, 286 | 45,999, 808
SCC | 19,024 | 7,862,298 | 20,339,164 | 19,395, 286 | 45,999, 808
SEM | 11,488 | 6,585,744 | 17,217,682 | 16,764,484 | 40, 456, 624
% 55.46 34.18 33.36 31.42 29.83
time 353 39,734 | 107,576 | 118,406 | 395,530
crit 0 0 0 0 0

Table 5.1: Benchmarks of the Measurement-Grid example for d = 3.

5.3 Tanenbaum’s Philosophers

In [Tan07] Tanenbaum describes a solution that guarantees deadlock-freedom
for the Dining Philosophers problem. The original problem and a model was
introduced in Chapter 4 Example 4.3 in order to describe our approach to

establish deadlock-freedom by analyzing abstract over-approximations. For

138

5.3. TANENBAUM'S PHILOSOPHERS

each philosopher Tanenbaum suggests to add a semaphore to a model of
the system. A semaphore is binary and has the two states locked and un-
locked. The idea is that a semaphore that is associated with a philosopher
can only become locked if the semaphores associated with the neighboring
philosophers are unlocked. A philosopher can only start his eating process,
i.e., taking his forks, eating and putting the forks back on the table if his
semaphore is locked. The semaphore becomes unlocked if the philosopher
put both forks back on the table. This approach guarantees that a philoso-
pher who already took one fork will never wait for the second fork, i.e., a
philosopher who starts his eating process is assured to eat and put both
forks back on the table.

Interaction Model

The specifications of this system differ from the system described in Example

4.3 in the following points.

e Before a philosopher can take a fork he has to gain the right to do so.
In order to do this he interacts with his semaphore and the semaphores
that are associated with his neighboring colleagues. If the neighboring
semaphores are unlocked then his semaphore becomes locked and he
is able to take either his left or right fork.

e after a philosopher finished eating, he can put both forks at once back

on the table. In this process his semaphore becomes unlocked.

Let IM,, = (K, {A;}ick,Int) be an interaction model with n > 2. Let K be
the set of components
K - {Ph/llo, Ph/lll, ey Phllnfl}U
{Semgy, Sem,, ..., Sem,,_;}U
{Forky, Forky,..., Fork,_}

where Phil; models philosopher ¢, Sem, Semaphore ¢ and Fork, models fork

i for 0 <@ < n. The set of ports Apy;, for philosopher i with 0 < i <n

139

CHAPTER 5. RESULTS

consists of the following ports.

get _prior; : gain the right to take a fork
take left; : take the left fork

take right;: take the right fork

put__forks;: put both forks back on the table

The set of ports Ag,, for semaphore ¢ with 0 < ¢ < n consists of the

following ports.

1s_unlocked;: the semaphore is unlocked
lock; : lock this semaphore

unlock; : unlock this semaphore

The set of ports Ap,,, for fork 7 with 0 <4 < n consists of the following

ports.
take;: take this fork

put; : put this fork back on the table
Each philosopher can gain the right to pick up his forks on his left and his
right by locking their respective semaphore, if the respective neighboring
semaphores are unlocked. Furthermore, each philosopher can take his fork
on the left respectively right and put these forks back on the table. The
following interactions model these cooperations between philosopher Phil;,
semaphore Sem; and the fork on his left Fork; and the fork on his right
Fork;_; for 0 < i < n. Note that we assume (similarly to Example 4.3) a
modulo n arithmetic, i.e., if i — 1 = —1 then ¢ — 1 refers to n — 1 and if

1+ 1 =mn then ¢ 4 1 refers to 0.
pr; = {get_prior;,is_unlocked;_y,lock;,is_unlocked; }
tl; = {take_left; take; |}
tr; = {take_right; take;}
pu; = {put_ forks;, put,_,,put;, unlock;}
Let Int = {pry, tl;, tr;, pu;|0 < i < n}.
Figure 5.3 depicts the interaction graph G of the interaction model IM,, for

n = &.

140

5.3. TANENBAUM'S PHILOSOPHERS

Figure 5.3: Interaction graph G of IMg in Tanenbaum’s Philosophers exam-

ple.

Interaction System

In the following we specify the interaction system Sys, = (IM,,, {7T;};cx) for
n > 2 that provides the local behavior for each component described in the
interaction model IM,,. Figure 5.4 shows the local behavior T, Trop,

respectively T, for 0 < <n.

Results & Discussion

Table 5.2 shows results from our tool for instances of our model of Tanen-
baum’s solution of the Dining Philosophers problem. We considered in-
stances with n = 5, 10, 20, 100, 200 and 400 philosophers and constructed
abstract over-approximations based on all reasonable subsets with d = 3
components. If we apply our approach to establish deadlock-freedom then

there is no state in any abstract over-approximation that remains to be a

141

CHAPTER 5. RESULTS

get__prior;

take left;

take__right;

(a) Tth‘li (b) TForki (c) TSemi

Figure 5.4: Local behavior of the components Phil;, Fork; and Sem; in Sys,,
for 0 <i < n.

possible projection of a reachable global deadlock, i.e., our approach to es-
tablish deadlock-freedom succeeds for all instances. We want to point out,
that the waiting chain approach ([Min10] and informally described in Chap-
ter 4) is not able to establish deadlock-freedom for instances of this system

on abstract over-approximations that consists of d = 3 components.

5.4 A Chain of Components

This example provides a rather abstract parameterized interaction system
that consists of components that are connected such that the corresponding
interaction graph forms a chainlike structure of components. This interac-
tion system has the property that the Cross-Checking approach (adapted
to our context), that is described in [Min10|, does not have any refinement

effect on abstract over-approximations of instances of this system for d = 3.

Let n > 2. The system consists of three kinds of components C§' for 0 < i <
nand CF, C¢ for 0 < i < n—1. The components model certain processes. In
the following we will not distinguish between a component and the process
that is modeled by this component. We refer to a process that is modeled by
a component of the form C{, C’ib respectively Cf as an a-process, b-process

respectively c-process. For 0 <i <n — 1 C} can connect to Cf if Cf is not

142

5.4. A CHAIN OF COMPONENTS

System) 10 20 100 200 400
| K| 15 30 60 300 600 1,200
| Int | 20 40 80 400 800 1,600
Q| 92L6L | 943.22 | 86.44 | 543219 986439 | 1728.77
|C| 185 390 7801 3,900 7,800 | 15,600

S|Qc| | 3,520 | 7,200 | 14,400 | 72,000 | 144,000 | 288,000
S Reach | 2,680 | 5,500 | 11,000 | 55,000 | 110,000 | 220,000
SCC | 1,660 | 3,460 | 6,920 | 34,600 | 69,200 | 138,400
SEM | 1,635 3,410 | 6,820 | 34,100 | 68,200 | 136,400

% 03.55 | 52.64 | 52.64| 52.64 52.64 52.64
time 356 783 | 1,873 16,476 | 47,438 | 207,212
crit 0 0 0 0 0 0

Table 5.2: Benchmarks of Tanenbaum’s Philosophers for d = 3.

connected to another process and vice versa. We call Cf and C¢ the front
processes with respect to C;'. Analogously, for 1 <i < n Cj can connect to
C’ib,l if C;_; is not connected and vice versa and these processes are called
the back processes with respect to Ci'. If Cj' (0 < i < n) is connected to a
process then the two processes will perform simultaneously | > 0 working

steps. After two processes completed their working steps they disconnect.

Interaction Model

Let IM,, = (K, {A;}ick, Int) (with n > 2) be the interaction model that is

specified as follows. The set of components K is given by

K = {C8,CLCH0 < i <m— 1} U{CE).

143

CHAPTER 5. RESULTS

The set of ports Aca for a component C with 1 <7 < n — 1 consists of the

following ports.

conn! : connect to a front process

conn? : connect to a back process

worsz : do a working step with a front process
work?: do a working step with a back process
dis! : disconnect from a front process

(2

. b .
dis; : disconnect from a back process

The port set Age respectively Age is specified analogously without the

ports that model a communication with a back respectively a front process.

The set of ports A for a component C? with 0 < i < n — 1 consists of the

following ports.

conn__b;: connect to an a-process
work__b;: do a working step with an a-process
dis_b; : disconnect from an a-process

free_b; : this process is not connected to any process

Analogously, the set of ports A for a component Cywith0<i<n-—1

consists of the following ports.

conn__c;: connect to an a-process
work__c¢;: do a working step with an a-process
dis_¢; :disconnect from an a-process

free_c; : this process is not connected to any process

Let the interaction set Int of IM,, consist of the following interactions.

For 0 <7 < n — 1 the component C}'
!

i

f

i

e connects to its front b-process: {conn;,conn_b;, free c;}

e connects to its front c-process: {conn;,conn_c¢;, free b;}

e does a working step with its front b-process: {work! , work b;}

144

5.4. A CHAIN OF COMPONENTS

Figure 5.5: Interaction graph G of IMg in the chaining components example.

e does a working step with its front c-process: {work!, work c¢;}
e disconnects from its front b-process: {dis!, dis b;}
e disconnects from its front c-process: {dis!, dis_¢;}

For 1 < i < n the component C}

i b
e connects to its back b-process: {conn;,conn_b;_,, free_c;_;}

: b
connects to its back c-process: {conn;,conn_c;,_y, free b;,_;}

does a working step with its back b-process: {work:g’, work _b;_1}

does a working step with its back c-process: {work?, work _c¢;_1}

disconnects from its back b-process: {disf ,dis b1}

. . b .
e disconnects from its back c-process: {dis;,dis ¢;_;}

Figure 5.5 depicts the interaction graph of the interaction model IMj.

Interaction System

Let n > 2 and IM,, = (K, {A;}ick,Int) be the interaction model for the
chaining components example. Let [> 0 and Sys), = (IM,,, {T}};cx) be the
interaction system with the local behaviors of the components in K. Figure
5.6 depicts the respective local behaviors for [= 2. 5.6a depicts T for
1 <i¢i<n-—1and5.6b Tcgy, 5.6¢ ch for 0 < ¢ < n—1. It is easy to
see that the global behavior zT of Sysf1 is deadlock-free for any n > 2 and

[> 0. Note that Tia respectively Tie -~ are structured analogously without

145

CHAPTER 5. RESULTS

f b
conn; conn;

free b; free_c;
dis{ dzsf . 5 . o
@ conn_b; @ ’ conn_c, !
dis_b; work _b; dis_c; work_c;
i ork_b; i i work_cj i
(a) Tee (b) ch (c) T

Figure 5.6: Local behavior of the components Cj' for 1 <7 <n — 1 and c?,
C¢in Sysl for 0 <i<n—1and=2.

the transitions that are labeled by ports that model a cooperation with a

back respectively front process.

Results & Discussion

Table 5.3 respectively table 5.4 shows results of our tool on instances of the
chaining components example. The columns are labeled by (n,1), i.e., we
considered systems of the form Sysfl. We considered families of abstract
over-approximations based on d = 3 (Table 5.3) and d = 4 (Table 5.4)

components.

We want to point out two observations that are visible in the tables. In Ta-
ble 5.3 the Cross-Checking approach [Min10] does not have any refinement
effect on the abstract over-approximations. In Chapter 3 we already men-
tioned that our Edge-Match operator is stronger that the Cross-Checking
operator because, in contrast to a refinement approach based on the Cross-
Checking operator, we comprise the behavior of an interaction system in our
refinement process. This example shows that there are even systems where

the Cross-Checking does not refine abstract over-approximations, whereas

146

5.5. A CIRCLE OF COMPONENTS

System | (5,2) | (10,4) | (20,5)| (50,5)| (100,7)

K| 13 28 58 148 208
| Int | 48| 108 228 588 1,188
|Q| 228.42 279.37 2178.9 2458.36 21034.56
C| 28 68 148 388 788

S|Qo| | 3,376 | 31,188 | 112,252 | 297,892 | 1,321, 236
SReach | 2,894 | 26,128 | 93,570 | 249,030 | 1,090, 204
SCC 2,894 (26,128 | 93,570 | 249,030 | 1,090, 204
SEM |2,302]19,028 | 66,076 | 175,396 | 738,692

% 31.81| 38.99| 41.14| 41.12 44.09
time 54| 334 991 | 3,524 | 18,732
crit 378 | 2,498 | 7,752 | 20,592| 70,838

Table 5.3: Benchmarks of the chaining components example for d = 3.

an application of the Edge-Match operator results in a great amount of un-
reachable states. The other observation we want to point out is that our
approach to establish deadlock-freedom fails for all instances in Table 5.3,
i.e., if we consider abstract over-approximations based on subsets of d = 3
components then our approach fails for all examined instances. On the other
hand our approach succeeds for the same instances if we base our analysis
on subsets of d = 4 components (see Table 5.4). This is, if our approach
fails on a family of abstract over-approximations then considering another

parameter d might establish a property in consideration.

5.5 A Circle of Components

The following example describes an abstract parameterizes interaction sys-
tem. The interaction system is similar to the interaction system described
in Section 5.4 and provides a system where the Cross-Checking approach

(adapted to our context), that is described in [Minl0| has a significant

147

CHAPTER 5. RESULTS

System | (5,2)| (10,4) (20, 5) (50,5) (100, 7)

K| 13 28 58 148 298
| Int | 48 108 228 588 1,188
|Q| 228.42 279.37 2178.9 2458.36 21034.56
C| 40 105 235 625 1,275

S|Qc| | 23,968 | 374,220 | 1,632,631 | 4,403,581 | 25,418, 043
S Reach | 18,292 | 279,740 | 1,215,679 | 3,292, 789 | 18,727, 547
xCoC 5,212 | 45,180 | 159,439 | 433,429 | 1,754,427
SEM | 5,212| 45,180 | 159,439 | 433,429 | 1,754,427

% 78.25| 87.93 90.23 90.16 93.1
time 188 | 1,339 4,192 | 14,035 75, 385
crit 0 0 0 0 0

Table 5.4: Benchmarks of the chaining components example for d = 4.

impact regarding the refinement of abstract over-approximations and the
Edge-Match operator creates even better refined abstract over-approxima-
tions. The corresponding interaction graph G of a model instance forms a

circle-like structure.

Let n > 2. Similarly as in the example in Section 5.4, the system consists of
three kinds of components C¢, C? and C¢ for 0 < i < n. The components
model certain processes. In the following we will not distinguish between a
component and the process that is modeled by this component. We refer to
a process that is modeled by a component of the form C?, C? respectively
C¢ as an a-process, b-process respectively c-process. For 0 < i < n Cf
can connect to C? if C is not connected to another process and vice versa.
We call C? and C¢ the front processes with respect to C. Analogously, for
0 < i< n C"can connect to CP_, if C¢_, is not connected and vice versa and
these processes are called the back processes with respect to Cf. The term
i—1referston—1if i =0. If Cj' (0 <i < n) is connected to a process then

the two processes will perform simultaneously [> 1 working steps. The last

148

5.5. A CIRCLE OF COMPONENTS

working step corresponds to a disconnection of the processes. For 0 <i <n
the component C? is able to synchronize with its front processes CY and C¢

if both components are connected to an a-process.

Interaction Model

Let IM,, = (K, {A;}ick, Int) be an interaction model with n > 2. The set of

components K is given by
K ={C¢Cl.CE0 < i < n}.

The set of ports Age for a component Cf' with 0 < i < n consists of the

following ports.

conn{ : connect to a front process

conn? : connect to a back process
work:if : do a working step with a front process
work?: do a working step with a back process

sync; : synchronize with the front processes

The set of ports A » for a component C? with 0 < i < n— 1 consists of the

following ports.

conn__b;: connect to an a-process
work__b;: do a working step with an a-process
sync__b; : synchronize with an a-process

free b, : this process is not connected to any process

Analogously, the set of ports Age for a component C; with 0 <i <n —1

consists of the following ports.

conn__c;: connect to an a-process
work __c¢;: do a working step with an a-process
sync__c; : synchronize with an a-process

free ¢, : this process is not connected to any process

149

CHAPTER 5. RESULTS

Let the interaction set Int of IM,, consist of the following interactions.

For 0 < i < n the component C;'

f

e connects to its front b-process: {conn;,conn_b;, free_c;}

f

e connects to its front c-process: {conn; ,conn_c;, free_b;}

e does a working step with its front b-process: {work! work b;}
e does a working step with its front c-process: {worklf, work _c¢;}
e synchronizes with its front processes: {sync;, sync_b;, sync_c;}
e connects to its back b-process: {conng’, conn_b;_y, free_c;_1}

e connects to its back c-process: {conn?, conn_c;_q, free_b;, 1}

e does a working step with its back b-process: {workf, work _b;_;}
e does a working step with its back c-process: {work?, work _c¢;_1}

Note that i — 1 refers ton — 1 if ¢ = 0.

Figure 5.7 depicts the interaction graph of the interaction model IM,.

Interaction System

Let n > 2 and IM,, = (K, {A;}ick,Int) be the interaction model for the
circle-like components example. Let [> 1 and Sys!, = (IM,,, {T}},cx) be the
interaction system with the local behaviors of the components in K. Figure
5.8 depicts the respective local behaviors for [= 2. 5.8a depicts Tze, 5.8b
T » and 5.8¢ Tee for 0 <@ < n. It is easy to see that the global behavior T'

C;
of Sysln is deadlock-free for any n > 2 and [> 1.

150

5.5. A CIRCLE OF COMPONENTS

Figure 5.7: Interaction graph G of IM;, in the circle-like components exam-

ple.

Figure 5.8: Local behavior of the components C, C? and Cf in Sys!, for
0<i<nandl=2.

151

CHAPTER 5. RESULTS

System | (5,2) | (10,4) | (20,5)| (50,5)| (100,7)

K| 15 30 60 150 300
| Tnt | 45 90| 180 450 900
|Q| 231.61 283.4 2181.48 2453.71 21024.67
C| 40 80| 160 400 800

Y|Qc| | 3,400 | 29,160 | 98,560 | 246,400 | 1,134,000
Y Reach | 2,580 | 22,420 | 76,040 | 190, 100 878,600
xCC 1,890 | 18,520 | 64,760 | 161,900 777,800
YEM | 1,640 | 15,040 | 51,560 | 128,900 602, 800

% 51.76 | 48.42| 47.69| 47.69 46.84
time 99 | 464 | 1,333| 4,483| 22,504
crit 280 | 1,760 | 5,200 | 13,000| 47,600

Table 5.5: Benchmarks of the circle-like components example for d = 3.

Results & Discussion

We applied our approach to various instances of the chaining-like compo-
nents example with abstract over-approximations based on subsets of d = 3
(Table 5.5) and d = 4 (Table 5.6) components. The columns are labeled by
(n,1), i.e., we considered systems of the form Sysil. Even though the obvious
similarity between this system and the chaining components system intro-
duced in Section 5.4, Table 5.5 shows that the Cross-Checking operator has
a significant refinement effect on the instances. The Edge-Match operator
however produces even more refined abstract over-approximations on the
considered instances with d = 3. If we consider abstract over-approxima-
tions based on subsets of size d = 4 then the Edge-Match operator has no
advantage over the Cross-Checking operator, i.e., both approaches produce

abstract over-approximations with the same reachable state space.

152

5.6. PRODUCTION CELL

System | (5,2) | (10,4) (20, 5) (50,5) (100, 7)

K| 15 30 60 150 300

| Tnt | 45 90 180 450 900
31.61 83.4 181.48 453.71 1024.67

Q| 2 2 2 2 2

C| 65 130 260 650 1,300

S|Qc| | 24,400 | 340,200 | 1,369,060 | 3,422, 650 | 20, 776,500
S Reach | 15,585 | 222,970 | 904,520 | 2,261, 300 | 13,880, 200
yelel 4,505 | 36,850 | 120,560 | 301,400 | 1,309,600
SEM | 4,505| 36,850 | 120,560 | 301,400 | 1,309,600

% 81.54 | 89.17 91.19 91.19 93.7
time 279 | 1,500 4,350 | 14,169 71,478
crit 0 0 0 0 0

Table 5.6: Benchmarks of the circle-like components example for d = 4.

5.6 Production Cell

The Production Cell is a small system that describes the automatic pro-
cessing of metal blanks. The system includes a feed belt, a rotating table,
a robot unit with two arms, arm one and arm two, which are assembled
on one swivel and can only move simultaneously, a press that processes the
metal blanks, a deposit belt and a crane. The feed belt can transport a
metal blank to the rotating table. The table rotates such that arm one can
lift the blank into the press. After the press processed the blank, arm two
withdraws the product and moves it to the deposit belt that transports the
product into the scope of the crane. The crane can lift the product back
on the feed belt where it is used again as a metal blank. Thus, one metal
blank can be processed infinitely often. The System is described in detail in
[LL95]. Here we model an abstract version of the system by an interaction
system. Our model is partly based on a Petri net model that is described in
[HD95]. We provide here merely a brief description of the system and our
model. See [LL95| and [HD95] for further details.

153

CHAPTER 5. RESULTS

We model each unit of the system as a component with the exception that the
robot unit is modeled by three components — the two arms and the swivel
are modeled separately. Between two neighboring units in the processing
cycle there is a connecting area that is modeled by a component as well. An
area models the three cases that the next unit in the process is busy, i.e., the
area is blocked, the next unit is waiting and there is no metal blank /product
available, i.e., the area is free and the case that the unit is waiting and a
metal blank /product is available. Note that this system is not parameterized

by a parameter that affects the number of components.

Interaction Model

Let IM = (K,{A,;}ick,Int) be an interaction model with the set of compo-
nents K = K ,,,;1s U Kypeqs Where

K

areas

= {FT,TAl, A1P, PA2, A2D, DC,CF, } and

K nies = {feedBelt, table, arml, swivel, press, arm?2, deposit Belt, crane}.

Note that the names of the components that model the areas consists of the
first letters of the units that are connected by the area, e.g., the component
FT models the area that connects the feed belt and the table and PA2

models the area that connects the press and arm two.

In the following we specify the set of ports for each component. Various
components that model units and areas in the model share a similar behav-
ior, i.e., they exhibit a similar set of ports. For i € { feedBelt, depositBelt}

let A; consist of the following ports.

occupy; : the belt becomes occupied by a metal blank
transport;: the belt transports a blank to the output area
empty; :a metal blank becomes unloaded from the belt

goidle; : the belt goes into an idle state

154

5.6. PRODUCTION CELL

For ¢ € {table, press} let A; consist of the following ports.

moveUnload; : an available blank moves to the unload position
readyUnload;: a blank becomes unloaded
moveLoad; : move to the loading position

ready; : become available for input
For i € {arml, arm2} let A; consist of the following ports.

gowaitl;, : wait for the swivel to rotate towards a blank
load; : load a blank

goSwivell;: rotate toward the output area

store; : a loaded blank waits for becoming unloaded
gowait2; : wait for the swivel to rotate into the output area
unload; : become ready for unloading

goSwivel2;: turn into the output area and unload a blank

free; : wait for a new blank

The set of ports Ag,;,.; consists of the following ports.

takegive: an arm wants to use the swivel in order to rotate

PUtgpives - an arm finished a rotating process

The set of ports A of the component that models the crane consists of

crane

the following ports.

load,, ... :load an available blank
store q.ne - a loaded blank waits for being moved
unload,,,,.: unload a blank into the output area

free.ane - become available for a new blank

Fori e K

areas

let the set of ports A; consist of the following ports.

lockInput, : the area is blocked by a blank
unlockInput; : a blank was processed by the next unit
lockOutput; : previous unit wants to load a blank into this area

unlockOutput;: loads a blank from the previous unit

155

CHAPTER 5. RESULTS

The following interactions describe the cooperation between each unit and its

input respectively output area. Let Int consists of exactly these interactions.
The component that models the crane interacts with the areas DC and C'F":

lockInputDC = {lockInputpe, load.,qne
unlockInput DC = {unlockInput p¢, store ,qn.}
lockOutputCF = {lockOutputcp, unload,, 4.
unlockOQutputCF = {unlockOutput o, free onet

Component feedBelt interacts with the areas C'F' and F'T"

lockInputCF = {lockInputcp, occupy secapei }
unlockInputCF = {unlockInputp, empty feed Beit |
lockOutput FT = {lockOutput pr, transport fecapei }
unlockOutput FT = {unlockQutput pr, goidle tecqpen }

The component deposit Belt that models the deposit belt interacts with the
components A2D and DC:

lockInputA2D = {lockInput 4o, 0CCUPY deposit Beir }
unlockInput A2D = {unlockInput gop, €MPtY geposit Beir }
lockOutputDC = {lockOQutput pc, transport geposiieit
unlockOutput DC' = {unlockOutput pc, goidle geposit Bert }

The table interacts with the areas F'T and T Al:

lockInput F'T = {lockInput pp, moveUnloadq,, }
unlockInput FT = {unlockInput pr, goreadyqp. ;
lockOutputT A1 = {lockOutputr 4;, move Load, . }
unlockQutputT Al = {unlockOutputr 41, readyUnload,qy. }

Component press interacts with the areas A1P and PA2:

lockInput A1P = {lockInput 41 p, moveUnload,, s}
unlockInput A1P = {unlockInput 41 p, goready,, ..}
lockOutputPA2 = {lockOutput p 45, moveLoad,,.ss}
unlockOutput PA2 = {unlockOutpul p 45, readyUnload,,,. }

156

5.6. PRODUCTION CELL

The component arml that models the robot arm one interacts with the
areas TAl and A1P and with the component that models the swivel:

lockInputT Al = {lockInputy 4y, gowaitl .., }
unlockInputT Al = {unlockInputya;, goSwivell g, }
lockOutput A1P = {lockOutput 4, p, gowait2 ., }
unlockOutput A1 P = {unlockOutput 41 p, goSwivel2,,,,1 }
takeSwivell Arm1 = {takeper, l0ad gy }
putSwivellArm1 = {put syiver, SLOTC€4pm1 }
takeSwivel2Arm1 = {take;pe;, unloady,,; }

putSwivel2Arm1 = {putiver, f[T€Carm1 }

The component arm2 that models the robot arm two interacts with the

areas PA2 and A2D and with the component that models the swivel:

lockInputP A2 = {lockInputp 4o, gowaitl ..o}
unlockInputPA2 = {unlockInputp s, goSwivell 4.0}
lockOutput A2D = {lockQutput 4o, gowait2,,,,o}
unlockOutput A2D = {unlockOutput 451, goSwivel2,,,,2}
takeSwivellArm2 = {take e, l0ad4rma }
putSwivellArm2 = {put spiver, SLOT€qrma }
takeSwivel2Arm?2 = {take;per, unload s}

pUtSMZU€l2ATm2 - {pUtswivela freearm2}

Figure 5.9 depicts the interaction graph of the interaction model IM.

Interaction System

Let Sys = (IM,{7;}icx) be the interaction system that consists of the in-
teraction model of the Production Cell example and the local behavior of
the components that is depicted in the following figures. Note that the lo-
cal initial state of the behavior of components in {DC, C'F, FT, A1P, A2D}
is avail. This state models that a blank is currently in this area which

is ready for further processing. The components in {PA2,TAl} exhibit

157

CHAPTER 5. RESULTS

Figure 5.9: Interaction graph G of IM in the Production Cell example.

moveUnload;

occupy;
beltOccupied goUnloadPos
transport; goidle; readyUnload; goready;

readyForUnloading

empty; moveLoad,

belt Empty goLoadPos

(a) T;, i € {feedBelt,depositBelt} (b) Ty, i € {table,press}

transporting

Figure 5.10: Local behavior of the components that model the feed belt, the
deposit belt, the table and the press in the Production Cell example.

the initial state locked which models that these areas are ready to receive
a blank from the previous unit. This is, there are initially 5 blanks in

the system that are in the areas that are modeled by the components in
{DC,CF,FT,A1P, A2D}.

Figure 5.10 depicts the local behavior of the components that model the feed
belt, the deposit belt, the table and the press, Figure 5.11 the local behavior
of the areas, Figure 5.12 the local behavior of the component that models
the swivel and the crane and Figure 5.13 depicts the local behavior of the

components that model the robot arm one and two.

158

5.6. PRODUCTION CELL

unlockOutput; . lockInput;

lockOutput;

unlockOutput;

lockOutput;

(a) T}, i € {DC,CF, FT, A1P, A2D} (b) T, i € {PA2, T A1}

Figure 5.11: Local behavior of the components that model areas in the

Production Cell example.

avail

(a) Tswivel

putswivel takeswivel

Figure 5.12: Local behavior of the components that model the swivel and

the crane in the Production Cell example.

storeF'ree

gowaitl;

waiting For Swivell

load;

goSwivell;

havingSwivell

store; free;

gowait2;

waiting For Swivel2

unload;

goSwivel2;

havingSwivel2

Figure 5.13: Local behavior Tj, i € {arml1,arm2}, of the components that

model arm one and arm two in the Production Cell example.

159

CHAPTER 5. RESULTS

Results & Discussion

Our model of the Production Cell example is not parameterized and, in com-
parison to instances in our other examples, relatively small — there are only
15 components in the model. Table 5.7 shows the results of our refinement
approach and our approach to establish deadlock-freedom applied to the
Production Cell example. The columns are labeled by the parameter d that
we used in our experiments. We considered families of abstract over-appro-
ximations based on subsets consisting of 3, 6, 9, 12 and 15 components. Note
that there is only one abstract over-approximation if we consider d = 15 and
that this abstract over-approximation corresponds to the global behavior of
the system (thus, the required time to calculate the Edge-Match fixed-point
equals 0 milliseconds). Furthermore the table shows that the Edge-Match
operator produces only slightly more refined abstract over-approximations
in comparison with the Cross-Checking operator and that our approach to
establish deadlock-freedom succeeds for an analysis with d = 12, i.e., our

model is deadlock-free.

5.7 Conclusion

In this chapter we presented results of a tool that implements our approach to
refine abstract over-approximations and our approach to establish deadlock-
freedom by an analysis of these abstract over-approximations. Furthermore,
we provided a comparison between our refinement approach and a refinement
approach that is based on the Cross-Checking operator [Min10]. The results

are calculated from various complex and parametrized examples.

The results present the strength of our refinement approach and reflect that
there are complex systems where our approach is able to conclude in a rea-
sonable amount of time that a great amount of states in the initial abstract
over-approximations are not projections of reachable global states. Further-

more, the results show that we can establish deadlock-freedom in interaction

160

5.7. CONCLUSION

System 3 6 9 12 15
| K| 15 15 15 15 15
| Int | 36 36 36 36 36
le] 928.09 £28.00 £28.00 928.09 £28.00
|C]| 19 39 60 70 1
Y|Qc| | 1,172 | 138,240 | 10,153,728 | 523,542,528 | 286,074, 857
YReach | 652 18,390 276,104 3,050,172 13,107
»CC 524 | 11,418 156,617 1,310,519 13,107
SEM 521 | 11,418 155,873 1,310,291 13,107
% 55.55 91.74 98.46 99.75 100.0
time 63 708 5,596 52,427 0
crit 60 187 120 0 0

Table 5.7: Benchmarks of the Production Cell example for various values of

the parameter d.

systems with a large number of components.

As already argued in Chapter 3, our refinement approach is at least as strong
as the Cross-Checking approach. Our results show that there are systems
where our approach produces significantly more refined abstract over-ap-
proximations. Particularly in the chaining components example (Section
5.4), our approach produces for d = 3 in the system Sysl,, (see Table
5.3) abstract over-approximations where the number of all reachable states
is considerably smaller in comparison to the abstract over-approximations
constructed by the Cross-Checking approach. In fact, in this example, our
approach produces abstract over-approximations with more than 30% less
reachable states. Furthermore, the results depicted in Table 5.3 show that
there are systems where the Cross-Checking approach does not have any
refinement effect at all, whereas our approach results in abstract over-ap-
proximations where a great amount of initial reachable states become un-
reachable. Presented in [Minl0| is a prototype tool PrinSESSA that im-

161

CHAPTER 5. RESULTS

plements a fixed-point calculation of abstract over-approximations based on
the Cross-Checking operator. PrinSESSA is implemented in pure Java and
does not use BDDs as an underlying data structure. Thus, PrinSESSA is
in comparison with our tool considerably more slowly and can only handle

considerably less complex systems.

There are, best to our knowledge, no other tools that implement a compa-
rable approach. We just want to mention that all PROMFELA models of the
Philosophers Problem that we found can only be analyzed in an acceptable
runtime in the famous LTL model checker SPIN [Hol97] for a considerably
smaller number of philosophers. However, this observation can not be used
or extended to a relevant comparison because SPIN analyzes (without addi-

tional adjustments) the entire reachable state space of a system.

162

Chapter 6

A Connection to Relational

Algebraic Operators

6.1 Introduction

In this chapter we present a connection between our approach to refine
abstract over-approximations by the Edge-Match operator, that we intro-
duced in Chapter 3, and the theory of relational algebra and its operators
[MCS13a]. We show that a family of abstract over-approximations can be
modeled as relations in a database on a relational database scheme and
model our refinement operator by relational algebraic operators. We use
this connection to derive a proposition regarding the “preciseness” of our
refinement technique that was introduced in Chapter 3. For this purpose
we consider acyclic relational database schemata. These schemata form an
important subclass in the theory of relational databases as they fulfill vari-
ous interesting properties and several operations become decomposable, i.e.,
an operation on a general database the application of which requires an
expensive calculation that involves all tables in the database can be de-
composed to less expensive operations on subsets or even pairs of tables

(see, e.g., [Yan81]| for efficient algorithms on databases that are based on

163

CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAIC
OPERATORS

acyclic database schemata). We show here that the fixed-point of a family
of abstract over-approximations with respect to the Edge-Match operator is
legitimate (see Definition 3.7) if the hypergraph that is based on the domain
of the family is acyclic. Results from the theory of relational databases have
been exploited in other fields as well, e.g., a generalization of these concepts
in the field of set theory can be found in [Heg91|. A relational algebraic ap-
proach for establishing system properties is used in [LL88| where the state
space of cooperating protocols is modeled as one relation and various prop-
erties are checked by relational queries. In [KK96] a Petri net is modeled by
a relation for markings and one for the places and transitions. Properties
can be checked by algorithms on these relations that make use of relational

algebraic operators.

In the first part of this chapter, that consists of Section 6.2 and 6.3, we
describe how abstract over-approximations can be interpreted in terms of
relations and how the Edge-Match operator can be modeled by operations
from the relational algebra. Particularly the semijoin on a relation r with a
relation s is used for this purpose, that (roughly speaking) restricts a relation
r to tuples t for which there is a tuple t’ in s such that t and t’ coincide on
their shared attributes. We start the first part by repeating the notions of

the relational algebra that we need in the remainder.

The second part of this chapter, Section 6.4, uses the result of the first part
in order to derive a proposition that states that the fixed-point of a family
of abstract over-approximations is legitimated if the domain on which the

family is based has a certain structure.

Section 6.5 concludes this chapter.

164

6.2. RELATIONAL ALGEBRA

6.2 Relational Algebra

Here we give a brief compendium of notions and operators from the relational

algebra (see, e.g., [Mai83|) that are used in the remainder of this chapter.

Definition 6.1:

A relational scheme R = {A;,A,,... A} is a finite set of attribute
names (attributes for short). The domain of an attribute A; (1 <i < p)
is a set D; = dom(A;). Let D(R) = D; U---UD, then a relation r(R) on
R is a set of mappings r(R) = {t;,ts,...,t;} from R to D(R) such that for
each t € r(R) and each i € {1,...,p} t(A;) € D,. A mapping in a relation is
called a tuple. In the following, we write r instead of r(R) if it is clear that
r is a relation on R. Let r(R) be a relation and S C R then for t € r t(S)

denotes t restricted to the attributes in S.

Remark 6.1:

Note that the term domain was introduced in Chapter 3 in Definition 3.6
and entitles a set of subsets of components. In the remainder it is obvious
from the context whether we speak about the domain of an attribute or the

domain in the sense of Definition 3.6.

Here we give an example that we use to illustrate the concept of relational
schemata and relations. We use this example in the remainder to illustrate
various operators on relations.

Example 6.1:

Let R, = {A,B,C} and Ry = {B,C, D} be relational schemata such that
the domain of each attribute in R; and R, equals the natural numbers. It
is common to depict relations in the form of tables. Table 6.1 depicts two
relations r; (R;) and ry(R,). Each row corresponds to a tuple in the according

relation. The columns are labeled by the attribute names.

In the remainder we make use of the following operations on relations.

Definition 6.2:
Let R and S be relation schemata and r(R) and s(S) be relations.

165

CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAIC
OPERATORS

I

O W W
o= o= = |

OJCY‘[\DOJOOQ
MOOHHOT@

(b) r2(Ry)

Table 6.1: Graphical representation of the relations r;(R;) and ry(R,).

e The join of r with s is a relation u(U) =r>ason U=RUS with t € u
if and only if there are tuples t, € r and t, € s such that t, = t(R) and
to = t(S).

e Let UC R (U # D). The projection of r on U is a relation u(U) = my(r)
with u = {t(U)|t € r}.

e The semijoin of r with s is a relation r x s = 7wg(r >s).

Example 6.2:
Consider the relations r;(R;) and ry(R,) from Example 6.1. The relation
r(U) =r; xar, for U=R; UR, is depicted in Table 6.2.

A|B|C|D
311121
31115

215 |13]2

Table 6.2: The relation r(U) = r; pxr,.

Example 6.3:
Consider the relations r;(R;) and ry(R,) from Example 6.1. The relation
r(Ry) = r; X ry is depicted in Table 6.3.

166

6.3. THE RELATIONAL EDGE-MATCH OPERATOR

A
3
3
2

OTHHDJ
W ot QA

Table 6.3: The relation r(R;) = r; X r,.

6.3 The Relational Edge-Match Operator

We now introduce a mapping from transition relations of transition systems
that are based on a subset of components of an interaction system to relations
on a relational scheme and show, how the Edge-Match operator can be
modeled by using the semijoin operator. The mapping is straight forward
because we interpret a transition relation as a relational algebraic relation,
i.e., the mapping merely is a mapping between notations.

Definition 6.3:

Let Sys = (IM, {T;},cx) be an interaction system with interaction model
IM = (K,{A;}ick,Int), C C K (C # 0) a subset of components and
R = (Qc, Int,—p, q2) a transition system (see Definition 3.2 in Chapter 3).

Let Re = Cf U {Interaction} U C* be the relation scheme with
o ¢/ = {i!}i € C} with domains dom(i/) = Q; for i € C and
o C"' = {i'|i € C'} with domains dom(i") = Q, for i € C' and
e dom(Interaction) = Int.

Note that f abbreviates “from” and ¢ abbreviates “to” as the attributes in
C7 model the left hand side of a transition and the attributes in C* the right

hand side. Thus, a tuple t in a relation on R, is a function

t : ¢/ U {Interaction} U C* — U Q; U Int.
ieC

167

CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAIC
OPERATORS

Let t be a tuple like this then t models a transition go —p g with ¢o =
(¢,)icc and q¢ = (q));cc if and only if t(Interaction) = o and for 7 € C holds
t(i) = ¢; and t(i") = ¢/.

Let rp(R¢) be the relation on R that consists of the tuples that model the
transitions in —x. The relation scheme R is called the relation scheme

associated with C and ri(R.) the relation associated with R.

We say a tuple t € rp(Re) is reachable in the relation rgp(Rs) if the corre-

sponding transition that is modeled by t is reachable in R.

In the following we show how the Edge-Match operator can be modeled by
the semijoin operator. After giving an example we show that the semijoin
operator actually refines relations that model abstract over-approximations
in the same way as the Edge-Match operator refines abstract over-approxi-
mations. The following examples shows the result of the semijoin operator
applied on relations associated with abstract over-approximations from the

running example that was introduced in Example 1.1 in Chapter 1.

Example 6.4:

Let rg(Rc) be the relation associated with S (Example 3.2) and rp(Rp) the
relation associated with R (Example 3.3). Relation rg is depicted in Table
6.4 and rp in Table 6.5. Note that both relations consists of reachable tuples.

The columns are labeled by the respective attributes.

Table 6.6 depicts the relation rg X rp, i.e., the result of the semijoin operator
on the relations rg and rz. From the 18 tuples in rg are 8 tuples removed
in rg X rp. Note that rg X rp coincides with the relation associated with Ro
from Example 3.4, i.e., the result of the Edge-Match operator applied on R
and S.

The following theorem states that the result of the semijoin operator, on
relations that represents transition systems with respect to a subset of com-
ponents and are restricted to reachable tuples, corresponds to an application

of the Edge-Match operator on the transition systems.

168

6.3. THE RELATIONAL EDGE-MATCH OPERATOR

TER! | GS/ | ADB/ | Interaction | TER} | GS' | ADB'

0 0 0 d 1 1 0
4dTER, | 9GS | 9ApB | S€NG_Teq; | dTERr, | 9dGs | 4ADB
0 0 0 0 1 0
4dTER, | 9GS | 4ADB send_req, dTER, | 9GS | 4ADB
1 1 0 L th 1 2 1
4dTER, | 9GS dADB ask_au dTER, | 9GS | 9ADB
1 2 1 thori 1 2 0
qTER, | 4GS gADB authorize | JTER, | 4GS | 4ADB
1 2 1 d dat 1 3 1
4dTER, | 9GS | 9AapB | S€na_aala | qrgr, | 9Gs | 4ADB
1 2 0 1 3 0
qrER, | 9Gs | 9apB | send_data | qrgr, | 9as | 9apB
1 3 0 0 0 0
dTER, | 4GS qaps | get_reply dTER, | 9GS | 4ADB
0 1 0 0 2 1
4dTER, | 9GS dADB ask_auth dTER, | 9GS | 9ADB
0 2 1 thori 0 2 0
4dTER, | 4GS | 9ADB authorize | qrgr, | 4dgs | 4ADB
0 2 1 0 3 1
qTER, | 9Gs | 9apB | send_data | qrgr, | 9as | 9apB
0 2 0 0 3 0
4dTER, | 9GS qapp | send_data dTER, | 9GS | 9ADB
0 3 0 0 0 0
dTER, | 4GS qaps | get_reply, dTER, | 9GS | 4ADB
1 3 1 thori 1 3 0
4dTER, | 4GS | 9ADB authorize | qrgr, | 4dgs | 4ADB
1 3 1 " I 0 0 1
4dTER, | 4GS | dapB | g€l _TEPLY: | dTER, | 9GS | 4ADB
0 0 1 o 0 0 0
4dTER, | 9GS dADB authorize dTER, | 9GS | 9ADB
0 0 1 d 1 1 1
4dTER, | 4GS gapp | S€na_req; | dgrer, | 9as | 4ADB
1 1 1 thori 1 1 0
4dTER, | 4GS | 9ADB authorize | qrgr, | dgs | 4ADB

0 3 1 . 0 3 0
4dTER, | 4GS | 9ADB authorize dTER, | 9dGs | 4ADB

Table 6.4: Relation rg(R.) associated with S (Example 3.2).

GS’ | ADB’ | DB’ | Interaction | GS' | ADB' | DB?

Q%S quB q}O)B send_req QéS quB Q]O)B
qgs quB Q%B send_reqs Q(lgs quB Q%B
gés | dips | abs | ask_auth | ¢is | qaps | dbB
2 1 0 . 2 0 1
qaGs daDB 4pB authorize | qGs | 9aps | 9pB
Gés | dios | b | send_data | gés | dips | qbB
gs | daps | o | get_reply, | ¢s | dips | 9DB

ges | dips | abs | get_replys | qs | dios | B

Table 6.5: Relation rg(Rp) associated with R (Example 3.3).

169

CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAIC
OPERATORS

TER! | GS’ | ADB | Interaction | TER} | GS' | ADB'

0 0 0 d 1 1 0
dTER, | 49Gs | 9ApB | S€NG_Teq; | gTEr, | 9dGs | 4ADB
0 0 0 0 1 0
dTER, | 9GS | 4ADB send_req, 4dTER, | 9Gs | 4ADB
1 1 0 k th 1 2 1
dTER, | 9GS dADB ask_au dTER, | 9GS | 4ADB
1 2 1 thori 1 2 0
dTER, | 4GS | Y9ADB authorize | grer, | 4dgs | 4ADB
1 2 0 1 3 0
qTER, | 9Gs | 9aps | send_data | qrgr, | 9as | 9apB
1 3 0 0 0 0
qreR, | 9as | 9aps | get_reply, | qrer, | 9as | 9aps
0 1 0 0 2 1
dTER, | 9GS dADB ask_auth dTER, | 9Gs | 4ADB
0 2 1 thori 0 2 0
dTER, | 4GS | Y9ADB authorize | grgr, | 4dgs | 4YADB
0 2 0 0 3 0
gTER, | 9Gs | 9aps | send_data | qrer, | 9as | 9apB

Q%ERl gos | daps | get_replys QQFERl qes | dapB

Table 6.6: Relation rg X rp.

Theorem 6.1:

Let Sys = (IM, {T;};,cx) be an interaction system with interaction model
IM = (K,{A;}ick, Int) and C; D C K (C, D # () subsets of components.
Let S = (Q¢, Int, =g, q&) and R = (Qp, Int,— g, qb) be transition systems
with respect to C' respectively D. Let rg(Rp) and rg(Rp) be the associated
relations with S and R on the relation schemata R and Ry. Further, let ry

and ri be rg respectively rp restricted to reachable tuples. Then

g X rp =r
such that r is the relation (on the relation scheme Ry) associated with the
transition system S’ = EM (S, R).

Proof. The proof can be found in Appendix A on Page 203. O

Aside from showing in Theorem 6.1 an interesting connection between our
refinement approach and the field of relational algebra we use this result in
the following to show that the Edge-Match fixed-point of a family of abstract
over-approximations is legitimate if the domain on which the family is based

exhibits a certain structure.

170

6.4. A PRECISENESS CONDITION

6.4 A Preciseness Condition

In the following we describe how results on acyclic database schemata [Yan81]
can be interpreted in our setting. If a join is executed on a set of tables then
in general not all tuples in the relations actually “appear” in the result, i.e.,
the join yields the same result if certain tuples are removed from the rela-
tions. These, so-called “dangling” tuples are an unnecessary factor in data
transmission if the relations are stored on multiple sites (see [Mai83]). A
technique to reduce the number of dangling tuples in a pre-processing is
the semijoin reduction, where the semijoin operator is applied pairwise on
involved relations in order to remove dangling tuples. If the attributes of
the tables that are involved in a semijoin reduction have a certain structure
then one can make a preciseness assumption about the result of the semijoin
reduction. In the following we exploit this preciseness assumption in order
to make a preciseness assumption about Edge-Match fixed-points by using

the result from the last section.

First we need to introduce additional definitions from the field of relational

database theory.
Definition 6.4:

Let U be a set of attributes. A relational database scheme R over U is a
family R = {R;,R,, ..., R,} of relation schemata with R; C U and R; # () for
i=1,...,pand U;_; ,R; =U. A relational database 0 on the relational
database scheme R is a set of relations @ = {r;(R;),...,r,(R,)}.

As the join operator is associative, > (0) denotes the join over all relations
in 0, i.e.,

DA (D) =1 DArg DX ... DA,

The full reduction of a relation r(R) € d relative to 9 is F R(r,0) = (<
(0)). The relation F'R(r,0) is the part of r that is actually used in the join
> (0), i.e.,

>I(0) =1 ATy ... <1, = FR(r,0) 0 FR(ry,0) >d ... 1 F'R(r,, 0).

p

171

CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAIC
OPERATORS

A semijoin program SP for d is a sequence of assignments of the form
F <=1 Xr;

fori,5 € {1,...,p}. SP(r;,0) denotes the final value of relation r; after the
execution of SP on 0. A semijoin program SP for ? is called full-reducer

for R if (independent from the relations in ?) for all 1 < <p

FR(FZ,D) - SP(I’Z,D)

An important theorem in the field of relational database theory states that
there exists a full-reducer for a database scheme R if and only if R is acyclic

[BFMY83| (a proof can be found in [Mai83] as well). The next definition

specifies in which case a database scheme is called acyclic.

Definition 6.5:

A hypergraph is a tuple H = (V| E) with a set of nodes V' and a set of
hyperedges £ C 2"\ {#}. The GYO-reduction (named after Graham
[Gra79], Yu and Ozsoyoglu [YOT79]) of a hypergraph H = (V| E) is the pro-
cess of repeatedly removing nodes from H which appear in at most one hy-
peredge and removing all hyperedges that are included in other hyperedges.
A hypergraph H = (V, E) is called acyclic if and only if the hypergraph
H' = (V' E') that results from the GYO-reduction has no nodes and no
hyperedges, i.e., V' = 0 and E' = (). Note that the result is independent of

the sequence of node and hyperedge removals.

Let R be a database scheme over the set of attributes U. The hypergraph
H = (U,R) is called the associated hypergraph with R. The database

scheme R is called acyclic if and only if H is acyclic.

Let R be an acyclic database scheme. From the sequence of removed hyper-
edges during the GYO-reduction one can actually construct a full-reducer
that only needs a number of semijoin operations that is linear in |R|. It is
easy to see that if a database d on an acyclic database scheme is a fixed-

point with respect to a pairwise application of the semijoin operation then a

172

6.4. A PRECISENESS CONDITION

full-reducer applied on ? does not change any relation in 9, i.e., each relation

in 9 is a full reduction.

We can now formulate our proposition regarding the “preciseness” of a fixed-
point of a family of abstract over-approximations with respect to an appli-
cation of the Edge-Match operator. Let C C 2\ {0} be a domain and
{R¢}cec a family of abstract over-approximations of an interaction system
Sys with components K. As addressed in Chapter 3, we cannot expect that
there is no artifact in any abstract over-approximation in the Edge-Match
fixed-point of { Rc}cec. The following corollary states that we can conclude
that the Edge-Match fixed-point of { R¢}ccc is legitimate if the hypergraph
He = (K, C) is acyclic.

Corollary 6.1:

Let Sys = (IM, {T;}icx) be an interaction system with interaction model
IM = (K,{A}icr, Int). Let C C 2%\ {#} be a domain such that the
hypergraph He = (K, C) is acyclic. Let {Rq}cec be a family of abstract
over-approximations, then the Edge-Match fixed-point of {Ro}ccc is legit-

imate.
Proof. The proof can be found in Appendix A on Page 204. O

The following example illustrates a claim that is stated in the proof of Corol-
lary 6.1. This is, let Sys be an interaction system with the set of components
K and C C 2%\ {0} a domain then a relational database scheme that con-
sists of the relational schemata associated with the subsets in C is acyclic if
the hypergraph Hc = (K, C) is acyclic.
Example 6.5:
Consider the interaction system Sys from Example 1.2. Let C = {C}, Cy, Cs}
be a domain with

C,={TER,, GS, ADB},

Cy={TER,, GS,DB} and

C3={GS, ADB, DB}.

173

CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAIC
OPERATORS

Figure 6.1: The hypergraph Hc = (K, C).

The hypergraph He = (K,C) is depicted in Figure 6.1. A hyperedge is
depicted as a closed curve that includes all nodes in the hyperedge. It is
easy to see that H¢ is acyclic. The nodes TER, and TER, each only occur
in one hyperedge and thus can be removed. After that two hyperedges can
be removed as they are included in another hyperedge. Now the last three
nodes and the resulting empty hyperedge can be removed. This is, H¢ is
acyclic and thus, according to Corollary 6.1, the Edge-Match fixed-point of

any family of abstract over-approximations based on C is legitimate.

The relational schemata associated with C;, Cy and C5 are

Re, :{TER{, GS’, ADB’, Interaction, TER!, GS, ADB'},
Re,={TERJ, GS’, DB/, Interaction, TER}, GS’, DB'} and
Re,={GS’, ADB’, DB/, Interaction, GS', ADB', DB'}.
Let R = {R¢,,Re,,Re,} be a relational database scheme over the set of
attributes U = Ro, U Re, URg,. Just as above it is easy to see that the
hypergraph Hi = (U, R) (depicted in Figure 6.2) is acyclic. This is, R is

an acyclic database scheme.

6.5 Conclusion

We introduced a connection between the field of relational algebra and our
refinement approach of abstract over-approximations by the Edge-Match
operator. For this purpose we modeled abstract over-approximations as re-

lations and the Edge-Match operator by the semijoin operator. Aside from

174

6.5. CONCLUSION

Figure 6.2: The hypergraph H' = (U, R).

pointing out this interesting connection we used results from the field of re-
lational database theory to show that our preciseness property is guaranteed
for a certain class of families of abstract over-approximations. This class is
defined by a structural property on the domains on which the families of
abstract over-approximations are based, i.e., the hypergraph that is induced
by these domains is acyclic. This means particularly that this subclass is

independent from the behavior of the components.

175

CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAIC
OPERATORS

176

Chapter 7

Conclusion

We dealt in this work with various aspects of properties in cooperating sys-
tems. We used the formalism of interaction systems [GS03] to model coop-

erating systems.

In a first part (Chapter 2) we discussed complexity issues of the reachability
problem in subclasses of interaction systems which are defined by architec-
tural constraints on a graph structure that represents the communication
among subsystems. We considered system classes with a tree-like, star-like
and linear communication pattern. These subclasses include systems that
are highly relevant in practice, e.g., client server systems exhibit communica-
tion patterns that form stars or trees. Deciding reachability of global states
in interaction systems is PSPACE-complete [MCMO08c|. We showed that
deciding this problem remains PSPACE-complete in all of our subclasses.
Furthermore, we argued that deciding progress in our subclasses and that
deciding local reachability, i.e., the question whether or not a fixed local
state occurs in a reachable global state, in tree-like systems is PSPACE-
complete as well. Our result motivates further research on efficient tech-
niques that are based on sufficient conditions and decide reachability based
system properties as deadlock-freedom in cooperating systems with architec-

tural constraints and justifies published results which introduce such tech-

177

CHAPTER 7. CONCLUSION

niques for establishing deadlock-freedom [Hoa85, BR91, BCD02, MCMO08a,
Lam09, HJK10|.

In a second part, which accounts for Chapter 3-6 we introduced an approach
to efficiently represent over-approximations by abstract over-approximations
of the global behavior of interaction systems, refine these abstract over-ap-
proximations based on the Edge-Match operator and present an approach
based on abstract over-approximations for establishing deadlock-freedom in
interaction systems. We presented results of our approaches for various pa-
rameterized examples that are calculated by a tool developed by us. In
addition, we illustrated an interesting link between our approach to refine
abstract over-approximations and the semi-join operator from the field of re-
lational database theory and used this link in order to show a result regarding
the preciseness of the fixed-point of a family of abstract over-approximations

with respect to an application of the Edge-Match operator.

Our refinement approach extends the Cross-Checking approach introduced
in [MMCO09b] that deals with compact representations of the reachable global
state space. Our approach enhances the Cross-Checking approach by deal-
ing with over-approximations of the reachable behavior, i.e., including tran-
sitions, instead by dealing with over-approximations of the reachable state
space. Our results show that a refinement based on our Edge-Match op-
erator can result in significantly less reachable states in abstract over-ap-
proximations than a refinement by the Cross-Checking operator (applied to
our context). We proposed a procedure that calculates the fixed-point of
a family of abstract over-approximations with respect to an application of
the Edge-Match operator. Let Sys = (IM, {7}},cx) be an interaction system
with interaction model IM = (K, {A;};ck, Int) and C a domain of IM. We
argued that the costs of the application of the Edge-Match operator on a
pair of abstract over-approximations are bounded by

em = 2 (mcma" + % Cmax |Int|) + (mQ'cma" . |Int|)2,

where m is the size of the largest local state space of the components in

178

K and c,,,, is the size of the larges set in C. The costs of our procedure,

applied on Sys, based on the domain C, are bounded by
|C| - m*mex . |Int| - |C|* - em.

This is, our procedure runs in polynomial time if ¢, is a constant, i.e., the
number of components in each set in C is bounded by a constant and |C]| is
of polynomial size. Similar as in [MMC09b| we proposed to use a domain
that consists of all subsets of components with a constant size d where the
interaction graph restricted to a subset is connected — a domain like this

guarantees that our procedure runs in polynomial time.

We introduced an approach that is based on a sufficient condition to es-
tablish deadlock-freedom in interaction systems in polynomial time. Our
approach works on arbitrary systems, i.e., our approach does not depend on
characteristics of subclasses as, e.g., architectural constraints. We argued
that our approach is incomparable with the waiting chain approach intro-
duced in [Min10], i.e., if our approach fails to ensure deadlock-freedom then
the waiting chain approach might succeeds and vice versa. In Chapter 5 our
results show that our approach succeeds to, e.g., establish deadlock-freedom
for Tanenbaum’s solution of the Dining Philosophers Problem, where the
waiting chain approach fails (see [Min10]). Our abstract over-approxima-
tions are compact representations of over-approximations of the reachable
behavior of an interaction system, i.e., abstract over-approximations pro-
vide further potential to be the basis of approaches to establish other safety

properties in interaction systems.

Summarizing the above we introduced an approach to establish deadlock-
freedom, in polynomial time, based on an analysis of abstract over-approxi-
mations of the global behavior of an interaction system, that can be refined
by the Edge-Match operator. Our approach can be applied to arbitrary in-
teraction systems and does not require any architectural restrictions or other
constraints whatsoever. Our approach can be easily applied to cooperating

systems modeled by other formalisms. This can be done either by adapting

179

CHAPTER 7. CONCLUSION

our approach or by using a mapping among formalisms — see, e.g., [Min10]
for a mapping between interaction systems and 1-safe Petri nets. If we fail
to establish deadlock-freedom then the output of our approach includes in-
formation on where the system in consideration can be modified such that

our approach succeeds.

Our approach provides potential for further research and development. The

following points itemize some suggestions for future research.

e We did not consider to use our approach in combination with well-

known state space reduction techniques.

e Here we only treated the safety property of deadlock-freedom. Our
abstract over-approximations are compact representations of over-ap-
proximations of the reachable global behavior of an interaction system.
Thus, it appears promising to research further conditions that can be
applied on abstract over-approximations to the purpose of establishing

general safety in cooperating systems.

e Our procedure for calculating the Edge-Match fixed-point of a family
of abstract over-approximations (Algorithm 2 in Chapter 3) is based
on applications of the Edge-Match operator on all reasonable pairs of
abstract over-approximations. A lot of these applications are inde-
pendent from each other. Thus, our procedure is highly parallelizable
because a great deal of applications of the Edge-Match operator can

be done in parallel.

e Right now, in order to calculate the Edge-Match fixed-point of a family
of abstract over-approximations, we apply the Edge-Match operator on
all reasonable pairs of abstract over-approximations until there is no
further refinement. This approach might be improved by investigating
a sophisticated order of applications in order to minimize the number
of applications of the Edge-Match operator. A starting point is, for

example, the introduced link between our approach and the field of

180

relational algebra in Chapter 6. From the hypergraph structure of an
acyclic database scheme one can derive an order of semijoin operations
that is a full-reducer and consists of a number of semijoin operations

that is linear in the number of relational schemata in the database.

181

CHAPTER 7. CONCLUSION

182

Appendix A

Proofs

A.1 Proofs from Chapter 2

Proof of Theorem 2.1

The idea of the proof of Theorem 2.1 is as follows. In Section 2.3 we intro-
duced the straightforward, recursive Algorithm 1 called eval to determine
whether or not a QBF P (given over the restricted grammar) is in TQBF.
Note that the algorithm is deterministic. We show that the evaluation of the
algorithm corresponds to a path in the global behavior of Sys; and illustrate
that this path ends in ¢’ if and only if H is true. For this purpose we map
certain events in the algorithm ewval to interactions in Sysy and show that
there is only one path (up to some interleaving) in the behavior of Sys, that

corresponds to the evaluation of eval with respect to this mapping.

Before we prove Theorem 2.1, we need some preliminaries.

183

APPENDIX A. PROOFS

Recursive Algorithm

In Algorithm 1 (Section 2.3) we assume that in Line 8 and 2 the conjunction
respectively the disjunction is called in sequence from left to right. In addi-

tion, we assume, that eval(P") is not called in Line 8 if eval(P') is evaluated

false and eval(P,

— faise) 18 not called in Line 2 if eval(P,

—true) 1 evaluated

true. These assumptions imply a deterministic execution of eval(H) for a
QBF H.

The execution of eval(H) for a QBF H can be described by a sequence over

the following words.

e “call _eval(P)”: subformula P is called by eval
e “eval(P) = true”: subformula P was evaluated true by eval

e “cval(P) = false’: subformula P was evaluated false by eval

For a QBF H let Seqy be this sequence and Seqy (i) the ith word in Seqy
fori =1,..., length(Seqy), where length(Seqy) is the number of words in
Seqy. Tt is clear, that H € TQBF if and only if the last entry of Seqy is

“eval(H) = true” and “eval(H) = false” otherwise.

Example A.1:
Consider the QBF H = —3z;,.(x; A —x;) with its subformulas abbreviated
as in Figure 2.5, then Seqy is given by

e call eval(H)

e call eval(P;

(
(P1)
o call_eval(P,) (true is assigned to ;)
e call eval(Py)

o cval(P;) = true
o call eval(Py)
e call eval(Ps)

e cval(Py) = true

184

A.1. PROOFS FROM CHAPTER 2

e cval(P,) = false
e cval(P,) = false
e call _eval(Py) (false is assigned to z;)

e call eval(P3)

Mapping the words of Seq; to Int

Let H € QBF and Sysy be the associated tree-like interaction system. We
treat the associated interaction graph G as a rooted tree with component
H' as the root. In these terms, if we speak of a successor, a predecessor or
a subtree spanned by a component, we refer to components with respect to
G- Let Int’ C Int be the subset of interactions given by:

{eval P — P,,P_ask_P, true,P_ask_ P, false|P € Ky U{H'} with succ. P}
and S the set of words that can occur in Seq;, given by

{“call_eval(P)”, “eval(P) = true”, “eval(P) = false”|P is a subformula of HY}.
We define a mapping from S to Int’ by the function f : S — Int" with

o f(“call_eval(P)") = eval P — P,

o f(“eval(P) =true’) = P' _ask P _true and

o f(“eval(P) = false’) = P' _ask_P_ false.

where P’ is the predecessor of P and P' = H' if P = H.

Lemma A.1:
Let & be a sequence of interactions that corresponds to the interactions
on a path in the global behavior of Sys;, such that ¢ is infinite or the

corresponding path ends in a state where no transition is possible. Let o be

185

APPENDIX A. PROOFS

the sequence obtained by removing the interactions in Int \ Int’ and let o(4)
be the ith interaction in o for i = 1,...,length(c), where length(c) is the
length of o. Then length(o) = length(Seqy) and

Vo F(Sequ(i)) = oi).

Before we prove Lemma A.1 by induction, we need some observations which
follow from invariants of algorithm eval. In the following we refer repeatedly
to the structure of the transition systems given in Figure 2.6, 2.7 and 2.8 and
the interactions given on page 47. We assume the induction hypothesis to be
true, i.e., for some i < length(co) holds that for all 1 < k <1 f(Seqy(k)) =
o(k).

Observation A.1:

Consider (i) to be performed and let Seqy(i+1) = “eval(P) = true” where
P’ is the predecessor of P, then P’ waits to perform P’ ask P_true.

The same applies for Seqy (i + 1) = “eval(P) = false” where P waits to
perform P'_ask_P_ false.

Proof. There is 1 < j < i with Seqy(j) = “call _eval(P)”, i.e., if sub-
formula P is evaluated to true then it is assured that P was called previ-
ously. Let j be maximal for this property. For j +1 < k < i Seqy(k) ¢
{“call _eval(P)”, “eval(P) = true”, “eval(P) = false”}, i.e., P is not in-
volved in between. It follows that o(j) = f(“call _eval(P)”) = eval P' —
P, this is, P’ reached a state in which it waits for P’ ask P _true or
P' _ask_P_ false. Since these interactions were not performed for j +1 <
k < i, it is assured, that after o(i) has been performed, P’ still waits to
perform P’ _ask P true or P' _ask P _false. O

Observation A.2:
Consider o(7) to be performed and let Seqy (i +1) = “call _eval(P)”. Let
component P’ be the predecessor of component P, then P eventually reaches

a state in which it waits to perform eval P' — P = f(Seqy (i + 1)).

186

A.1. PROOFS FROM CHAPTER 2

Proof. There are six cases for P:

i)

ii)

iii)

iv)

vi)

P waits to perform eval P’ — P, i.e., P is in a state labeled ¢ or f,
then eval P’ — P is enabled.

P waits to perform set P_true P — P for a successor P of P.
It is easy to see that this is only possible if f(“eval(H) = true”) =

H' ask H true performed which is not the case.

P waits to perform eval P — P. If this situation occurs, either
eval P — P, P_ask_P_false (if P = 3.2;P) or P_ask_P'_false
(if P = P A P) was performed. Let this be the case for f(Seqy(j)) with
j < i (j maximal). Due to the structure of Seqy, f(Seqy(j + 1)) =
eval P — P would be the next interaction to be performed, i.e., P

cannot stay in a state waiting to perform eval P — P.

P waits to perform P_ask_P_true. Analogously to case 3, this cannot

happen.

P = 3.z, P waits to perform set 1z} true/false or ask;_true/falsed
for 1 <[< n. This interaction would always be performed, and subse-
quently P waits to perform eval P — P, which is not possible due to

case 3.

P waits to perform set_x; true P — P or set_x; false P — P for
1 <1 < n. If P models a variable then set z; true P — P respec-
tively set_x;, false_ P — P is enabled by P and can perform. After
this, f(Seqy(i + 1)) = eval P’ — P becomes enabled by P. If P does
not model a variable then analogously (to case 1-5) either P enables
set_x; true_ P — P respectively set _x, false P — P or P waits
to perform set z, true_ P — P respectively set xz, false_ P —
P (r € {1,...,n}) for a successor P of P. By induction follows,
that this interaction performs eventually. Therefore, f(Seqy(i + 1)) =

eval P' — P eventually becomes enabled as well.

187

APPENDIX A. PROOFS

Observation A.3:

Let Seqy(i + 1) = “eval(P) = true” such that P = a7 for 1 <[< n and
r € {1,...,k}, then it is assured that P waits to perform P’ _ask P _true
after o(i) is performed. The same applies for Seqy (i + 1) = “eval(P) =
false” with o(i +1) = P'_ask_P_ false.

Proof. Let Seqy(i + 1) = “eval(P) = true” (respectively Seqy(i + 1) =
“eval(P) = false”), then Seqy(i) = “call _eval(P)” and there is Q" = 31,.Q
and j < i such that Seqy(j) = “call _eval(Q)”, i.e., if algorithm eval calls
a variable recursively then it is assured that beforehand a subformula was
called that quantifies this variable. Let j be maximal for this property.

There are two cases for j — 1:

a) Seqy(j — 1) = “call_eval(Q')”, i.e., 7, is set to true in the subsequent
call of eval(Q) (see algorithm eval). After o(j—1) = f(Seqy(j—1)) was

performed, either
a.l) set_m;, true or
a.2) ask_true,, becomes enabled.

b) Sequ(j — 1) = “eval(Q) = false”, i.e., Q was evaluated to false and is
called by eval again with z; set to false. After o(j —1) = f(Sequ(j—1))

was performed, either
b.1) set_x; false or

b.2) ask:_falsex; becomes enabled. This is not possible, because then
there is no way o(j) = call_Q — Q = f(Seqy(j)).

Consider Case a.1) (resp. b.1)). Let, after o(j—1) = f(Seqy(j—1)) was per-
formed, set _x; true (respectively set _x; false) be enabled and perform.
This means that Q" waits to perform set _x;, true Q" — Q (respectively
set_x, false_Q — Q). Analogously to A.2, this interaction eventually be-
comes enabled. If set _x, true @Q — Q (respectively set_z;, false Q" —
Q) is performed it is clear that eval Q" — Q = o(j) = f(Seqy(j)) be-

188

A.1. PROOFS FROM CHAPTER 2

comes enabled. Analogously, for each component Q and its predecessor Q'
set_x;,_true_Q — Q (respectively set_x;, false_ Q" — Q) has to be per-
formed before eval_@' — @ becomes enabled. This is until Q models a
variable. If Q models an occurrence of z;, then true (resp. false) is assigned
to Q, else, there is no effect on the current state of Q). Therefore it is assured
that P waits to perform P’ _ask P _true (respectively P’ _ask P _ false)

after o(i) is performed.

Consider Case a.2), i.e., ask_true, is enabled after o(j—1) performed. Then
the component z; is in the state labeled ¢. This means, the last interaction

. . / /
involving x; cannot be set _x; false or ask:_falsex;. There are three cases

1.) x; was never involved since o(j—1) is performed. Due to the fact that all
components modeling occurrences of variables start in their state labeled
t, it is easy to see that it is not possible that any of these components
could reach the state labeled f. Therefore these components are still in

the state labeled t when P’ waits to perform P’ _ask _P_true.

2.) The last interaction involving z; was set _z) true. With Case a.1) fol-
lows that all components that model occurrences of x; were set in their
respective state labeled t. As there was no interaction involving z; since
set_x; true performed, it is assured that these components are still in

the state labeled ¢ when P’ waits to perform P’ _ask P _ true.

3.) The last interaction involving z; was ask_truex;. This case is easily re-
ducible to the last two cases. Therefore it is assured that all components
modeling occurrences of x; are still in the state labeled ¢ when P’ waits

to perform P'_ask P _true.

189

APPENDIX A. PROOFS

Proof of Lemma A.1

In the initial state of Sysy all components but H' are in their state labeled
t. The only enabled interaction is eval H' — H with f(“call_eval(H)") =
eval H' — H. Thus, o(1) = f(Seqy(1)). Lemma A.1 is proven by induc-
tion, i.e., we have to show that, if f(Seqy(i)) = o(i) is performed, under the
assumption f(Seqy(j)) = o(j) for 1 < j < then the interaction in Int’ that
is performed next is f(Seqy(i+1)). In fact we show that f(Seqy(i+1)) even-
tually becomes enabled, such that in between only interactions in Int \ Int’

are performed.

We now consider the three possible cases for Seqy (7).

Induction - Case 1

Consider Seqy (i) = “eval(P) = true’, i.e., o(i) = f(“eval(P) = true’) =
P’ _ask_P_true where P’ is the subformula P is included in and P’ = H'
if P = H. If existent, let P” be the predecessor of P’ (P" = H" if P' = H).

It is clear, that P is in its state labeled . There are five cases:

l.a) If P' = P A P, then Seqy (i + 1) = “call _eval(P)”. This means, that
P’ waits to perform eval P’ — P. From Observation A.2 follows the
same for P as well. Tt follows that the only newly enabled interaction

in Sysy is eval P’ — P = f(Seqy (i + 1)).

Lb) If P'= P A P, then Seqy(i + 1) = “eval(P') = true”’. The component
P' waits to perform P” ask P’ true = f(Seqy(i + 1)) and from
Observation A.1 follows that this is the only newly enabled interaction

in Sysy.

l.c) If P' = =P, then Seqy (i + 1) = “eval(P') = false”. The component
P’ waits to perform P” ask P’ false = f(Seqy(i + 1)) and from
Observation A.1 follows that this is the only newly enabled interaction

in Sysy.

190

A.1. PROOFS FROM CHAPTER 2

1.d)

l.e)

If P' = 3z;.P, then Seqy (i + 1) = “eval(P') = true”. The component
P’ waits to perform P" ask P’ true = f(Seqy(i + 1)) and from
Observation A.1 follows that this is the only newly enabled interaction

in Sysy.

If P'= H', then i = length(Seqy), i.e., there is no next word on Seqy

and no new interaction € Int’ is enabled in Sysy.

Induction - Case 2

Consider Seqy (i) = “eval(P) = false”, i.e., o(i) = f(“eval(P) = false”) =
P' _ask_P_ false where P’ is the predecessor of P and P' = H' if P = H.
If existent, let P” be the predecessor of P’ (P" = H' if P' = H). It is clear,

that P is in its state labeled ¢t. There are five cases:

2.a)

2.b)
2.c)

2.d)

If P'= PAP, then Seqy(i+1) = “eval(P') = false”. The component
P waits to perform P” ask P’ false = f(Seqy(i + 1)) which is,
according to Observation A.1, enabled by P”.

If P’ = P A P, analogously to Case 2.a).
If P' = =P, analogously to Case 2.a).

If P' = Jx,.P, then there must be j < i with Seqy (j) = “call _eval(P)”,
i.e., if P was evaluated to false then P was called by eval previously. Let
j be the largest value with this property. By assumption follows that
§ < iis the biggest index with o(j) = f(“call _eval(P)”) = eval P’ —
P. In line 2 of the eval algorithm P can be called by eval with z; set
to true and afterwards with z; set to false. Accordingly, there are two
cases for Seqy(j —1). Either P’ was called, i.e., P is called with z; set
to true or P was evaluated to false and was called a second time with

x; set to false.

2.d.a) If Seqy(j — 1) = “call_eval(P")” then we have Seqy(i + 1) =

“call _eval(P)”. By the induction assumption we can conclude

191

APPENDIX A. PROOFS

that o(j—1) = eval _P" — P' = f(“call _eval(P')"), i.e., either
set _x, trueor ask_true,; was enabled after o(j—1) performed.
This assures that the component] is in its state ¢ after o(j) per-
formed. Hence there was no interaction involving component P’
since o(j), o} is still in its state labeled ¢ when o (i) is performed.
Therefore, after o(i) performs, the only newly enabled interac-
tion is set _x; false, after that set _x; false P’ — P and af-
ter that P’ waits to perform eval P' — P = f(“call _eval(P)")
which is, by Observation A.2, assured to become enabled even-

tually.

2.d.b) If Seqy(j —1) = “eval(P) = false” then we have Seqy(i+1) =
“eval(P') = false”. By assumption follows that o(j — 1) =
P' ask_P_false = f(“eval(P) = false”). By Case 1.d.a fol-
lows that 2 is in its state labeled f when o(i) is performed, i.e.,
after o(7), the only newly enabled interaction is ask_ false,.
When ask_ f alsex; is performed, it follows from Observation A.1
that the only newly enabled interaction is P” ask P’ false
which equals f(“eval(P') = false”).

2.e) If P' = H', analogously to case Case 2.a).

Induction - Case 3

Consider the case that Seqy(i) = “call _eval(P)”. This is, in this case
o(i) = f(“call _eval(P)") = eval _P" — P where P’ is the predecessor of P
and P' = H' if P = H. There are four cases

3.a) If P = —P, then Seqy(i + 1) = “call_eval(P)”. The component P
waits to perform eval P — P = f(Seqy(i + 1)) which is, enabled by
P accordingly to Observation A.2 and therefore the only newly enabled

interaction.

3.b) If P = P, A P,, then Seqy(i + 1) = “call_eval(P;)”. The component

192

A.1. PROOFS FROM CHAPTER 2

P waits to perform eval P — P, = f(Seqy(i+1)). From Observation

A.2 follows that this is the only new enabled interaction.

3.c) If P = 3z,.P, then Seqy(i + 1) = “call_eval(P)’. In Sysy the
only new enabled interaction is either set z true or ask_truezg. If
set_x, true is executed then the only newly enabled interaction is
set_x; true P — P. Anyway, if set_x; true P — Por ask_true,s
is executed, P waits to perform eval P — P = f(“call _eval(P)”)
which is enabled by P due to Observation A.2.

3.d) f P=uaj, for 1 <l <mnandr € {l,...,k}, then either Seqy(i +
1) = “eval(P) = true” or Seqy(i + 1) = “eval(P) = false”. With
Observation A.3 follows that P waits to perform either f(Seqy(i+1)) =
P' ask_P_true or f(Seqy(i +1)) = P'_ask_P_false. Due to the
fact that P’ waits to perform this interaction as well, f(Seqy(i +1)) is

the only newly enabled interaction € Int’.

Proof of Theorem 2.1

Proof. By Lemma A.1 we have shown that, if H ¢ TQBF, i.e., Algo-
rithm 1 applied on H returns false, then each path in the global behavior
in our model Sys;; eventually reaches a state where only the interaction
H' ask H _falseis enabled. If H' ask H false performed, then there

. ¢
is no way ¢ can be reached.

Analogously, if H € TQBF, i.e., Algorithm 1 applied on H returns true,
then eventually the interaction H' ask H true is performed. The only
new enabled interaction is set H true H' — H. If set H true H' —
H is performed then T}, reaches its state labeled . Let P’ € K; U{H'} be
a component and P € K; its successor (i.e., P’ does not model a variable)
such that set P true P’ — P is enabled. There are four cases for the

structure of P and two for P’ if set P_true_ P’ — P is performed.

e P models a variable, then it is assured that P reaches its state labeled

193

APPENDIX A. PROOFS

t and no new interaction is enabled.

e P = 3z,.P, then either set _z; true or ask_true, becomes enabled.
Anyway, it is assured, that 2} reaches its state labeled t. This is,

set_P_true P — P becomes enabled.
e P=PAPor P==P, then set P _true P — P becomes enabled.
e P"=P AP, then set_P_true_ P — P becomes enabled.
e In any other case, P’ reaches its state labeled ¢.

This is, eventually all components reach their state labeled ¢. It follows that
H € TQBF < (Sysy, q") € TRIST. O

Proof of Corollary 2.1

Proof. The proof of this corollary follows from the proof of Theorem 2.1.
Let H be a QBF, Sysy the associated interaction system that is constructed
as in Section 2.3 and ¢’ the global state in the global behavior T of Sys; in
which all components are in their state labeled ¢. Theorem 2.1 states that H
is true if and only if ¢ is reachable in 7. Actually, in the proof of Theorem
2.1, we used that a global state is reachable where the local behavior of
component H' is in the local state ¢, if and only if H is true. We showed
that, from such a global state, there is always the possibility to reach the
designated global state ¢' by propagating, starting from H’, down through
the interaction graph (that forms a tree) that each component shall reach
its local state labeled ¢. This is, we showed in the proof of Theorem 2.1 that

component H' reaches the state ¢, if and only if H is true. O

Proof of Theorem 2.2

Proof. We prove this theorem by giving an isomorphism, with respect to

transitions in Sys,, and transitions of configurations in M, between global

194

A.1. PROOFS FROM CHAPTER 2

states of Sys,,; and configurations of M. The statement of the theorem then
follows by induction as the isomorphism maps the initial configuration of M

to the initial state of Sys,,.

Let R be the set of configurations of M. We map (p; v, -, %>+ Vnt1) € R
to a global state ¢ = (qo, . . ., ¢u+1) such that ¢; = (p,v;) and ¢; = (s,~;) for
j #i. Let Q" be the set of global states that correspond to the configurations
in R. It is clear that this mapping is a bijection between R and Q'.

Let (9590, -5 Yir- -+ Yns1) € Rand ¢ = (go,- -+, @us1) € Q be the asso-
ciated state in Sys,,. Let d(p,7;) = (p',;, T), i.e., the next configuration

in M is (959, -5 %> Yis1s - Yng1) € R T = 1 (the case T = —1 is
treated analogously). The only enabled port in component i is (p, y;);, then
the only enabled interaction in q is {(p,7;)i, (p,7%:)7er}. Thus, component
i reaches the state (s,7;) and component i + T the state (p',v,,7). The
resulting global state ¢’ corresponds to the respective configuration in M.
The fact that the inverse of the mapping is also a homomorphism can be

shown analogously. O

Proof of Theorem 2.3

Proof. Let ¢ be a state in the global behavior T of Sys and ¢’ be the state
in the global behavior T" of Sys’ where ¢; = ¢, for i € K and ¢, = ¢°,

i.e., component cc is in its initial state. Let Int = {a', o, . ..,ozk} and

ol = {ajl,...,aj‘aj‘} such that each port in o’ is enabled in ¢, i.e., all
local states qj, | = 7jy,. .. ,j|aj| in ¢’ enable the ports a?* and a; and do not
enable a;°F. The state ¢’ enables the interaction {aZ,}. If this interaction is
performed then the only possible sequence of interactions results in a state
¢ with ¢, = ¢ for i € K and ¢, = ¢_.. Let there be a port in o’ that is
not enabled in ¢, e.g., ¢; with [€ {jl, e ,j|aj|} does not enable a; then ¢
does enable ;" and not a*. If {al,} performed in ¢’ then the only possible

sequence of interactions in Sys’ leads back to state ¢’. For the global initial

195

APPENDIX A. PROOFS

states ¢ of Sys and qol of Sys’ holds that ¢} = q?, for 2 € K and qgcl is the
initial state of the local behavior of component cc. The “if” part follows by
induction over paths in the global behavior of Sys. The “and only if” part

follows analogously. O

Proof of Theorem 2.4

Proof. We already argued that the progress problem in tree-like interaction
systems is in PSPACE. Let H be a QBF and Sys; the associated interaction
system which is constructed as described above. As argued in Section 2.3,
Sys; is tree-like and of polynomial size. It is easy to see that the interac-
tion evaluated _true is the only interaction that is enabled if the state ¢ is
reached. In this case, evaluated true performs infinitely often in every run
of the modified system, i.e., the component pro participates infinitely often.
Therefore the component pro may progress if H is true. If H is false then
eventually end_ false,s becomes enabled in component H' and the inter-
action evaluated true never becomes enabled, i.e., pro may not progress.
Thus, the component pro may progress if and only if H is true, i.e., the

progress problem in tree-like interaction systems is PSPACE-hard. O

A.2 Proofs from Chapter 3

Proof of Lemma 3.1

Proof. Let R be an abstract over-approximation of 7. Assume that E(R)
is not an over-approximation of the global behavior T" of Sys, i.e., there is
a transition ¢ <, ¢ reachable in T such that ¢ i>E(R) ¢’ is not a reachable
transition in E(R). This is, either ¢ =g ¢ is included in E(R) but
not reachable in E(R) or ¢ = E(R) ¢’ is not even included in the transition

relation of F(R). We distinguish these two cases.

196

A.2. PROOFS FROM CHAPTER 3

1. If ¢ 3>E(R) ¢’ is not a transition in F(R) then, according to the pre-
liminaries of Lemma 3.1, there is no transition ¢» —5 g¢ in R with
¢l = g0 and ¢lc = q&. This is a contradiction as ¢ <4 ¢ is
reachable in T and thus qlo —gk ¢'lc is reachable in the abstract

over-approximation R.

2. Let ¢ 3>E(R) ¢ be a transition in E(R). This is, ¢ 3>E(R) q' is not
reachable in E(R). ¢ =+ ¢ is reachable in T, i.e., there is a sequence
of transitions in 7" (as in Definition 1.2) where the first transition
originates in the global initial state ¢” and the last transition is ¢ < ¢'.
As ¢ 3>E(R) ¢’ is not reachable in E(R) it follows that there is a
transition ¢ i>T ¢ in the sequence such that ¢ iE(R) q is not reachable
in E(R). Let q E>T ¢ be the first transition in the sequence with this
property, i.e., ¢ LN E(R) d is not even included in the transition relation
of E(R). By the first case follows that there is no transition go e
in R with ¢l¢ = ¢c and ¢l = g, i.e., this is a contradiction because

R is an abstract over-approximation of 7.

Let E(R) be an over-approximation of 7" then we want to show that R is an
over-approximation of 7" (see Definition 3.1). Let go <~ g be a reachable
transition in 7. This is, there is a reachable transition ¢ =, ¢ in T with
¢le = qc and ¢'lc = qo. As E(R) is an over-approximation of T it follows
that ¢ = B(r) ¢ is reachable in E(R) as well. According to the preliminaries
of Lemma 3.1, there is a transition o —p Go in R with ¢l = g and
q'le = qo. Tt is easy to see that ¢ = g and G = g This is, if E(R) is an
over-approximation of T' and g <, ¢ is a reachable transition in 7" then
Jo <R qo is a transition included in the transition relation of R. Tt remains

to be shown that ¢- —p ¢¢ is reachable in R.

Let q- g>T” go be a reachable transition in 7" and assume that q» =z
e is not reachable in R. There is a sequence of transitions in T (as in
Definition 1.2) where the first transition originates in the initial state e

and the last transition equals qq i>T~ go. As qo =g g4 is not reachable

197

APPENDIX A. PROOFS

in R it follows that there is a transition ¢o g>Tu Jc in the sequence such
that G- —x G is not reachable in R. Let gz —,» Go be the first transition
in the sequence with this property. The existence of this transition is a
contradiction because, as we showed above, o —r Go is a transition in R
and is thus reachable. 0

Proof of Lemma 3.2

Proof. Let ¢ <1 ¢’ be a reachable transition in 7. Then there is a sequence

of transitions
k

ot a2 fe— oF
¢ =rdd =rd ¢ g
in T with ¢ = ¢" ', a = " and ¢ = ¢". Let i € {1,...,k} then by the
definition of S follows that the transition ¢' | a—>SC ¢'lc is in So. It
follows that all transitions in the sequence projected on the components in
C form a sequence in Si that starts in ¢& and ends in ¢lo 350 ¢ lc. This

is, q¢lo &SC q¢'l¢ is a reachable transition in S. U

Proof of Theorem 3.1

Proof. Let S' = (Q¢, Int,—¢,q) = EM(S,R). We assume that S’ is
not an abstract over-approximation of 7', i.e., there is a transition ¢ i>T q
reachable in 7" such that ¢lq gsf d'lc is not a reachable transition in S’
As q i>T ¢ is reachable in T, there is a path starting in ¢° to § in T. Let
q¢ 7 ¢ be the last transition on this path with ¢l reachable in S, i.e.,
¢be =g ¢l is not a transition in S'. As S is an abstract over-approxima-
tion of T, ¢l <5 ¢'lc is reachable in S. This means that ¢lo &S, dle
is not a reachable transition in S’ because there is no transition ¢p =5 ¢p
reachable in R with ¢ple = qolp and ¢ple = qodp. This is a contradiction,
as R is an abstract over-approximation and thus qlp, =z ¢'lp has to be

reachable in R.

198

A.2. PROOFS FROM CHAPTER 3

It follows that S’ is an abstract over-approximation of 7. O

Proof of Lemma 3.3

Proof. Let i € K be a component and g; a state in the local behavior 7T} of 2.
Assume that we have a technique available that calculates an exact abstract
over-approximation S = (Q¢, Int, —g, g&) for the input Sys and C' C K in
polynomial time in the size of the specification of Sys. Let C' = {i} then
the size of the transition relation —¢ is bounded by |Q,|* - |Int|, i.e., the
size of S is polynomial in the size of the specification of Sys. This means
that we can check in polynomial time whether the state g; is reachable in
S. As S is exact, we can conclude that there is a state ¢ reachable in the
global behavior T' of Sys where component i is in state g; if and only if g;
is reachable in S. This is a direct contradiction to Corollary 2.1 because
deciding this problem is PSPACE-complete. O

Proof of Lemma 3.4

Proof. We assume that {Rp}eoec # {Ré}oec. Note that this means that
there is C' € C with Ry # R{, i.e., there is a transition ¢ i>R'c qc in Ry
such that go = Rl gc is not a transition in Ry, or vice versa. Without loss

of generality we assume the first.

R{: is a refined version of R for C € C, i.e., Ro is an over-approximation
of R}.. Let {Rc}cec be the family where

e {Rc}eec resulted from applications of the Edge-Match operator on

{R¢}cec which correspond to a prefix of seq,
e R is an over-approximation of RY for each C' € C and

e the application of the Edge-Match operator that corresponds to the

next entry in seq; would violate the last item, e.g., if (C, D) is the

199

APPENDIX A. PROOFS

next entry in seq; then RM (R, Rp) results in a transition system R
such that there is a transition g¢ 3>RZ~ gc in R but g i>R/C q¢ is not

. . . -yl
a transition in Rg.

This means, that there is no reachable transition ¢, — i ¢p in Rp with
Iple = qodp and ¢ple = q-lp. There cannot be a reachable transition
of this form in R} as well, because Rp is an over-approximation of RY}.
This means that EM (R, R})) results in the removal of a transition in R.
This is a contradiction to the assumption that { R} ccc is a fixed-point with

respect to the Edge-Match operator. O

Proof of Lemma 3.5

Proof. Let seq be a sequence of the Edge-Match operator on {S¢}cec which
result in the fixed-point {R¢}occ, €.8., a sequences of tuples in C x C. In
seq might be tuples of the form (C, D) and (D, C) for C' € C'. Let seq’ equal
the sequence seq where each occurrence of (C, D) is replaced by the tuples
(C,Dy),(C,Dy),...,(C, D) and each occurrence of (D, () is replaced by
(Dy,C), (Dy,C),...,(Dy,C). We prove here by induction on the length of
seq that seq’ applied on {S¢}oce results in {Re}oce.

For the initial families {S¢}cec and {Sc} e holds trivially that gp <55, ¢p
is a reachable transition in Sp if and only if ¢p, i>SD. C]b,. with gpdp, = qp,
and qbiDi = qbi is a reachable transition in Sb,. forleach 1 <4 < k. This
follows directly from the Definition of Sp in Lemma 3.2. Thus, property 1.

and 2. hold for the initial families of abstract over-approximations.

Let {R¢}eoee be the family of abstract over-approximations before the jth
application of the Edge-Match operator in seq on {S¢}coec. Analogously,
let {R/C}ce(é be the family of abstract over-approximations before the re-
spective application of the Edge-Match operator in seq’ on {Sc}eoee- This
is, if the Edge-Match operator with respect to a tuple (C, D) respectively

(D,C) in seq was applied in the construction process of {Rq}oec then,

200

A.2. PROOFS FROM CHAPTER 3

in the construction process of {R'C}CE@, the Edge-Match operator with
respect to the corresponding sequence (C, D,),(C, D,),...,(C, D,) respec-
tively (Dy,C),(D,,C),..., (D, C) in seq was applied. We assume that
property 1. and 2. hold for {R¢}eee and {Re}ece-

We distinguish three cases for the next application described in seq.

If the jth application is of the form (C,C’) with C,C" # D then the next
respective application of the Edge-Match operator in seq’ is (C,C") as well.
If we apply these on the respective abstract over-approximations then it is
clear that EM(Rq, Ry) = EM(Re, Ry,). All other abstract over-appro-
ximations in both families remain the same, i.e., property 1. and 2. still

hold.

If the jth application is of the form (C, D) then we consider the applications
of the Edge-Match operator on {R/C’}Ce(j that correspond to the respective
subsequence (C, D;), (C, Dy),...,(C,D,) in seq’. Property 2. holds after
the applications of the Edge-Match operator on both families because the
over-approximations R, respectively R'Di for 1 < ¢ < k remain untouched.
Let R the respective refined version of Ry and Rj the respective refined
version of R. Assume that the transition qo =z - gc got removed in
the refinement, but go — i ¢c remains in R'C, i.e., there is no transition
4p g, qp reachable in Rp with golp = gple and ¢olp = gple. Tt
follows from the second property that there is 1 < ¢ < k such that the
transition gp, i)R'D. q})i with gplp, = qp, and qbiDi = q})i is not reachable
in R’Di. This is a éontradiction because then the transition ¢, i>R/C qo is

not included in EM (R, R'Di). The other direction follows analogously.

If the jth application is of the form (D, C') then we consider the application
of the Edge-Match operator on {R¢} ¢ that corresponds to the respective
subsequence (Dy,C), (Dy,C),..., (D, C) in seq’. Property 1. holds after
the applications of the Edge-Match operator on both families because the
over-approximations R respectively Ry remain untouched. Let }?D the

. . — -y . .
respective refined version of Ry and Rp. the respective refined version of

201

APPENDIX A. PROOFS

R})i for 1 < ¢ < k. Assume that ¢p E)RD ¢p is reachable in R, but there
is 1 <14 < k such that qp, &Rbi qbi with gplp, = qp, and qbiDi = q})i got
removed from R,D,. during the refinement process, i.e., the second property is
violated after the refinement. It follows that there is no transition g —» R
g with qcdp, = qp,dc and qlciDi = qu$C' reachable in Ry. This is a
contradiction because property 1. holds, i.e., R = R and thus qp, i>RD ap
should have been removed by EM(Rp, Re). The other direction follows

analogously. O

Proof of Lemma 3.6

Proof. Let R'D1 be EM(SDI,R/DQ) restricted to reachable transitions, i.e.,
the result of the application of the Edge-Match operator on Sp with R'D2

restricted to reachable transitions. If now
a) Rp, = EM(Rp,, Rp) for all C € C’ and
b) Ry = EM(R'C, R'Dl) for all C € C’

then it follows that the family of abstract over-approximations {R¢}eoec
is the Edge-Match fixed-point of the family {S-}cec. The first part from
the assumption then follows from Lemma 3.4 because this fixed-point and

the fixed-point {R;}cec are identical. The second part follows because
Rbl = Rp, and R'D2 = EM(R'D2,RD1) as well as Rp = EM(RDl,R'D2).

Assume that a) does not hold, i.e., there is C € C’ such that R/D1 #*
EM(R'DI, R¢). This means that there is a reachable transition qp, i>BID1 qbl
in R'D1 such that there is no reachable transition go — R gc in Ry with
gclp, = ap,do and golp, = ¢p,lc. Note that from the definition of R}
follows that C' # D, because there is a transition gp, 3>RIDQ q})2 reach-
able in R/D2 with ¢p,lp, = qp, and qbQ¢D1 = le- As D, C D, it follows
that qp, i>Rb2 qbQ is removed in EM(R'DQ, Ry). This is a contradiction to
the assumption that the family {R¢} o is the Edge-Match fixed-point of

{Sc}cec’-

202

A.3. PROOFS FROM CHAPTER 6

We assume now that b) does not hold, i.e., there is C' € C’ such that Ry, #
EM (R¢, Rp,). This is the case if there is a transition g¢ i>R/C qc reachable
in Ry such that there is no transition qp, i>R,Dl qbl with golp, = qp,dc
and q'CLDl = qblic reachable in R'Dl. Assume that C' # D,. Because of
the assumption that the family {RIC}CE(C/ is the Edge-Match fixed-point of
{Sc}eoee it follows that a respective transition gp, 3>R/DQ qbQ with ¢p,lc =
qcdp, and q})2¢0 = q'CLD2 must be reachable in R'DQ. It follows that the
transition ¢p, g>BID2 q})2 is removed in EM(R'DQ, R'Dl). Thus, without loss
of generality, we can assume that C' = D, and that there is a transition
that is reachable in R'D2 which projection on D, is not reachable in R/Dl.
Assume, without loss of generality, that gp,|p, is a reachable state in R'Dl.
By the definition of Sp, in Lemma 3.2 and the fact that qp,|p, is reachable
in Rbl follows that the transition gp,|p, 3>5D1 qbQ¢D1 is reachable in Sp_,
i.e., this transition got removed by the operation EM(Sp , R'DQ). This is a

. . (% / /
contradiction because qp, — R)p, D, 18 2 reachable transition in Rp, . O

A.3 Proofs from Chapter 6

Proof of Theorem 6.1

Proof. Let rg and ri; be rg respectively rp restricted to reachable tuples.

Let t € r, then t corresponds to a transition g. 35' go in 8" = EM(S,R).
This means, that ¢o —¢ ¢¢ is a reachable transition in S, i.e., t € ry. The
transition is in S’ after the application of the Edge-Match operator, i.e.,
there is a reachable transition ¢, 5 ¢p in R such that ¢olp = gplc and
godp = ¢ple. Let tp € r be the tuple that corresponds to gp — 5 ¢jp. This

means that t € ry X rp ast € rg and tg € rf.

Let t € rg x rz then t corresponds to a transition g < ¢ g¢ that is reachable
in S. Furthermore, there is a tuple ty € rj; that agrees with tg on shared

attributes. Let tp correspond to the reachable transition ¢p —p ¢p in R.

203

APPENDIX A. PROOFS

This means that g g q¢ is a transition in EM (S, R) as qolp = ¢ple and
qICi’D = qbl/Ca i'e'a ter.]

Proof of Corollary 6.1

Proof. Let He = (K,C) be acyclic. Let C = {C},C5,...,C,} and R =
{R¢,:Re,, -, Re, } be the relational database scheme that consists of the
relational schemata associated with the sets of components in C. It is easy to
see that R is acyclic if the hypergraph Hp = (K, C) is acyclic (see Example

6.5 for an illustration).

Let {R¢}cec be the Edge-Match fixed-point of { R }eec and let

0= {rCI(RCl)a rCQ(RCQ)a SRR er(RCk)}

be the database on R that consists of the relations associated with the

transition systems in {R¢}oce.

As {R¢}eec is a fixed-point with respect to the application of the Edge-
Match operator each abstract over-approximation is restricted to reachable
transitions and no application of the Edge-Match operator on a pair of ab-
stract over-approximations results in a refinement. It is easy to see that it
follows from Theorem 6.1 that similarly each tuple in each relation in 0 is
reachable and no application of a semijoin on a pair of relations results in a
removal of tuples. As R is acyclic it follows that each relation in 0 is a full

reduction.

Let C € C and q¢ g>R/C gc a reachable transition in R then ¢c i>R/C e
corresponds to a reachable tuple to € ro (ro € 0). As ro is a full reduction
it follows that ro = mg_ (> (0)), i.e., there is a tuple t € () such that
tc = t(Re) and for each D € C (D # C) t(Rp) € rp. The tuple t corresponds
to a transition ¢ =, ¢ in the global behavior T of Sys and each t(Rp)

D # C') corresponds to a reachable transition qp — in R}, with
9p =R}, 4D D
* ¢lc=qc and ¢'|c = q¢ and

204

A.3. PROOFS FROM CHAPTER 6

e forall D € C (D # C) holds qlp = qp and ¢'|p = ¢p.

It follows that ¢- i)R'c qc is legitimated and thus that {Ry}oec is legiti-
mated. O

205

APPENDIX A. PROOFS

206

Appendix B

Source Code

B.1 A Description Language for Interaction Sys-

tems

The code in Listing B.1 is an example for an interaction system specified
in a description language that we use as an input for our tool that imple-
ments our approach to refine abstract over-approximations and establish
deadlock-freedom. The code specifies a model of Tanenbaum’s solution of
the Dining Philosophers problem (see Section 5.3). The language is rela-
tively minimalistic and features only the control structures if (restricted to
integer comparison) and for (restricted to single step incrementation). In
Line 3 the integer variable n is initialized with the value 20 which specifies
the number of philosophers in the model. A COMPONENT-block (e.g.,
Line 7 to 16 models a philosopher) specifies a component by an initial state
(Line 9) and a set of transitions — for example, in Line 10 a transition from
a state named init to a state named hp labeled by get prior is defined. A
CONNECTOR-block defines an interaction'. For example, Line 44 to 48

"In [GS03], where interaction systems were introduced, interactions are called connec-

tors.

207

APPENDIX B. SOURCE CODE

models that philosopher i takes the fork on his left side

I|SYSTEM "philosophers";
2

3|VAR n = 20;

1

5

5|FOR(VAR. i=0;n—1)
6|4

7| OCOMPONENT "phil "+i

sl A

9 INIT "init";

10 TRANS "init"{"get prior"}"hp";
11 TRANS "hp"{"take left"}"hl";
12 TRANS "hp"{"take right"}"hr";
13 TRANS "h1"{"take right"}"hlr";
14 TRANS "hr"{"take left"}"hlr";
15 TRANS "hir"{"put"}"init";
6]}

17

18| COMPONENT "fork '"+i

19 {

20 INIT "f";

21 TRANS "f"{"take"}"t";

22 TRANS "t"{"put"}"f";

231}

24

25| COOMPONENT "sem "4i

26 {

27 INIT "free";

28 TRANS "free"{"is free"}"free";
29 TRANS "free"{"take"}"taken";
30 TRANS "taken"{"put"}"free";
31 }

32| }

33

34| FOR(VAR. i=0;n—1)

35| {

36| CONNECTOR "priority_ "+i

37 {

38 "phil "4+i:"get prior";

39 "sem "4i:"take";

40 "sem "4(i—1)%n:"is free';

41 "sem "4(i+1)%n:"is free';

12 }

13

44| CONNECTOR "take left "+i

45 {

16 "phil "+i:"take left";

208

B.2. JAVA SOURCE CODE

"fork "4(i—1)%n:"take";
}
CONNECTOR "take right "+i
{
"phil "+i:"take right";
”fork:”+i : "take:;
}
CONNECTOR. "put_ "+1i
{
"phil "+i:"put";
"fork "4(i—1)%n:"put";
"fork "+i:"put";
”semii"Jri "put";
}
}

Listing B.1: "Model of Tanenbaum’s Dining Philosophers."

B.2 Java Source Code

Our tool that we used to calculate the results presented in Chapter 5 is
implemented in Java. In this section we describe the two most important
methods in our implementation, this is, the method that restricts the be-
havior of an abstract over-approximation to reachable transitions and the
method that implements the application of the Edge-Match operator on a
pair of abstract over-approximations. Our implementation of Algorithm 2
in Chapter 3 is based on these two methods. In our tool, sets of transitions

and sets of states are modeled by BDDs.

Listing B.2 depicts the method reach that restricts an abstract over-appro-
ximation, that is modeled by a BDD, to reachable transitions. We perform
a symbolic reachability analysis on the behavior of an abstract over-appro-
ximation and restrict the transition relation to transitions that start in a
reachable state. Symbolic reachability analyses were introduced by Coudert

et al. [CBM90]. The analysis is based on successively extending a set of

209

APPENDIX B. SOURCE CODE

reachable states, starting with the set that consists of the initial state, by
its image until no new states are added. In Line 4 we initialize the BDD a1
which represents the set of reachable states. In Line 7 to 17 the reachability
analysis is performed. The restriction of the set of transitions is accomplished
in Line 19.

public static void reach(Subsystem s,InteractionSystem is)
{
BDD a0 = is.getBDDFactory ().zero();
BDD al = s.getInit().id();
BDD tmp;

while (!a0.equals(al))
{
a0 = al.id();
tmp = al.and(s.getBDD());
tmp = tmp. exist (s.getVarsFrom () .union(sys.getCodedActSet ()));
BDDPairing p = B.makePair () ;
p.set(s.getVarsTo().getDomains () ,s.getVarsFrom () .getDomains());
tmp.replaceWith(p);
p.freepair();
al.orWith (tmp) ;

}

s.getBDD () .andWith (al) ;
a0.free();

Listing B.2: "The method reach."

Listing B.3 depicts the method EM that implements the application of the
Edge-Match operator on a pair of abstract over-approximations. Note, if S
and R are abstract over-approximations, that the method implements the
application of the Edge-Match operator on S and R and on R and S, i.e.,
S and R are refined. If an abstract over-approximation is refined, i.e., at
least one transition is removed, then the respective transition system gets
restricted to reachable transitions. The method returns false if and only
if one of the abstract over-approximations is refined, i.e., if and only if at
least one transition is removed in at least one of the two abstract over-

approximations. We use this return value in order to check a condition

210

B.2. JAVA SOURCE CODE

for the termination of our implementation of Algorithm 2 in Chapter 3.
Our refinement procedure terminates if the Edge-Match operator applied on
all (reasonable) pairs of abstract over-approximations does not cause any

refinement.

The method works as follows. The input consists of two abstract over-ap-
proximations s1 and s2. In Line 4 the BDD representation of the transition
relation of s2 is copied. In Line 6 to 10 the copy is projected to components
that are shared between s1 and s2. In Line 21 the transition relation of s1
is restricted to transitions that have a corresponding transition in s2 which
agree on shared components. In Line 22 to 26 we test whether or not there
are transitions removed from s1. If so, there might be transitions in s1 that
become unreachable. Thus, in this case, we restrict the refined transition
relation of s1 to reachable transitions. s2 is refined in the same manner

with respect to s1.

public static boolean EM(Subsystem sl1,Subsystem s2)
{
BDD sIBDD = s1.getBDD () .id () ;
BDD s2BDD = s2.getBDD () .id () ;

Set <Component> minusl = s2.minus(sl);
for (Component k:minusl)
{

s2BDD=s2BDD . exist (k.getFromDomain () .set () .union(k.getToDomain() .set ()));
}

Set <Component> minus2 = sl.minus(s2);

for (Component k:minus2)

{

sIBDD=s1BDD. exist (k.getFromDomain () .set () .union (k.getToDomain() .set()));

}

boolean b = true;

BDD sltmp = sl.getBDD () .id();
s1.getBDD () .andWith (s2BDD) ;
if (!sl.getBDD().equals(sltmp))
{

b = false;

ISToolBox .reach (sl);

}

211

APPENDIX B. SOURCE CODE

27
28
29
30
31
32
33
34
35
36
37
38
39

sltmp. free () ;
BDD s2tmp = s2.getBDD () .id ()
$2.getBDD () . andWith (s1BDD) ;
if (!s2.getBDD () .equals(s2tmp))
{
b = false;
ISToolBox .reach (s2);
}
s2tmp. free () ;
return b;
}

Listing B.3: "The method EM."

212

Bibliography

[ACO5]

[ACGS6]

[AG97]

[AKY99]

[Arb04]

Paul C. Attie and Hana Chockler. Efficiently Verifiable Con-
ditions for Deadlock-Freedom of Large Concurrent Programs.
In Proceedings of the 6th international conference on Verifica-
tion, Model Checking, and Abstract Interpretation, VMCAT 05,
pages 465—481, Berlin, Heidelberg, 2005. Springer-Verlag.

Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda
and Friends. Computer, 19(8):26-34, August 1986.

Robert Allen and David Garlan. A Formal Basis for Ar-
chitectural Connection. ACM Trans. Softw. Eng. Methodol.,
6(3):213-249, July 1997.

Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Com-
municating Hierarchical State Machines. In Proceedings of the
26th International Colloquium on Automata, Languages and
Programming, ICAL ’99, pages 169-178, London, UK, UK,
1999. Springer-Verlag.

Farhad Arbab. Reo: a Channel-Based Coordination Model for
Component Composition. Mathematical. Structures in Comp.
Sei., 14(3):329-366, June 2004.

213

BIBLIOGRAPHY

[Arn94]

[BBG11]

[BBNS09]

[BBS06]

[BBSNOS|

[BCCZ99)]

André Arnold. Finite Transition Systems: Semantics of Com-
municating Systems. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1994.

Borzoo Bonakdarpour, Marius Bozga, and Gregor Goessler. A
Theory of Fault Recovery for Component-Based Models. In
Proceedings of the 2011 IEEE 30th International Symposium
on Reliable Distributed Systems, SRDS 11, pages 265270,
Washington, DC, USA, 2011. IEEE Computer Society.

Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and
Joseph Sifakis. D-Finder: A Tool for Compositional Deadlock
Detection and Verification. In Proceedings of the 21st Interna-
tional Conference on Computer Aided Verification, CAV 09,
pages 614-619, Berlin, Heidelberg, 2009. Springer-Verlag.

Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling
Heterogeneous Real-time Components in BIP. In Proceedings
of the Fourth IEEFE International Conference on Software En-
gineering and Formal Methods, SEFM ’06, pages 3—12, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-
Hung Nguyen. Compositional Verification for Component-
Based Systems and Application. In Proceedings of the 6th In-
ternational Symposium on Automated Technology for Verifica-
tion and Analysis, ATVA ’08, pages 64-79, Berlin, Heidelberg,
2008. Springer-Verlag.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and
Yunshan Zhu. Symbolic Model Checking without BDDs. In
Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, TACAS

214

BIBLIOGRAPHY

[BCD02)

[BCLOI]

[BCM92]

[BFMYS83]

[BGL"11]

[BHH* 06]

[BKO8]

99, pages 193207, London, UK, UK, 1999. Springer-Verlag.

Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello.
Architecting Families of Software Systems With Process Al-
gebras. ACM Trans. Softw. Eng. Methodol., 11(4):386-426,
October 2002.

J. R. Burch, Edmund M. Clarke, and David E. Long. Symbolic
Model Checking with Partitioned Transition Relations. In 1991
University of California, Santa Cruz Conference on Advanced
Research i VLSI, pages 49-58. North-Holland, 1991.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic Model Checking: 10%° States and Beyond.
Inf. Comput., 98(2):142-170, June 1992.

Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yan-
nakakis. On the Desirability of Acyclic Database Schemes. J.
ACM, 30(3):479-513, July 1983.

Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-
Hung Nguyen, Joseph Sifakis, and Rongjie Yan. D-finder
2: Towards Efficient Correctness of Incremental Design. In
Proceedings of the Third international conference on NASA
Formal methods, NFM'11, pages 453—-458, Berlin, Heidelberg,
2011. Springer-Verlag.

Hubert Baumeister, Florian Hacklinger, Rolf Hennicker,
Alexander Knapp, and Martin Wirsing. A Component Model
for Architectural Programming. Electronic Notes in Theoreti-
cal Computer Science, 160:75-96, August 2006.

Christel Baier and Joost-Pieter Katoen. Principles of Model

215

BIBLIOGRAPHY

[BROL]|

[Bry86]

[BVWO4]

[CBMO0]

[ccr]

[CCK'05]

[CCQo4|

Checking. The MIT Press, 2008.

Stephen D. Brookes and A. W. Roscoe. Deadlock Analysis in
Networks of Communicating Processes. Distributed Comput-
ing, 4:209-230, 1991.

Randal E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Trans. Comput., 35(8):677-691, Au-
gust 1986.

Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An
Automata-Theoretic Approach to Branching-Time Model
Checking (Extended Abstract). In CAV, pages 142-155, 1994.

O. Coudert, C. Berthet, and J. C. Madre. Verification of Syn-
chronous Sequential Machines Based on Symbolic Execution.
In Proceedings of the international workshop on Automatic ver-

ification methods for finite state systems, pages 365-373, New
York, NY, USA, 1990. Springer-Verlag New York, Inc.

P. Cousot and R. Cousot. Abstract Interpretation: a Unified
Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 238-252, Los Angeles,
California, 1977. ACM Press, New York, NY.

Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov,
Nancy A. Lynch, Olivier Pereira, and Roberto Segala. Using
Probabilistic I/O Automata to Analyze an Oblivious Transfer
Protocol. TACR Cryptology ePrint Archive, 2005:452, 2005.

Gianpiero Cabodi, P. Camurati, and Stefano Quer. Symbolic

216

BIBLIOGRAPHY

[CES1]

[CEPY5]

[CESS6)

[CGLO4|

[CHM ™93]

[CIEF96]

Exploration of Large Circuits with Enhanced Forward/Back-
ward Traversals. In Proceedings of the conference on Furopean
design automation, EURO-DAC '94, pages 22-27, Los Alami-
tos, CA, USA, 1994. IEEE Computer Society Press.

Edmund M. Clarke and E. Allen Emerson. Design and Synthe-
sis of Synchronization Skeletons Using Branching-Time Tem-

poral Logic. In Logic of Programs, pages 52-71, 1981.

Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity
Results for 1-Safe Nets. Theor. Comput. Seci., 147(1-2):117-
136, August 1995.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
Verification of Finite-State Concurrent Systems Using Tempo-

ral Logic Specifications. ACM Transactions on Programming
Languages and Systems, 8:244-263, 1986.

Edmund M. Clarke, Orna Grumberg, and David E. Long.
Model Checking and Abstraction. ACM Trans. Program. Lang.
Syst., 16(5):1512-1542, 1994.

Hyunwoo Cho, Gary D. Hachtel, Enrico Macii, Bernard
Plessier, and Fabio Somenzi. Algorithms for Approximate FSM
Traversal. In Proceedings of the 30th international Design Au-
tomation Conference, DAC ’93, pages 25-30, New York, NY,
USA, 1993. ACM.

Edmund M. Clarke, Somesh Jha, Reinhard Enders, and
Thomas Filkorn. Exploiting Symmetry in Temporal Logic
Model Checking. Formal Methods in System Design,
9(1/2):77-104, 1996.

217

BIBLIOGRAPHY

[CS01]

[dAHO1]

[Dij02]

[E1197]

[ENO4|

[ES96|

[Esp98]

R. Cleaveland and O. Sokolsky. Equivalence and Preorder
Checking for Finite-State Systems. In J. Bergstra, A. Ponse,
and S. Smolka, editors, Handbook of Process Algebra, chap-
ter 6, pages 391-424. Elvesier Science B.V., North-Holland,
Amsterdam, 2001.

Luca de Alfaro and Thomas A. Henzinger. Interface Automata.
SIGSOFT Softw. Eng. Notes, 26(5):109-120, September 2001.

Edsger W. Dijkstra. Hierarchical Ordering of Sequential Pro-
cesses. In Per Brinch Hansen, editor, The Origin of Concurrent
Programming, pages 198-227. Springer-Verlag New York, Inc.,
New York, NY, USA, 2002.

Clarence Ellis. Team Automata for Groupware Systems. In
Proceedings of the international ACM SIGGROUP conference
on Supporting group work: the integration challenge, GROUP
‘97, pages 415-424, New York, NY, USA, 1997. ACM.

Javier Esparza and Mogens Nielsen. Decidability Issues for
Petri Nets - A Survey. Bulletin of the European Association
for Theoretical Computer Science, 52:245-262, 1994.

E. Allen Emerson and A. Prasad Sistla. Symmetry and Model
Checking. Form. Methods Syst. Des., 9(1-2):105-131, August
1996.

Javier Esparza. Decidability and Complexity of Petri Net
Problems - An Introduction. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, pages 374-428, London, UK,
UK, 1998. Springer-Verlag.

218

BIBLIOGRAPHY

[Flo67|

[GDYY]

[GDHH93]

[GGMC™06]

[GJ79]

|GPS96]

[Gra79]

R. W. Floyd. Assigning Meaning to Programs. In Proceedings
of the Symposium on Applied Maths, volume 19, pages 19-32.
AMS, 1967.

Shankar G. Govindaraju and David L. Dill. Approximate Sym-
bolic Model Checking Using Overlapping Projections. In First
International Workshop on Symbolic Model Checking (SMC99)
at Federated Logic Conference (FLOC), July 1999. Trento,
Italy.

Shankar G. Govindaraju, David L. Dill, Alan J. Hu, and
Mark A. Horowitz. Approximate Reachability with BDDs Us-
ing Overlapping Projections. In Proceedings of the 35th annual
Design Automation Conference, DAC ’98, pages 451-456, New
York, NY, USA, 1998. ACM.

Gregor Gokler, Susanne Graf, Mila E. Majster-Cederbaum,
Moritz Martens, and Joseph Sifakis. Ensuring Properties of
Interaction Systems. In Program Analysis and Compilation,
pages 201-224, 2006.

Michael R. Garey and David S. Johnson. Computers and In-
tractability : A Guide to the Theory of NP-Completeness (Se-
ries of Books in the Mathematical Sciences). W. H. Freeman,
1979.

Patrice Godefroid, Doron Peled, and Mark G. Staskauskas. Us-
ing Partial-Order Methods in the Formal Validation of Indus-
trial Concurrent Programs. In ISSTA, pages 261-269, 1996.

H. Graham. On the Universal Relation. Technical report, Uni-
versity of Toronto. Computer Systems Research Group, 1979.

219

BIBLIOGRAPHY

[GS97]

[GS03]

[GSMO7]

[GW92]

[HDY5]

[Heg91|

[Hil96]

Susanne Graf and Hassen Saidi. Construction of Abstract
State Graphs with PVS. In Proceedings of the 9th Interna-
tional Conference on Computer Aided Verification, CAV ’97,
pages 72-83, London, UK, UK, 1997. Springer-Verlag.

Gregor Gossler and Joseph Sifakis. Composition for
Component-Based Modeling. In Proceedings of FMCQO’02, vol-
ume 2852 of LNCS, pages 443-466. Springer, 2003.

Vijay K. Garg, Chakarat Skawratananond, and Neeraj Mittal.
Timestamping Messages and Events in a Distributed System

Using Synchronous Communication. Distributed Computing,
19(5-6):387-402, 2007.

Patrice Godefroid and Pierre Wolper. Using Partial Orders
for the Efficient Verification of Deadlock Freedom and Safety
Properties. In CAV ’91: Proceedings of the 3rd International
Workshop on Computer Aided Verification, pages 332-342,
London, UK, 1992. Springer-Verlag.

Monika Heiner and Peter Deussen. P.: Petri Net Based Quali-
tative Analysis - a Case Study. Technical report, BTU Cottbus,
Dep. of CS, Techn. Report 1-08/1995, 1995.

Stephen J. Hegner. Pairwise-Definable Subdirect Decompo-
sitions of General Database Schemata. In Proceedings of the
3rd symposium on Mathematical fundamentals of database and
knowledge base systems, pages 243-257, New York, NY, USA,
1991. Springer-Verlag New York, Inc.

Jane Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, New York, NY, USA,
1996.

220

BIBLIOGRAPHY

[HIK10]

[HIR93]

[HKW12]

[Hoa69]

[Hoa85]

[Hol97]

[ID96]

[TU01]

Rolf Hennicker, Stephan Janisch, and Alexander Knapp. On
the Observable Behaviour of Composite Components. Electron.
Notes Theor. Comput. Sci., 260:125-153, January 2010.

Rodney R. Howell, Petr Janc¢ar, and Louis E. Rosier. Com-
pleteness Results for Single-Path Petri Nets. Inf. Comput.,
106(2):253-265, October 1993.

Yi-Ling Hwong, Vincent J. J. Kusters, and Tim A. C.
Willemse. Analysing the Control Software of the Compact
Muon Solenoid Experiment at the Large Hadron Collider. In
Proceedings of the Jth IPM international conference on Fun-
damentals of Software Engineering, FSEN'11, pages 174-189,
Berlin, Heidelberg, 2012. Springer-Verlag.

C. A. R. Hoare. An Axiomatic Basis for Computer Program-
ming. Commun. ACM, 12(10):576-580, October 1969.

Charles A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall International series in computer science.
Prentice-Hall, Englewood Cliffs, NJ [u.a.|, 1985.

Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans.
Softw. Eng., 23(5):279-295, May 1997.

C. Norris Ip and David L. Dill. Better Verification through
Symmetry. Form. Methods Syst. Des., 9(1-2):41-75, August
1996.

Paola Inverardi and Sebastian Uchitel. Proving Deadlock Free-
dom in Component-Based Programming. In Proceedings of the
4th International Conference on Fundamental Approaches to
Software Engineering, FASE ’01, pages 60-75, London, UK,

221

BIBLIOGRAPHY

[Jen96]

[JLL77]

[KBS8S)]

[KEH"09]

[KK96]

[KLSV06]

UK, 2001. Springer-Verlag.

Kurt Jensen. Condensed State Spaces for Symmetrical
Coloured Petri Nets. Form. Methods Syst. Des., 9(1-2):7-40,
August 1996.

Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien.
Complexity of Some Problems in Petri Nets. Theor. Comput.
Sei., 4(3):277-299, 1977.

Marek Karpinski, Hans Kleine Biining, and Peter H. Schmitt.
On the Computational Complexity of Quantified Horn Clauses.
In Proceedings of the 1st Workshop on Computer Science Logic,
CSL 87, pages 129-137, London, UK, UK, 1988. Springer-
Verlag.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. sel.4: Formal Verification
of an OS Kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP 09, pages
207-220, New York, NY, USA, 2009. ACM.

Young Chan Kim and Tag Gon Kim. Petri Nets Modeling and
Analysis Using Extended Bag-Theoretic Relational Algebra.
Trans. Sys. Man Cyber. Part B, 26(4):599-605, August 1996.

Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits
Vaandrager. The Theory of Timed 1/0 Automata (Synthesis
Lectures in Computer Science). Morgan & Claypool Publish-
ers, 2006.

222

BIBLIOGRAPHY

[Koz82]

[KS83)

[Kup95|

[Kur94|

[KVWO0O|

[Lam77]

[Lam09]

[Lip76]|

Dexter Kozen. Results on the Propositional p-Calculus. In
Proceedings of the 9th Colloquium on Automata, Languages
and Programming, pages 348-359, London, UK, UK, 1982.
Springer-Verlag.

Paris C. Kanellakis and Scott A. Smolka. CCS Expressions,
Finite State Processes, and three Problems of Equivalence. In
Proceedings of the second annual ACM symposium on Princi-
ples of distributed computing, PODC 83, pages 228240, New
York, NY, USA, 1983. ACM.

Orna Kupferman. Model Checking for Branching-Time Tem-
poral Logics. Phd thesis, Israel Institute of Technology, Haifa,
I[srael, 1995.

Robert P. Kurshan. Computer-Aided Verification of Coordinat-
ing Processes: the Automata-Theoretic Approach. Princeton
University Press, Princeton, NJ, USA, 1994.

Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper.
An Automata-Theoretic Approach to Branching-Time Model
Checking. J. ACM, 47(2):312-360, 2000.

L. Lamport. Proving the Correctness of Multiprocess Pro-
grams. IEEE Trans. Softw. Eng., 3(2):125-143, March 1977.

Christian Lambertz. Exploiting Architectural Constraints and
Branching Bisimulation Equivalences in Component-Based
Systems. In Proceedings of the Doctoral Symposium on Formal
Methods (FM2009), number 0915 in University of Eindhoven
Technical Report, pages 1-7. University of Eindhoven, 2009.

R. Lipton. The Reachability Problem Requires Exponential

223

BIBLIOGRAPHY

[LL8S]

[LL95]

[LMC11]

[Lon93|

[LPJ"96]

[LS85)

Space. Technical Report 62, Yale University, 1976.

T. T. Lee and M. Y. Lai. A Relational Algebraic Approach
to Protocol Verification. Software Engineering IEEE Transac-
tions on, 14(2):184-193, 1988.

Claus Lewerentz and Thomas Lindner, editors. Formal De-
velopment of Reactive Systems - Case Study Production Cell,
volume 891 of Lecture Notes in Computer Science. Springer,
1995.

Christian Lambertz and Mila Majster-Cederbaum. Analyzing
Component-Based Systems on the Basis of Architectural Con-
straints. In Farhad Arbab and Marjan Sirjani, editors, Pro-
ceedings of the 4th International Conference on Fundamentals
of Software Engineering (FSEN 2011), 2011.

David E. Long. Model Checking, Abstraction, and Composi-
tional Verification. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, Pittsburgh, PA, USA, 1993. UMI Order
No. GAX94-02579.

Woohyuk Lee, Abelardo Pardo, Jae-Young Jang, Gary
Hachtel, and Fabio Somenzi. Tearing Based Automatic Ab-
straction for CTL Model Checking. In Proceedings of the 1996
IEEE/ACM international conference on Computer-aided de-
sign, ICCAD 96, pages 76-81, Washington, DC, USA, 1996.
IEEE Computer Society.

Leslie Lamport and Fred B. Schneider. Formal Foundation for
Specification and Verification. In Distributed Systems, volume
190 of Lecture Notes in Computer Science, chapter 5, pages
203-285. Springer Berlin / Heidelberg, 1985.

224

BIBLIOGRAPHY

[LT87]

[Mai83]

[Mar09]

[MCMO08a]

[MCMO8b]

[MCMO8c|

[MCMMO7]

Nancy A. Lynch and Mark R. Tuttle. Hierarchical Correctness
Proofs for Distributed Algorithms. In Proceedings of the sizth
annual ACM Symposium on Principles of distributed comput-
ing, PODC 87, pages 137-151, New York, NY, USA, 1987.
ACM.

David Maier. The Theory of Relational Databases. Computer
Science Press, 1983.

Moritz Martens. Fstablishing Properties of Interaction Sys-
tems. PhD thesis, University of Mannheim, November 2009.

Mila Majster-Cederbaum and Moritz Martens. Compositional
Analysis of Deadlock-Freedom for Tree-Like Component Ar-
chitectures. In Proceedings of the 8th ACM international con-
ference on Embedded software, EMSOFT ’08, pages 199-206,
New York, NY, USA, 2008. ACM.

Mila Majster-Cederbaum and Christoph Minnameier. Deriving
Complexity Results for Interaction Systems from 1-Safe Petri
Nets. In Proceedings of the 34th conference on Current trends
in theory and practice of computer science, SOFSEM’08, pages
352-363, Berlin, Heidelberg, 2008. Springer-Verlag.

Mila Majster-Cederbaum and Christoph Minnameier. Every-
thing Is PSPACE-Complete in Interaction Systems. In Pro-
ceedings of the 5th international colloquium on Theoretical As-
pects of Computing, pages 216-227, Berlin, Heidelberg, 2008.
Springer-Verlag.

Mila Majster-Cederbaum, Moritz Martens, and Christoph
Minnameier. A Polynomial-Time Checkable Sufficient Con-

dition for Deadlock-Freedom of Component-Based Systems.

225

BIBLIOGRAPHY

[MCMMO3|

[MCS10]

[MCS13al

[MCS13b)

[MCSWO07]

[Meab5|

[Mil82]

[Mil89]

In Proceedings of SOFSEM’07, volume 4362, pages 888-899.
Springer, 2007.

Mila Majster-Cederbaum, Moritz Martens, and Christoph
Minnameier. Liveness in Interaction Systems. FElectron. Notes
Theor. Comput. Sci., 215:57-74, June 2008.

Mila Majster-Cederbaum and Nils Semmelrock. Reachability
in Tree-Like Component Systems is PSPACE-Complete. Elec-
tron. Notes Theor. Comput. Sci., 263:197-210, June 2010.

Mila E. Majster-Cederbaum and Nils Semmelrock. A Basis for
Compositionally Ensuring Safety Properties and its Connec-
tion to Relational Algebraic Operators (in revision). Science

of Computer Programming, 2013.

Mila E. Majster-Cederbaum and Nils Semmelrock. Reacha-
bility in Cooperating Systems with Architectural Constraints
is PSPACE-Complete. In GRAPHITE FElectron. Notes Theor.
Comput. Sci. (to appear), 2013.

Mila E. Majster-Cederbaum, Nils Semmelrock, and Verena
Wolf. Interaction Models for Biochemical Reactions. In BIO-
COMP, pages 480-486, 2007.

George H. Mealy. A Method for Synthesizing Sequential Cir-
cuits. Bell System Technical Journal, 34(5):1045-1079, 1955.

R. Milner. A Calculus of Communicating Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1982.

R. Milner. Communication and Concurrency. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1989.

226

BIBLIOGRAPHY

[Min10]

[MJH™ 98]

[MMC09a]

[MMCO09b]

[MNO6]

[Moo56|

[MPW92a]

Christoph Minnameier. Interaction in Concurrent Systems.
PhD thesis, University of Mannheim, April 2010.

In-Ho Moon, Jae-Young Jang, Gary D. Hachtel, Fabio
Somenzi, Jun Yuan, and Carl Pixley. Approximate Reacha-
bility don’t Cares for CTL Model Checking. In Proceedings of
the 1998 IEEE/ACM international conference on Computer-
atded design, [ICCAD ’98, pages 351-358, New York, NY, USA,
1998. ACM.

Moritz Martens and Mila Majster-Cederbaum. Using Archi-
tectural Constraints for Deadlock-Freedom of Component Sys-
tems with Multiway Cooperation. In TASE, pages 225-232,
2009.

Christoph Minnameier and Mila Majster-Cederbaum. Cross-
Checking — Enhanced Over-Approximation of the Reachable
Global State Space of Component-Based Systems. In Proceed-
ings of RP’09, volume 5797 of LNCS, pages 189-202. Springer,
2009.

Guido Moerkotte and Thomas Neumann. Analysis of two Ex-
isting and one new Dynamic Programming Algorithm for the
Generation of Optimal Bushy Join Trees without Cross Prod-
ucts. In Proceedings of the 32nd international conference on
Very large data bases, VLDB ’06, pages 930-941. VLDB En-
dowment, 2006.

Edward F. Moore. Gedanken Experiments on Sequential Ma-
chines. In Automata Studies, pages 129-153. Princeton U.,
1956.

Robin Milner, Joachim Parrow, and David Walker. A Calculus

227

BIBLIOGRAPHY

[MPW92b)]

[Osal2]

[Pel93]

[Pet67]

[PHOS)|

[PLOS]

[Pnu77]

of Mobile Processes, 1. Inf. Comput., 100(1):1-40, September
1992.

Robin Milner, Joachim Parrow, and David Walker. A Calculus
of Mobile Processes, II. Inf. Comput., 100(1):41-77, September
1992.

Ammar Osaiweran. Formal Development of Control Software
in the Medical Systems Domain. Phd thesis, University of Tech-
nology Eindhoven, Eindhoven, Netherlands, 2012.

Doron Peled. All from One, One from All: on Model Checking
Using Representatives. In Proceedings of the 5th International
Conference on Computer Aided Verification, Greece, number
697 in Lecture Notes in Computer Science, pages 409-423,
Berlin-Heidelberg-New York, 1993. Springer.

C.A. Petri. Grundsdtzliches zur Beschreibung Diskreter
Prozesse. Uddrag af ISNM Vol.6, 1967 - 3. Colloquium iiber
Automatentheorie. Rheinisch-Westfélisches Institut fiir, In-
strumentelle Matematik, 1967.

Abelardo Pardo and Gary D. Hachtel. Incremental CTL Model
Checking Using BDD Subsetting. In Proceedings of the 35th

annual Design Automation Conference, DAC ’98, pages 457—
462, New York, NY, USA, 1998. ACM.

M. Praveen and Kamal Lodaya. Analyzing Reachability for
Some Petri Nets With Fast Growing Markings. Flectron. Notes
Theor. Comput. Sci., 223:215-237, December 2008.

Amir Pnueli. The Temporal Logic of Programs. In Proceedings

of the 18th Annual Symposium on Foundations of Computer

228

BIBLIOGRAPHY

[Pnu79)

[Pri57]

[PTS87|

[QS82]

[RIBYY]

[Sav70]

[Sch02]

[Sif05]

Science, SFCS "77, pages 46-57, Washington, DC, USA, 1977.
IEEE Computer Society.

Amir Pnueli. The Temporal Semantics of Concurrent Pro-
grams. In Proceedings of the International Sympoisum on Se-
mantics of Concurrent Computation, pages 1-20, London, UK,
UK, 1979. Springer-Verlag.

Arthur N. Prior. Time and Modality. Oxford University Press,
1957.

Robert Paige and Robert E. Tarjan. Three Partition Refine-
ment Algorithms. STAM J. Comput., 16(6):973-989, December
1987.

Jean-Pierre Queille and Joseph Sifakis. Specification and Ver-
ification of Concurrent Systems in CESAR. In Symposium on

Programming, pages 337-351, 1982.

James Rumbaugh, Ivar Jacobson, and Grady Booch, editors.
The Unified Modeling Language Reference Manual. Addison-
Wesley Longman Ltd., Essex, UK, UK, 1999.

Walter J. Savitch. Relationships Between Nondeterministic
and Deterministic Tape Complexities. J. Comput. Syst. Sci.,
4(2):177-192, April 1970.

Ph. Schnoebelen. The Complexity of Temporal Logic Model
Checking. In Advances in Modal Logic, pages 393-436, 2002.

Joseph Sifakis. A Framework for Component-based Construc-
tion Extended Abstract. In Proceedings of the Third IEEE

International Conference on Software Engineering and Formal

229

BIBLIOGRAPHY

[Tan07]

[TBEKRO3]

VU9

[VWs6]

[vWO08]

[WRST08]

Methods, SEFM 05, pages 293-300, Washington, DC, USA,
2005. IEEE Computer Society.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2007.

Maurice H. Ter Beek, Clarence A. Ellis, Jetty Kleijn, and
Grzegorz Rozenberg. Synchronizations in Team Automata

for Groupware Systems. Comput. Supported Coop. Work,
12(1):21-69, February 2003.

Moshe Y. Vardi and Rice University. Linear vs. Branching
Time: A Complexity-Theoretic Perspective. In Proceedings
of the 13th Annual IEEE Symposium on Logic in Computer
Science, LICS 98, pages 394-, Washington, DC, USA, 1998.
IEEE Computer Society.

Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic
Approach to Automatic Program Verification. In Proceedings

of the 1st Annual Symposium on Logic in Computer Science
(LICS’86), pages 332-344. IEEE Comp. Soc. Press, June 1986.

Muck van Weerdenburg. Process Algebra with Local Commu-
nication. FElectron. Notes Theor. Comput. Sci., 215:191-208,
June 2008.

Andreas Weidemann, Stefan Richter, Matthias Stein, Sven
Sahle, Ralph Gauges, Razif Gabdoulline, Irina Surovtsova, Nils
Semmelrock, Bruno Besson, Isabel Rojas, Rebecca Wade, and
Ursula Kummer. Sycamore — a systems biology computational

analysis and modeling research environment. Bioinformatics,
24(12):1463-1464, June 2008.

230

BIBLIOGRAPHY

[Yan81]

[YOT79]

Mihalis Yannakakis. Algorithms for Acyclic Database Schemes.
In Proceedings of the seventh international conference on Very
Large Data Bases - Volume 7, VLDB ’81, pages 82-94. VLDB
Endowment, 1981.

C.T. Yu and M.Z. Ozsoyoglu. An Algorithm for Tree-Query
Membership of a Distributed Query. In Computer Software
and Applications Conference, 1979. Proceedings. COMPSAC
79. The IEEE Computer Society’s Third International, pages
306 — 312, 1979.

231

Index

abstract over-approximation, 75
acyclic, 172

artifact, 78

attribute, 165

attribute names, 165
blank symbol, 55

complete, 114
component, 23
configuration, 55
connected, 92
critical, 117

deadlock, 27

deadlock-free, 27, 28
deterministic Turing machine, 55
domain, 82

domain (relational algebra), 165
DTM, 55

Edge-Match, 81
Edge-Match fixed-point, 88
enabled, 26

exact, 74

finite path, 101
fixed-point with respect to the Edge-
Match operator, 88

full reduction, 171
full-reducer, 172

global behavior, 28
global extension, 75
global initial state, 28
global state space, 28

global transition relation, 28
GYO-reduction, 172

halt states, 55
hyperedges, 172
hypergraph, 172

induced over-approximation of 7" with
respect to R, 76

infinite path, 101

initial state, 26

initial state (Turing machine), 55

input symbols, 55

interaction, 23

interaction graph, 35

interaction model, 23

interaction set (for K), 23

interaction system, 27
join, 166

label, 26

232

INDEX

labeled transition system, 26 relational scheme, 165
legitimate, 85 run of Sys, 63
linear, 35

safety property, 103
satisfies, 102

semijoin, 166

linear bounded, 55
linear space acceptance, 56
linear time property, 102 o
semijoin program, 172

local behavior, 27 o i
size (interaction system), 28

size (QBF), 40
star-like, 35
state, 26

local initial state, 27

local state space, 27

local transition relation, 27
LSA, 56

state (Turing machine), 55
LT-property, 102

state space, 26
maximal (path), 102 subformula, 40

may progress, 63
¥ Prog tape symbols, 55

over-approximation, 74 trace, 102

transition, 26
participation, 23

port, 23
projection, 74, 81, 166

transition function, 55

transition relation, 26

transition system with respect to C,
QBF, 40 &

tree-like, 35

tuple, 165

quantified Boolean formula, 40

reachable, 26
reachable (tuple), 168 waiting chain approach, 121

reachable behavior, 26 waiting graph of ¢, 121

refinement, 78

relation, 165

relation associated with R, 168
relation scheme associated with C', 168
relational database, 171

relational database scheme, 171

233

