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Abstra
tThis work deals with theoreti
 aspe
ts of 
ooperating systems, i.e., systemsthat 
onsists of 
ooperating subsystems. Our main fo
us lies on the 
om-plexity theoreti
 
lassi�
ation of de
iding the rea
hability problem and one�
iently establishing deadlo
k-freedom in models of 
ooperating systems.The formal veri�
ation of system properties is an a
tive �eld of resear
h,�rst attempts of whi
h go ba
k to the late 60's. The behavior of 
ooperatingsystems su�ers from the state spa
e explosion problem and 
an be
ome verylarge. This is, te
hniques that are based on an analysis of the rea
hablestate spa
e have a runtime exponential in the number of subsystems. The
onsequen
e is that even modern te
hniques that de
ide whether or not asystem property holds in a system 
an be
ome unfeasible.We use intera
tion systems, introdu
ed by Sifakis et al. in 2003 [GS03℄, asa formalism to model 
ooperating systems. The rea
hability problem andde
iding deadlo
k-freedom in intera
tion systems was proved to be PSPACE-
omplete [MCM08
℄. An approa
h to deal with this issue is to investigatesub
lasses of systems in whi
h these problems 
an be treated e�
iently.We show here that the rea
hability problem remains PSPACE-
omplete insub
lasses of intera
tion systems with a restri
ted 
ommuni
ation stru
ture.We 
onsider stru
tures that from trees, stars and linear arrangements ofsubsystems. Our result motivates the resear
h of te
hniques that treat therea
hability problem in these sub
lasses based on su�
ient 
onditions whi
hexploit 
hara
teristi
s of the stru
tural restri
tions [Mar09, Hoa85, BR91,BHH+06, BCD02, MCM08a℄.In a se
ond part of this work we investigate an approa
h to e�
iently es-tablish the rea
hability of states and deadlo
k-freedom in general intera
tionsystems. We introdu
e abstra
t over-approximations � a 
on
ept of 
ompa
trepresentations of over-approximations of the rea
hable behavior of intera
-tion systems. Families of abstra
t over-approximations are the basis for ourapproa
h to establish deadlo
k-freedom in intera
tion systems in polyno-mial time in the size of the underlying intera
tion system. We introdu
e an



operator 
alled Edge-Mat
h for re�ning abstra
t over-approximations. Thestrength of our approa
h is illustrated on various parametrized instan
es ofintera
tion systems. Furthermore, we establish a link between our re�ne-ment approa
h and the �eld of relational database theory and use this linkin order to make a pre
iseness statement about our re�nement approa
h.



ZusammenfassungDiese Arbeit bes
häftigt si
h mit theoretis
hen Aspekten von kooperieren-den Systemen, d.h. Systemen, die aus kooperierenden Subsystemen beste-hen. Unser Augenmerk liegt hauptsä
hli
h auf der komplexitätstheoretis
henKlassi�zierung des Errei
hbarkeitsproblem und dem e�zienten Na
hweis vonVerklemmungsfreiheit in Modellen von kooperierenden Systemen. Die forma-le Veri�kation von Systemeigens
haften ist ein aktives Fors
hungsfeld dessenAnfänge in die späten se
hziger Jahre zurü
krei
hen. Kooperierende Systemeleiden unter dem Problem der Zustandsraumexplosion und können ein sehrkomplexes Verhalten besitzen. Te
hniken, die auf der Analyse des errei
hba-ren Zustandsraumes basieren weisen hier eine Laufzeit auf, die exponentiellin der Anzahl der Subsysteme ist. Die Konsequenz ist, dass selbst aktuelleTe
hniken, die Systemeigens
haften ents
heiden, an ihre Grenzen geraten.Wir benutzen den von Sifakis et al. 2003 [GS03℄ eingeführten Formalis-mus der Interaktionssysteme um kooperierende Systeme zu modellieren.Das Errei
hbarkeitsprobelm und das Problem der Verklemmungsfreiheit inInteraktionssystemen ist PSPACE-vollständig [MCM08
℄. Ein Ansatz die-ses Problem anzugehen ist die Betra
htung von Teilklassen, in denen die-se Probleme e�zient behandelt werden können. Wir zeigen hier, dass dasErrei
hbarkeitsproblem au
h in Teilklassen mit einges
hränkter Kommu-nikationsstruktur PSPACE-vollständig ist. Wir betra
hten Strukturen, dieBäume, Sterne und lineare Anordnungen aus Subsystemen darstellen. Un-sere Ergebnisse motivieren die Untersu
hung von Te
hniken die das Er-rei
hbarkeitsproblem in diesen Teilklassen, basierend auf hinrei
henden Be-dingungen wel
he die strukturellen Charakteristiken ausnutzen, behandeln[Mar09, Hoa85, BR91, BHH+06, BCD02, MCM08a℄.In einem zweiten Teil dieser Arbeit stellen wir einen Ansatz vor, der esermögli
ht die Errei
hbarkeit von Zuständen und Verklemmungsfreiheit inInteraktionssystemen festzustellen. Dafür führen wir abstrakte Überappro-ximationen ein. Dies sind kompakte Repräsentationen von Überapproxima-tionen des errei
hbaren Verhaltens von Interaktionssystemen. Familien von



abstrakten Überapproximationen sind die Basis für unseren Ansatz in poly-nomieller Zeit Verklemmungsfreiheit in Interaktionssystemen festzustellen.Wir benutzen einen Operator, den wir Edge-Mat
h nennen, um abstrakteÜberapproximationen zu verfeinern. Die Stärke unserer Ansätze demonstrie-ren wir anhand von vers
hiedenen parametrisierten Modellen von Interakti-onssystemen. Darüber hinaus ziehen wir eine Verbindung zwis
hen unseremAnsatz der Verfeinerung von abstrakten Überapproximationen und dem Ge-biet der relationalen Datenbanktheorie. Wir benutzen diese Verbindung umeine Aussage über die Güte unseres Verfeinerungsansatzes zu ma
hen.
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Chapter 1
Introdu
tion
1.1 MotivationThis work deals with a 
omplexity theoreti
 
lassi�
ation of de
iding 
ertainsystem properties in sub
lasses of 
ooperating systems and introdu
es anapproa
h for establishing deadlo
k-freedom in 
ooperating systems. In thefollowing we put this work into 
ontext and motivate the relevan
e of ourresults. [WRS+08℄1.1.1 Formal Veri�
ation�Complete formal veri�
ation is the only known way to guaranteethat a system is free of programming errors.�1Formal veri�
ation of systems refers in the widest sense to te
hniques thatshow or refute desired behavior of systems by formal methods. From today'sperspe
tive, this means a formal veri�
ation te
hnique shows or refutes that1Opening of the paper [KEH+09℄ from Klein et al. in whi
h they dis
uss the formalveri�
ation of the slE4 mi
rokernel. 1



CHAPTER 1. INTRODUCTIONa formal model of a system meets desired properties by using formal methodsof mathemati
s.System properties des
ribe that the behavior of a system should satisfy 
er-tain requirements, e.g., a 
ertain situation must or must not o

ur or thatit is always possible to evoke a 
ertain situation. Parti
ularly systems thatoperate in environments where a system failure 
an 
ause harm to people orresult in huge �nan
ial losses are 
ru
ially required to satisfy 
ertain proper-ties. For example, an error in the 
ontrol system of a nu
lear power plant orin a guidan
e system on a plane 
an be
ome fatal, a �awed 
entral pro
ess-ing unit in large-s
ale produ
tion 
an result in an expensive re
all 
ampaign.An, in general, unwanted situation in a system is a situation where the sys-tem gets stu
k and is unable to 
ontinue its desired behavior. For example,an operation system that 
rashes is at least unpleasant and a 
ontrol systemof a nu
lear power plant that is not able to rea
t to a 
riti
al in
ident 
anlead to a dangerous situation. A system state like that is 
alled a deadlo
kand a system that 
an not get into a deadlo
k state is 
alled deadlo
k-free.The system property of deadlo
k-freedom is given a parti
ular signi�
an
eas the problem of verifying safety properties (an important 
lass of systemproperties that we dis
uss in detail in Chapter 4) in 
ooperating systems 
anbe redu
ed to the dete
tion of deadlo
ks [GW92℄. The authors of [GW92℄introdu
e a te
hnique to dete
t deadlo
ks in 
ooperating systems and showhow the te
hnique 
an be used to verify an arbitrary safety property.One way to des
ribe system properties is based on temporal logi
 su
h asLTL [Pnu77℄ and CTL [CE81℄ or the more general modal logi
 µ-
al
ulus[Koz82℄. Another approa
h that di�ers from a des
ription by a modal logi
is based on equivalen
e relations on the behavior of systems like bisimulationor observational equivalen
e as dis
ussed in [Mil89℄. The idea is to des
ribe asystem and a system property in the same formalism. If the des
riptions areequivalent then the system ful�lls the property. Te
hniques that automati-
ally 
he
k equivalen
es are for example published in [KS83, PT87, CS01℄.In the following we take a 
loser look at the temporal logi
s LTL and CTL2



1.1. MOTIVATIONand te
hniques that automati
ally 
he
k whether a system ful�lls a propertydes
ribed in these logi
s.Prior [Pri57℄ introdu
ed in 1957 a modal logi
 with the operators F (�eventu-ally�) and P (�previously�) that states that a proposition eventually be
omestrue in the future respe
tively a proposition was true in the past. Thus, this�rst attempt assumes that time is linear. In 
orresponden
e with Kripke,who mentioned that a linear view of time might not always be enough, Priordeveloped two bran
hing time logi
s that are suited to express that a propo-sition be
omes true in all or at least one possible future. For example �onlyone pro
ess of the system will enter it's 
riti
al se
tion at one point in time�,�a 
ustomer 
an only withdraw money from the ATM if the pin was entered
orre
tly�, �if the rea
tor be
omes to hot, it will shut down eventually� or �ifa user is logged into the ATM, the user has always the possibility to logout�.In 1977 Pnueli introdu
ed linear temporal logi
 (LTL) a temporal logi
 forspe
ifying system properties [Pnu77, Pnu79℄. The idea is that a system thatis exe
uted runs through a (possible in�nite) sequen
e of states where in ea
hstate atomi
 propositions hold, i.e., an exe
ution indu
es a sequen
e of sets ofatomi
 propositions. An LTL formula spe
i�es a set of permitted sequen
esof sets of atomi
 propositions and a system models an LTL formula if theindu
ed sequen
e of atomi
 system properties of ea
h possible exe
ution ispermitted. �a 
ustomer 
an only withdraw money from the ATM if the pinwas entered 
orre
tly� is an example for a property that 
an be spe
i�ed byLTL.In 1981 Clarke and Emerson introdu
ed 
omputational tree logi
 (CTL) abran
hing time logi
 [CE81℄. In 
ontrast to LTL, a CTL formula does notdeal with sequen
es of sets of atomi
 propositions but with trees the nodes ofwhi
h are sets of atomi
 propositions. A system indu
es a (possible in�nite)
omputational tree, i.e., a tree that des
ribes all possible exe
utions of thesystem. A system ful�lls a CTL formula if the indu
ed 
omputational treeis a tree that is des
ribed by the formula. �If a user is logged into the ATM,3



CHAPTER 1. INTRODUCTIONthe user has always the possibility to logout� is an example for a systemproperty that 
an be des
ribed by CTL as this property spe
i�es that forea
h system state where a user is logged into the ATM there is a sequen
eof a
tions that leads to a state where the user 
an logout.LTL and CTL are suited to express important system properties. Espe
iallythe system property of deadlo
k-freedom 
an be des
ribed by LTL and CTL.Among the �rst attempts of formal veri�
ation is the dedu
tive programveri�
ation whi
h started with the Floyd-Hoare logi
 where pre- and post-
onditions are assigned to 
ommands in 
omputer programs. A set of in-feren
e rules is used in order to dedu
e pre- and post
onditions of larger
ode fragments. This work was published in [Hoa69℄ and was in�uen
ed by[Flo67℄ where a similar approa
h is des
ribed for �ow
harts. The introdu
edapproa
h is suited to prove partial 
orre
tness of programs, i.e., for a givenpre
ondition this approa
h 
an be used to show that a program meets de-sired post
onditions but this approa
h does not prove termination of theprogram.Te
hniques that automati
ally 
he
k whether a system models a CTL re-spe
tively LTL formula are subsumed under the term CTL respe
tively LTLmodel 
he
king. The input of a CTL or LTL model 
he
king te
hnique is thedes
ription of a system and an LTL respe
tively CTL formula. The 
osts ofa CTL or LTL model 
he
king te
hnique are given in relation to the inputsize, i.e., if the system is given by a labeled transition systems then the sizeof the system 
orresponds to the number of 
ontained states and transitionsand the size of an LTL or CTL formula 
orresponds to the number of 
on-tained subformulas. In addition to introdu
ing CTL, Clarke and Emersonprovided in [CE81℄ a te
hnique that automati
ally 
he
ks whether or not asystem, given as a transition system, models a CTL formula. Quielle andSifakis des
ribed the same (for a temporal logi
 similar to CTL) [QS82℄.The te
hnique in [CE81℄ is polynomial in the size of the transition systemand the size of the CTL formula (the number of subformulas). This bound4



1.1. MOTIVATIONis improved in [CES86℄ by an algorithm that de
ides whether or not a CTLformula in a transition system holds in time linear in the size of the systemand the formula, i.e., for a transition system S and a CTL formula Φ thete
hnique runs in O(|S| · |Φ|) where |S| denotes the size of S and |Φ| thesize of Φ. In [VW86℄ Vardi and Wolper introdu
ed a te
hnique for auto-mati
 
he
king whether an LTL formula is modeled by a system given asa transition system. The te
hnique by Vardi and Wolper is linear in thesize of the transition system but exponential in the size of the LTL formula,i.e., for a transition system S and an LTL formula ϕ the te
hnique runs in
O(|S| · 2|ϕ|). See [S
h02℄ for an overview of the 
omplexity of temporal logi
model 
he
king. Algorithms that implement LTL and CTL model 
he
kingexhibit these runtime and are in use in popular model 
he
king tools � seefor example Spin for LTL model 
he
king [Hol97℄. Thus, algorithms in usetoday are linear in the number of states and transitions of the transitionsystems in 
onsideration.
Bur
h, Clarke, et al. des
ribed in [BCM+92℄ how a symboli
 representationof labeled transition systems by binary de
ision diagrams (BDDs) [Bry86℄allows for model 
he
king large systems in a reasonable time. As the title of[BCM+92℄ states, this approa
h permits the veri�
ation of system propertiesin systems with 1020 states and beyond. This number was improved in thesubsequent years, e.g., in [BCL91℄ Bur
h et al. reported about a te
hniquebased on symboli
 model 
he
king that manages systems with 10120 states.Note that these numbers refer to 
omputer performan
e at respe
tive times.Although, symboli
 model 
he
king is superior to model 
he
king on systemsthat are represented expli
itly, this te
hnique does not improve the asymp-toti
 bounds of CTL and LTL model 
he
king algorithms. In [BCCZ99℄Clarke et al. introdu
ed bounded model 
he
king, a te
hnique where LTLmodel 
he
king is redu
ed symboli
ally to the satis�ability problem of propo-sitional logi
 formulas. 5



CHAPTER 1. INTRODUCTION1.1.2 Model Che
king Cooperating SystemsA 
ooperating system is a system that 
onsists of subsystems whi
h worktogether, i.e., a 
ooperating system is spe
i�ed by its subsystems and bya des
ription of how these subsystems intera
t among ea
h other � thisdes
ription is 
alled the �glue-
ode� of the system. Compared to the sizeof the subsystems and the glue-
ode, the global behavior that results fromsu
h a spe
i�
ation 
an be
ome quite 
omplex and thus hard to analyze.This problem is 
alled the state spa
e explosion problem [BK08℄, i.e., thephenomenon that the state spa
e of a system grows exponentially in thenumber of subsystems that work in parallel. The subsystems of a 
ooperatingsystem operate in parallel where ea
h subsystem features its own state spa
e,i.e., the state spa
e of a 
ooperating system 
onsists of the Cartesian produ
tof the state spa
es of the subsystems. The glue-
ode 
onne
ts the subsystemby spe
ifying a dependen
y between the state transitions of the subsystems,i.e., the state transition that is o�ered by a 
ertain subsystem is dependingon other subsystems being in parti
ular states. Thus, the glue-
ode restri
tsthe rea
hable state spa
e of a 
ooperating system. Nevertheless, the size ofthe state spa
e is exponential in the number of subsystems and the size ofthe rea
hable state spa
e might be as well.There are several formalisms that model 
ooperating systems in
luding Petrinets [Pet67℄ or UML [RJB99℄ (graphi
al languages), CSP [Hoa85℄ or CCS[Mil82℄ (pro
ess algebras), Linda [ACG86℄ or Reo [Arb04℄ (
oordination lan-guages) or even a
tual programming language as Java or C/C++ and theformalism of intera
tion systems [GS03℄ that we introdu
e in Se
tion 1.4 ofthis 
hapter and use in the remainder to model 
ooperating systems. Fur-ther models, that are similar to the formalism of intera
tion systems, aredes
ribed in Se
tion 1.4.1.A 
ooperating system satis�es a system property that is given by an LTLor CTL formula if and only if the global behavior of the system satis�esthe formula. LTL and CTL model 
he
king algorithms are linear in the6



1.1. MOTIVATIONsize of the system in 
onsideration, i.e., model 
he
king a 
ooperating sys-tem by those algorithms requires time exponential in the number of sub-systems. This, observation is ba
ked up by [BVW94℄ (extended abstra
tof [KVW00℄) and [Kup95℄ where it was proven that LTL and CTL model
he
king for 
on
urrent programs [Pnu79℄, a formalism for modeling 
oop-erating systems, is PSPACE-
omplete in the size of the input system andthe respe
tive temporal logi
 formula (see [VU98℄ for a summary of 
om-plexity theoreti
 
lassi�
ations regarding LTL and CTL model 
he
king).The authors even strengthened this statement by showing that the same
omplexity theoreti
 
lassi�
ation holds if the temporal logi
 formula is 
on-sidered to be arbitrary but �xed, i.e., the PSPACE-
ompleteness result doesnot depend on the LTL or CTL formula. Note that these results do notimply the PSPACE-
ompleteness of the problem to model 
he
k a parti
-ular system property des
ribed in LTL or CTL in a 
ooperating system.However, the 
omplexity theoreti
 
lassi�
ation of the problem to 
he
kwhether or not a parti
ular system property holds in a system has beenresear
hed for various formalisms that model 
ooperating systems and var-ious important system properties. For example, the PSPACE-
ompletenessof de
iding rea
hability, deadlo
k-freedom and liveness in 1-safe Petri netswas shown in [CEP95℄. The PSPACE-
ompleteness of de
iding rea
habil-ity, deadlo
k-freedom, progress and availability in intera
tion systems wasshown in [MCM08
℄. See [AKY99℄ for results in 
ommuni
ating �nite statema
hines and [CEP95, EN94℄ for results in various sub
lasses of Petri nets.Even though LTL and CTL model 
he
king allow for an automati
 
he
kingof important system properties in 
omplex systems, there are still systemsthat are relevant in real life where it is not feasible to 
he
k 
ertain sys-tem properties be
ause of the sheer size of the rea
hable state spa
e. Thisis, 
he
king whether a property holds in a 
ooperating system 
an be
omeunfeasible if the number of subsystems or the size of individual subsystemsin
reases. Symboli
 model 
he
king [BCM+92℄ allows for dealing with sys-tems with 1020 states and beyond, e.g., 
ooperating systems that 
onsists7



CHAPTER 1. INTRODUCTIONof 20 subsystems with ea
h 10 states. The improved approa
h by Bur
h etal. [BCL91℄ 
an deal with systems with 10120 states, e.g., 120 subsystemswith ea
h 10 states. In [HKW12℄ the authors analyze the 
ontrol softwareof the CERN Compa
t Muon Solenoid experiment whi
h 
onsists of over
30, 000 
ooperating �nite state ma
hines, i.e., a relevant system that is fartoo large for a dire
t appli
ation of model 
he
king te
hniques. The authorsonly 
onsider systems properties that 
an be veri�ed by 
onsidering sub-systems 
onsisting of reasonable numbers of state ma
hines. In Chapter 4we introdu
e an approa
h, based on a su�
ient 
ondition, that establishesdeadlo
k-freedom in 
ooperating systems in time polynomial in the size ofthe input system. In order to illustrate our results we introdu
e in Chapter5 several parameterized examples the state spa
e of whi
h is 
onsiderablelarger than 10120, e.g., we 
onsider a model 
onsisting of 1, 200 subsystemswith at least 2 states in ea
h subsystem.1.1.3 Dealing with Complexity IssuesIf a system is very 
omplex then a formal veri�
ation 
an be
ome unfeasiblebe
ause even a 
omputer aided appli
ation of known te
hniques 
an requiretoo mu
h resour
es. This e�e
t is supported by various 
omplexity theoreti
results regarding various formalisms, for modeling 
ooperating systems, andsystem properties whi
h prove that a veri�
ation 
an not be a
hieved inpolynomial time in the size of the input system. Approa
hes to 
ir
umventthis issue in
lude the following items.
• Exploiting 
hara
teristi
s of sub
lasses of systems. Even if a 
om-plexity result states that we 
an not expe
t to de
ide whether or nota 
ertain system property holds in polynomial time there might beinteresting sub
lasses where this 
an be a
hieved.
• A modi�
ation of the input system su
h that known te
hniques needless resour
es. One approa
h is to redu
e the size of the system in 
on-8



1.1. MOTIVATIONsideration while preserving whether or not a system property holds inthe modi�ed system. Te
hniques that follow this approa
h are widelyreferred to as state spa
e redu
tion te
hniques.
• Another approa
h is to 
onsider veri�
ation te
hniques that are basedon su�
ient 
onditions and require less resour
es, i.e., if a te
hniquelike this su

eeds then a property is guaranteed, if not then we 
annot
on
lude whether or not the property holds.These 
on
epts are not mutually ex
lusive from ea
h other, i.e., a te
hnique
an be based on several of these 
on
epts. In the following we dis
uss te
h-niques that are based on these approa
hes.Sub
lassesDe
ision problems that are 
omplete in a 
omplexity 
lass that indi
atesthat we 
an not expe
t that there is an algorithm that de
ides the problemin polynomial time might in
lude �interesting� sub
lasses where the de
i-sion problem is de
idable in polynomial time. A well known example isthe Boolean satis�ability problem where 3SAT is NP-
omplete and 2SATis de
idable in polynomial time. The problem HORNSAT (the problem ofde
iding whether a given set of propositional Horn 
lauses is satis�able)is even de
idable in linear time. Similarly, the quanti�ed 3SAT problem isPSPACE-
omplete, whereas the quanti�ed 2SAT problem and the quanti�edHORNSAT problem [KBS88℄ is de
idable in polynomial time. See [GJ79℄ fordes
riptions and more examples. In 
ontext of system properties for whi
hit is hard (e.g., PSPACE-
omplete) to de
ide whether or not they hold in asystem, the examples above rise the question whether there are interestingsub
lasses of systems where we 
an de
ide in polynomial time whether ornot the system property holds.If we show that a property P is de
idable in polynomial time in a sub-
lass then this sub
lass is interesting if the sub
lass 
onsists of systems that9



CHAPTER 1. INTRODUCTIONare relevant in pra
ti
e. If, on the other hand, we show that de
iding Pis PSPACE-
omplete in a 
ertain sub
lass then this sub
lass is interest-ing if it is as restri
ted as possible. This is be
ause we 
an 
on
lude thatde
iding P in ea
h super
lass is PSPACE-hard. Furthermore, the PSPACE-
ompleteness of de
iding P in a sub
lass justi�es the resear
h of te
hniques,based on su�
ient 
onditions, that establish P in this 
lass and 
an be testedin polynomial time (we dis
uss some of these approa
hes in the following).An important approa
h in the design of 
ooperating systems is the so-
alled
orre
tness by 
onstru
tion approa
h, i.e., the design of modeling rules thatensure that a system model ful�lls 
ertain properties. This 
an be general-ized by providing a set of modeling rules that ensure that a 
ertain systemproperty 
an be de
ided or ensured e�
iently in a 
ooperating system thatis 
onstru
ted by these rules. This is, a result that shows that a systemproperty 
an be de
ided or ensured e�
iently in a sub
lass of 
ooperatingsystems 
an be used to design 
orre
tness by 
onstru
tion te
hniques.Many 
omplexity results have been published for various sub
lasses of Petrinets. They show that various de
ision problems that are EXPSPACE-hardin general Petri nets be
ome PSPACE-
omplete in interesting sub
lasses.In the same way various problems that are PSPACE-
omplete in generalPetri nets be
ome NP-
omplete in respe
tive sub
lasses. [JLL77℄ 
onsideredrea
hability, liveness and boundedness in free 
hoi
e Petri nets, 
on�i
t freePetri nets and 
onservative Petri nets and [HJR93℄ boundedness, rea
habil-ity, 
ontainment and equivalen
e problems in single path Petri nets. A morere
ent results 
an be found in [PL08℄ where it was shown that the rea
habil-ity problem is PSPACE-
omplete in Petri nets with fast growing markings(the best known lower bound in general Petri nets needs exponential spa
e[Lip76℄). However, in [Esp98℄ Esparza summarizes various results regardingvarious sub
lasses of Petri nets and sets up the following rule of thumb:�Many questions about marked graphs are solvable in polynomialtime. Almost no questions about Petri net 
lasses substantially10



1.1. MOTIVATIONlarger than marked graphs are solvable in polynomial time.�Marked graphs are a very basi
 sub
lass of Petri nets that is in
luded in allabove mentioned sub
lasses A marked graph is a Petri net where ea
h pla
ehas exa
tly one in
oming and one outgoing ar
.Various works deal with sub
lasses of 
ooperating systems that are de�nedby ar
hite
tural 
onstraints. For this a graph stru
ture is de�ned whi
h rep-resents the 
ommuni
ation stru
ture among the subsystems. In this graph,the nodes are the subsystems and an undire
ted edge 
onne
ts two sub-systems if the glue-
ode spe
i�es a 
ooperation between these subsystems.Based on this stru
ture one 
an de�ne sub
lasses of systems the 
ommu-ni
ation stru
ture of whi
h forms, for example, a tree, a star or a lineararrangement of subsystems. Several works 
onsidered tree-like 
ommuni
a-tion patterns and in parti
ular established 
onditions that ensure deadlo
k-freedom. Communi
ating Sequential Pro
esses are introdu
ed in [Hoa85℄where a dire
ted 
ommuni
ation stru
ture based on input/output 
ommu-ni
ation is 
onsidered. It is argued that 
ommuni
ating pro
esses, if thedire
ted input/output 
ommuni
ation stru
ture forms a rooted tree, 
annot deadlo
k. [BR91℄ des
ribes a general 
ommuni
ation graph for CSPmodels and provides 
onditions that guarantee deadlo
k-freedom in systemsthe 
ommuni
ation graph of whi
h forms a tree. [BCD02℄ examined a pro-
ess algebra based on an ar
hite
tural des
ription language 
alled PADLand 
onsiders deadlo
k-freedom in systems with a tree-like 
ommuni
ationpattern (a proper super
lass of systems with a star-like or linear pattern).The te
hnique is based on a 
ompatibility 
ondition that is tested amongpairs of 
ooperating subsystems, i.e., the 
omposite behavior of two sub-systems is weak bisimilar to the behavior of one of the 
omponents. Ane�
ient te
hnique based on a su�
ient 
onditions for establishing deadlo
k-freedom in intera
tion systems with a star-like 
ommuni
ation pattern isintrodu
ed in [Lam09℄ where, similar to [BCD02℄, a 
ompatibility 
ondi-tion based on bran
hing bisimilarity is tested. A su�
ient 
ondition forestablishing deadlo
k-freedom for the sub
lass of tree-like intera
tion sys-11



CHAPTER 1. INTRODUCTIONtems is des
ribed in [MCM08a℄ where a 
ondition is tested on the rea
hablestate spa
es of pairs of intera
ting subsystems. In [LMC11℄ the 
ondition in[MCM08a℄ is extended su
h that deadlo
k-freedom 
an be established in aproper super
lass of tree-like intera
tion systems. Henni
ker et al. proposedin [BHH+06, HJK10℄ a te
hnique to 
onstru
t so 
alled observable behaviorof a 
ooperating system with an a
y
li
 
ommuni
ation pattern whi
h 
anbe used to establish 
ertain system properties.State Spa
e Redu
tionIn order to 
ir
umvent the state spa
e explosion problem in 
ooperatingsystems one 
an apply so-
alled state spa
e redu
tion te
hniques in orderto redu
e the size of the rea
hable state spa
e. These te
hniques in
ludevarious methods that remove states or entire subsystems from a system orproviding an asso
iated system with a smaller state spa
e. Given a systemand a desired property, the idea is to 
onstru
t a modi�ed system su
h that1. the state spa
e of the modi�ed system is small enough su
h that ate
hnique 
an be applied to 
he
k whether the property holds in areasonable amount of time and2. if the property holds in the modi�ed system then the property holdsin the original system.Three approa
hes whi
h follow these requirements are te
hniques that ex-ploit symmetries in a system, partial order redu
tion and abstra
t interpre-tation.The idea behind exploiting the symmetry of a system is to 
ompress the statespa
e of a system by 
ombining states into equivalen
e 
lasses based on anequivalen
e relation. The equivalen
e relation is 
hosen su
h that paths inthe original system 
orrespond to paths in the 
ompressed system and vi
eversa. The 
ompression ratio and the properties that 
an be established byexamining the 
ompressed system is highly depending on the 
hoi
e of the12



1.1. MOTIVATIONequivalen
e relation. In [ID96℄ this idea is used to 
he
k whether a state isrea
hable in a system and for establishing deadlo
k-freedom. [ES96℄ uses thismethod on 
ooperating systems with identi
al or isomorphi
 subsystems andestablishes system properties in CTL* in the 
ompressed systems. [CJEF96℄provides a state spa
e redu
tion based on symmetries for a system whi
htransition relation is given symboli
ally as a BDD and identi�es a sub
lassof temporal logi
 formulas that is preserved by this redu
tion. [Jen96℄ usesthis method to 
ompress the state spa
e of 
olored Petri nets.Partial order redu
tion exploits that a state in a 
ooperating system mightbe rea
hed by exe
uting a
tions in di�erent orders. The idea is that in thepro
ess of 
he
king a suitable system property only one of these paths needsto be examined. [Pel93℄ introdu
es so-
alled model 
he
king with represen-tatives. An equivalen
e relation on the paths in a 
ooperating system is
onsidered su
h that either all or none of the paths in a 
lass model a for-mula in LTL. Based on this equivalen
e relation a labeled transition systemis 
onstru
ted su
h that for ea
h equivalen
e 
lass there is at least one pathin this 
lass (
alled representative) present in this system. The resulting sys-tem 
an be
ome 
onsiderable smaller and if the resulting system satis�es anLTL formula then the respe
tive 
ooperating systems in 
onsideration mod-els this LTL formula as well. [GW92℄ presents an algorithm that uses partialorder redu
tion and 
he
ks deadlo
k-freedom in 
on
urrent �nite state sys-tems. Furthermore, [GW92℄ shows how the algorithm 
an be used to 
he
ka 
ertain 
lass of system properties in 
on
urrent �nite state systems. Ades
ription of an appli
ation of te
hniques that use partial order redu
tionon pra
ti
al relevant systems 
an be found in [GPS96℄.Abstra
t interpretation is based on the idea to negle
t parts of a systemthat do not have an impa
t on whether or not a desired system propertyholds by applying a more abstra
t semanti
 to the spe
i�
ations of a system.The most frequently mentioned example is the abstra
tion of data valuesby bounded intervals. Abstra
t interpretation was introdu
ed in [CC77℄.Formally, the method 
onsists of de�ning an abstra
tion fun
tion α : L→ L′13



CHAPTER 1. INTRODUCTIONand a 
on
retization fun
tion γ : L′ → L where L is the 
on
rete state spa
e,i.e., the state spa
e of the original system and L′ is the (desirable smaller)abstra
t state spa
e on whi
h one 
an perform model 
he
king te
hniques.Many results request that (α, γ) is a Galois-
onne
tion from L to L′ [CGL94,GS97, Lon93℄.Su�
ient ConditionsConsider an arbitrary de
ision problem. A su�
ient 
ondition on instan
esof the problem guarantees that the answer of the de
ision problem on aninstan
e is �yes� if the 
ondition holds for the instan
e. On the other hand,if the 
ondition does not hold for an instan
e then we 
an not 
on
lude theanswer of the de
ision problem for the instan
e. Te
hniques that are basedon a su�
ient 
ondition are useful if 
he
king the 
ondition requires mu
hless resour
es as te
hniques that a
tually de
ide the problem, e.g., if de
idingthe problem is PSPACE-
omplete and applying the su�
ient 
ondition 
anbe a
hieved in polynomial time in the size of the input. In our 
ontext aninstan
e 
onsists of a 
ooperating system and a system property and thequestion is whether or not the property holds in the system.Several formal veri�
ation te
hniques that are based on su�
ient 
onditionsestablish system properties by analyzing approximations of the global statespa
e or the global behavior of a 
ooperating system. An approximation is
alled under-approximation if it des
ribes a subset of the rea
hable statesor transitions of the system in 
onsideration. An over-approximation onthe other hand des
ribes a superset of the rea
hable states or transitions.Depending on the system property in 
onsideration an under- or an over-ap-proximation is needed to establish the property. For example, if the propertyspe
i�es that 
ertain states are not rea
hable and these states are not rea
h-able in an over-approximation then these states are not rea
hable in thebehavior of the system as well. If a property on the other hand requires that
ertain states are rea
hable then these states are rea
hable in the global be-14



1.1. MOTIVATIONhavior if they are rea
hable in an under-approximation of the system. A wellresear
hed 
lass of system properties are so-
alled safety properties whi
hstate that �something bad does never happen� [Lam77, LS85℄. Properties ofthis kind 
an be established in over-approximations of a 
ooperating system.If something bad does never happen in an over-approximation of a systemthen it 
ertainly does never happen in the behavior of the system. Espe
iallydeadlo
k-freedom and the negated rea
hability property (de
iding whethera 
ertain state is not rea
hable) are safety properties.Of 
ourse, if a property does not hold in an under-approximation respe
tivelyover-approximation then we 
an not make any statement as to whether theproperty in 
onsideration holds in the system. In this 
ase a re�nement ap-proa
h might help in order to modify an approximation su
h that a property
an be established by analyzing a modi�ed approximation. Re�ning under-approximations of 
ooperating systems means here to add states or transi-tions su
h that the resulting obje
t remains to be an under-approximation.Whereas states or transitions are removed in over-approximations when re-�nement is applied. Clearly, if a te
hnique fails to establish a property inan under-approximation respe
tively over-approximation then the te
hniquemight su

eed in respe
tive re�ned approximations.Te
hniques based on over-approximations are, for example, introdu
ed in[AC05, GDHH98, GD99, CHM+93, CGL94, Kur94℄. [CCQ94℄ 
onstru
tsover-approximations by an approximative forward state spa
e explorationthat is re�ned by an exa
t ba
kward exploration. Moon et al. [MJH+98℄supports CTL model 
he
king by using over-approximations that are 
on-stru
ted by approximative forward traversal. [LPJ+96℄ uses an approxi-mative ba
kward-analysis in order to 
onstru
t over-approximations andre�nes them until an ACTL or ECTL formula 
an be proved or refuted.Over-Approximations of intera
tion systems are 
onsidered in [MCMM07℄for establishing deadlo
k-freedom (the over-approximations are des
ribed inmore detail in [MMC09b℄). Under-approximations are for example 
onsid-ered in [PH98℄. In Chapter 3 we des
ribe an approa
h to e�
iently represent15



CHAPTER 1. INTRODUCTIONand re�ne over-approximations of intera
tion systems and in Chapter 4 weintrodu
e a te
hnique to establish deadlo
k-freedom in intera
tion systemsthat exploits over-approximations and is based on a su�
ient 
ondition that
an be applied in polynomial time.[AG97℄ des
ribes an approa
h that tests a 
ondition on the glue-
ode of a
ooperating system in order to guarantee the 
onstru
tion of deadlo
k-freesystems, i.e., this approa
h does not make use of under- or over-approxi-mations. A te
hnique based on a su�
ient 
ondition that is introdu
edin [IU01℄ uses partial equivalen
e relations between graphs 
onstru
ted fromthe subsystems of a 
ooperation system without any state spa
e exploration.An approa
h based on a su�
ient 
ondition for establishing liveness in in-tera
tion systems is des
ribed in [MCMM08℄.
1.2 ContributionThe 
ontribution of this work 
onsists of two parts. In the �rst part wedis
uss, how 
ooperating systems 
an be 
lassi�ed in order to des
ribe in-teresting sub
lasses with respe
t to a 
omplexity theoreti
 examination ofde
iding system properties in these sub
lasses. We des
ribe several basi
sub
lasses that are based on 
onstraints regarding the 
ommuni
ation stru
-ture between the subsystems and are relevant in pra
ti
e. We show that de-
iding the rea
hability problem in these 
lasses is PSPACE-
omplete. Thus,we 
annot expe
t that there is a te
hnique that de
ides the rea
habilityproblem in these 
lasses in polynomial time. Our results justify 
orre
tnessby 
onstru
tions approa
hes that exploit 
hara
teristi
s of these sub
lassesand the appli
ation of te
hniques that are based on su�
ient 
onditionsand establish the rea
hability problem in these 
lasses in polynomial time[Hoa85, BR91, BCD02, MCM08a, Lam09, HJK10℄. In addition, the resultsmotivate the resear
h of further su�
ient 
onditions, that exploit the indi-vidual 
hara
teristi
s of our sub
lasses, in order to 
onstru
t more e�
ient16



1.2. CONTRIBUTIONte
hniques that tests for the rea
hability of states.In a se
ond part, whi
h makes up the larger part of this work, we intro-du
e a te
hnique for establishing deadlo
k-freedom in 
ooperating systemsthat is based on a su�
ient 
ondition and 
an be tested in polynomial time.Our approa
h is based on the analysis of 
ompa
t representations of over-approximations of the rea
hable global behavior of a 
ooperating system.We 
all these representations abstra
t over-approximations. An abstra
tover-approximation is based on a subset of subsystems and indu
es an over-approximation of the global behavior. Thus, we argue that our abstra
tover-approximations have the potential to be the basis of te
hniques thatestablish safety properties in 
ooperating systems based on a su�
ient 
on-dition. We introdu
e an operator 
alled Edge-Mat
h that we use to re�ne afamily of abstra
t over-approximations by a pairwise 
omparison. Our def-inition of abstra
t over-approximations and our approa
h of re�ning these
an, in a 
ertain way, be seen as a state spa
e redu
tion approa
h. The sumof the sizes of all abstra
t over-approximations in our approa
h is usuallysigni�
antly smaller than the size of the global behavior of a 
ooperatingsystem, i.e., we apply our approa
h to establish deadlo
k-freedom to ob-je
ts that are signi�
antly smaller than the global behavior of the systemin 
onsideration. On the other hand, in 
omparison to state spa
e redu
-tion te
hniques, our abstra
t over-approximations are not suited to dire
tlyapply known model 
he
king te
hniques.To 
ir
umvent 
omplexity issues regarding the veri�
ation of system prop-erties in 
ooperating systems we pro
eed as follows. In order to establish asafety property P of a 
omplex 
ooperating system, we propose a three stepapproa
h:1. The 
onstru
tion of polynomially many so-
alled abstra
t over-appro-ximations of the rea
hable state spa
e su
h that ea
h abstra
t over-ap-proximation is of polynomial size and indu
es an over-approximationof the system. This topi
 is dis
ussed in Chapter 3.17



CHAPTER 1. INTRODUCTION2. The re�nement of the abstra
t over-approximations by a pairwise 
om-parison with an operator that we 
all Edge-Mat
h whi
h 
an be per-formed in polynomial time. This re�nement approa
h is introdu
ed inChapter 3.3. The 
onstru
tion of a predi
ate P ′ on the abstra
t over-approximationssu
h thati) P holds if P ′ holds for all abstra
t over-approximations andii) P ′ 
an be 
he
ked in polynomial time.This 
on
ept is dis
ussed for the system property of deadlo
k-freedomin Chapter 4.Viewed abstra
tly our method establishes a su�
ient 
ondition for the va-lidity of property P . This 
ondition 
an be 
he
ked in polynomial time.To the best of our knowledge there are very few other approa
hes that dealwith the re�nement of over-approximations of 
ooperating systems in oursense that are based on subsets of subsystems. Approa
hes that are sim-ilar or related to our work are Minnameier's Cross-Che
king operator forthe re�nement of overlapping over-approximations of the rea
hable state-spa
e of intera
tion systems [MMC09b℄, the work of Govindaraju et al.[GDHH98, GD99℄ that 
on
erns approximative rea
hability in 
ooperatingsystems and establishing invariants (a sub
lass of safety properties) in syn-
hronous hardware modeled by Mealy ma
hines and Attie and Cho
kler'sapproa
h to establish deadlo
k-freedom in 
ooperating systems [AC05℄ byanalyzing over-approximations that are based on subsets of three subsystemsea
h. These approa
hes are dis
ussed in detail in Chapter 3 in Se
tion 3.4.18



1.3. ROAD MAP1.3 Road MapThis work is stru
tured as follows. In the next se
tion we introdu
e theformalism of intera
tion systems � a formalism for modeling 
ooperatingsystems that was introdu
ed by Sifakis and Gössler in [GS03℄. In the re-mainder of this work we use this formalism to model 
ooperating systems.In the se
ond 
hapter we present several redu
tions whi
h prove that de-
iding important system properties in 
ertain sub
lasses of intera
tion sys-tems is PSPACE-
omplete. These sub
lasses are de�ned by restri
ting thetopology that is indu
ed by the glue-
ode of a 
ooperating system, i.e., the
ommuni
ation stru
ture between the subsystems.In Chapter 3 we 
onsider a 
on
ept of over-approximations of the globalbehavior of intera
tion systems. These over-approximations are suited as abasis for te
hniques that establish safety properties in intera
tion systems,i.e., one 
an dire
tly apply model 
he
king te
hniques for safety properties.These over-approximations su�er from the state spa
e explosion problemjust like the global behavior of an intera
tion system, i.e., they are notsuited for an approa
h that e�
iently ensures a system property the veri-�
ation of whi
h requires the examination of the rea
hable state spa
e. To
ir
umvent this problem we introdu
e a spe
ial kind of over-approximations� abstra
t over-approximations. An abstra
t over-approximation is a 
om-pa
t representation of an over-approximation and, suitably 
hosen, it is ofpolynomial size with respe
t to the parameters of the underlying intera
tionsystem. This is, an abstra
t over-approximation indu
es an over-approxi-mation of the global behavior of an intera
tion system. We use abstra
tover-approximations as a basis for an approa
h to establish the safety prop-erty of deadlo
k-freedom in intera
tion systems in polynomial time in thesize of an underlying intera
tion system. This approa
h is introdu
ed inChapter 4. The approa
h 
onsists of a 
ondition that is tested on a fam-ily of abstra
t over-approximations whi
h, if true, guarantees that there isa deadlo
k-free over-approximation of the global behavior, i.e., the global19



CHAPTER 1. INTRODUCTIONbehavior is deadlo
k-free as well. Moreover, in 
ase our approa
h fails, weexemplify how we 
an use information that was produ
ed in our approa
h inorder to modify a system su
h that our approa
h ensures deadlo
k-freedom.If our approa
h fails and the system in 
onsideration is in fa
t deadlo
k-freethen a re�nement of the abstra
t over-approximations, i.e., the removal ofstates and transitions su
h that the result remains to be an abstra
t over-approximation, might result in a family of abstra
t over-approximations onwhi
h our approa
h su

eeds. For this purpose we introdu
e in Chapter 3an operator that re�nes abstra
t over-approximations by a pairwise 
ompar-ison and propose an approa
h to 
al
ulate a �xed-point with respe
t to anappli
ation of this operator on a family of abstra
t over-approximations inpolynomial time in the size of the underlying intera
tion system. In Chap-ter 5 we des
ribe a tool that implements our te
hniques, introdu
e several
omplex and parameterized examples and provide results of our re�nementapproa
h. Chapter 6 establishes a 
onne
tion between our 
on
ept of ab-stra
t over-approximations and their re�nement and the �eld of databasetheory. Besides of pointing out this interesting 
onne
tion, we use resultsfrom this �eld in order to make pre
iseness statements about our re�nementapproa
h.Chapter 7 provides an overall 
on
lusion of this thesis.1.4 Intera
tion SystemsHere we give a brief introdu
tion to intera
tion systems that have been pro-posed by Sifakis and Gössler in [GS03, Sif05℄ to model 
omponent based sys-tems. The model was studied, e.g., in [BBSN08, BBG11, LMC11, MCMM07,MCM08a, MCMM08, MMC09a, BBNS09, BGL+11, GGMC+06℄, has beenused to model, e.g., bio
hemi
al rea
tions [MCSW07℄ and was integrated inthe BIP framework [BBS06℄.An intera
tion system 
onsists of subsystems 
alled 
omponents that o�er20



1.4. INTERACTION SYSTEMSinterfa
es for a 
ooperation among them. The 
ooperation is spe
i�ed by aglue-
ode that 
onne
ts interfa
es of di�erent 
omponents. The glue-
odeis modeled by so 
alled intera
tions. An intera
tion spe
i�es a multiway
ooperation among 
omponents by 
onne
ting di�erent interfa
es (
alledports) of di�erent 
omponents. The model is de�ned in two layers. The �rstlayer, the intera
tion model, provides the names of the 
omponents, theirinterfa
es and the glue-
ode. In the se
ond layer, the intera
tion system,in addition the behavior of the 
omponents by labeled transition systemsis des
ribed. Thus, the des
ription of the glue-
ode and of the behaviorof the 
omponents are 
learly separated. In our 
ontext, this separation isimportant be
ause many results in this work are based on the glue-
ode ofintera
tion systems and independent of the behavior of the 
omponents.In this work, we use intera
tion systems as a formalism to model 
ooperatingsystems. This is, all our results and te
hniques are based on this formalism.Nevertheless, we want to point out that all our te
hniques 
an be easilyapplied to other formalisms that model 
ooperating systems. This 
an bea
hieved by either adapting our te
hniques or by using a mapping amongformalisms � see, e.g., [MCM08b℄ for a mapping between intera
tion systemsand 1-safe Petri nets. In the following we dis
uss some formalisms that 
anbe used to model 
ooperating systems and are similar to intera
tion systems.1.4.1 Related FormalismsThe formalism of intera
tion systems is a very general formalism for model-ing 
ooperating systems and abstra
ts from data values, timed behavior, thedes
ription of input/output relations, probabilisti
 behavior or guarded 
om-mands. Some formalisms for modeling 
ooperating systems that are similarto intera
tion systems are Pnueli's 
on
urrent programs [Pnu79℄, Lyn
h'sI/O automata (Input/Output automata) [LT87, CCK+05, KLSV06℄ andHenzinger's and de Alfaro's interfa
e automata [dAH01℄. These formalismsare brie�y dis
ussed in the following.21



CHAPTER 1. INTRODUCTIONPnueli uses 
on
urrent programs in order to introdu
e the temporal logi
LTL in 
on
urrent systems. The behavior of n ∈ N pro
esses that sharea set of variables is des
ribed by labeled transition systems the edges ofwhi
h are labeled by 
ommands and guards. A 
ommand 
an be exe
utedif a predi
ate, named guard, on the shared variables is true. Guards areobsolete if ea
h guard represents the value true. A 
ommand is an assignmentthat 
hanges the values of a set of shared program variables (if there areno shared variables then ea
h 
ommand is empty). A state 
hange in theoverall behavior of the pro
esses 
orresponds to the exe
ution of a transitionof exa
tly one pro
ess. The model is used in [BVW94℄ in order to provethe PSPACE-
ompleteness of CTL and LTL model 
he
king in 
on
urrentprograms.An I/O automaton is given by a labeled transition system the edges of whi
hare labeled by a
tions. The authors distinguish between input, output andinternal a
tions and demand that in ea
h state of an I/O automaton ea
h in-put a
tion is available, i.e., an I/O automaton is always ready to re
eive anyinput. The 
ooperation among several I/O automata is a
hieved by an as-so
iative 
omposition whi
h depends on a pairwise 
omposability 
ondition,i.e., two I/O automata are 
omposable if their a
tions are disjoint, ex
eptthat input a
tions of one may 
oin
ide with output a
tions of the other. The
ooperation takes pla
e on the shared input/output a
tions whi
h be
omeinternal a
tions in the 
omposed system. There are extensions that extendthe expressive strength of the formalism of I/O automata by the ability tomodel, e.g., probabilisti
 [CCK+05℄ or time dependent [KLSV06℄ behavior.An interfa
e automaton is an I/O automaton without the restri
tion that inea
h state ea
h input a
tion must be available.Other formalisms that are similar to intera
tion systems are Arnold's syn-
hronous produ
t of labeled transition systems [Arn94℄, team automata [Ell97,TBEKR03℄ and even �nite state ma
hines as Mealy ma
hines [Mea55℄ orMoore ma
hines [Moo56℄ 
an be used to model 
ooperating systems by 
on-sidering sets of states variables (see, e.g., [GDHH98, GD99℄ for an approa
h22



1.4. INTERACTION SYSTEMSto analyze syn
hronous hardware modeled by Mealy ma
hines).1.4.2 De�nitionsIn the following we formally des
ribe the formalism of intera
tion systemsand provide illustrative examples.De�nition 1.1:Let K be a set of 
omponents and {Ai}i∈K a family of pairwise disjun
tsets. Ai is the port set of 
omponent i ∈ K. We denote 
omponentsby lower
ase letters i, j, k or l and, if not stated otherwise, assume that
K = {1, 2, . . . , n}. A port is denoted by the lower
ase letter a indexed bythe respe
tive 
omponent, i.e., ai. An intera
tion α is a nonempty set ofports from di�erent 
omponents, i.e.,a) α ⊆

⋃

i∈K

Ai andb) for all i ∈ K holds that |α ∩ Ai| ≤ 1.An intera
tion αi = {ai1 , ai2 , . . . , aik} with aij ∈ Aij
(1 ≤ j ≤ k) denotesa possible 
ooperation among the 
omponents i1, . . . , ik via their respe
tiveports. For an intera
tion α and a 
omponent i ∈ K let i(α) = Ai ∩ α. Notethat b) ensures that |i(α)| ≤ 1. If i(α) 6= ∅, i.e., i(α) is a set that 
onsistsof exa
tly one port ai ∈ Ai, then we say that i parti
ipates in α and aiis the port of i that parti
ipates in α. If i(α) = ∅ then we say i does notparti
ipate in α.A set Int of intera
tions is 
alled intera
tion set (for K), if ea
h portappears in at least one intera
tion in Int, i.e., ⋃

i∈K

Ai =
⋃

α∈Int

α. The tuple
IM = (K, {Ai}i∈K , Int) is 
alled intera
tion model if Int is an intera
tionset for K.The glue-
ode among the 
omponents, that is modeled by intera
tions, al-lows for a multiway 
ooperation, i.e., an intera
tion 
an 
ontain ports ofmore than two 
omponents. This is in 
ontrast to other formalisms that23



CHAPTER 1. INTRODUCTIONmodel 
ooperating systems and only allow a 
ooperation between two sub-systems. The 
on
ept of multiway 
ooperation among subsystems is 
alledglobal syn
hronous 
ommuni
ation in [Osa12℄ and is listed as a design guide-line that 
an result in a substantially redu
ed number of states in the globalbehavior of a system 
ompared to a design guideline that only allows a 
o-operation among two subsystems. For example I/O automata respe
tivelyinterfa
e automata only allow 
ooperation between the input a
tion of oneautomaton and the output a
tion of another. Other well-known formalismswith a two-way 
ommuni
ation are, e.g., the pro
ess algebras CCS [Mil82℄where 
ommuni
ation takes pla
e between an a
tion a and a 
ounterpart āand CSP [Hoa85℄ where 
ommuni
ation o

urs between an input and an out-put 
hannel. Many pro
ess algebras that are based on CCS or CSP pursuethis restri
tion, e.g., PEPA [Hil96℄ or the π-
al
ulus [MPW92a, MPW92b℄.Multiway 
ommuni
ation 
an be found in, e.g., Petri nets [Pet67℄ where onetransition 
an move several tokens among multiple pla
es or in the pro
essalgebra LoCo [vW08℄ whi
h is inspired by Petri nets.We introdu
e here a simple example that we use as a running example inthe remainder of this work in order to illustrate our te
hniques.Example 1.1:Users login into terminals (TER1,TER2, . . . ,TERk) in order to retrieve in-formation. The terminals are 
onne
ted to a gateway server (GS) that 
on-ne
ts to an authenti
ation database (ADB) in order to validate a user re-quest. The ADB sends a 
on�rmation to a database (DB) whi
h transfersthe requested information to the GS whi
h in turn forwards the informationto the terminal from whi
h the request was initiated.For ease of presentation, we model here a system with only two terminals.Note that the results and observations in this work 
an be adapted to modelswith an arbitrary number k of terminals. Let
K = {TER1,TER2,GS,ADB,DB}be a set of 
omponents. From a terminal TERi (i = 1, 2) a user 
an request24



1.4. INTERACTION SYSTEMS(reqi) an information and get an information (geti) if the authenti
ationpro
ess is �nished. The gateway server GS 
an get a request (get_req) foran information, request an authenti
ation (req_auth) of a user, get a value(get_val) that represents the requested information and send a value (send)to the user. The authenti
ation database ADB 
an get an authenti
ationrequest (get_auth_req) and authenti
ate a user (auth). The database DB
an get an authenti
ation (get_auth) and send a value (send_val). Thus,the sets of ports for the 
omponents in K are de�ned as follows.
ATERi

= {reqi, geti} (i = 1, 2)

AGS = {get_req, req_auth, get_val, send}
AADB = {get_auth_req, auth}

ADB = {get_auth, send_val}Let Int be a set, 
onsisting of the following intera
tions. Note that Int isan intera
tion set for K.
send_reqi = {reqi, get_req} (i = 1, 2)

ask_auth = {req_auth, get_auth_req}

authorize = {auth, get_auth}

send_data = {send_val, get_val}

get_replayi = {send, geti} (i = 1, 2)

IM = (K, {Ai}i∈K , Int) is a well de�ned intera
tion model. We display anintera
tion model graphi
ally by drawing the 
omponents as squares thatare labeled by the names of the 
omponents. On the edge of the squareswe draw the ports as bla
k dots that are labeled by the names of the ports.The intera
tions are depi
ted as lines, labeled by the names of the inter-a
tions, that 
onne
t the appropriated ports. Figure 1.1 shows a graphi
alrepresentation of IM.An intera
tion model gives the names of 
omponents of a 
ooperating sys-tem, their ports and spe
i�es the 
ooperation between the 
omponents viaports. An intera
tion system extends this spe
i�
ation by assigning a be-25
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TERi GS
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send_data

get_replayi

reqi

geti

get_req
req_auth

get_val
send

get_auth_req

auth

get_auth

send_valFigure 1.1: Graphi
al representation of the intera
tion model IM from Ex-ample 1.1. For ease of presentation the two 
omponents TER1 and TER2are depi
ted as one box TERi (i = 1, 2) with respe
tive ports.havior to ea
h 
omponent in form of a labeled transition system. We usethe following de�nition of labeled transition systems.De�nition 1.2:A labeled transition system is a tuple S = (Q,A,→S, q
0). The set Qis the state spa
e of S, A a set of labels, →S⊆ Q × A × Q a transitionrelation and q0 ∈ Q the initial state. An element q ∈ Q is 
alled state andan element (q, a, q′) of→S is 
alled transition. Instead of (q, a, q′) ∈→S weuse the notation q

a
−→S q′. In graphi
al representations of labeled transitionsystems we mark the initial state by an in
oming arrow (see, e.g., Figure 1.2in Example 1.2).For a state q ∈ Q let

en(q) = {a ∈ A|∃q′∈Qq
a
−→S q′}.We say the label a ∈ en(q) is enabled in q.We use the standard de�nition of rea
hability in transition systems, i.e., astate q ∈ Q is rea
hable in S if q = q0 or there is a sequen
e of transitions

q0
a1−→S q1, q1

a2−→S q2, q2
a3−→S q3, . . . , qn−1 an−→S qnwith n ≥ 1 and qn = q. This is, a sequen
e that starts in the initial stateand ends in q. A transition q

a
−→S q′ is rea
hable if q is rea
hable. The setof rea
hable transitions in S is 
alled the rea
hable behavior of S.26
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Figure 1.2: Behavior of the 
omponents in Example 1.1. TTERi
is depi
tedfor i = 1, 2.A state q ∈ Q is 
alled a deadlo
k if en(q) = ∅, i.e., if no label is enabledin q. S is 
alled deadlo
k-free if no deadlo
k is rea
hable in S.De�nition 1.3:Let IM = (K, {Ai}i∈K , Int) be an intera
tion model. The tuple Sys =

(IM, {Ti}i∈K) is 
alled intera
tion system where Ti = (Qi, Ai,→i, q
0
i ) for

i ∈ K is a labeled transition system. In the following, for i ∈ K, we refer to
Ti as the lo
al behavior, to Qi as the lo
al state spa
e, →i as the lo
altransition relation and to q0i as the lo
al initial state of 
omponent i.The following example provides lo
al behaviors for the 
omponents in Ex-ample 1.1.Example 1.2:Figure 1.2 gives lo
al behaviors to the 
omponents from Example 1.1. Theintera
tion model IM that was de�ned in Example 1.1 together with thelo
al behavior given by the transition systems in Figure 1.2 forms a wellde�ned intera
tion system Sys = (IM, {Ti}i∈K).From the lo
al behavior of the 
omponents of an intera
tion system Sys andthe intera
tion set we 
an determine the global behavior of Sys, in form ofa transition system, as follows.De�nition 1.4:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and the set of 
omponents K = {1, 2, . . . , n}.27



CHAPTER 1. INTRODUCTIONThe global behavior of Sys is the transition system T = (Q, Int,→T , q
0)where

• the Cartesian produ
t Q =
∏

i∈K Qi, whi
h we 
onsider to be indepen-dent from the order of the 
omponents, is the global state spa
e,
• q0 = (q01, . . . , q

0
n) is the global initial state and

• →T⊆ Q× Int×Q is the global transition relation with q
α
−→T q′ iffor all i ∈ K:� if α ∩ Ai = {ai} then qi

ai−→i q
′
i and� if α ∩ Ai = ∅ then qi = q′i.IfK = {1, 2, . . . , n} then a global state q ∈ Q has the form q = (q1, q2, . . . , qn).If we 
onsider a global state q ∈ Q then we denote the lo
al state of 
ompo-nent i ∈ K in q by qi.The intera
tion system Sys is 
alled deadlo
k-free if there is no rea
hablestate q ∈ Q in the global behavior T su
h that q is a deadlo
k.Globally a transition q

α
−→T q′ 
an be performed if ea
h port in α is enabledin the state of the lo
al behavior of its respe
tive 
omponent.Remark 1.1:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model

IM = (K, {Ai}i∈K , Int) and global behavior T = (Q, Int,→T , q
0). In thiswork we only 
onsider intera
tion systems where K and ea
h Ai and Qi for

i ∈ K are �nite.The size of Sys is given by the sum over the sizes of K, Int and Ai, Qi and
→i for i ∈ K.Example 1.3:The intera
tion system introdu
ed in Example 1.1 and 1.2 
onsists of �ve
omponents where the lo
al behavior of four 
omponents (TTER1

, TTER2
,

TADB and TDB) 
ontains exa
tly two states and the lo
al behavior of one28
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Figure 1.3: Part of the global behavior T in Example 1.3.
omponent (TGS) exa
tly four states. It follows that the global behavior
T = (Q, Int,→T , q

0) has a state spa
e Q that 
onsists of 24 · 4 = 64 states.The set of rea
hable states of this system is relatively small and 
onsists ofonly nine rea
hable states. The rea
hable transitions of T and some of theunrea
hable transitions are depi
ted in Figure 1.3. For better readability,in Figure 1.3, the lo
al states are indexed by the numbers 1 to 5, where 1
orresponds to TER1, 2 to TER2, 3 to GS, 4 to ADB and 5 to DB. Notethat, in ea
h state in the rea
hable state spa
e of T , there is an enabledintera
tion and there are states in the unrea
hable state spa
e where nointera
tion is enabled. This is, the rea
hable behavior of T and thus T itselfis deadlo
k-free. Nevertheless, note that there are unrea
hable deadlo
ks.
29
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Chapter 2
Ar
hite
tural Constraints &Rea
hability
2.1 Introdu
tionIn this 
hapter we explore the 
omplexity theoreti
 
lassi�
ation of the rea
h-ability problem in sub
lasses of 
ooperating systems, i.e., the problem ofde
iding whether or not a 
ertain state is rea
hable in a 
ooperating sys-tem. We use the formalism of intera
tion systems that was introdu
ed inChapter 1 to model 
ooperating systems. De
iding rea
hability in generalintera
tion systems was proven to be PSPACE-
omplete [MCM08
℄. Herewe de�ne di�erent sub
lasses of intera
tion systems by ar
hite
tural 
on-straints and show that de
iding the rea
hability problem in these sub
lassesremains PSPACE-
omplete.Popular de
ision problems that are 
omplete in NP or even in PSPACEare de
idable in polynomial time in 
ertain sub
lasses of instan
es. Maybethe most popular example is the Boolean satis�ability problem where 3SATis NP-
omplete and 2SAT is de
idable in polynomial time. The problemHORNSAT (the problem of de
iding whether a given set of propositional31



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYHorn 
lauses is satis�able) is even de
idable in linear time. Similarly, thequanti�ed 3SAT problem is PSPACE-
omplete, whereas the quanti�ed 2SATproblem is also de
idable in polynomial time. See [GJ79℄ for des
riptions andmore examples. These examples raise the question whether there are �inter-esting� 
lasses of 
ooperating systems for whi
h the rea
hability problem ise�
iently de
idable.There are various starting points to spe
ify sub
lasses of 
ooperating sys-tems.1. Restri
tions regarding the behavior of the subsystems.2. The degree of syn
hronization among the subsystems as systems with avery high degree of syn
hronization tend to display a smaller rea
hablestate spa
e.3. The glue-
ode, i.e., the stru
ture of the intera
tion among the subsys-tems.Here, our 
on
ern lies on the latter. In this 
hapter we examine restri
tionswith respe
t to the intera
tions of a system, i.e., restri
tions regarding the
ommuni
ation stru
ture. We show that de
iding the rea
hability problemremains PSPACE-
omplete even if we strongly restri
t the 
ommuni
ationstru
ture between the 
omponents in various ways. For this purpose wede�ne an undire
ted graph su
h that the nodes are the 
omponents of anintera
tion system and two 
omponents are 
onne
ted by an edge if thereis an intera
tion in whi
h both 
omponents parti
ipate � we 
all this graphintera
tion graph. By the stru
ture of an intera
tion graph we 
an de�nesub
lasses of systems. Basi
 graph stru
tures of an undire
ted graph G =

(V,E) are, e.g.,
• trees � G is 
onne
ted and a
y
li
,
• stars � one node is of degree |V | − 1 and all other nodes are of degree
1, 32
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• lines � G is 
onne
ted, exa
tly two nodes are of degree 1 and all othernodes are of degree 2.Espe
ially systems with a tree-like 
ommuni
ation stru
ture indu
e an im-portant 
lass of 
ooperating systems. Many interesting systems belong tothis 
lass, e.g., hierar
hi
al systems or networks built by a master-slave op-erator. This 
lass has been early studied, e.g., in [Hoa85, BR91℄ and morere
ently, e.g., in [BHH+06, BCD02, MCM08a℄. Star stru
tures appear inpra
ti
e in, e.g., 
lient/server systems as banking or booking systems. Prop-erties of 
ooperating systems with a 
ommuni
ation pattern that forms astar were 
onsidered for example in [Lam09, BCD02, GSM07℄. Cooperatingsystems with a linear stru
tures appear in, e.g., pipeline systems as instru
-tion pipelines or general queue based algorithms.We show the PSPACE-hardness of de
iding the rea
hability problem in sub-
lasses of systems with a tree-like 
ommuni
ation pattern (i.e., the inter-a
tion graph is a tree) by providing a detailed redu
tion from the truenessproblem of quanti�ed Boolean formulas. Moreover we strengthen this re-sult and show that the same 
omplexity holds for even simpler systems witha linear and a star-like 
ommuni
ation pattern. The PSPACE-hardness ofde
iding the rea
hability problem in systems with a linear pattern is a
-
omplished by a redu
tion from the a

eptan
e problem in linear boundedTuring ma
hines and in systems with a star-like pattern by a redu
tion fromthe rea
hability problem in general intera
tion systems.Additionally, we modify our redu
tion for systems with a tree-like 
ommuni-
ation pattern to proof that de
iding progress in su
h systems is PSPACE-
omplete as well.A 
ommuni
ation stru
ture that forms a line respe
tively a star forms par-ti
ularly a tree, i.e., our PSPACE-
ompleteness results of de
iding the rea
h-ability problem in 
ooperating systems with a linear respe
tively star stru
-ture imply the PSPACE-hardness of de
iding the rea
hability problem in sys-tems with a 
ommuni
ation stru
ture that forms a tree. When we started to33



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYthink about the 
omplexity theoreti
 
lassi�
ation of the rea
hability prob-lem in 
ooperating systems with a tree-like 
ommuni
ation stru
ture, ourquestion in mind was whether te
hniques based on su�
ient 
onditions thatestablish rea
hability or rea
hability based systems properties in su
h sys-tems are justi�ed [Mar09, Hoa85, BR91, BHH+06, BCD02, MCM08a℄, i.e.,
ould it be the 
ase that the rea
hability problem in su
h systems 
an be de-
ided e�
iently? The generalization of the tree-like result to systems witha linear and star-like 
ommuni
ation stru
ture was 
onsidered by us at alater stage. This is, we introdu
e our redu
tion to systems with a tree-like
ommuni
ation pattern for the sake of 
ompleteness. On the other hand ourredu
tion to systems with a tree-like 
ommuni
ation pattern brought up ageneral te
hnique of propagating information through a system while avoid-ing 
ir
les in the 
ommuni
ation stru
ture, i.e., the 
ooperation between twosubsystems in a system whi
h 
ommuni
ation stru
ture forms 
ir
le 
an beremodeled by propagating the 
ooperation among the other subsystems onthe 
ir
le. We refer to this te
hnique in our proof that de
iding the rea
ha-bility problem in linear and star-like systems is PSPACE-hard. Furthermore,we use our proof of the PSPACE-hardness of de
iding the rea
hability prob-lem in tree-like systems in order to show that the de
ision problem whethera global state is rea
hable where a �xed 
omponent is in a �xed lo
al state
an not be de
ided in polynomial time.This 
hapter is organized as follows. In Se
tion 2.2 we provide de�nitionsthat we need in the remainder of this 
hapter. In Se
tion 2.3 we show thatthe rea
hability problem in tree-like systems is in PSPACE and present aredu
tion that proves the PSPACE-hardness of this problem [MCS10℄. InSe
tion 2.4 we argue why de
iding whether a global state is rea
hable inthe behavior of a tree-like intera
tion system that 
ontains a 
ertain �xedlo
al state of a �xed 
omponent 
an not be de
ided in polynomial time. Se
-tion 2.5 and 2.6 provide redu
tions that show that the rea
hability problemremains PSPACE-hard in linear respe
tively star-like intera
tion systems[MCS13b℄. In Se
tion 2.7 we outline why de
iding progress in tree-like inter-34



2.2. DEFINITIONSa
tion systems is PSPACE-
omplete. A 
on
lusion 
an be found in Se
tion2.8.2.2 De�nitionsWe fo
us on stru
tural 
onstraints on intera
tion systems. By this we mean
onstraints 
on
erning the 
ommuni
ation stru
ture of a system. We �rst
onsider systems with a tree-like 
ommuni
ation pattern. Then we furtherrestri
t the pattern to linear and star-like 
ommuni
ation. The followingde�nition introdu
es the intera
tion graph of an intera
tion model. Thisgraph is the basis of our approa
h to de�ne sub
lasses with respe
t to a
ertain 
ommuni
ation stru
ture. The nodes of this undire
ted graph arethe 
omponents of an intera
tion model and two nodes are 
onne
ted if thereis an intera
tion in whi
h both respe
tive 
omponents parti
ipate.De�nition 2.1:Let IM = (K, {Ai}i∈K, Int) be an intera
tion model with |K | = n. Theintera
tion graph G = (K, E) of IM is an undire
ted graph with {i, j} ∈ Eif and only if there is an intera
tion α ∈ Int with i(α) 6= ∅ and j(α) 6= ∅.Let Sys be an intera
tion system with intera
tion model IM. Let G be theintera
tion graph of IM. We 
all IM respe
tively Sys

• tree-like if and only if G is a tree, i.e., G is 
onne
ted and a
y
li
,
• star-like if and only if G is a star, i.e., exa
tly one node is of degree
n− 1 and all other nodes are of degree 1 and
• linear if and only if G is 
onne
ted and exa
tly two nodes have degree
1 and any other node degree 2.Let ISgeneral be the 
lass of all intera
tion systems with no restri
tions to

G, i.e., the set of all intera
tion systems, IStree the sub
lass of all tree-likeintera
tion systems, ISstar the sub
lass of all star-like systems and ISline thesub
lass of all linear systems. 35
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TER1

TER2

GS

ADB

DBFigure 2.1: Intera
tion graph G of IM in Example 1.1.Remark 2.1:Note that tree-like, star-like and linear intera
tion systems with a set Int ofintera
tions imply that for all α ∈ Int |α| ≤ 2.Remark 2.2:For the sub
lasses de�ned in De�nition 2.1 the following set in
lusions hold.Obviously, IStree, ISstar and ISline are all in
luded in ISgeneral. The sub
lasses
ISstar and ISline are in
luded in IStree. The interse
tion of ISstar and ISline isnot empty, and neither ISstar \ ISline nor ISline \ ISstar is empty.Here we give three examples of intera
tion systems and their respe
tiveintera
tion graphs.Example 2.1:Consider Example 1.1 that was introdu
ed in Chapter 1. The intera
tiongraph G of the intera
tion model in Example 1.1 is depi
ted in Figure 2.1.The graph G 
ontains a 
y
le, i.e., an intera
tion system based on the inter-a
tion model from Example 1.1 is not in
luded in IStree, ISline or ISstar.Example 2.2:This example illustrates a simple 
omponent based 
lient/server model. Aserver o�ers a servi
e that 
an be requested by a 
lient. Let s be a 
omponentthat models a server then this 
omponent o�ers the ports os (o�er a servi
e)and fs (�nish a servi
e). A 
omponent c that models a 
lient in need ofa 
ertain servi
e features the ports rc (request a servi
e) and gc (gained36
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p

p1 pt

p1,1 pr,1 p1,t pr,t. . . . . .. . .
Figure 2.2: Intera
tion graph G of IMr,t in Example 2.2.a servi
e). We 
onsider here 
omponents that are able to both o�er andrequest servi
es.In the following we 
onsider a parameterized instan
e of a 
lient/servermodel. Let IMr,t = (K, {Ai}i∈K , Int) be an intera
tion model with r, t > 0where
K = {pi,j|1 ≤ i ≤ r, 1 ≤ j ≤ t} ∪ {pj|1 ≤ j ≤ t} ∪ {p}.For 1 ≤ i ≤ r and 1 ≤ j ≤ t a 
omponent pi,j models a pro
ess thathas a 
lient fun
tion only, i.e., let Api,j

= {rpi,j , gpi,j}. For 1 ≤ j ≤ t a
omponent pj models a pro
ess that has a 
lient and a server fun
tion, i.e.,let Apj
= {rpj , gpj , opj , fpj}. The 
omponent p models a pro
ess with a serverfun
tion only, i.e., Ap = {op, fp}.For 1 ≤ i ≤ r and 1 ≤ j ≤ t 
omponent pi,j needs the servi
e that iso�ered by 
omponent pj . The 
omponent pj on the other hand is in need ofthe servi
e that is o�ered by p. Thus, the intera
tion set of IM is given asfollows.

Int = {{rpi,j , opj}, {gpi,j , fpj}|1 ≤ i ≤ r, 1 ≤ j ≤ t} ∪

{{rpj , op}, {gpj , fp}|1 ≤ j ≤ t}.The intera
tion graph G of the intera
tion model IMr,t is given in Figure 2.2and apparently a tree, i.e., an intera
tion system Sys with intera
tion model
IMr,t is tree-like and thus in
luded in IStree.37



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYExample 2.3:This example illustrates a linear intera
tion system. We 
onsider a sim-ple 
ommuni
ation pipeline 
onsisting of n stations. Station one initiatespassing a message to station two, station two passes the message to stationthree and so on. If the message arrives at station n then station n passes ana
knowledge message, on the same way, ba
k to station one.Let IM = (K, {Ai}i∈K , Int) be the intera
tion model with 
omponents K =

{s1, s2, . . . , sn} for n ≥ 2 where si models station i for 1 ≤ i ≤ n. A sta-tion si with 1 < i < n 
an re
eive a message (rec_mi), pass the messageforward (send_mi), re
eive an a
knowledge (rec_ai) and pass the a
knowl-edge forward (send_ai). Station s1 
an only send the initial message andre
eive the a
knowledge and station sn 
an only re
eive a message and sendan a
knowledge. This is, the port sets of the 
omponents are de�ned asfollows.
As1

= {send_m1, rec_a1}
Asi

= {rec_mi, send_mi, rec_ai, send_ai}, 1 < i < n

Asn
= {rec_mn, send_an}The intera
tion set Int is given by the following intera
tions.

send_messagei = {send_mi, rec_mi+1}, 1 ≤ i < n

send_acknowledgei = {send_ai, rec_ai−1}, 1 < i ≤ nLet Sys = (IM, {Ti}i∈K) be the intera
tion system with lo
al behaviordepi
ted in Figure 2.3.The intera
tion graph G of IM is depi
ted in Figure 2.4. G forms a lineof 
omponents. Thus, IM is a linear intera
tion model and Sys is a linearintera
tion system. 38
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send_m1

rec_a1(a) Ts1

rec_mi

send_mi
rec_ai

send_ai

(b) Tsi
, 1 <

i < n

rec_mnsend_an(
) TsnFigure 2.3: Lo
al behavior of the 
omponents in a simple 
ommuni
ationpipeline.
s1 s2 s3 snFigure 2.4: Intera
tion graph G for the intera
tion model IM in Example2.3.2.3 PSPACE-
ompleteness of Rea
hability inTree-Like SystemsHere we show that de
iding the rea
hability problem in tree-like intera
tionsystems is PSPACE-
omplete. We show the PSPACE-hardness by providinga redu
tion from the trueness problem of quanti�ed Boolean formulas (QBF)[GJ79℄, i.e., we des
ribe how a quanti�ed Boolean formulaH 
an be mappedto a tree-like intera
tion system SysH and a state q in the global behavior Tof SysH in polynomial time su
h that de
iding the rea
hability problem for

q in SysH 
orresponds to de
iding whether or not H is true.First we formally introdu
e the trueness problem of quanti�ed Boolean for-mulas and the rea
hability problem in tree-like intera
tion systems and showthat de
iding this problem is in PSPACE. In a se
ond part we de�ne a tree-like intera
tion system SysH for a quanti�ed Boolean formula H by spe
ify-ing the 
omponents, the ports of the 
omponents, the intera
tions and thelo
al behavior of the 
omponents. In the last part we prove in detail thatde
iding the rea
hability problem for a 
ertain state in the global behaviorof SysH 
orresponds to de
iding whether H is true.39



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYQBF and RISTQBFA quanti�ed Boolean formula (QBF) (see [GJ79℄ for details) 
onsists ofa Boolean formula f over variables x1, . . . , xn where ea
h variable is boundedby a quanti�er ∀ or ∃. For example, in prenex normal form, i.e., the stringrepresentation of a formula in whi
h all quanti�ers are written in front ofthe Boolean formula, the formula
P = (Q1x1

)(Q2x2
) . . . (Qnxn

)fis a QBF where Qi is either an existential quanti�er ∃ or an universal quan-ti�er ∀ for 1 ≤ i ≤ n.If P is a QBF then P is a subformula of P . If P ′ is a subformula of Pand P ′ is of the form P ′ = ⊕P ′′, where ⊕ is an unary operator (e.g. ,
P ′ = ¬P ′′ or P ′ = ∃x.P ′′) then P ′′ is a subformula of P . If P ′ is of theform P ′ = P1 ⊗ P2, where ⊗ is a binary operator (e.g., P ′ = P1 ∨ P2 or
P ′ = P1 ∧ P2) then P1 and P2 are subformulas of P . The size of a QBF Pis the number of subformulas of P .Ea
h QBF instan
e P ′ 
an be rewritten into an equivalent instan
e P overthe grammar

P ::= x|¬P |P ∧ P |∃x.P.The rewriting 
an be a
hieved in polynomial time in the size of P ′ by parsingthe subformulas of P ′ top down, starting with P ′, and applying respe
tiveequivalen
es. Without loss of generality, in the following we only 
onsiderQBF instan
es that are rewritten over this grammar. Let P be a QBF thenthe question is whether P is true. The language TQBF is de�ned as theset of true QBF instan
es and it is well known that the de
ision problemwhether a QBF is in TQBF is PSPACE-
omplete ([GJ79℄).In order to determine whether a QBF P is true or false we introdu
e thestraightforward, re
ursive Algorithm 1 
alled eval. This algorithm is used in40



2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKESYSTEMSthe remainder to illustrate our redu
tion. The algorithm re
ursively parses aQBF P and evaluates ea
h subformula for ea
h 
ombination of truth assign-ments to the variables. In Line 1 and 2 a subformula of the form P = ∃x.P ′is parsed. The term P ′
x=true respe
tively P ′

x=false denotes the subformula
P ′ with true respe
tively false assigned to all o

urren
es of variable x in
P ′. In Line 5 respe
tively 8 a subformula of the form P = ¬P ′ respe
tively
P = P ′ ∧ P ′′ is parsed. In Line 11 a subformula that 
onsists of a variableis parsed. The fun
tion value(x) returns the truth value that is 
urrentlyassigned to the variable x. Remember that ea
h variable in QBF is boundedby a quanti�er, i.e., in our 
ase bounded by an existen
e quanti�er. Thus,before Line 11 is exe
uted for variable x, Line 2 was exe
uted where thesubformula that quanti�es x was parsed and a truth value was assigned toall o

urren
es of x. Obviously, P ∈ TQBF if and only if eval(P ) returns
true.Algorithm 1 eval(P )1: if P = ∃x.P ′ then2: return eval(P ′

x=true) ∨ eval(P ′
x=false)3: end if4: if P = ¬P ′ then5: return ¬eval(P ′)6: end if7: if P = P ′ ∧ P ′′ then8: return eval(P ′) ∧ eval(P ′′)9: end if10: {P = x is the only remaining possibility, i.e., P is a variable}11: return value(x)RISTWe now formally introdu
e the rea
hability problem in tree-like intera
tionsystems. For Sys ∈ IStree let Q(Sys) be the state spa
e of the global behavior41



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYof Sys and Reach(Sys) ⊆ Q(Sys) be the set of rea
hable states in the globalbehavior. Let
RIST =

⋃

Sys∈IStree

({Sys} ×Q(Sys)) .For (Sys, q) ∈ RIST we want to de
ide whether q is rea
hable in the globalbehavior of Sys. Let TRIST ⊆ RIST be the set of RIST instan
es of theform (Sys, q) where q is rea
hable in the global behavior of Sys, i.e.,
TRIST =

⋃

Sys∈IST

({Sys} × Reach(Sys)) .De
iding (Sys, q) ∈ TRIST is in PSPACE. Given a tree-like intera
tionsystem and a global state q one 
an guess a sequen
e of intera
tions (be
ausePSPACE=NPSPACE [Sav70℄) and 
he
k in linear spa
e if it leads from theinitial state q0 to q. At any time we store exa
tly one global state fromwhi
h we guess a su

essor state.A Mapping from QBF to Tree-Like Intera
tion SystemsIn the following we introdu
e for a QBF H a tree-like intera
tion system
SysH (with an intera
tion model IMH) and a global state qt su
h thati) H ∈ TQBF ⇔ (SysH , q

t) ∈ TRIST andii) the size of SysH is polynomial in the size of H .The idea for the 
onstru
tion of SysH 
an be sket
hed as follows: the in-tera
tion system basi
ally simulates the evaluation of the formula H , as inAlgorithm 1, based on the syntax tree of H . The subformulas of H are the
omponents of the system, and the intera
tion model des
ribes the propa-gation of truth values between the nodes of the syntax tree. Example 2.4shows the intera
tion graph of an intera
tion model IMH with respe
t to aQBF H that results from our redu
tion. If a subformula that models anexistential quanti�er is 
alled re
ursively during the evaluation of Algorithm42
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H ′

H=¬P1

∃x1.P2

P3 ∧ P4

P3 = x1
1 ¬P5

P5 = x2
1

x′
1

Figure 2.5: Intera
tion graph GH of IMH in Example 2.4.1 then a truth value is assigned to all o

urren
es of the respe
tive quanti-�ed variable. In Example 2.4 this would suggest a 
ommuni
ation betweenthe 
omponent that models the subformula ∃x1.P2 and the 
omponents thatmodel x1
1 respe
tively x2

1, i.e., modeling this intera
tion would result in anintera
tion model su
h that the intera
tion graph of whi
h is not a tree.The idea to avoid these 
ommuni
ations is to store the truth assignmentin an auxiliary 
omponent (x′
1 in Example 2.4) and propagate the respe
-tive assignment down the tree to the 
omponents that model the respe
tivevariables.Example 2.4:Consider the formulaH = ¬∃x1.(x1∧¬x1). The asso
iated intera
tion graph

GH of IMH is given in Figure 2.5. The syntax tree of H is 
ontained in GH .Components with highlighted frames denote 
omponents that do not modelsubformulas of H .We now des
ribe in detail how SysH is 
onstru
ted. First we introdu
e the
omponents of SysH , then the ports of the 
omponents, followed by thespe
i�
ation of the intera
tions and the lo
al behavior of the 
omponents.43



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYComponentsLet H be a QBF over the variables x1, . . . , xn. Generally, there may beseveral o

urren
es of a variable xi inH . Let xi o

ur ki times for i = 1, . . . , nas a subformula in H , then we assume that the jth o

urren
e of variable
xi is renamed in H as xj

i for 1 ≤ j ≤ ki, e.g., in Example 2.4 the formula
¬∃x1.(x1 ∧ ¬x1) is renamed to ¬∃x1.(x

1
1 ∧ ¬x

2
1).Let KH = K1 ∪K2 ∪{H

′} be a set of 
omponents su
h that
• K1 = {P |P is a subformula of H} and
• K2 = {x

′
1, x

′
2, . . . , x

′
n}.In 
ontext of our intention to model the evaluation of Algorithm 1, the 
om-ponents in K2 store the 
urrent truth assignment to the variables during theevaluation. The 
omponent H ′ is an auxiliary 
omponent that is used tomodel the initialization and the termination of Algorithm 1. The 
ompo-nents in K1 model the subformulas of H and have the same name as thesubformulas. In the following it is 
lear from the 
ontext whether we speakabout a subformula P ofH or the 
omponent P that models this subformula.Given a truth assignment to the variables, subformulas are evaluated to trueor to false. Therefore, when we mention an assignment to a 
omponent in

KH then we refer to the 
urrent truth assignment to the respe
tive vari-able respe
tively the 
urrent evaluation of the respe
tive subformula that ismodeled by this 
omponent.In the following we introdu
e the port sets of the 
omponents in KH . Manyports of di�erent 
omponents model the same fun
tionality and only di�erin their subs
ripts. 44



2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKESYSTEMSPort sets of 
omponents modeling subformulasEa
h 
omponent P ∈ K1 that models a subformula P has to o�er the fol-lowing fun
tionalities in form of ports.
• aP abbreviates �a
tivate P �: indu
es the evaluation of all subformulasin P with respe
t to the 
urrent truth assignment to the variables.
• tP respe
tively fP : the 
urrent truth assignment of P is true respe
-tively false.
• rPxlt (rPxlf) abbreviates �P re
eives instru
tion to set xl true (false)�:all o

urren
es of the variable xl in P shall be set to true (false).
• rP t: assign true to this subformula.The following ports are o�ered by 
omponents that model subformulas Pthat are not variables, i.e., P 
onsists of an operator and one subformula P1(e.g., P = ¬P1) or two subformulas (e.g., P = P1 ∧ P2).
• e

1
P (e2P ) abbreviates �evaluate P1 (P2)�: evaluate P1 (P2) with respe
tto the 
urrent truth assignment to the variables.

• sub1P t (sub2P t) respe
tively sub1Pf (sub2Pf) abbreviates �subformula P1(P2) is true respe
tively false�: P1 (P2) was evaluated to true respe
-tively false.
• tP respe
tively fP : P was evaluated true respe
tively false with respe
tto the 
urrent truth assignments of the variables.
• s1Pxlt (s2Pxlt) respe
tively s1Pxlf (s2Pxlf) abbreviates �set xl true (false)in P1 respe
tively P2�): all o

urren
es of the variable xl in P1 (P2)shall be set to true respe
tively false.
• s1P t (s2P t): assign true to P1 (P2).45



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYFor i = 1, . . . , n and j = 1, . . . , ki the 
omponent P = xj
i ∈ K1 representsthe jth o

urren
e of variable xi in H . The set AP of ports is given by

AP = {aP , tP , fP , rP t} ∪ {rPxlt, rPxlf |l = 1, . . . , n}.A 
omponent modeling a negation, i.e., a subformula of the form P = ¬P1has the following set of ports
AP = {e1P , aP , sub

1
P t, sub

1
Pf, tP , fP , rP t, s

1
P t} ∪

{rPxlt, rPxlf, s
1
Pxlt, s

1
Pxlf |l = 1, . . . , n}.A 
omponent that models a 
onjun
tion, i.e., a subformula of the form

P = P1 ∧ P2 has the set of ports
AP = {aP , e

1
P , e

2
P , sub

1
P t, sub

1
Pf, sub

2
P t, sub

2
Pf, tP , fP , rP t, s

1
P t, s

2
P t} ∪

{rPxlt, rPxlf, s
1
Pxlt, s

1
Pxlf, s

2
Pxlt, s

2
Pxlf |l = 1, . . . , n}.A 
omponent that models a subformula of the form P = ∃xi.P1 (1 ≤ i ≤ n)needs to have a

ess to the 
urrent truth assignment of the variable xi.We store the 
urrent truth assignment of the variable xi, that 
an o

urmultiple times in the QBF H , in the behavior of the 
omponent x′

i ∈ K2.This 
omponent will ex
lusively intera
t with the 
omponent that models
P = ∃xi.P1. The set of ports Ax

′
i
is given by

Ax
′
i
= {rxit, rxif, txi

, fxi
}.

txi
respe
tively fxi

models that true respe
tively false is assigned to all o
-
urren
es of variable xi. The port rxit assigns true to x′
i. Analogously rxifswit
hes the assignment to false.The port set AP for P = ∃xi.P1 is given by

AP = {aP , e
1
P , sub

1
P t, sub

1
Pf, tP , fP , xit, xif, sxit, sxif, rP t, s

1
P t} ∪

{rPxlt, rPxlf, s
1
Pxlt, s

1
Pxlf |l = 1, . . . , n}.46
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aP , e1P , sub1P t, sub1Pf , tP and fP a
t similarly to the 
orresponding ports ofthe other 
omponents spe
i�ed above. The port xit 
on�rms that true isassigned to all o

urren
es of the variable xi, and sxit models that true isassigned to all o

urren
es of xi. On the other hand xif 
on�rms that falseis assigned to xi, and sxif assigns false to xi.The 
omponent H ′ models the 
all to the algorithm eval and the termina-tion. The set of ports AH

′ is given by
AH

′ = {e1
H

′, sub1
H

′t, sub1
H

′f, s1
H

′t, endH′}.All ports but endH′ have the same fun
tionality as the ports des
ribed above.We show that the formula H is in TQBF if and only if the 
omponent asso-
iated with H is evaluated to true, i.e., sub1
H

′t be
omes enabled eventually.The port endH′ models that the simulated evaluation of Algorithm 1 termi-nated. This port shall be
ome enabled, either if H was evaluated to true orto false. We use this port in order to prevent SysH from being stu
k afterthe evaluation of H .Intera
tionsWe now de�ne the intera
tion set Int of IMH . Let P ∈ K1 ∪{H
′} modela subformula whi
h is not an o

urren
e of a variable. The 
omponent P
an model a subformula that 
onsists of an operator and one subformula P1(e.g., P = ¬P1) or two subformulas P1 and P2 (e.g., P = P1∧P2). If P needsthe truth value of Pk, k ∈ {1, 2}, to be evaluated then the evaluation in Pkneeds to be a
tivated. This is realized by the syn
hronization of ekP and aPk

.Furthermore P 
an ask Pk for its 
urrent truth value. These intera
tions arerealized by
eval_P → Pk = {ekP , aPk

}

P_ask_Pk_true = {subkP t, tPk
}

P_ask_Pk_false = {subkPf, fPk
}47
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tions 
onne
t all 
omponents in K1 ∪{H
′} andresult in an intera
tion graph that is related to the syntax tree of the QBF

H .If a subformula of the form P = ∃xi.P1 (1 ≤ i ≤ n) needs all o

urren
esof variable xi to be set to true or to false a dire
t intera
tion with the
omponents that model these variables would lead to a 
y
le in the asso
iatedintera
tion graph. Therefore, P passes this information to its subformula P ′,i.e., s1Pxit in P has to syn
hronize with rP1
xit in P1. The 
omponent P1 needsto pass on this information to the 
omponents that model the subformulas of

P1 and so on. Let i ∈ {1, . . . , n} and k ∈ {1, 2}. The following intera
tionsrealize the syn
hronizations needed to propagate the information to assigna truth value to a variable.
set_xi_true_P → Pk = {skPxit, rPk

xit}

set_xi_false_P → Pk = {skPxif, rPk
xif}If the QBF H is true, we need all 
omponents to be in one designated state� whether or not this global state is rea
hable 
orresponds to whether ornot H is true. If H was evaluated to true then the 
omponent H ′ rea
hesa designated lo
al state. To assure that all 
omponents 
an rea
h a 
orre-sponding designated state, a similar te
hnique as above is used. We propa-gate, starting in the 
omponent H ′, the information through the tree thatall 
omponents shall rea
h their designated state that indi
ates that H istrue. A 
omponent P that models a subformula propagates this informa-tion to the 
omponents that model the subformulas of P by the followingintera
tion. For k ∈ {1, 2} let

set_Pk_true_P → Pk = {skP t, rPk
t}.Consider a subformula of the form P = ∃xi.P1 ∈ K1 and the asso
iated
omponent x′

i ∈ K2. The 
omponent that models P 
an assign true or falseto x′
i and 
an ask x′

i whether the 
urrent truth assignment is true or false.48



2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKESYSTEMSThis is realized by
set_x′

i_true = {sxit, rxit}

ask_truex′
i

= {xit, txi
}

set_x′
i_false = {sxif, rxif}

ask_falsex′
i

= {xif, fxi
}We model SysH su
h that if H ′ rea
hes a state that indi
ates that H wasevaluated to true or false, i.e., the simulation of the evaluation of H is�nished, then the unary intera
tion evaluated = {endH′} be
omes enabledin the global behavior of SysH .Let Int be the set of intera
tions given by

{eval_P → Pk|P ∈ K1 ∪{H
′} with su

. Pk}∪

{P_ask_Pk_true|P ∈ K1 ∪{H
′} with su

. Pk}∪

{P_ask_Pk_false|P ∈ K1 ∪{H
′} with su

. Pk}∪

{set_x′
i_true, set_x′

i_false, ask_truex′
i
, ask_falsex′

i
|x′

i ∈ K2}∪

{set_Pk_true_P → Pk|P ∈ K1 ∪{H
′} with su

. Pk}∪

{set_xi_true_P → Pk|P ∈ K1 with su

. Pk, i ∈ {1, . . . , n}}∪

{set_xi_false_P → Pk|P ∈ K1with su

. Pk, i ∈ {1, . . . , n}}∪

{evaluated}.Remark 2.3:The intera
tion graph GH , asso
iated to IMH , is a tree, as it is 
onstru
tedalong the syntax tree and augmented with the 
omponents H ′ and x′
i for

1 ≤ i ≤ n without forming 
y
les.Lo
al BehaviorThe lo
al behavior of the 
omponents is given by labeled transition systems.Every system has one state labeled t and one labeled f . These states modelthe fa
t that either true respe
tively false is assigned to this 
omponent orit was evaluated to true respe
tively false.49
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t

f

rP xif
rP xit,
rP t

tP , aP ,
rP xlt(1 ≤ l ≤ n),
rP xlf(l 6= i)

fP , aP ,
rP xlf(1 ≤ l ≤ n),
rP xlt(l 6= i)(a) P = x

j
i

t

f

rxifrxit

txi

fxi(b) x′

i

f

t

e
1

H
′

sub
1

H
′ t sub

1

H
′f

s
1

H
′ t

end
H

′

end
H

′(
) H ′Figure 2.6: Lo
al behavior T
x
j
i
for a 
omponent xj

i (2.6a), Tx
′
i
for x′

i (2.6b)and TH
′ for the 
omponent H ′ (2.6
).Figure 2.6a depi
ts the transition system of the 
omponent modeling the jtho

urren
e of variable xi. Figure 2.6b gives the lo
al behavior of a 
omponent

x′
i ∈ K2. The behavior of H ′ is given in Figure 2.6
. The transition systemsfor a 
omponent that models a variable xj

i respe
tively for x′
i ∈ K2 are self-explanatory. If in TH

′ the port e
1
H

′ is performed, i.e., 
omponent H needsto be evaluated, then TH
′ waits to perform either sub1

H
′t or sub1

H
′f . Theseports 
an only be performed if TH rea
hes its state labeled t respe
tively f .We show that this indi
ates whether the asso
iated QBF is true respe
tivelyfalse.In Figure 2.7 the lo
al behavior for a 
omponent of the form P = ¬P1 isdepi
ted. Note that, for better readability, the transition system in Figure2.7a is not 
ompletely shown. In Figure 2.7a the transitions and statesdisplayed in Figure 2.7b and 2.7
 have to be in
luded between the stateslabeled t and f for l = 1, . . . , n.In Figure 2.8 the lo
al behavior for a 
omponent of the form P = ∃xi.P1is depi
ted. For better readability, the transition system in Figure 2.8a isnot 
ompletely shown. In Figure 2.8a the transitions and states displayed inFigure 2.7b and 2.8b have to be in
luded between the states labeled t and

f for l = 1, . . . , n.In Figure 2.9 the lo
al behavior for a 
omponent of the form P = P1 ∧P2 is50
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f t

e
1
P

sub
1
P t sub

1
P f

aP aP

fP tP(a) P = ¬P1

f t

rPxlt

rP xlf

rP xlt

rP xlf

s
1
Pxlt

s
1
P xlf(b) Se
tion of 2.7a and2.8a, for 1 ≤ l ≤ n

f t
rP t rP t

s
1
P t(
) Se
tion of 2.7aFigure 2.7: Main se
tion of the transition systems T¬P1

(2.7a), part of T¬P1for 1 ≤ l ≤ n (2.7b) and part of T¬P1
(2.7
).

t

f

sxit

s
1
P xit

xit

e
1
P

sub
1
P f sub

1
P t

sxif

s
1
Pxif

xif

aP

aP

tP

fP (a) P = ∃xi.P1

f t
rP t rP t

sxit, xit s
1
P t(b) Se
tion of 2.8aFigure 2.8: Main se
tions of the transition system T∃xi.P1

(2.8a) and part of
T∃xi.P1

(2.8b).
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f

t

e
1
P

sub
1
P f sub

1
P t

aP

e
2
P

sub
2
P f

sub
2
P t

aP

fP

tP(a) P = P1 ∧ P2

f t

rPxlt

rP xlf

rP xlt

rP xlf

s
1
P xlt

s
1
Pxlf

s
2
P xlt

s
2
P xlf(b) Se
tion of2.9a, for 1 ≤ l ≤ n

f t
rP t rP t

s
1
P t s

2
P t(
) Se
tion of 2.9aFigure 2.9: Main se
tions of the transition system TP1∧P2

(2.9a), part of
TP1∧P2

(2.9b) and part of TP1∧P2
(2.9
).depi
ted. Note that the transition system in Figure 2.9a is not 
ompletelyshown. The transitions and states displayed in Figure 2.9b and 2.9
 have tobe in
luded between the states labeled t and f for l = 1, . . . , n.The resulting intera
tion system is denoted by SysH = (IMH , {TP}P∈KH

).
H ∈ TQBF ⇔ (SysH , q

t) ∈ TRISTIn order to show that the rea
hability problem in tree-like intera
tion systemsis PSPACE-hard we need to show that a quanti�ed Boolean formula H istrue if and only if a designated state is rea
hable in the global behavior of
SysH . This proposition is formulated in the following theorem.Theorem 2.1:Let H be a QBF over the grammar P ::= x|¬P |P ∧ P |∃x.P and SysH theasso
iated intera
tion system obtained from the redu
tion. Let qt be theglobal state in whi
h all 
omponents are in their state labeled t, then

H ∈ TQBF ⇔ (SysH , q
t) ∈ TRIST.52



2.4. REACHABILITY OF LOCAL STATES
Proof. The proof 
an be found in Appendix A on Page 183.2.4 Rea
hability of Lo
al StatesIn the previous se
tion we dis
ussed the 
omplexity theoreti
 
lassi�
ationof the rea
hability problem in tree-like intera
tion systems by introdu
ing aredu
tion from the trueness problem of quanti�ed Boolean formulas. Herewe 
onsider a spe
ial kind of the rea
hability problem in tree-like intera
tionsystems. Given a tree-like intera
tion system Sys with a set of 
omponents
K, a 
omponent i ∈ K and a lo
al state qi in the behavior Ti of 
omponent
i we dis
uss the question whether there is a state q rea
hable in the globalbehavior T of Sys where 
omponent i is in the state qi.We show that de
iding this problem is PSPACE-
omplete in tree-like inter-a
tion systems. The redu
tion uses parts of the proof of Theorem 2.1.First we formulate the respe
tive de
ision problem.Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int). We assume that the lo
al state spa
es of the 
om-ponents in Sys are pairwise disjoint. Let Qloc(Sys) =

⋃

i∈K

Qi, i.e., Qloc(Sys)is the union of all lo
al state spa
es of the 
omponents in Sys. Rememberthat IStree is the 
lass of tree-like intera
tion systems. Let
RISTL =

⋃

Sys∈IStree

({Sys} ×Qloc(Sys)) .For (Sys, qloc) ∈ RISTL let qloc ∈ Qi for some i ∈ K. We want to de
idewhether a global state q ∈ Q is rea
hable in the global behavior of Sys su
hthat 
omponent i is in state qloc in q. Let TRISTL ⊆ RISTL be the set of
RISTL instan
es where this is the 
ase.53



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYLet Sys ∈ IStree be a tree-like intera
tion system with a set of 
omponents K.For i ∈ K let ReachLocali(Sys) ⊆ Qi be the set of states qi ∈ Qi su
h thatthere is a state q rea
hable in the global behavior of Sys where 
omponent
i is in the state qi. Let

ReachLocal(Sys) =
⋃

i∈K

ReachLocali(Sys)be the union over all rea
hable lo
al states in Sys then
TRISTL =

⋃

Sys∈IStree

({Sys} ×ReachLocal(Sys)) .The following 
orollary relates the question whether (Sys, qloc) ∈ RISTLis an instan
e of TRISTL to the question whether a quanti�ed Booleanformula is true.Corollary 2.1:Let H be a QBF and SysH the asso
iated intera
tion system obtained fromthe redu
tion given in Se
tion 2.3. We assume that the lo
al state spa
es ofthe 
omponents in SysH are disjoint, e.g., ea
h lo
al state is indexed by thename of the respe
tive 
omponent. Consider the state tH′ of 
omponent H ′(this state is labeled t in Figure 2.6
), then
H ∈ TQBF ⇔ (SysH , tH′) ∈ TRISTL.Proof. The proof 
an be found in Appendix A on Page 194.Analogously to the argument why de
iding the rea
hability problem in tree-like intera
tion systems is in PSPACE, it is easy to see that the problem ofde
iding TRISTL is in PSPACE as well. Let (Sys, qloc) ∈ RISTL where

K is the set of 
omponents in Sys and qloc ∈ Qi for i ∈ K. We guess asequen
e of intera
tions and 
he
k in linear spa
e whether it leads from theglobal initial state q0 to a state q where qi = qloc. Thus, by Corollary 2.1follows that de
iding whether there is a global state rea
hable where a �xed
omponent is in a �xed state is PSPACE-
omplete.54



2.5. PSPACE-COMPLETENESS OF REACHABILITY IN LINEARSYSTEMS2.5 PSPACE-
ompleteness of Rea
hability inLinear SystemsIn the following we give a redu
tion from the a

eptan
e problem in linearbounded Turing ma
hines to the rea
hability problem in linear intera
tionsystems. This redu
tion strengthens the result of the QBF redu
tion as thesub
lass of 
omponent systems with a linear 
ommuni
ation stru
ture is aproper subset of systems with a tree-like 
ommuni
ation stru
ture. We usethe following syntax for a Turing ma
hine but we refrain from repeating thewell known semanti
s (see [GJ79℄ for details).De�nition 2.2:A tuple M = (Γ,Σ,P, δ) is 
alled deterministi
 Turing ma
hine (DTM)with
• Γ is a �nite set of tape symbols,
• Σ ⊆ Γ is a set of input symbols with a distinguished blank symbol
b ∈ Γ \ Σ,
• P is a �nite set of states, in
luding a distinguished initial state p0and two distinguished halt states pY and pN and
• δ is the transition fun
tion of M , given by

δ : (P \ {pY , pN})× Γ→ P× Γ× {−1,+1}.We 
onsider a both-sided in�nite tape with 
ells labeled by integers. Givenan input x ∈ Σ∗ written on the 
ells labeled 1 through |x| we assume M tobe initially in the initial state p0 and the tape head pointing at 
ell 1. For astring x ∈ Σ∗ with |x| = n we denote the ith letter in x by xi for 1 ≤ i ≤ n.A DTMM is 
alled linear bounded if no 
omputation onM uses more than
n+1 tape 
ells, where n is the length of the input string. A 
on�gurationof a bounded DTM M is denoted by (p; γ0, . . . , γi, . . . , γn+1) where M is in55



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYstate p, γj is the tape symbol in 
ell 0 ≤ j ≤ n + 1 and the tape head is on
ell i.De�nition 2.3:The problem linear spa
e a

eptan
e (LSA) has as input a linear boundedDTM M and a �nite string x over the input alphabet of M . The questionis whether M a

epts x, i.e., does M halt in the state pY .It is well known that the problem LSA is PSPACE-
omplete [GJ79℄.The idea for our redu
tion is to model the 
ells of a DTM M by 
omponentsof an intera
tion system SysM and the transition fun
tion of M by inter-a
tions su
h that a path in the global behavior of SysM 
orresponds to anexe
ution of M . In order for the transition fun
tion to 
al
ulate the next
on�guration ofM we need the 
urrent position of the tape head, the 
urrenttape symbol in the respe
tive 
ell and the 
urrent state of M . We modelall these informations in ea
h 
ell, i.e., in order to model the 
al
ulation ofthe next 
on�guration we only need an intera
tion between the 
omponentthat models the 
ell with the tape head and the respe
tive 
omponents thatmodel the neighboring 
ells.Let M = (Γ,Σ,P, δ) be a linear bounded DTM and x ∈ Σ∗ an input with
|x| = n. Let SysM = (IMM , {Ti}i∈K) be an intera
tion system with intera
-tion model IM = (K, {Ai}i∈K, Int) su
h that K = {0, . . . , n+ 1}.The set of ports Ai for a 
omponent i ∈ K with 1 ≤ i ≤ n is given by

Ai = {(p, γ)
1
i , (p, γ)

2
i |p ∈ P \ {pY , pN}, γ ∈ Γ}.A port (p, γ)1i models that the tape head moves away from 
ell i where γ isthe 
urrent tape symbol in this 
ell and M is in state p. Analogously, (p, γ)2imodels that the tape head moves onto 
ell i where γ is written on this 
elland M is in state p.Be
ause of M being linear bounded, we now that δ does not move the tapehead from 
ell 0 to the left respe
tively from 
ell n + 1 to the right. Thus,56



2.5. PSPACE-COMPLETENESS OF REACHABILITY IN LINEARSYSTEMSwe 
an omit ports from A0 and An+1 that model a head movement from oronto 
ell −1 and n + 2. The set of ports A0 is given by
A0 = {(p, γ)10|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′,−1)} ∪

{(p, γ)20|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′, 1)}.Analogously, for 
omponent n+ 1 ∈ K, i.e., for the rightmost used 
ell let
An+1 = {(p, γ)1n+1|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′, 1)} ∪

{(p, γ)2n+1|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′,−1)}.The set of intera
tions is given by
Int = {{(p, γ)1i , (p, γ)

2
i+T}|∃p′,γ′δ(p, γ) = (p′, γ′,T), 0 ≤ i+ T ≤ n+ 1}.For i ∈ K let Ti = (Qi, Ai,→i, q

0
i ) be the lo
al behavior of 
omponent i with

Qi = {(p, γ)|p ∈ P ∪ {s}, γ ∈ Γ} where s is an auxiliary symbol that is notin
luded in P. The port (p, γ) ∈ Qi with p 6= s models that the tape headis 
urrently on 
ell i and the 
urrent tape symbol in this 
ell is γ. The port
(s, γ) models that γ is the 
ontent of 
ell i and the tape head is not on this
ell. The lo
al initial states are derived from the initial word on the tape,i.e., q00 = (s, b), q01 = (p0, x1), q0i = (s, xi) for 2 ≤ i ≤ n and q0n+1 = (s, b).For i ∈ K let →i be the union of the following transitions.a) For all γ, γ′ ∈ Γ and p ∈ P \ {pY , pN} let (p, γ) (p,γ)

1
i−−−→i (s, γ

′) if there are
p′ ∈ P and T ∈ {−1, 1} su
h that δ(p, γ) = (p′, γ′,T).b) For all γ, γ̃ ∈ Γ, p ∈ P \ {pY , pN} and p′ ∈ P let (s, γ̃)

(p,γ)
2
i−−−→i (p

′, γ̃) ifthere are γ′ ∈ Γ and T ∈ {−1, 1} su
h that δ(p, γ) = (p′, γ′,T).The transitions des
ribed in a) model the impa
t of the transition fun
tion
δ on 
ell i if the tape head is 
urrently on this 
ell. Let M be in state p andthe tape head on 
ell i reading γ, i.e., Ti is in the state (p, γ). If δ(p, γ) =
(p′, γ′,T) then γ′ is written and the tape head moves to a neighboring 
ell,i.e., Ti moves to the state (s, γ′). On the other hand, the transitions des
ribed57



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYin b) model the impa
t of δ on 
ell i if the tape head moves onto this 
ell.Let γ̃ be the 
urrent tape symbol on 
ell i, i.e., Ti is in state (s, γ̃) beforethe head moves. After the movement let M 
hanges its state to p′, i.e., Timoves to the state (p′, γ̃).Remark 2.4:Note that in ea
h 
omponent, lo
al states of the form (pY , γ) and (pN , γ) donot have outgoing transitions, i.e., a 
omponent that rea
hes one of thesestates 
an never intera
t again. We 
an avoid this situation by spe
ifying aself-loop on these states that is labeled by a distinguished port. An inter-a
tion that 
onsists of only this one port is permanently enabled if one ofthese states is rea
hed.Remark 2.5:
SysM satis�es the 
onditions of an intera
tion system: every port of a 
om-ponent o

urs in at least one intera
tion. Let i ∈ K, (p, γ)1i ∈ Ai and
δ(p, γ) = (p′, γ′,T) then 0 ≤ i+T ≤ n+1 and {(p, γ)1i , (p, γ)2i+T} ∈ Int. For
(p, γ)2i ∈ Ai is 0 ≤ i− T ≤ n + 1 and {(p, γ)1i−T, (p, γ)

2
i } ∈ Int.It is 
lear that SysM has a linear 
ommuni
ation stru
ture be
ause every
omponent 1 ≤ i ≤ n only intera
ts with its neighboring 
omponents i − 1and i+ 1.Remark 2.6:The redu
tion is polynomial, sin
e | Int | ≤ |P| · |Γ| and for all i ∈ K |Ai| ≤

2 · |P| · |Γ| and |Qi| ≤ (|P|+ 1) · |Γ|.Theorem 2.2:Let M = (Γ,Σ,P, δ) be a linear bounded DTM, x ∈ Σ∗ with |x| = n aninput for M and SysM the asso
iated linear intera
tion system. We have Ma

epts x if and only if a global state q = (q0, . . . , qn+1) is rea
hable in SysMsu
h that there is i ∈ {0, . . . , n + 1} with qi = (pY , γ) for a tape symbol
γ ∈ Γ.Proof. The proof 
an be found in Appendix A on Page 194.58



2.6. PSPACE-COMPLETENESS OF REACHABILITY IN STAR-LIKESYSTEMSRemark 2.7:An instan
e of the rea
hability problem in linear intera
tion systems is alinear intera
tion system Sys and a global state q. The intera
tion system
SysM for a linear bounded DTM M and an input x 
an be extended su
hthat a distinguished global state 
an be rea
hed if M halts on x. This
an be a
hieved by the te
hnique that was used in Se
tion 2.3 in orderto rea
h a distinguished global state in tree-like intera
tion systems. Theidea is to invoke, starting from the 
omponent that rea
hed (pY , γ), thatea
h 
omponent shall rea
h a distinguished state. This invo
ation 
an bepropagated through neighboring 
omponents.The rea
hability problem in linear intera
tion systems is in PSPACE be
auseea
h linear intera
tion system is parti
ularly a tree-like intera
tion systemand the rea
hability problem in tree-like intera
tion systems is in PSPACE.It follows by Theorem 2.2 and Remark 2.7 that the rea
hability problem inlinear intera
tion systems is PSPACE-
omplete.
2.6 PSPACE-
ompleteness of Rea
hability inStar-Like SystemsHere we show that de
iding the rea
hability problem in the 
lass of star-like intera
tion systems is PSPACE-
omplete. We show this by providing aredu
tion from a general intera
tion systems Sys to a star-like systems Sys′.The idea of the redu
tion is to 
onstru
t a �
ontrol 
omponent� cc that formsthe 
enter of the star stru
ture in Sys′ and is surrounded by the 
omponentsof Sys. An intera
tion in Sys is modeled by multiple intera
tions in Sys′where ea
h 
onsists of exa
tly two ports. The exe
ution of an intera
tion in
Sys then 
orresponds to the exe
ution of a sequen
e of intera
tions in Sys′that is 
oordinated by cc and a
hieved in two steps. Let α be an intera
tionin Sys. 59



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYa) In a �rst step cc intera
ts with ea
h 
omponent that parti
ipates in αand 
he
ks whether the respe
tive port in α is enabled without 
hangingthe lo
al states of the 
omponents. If this 
he
k fails then cc returns toits initial state.b) If the 
he
k su

eeds then cc intera
ts with ea
h respe
tive 
omponenton the ports in α, i.e., a global transition in Sys that is labeled by α issimulated.Let Q =
∏

i∈K Qi be the global state spa
e of Sys then we have a globalstate spa
e ∏

i∈K∪{cc}Qi for Sys′ with the property that q ∈ Q is rea
hablein Sys if and only if a state q′ is rea
hable in Sys′ su
h that q′ equals q up tothe lo
al state of the 
omponent cc. Sin
e rea
hability in general intera
tionsystems is PSPACE-
omplete, the 
onsequen
e of this transformation is thePSPACE-
ompleteness of rea
hability in star-like intera
tion systems.Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K, Int) and Sys′ = (IM′, {T ′

i}i∈K′) be an intera
tion systemwith intera
tion model IM = (K′, {A′
i}i∈K′, Int′).Let K′ = K∪{cc}, where cc is a 
ontrol 
omponent that 
oordinates se-quen
es of intera
tions in Int′ that 
orrespond to intera
tions in Int. For

i ∈ K let A′
i = Ai ∪{a

ok
i , a¬oki |ai ∈ Ai}. The port aoki respe
tively a¬oki mod-els that 
omponent i enables respe
tively does not enable the port ai ∈ Ai.The set of ports Acc of 
omponent cc is given by

Acc = {a_iokcc , a_i¬okcc , a_iccfire|i = 1, . . . , n, ai ∈ Ai} ∪ {αcc|α ∈ Int}.Let i ∈ K and ai ∈ Ai a port in i then a_iokcc models that 
omponent i
urrently enables ai and a_i¬okcc models that ai is 
urrently not enabled by
i. The port a_iccfire models that 
omponent i performs a transition labeledby ai. For an intera
tion α ∈ Int the port αcc models the initiation of apro
ess that 
he
ks whether α is enabled by the respe
tive 
omponents and,if appli
able, 
oordinates that all ports in α intera
t one after another.60
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Figure 2.10: Parts of the lo
al behavior of 
omponent cc.The set of intera
tions Int′ is given by
Int′ = {{aoki , a_iokcc }, {a

¬ok
i , a_i¬okcc }, {ai, a_ifirecc }|ai ∈ Ai, i = 1, . . . , n} ∪

{{αcc}|α ∈ Int}.The lo
al behavior of i ∈ K is given by T ′
i = (Qi, A

′
i,→

′
i, q

0
i ) with

→′
i= →i ∪{(qi, a

ok
i , qi)|qi ∈ Qi ∧ ai ∈ en(qi)}∪

{(qi, a
¬ok
i , qi)|qi ∈ Qi ∧ ai /∈ en(qi)}.

T ′
i extends Ti su
h that for ea
h port ai ∈ Ai there is a self-loop on ea
h state

qi ∈ Qi that is labeled by aoki if qi enables ai and by a¬oki otherwise. Thesetransitions are used to 
he
k whether or not ea
h port of an intera
tion
α ∈ Int is enabled in a global state of Sys′ without 
hanging the lo
al stateof the respe
tive 
omponents.Let Int = {α1, α2, . . . , αk} and αj = {aj1, . . . , aj|αj

|
} for j ∈ {1, 2 . . . , k}.Figure 2.10 depi
ts the lo
al behavior Tcc = (Qcc, Acc,→cc, q

0
cc) of 
omponent

cc that 
oordinates a test that 
he
ks whether ea
h port in αj is enabled in
Sys′ and, if appli
able, enables ports that 
an intera
t with ea
h port in αj.Remark 2.8:Ea
h port of Sys′ o

urs in at least one intera
tion, i.e., Sys′ satis�es the61



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY
onditions of an intera
tion system. Furthermore, the size of Sys′ is polyno-mial in the size of Sys be
ause |K ′| = |K|+ 1, | Int′ | = | Int |+∑

i∈K 3 · |Ai|and for i ∈ K holds |A′
i| = 3 · |Ai| and | →′

i | = | →i | + |Qi| · |Ai|. For
cc ∈ K ′ holds |Acc| = | Int | +

∑

i∈K 3 · |Ai|, |Qcc| = 1 +
∑

α∈Int 2 · |α| and
| →cc | =

∑

α∈Int(3 · |α|+ 1).Theorem 2.3:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and Sys′ the asso
iated star-like intera
tion system.A global state q is rea
hable in Sys if and only if a global state q′ is rea
hablein Sys′ su
h that qi = q′i for i ∈ K and q′cc = q0cc.Proof. The proof 
an be found in Appendix A on Page 195.The rea
hability problem in star-like intera
tion systems is in PSPACE be-
ause ea
h star-like intera
tion system is parti
ularly a tree-like intera
tionsystem and the rea
hability problem in tree-like intera
tion systems is inPSPACE. It follows by Theorem 2.3 that the rea
hability problem in star-like intera
tion systems is PSPACE-
omplete.2.7 PSPACE-
ompleteness of Progress in Sys-tems with a Restri
ted Communi
ationStru
tureGiven an intera
tion system Sys with 
omponents K and a 
omponent k ∈
K, an interesting question is, whether or not there are rea
hable statesin the global behavior of Sys from whi
h k may never parti
ipate againin an intera
tion. If, for example, 
omponents in an intera
tion systemmodel pro
esses that 
an send requests among ea
h other whi
h need to beanswered by a respe
tive response then an obvious question is whether ornot there are rea
hable global states where a request is never answered by62



2.7. PSPACE-COMPLETENESS OF PROGRESS IN SYSTEMS WITHA RESTRICTED COMMUNICATION STRUCTUREa response. The progress problem 
onsists of the question whether or nota 
omponent k ∈ K has to parti
ipate in in�nitely many intera
tions fromevery rea
hable state in the global behavior of Sys. Of 
ourse, if there is area
hable global state where no intera
tion is enabled then this question isobsolete be
ause from su
h a state no further intera
tion is enabled in whi
h
k may or may not parti
ipate. In [MCM08
℄ it was shown that in generalintera
tion systems de
iding progress is PSPACE-
omplete.By a minor modi�
ation of the redu
tion given in Se
tion 2.3 it is possibleto show that de
iding progress in tree-like intera
tion systems is PSPACE-
omplete as well. First we provide some de�nitions in order to introdu
eprogress in intera
tion systems. We pro
eed by arguing why de
iding thisproperty in the sub
lass of tree-like intera
tion systems is PSPACE-
omplete.Furthermore, we provide two remarks about the PSPACE-
ompleteness ofde
iding progress in systems with a linear or star-like 
ommuni
ation pat-tern. Sin
e de
iding progress in general intera
tion systems is PSPACE-
omplete, de
iding progress in intera
tion systems with any restri
tion onthe 
ommuni
ation stru
ture is in PSPACE.De�nition 2.4:Let Sys be a deadlo
k-free intera
tion system (see De�nition 1.4) with globalbehavior T = (Q, Int,→T , q

0). A run of Sys is an in�nite sequen
e σ

q0
α1−→T q1

α2−→T q2 . . . ,with ql ∈ Q and αl ∈ Int for l ≥ 1.De�nition 2.5:Let Sys be a deadlo
k-free intera
tion system with 
omponents K. A 
om-ponent k ∈ K may progress in Sys if for every run σ the 
omponent kparti
ipates in�nitely often in σ. This is, there are in�nitely many intera
-tions α in σ with k(α) 6= ∅.An instan
e of the progress problem in intera
tion systems is given by a tuple
(Sys, k) where Sys is a deadlo
k-free intera
tion system with 
omponents Kand k ∈ K. The question is if k may progress in Sys.63
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t tproFigure 2.11: Transition system Tpro for the 
omponent pro.In order to proof that de
iding progress in tree-like intera
tion systems isPSPACE-hard we extend our redu
tion from Se
tion 2.3. Let H be a QBFand SysH the asso
iated tree-like intera
tion system, i.e., a 
ertain globalstate qt is rea
hable in the global behavior T of SysH if and only if H is true.The 
omponent H ′ rea
hes its state labeled t only if H is true and f only if

H is false, i.e., exa
tly one of these lo
al states is determined to be rea
hedin every run of SysH . Both states only enable the port endH′ that self-loopson these states (see Figure 2.6
). The port endH′ is the only port in theunary intera
tion evaluated, i.e., SysH is deadlo
k-free be
ause eventually
evaluated be
omes enabled permanently. The state qt is the global statewhere the lo
al behavior of ea
h 
omponent is in its state labeled t. Notethat this state is determined to be rea
hed if and only if H is true and thatthe only enabled intera
tion in this state is evaluated.The idea is to 
onstru
t a modi�ed system Sys′H by introdu
ing an additional
omponent 
alled pro that may progress if and only if H is true. Let Apro =

{tpro} be the set of ports of pro. The behavior is given by the transitionsystem Tpro in Figure 2.11.In addition we modify the 
omponent H ′ as follows. The set of ports AH
′of the 
omponent H ′ is now given by

AH
′ = {e1

H
′ , sub1

H
′t, sub1

H
′f, s1

H
′t, end_trueH′, end_falseH′},i.e., endH′ is removed and the ports end_trueH′ and end_falseH′ are added.The modi�ed behavior of H ′ is given by the transition system TH

′ in Figure2.12.In addition, the intera
tion evaluated is removed from the set Int of inter-64
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end_trueH′Figure 2.12: Modi�ed transition system TH
′ for the 
omponent H ′.a
tions, and the intera
tions

evaluated_true = {end_trueH′, tpro} and
evaluated_false = {end_falseH′}are added. Let H be a QBF and Sys′H the intera
tion system that is 
on-stru
ted as in Se
tion 2.3 with the above modi�
ations.Theorem 2.4:The progress problem in tree-like intera
tion systems, i.e., the questionwhether or not, given a tree-like intera
tion system Sys and a 
omponent kin Sys, k may progress in Sys, is PSPACE-
omplete.Proof. The proof 
an be found in Appendix A on Page 196.In the following two remarks we argue why de
iding progress in linear andstar-like intera
tion systems is PSPACE-
omplete as well.Remark 2.9:We argue the PSPACE-
ompleteness of de
iding progress in linear intera
-tion systems by des
ribing how the redu
tion in 2.5 
an be slightly modi�edto show that a 
ertain 
omponent may progress if and only if the respe
tivelinear bounded Turing ma
hine M a

epts the respe
tive input x. Let SysMbe the intera
tion system that results from the redu
tion in Se
tion 2.5 fora linear bounded Turing ma
hine M and an input x for M . Note that our65
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tion does not assure that SysM is deadlo
k-free. There are three 
aseson how M a
ts on the input x:1. IfM does not halt on x then it is easy to see that SysM is deadlo
k-freebe
ause the in�nite exe
ution of M is modeled by SysM .2. If M a
tually de
ides that it does not a

ept x then M halts in thestate pN , i.e., SysM rea
hes a global state where a 
omponent i ∈

{0, 1, . . . , n+1} is in a state of the form (pN , γ). A global state of thisform is a deadlo
k. We argue that in ea
h 
omponent ea
h lo
al stateof the form (pN , γ) 
an be extended by a self-loop that is labeled by adistinguished port. Furthermore, for ea
h 
omponent we assume thereis an intera
tion that 
onsists only of this port, i.e., if this 
ase is onhand, then our assumption guarantees deadlo
k-freedom in SysM .3. If M a

epts x then SysM rea
hes a global state where a 
omponent
i ∈ {0, 1, . . . , n+1} is in a state of the form (pY , γ). In Remark 2.7 weargued that we 
an modify SysM su
h that the linear 
ommuni
ationstru
ture is preserved, while we 
an guarantee that a distinguishedglobal state is rea
hed. We assume here that this state is of the form
qend = (qend0 , qend1 , . . . , qendn+1). For now we assume that a lo
al state qendi(i ∈ {0, 1, . . . , n+1}) does not enable any port, i.e., qend is a deadlo
k.Analogously as for tree-like intera
tion systems, we argue that SysM 
anbe extended by an additional 
omponent pro (that is de�ned as in Figure2.11) that may progress if and only if qend is rea
hable in SysM . We extendthe 
omponent that models 
ell 0 by a self-loop on the state qend0 that islabeled by a port end and add the additional intera
tion {tpro, end}. Thus,

{tpro, end} be
omes enabled permanently if and only if qend is rea
hed, i.e.,the 
omponent pro may progress if and only if M a

epts x.The extended version of the redu
tion still results in a linear intera
tion sys-tem be
ause 
omponent pro only intera
ts with the 
omponent that models
ell 0. Thus, de
iding progress in linear intera
tion systems is PSPACE-66
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omplete.Remark 2.10:in Se
tion 2.6, our transformation to star-like systems does not preserveprogress. Let α be an intera
tion that is not enabled in a global state q inthe original system Sys. Let q′ be the 
orresponding state in the asso
iatedstar-like system Sys′. Starting in q′ there is a sequen
e of transitions in Sys′that 
orresponds to a test of whether or not all ports in α are enabled. Thissequen
e 
an be repeated in�nitely often. Let k be a 
omponent that mayprogress in Sys but does not parti
ipate in α. This is, starting in q′ thereis a run in Sys′ su
h that k does not parti
ipate in the intera
tions in thisrun, i.e., k may not progress in Sys′. The transformation 
an be extendedsu
h that progress is preserved. The idea is to ex
lude an intera
tion in
Sys from being 
he
ked in Sys′ if it has been 
on�rmed in Sys′ that thisintera
tion is not enabled in the 
orresponding state in Sys. Clearly, thisex
lusion has to be revoked if a sequen
e of intera
tions was performed in
Sys′ that 
orresponds to an intera
tion in Sys.We extend Sys′ as follows. For every intera
tion α in Sys we introdu
e a
omponent cα with Acα

= {bα, fα}. The port bα models that a 
he
k whethera sequen
e of intera
tions in Sys′ that 
orresponds to α shall be blo
ked and
fα revokes this blo
k. The behavior Tcα

is depi
ted in Figure 2.13b. Forea
h intera
tion α in Sys we extend the set of ports Acc of 
omponent ccby a port fα
cc that models that a blo
k with respe
t to α shall be revoked.Let Int = {α1, α2, . . . , αk} be the set of intera
tions in Sys. Figure 2.13adepi
ts the extended behavior of 
omponent cc. Depi
ted is the part of thebehavior that 
oordinates a 
he
k whether a sequen
e of intera
tions that
orresponds to αj = {aj1, . . . , aj|αj

|
} for j ∈ {1, 2, . . . , k} is enabled in Sys′and, if appli
able, 
oordinates the exe
ution of the respe
tive ports. If Tccsu

essfully 
oordinated the intera
tion with ea
h port in αj , Tcc 
oordinatesthe unblo
king of ea
h 
omponent cα for α ∈ Int.The set of intera
tions in Sys′ is modi�ed as follows. For α ∈ Int the port αcc67
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al behavior of 
omponent k
α
j for 1 ≤ j ≤ k and parts ofthe behavior of 
omponent cc.of 
omponent cc shall intera
t with the port bα of 
omponent cα, i.e., αcc 
annot intera
t again until cα be
omes unblo
ked. Thus, an intera
tion {αcc}in Sys′ is repla
ed by an intera
tion {αcc, bα}. Furthermore, for α ∈ Int weintrodu
e an intera
tion {fα

cc, fα} that revokes a blo
k.It is easy to see that this extension of our redu
tion preserves progress, i.e.,to de
ide progress in star-like intera
tion systems is PSPACE-
omplete.2.8 Con
lusionWe investigated 
omplexity issues for 
omponent-based systems. In [CEP95℄the rea
hability in 1-safe Petri nets was proven to be PSPACE-
ompleteand in [MCM08
℄ this result was used to show the PSPACE-
ompleteness ofthe rea
hability problem in general intera
tion systems. Here we restri
tedourselves to systems with 
ertain 
ommuni
ation pattern, su
h as tree-like,star-like and linear 
ommuni
ation stru
tures, and showed that even in these
lasses de
iding rea
hability is PSPACE-
omplete. Given these 
omplexityissues it makes sense to look for 
onditions that 
an be tested in polynomial68



2.8. CONCLUSIONtime and guarantee a desired property that is related to rea
hability [Hoa85,BR91, BCD02, MCM08a, Lam09, HJK10℄.
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Chapter 3
A Re�nement Te
hnique forOver-Approximations
3.1 Introdu
tionIn this 
hapter we report about an approa
h to e�
iently represent andre�ne over-approximations of the global behavior of 
ooperating systems[MCS13a℄. An approa
h to 
ir
umvent 
omplexity issues of 
he
king var-ious properties in 
ooperating systems, i.e., PSPACE-
ompleteness resultsof the rea
hability problem and various other properties in intera
tion sys-tems [MCM08
℄, is to investigate te
hniques based on su�
ient 
onditionsin order to establish those properties. In this 
ontext, an interesting sub-
lass of system properties are safety properties whi
h 
an be establishedin over-approximations of a 
ooperating system (this topi
 is dis
ussed indetail in Chapter 4). Espe
ially the system property of deadlo
k-freedomand the negated rea
hability problem (the question whether or not a 
er-tain state is not rea
hable) are safety properties and 
an be established inover-approximations of a 
ooperating system, i.e., if an over-approximationof a 
ooperating system is deadlo
k-free then the behavior of the system in
onsideration is deadlo
k-free as well. We introdu
e here a formal notion of71



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSover-approximations of the global behavior of 
ooperating systems for theformalism of intera
tion systems that was introdu
ed in Chapter 1. Theglobal behavior of an intera
tion system is modeled by a labeled transitionsystem, thus, our over-approximations are labeled transition systems as well.For 
omplexity reasons these over-approximations are in general to large tobe handled e�
iently be
ause an over-approximation of the global behav-ior of an intera
tion system su�ers from the state spa
e explosion problemjust like the global behavior. Thus, we introdu
e a 
ompa
t representa-tion of an over-approximation that we 
all abstra
t over-approximation. Anabstra
t over-approximation is a transition system that indu
es an over-ap-proximation of the global behavior of an intera
tion system while it 
an be
onstru
ted in a way that it is of polynomial size in the size of the underlyingintera
tion system.If a safety property does not hold in an over-approximation of an intera
tionsystem then we 
an not 
on
lude whether or not the underlying intera
tionsystem ful�lls this property. In this 
ase it might help to re�ne an over-ap-proximation by whi
h we here mean to remove sates and transitions su
hthat the resulting obje
t remains to be an over-approximation. This is,if an over-approximation of an intera
tion system is not deadlo
k-free butthe re�nement of this over-approximation results in an over-approximationwhere all transitions that lead to rea
hable deadlo
ks are removed then theunderlying intera
tion system is deadlo
k-free. We introdu
e here a re�ne-ment te
hnique that is based on an operator that we 
all Edge-Mat
h. Thisoperator 
ompares pairs of abstra
t over-approximations and removes tran-sitions su
h that the resulting transition system remains to be an abstra
tover-approximation.A family of abstra
t over-approximations 
an be used to establish 
ertainsystem properties in a 
ooperating system in polynomial time in the size ofthe underlying intera
tion system. This statement is dis
ussed in Chapter 4where we show how abstra
t over-approximations 
an be used to establishdeadlo
k-freedom. In this 
hapter we treat ex
lusively the 
onstru
tion and72



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTre�nement of abstra
t over-approximations.This 
hapter is organized as follows. In Se
tion 3.2 we formally de�ne over-approximations of the global behavior of intera
tion systems, our 
on
eptof abstra
t over-approximations and illustrate how an abstra
t over-appro-ximation indu
es an over-approximation of the global behavior of an in-tera
tion system. Furthermore, we introdu
e the Edge-Mat
h operator, are�nement operator that works on pairs of abstra
t over-approximations.In Se
tion 3.3 we dis
uss pre
iseness aspe
ts of the Edge-Mat
h operatorand argue that we 
an not expe
t to 
al
ulate �exa
t� abstra
t over-appro-ximations by any re�nement operator in polynomial time in the size of theunderlying intera
tion system, i.e., abstra
t over-approximations where nofurther re�nement is possible. In a se
ond part of Se
tion 3.3 we introdu
ean approa
h that re�nes a family of abstra
t over-approximations and argueunder whi
h assumptions this approa
h works in polynomial time. Se
tion3.4 
on
ludes this 
hapter.3.2 Abstra
t Over-Approximations and theirRe�nementHere we introdu
e our 
on
ept of over-approximations of the rea
hable be-havior of an intera
tion system Sys. As the global behavior of Sys is de�nedby a transition system we de�ne an over-approximation of the global be-havior of Sys as a transition systems that �in
ludes� the rea
hable behaviorof the global behavior of Sys, i.e., ea
h rea
hable transition in the globalbehavior of Sys is in
luded in an over-approximation. If T is the globalbehavior of Sys, then the size of the rea
hable behavior of T might be expo-nentially in the number of 
omponents in Sys, i.e., if Sys 
onsists of a largenumber of 
omponents (e.g., 2.000 
omponents where the lo
al behavior ofea
h 
omponent has 2 states) then it is not feasible to 
al
ulate the rea
h-able behavior of T . Certainly, in this 
ase it is not feasible to 
onsider an73



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSover-approximation of the rea
hable behavior as well. What we do is thatwe look at a transition system that �indu
es� an over-approximation of therea
hable behavior.We de�ne an over-approximation of a transition system as follows.De�nition 3.1:Let RT be the operator that yields all rea
hable transitions of a transitionsystem. Let R = (Q,A,→R, q
0) be a transition system with→R⊆ Q×A×Q.A transition system U = (Q′, A′,→U , q

′0) with →U⊆ Q′ × A′ × Q′ is 
alledan over-approximation (of the rea
hable behavior) of R if and only if
q0 = q′0 and RT (R) ⊆ RT (U). An over-approximation U of R is 
alledexa
t over-approximation of R if and only if RT (R) = RT (U).We 
onsider here a spe
ial type of over-approximations, i.e., over-approxi-mations that are indu
ed by an abstra
t over-approximation that is basedon a subset of 
omponents. These abstra
t over-approximations are basedon the following de�nition.De�nition 3.2:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K, Int) and C ⊆ K with C 6= ∅. A transition system of theform R = (QC , Int,→R, q

0
C) where

• QC =
∏

i∈C Qi,
• q0C = (q0i )i∈C and
• →R⊆ QC × Int×QCis 
alled a transition system with respe
t to C. Let T = (Q, Int,→T

, q0) be the global behavior of Sys. For q ∈ Q the proje
tion of q tothe 
omponents in C is denoted by q↓C ∈ QC , i.e., if q = (qi)i∈K then
q↓C = (qi)i∈C .In the following we de�ne in whi
h 
ase a transition system with respe
t to
C, i.e., a transition system of the form R = (QC , Int,→R, q

0
C) is an abstra
t74



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTover-approximation of the global behavior T of an intera
tion system Sys.In the immediately following lemma we justify the de�nition by showingthat an indu
ed transition system that is 
onstru
ted by �extending� R is anover-approximation of T if and only if R is an abstra
t over-approximationof T .De�nition 3.3:Let T be the global behavior of an intera
tion system Sys with 
omponents
K and C a nonempty subset of K. Let T ′ = (Q, Int, RT (T ), q0), i.e., thetransition relation →T of T restri
ted to rea
hable transitions. Let T ′′ be
T ′ proje
ted on the 
omponents in C, i.e., T ′′ = (QC , Int,→T

′′, q0C) with
qC

α
−→T

′′ q′C if and only if there is a transition q
α
−→T

′ q′ in T ′ with q↓C = qCand q′↓C = q′C . We say a transition system R = (QC , Int,→R, q
0
C) is anabstra
t over-approximation of T if and only if R is an over-approxi-mation of T ′′.In other words, R is an abstra
t over-approximation of T if and only if ea
hrea
hable transition in the global behavior T proje
ted on the 
omponentsin C is rea
hable in R.Lemma 3.1:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model

IM = (K, {Ai}i∈K , Int). Let C ⊆ K be a nonempty subset of 
omponentsand R = (QC , Int,→R, q
0
C) a transition system with respe
t to C. Let

T = (Q, Int,→T , q
0) be the global behavior of Sys. The global extensionof R is the transition system E(R) = (Q, Int,→E(R), q

0) su
h that for all
q, q′ ∈ Q and all α ∈ Int the transition q

α
−→E(R) q

′ is in E(R) if and only ifa transition qC
α
−→R q′C is in R with q↓C = qC and q′↓C = q′C . Then: R is anabstra
t over-approximation of T if and only if E(R) is an over-approxima-tion of T .Proof. The proof 
an be found in Appendix A on Page 196.Remark 3.1:If R is an abstra
t over-approximation of T then we 
all E(R), de�ned as in75
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, q0DB)Figure 3.1: Transitions in a global extension E(R) of R.Lemma 3.1, the indu
ed over-approximation of T with respe
t to R.The following example shows some global extensions of a single transition.Example 3.1:Consider a subset of 
omponents C = {TER1,GS,ADB} from the inter-a
tion system Sys presented in Examples 1.1 and 1.2 in Chapter 1. Let
R = (QC , Int,→R, q

0
C) be a transition system and

(q1TER1
, q2GS, q

1
ADB)

send_data
−−−−−−→R (q1TER1

, q3GS, q
1
ADB)a transition in R. The 
omponents TER2 and DB are not in C. Figure 3.1shows some (4 out of 16) transitions in E(R) that are extensions of the abovetransition. For better readability, the lo
al states of 
omponents not in Care underlined. Note that the 
onsidered intera
tion send_data in
ludesthe port send_val from 
omponent DB. The only transition labeled by

send_val in DB is q1DB

send_val
−−−−−→DB q0DB, i.e., the only transitions in Figure3.1 that o

ur in the global behavior of Sys are those with q1DB on the lefthand side and q0DB on the right hand side.

E(R) is an indu
ed over-approximation that is never 
onstru
ted in any ofour methods as it 
an be
ome exponentially large be
ause of the state spa
eexplosion problem. The re�nement of E(R) is taking pla
e on R. If E(R) isan over-approximation of T then R 
an be seen as a 
ompa
t representationof E(R). 76



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTThe next lemma shows that transition systems that are abstra
t over-appro-ximations 
an be easily 
onstru
ted from the spe
i�
ation of an intera
tionsystem. We use these transition systems as an initial point for our re�nementte
hnique.Lemma 3.2:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C ⊆ K a nonempty subset of 
omponents. Let
SC = (QC , Int,→SC

, q0C) be the transition system with transition relationde�ned as follows: qC α
−→SC

q′C if for all i ∈ C: if α∩Ai = {ai} then qi
ai−→i q

′
iand if α ∩ Ai = ∅ then qi = q′i. Then SC is an abstra
t over-approximationof the global behavior T of Sys.Proof. The proof 
an be found in Appendix A on Page 198.Remark 3.2:The de�nition of the transition relation of SC is similar to the de�nition ofthe global behavior of an intera
tion system (see De�nition 1.4 in Chapter1). A
tually, SC equals the global behavior T if C = K.Note further that for an intera
tion α ∈ Int, where for all i ∈ C we have

α∩Ai = ∅, for ea
h qC ∈ QC holds that qC α
−→SC

qC , i.e., intera
tions that donot in
lude ports from a 
omponent in C label a self-loop in SC . A
tually,in SC ea
h state in QC has a self-loop for ea
h intera
tion whi
h does notin
lude ports from a 
omponent in C.In the following we dis
uss the re�nement of abstra
t over-approximations.A re�nement by the Cross-Che
king operator, as dis
ussed in [Min10℄, 
on-siders the re�nement of over-approximations of the rea
hable global statespa
e of intera
tion systems and amounts to the removal of states fromthe over-approximations. Here we 
onsider the re�nement of the rea
hableglobal behavior of intera
tion systems. This is, we do not remove states fromabstra
t over-approximations but transitions. Of 
ourse, if we 
onsider anabstra
t over-approximation of the rea
hable global behavior and remove77



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONStransitions then the rea
hable state spa
e might be
ome smaller. In our
ontext we use the term �re�nement� based on the following de�nition.De�nition 3.4:Let U = (Q′, A′,→U , q
′0) be an over-approximation (of the rea
hable be-havior) of the transition system R = (Q,A,→R, q

0). A transition system
Ū = (Q̄, Ā,→Ū , q̄

0) is 
alled a re�nement of U (with respe
t to R) if U isan over-approximation of Ū and Ū is an over-approximation of R. This is,
RT (R) ⊆ RT (Ū) ⊆ RT (U).Remark 3.3:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C ⊆ K a nonempty subset of 
omponents.Let R = (QC , Int,→R, q

0
C) be an abstra
t over-approximation of the globalbehavior T of Sys, i.e., R is an over-approximation of the transition system

T ′′ (see De�nition 3.3). Thus, a

ording to De�nition 3.4, we 
all an abstra
tover-approximation R′ = (QC , Int,→R
′, q0C) of T a re�nement of R if R isan over-approximation of R′.A transition system SC with respe
t to a subset of 
omponents C that is
onstru
ted as in Lemma 3.2 
an indu
e a relatively 
oarse over-approxi-mation E(SC) of the global behavior T , i.e., there 
an be a great deal ofrea
hable transitions in E(SC) that are not rea
hable in the global behavior

T . In order to re�ne E(SC) we modify SC by removing transitions from SCwhi
h only indu
e transitions in E(SC) that are not rea
hable in T . Theseare exa
tly the rea
hable transitions in SC that are not proje
tions of rea
h-able transitions in T . Transitions like these are 
alled artifa
ts. Re�ning
SC , i.e., removing transitions that are artifa
ts 
an result in a smaller rea
h-able state spa
e in a re�ned version S ′

C (and thus in E(S ′
C) as well). In thefollowing, an abstra
t over-approximation with respe
t to a subset of 
om-ponents C that is 
onstru
ted as in Lemma 3.2 is denoted by an upper
ase

S indexed by C, i.e., SC .The following example shows an abstra
t over-approximation of the global78
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Figure 3.2: The transition system S in Example 3.2.behavior of the intera
tion system that was introdu
ed in Example 1.1 and1.2.Example 3.2:Consider the intera
tion system Sys de�ned in Example 1.1 and 1.2 in Chap-ter 1 and the subset of 
omponents C = {TER1,GS,ADB}. Figure 3.2shows a transition system S = (QC , Int,→S, q
0
C). For the 
larity of Figure3.2, the transition system S 
onsists of parts of the behavior of the abstra
tover-approximation SC that is 
onstru
ted as in Lemma 3.2. Omitted in Sare

• all transitions that are not rea
hable in SC ,
• some, but not all, artifa
ts and
• all self-loops on the states that are labeled with intera
tions whi
h donot need a 
omponent in C in order to parti
ipate.Note that S is an abstra
t over-approximation if the self-loops are in
luded.We now give an example that demonstrates the idea of how a transition in anabstra
t over-approximation 
an be identi�ed as an artifa
t by a 
omparisonwith another abstra
t over-approximation. Afterwards we formally de�ne are�nement operator that is based on this idea.79



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONS
q
0
GS, q

0
ADB, q

0
DB q

1
GS, q

0
ADB, q

0
DB

q
2
GS, q

1
ADB, q

0
DB

q
2
GS, q

0
ADB, q

1
DB

q
3
GS, q

0
ADB, q

0
DB

send_req1,
send_req2

ask_auth

authorizesend_data

get_reply1,
get_reply2

Figure 3.3: The transition system R in Example 3.3.Example 3.3:Consider the intera
tion system Sys de�ned in Examples 1.1 and 1.2 inChapter 1 and the subset of 
omponents D = {GS,ADB,DB}. Figure 3.3shows a transition system R = (QD, IntD,→R, q
0
D). The transition system

R 
onsists of parts of the behavior of the abstra
t over-approximation SDthat is 
onstru
ted as in Lemma 3.2. Omitted are all transitions that arenot rea
hable and all self-loops on the states that are labeled by intera
tionswhi
h do not need a 
omponent in D in order to parti
ipate, i.e., R is anabstra
t over-approximation of the global behavior T of Sys if the self-loopsare in
luded.In the following we assume that S (Example 3.2 respe
tively Figure 3.2)and R are abstra
t over-approximations of the global behavior T of Sys,i.e., there are self-loops on all states that are labeled by intera
tions whi
hdo not in
lude ports from 
omponents in C and D respe
tively. We haveto assume that ea
h transition that is rea
hable in S is the proje
tion of atransition that is rea
hable in the global behavior T of Sys. Consider thetransition
(q1TER1

, q2GS, q
1
ADB)

send_data
−−−−−−→S (q1TER1

, q3GS, q
1
ADB)whi
h is rea
hable in S and assume that this transition is the proje
tionof a transition q

send_data
−−−−−−→T q′ that is rea
hable in T . As R is an abstra
tover-approximation as well, q↓D send_data

−−−−−−→R q′↓D has to be rea
hable in R.In q, the lo
al behavior TGS is in state q2GS and TADB is in state q1ADB. Theonly rea
hable state in R in whi
h TGS and TADB are in these lo
al states80



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTis (q2GS, q
1
ADB, q

0
DB). Thus, if q↓D send_data

−−−−−−→R q′↓D is rea
hable in R then
q↓D equals (q2GS, q

1
ADB, q

0
DB). This state does not have an outgoing transitionlabeled by send_data that leads to a state that agrees with q′↓C on shared
omponents. Thus, we 
an 
on
lude that q↓C send_data

−−−−−−→S q′↓C is an artifa
tas this transition 
annot be the proje
tion of a transition that is rea
hablein T .We now de�ne the Edge-Mat
h operator that removes transitions from atransition system S by a 
omparison with another transition system R. Thesubsequent theorem states that the result of the Edge-Mat
h operator, if Sand R are abstra
t over-approximations of the global behavior T of an inter-a
tion system Sys, is a re�ned version of S, i.e., only artifa
ts are removedfrom S.De�nition 3.5:Let Sys be an intera
tion system with 
omponents K. Let C and D benonempty subsets of K and S = (QC , Int,→S, q
0
C) and R = (QD, Int,→R

, q0D) transition systems with respe
t to C respe
tively D. For a state qC ∈

QC the state qC↓D ∈ QC∩D denotes the proje
tion of qC on the 
omponentsin D, i.e., if qC = (qi)i∈C then qC↓D = (qi)i∈C∩D. Note that qC↓D yields theempty tuple if C ∩ D = ∅. The Edge-Mat
h operator EM on S and Ryields a transition system S ′ = EM(S,R) with S ′ = (QC , Int,→S
′, q0C) su
hthat qC α

−→S
′ q′C if and only if qC α

−→S q′C is rea
hable in S and a transition
qD

α
−→R q′D is rea
hable in R with qC↓D = qD↓C and q′C↓D = q′D↓C .Theorem 3.1:Let Sys be an intera
tion system with 
omponents K and global behavior

T . Let C and D be nonempty subsets of K and S = (QC , Int,→S, q
0
C) and

R = (QD, Int,→R, q
0
D) abstra
t over-approximations of T , then EM(S,R)is an abstra
t over-approximation of T .Proof. The proof 
an be found in Appendix A on Page 198.Given an intera
tion system Sys with a set of 
omponents K we use the81



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSEdge-Mat
h operator to re�ne a family of abstra
t over-approximations ofthe global behavior T of Sys by a pairwise appli
ation. An abstra
t over-ap-proximation is based on a subset C of 
omponents in K. Thus, a family ofabstra
t over-approximations is indexed by a subset C of 2K . We 
all thisset a domain.De�nition 3.6:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int). A set C ⊆ 2K \ {∅} of subsets of 
omponents is
alled a domain of IM.The next example shows the result of the appli
ation of the Edge-Mat
hoperator on a family of abstra
t over-approximations from the running ex-ample.Example 3.4:Consider the intera
tion system Sys de�ned in Example 1.1 and 1.2 in Chap-ter 1. Let {SC}C∈C be the family of abstra
t over-approximations of T withrespe
t to the domain

C = {{TER1,GS,ADB}, {GS,ADB,DB}, {TER2,GS,DB},

{TER2,GS,ADB}, {TER2,GS,TER1}, {GS,TER1,DB}}that are 
onstru
ted as in Lemma 3.2. Let {RC}C∈C be the result of asequen
e of appli
ations of the Edge-Mat
h operator on {SC}C∈C. Fig-ure 3.4 depi
ts parts of the abstra
t over-approximation RC with C =

{TER1,GS,ADB}. Omitted are all self-loops on the states that are la-beled with intera
tions whi
h do not need a 
omponent in C in order toparti
ipate. Note that RC is a re�ned abstra
t over-approximation of theabstra
t over-approximation S des
ribed in Example 3.2. A total of 8 tran-sitions that are in S are not in
luded in RC at whi
h 4 rea
hable states in
S be
ome unrea
hable in RC . 82



3.3. PRECISENESS AND APPLICATION
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get_reply2Figure 3.4: Part of the transition system RC with C = {TER1,GS,ADB}in Example 3.4.3.3 Pre
iseness and Appli
ationIn this se
tion we dis
uss the pre
iseness of abstra
t over-approximationsthat were re�ned by the Edge-Mat
h operator, introdu
e how we apply ourre�nement te
hnique on a family of abstra
t over-approximations and ana-lyze the runtime of this approa
h.An obvious question is, whether we 
an 
onstru
t exa
t abstra
t over-appro-ximations (see De�nition 3.1). Unfortunately, we show here that we 
annotexpe
t to 
onstru
t exa
t over-approximations by an algorithm that runsin polynomial time in the size of the underlying intera
tion system. Weintrodu
e here a weaker pre
iseness property of abstra
t over-approxima-tions that we 
all legitimate. Roughly speaking, if we 
onsider a familyof abstra
t over-approximations, then a transition in an abstra
t over-ap-proximation is legitimate if there is a transition in ea
h abstra
t over-ap-proximation su
h that all these transitions agree on shared 
omponents.Thus, a transition that is not legitimate is an artifa
t. A family of abstra
tover-approximations is legitimate if in all abstra
t over-approximations alltransitions are legitimate. We argue that we 
annot assume that a family ofabstra
t over-approximations that was re�ned by the Edge-Mat
h operatoris legitimate. In Chapter 6 we show, by using results from the �eld of83



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSrelational databases, that for a 
ertain sub
lass of families of abstra
t over-approximations holds that a re�ned by the Edge-Mat
h operator results ina legitimate family of abstra
t over-approximations.In a se
ond part we formulate an algorithm that 
al
ulates a �xed-point ofa family of abstra
t over-approximations with respe
t to an appli
ation ofour re�nement operator and give a detailed runtime analysis whi
h des
ribesunder whi
h 
ir
umstan
es our algorithm runs in polynomial time in the sizeof the underlying intera
tion system.3.3.1 Pre
isenessHere we dis
uss aspe
ts regarding the pre
iseness of abstra
t over-approxi-mations that were re�ned by the Edge-Mat
h operator. By pre
iseness wemean whether or not there are artifa
ts in the abstra
t over-approximations.We 
onsider here two questions:1. Can we expe
t to 
onstru
t exa
t abstra
t over-approximations inpolynomial time in the size of the underlying intera
tion system, i.e.,abstra
t over-approximations without artifa
ts?2. If there are artifa
ts that 
annot be dete
ted by the Edge-Mat
h op-erator, why does the operator fails here?The following 
orollary shows that we 
annot expe
t to generate exa
t ab-stra
t over-approximations by using a te
hnique that runs in polynomialtime in the size of the spe
i�
ation of an intera
tion system. This result isa dire
t 
on
lusion from the fa
t that the de
ision problem whether there isa global state rea
hable where a �xed 
omponent is in a �xed lo
al state isPSPACE-
omplete. This result was shown in Chapter 2 in Se
tion 2.5.Lemma 3.3:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int). Let C ∈ K be a nonempty subset of 
omponents.84



3.3. PRECISENESS AND APPLICATIONConstru
ting an exa
t abstra
t over-approximation S = (QC , Int,→S, q
0
C)
an not be a
hieved in polynomial time in the size of the spe
i�
ation of

Sys.Proof. The proof 
an be found in Appendix A on Page 199.Lemma 3.3 states that we have to assume that an abstra
t over-approxi-mation that was 
onstru
ted and re�ned in polynomial time in the size ofthe spe
i�
ation of Sys 
ontains artifa
ts. It is quite easy to 
hara
terize
ertain artifa
ts the dete
tion of whi
h is not 
overed by the Edge-Mat
hoperator. In the following we exemplify this 
laim and des
ribe how theseresidual artifa
ts 
an be 
hara
terized.Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int), global behavior T and let RD, RD1

and RD2
beabstra
t over-approximations of T . Let qD α

−→RD
q′D be a rea
hable transitionin the abstra
t over-approximation RD and let qD1

α
−→RD1

q′D1
be the onlytransition that is rea
hable in RD1

and qD2

α
−→RD2

q′D2
in RD2

su
h that
qD↓D1

= qD1
↓D, q′D↓D1

= q′D1
↓D, qD↓D2

= qD2
↓D and q′D↓D2

= q′D2
↓D.Thus, qD α

−→RD
q′D is in EM(RD, RD1

) and in EM(RD , RD2
). If now either

qD1
↓D2
6= qD2

↓D1
or q′D1

↓D2
6= q′D2

↓D1
then it is easy to see that qD α

−→RD
q′Dis an artifa
t and that qD α

−→RD
q′D is not removed by the appli
ation of theEdge-Mat
h operator.The following de�nition formalizes in whi
h 
ase a set of abstra
t over-ap-proximations does not 
ontain su
h artifa
ts. We de�ne this property onfamilies of abstra
t over-approximations.De�nition 3.7:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model

IM = (K, {Ai}i∈K , Int). Let C be a domain of IM and {RC}C∈C a familyof abstra
t over-approximations. A transition qC
α
−→RC

q′C (C ∈ C) is 
alledlegitimate if qC α
−→RC

q′C is rea
hable in RC and there exists a transition85
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q

α
−→T q′ in the global behavior T su
h that q↓C = qC and q′↓C = q′C and forallD ∈ C (D 6= C) holds that there exists a rea
hable transition qD

α
−→RD

q′Din RD with q↓D = qD and q′↓D = q′D.
RC is 
alled legitimate if all rea
hable transitions in RC are legitimate. Thefamily {RC}C∈C is 
alled legitimate if all abstra
t over-approximations in
{RC}C∈C are legitimate.In other words, a rea
hable transition in an abstra
t over-approximation RCis legitimate if we 
an �nd a rea
hable transition in ea
h abstra
t over-ap-proximation RD for D ∈ C su
h that all these transitions agree on shared
omponents. It follows that in this 
ase there is a global transition thatagrees with all these transitions on shared 
omponents as well, i.e., if area
hable transition in RC is not legitimate then this transition is an artifa
tas there 
annot be a rea
hable global transition whi
h proje
tion is rea
hablein RC .We argued that, in general, if {RC}C∈C resulted from a sequen
e of appli-
ations of the Edge-Mat
h operator, we 
annot assume that this family islegitimate. This motivates the 
onsideration of additional approa
hes in or-der to identify and remove transitions in abstra
t over-approximations thatare not legitimate or to analyze under whi
h assumptions we 
an use ouroperator in order to generate a legitimate family of abstra
t over-approxima-tions. In Chapter 6 we use a theorem from the �eld of relational databasetheory to show that a �xed-point with respe
t to the appli
ation of theEdge-Mat
h operator is legitimate if C has a 
ertain stru
ture.3.3.2 A Fixed-Point of a Family of Over-Approxima-tionsA te
hnique for establishing a system property that is based on a su�
ient
ondition and uses abstra
t over-approximations is not able 
on
lude thatthe property does not hold in the underlying intera
tion system. This is, if86



3.3. PRECISENESS AND APPLICATIONthe te
hnique fails to establish the property then it is unknown whether ornot the property holds. A re�nement of the abstra
t over-approximationsmight help to establish the property, providing that the property a
tuallyholds in the intera
tion system. This is, we are interested in re�ning abstra
tover-approximations as mu
h as possible by the Edge-Mat
h operator. Givenan intera
tion system Sys with a set of 
omponents K and a domain C ⊆ 2Kwe want to 
al
ulate a �xed-point of the family of abstra
t over-approxi-mations {SC}C∈C that are 
onstru
ted as in Lemma 3.2, i.e., we want toapply a sequen
e of appli
ations of the Edge-Mat
h operator on {SC}C∈Csu
h that no appli
ation of the Edge-Mat
h operator on a pair of abstra
tover-approximations in the resulting family {RC}C∈C yields any re�nement.After formally introdu
ing in whi
h 
ase a family of abstra
t over-approxi-mations is a �xed-point of the Edge-Mat
h operator we pro
eed by showingthat two �xed-points that result from di�erent sequen
es of appli
ationsof the Edge-Mat
h operator are identi
al, i.e., the quality of a �xed-pointthat results from the re�nement by the Edge-Mat
h operator is independentfrom the sequen
e of appli
ations. We pro
eed by introdu
ing an algorithmthat 
al
ulates the �xed-point with respe
t to the Edge-Mat
h operator of afamily of abstra
t over-approximations and give a detailed runtime analysis.Our runtime analysis shows that a polynomial runtime of our algorithm
ompletely depends on the 
hoi
e of the domain of the family of abstra
tover-approximations. We propose a 
lass of domains su
h that our algorithmruns in polynomial time on families that are based on these domains andwe provide two interesting lemmas whi
h show that we 
an, under 
ertain
onditions, modify a domain C while preserving the �information� in the�xed-point of the family {SC}C∈C that is 
onstru
ted by the Edge-Mat
hoperator.De�nition 3.8:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let {RC}C∈C be a fam-ily of transition systems of the form RC = (QC , Int,→RC

, q0C). The family87
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{RC}C∈C is 
alled a �xed-point with respe
t to the Edge-Mat
h op-erator if EM(RC , RD) = RC for all C,D ∈ C, i.e., no further appli
ation ofthe Edge-Mat
h operator on a pair of transition systems yields any re�ne-ment.First we show here that �xed-points with respe
t to the Edge-Mat
h oper-ator that result from di�erent sequen
es of appli
ations of the Edge-Mat
hoperator on pairs of transition systems in a family are identi
al. This resultshows that we do not have to 
onsider that there might be a sequen
e ofre�nement steps that leads to a more re�ned �xed-point.Lemma 3.4:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let {RC}C∈C be a familyof transition systems of the form RC = (QC , Int,→R

′
C
, q0C). Let seq1 and

seq2 be sequen
es that des
ribe appli
ations of the Edge-Mat
h operatoron {RC}C∈C, i.e., sequen
es of tuples in C × C. Let seq1 result in thefamily {R′
C}C∈C and seq2 in the family {R′′

C}C∈C. If {R′
C}C∈C and {R′′

C}C∈Care �xed-points with respe
t to the Edge-Mat
h operator then {R′
C}C∈C =

{R′′
C}C∈C.Proof. The proof 
an be found in Appendix A on Page 199.De�nition 3.9:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model

IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let {RC}C∈C be a familyof transition systems of the form RC = (QC , Int,→RC
, q0C). If {R′

C}C∈C isthe �xed-point with respe
t to the Edge-Mat
h operator that resulted fromthe appli
ation of a sequen
e of Edge-Mat
h operations on {RC}C∈C thenwe 
all {R′
C}C∈C the Edge-Mat
h �xed-point of {RC}C∈C.Note that from Theorem 3.1 follows that the Edge-Mat
h �xed-point of afamily of abstra
t over-approximations is a family of abstra
t over-approxi-mations. 88



3.3. PRECISENESS AND APPLICATIONAn Algorithm for 
al
ulating the Edge-Mat
h Fixed-PointWe now introdu
e an approa
h to 
al
ulate the Edge-Mat
h �xed-point ofthe family of abstra
t over-approximations {SC}C∈C that is 
onstru
ted as inLemma 3.2. In our approa
h we su

essively apply the Edge-Mat
h operatoron all pairs of abstra
t over-approximations, that share a nonempty set of
omponents, until no further appli
ation 
auses any re�nement. Algorithm2, 
alled FP , des
ribes this approa
h in pseudo
ode.Algorithm 2 FP({SC}C∈C)1: {RC}C∈C ← {SC}C∈C2: {R′
C}C∈C ← NIL3: while {RC}C∈C 6= {R

′
C}C∈C do4: {R′

C}C∈C ← {RC}C∈C5: for all C,D ∈ C with C 6= D and C ∩D 6= ∅ do6: RC ← EM(RC , RD)7: end for8: end while9: return {RC}C∈CIn the following we dis
uss the runtime of Algorithm 2 and argue underwhi
h assumption this runtime is polynomial in the size of the underlyingintera
tion system. The runtime analysis shows that we 
an ensure thatAlgorithm 2 runs in polynomial time on {SC}C∈C if the domain C 
onsistsof a polynomial number of subsets and ea
h subset 
onsists of a numberof 
omponents that is bounded by a 
onstant. Later we propose a 
lass ofdomains that ful�lls these properties.Runtime Analysis of Algorithm FPLet Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C a domain of IM.89



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSLet cmax = max{|C| |C ∈ C}, i.e., the number of 
omponents in the largestset in C and let m = max{|Qi| |i ∈ K}, i.e., the size of the largest statespa
e among all 
omponents in K. Let C ∈ C be an arbitrary set in thedomain. The size of the state spa
e QC of the abstra
t over-approximation
SC is bounded by |QC | ≤ mcmax. Thus, the size of the transition relation
→SC

⊆ QC × Int×QC is bounded by | →SC
| ≤ m2·cmax · |Int|.The 
ost of a rea
hability analysis on SC is bounded by |QC | + |→SC

| ≤

mcmax +m2·cmax · |Int| (a modi�ed BFS).The appli
ation of the Edge-Mat
h operator on a pair of abstra
t over-appro-ximations SC and SD (C,D ∈ C) 
onsists of a 
omparison of ea
h rea
habletransition in SC with ea
h rea
hable transition in SD. Thus, the 
ost of anappli
ation 
orresponds to the 
osts of a rea
hability analysis on SC and
SD plus |→SC

| · |→SD
|. It follows that the 
osts of an appli
ation of theEdge-Mat
h operator is bounded by

em = 2
(

mcmax +m2·cmax · |Int|
)

+
(

m2·cmax · |Int|
)2

.where the �rst summand des
ribes the worst 
ase 
osts of the rea
habilityanalysis on SC and SD and the se
ond summand an upper bound for thenumber of pairs of transitions in SC and SD.There are |C| abstra
t over-approximations in {SC}C∈C. The for-loop inLine 5 to Line 7 performs an appli
ation of the Edge-Mat
h operator onea
h pair of abstra
t over-approximations, i.e., the 
osts of this pro
ess arebounded by |C|2 · em.The number of all transitions in {SC}C∈C is bounded by |C| ·m2·cmax · |Int|.In the while-loop in Line 3 to Line 8 at least one transition is removed bythe Edge-Mat
h operator in ea
h iteration. It follows that the runtime 
ostsof Algorithm 2 are altogether
|C| ·m2·cmax · |Int| · |C|2 · em.This runtime bound is polynomial in the size of the spe
i�
ations of Sys if90



3.3. PRECISENESS AND APPLICATION1. cmax is a 
onstant, i.e., the number of 
omponents in ea
h set in C isbounded by a 
onstant and2. |C| is of polynomial size in the size of the spe
i�
ations of Sys.Thus, the requirement for Algorithm 2 to run in polynomial time in thesize of the spe
i�
ations of Sys is 
ompletely depending on the 
hoi
e of thedomain.The size of a domain C ⊆ 2K is bounded by 2|K|, i.e., the number of ab-stra
t over-approximations in a family 
an be exponentially in the number of
omponents in an intera
tion system. Sure enough, a family 
onsisting of anexponential number of abstra
t over-approximations requires an exponentialnumber of appli
ations of the Edge-Mat
h operator in order to 
al
ulate the�xed-point. In the following we propose a domain su
h that Algorithm 2runs in polynomial time in the size of the spe
i�
ations of Sys on a familyof abstra
t over-approximations that is based on this domain.Let Sys be an intera
tion system with intera
tion model IM and a set of
omponents K. We assume here that the intera
tion graph G of IM is
onne
ted. Consider the domain C ⊆ 2K that 
onsists of all subsets of theset of 
omponents K that are of a �xed 
onstant size d ≪ |K|, i.e., allsubsets of the same 
onstant size d whi
h is 
onsiderable smaller than |K|.For a domain like this holds that |C| = (

|K|
d

)

≤ |K|d and ea
h set in C isof 
onstant size, i.e., Algorithm 2 runs in polynomial time in the size of thespe
i�
ations of Sys on the family of abstra
t over-approximations {SC}C∈C.In the following we argue that, depending on the stru
ture of the intera
tiongraph G, we 
an negle
t 
ertain sets in C.A Sophisti
ated DomainLet Sys be an intera
tion system with a set of 
omponents K and C ⊆ 2K adomain. Let {SC}C∈C be the family of abstra
t over-approximations that are
onstru
ted as in Lemma 3.2. Let {RC}C∈C be the Edge-Mat
h �xed-point91



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSof {SC}C∈C. The following lemmas show that, under 
ertain 
onditions,we 
an modify C by repla
ing subsets in C against others, that are notin
luded in C, or even removing entire subsets su
h that, roughly spoken,the information in {RC}C∈C is preserved in the Edge-Mat
h �xed-point ofthe family that is based on the modi�ed domain.The �rst lemma exploits the stru
ture of the intera
tion graph of an in-tera
tion model (see De�nition 2.1 in Chapter 2) and shows that we 
anrestri
t ourselves domains 
onsisting of subsets of 
omponents su
h that theintera
tion graph restri
ted to a subset is 
onne
ted in a graph theoreti
sense.De�nition 3.10:Let G = (V,E) be an undire
ted graph. A set of nodes V ′ ⊆ V is 
alled
onne
ted in G if any two nodes in V ′ are 
onne
ted by a path and nonode in V ′ is 
onne
ted by an edge to a node in V \ V ′. We say G = (V,E)is 
onne
ted if V is 
onne
ted in G.Let C ⊆ 2K be a domain with respe
t to an intera
tion system Sys witha set of 
omponents K. Let G = (K,E) be the intera
tion graph of theintera
tion model of Sys and D ∈ C. We show that we 
an repla
e D bya partition of D that 
onsists of the 
onne
ted subsets of 
omponents in Grestri
ted to the 
omponents in D.Lemma 3.5:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let D ∈ C where D isthe disjoint union of the sets D1, D2, . . . , Dk su
h that Di (1 ≤ i ≤ k) is
onne
ted in the intera
tion graph G of IM restri
ted to the 
omponents in
D.Let C′ = C\{D} and C̃ = C′∪{D1, D2, . . . , Dk}. Let {RC}C∈C be the Edge-Mat
h �xed-point of the family {SC}C∈C and {R′

C}C∈C̃ be the Edge-Mat
h�xed-point of the family {SC}C∈C̃. 92



3.3. PRECISENESS AND APPLICATIONThen the following two properties hold for the two families:1. RC = R′
C for C ∈ C′ and2. a transition qD

α
−→RD

q′D is rea
hable in RD if and only if the transition
qDi

α
−→R

′
Di

q′Di
with qD↓Di

= qDi
and q′D↓Di

= q′Di
is rea
hable in R′

Difor ea
h 1 ≤ i ≤ k.Proof. The proof 
an be found in Appendix A on Page 200.The next lemma shows that we 
an remove a subset in a domain that isin
luded in another subset in the domain. Roughly spoken, the reason fornot in
luding a subset in a domain is be
ause the information that thissubset of 
omponents 
ontributes to the re�nement pro
ess is 
overed byanother subset of 
omponents already in
luded in the domain.Lemma 3.6:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let D1, D2 ∈ C with
D1 ( D2 and C′ = C \ {D1}. Let {RC}C∈C be the Edge-Mat
h �xed-pointof the family {SC}C∈C and {R′

C}C∈C′ be the Edge-Mat
h �xed-point of thefamily {SC}C∈C′ . Then we 
an 
on
lude that1. RC = R′
C for C ∈ C′ and2. a transition qD1

α
−→RD1

q′D1
is rea
hable in RD1

if and only if a transition
qD2

α
−→R

′
D2

q′D2
with qD2

↓D1
= qD1

and q′D2
↓D1

= q′D1
is rea
hable inR′

D2
.Proof. The proof 
an be found in Appendix A on Page 202.Let Sys be an intera
tion system with intera
tion model IM and a set of
omponents K and 
onsider the domain C ⊆ 2K that 
onsists of all subsetsof the set of 
omponents K that are of a �xed 
onstant size d≪ |K|.Consider the domain C′ that results from C by removing all D ∈ C where Grestri
ted toD is not 
onne
ted and adding the 
onne
ted sets inG restri
tedto D, i.e., for ea
h C ∈ C′ holds that G restri
ted to C is 
onne
ted. Let93
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{RC}C∈C respe
tively {R′

C}C∈C′ be the Edge-Mat
h �xed-points whi
h are
al
ulated by Algorithm 2 from {SC}C∈C respe
tively {SC}C∈C′. By Lemma3.5 follows that for ea
h D ∈ C, if G restri
ted to D is 
onne
ted, that
RD = R′

D and, if G restri
ted to D is not 
onne
ted, that we 
an 
onstru
t
RD from the respe
tive abstra
t over-approximations in {R′

C}C∈C′ that arebased on the 
onne
ted sets in G restri
ted to D.Consider now the domain C′′ that results from C′ by removing all D1 ∈ C′if there is D2 ∈ C′ with D1 ( D2. Let {R′′
C}C∈C′′ be the Edge-Mat
h�xed-point of {SC}C∈C′′ that was 
al
ulated by Algorithm 2. By Lemma3.6 follows that for ea
h D ∈ C′ ∩ C′′ holds that R′

D = R′′
D and for ea
h

D1 ∈ C′ \ C′′ that we 
an 
onstru
t R′
D1

by proje
ting the transitions in anabstra
t over-approximation R′′
D2

on D1 where D2 is a superset of D1.The domain C′′ 
onsists of all subsets C of K with d 
omponents su
h thatthe intera
tion graph G restri
ted to C is 
onne
ted. This domain is asubset of the domain that 
onsists of all subsets of size d, i.e., our runtimeanalysis shows that Algorithm 2 runs in polynomial time in the size of thespe
i�
ations of Sys on a family of abstra
t over-approximations that isbased on this domain. Thus, this is the domain that we propose to use as abasis for Algorithm 2.Example 3.5:The intera
tion graph G of the intera
tion model in Example 1.1 is depi
tedin Figure 2.1 on Page 36. The Intera
tion model 
ontains the set of 
ompo-nents K = {TER1,TER2,GS,ADB,DB}, i.e., K 
onsists of 5 
omponents.A domain C that 
onsists of all subsets of size 3 in
ludes (5
3

)

= 10 subsets.The domain
C′ = {{TER1,GS,ADB}, {GS,ADB,DB}, {TER2,GS,DB},

{TER2,GS,ADB}, {TER2,GS,TER1}, {GS,TER1,DB}}
onsists of all subsets C ⊆ K su
h that |C| = 3 and the intera
tion graph Grestri
ted to C is 
onne
ted. This domain only 
onsists of 6 subsets. If we
onsider an intera
tion model with s ≥ 2 terminals then a respe
tive domain94
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C that 
onsists of all subsets of size 3 in
ludes (s+3

3

) subsets (s terminals andthe 3 additional 
omponents GS, ADB and DB). If we 
onsider a domainthat 
onsists of all subsets C ⊆ K with |C| = 3 and the intera
tion graph Grestri
ted to C is 
onne
ted then it is easy to see that ea
h set 
onsists of the
omponent GS and two arbitrary additional 
omponents. This is, there are
(

s+2
2

) sets in this domain. In other words, in this example, there are (

s+2
3

)less sets in this domain 
ompared to the domain that 
onsists of all subsetsof size 3.Let Sys be an intera
tion systems with a set of 
omponents K. In summary,we propose to use a domain C ⊆ 2K as a basis for a family of abstra
tover-approximations in Algorithm 2 that 
onsists of all subsets C of K su
hthat1. C 
onsists of d 
omponents for a 
onstant d≪ |K| and2. the intera
tion graph G with respe
t to the intera
tion model in 
on-sideration restri
ted to the 
omponents in C is 
onne
ted.There is no set in C that 
an be negle
ted by Lemma 3.5 or Lemma 3.6 andea
h subset of K that 
onsists of d 
omponents and is not in C is redundantfor the 
al
ulation of the �xed-point of a family of abstra
t over-approxima-tions that is based on C.A domain like that 
onsists in the worst 
ase of (|K|
d

)

≤ |K|d subsets andea
h abstra
t over-approximation is of polynomial size in the size of thespe
i�
ations of Sys. By our runtime analysis of Algorithm 2 follows thatthe algorithm runs in polynomial time in the size of the spe
i�
ations of Syson a family of abstra
t over-approximations that is based on su
h a domain.3.4 Con
lusion and Related WorkIn this 
hapter we presented a formal 
on
ept of over-approximations ofthe global behavior of intera
tion systems. Su
h over-approximations su�er95



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSfrom the state spa
e explosion problem just like the global behavior thatis approximate. In order to 
ir
umvent this issue, we introdu
ed abstra
tover-approximations that are based on a subset of 
omponents of an inter-a
tion system and dis
ussed that these abstra
t over-approximations indu
eover-approximations of the global behavior of an intera
tion system whilethey, depending on the size of the underlying subset of 
omponents, are ofpolynomial size in the size of the spe
i�
ations of the intera
tion system.Furthermore, we des
ribed the Edge-Mat
h operator that 
ompares pairsof abstra
t over-approximations in order to re�ne them and proposed analgorithm that 
omputes the �xed-point of a family of abstra
t over-ap-proximations with respe
t to an appli
ation of this operator. We showedunder whi
h assumptions our algorithm runs in polynomial time in the sizeof the underlying intera
tion system. The assumptions relate to the numberof abstra
t over-approximations in a family and their individual size, i.e.,the requirement for our algorithm to run in polynomial time is 
ompletelydepending on the domain of the family in 
onsideration. We proposed asub
lass of families of abstra
t over-approximations that guarantees that we
an 
al
ulate the �xed-point in polynomial time.The work most related to our abstra
t over-approximations whi
h indu
eover-approximations of a 
ooperating system modeled by the formalism ofintera
tion systems is [Min10℄. Similar to our approa
h, [Min10℄ 
onsidersnot ne
essarily disjoint subsets of 
omponents of an intera
tion system andintrodu
es subsystems that are based on these subsets and the glue-
ode ofthe system. The rea
hable state spa
e of ea
h subsystem is interpreted asa 
ompa
t representation of an over-approximation of the rea
hable statespa
e of the global behavior of the intera
tion system. In the followingwe 
all these sets abstra
t state over-approximations . Thus, the approa
hdeals with over-approximations of the set of rea
hable global states and notwith over-approximations of the rea
hable global behavior, i.e., rea
hableglobal transitions. The abstra
t state over-approximations are re�ned by ate
hnique 
alled Cross-Che
king that, similar to the Edge-Mat
h operator,96
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ompares pairs of abstra
t state over-approximations and removes a subsys-tem state qC if there is an abstra
t state over-approximation with no statethat agrees with qC on shared 
omponents. This is, our re�nement approa
huses a similar 
ourse of a
tion while we use the information that is providedby the glue-
ode in our te
hniques. Thus, it is easy to see that if we interpretthe sets of states in the Cross-Che
king approa
h as abstra
t over-approxi-mations in our setting then our approa
h results in more re�ned abstra
tover-approximations. In Chapter 5 we introdu
e several examples and pointout the advantages of our approa
h over the Cross-Che
king approa
h. Inaddition [Min10℄ introdu
es an approa
h to establish deadlo
k-freedom inintera
tion systems in polynomial time by an approa
h that is based on theanalysis of abstra
t state over-approximations. The approa
h is brie�y in-trodu
ed in Chapter 4 in Se
tion 4.3 as the waiting 
hain approa
h. Weshow by examples that our approa
h to establish deadlo
k-freedom and thewaiting 
hain approa
h are in
omparable, i.e., there are deadlo
k-free sys-tems where our approa
h su

eeds to establish deadlo
k-freedom and thewaiting 
hain approa
h fails and vi
e versa.[CHM+93℄ 
onsiders a partitioning of all subsystems in a 
ooperating sys-tem and performs rea
hability analyses on, so 
alled, �subautomata� that arebased on a set in this partition. Like in our approa
h, these subautomataare 
ompa
t representations of over-approximations. The subautomata arebased on pairwise disjun
t subsets of subsystems, i.e., there is no way to ap-ply a re�nement approa
h based on the Cross-Che
king or the Edge-Mat
hoperator. An approa
h that 
omes 
lose to our approa
h is introdu
ed in[GDHH98℄ where the rea
hable state spa
e of syn
hronous hardware thatis modeled by Mealy ma
hines [Mea55℄ is approximated. The Mealy ma-
hine formalism 
omes very 
lose to the formalism of intera
tion systems.The approa
h deals ex
lusively with the 
onstru
tion of 
ompa
t representa-tions of over-approximations. Similarly to our approa
h and the approa
h in[Min10℄, the authors 
onsider not ne
essarily disjoint subsets of subsystemsand interpret the rea
hable state spa
e of a system based on one of these97



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSsubsets as a 
ompa
t representation of an over-approximation of the rea
h-able state spa
e of the Mealy ma
hine in 
onsideration. Thus, the approa
h
onstru
ts abstra
t state over-approximations of a Mealy ma
hine. In 
on-trast to [Min10℄ the rea
hable state spa
es are 
onstru
ted simultaneouslyand the re�nement of the abstra
t state over-approximations is a
hieved by
ofa
toring with the so far explored state spa
es. Similarly to [Min10℄ andin 
ontrast to our re�nement approa
h, the approa
h in [GDHH98℄ 
onsid-ers the state transitions only for state spa
e explorations and not for there�nement pro
ess of the abstra
t state over-approximations, i.e., the ap-proa
h 
onsiders only over-approximations of the rea
hable state spa
e andnot over-approximations of the rea
hable transitions. In [GD99℄ the authorsuse this approa
h in order to establish invariants (a sub
lass of safety prop-erties) by a 
ombined forward rea
hability analysis from the initial state ofa Mealy ma
hine and ba
kward rea
hability analysis from states that harman invariant in 
onsideration.Introdu
ed in [AC05℄ is a te
hnique that is based on a su�
ient 
onditionin order to establish deadlo
k-freedom in �nite state 
on
urrent programsin polynomial time. The approa
h 
he
ks a 
ondition that guarantees thatthere is an over-approximation of the global behavior of a system in 
on-sideration su
h that every time a subsystem 
hanged its state it is ensuredthat this subsystem either does not blo
k any 
ooperation or 
an parti
i-pate in a 
ooperation. If the initial state is deadlo
k-free then this 
onditionguarantees deadlo
k-freedom in a system. The 
ondition is 
he
ked by ananalysis of all abstra
t over-approximations that are based on subsets of
3 subsystems su
h that the intera
tion graph restri
ted to a subset is 
on-ne
ted, i.e., in 
ontrast to our approa
h the authors do not 
onsider abstra
tover-approximations based on d 6= 3 subsystems. Similarly to the waiting
hain approa
h in [Min10℄ the analysis of the abstra
t over-approximationsis based on the refutation of 
ertain waiting 
onditions among lo
al statesof the subsystems. 98



Chapter 4
Establishing Deadlo
k-Freedom
4.1 Introdu
tionVerifying properties of a system is a 
ru
ial part in the pro
ess of systemdesign. Given system spe
i�
ations, in system design a model in a formallanguage is 
onstru
ted that should meet the spe
i�
ations. De
iding variousproperties in intera
tion systems is PSPACE-
omplete [MCM08
℄, i.e., for
ertain system properties, we 
an not expe
t that there is a te
hnique thatde
ides this property in time polynomial in the size of an input intera
tionsystem. Parti
ularly, de
iding the system property of deadlo
k-freedom isPSPACE-
omplete, i.e., the property that states that there is no globalstate rea
hable in the global behavior of an intera
tion system that is adeadlo
k. Deadlo
k-freedom is an important and desirable system propertyin 
ooperating systems. Espe
ially systems that are 
riti
ally required toanswer to unexpe
ted or dangerous situations are 
ru
ially required to bedeadlo
k-free, e.g., a 
ontrol 
omponent in a power plant that is in a deadlo
kduring an earthquake 
an blo
k important safety pre
autions.It is well known that the 
lass of safety properties, i.e., properties that statethat �something bad does never happen� [Lam77, LS85℄, 
an be established99



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMin a system by 
he
king these properties in an over-approximation of thesystem. This is, if �something bad does never happen� in an over-approxi-mation of a system then it espe
ially does never happen in the behavior of thesystem. In parti
ular, the property of deadlo
k-freedom is a safety property.Thus, if an over-approximation of an intera
tion system is deadlo
k-free thenthe there is no deadlo
k rea
hable in the global behavior as well. In Chapter3 we introdu
ed a 
on
ept of over-approximations of the global behavior ofan intera
tion system and abstra
t over-approximations that are based on asubset of 
omponents and indu
e over-approximations of the global behavior.In this 
hapter we des
ribe how a family of abstra
t over-approximations 
anbe used in order to establish deadlo
k-freedom in intera
tion systems in timepolynomial in the size of an input intera
tion system. The general idea ofestablishing an arbitrary system property is based on [Min10℄. Let Sys bean intera
tion system with a set of 
omponents K, C ⊆ 2K a domain and
{RC}C∈C a family of abstra
t over-approximations of the global behavior Tof Sys. Let P be a system property and P ′ a predi
ate on abstra
t over-approximations su
h that from P ′(RC) is true for all C ∈ C follows that
P holds in Sys and the test whether P ′(RC) is true for all C ∈ C 
an bea
hieved in polynomial time in the size of Sys. If P is a safety property, i.e.,a property that states that �something bad will never happen� then we 
anadd the following intermediate step. If we 
an 
on
lude from P ′(RC) is truefor all C ∈ C that there must be an over-approximation T ′ of T su
h that
P holds for T ′ then we 
an 
on
lude that P holds in T as well.This 
hapter is organized as follows. In Se
tion 4.2 we give a brief 
om-pendium of de�nitions regarding linear time properties and safety proper-ties. Se
tion 4.3 introdu
es an approa
h for establishing deadlo
k-freedom inintera
tion systems by analyzing a family of abstra
t over-approximations.Furthermore, in Se
tion 4.3 we 
ompare our approa
h to an approa
h forestablishing deadlo
k-freedom in intera
tion systems that was introdu
ed in[Min10℄. Se
tion 4.4 
on
ludes this 
hapter.100



4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONS4.2 Safety Properties and Over-ApproximationsIn this se
tion we provide a brief 
ompendium of the de�nitions of lineartime properties and the sub
lass of safety properties. We re
apitulate thewell known theorem that states that safety properties 
an be establishedin systems by testing these properties in over-approximations of the systemand we exemplify how a family of abstra
t over-approximations 
an be usedto guarantee that a safety property has to hold in an over-approximation ofa system. The notations in this se
tion are based on [BK08℄1.For a given transition system that des
ribes the behavior of a system, wehave to de�ne a labeling fun
tion that assigns sets of so 
alled �atomi
�propositions to the states of the transition system, e.g., a system that modelsan ATM has states to whi
h we 
ould assign atomi
 propositions like �a useris logged in�, �a wrong pin was entered� or �ERROR 37 o

urred�. Theseare propositions that are guaranteed in a �xed state of the system and areindependent from states being visited previously or afterwards. The pathsof a system indu
e sequen
es of sets of atomi
 propositions. A linear timeproperty is de�ned by a set of sequen
es of sets of atomi
 propositions. Apath in a system ful�lls a linear time property if the indu
ed sequen
e ofpropositions is in
luded in the linear time property and a system ful�lls alinear time property if the indu
ed sequen
e of ea
h path is in
luded in thelinear time property. In the following we formally introdu
e this 
on
ept.De�nition 4.1:Let S = (Q,A,→S, q
0) be a transition system with transition relation→S⊆

Q×A×Q. A �nite path in S is a �nite sequen
e of states π = q0q1q2 . . . , qksu
h that for ea
h 0 ≤ i ≤ k − 1 there is a transition qi
a
−→ qi+1 in S.Analogously, an in�nite path in S is an in�nite sequen
e of states π′ =

q0q1q2 . . . su
h that for i ≥ 0 there is a transition qi
a
−→ qi+1 in S. Note thata �nite respe
tively in�nite path starts in the initial state q0. A �nite path1In 
ontrast to [BK08℄ we allow a transition systems to 
ontain rea
hable deadlo
ks,i.e., in some points the following de�nitions di�er from the 
on
epts in [BK08℄.101



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMis 
alled maximal if it ends in a deadlo
k.Let Pathfin(S) be the set of all �nite paths in S and Path(S) the set of allin�nite and maximal �nite paths in S.If there are atomi
 propositions assigned to the states of a transition systemthen a �nite path in the system indu
es a sequen
e of sets of atomi
 propo-sitions. These sequen
es are 
alled tra
es. A linear time property is de�nedby a set of sequen
es of sets of atomi
 propositions and a transition systemsful�lls a linear time property if all tra
es of the system are in
luded in theproperty.De�nition 4.2:Let S = (Q,A,→S, q
0) be a transition system, AP a set of atomi
 propo-sitions and LS : Q → 2AP a labeling fun
tion that assigns a set of atomi
propositions to ea
h state in Q. Let π = q0q1q2 . . . , qk ∈ Pathsfin(S) be a�nite path in S, then the tra
e of π is the sequen
e

trace(π) = LS(q
0)LS(q

1)LS(q
2) . . . LS(q

k).Let Tracesfin(S) = {trace(π)|π ∈ Pathsfin(S)} be the set of all tra
esof �nite paths in S. Analogously, for an in�nite path π′ = q0q1q2 . . .let trace(π′) = LS(q
0)LS(q

1)LS(q
2) . . . and Traces(S) = {trace(π)|π ∈

Paths(S)}, i.e., the set of all tra
es of all in�nite and maximal �nite pathsin S.A linear time property (LT-property) Plt is a subset of (2AP )∞ wherethe ∞ operator yields all �nite and in�nite 
on
atenations of elements in
2AP . A transition system S satis�es an LT-property Plt if and only if
Traces(S) ⊆ Plt. We denote S satis�es Plt as S |= Plt.A well investigated sub
lass of LT-properties is the sub
lass of safety proper-ties. Roughly spoken, an LT-property is a safety property if we 
an 
on�rmthat the tra
e of a path in a transition system violates the property by onlyexamine a �nite pre�x of the tra
e, i.e., even if the tra
e in 
onsideration isof in�nite length. A state in a system that is rea
hed if we follow a path102



4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONSthat 
orresponds to a pre�x like that is often interpreted as a �bad situa-tion� be
ause following this path violates the safety property. Thus, a safetyproperty states that �something bad does never happen� [Lam77, LS85℄.De�nition 4.3:Let AP be a set of atomi
 propositions and Plt ⊆ (2AP )∞ an LT-property.The property Plt is 
alled a safety property if for ea
h in�nite word σ in
(2AP )∞ \ Plt (i.e., a word that does not belong to Plt) there is a �nite pre�x
σ′ of σ su
h that all words σ′′ in (2AP )∞ where σ′ is a pre�x of σ′′ do notbelong to Plt as well.Remark 4.1:In other words, if σ is an in�nite tra
e in a transition system S su
h that σ isnot in a safety property Plt then only a �nite pre�x of σ has to be examinedin order to refute that S |= Plt.In the following example we illustrate the negated rea
hability problem inintera
tion systems in the presented notation of LT-properties and argue whythis property is in fa
t a safety property. The negated rea
hability problem
onsists of the question, given an intera
tion system Sys and a global state
q, whether q is not rea
hable in the global behavior T of Sys.Example 4.1:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with a set of 
ompo-nents K = {1, 2, . . . , n} and intera
tion model IM = (K, {Ai}i∈K , Int). Weassume that the lo
al state spa
es of the lo
al behaviors are pairwise dis-joint. Let T = (Q, Int,→T , q

0) be the global behavior of Sys and q =

(q1, q2, . . . , qn) ∈ Q a global state in T . We want to establish whether qis not rea
hable in T . Let AP be the set of atomi
 propositions that 
on-sists of all states of the lo
al behaviors in Sys, i.e., AP = ∪i∈KQi. Let
LT : Q → 2AP be a labeling fun
tion with LT (q

′) = {q′1, q
′
2, . . . , q

′
n} for

q′ = (q′1, q
′
2, . . . , q

′
n) ∈ Q, i.e., the atomi
 propositions that hold in a globalstate 
oin
ide with the respe
tive lo
al states. The LT-property
P =

{

σ|σ ∈
(

2AP \ {q1, q2, . . . , qn}
)∞}103



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM
onsists of all �nite and in�nite sequen
es σ of subsets of AP where the set
{q1, q2, . . . , qn} does not o

ur in σ. Clearly,
• P is a safety property be
ause a sequen
e that is not in P has a �nitepre�x that ends in {q1, q2, . . . , qn} and
• T |= P if and only if q is not rea
hable in T .It is well known that a safety property 
an be established in a system by
he
king this property in an over-approximation of the system. This state-ment is based on the following theorem.Theorem 4.1:Let S = (QS, AS,→S, q

0
S) and T = (QT , AT ,→T , q

0
T ) be transition systems,

AP a set of atomi
 propositions and LT : QT → 2AP and LS : QS → 2APlabeling fun
tions. Then Tracesfin(T ) ⊆ Tracesfin(S) if and only if forea
h safety property P holds S |= P ⇒ T |= P .Proof. A proof 
an be found in [BK08℄.Let T = (Q,A,→T , q
0) and S = (Q,A,→S, q

0) be transition systems su
hthat S is an over-approximation of T . Furthermore, let AP be a set ofatomi
 propositions and L : Q→ 2AP a labeling fun
tion, then it is easy tosee that Tracesfin(T ) ⊆ Tracesfin(S). This is be
ause ea
h �nite path in Tis also a �nite path in S and thus ea
h tra
e of a �nite path in T is in
ludedin the set of �nite tra
es of S as well. This means, if one 
an show that anarbitrary safety property P holds in S then P holds in T as well. Clearly, if
P does not hold in S then we do not know whether P does or does not holdin T .Note, if S is an over-approximation of T , that we 
an not 
on
lude that Tsatis�es an arbitrary LT-property P whi
h is not a safety property if S |= P ,i.e., if Traces(S) ⊆ P . A maximal �nite path in T the tra
e of whi
h is notin
luded in P might be a proper pre�x of a maximal �nite or in�nite pathin S. This is, we 
an not assume that Traces(T ) ⊆ Traces(S) and that104



4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONS
Traces(T ) ⊆ P if P is not a safety property.We 
onsider abstra
t over-approximations of an intera
tion system Sys whi
hindu
e over-approximations of the global behavior T of Sys. Be
ause of thestate spa
e explosion problem we want to avoid to analyze the over-approxi-mation that is indu
ed by an abstra
t over-approximation in order to ensurea safety property P in Sys. What we do is that we formulate a predi
ate
P ′ on a family of abstra
t over-approximations su
h that if P ′ holds on thefamily then we 
an 
on
lude that there is an over-approximation S of T with
S |= P . By Theorem 4.1 it follows then that T |= P .The following example illustrates, based on Example 4.1, how we 
an useabstra
t over-approximations in order to 
on
lude that there is an over-ap-proximation of the global behavior of an intera
tion systems where a 
ertainglobal state is not rea
hable.Example 4.2:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and global behavior T . Let P be the safety propertythat was des
ribed in Example 4.1 that holds in T if and only if the globalstate q = (q1, q2, . . . , qn) ∈ Q is not rea
hable in T .Let RC be an abstra
t over-approximation of T with respe
t to the subsetof 
omponents C ⊆ K. If q is rea
hable in T then it follows from De�nition3.3 that q↓C is rea
hable in RC . Note, if q↓C is rea
hable in RC then we
annot 
on
lude whether or not q is rea
hable in T . If q↓C is not rea
hablein RC then we 
an 
on
lude that q is not rea
hable in the global extension
E(RC) of RC (see Lemma 3.1), i.e., for the over-approximation E(RC) of Tholds that E(RC) |= P . It follows by Theorem 4.1 that T |= P as well.Clearly, if q↓C is rea
hable in RC then a re�nement by the Edge-Mat
hoperator, with other abstra
t over-approximations, might result in a re�nedversion R′

C where q↓C is not rea
hable, i.e., an abstra
t over-approximationthat su�
e to establish that q is not rea
hable in T .105



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM4.3 An Approa
h to Establish Deadlo
k-FreedomIn this se
tion we dis
uss how we 
an establish whether there is no dead-lo
k (see De�nition 1.4) rea
hable in an intera
tion system by 
onsideringa family of abstra
t over-approximations, i.e., we want to establish whetheran intera
tion system is deadlo
k-free.Our approa
h deals with the identi�
ation of states in abstra
t over-appro-ximations that 
annot be proje
tions of rea
hable deadlo
ks in the globalbehavior T of an intera
tion system Sys. If there is one abstra
t over-ap-proximation R of T where no state 
an be the proje
tion of a rea
habledeadlo
k then we 
an 
on
lude that there must be an over-approximation
T ′ of T where no rea
hable state is a deadlo
k. This is be
ause the respe
tiveproje
tion of ea
h rea
hable state in T is rea
hable in R. Deadlo
k-freedomis a safety property, i.e., we 
an 
ontinue to 
on
lude that T is deadlo
k-freeas well.In the following we de�ne the system property of deadlo
k-freedom in inter-a
tion systems as an LT-property. Let Sys = (IM, {Ti}i∈K) be an intera
tionsystem with intera
tion model IM = (K, {Ai}i∈K , Int) and global behavior
T = (Q, Int,→T , q

0). Let AP = Int be a set of atomi
 propositions and
L : Q→ 2AP with

L(q) = {α ∈ Int |∀i∈Ki(α) 6= ∅ ⇒ i(α) ⊆ en(qi)},i.e., α ∈ L(q) if and only if in the global behavior T the intera
tion α isenabled in q. The state q is a deadlo
k if and only if no intera
tion is enabledin q, i.e., if and only if L(q) = ∅. The intera
tion system Sys is deadlo
k-freeif there is no deadlo
k rea
hable in T . Thus, deadlo
k-freedom of Sys 
anbe spe
i�ed as an LT-property by
Pdlf =

{

σ|σ ∈
(

2AP \ {∅}
)∞}

,i.e., all sequen
es of subsets of AP where ∅ does not o

ur in the sequen
e.Clearly, Pdlf is a safety property, be
ause a sequen
e of subsets of AP violates106
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Pdef if and only if this sequen
e has a �nite pre�x that ends in the emptyset. Thus, if S is an over-approximation of T and S |= Pdlf then it followsby Theorem 4.1 that T |= Pdef , i.e., we 
an test whether Pdef holds in Tby 
he
king whether Pdef holds in an over-approximation S of T . Given anabstra
t over-approximation R = (QC , Int,→R, q

0
C) of T , we 
an 
onstru
tthe indu
ed over-approximation E(R) and 
he
k a safety property in E(R).Clearly, this 
ourse of a
tion is not feasible if T , and thus E(R) as well,is a 
omplex transition system. We want to 
he
k Pdlf e�
iently on anabstra
t over-approximation R of T . Ea
h rea
hable state in R 
ould bethe proje
tion of a deadlo
k that is rea
hable in T . Let qC ∈ QC be area
hable state in R and E(qC) ⊆ Q be all states q ∈ Q with q↓C = qC .We 
an 
on
lude that qC 
annot be the proje
tion of a rea
hable deadlo
kin T if there is no q ∈ E(qC) with L(q) = ∅. Clearly, Sys is deadlo
k-freeif this property holds for ea
h rea
hable state in an abstra
t over-approxi-mation. This is a rather stri
t and naive approa
h to establish deadlo
k-freedom be
ause a deadlo
k in E(qC) is not ne
essarily rea
hable in T . Inthe following we des
ribe how this approa
h 
an be improved by 
omparingdi�erent abstra
t over-approximations in a family of abstra
t over-approxi-mations.We illustrate our approa
h on the example of the Dining Philosophers Prob-lem and show additionally how we 
an use the information that our ap-proa
h 
olle
ts in order to remove possible deadlo
ks in this example in anon-automati
 way.Example 4.3:In the remainder we demonstrate our approa
h to establish deadlo
k-freedomon variations of the well known Dining Philosophers Problem that was in-trodu
ed by E. Dijkstra [Dij02℄. The Dining Philosophers Problem is usedto des
ribe parallel pro
esses whi
h share a bounded number of resour
es.Basi
 version of this problem are not deadlo
k-free, i.e., the system mightrea
h a state where no further a
tivity is possible.107



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMThe problem is des
ribed as follows. We have n ≥ 2 philosophers, numbered
onse
utively, sitting in an anti
lo
kwise order around a table. Ea
h philoso-pher has a plate of food in front of himself. Pla
ed between two philosophersis a fork whi
h has to be shared between these neighboring philosophers. Aphilosopher 
an think or eat. If a philosopher thinks he does not have anyforks in his hands. If a philosopher wants to eat he needs both forks, leftand right, i.e., if a philosopher eats then the two neighboring philosopherson his left and right 
annot eat be
ause the shared forks are in use. If aphilosopher already took one fork, either its left or right, then he will notput it ba
k on the table until he took the respe
tive other fork and �nishedeating.If the philosophers are allowed to 
hoose nondeterministi
ally whi
h forkthey take �rst (provided the respe
tive fork lies on the table) then it is easyto see that a model that is based on these spe
i�
ations is not deadlo
k-free.If all philosophers on the table are holding either their left respe
tively rightfork then ea
h philosopher waits to take his right respe
tively left fork.In the following we model the Dining Philosophers Problem with n philoso-phers by an intera
tion system Sysn. Afterwards we des
ribe abstra
t over-approximations of the model and show whi
h states indi
ate that the globalbehavior T of the Sysn is not deadlo
k-free. Later we des
ribe how we 
anuse these states in the abstra
t over-approximations in order to modify themodel su
h that it be
omes deadlo
k-free.Let Sysn = (IM, {Ti}i∈K) with n ≥ 2 be an intera
tion system with intera
-tion model IM = (K, {Ai}i∈K , Int). Let
K = {Phil0, Phil1, . . . , Philn−1, F ork0, F ork1, . . . , F orkn−1}where Phili models philosopher i and Forki models fork i for 0 ≤ i < n. Weassume that fork i is pla
ed on the right of philosopher i. The set of ports

APhili
respe
tively AForki

for philosopher i respe
tively fork i with 0 ≤ i < nis spe
i�ed as follows. 108
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APhili

= { take_lefti, // take the left fork
take_righti, // take the right fork
put_lefti, // put the left fork on the table
put_righti // put the right fork on the table}

AForki
= { takei, // take this fork

puti // put this fork ba
k on the table}Ea
h philosopher 
an take the fork on his left respe
tively right and put theseforks ba
k on the table. The following intera
tions model this 
ooperationbetween philosopher Phili and the fork on his left Forki−1 and the fork onhis right Forki for 0 ≤ i < n. Note that we assume a modulo n arithmeti
,i.e., if i− 1 = −1 then i− 1 refers to n− 1 and if i+ 1 = n then i+ 1 refersto 0.
tli = {take_lefti, takei−1}

tri = {take_righti, takei}

pli = {put_lefti, puti−1}

pri = {put_righti, puti}Let Int = {tli, tri, pli, pri|0 ≤ i < n} be the intera
tion set of Sysn. Figure4.1 shows the lo
al behavior of philosopher Phili respe
tively Forki for
0 ≤ i < n. The lo
al behavior TPhili

is depi
ted in 4.1a and TForki
in 4.1b.Note, for ease of presentation, we subs
ript the states in Figure 4.1 by iinstead of Phili respe
tively Forki.By this, Sysn is fully spe
i�ed. Figure 4.2 shows the intera
tion graph forthe intera
tion model of Sys8, i.e., for a model of the Dining PhilosophersProblem with 8 philosophers.In the following we examine a family of abstra
t over-approximations of Sysnthat is 
onstru
ted and re�ned as des
ribed in Chapter 3. Let C be a domainthat 
onsist of all subsets of K with 3 
omponents where the intera
tiongraph restri
ted to these three 
omponents is 
onne
ted. There are two109



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM
q
0
i

q
1
i q

2
i

q
3
i

q
4
i q

5
i

take_lefti take_righti

take_righti take_lefti

put_lefti put_righti

put_righti put_lefti

(a) TPhili

q
0
i

q
1
i

takeiputi(b) TForkiFigure 4.1: Lo
al behavior of 
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4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMforms of subsets in C, these are Ci = {Forki, Phili+1, F orki+1} and Di =

{Phili, F orki, Phili+1} for 0 ≤ i < n, i.e., two forks and one philosopher andone fork and two philosophers. Let {RC}C∈C be the family of abstra
t over-approximations that was 
onstru
ted by Algorithm 2 (Chapter 3 on Page89) from the family {SC}C∈C (see Lemma 3.2), i.e., {RC}C∈C is the Edge-Mat
h �xed-point of {SC}C∈C. Figure 4.3 shows RCi
and Figure 4.4 RDifor 0 ≤ i < n. Not depi
ted are transitions that are labeled by intera
tionsin whi
h no 
omponent in Ci respe
tively Di parti
ipates. The lo
al statesin the abstra
t over-approximation RCi

respe
tively RDi
are depi
ted in theorder Forki, Phili+1, F orki+1 respe
tively Phili, F orki, Phili+1.As mentioned, there are exa
tly two rea
hable deadlo
ks in the global be-havior T of Sysn. These are the states where all philosophers have takentheir fork on the left respe
tively right. Certainly, the proje
tions of thesestates are rea
hable in the abstra
t over-approximations. In Figure 4.3these are the states (q1i , q

1
i+1, q

1
i+1) (marked red) respe
tively (q1i , q

2
i+1, q

1
i+1)(marked blue). In Figure 4.4 these are (q1i , q

1
i , q

1
i+1) (marked red) respe
-tively (q2i , q

1
i , q

2
i+1) (marked blue). In the following we des
ribe how we 
anautomati
ally ex
lude that some of the states in the abstra
t over-appro-ximations are proje
tions of rea
hable deadlo
ks in the global behavior of

Sysn.4.3.1 Proje
ted Deadlo
ksGiven an intera
tion system Sys with a set of 
omponents K and a familyof abstra
t over-approximations {RC}C∈C based on a domain C ⊆ 2K \ {∅}we des
ribe here an approa
h to identify states in the abstra
t over-appro-ximations that 
annot be proje
tions of rea
hable deadlo
ks in the globalbehavior T of Sys. If for one abstra
t over-approximation RC (C ∈ C) ea
hrea
hable state qC ∈ QC was ruled out by this approa
h then we 
an 
on
ludethat Sys is deadlo
k-free. This 
on
lusion is justi�ed by the fa
t that ea
hrea
hable state q ∈ Q in T proje
ted on C is rea
hable in RC . Thus, if none111
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CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMof the rea
hable states in RC are proje
tions of rea
hable deadlo
ks thenthere is an over-approximation S of T whi
h is deadlo
k-free and thus, as ofTheorem 4.1, T is deadlo
k-free as well.The basi
 idea behind this approa
h is based on the following three obser-vations. First we need one additional de�nition.De�nition 4.4:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int), C a nonempty subset of K and qC ∈ QC . Let

enC(qC) = {α ∈ Int |∀i∈Ki(α) 6= ∅ ⇒ (i ∈ C ∧ i(α) ⊆ en(qi))}.We say that an intera
tion α ∈ enC(qC) is 
omplete in qC .In other words, let qC ∈ QC be a state then enC(qC) 
onsists of all intera
-tions α ∈ Int in whi
h only 
omponents in C parti
ipate and ea
h 
ompo-nent that parti
ipates in α enables its respe
tive port. Note that ea
h globalstate that proje
ted on C equals qC is assured to enable all α ∈ enC(qC).Observation 4.1:If qC ∈ QC is a state that is not rea
hable in RC , then qC 
annot be theproje
tion of a rea
hable deadlo
k q in T be
ause a state q with q↓C = qCis not rea
hable in T in the �rst pla
e (see De�nition 3.3).Observation 4.2:If qC ∈ QC is rea
hable in RC and enC(qC) 6= ∅ then qC 
annot be theproje
tion of a rea
hable deadlo
k in T . Let α ∈ enC(qC) then ea
h port in
α is enabled by the respe
tive 
omponents in qC . These ports are enabledin ea
h global state q with q↓C = qC as well, i.e., α ∈ en(q).Observation 4.3:If qC ∈ QC is rea
hable in RC and there is another abstra
t over-approxi-mation RD with D 6= C su
h that for ea
h rea
hable state qD ∈ QD in RDwith qC↓D = qD↓C holds that either
• it is 
on�rmed that qD 
annot be the proje
tion of a rea
hable deadlo
kin T or 114
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• for the state qC∪D ∈ QC∪D with qC∪D↓C = qC and qC∪D↓D = qD holds
enC(qC∪D) 6= ∅then qC 
annot be the proje
tion of a rea
hable global deadlo
k as well.This is be
ause, for ea
h state q rea
hable in T with q↓C = qC holds thateither q↓D is not the proje
tion of a deadlo
k or q is assured to enable anintera
tion in whi
h only 
omponents in C ∪D parti
ipate.Based on the above observations we 
an formulate an approa
h that identi-�es states in a family of abstra
t over-approximations that 
an not be theproje
tion of a rea
hable deadlo
k in the global behavior of an intera
tionsystem. Observation 4.1 and 4.2 a�e
t only individual abstra
t over-appro-ximations, i.e., there is no 
ross referen
e between pairs of abstra
t over-ap-proximations. We use these two observations to 
onstru
t an initial set ofstates for ea
h abstra
t over-approximation that we want to re�ne by Obser-vation 4.3. Observation 4.3 
onsiders pairs of abstra
t over-approximations.Algorithm 3, named CRIT , des
ribes an approa
h in pseudo
ode, that ap-plies the above observations on a family of abstra
t over-approximations inorder to 
onstru
t a set of states for ea
h abstra
t over-approximation in thefamily that 
onsists of states for whi
h we 
annot ex
lude that they are pro-je
tions of rea
hable deadlo
ks. The family of abstra
t over-approximations
an be 
onstru
ted as in Algorithm 2 (Chapter 3).Observation 4.1 is applied in Line 1 in Algorithm 3 where ReachStates(RC)returns all rea
hable states in the abstra
t over-approximation RC . These
ond observation is applied in Line 2 where complete(HC) returns all states

qC in HC for whi
h enC(qC) 6= ∅. The third observation is used in the while-loop in Line 4 to 20 where pairs of sets of states are 
ompared. The for-loopin Line 6 to 19 runs through all pairs C,D ∈ C. For ea
h state qC ∈ HC weassume that this state is not the proje
tion of a rea
hable deadlo
k � in Line8 this is indi
ated by assigning true to the variable notCritical. The state
qC is then 
ompared to ea
h state qD ∈ HD, i.e., we only 
onsider states
qC and qD that 
an be proje
tions of rea
hable deadlo
ks. In Line 12 the115



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMalgorithm 
he
ks whether there is an intera
tion that is 
omplete in a state
qC∪D with qC∪D↓C = qC and qC∪D↓D = qD. If there is one su
h state whereno intera
tion is 
omplete then we have to assume that qC is the proje
tionof a rea
hable deadlo
k � this is marked in Line 12 where false is assignedto the variable notCritical.The while-loop terminates if there is no new state found that 
annot be theproje
tion of a rea
hable deadlo
k.Algorithm 3 CRIT({RC}C∈C)1: {HC}C∈C ← {ReachStates(RC)}C∈C2: {HC}C∈C ← {HC \ complete(HC)}C∈C3: {H ′

C}C∈C ← NIL4: while {H ′
C}C∈C 6= {HC}C∈C do5: {H ′

C}C∈C ← {HC}C∈C6: for C,D ∈ C do7: for qC ∈ HC do8: notCritical ←true9: for qD ∈ HD do10: if qC↓D = qD↓C then11: Let qC∪D ∈ QC∪D with qC∪D↓C = qC and qC∪D↓D = qD12: notCritical ← notCritical ∧ enC(qC∪D) = ∅13: end if14: end for15: if notCritical then16: HC ← HC \ {qC}17: end if18: end for19: end for20: end while21: return {HC}C∈CIn Chapter 3 we dis
ussed under whi
h assumptions the �xed-point of a116



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMfamily of abstra
t over-approximations with respe
t to an appli
ation of theEdge-Mat
h operator 
an be 
al
ulated in polynomial time. This is the 
aseif the family 
onsists of polynomial many abstra
t over-approximations andea
h abstra
t over-approximation is based on a number of 
omponents whi
his bounded by a 
onstant d. This implies that the number of states in ea
habstra
t over-approximation is bounded polynomially in d. This means, ifwe assume that a family of abstra
t over-approximations is 
onform to thisassumptions then Algorithm 3 runs in polynomial time. This is be
ausewe start with polynomially many states that we 
onsider to be possibleproje
tions of deadlo
ks and in ea
h exe
ution of the while-loop in Line 4 to20 at least one of these states is removed.Remark 4.2:In the following we say a state in an abstra
t over-approximation is markedas 
riti
al if we have not yet ruled out that this state is the proje
tionof a rea
hable deadlo
k in the global behavior of the intera
tion system in
onsideration.Example 4.4:If we apply Algorithm 3 on the family of abstra
t over-approximations ofour model of the Philosophers problem, des
ribed in Example 4.3, then westart with 13 rea
hable states in an abstra
t over-approximation RCi
and 27rea
hable states in an abstra
t over-approximation RDi

for 0 ≤ i < n (seeLine 1), i.e., HCi

ontains 13 and HDi


ontains 27 
riti
al states. After re-moving all states fromHCi
respe
tively HDi

for 0 ≤ i < n with enC(qCi
) 6= ∅respe
tively enC(qDi

) 6= ∅ the re�ned sets 
ontain 3 respe
tively 7 remain-ing 
riti
al states (see Line 2). After the while loop from Line 4 to Line20 was exe
uted, i.e., the re�nement des
ribed in Observation 3 was ap-plied, the updated set HCi

ontains 3 
riti
al states and HDi

4 
riti
al states(0 ≤ i < n).The returned family of sets of states 
onsists of n sets of size 3 and n setsof size 4. Remember that there are two rea
hable deadlo
ks in the globalbehavior of a model of the Dining Philosophers problem � the states where117



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMea
h philosopher pi
ked up the fork on his left respe
tively right. This is, weknow that ea
h abstra
t over-approximation 
ontains exa
tly two states thatare a
tually proje
tions of rea
hable deadlo
ks, i.e., this example shows thatwe 
annot expe
t to rule out all states that are not proje
tions of rea
habledeadlo
ks by this approa
h.In summary, we presented an approa
h that 
an be used to establish deadlo
k-freedom in intera
tion systems by analyzing a family of abstra
t over-appro-ximations of the system. In order for the approa
h to run in polynomialtime we propose to use a family of abstra
t over-approximations that are
onstru
ted as des
ribed in Se
tion 3.3 in Chapter 3. We exempli�ed our ap-proa
h on a model of the Dining Philosophers problem. The global behaviorof this model is not deadlo
k-free. The example shows that our approa
h isable to ex
lude a great amount of states from being 
riti
al, i.e., the ex
ludedstates 
an not be proje
tions of rea
hable global deadlo
ks. Nevertheless,there are states in the example, that our approa
h has marked as 
riti
al,whi
h are not proje
tions of rea
hable global deadlo
ks. However, we 
anuse the obtained information, i.e., the family of sets of 
riti
al states, in orderto modify the system su
h that our approa
h is su

essfully, i.e., su
h thatthere is at least one abstra
t over-approximation where we 
an 
on
lude thatno state 
ould be the proje
tion of a rea
hable deadlo
k. This approa
h 
anmake sense even if all states marked as 
riti
al are a
tually false-positives,i.e., the system in 
onsideration is deadlo
k-free. Our intention is, if thesystem in 
onsideration is far to 
omplex to be veri�ed by exa
t te
hniquesas LTL or CTL model 
he
king then we modify the system su
h that themodi�
ations preserve the initial design spe
i�
ations su�
iently while ourapproa
h su

eeds to establish deadlo
k-freedom.The following example illustrates how we 
an modify our model of the DiningPhilosophers in order to establish deadlo
k-freedom by our approa
h.Example 4.5:Consider the family of sets of 
riti
al states {HC}C∈C from Example 4.4, i.e.,118
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Figure 4.5: Modi�ed behavior of philosopher Phil1.the output of Algorithm 3 applied on the family of abstra
t over-approxi-mations des
ribed in Example 4.3. In our example {HC}C∈C 
onsists of sets
HCi

and HDi
for 0 ≤ i < n. In
luded in HC0

(C0 = {Fork0, Phil1, F ork1})is the state (q10 , q11, q11), i.e., the state where Fork0 and Fork1 are taken and
Phil1 has taken only the fork on his left (this state is marked red in Figure4.3). This state is the proje
tion of the rea
hable global deadlo
k where ea
hphilosopher took the fork on his left and waits to take the fork on his right.We want to modify the system su
h that this state be
omes unrea
hablein RC0

, i.e., su
h that this state does not appear in HC0
. In RC0

the state
(q10, q

1
1, q

1
1) 
an only be rea
hed if philosopher Phil1 took the fork Fork0 onhis left side and the fork Fork1 on his right side was obtained by philosopher

Phil2 (who is not in
luded in C0). In order to prevent this situation we 
anmodify the behavior of philosopher Phil1 su
h that he takes the fork on hisleft only if he already holds the fork on his right, i.e., we modify the behaviorof philosopher Phil1 as depi
ted in Figure 4.5.Roughly spoken, this modi�
ation prevents the deadlo
k in the global be-havior where ea
h philosopher took the fork on his left and waits for thefork on his right, i.e., the deadlo
k where ea
h philosopher took the fork onhis right and waits for the fork on his left should still be rea
hable in the119
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Figure 4.6: Modi�ed behavior of philosopher Phil0.global behavior of this modi�ed intera
tion system. A
tually, if Algorithm3 is applied on this modi�ed system (where the family of abstra
t over-approximations is 
onstru
ted just like in the original system) then ea
habstra
t over-approximation 
ontains exa
tly one 
riti
al state. This stateis the proje
tion of the deadlo
k where ea
h philosopher took the fork on hisleft and waits for the fork on his right. The reason for this is that the state
(q10, q

1
1, q

1
1) be
omes unrea
hable in the abstra
t over-approximation RC0

andother states that remained marked as 
riti
al in the original version are now
on�rmed to be not proje
tions of deadlo
ks with respe
t to Observation 3.In the same manner we 
an modify, e.g., the behavior of philosopher Phil0su
h that he only waits for the fork Fork0 on his right if he already took thefork Forkn−1 on his left, i.e., we modify the behavior of philosopher Phil0 asdepi
ted in Figure 4.6. This modi�
ation should prevent that the proje
tionof the (former) rea
hable global deadlo
k where ea
h philosopher took thefork on his right and waits for the fork on his left is rea
hable in the abstra
tover-approximation with respe
t to C0 of the modi�ed system.It is easy to see that the modi�ed system is deadlo
k-free. And, as expe
ted,after our approa
h applied to this modi�ed system there is no state markedas 
riti
al in any abstra
t over-approximation, i.e., the modi�ed system is120
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on�rmed to be deadlo
k-free. Note that proje
tions of the rea
hable globaldeadlo
k where ea
h philosopher holds the fork on his left respe
tively rightin the original system are still rea
hable in respe
tive abstra
t over-approxi-mations of the modi�ed system. Nevertheless, our approa
h 
on�rmed thatthese proje
tions 
an not be proje
tions of rea
hable global deadlo
ks.4.3.2 Comparison to the Waiting Chain Approa
hIn Chapter 3 in Se
tion 3.4 we mentioned that our introdu
ed re�nementapproa
h is similar to an approa
h that was introdu
ed in [Min10℄ whereobje
ts are 
onsidered that are similar to abstra
t over-approximations. Inaddition an approa
h for testing whether an intera
tion system is deadlo
k-free is des
ribed in [Min10℄. The approa
h exploits a waiting stru
ture be-tween lo
al states in a deadlo
k and attempts to refute that there is a staterea
hable in the global behavior that exhibits a 
ertain waiting stru
ture byanalyzing respe
tive waiting stru
tures in abstra
t over-approximations. Inthe following we give a brief and merely informal des
ription of the approa
hin [Min10℄ and provide two examples that show that our approa
h and theapproa
h in [Min10℄ are in
omparable, i.e., there are systems where our ap-proa
h su

eeds and the approa
h in [Min10℄ fails and vi
e versa. Thus, weargue that one approa
hes 
an be applied if the other fails in order to estab-lish deadlo
k-freedom in an intera
tion system. In the following we refer tothe approa
h in [Min10℄ as the waiting 
hain approa
h.The waiting 
hain approa
h is based on the following waiting stru
ture onglobal states in an intera
tion system.De�nition 4.5:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K, Int) and global behavior T = (Q, Int,→T , q

0). Let q ∈ Qbe a global state. The waiting graph of q is a dire
ted graph G(q) = (V,E)with V = {q1, q2, . . . , qn} for q = (q1, q2, . . . , qn) and (qi, qj) ∈ E if and onlyif there is α ∈ Int with 121
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• i(α) 6= ∅ and j(α) 6= ∅ and
• i(α) ⊆ en(qi) and j(α) * en(qj).This is, qi enables a port that is in
luded in an intera
tion α. Component

j features a port that is in
luded in α as well, but qj does not enable thisport. This is interpreted as qi waits on qj .Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K, Int) and global behavior T = (Q, Int,→T , q

0). We assumehere that for ea
h 
omponent i ∈ K ea
h lo
al state qi ∈ Qi enables at leastone port, this is, en(qi) 6= ∅. Let q ∈ Q be a deadlo
k then it is easy tosee that G(q) 
ontains a dire
ted 
y
le. Ea
h lo
al state in q enables aport that is in
luded in at least one intera
tion and, as q is a deadlo
k, nointera
tion is enabled in q be
ause at least one lo
al state does not enableits 
orresponding port, i.e., ea
h lo
al state waits on at least one other state.Note that it is possible that a global state q ∈ Q is not a deadlo
k even if
G(q) 
ontains a dire
ted 
y
le.The waiting 
hain approa
h, interpreted in our setting and our notations,works as follows. Let C be a domain that 
onsists of all C ⊆ K with |C| = dfor d ≪ |K| and {RC}C∈C a family of abstra
t over-approximations. Let
q ∈ Q be a global state that is a deadlo
k, i.e., G(q) 
ontains at least onedire
ted 
y
le. Assume that q is rea
hable in the global behavior T of Sysand one dire
ted 
y
le in G(q) 
onsists of lo
al states of the 
omponents in
D ⊆ K. The approa
h now distinguishes two 
ases |D| ≤ d and |D| > d, i.e.,there are less or equal d lo
al states involved in the 
y
li
 waiting relationand there are more than d lo
al states involved.If |D| ≤ d then there must be C ∈ C with D ⊆ C and there is qC ∈ QCrea
hable in RC su
h that q↓D = qC↓D. Thus, the dire
ted 
y
le in G(q)
an be found in a respe
tive representation of the waiting stru
ture in qC .It follows that, if in ea
h abstra
t over-approximation RC with C ∈ C thereis no rea
hable state where lo
al states are in a 
y
li
 waiting relation then122



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMthere 
an not be a state rea
hable in the global behavior T where ≤ d lo
alstates are in a 
y
li
 waiting relation.If |D| > d then for ea
h 
hain of d lo
al states on the 
y
le there must bean abstra
t over-approximation, based on the respe
tive 
omponents, wherethe proje
tion of q on these 
omponents is rea
hable. The 
haining waitingrelation is apparent in this proje
tion. A �rst 
on
lusion is, if for ea
h
C ∈ C there is no state qC ∈ QC rea
hable in RC su
h that the lo
al statesin qC are in a 
haining waiting relation then there 
an not be a deadlo
krea
hable in the global behavior T of Sys where more than d 
omponents areinvolved in a 
y
li
 waiting relation. This observation 
an be strengthenedas follows. Let C1, C2 ∈ C and C1, C2 ⊆ D su
h that q↓C1

and q↓C2
are in a
haining waiting relation then it is 
lear that q↓C1

and q↓C2
agree on shared
omponents. Thus, if a rea
hable state qC ∈ QC in the abstra
t over-ap-proximation RC is in a 
haining waiting relation and there is no abstra
tover-approximation RC

′ for C ′ ∈ C where a state qC′ ∈ QC
′ is rea
hable su
hthat the lo
al states in qC′ are in a 
haining waiting relation and qC and qC′agree on shared 
omponents then the lo
al states in qC 
an not o

ur in awaiting 
hain in a 
y
li
 waiting relation of a global state. This observation
an be used in order to ex
lude a state in an abstra
t over-approximationfrom being involved in a 
y
li
 waiting relation in a global state q.The waiting 
hain approa
h attempts to ex
lude separately that there arerea
hable global states where less or equal d lo
al states or more than d lo
alstates are in a 
y
li
 waiting relation. If this su

eeds then it is 
lear thatthere 
an not be a rea
hable global deadlo
k, i.e., the system in 
onsiderationis deadlo
k-free.The waiting 
hain approa
h and our approa
h, that was introdu
ed in Se
-tion 4.3, are in
omparable. This is, there are intera
tion systems that aredeadlo
k-free where the waiting 
hain approa
h fails to establish deadlo
k-freedom and our approa
h su

eeds and vi
e versa. We show this 
laimby providing two simple examples. Example 4.6 introdu
es an intera
tion123



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMsystem the global behavior of whi
h is deadlo
k-free where our approa
h su
-
eeds to establish deadlo
k-freedom and the waiting 
hain approa
h fails. Onthe other hand, in Example 4.7 we des
ribe a deadlo
k-free intera
tion sys-tem where our approa
h fails to establish deadlo
k-freedom and the waiting
hain approa
h su

eeds. The 
onsequen
e is that one approa
h 
an be ap-plied on an intera
tion system if the other fails. Nevertheless, we re
ommendto apply our approa
h �rst. This is be
ause the output of our approa
h 
on-sists of a family of states from abstra
t over-approximations that 
ould beproje
tions of rea
hable global deadlo
ks. States that are not in this family
an not be proje
tions of rea
hable deadlo
ks, i.e., there is no need to applythe waiting 
hain approa
h on these states.Example 4.6:Let IM = (K, {Ai}i∈K, Int) be an intera
tion model with K = {1, 2, 3, 4}and Ai = {lefti, righti, alli} for i ∈ K. We assume that the 
omponentsare arranged 
ir
ularly in an anti
lo
kwise order. For i ∈ K the port leftimodels a 
ommuni
ation with the 
omponent on the left, righti models a
ommuni
ation with the 
omponent on the right and the port alli modelsa 
ooperation among all 
omponents in K. Thus, let Int 
onsists of thefollowing intera
tions:
• commi = {righti, lefti+1} for i ∈ K where i+ 1 = 5 refers to 1 and
• all = {alli|i ∈ K}.Let Sys = (IM, {Ti}i∈K) be an intera
tion system. The lo
al behavior of the
omponents in Sys is depi
ted in Figure 4.7. 4.7a depi
ts the lo
al behavior

T1 of 
omponent 1 and 4.7b depi
ts the lo
al behavior Ti of 
omponent i for
i ∈ {2, 3, 4}.Figure 4.8 depi
ts the global behavior T = (Q, Int,→T , q

0) of Sys restri
tedto rea
hable transitions. Apparently, T is deadlo
k-free.Let C be the domain that 
onsists of all subsets of K of size 3, i.e., C =124
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al behavior of the 
omponents in Example 4.6.
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Figure 4.8: Global behavior T of Sys in Example 4.6.
{C1, C2, C3, C4} with

C1={1, 2, 3},

C2={1, 2, 4},

C3={1, 3, 4} and
C4={2, 3, 4}.Let {SC}C∈C be the family of abstra
t over-approximations that is 
on-stru
ted as in Lemma 3.2 and {RC}C∈C be the family of abstra
t over-ap-proximations that resulted from our re�nement approa
h that is des
ribedin Chapter 3.The waiting 
hain approa
h does not work on this example, i.e., the ap-proa
h is not able to 
on
lude whether or not the global behavior T of Sysis deadlo
k-free. The waiting graph G(q0) of q0 
ontains a dire
ted 
y
lebe
ause the state q01 is waiting on q02 with respe
t to the intera
tion comm1,

q02 is waiting on q03 with respe
t to the intera
tion comm2 and so on. The125
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(b) RC2Figure 4.10: The abstra
t over-approximations RC1
and RC2

in Example 4.6.waiting graph G(q0) is depi
ted in Figure 4.9. The initial state q0 is a rea
h-able state in T , this is, all 
ombinations of three states that are in a 
hainingwaiting relation in G(q0) are rea
hable in the respe
tive abstra
t over-appro-ximation in {SC}C∈C (and in all abstra
t over-approximations that resultedfrom a re�nement by the Edge-Mat
h operator). Thus, the respe
tive statesin the abstra
t over-approximations 
ontain a 
haining waiting relation andthe waiting 
hain approa
h 
an not ex
lude that any of these states appearsin a 
y
li
 waiting relation that involves more than three lo
al states in area
hable global state.Our approa
h on the other hand applied to this example 
on
ludes that theglobal behavior T of Sys is deadlo
k-free. Figure 4.10 depi
ts the behaviorof the abstra
t over-approximations RC1
and RC2

.Let us take a 
loser look at the abstra
t over-approximation RC1
. Thestate (q11, q

1
2, q

1
3) enables the intera
tion comm1 and the state (q21, q

0
2, q

1
3) theintera
tion comm2. Both intera
tions only 
onsists of ports from the 
om-ponents in C1, i.e., comm1 is 
omplete in (q11, q

1
2, q

1
3) and comm2 is 
ompletein (q21, q

0
2, q

1
3). Thus, this two states 
an not be the proje
tions of rea
hable126



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMglobal deadlo
ks.The only rea
hable states in RC2
that agree with (q21, q

0
2, q

0
3) ∈ QC1

on shared
omponents are (q21, q
0
2, q

1
4) and (q21, q

0
2, q

0
4). The state (q21 , q

0
2, q

0
4) 
an not bethe proje
tion of a rea
hable deadlo
k be
ause the intera
tion comm4 is
omplete in (q21, q

0
2, q

0
4). There is no intera
tion 
omplete in (q21, q

0
2, q

1
4) butthe intera
tion comm3 is 
omplete in (q21, q

0
2, q

0
3, q

1
4). Thus, (q21, q02, q03) 
annot be the proje
tion of a rea
hable global deadlo
k.The only rea
hable state in RC2

that agrees with (q01, q
0
2, q

0
3) ∈ QC1

on shared
omponents is (q01 , q
0
2, q

0
4). There is no intera
tion 
omplete in (q01, q

0
2, q

0
4),however, the intera
tion all is 
omplete in (q01, q

0
2, q

0
3, q

0
4), i.e., (q01 , q02, q04) 
annot be the proje
tion of a rea
hable global deadlo
k.This is, all rea
hable states in the abstra
t over-approximation RC1


an notbe proje
tions of rea
hable global deadlo
ks, i.e., T is deadlo
k-free.Example 4.7:Let IM = (K, {Ai}i∈K, Int) be an intera
tion model with K = {1, 2, . . . , 7}and Ai = {all
1
i , all

2
i } for i ∈ K. For 
omponent i ∈ K, all1i and all2i are portsfor a 
ommuni
ation among all 
omponents in K. Thus, let Int 
onsists ofthe two intera
tions all1 = {all1i |i ∈ K} and all2 = {all2i |i ∈ K}. Note thatthe intera
tion graph G of IM is 
omplete be
ause both intera
tions in Intinvolve all 
omponents in K.Let Sys = (IM, {Ti}i∈K) be an intera
tion system. The lo
al behavior of the
omponents is depi
ted in Figure 4.11. 4.11a depi
ts the lo
al behavior T1of 
omponent 1 and 4.11b depi
ts the lo
al behavior Ti of 
omponent i with

i ∈ {2, 3, . . . , 7}.It is easy to see that the global behavior T = (Q, Int,→T , q
0) of Sys hasno rea
hable deadlo
k. In the global initial state q0 only the intera
tion

all1 is enabled. If all1 was performed then the only enabled intera
tion is
all2 whi
h, if performed, leads ba
k to the global initial state. Thus, T hasexa
tly the two rea
hable states (q01, q02, . . . , q07) and (q11, q

0
2, . . . , q

0
7).127
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al behavior of the 
omponents in Example 4.7.
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Figure 4.12: Behavior of the abstra
t over-approximation S{1,j,k} in Example4.7.Let C be the domain that 
onsists of all subsets ofK of size 3 and {SC}C∈C bethe family of abstra
t over-approximations that is 
onstru
ted as in Lemma3.2. Let i 6= j 6= k be 
omponents in K. If 1 6= i, j, k then S{i,j,k} only
onsists of the initial state (q0i , q0j , q0k) with a self-loop that is labeled by all1and all2. For 1 6= j, k the abstra
t over-approximation S{1,j,k} is depi
ted inFigure 4.12.For the two intera
tions in Sys holds that |all1| = |all2| = 7, i.e., there isno rea
hable state qC ∈ QC in any abstra
t over-approximation SC with
C ∈ C that enables an intera
tion that is 
omplete in qC . Furthermore, for
C1, C2 ∈ C with C1 6= C2 there is no pair of states qC1

∈ QC1
, qC2

∈ QC2
su
hthat the state qC1∪C2

∈ QC1∪C2
with qC1∪C2

↓C1
= qC1

and qC1∪C2
↓C2

= qC2enables an intera
tion that is 
omplete in qC1∪C2
. This is be
ause for all

C1, C2 ∈ C holds that |C1 ∪ C2| ≤ 6 and both intera
tions in Int need all 7
omponents to parti
ipate. Thus, our approa
h fails on this system be
ause128



4.4. CONCLUSION
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Figure 4.13: Waiting graph G(q0) of the global initial state q0 in Example4.7.the system is deadlo
k-free and we 
an not ex
lude any state in the abstra
tover-approximations in {SC}C∈C from being the proje
tion of a rea
hableglobal deadlo
k.The waiting 
hain approa
h on the other hand, applied on the family of ab-stra
t over-approximations su

eeds. Figure 4.13 depi
ts the waiting graphof the global initial state q0 = (q01, q
0
2, . . . , q

0
7) of T . The lo
al states q02, . . . , q07are waiting on the state q01 be
ause they enable their respe
tive port for in-tera
tion all2 and q01 does not enable the port all21.The waiting graph for the state (q11, q02, . . . , q07) has the same stru
ture as thegraph in Figure 4.13 be
ause the states q02, . . . , q

0
7 are waiting on the state

q11 with respe
t to the intera
tion all1. All proje
tions of these two graphson a subset of three lo
al states 
ontain neither a 
y
li
 waiting relation nora 
haining waiting relation that involves the respe
tive lo
al states. Thus,the waiting 
hain approa
h, applied on this example, establishes deadlo
k-freedom in the global behavior of Sys.
4.4 Con
lusionIn this 
hapter we introdu
ed an approa
h that 
an be used in order to es-tablish deadlo
k-freedom in intera
tion systems by analyzing a family of ab-stra
t over-approximations. Our approa
h attempts to 
on
lude that there129



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMis an over-approximation of the global behavior of an intera
tion systemthat is deadlo
k-free. As deadlo
k-freedom is a safety property it followsthat the global behavior of the system in 
onsideration is deadlo
k-free aswell. We argued that our approa
h runs in polynomial time under 
er-tain assumptions on the family of abstra
t over-approximations. Moreover,we des
ribed, using a version of the Dining Philosophers problem (whi
his not deadlo
k-free), how we 
an use the information that is 
al
ulatedby our approa
h in order to modify a system su
h that we 
an guaranteedeadlo
k-freedom. Additionally, we provided two examples whi
h show thatour approa
h and the waiting 
hain approa
h that is des
ribed in [Min10℄are in
omparable, i.e., if one approa
h fails to establish deadlo
k-freedom inan intera
tion system the other approa
h 
an be applied.

130



Chapter 5
Results
5.1 Introdu
tionWe implemented our approa
h to re�ne abstra
t over-approximations andour approa
h to establish deadlo
k-freedom in a tool. In our tool we modelthe lo
al behavior of 
omponents and abstra
t over-approximations by BDDs[Bry86℄. BDDs o�er the possibility to a

omplish rea
hability analyses andappli
ations of the Edge-Mat
h operator e�
iently by operations on BDDs.The symboli
 representation of �nite automata by BDDs is also the basisof the symboli
 model 
he
king approa
h [BCM+92℄ where operations onBDDs are used to model 
he
k 
omplex systems. Our tool takes as inputan intera
tion system Sys in a des
ription language and a parameter d > 1where d is the number of 
omponents in an abstra
t over-approximation.An example for a system given in the des
ription language and the methodsthat implement the Edge-Mat
h operator and the rea
hability analysis 
anbe found in Appendix B. The tool 
onstru
ts all �reasonable� over-approxi-mations with d 
omponents as des
ribed in Se
tion 3.3.2. The 
al
ulationof all subsets C with d 
omponents where these 
omponents are 
onne
tedin the intera
tion graph G of Sys restri
ted to C is a
hieved by a fun
tionthat is based on an algorithm that is des
ribed in [MN06℄. The following131



CHAPTER 5. RESULTSadditional software is used in the tool.
• JavaCC/JJTree, a Java 
ompiler 
ompiler is used to parse our des
rip-tion language of intera
tion systems1.
• BuDDy, an e�
ient BDD library written in C/C++ and developed byJørn Lind-Nielsen2.
• Java Native A

ess (JNA), provides an interfa
e to the native libraryBuDDy3.
• Graphviz layout programs, for the visualization of transition systemsand graph stru
tures4.
• GraphViz.java, a simple API to 
all dot from Java programs by LaszloSzathmary5.In the following we introdu
e several parameterized examples of intera
tionsystems and present results of our approa
h regarding the re�nement of ab-stra
t over-approximations that is des
ribed in Chapter 3 and our approa
hto establish deadlo
k-freedom that is des
ribed in Chapter 4. The experi-ments were made on a 
omputer with a dual-
ore 2.53GHz CPU and 4GiBRAM.After ea
h introdu
ed example, we give a table that summarizes ben
hmarksregarding the appli
ation of our tool on various model instan
es. The in-stan
es di�er on parameters that in�uen
e the number of 
omponents andthe sizes of the lo
al state spa
es of the model. Additionally, we provideresults from the appli
ation of the Cross-Che
king operator [Min10℄ on therespe
tive example in order to 
ompare this re�nement approa
h with ourEdge-Mat
h operator. The 
olumns are labeled by parameters that whereused in a spe
i�
 model instan
e. The rows are labeled as follows.1see http://java

.java.net/2see http://sour
eforge.net/proje
ts/buddy/3see https://github.
om/twall/jna/4see http://www.graphviz.org/Do
umentation.php5see http://www.loria.fr/~szathmar/off/proje
ts/java/GraphVizAPI/index.php132



5.1. INTRODUCTION
• |K| denotes the number of 
omponents in the model instan
e.
• | Int | denotes the number of intera
tions in the model instan
e.
• |Q| is the size of the state spa
e of the model instan
e. This in
ludesrea
hable and unrea
hable states, i.e., the size of the Cartesian produ
tof the lo
al state spa
es.
• |C| is the number of abstra
t over-approximations in the family onwhi
h we apply our re�nement te
hnique. The domain of our initialfamily of abstra
t over-approximations is 
onstru
ted as des
ribed inChapter 3 in Se
tion 3.3.2. The size of the individual sets in the domainis indi
ated in the respe
tive model des
ription.
• Σ|QC | denotes the sum over the sizes of all state spa
es of the ab-stra
t over-approximations. This number in
ludes initially rea
hableand unrea
hable states.
• ΣReach is the sum over the number of rea
hable states of all initialabstra
t over-approximations, i.e., abstra
t over-approximations thatare 
onstru
ted as in Chapter 3 Lemma 3.2. This is the number ofstates in all abstra
t over-approximations on whi
h we have to ap-ply our approa
h to establish deadlo
k-freedom if we do not use anyre�nement te
hniques.
• ΣCC denotes the sum over all states that remain in the �xed-pointwith respe
t to an appli
ation of the Cross-Che
king operator on thefamily of abstra
t over-approximations.
• ΣEM denotes the sum over all states that remain in the �xed-pointwith respe
t to an appli
ation of the Edge-Mat
h operator on thefamily of abstra
t over-approximations.
• % is the per
entage of states from Σ|QC | that is not rea
hable in the�xed-point with respe
t to the Edge-Mat
h operator. This numberindi
ates the strength of our re�nement approa
h as attempts to es-133



CHAPTER 5. RESULTStablish deadlo
k-freedom (or another safety property) by analyzingabstra
t over-approximations do not have to deal with states that be-
ome unrea
hable by our re�nement approa
h. This is, our approa
hto establish deadlo
k-freedom applied to the rea
hable states of the ab-stra
t over-approximations is less possible to produ
e a false-negativeif there are less artifa
ts in the abstra
t over-approximations, i.e., ifthere are less states rea
hable.
• time is the time millise
onds that it takes to 
al
ulate the �xed-pointwith respe
t to the Edge-Mat
h operator.
• 
rit is the sum over the number of states that remain 
riti
al in allabstra
t over-approximations in the �xed-point with respe
t to theEdge-Mat
h operator after an appli
ation of our approa
h to establishdeadlo
k-freedom. Note, if this numbers equals zero then our approa
hensures deadlo
k-freedom for the respe
tive model instan
e.

5.2 Measurement-GridThis example des
ribes a grid of data storages that allow to store measure-ment results from adja
ent neighboring measurement station.We 
onsider an m × n (m,n ≥ 1) grid of data storages (DS). Two verti-
ally respe
tively horizontally adja
ent DSs share a measurement station Vrespe
tively H that is pla
ed in between the two storages � the border ofthe grid is surrounded by verti
al respe
tively horizontal measurement sta-tions that are ea
h used by only one data storage. A storage DS 
an de
ideto 
ompare measurement values of their horizontally respe
tively verti
allyadja
ent stations. If so, DS waits for both stations to 
onne
t. When the
onne
tions are established, then DS performs l (l ≥ 1) work-steps withea
h station. This is, our example is parametrized by l, m and n. After thework-steps are 
ompleted, both stations dis
onne
t from DS.134



5.2. MEASUREMENT-GRIDIntera
tion ModelAs an instan
e of the Measurement Grid example we 
onsider a 2×2 grid Gwith l = 1 work-steps during a 
onne
tion between a data storage and mea-surement stations. Let IMG = (K, {Ai}i∈K , Int) be an intera
tion model.The set of 
omponents K is given by.
K = {DSi,j|i = 0, 1 ∧ j = 0, 1} ∪ //data storages

{Vi,j|i = 0, 1 ∧ j = 0, 1, 2} ∪ //verti
al measurement stations
{Hi,j|i = 0, 1, 2 ∧ j = 0, 1} //horizontal measurement stationsSo far we did not des
ribe, how a data storage DS obtains a

ess to twoadja
ent verti
al or horizontal measurement stations. This is regulated bya 
oordination between adja
ent data storages. A data storage DS maya

ess two verti
ally (horizontally) adja
ent measurement stations if thereis no 
on�i
t with the a

ess of any of these stations by some other datastorages.For i = 0, 1 and j = 0, 1 the set of ports ADSi,j

for DSi,j 
onsists of thefollowing ports.
vpi,j : obtain verti
al priority
hpi,j : obtain horizontal priority
vci,j : a verti
al station 
onne
ts
hci,j : a horizontal station 
onne
ts
ifi,j : this storage is idling
vwi,j : work-step with a verti
al station
hwi,j: work-step with a horizontal station
vdi,j : a verti
al stations dis
onne
ts
hdi,j : a horizontal stations dis
onne
tsFor i = 0, 1 and j = 0, 1, 2 the set of ports AVi,j

for Vi,j 
onsists of the135



CHAPTER 5. RESULTSfollowing ports.
cvi,j : 
onne
t to a data storage
wvi,j: work with a data storage
dvi,j : dis
onne
t from a data storageThe sets of ports AHi,j

for Hi,j (i = 0, 1, 2 and j = 0, 1) are spe
i�ed analo-gously.The intera
tions of IMG are spe
i�ed for i = 0, 1 and j = 0, 1 as follows.
getPriorVi,j = {vpi,j, ifi,j−1, ifi,j+1}

1

getPriorHi,j = {hpi,j, ifi−1,j , ifi+1,j}
1

connLefti,j = {hci,j, chi,j}

connRighti,j = {hci,j, chi+1,j}

connUpi,j = {vci,j, cvi,j}

connDowni,j = {vci,j, cvi,j+1}

workLefti,j = {hwi,j, whi,j}

workRighti,j = {hwi,j, whi+1,j}

workUpi,j = {vwi,j, wvi,j}

workDowni,j = {vwi,j, wvi,j+1}

disConnLefti,j = {hdi,j, dhi,j}

disConnRighti,j = {hdi,j, dhi+1,j}

disConnUpi,j = {vdi,j, dvi,j}

disConnDowni,j = {vdi,j, dvi,j+1}Note: 1: ifi,j−1 is not in
luded if j−1 < 0. Same goes for ifi,j+1 if j+1 = n,
ifi−1,j if i− 1 < 0 and ifi+1,j if i+ 1 = n.Let Int be the set that 
onsists of these intera
tions for i = 0, 1 and j = 0, 1.Figure 5.1 shows the 
omponents of a 2× 2 grid.136
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tion SystemLet SysG = (IMG, {Ti}i∈K) be the intera
tion system where the lo
al behav-ior of the 
omponents is spe
i�ed as follows. Figure 5.2 shows the behaviorof the 
omponents of SysG. For better readability, we omitted the subs
riptsin the port names. Figure 5.2a shows the behavior TDSi,j
for i = 0, 1 and

j = 0, 1, Figure 5.2b the behavior TVi,j
for i = 0, 1 and j = 0, 1, 2 and Figure5.2
 the behavior THi,j

for i = 0, 1, 2 and j = 0, 1.Results & Dis
ussionTable 5.1 shows ben
hmarks of the Measurement-Grid Example for d = 3,i.e., for ea
h instan
e we 
onsidered a domain where all subsets of 
om-ponents are of size d = 3. The 
olumns are labeled by (n,m, l), i.e., an137



CHAPTER 5. RESULTSinstan
e is an n × m grid with l working steps during a 
onne
tion to adata storage. For ea
h family of abstra
t over-approximations holds, afteran appli
ation of our approa
h to establish deadlo
k-freedom, that there isno 
riti
al state in any abstra
t over-approximation, this is, our approa
hsu

eeds and guarantees that there is no rea
hable deadlo
k in the globalbehavior of our model instan
es. Our re�nement approa
h has an advantageover the Cross-Che
king approa
h for ea
h instan
e. In fa
t, there is no stateremoved from the initial rea
hable states by the Cross-Che
king operator,i.e., the Cross-Che
king approa
h does not 
ause any re�nement at all.System (2, 2, 1) (5, 5, 5) (10, 4, 6) (7, 7, 5) (10, 10, 5)

|K| 16 85 134 161 320

| Int | 56 350 560 686 1, 400

|Q| 233.82 2289.89 2483.78 2552.46 21103.42

|C| 56 946 1, 610 2, 150 4, 856

Σ|QC | 25, 792 10, 005, 754 25, 837, 020 24, 443, 462 57, 657, 104

ΣReach 19, 024 7, 862, 298 20, 339, 164 19, 395, 286 45, 999, 808

ΣCC 19, 024 7, 862, 298 20, 339, 164 19, 395, 286 45, 999, 808

ΣEM 11, 488 6, 585, 744 17, 217, 682 16, 764, 484 40, 456, 624

% 55.46 34.18 33.36 31.42 29.83time 353 39, 734 107, 576 118, 406 395, 530
rit 0 0 0 0 0Table 5.1: Ben
hmarks of the Measurement-Grid example for d = 3.
5.3 Tanenbaum's PhilosophersIn [Tan07℄ Tanenbaum des
ribes a solution that guarantees deadlo
k-freedomfor the Dining Philosophers problem. The original problem and a model wasintrodu
ed in Chapter 4 Example 4.3 in order to des
ribe our approa
h toestablish deadlo
k-freedom by analyzing abstra
t over-approximations. For138



5.3. TANENBAUM'S PHILOSOPHERSea
h philosopher Tanenbaum suggests to add a semaphore to a model ofthe system. A semaphore is binary and has the two states lo
ked and un-lo
ked. The idea is that a semaphore that is asso
iated with a philosopher
an only be
ome lo
ked if the semaphores asso
iated with the neighboringphilosophers are unlo
ked. A philosopher 
an only start his eating pro
ess,i.e., taking his forks, eating and putting the forks ba
k on the table if hissemaphore is lo
ked. The semaphore be
omes unlo
ked if the philosopherput both forks ba
k on the table. This approa
h guarantees that a philoso-pher who already took one fork will never wait for the se
ond fork, i.e., aphilosopher who starts his eating pro
ess is assured to eat and put bothforks ba
k on the table.Intera
tion ModelThe spe
i�
ations of this system di�er from the system des
ribed in Example4.3 in the following points.
• Before a philosopher 
an take a fork he has to gain the right to do so.In order to do this he intera
ts with his semaphore and the semaphoresthat are asso
iated with his neighboring 
olleagues. If the neighboringsemaphores are unlo
ked then his semaphore be
omes lo
ked and heis able to take either his left or right fork.
• after a philosopher �nished eating, he 
an put both forks at on
e ba
kon the table. In this pro
ess his semaphore be
omes unlo
ked.Let IMn = (K, {Ai}i∈K , Int) be an intera
tion model with n ≥ 2. Let K bethe set of 
omponents

K = {Phil0, Phil1, . . . , Philn−1}∪

{Sem0, Sem1, . . . , Semn−1}∪

{Fork0, F ork1, . . . , F orkn−1}where Phili models philosopher i, Semi Semaphore i and Forki models fork
i for 0 ≤ i < n. The set of ports APhili

for philosopher i with 0 ≤ i < n139
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onsists of the following ports.
get_priori : gain the right to take a fork
take_lefti : take the left fork
take_righti: take the right fork
put_forksi : put both forks ba
k on the tableThe set of ports ASemi

for semaphore i with 0 ≤ i < n 
onsists of thefollowing ports.
is_unlockedi: the semaphore is unlo
ked
locki : lo
k this semaphore
unlocki : unlo
k this semaphoreThe set of ports AForki

for fork i with 0 ≤ i < n 
onsists of the followingports.
takei: take this fork
puti : put this fork ba
k on the tableEa
h philosopher 
an gain the right to pi
k up his forks on his left and hisright by lo
king their respe
tive semaphore, if the respe
tive neighboringsemaphores are unlo
ked. Furthermore, ea
h philosopher 
an take his forkon the left respe
tively right and put these forks ba
k on the table. Thefollowing intera
tions model these 
ooperations between philosopher Phili,semaphore Semi and the fork on his left Forki and the fork on his right

Forki−1 for 0 ≤ i < n. Note that we assume (similarly to Example 4.3) amodulo n arithmeti
, i.e., if i − 1 = −1 then i − 1 refers to n − 1 and if
i+ 1 = n then i+ 1 refers to 0.

pri = {get_priori, is_unlockedi−1, locki, is_unlockedi+1}

tli = {take_lefti, takei−1}

tri = {take_righti, takei}

pui = {put_forksi, puti−1, puti, unlocki}Let Int = {pri, tli, tri, pui|0 ≤ i < n}.Figure 5.3 depi
ts the intera
tion graph G of the intera
tion model IMn for
n = 8. 140



5.3. TANENBAUM'S PHILOSOPHERS

Phil0

Fork0

Phil1

Fork1

Phil2

Fork2

Phil3

Fork3

Phil4
Fork4

Phil5

Fork5

Phil6

Fork6

Phil7

Fork7

Sem0

Sem1

Sem2

Sem3

Sem4

Sem5

Sem6

Sem7

Figure 5.3: Intera
tion graph G of IM8 in Tanenbaum's Philosophers exam-ple.Intera
tion SystemIn the following we spe
ify the intera
tion system Sysn = (IMn, {Ti}i∈K) for
n ≥ 2 that provides the lo
al behavior for ea
h 
omponent des
ribed in theintera
tion model IMn. Figure 5.4 shows the lo
al behavior TPhili

, TForkirespe
tively TSemi
for 0 ≤ i < n.Results & Dis
ussionTable 5.2 shows results from our tool for instan
es of our model of Tanen-baum's solution of the Dining Philosophers problem. We 
onsidered in-stan
es with n = 5, 10, 20, 100, 200 and 400 philosophers and 
onstru
tedabstra
t over-approximations based on all reasonable subsets with d = 3
omponents. If we apply our approa
h to establish deadlo
k-freedom thenthere is no state in any abstra
t over-approximation that remains to be a141
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(
) TSemiFigure 5.4: Lo
al behavior of the 
omponents Phili, Forki and Semi in Sysnfor 0 ≤ i < n.possible proje
tion of a rea
hable global deadlo
k, i.e., our approa
h to es-tablish deadlo
k-freedom su

eeds for all instan
es. We want to point out,that the waiting 
hain approa
h ([Min10℄ and informally des
ribed in Chap-ter 4) is not able to establish deadlo
k-freedom for instan
es of this systemon abstra
t over-approximations that 
onsists of d = 3 
omponents.5.4 A Chain of ComponentsThis example provides a rather abstra
t parameterized intera
tion systemthat 
onsists of 
omponents that are 
onne
ted su
h that the 
orrespondingintera
tion graph forms a 
hainlike stru
ture of 
omponents. This intera
-tion system has the property that the Cross-Che
king approa
h (adaptedto our 
ontext), that is des
ribed in [Min10℄, does not have any re�nemente�e
t on abstra
t over-approximations of instan
es of this system for d = 3.Let n ≥ 2. The system 
onsists of three kinds of 
omponents Ca
i for 0 ≤ i <

n and Cb
i , Cc

i for 0 ≤ i < n−1. The 
omponents model 
ertain pro
esses. Inthe following we will not distinguish between a 
omponent and the pro
essthat is modeled by this 
omponent. We refer to a pro
ess that is modeled bya 
omponent of the form Ca
i , Cb

i respe
tively Cc
i as an a-pro
ess, b-pro
essrespe
tively c-pro
ess. For 0 ≤ i < n− 1 Ca

i 
an 
onne
t to Cb
i if Cc

i is not142



5.4. A CHAIN OF COMPONENTSSystem 5 10 20 100 200 400

|K| 15 30 60 300 600 1, 200

| Int | 20 40 80 400 800 1, 600

|Q| 221.61 243.22 286.44 2432.19 2864.39 21728.77

|C| 185 390 780 3, 900 7, 800 15, 600

Σ|QC | 3, 520 7, 200 14, 400 72, 000 144, 000 288, 000

ΣReach 2, 680 5, 500 11, 000 55, 000 110, 000 220, 000

ΣCC 1, 660 3, 460 6, 920 34, 600 69, 200 138, 400

ΣEM 1, 635 3, 410 6, 820 34, 100 68, 200 136, 400

% 53.55 52.64 52.64 52.64 52.64 52.64time 356 783 1, 873 16, 476 47, 438 207, 212
rit 0 0 0 0 0 0Table 5.2: Ben
hmarks of Tanenbaum's Philosophers for d = 3.
onne
ted to another pro
ess and vi
e versa. We 
all Cb
i and Cc

i the frontpro
esses with respe
t to Ca
i . Analogously, for 1 ≤ i < n Ca

i 
an 
onne
t to
Cb

i−1 if Cc
i−1 is not 
onne
ted and vi
e versa and these pro
esses are 
alledthe ba
k pro
esses with respe
t to Ca

i . If Ca
i (0 ≤ i < n) is 
onne
ted to apro
ess then the two pro
esses will perform simultaneously l ≥ 0 workingsteps. After two pro
esses 
ompleted their working steps they dis
onne
t.

Intera
tion ModelLet IMn = (K, {Ai}i∈K , Int) (with n ≥ 2) be the intera
tion model that isspe
i�ed as follows. The set of 
omponents K is given by
K = {Ca

i , C
b
i , C

c
i |0 ≤ i < n− 1} ∪ {Ca

n−1}.143



CHAPTER 5. RESULTSThe set of ports AC
a
i
for a 
omponent Ca

i with 1 ≤ i < n− 1 
onsists of thefollowing ports.
connf

i : 
onne
t to a front pro
ess
connb

i : 
onne
t to a ba
k pro
ess
workf

i : do a working step with a front pro
ess
workb

i : do a working step with a ba
k pro
ess
disfi : dis
onne
t from a front pro
ess
disbi : dis
onne
t from a ba
k pro
essThe port set AC

a
0
respe
tively AC

a
n−1

is spe
i�ed analogously without theports that model a 
ommuni
ation with a ba
k respe
tively a front pro
ess.The set of ports A
C

b
i
for a 
omponent Cb

i with 0 ≤ i < n− 1 
onsists of thefollowing ports.
conn_bi : 
onne
t to an a-pro
ess
work_bi: do a working step with an a-pro
ess
dis_bi : dis
onne
t from an a-pro
ess
free_bi : this pro
ess is not 
onne
ted to any pro
essAnalogously, the set of ports AC

c
i
for a 
omponent Cc

i with 0 ≤ i < n − 1
onsists of the following ports.
conn_ci : 
onne
t to an a-pro
ess
work_ci: do a working step with an a-pro
ess
dis_ci : dis
onne
t from an a-pro
ess
free_ci : this pro
ess is not 
onne
ted to any pro
essLet the intera
tion set Int of IMn 
onsist of the following intera
tions.For 0 ≤ i < n− 1 the 
omponent Ca

i

• 
onne
ts to its front b-pro
ess: {connf
i , conn_bi, free_ci}

• 
onne
ts to its front c-pro
ess: {connf
i , conn_ci, free_bi}

• does a working step with its front b-pro
ess: {workf
i , work_bi}144
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tion graph G of IM6 in the 
haining 
omponents example.

• does a working step with its front c-pro
ess: {workf
i , work_ci}

• dis
onne
ts from its front b-pro
ess: {disfi , dis_bi}

• dis
onne
ts from its front c-pro
ess: {disfi , dis_ci}For 1 ≤ i < n the 
omponent Ca
i

• 
onne
ts to its ba
k b-pro
ess: {connb
i , conn_bi−1, free_ci−1}

• 
onne
ts to its ba
k c-pro
ess: {connb
i , conn_ci−1, free_bi−1}

• does a working step with its ba
k b-pro
ess: {workb
i , work_bi−1}

• does a working step with its ba
k c-pro
ess: {workb
i , work_ci−1}

• dis
onne
ts from its ba
k b-pro
ess: {disbi , dis_bi−1}

• dis
onne
ts from its ba
k c-pro
ess: {disbi , dis_ci−1}Figure 5.5 depi
ts the intera
tion graph of the intera
tion model IM6.Intera
tion SystemLet n ≥ 2 and IMn = (K, {Ai}i∈K , Int) be the intera
tion model for the
haining 
omponents example. Let l ≥ 0 and Sysln = (IMn, {Ti}i∈K) be theintera
tion system with the lo
al behaviors of the 
omponents in K. Figure5.6 depi
ts the respe
tive lo
al behaviors for l = 2. 5.6a depi
ts TC
a
i
for

1 ≤ i < n − 1 and 5.6b T
C

b
i
, 5.6
 TC

c
i
for 0 ≤ i < n − 1. It is easy tosee that the global behavior T of Sysln is deadlo
k-free for any n ≥ 2 and

l ≥ 0. Note that TC
a
0
respe
tively TC

a
n−1

are stru
tured analogously without145
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iFigure 5.6: Lo
al behavior of the 
omponents Ca

i for 1 ≤ i < n− 1 and Cb
i ,

Cc
i in Sysln for 0 ≤ i < n− 1 and l = 2.the transitions that are labeled by ports that model a 
ooperation with aba
k respe
tively front pro
ess.Results & Dis
ussionTable 5.3 respe
tively table 5.4 shows results of our tool on instan
es of the
haining 
omponents example. The 
olumns are labeled by (n, l), i.e., we
onsidered systems of the form Sysln. We 
onsidered families of abstra
tover-approximations based on d = 3 (Table 5.3) and d = 4 (Table 5.4)
omponents.We want to point out two observations that are visible in the tables. In Ta-ble 5.3 the Cross-Che
king approa
h [Min10℄ does not have any re�nemente�e
t on the abstra
t over-approximations. In Chapter 3 we already men-tioned that our Edge-Mat
h operator is stronger that the Cross-Che
kingoperator be
ause, in 
ontrast to a re�nement approa
h based on the Cross-Che
king operator, we 
omprise the behavior of an intera
tion system in ourre�nement pro
ess. This example shows that there are even systems wherethe Cross-Che
king does not re�ne abstra
t over-approximations, whereas146



5.5. A CIRCLE OF COMPONENTSSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 13 28 58 148 298

| Int | 48 108 228 588 1, 188

|Q| 228.42 279.37 2178.9 2458.36 21034.56

|C| 28 68 148 388 788

Σ|QC | 3, 376 31, 188 112, 252 297, 892 1, 321, 236

ΣReach 2, 894 26, 128 93, 570 249, 030 1, 090, 204

ΣCC 2, 894 26, 128 93, 570 249, 030 1, 090, 204

ΣEM 2, 302 19, 028 66, 076 175, 396 738, 692

% 31.81 38.99 41.14 41.12 44.09time 54 334 991 3, 524 18, 732
rit 378 2, 498 7, 752 20, 592 70, 838Table 5.3: Ben
hmarks of the 
haining 
omponents example for d = 3.an appli
ation of the Edge-Mat
h operator results in a great amount of un-rea
hable states. The other observation we want to point out is that ourapproa
h to establish deadlo
k-freedom fails for all instan
es in Table 5.3,i.e., if we 
onsider abstra
t over-approximations based on subsets of d = 3
omponents then our approa
h fails for all examined instan
es. On the otherhand our approa
h su

eeds for the same instan
es if we base our analysison subsets of d = 4 
omponents (see Table 5.4). This is, if our approa
hfails on a family of abstra
t over-approximations then 
onsidering anotherparameter d might establish a property in 
onsideration.5.5 A Cir
le of ComponentsThe following example des
ribes an abstra
t parameterizes intera
tion sys-tem. The intera
tion system is similar to the intera
tion system des
ribedin Se
tion 5.4 and provides a system where the Cross-Che
king approa
h(adapted to our 
ontext), that is des
ribed in [Min10℄ has a signi�
ant147



CHAPTER 5. RESULTSSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 13 28 58 148 298

| Int | 48 108 228 588 1, 188

|Q| 228.42 279.37 2178.9 2458.36 21034.56

|C| 40 105 235 625 1, 275

Σ|QC | 23, 968 374, 220 1, 632, 631 4, 403, 581 25, 418, 043

ΣReach 18, 292 279, 740 1, 215, 679 3, 292, 789 18, 727, 547

ΣCC 5, 212 45, 180 159, 439 433, 429 1, 754, 427

ΣEM 5, 212 45, 180 159, 439 433, 429 1, 754, 427

% 78.25 87.93 90.23 90.16 93.1time 188 1, 339 4, 192 14, 035 75, 385
rit 0 0 0 0 0Table 5.4: Ben
hmarks of the 
haining 
omponents example for d = 4.impa
t regarding the re�nement of abstra
t over-approximations and theEdge-Mat
h operator 
reates even better re�ned abstra
t over-approxima-tions. The 
orresponding intera
tion graph G of a model instan
e forms a
ir
le-like stru
ture.Let n ≥ 2. Similarly as in the example in Se
tion 5.4, the system 
onsists ofthree kinds of 
omponents Ca
i , Cb

i and Cc
i for 0 ≤ i < n. The 
omponentsmodel 
ertain pro
esses. In the following we will not distinguish between a
omponent and the pro
ess that is modeled by this 
omponent. We refer toa pro
ess that is modeled by a 
omponent of the form Ca

i , Cb
i respe
tively

Cc
i as an a-pro
ess, b-pro
ess respe
tively c-pro
ess. For 0 ≤ i < n Ca

i
an 
onne
t to Cb
i if Cc

i is not 
onne
ted to another pro
ess and vi
e versa.We 
all Cb
i and Cc

i the front pro
esses with respe
t to Ca
i . Analogously, for

0 ≤ i < n Ca
i 
an 
onne
t to Cb

i−1 if Cc
i−1 is not 
onne
ted and vi
e versa andthese pro
esses are 
alled the ba
k pro
esses with respe
t to Ca

i . The term
i−1 refers to n−1 if i = 0. If Ca

i (0 ≤ i < n) is 
onne
ted to a pro
ess thenthe two pro
esses will perform simultaneously l ≥ 1 working steps. The last148



5.5. A CIRCLE OF COMPONENTSworking step 
orresponds to a dis
onne
tion of the pro
esses. For 0 ≤ i < nthe 
omponent Ca
i is able to syn
hronize with its front pro
esses Cb

i and Cc
iif both 
omponents are 
onne
ted to an a-pro
ess.Intera
tion ModelLet IMn = (K, {Ai}i∈K , Int) be an intera
tion model with n ≥ 2. The set of
omponents K is given by

K = {Ca
i , C

b
i , C

c
i |0 ≤ i < n}.The set of ports AC

a
i
for a 
omponent Ca

i with 0 ≤ i < n 
onsists of thefollowing ports.
connf

i : 
onne
t to a front pro
ess
connb

i : 
onne
t to a ba
k pro
ess
workf

i : do a working step with a front pro
ess
workb

i : do a working step with a ba
k pro
ess
synci : syn
hronize with the front pro
essesThe set of ports A

C
b
i
for a 
omponent Cb

i with 0 ≤ i < n− 1 
onsists of thefollowing ports.
conn_bi : 
onne
t to an a-pro
ess
work_bi: do a working step with an a-pro
ess
sync_bi : syn
hronize with an a-pro
ess
free_bi : this pro
ess is not 
onne
ted to any pro
essAnalogously, the set of ports AC

c
i
for a 
omponent Cc

i with 0 ≤ i < n − 1
onsists of the following ports.
conn_ci : 
onne
t to an a-pro
ess
work_ci: do a working step with an a-pro
ess
sync_ci : syn
hronize with an a-pro
ess
free_ci : this pro
ess is not 
onne
ted to any pro
ess149



CHAPTER 5. RESULTSLet the intera
tion set Int of IMn 
onsist of the following intera
tions.For 0 ≤ i < n the 
omponent Ca
i

• 
onne
ts to its front b-pro
ess: {connf
i , conn_bi, free_ci}

• 
onne
ts to its front c-pro
ess: {connf
i , conn_ci, free_bi}

• does a working step with its front b-pro
ess: {workf
i , work_bi}

• does a working step with its front c-pro
ess: {workf
i , work_ci}

• syn
hronizes with its front pro
esses: {synci, sync_bi, sync_ci}
• 
onne
ts to its ba
k b-pro
ess: {connb

i , conn_bi−1, free_ci−1}

• 
onne
ts to its ba
k c-pro
ess: {connb
i , conn_ci−1, free_bi−1}

• does a working step with its ba
k b-pro
ess: {workb
i , work_bi−1}

• does a working step with its ba
k c-pro
ess: {workb
i , work_ci−1}Note that i− 1 refers to n− 1 if i = 0.Figure 5.7 depi
ts the intera
tion graph of the intera
tion model IM10.

Intera
tion SystemLet n ≥ 2 and IMn = (K, {Ai}i∈K , Int) be the intera
tion model for the
ir
le-like 
omponents example. Let l ≥ 1 and Sysln = (IMn, {Ti}i∈K) be theintera
tion system with the lo
al behaviors of the 
omponents in K. Figure5.8 depi
ts the respe
tive lo
al behaviors for l = 2. 5.8a depi
ts TC
a
i
, 5.8b

T
C

b
i
and 5.8
 TC

c
i
for 0 ≤ i < n. It is easy to see that the global behavior Tof Sysln is deadlo
k-free for any n ≥ 2 and l ≥ 1.150
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CHAPTER 5. RESULTSSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 15 30 60 150 300

| Int | 45 90 180 450 900

|Q| 231.61 283.4 2181.48 2453.71 21024.67

|C| 40 80 160 400 800

Σ|QC | 3, 400 29, 160 98, 560 246, 400 1, 134, 000

ΣReach 2, 580 22, 420 76, 040 190, 100 878, 600

ΣCC 1, 890 18, 520 64, 760 161, 900 777, 800

ΣEM 1, 640 15, 040 51, 560 128, 900 602, 800

% 51.76 48.42 47.69 47.69 46.84time 99 464 1, 333 4, 483 22, 504
rit 280 1, 760 5, 200 13, 000 47, 600Table 5.5: Ben
hmarks of the 
ir
le-like 
omponents example for d = 3.
Results & Dis
ussion
We applied our approa
h to various instan
es of the 
haining-like 
ompo-nents example with abstra
t over-approximations based on subsets of d = 3(Table 5.5) and d = 4 (Table 5.6) 
omponents. The 
olumns are labeled by
(n, l), i.e., we 
onsidered systems of the form Sysln. Even though the obvioussimilarity between this system and the 
haining 
omponents system intro-du
ed in Se
tion 5.4, Table 5.5 shows that the Cross-Che
king operator hasa signi�
ant re�nement e�e
t on the instan
es. The Edge-Mat
h operatorhowever produ
es even more re�ned abstra
t over-approximations on the
onsidered instan
es with d = 3. If we 
onsider abstra
t over-approxima-tions based on subsets of size d = 4 then the Edge-Mat
h operator has noadvantage over the Cross-Che
king operator, i.e., both approa
hes produ
eabstra
t over-approximations with the same rea
hable state spa
e.152



5.6. PRODUCTION CELLSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 15 30 60 150 300

| Int | 45 90 180 450 900

|Q| 231.61 283.4 2181.48 2453.71 21024.67

|C| 65 130 260 650 1, 300

Σ|QC | 24, 400 340, 200 1, 369, 060 3, 422, 650 20, 776, 500

ΣReach 15, 585 222, 970 904, 520 2, 261, 300 13, 880, 200

ΣCC 4, 505 36, 850 120, 560 301, 400 1, 309, 600

ΣEM 4, 505 36, 850 120, 560 301, 400 1, 309, 600

% 81.54 89.17 91.19 91.19 93.7time 279 1, 500 4, 350 14, 169 71, 478
rit 0 0 0 0 0Table 5.6: Ben
hmarks of the 
ir
le-like 
omponents example for d = 4.5.6 Produ
tion CellThe Produ
tion Cell is a small system that des
ribes the automati
 pro-
essing of metal blanks. The system in
ludes a feed belt, a rotating table,a robot unit with two arms, arm one and arm two, whi
h are assembledon one swivel and 
an only move simultaneously, a press that pro
esses themetal blanks, a deposit belt and a 
rane. The feed belt 
an transport ametal blank to the rotating table. The table rotates su
h that arm one 
anlift the blank into the press. After the press pro
essed the blank, arm twowithdraws the produ
t and moves it to the deposit belt that transports theprodu
t into the s
ope of the 
rane. The 
rane 
an lift the produ
t ba
kon the feed belt where it is used again as a metal blank. Thus, one metalblank 
an be pro
essed in�nitely often. The System is des
ribed in detail in[LL95℄. Here we model an abstra
t version of the system by an intera
tionsystem. Our model is partly based on a Petri net model that is des
ribed in[HD95℄. We provide here merely a brief des
ription of the system and ourmodel. See [LL95℄ and [HD95℄ for further details.153



CHAPTER 5. RESULTSWe model ea
h unit of the system as a 
omponent with the ex
eption that therobot unit is modeled by three 
omponents � the two arms and the swivelare modeled separately. Between two neighboring units in the pro
essing
y
le there is a 
onne
ting area that is modeled by a 
omponent as well. Anarea models the three 
ases that the next unit in the pro
ess is busy, i.e., thearea is blo
ked, the next unit is waiting and there is no metal blank/produ
tavailable, i.e., the area is free and the 
ase that the unit is waiting and ametal blank/produ
t is available. Note that this system is not parameterizedby a parameter that a�e
ts the number of 
omponents.Intera
tion ModelLet IM = (K, {Ai}i∈K , Int) be an intera
tion model with the set of 
ompo-nents K = Kunits ∪Kareas where
Kareas = {FT, TA1, A1P, PA2, A2D,DC,CF, } and
Kunits = {feedBelt, table, arm1, swivel, press, arm2, depositBelt, crane}.Note that the names of the 
omponents that model the areas 
onsists of the�rst letters of the units that are 
onne
ted by the area, e.g., the 
omponent
FT models the area that 
onne
ts the feed belt and the table and PA2models the area that 
onne
ts the press and arm two.In the following we spe
ify the set of ports for ea
h 
omponent. Various
omponents that model units and areas in the model share a similar behav-ior, i.e., they exhibit a similar set of ports. For i ∈ {feedBelt, depositBelt}let Ai 
onsist of the following ports.

occupyi : the belt be
omes o

upied by a metal blank
transporti: the belt transports a blank to the output area
emptyi : a metal blank be
omes unloaded from the belt
goidlei : the belt goes into an idle state154



5.6. PRODUCTION CELLFor i ∈ {table, press} let Ai 
onsist of the following ports.
moveUnloadi : an available blank moves to the unload position
readyUnloadi: a blank be
omes unloaded
moveLoadi : move to the loading position
readyi : be
ome available for inputFor i ∈ {arm1, arm2} let Ai 
onsist of the following ports.
gowait1i : wait for the swivel to rotate towards a blank
loadi : load a blank
goSwivel1i: rotate toward the output area
storei : a loaded blank waits for be
oming unloaded
gowait2i : wait for the swivel to rotate into the output area
unloadi : be
ome ready for unloading
goSwivel2i: turn into the output area and unload a blank
freei : wait for a new blankThe set of ports Aswivel 
onsists of the following ports.
takeswivel: an arm wants to use the swivel in order to rotate
putswivel : an arm �nished a rotating pro
essThe set of ports Acrane of the 
omponent that models the 
rane 
onsists ofthe following ports.

loadcrane : load an available blank
storecrane : a loaded blank waits for being moved
unloadcrane: unload a blank into the output area
freecrane : be
ome available for a new blankFor i ∈ Kareas let the set of ports Ai 
onsist of the following ports.

lockInputi : the area is blo
ked by a blank
unlockInputi : a blank was pro
essed by the next unit
lockOutputi : previous unit wants to load a blank into this area
unlockOutputi: loads a blank from the previous unit155



CHAPTER 5. RESULTSThe following intera
tions des
ribe the 
ooperation between ea
h unit and itsinput respe
tively output area. Let Int 
onsists of exa
tly these intera
tions.The 
omponent that models the 
rane intera
ts with the areas DC and CF :
lockInputDC = {lockInputDC , loadcrane}

unlockInputDC = {unlockInputDC , storecrane}

lockOutputCF = {lockOutputCF , unloadcrane}

unlockOutputCF = {unlockOutputCF , freecrane}Component feedBelt intera
ts with the areas CF and FT :
lockInputCF = {lockInputCF , occupyfeedBelt}

unlockInputCF = {unlockInputCF , emptyfeedBelt}

lockOutputFT = {lockOutputFT , transportfeedBelt}

unlockOutputFT = {unlockOutputFT , goidlefeedBelt}The 
omponent depositBelt that models the deposit belt intera
ts with the
omponents A2D and DC:
lockInputA2D = {lockInputA2D, occupydepositBelt}

unlockInputA2D = {unlockInputA2D, emptydepositBelt}

lockOutputDC = {lockOutputDC, transportdepositBelt}

unlockOutputDC = {unlockOutputDC, goidledepositBelt}The table intera
ts with the areas FT and TA1:
lockInputFT = {lockInputFT , moveUnloadtable}

unlockInputFT = {unlockInputFT , goreadytable}

lockOutputTA1 = {lockOutputTA1, moveLoadtable}

unlockOutputTA1 = {unlockOutputTA1, readyUnloadtable}Component press intera
ts with the areas A1P and PA2:
lockInputA1P = {lockInputA1P , moveUnloadpress}

unlockInputA1P = {unlockInputA1P , goreadypress}

lockOutputPA2 = {lockOutputPA2, moveLoadpress}

unlockOutputPA2 = {unlockOutputPA2, readyUnloadpress}156



5.6. PRODUCTION CELLThe 
omponent arm1 that models the robot arm one intera
ts with theareas TA1 and A1P and with the 
omponent that models the swivel:
lockInputTA1 = {lockInputTA1, gowait1arm1}

unlockInputTA1 = {unlockInputTA1, goSwivel1arm1}

lockOutputA1P = {lockOutputA1P , gowait2arm1}

unlockOutputA1P = {unlockOutputA1P , goSwivel2arm1}

takeSwivel1Arm1 = {takeswivel, loadarm1}

putSwivel1Arm1 = {putswivel, storearm1}

takeSwivel2Arm1 = {takeswivel, unloadarm1}

putSwivel2Arm1 = {putswivel, freearm1}The 
omponent arm2 that models the robot arm two intera
ts with theareas PA2 and A2D and with the 
omponent that models the swivel:
lockInputPA2 = {lockInputPA2, gowait1arm2}

unlockInputPA2 = {unlockInputPA2, goSwivel1arm2}

lockOutputA2D = {lockOutputA2D, gowait2arm2}

unlockOutputA2D = {unlockOutputA2D, goSwivel2arm2}

takeSwivel1Arm2 = {takeswivel, loadarm2}

putSwivel1Arm2 = {putswivel, storearm2}

takeSwivel2Arm2 = {takeswivel, unloadarm2}

putSwivel2Arm2 = {putswivel, freearm2}Figure 5.9 depi
ts the intera
tion graph of the intera
tion model IM.Intera
tion SystemLet Sys = (IM, {Ti}i∈K) be the intera
tion system that 
onsists of the in-tera
tion model of the Produ
tion Cell example and the lo
al behavior ofthe 
omponents that is depi
ted in the following �gures. Note that the lo-
al initial state of the behavior of 
omponents in {DC,CF, FT,A1P,A2D}is avail. This state models that a blank is 
urrently in this area whi
his ready for further pro
essing. The 
omponents in {PA2, TA1} exhibit157
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omponents that model the feed belt, thedeposit belt, the table and the press in the Produ
tion Cell example.the initial state locked whi
h models that these areas are ready to re
eivea blank from the previous unit. This is, there are initially 5 blanks inthe system that are in the areas that are modeled by the 
omponents in
{DC,CF, FT,A1P,A2D}.Figure 5.10 depi
ts the lo
al behavior of the 
omponents that model the feedbelt, the deposit belt, the table and the press, Figure 5.11 the lo
al behaviorof the areas, Figure 5.12 the lo
al behavior of the 
omponent that modelsthe swivel and the 
rane and Figure 5.13 depi
ts the lo
al behavior of the
omponents that model the robot arm one and two.158
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CHAPTER 5. RESULTSResults & Dis
ussionOur model of the Produ
tion Cell example is not parameterized and, in 
om-parison to instan
es in our other examples, relatively small � there are only
15 
omponents in the model. Table 5.7 shows the results of our re�nementapproa
h and our approa
h to establish deadlo
k-freedom applied to theProdu
tion Cell example. The 
olumns are labeled by the parameter d thatwe used in our experiments. We 
onsidered families of abstra
t over-appro-ximations based on subsets 
onsisting of 3, 6, 9, 12 and 15 
omponents. Notethat there is only one abstra
t over-approximation if we 
onsider d = 15 andthat this abstra
t over-approximation 
orresponds to the global behavior ofthe system (thus, the required time to 
al
ulate the Edge-Mat
h �xed-pointequals 0 millise
onds). Furthermore the table shows that the Edge-Mat
hoperator produ
es only slightly more re�ned abstra
t over-approximationsin 
omparison with the Cross-Che
king operator and that our approa
h toestablish deadlo
k-freedom su

eeds for an analysis with d = 12, i.e., ourmodel is deadlo
k-free.5.7 Con
lusionIn this 
hapter we presented results of a tool that implements our approa
h tore�ne abstra
t over-approximations and our approa
h to establish deadlo
k-freedom by an analysis of these abstra
t over-approximations. Furthermore,we provided a 
omparison between our re�nement approa
h and a re�nementapproa
h that is based on the Cross-Che
king operator [Min10℄. The resultsare 
al
ulated from various 
omplex and parametrized examples.The results present the strength of our re�nement approa
h and re�e
t thatthere are 
omplex systems where our approa
h is able to 
on
lude in a rea-sonable amount of time that a great amount of states in the initial abstra
tover-approximations are not proje
tions of rea
hable global states. Further-more, the results show that we 
an establish deadlo
k-freedom in intera
tion160



5.7. CONCLUSIONSystem 3 6 9 12 15

|K| 15 15 15 15 15

| Int | 36 36 36 36 36

|Q| 228.09 228.09 228.09 228.09 228.09

|C| 19 39 60 70 1

Σ|QC | 1, 172 138, 240 10, 153, 728 523, 542, 528 286, 074, 857

ΣReach 652 18, 390 276, 104 3, 050, 172 13, 107

ΣCC 524 11, 418 156, 617 1, 310, 519 13, 107

ΣEM 521 11, 418 155, 873 1, 310, 291 13, 107

% 55.55 91.74 98.46 99.75 100.0time 63 708 5, 596 52, 427 0
rit 60 187 120 0 0Table 5.7: Ben
hmarks of the Produ
tion Cell example for various values ofthe parameter d.systems with a large number of 
omponents.As already argued in Chapter 3, our re�nement approa
h is at least as strongas the Cross-Che
king approa
h. Our results show that there are systemswhere our approa
h produ
es signi�
antly more re�ned abstra
t over-ap-proximations. Parti
ularly in the 
haining 
omponents example (Se
tion5.4), our approa
h produ
es for d = 3 in the system Sys7100 (see Table5.3) abstra
t over-approximations where the number of all rea
hable statesis 
onsiderably smaller in 
omparison to the abstra
t over-approximations
onstru
ted by the Cross-Che
king approa
h. In fa
t, in this example, ourapproa
h produ
es abstra
t over-approximations with more than 30% lessrea
hable states. Furthermore, the results depi
ted in Table 5.3 show thatthere are systems where the Cross-Che
king approa
h does not have anyre�nement e�e
t at all, whereas our approa
h results in abstra
t over-ap-proximations where a great amount of initial rea
hable states be
ome un-rea
hable. Presented in [Min10℄ is a prototype tool PrInSESSA that im-161



CHAPTER 5. RESULTSplements a �xed-point 
al
ulation of abstra
t over-approximations based onthe Cross-Che
king operator. PrInSESSA is implemented in pure Java anddoes not use BDDs as an underlying data stru
ture. Thus, PrInSESSA isin 
omparison with our tool 
onsiderably more slowly and 
an only handle
onsiderably less 
omplex systems.There are, best to our knowledge, no other tools that implement a 
ompa-rable approa
h. We just want to mention that all PROMELA models of thePhilosophers Problem that we found 
an only be analyzed in an a

eptableruntime in the famous LTL model 
he
ker SPIN [Hol97℄ for a 
onsiderablysmaller number of philosophers. However, this observation 
an not be usedor extended to a relevant 
omparison be
ause SPIN analyzes (without addi-tional adjustments) the entire rea
hable state spa
e of a system.

162



Chapter 6
A Conne
tion to RelationalAlgebrai
 Operators
6.1 Introdu
tionIn this 
hapter we present a 
onne
tion between our approa
h to re�neabstra
t over-approximations by the Edge-Mat
h operator, that we intro-du
ed in Chapter 3, and the theory of relational algebra and its operators[MCS13a℄. We show that a family of abstra
t over-approximations 
an bemodeled as relations in a database on a relational database s
heme andmodel our re�nement operator by relational algebrai
 operators. We usethis 
onne
tion to derive a proposition regarding the �pre
iseness� of ourre�nement te
hnique that was introdu
ed in Chapter 3. For this purposewe 
onsider a
y
li
 relational database s
hemata. These s
hemata form animportant sub
lass in the theory of relational databases as they ful�ll vari-ous interesting properties and several operations be
ome de
omposable, i.e.,an operation on a general database the appli
ation of whi
h requires anexpensive 
al
ulation that involves all tables in the database 
an be de-
omposed to less expensive operations on subsets or even pairs of tables(see, e.g., [Yan81℄ for e�
ient algorithms on databases that are based on163



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORSa
y
li
 database s
hemata). We show here that the �xed-point of a familyof abstra
t over-approximations with respe
t to the Edge-Mat
h operator islegitimate (see De�nition 3.7) if the hypergraph that is based on the domainof the family is a
y
li
. Results from the theory of relational databases havebeen exploited in other �elds as well, e.g., a generalization of these 
on
eptsin the �eld of set theory 
an be found in [Heg91℄. A relational algebrai
 ap-proa
h for establishing system properties is used in [LL88℄ where the statespa
e of 
ooperating proto
ols is modeled as one relation and various prop-erties are 
he
ked by relational queries. In [KK96℄ a Petri net is modeled bya relation for markings and one for the pla
es and transitions. Properties
an be 
he
ked by algorithms on these relations that make use of relationalalgebrai
 operators.
In the �rst part of this 
hapter, that 
onsists of Se
tion 6.2 and 6.3, wedes
ribe how abstra
t over-approximations 
an be interpreted in terms ofrelations and how the Edge-Mat
h operator 
an be modeled by operationsfrom the relational algebra. Parti
ularly the semijoin on a relation r with arelation s is used for this purpose, that (roughly speaking) restri
ts a relation
r to tuples t for whi
h there is a tuple t

′ in s su
h that t and t
′ 
oin
ide ontheir shared attributes. We start the �rst part by repeating the notions ofthe relational algebra that we need in the remainder.

The se
ond part of this 
hapter, Se
tion 6.4, uses the result of the �rst partin order to derive a proposition that states that the �xed-point of a familyof abstra
t over-approximations is legitimated if the domain on whi
h thefamily is based has a 
ertain stru
ture.
Se
tion 6.5 
on
ludes this 
hapter. 164



6.2. RELATIONAL ALGEBRA6.2 Relational AlgebraHere we give a brief 
ompendium of notions and operators from the relationalalgebra (see, e.g., [Mai83℄) that are used in the remainder of this 
hapter.De�nition 6.1:A relational s
heme R = {A1,A2, . . . ,Ap} is a �nite set of attributenames (attributes for short). The domain of an attribute Ai (1 ≤ i ≤ p)is a set Di = dom(Ai). Let D(R) = D1 ∪ · · · ∪ Dp then a relation r(R) on
R is a set of mappings r(R) = {t1, t2, . . . , tk} from R to D(R) su
h that forea
h t ∈ r(R) and ea
h i ∈ {1, . . . , p} t(Ai) ∈ Di. A mapping in a relation is
alled a tuple. In the following, we write r instead of r(R) if it is 
lear that
r is a relation on R. Let r(R) be a relation and S ⊆ R then for t ∈ r t(S)denotes t restri
ted to the attributes in S.Remark 6.1:Note that the term domain was introdu
ed in Chapter 3 in De�nition 3.6and entitles a set of subsets of 
omponents. In the remainder it is obviousfrom the 
ontext whether we speak about the domain of an attribute or thedomain in the sense of De�nition 3.6.Here we give an example that we use to illustrate the 
on
ept of relationals
hemata and relations. We use this example in the remainder to illustratevarious operators on relations.Example 6.1:Let R1 = {A,B,C} and R2 = {B,C,D} be relational s
hemata su
h thatthe domain of ea
h attribute in R1 and R2 equals the natural numbers. Itis 
ommon to depi
t relations in the form of tables. Table 6.1 depi
ts tworelations r1(R1) and r2(R2). Ea
h row 
orresponds to a tuple in the a

ordingrelation. The 
olumns are labeled by the attribute names.In the remainder we make use of the following operations on relations.De�nition 6.2:Let R and S be relation s
hemata and r(R) and s(S) be relations.165



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORS
A B C

1 2 2

3 1 2

3 1 5

2 5 3(a) r1(R1)

B C D

2 8 5

1 3 1

1 2 1

1 5 3

5 3 2(b) r2(R2)Table 6.1: Graphi
al representation of the relations r1(R1) and r2(R2).
• The join of r with s is a relation u(U) = r ⊲⊳ s on U = R∪ S with t ∈ uif and only if there are tuples tr ∈ r and ts ∈ s su
h that tr = t(R) and
ts = t(S).
• Let U ⊆ R (U 6= ∅). The proje
tion of r on U is a relation u(U) = πU(r)with u = {t(U)|t ∈ r}.
• The semijoin of r with s is a relation r ⋉ s = πR(r ⊲⊳ s).Example 6.2:Consider the relations r1(R1) and r2(R2) from Example 6.1. The relation

r(U) = r1 ⊲⊳ r2 for U = R1 ∪ R2 is depi
ted in Table 6.2.
A B C D

3 1 2 1

3 1 5 3

2 5 3 2Table 6.2: The relation r(U) = r1 ⊲⊳ r2.Example 6.3:Consider the relations r1(R1) and r2(R2) from Example 6.1. The relation
r(R1) = r1 ⋉ r2 is depi
ted in Table 6.3.166



6.3. THE RELATIONAL EDGE-MATCH OPERATOR
A B C

3 1 2

3 1 5

2 5 3Table 6.3: The relation r(R1) = r1 ⋉ r2.
6.3 The Relational Edge-Mat
h OperatorWe now introdu
e a mapping from transition relations of transition systemsthat are based on a subset of 
omponents of an intera
tion system to relationson a relational s
heme and show, how the Edge-Mat
h operator 
an bemodeled by using the semijoin operator. The mapping is straight forwardbe
ause we interpret a transition relation as a relational algebrai
 relation,i.e., the mapping merely is a mapping between notations.De�nition 6.3:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int), C ⊆ K (C 6= ∅) a subset of 
omponents and
R = (QC , Int,→R, q

0
C) a transition system (see De�nition 3.2 in Chapter 3).Let RC = Cf ∪ {Interaction} ∪ Ct be the relation s
heme with

• Cf = {if |i ∈ C} with domains dom(if) = Qi for i ∈ C and
• Ct = {it|i ∈ C} with domains dom(it) = Qi for i ∈ C and
• dom(Interaction) = Int.Note that f abbreviates �from� and t abbreviates �to� as the attributes in

Cf model the left hand side of a transition and the attributes in Ct the righthand side. Thus, a tuple t in a relation on RC is a fun
tion
t : Cf ∪ {Interaction} ∪ Ct →

⋃

i∈C

Qi ∪ Int .167



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORSLet t be a tuple like this then t models a transition qC
α
−→R q′C with qC =

(qi)i∈C and q′C = (q′i)i∈C if and only if t(Interaction) = α and for i ∈ C holds
t(if ) = qi and t(it) = q′i.Let rR(RC) be the relation on RC that 
onsists of the tuples that model thetransitions in →R. The relation s
heme RC is 
alled the relation s
hemeasso
iated with C and rR(RC) the relation asso
iated with R.We say a tuple t ∈ rR(RC) is rea
hable in the relation rR(RC) if the 
orre-sponding transition that is modeled by t is rea
hable in R.In the following we show how the Edge-Mat
h operator 
an be modeled bythe semijoin operator. After giving an example we show that the semijoinoperator a
tually re�nes relations that model abstra
t over-approximationsin the same way as the Edge-Mat
h operator re�nes abstra
t over-approxi-mations. The following examples shows the result of the semijoin operatorapplied on relations asso
iated with abstra
t over-approximations from therunning example that was introdu
ed in Example 1.1 in Chapter 1.Example 6.4:Let rS(RC) be the relation asso
iated with S (Example 3.2) and rR(RD) therelation asso
iated with R (Example 3.3). Relation rS is depi
ted in Table6.4 and rR in Table 6.5. Note that both relations 
onsists of rea
hable tuples.The 
olumns are labeled by the respe
tive attributes.Table 6.6 depi
ts the relation rS ⋉ rR, i.e., the result of the semijoin operatoron the relations rS and rR. From the 18 tuples in rS are 8 tuples removedin rS ⋉ rR. Note that rS ⋉ rR 
oin
ides with the relation asso
iated with RCfrom Example 3.4, i.e., the result of the Edge-Mat
h operator applied on Rand S.The following theorem states that the result of the semijoin operator, onrelations that represents transition systems with respe
t to a subset of 
om-ponents and are restri
ted to rea
hable tuples, 
orresponds to an appli
ationof the Edge-Mat
h operator on the transition systems.168



6.3. THE RELATIONAL EDGE-MATCH OPERATOR
TERf

1 GSf ADBf Interaction TERt
1 GSt ADBt

q0TER1
q0GS q0ADB send_req1 q1TER1

q1GS q0ADB

q0TER1
q0GS q0ADB send_req2 q0TER1

q1GS q0ADB

q1TER1
q1GS q0ADB ask_auth q1TER1

q2GS q1ADB

q1TER1
q2GS q1ADB authorize q1TER1

q2GS q0ADB

q1TER1
q2GS q1ADB send_data q1TER1

q3GS q1ADB

q1TER1
q2GS q0ADB send_data q1TER1

q3GS q0ADB

q1TER1
q3GS q0ADB get_reply1 q0TER1

q0GS q0ADB

q0TER1
q1GS q0ADB ask_auth q0TER1

q2GS q1ADB

q0TER1
q2GS q1ADB authorize q0TER1

q2GS q0ADB

q0TER1
q2GS q1ADB send_data q0TER1

q3GS q1ADB

q0TER1
q2GS q0ADB send_data q0TER1

q3GS q0ADB

q0TER1
q3GS q0ADB get_reply2 q0TER1

q0GS q0ADB

q1TER1
q3GS q1ADB authorize q1TER1

q3GS q0ADB

q1TER1
q3GS q1ADB get_reply1 q0TER1

q0GS q1ADB

q0TER1
q0GS q1ADB authorize q0TER1

q0GS q0ADB

q0TER1
q0GS q1ADB send_req1 q1TER1

q1GS q1ADB

q1TER1
q1GS q1ADB authorize q1TER1

q1GS q0ADB

q0TER1
q3GS q1ADB authorize q0TER1

q3GS q0ADBTable 6.4: Relation rS(RC) asso
iated with S (Example 3.2).
GSf ADBf DBf Interaction GSt ADBt DBt

q0GS q0ADB q0DB send_req1 q1GS q0ADB q0DB

q0GS q0ADB q0DB send_req2 q1GS q0ADB q0DB

q1GS q0ADB q0DB ask_auth q2GS q1ADB q0DB

q2GS q1ADB q0DB authorize q2GS q0ADB q1DB

q2GS q0ADB q1DB send_data q3GS q0ADB q0DB

q3GS q0ADB q0DB get_reply1 q0GS q0ADB q0DB

q3GS q0ADB q0DB get_reply2 q0GS q0ADB q0DBTable 6.5: Relation rR(RD) asso
iated with R (Example 3.3).169



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORS
TERf

1 GSf ADBf Interaction TERt
1 GSt ADBt

q0TER1
q0GS q0ADB send_req1 q1TER1

q1GS q0ADB

q0TER1
q0GS q0ADB send_req2 q0TER1

q1GS q0ADB

q1TER1
q1GS q0ADB ask_auth q1TER1

q2GS q1ADB

q1TER1
q2GS q1ADB authorize q1TER1

q2GS q0ADB

q1TER1
q2GS q0ADB send_data q1TER1

q3GS q0ADB

q1TER1
q3GS q0ADB get_reply1 q0TER1

q0GS q0ADB

q0TER1
q1GS q0ADB ask_auth q0TER1

q2GS q1ADB

q0TER1
q2GS q1ADB authorize q0TER1

q2GS q0ADB

q0TER1
q2GS q0ADB send_data q0TER1

q3GS q0ADB

q0TER1
q3GS q0ADB get_reply2 q0TER1

q0GS q0ADBTable 6.6: Relation rS ⋉ rR.Theorem 6.1:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int) and C,D ⊆ K (C,D 6= ∅) subsets of 
omponents.Let S = (QC , Int,→S, q

0
C) and R = (QD, Int,→R, q

0
D) be transition systemswith respe
t to C respe
tively D. Let rS(RC) and rR(RD) be the asso
iatedrelations with S and R on the relation s
hemata RC and RD. Further, let r′Sand r

′
R be rS respe
tively rR restri
ted to rea
hable tuples. Then

r
′
S ⋉ r

′
R = rsu
h that r is the relation (on the relation s
heme RC) asso
iated with thetransition system S ′ = EM(S,R).Proof. The proof 
an be found in Appendix A on Page 203.Aside from showing in Theorem 6.1 an interesting 
onne
tion between ourre�nement approa
h and the �eld of relational algebra we use this result inthe following to show that the Edge-Mat
h �xed-point of a family of abstra
tover-approximations is legitimate if the domain on whi
h the family is basedexhibits a 
ertain stru
ture. 170



6.4. A PRECISENESS CONDITION6.4 A Pre
iseness ConditionIn the following we des
ribe how results on a
y
li
 database s
hemata [Yan81℄
an be interpreted in our setting. If a join is exe
uted on a set of tables thenin general not all tuples in the relations a
tually �appear� in the result, i.e.,the join yields the same result if 
ertain tuples are removed from the rela-tions. These, so-
alled �dangling� tuples are an unne
essary fa
tor in datatransmission if the relations are stored on multiple sites (see [Mai83℄). Ate
hnique to redu
e the number of dangling tuples in a pre-pro
essing isthe semijoin redu
tion, where the semijoin operator is applied pairwise oninvolved relations in order to remove dangling tuples. If the attributes ofthe tables that are involved in a semijoin redu
tion have a 
ertain stru
turethen one 
an make a pre
iseness assumption about the result of the semijoinredu
tion. In the following we exploit this pre
iseness assumption in orderto make a pre
iseness assumption about Edge-Mat
h �xed-points by usingthe result from the last se
tion.First we need to introdu
e additional de�nitions from the �eld of relationaldatabase theory.De�nition 6.4:Let U be a set of attributes. A relational database s
heme R over U is afamilyR = {R1,R2, . . . ,Rp} of relation s
hemata with Ri ⊆ U and Ri 6= ∅ for
i = 1, . . . , p and ∪i=1,...,pRi = U. A relational database d on the relationaldatabase s
heme R is a set of relations d = {r1(R1), . . . , rp(Rp)}.As the join operator is asso
iative, ⊲⊳ (d) denotes the join over all relationsin d, i.e.,

⊲⊳ (d) = r1 ⊲⊳ r2 ⊲⊳ . . . ⊲⊳ rp.The full redu
tion of a relation r(R) ∈ d relative to d is FR(r, d) = πR(⊲⊳

(d)). The relation FR(r, d) is the part of r that is a
tually used in the join
⊲⊳ (d), i.e.,

⊲⊳ (d) = r1 ⊲⊳ r2 ⊲⊳ . . . ⊲⊳ rp = FR(r1, d) ⊲⊳ FR(r2, d) ⊲⊳ . . . ⊲⊳ FR(rp, d).171



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORSA semijoin program SP for d is a sequen
e of assignments of the form
ri ← ri ⋉ rjfor i, j ∈ {1, . . . , p}. SP (ri, d) denotes the �nal value of relation ri after theexe
ution of SP on d. A semijoin program SP for d is 
alled full-redu
erfor R if (independent from the relations in d) for all 1 ≤ i ≤ p

FR(ri, d) = SP (ri, d).An important theorem in the �eld of relational database theory states thatthere exists a full-redu
er for a database s
heme R if and only if R is a
y
li
[BFMY83℄ (a proof 
an be found in [Mai83℄ as well). The next de�nitionspe
i�es in whi
h 
ase a database s
heme is 
alled a
y
li
.De�nition 6.5:A hypergraph is a tuple H = (V,E) with a set of nodes V and a set ofhyperedges E ⊆ 2V \ {∅}. The GYO-redu
tion (named after Graham[Gra79℄, Yu and Ozsoyoglu [YO79℄) of a hypergraph H = (V,E) is the pro-
ess of repeatedly removing nodes from H whi
h appear in at most one hy-peredge and removing all hyperedges that are in
luded in other hyperedges.A hypergraph H = (V,E) is 
alled a
y
li
 if and only if the hypergraph
H ′ = (V ′, E ′) that results from the GYO-redu
tion has no nodes and nohyperedges, i.e., V ′ = ∅ and E ′ = ∅. Note that the result is independent ofthe sequen
e of node and hyperedge removals.Let R be a database s
heme over the set of attributes U. The hypergraph
H = (U,R) is 
alled the asso
iated hypergraph with R. The databases
heme R is 
alled a
y
li
 if and only if H is a
y
li
.Let R be an a
y
li
 database s
heme. From the sequen
e of removed hyper-edges during the GYO-redu
tion one 
an a
tually 
onstru
t a full-redu
erthat only needs a number of semijoin operations that is linear in |R|. It iseasy to see that if a database d on an a
y
li
 database s
heme is a �xed-point with respe
t to a pairwise appli
ation of the semijoin operation then a172



6.4. A PRECISENESS CONDITIONfull-redu
er applied on d does not 
hange any relation in d, i.e., ea
h relationin d is a full redu
tion.We 
an now formulate our proposition regarding the �pre
iseness� of a �xed-point of a family of abstra
t over-approximations with respe
t to an appli-
ation of the Edge-Mat
h operator. Let C ⊆ 2K \ {∅} be a domain and
{RC}C∈C a family of abstra
t over-approximations of an intera
tion system
Sys with 
omponents K. As addressed in Chapter 3, we 
annot expe
t thatthere is no artifa
t in any abstra
t over-approximation in the Edge-Mat
h�xed-point of {RC}C∈C. The following 
orollary states that we 
an 
on
ludethat the Edge-Mat
h �xed-point of {RC}C∈C is legitimate if the hypergraph
HC = (K,C) is a
y
li
.Corollary 6.1:Let Sys = (IM, {Ti}i∈K) be an intera
tion system with intera
tion model
IM = (K, {Ai}i∈K , Int). Let C ⊆ 2K \ {∅} be a domain su
h that thehypergraph HC = (K,C) is a
y
li
. Let {RC}C∈C be a family of abstra
tover-approximations, then the Edge-Mat
h �xed-point of {RC}C∈C is legit-imate.Proof. The proof 
an be found in Appendix A on Page 204.The following example illustrates a 
laim that is stated in the proof of Corol-lary 6.1. This is, let Sys be an intera
tion system with the set of 
omponents
K and C ⊆ 2K \ {∅} a domain then a relational database s
heme that 
on-sists of the relational s
hemata asso
iated with the subsets in C is a
y
li
 ifthe hypergraph HC = (K,C) is a
y
li
.Example 6.5:Consider the intera
tion system Sys from Example 1.2. Let C = {C1, C2, C3}be a domain with

C1={TER1,GS,ADB},

C2={TER2,GS,DB} and
C3={GS,ADB,DB}.173



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORS
TER1

TER2

GS

ADB

DBFigure 6.1: The hypergraph HC = (K,C).The hypergraph HC = (K,C) is depi
ted in Figure 6.1. A hyperedge isdepi
ted as a 
losed 
urve that in
ludes all nodes in the hyperedge. It iseasy to see that HC is a
y
li
. The nodes TER1 and TER2 ea
h only o

urin one hyperedge and thus 
an be removed. After that two hyperedges 
anbe removed as they are in
luded in another hyperedge. Now the last threenodes and the resulting empty hyperedge 
an be removed. This is, HC isa
y
li
 and thus, a

ording to Corollary 6.1, the Edge-Mat
h �xed-point ofany family of abstra
t over-approximations based on C is legitimate.The relational s
hemata asso
iated with C1, C2 and C3 are
RC1

={TERf
1 ,GSf ,ADBf , Interaction,TERt

1,GSt,ADBt},

RC2
={TERf

2 ,GSf ,DBf , Interaction,TERt
2,GSt,DBt} and

RC3
={GSf ,ADBf ,DBf , Interaction,GSt,ADBt,DBt}.Let R = {RC1

,RC2
,RC3
} be a relational database s
heme over the set ofattributes U = RC1

∪ RC2
∪ RC3

. Just as above it is easy to see that thehypergraph HR = (U,R) (depi
ted in Figure 6.2) is a
y
li
. This is, R isan a
y
li
 database s
heme.6.5 Con
lusionWe introdu
ed a 
onne
tion between the �eld of relational algebra and ourre�nement approa
h of abstra
t over-approximations by the Edge-Mat
hoperator. For this purpose we modeled abstra
t over-approximations as re-lations and the Edge-Mat
h operator by the semijoin operator. Aside from174



6.5. CONCLUSION
TER

f
1 TER

t
1

TER
f
2 TER

t
2

GS
f

GS
t

Interaction
f

Interaction
t

ADB
f

ADB
t

DB
f

DB
tFigure 6.2: The hypergraph H ′ = (U,R).pointing out this interesting 
onne
tion we used results from the �eld of re-lational database theory to show that our pre
iseness property is guaranteedfor a 
ertain 
lass of families of abstra
t over-approximations. This 
lass isde�ned by a stru
tural property on the domains on whi
h the families ofabstra
t over-approximations are based, i.e., the hypergraph that is indu
edby these domains is a
y
li
. This means parti
ularly that this sub
lass isindependent from the behavior of the 
omponents.
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Chapter 7
Con
lusion
We dealt in this work with various aspe
ts of properties in 
ooperating sys-tems. We used the formalism of intera
tion systems [GS03℄ to model 
oop-erating systems.In a �rst part (Chapter 2) we dis
ussed 
omplexity issues of the rea
habilityproblem in sub
lasses of intera
tion systems whi
h are de�ned by ar
hite
-tural 
onstraints on a graph stru
ture that represents the 
ommuni
ationamong subsystems. We 
onsidered system 
lasses with a tree-like, star-likeand linear 
ommuni
ation pattern. These sub
lasses in
lude systems thatare highly relevant in pra
ti
e, e.g., 
lient server systems exhibit 
ommuni
a-tion patterns that form stars or trees. De
iding rea
hability of global statesin intera
tion systems is PSPACE-
omplete [MCM08
℄. We showed thatde
iding this problem remains PSPACE-
omplete in all of our sub
lasses.Furthermore, we argued that de
iding progress in our sub
lasses and thatde
iding lo
al rea
hability, i.e., the question whether or not a �xed lo
alstate o

urs in a rea
hable global state, in tree-like systems is PSPACE-
omplete as well. Our result motivates further resear
h on e�
ient te
h-niques that are based on su�
ient 
onditions and de
ide rea
hability basedsystem properties as deadlo
k-freedom in 
ooperating systems with ar
hite
-tural 
onstraints and justi�es published results whi
h introdu
e su
h te
h-177



CHAPTER 7. CONCLUSIONniques for establishing deadlo
k-freedom [Hoa85, BR91, BCD02, MCM08a,Lam09, HJK10℄.In a se
ond part, whi
h a

ounts for Chapter 3-6 we introdu
ed an approa
hto e�
iently represent over-approximations by abstra
t over-approximationsof the global behavior of intera
tion systems, re�ne these abstra
t over-ap-proximations based on the Edge-Mat
h operator and present an approa
hbased on abstra
t over-approximations for establishing deadlo
k-freedom inintera
tion systems. We presented results of our approa
hes for various pa-rameterized examples that are 
al
ulated by a tool developed by us. Inaddition, we illustrated an interesting link between our approa
h to re�neabstra
t over-approximations and the semi-join operator from the �eld of re-lational database theory and used this link in order to show a result regardingthe pre
iseness of the �xed-point of a family of abstra
t over-approximationswith respe
t to an appli
ation of the Edge-Mat
h operator.Our re�nement approa
h extends the Cross-Che
king approa
h introdu
edin [MMC09b℄ that deals with 
ompa
t representations of the rea
hable globalstate spa
e. Our approa
h enhan
es the Cross-Che
king approa
h by deal-ing with over-approximations of the rea
hable behavior, i.e., in
luding tran-sitions, instead by dealing with over-approximations of the rea
hable statespa
e. Our results show that a re�nement based on our Edge-Mat
h op-erator 
an result in signi�
antly less rea
hable states in abstra
t over-ap-proximations than a re�nement by the Cross-Che
king operator (applied toour 
ontext). We proposed a pro
edure that 
al
ulates the �xed-point ofa family of abstra
t over-approximations with respe
t to an appli
ation ofthe Edge-Mat
h operator. Let Sys = (IM, {Ti}i∈K) be an intera
tion systemwith intera
tion model IM = (K, {Ai}i∈K, Int) and C a domain of IM. Weargued that the 
osts of the appli
ation of the Edge-Mat
h operator on apair of abstra
t over-approximations are bounded by
em = 2

(

mcmax +m2·cmax · |Int|
)

+
(

m2·cmax · |Int|
)2

,where m is the size of the largest lo
al state spa
e of the 
omponents in178



K and cmax is the size of the larges set in C. The 
osts of our pro
edure,applied on Sys, based on the domain C, are bounded by
|C| ·m2·cmax · |Int| · |C|2 · em.This is, our pro
edure runs in polynomial time if cmax is a 
onstant, i.e., thenumber of 
omponents in ea
h set in C is bounded by a 
onstant and |C| isof polynomial size. Similar as in [MMC09b℄ we proposed to use a domainthat 
onsists of all subsets of 
omponents with a 
onstant size d where theintera
tion graph restri
ted to a subset is 
onne
ted � a domain like thisguarantees that our pro
edure runs in polynomial time.We introdu
ed an approa
h that is based on a su�
ient 
ondition to es-tablish deadlo
k-freedom in intera
tion systems in polynomial time. Ourapproa
h works on arbitrary systems, i.e., our approa
h does not depend on
hara
teristi
s of sub
lasses as, e.g., ar
hite
tural 
onstraints. We arguedthat our approa
h is in
omparable with the waiting 
hain approa
h intro-du
ed in [Min10℄, i.e., if our approa
h fails to ensure deadlo
k-freedom thenthe waiting 
hain approa
h might su

eeds and vi
e versa. In Chapter 5 ourresults show that our approa
h su

eeds to, e.g., establish deadlo
k-freedomfor Tanenbaum's solution of the Dining Philosophers Problem, where thewaiting 
hain approa
h fails (see [Min10℄). Our abstra
t over-approxima-tions are 
ompa
t representations of over-approximations of the rea
hablebehavior of an intera
tion system, i.e., abstra
t over-approximations pro-vide further potential to be the basis of approa
hes to establish other safetyproperties in intera
tion systems.Summarizing the above we introdu
ed an approa
h to establish deadlo
k-freedom, in polynomial time, based on an analysis of abstra
t over-approxi-mations of the global behavior of an intera
tion system, that 
an be re�nedby the Edge-Mat
h operator. Our approa
h 
an be applied to arbitrary in-tera
tion systems and does not require any ar
hite
tural restri
tions or other
onstraints whatsoever. Our approa
h 
an be easily applied to 
ooperatingsystems modeled by other formalisms. This 
an be done either by adapting179



CHAPTER 7. CONCLUSIONour approa
h or by using a mapping among formalisms � see, e.g., [Min10℄for a mapping between intera
tion systems and 1-safe Petri nets. If we failto establish deadlo
k-freedom then the output of our approa
h in
ludes in-formation on where the system in 
onsideration 
an be modi�ed su
h thatour approa
h su

eeds.Our approa
h provides potential for further resear
h and development. Thefollowing points itemize some suggestions for future resear
h.
• We did not 
onsider to use our approa
h in 
ombination with well-known state spa
e redu
tion te
hniques.
• Here we only treated the safety property of deadlo
k-freedom. Ourabstra
t over-approximations are 
ompa
t representations of over-ap-proximations of the rea
hable global behavior of an intera
tion system.Thus, it appears promising to resear
h further 
onditions that 
an beapplied on abstra
t over-approximations to the purpose of establishinggeneral safety in 
ooperating systems.
• Our pro
edure for 
al
ulating the Edge-Mat
h �xed-point of a familyof abstra
t over-approximations (Algorithm 2 in Chapter 3) is basedon appli
ations of the Edge-Mat
h operator on all reasonable pairs ofabstra
t over-approximations. A lot of these appli
ations are inde-pendent from ea
h other. Thus, our pro
edure is highly parallelizablebe
ause a great deal of appli
ations of the Edge-Mat
h operator 
anbe done in parallel.
• Right now, in order to 
al
ulate the Edge-Mat
h �xed-point of a familyof abstra
t over-approximations, we apply the Edge-Mat
h operator onall reasonable pairs of abstra
t over-approximations until there is nofurther re�nement. This approa
h might be improved by investigatinga sophisti
ated order of appli
ations in order to minimize the numberof appli
ations of the Edge-Mat
h operator. A starting point is, forexample, the introdu
ed link between our approa
h and the �eld of180



relational algebra in Chapter 6. From the hypergraph stru
ture of ana
y
li
 database s
heme one 
an derive an order of semijoin operationsthat is a full-redu
er and 
onsists of a number of semijoin operationsthat is linear in the number of relational s
hemata in the database.

181



CHAPTER 7. CONCLUSION

182



Appendix A
Proofs
A.1 Proofs from Chapter 2
Proof of Theorem 2.1The idea of the proof of Theorem 2.1 is as follows. In Se
tion 2.3 we intro-du
ed the straightforward, re
ursive Algorithm 1 
alled eval to determinewhether or not a QBF P (given over the restri
ted grammar) is in TQBF .Note that the algorithm is deterministi
. We show that the evaluation of thealgorithm 
orresponds to a path in the global behavior of SysH and illustratethat this path ends in qt if and only if H is true. For this purpose we map
ertain events in the algorithm eval to intera
tions in SysH and show thatthere is only one path (up to some interleaving) in the behavior of SysH that
orresponds to the evaluation of eval with respe
t to this mapping.Before we prove Theorem 2.1, we need some preliminaries.183



APPENDIX A. PROOFSRe
ursive AlgorithmIn Algorithm 1 (Se
tion 2.3) we assume that in Line 8 and 2 the 
onjun
tionrespe
tively the disjun
tion is 
alled in sequen
e from left to right. In addi-tion, we assume, that eval(P ′′) is not 
alled in Line 8 if eval(P ′) is evaluated
false and eval(P ′

x=false) is not 
alled in Line 2 if eval(P ′
x=true) is evaluated

true. These assumptions imply a deterministi
 exe
ution of eval(H) for aQBF H .The exe
ution of eval(H) for a QBF H 
an be des
ribed by a sequen
e overthe following words.
• “call_eval(P )�: subformula P is 
alled by eval

• “eval(P ) = true�: subformula P was evaluated true by eval

• “eval(P ) = false�: subformula P was evaluated false by evalFor a QBF H let SeqH be this sequen
e and SeqH(i) the ith word in SeqHfor i = 1, . . . , length(SeqH), where length(SeqH) is the number of words in
SeqH . It is 
lear, that H ∈ TQBF if and only if the last entry of SeqH is
“eval(H) = true� and “eval(H) = false� otherwise.Example A.1:Consider the QBF H = ¬∃x1.(x1 ∧ ¬x1) with its subformulas abbreviatedas in Figure 2.5, then SeqH is given by
• call_eval(H)

• call_eval(P1)

• call_eval(P2) (true is assigned to x1)
• call_eval(P3)

• eval(P3) = true

• call_eval(P4)

• call_eval(P5)

• eval(P5) = true 184
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• eval(P4) = false

• eval(P2) = false

• call_eval(P2) (false is assigned to x1)
• call_eval(P3)

• eval(P3) = false

• eval(P2) = false

• eval(P1) = false

• eval(H) = trueMapping the words of SeqH to IntLet H ∈ QBF and SysH be the asso
iated tree-like intera
tion system. Wetreat the asso
iated intera
tion graph GH as a rooted tree with 
omponent
H ′ as the root. In these terms, if we speak of a su

essor, a prede
essor ora subtree spanned by a 
omponent, we refer to 
omponents with respe
t to
GH . Let Int′ ⊆ Int be the subset of intera
tions given by:
{eval_P → Pk, P_ask_Pk_true, P_ask_Pk_false|P ∈ K1 ∪{H

′} with su

. Pk}and S the set of words that 
an o

ur in SeqH , given by
{“call_eval(P )�, “eval(P ) = true� , “eval(P ) = false�|P is a subformula of H}.We de�ne a mapping from S to Int′ by the fun
tion f : S → Int′ with
• f(“call_eval(P )�) = eval_P ′ → P ,
• f(“eval(P ) = true�) = P ′_ask_P_true and
• f(“eval(P ) = false�) = P ′_ask_P_false.where P ′ is the prede
essor of P and P ′ = H ′ if P = H .Lemma A.1:Let σ̃ be a sequen
e of intera
tions that 
orresponds to the intera
tionson a path in the global behavior of SysH , su
h that σ̃ is in�nite or the
orresponding path ends in a state where no transition is possible. Let σ be185



APPENDIX A. PROOFSthe sequen
e obtained by removing the intera
tions in Int \ Int′ and let σ(i)be the ith intera
tion in σ for i = 1, . . . , length(σ), where length(σ) is thelength of σ. Then length(σ) = length(SeqH) and
∀

i=1,...,length(σ)
f(SeqH(i)) = σ(i).Before we prove Lemma A.1 by indu
tion, we need some observations whi
hfollow from invariants of algorithm eval. In the following we refer repeatedlyto the stru
ture of the transition systems given in Figure 2.6, 2.7 and 2.8 andthe intera
tions given on page 47. We assume the indu
tion hypothesis to betrue, i.e., for some i < length(σ) holds that for all 1 ≤ k ≤ i f(SeqH(k)) =

σ(k).Observation A.1:Consider σ(i) to be performed and let SeqH(i+1) = “eval(P ) = true� where
P ′ is the prede
essor of P , then P ′ waits to perform P ′_ask_P_true.The same applies for SeqH(i + 1) = “eval(P ) = false� where P ′ waits toperform P ′_ask_P_false.Proof. There is 1 ≤ j ≤ i with SeqH(j) = “call_eval(P )�, i.e., if sub-formula P is evaluated to true then it is assured that P was 
alled previ-ously. Let j be maximal for this property. For j + 1 ≤ k ≤ i SeqH(k) /∈

{“call_eval(P )�, “eval(P ) = true�, “eval(P ) = false�}, i.e., P is not in-volved in between. It follows that σ(j) = f(“call_eval(P )�) = eval_P ′ →

P , this is, P ′ rea
hed a state in whi
h it waits for P ′_ask_P_true or
P ′_ask_P_false. Sin
e these intera
tions were not performed for j + 1 ≤

k ≤ i, it is assured, that after σ(i) has been performed, P ′ still waits toperform P ′_ask_P_true or P ′_ask_P_false.Observation A.2:Consider σ(i) to be performed and let SeqH(i + 1) = “call_eval(P )�. Let
omponent P ′ be the prede
essor of 
omponent P , then P eventually rea
hesa state in whi
h it waits to perform eval_P ′ → P = f(SeqH(i+ 1)).186



A.1. PROOFS FROM CHAPTER 2Proof. There are six 
ases for P :i) P waits to perform eval_P ′ → P , i.e., P is in a state labeled t or f ,then eval_P ′ → P is enabled.ii) P waits to perform set_P̃_true_P → P̃ for a su

essor P̃ of P .It is easy to see that this is only possible if f(“eval(H) = true�) =

H ′_ask_H_true performed whi
h is not the 
ase.iii) P waits to perform eval_P → P̃ . If this situation o

urs, either
eval_P ′ → P , P_ask_P̃_false (if P = ∃.xlP̃ ) or P_ask_P̄ ′_false(if P = P̄ ∧ P̃ ) was performed. Let this be the 
ase for f(SeqH(j)) with
j < i (j maximal). Due to the stru
ture of SeqH , f(SeqH(j + 1)) =

eval_P → P̃ would be the next intera
tion to be performed, i.e., P
annot stay in a state waiting to perform eval_P → P̃ .iv) P waits to perform P_ask_P̃_true. Analogously to 
ase 3, this 
annothappen.v) P = ∃.xlP̃ waits to perform set_x′
l_true/false or ask_true/falsex′

lfor 1 ≤ l ≤ n. This intera
tion would always be performed, and subse-quently P waits to perform eval_P → P̃ , whi
h is not possible due to
ase 3.vi) P waits to perform set_xl_true_P → P̃ or set_xl_false_P → P̃ for
1 ≤ l ≤ n. If P̃ models a variable then set_xl_true_P → P̃ respe
-tively set_xl_false_P → P̃ is enabled by P̃ and 
an perform. Afterthis, f(SeqH(i+ 1)) = eval_P ′ → P be
omes enabled by P . If P̃ doesnot model a variable then analogously (to 
ase 1-5) either P̃ enables
set_xl_true_P → P̃ respe
tively set_xl_false_P → P̃ or P̃ waitsto perform set_xr_true_P̃ → P̄ respe
tively set_xr_false_P̃ →

P̄ (r ∈ {1, . . . , n}) for a su

essor P̄ of P̃ . By indu
tion follows,that this intera
tion performs eventually. Therefore, f(SeqH(i + 1)) =

eval_P ′ → P eventually be
omes enabled as well.187



APPENDIX A. PROOFSObservation A.3:Let SeqH(i + 1) = “eval(P ) = true� su
h that P = xr
l for 1 ≤ l ≤ n and

r ∈ {1, . . . , kl}, then it is assured that P waits to perform P ′_ask_P_trueafter σ(i) is performed. The same applies for SeqH(i + 1) = “eval(P ) =

false� with σ(i+ 1) = P ′_ask_P_false.Proof. Let SeqH(i + 1) = “eval(P ) = true� (respe
tively SeqH(i + 1) =

“eval(P ) = false�), then SeqH(i) = “call_eval(P )� and there is Q′ = ∃xl.Qand j < i su
h that SeqH(j) = “call_eval(Q)�, i.e., if algorithm eval 
allsa variable re
ursively then it is assured that beforehand a subformula was
alled that quanti�es this variable. Let j be maximal for this property.There are two 
ases for j − 1:a) SeqH(j − 1) = “call_eval(Q′)�, i.e., xl is set to true in the subsequent
all of eval(Q) (see algorithm eval). After σ(j−1) = f(SeqH(j−1)) wasperformed, eithera.1) set_x′
l_true ora.2) ask_truex′

l
be
omes enabled.b) SeqH(j − 1) = “eval(Q) = false�, i.e., Q was evaluated to false and is
alled by eval again with xl set to false. After σ(j− 1) = f(SeqH(j− 1))was performed, eitherb.1) set_x′

l_false orb.2) ask_falsex′
l
be
omes enabled. This is not possible, be
ause thenthere is no way σ(j) = call_Q′ → Q = f(SeqH(j)).Consider Case a.1) (resp. b.1)). Let, after σ(j−1) = f(SeqH(j−1)) was per-formed, set_x′

l_true (respe
tively set_x′
l_false) be enabled and perform.This means that Q′ waits to perform set_xl_true_Q′ → Q (respe
tively

set_xl_false_Q′ → Q). Analogously to A.2, this intera
tion eventually be-
omes enabled. If set_xl_true_Q′ → Q (respe
tively set_xl_false_Q′ →

Q) is performed it is 
lear that eval_Q′ → Q = σ(j) = f(SeqH(j)) be-188
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omes enabled. Analogously, for ea
h 
omponent Q̃ and its prede
essor Q̃′,
set_xl_true_Q̃′ → Q̃ (respe
tively set_xl_false_Q̃′ → Q̃) has to be per-formed before eval_Q̃′ → Q̃ be
omes enabled. This is until Q̃ models avariable. If Q̃ models an o

urren
e of xl, then true (resp. false) is assignedto Q̃, else, there is no e�e
t on the 
urrent state of Q̃. Therefore it is assuredthat P waits to perform P ′_ask_P_true (respe
tively P ′_ask_P_false)after σ(i) is performed.Consider Case a.2), i.e., ask_truex′

l
is enabled after σ(j−1) performed. Thenthe 
omponent x′

l is in the state labeled t. This means, the last intera
tioninvolving x′
l 
annot be set_x′

l_false or ask_falsex′
l
. There are three 
ases1.) x′

l was never involved sin
e σ(j−1) is performed. Due to the fa
t that all
omponents modeling o

urren
es of variables start in their state labeled
t, it is easy to see that it is not possible that any of these 
omponents
ould rea
h the state labeled f . Therefore these 
omponents are still inthe state labeled t when P ′ waits to perform P ′_ask_P_true.2.) The last intera
tion involving x′

l was set_x′
l_true. With Case a.1) fol-lows that all 
omponents that model o

urren
es of xl were set in theirrespe
tive state labeled t. As there was no intera
tion involving x′

l sin
e
set_x′

l_true performed, it is assured that these 
omponents are still inthe state labeled t when P ′ waits to perform P ′_ask_P_true.3.) The last intera
tion involving x′
l was ask_truex′

l
. This 
ase is easily re-du
ible to the last two 
ases. Therefore it is assured that all 
omponentsmodeling o

urren
es of xl are still in the state labeled t when P ′ waitsto perform P ′_ask_P_true.

189



APPENDIX A. PROOFSProof of Lemma A.1In the initial state of SysH all 
omponents but H ′ are in their state labeled
t. The only enabled intera
tion is eval_H ′ → H with f(“call_eval(H)�) =
eval_H ′ → H . Thus, σ(1) = f(SeqH(1)). Lemma A.1 is proven by indu
-tion, i.e., we have to show that, if f(SeqH(i)) = σ(i) is performed, under theassumption f(SeqH(j)) = σ(j) for 1 ≤ j ≤ i then the intera
tion in Int′ thatis performed next is f(SeqH(i+1)). In fa
t we show that f(SeqH(i+1)) even-tually be
omes enabled, su
h that in between only intera
tions in Int \ Int′are performed.We now 
onsider the three possible 
ases for SeqH(i).Indu
tion - Case 1Consider SeqH(i) = “eval(P ) = true�, i.e., σ(i) = f(“eval(P ) = true�) =
P ′_ask_P_true where P ′ is the subformula P is in
luded in and P ′ = H ′if P = H . If existent, let P ′′ be the prede
essor of P ′ (P ′′ = H ′ if P ′ = H).It is 
lear, that P is in its state labeled t. There are �ve 
ases:1.a) If P ′ = P ∧ P̃ , then SeqH(i + 1) = “call_eval(P̃ )�. This means, that

P ′ waits to perform eval_P ′ → P̃ . From Observation A.2 follows thesame for P̃ as well. It follows that the only newly enabled intera
tionin SysH is eval_P ′ → P̃ = f(SeqH(i+ 1)).1.b) If P ′ = P̃ ∧ P , then SeqH(i+ 1) = “eval(P ′) = true�. The 
omponent
P ′ waits to perform P ′′_ask_P ′_true = f(SeqH(i + 1)) and fromObservation A.1 follows that this is the only newly enabled intera
tionin SysH .1.
) If P ′ = ¬P , then SeqH(i + 1) = “eval(P ′) = false�. The 
omponent
P ′ waits to perform P ′′_ask_P ′_false = f(SeqH(i + 1)) and fromObservation A.1 follows that this is the only newly enabled intera
tionin SysH . 190



A.1. PROOFS FROM CHAPTER 21.d) If P ′ = ∃xi.P , then SeqH(i+ 1) = “eval(P ′) = true�. The 
omponent
P ′ waits to perform P ′′_ask_P ′_true = f(SeqH(i + 1)) and fromObservation A.1 follows that this is the only newly enabled intera
tionin SysH .1.e) If P ′ = H ′, then i = length(SeqH), i.e., there is no next word on SeqHand no new intera
tion ∈ Int′ is enabled in SysH .Indu
tion - Case 2Consider SeqH(i) = “eval(P ) = false�, i.e., σ(i) = f(“eval(P ) = false�) =

P ′_ask_P_false where P ′ is the prede
essor of P and P ′ = H ′ if P = H .If existent, let P ′′ be the prede
essor of P ′ (P ′′ = H ′ if P ′ = H). It is 
lear,that P is in its state labeled t. There are �ve 
ases:2.a) If P ′ = P ∧ P̃ , then SeqH(i+1) = “eval(P ′) = false�. The 
omponent
P waits to perform P ′′_ask_P ′_false = f(SeqH(i + 1)) whi
h is,a

ording to Observation A.1, enabled by P ′′.2.b) If P ′ = P̃ ∧ P , analogously to Case 2.a).2.
) If P ′ = ¬P , analogously to Case 2.a).2.d) If P ′ = ∃xi.P , then there must be j < i with SeqH(j) = “call_eval(P )�,i.e., if P was evaluated to false then P was 
alled by eval previously. Let
j be the largest value with this property. By assumption follows that
j < i is the biggest index with σ(j) = f(“call_eval(P )�) = eval_P ′ →

P . In line 2 of the eval algorithm P 
an be 
alled by eval with xi setto true and afterwards with xi set to false. A

ordingly, there are two
ases for SeqH(j − 1). Either P ′ was 
alled, i.e., P is 
alled with xi setto true or P was evaluated to false and was 
alled a se
ond time with
xi set to false.2.d.a) If SeqH(j − 1) = “call_eval(P ′)� then we have SeqH(i + 1) =

“call_eval(P )�. By the indu
tion assumption we 
an 
on
lude191



APPENDIX A. PROOFSthat σ(j−1) = eval_P ′′ → P ′ = f(“call_eval(P ′)�), i.e., either
set_x′

i_true or ask_truex′
i
was enabled after σ(j−1) performed.This assures that the 
omponent x′

i is in its state t after σ(j) per-formed. Hen
e there was no intera
tion involving 
omponent P ′sin
e σ(j), x′
i is still in its state labeled t when σ(i) is performed.Therefore, after σ(i) performs, the only newly enabled intera
-tion is set_x′
i_false, after that set_xi_false_P ′ → P and af-ter that P ′ waits to perform eval_P ′ → P = f(“call_eval(P )�)whi
h is, by Observation A.2, assured to be
ome enabled even-tually.2.d.b) If SeqH(j−1) = “eval(P ) = false� then we have SeqH(i+1) =

“eval(P ′) = false�. By assumption follows that σ(j − 1) =

P ′_ask_P_false = f(“eval(P ) = false�). By Case 1.d.a fol-lows that x′
i is in its state labeled f when σ(i) is performed, i.e.,after σ(i), the only newly enabled intera
tion is ask_falsex′

i
.When ask_falsex′

i
is performed, it follows from Observation A.1that the only newly enabled intera
tion is P ′′_ask_P ′_falsewhi
h equals f(“eval(P ′) = false�).2.e) If P ′ = H ′, analogously to 
ase Case 2.a).Indu
tion - Case 3Consider the 
ase that SeqH(i) = “call_eval(P )�. This is, in this 
ase

σ(i) = f(“call_eval(P )�) = eval_P ′ → P where P ′ is the prede
essor of Pand P ′ = H ′ if P = H . There are four 
ases3.a) If P = ¬P̃ , then SeqH(i + 1) = “call_eval(P̃ )�. The 
omponent Pwaits to perform eval_P → P̃ = f(SeqH(i + 1)) whi
h is, enabled by
P̃ a

ordingly to Observation A.2 and therefore the only newly enabledintera
tion.3.b) If P = P̃1 ∧ P̃2, then SeqH(i + 1) = “call_eval(P̃1)�. The 
omponent192
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P waits to perform eval_P → P̃1 = f(SeqH(i+1)). From ObservationA.2 follows that this is the only new enabled intera
tion.3.
) If P = ∃xi.P̃ , then SeqH(i + 1) = “call_eval(P̃ )�. In SysH theonly new enabled intera
tion is either set_x′

i_true or ask_truex′
i
. If

set_x′
i_true is exe
uted then the only newly enabled intera
tion is

set_xi_true_P → P̃ . Anyway, if set_xi_true_P → P̃ or ask_truex′
iis exe
uted, P waits to perform eval_P → P̃ = f(“call_eval(P̃ )�)whi
h is enabled by P̃ due to Observation A.2.3.d) If P = xr

l , for 1 ≤ l ≤ n and r ∈ {1, . . . , ki}, then either SeqH(i +

1) = “eval(P ) = true� or SeqH(i + 1) = “eval(P ) = false�. WithObservation A.3 follows that P waits to perform either f(SeqH(i+1)) =

P ′_ask_P_true or f(SeqH(i + 1)) = P ′_ask_P_false. Due to thefa
t that P ′ waits to perform this intera
tion as well, f(SeqH(i+1)) isthe only newly enabled intera
tion ∈ Int′.Proof of Theorem 2.1Proof. By Lemma A.1 we have shown that, if H /∈ TQBF , i.e., Algo-rithm 1 applied on H returns false, then ea
h path in the global behaviorin our model SysH eventually rea
hes a state where only the intera
tion
H ′_ask_H_false is enabled. If H ′_ask_H_false performed, then thereis no way qt 
an be rea
hed.Analogously, if H ∈ TQBF , i.e., Algorithm 1 applied on H returns true,then eventually the intera
tion H ′_ask_H_true is performed. The onlynew enabled intera
tion is set_H_true_H ′ → H . If set_H_true_H ′ →

H is performed then TH
′ rea
hes its state labeled t. Let P ′ ∈ K1 ∪{H

′} bea 
omponent and P ∈ K1 its su

essor (i.e., P ′ does not model a variable)su
h that set_P_true_P ′ → P is enabled. There are four 
ases for thestru
ture of P and two for P ′ if set_P_true_P ′ → P is performed.
• P models a variable, then it is assured that P rea
hes its state labeled193
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t and no new intera
tion is enabled.
• P = ∃xi.P̃ , then either set_x′

i_true or ask_truex′
i
be
omes enabled.Anyway, it is assured, that x′

i rea
hes its state labeled t. This is,
set_P̃_true_P → P̃ be
omes enabled.
• P = P̃ ∧ P̄ or P = ¬P̃ , then set_P̃_true_P → P̃ be
omes enabled.
• P ′ = P ∧ P̄ , then set_P̄_true_P ′ → P̄ be
omes enabled.
• In any other 
ase, P ′ rea
hes its state labeled t.This is, eventually all 
omponents rea
h their state labeled t. It follows that

H ∈ TQBF ⇔ (SysH , q
t) ∈ TRIST .Proof of Corollary 2.1Proof. The proof of this 
orollary follows from the proof of Theorem 2.1.Let H be a QBF, SysH the asso
iated intera
tion system that is 
onstru
tedas in Se
tion 2.3 and qt the global state in the global behavior T of SysH inwhi
h all 
omponents are in their state labeled t. Theorem 2.1 states that His true if and only if qt is rea
hable in T . A
tually, in the proof of Theorem2.1, we used that a global state is rea
hable where the lo
al behavior of
omponent H ′ is in the lo
al state tH′ if and only if H is true. We showedthat, from su
h a global state, there is always the possibility to rea
h thedesignated global state qt by propagating, starting from H ′, down throughthe intera
tion graph (that forms a tree) that ea
h 
omponent shall rea
hits lo
al state labeled t. This is, we showed in the proof of Theorem 2.1 that
omponent H ′ rea
hes the state tH′ if and only if H is true.Proof of Theorem 2.2Proof. We prove this theorem by giving an isomorphism, with respe
t totransitions in SysM and transitions of 
on�gurations in M , between global194
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on�gurations of M . The statement of the theorem thenfollows by indu
tion as the isomorphism maps the initial 
on�guration of Mto the initial state of SysM .Let R be the set of 
on�gurations ofM . We map (p; γ0, . . . , γi, . . . , γn+1) ∈ Rto a global state q = (q0, . . . , qn+1) su
h that qi = (p, γi) and qj = (s, γj) for
j 6= i. Let Q′ be the set of global states that 
orrespond to the 
on�gurationsin R. It is 
lear that this mapping is a bije
tion between R and Q′.Let (p; γ0, . . . , γi, . . . , γn+1) ∈ R and q = (q0, . . . , qn+1) ∈ Q′ be the asso-
iated state in SysM . Let δ(p, γi) = (p′, γ′

i,T), i.e., the next 
on�gurationin M is (p′; γ0, . . . , γ
′
i, γi+1, . . . , γn+1) ∈ R if T = 1 (the 
ase T = −1 istreated analogously). The only enabled port in 
omponent i is (p, γi)1i , thenthe only enabled intera
tion in q is {(p, γi)1i , (p, γi)2i+T}. Thus, 
omponent

i rea
hes the state (s, γ′
i) and 
omponent i + T the state (p′, γi+T). Theresulting global state q′ 
orresponds to the respe
tive 
on�guration in M .The fa
t that the inverse of the mapping is also a homomorphism 
an beshown analogously.Proof of Theorem 2.3Proof. Let q be a state in the global behavior T of Sys and q′ be the statein the global behavior T ′ of Sys′ where qi = q′i for i ∈ K and q′cc = q0cc,i.e., 
omponent cc is in its initial state. Let Int = {α1, α2, . . . , αk} and

αj = {aj1 , . . . , aj|αj
|
} su
h that ea
h port in αj is enabled in q, i.e., alllo
al states q′l, l = j1, . . . , j|αj

|
in q′ enable the ports aokl and al and do notenable a¬okl . The state q′ enables the intera
tion {αj

cc}. If this intera
tion isperformed then the only possible sequen
e of intera
tions results in a state
q̃′ with q̃i = q̃′i for i ∈ K and q̃′cc = q0cc. Let there be a port in αj that isnot enabled in q, e.g., ql with l ∈ {j1, . . . , j|αj

|
} does not enable al then q′ldoes enable a¬okl and not aokl . If {αj

cc} performed in q′ then the only possiblesequen
e of intera
tions in Sys′ leads ba
k to state q′. For the global initial195



APPENDIX A. PROOFSstates q0 of Sys and q0
′ of Sys′ holds that q0i = q0i

′ for i ∈ K and q0cc
′ is theinitial state of the lo
al behavior of 
omponent cc. The �if� part follows byindu
tion over paths in the global behavior of Sys. The �and only if� partfollows analogously.Proof of Theorem 2.4Proof. We already argued that the progress problem in tree-like intera
tionsystems is in PSPACE. Let H be a QBF and Sys′H the asso
iated intera
tionsystem whi
h is 
onstru
ted as des
ribed above. As argued in Se
tion 2.3,

Sys′H is tree-like and of polynomial size. It is easy to see that the intera
-tion evaluated_true is the only intera
tion that is enabled if the state qt isrea
hed. In this 
ase, evaluated_true performs in�nitely often in every runof the modi�ed system, i.e., the 
omponent pro parti
ipates in�nitely often.Therefore the 
omponent pro may progress if H is true. If H is false theneventually end_falseH′ be
omes enabled in 
omponent H ′ and the inter-a
tion evaluated_true never be
omes enabled, i.e., pro may not progress.Thus, the 
omponent pro may progress if and only if H is true, i.e., theprogress problem in tree-like intera
tion systems is PSPACE-hard.A.2 Proofs from Chapter 3Proof of Lemma 3.1Proof. Let R be an abstra
t over-approximation of T . Assume that E(R)is not an over-approximation of the global behavior T of Sys, i.e., there isa transition q
α
−→T q′ rea
hable in T su
h that q α

−→E(R) q
′ is not a rea
habletransition in E(R). This is, either q

α
−→E(R) q′ is in
luded in E(R) butnot rea
hable in E(R) or q α

−→E(R) q
′ is not even in
luded in the transitionrelation of E(R). We distinguish these two 
ases.196
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−→E(R) q

′ is not a transition in E(R) then, a

ording to the pre-liminaries of Lemma 3.1, there is no transition qC
α
−→R q′C in R with

q↓C = qC and q′↓C = q′C . This is a 
ontradi
tion as q
α
−→T q′ isrea
hable in T and thus q↓C

α
−→R q′↓C is rea
hable in the abstra
tover-approximation R.2. Let q

α
−→E(R) q′ be a transition in E(R). This is, q α

−→E(R) q′ is notrea
hable in E(R). q α
−→T q′ is rea
hable in T , i.e., there is a sequen
eof transitions in T (as in De�nition 1.2) where the �rst transitionoriginates in the global initial state q0 and the last transition is q α

−→T q′.As q
α
−→E(R) q′ is not rea
hable in E(R) it follows that there is atransition q̄ ᾱ

−→T q̄′ in the sequen
e su
h that q̄ ᾱ
−→E(R) q̄

′ is not rea
hablein E(R). Let q̄ ᾱ
−→T q̄′ be the �rst transition in the sequen
e with thisproperty, i.e., q̄ ᾱ
−→E(R) q̄

′ is not even in
luded in the transition relationof E(R). By the �rst 
ase follows that there is no transition qC
ᾱ
−→R q′Cin R with q̄↓C = qC and q̄′↓C = q′C , i.e., this is a 
ontradi
tion be
ause

R is an abstra
t over-approximation of T .Let E(R) be an over-approximation of T then we want to show that R is anover-approximation of T ′′ (see De�nition 3.1). Let qC α
−→T

′′ q′C be a rea
habletransition in T ′′. This is, there is a rea
hable transition q
α
−→T q′ in T with

q↓C = qC and q′↓C = q′C . As E(R) is an over-approximation of T it followsthat q α
−→E(R) q

′ is rea
hable in E(R) as well. A

ording to the preliminariesof Lemma 3.1, there is a transition q̄C
α
−→R q̄′C in R with q↓C = q̄C and

q′↓C = q̄′C . It is easy to see that q̄C = qC and q̄′C = q′C . This is, if E(R) is anover-approximation of T and qC
α
−→T

′′ q′C is a rea
hable transition in T ′′ then
qC

α
−→R q′C is a transition in
luded in the transition relation of R. It remainsto be shown that qC α

−→R q′C is rea
hable in R.Let qC
α
−→T

′′ q′C be a rea
hable transition in T ′′ and assume that qC
α
−→R

q′C is not rea
hable in R. There is a sequen
e of transitions in T ′′ (as inDe�nition 1.2) where the �rst transition originates in the initial state q0Cand the last transition equals qC
α
−→T

′′ q′C . As qC
α
−→R q′C is not rea
hable197



APPENDIX A. PROOFSin R it follows that there is a transition q̄C
α
−→T

′′ q̄′C in the sequen
e su
hthat q̄C α
−→R q̄′C is not rea
hable in R. Let q̄C α

−→T
′′ q̄′C be the �rst transitionin the sequen
e with this property. The existen
e of this transition is a
ontradi
tion be
ause, as we showed above, q̄C α
−→R q̄′C is a transition in Rand is thus rea
hable.Proof of Lemma 3.2Proof. Let q α

−→T q′ be a rea
hable transition in T . Then there is a sequen
eof transitions
q0

α
1

−→T q1, q1
α
2

−→T q2, . . . , qk−1 α
k

−→T qkin T with q = qk−1, α = αk and q′ = qk. Let i ∈ {1, . . . , k} then by thede�nition of SC follows that the transition qi−1↓C
α
i

−→SC
qi↓C is in SC . Itfollows that all transitions in the sequen
e proje
ted on the 
omponents in

C form a sequen
e in SC that starts in q0C and ends in q↓C
α
−→SC

q′↓C . Thisis, q↓C α
−→SC

q′↓C is a rea
hable transition in SC .Proof of Theorem 3.1Proof. Let S ′ = (QC , Int,→S
′, q0C) = EM(S,R). We assume that S ′ isnot an abstra
t over-approximation of T , i.e., there is a transition q̃

α̃
−→T q̃′rea
hable in T su
h that q̃↓C

α̃
−→S

′ q̃′↓C is not a rea
hable transition in S ′.As q̃ α̃
−→T q̃′ is rea
hable in T , there is a path starting in q0 to q̃ in T . Let

q
α
−→T q′ be the last transition on this path with q↓C rea
hable in S ′, i.e.,

q↓C
α
−→S

′ q′↓C is not a transition in S ′. As S is an abstra
t over-approxima-tion of T , q↓C α
−→S q′↓C is rea
hable in S. This means that q↓C

α
−→S

′ q′↓Cis not a rea
hable transition in S ′ be
ause there is no transition qD
α
−→R q′Drea
hable in R with qD↓C = qC↓D and q′D↓C = q′C↓D. This is a 
ontradi
tion,as R is an abstra
t over-approximation and thus q↓D

α
−→R q′↓D has to berea
hable in R. 198



A.2. PROOFS FROM CHAPTER 3It follows that S ′ is an abstra
t over-approximation of T .Proof of Lemma 3.3Proof. Let i ∈ K be a 
omponent and qi a state in the lo
al behavior Ti of i.Assume that we have a te
hnique available that 
al
ulates an exa
t abstra
tover-approximation S = (QC , Int,→S, q
0
C) for the input Sys and C ⊆ K inpolynomial time in the size of the spe
i�
ation of Sys. Let C = {i} thenthe size of the transition relation →S is bounded by |Qi|

2 · |Int|, i.e., thesize of S is polynomial in the size of the spe
i�
ation of Sys. This meansthat we 
an 
he
k in polynomial time whether the state qi is rea
hable in
S. As S is exa
t, we 
an 
on
lude that there is a state q rea
hable in theglobal behavior T of Sys where 
omponent i is in state qi if and only if qiis rea
hable in S. This is a dire
t 
ontradi
tion to Corollary 2.1 be
ausede
iding this problem is PSPACE-
omplete.Proof of Lemma 3.4Proof. We assume that {R′

C}C∈C 6= {R
′′
C}C∈C. Note that this means thatthere is C ∈ C with R′

C 6= R′′
C , i.e., there is a transition qC

α
−→R

′
C
q′C in R′

Csu
h that qC α
−→R

′′
C
q′C is not a transition in R′′

C or vi
e versa. Without lossof generality we assume the �rst.
R′′

C is a re�ned version of RC for C ∈ C, i.e., RC is an over-approximationof R′′
C . Let {R̃C}C∈C be the family where
• {R̃C}C∈C resulted from appli
ations of the Edge-Mat
h operator on
{RC}C∈C whi
h 
orrespond to a pre�x of seq1,
• R̃C is an over-approximation of R′′

C for ea
h C ∈ C and
• the appli
ation of the Edge-Mat
h operator that 
orresponds to thenext entry in seq1 would violate the last item, e.g., if (C,D) is the199



APPENDIX A. PROOFSnext entry in seq1 then RM(R̃C , R̃D) results in a transition system R̃′
Csu
h that there is a transition qC

α
−→R

′′
C
q′C in R′′

C but qC α
−→R̃

′
C
q′C is nota transition in R̃′

C .This means, that there is no rea
hable transition qD
α
−→R̃D

q′D in R̃D with
qD↓C = qC↓D and q′D↓C = q′C↓D. There 
annot be a rea
hable transitionof this form in R′′

D as well, be
ause R̃D is an over-approximation of R′′
D.This means that EM(R′′

C , R
′′
D) results in the removal of a transition in R′′

C .This is a 
ontradi
tion to the assumption that {R′′
C}C∈C is a �xed-point withrespe
t to the Edge-Mat
h operator.Proof of Lemma 3.5Proof. Let seq be a sequen
e of the Edge-Mat
h operator on {SC}C∈C whi
hresult in the �xed-point {RC}C∈C, e.g., a sequen
es of tuples in C × C. In

seq might be tuples of the form (C,D) and (D,C) for C ∈ C′. Let seq′ equalthe sequen
e seq where ea
h o

urren
e of (C,D) is repla
ed by the tuples
(C,D1), (C,D2), . . . , (C,Dk) and ea
h o

urren
e of (D,C) is repla
ed by
(D1, C), (D2, C), . . . , (Dk, C). We prove here by indu
tion on the length of
seq that seq′ applied on {SC}C∈C̃ results in {R′

C}C∈C̃.For the initial families {SC}C∈C and {SC}C∈C̃ holds trivially that qD α
−→SD

q′Dis a rea
hable transition in SD if and only if qDi

α
−→SDi

q′Di
with qD↓Di

= qDiand q′D↓Di
= q′Di

is a rea
hable transition in S ′
Di

for ea
h 1 ≤ i ≤ k. Thisfollows dire
tly from the De�nition of SD in Lemma 3.2. Thus, property 1.and 2. hold for the initial families of abstra
t over-approximations.Let {R̄C}C∈C be the family of abstra
t over-approximations before the jthappli
ation of the Edge-Mat
h operator in seq on {SC}C∈C. Analogously,let {R̄′
C}C∈C̃ be the family of abstra
t over-approximations before the re-spe
tive appli
ation of the Edge-Mat
h operator in seq′ on {SC}C∈C̃. Thisis, if the Edge-Mat
h operator with respe
t to a tuple (C,D) respe
tively

(D,C) in seq was applied in the 
onstru
tion pro
ess of {R̄C}C∈C then,200
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onstru
tion pro
ess of {R̄′
C}C∈C̃, the Edge-Mat
h operator withrespe
t to the 
orresponding sequen
e (C,D1), (C,D2), . . . , (C,Dk) respe
-tively (D1, C), (D2, C), . . . , (Dk, C) in seq′ was applied. We assume thatproperty 1. and 2. hold for {R̄C}C∈C and {R̄′

C}C∈C.We distinguish three 
ases for the next appli
ation des
ribed in seq.If the jth appli
ation is of the form (C,C ′) with C,C ′ 6= D then the nextrespe
tive appli
ation of the Edge-Mat
h operator in seq′ is (C,C ′) as well.If we apply these on the respe
tive abstra
t over-approximations then it is
lear that EM(R̄C , R̄C
′) = EM(R̄′

C , R̄
′
C

′). All other abstra
t over-appro-ximations in both families remain the same, i.e., property 1. and 2. stillhold.If the jth appli
ation is of the form (C,D) then we 
onsider the appli
ationsof the Edge-Mat
h operator on {R̄′
C}C∈C̃ that 
orrespond to the respe
tivesubsequen
e (C,D1), (C,D2), . . . , (C,Dk) in seq′. Property 2. holds afterthe appli
ations of the Edge-Mat
h operator on both families be
ause theover-approximations R̄D respe
tively R̄′

Di
for 1 ≤ i ≤ k remain untou
hed.Let R̃C the respe
tive re�ned version of R̄C and R̃′

C the respe
tive re�nedversion of R̄′
C . Assume that the transition qC

α
−→R̄C

q′C got removed inthe re�nement, but qC
α
−→R̃

′
C
q′C remains in R̃′

C , i.e., there is no transition
qD

α
−→R̄D

q′D rea
hable in R̄D with qC↓D = qD↓C and q′C↓D = q′D↓C . Itfollows from the se
ond property that there is 1 ≤ i ≤ k su
h that thetransition qDi

α
−→R̄

′
Di

q′Di
with qD↓Di

= qDi
and q′D↓Di

= q′Di
is not rea
hablein R̄′

Di
. This is a 
ontradi
tion be
ause then the transition qC

α
−→R̃

′
C
q′C isnot in
luded in EM(R̄′

C , R̄
′
Di
). The other dire
tion follows analogously.If the jth appli
ation is of the form (D,C) then we 
onsider the appli
ationof the Edge-Mat
h operator on {R̄′

C}C∈C̃ that 
orresponds to the respe
tivesubsequen
e (D1, C), (D2, C), . . . , (Dk, C) in seq′. Property 1. holds afterthe appli
ations of the Edge-Mat
h operator on both families be
ause theover-approximations R̄C respe
tively R̄′
C remain untou
hed. Let R̃D therespe
tive re�ned version of R̄D and R̃′
Di

the respe
tive re�ned version of201
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R̄′

Di
for 1 ≤ i ≤ k. Assume that qD α

−→R̃D
q′D is rea
hable in R̃D but thereis 1 ≤ i ≤ k su
h that qDi

α
−→R̄

′
Di

q′Di
with qD↓Di

= qDi
and q′D↓Di

= q′Di
gotremoved from R̄′

Di
during the re�nement pro
ess, i.e., the se
ond property isviolated after the re�nement. It follows that there is no transition qC

α
−→R̄

′
C

q′C with qC↓Di
= qDi

↓C and q′C↓Di
= qDi

↓C
′ rea
hable in R̄′

C . This is a
ontradi
tion be
ause property 1. holds, i.e., R̄C = R̄′
C and thus qD α

−→R̄D
q′Dshould have been removed by EM(R̄D, R̄C). The other dire
tion followsanalogously.Proof of Lemma 3.6Proof. Let R′

D1
be EM(SD1

, R′
D2
) restri
ted to rea
hable transitions, i.e.,the result of the appli
ation of the Edge-Mat
h operator on SD1

with R′
D2restri
ted to rea
hable transitions. If nowa) R′

D1
= EM(R′

D1
, R′

C) for all C ∈ C′ andb) R′
C = EM(R′

C , R
′
D1
) for all C ∈ C′then it follows that the family of abstra
t over-approximations {R′

C}C∈Cis the Edge-Mat
h �xed-point of the family {SC}C∈C. The �rst part fromthe assumption then follows from Lemma 3.4 be
ause this �xed-point andthe �xed-point {RC}C∈C are identi
al. The se
ond part follows be
ause
R′

D1
= RD1

and R′
D2

= EM(R′
D2
, RD1

) as well as RD1
= EM(RD1

, R′
D2
).Assume that a) does not hold, i.e., there is C ∈ C′ su
h that R′

D1
6=

EM(R′
D1
, R′

C). This means that there is a rea
hable transition qD1

α
−→R

′
D1

q′D1in R′
D1

su
h that there is no rea
hable transition qC
α
−→R

′
C
q′C in R′

C with
qC↓D1

= qD1
↓C and q′C↓D1

= q′D1
↓C . Note that from the de�nition of R′

D1follows that C 6= D2 be
ause there is a transition qD2

α
−→R

′
D2

q′D2
rea
h-able in R′

D2
with qD2

↓D1
= qD1

and q′D2
↓D1

= q′D1
. As D1 ⊆ D2 it followsthat qD2

α
−→R

′
D2

q′D2
is removed in EM(R′

D2
, R′

C). This is a 
ontradi
tion tothe assumption that the family {R′
C}C∈C′ is the Edge-Mat
h �xed-point of

{SC}C∈C′. 202



A.3. PROOFS FROM CHAPTER 6We assume now that b) does not hold, i.e., there is C ∈ C′ su
h that R′
C 6=

EM(R′
C , R

′
D1
). This is the 
ase if there is a transition qC

α
−→R

′
C
q′C rea
hablein R′

C su
h that there is no transition qD1

α
−→R

′
D1

q′D1
with qC↓D1

= qD1
↓Cand q′C↓D1

= q′D1
↓C rea
hable in R′

D1
. Assume that C 6= D2. Be
ause ofthe assumption that the family {R′

C}C∈C′ is the Edge-Mat
h �xed-point of
{SC}C∈C′ it follows that a respe
tive transition qD2

α
−→R

′
D2

q′D2
with qD2

↓C =

qC↓D2
and q′D2

↓C = q′C↓D2
must be rea
hable in R′

D2
. It follows that thetransition qD2

α
−→R

′
D2

q′D2
is removed in EM(R′

D2
, R′

D1
). Thus, without lossof generality, we 
an assume that C = D2 and that there is a transitionthat is rea
hable in R′

D2
whi
h proje
tion on D1 is not rea
hable in R′

D1
.Assume, without loss of generality, that qD2

↓D1
is a rea
hable state in R′

D1
.By the de�nition of SD2

in Lemma 3.2 and the fa
t that qD2
↓D1

is rea
hablein R′
D1

follows that the transition qD2
↓D1

α
−→SD1

q′D2
↓D1

is rea
hable in SD1
,i.e., this transition got removed by the operation EM(SD1

, R′
D2
). This is a
ontradi
tion be
ause qD2

α
−→R

′
D2

q′D2
is a rea
hable transition in R′

D2
.A.3 Proofs from Chapter 6Proof of Theorem 6.1Proof. Let r′S and r

′
R be rS respe
tively rR restri
ted to rea
hable tuples.Let t ∈ r, then t 
orresponds to a transition qC

α
−→S

′ q′C in S ′ = EM(S,R).This means, that qC α
−→S q′C is a rea
hable transition in S, i.e., t ∈ r

′
S. Thetransition is in S ′ after the appli
ation of the Edge-Mat
h operator, i.e.,there is a rea
hable transition qD

α
−→R q′D in R su
h that qC↓D = qD↓C and

q′C↓D = q′D↓C . Let tR ∈ r
′
R be the tuple that 
orresponds to qD

α
−→R q′D. Thismeans that t ∈ r

′
S ⋉ r

′
R as t ∈ r

′
S and tR ∈ r

′
R.Let t ∈ r

′
S ⋉ r

′
R then t 
orresponds to a transition qC

α
−→S q′C that is rea
hablein S. Furthermore, there is a tuple tR ∈ r

′
R that agrees with tS on sharedattributes. Let tR 
orrespond to the rea
hable transition qD

α
−→R q′D in R.203



APPENDIX A. PROOFSThis means that qC α
−→S q′C is a transition in EM(S,R) as qC↓D = qD↓C and

q′C↓D = q′D↓C , i.e., t ∈ r.Proof of Corollary 6.1Proof. Let HC = (K,C) be a
y
li
. Let C = {C1, C2, . . . , Ck} and R =

{RC1
,RC2

, . . . ,RCk
} be the relational database s
heme that 
onsists of therelational s
hemata asso
iated with the sets of 
omponents in C. It is easy tosee that R is a
y
li
 if the hypergraph HC = (K,C) is a
y
li
 (see Example6.5 for an illustration).Let {R′

C}C∈C be the Edge-Mat
h �xed-point of {RC}C∈C and let
d = {rC1

(RC1
), rC2

(RC2
), . . . , rCk

(RCk
)}be the database on R that 
onsists of the relations asso
iated with thetransition systems in {R′

C}C∈C.As {R′
C}C∈C is a �xed-point with respe
t to the appli
ation of the Edge-Mat
h operator ea
h abstra
t over-approximation is restri
ted to rea
habletransitions and no appli
ation of the Edge-Mat
h operator on a pair of ab-stra
t over-approximations results in a re�nement. It is easy to see that itfollows from Theorem 6.1 that similarly ea
h tuple in ea
h relation in d isrea
hable and no appli
ation of a semijoin on a pair of relations results in aremoval of tuples. As R is a
y
li
 it follows that ea
h relation in d is a fullredu
tion.Let C ∈ C and qC

α
−→R

′
C
q′C a rea
hable transition in R′

C then qC
α
−→R

′
C
q′C
orresponds to a rea
hable tuple tC ∈ rC (rC ∈ d). As rC is a full redu
tionit follows that rC = πRC

(⊲⊳ (d)), i.e., there is a tuple t ∈ ⊲⊳ (d) su
h that
tC = t(RC) and for ea
hD ∈ C (D 6= C) t(RD) ∈ rD. The tuple t 
orrespondsto a transition q

α
−→T q′ in the global behavior T of Sys and ea
h t(RD)(D 6= C) 
orresponds to a rea
hable transition qD

α
−→R

′
D
qD in R′

D with
• q↓C = qC and q′↓C = q′C and 204
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• for all D ∈ C (D 6= C) holds q↓D = qD and q′↓D = q′D.It follows that qC

α
−→R

′
C
q′C is legitimated and thus that {R′

C}C∈C is legiti-mated.
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Appendix B
Sour
e Code
B.1 A Des
ription Language for Intera
tion Sys-temsThe 
ode in Listing B.1 is an example for an intera
tion system spe
i�edin a des
ription language that we use as an input for our tool that imple-ments our approa
h to re�ne abstra
t over-approximations and establishdeadlo
k-freedom. The 
ode spe
i�es a model of Tanenbaum's solution ofthe Dining Philosophers problem (see Se
tion 5.3). The language is rela-tively minimalisti
 and features only the 
ontrol stru
tures if (restri
ted tointeger 
omparison) and for (restri
ted to single step in
rementation). InLine 3 the integer variable n is initialized with the value 20 whi
h spe
i�esthe number of philosophers in the model. A COMPONENT -blo
k (e.g.,Line 7 to 16 models a philosopher) spe
i�es a 
omponent by an initial state(Line 9) and a set of transitions � for example, in Line 10 a transition froma state named init to a state named hp labeled by get_prior is de�ned. ACONNECTOR-blo
k de�nes an intera
tion1. For example, Line 44 to 481In [GS03℄, where intera
tion systems were introdu
ed, intera
tions are 
alled 
onne
-tors. 207



APPENDIX B. SOURCE CODEmodels that philosopher i takes the fork on his left side1 SYSTEM " ph i l o s ophe r s " ;23 VAR n = 20 ;45 FOR(VAR i =0;n−1)6 {7 COMPONENT "phil_"+i8 {9 INIT " i n i t " ;10 TRANS " i n i t "{" get_prior "}"hp" ;11 TRANS "hp"{" take_le f t "}" h l " ;12 TRANS "hp"{" take_right "}"hr " ;13 TRANS " h l "{" take_right "}" h l r " ;14 TRANS "hr "{" take_le f t "}" h l r " ;15 TRANS " h l r "{"put "}" i n i t " ;16 }1718 COMPONENT "fork_"+i19 {20 INIT " f " ;21 TRANS " f "{" take "}" t " ;22 TRANS "t "{"put "}" f " ;23 }2425 COMPONENT "sem_"+i26 {27 INIT " f r e e " ;28 TRANS " f r e e "{" i s_ f r e e "}" f r e e " ;29 TRANS " f r e e "{" take "}" taken " ;30 TRANS "taken "{"put "}" f r e e " ;31 }32 }3334 FOR(VAR i =0;n−1)35 {36 CONNECTOR "pr io r i ty_ "+i37 {38 "phil_"+i : " get_prior " ;39 "sem_"+i : " take " ;40 "sem_"+(i −1)%n : " i s_ f r e e " ;41 "sem_"+( i +1)%n : " i s_ f r e e " ;42 }4344 CONNECTOR "take_left_ "+i45 {46 "phil_"+i : " take_le f t " ; 208



B.2. JAVA SOURCE CODE47 " fork_"+(i −1)%n : " take " ;48 }4950 CONNECTOR "take_right_ "+i51 {52 "phil_"+i : " take_right " ;53 " fork_"+i : " take " ;54 }5556 CONNECTOR "put_"+i57 {58 "phil_"+i : "put " ;59 " fork_"+(i −1)%n : "put " ;60 " fork_"+i : "put " ;61 "sem_"+i : "put " ;62 }63 } Listing B.1: "Model of Tanenbaum's Dining Philosophers."
B.2 Java Sour
e CodeOur tool that we used to 
al
ulate the results presented in Chapter 5 isimplemented in Java. In this se
tion we des
ribe the two most importantmethods in our implementation, this is, the method that restri
ts the be-havior of an abstra
t over-approximation to rea
hable transitions and themethod that implements the appli
ation of the Edge-Mat
h operator on apair of abstra
t over-approximations. Our implementation of Algorithm 2in Chapter 3 is based on these two methods. In our tool, sets of transitionsand sets of states are modeled by BDDs.Listing B.2 depi
ts the method rea
h that restri
ts an abstra
t over-appro-ximation, that is modeled by a BDD, to rea
hable transitions. We performa symboli
 rea
hability analysis on the behavior of an abstra
t over-appro-ximation and restri
t the transition relation to transitions that start in area
hable state. Symboli
 rea
hability analyses were introdu
ed by Coudertet al. [CBM90℄. The analysis is based on su

essively extending a set of209



APPENDIX B. SOURCE CODErea
hable states, starting with the set that 
onsists of the initial state, byits image until no new states are added. In Line 4 we initialize the BDD a1whi
h represents the set of rea
hable states. In Line 7 to 17 the rea
habilityanalysis is performed. The restri
tion of the set of transitions is a

omplishedin Line 19.1 pub l i 
 s t a t i 
 void rea
h ( Subsystem s , In te ra
 t i onSys tem i s )2 {3 BDD a0 = i s . getBDDFa
tory ( ) . z e ro ( ) ;4 BDD a1 = s . g e t I n i t ( ) . id ( ) ;5 BDD tmp ;67 whi le ( ! a0 . equa l s ( a1 ) )8 {9 a0 = a1 . id ( ) ;10 tmp = a1 . and ( s . getBDD ( ) ) ;11 tmp = tmp . e x i s t ( s . getVarsFrom ( ) . union ( sys . getCodedA
tSet ( ) ) ) ;12 BDDPairing p = B. makePair ( ) ;13 p . s e t ( s . getVarsTo ( ) . getDomains ( ) , s . getVarsFrom ( ) . getDomains ( ) ) ;14 tmp . repla
eWith (p) ;15 p . f r e e p a i r ( ) ;16 a1 . orWith (tmp) ;17 }1819 s . getBDD ( ) . andWith ( a1 ) ;20 a0 . f r e e ( ) ;21 } Listing B.2: "The method rea
h."Listing B.3 depi
ts the method EM that implements the appli
ation of theEdge-Mat
h operator on a pair of abstra
t over-approximations. Note, if Sand R are abstra
t over-approximations, that the method implements theappli
ation of the Edge-Mat
h operator on S and R and on R and S, i.e.,
S and R are re�ned. If an abstra
t over-approximation is re�ned, i.e., atleast one transition is removed, then the respe
tive transition system getsrestri
ted to rea
hable transitions. The method returns false if and onlyif one of the abstra
t over-approximations is re�ned, i.e., if and only if atleast one transition is removed in at least one of the two abstra
t over-approximations. We use this return value in order to 
he
k a 
ondition210



B.2. JAVA SOURCE CODEfor the termination of our implementation of Algorithm 2 in Chapter 3.Our re�nement pro
edure terminates if the Edge-Mat
h operator applied onall (reasonable) pairs of abstra
t over-approximations does not 
ause anyre�nement.The method works as follows. The input 
onsists of two abstra
t over-ap-proximations s1 and s2. In Line 4 the BDD representation of the transitionrelation of s2 is 
opied. In Line 6 to 10 the 
opy is proje
ted to 
omponentsthat are shared between s1 and s2. In Line 21 the transition relation of s1is restri
ted to transitions that have a 
orresponding transition in s2 whi
hagree on shared 
omponents. In Line 22 to 26 we test whether or not thereare transitions removed from s1. If so, there might be transitions in s1 thatbe
ome unrea
hable. Thus, in this 
ase, we restri
t the re�ned transitionrelation of s1 to rea
hable transitions. s2 is re�ned in the same mannerwith respe
t to s1.1 pub l i 
 s t a t i 
 boolean EM( Subsystem s1 , Subsystem s2 )2 {3 BDD s1BDD = s1 . getBDD ( ) . id ( ) ;4 BDD s2BDD = s2 . getBDD ( ) . id ( ) ;56 Set<Component> minus1 = s2 . minus ( s1 ) ;7 f o r (Component k : minus1 )8 {9 s2BDD=s2BDD . e x i s t ( k . getFromDomain ( ) . s e t ( ) . union ( k . getToDomain ( ) . s e t ( ) ) ) ;10 }1112 Set<Component> minus2 = s1 . minus ( s2 ) ;13 f o r (Component k : minus2 )14 {15 s1BDD=s1BDD . e x i s t ( k . getFromDomain ( ) . s e t ( ) . union ( k . getToDomain ( ) . s e t ( ) ) ) ;16 }1718 boolean b = true ;1920 BDD s1tmp = s1 . getBDD ( ) . id ( ) ;21 s1 . getBDD ( ) . andWith (s2BDD) ;22 i f ( ! s1 . getBDD ( ) . equa l s ( s1tmp ) )23 {24 b = f a l s e ;25 ISToolBox . rea
h ( s1 ) ;26 } 211



APPENDIX B. SOURCE CODE27 s1tmp . f r e e ( ) ;2829 BDD s2tmp = s2 . getBDD ( ) . id ( ) ;30 s2 . getBDD ( ) . andWith (s1BDD) ;31 i f ( ! s2 . getBDD ( ) . equa l s ( s2tmp) )32 {33 b = f a l s e ;34 ISToolBox . rea
h ( s2 ) ;35 }36 s2tmp . f r e e ( ) ;3738 re turn b ;39 } Listing B.3: "The method EM."
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