
Learning Expressive Linkage Rules
for Entity Matching using Genetic

Programming

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Diplom-Informatiker Univ. Robert Isele

aus Waldshut-Tiengen

Mannheim, 2013

Dekan: Professor Dr. Heinz Jürgen Müller, Universität Mannheim
Referent: Professor Dr. Christian Bizer, Universität Mannheim
Korreferent: Professor Dr. Heiner Stuckenschmidt, Universität Mannheim
Tag der mündlichen Prüfung: 10. Juni 2013

Abstract

A central problem in data integration and data cleansing is to identify pairs
of entities in data sets that describe the same real-world object. Many exist-
ing methods for matching entities rely on explicit linkage rules, which specify
how two entities are compared for equivalence. Unfortunately, writing ac-
curate linkage rules by hand is a non-trivial problem that requires detailed
knowledge of the involved data sets. Another important issue is the efficient
execution of linkage rules.

In this thesis, we propose a set of novel methods that cover the com-
plete entity matching workflow from the generation of linkage rules using
genetic programming algorithms to their efficient execution on distributed
systems. First, we propose a supervised learning algorithm that is capable
of generating linkage rules from a gold standard consisting of set of entity
pairs that have been labeled as duplicates or non-duplicates. We show that
the introduced algorithm outperforms previously proposed entity matching
approaches including the state-of-the-art genetic programming approach by
de Carvalho et al. and is capable of learning linkage rules that achieve a
similar accuracy than the human written rule for the same problem.

In order to also cover use cases for which no gold standard is available,
we propose a complementary active learning algorithm that generates a gold
standard interactively by asking the user to confirm or decline the equivalence
of a small number of entity pairs. In the experimental evaluation, labeling
at most 50 link candidates was necessary in order to match the performance
that is achieved by the supervised GenLink algorithm on the entire gold
standard.

Finally, we propose an efficient execution workflow that can be run on
cluster of multiple machines. The execution workflow employs a novel mul-
tidimensional indexing method that allows the efficient execution of learned
linkage rules by reducing the number of required comparisons significantly.

i

ii ABSTRACT

Zusammenfassung

Ein zentrales Problem der Datenintegration und Datenbereinigung ist das
Finden von Paaren von Entitäten in Datensets, welche das gleiche Realwelt-
Objekt beschreiben. Viele bestehende Methoden für das Identifizieren solcher
Paare basieren auf domänenspezifischen Verknüpfungsregeln, die festlegen,
wie zwei Entitäten auf Äquivalenz verglichen werden. Allerdings ist das
Schreiben solcher Verknüpfungsregeln von Hand in der Praxis aufwendig
und erfordert eine detaillierte Kenntnis der verwendeten Datensets. Ein
weiteres wichtiges Problem stellt das effiziente Ausführen der generierten
Verknüpfungsregeln dar.

Die vorliegenden Arbeit führt neuartige Algorithmen ein, die den
gesamten Entity Matching Prozess abdecken, von der automatischen Erzeu-
gung von effektiven Verknüpfungsregeln bis zu deren effizienten Ausführung.
Zuerst wird ein genetischer Algorithmus eingeführt, der Verknüpfungsregeln
aus einem Goldstandard lernt, welcher aus einer Menge von Paaren von En-
titäten besteht, worin jedes Paar als Duplikat oder Nicht-Duplikat gekennze-
ichnet ist. Die experimentelle Evaluierung zeigt, dass der eingeführte Al-
gorithmus eine höhere Genauigkeit als bestehende Verfahren einschließlich
eines kürzlich eingeführten genetischen Algorithmus erreicht. Außerdem er-
reichten die gelernten Verknüpfungsregeln eine vergleichbare Genauigkeit als
Regeln die für das gleiche Datenset von Hand geschrieben wurden.

Um auch Anwendungsfälle abzudecken, in denen kein Goldstandard
verfügbar ist, wird anschließend ein komplementärer Active Learning Al-
gorithmus eingeführt, welcher Verknüpfungsregeln interaktiv lernt indem er
dem Nutzer eine kleine Anzahl von Beispielpaaren präsentiert, welcher dieser
als Duplikat oder Nicht-Duplikat kennzeichnet. In den Experimenten erre-
ichte der vorgestellte Algorithmus, nach dem der Nutzer maximal 50 Kan-
didaten manuell gekennzeichnet hat, eine vergleichbare Genauigkeit als der
überwachte Algorithm auf dem gesamten Goldstandard.

Abschließend führt die vorliegenden Arbeit einen Algorithmus zur Aus-
fuehrung der gelernten Verknüpfungsregeln auf verteilten Architekturen ein.
Der eingeführte Algorithmus nutzt ein neuartiges Indexierungsverfahren,
welches die Anzahl der notwendigen Vergleiche signifikant reduziert.

Contents

Abstract i

1 Introduction 1
1.1 Use Cases . 6

1.1.1 Data Integration . 6
1.1.2 Matching Census Data 7
1.1.3 Bibliographic Databases 8
1.1.4 Publishing Linked Data 10

1.2 Contributions . 15
1.3 Thesis Outline . 17
1.4 Published Work . 22

2 Linkage Rules 23
2.1 Problem Definition . 24
2.2 Data Preparation . 25

2.2.1 Standardization . 26
2.2.2 Stop-Word Removal 27
2.2.3 Structural Transformations 27

2.3 Field Matching . 29
2.3.1 Character-Based Measures 30
2.3.2 Token-Based Measures 32
2.3.3 Hybrid Measures . 34
2.3.4 Other Measures . 35

2.4 Previous Work on Linkage Rules. 38
2.4.1 Linear Classifiers . 38
2.4.2 Threshold-based Boolean Classifiers 38
2.4.3 Other Representations 39

2.5 An Expressive Linkage Rule Representation 40
2.5.1 Example . 42
2.5.2 Semantics . 43
2.5.3 Discussion . 45

iii

iv CONTENTS

2.5.4 Representing Common Classifiers 47
2.6 Summary . 48

3 Supervised Learning of Linkage Rules 49
3.1 Problem Definition . 50
3.2 Genetic Programming . 51

3.2.1 Generating the Initial Population 51
3.2.2 Evolving the Population 52
3.2.3 Bloating Control . 55

3.3 The GenLink Algorithm . 55
3.3.1 Generating the Initial Population 57
3.3.2 Evolving the Population 59
3.3.3 Crossover Operators 60
3.3.4 Bloating Control . 68

3.4 Previous Work on Supervised Learning 68
3.4.1 Linear Classifiers . 69
3.4.2 Threshold-based Boolean Classifiers 71
3.4.3 Genetic Programming 74
3.4.4 Collective Approaches 75
3.4.5 Unsupervised Approaches 77
3.4.6 Discussion . 78

3.5 Evaluation and Discussion . 80
3.5.1 Data Sets . 81
3.5.2 Experimental Setup . 84
3.5.3 Evaluation Measures 85
3.5.4 Overall Results . 86
3.5.5 Detailed Evaluation . 94

3.6 Summary . 99

4 Active Learning of Linkage Rules 103
4.1 Active Learning . 104

4.1.1 Query Strategies . 106
4.1.2 Uncertainty Sampling 106
4.1.3 Query-by-Committee 107

4.2 The ActiveGenLink Algorithm 109
4.2.1 Query Strategy . 111
4.2.2 Building the Unlabeled Pool 115

4.3 Previous Work on Active Learning 116
4.3.1 Linear and Threshold-based Boolean Classifiers 116
4.3.2 Genetic Programming 118
4.3.3 Discussion . 119

CONTENTS v

4.4 Evaluation and Discussion . 122
4.4.1 Experiment Setup . 122
4.4.2 Comparison with Supervised Learning 123
4.4.3 Scalability . 127
4.4.4 Comparison of Different Query Strategies 131

4.5 Summary . 132

5 Execution of Linkage Rules 135
5.1 Scalability Challenges . 136

5.1.1 Quadratic Execution Time 136
5.1.2 Parallel Execution . 136
5.1.3 Memory Constraints 137

5.2 Execution Data Flow . 137
5.2.1 Indexing . 137
5.2.2 Caching . 139
5.2.3 Generating Comparison Pairs 140
5.2.4 Matching . 140
5.2.5 Filtering . 140

5.3 The MultiBlock Indexing Approach 141
5.3.1 Data Flow . 142
5.3.2 Indexing Distance Measures 145
5.3.3 Indexing Aggregations 148

5.4 Previous Work on Indexing . 149
5.4.1 Blocking . 149
5.4.2 Sorted Neighborhood 150
5.4.3 Sorted Blocks . 151
5.4.4 Q-Gram Indexing . 151
5.4.5 Canopy Clustering . 151
5.4.6 Metric Embedding Methods 152
5.4.7 StringMap . 153
5.4.8 Discussion . 155

5.5 Distributed Execution of Linkage Rules 156
5.5.1 Cluster Programming Models 156
5.5.2 MapReduce Data Flow 159

5.6 Evaluation and Discussion . 163
5.6.1 Experiment Setup . 163
5.6.2 Comparison with Other Methods 164
5.6.3 Scalability . 167
5.6.4 Effectiveness . 169
5.6.5 MapReduce . 170

5.7 Summary . 171

vi CONTENTS

6 The Silk Link Discovery Framework 173
6.1 Silk Link Specification Language 174
6.2 Silk Workbench . 177

6.2.1 Workspace Browser . 177
6.2.2 Linkage Rule Learner 179
6.2.3 Linkage Rule Editor 181
6.2.4 Reference Links Manager 181

7 Conclusion 185
7.1 Summary . 185

7.1.1 Lowering the Effort . 185
7.1.2 Increasing the Accuracy 186
7.1.3 Increasing the Efficiency 187

7.2 Limitations and Future Work 188
7.2.1 Collective Matching . 188
7.2.2 Distance Measures and Transformations 190
7.2.3 Learning of Functions Parameters 190
7.2.4 Population Seeding . 190
7.2.5 Query Strategy . 191

List of Figures 193

List of Tables 195

Listings 197

Bibliography 199

Chapter 1

Introduction

As companies are generating an ever increasing amount of data and more
and more structured data is becoming available on the public Web, methods
to integrate large data sources are moving into focus. An apparent issue in
these data integration efforts is that data sources may use different repre-
sentations for the same real-world object. For instance, different publication
databases may contain citations to the same publication or different scientific
databases may contain information about the same drugs. Identifying such
duplicated entries constitutes an important issue in data integration. The
process of identifying duplicates has been well studied in various research
areas and is known as entity matching, instance matching, data matching,
record linkage, coreference resolution, deduplication, duplicate record detec-
tion and merge/purge [Elmagarmid et al., 2007; Christen, 2012; Gu et al.,
2003; Winkler, 1995; Hernández and Stolfo, 1995].

Table 1.1 illustrates the need for entity matching on an example database.
In this example, the first two rows correspond to the same movie, even if

Title Release Date Director Runtime

Frankenstein July 20, 1958 Howard W. Koch 83 min
Frankenstein 1958 Howard Koch 83 min
Frankenstein Nov. 21, 1931 James Whale 71 min
The Revenge of Frankenstein June 1, 1958 Terence Fisher 89 min

Table 1.1: Excerpt of a movie database.

the dates and director names differ slightly. On the other hand, although
the title of the third movie matches the titles of the previous movies, its
distinct release date and director suggest that, in fact, it identifies a different
movie than the previous ones. The last movie also identifies a distinct movie,

1

2 CHAPTER 1. INTRODUCTION

although its release data is very close to the release dates of the first two
movies.

The goal of an entity matching task is to identify entities in data sets
that denote the same real-world object [Köpcke and Rahm, 2010]. Entity
matching is concerned with both identifying duplicates within a single data
set (intra-source duplicates) as well as finding entities in multiple data sets
that denote the same real-world object (inter-source duplicates) [Naumann
and Herschel, 2010]. For each found pair of duplicates, the entity matching
tasks generates a link that connects both matching entities.

A variety of approaches for solving the entity matching problem have
been proposed in literature [Elmagarmid et al., 2007; Naumann and Herschel,
2010; Christen, 2012]. In the context of this thesis, we focus on rule-based
approaches that employ domain-specific linkage rules [Winkler, 1995] that
specify the conditions that two entities must fulfill in order to be be con-
sidered a duplicate. For this purpose, linkage rules typically determine the
overall similarity of two entities by comparing individual properties of both
entities. For instance, in the above example of a movie database, a linkage
rule may compare the titles and the release date of two entities in order to
determine if both entities refer to the identical movie. As data sets may
contain typographical errors or other kind of data heterogenities, properties
of duplicated entities are not necessarily exact matches and thus need to be
compared by using a distance measure. A distance measure determines the
difference between two values based on a heuristic, such as, for instance, the
number of characters that need to be changed in the first string value in
order to transform it into the second string value. In addition, a linkage rule
needs to define a distance threshold for each property that is compared that
specifies the allowed maximum difference between two values. For instance,
when comparing two release dates, a threshold could allow for a difference of
10 days for values of that particular property. Based on the distance of two
properties and the corresponding distance threshold, a linkage rule is able to
compute a similarity score for each property. The resulting similarity scores
of all compared properties are than combined into a single similarity score.
Different methods for aggregating multiple similarity scores can be used for
that purpose, such as the weighted average, which, after assigning weights to
each property that is compared, combines all values linearly. Furthermore,
if the data sources use different data formats, property values need to be
normalized by applying data transformations prior to the comparison.

The specific linkage rule that is needed for a particular entity matching
task strongly depends on the data sources that are to be matched and the
specific use case. Different data sources may use different data formats or
can be structured differently, e.g., use different terms to express the same in-

3

formation. In addition, the notion of what is considered a duplicate depends
on the concrete use case. For instance, a specific movie database may want to
distinguish between different editions of the same movie (e.g., theatrical cut
vs. director’s cut) in which case two entities that describe different editions
of a specific movie should not be identified as duplicates, while other movie
databases do not make that distinction.

Figure 1.1 depicts the overall workflow of a rule-based entity matching
task. In the following, we describe each step in more detail and highlight the

Figure 1.1: Entity Matching Workflow.

challenges that occur.

Linkage Rule Generation: Before executing the actual matching, a link-
age rule needs to be built, which specifies how two entities are compared
for equivalence. Linkage Rules can be created by a human expert based
on the data sources that are to be matched. Writing good linkage rules
by hand is a non-trivial problem as the rule author needs to have de-
tailed knowledge about the structure of the data sets. We illustrate this
point with the example of a data set about movies. Even within this
simple example the linkage rule author faces a couple of challenges:
First of all, a comparison solely by label fails for cases when movies
with the same title actually represent distinct movies that have been
released in different years. Therefore, the linkage rule needs to com-
pare, at the very least, the titles of the movies as well as their release
dates and combine both similarities with an appropriate aggregation
function. As data sets can be noisy (e.g., the release dates might be
off by a couple of days), the rule author also needs to choose suitable
distance measures together with appropriate distance thresholds. The
discovery of all data heterogenities that are not covered by the linkage
rule yet, is often not obvious and strongly dependent on the concrete
data sets. For instance, a data source may contain some names that

4 CHAPTER 1. INTRODUCTION

are formatted as ”〈first name〉 〈last name〉” while other names are for-
matted as ”〈last name〉, 〈first name〉”. Finding such heterogenities and
adding the specific data transformations to avoid mismatches is often
very tedious. Thus, writing a linkage rule is not only a cumbersome
but also a time consuming task.

Linkage Rule Execution: The aim of the linkage rule execution is to iden-
tify all pairs of entities for which the provided linkage rule is fulfilled.
Figure 1.2 illustrates a typical entity matching data flow for two data
sources. As the näıve approach of evaluating a linkage rule for all possi-

Figure 1.2: Execution Data Flow.

ble pairs of entities scales quadratically with the number of entities, an
indexing method is usually employed to dismiss definitive non-matches
early. Based on the index, a set of comparison pairs that contain two
entities that are potential matches is generated. The linkage rule is
only evaluated for each comparison pair. The output of the linkage
rule execution is a set of links wherein each link connects two entities
that have been found to match according to the linkage rule.

Various indexing methods have been proposed in literature to increase
the efficiency by detecting and dismissing definitive non-matches early
in the matching process.[Christen, 2012; Naumann and Herschel, 2010;
Köpcke and Rahm, 2010; Köpcke et al., 2010]. Unfortunately, many of
these methods may lead to a decrease of recall due to false dismissals.

In the previous example of a movie data set, an indexing method may
for instance assign an index to each entity based on the release year
of the movie that it describes. In this case, only entities about movies
with the same release date need to be compared with the linkage rule.
On the downside, entities that contain a wrong release date would be
dismissed in this example. Developing indexing methods that reduce
the number of comparisons while still generating a comparison pair for
all matching entities is an ongoing research topic [Christen, 2011].

Evaluation: The purpose of the evaluation step is to measure the success of

5

the entity matching task and to find potential errors in the generated
links. The success of the entity matching task can be determined by
comparing the generated links with a gold standard consisting of a set of
reference links. A set of reference links consist of positive reference links
that identify pairs of entities that are known to match and negative
reference links that identify pairs that that are known non-matches. If
no reference links are known, a gold standard can be generated by a
human expert who confirms or rejects a number of links. The creation
of the reference links usually involves manual effort as a human expert
is involved in confirming or declining candidate links. For that reason,
it is desirable to reduce the number of link candidates that need to be
labeled manually.

The challenge in reducing the labeling effort lies in choosing a set of
link candidates for labeling that constitutes a representative sample of
the entire data set. The reason why the näıve approach of choosing a
few random links for labeling usually fails can be easily understood by
looking at the example data set about movies that has been introduced
in Table 1.1. In this example, a random selection of pairs of entities
to be labeled as matches or non-matches would not guarantee that the
rather rare case of a pair of movies that share the same title but still
represent distinct movies due to different release dates is chosen.

After a set of reference links has been generated, two kinds of errors
can be detected: False positive links, which are links that have been
generated between entities that describe different real-world objects;
and false negative links, which are positive reference links that have
been missed by the entity matching task. The found errors can be
used to improve the linkage rule, i.e., by going back to the linkage rule
generation step of the entity matching workflow. This way, the linkage
rule can be constantly improved by repeatedly improving the linkage
rule, executing the linkage rule and identifying errors in the linkage
rule.

In this thesis, we propose a set of novel methods that cover the complete
entity matching workflow from the generation of linkage rules to their effi-
cient execution on distributed systems. First of all, we present an expressive
linkage rule representation, which may combine different similarity measures
non-linearly and may employ chains of data translations to normalize data
prior to comparison. In order to lower the effort of generating linkage rules,
we propose the GenLink genetic programming algorithm to learn linkage
rules that are based on the introduced representation. GenLink is a super-

6 CHAPTER 1. INTRODUCTION

vised learning algorithm that generates linkage rules from existing reference
links.

As in many cases reference links are not available, we propose the Active-
GenLink active learning algorithm that generates reference links by requiring
the user to confirm or decline a small number of link candidates. ActiveG-
enLink uses a novel query strategy that selects link candidates for labeling
that yield a high information gain. By that it reduces the number of link
candidates that need to be labeled by the user.

Finally, we present algorithms to efficiently execute the learned linkage
rules based on the MultiBlock indexing method. MultiBlock uses a multidi-
mensional index in which similar entities are located near each other in order
to dismiss definitive non-matches early. All proposed algorithms have been
implemented as part of the Silk Link Discovery Framework.

The electronic version of this dissertation along with links to data sets
that have been used for evaluation in this work can be found at:

http://dissertation.robertisele.com

1.1 Use Cases

Entity matching has a abundance of use cases in a variety of application
scenarios. In the following, we underline the motivation for entity matching
by discussing four uses cases.

1.1.1 Data Integration

The purpose of data integration is to integrate multiple data sources into
a single data set [Doan and Halevy, 2005]. A common problem in data
integration efforts occurs when multiple entities from different data sources
describe the same real-world object. In this case, duplicated entities from
different data sources need to be identified and merged into a single entity.
The essential task of identifying these duplicates is carried out by an entity
matching process. Data integration problems are not bound to a specific
data format and can be found, for instance, in relational databases or XML
documents.

For instance, when integrating multiple data sources about persons, dif-
ferent entities in distinct data sources may refer to the same real person.
We illustrate this problem by looking at two entries from two multi-domain
data sources: Freebase and DBpedia. Freebase1 [Bollacker et al., 2008] is a

1http://www.freebase.com

http://dissertation.robertisele.com
http://www.freebase.com

1.1. USE CASES 7

collaboratively created knowledge base. DBpedia2 [Bizer et al., 2009b] is a
structured data set that has been extracted from Wikipedia articles. Fig-
ure 1.3 shows the entry for Woody Allen in both data sets. Both data sets

(a) Freebase entry (b) DBpedia entry

Figure 1.3: Woody Allen in Freebase and DBpedia. Retrieved June 18, 2012.

provided similar information, such as his name and his birth date. On the
other hand, some properties, such as his height and information about his
relatives, are only present in one data set. Therefore, merging both entities
into a single entity would enrich the available data and provide a unified view
of all information about Woody Allen.

1.1.2 Matching Census Data

A data integration challenge that is faced by many statistical institutes is
the problem of integrating census data sets that have been collected from
different sources [Jaro, 1989]. Table 1.2 shows three example census records:

Matching different census records can be difficult for a number of reasons,
including:

• Persons may move to other locations or change their family name.

• Streets may be renamed.

• Administrative regions may be reorganized.

2http://dbpedia.org

http://dbpedia.org

8 CHAPTER 1. INTRODUCTION

Name Birthdate Street Zip Code

J. Doe 2/12/1965 Main street 16 78701
Mr. John Doe 2/12/1965 Main st. 16 78701
Jack Smith 5/4/1986 Main street 18 78701

Table 1.2: Examples of census records.

• Persons names or addresses may be formatted differently.

In literature, entity matching has been applied to census data in a number
of cases: Early work on applying entity matching for matching census records
has been applied by Jaro [1989] on matching the 1985 Census of Tampa,
Florida. Based on this preliminary work, the U.S. Bureau of the Census
employed entity matching to merge administrative lists in the US census
[Winkler and Thibaudeau, 1991]. Similar work has been conducted by the
Australian bureau of statistics [Conn and Bishop, 2005].

All of these three efforts followed the same entity matching workflow, that
has been proposed by Jaro [1989]:

Data Preparation Values such as names and addresses are standardized in
order to normalize different spellings. For instance, different spellings
of the name “John Doe”‘, such as “Mr. John Doe” and “J. Doe” can be
normalized to “J. Doe” by removing common words (e.g., “Mr.”, “Dr.”
etc.) and shorting the given name by leaving only its first character.

Field Matching The values of certain properties of pairs of entities are
matched. The particular properties that are matched depends on the
concrete data sets. Properties that qualify for matching include the
name, gender, address or data of birth of the matched persons. For
each of the matched properties, a similarity score is computed.

Match Decision All individual similarity scores are combined into a single
similarity score. The scores are combined by taking the weighted av-
erage of all scores. Weights are specified so that properties that carry
more information are weighted higher.

1.1.3 Bibliographic Databases

A bibliographic database collects citations to publications, such as research
papers or books, together with corresponding metadata, such as article ab-
stracts. A citation contains all information that is needed to identify a par-
ticular publication, including the name of the authors, the title of the paper,

1.1. USE CASES 9

the publication venue and the publication date. Applications of bibliographic
databases are numerous [Lee et al., 2007; Christen, 2012]: They allow to mea-
sure the impact of a particular researcher. Furthermore, researchers can use
them to search for papers that cover a particular research area or to find
publications that are related to a specific paper. Examples of popular bibli-
ographic databases are [Ford and O’Hara, 2008]: CiteSeerX3 [Li et al., 2006],
DBLP4 [Ley, 2002, 2009], Google Scholar5 and Microsoft Academic Search6.

Figure 1.4 shows a screenshot of Google Scholar that illustrates the diffi-
culty of finding citations that point to the same publication. The presented

Figure 1.4: Screenshot of Google Scholar.

screenshot displays the result of a search for all versions of the paper “On
Computable Numbers, with an Application to the Entscheidungsproblem”
by Alan Turing. Each entry represents a citation to the paper that has been
collected in the Web. The third entry represents a citation of a edited col-
lection of papers published by Copeland [2004], which amongst other papers

3http://citeseerx.ist.psu.edu
4http://dblp.uni-trier.de/
5http://scholar.google.com
6http://academic.research.microsoft.com/

http://citeseerx.ist.psu.edu
http://dblp.uni-trier.de/
http://scholar.google.com
http://academic.research.microsoft.com/

10 CHAPTER 1. INTRODUCTION

also contains the sought-after paper. The fourth entry has been identified as
matching the sought-after paper in spite of the wrong spelling of the author.

A number of methods have been proposed that specifically focus on
matching citations [Hylton, 1996; Cousins, 1998; Sitas and Kapidakis, 2008].
A data set that has been frequently used to evaluate the performance of dif-
ferent methods for matching citations is the Cora data set. The Cora data set
contains citations that have been collected from the Cora Computer Science
research paper search engine [McCallum et al., 2000b,a]. Table 1.3 shows a
few entries from the Cora data set. This example demonstrates some of the

Author Title Venue Date

D. Kibler and Learning representative Proc. 4th International 1987
D. W. Aha. exemplars of concepts: Workshop on

an initial case study. Machine Learning

D. Kibler and Learning representative In Proceedings of the 1987
D. Aha. examplars of concepts; Fourth International Workshop

an initial study. on Machine Learning

Kibler, D., and Learning Representative In Proceedings of the 1987
Aha, D.W. Exemplars of Concepts: Fourth International Workshop

An Initial Case Study. on Machine Learning

Aha, D. W., Instance-based Machine Learning 1991
Kibler, D., learning algorithms
& Albert, M.

Table 1.3: Excerpt from the Cora data set. The first three citations refer to
the same publication.

challenges that can occur when matching citations:

• Author names may be formatted differently.

• Journals and Conferences are sometimes abbreviated.

• Citations with spelling mistakes should still be identified as duplicates.

In Section 3.5.1, we will introduce the Cora data set in detail as one of the
data sets that are used to evaluate the performance of the learning algorithms
that are proposed in this thesis.

1.1.4 Publishing Linked Data

The central idea of Linked Data [Heath and Bizer, 2011] is to create a Web of
Data by publishing and interlinking structured data on the Web. The term

1.1. USE CASES 11

Linked Data refers to a set of best practices for two main purposes: First,
to make structured data available on the Web by following existing stan-
dards that have been defined by the World Wide Web Consortium (W3C).
And secondly, to connect entities by setting typed RDF links, which can be
followed in order to discover related entities.

In particular, the core principles of Linked Data, which have been pro-
posed by Tim Berners-Lee in his Linked Data note [Berners-Lee, 2006], are
the following:

(1) Use URIs as names for things

Uniform Resource Identifiers (URIs) [Berners-Lee et al., 1998] provide glob-
ally unique identifiers for entities, link types and concepts. URIs can be used
to identify arbitrary things, such as:

Cities: For instance, the URI http://dbpedia.org/resource/Berlin

identifies the city of Berlin in DBpedia7 [Bizer et al., 2009b]

Organizations: The URI http://www.w3.org/data#W3C identifies the
W3C.

Persons: Tim Berners-Lee is identified in the Semantic Web Confer-
ence data set8 by the URI http://data.semanticweb.org/person/

tim-berners-lee.

(2) Use HTTP URIs so that people can look up those names

URIs are not merely used as identifiers for things, they are also meant to
be dereferenceable. A dereferenceable URI allows the retrieval of informa-
tion about the referenced thing from the provider of the URI. The Hypertext
Transfer Protocol (HTTP) [Fielding et al., 1999] provides the protocol for ac-
cessing information about the referenced entity, link or concept. For instance,
a HTTP request on the URI http://dbpedia.org/resource/Berlin, re-
turns structured data that describes the city of Berlin as provided by the
DBpedia data source.

(3) Use standards to provide information

While the traditional Web relies on human readable documents in order to
represented information, the idea of Linked Data is to provide machine read-
able structured data. In Linked Data, the Resource Description Framework

7http://dbpedia.org
8http://data.semanticweb.org

http://dbpedia.org/resource/Berlin
http://www.w3.org/data#W3C
http://data.semanticweb.org/person/tim-berners-lee
http://data.semanticweb.org/person/tim-berners-lee
http://dbpedia.org/resource/Berlin
http://dbpedia.org
http://data.semanticweb.org

12 CHAPTER 1. INTRODUCTION

(RDF) [Manola and Miller, 2004] provides the common format for represent-
ing structured data. It follows a graph-based model wherein entities and con-
cepts are represented as nodes, while links are represented as edges between
nodes. Figure 1.5 depicts an example RDF graph. In the shown example, an

Figure 1.5: Excerpt of an RDF graph.

excerpt from the RDF graph that is returned when dereferencing the URI
http://dbpedia.org/resource/Woody_Allen is shown. According to the
shown RDF fragment, the given URI identifies an entity of type Person with
the name “Woody Allen”. While the name is specified using a literal string
value, the home town New York City is referred to with another URI. More
information about New York City could be requested by dereferencing the
corresponding URI.

An alternative way to access RDF data sources is to provide a SPARQL
query service. SPARQL [Prud’hommeaux and Seaborne, 2008] is a query
language to retrieve data that is structured using RDF.

(4) Include links to other URIs

While the first three principles are concerned with publishing isolated Linked
Data sources on the Web, the fourth principle gives attention to connecting
entities in different data sources. In the same way as entities inside a single
data source can be connected using an internal RDF link, such as the home-
town property in Figure 1.5, external RDF links refer to entities in another
data source. Three types of external RDF links are commonly used [Heath
and Bizer, 2011]:

Relationship Links relate two entities in different data sources. For in-
stance, an entity about a music record in a music data source can
point to the corresponding artist in a data source about persons us-
ing the RDF property http://xmlns.com/foaf/0.1/maker from the
FOAF vocabulary [Brickley and Miller, 2005].

http://dbpedia.org/resource/Woody_Allen
http://xmlns.com/foaf/0.1/maker

1.1. USE CASES 13

Identity Links connect two entities from different data sources that de-
scribe the same real-world object. By convention, the http://www.

w3.org/2002/07/owl#sameAs property is usually used to set identity
links.

Vocabulary Links are used to relate an entity to a term in a vocabulary
or to connect two related terms. For instance, in Figure 1.5, the entity
that describes Woody Allen is related to the term that identifies persons
in the DBpedia.

Figure 1.6 shows an example with three RDF data sources. This ex-

Figure 1.6: Interconnected RDF data sources. The original URIs have been
shortened for illustration.

ample shows how the entity that describes the city of Berlin in DBpedia is
connected to other data sources. A LinkedData consumer that dereferences
the URI identifying Berlin in DBpedia receives an RDF graph that, among
information about Berlin that is provided by DBpedia itself, also contains
RDF links to other data sets. For instance, the Linked Data consumer can
discover additional information about Berlin by following the owl:sameAs

link to the corresponding entity in Eurostat9. On the other hand, follow-
ing the owl:sameAs link to the New York Times10 data set gives access to
information provided by the New York Times.

One of the most prominent efforts around Linked Data is the W3C Linked
Open Data (LOD) community project11. The primary aim of LOD is to make
information freely available on the Web by using the Linked Data principles.

9http://ec.europa.eu/eurostat. An RDF version has been published at http://

wifo5-03.informatik.uni-mannheim.de/eurostat/.
10http://data.nytimes.com/
11http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://ec.europa.eu/eurostat
http://wifo5-03.informatik.uni-mannheim.de/eurostat/
http://wifo5-03.informatik.uni-mannheim.de/eurostat/
http://data.nytimes.com/
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

14 CHAPTER 1. INTRODUCTION

The Data Hub12 is an effort to catalog Linked Open Data sources. The
LOD cloud visualizes the current state of the Web of Linked Open Data (see
Figure 1.7). The amount of data that is published as Linked Open Data

Figure 1.7: LOD cloud from 2011-09-19. The diagram is maintained by
Richard Cyganiak and Anja Jentzsch.

has grown significantly over the last years and is estimated at over 31 billion
RDF statements13.

Linked Data Publishers can follow the Linked Data principle of connect-
ing data sources by setting RDF links from the entities in the data source to
related entities in other Linked Data sources. In order to help data publish-
ers to set RDF links pointing into other data sources, several link discovery
tools - such as Silk or LIMES [Ngonga Ngomo and Auer, 2011] - have been
developed. These tools employ entity matching techniques in order to com-
pare entities in different Linked Data sources based on user-provided linkage
rules, which specify the conditions that must hold true for two entities in
order to be interlinked. The links are usually published together with the
primary data set itself, but can also be published separately.

12http://thedatahub.org/
13http://lod-cloud.net/

http://thedatahub.org/
http://lod-cloud.net/

1.2. CONTRIBUTIONS 15

1.2 Contributions

In this thesis, we propose novel algorithms for learning linkage rules that
employ an expressive representation that can be executed efficiently. In par-
ticular, this thesis makes the following four contributions:

(1) An Expressive Linkage Rule Representation: We propose an ex-
pressive linkage rule representation, which is capable of combining dif-
ferent distance measures non-linearly and may include chains of data
transformations to normalize values prior to comparison. The pro-
posed linkage rule representation is more expressive than previous work
and subsumes threshold-based boolean classifiers and linear classifiers.
Linkage Rules are represented as an operator tree and can be under-
stood and modified by humans. The proposed linkage rule representa-
tion will be introduced in Chapter 2.

(2) Supervised Learning of Linkage Rules: We propose the GenLink
genetic programming algorithm to evolve linkage rules from a set of
reference links. The learned linkage rules may utilize the full expres-
sivity of the introduced representation. The basic idea of GenLink is
to evolve the population of linkage rules by using a set of specialized
crossover operators. Each of these operators only operates on one as-
pect of the linkage rule, e.g., one crossover operator builds chains of
transformations while another operator only combines distance thresh-
olds. The experimental evaluation shows that the proposed algorithm
is capable of learning linkage rules which:

• Select discriminative properties for comparison.

• Select chains of data transformations to normalize property values
prior to comparison.

• Select appropriate distance measures combined with suitable dis-
tance thresholds.

• Select appropriate aggregation functions that combine the result
of multiple comparisons.

We show that GenLink outperforms the state-of-the-art genetic pro-
gramming algorithm for entity matching recently presented by de Car-
valho et al. [2012] and is capable of learning linkage rules that achieve
a similar accuracy than the human written rule for the same problem.
GenLink will be discussed in detail in Chapter 3.

16 CHAPTER 1. INTRODUCTION

(3) Active Learning of Linkage Rules: For cases where no or only a
small number of reference links are available, we propose the Active-
GenLink algorithm to generate additional reference links interactively.
ActiveGenLink combines genetic programming with active learning in
order to automate the generation of the linkage rule while the user only
has to verify a set of link candidates. ActiveGenLink uses a novel query
strategy that reduces the number of candidates, which need to be la-
beled by the user, and outperforms the query-by-vote-entropy strategy,
which has been previously used for active learning of linkage rules. The
idea of the proposed query strategy is to select link candidates for la-
beling that yield a high information gain. Within our experiments, by
labeling a small number of links, ActiveGenLink was capable of finding
linkage rules with a comparable performance than GenLink on a much
bigger set of reference links. In addition, ActiveGenLink outperformed
recent unsupervised algorithms after manually labeling a few link can-
didates. ActiveGenLink will be discussed in detail in Chapter 4.

(4) Efficient Execution of Linkage Rules: It is essential that the
learned linkage rules can be executed efficiently on local or distributed
architectures. This thesis proposes the novel MultiBlock indexing
method that allows the efficient execution of linkage rules. MultiBlock
uses a multidimensional index in which similar objects are located near
each other. In each dimension the entities are indexed by a different
property increasing the efficiency of the index significantly. In addition,
it guarantees that no false dismissals can occur. We show that, using
MultiBlock, the linkage rules can be executed efficiently on distributed
architectures, such as Hadoop clusters. The proposed execution data
flow data that includes MultiBlock will be discussed in Chapter 5.

The proposed methods have been implemented as part of the Silk Link Dis-
covery Framework [Isele et al., 2010]. Silk discovers matching entities within
data sets that are represented as RDF. The main application area of the
framework is to find matching entities within data sets that are accessible on
the Web according to the Linked Data principles [Bizer et al., 2009a]. The
discovered matches may be used to set RDF links (owl:sameAs) between the
data sources. Silk Link Discovery Framework is available for download un-
der the terms of the Apache License14 and all experiments that are presented
in this thesis can thus be repeated by the interested reader. The Silk Link
Discovery Framework will be introduced in Chapter 6.

14http://silk.wbsg.de/

http://silk.wbsg.de/

1.3. THESIS OUTLINE 17

1.3 Thesis Outline

Chapter 1: Introduction

This chapter introduces the reader to the main topics of this thesis and
highlights its contributions.

Chapter 2: Linkage Rules

This chapter introduces the various parts of a linkage rule in detail and pro-
poses an expressive linkage rule representation. The proposed representation
may employ data preparation techniques prior to comparing different values
of the entities that are to be matched. It allows to combine the resulting
similarity scores non-linearly into a single similarity score.

Section 2.2: Data Preparation. As data sources may use different data
formats, data needs to be normalized prior to comparison. This section
introduces well-known data transformation and standardization meth-
ods. The presented methods can be used in the proposed linkage rule
representation to normalize property values of entities that are to be
compared.

Section 2.3: Field Matching. The similarity between different entities is
usually assessed by comparing the values of individual properties of
the entities. This section introduces distance measures that are com-
monly used to deal with different types of errors, such as typographical
variations. The proposed linkage rule representation employs distance
measures for comparing the normalized values of two entities.

Section 2.4: Previous Work on Linkage Rules. A linkage rule speci-
fies the conditions that must hold true for two entities in order to be
considered a match. For this purpose, a linkage rule may combine mul-
tiple comparisons of different properties of the entities that are to be
matched. This section discusses previous work on representing linkage
rules. It shows that popular representations include linear classifiers
that combine multiple comparison scores by computing the weighted
average and threshold-based boolean classifiers that combine multiple
comparisons using logical operators. In contrast to the representation
that is proposed in this thesis, linear and threshold-based boolean clas-
sifiers do not include data transformations into the linkage rule, but
rely on a preceding data preparation stage instead [Elmagarmid et al.,
2007].

18 CHAPTER 1. INTRODUCTION

Section 2.5: An Expressive Linkage Rule Representation. In this sec-
tion, we propose an expressive linkage rule representation, which may
combine different distance measures non-linearly and may include
chains of data transformations to normalize values prior to compari-
son. We show that the introduced linkage rule representation is more
expressive than previous work and subsumes threshold-based boolean
classifiers as well as linear classifiers.

Section 2.6: Summary. This section summarizes the main points of this
chapter.

Chapter 3: Supervised Learning of Linkage Rules

This chapter introduces the first key contribution of this thesis: The GenLink
learning algorithm. It motivates machine learning of linkage rules by pointing
out that creating linkage rules by hand is a non-trivial problem and requires
a high level of expertise together with detailed knowledge of the data sets.
We introduce supervised learning as a method to automate the creation of a
linkage rule in cases where existing reference links are known.

Section 3.1: Problem Definition. We formalize the problem of learning
a linkage rule from existing reference links.

Section 3.2: Genetic Programming. In this section, we introduce ge-
netic programming to the reader. We describe the general genetic
programming algorithm and highlight the capability of genetic pro-
gramming to learn arbitrary operator trees.

Section 3.3: GenLink. In this section, we propose the GenLink super-
vised learning algorithm, which employs genetic programming in order
to learn linkage rules from a set of existing reference links. Following
the genetic programming paradigm, GenLink starts with an initial pop-
ulation of candidate solutions, which is iteratively evolved by applying
a set of genetic operators.

Section 3.4: Previous Work. This section provides an overview of the
current state-of-the-art in machine learning of linkage rules. We dis-
cuss supervised learning algorithms, which are concerned with learning
linkage rules from reference links, as well as unsupervised learning algo-
rithms, which are concerned with matching entities when no reference
links are available. We show that most previous algorithms for learn-
ing linkage rules either employ threshold-based boolean classifiers or

1.3. THESIS OUTLINE 19

linear classifiers for representing linkage rules. In addition, we dis-
cuss a previously proposed genetic programming algorithm for learning
more expressive linkage rules. Finally, we compare the reported perfor-
mance scores for different entity matching approaches that have been
evaluated on two frequently used evaluation data sets.

Section 3.5: Evaluation and Discussion. We evaluate GenLink with six
data sets: (1) We evaluate the learning performance on two frequently
used record linkage data sets. The results show that the proposed ap-
proach outperforms the state-of-the-art genetic programming approach
for entity matching by de Carvalho et al. [2012]. (2) We evaluate the
performance with two data sets from the Ontology Alignment Evalu-
ation Initiative and compare our results to the participating systems.
(3) We compare the learned linkage rules with linkage rules created
by a human expert for the same data set. The results show that our
approach is capable of learning linkage rules, which achieve a similar
accuracy than the human written rule for the same problem.

As we propose an approach that uses a linkage rule representation
that is more expressive than the most common representations used
in record linkage, we compared the learning performance to threshold-
based boolean classifiers and linear classifiers. As GenLink further does
not use subtree crossover, which is the de-facto standard in genetic pro-
gramming, we evaluated the actual contribution to the learning perfor-
mance of the introduced specialized crossover operators.

Section 3.6: Summary. This section summarizes the main points of this
chapter.

Chapter 4: Active Learning of Linkage Rules

This chapter starts with highlighting the dependency of supervised learning
on existing training data in the form of reference links. We motivates the
use of active learning as a semi-supervised learning approach to overcome
this limitation by generating additional reference links with minimal user-
interaction. Finally, it presents the second key contribution of this thesis:
The ActiveGenLink learning algorithm.

Section 4.1: Active Learning. This section introduces active learning to
the reader.

Section 4.2: ActiveGenLink. In this section, we propose the ActiveGen-
Link algorithm, which combines genetic programming and active learn-

20 CHAPTER 1. INTRODUCTION

ing to learn linkage rules interactively. We introduce a novel query
strategy that reduces user involvement by selecting the link candidates
to be verified by the user that are the most informative.

Section 4.3: Previous Work. In this section, we discuss previous work in
active learning in general and present existing applications of active
learning to entity matching.

Section 4.4: Evaluation and Discussion. We evaluate the performance
of ActiveGenLink on the same data sets as have been used to evaluate
the supervised GenLink algorithm in the previous chapter. The exper-
iments are executed by labeling a maximum of 50 link candidates for
each data set and comparing the final performance to results that have
been achieved by GenLink. We show that by labeling a small number
of link candidates, ActiveGenLink achieves a comparable performance
than GenLink on the full set of reference links.

Section 4.5: Summary. This section summarizes the main points of this
chapter.

Chapter 5: Execution of Linkage Rules

The efficient execution of linkage rules is essential to scale to large data sets.
This chapter introduces a complete workflow to efficiently execute linkage
rules which have been manually written or learned by one of the algorithms
previously proposed.

Section 5.2: Execution Workflow. This section introduces the overall
data flow of executing a linkage rule.

Section 5.3: MultiBlock. We propose a novel indexing method called
MultiBlock to efficiently execute linkage rules. The proposed method
uses a multidimensional index in which similar objects are located near
each other in order to improve the efficiency beyond existing methods.

Section 5.4: Previous Work on Indexing. The naive method of execut-
ing a linkage rule is to evaluate the rule for each pair of entities from the
Cartesian product of all known entities. In record linkage, many index-
ing methods have been proposed that substantially reduce the number
of required entity comparisons. This section discusses the most com-
mon methods.

1.3. THESIS OUTLINE 21

Section 5.5: Distributed Execution of Linkage Rules. In this sec-
tion, we discuss methods to scale the execution of linkage rules to a
cluster of machines. We propose a distributed MapReduce-based data
flow that employs MultiBlock to scale out the execution of a linkage
rule.

Section 5.6: Evaluation and Discussion. We evaluate both the effi-
ciency and the effectiveness of the proposed MultiBlock approach. Ef-
ficiency is demonstrated by showing that MultiBlock outperforms pre-
viously proposed indexing methods. Effectiveness is demonstrated by
showing that MultiBlock reduces the number of comparisons signifi-
cantly without any false dismissals, even when used with complex link-
age rules. Finally, we demonstrate that MultiBlock can be run using
the MapReduce paradigm to scale efficiently to a cluster of machines.

Section 5.7: Summary. This section summarizes the main points of this
chapter.

Chapter 6: The Silk Link Discovery Framework

This section introduces the Silk Link Discovery Framework. Silk discovers
matching entities within data sets that are represented as RDF. Silk imple-
ments all methods for learning and executing linkage rules that are proposed
by this thesis.

Section 6.1: Silk Link Specification Language. The Silk Link Specifi-
cation Language (Silk-LSL) is a declarative language for representing
link specifications. A link specification encapsulates all information
needed to interlink two data sets. This includes the type of link that
is to be generated, information on how to access the data sets that are
to be interlinked, the linkage rule including a link filter and finally the
outputs to which the link should be written to.

Section 6.2: Silk Workbench. This section describes the Silk Work-
bench, a web application that provides a graphical user interface to
the Silk Link Discovery Framework. The Silk Workbench provides a
graphical user interface to the supervised learning as well as active
learning methods implemented in the Silk Link Discovery Framework.

Chapter 7: Conclusion

This chapter summarizes the main contributions of this thesis and discusses
known limitations and directions for future work.

22 CHAPTER 1. INTRODUCTION

1.4 Published Work

Parts of the work presented in this thesis have been published previously:

• Previous work on the GenLink genetic programming algorithm has been
presented at two occasions:

Robert Isele, Christian Bizer: Learning Expressive Linkage
Rules using Genetic Programming. Proceedings of the VLDB
Endowment (PVLDB) 5(11):1638-1649, August 2012.

Robert Isele, Christian Bizer: Learning Linkage Rules us-
ing Genetic Programming. Proceedings of the Sixth Interna-
tional Workshop on Ontology Matching, October 2011.

• Previous work on the ActiveGenLink active learning algorithm has been
presented at two occasions:

Robert Isele, Christian Bizer: Active Learning of Expressive
Linkage Rules using Genetic Programming. Web Semantics:
Science, Services and Agents on the World Wide Web, 2013.

Robert Isele, Anja Jentzsch, Christian Bizer: Active Learn-
ing of Expressive Linkage Rules for the Web of Data. Pro-
ceedings of the 12th International Conference on Web Engi-
neering (ICWE), July 2012.

• Previous work on the MultiBlock indexing approach is covered by the
following publication:

Robert Isele, Anja Jentzsch, Christian Bizer: Efficient Multi-
dimensional Blocking for Link Discovery without losing Re-
call. Proceedings of the 14th International Workshop on the
Web and Databases (WebDB), June 2011.

• The Silk Link Discovery Framework in general is covered in:

Robert Isele, Anja Jentzsch, Christian Bizer: Silk Server –
Adding missing Links while consuming Linked Data. Pro-
ceedings of the First International Workshop on Consuming
Linked Data (COLD), November 2010.

Chapter 2

Linkage Rules

A number of different approaches for solving the entity matching problem
have been proposed in literature: Unsupervised approaches aim to match
entities without any user-provided configuration [Köpcke and Rahm, 2010;
Euzenat et al., 2011a; Aguirre et al., 2012]. An unsupervised approach iden-
tifies matching entities based on the characteristics of the data set. In ad-
dition, some unsupervised approaches have been proposed that exploit data
set independent background knowledge [Michalowski et al., 2004; Doan et al.,
2003]. In contrast to unsupervised approaches, rule-based approaches clas-
sify each pair of entities as match or non-match based on data set specific
linkage rules Winkler [1995]. Within rule-based approaches, a linkage rule
specifies how the similarity of a pair of entities is determined. In contrast to
rule-based approaches that are local in the sense that they conduct match
decisions for each pair of entities independently, collective entity matching
approaches conduct match decisions of all related pairs of entities at once
globally [Bhattacharya and Getoor, 2007] by exploiting relationships between
different types of entities. In the context of this thesis, we focus on machine
learning and execution of expressive linkage rules. Section 3.4 will discuss
in more detail how our approach compares to unsupervised and collective
approaches.

In this section, we will introduce the various components of linkage rules.
At first, we will introduce data normalization techniques for preparing values
for matching. After that, we will introduce common distance measures for
comparing values for similarity. In addition, we will discuss previous work on
representing linkage rules that combine multiple similarity measures. Finally,
we will introduce the first main contribution of this thesis: a linkage rule
representation that is more expressive than previous work and includes data
transformations to normalize values prior to comparison.

23

24 CHAPTER 2. LINKAGE RULES

2.1 Problem Definition

We consider the problem of matching entities between two sets of entities
A and B. Each entity e ∈ A ∪ B can be described with a set of properties
e.p1, e.p2, . . . e.pn. For instance, an entity denoting a person may be described
by the properties name, birthday and address. The objective is to determine
which entities in A and B identify the same real-world object.

The general problem of entity matching can be formalized as follows [Fel-
legi and Sunter, 1969]:

Definition 2.1 (Entity Matching) Given two sets of entities A and B,
find the subset of all pairs of entities for which a relation ∼R holds:

M = {(a, b); a ∼R b, a ∈ A, b ∈ B}

Similarly, we define the set of all pairs for which ∼R does not hold:

U = (A×B) \M

The purpose of relation ∼R is to relate all entities that represent the
same real-world object. Note that entities that are related by simR are not
necessarily equal (i.e., define properties with the same values). Instead of
that, they may differ in some of their values, for instance, due to errors in
the data set.

In some cases a subset of M and U is already known prior to matching
in the form of reference links.

Definition 2.2 (Reference Links) A set of positive reference links R+ ⊆
M contains pairs of entities for which relation ∼R is known to hold (i.e.,
which identify the same real-world object). Analogously, a set of negative
reference links R− ⊆ U contains pairs of entities for which relation ∼R is
known to not hold (i.e., which identify different real-world objects).

Reference links can serve two purposes: Firstly, they can be used to
evaluate the quality of a linkage rule. But more importantly, they can also
be used to infer a linkage rule, which specifies how the similarity of a pair of
entities is determined.

Definition 2.3 (Linkage Rule) A linkage rule l assigns a similarity score
to each pair of entities:

l : A×B → [0, 1]

The set of matching entities is given by all pairs for which the similarity
according to the linkage rule exceeds a threshold θ:

Ml = {(a, b); l(a, b) ≥ θ, a ∈ A, b ∈ B}

2.2. DATA PREPARATION 25

As the linkage rule may return arbitrary values in the range [0, 1], we fix the
value of the threshold θ to 0.5 without loss of generality. In literature, linkage
rules are also known as identity rules [Lim et al., 1993], record matching rules
[Fan et al., 2009] and record matching packages [Arasu et al., 2010]. By using
the term linkage rule, we follow the terminology introduced by Fellegi et al.
in their article A Theory for Record Linkage [Fellegi and Sunter, 1969].

Instead of using a single threshold, it has also been proposed to use two
different thresholds in order to distinguish between three classes: match,
non-match, and possible match [Fellegi and Sunter, 1969]. If the linkage rule
assigns a similarity score that is between both thresholds, the pair is regarded
as possible match. If the similarity score is higher than the bigger threshold
the entity pair is regarded as match. Similarly, If the similarity score is lower
than the smaller threshold the entity pair is regarded as non-match. The
introduction of a third class enables the user to distinguish between entity
pairs that are possible matches and thus need to be reviewed by a human
expert and entity pairs which are considered certain matches and do not need
to be manually confirmed.

2.2 Data Preparation

Data preparation is usually carried out as a separate step preceding the
actual matching of the entities. Motivations for using a preparatory data
normalization step are diverse:

Firstly, if two data sources that adhere to different schemata are to be
matched, their schemata need to be standardized. For instance, one data
source might represent person names in separate properties for the first and
the last name, while another data source may use a single property for both.
In cases like this, data transformation functions need to be applied in order
to transform both data sources to a consistent schema.

Another motivation for data normalization is the presence of typograph-
ical errors. While some typographical errors cannot easily by removed and
have to be dealt with in the comparison phase, many kinds of errors can be
removed by a normalization step prior to matching. Examples include the
use of an irregular letter case or the inconsistent use of separation characters,
such as hyphens. Apart from typographical errors, mismatches also originate
from the use of different data formats. In many cases, the reason for this is
a lack of an established standard format. Examples of different data formats
include the use of different units of measurements and the use of different
formats for addresses and telephone numbers.

This section provides an overview of common data transformations func-

26 CHAPTER 2. LINKAGE RULES

tions for the purpose of preparing the data for matching [Rahm and Do,
2000; Sarawagi, 2008; Pyle, 1999; Elmagarmid et al., 2007; Christen, 2012].

2.2.1 Standardization

Standardization transformations translate values that do not adhere to a
consistent content format to a uniform representation [Elmagarmid et al.,
2007].

Case Normalization

A common source of mismatches is the use of an irregular letter case (e.g.,
“eMail” vs. “EMAIL”). A way to address case inconsistency is to normalize
all values to lower case prior to comparing them. Figure 2.1 presents a simple
example.

Figure 2.1: Case normalization.

Address Standardization

Address standardization is the task of normalizing street addresses into a
uniform format [Winkler, 1995; Elmagarmid et al., 2007]. Address standard-
ization is necessary if addresses are not following a consistent format.

For illustration, we have a look at two alternative spellings of the same
address:

• 23 gary street, Berlin, DE

• 23 Gary St., 10999 Berlin, Germany

A typical approach to standardize such inconsistencies consists of at least
three steps:

(1) Segment each address into its components and store each component in
a separate entity field (house number, street, city, state, zip code). This
step can be skipped if the data set already provides each component
separately.

(2) Standardize synonyms and abbreviations, such as “Rd.” for “Road”.

2.2. DATA PREPARATION 27

(3) Normalize the letter case, e.g., by capitalizing all words.

In literature, a number of more sophisticated methods for standardiza-
tion have been proposed [Li et al., 2002; Guo et al., 2009]. While none of
these methods typically achieves optimal results, they are usually sufficient
to ensure that subsequent fuzzy string matching methods are capable of iden-
tifying potential duplicates.

2.2.2 Stop-Word Removal

A typical normalization operation is to remove characters or words that are
very common or do not carry significant extra information [Christen, 2012].
For instance, when matching person names, prefixing titles, such as “Mr.”
or “Dr.”, can usually be removed prior to matching. Another example is the
removal of common words, such as “the” or “of”.

2.2.3 Structural Transformations

While many data transformations are only applied on the values of a sin-
gle property, some other data transformations apply structural transforma-
tions on the data sets. For instance, a data source that uses the FOAF
vocabulary [Brickley and Miller, 2005] may represent person names using
the foaf:firstName and foaf:lastName properties, while a data source
using the DBpedia ontology may represent the same names using just the
dbpedia:name property. In order to compare entities expressed in differ-
ent schemata or data formats, their values have to be normalized prior to
comparing them for similarity. In this example, we could achieve this in
two ways: We could concatenate foaf:firstName and foaf:lastName into
a single name before comparing them to dbpedia:name using a character-
based distance measure, such as the Levenshtein distance. Alternatively, we
could split the values of dbpedia:name using a tokenizer and compare them
to the values of foaf:firstName and foaf:lastName using a token-based
distance measure, such as the Jaccard coefficient. Figure 2.2 illustrates the
concatenation of two properties as well as the splitting of a single property
into two properties. An overview of more complex structural transformations
can be found in [Benjamin Braatz, 2008].

Segmentation

Segmentation is a special case of a structural transformation in which a string
is split into a set of predefined properties [Sarawagi, 2008]. In literature, a

28 CHAPTER 2. LINKAGE RULES

Figure 2.2: Concatenation and splitting of properties as examples of a struc-
tural transformations.

variety of approaches have been proposed to segment strings into structured
entities such as product descriptions [Kannan et al., 2011; Ghani et al., 2006],
postal addresses [Cai et al., 2005], bibliography records [Borkar et al., 2001]
and person names [Christen, 2012].

Figure 2.3 shows an example of segmenting a product description into
different properties, such as the product name and the manufacturer of the
product.

Figure 2.3: Segmentation of a product offer.

Popular approaches for segmentation in the context of entity matching in-
clude rule-based segmentation and statistical segmentation [Christen, 2012].
A typical rule-based segmentation approach consists of a set of rules in which
each rule is of the form:

pattern→ action

The idea of a rule is that whenever the specified pattern is found in the input
string, the corresponding action is executed. An action usually assigns the
found pattern, or a part of it, to a specific output property. An example of
a rule which extracts a price tag from a product description is:

{currency sign preceded by number} → {Assign number to price property}

In contrast to rule-based systems, statistical segmentation approaches
are not based on hard rules. Statistical segmentation approaches start by
segmenting the input string into tokens or word chunks. A probability dis-
tribution is than used to assign segments of the input string to an output
property.

In practice, rule-based methods are usually preferred to statistical meth-
ods when the input data is regular and thus strict rules work well [Sarawagi,

2.3. FIELD MATCHING 29

2008]. On the other hand, statistical methods are usually preferred if the
input data is noisy.

Extraction of Values from URIs

Many data sets that are published as Linked Data encode information in the
URI of each entity, which is not necessarily replicated in a property. Data
transformations can be used to extract specific values from the URIs, which
thereby can be used for matching the corresponding entities. Figure 2.4
illustrates the extraction of an identifier from a URI in a life science data set.

Figure 2.4: Extract a literal value from an URI.

2.3 Field Matching

The task of assessing the similarity of two string values is central to entity
matching. As each entity provides a number of fields, matching two enti-
ties comes down to comparing the values of individual fields of both entities.
For instance, when matching entities describing persons, field matching tech-
niques can be employed to compare individual properties of the persons, such
as their names, their birth date or their address.

Field matching measures can either be formulated as similarity measures
or as distance measures [Naumann and Herschel, 2010]. Given two string
values that are built from an alphabet Σ, a similarity measure returns a
value from the range [0, 1]:

sim : Σ∗ × Σ∗ → [0, 1]

A similarity measure returns 1 if both strings are equivalent and 0 if both
strings don’t share any similarity. Analogously, we can define a distance
measure as:

dist : Σ∗ × Σ∗ → R

A distance measure returns 0 if both strings are equivalent and higher val-
ues for dissimilar strings. Note that, in contrast to similarity measures, in
general, distance measures are not normalized (i.e., they might return values

30 CHAPTER 2. LINKAGE RULES

bigger than one). In order to avoid any confusion, we formulate all measures
as distance measures in the context of this work.

In literature, many distance measures have been proposed to match string
values for entity matching. Each distance measure is typically targeted at
handling a certain kind of variations in the string values. Which distance
measure yields the optimal results depends on the specific entity fields that
are to be compared and the particular data set. In order to compare two
entity fields, a string measure needs to be chosen together with a distance
threshold. The distance threshold indicates the maximum distance that is
allowed between two values for them to be considered a match.

This section introduces distance measures that are commonly used to
deal with different types of variations. We will describe the most well-known
character-based measures, which assess the similarity of two strings by com-
paring them on the level of individual characters, as well as token-based
measures, which compare both strings on the level of individual words. We
will also introduce hybrid measures, which combine character-based measures
and token-based measure in order to gain the advantages of both. More spe-
cific similarity measures, such as measures to compare numeric strings, are
also discussed.

Comprehensive overviews of common distance measures can be found
in [Elmagarmid et al., 2007; Christen, 2012; Naumann and Herschel, 2010].
While the performance of different distance measures depends on the char-
acteristics of the data set, experimental performance comparisons of various
distance measures can be found in [Cohen et al., 2003; Christen, 2006].

2.3.1 Character-Based Measures

Character-based distance measures assess the similarity of two string values
on character level. They are well-suited for handling typographical errors.

Levenshtein Distance

Given two strings s1 and s2, the Levenshtein distance [Levenshtein, 1966]
(sometimes also called edit distance) is defined as the the minimum number of
edit operations that are needed to transform s1 into s2. Three edit operations
are allowed:

• Insertion of a character into the string.

• Deletion of a character from the string.

• Substitution of one character in the string with another character.

2.3. FIELD MATCHING 31

We illustrate the computation of the Levenshtein distance on two simple
examples: The Levenshtein distance between the strings “Table” and “able”
is one as “Table” can be transformed into “able” by deleting the first charac-
ter. Similarly, the distance between “Table” and “Cable” is also one as they
can be transformed into each other by substituting one character.

Given a finite alphabet Σ and two strings σ1 ∈ Σ∗ and σ2 ∈ Σ∗, the
(unnormalized) Levenshtein distance always returns a whole number between
0 and max(|σ1|, |σ2|). Based on this observation, the Levenshtein distance
can be normalized in order to yield a value from the interval [0, 1]:

NormalizedLevensthein(σ1, σ2) :=
Levenshtein(σ1, σ2)

max(|σ1|, |σ2|)
(2.1)

Many variations and improvements, both to matching performance as
well as execution performance, have been made to the original Levenshtein
distance. A comprehensive overview and experimental evaluation of different
algorithms for computing the Levenshtein distance can be found in [Navarro,
2001].

Jaro Distance

The Jaro distance metric [Jaro, 1989] has been originally developed to com-
pare person names in the U.S. Census. The idea of the Jaro distance is to
count the number of common characters within a specific distance. The Jaro
distance is defined as [Winkler, 1990]:

Jaro(σ1, σ2) :=

{
0 if c = 0
1
3

(
c
|σ1| + c

|σ2| + c−τ
c

)
otherwise

(2.2)

The Jaro distance is based on two parameters:

c: The number of characters that are in common in both strings. Two char-
acters are considered in common, if their position in both strings is no
further apart than half the length of the longer string minus one.

τ : The number of transpositions of characters.

Jaro-Winkler Distance

The Jaro-Winkler distance measure [Winkler, 1990] is an extension of the
Jaro distance that assigns a smaller distance to names with a common prefix
The Jaro-Winkler distance is defined as [Winkler, 1990]:

JaroWinkler(σ1, σ2) := Jaro(σ1, σ2) +
min(i, 4)

10
(1− Jaro(σ1, σ2)) (2.3)

32 CHAPTER 2. LINKAGE RULES

Wherein i denotes the length of the common prefix of both strings.

2.3.2 Token-Based Measures

Character-based measures work well for typographical errors, but fail when
word arrangements differ. For instance, when comparing person names,
changing the order of the first and the last name or adding a title pre-
vents a character-based distance measure from identifying a duplicate. In
the example of person names, changing ’John Doe’ to ’Doe, John’ would
increase the Levenshtein distance from zero to six. Changing ’John Doe’ to
’Mr. John Doe’ has a similar effect.

The idea of token-based measures is to split the values into tokens before
computing the distance. The distance is than computed by comparing the
tokens for each string while ignoring their order. A string, such as ’Mr. John
Doe’, would be split into the token set {’Mr.’, ’John’, ’Doe’}. The method
by which the strings are split into tokens can be chosen independently of a
specific token-based metric. While simple approaches split the strings into
tokens at each whitespace character, more sophisticated approaches also in-
clude punctuation characters in order to capture cases such as ’Doe, John’.
If the strings are solely split by whitespace characters, data preparation may
be needed to remove punctuation prior to comparison.

In pure token-based measures, the individual tokens are compared by
equality, i.e., two tokens are only considered a match if they are exact dupli-
cates. Later, we will also introduce hybrid measures which combine token-
based measures with character-based measure to allow for near duplicates as
well.

In the following, we introduce the most common token-based measures.

Jaccard Index

The intuition behind the Jaccard index [Jaccard, 1901]1 is to measure the
fraction of the tokens that are shared by both strings. More precisely, the
Jaccard index is defined as the number of matching tokens divided by the
total number of distinct tokens.

Definition 2.4 (Jaccard Distance) The distance between two token sets
A and B according to the Jaccard index is defined as:

Jaccard(A,B) = 1− |A ∩B|
|A ∪B|

1A translation of the French original of the cited article is provided in [Jaccard, 2006]

2.3. FIELD MATCHING 33

For instance, the Jaccard distance of the strings “Mr. John Doe” and
“Doe, John” computes to:

Jaccard({Mr., John,Doe}, {Doe, John}) = 1− 2

3
=

1

3

Dice Coefficient

The dice coefficient [Dice, 1945] is very similar to the Jaccard index. The
dice coefficient is defined as twice the number of tokens that are shared by
both strings divided by the sum of the sizes of both token sets.

Definition 2.5 (Dice Distance) The distance between two token sets A
and B according to the Dice coefficient is defined as:

Dice(A,B) = 1− 2|A ∩B|
|A|+ |B|

For instance, the dice coefficient between the strings “Mr. John Doe”
and “Doe, John” computes to:

Dice({Mr., John,Doe}, {Doe, John}) = 1− 4

5
=

1

5

In contrast to the Jaccard index, the dice coefficient is not a metric as it
does not fulfill the triangle inequality.

SoftTFIDF

The idea of SoftTFIDF [Cohen et al., 2003] is to weight common terms
lower than uncommon terms. For instance, given the string “Mr. Bertrand
Russell”, “Mr.” will receive a lower weight if it is a common term in the data
set while “Bertrand” and “Russell” will review higher weights.

Definition 2.6 (SoftTFIDF) For two term frequency vectors A and B,
their SoftTFIDF distance is defined as:

SoftTFIDF (A,B) = 1− A ·B
‖A‖ · ‖B‖

Both frequency vectors must be normalized to ‖A‖ = 1 and ‖B‖ = 1.
Because - if formulated as similarity measure - the SoftTFIDF similarity

is equivalent to the cosine of the angle between both vectors, the SoftTFIDF
distance is sometimes also called cosine distance.

34 CHAPTER 2. LINKAGE RULES

2.3.3 Hybrid Measures

The aim of hybrid distance measures is to combine the advantages of
character-based measures and token-based measures. We motivate the need
for hybrid distance measures by discussing the main disadvantage of token-
based distance measures: While token-based distance measures work well
for strings that share many words they fail when typographical errors are
present. For instance, a token-based distance measure successfully recognizes
the equivalence of “John Doe” and “Doe, John” as both strings share the to-
kens “John” and “Doe”. On the other hand, the same token-based distance
will assign a much higher distance to the pair “John Doe” and “Jon Doe”
as due to a typographical error both strings only share one token. Hybrid
measures employ character-based measures to allow tokens to be matched
that are not perfectly equivalent but contain typographical errors.

A number of hybrid distance measures have been proposed in litera-
ture [Naumann and Herschel, 2010]. An experimental comparison of popular
hybrid distance measures, token-based measures and character-based mea-
sures has been done by Cohen et al. [2003]. Cohen et al. found that, among
the compared distance measures, the Monge Elkan distance achieved the best
results on the evaluation data sets. The Monge Elkan distance measure com-
bines character-based measures and token-based measures to improve the
matching of strings under the presence of errors.

Monge Elkan Distance

The Monge Elkan Distance [Monge and Elkan, 1996] measures the distance
of two strings by averaging the distance between the tokens in both strings.
More precisely, for each token in the first string, the Monge Elkan distance
determines the minimum distance to any other token in the second string.
The distance between two tokens is determined using a user-defined character
based distance measure, such as the Levenshtein distance. Based on that,
the overall Monge Elkan distance is computed by taking the average of all
found distances.

Definition 2.7 (Monge Elkan Distance) For two token sets A and B
and a character-based distance measure dist, the Monge Elkan distance is
defined as:

MongeElkan(A,B) =
1

|A|

|A|∑
i=1

|B|
min
j=1

dist(Ai, Bj)

2.3. FIELD MATCHING 35

In order to illustrate the advantage of token-based distance measures,
we have a closer look at a simple example using the Monge Elkan Dis-
tance measure. We compute the distance between two token sets that
both denote the same person: A = {’Mr.’, ’Bertrand’, ’Russell’} and B =
{’Dr.’, ’Bertrant’, ’Russell’}. Using the normalized Levenshtein Distance as
internal character-based distance measure the corresponding minimal dis-
tance scores for each token in A are:

NormalizedLevensthein(Mr.,Dr.) = 1/3

NormalizedLevensthein(Bertrand,Bertrant) = 1/8

NormalizedLevensthein(Russell,Russell) = 0

Based on the internal distance scores, the Monge Elkan distance distance
computes to:

MongeElkan(A,B) =
1

3

(
1

3
+

1

8

)
≈ 0.153 (2.4)

For comparison, the Jaccard distance between both strings computes to:

Jaccard(A,B) = 1− 1

4
= 0.75 (2.5)

In this example, the Jaccard distance failed to detect the similarity of
both token sets, because both sets only share one exact duplicate. On the
other hand, the Monge Elkan distance computed a much lower distance as it
took near-duplicates, such as “Bertrand” and “Bertrant”, into account.

2.3.4 Other Measures

Phonetic Distance

The idea of phonetic distance measures is to take the pronunciation of the
characters into account when comparing strings. Phonetic distance measures
solely distinguish between characters that are pronounced different and ig-
nore character differences between characters that are pronounced similarly.
This is achieved by indexing characters in the string while characters with
a similar pronunciations are assigned the same index. The resulting dis-
tance score is computed by comparing the resulting indices of both string
values. As the pronunciation of characters varies between languages, specific
phonetic distance measures are usually optimized for a particular language.

36 CHAPTER 2. LINKAGE RULES

The most well-known phonetic distance measure is known as
Soundex [Russell, 1918, 1922]. Soundex has been developed to compare
person names in the United States Census and therefore is optimized for
English words. However, variants for other languages have been proposed as
well. A detailed description of Soundex and an overview of other widely-used
phonetic distance measures can be found in [Elmagarmid et al., 2007].

Q-Grams Distance

While character-based distance measures usually compare strings at the level
of single characters, the idea of q-grams distances is to compare multiple
consecutive characters from both strings at once. For this purpose, a q-grams
distance measure converts both strings to their q-grams before comparing
them. Given a whole number q, the q-grams of a string value are generated by
sliding a window of the size q over the characters in the string [Gravano et al.,
2001a]. The actual comparison of the q-grams, which have been generated
from both strings, can be done by using a token-based distance measure, such
as the Jaccard distance. Q-grams distance measures can also be combined
with phonetic distance measures by using a phonetic indexing scheme to
index each q-gram individually [Zobel and Dart, 1995].

Longest Common Substring Distance

The longest common substring distance (LCS) [Friedman and Sideli, 1992]
measures the distance between two strings based on the total length of all
common substrings. The LCS distance is computed in two steps:

In the first step, all substrings that appear in both strings are collected.
Usually, only substrings with a configured minimum length are considered,
wherein Friedman and Sideli [1992] propose a minimum length of three. The
result of the first step is held in a variable lc, which denotes the summarized
length of all found common substrings.

In the second step, the final distance is computed by comparing lc to
the length of the original strings. Friedman and Sideli [1992] proposes four
alternatives for computing the final distance:

(1) lc divided by the average length of both strings:

LCSavg(σ1, σ2) :=
2 · lc

|σ1|+ |σ1|
(2.6)

(2) lc divided by the minimum length of both strings:

LCSmin(σ1, σ2) :=
lc

min(|σ1|, |σ1|)
(2.7)

2.3. FIELD MATCHING 37

(3) lc divided by the maximum length of both strings:

LCSmax(σ1, σ2) :=
lc

max(|σ1|, |σ1|)
(2.8)

(4) The fourth proposed alternative is to divide lc by the length of a related
string, which is looked up in an external data set.

Variants of LCS that employ different functions to compute the final distance,
have been proposed as well [Christen, 2012].

Numeric Distance

Most distance measures that have been presented so far are independent of
the specific data format. That is, they can, for instance, work on person
names as well as on book titles. However, distance measures have been
proposed that are tailored to be used with string values that contain numeric
values.

Traditional character-based or token-based distance measures usually
achieve weak results on numeric values. The reason for this is that num-
bers that are close together may not share a single character. For instance,
the numbers 999.9 and 1000.0 would not be considered similar by a character-
based or token-based distance measure. Another case that is not covered by
these measures is the fact that the same number may be represented using
different notations (e.g., decimal notation and scientific notation). Numeric
distance measures account for these circumstances when comparing different
numeric string values.

Numeric distance can also be extended to cover specific numeric values,
such as [Christen, 2012]:

Dates: Two dates can be compared by segmenting each date into the com-
ponents day, month, and year. The total distance in days can be com-
puted based on these three values.

Time: Similar to dates, time values can be compared by computing their
distance in seconds.

Geographic Coordinates: Geographic coordinates are usually expressed
in latitude and longitude. The distance between two geographic co-
ordinates can be determined by measuring the distance between both
points along the surface of the earth.

38 CHAPTER 2. LINKAGE RULES

2.4 Previous Work on Linkage Rules.

In the previous section, we introduced various field matching techniques that
can be used to determine the similarity of the values of specific entity prop-
erties. For instance, in a person data base, the Jaro-Winkler distance can be
used to determine the similarity of the person names while the date distance
can be used to assess the similarity of the birth dates. In addition, many
other properties may also be suitable for comparison, such as the persons
address, employers, the spouse etc. As in many cases the similarity of two
entities cannot be determined by comparing a single property of the entities
alone, methods to combine the similarity of multiple properties are essential.

A linkage rule assigns a similarity score to each pair of entities. In order
to determine the overall similarity score, a linkage rule usually combines the
individual similarity scores of multiple property comparisons. A number of
models have been proposed to represent linkage rules. The remaining of this
section will provide an overview of common linkage rule representations. A
comprehensive overview of different classifier models, which have been used
for entity matching, can be found in [Christen, 2012]. In the subsequent
section, we will propose an extended representation that also includes data
transformation functions in the linkage rule.

2.4.1 Linear Classifiers

A linear classifier (also called a threshold-based classifier [Christen, 2012])
combines multiple distance measures by computing the weighted sum of the
individual distances [Dey et al., 1998]. The idea of the weights is to control
the influence of a particular distance measure to the overall distance score.
For instance, a discriminative distance measure may receive a higher weight.

A linear classifier can be formally defined as:

Definition 2.8 (Linear Classifier) Given a vector of similarity scores ~s
and a vector of weights ~w a linear classifier is defined as:

Llinear(~s, ~w) = ~s · ~w =
∑
j

wjsj

The optimal weights can be determined by employing machine learning
algorithms (cf. Section 3.4.1)

2.4.2 Threshold-based Boolean Classifiers

A threshold-based boolean classifier (also called a rule-based classifier [Chris-
ten, 2012]) combines multiple similarity tests using boolean operators [Lim

2.4. PREVIOUS WORK ON LINKAGE RULES. 39

et al., 1993]. A single similarity test consists of a distance measure and
a distance threshold. Different models of threshold-based boolean classi-
fiers differ in the set of boolean operators which they allow for combining
similarity tests. While the original model by Lim et al. [1993] only allows
conjunctions (logical and), some extensions also allow disjunctions (logical
or) and negations (logical not) [Christen, 2012].

We now formalize threshold-based boolean classifiers as defined by Lim
et al. [1993]:

Definition 2.9 (Threshold-based Boolean Classifier) Given a vector
of similarity scores ~s and a vector of thresholds ~t, a threshold-based boolean
classifier is defined as:

Lboolean(~s,~t) =
∧
j

(sj ≥ tj)

2.4.3 Other Representations

While linear classifiers and threshold-based boolean classifiers are the most
common linkage rule models, some more expressive representations have been
proposed.

AJAX [Galhardas et al., 2001] is declarative language, which uses an
SQL-like syntax for expressing various data cleaning tasks and allows the
expression of linkage rules. AJAX is capable of expressing a linkage rule as
a SQL query by proposing several extensions to SQL. Listing 2.1 shows an
example of a linkage rule for matching authors in AJAX from Galhardas et al.
[2001]. The shown linkage rule matches authors by their name. All pairs of

Listing 2.1: Example of a linkage rule in AJAX (from [Galhardas et al.,
2001]).

1 CREATE MATCHING MatchDirtyAuthors

2 FROM DirtyAuthors a1, DirtyAuthors a2

3 LET distance = editDistanceAuthors(a1.name, a2.name, 15)

4 WHERE distance < maxDist(a1.name, a2.name, 15)

5 INTO MatchAuthors

author whose names differ at most by a Levenshtein distance of 15% of the
maximum length of both names are returned. AJAX is capable of expressive
linear and threshold-based boolean classifiers and also allows the integration
of arbitrary transformation functions, although no learning algorithm has
been proposed that allows learning linkage rules for AJAX.

40 CHAPTER 2. LINKAGE RULES

Dedupalog [Arasu et al., 2009] is a Datalog-style language for expressing
constraints between entities of different types. Dedupalog goes beyond the
definition of a linkage rule that we used in this thesis. In particular, Dedu-
palog allows the linkage rule to include constraints between different types
of entities, similar to the idea of collective entity matching approaches. List-
ing 2.2 shows two example constraints in Dedupalog for matching entities in
a bibliographic data set from Arasu et al. [2009]. The first constraint specifies

Listing 2.2: Two example contraints in Dedupalog (from [Arasu et al., 2009]).

1 Paper*(id1,id2) <-> PaperRef(id1,title1,-),

↪→ PaperRef(id2,title2,-), TitleSimilar(title1,title2)

2 ¬Author*(x, i, y, j) <- ¬(Wrote(x, i,-), Wrote(y, j,-), Wrote(x,

↪→ p,-), Wrote(y, p,-), Author*(x, p, y, p))

that two citations likely refer to the same paper if their title is similar. The
second constraint specifies that two entities that describe authors without
any common co-authors unlikely refer to the same author. The complete
example by Arasu et al. [2009] consists of eight such constraints. Dedupalog
distinguishes between hard and soft constraints. The ideal result of an entity
matching task on a set of constraints is a set of links that guarantee that
no hard constraint is violated while the number of soft constraints that are
violated is minimized.

The main disadvantage of AJAX and Dedupalog is that no machine learn-
ing methods have been proposed that cover their full expressivity. On the
other hand, several methods have been proposed for learning linear classifiers
and threshold-based boolean classifiers. Section 3.4 provides an overview of
previously proposed machine learning methods in the context of learning
linkage rules.

In the next section, we propose an expressive linkage rule representation,
which subsumes linear and threshold-based boolean classifiers and for which
Chapter 3 will propose a supervised machine learning algorithm that covers
the full expressivity of the introduced representation.

2.5 An Expressive Linkage Rule Representa-

tion

In this section, we introduce an expressive linkage rule representation. We
represent a linkage rule as a tree, which is built from four types of operators:

2.5. AN EXPRESSIVE LINKAGE RULE REPRESENTATION 41

Property Operator: Retrieves all values of a specific property p of each
entity, such as its label property. The purpose of the property operator
is to enable the access of values from the data set that are used as input
for other operators.

Transformation Operator: Transforms the values of a set of property or
transformation operators ~v according to a specific data transforma-
tion function f t. Examples of transformation functions include case
normalization, tokenization, and concatenation of values from multiple
operators. Common transformation function have been introduced in
detail in Section 2.2. Multiple transformation operators can be nested
in order to apply a chain of transformations.

Comparison Operator: Evaluates the similarity between two entities
based on the values that are returned by two property or transfor-
mation operators va and vb by applying a distance measure fd and a
distance threshold θ. Examples of distance measures include Leven-
shtein, Jaccard, or geographic distance. Common distance measures
have been introduced in detail in Section 2.3.

Aggregation Operator: Due to the fact that, in most cases, the similarity
of two entities cannot be determined by evaluating a single comparison,
an aggregation operator combines the similarity scores from multiple
comparison or aggregation operators ~s into a single score according to
a specific aggregation function fa. Examples of common aggregation
functions include the weighted average or yielding the minimum score
of all operators.

A linkage rule tree is strongly typed [Montana, 1995], i.e., only specific
combinations of the four basic operators are allowed. Figure 2.5 specifies the
valid structure of a linkage rule. We group the linkage rule operators into
two similarity operators, which return a similarity score for two given entities,
and two value operators, which return a set of values for a given entity. The
root of the linkage rule is built by a similarity operator, which can either be
an aggregation operator or a comparison operator. An aggregation operator
in turn may combine the scores of multiple similarity operators. A compari-
son operator compares the values that are returned by two value operators.
Each value operator can either be a property operator or a transformation
operator. Multiple transformation operators can be nested. The leafs of a
linkage rule tree are always property operators.

42 CHAPTER 2. LINKAGE RULES

Figure 2.5: Structure of a linkage rule.

2.5.1 Example

Figure 2.6 shows an example of a linkage rule for interlinking geographic lo-
cations. In this example, the linkage rule compares the labels as well as the

Figure 2.6: Example of a linkage rule that compares locations.

coordinates of the entities. The labels are normalized by converting them to
lower case prior to comparing them with the Levenshtein distance. Labels
may differ at most by a Levenshtein distance of one, i.e., the minimum num-
ber of edit operations that are required to transform the label of one entity
into the label of the other entity must be one or less. The geographic coor-
dinates of both entities may be at most 10 kilometers apart. The thresholds
of the comparison operators normalize the similarity score to the range [0, 1].

2.5. AN EXPRESSIVE LINKAGE RULE REPRESENTATION 43

The similarity score of the labels is then aggregated with the geographic sim-
ilarity score into a single score by using the minimum aggregation, i.e., both
values must exceed the threshold of 0.5 in order to generate a link.

2.5.2 Semantics

We now define the semantics of the individual operators: We distinguish
between two types of operators: value operators and similarity operators.
While value operators provide a function that yields a discriminative value
for a single entity, similarity operators provide a function which determines
how similar two given entities are.

Given two data sources A and B, a value operator yields a function that
returns a discriminative value for a given entity e by which it can be compared
to other entities. Thus, it returns a value from the set:2

V := [A ∪B → Φ]

Where Φ denotes a (possibly empty) set of values.
We now introduce two value operators: property operators and transfor-

mation operators :

Definition 2.10 (Property Operator) A property operator retrieves all
values of a specific property of an entity:

vp : P → V
p 7→ (e 7→ e.p)

where p denotes the property to be retrieved by the operator.

Definition 2.11 (Transformation Operator) A transformation operator
transforms the input values according to a specific data transformation func-
tion:

vt : (V∗ ×F t)→ V
(~v, f t) 7→ (e 7→ f t(v1(e), v2(e), . . . , vn(e)))

~v is a vector of operators: v1, v2, . . . , vn. The transformation function f t may
be any function that transforms the value sets provided by the operators into
a single value set:

f t : Φn → Φ

44 CHAPTER 2. LINKAGE RULES

Transformations

lowerCase Converts all values to lower case
tokenize Splits all values into tokens
stripUriPrefix Strips the URI prefixes (e.g., http://dbpedia.

org/resource/)
concatenate Concatenates the values from two value opera-

tors

Table 2.1: Transformations used in the experiments discussed in Section 3.5
and Section 4.4.

Although in general we do not impose any restriction on the concrete
transformation functions that can be used, Table 2.1 lists the functions that
we employed in our experiments. An example of a transformation operator
that concatenates the first and the last name of entities about persons is:

vt((vp(firstName), vp(lastName)), concatenate)

Note that transformations also may be nested.

A similarity operator returns a function that assigns a value from the
interval [0,1] to each pair of entities:

S := [A×B → [0, 1]]

We consider two types of similarity operators: comparison operators,
which compare the result of two value operators , and aggregation opera-
tors, which aggregate multiple similarity operators.

Definition 2.12 (Comparison Operator) Given two value operators va
and vb, a comparison operator is defined by:

sc : (V × V × Fd × R)→ S

(va, vb, f
d, θ) 7→

(
(ea, eb) 7→

{
1− d

θ
if d ≤ θ

0 if d > θ

)
with d := fd(va(ea), vb(eb))

fd defines the distance measure that is used to compare the values of both
value operators:

fd : Φ× Φ→ R
2[X → Y] denotes Y X i.e., the space of all functions X → Y

http://dbpedia.org/resource/
http://dbpedia.org/resource/

2.5. AN EXPRESSIVE LINKAGE RULE REPRESENTATION 45

Distance Measures

levenshtein Levenshtein distance
jaccard Jaccard distance coefficient
numeric The numeric difference
geographic The geographical distance in meters
date Distance between two dates in days

Table 2.2: Distance functions used in the experiments discussed in Section 3.5
and Section 4.4.

Table 2.2 lists the distance functions that we employed in our experiments.
An example of a comparison operator that compares the name of the entities
in the first data set with the lower cased labels of the entities in the second
data set using the Levenshtein distance is:

sc(vp(name), vt((vp(label)), lowerCase), levenshtein, 1)

Definition 2.13 (Aggregation Operator) Given a set of similarity oper-
ators s an aggregation operator is defined as:

sa : (S∗ × N∗ ×Fa)→ S
(~s, ~w, fa) 7→ ((ea, eb) 7→ fa(se, w))

with se := (s1(ea, eb), s2(ea, eb), . . . , sn(ea, eb))

~w denotes the weights that are used by the aggregation function fa to combine
the values:

fa : Rn × Nn → R

The first argument contains the similarity scores returned by the operators of
this aggregation while the second argument contains a weight for each of the
operators.

Table 2.3 lists the aggregation functions that we employed in our experi-
ments. Note that aggregations can be nested, i.e., non-linear hierarchies can
also be expressed.

2.5.3 Discussion

Our representation of a linkage rule differs from other commonly used repre-
sentations in a number of ways:

46 CHAPTER 2. LINKAGE RULES

Aggregations

max f t(s, w) := max(s)
min f t(s, w) := min(s)

wmean f t(s, w) :=
∑n

i=1 wisi∑n
i=1 wi

Table 2.3: Aggregation functions used in the experiments discussed in Sec-
tion 3.5 and Section 4.4. The max and min aggregations ignore the supplied
weights.

Matching Between Different Schemata: It allows the matching be-
tween data sets that use different schemata. This is enabled by two ad-
ditions: Firstly, by allowing two property operators for each comparison
and secondly by introducing data transformations. For example, a data
source that uses the FOAF vocabulary [Brickley and Miller, 2005] may
represent person names using the foaf:firstName and foaf:lastName

properties while a data source using the DBpedia ontology may repre-
sent the same names using just the dbpedia:name property. In order
to compare entities expressed in different schemata or data formats,
their values have to be normalized prior to comparing them for simi-
larity. In this example we could achieve this in two ways: We could
concatenate foaf:firstName and foaf:lastName into a single name
before comparing them to dbpedia:name by using a character-based
distance measure, such as the Levenshtein distance. Alternatively, we
could split the values of dbpedia:name using a tokenizer and compare
them to the values of foaf:firstName and foaf:lastName by using a
token-based distance measure, such as the Jaccard coefficient.

Handling Noisy Data Sets: Another motivation for transformation op-
erators is the matching of noisy data sets. A common example is
data sources that contain values using an inconsistent letter case (e.g.,
“iPod” vs. “IPOD”). A way to address case inconsistency is to nor-
malize all values to lower case prior to comparing them.

Representing Non-linear Classifiers: Arasu et al. [Arasu et al., 2010]
categorize widely used approaches for representing linkage rules as
threshold-based boolean classifiers and linear classifiers. In Section 3.5,
we will show that the performance of entity matching can be improved
with more expressive representations in that we allow aggregation op-
erators to be nested in order to represent non-linear classifiers beyond
pure boolean classifiers.

2.5. AN EXPRESSIVE LINKAGE RULE REPRESENTATION 47

2.5.4 Representing Common Classifiers

We now show that the introduced linkage rule representation is capable of
representing linear classifiers and threshold-based boolean classifiers. We
further state in what respects our representation extends both models.

Linear Classifiers

Within the proposed representation, a linear classifier, as defined in Sec-
tion 2.4.1, can be composed from a single aggregation that uses the weighted
average aggregation function. More formally, given a vector of comparison
operators ~s and a vector of weights ~w, a linear classifier can be represented
as:

slinear(~s, ~w) := sa(~s, ~w,wmean) = (ea, eb) 7→
∑n

i=1wisi(ea, eb)∑n
i=1wi

An example of a linear classifier based on two comparisons is:

sa((sc(p1, p1, levenshtein, 1), sc(p2, p2, levenshtein, 1)), (3, 1))

In this example, two properties p1 and p2 are compared using the Levenshtein
distance measure together with a distance threshold of 1. Both comparisons
are aggregated using a weight vector that assigns a weight of 3 to the first
comparison and a weight of 1 to the second comparison.

Our representation subsumes linear classifiers and extends them in 3 ways:

(1) It includes data transformations.

(2) It generalizes the aggregation function, i.e., allows functions other than
wmean.

(3) It allows aggregations to be nested in order to express non-linear clas-
sifiers beyond pure boolean classifiers.

Threshold-based Boolean Classifiers

Within the proposed representation, a threshold-based boolean classifier, as
defined in Section 2.4.2, can be composed from a single aggregation that uses
the minimum aggregation function. Note that using the minimum function
is equivalent to the conjunction of all comparisons. More formally, given a
vector of comparison operators ~s, where each comparison operator compares
a pair of properties using a specific distance measure fd and a threshold θ, a
threshold-based boolean classifier can be represented as:

sboolean(~s) := sa(~s,~0,min) = (ea, eb) 7→ min{si(ea, eb) : 1 < i ≤ n}

48 CHAPTER 2. LINKAGE RULES

The aggregation operator is provided with the vector of comparisons and
the minimum aggregation function. As the minimum aggregation function
ignores the weight vector, the zero vector ~0 is provided as dummy.

Our representation subsumes threshold-based boolean classifiers and ex-
tends them in 2 ways:

(1) It includes data transformations.

(2) It generalizes the aggregation function, i.e., allows functions other than
min.

2.6 Summary

In this chapter, we gave a detailed overview of linkage rules. In the course
of this, we introduced well-known data transformation and standardization
methods, which can be used to normalize values prior to matching individual
entity pairs. For the purpose of matching entity pairs, we introduced distance
measures that can be used to compare entity values. Further, we introduced
different methods for combining multiple distance measures in order to yield
a single similarity score.

The main subject of this chapter is the first contribution of this thesis:
the proposal of of an expressive linkage rule representation. The proposed
representation expresses linkage rules as operator trees that can be under-
stood and modified by humans. The main contributions of the proposed
representation include:

(1) It may include chains of data transformations to normalize values prior
to comparison.

(2) It is capable of combining different distance measures non-linearly be-
yond pure boolean classifiers.

(3) We showed how the proposed representation is capable of expressing
threshold-based boolean classifiers and linear classifiers that have been
previously used for entity matching.

By proposing an expressive linkage rule representation, we laid the foun-
dation for the GenLink learning algorithm that will be introduced in the next
chapter.

Chapter 3

Supervised Learning of Linkage
Rules

The previous chapter has shown how linkage rules can be used to specify
detailed conditions on how two entities are compared for equality. We also
proposed an expressive linkage rule representation, which is capable of com-
bining different distance measures non-linearly and may include chains of
data transformations to normalize values prior to comparison. However,
writing and fine-tuning these linkage rules manually for each type of entity
that is to be matched is hard for the following reasons:

(1) The author needs to choose discriminative properties of the entities to
be interlinked together with a distance measure and an appropriate
distance threshold.

(2) For data sets that are noisy or use different data formats, property
values need to be normalized by employing data transformations.

(3) As comparing two entities by a single property usually is not sufficient
to decide whether both entities describe the same real-world object,
linkage rules commonly need to aggregate the similarity of multiple
property comparisons using appropriate aggregation functions.

A way to reduce this effort is to use supervised learning in order to gen-
erate linkage rules from existing reference links. Creating reference links is
much easier than writing linkage rules as it requires no previous knowledge
about similarity computation techniques or the specific linkage rule represen-
tation that is used by the entity matching system at hand. Reference links
can be created by domain experts who confirm or reject the equivalence of
a number of entity pairs from the data sets. For instance, reference links

49

50 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

for locations in a geographical data set can be created by labeling pairs of
locations as correct or incorrect. Figure 3.1 shows an example of such an
entity pair. In the given example, the pair is to be declined as both entities

Figure 3.1: Example of an entity pair in a geographical data set.

represent different real-world locations. After a set of reference links has
been created, a supervised learning algorithm may generate a linkage rule by
using the reference links as training data.

In this chapter, we propose the GenLink algorithm for learning linkage
rules, which is the second key contribution of this thesis. GenLink employs
genetic programming in order to learn linkage rules from a set of existing
reference links. Following genetic programming, GenLink starts with an
initial population of candidate solutions, which is than iteratively evolved by
applying a set of genetic operators.

3.1 Problem Definition

In this chapter, we consider the problem of learning a linkage rule from a set
of reference links1:

Definition 3.1 (Linkage Rule Learner) The purpose of a learning algo-
rithm for linkage rules is to learn a linkage rule from a set of reference links:

m : 2(A×B) × 2(A×B) → (A×B → [0, 1])

The first argument denotes a set of positive reference links, while the second
argument denotes a set of negative reference links. The result of the learning
algorithm is a linkage rule that covers as many reference links as possible
while generalizing to unknown pairs.

1The shown definition is based on [Rastogi et al., 2011]. In contrast to the definition
by Rastogi et al. [2011], the definition that is presented in this work returns a linkage rule
instead of returning the final links directly, i.e., we distinguish between the learning of a
linkage rule and its execution, while Rastogi et al. consider a more general case.

3.2. GENETIC PROGRAMMING 51

3.2 Genetic Programming

Genetic programming is an extension of genetic algorithms [Holland, 1975],
which has been first proposed, in tree-based form, by Cramer [1985]. Genetic
programming can be used whenever candidate solutions can be represented
as operator trees, such as it is the case for the linkage rule representation
that we propose in this thesis.

Figure 3.2 shows the basic control flow for genetic programming [Poli
et al., 2008]. Genetic programming algorithms usually start with a random

Figure 3.2: Control flow for genetic programming.

population that contains a set of initial candidate solutions (also called in-
dividuals). In each iteration, the genetic algorithm determines the fitness
of all individuals in the current population and evolves a new population.
The evolution of the population stops as soon as either the configured maxi-
mum number of iterations has been exceeded or an optimal solution has been
found.

3.2.1 Generating the Initial Population

In genetic programming the initial population of individuals is usually gener-
ated randomly [Koza, 1993]. A genetic programming system may apply con-
straints on the structure of the trees that are generated (Also called strongly
typed genetic programming [Montana, 1995]). For instance, when learning
linkage rules, we do not want to allow arbitrary combinations of the different
operators. Instead, we want to add a couple of constraints, such as to require
that each aggregation operator is only allowed to have other aggregation op-
erators or comparison operators as direct children. The valid structure of
the linkage rule representation that is used in this work has been described
previously in Section 2.5.

If there is already some knowledge about specific properties of the de-
sired solution, a common improvement over generating a completely random

52 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

population is to only generate trees that possess the desired properties [Poli
et al., 2008]. For instance, if specific parts of the linkage rule, such as the
entity properties to be compared, can be inferred, the population can be
seeded with linkage rules that include these comparisons.

3.2.2 Evolving the Population

In each iteration, the genetic algorithm evolves a new population from the
individuals in the current population. The population is evolved using three
genetic operators [Koza, 1993]:

• The reproduction operator copies an individual from the population
without any modification.

• The crossover operator recombines two individuals from the population
into a single individual.

• The mutation operator applies a random change to an individual from
the population.

The evolved population is generated by repeatedly selecting individuals
from the population, applying a genetic operator to each selected individual
and adding the generated individual to the new population. Each individual
in the evolved population is generated in three steps:

(1) A genetic operator is chosen at random. As the crossover operator is
often considered the primary operator in genetic programming [Koza,
1993], it is usually selected with a higher probability than the other
operators.

(2) One or two individuals are selected from the current population. The
number of individuals that are selected depends on the chosen genetic
operator. While the crossover operator requires two individuals, the
reproduction and the mutation operators each require one individual.
The individuals are selected according to a selection method that favors
fitter individuals.

(3) The genetic operator is applied to the selected individuals. The gener-
ated individual is added to the evolved population.

New individuals are generated until the evolved population reaches the size
of the current population.

3.2. GENETIC PROGRAMMING 53

Selection Method

The idea of the selection method is that the individuals in the current pop-
ulation are not selected with equal probability. Instead, individuals with a
higher fitness (i.e., which are closer to the desired solution) are more likely
to be selected. In that respect, the selection method follows natural selection
as fitter individuals are more likely to breed offsprings. In particular, the
individuals are selected from the population based on two functions: The
fitness function and the selection method.

The purpose of the fitness function is to assign a score to each individual
that indicates how close the given individual is to the desired solution. In
supervised learning, the fitness function is typically computed based on user-
provided training data.

Based on the fitness score of each individual, the selection method se-
lects the individuals to be evolved. Popular selection methods are fitness
proportionate selection and tournament selection [Goldberg and Deb, 1991;
Blickle and Thiele, 1996]. In fitness proportionate selection (in literature also
called roulette-wheel selection) every individual is selected with a probability
proportional to its fitness [Holland, 1975]. In tournament selection each in-
dividual is selected by choosing the fittest individual from a set of randomly
selected individuals [Blickle and Thiele, 1995]. The number of individuals
that are selected for each tournament must be specified.

Reproduction Operator

The reproduction operator copies a selected individual from the current pop-
ulation to the new population without applying any modification. Apart
from using the reproduction operator in the same way as the crossover and
mutation operators on individuals that are chosen by the selection method,
it can also be used to perform an elitist strategy Goldberg [1989]. In an elitist
strategy, the top-k individuals are reproduced prior to evolving the popula-
tion, i.e., they are directly copied from the current population to the new
population. In that case, the remaining individuals are evolved solely by the
crossover and mutation operators. The motivation of using an elitist strat-
egy is to retain good individuals from the current population in the evolved
population.

Crossover Operator

The crossover operation generates a new individual by combining two se-
lected individuals. The most commonly used crossover operator is subtree
crossover [Koza, 1993]. Subtree crossover starts by randomly selecting a

54 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

node in both individuals. The new individual is than created by replacing
the selected node in the first individual with the node that has been selected
in the second individual including its complete subtree. Figure 3.3 illustrates
a subtree crossover operation. In this example, subtree crossover randomly
selected operator Op3 in the first individual and operator Op4 in the second
individual. Both individuals are recombined by replacing Op3 in the first
individual with Op4 in the second individual, including their subtrees. The
modified first individual constitutes the result of the subtree crossover.

Figure 3.3: Example of subtree crossover.

Note that, although there are variants of the crossover operator that
return two offsprings, as there is no added value in yielding two offsprings (the
same result can be produced by executing the same crossover operator twice,
interchanging the operands the second time), it is rarely used in practice.
Thus, we will only consider crossover operators yielding one offspring.

If strongly typed genetic programming is used, subtree crossover must
assert that the generated tree satisfies all type constraints. This is usually
done by restricting the random selection of the node in the second individual
to nodes that are of the same type as the already selected node in the first
individual [Montana, 1995].

Mutation Operator

In genetic programming, mutation is often considered a minor genetic op-
erator and some approaches do not employ mutation at all [Koza, 1993].
The most commonly used mutation operator is known as headless chicken
crossover. Headless chicken crossover executes a crossover operation between
the selected individual and a randomly generated new individual. If the root
node is selected as the crossover point in the first individual this results in
the complete replacement of the given individual with a randomly generated
individual.

3.3. THE GENLINK ALGORITHM 55

3.2.3 Bloating Control

In general, genetic programming does not restrict the size of the trees that
represent the individuals, i.e., trees are allowed to grow arbitrarily large
[Blickle and Thiele, 1994]. The uncontrolled growth of the individuals dur-
ing the evolution of the population is a well-known problem in genetic pro-
gramming. This phenomenon, known as bloating [Langdon and Poli, 1997]
in literature, causes the individuals to develop redundant parts. Such redun-
dant parts, which can be removed from the individual without changing its
fitness, are called introns [Angeline, 1994].

While various methods have been developed to control bloating [Luke and
Panait, 2006], the most popular method is parsimony pressure [Zhang and
Mühlenbein, 1995]. The idea of parsimony pressure is to modify the fitness
function to penalize big trees in order to force the algorithm to favor smaller
trees over bigger ones.

3.3 The GenLink Algorithm

GenLink extends the genetic programming algorithm, as described in the
previous section, in three notable ways:

(1) The initial population is not generated completely on random. Instead,
a seeding algorithm ensures that only linkage rules that compare prop-
erties that contain similar values are part of the initial population.

(2) Rather than using subtree crossover, GenLink employs a set of specific
crossover operators. Each crossover operator only modifies one aspect
of a linkage rule, such as the distance thresholds or chains of trans-
formations. The use of specific crossover operators constitutes one of
the main contributions of GenLink and will be described in detail in
Section 3.3.3.

(3) In GenLink, we use an approach to prevent bloating of linkage rules
that goes beyond parsimony pressure.

Section 3.5.5 will evaluate in detail how each of this extensions contributes
to the overall performance.

The pseudocode of GenLink is given in Listing 3.1.
The algorithm starts by generating an initial population of linkage rules

according to the method described in Section 3.3.1. After the initial popu-
lation has been generated, it is iteratively evolved. In each iteration, a new

56 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Listing 3.1: Pseudocode of the GenLink algorithm. The specific parameter
values used in our experiments are listed in Section 3.5.2

1 P ← generate initial population
2 while(max. iterations nor 100% F−measure reached) {
3 P ′ ← ∅
4 while(|P ′| < populationsize) {
5 r1, r2 ← select two linkage rules from P
6 op ← select random crossover operator
7 p ← random number from interval [0,1]
8 if (p < mutationprobability) {
9 rr ← generate random linkage rule

10 P ′ ← P ′ ∪ op(r1, rr)
11 } else {
12 P ′ ← P ′ ∪ op(r1, r2)
13 }
14 }
15 P ← P ′

16 }
17 return best linkage rule from P

population is generated by generating new linkage rules from selected rules
in the existing population until the population size is reached.

A new linkage rule is generated according to the following steps: First,
two linkage rules are selected from the population according to the selection
method described in Section 3.3.2. In addition, a random crossover operator
is selected from the set of available crossover operators. The basic idea of
our approach is to provide a specific crossover operator for each aspect of a
linkage rule. For instance, the threshold crossover operator only modifies the
threshold of a comparison while the transformation crossover operator com-
bines the transformations of both linkage rules. The set of crossover operators
that have been employed is described in Section 3.3.3. The selected operator
is used to either mutate one of the selected linkage rules or to combine both
linkage rules into a new linkage rule. In the case of mutation, a headless
chicken crossover [Jones, 1995] is performed, i.e., the chosen crossover oper-
ator is applied to the selected linkage rule and a randomly generated linkage
rule.

The algorithm stops when either a predefined number of iterations is
reached or when a linkage rule in the population reaches an F-measure of
100%. The best linkage rule in the final population is returned by the algo-
rithm. A bloating control method, as described in Section 3.3.4, avoids that

3.3. THE GENLINK ALGORITHM 57

linkage rules grow indefinitely.

3.3.1 Generating the Initial Population

In genetic programming algorithms, the initial population is usually gener-
ated randomly. Previous work has shown that starting with a fully random
population works well on some record linkage data sets [Carvalho et al., 2008].
Allowing the entire range of possible linkage rules leads to a large search space
as the population must include linkage rules for all possible comparisons of
the available properties.

Two circumstances increase the search space (i.e., the set of all possible
linkage rules) considerably: Firstly, if data sets that are represented using
different schemata are to be matched the search space includes all possible
property pairs from the source and target data set. Secondly, data sets
with a high number of properties make it difficult to find discriminative
properties. For instance, while the Cora and Restaurant data sets, which
have been used by de Carvalho et al. to evaluate the performance of their
genetic programming approach [de Carvalho et al., 2012], only provide four
respectively five properties, many data sets in the Web of Data, such as
DBpedia, provide over 100 properties2.

In order to reduce the size of the search space, we employ a simple al-
gorithm that preselects property pairs that hold similar values: Before the
population is generated, we build a list of property pairs that hold similar
values as described below. Based on that, random linkage rules are built
by selecting property pairs from the list and building a tree by combining
random data transformations, comparisons and aggregations.

Finding Compatible Properties

The purpose of this step is to generate a list of pairs of properties that share
at least one token on any of their values. For each possible property pair,
the values of the entities referenced by a positive reference link are analyzed.
This is done by tokenizing and lowercasing the values and generating a new
property pair of the form (p1, p2) if there is a distance measure in a provided
list of functions according to which two tokens are similar, given a certain
threshold θd. The pseudocode is given in Listing 3.2.

Figure 3.4 illustrates a simple example with two entities. In this ex-
ample, the following two property pairs are generated: (label, label) and
(director, directorName).

2The number of properties for each data set that has been used for the experimental
evaluation are listed in Table 3.4

58 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Listing 3.2: Find compatible properties given a set of reference links R+, a
list of distance measures F d and a distance threshold θ

1 pairs ← ∅
2 for all (ea, eb) ∈ R+ {
3 for all properties ea.pi and eb.pj {
4 for all distance measures fd in F d {
5 va ← tokenize(lowerCase(ea.pi))
6 vb ← tokenize(lowerCase(eb.pj))
7 if (fd(va, vb) < θd) add (pi, pj) to pairs
8 }}}
9 return pairs

Figure 3.4: Finding compatible properties

Choosing the list of similarity measures F d constitutes a trade-off between
runtime performance and learning performance. In our experiments, we chose
the Levenshtein distance with a threshold of one, but did not include other
distance measures. While this yielded a high performance on the evaluation
data sets, it may also fail to discover properties with similar values in some
other data sets. For instance, by restricting the search to the Levenshtein
distance, properties that use different units of measurements would not be
discovered. In order to cover cases that are now missed, the list could be
extended by adding more distance measures.

Generating a Random Linkage Rule

A random linkage rule is generated according to the following rules: First of
all, a linkage rule is built consisting of a random aggregation and up to two
comparisons. For each comparison, a random pair from the pre-generated
list of compatible properties is selected. In addition, with a possibility of
50%, a random transformation is appended to each property.

Note that, although the initial linkage rule trees are very small, this does
not limit the algorithm from growing bigger trees by recombining the initial
linkage rules using the genetic operators.

3.3. THE GENLINK ALGORITHM 59

3.3.2 Evolving the Population

Starting with the initial population, the genetic algorithm breeds a new popu-
lation by evolving selected linkage rules using the genetic operators. In order
to determine how linkage rules are selected from the population, a genetic
programming algorithm needs to specify two functions: the fitness function
and the selection method.

The purpose of the fitness function is to assign a value to each linkage
rule that indicates how close the given linkage rule is to the desired solution.
A disadvantage of using the F-measure as fitness function is that it may
yield skewed results if the number of positive and negative reference links
is unbalanced as it only takes the true negative rate into account [Powers,
2011]. We use Matthews correlation coefficient (MCC) as fitness measure.
Matthews correlation coefficient [Matthews, 1975] is defined as the degree of
the correlation between the actual and predicted classes:

MCC =
ntp × ntn − nfp × nfn√

(ntp + nfp)(ntp + nfn)(ntn + nfp)(ntn + nfn)

ntp, ntn, nfp and nfn denote the number of true positives, true negatives,
false positives and false negatives. All four values are computed based on the
provided reference links (ignoring the remaining part of the data set).

Note that the MCC does assign an equal weight to the number of false
positives and false negatives. In some use cases this may not be desirable
because different costs are associated with each kind or error. For instance,
in a medical application false positives may induce a higher cost than false
negatives. A fitness measure that puts a bigger weight on one kind of error
can be used instead to emphasize such a bias.

In order to prevent linkage rules from growing indefinitely, we extend the
fitness function to penalize linkage rules based on their number of operators:

fitness = (1− pf)×mcc− pf × operatorcount

. The particular value of the penalty factor pf determines the extend to
which large linkage rules are penalized. Choosing an appropriate value of
the penalty factor is important as setting it to big decreases the learning
performance as it prevents linkage rules from growing to their optimal size.
On the other hand, small values may not punish linkage rules with redundant
parts sufficiently. For our experiments we empirically determined the largest
penalty factor that does not decrease the learning performance and fixed it
to 0.05.

Based on the fitness of each linkage rule, the selection method selects
the linkage rules to be evolved. As selection method, we chose tournament

60 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

selection as it has been shown to produce strong results in a variety of genetic
programming systems [Koza et al., 2005] and is easy to parallelize.

3.3.3 Crossover Operators

A crossover operators accepts two linkage rules and returns an updated link-
age rule that has been built by recombining parts of both linkage rules.
Instead of using subtree crossover, which is commonly used in genetic pro-
gramming, we use a set of specific crossover operators that are tailored to
the structure of a linkage rule. The basic idea of our proposed crossover
operators is that each operator learns a different aspect of a linkage rule. We
propose seven crossover operators:

• The transformation crossover operator builds chains of transforma-
tions.

• The distance measure crossover operator selects appropriate distance
measures.

• The threshold crossover operator learns the corresponding distance
thresholds.

• The combine operators crossover operator learns combinations of mul-
tiple comparisons.

• The aggregation function crossover operator selects aggregation func-
tions, which combine multiple comparisons.

• The weight crossover operator learns the weights, which determine how
multiple comparisons and aggregations are aggregated based on the
aggregation functions (e.g., weighted average).

• The aggregation hierarchy crossover operator builds hierarchies of ag-
gregations and comparisons in order to assemble complex linkage rule
trees.

The following subsections describe each of these operators in detail. For each
crossover operation, an operator from this set is selected randomly and ap-
plied to two selected linkage rules. As mentioned earlier, we reduce mutation
to a crossover operation with a randomly generated new linkage rule (i.e.,
headless chicken crossover). The contribution of the proposed operators to
the learning performance over subtree crossover is evaluated experimentally
in Section 3.5.5.

3.3. THE GENLINK ALGORITHM 61

Transformation Crossover Operator

Entity matching systems usually provide a large collection of data transfor-
mation functions to normalize string values prior to comparison3. In Sec-
tion 2.2, we provided an overview of commonly used transformation func-
tions. The task of transformation crossover is to assemble chains of trans-
formation functions that normalize string values that are to be compared.
Chains of transformations are built by merging the transformation operators
of both provided linkage rules.

Transformation crossover starts by randomly selecting an upper and a
lower transformation operator in each linkage rule. The next step is to recom-
bine the paths between the upper and the lower transformation by executing
a two point crossover. Finally, duplicated transformations are removed. The
pseudocode is given in Listing 3.3.

Listing 3.3: Pseudocode of the transformation crossover operator.

1 def cross (r1: LinkageRule, r2: LinkageRule) = {
2 t1upper, t1lower ← random transformations from r1
3 t2upper, t2lower ← random transformations from r2
4

5 return r1 with:
6 t1upper replaced by t2upper
7 t2lower.~v replaced by t1lower.~v
8 }

Figure 3.5 illustrates an application of the transformation crossover op-
erator. In this example, the tokenize operator was selected as both upper
and lower transformation in the first linkage rule. In the second linkage rule,
the tokenize operator was selected as upper transformation while the stem

operator was selected as lower transformation. The tokenize operator in
the first linkage rule is then replaced by the path between the upper and the
lower transformation in the second linkage rule.

As both linkage rules have been selected based on natural selection, trans-
formation crossover effectively tries a transformation path that already works
well in the second linkage rule on the first linkage rule. In some cases, it will

3Note that although our representation of a linkage rule does include data transforma-
tions, traditional entity matching systems typically do not include data transformations
into the linkage rule, but rely on a preceding data preparation stage instead [Elmagarmid
et al., 2007].

62 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Figure 3.5: Example application of the transformation crossover operator.

recombine two transformation paths that both originate from the same prop-
erty. In these cases, it is obvious that recombining two already well-proven
transformation chains may yield improvements when comparing the given
property values. However, there are clearly also cases when two transforma-
tion paths are recombined that originate from different properties. In these
cases, transformation crossover effectively applies a chain of transformations
that works on one property to another property. This may still yield im-
provements based on the assumption that multiple properties in a data set
adhere to similar characteristics. For instance, if the values of one property
do not follow a consistent letter case, it is likely that other properties in the
same data set suffer from similar problems and thus can be normalized with
the same transformations.

Distance Measure Crossover Operator

While the transformation crossover operator evolves chains of transforma-
tions to normalize input values, distance measure crossover selects distance
measures to compare the normalized values. The task of distance measure
crossover is to evaluate different distance measures.

Distance measure crossover selects one comparison at random in each link-
age rule and interchanges the distance measures of both comparisons. For
example, it may select a comparison that uses the Levenshtein distance mea-
sure in the first linkage rule and a comparison that uses the Jaccard distance
measure in the second linkage rule and then interchange these two functions.
The pseudocode for distance measure crossover is given in Listing 3.4.

Figure 3.6 illustrates a simple distance measure crossover on two linkage

3.3. THE GENLINK ALGORITHM 63

Listing 3.4: Pseudocode of the distance measure crossover operator.

1 def cross (r1: LinkageRule, r2: LinkageRule) = {
2 cmp1 ← random node of nodeType from r1
3 cmp2 ← random node of nodeType from r2
4

5 return r1 with cmp1.fd ← cmp2.fd

6 }

rules.

Figure 3.6: Example application of the distance measure crossover operator.

Threshold Crossover Operator

Finding the optimal distance threshold for each distance measure can be a
difficult task. If the threshold is set to low, many near-duplicates will not be
considered a match; however, if the threshold is set to high, many distinct
entities with similar values may be found to be matching.

Threshold crossover accounts for the learning of distance thresholds by
combining the distance thresholds of both linkage rules. For this purpose,
one comparison operator is selected at random in each linkage rule. The new
threshold is then set to the average of both comparisons. The pseudocode
is given in Listing 3.5. Figure 3.7 illustrates a threshold crossover on two
linkage rules.

Combine Operators Crossover Operator

A linkage rule usually uses an aggregation of multiple comparisons. For in-
stance a linkage rule for matching persons may combine the similarities of

64 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Listing 3.5: Pseudocode of the threshold crossover operator.

1 def cross (r1: LinkageRule, r2: LinkageRule) = {
2 cmp1 ← random comparison from r1
3 cmp2 ← random comparison from r2
4

5 return r1 with (cmp1.θ ← 0.5 · (cmp1.θ + cmp2.θ))
6 }

Figure 3.7: Example application of the threshold crossover operator.

their names and their birth dates into a single similarity score. Another link-
age rule that combines the similarities of their birth names and their home
addresses may do comparably well on the same data set. As it is often not
clear which particular combination of comparisons yields good results, evalu-
ating different combinations is essential for finding the optimal combination.

In order to build new combinations of comparisons, combine operators
crossover combines aggregations from both linkage rules. For this, it selects
two aggregations, one from each linkage rule and combines theirs compar-
isons. The comparisons are combined by selecting all comparisons from both
aggregations and removing each comparison with a probability of 50%. Note
that the comparisons are exchanged including the complete subtree, i.e., the
distance measures as well as existing transformations are retained. For exam-
ple, it may select an aggregation of a label comparison and a date comparison
in the first linkage rule and an aggregation of a label comparison and a com-
parison of the geographic coordinates in the second linkage rule. In this case,
the operator replaces the selected aggregations with a new aggregation that
contains all four comparisons and then removes each comparison with a prob-
ability of 50%. The pseudocode is given in Listing 3.6. Figure 3.8 illustrates
a simple application of combine operators crossover on two linkage rules.

3.3. THE GENLINK ALGORITHM 65

Listing 3.6: Pseudocode of the combine operators crossover operator.

1 def cross (r1: LinkageRule, r2: LinkageRule) = {
2 agg1 ← random aggregation from r1
3 agg2 ← random aggregation from r2
4

5 ops ← ∅
6 for all operators o in agg1 and agg2 {
7 p ← random number from interval [0,1]
8 if (p > 0.5)
9 add o to ops

10 }
11

12 return r1 with agg1.operators ← ops
13 }

Figure 3.8: Example application of the combine operators crossover operator.

Note that, as a general principle of crossover operations genetic algo-
rithms, the crossover operator is not blindly guessing new combinations.
Both linkage rules have been selected according the selection function based
on the premise that they are already doing well on the given data set. For
that reason, the combine operators crossover operator is recombining com-
parisons that are already yielding good results on the current data set.

Aggregation Function Crossover Operator

An aggregation function combines the similarity scores of set of comparisons
and aggregations. The way in which specific similarity scores are combined,
depends on the particular aggregation function. In Section 2.5, we already
presented commonly used aggregation functions, such as the weighted aver-

66 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

age, the selection of the minimum similarity score, or the selection of the
maximum similarity score. The optimal aggregation function for a given
set of comparisons and aggregations strongly depends on the concrete data
set. Therefore, in order to find an optimal aggregation function, different
functions have to be evaluated.

Aggregation function crossover selects one aggregation at random in each
linkage rule and interchanges the aggregation functions. For example, it
may select an aggregation that uses the minimum aggregation function in
the first linkage rule and an aggregation with the weighted average function
in the second linkage rule and then interchange these two functions. The
pseudocode of aggregation function crossover is given in Listing 3.7.

Listing 3.7: Pseudocode of the aggregation function crossover operator.

1 def cross (r1: LinkageRule, r2: LinkageRule) = {
2 cmp1 ← random node of nodeType from r1
3 cmp2 ← random node of nodeType from r2
4

5 return r1 with cmp1.fa ← cmp2.fa

6 }

Weight Crossover Operator

When aggregating the similarity scores of multiple operators, it is not always
desirable that all operators contribute in the same way to the combined
similarity score. For this purpose, some aggregation functions, such as the
weighted average, may take a user-provided weight for each operator into
account when combining the scores. The idea of the weight of an operator
is to control the extend to which it contributes to the final similarity score.
Finding the optimal weight for each operator is the subject of the weight
crossover operator.

The weight crossover operator combines the weights of both linkage rules
analogous to the threshold crossover. It selects a comparison or aggregation
operator in each linkage rule and updates the weight in the first operator to
the average of the weights of both operators. The pseudocode is given in
Listing 3.8.

Note that in case the parent operator of the selected comparison or aggre-
gation uses an aggregation function that does not consider the weights, such
as the minimum aggregation, changing the weight does not have any effect.

3.3. THE GENLINK ALGORITHM 67

Listing 3.8: Pseudocode of the weight crossover operator.

1 def cross (r1: LinkageRule, r2: LinkageRule) = {
2 op1 ← random comparison or aggregation from r1
3 op2 ← random comparison or aggregation from r2
4

5 return r1 with (op1.weight ← 0.5 · (op1.weight+ op2.weight))
6 }

In that case, the crossover operation degrades to a reproduction operation in
which the fitness of the linkage rule is effectively unchanged.

Aggregation Hierarchy Crossover Operator

While for some data sets it is sufficient to use pure linear or boolean classifiers,
for other data sets the accuracy can be improved by allowing non-linear
aggregations (see Section 3.5.5). In order to learn aggregation hierarchies,
aggregation hierarchy crossover selects a random aggregation or comparison
operator in the first linkage rule and replaces it with a random aggregation
or comparison operator from the second linkage rule. This way, the operator
builds a hierarchy as it may select operators from different levels in the tree.
For example, it may select a comparison in the first linkage rule and replace
it with a aggregation of multiple comparisons from the second linkage rule.
Note that aggregation hierarchy crossover is similar to subtree crossover, but
only operates on aggregation and comparison nodes. The pseudocode is given
in Listing 3.9. Figure 3.9 illustrates an aggregation hierarchy crossover on

Listing 3.9: Pseudocode of the aggregation hierarchy crossover operator.

1 def cross (r1: LinkageRule, r2: LinkageRule) = {
2 o1 ← random aggregation or comparison from r1
3 o2 ← random aggregation or comparison from r2
4

5 return r1 with o1 replaced by o2
6 }

two linkage rules.

68 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Figure 3.9: Example application of the aggregation hierarchy crossover op-
erator.

3.3.4 Bloating Control

Section 3.2.3 already introduced parsimony pressure as a method to control
bloating by penalizing the fitness of big trees in order to force the algorithm
to favor smaller trees over bigger ones. In addition to parsimony pressure,
we developed an heuristic to remove introns in linkage rules in order to fur-
ther reduce the size of the learned linkage rules. The algorithm recursively
traverses through each linkage rule and removes all operators that do not
contribute to the overall fitness of a linkage rule. After all linkage rules have
been simplified, there are usually many identical linkage rules. After each
simplification run, all linkage rules that are duplicates of another linkage rule
are removed from the population in order to increase its diversity. For each
removed linkage rule, a new random linkage rule is generated and added to
the population. The simplification algorithm is used in addition to parsimony
pressure and is executed every 5 generations.

Section 3.5.5 evaluates different approaches to control bloating and mea-
sures their effect on the size of the linkage rules as well as on the learning
performance.

3.4 Previous Work on Supervised Learning

There is a large body of work on supervised learning of linkage rules [Köpcke
and Rahm, 2010] as well as on unsupervised entity matching [Euzenat et al.,
2010, 2011a; Aguirre et al., 2012] . While supervised learning is concerned
with learning linkage rules from reference links, unsupervised learning is con-
cerned with matching entities when no labeled links are available. Supervised
algorithms for learning linkage rules are discussed in three categories: ap-

3.4. PREVIOUS WORK ON SUPERVISED LEARNING 69

proaches that learn linear classifiers, approaches that learn threshold-based
boolean classifiers, and applications of genetic programming for learning more
expressive linkage rules. In addition, we discuss collective approaches that
focus on matching data sets by looking at the entire data sets at once instead
of learning a linkage rule that compares pairs of entities independently. As
this chapter proposes a supervised learning algorithm, the discussion of un-
supervised methods is kept brief. We close this section with a comparison of
the reported performance scores for various entity matching approaches on
two frequently used evaluation data sets and a comparison of the employed
linkage rule representations.

3.4.1 Linear Classifiers

A linear classifier combines a set of similarity comparisons by computing the
weighted sum of the individual scores [Dey et al., 1998]. Linear classifiers
have been introduced in Section 2.4.1. Two approaches for learning linear
classifiers have been applied to entity matching [Köpcke and Rahm, 2010]:
naive Bayes classifiers and support vector machines. As the original Fellegi-
Sunter statistical model [Fellegi and Sunter, 1969] of record linkage is based
on Bayesian statistics, naive Bayes classifiers have been applied to entity
matching early on [Winkler, 2002].

Naive Bayes classifiers have been shown to perform worse than other
supervised algorithms for a number of classification problems [Caruana and
Niculescu-Mizil, 2006]. In particular, support vector machines and decision
trees have been found to outperform naive Bayes classifiers when applied to
entity matching [Sarawagi and Bhamidipaty, 2002].

Another popular method to model linear classifiers are support vector
machines (SVM) [Cortes and Vapnik, 1995]. SVM is a binary linear classifier
that maps the instances that are to be classified into a multi-dimensional
space where the two classes are separated by a hyperplane. A requirement
for using SVMs is that the input objects can be represented as vectors of
numbers. In entity matching, this is can be achieved by representing the
input objects (i.e, the pairs of entities that are to be classified) as vectors
of similarity scores. The selection of the properties that are to be compared
together the distance measures that are used for for computing the similarity
scores, must be conducted prior to applying support vector machines.

An example of a support vector machine that has been applied on a data
set that contains entities that describe companies is shown in Figure 3.10.
In this example, each pair of entities is represented by two similarity scores:
The similarity according the names of both companies as well as their simi-
larity according their addresses. In this example, positive reference links are

70 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Figure 3.10: Example of a support vector machine. Green circles indicate
positive reference links, while red circles indicate negative links.

represented by green circles, while negative reference links are represented
by red circles. The SVM is represented by the blue line that separates pos-
itive and negative reference links. SVMs aim to maximize the margin, i.e.,
the distance to the closest training example. While SVMs can be extended
to model non-linear classifiers, they are not suitable to learn chains of data
transformations. In the following, we discuss previous applications of support
vector machines to entity matching.

MARLIN

MARLIN (Multiply Adaptive Record Linkage with INduction) [Bilenko and
Mooney, 2003] supports learning linear classifiers for entity matching using
support vector machines. MARLIN assumes that the entities that are to be
matched adhere to a consistent schema, i.e., if inter-source duplicates are to
be found the schemata of both data sets need to be harmonized. MARLIN
operates in two steps: In the first step, MARLIN learns a similarity measure
for each entity property. For learning string similarity measures, MARLIN
employs a stochastic model based on the edit distance with affine gaps. In
the second step, it learns a support vector machine that combines the learned
similarity measures linearly.

MARLIN has been evaluated on two data sets:

Restaurant: A set of restaurants that have been collected from the Fodor’s
and Zagat’s restaurant guides.

3.4. PREVIOUS WORK ON SUPERVISED LEARNING 71

Cora: A set of citations to research papers from the Cora Computer Science
research paper search engine.

Both data sets have also been used for evaluation by other entity matching
approaches including the GenLink algorithm, which we propose in this work.
Section 3.4.6 will compare the results of a number of entity matching ap-
proaches that have been evaluted on these two data sets as well. MARLIN is
evaluated with different configurations. Taking the best values for each data
set, MARLIN achieves an F-measure of 92.2% on the Restaurant data set
and an F-measure 86.7% on the Cora data set [Bilenko and Mooney, 2003].

FEBRL

FEBRL (Freely Extensible Biomedical Record Linkage) [Christen, 2008,
2009] is an open source system for entity matching. FEBRL supports various
techniques for entity matching. Amongst these, it also provides a supervised
learning algorithm based on support vector machines. Support vector ma-
chines are used to learn a vector weights to combine set of user-provided
similarity measures linearly. Christen [2008, 2009] does not present evalua-
tion results.

3.4.2 Threshold-based Boolean Classifiers

A threshold-based boolean classifier combines multiple similarity tests using
boolean operators [Lim et al., 1993]. Threshold-based boolean classifiers
have been introduced in Section 2.4.2. Many existing algorithms for learn-
ing threshold-based boolean classifiers use decision trees [Cochinwala et al.,
2001; Tejada et al., 2001; Elfeky et al., 2002]. A major advantage of decision
trees is that they provide explanations for each classification and thus can be
understood and improved manually. As for linear classifiers, threshold-based
boolean classifiers are not suitable for learning data transformations. A num-
ber of methods have been proposed for learning decision trees [Rokach and
Maimon, 2008]. Popular decision tree learning methods include CART (Clas-
sification and Regression Trees) [Breiman et al., 1984], ID3 [Quinlan, 1986]
and C4.5 [Quinlan, 1993]. In the following, we discuss different approaches
for entity matching that are based on learning decision trees.

Cochinwala et al.

Cochinwala et al. present a method for learning decision trees [Cochinwala
et al., 2001] using the CART method and compare it to two other approaches:

72 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

A linear discriminant analysis that generates a linear combination of the in-
put parameters and an optimized version of nearest neighbor search [Clark-
son, 1983]. All three approaches are evaluated on two data sets that contain
customer records. The input parameters are manually chosen:

(1) Levenshtein distance between the names of both entities.

(2) Levenshtein distance between addresses of both entities.

(3) Length of the names of both entities.

(4) Length of the addresses of both entities.

On the evaluation data set, the proposed supervised algorithm achieved an
accuracy of over 90%. However, the comparability of the presented results is
limited as the origin of the used evaluation data sets is not stated.

Figure 3.11 shows a decision tree that has been learned by the proposed
algorithm for the evaluation data set. The learned linkage rules classify each

Figure 3.11: Decision tree that has been learned by the supervised algorithm
proposed by Cochinwala et al. (adapted from [Cochinwala et al., 2001]).

pair of entities into three classes: match, non-match and ambiguous match.

Active Atlas

Active Atlas [Tejada et al., 2001] supports learning decision trees consisting
of a combination of predefined similarity measures. It uses the C4.5 learning
algorithm for learning the decision trees. Figure 3.12 shows an example of a
decision tree that has been learned by Active Atlas [Tejada et al., 2001].

Active Atlas has been evaluated on three use cases:

(1) Matching a data set that contains restaurants that have been collected
from the Fodor’s and Zagat’s restaurant guides. This data set has also
been used to evaluate the performance of the GenLink algorithm in

3.4. PREVIOUS WORK ON SUPERVISED LEARNING 73

Figure 3.12: Example of a decision tree that has been learned by Active Atlas
(adapted from [Tejada et al., 2001]).

Section 3.5. For the evaluation of Active Atlas, three properties have
been used: name, street and phone.

(2) Matching two data sets about companies that are provided by Cohen
[1998]: 1163 companies that have been collected from HooversWeb4

and 957 companies that have been collected from IonTech5. For each
company, three properties are used for evaluation: name, url and de-
scription.

(3) Matching a data set containing 428 airports with the corresponding
weather station in a data set containing 12,000 weather stations. Two
properties are used for matching: The airport/weather station code
and the location as plain string (e.g., “Kodiak, AK”). The origin of the
employed data sets is not stated by Tejada et al. [2001].

No use case with more than three properties has been shown. Active Atlas
has been executed on all three use cases using 5-fold cross-validation. It
achieved an accuracy of 99.68% on the restaurant use case, 99.80% on the
company use case and 99.51% on the airport use case. In addition to the
supervised variant of Active Atlas, Tejada et al. [2001] also developed an
active learning extension, which will be discussed in the next Chapter in
Section 4.3.

4http://www.hoovers.com/ (from: [Cohen, 1998])
5http://www.iontech.com/ (from: [Cohen, 1998]. No longer active at time of writing.)

http://www.hoovers.com/
http://www.iontech.com/

74 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

TAILOR

TAILOR [Elfeky et al., 2002] is a framework that implements different tech-
niques for entity matching. TAILOR supports learning decision trees using
the ID3 algorithm. TAILOR has been evaluated on two data sets:

(1) A synthetic data set that has been generated using the DBGen
Tool [Askarunisa A. et al., 2009].

(2) A data set that has been generated from Wal-Mart data.

No references are provided to the original data set.

3.4.3 Genetic Programming

Genetic programming denotes a class of machine learning algorithms that
are based on genetic algorithms and typically represent solutions as operator
trees and thus are capable of learning much more expressive models than
other learning methods [Koza, 1993]. The next section provides a detailed
description of genetic programming.

To the best of our knowledge, genetic programming for supervised learn-
ing of linkage rules has only been applied by de Carvalho et al. so far [de Car-
valho et al., 2006; Carvalho et al., 2008; de Carvalho et al., 2012]. Their ap-
proach uses genetic programming to learn how to combine a set of compari-
son pairs of the form <property, distance measure> (e.g., <name, Jaro>)
into a linkage rule. It includes an automatic feature selection that chooses
comparisons pairs automatically. Comparison pairs are combined by the
genetic programming method to a linkage rule tree by using mathematical
functions (e.g., +, -, *, /, exp) and constants. Their approach is very ex-
pressive although it cannot express data transformations. On the downside,
using mathematical functions to combine the similarity measures does not
fit any commonly used linkage rule model [Euzenat and Shvaiko, 2007] and
may lead linkage rules that are difficult to interpret.

de Carvalho et al. evaluate their approach on the previously described
Cora and the Restaurant data sets that both have also been used to evaluate
the performance of the GenLink algorithm in Section 3.5. In addition, they
evaluate the performance on three synthetic data sets. de Carvalho et al.
show that their method produces better results than the state-of-the-art SVM
based approach by MARLIN [de Carvalho et al., 2012] on both data sets.

Section 3.4.6 will discuss the differences between the approach by de Car-
valho et al. and our approach in more detail.

3.4. PREVIOUS WORK ON SUPERVISED LEARNING 75

3.4.4 Collective Approaches

Entity matching approaches that are based on linkage rules are local ap-
proaches that determine the similarity of each pair of entities independently.
The idea of collective entity matching approaches is that match decisions of
related pairs of entities are conducted holistically. A popular example of a
domain for which collective approaches have been applied bibliographic data
sets [Domingos, 2004; Dong et al., 2005; Bhattacharya and Getoor, 2007].

Common entity types in bibliographic databases include articles, authors
and venues. The intuition is that given a set of articles that is to be matched,
the matching decision of articles that share co-authors is not done indepen-
dently. Within collective entity matching approaches, such relationships can
be specified by building a relationship graph. We illustrate such a relation-
ship graph on the previously introduced Cora data set. Figure 3.13 visualizes
the relationship graph between two publications p1 and p2. In this example,

Figure 3.13: Relationship graph between two publications (adapted from:
[Dong et al., 2005]).

the similarity of p1 and p2 directly depends on the similarity of their titles,
the similarity of the authors as well as the similarity of the venues. The
similarity of the venues itself depends on the similarity of the venue names
and the date.

Domingos [2004] propose an collective entity matching approach that is
based on conditional random fields [Lafferty et al., 2001]. Conditional ran-
dom fields are used for propagation of the similarity values through the rela-
tionship graph (i.e., similarity propagation) Domingos [2004] evaluate their
approach on the Cora data set and compare the results to a pairwise ap-
proach that does conduct matching decisions independently. Using two-fold
cross-validation, the collective approach outperforms the pairwise approach
achieving an F-measure of 87.0% on the Cora data set compared to 84.4%
as achieved by the pairwise approach. While their approach outperforms

76 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

the chosen pairwise approach, it does not outperform some other proposed
pairwise systems, such as the genetic programming approach by de Carvalho
et al. [2012] that reports 91.0% or the GenLink algorithm, which is proposed
in this thesis and achieves 96.9% on the same data set.

Dong et al. [2005] propose a similar collective entity matching approach
that is also based ob similarity propagation. They evaluate their approach
on a personal data set and also on the Cora data set in order to compare
their results to the reported results by Domingos [2004]. Their experimental
evaluation shows that they significantly outperform the approach by Domin-
gos [2004] achieving an F-measure of 95.4% when matching articles in the
Cora data set.

Besides the approaches by Domingos [2004] and Dong et al. [2005], many
other approaches for collective entity matching have been proposed. In the
following we give a brief overview of other collective entity matching ap-
proaches. Unfortunately, none of the following approaches has been evalu-
ated on a frequently employed evaluation data set, which hinders the com-
parability of the reported performance scores. A comprehensive discussion
of various collective entity matching approaches can be found in [Christen,
2012].

Bhattacharya and Getoor [2007] propose a collective entity matching ap-
proach based on latent Dirichlet allocation [Blei et al., 2003]. They evaluate
their approach on three bibliographic data sets extracted from CiteSeer [Giles
et al., 1998], arXiv6 and the Elsevier BioBase data set7.

Ananthakrishna et al. [2002] and Weis and Naumann [2004] propose ap-
proaches for collective entity matching that exploit hierarchical relationships
in the data sets. Ananthakrishna et al. [2002] use a customer data set for
evaluation whose origin is not stated. Weis and Naumann [2004] evaluate
their approach on the MONDIAL geographical data set8 that has been mod-
ified in order to add errors.

Kalashnikov et al. [Kalashnikov et al., 2005; Kalashnikov and Mehrotra,
2006] propose another collective entity matching approach, which is eval-
uated on a publication data set that contains entities from CiteSeer and
HomePageSearch9 and a movie data set10.

6http://arxiv.org/
7http://www.elsevier.com/bibliographic-databases/cabs
8http://www.dbis.informatik.uni-goettingen.de/Mondial/
9http://hpsearch.uni-trier.de/ (No longer active at time of writing.)

10http://infolab.stanford.edu/pub/movies/doc.html

http://arxiv.org/
http://www.elsevier.com/bibliographic-databases/cabs
http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://hpsearch.uni-trier.de/
http://infolab.stanford.edu/pub/movies/doc.html

3.4. PREVIOUS WORK ON SUPERVISED LEARNING 77

3.4.5 Unsupervised Approaches

Unsupervised entity matching is concerned with matching data sets when no
labeled training data (i.e., reference links) is available. In the recent years, a
number of approaches have been proposed for unsupervised entity matching.

CODI (Combinatorial Optimization for Data Integration) [Noessner and
Niepert, 2010] uses information from the schema in order to improve the
instance matching. ObjectCoref [Hu et al., 2010, 2011] is a self-training in-
terlinking approach, which starts with a kernel that consists of known equiv-
alences and iteratively extends this kernel with discriminative property-value
pairs. RiMOM [Wang et al., 2010] and AgreementMaker [Cruz et al., 2011]
are approaches for ontology matching that have been extended with matchers
for instance matching. LN2R [Saıs et al., 2010] combines a logical part that
translates schema information into first order logic and a numerical part for
similarity computation.

SERIMI [Araujo et al., 2011] is another unsupervised interlinking ap-
proach, which matches entities based on their structural similarity in addition
to matching their labels. Zhishi.links [Niu et al., 2011] employs an indexing
technique on the labels of the entities as well as on discovered homonyms.
The indexing technique allows it to scale to larger data sets than similar ap-
proaches. SLINT also employs an indexing technique to improve the match-
ing performance.

LogMap [Jiménez-Ruiz et al., 2012] is a logic-based ontology and instance
matching system that uses reasoning and inconsistency repair techniques.
SBUEI [Taheri and Shamsfard, 2012] is another approach that combines
schema level matching with instance level matching.

Ontology Alignment Evaluation Initiative

The Ontology Alignment Evaluation Initiative (OAEI) aims at evaluating
different approaches for unsupervised vocabulary and instance matching [Eu-
zenat et al., 2010, 2011a; Aguirre et al., 2012]. Table 3.1 lists the data sets
that have been used for evaluation in the years 2010 to 2012 together with the
systems that achieved the highest F-measure. The data sets for the ISLab
Instance Matching Benchmarks (IIMB) have been created by automatically
applying a number of transformations to the values in a base data set [Fer-
rara et al., 2011]. The base data set varies in each year, so values of different
years cannot be compared.

Unfortunately, none of the data sets have been used in two subsequent
years and the majority of the systems only participated in one year. In each
year, the results of the participating systems varied with the data set and

78 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Name Description F1 System

2010 [Euzenat et al., 2010]
IIMB Synthetic data set 82.1% CODI
DI Matching drugs in four data sets

from the health-care domain. ≈14% RiMOM
Persons Matching persons 98.4% RiMOM
Restaurants Matching restaurants 81.1% RiMOM

2011 [Euzenat et al., 2011a]
IIMB Synthetic data set 63.4% CODI
NYT Entities describing people,

organizations, and companies 92.0% Zhishi.links

2012 [Aguirre et al., 2012]
IIMB Synthetic data set 92.0% LogMap
Sandbox Entities from Freebase 96.3% SBUEI

Table 3.1: Experiments in the OAEI instance matching challenges. The
third column states the F-measure of the best system. For experiments that
consist of multiple data sets the harmonic mean is stated.

most systems did not publish results for all data sets. The only data set that
has also been used by any of the previously introduced supervised approaches
is the restaurants data set that has been using in the 2010 challenge. The
restaurant data set contains entities from the Fodor’s and Zagat’s restaurant
guides that describe restaurants. We will compare the performance of the
unsupervised systems on the restaurant data set to the supervised systems
in the following section.

3.4.6 Discussion

Performance

For evaluation, many authors create their own data sets instead of reusing
data sets that have been used for evaluation before by other authors. The
comparability of the reported performance results, in these cases, is lim-
ited. Amongst the introduced approaches, only two data sets have been
used by multiple authors for evaluation: The Cora citation data set and the
restaurant data set. Table 3.2 compares the performance results that have
been reported on these two data sets. For comparison, it also shows the
F-measure that has been achieved by GenLink, which is evaluated in detail
in Section 3.5.

3.4. PREVIOUS WORK ON SUPERVISED LEARNING 79

Approach Cora Restaurant

Linear and Threshold-based Boolean Classifiers
Active Atlas [Tejada et al., 2001] (not available) 99.7% accuracy
MARLIN [Bilenko and Mooney, 2003] 86.7% F-measure 92.2% F-measure

Genetic Programming
de Carvalho et al. [2012] 91.0% F-measure 98.0% F-measure
GenLink 96.6% F-measure 99.3% F-measure

Collective Approaches
Domingos [2004] 87.0% F-measure (not available)
Dong et al. [2005] 95.4% F-measure (not available)

Unsupervised Approaches (Top 3)
RiMOM [Wang et al., 2010] (not available) 81% F-measure
LN2R [Saıs et al., 2010] (not available) 75% F-measure
ObjectCoref [Hu et al., 2010] (not available) 73% F-measure

Table 3.2: Performance comparison of different approaches.

Learned Classifiers

The majority of the introduced supervised algorithms only support learn-
ing either linear classifiers or threshold-based boolean classifiers. Most
supervised algorithms for learning linear classifiers employ support vector
machines, while most supervised algorithms for learning threshold-based
boolean classifiers learn decision trees.

In machine learning, a concern when choosing a learning algorithm is the
interpretability of the generated classifiers [Cano et al., 2007]. A classifier
that is interpretable can be understood and tuned by humans. In the field of
entity matching, it is usually argued that learned decision trees, as compared
to support vector machines, are in general easier to interpret by a human
expert [Sarawagi and Bhamidipaty, 2002; Christen, 2012].

When it comes to genetic programming algorithms, the interpretability of
the generated classifiers depends on the chosen representation. While genetic
programming can be used to learn decision trees [Nikolaev and Slavov, 1997],
the introduced genetic programming algorithm by de Carvalho et. al, as well
as the GenLink algorithm, which is introduced in this chapter, employ a more
expressive representation. Figure 3.14 compares two linkage rules that have
been learned for the Cora data set. The first linkage rule has been learned
by the genetic programming algorithm by de Carvalho et al. as reported
in [de Carvalho et al., 2012]. The second linkage rule has been learned by
GenLink. The approach that has been chosen by de Carvalho et al. is

80 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

(a) de Carvalho et al. [2012] (b) GenLink

Figure 3.14: Comparison of linkage rules that have been learned for the Cora
data set by two different genetic programming learning algorithms.

to combine comparisons using arithmetic operations, such as addition and
multiplication. The shown linkage rule starts by multiplying the similarity
of the dates of both entities by the factor two. The resulting value is then
multiplied with the similarity of the pages that are given in the citations
as well as the venues. The linkage rule that has been generated by GenLink
returns the weighted average of the similarity of both titles and the similarity
of the venues. Both representations allow the specification of the distance
measure that is used for each comparison.

GenLink is the only system that is capable of learning linage rules that
include chains of transformations.

3.5 Evaluation and Discussion

In this section, we evaluate GenLink experimentally: At first, Section 3.5.1
will introduce the data sets that we used for the evaluation. Section 3.5.2
will describe the experimental setup. Section 3.5.3 will introduce evaluation
measures. The overall learning results for several real-world data sets will be
presented in Section 3.5.4. Finally, Section 3.5.5 will evaluate the contribu-
tion of specific parts of our algorithm to the accuracy of the learned linkage
rules.

3.5. EVALUATION AND DISCUSSION 81

3.5.1 Data Sets

For evaluation, we used six data sets from three areas for which reference links
are available that we could use as gold standard within our experiments:

(1) We evaluated the learning performance on two well-known record link-
age data sets and compared the performance with an existing state-of-
the-art genetic programming approach. We chose two data sets, which
have been used by a number of previous approaches for evaluation as
well: the Cora data set and the Restaurant data set.

The Cora data set [McCallum et al., 2000b,a] contains citations to
research papers from the Cora Computer Science research paper search
engine. For each citation, it contains the title, the author, the venue
as well as the date of publication.

The Restaurant data set [Tejada et al., 2001] contains a set of records
from the Fodor’s and Zagat’s restaurant guides. For each restaurant,
it contains the name, address, phone number as well as the type of
restaurant. For both data sets, we used the XML version11 that is
provided by Draisbach et al.

(2) We evaluated our approach with two data sets from the Ontology Align-
ment Evaluation Initiative (OAEI) [Euzenat et al., 2011b] and com-
pared our results to the participating systems. The OAEI is an in-
ternational initiative aimed at organizing the evaluation of different
ontology matching systems. In addition to schema matching, OAEI
also includes an instance matching track since 2009, which regularly
evaluates the ability to identify similar entities among different RDF
data sources.

The SiderDrugBank data set was selected from the OAEI 2010 data
interlinking track12 [Euzenat et al., 2010]. We chose this data set
amongst the other drug related data sets, because it was the one for
which the participating systems ObjectCoref [Hu et al., 2010] and Ri-
MOM [Wang et al., 2010] performed the worst. This data set contains
drugs from Sider, a data set of marketed drugs and their side effects,
and DrugBank, containing contains drugs approved by the US Federal
Drugs Agency. Positive reference links are provided by the OAEI.

11http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_

detection.html
12http://oaei.ontologymatching.org/2010/im/index.html

http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html
http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html
http://oaei.ontologymatching.org/2010/im/index.html

82 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

The NewYorkTimes data set was selected from the OAEI 2011 data
interlinking track13 [Euzenat et al., 2011a]. Amongst the seven data
sets from this track, we chose the data set for which the participating
systems performed the worst on average: Interlinking locations in the
New York Times data set with their equivalent in DBpedia [Bizer et al.,
2009b]. Besides other types of entities, the New York Times data set
contains 5620 manually curated locations. In addition, it contains 1920
manually verified links between locations in the New York Times data
set itself and the same location in DBpedia. The NewYorkTimes eval-
uation data set has been build by extracting all 5620 locations from the
official New York Times data set14. Locations in DBpedia have been
retrieved by requesting each interlinked DBpedia location by using the
official SPARQL endpoint15.

(3) On two data sets, we compared the learned linkage rules with linkage
rules created by a human expert for the same data set. The original
linkage rules for both data sets have been created as part of the LATC
EU project16.

The LinkedMDB data set17 [Hassanzadeh and Consens, 2009] is an
easy to understand data set about movies, which is non-trivial as the
linkage rule cannot just compare by label (different movies may have
the same name), but also needs to include other properties such as the
date or the director.

The DBpediaDrugBank data set about interlinking drugs in DB-
pedia18 [Bizer et al., 2009b] and DrugBank19 is an example where the
original linkage rule, which has been produced by humans, is very com-
plex. In order to match two drugs, it compares the drug names and
their synonyms as well as a list of well-known and used identifiers,
which are provided by both data sets but are missing for many enti-
ties. In total, the manually written linkage rule uses 13 comparisons
and 33 transformations. This includes complex transformations, such
as replacing specific parts of the strings.

The first two data sets are frequently-used record linkage data sets while
the following four sets are RDF data sets. While the record linkage data sets

13http://oaei.ontologymatching.org/2011/instance/
14http://data.nytimes.com/
15http://dbpedia.org/sparql
16http://latc-project.eu/
17http://www.linkedmdb.org/
18http://dbpedia.org
19http://wifo5-04.informatik.uni-mannheim.de/drugbank/

http://oaei.ontologymatching.org/2011/instance/
http://data.nytimes.com/
http://dbpedia.org/sparql
http://latc-project.eu/
http://www.linkedmdb.org/
http://dbpedia.org
http://wifo5-04.informatik.uni-mannheim.de/drugbank/

3.5. EVALUATION AND DISCUSSION 83

Entities Reference Links

|A| |B| |R+| |R−|

Cora 1879 1617 1617
Restaurant 864 112 112

SiderDrugbank 924 4772 859 859
NewYorkTimes 5620 1819 1920 1920
LinkedMDB 199 174 100 100
DBpediaDrugbank 4854 4772 1403 1403

Table 3.3: The number of entities in each data set as well as the number of
reference links.

Properties Coverage

|A.P | |B.P | CA CB

Cora 4 0.8
Restaurant 5 1.0

SiderDrugbank 8 79 1.0 0.5
NewYorkTimes 38 110 0.3 0.2
LinkedMDB 100 46 0.4 0.4
DBpediaDrugbank 110 79 0.3 0.5

Table 3.4: The total number of properties in each data set as well as the
percentage of properties that are actually set on an entity.

are already adhering to a consistent schema, the RDF data sets are split into
a source and a target data set that adhere to different schemata.

Table 3.3 lists the used data sets together with the number of entities
as well as the number of reference links in each data set. As only positive
reference links have been provided by the data set providers, we generated the
negative reference links. For two positive links (a, b) ∈ R+ and (c, d) ∈ R+ we
generated two negative links (a, d) ∈ R− and (c, b) ∈ R−. For the Cora and
Restaurant data set this is sound as the provided positive links are complete.
Since the remaining data sources are split into source and target data sets,
generating negative reference links is possible as entities in the source and
target data sets are internally unique.

Table 3.4 shows the number of properties in the source and target data
sets and their coverage, i.e., the percentage of properties that are actually
set on an entity on average.

84 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Parameter Value

Population size 500
Maximum iterations 50
Selection method Tournament selection
Tournament size 5
Probability of crossover 75%
Probability of mutation 25%
Stop condition F-measure = 100%
Fitness Function MCC with penalty factor
Penalty factor 0.05

Table 3.5: Parameters

3.5.2 Experimental Setup

The GenLink algorithm has been implemented in the Silk Link Discovery
Framework. All experiments have been executed using Version 2.5.3 of the
Silk Link Discovery Framework. A detailed description of the Silk Link
Discovery Framework can be found in Chapter 6.

Because genetic algorithms are non-deterministic and may yield different
results in each run, all experiments have been run 10 times. For each run the
reference links have been randomly split into two folds for cross-validation.
The results of all runs have been averaged and the standard deviation (σ)
has been computed. For each experiment, we provide the evaluation results
with respect to the training set as well as the test set. All experiments have
been run on a 3GHz Intel(R) Core i7 CPU with four cores while the Java
heap space has been restricted to 1GB.

Table 3.5 lists the parameters that have been used in all experiments.
As it is the purpose of the developed algorithm to work on arbitrary data
sets without the need to tailor its parameters to the specific data sets that
should be matched, the same parameters have been used for all experiments.
The parameters have been chosen based on the parameters used by Koza
in [Koza, 1993, 1994, 1999; Koza et al., 2005], which have been shown to
work well on a variety of use cases. The population size determines the
number of linkage rules in the population. In each iteration of the genetic
algorithm, a new population is build using the tournament selection method.
Tournament selection randomly selects five linkage rules from the population
and chooses the rule with the highest fitness. The fitness is determined by
computing Matthews correlation coefficient and penalizing linkage rules with
many operators with a penalty factor of 0.05 as described in Section 3.3.2.
With a probability of 75%, a crossover operation is performed on two choosen

3.5. EVALUATION AND DISCUSSION 85

linkage rules. In the remaining cases a mutation operation is performed. The
genetic algorithm stops if either a maximum number of 50 iterations have
been performed or if a linkage rule with an F-measure of 100% has been
found.

3.5.3 Evaluation Measures

This section introduces methods to evaluate the performance of a linkage
rule based on the supplied positive and negative reference links. Given the
output of a matching task and a set of reference links, two types of errors
can be detected:

• Type I error: A link is generated for a specific negative reference
link (false positive).

• Type II error: No link is generated for a specific positive reference
link (false negative).

Based on these two types of errors, we distinguish four cases:

predicted class

match no match

positive ref. link true positive (tp) false negative (fn)
negative ref. link false positive (fp) true negative (tn)

Based on these counts, various measures can be defined: First of all, we
define the precision of a linkage rule:

Definition 3.2 (Precision) The precision of a linkage rules is defined as
the fraction of generated links that are correct:

precision =
tp

tp+ fp

While precision is a measure of correctness, the recall of a linkage rule is
a measure of its completeness:

Definition 3.3 (Recall) The recall of a linkage rule is defined as fraction
of generated correct links from all positive reference links:

recall =
tp

tp+ fn

86 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Usually, there is a trade-off between maximizing precision on the one hand
and maximizing recall on the other. Increasing precision usually comes at
the cost of a reduced recall. On the contrary, increasing recall may increase
the number of false dismissal and thereby reduce the precision.

The trade-off between recall and precision for a particular data set can
be visualized using a recall-precision diagram. Figure 3.15 shows a typical
recall-precision diagram.

Figure 3.15: Typical precision-recall diagram.

The F-measure combines both recall and precision:

Definition 3.4 (F-measure) The F-measure of a linkage rules is defined
as the harmonic mean of its recall and precision:

F = 2 · precision · recall
precision+ recall

A disadvantage of the F-measure is that it may yield skewed results if
the number of positive and negative reference links is unbalanced. A popular
measure that avoids this problem is the previously introduced Matthews cor-
relation coefficient that we use in the GenLink approach as fitness measure.

3.5.4 Overall Results

In this section we evaluate the overall performance of GenLink.

3.5. EVALUATION AND DISCUSSION 87

Frequently Used Record Linkage Datasets

A number of data sets have been used frequently to evaluate the performance
of different record linkage approaches. Following this practice, we compared
the overall learning performance of our approach with the approach proposed
by de Carvalho et al. [2012] on the Cora citation data set and the Restaurant
data set. In their experiments, de Carvalho et al. report to produce better
results as the state-of-the-art SVM based approach by MARLIN. The related
work section provides more details about how their approach compares to
ours technically.

Table 3.6 summarizes the cross validation results for the Cora citation
data set. On average, our approach achieved an F-measure of 96.9% against

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

0 5.5 (0.7) 0.880 (0.030) 0.877 (0.031)
10 28.6 (2.7) 0.949 (0.018) 0.945 (0.021)
20 60.1 (4.1) 0.965 (0.005) 0.962 (0.005)
30 93.6 (6.1) 0.968 (0.003) 0.965 (0.004)
40 129.4 (9.7) 0.968 (0.002) 0.965 (0.004)
50 185.8 (26.7) 0.969 (0.003) 0.966 (0.004)

Ref. 0.900 (0.010) 0.910 (0.010)

Table 3.6: Results for the Cora data set. The last row contains the best
results of de Carvalho et al. for comparison.

the training set and 96.6% against the test set and needed about three min-
utes to perform all 50 iterations on the test machine. The learned linkage
rules compared by title, author and venue. Figure 3.16 shows an example of
a linkage rule that has been learned after 10 generations. Figure 3.17 shows
an example of a linkage rule that has been learned after 40 generations, which
reached the top F-measure.

For the same data set, de Carvalho et al. report an F-measure of 90.0%
against the training set and 91.0% against the test set [de Carvalho et al.,
2012]. We suspected the main reason for the better performance of our
method on this data set to be found in the inclusion of data transformations
in our learning approach. To confirm this claim we re-executed our method
with one limitation: No data transformations were allowed to be used in a
linkage rule. With this limitation, the performance of our methods declined
to an F-measure of 91.2% against the training set and 90.5% against the test
set approximately matching the numbers of de Carvalho et al. Figure 3.18
shows a learned linkage rule without transformations.

88 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Figure 3.16: Cora: Learned linkage rule after 10 generations

Figure 3.17: Cora: Learned linkage rule after 40 generations

While GenLink outperforms the method by de Carvalho et al., it still

3.5. EVALUATION AND DISCUSSION 89

Figure 3.18: Cora: Learned linkage rule without transformations

misses a couple of reference links. Table 3.7 shows two examples of false
positives. The first entry shows a border case in which both citations are very

Author Title Venue Date

D. Aha and Noise-tolerant instance-based In Proceedings -
D. Kibler. learning algorithms of IJCAI-89

D. Aha D. Kibler Instance-based Machine -
and M. Albert. learning algorithms Learning

M. Pazzani The utility of knowledge Machine -
and D. Kibler. in inductive learning Learning

P. Utgoff. Shift of bias for Machine -
inductive concept learning Learning

Table 3.7: Two examples of false positives. ’-’ indicates missing values.

similar, while the second entry shows two citations that are clearly referring
to different publications. The difficulty in distinguishing between both pairs
of citations lies in the fact that the employed Jaccard similarity measure
yields high similarity scores as in both cases the titles contain similar words.
As the Jaccard comparison also includes common words, such as ’of’ and ’the’
in the comparison, the perceived overlap is even higher. The performance

90 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

in this case could be further improved by including transformations that
remove stop-words (e.g., ’the’ and ’of’) and by normalizing the author names.
Section 7.2 will discuss this extension for future work.

Table 3.8 summarizes the cross validation results for the Restaurant data
set. On average, our approach achieved an F-measure of 99.6% against the

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

0 0.4 (0.1) 0.953 (0.038) 0.951 (0.039)
10 2.0 (0.9) 0.996 (0.004) 0.992 (0.006)
20 3.1 (1.9) 0.996 (0.004) 0.993 (0.006)
30 4.1 (3.0) 0.996 (0.004) 0.993 (0.006)
40 5.2 (4.0) 0.996 (0.004) 0.993 (0.006)
50 6.3 (5.3) 0.996 (0.004) 0.993 (0.006)

Ref. 1.000 (0.000) 0.980 (0.010)

Table 3.8: Results for the Restaurant data set. The last row contains the
best results of de Carvalho et al. for comparison.

training set and 99.3% against the test set. For the same data set, de Car-
valho et al. report an F-measure of 100.0% against the training set, but only
98.0% against the test set [de Carvalho et al., 2012].

Ontology Alignment Evaluation Initiative

For two data sets from the Ontology Alignment Evaluation Initiative (OAEI),
we compared our results with the results of the participating systems in the
instance matching track. In the OAEI, the systems where asked to iden-
tify similar entities in a data set without being allowed to employ existing
reference links for matching. Note that as the OAEI only compares unsuper-
vised systems and does not consider supervised systems (i.e., systems that
are supplied with existing reference links), our approach has an advantage
over the participating systems. For that reason, we used the official OAEI
results merely as a baseline for our approach.

Table 3.9 summarizes the cross validation results for the SiderDrugBank
data set. After 30 iterations, our approach reached an F-measure of 97.2%
for the training set and 97.0% for the test set. ObjectCoref and RiMOM
achieved only around 50% percent, which indicates the difficulty in matching
this data set.

Table 3.10 summarizes the cross validation results for the NewYorkTimes
data set. After 50 iterations, our approach reached an F-measure of 97.7%

3.5. EVALUATION AND DISCUSSION 91

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

0 21.7 (0.3) 0.840 (0.018) 0.837 (0.018)
10 38.8 (2.4) 0.943 (0.025) 0.939 (0.030)
20 83.1 (11.1) 0.970 (0.007) 0.969 (0.008)
30 147.2 (20.9) 0.972 (0.006) 0.970 (0.007)
40 215.6 (28.0) 0.972 (0.006) 0.970 (0.007)
50 301.5 (39.0) 0.972 (0.006) 0.970 (0.007)

Reference System F1

ObjectCoref 0.464 [Hu et al., 2010]
RiMOM 0.504 [Wang et al., 2010]

Table 3.9: Results for the SiderDrugBank data set.

for the training set and 97.4% for the test set. With an F-measure of 92%,
Zhishi.links achieved the best result of the participating systems.

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

0 85.2 (1.7) 0.703 (0.064) 0.709 (0.048)
1 107.7 (11.0) 0.803 (0.037) 0.803 (0.036)
5 260.7 (76.8) 0.844 (0.048) 0.846 (0.048)
10 344.5 (86.2) 0.854 (0.052) 0.854 (0.053)
20 496.7 (95.0) 0.907 (0.074) 0.906 (0.074)
30 652.8 (108.1) 0.927 (0.069) 0.928 (0.067)
40 804.8 (132.4) 0.965 (0.039) 0.963 (0.041)
50 975.4 (141.1) 0.977 (0.024) 0.974 (0.026)

Reference System F1 [Euzenat et al., 2011a]

AgreementMaker 0.69
SEREMI 0.68
Zhishi.links 0.92

Table 3.10: Results for the NewYorkTimes data set.

Comparison With Manually Created Linkage Rules

In addition, we evaluated how the learned linkage rules compare to linkage
rules that have been manually created by a human expert for the same data
set.

92 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

LinkedMDB: The manually written linkage rule for the LinkedMDB
data set compares movies by their label as well as their release date. For the
evaluation we used a manually created set of 100 positive and 100 negative
reference links. Special care was taken to include relevant corner cases such
as movies which share the same title but have been produced in different
years.

Table 3.11 summarizes the cross validation results for the LinkedMDB
data set. Figure 3.19 depicts a learned linkage rule.

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 4.2 (1.2) 0.981 (0.011) 0.959 (0.023)
10 19.6 (2.1) 0.998 (0.001) 0.921 (0.007)
20 40.3 (3.3) 1.000 (0.000) 0.974 (0.004)
30 59.2 (4.2) 1.000 (0.000) 0.999 (0.002)
40 74.2 (7.2) 1.000 (0.000) 0.999 (0.002)
50 99.7 (12.8) 1.000 (0.000) 0.999 (0.002)

Table 3.11: Results for the LinkedMDB data set.

Figure 3.19: Learned linkage rule for the LinkedMDB data set

In all runs, the learning algorithm needed no more than 12 iterations in
order to achieve the full training F-measure. The learning algorithm learned
linkage rules that compare movies by their title and their release date just
as the original human-created linkage rule did.

3.5. EVALUATION AND DISCUSSION 93

DBpediaDrugBank: While the vast majority of linkage rules com-
monly used in the Linked Data context are very simple, the original linkage
rule for interlinking drugs in DBpedia and DrugBank that has been devel-
oped in the course of the LATC EU project is an example of a complex
linkage rule. In order to match drugs in DBpedia and DrugBank, it is neces-
sary to compare various identifiers, such as the CAS number20), in addition
to the names of the drugs and known synonyms. In total, the manually
written linkage rule uses 13 comparisons and 33 transformations, including
transformations that replace specific parts of the strings.

Figure 3.20 shows a slightly simplified version of the original linkage rule.
All 1,403 links that have been generated by executing the original linkage
rule have been used as positive reference links.

Figure 3.20: Original linkage rule for the DBpediaDrugBank data set

Table 3.12 summarizes the cross validation results for the DBpediaDrug-
Bank data set. The learned linkage rules yield an F-Measure of 99.8% for

20A unique numerical identifier assigned by the ”Chemical Abstracts Service”

94 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 67.5 (2.2) 0.929 (0.026) 0.928 (0.029)
10 334.1 (157.4) 0.994 (0.002) 0.991 (0.003)
20 1014.1 (496.8) 0.996 (0.001) 0.988 (0.010)
30 1829.7 (919.3) 0.997 (0.001) 0.985 (0.016)
40 2685.4 (1318.9) 0.998 (0.001) 0.994 (0.002)
50 3222.2 (1577.7) 0.998 (0.001) 0.994 (0.002)

Table 3.12: Results for the DBpediaDrugBank data set

the training data and 99.4% for the test data.
From the 30th iteration the generated linkage rules on average only use

5.6 comparisons and 3.2 transformations and the parsimony pressure success-
fully avoids bloating in the subsequent iterations. Thus, the learned linkage
rules use less than half of the comparisons and only one-tenth of the trans-
formations of the human written linkage rules. Figure 3.21 shows how the
linkage rule increased in size during the execution of the learning algorithm.

Figure 3.21: Average number of comparisons and transformations

3.5.5 Detailed Evaluation

While the previous section focused on the evaluation of the performance of
the overall algorithm this section focuses on evaluating specific parts of our
approach. One of the main claims of this thesis is that using the expressive
linkage rule representation presented in Section 2.5 allows the algorithm to
learn rules with higher accuracy. We evaluate this claim by comparing the
performance of learned linkage rules using the proposed representation versus
common representations in record linkage. After that, we show how our

3.5. EVALUATION AND DISCUSSION 95

Boolean Linear Nonlin. Full

Cora 0.900 0.896 0.898 0.965
Restaurant 0.954 0.959 0.951 0.992
SiderDrugBank 0.931 0.956 0.966 0.970
NewYorkTimes 0.714 0.716 0.724 0.916
LinkedMDB 0.973 0.986 0.987 0.997
DBpediaDrugBank 0.990 0.981 0.991 0.993

Average 0.910 0.916 0.920 0.972

Table 3.13: Representations: F-measure in round 25

approach to generate the initial population improves the average accuracy of
the initial linkage rules. Finally, we evaluate how the proposed specialized
crossover operators improve the learning performance over subtree crossover.

Comparison with Other Linkage Rule Representations

We presented an approach that uses a linkage rule representation that is more
expressive than other representations used in record linkage. Our model
includes chains of transformations and is also able to represent non-linear
classifiers.

In order to measure the effect of this extended representation, we evalu-
ated the learning performance of four representations:

• Boolean: Boolean classifiers without transformations

• Linear: Linear classifiers without transformations

• Non-linear: Non-linear classifiers without transformations

• Full: Our Approach with full expressivity

Table 3.13 shows the F-measure on the test set after 25 iterations. We
now review how the introduction of non-linearity and transformations in our
approach improves the learning performance: On the SiderDrugBank and
the NewYorkTimes data sets, using non-linear classifiers yields better results
than either boolean or linear classifiers. On all six data sets, the introduction
of transformations improved the performance.

Seeding

In this experiment we evaluated if our approach of generating the initial
population improves over the completely random generation of linkage rules,

96 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Random Seeded

Cora 0.849 (0.045) 0.865 (0.018)
Restaurant 0.963 (0.010) 0.985 (0.012)
SiderDrugBank 0.624 (0.181) 0.848 (0.013)
NewYorkTimes 0.178 (0.164) 0.701 (0.072)
LinkedMDB 0.719 (0.175) 0.975 (0.008)
DBpediaDrugBank 0.702 (0.217) 0.957 (0.013)

Table 3.14: Seeding: Initial F-measure

Random Seeded

Cora 0.928 (0.023) 0.961 (0.006)
Restaurant 0.997 (0.004) 0.997 (0.004)
SiderDrugBank 0.932 (0.048) 0.962 (0.007)
NewYorkTimes 0.370 (0.114) 0.814 (0.002)
LinkedMDB 0.960 (0.022) 0.991 (0.012)
DBpediaDrugBank 0.962 (0.007) 0.994 (0.001)

Table 3.15: Seeding: F-measure in round 10

which is usually used in genetic programming. Table 3.14 compares the
average F-measure of the linkage rules in the initial population for each data
set. The table shows that for data sets with only a few properties, such as
the Cora and the Restaurant data set, the seeding does not yield a significant
improvement. However, for data sets with many properties, the improvement
over the complete random generation is significant and increases the average
F-measure of the linkage rules in the population considerably.

Note that seeding not only improves the average F-measure of the linkage
rules in the initial population, but also reduces the number of generations
that are needed to learn a linkage rule. Table 3.15 compares the average
F-measure after 10 iterations. The seeding improves the F-measure after 10
iterations in all cases except for the Restaurant data set for which after 10
iterations the maximum F-measures is almost reached in both cases.

Crossover Operators

Subtree crossover is the de-facto standard in genetic programming [Koza,
1993; Koza et al., 2005]. We evaluated the actual contribution to the learn-
ing performance of using specialized crossover operators as described in Sec-
tion 3.3.3 instead. Table 3.16 compares the performance of both configura-

3.5. EVALUATION AND DISCUSSION 97

10 Iterations

Subtree Crossover Our Approach

Cora 0.943 (0.015) 0.951 (0.013)
Restaurant 0.997 (0.004) 0.997 (0.004)
SiderDrugBank 0.919 (0.013) 0.963 (0.013)
NewYorkTimes 0.814 (0.015) 0.834 (0.016)
LinkedMDB 0.985 (0.012) 0.991 (0.009)
DBpediaDrugBank 0.992 (0.002) 0.994 (0.002)

25 Iterations

Subtree Crossover Our Approach

Cora 0.959 (0.007) 0.967 (0.003)
Restaurant 0.997 (0.004) 0.997 (0.004)
SiderDrugBank 0.974 (0.004) 0.987 (0.003)
NewYorkTimes 0.814 (0.005) 0.916 (0.006)
LinkedMDB 0.996 (0.007) 0.998 (0.003)
DBpediaDrugBank 0.994 (0.001) 0.997 (0.002)

Table 3.16: Crossover experiment: F-measure after 10 and 25 iterations.

tions after executing 10 iterations and again after 25 iterations.
In all data sets our approach either matches the subtree crossover results

or outperforms them. In addition, the specialized crossover operators in our
approach have the advantage that each operator only covers a specific aspect
of a linkage rule. Thus, the operators can be selectively enabled to control
which aspects of a linkage rule are learned.

Bloating Control

Two properties are essential for a bloating control method:

(1) It does not reduce the learning performance.

(2) It does avoid the unrestricted growth of the individuals.

This section evaluates both properties on four different configurations:

None: No bloating control strategy.

Penalty (Pen.): Parsimony pressure as described in Section 3.2.3.

Pruning (Prun.): Pruning trees as described in Section 3.3.4.

98 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

None Pen. Prun. Comb.

Cora 0.946 0.944 0.946 0.945
Restaurant 0.993 0.992 0.991 0.993
SiderDrugbank 0.970 0.964 0.969 0.970
NewYorkTimes 0.813 0.807 0.812 0.812
DBpediaDrugbank 0.993 0.992 0.992 0.994
LinkedMDB 0.995 0.994 0.996 0.996

Table 3.17: F-measure after 10 iterations for different bloating control strate-
gies.

None Pen. Prun. Comb.

Cora 7.83 7.33 7.17 6.50
Restaurant 9.33 5.83 6.00 5.17
SiderDrugbank 21.50 15.33 20.00 14.83
NewYorkTimes 15.17 5.33 11.17 5.27
DBpediaDrugbank 15.67 9.83 14.17 9.50
LinkedMDB 8.67 8.17 7.83 6.83

Average 13.03 8.64 11.06 8.02

Table 3.18: Number of comparisons and transformations in a learned linkage
rule size after 10 iterations for different bloating control strategies.

Combine (Comb.): Both strategies combined.

Table 3.17 evaluates if any of the tested configurations affects the learn-
ing performance by comparing the F-measure on the test set after the 10th
iteration. Table 3.18 compares the total number of comparisons and trans-
formations of the learned linkage rules after 10 iterations.

While the learning performance is unaffected by the choice of the bloating
control strategy, all three methods reduce the size of the linkage rules. The
biggest reduction is achieved by combining both methods, i.e., using prun-
ing in addition to parsimony pressure further reduces the linkage rule size.
Compared to using no bloating control, the combined strategy reduces the
number of comparison and transformations from 13 to 8 on average.

We will now evaluate the bloating control in more detail for the Cora
data set. Figure 3.22 shows how the test F-measure develops for all four
configurations. None of the three tested bloating control methods decrease
the performance of the learning algorithm. Figure 3.23 shows how the number
of comparisons grow during learning while Figure 3.24 shows the development

3.6. SUMMARY 99

Figure 3.22: Learning performane

of the number of transformations. All three bloating control strategies

Figure 3.23: Number of comparisons

reduce the size of the linkage rules significantly. Figure 3.25 and 3.26 zoom
on the parsimony pressure strategy alone and the same strategy combined
with pruning. Pruning further reduces the size of the linkage rules without
sacrificing learning performance.

3.6 Summary

In this chapter, we motivated machine learning of linkage rules by pointing
out that creating linkage rules by hand is a non-trivial problem and requires
a high level of expertise together with detailed knowledge of the data sets.

100 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

Figure 3.24: Number of transformations

Figure 3.25: Number of comparisons

We introduced supervised learning as a method to automate the creation of
a linkage rule in cases where existing reference links are known.

As one of the main contributions of this thesis, we proposed the GenLink
supervised learning algorithm. GenLink employs genetic programming in
order to learn linkage rules from a set of existing reference links by using a
set of specialized crossover operators. GenLink is capable of learning linkage
rules covering the full expressivity of the linkage rule representation that has
been introduced in the previous chapter.

GenLink has been evaluated on six data sets from three areas:

(1) We evaluated GenLink on two frequently used record linkage data sets
and compared the performance to previously proposed learning algo-
rithms that have been evaluated on the same data sets. On both data

3.6. SUMMARY 101

Figure 3.26: Number of transformations

sets, GenLink outperformed the MARLIN [Bilenko and Mooney, 2003]
entity matching system that supports learning linear classifiers using
support vector machines. Likewise, GenLink outperformed the state-of-
the-art genetic programming approach for entity matching by de Car-
valho et al. [2012] on both data sets. Finally, we also showed that Gen-
Link outperforms two collective approaches on both data sets [Domin-
gos, 2004; Dong et al., 2005].

(2) We evaluated the performance on two data sets from the Ontology
Alignment Evaluation Initiative and compared our results to the partic-
ipating systems. By using the reference links as training data, GenLink
outperformed the participating unsupervised systems and achieved an
F-measure of about 97% on both data sets.

(3) We evaluated how the learned linkage rules compare to linkage rules
that have been manually created by a human expert for the same data
set. On a movie data set, GenLink successfully reproduced a manu-
ally written linkage rule that compares movies by their title and their
release date. On a more complex life science data set, GenLink was ca-
pable of learning linkage rules that achieve a similar accuracy than the
human written rule that uses 13 comparisons and 33 transformations
in order to deduplicate drugs. In addition, the employed bloating con-
trol strategy successfully avoids the uncontrolled growth of the learned
linkage rules. The learned linkage rules on average only consisted of 5.6
comparisons and 3.2 transformations and thus have been smaller than
the original linkage rule.

In addition to the evaluation of the overall performance, we evaluated by

102 CHAPTER 3. SUPERVISED LEARNING OF LINKAGE RULES

which amount specific parts of GenLink contribute to the overall performance
of the learned linkage rules:

(1) First, we evaluated how the expressive linkage rule representation,
which is proposed in this thesis and constitutes one of its main contri-
butions, increases the learning performance over previously proposed
common representations. On two data sets, the capability to repre-
sent non-linear classifiers improved the performance over linear and
threshold-based boolean classifiers. The introduction of transforma-
tions further improved the performance on all data sets.

(2) In the second experiment, we showed that the seeding strategy that is
used by GenLink improves the performance of the initial population
and subsequent generations.

(3) GenLink uses a set of specialized crossover operators wherein each op-
erator is targeted at learning a specific aspect of a linkage rule. Com-
pared to subtree crossover, which is the de-facto standard in genetic
programming, using specialized crossover operators has the advantage
that each operator can be selectively enabled or disabled in order to
control which aspects of the linkage rules are learned. The experimental
evaluation showed that on all evaluation data sets, the performance of
the specialized crossover operators either matches the subtree crossover
results or outperforms them.

While the proposed GenLink algorithm depends on existing reference
links, the next chapter will introduce the ActiveGenLink active learning al-
gorithm, which extends GenLink with an interactive generation of reference
links and thereby makes GenLink usable in cases where no previous reference
links are available.

Chapter 4

Active Learning of Linkage
Rules

In the previous chapter, we presented the supervised GenLink algorithm
for learning linkage rules. GenLink is capable of learning expressive linkage
rules in cases where positive and negative reference links are available. As
existing reference links are often not available, they need to be created prior
to executing GenLink.

As also noted in the previous chapter, reference links can be generated by
asking a human expert to confirm or reject the equivalence of a number of
entity pairs from the data sets. When selecting a subset of pairs of entities
for labeling from the data sets, an obvious problem is to decide which entity
pairs are chosen to be labeled by the human annotator. As manually labeling
entity pairs is time-consuming and thus costly, it is desirable to minimize the
number of pairs which are chosen.

Deciding which pairs of entities are to be labeled by the human anno-
tator is an important task, but it is also a challenging one. The reason for
this is that in order for a supervised learning algorithm to perform well on
unlabeled data, the reference links need to include all relevant corner cases.
We illustrate this point by having a look at the example of interlinking two
cities as depicted in Figure 4.1: While for many cities a comparison by label

Figure 4.1: Example of an entity pair in a geographical data set.

is sufficient to determine if two entities represent the same real-world city,

103

104 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

the given example shows the rare corner case when distinct cities share the
same name. If the entity pairs to be labeled by the user are just selected
randomly from data sets, the user has to label a very high number of pairs
in order to include these rare corner cases reliably. As manually labeling link
candidates is time-consuming, methods to reduce the number of candidates
that need to be labeled are desirable.

The fundamental idea of active learning is to reduce the number of link
candidates that need to be labeled by actively selecting the most informative
candidate for labeling [Settles, 2009]. Active learning can work on top of any
existing supervised learning algorithm.

In this chapter, we present ActiveGenLink, an algorithm for learning
linkage rules interactively using active learning and genetic programming.
ActiveGenLink learns a linkage rule by asking the user to confirm or reject
a number of link candidates, which are actively selected by the algorithm.
Compared to writing linkage rules by hand, ActiveGenLink lowers the re-
quired level of expertise as the task of generating linkage rules is automated
by the genetic programming algorithm while the user only has to verify a set
of link candidates. The employed query strategy reduces user involvement
by selecting the link candidate with the highest information gain for manual
verification.

4.1 Active Learning

The idea of active learning is to actively guide the process of labeling ex-
amples by the user while learning a model from the set of already labeled
examples. Active learning is an iterative algorithm. In each iteration, the
algorithm selects the most informative unlabeled example to be labeled by
the user and uses a machine learning algorithm to learn a model based on
the extended labeled training data.

An active learning algorithm bootstraps by initializing three sets:

Unlabeled Pool: Contains a set of training examples for which the label is
yet unknown. Note that in the context of this work, we focus on pool-
based sampling, i.e., the examples are selected from a pool of unlabeled
examples. Other sampling methods, such as membership query synthe-
sis and stream-based selective sampling, are not covered. An overview
of common sampling methods can be found in [Settles, 2009].

Labeled Training Set: Contains the set of training examples that have
been labeled by the human annotator. Initially this set is empty.

4.1. ACTIVE LEARNING 105

Model: The model that represents the solution. During the execution of
the active learning algorithm, the model will be trained according to
the labeled examples. If no labeled training examples are available, the
active learning algorithm can either employ unsupervised learning to
generate an initial model or start with a random model.

Figure 4.2 summarizes the three steps that are involved in each iteration:

Figure 4.2: Active learning workflow.

(1) A query strategy selects an example for labeling from the unlabeled
pool, which is forwarded to the human annotator. The fundamen-
tal idea of the query strategy is to minimize the number of necessary
queries by selecting the most informative example. Section 4.1.1 intro-
duces common query strategies.

(2) A human expert labels the selected example. In the context of this
work, we view labeling as a binary decision (i.e., confirming or declining
an example), although active learning in general is not restricted to
learning binary classifiers.

(3) A supervised learning algorithm learns a model based on the updated
labeled training examples. Active learning is independent of any spe-
cific machine learning method and can for instance be used with sup-
port vector machines, decision trees or genetic programming. As Sec-
tion 3.4 already discussed popular approaches for learning linkage rules,
this chapter does not provide a separate discussion of supervised learn-
ing algorithms.

106 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

4.1.1 Query Strategies

The goal of the query strategy is to reduce the number of examples that
need to be labeled in order to learn a model that generalizes to the entire set
of unlabeled examples. Most existing query strategies can be categorized in
three variants [Muslea et al., 2006]:

Uncertainty sampling1: The query strategy selects the example for which
the current model is the least certain.

Expected-error minimization: The query strategy selects the example
that most likely reduces the expected generalization error the most.

Version space reduction: The query strategy selects the example that
yields the biggest reduction of the version space. The version space
is the set of all models that are consistent with the current training
examples.

A comprehensive overview of frequently used query strategies can be found
in [Settles, 2009].

In the following we will give an overview of uncertainty sampling and
introduce a class of version space reduction strategies know as query-by-
committee. We do not cover expected-error minimization strategies as they
are computationally expensive [Settles, 2009].

4.1.2 Uncertainty Sampling

One of the most commonly used query framework is known as uncertainty
sampling. The rationale behind uncertainty sampling is that the example
is selected for which the current model is the least certain. While there
are different variants of uncertainty sampling, we are considering the variant
when the example with the maximum entropy is selected:

Definition 4.1 (Uncertainty Sampling) Given an unlabeled pool U , un-
certainty sampling selects the example with the maximum entropy:

x∗LC = argmax
u∈U

H(Pr(u))

where H denotes the entropy, which - for the binary case - is defined as:

H(p) = −p log2 p− (1− p) log2(1− p)
1Also called uncertainty reduction [Muslea et al., 2006].

4.1. ACTIVE LEARNING 107

For each example u from the unlabeled pool U , Pr(u) denotes the proba-
bility that the given example is correct according to the learned model. By
maximizing the entropy, uncertainty sampling selects the example for which
the probability is closest to 50%.

4.1.3 Query-by-Committee

While uncertainty sampling only takes a single model into account, genetic
algorithms train a population of alternative models at the same time. In
order to take advantage of the population of models, we continue by in-
troducing version space reduction strategies known as query-by-committee.
Query-by-committee methods select the query based on the voting of a com-
mittee of candidate solutions. By that, they aim to reduce the version space
by selecting the example for which the members in the committee disagree
the most. Ideally, the committee is a subset of the version space, which is
the set of candidate solutions that are consistent with the current training
examples. Two major approaches have been proposed in literature [Settles,
2009]: query-by-vote-entropy and query-by-Kullback-Leibler-divergence.

The query-by-vote-entropy strategy [Dagan and Engelson, 1995] selects
the example with the maximum disagreement in the committee.

Definition 4.2 (Query-By-Vote-Entropy) Given an unlabeled pool U ,
the query-by-vote-entropy strategy selects the example with the maximum vote
entropy:

x∗V = argmax
u∈U

H(PC(u))

Where PC represents the committee voting, which is defined for an unlabeled
example u ∈ U and a committee C as:

PC(u) =

∑
l∈C Pl(u)

|C|

The query-by-vote-entropy strategy aims to reduce the version space by se-
lecting the unlabeled example for which the members in the committee dis-
agree the most. The idea of the vote entropy is that unlabeled examples for
which either most committee members confirm or decline the example receive
a low score. On the other side, unlabeled examples for which distribution of
committee members that confirm the example and the members that decline
it is balanced receive the highest disagreement score. In the ideal case, i.e.,
50% of the committee members confirm the example while the other 50%
decline it, following the goal of reducing the version space, the version space
is cut in half.

108 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Instead of just measuring the disagreement among the committee mem-
bers, the idea of the query-by-Kullback-Leibler-divergence strategy [McCallum
and Nigam, 1998] is to measure the average divergence between the voting
of one committee member and the consensus voting. The Kullback-Leibler
divergence is used to evaluate the divergence from the mean.

Definition 4.3 (Query-By-Kullback-Leibler-Divergence) Given an un-
labeled pool U and existing training data R, query-by-Kullback-Leibler-
divergence selects the example with the maximum Kullback-Leibler divergence
from any existing example:

x∗KL = argmax
u∈U

∑
r∈R

DKL(Pr(u) ‖ PR(u))

|R|

The Kullback-Leibler divergence [Kullback and Leibler, 1951] (sometimes
also called information gain or relative entropy), which is a measure of the
difference between two probability distributions, is defined as:

DKL(p ‖ q) = p log2

(
p

q

)
+ (1− p) log2

(
1− p
1− q

)
Using the Kullback-Leibler divergence in an active learning approach im-

poses two practical problems: While Kullback-Leibler divergence is always
positive, it is no finite (i.e., no upper bound can be assumed for its value).
In addition, if p > 0, it is only defined for q > 0.

To overcome these two problems, many approaches rely on the related
Jensen-Shannon divergence instead:

DJS(p ‖ q) =
1

2
DKL(p ‖ m) +

1

2
DKL(q ‖ m) where m =

p+ q

2

Which can be simplified to:

DJS(p ‖ q) = H

(
p+ q

2

)
− H(p) +H(q)

2

Figure 4.3 compares Kullback-Leibler divergence and Jensen-Shannon di-
vergence. In contrast to Kullback-Leibler divergence, Jensen-Shannon diver-
gence is both symmetric and bounded to the interval [0, 1].

4.2. THE ACTIVEGENLINK ALGORITHM 109

(a) Kullback-Leibler divergence (b) Jensen-Shannon divergence

Figure 4.3: Kullback-Leibler divergence and Jensen-Shannon divergence.

4.2 The ActiveGenLink Algorithm

This section describes the proposed ActiveGenLink algorithm, which com-
bines genetic programming and active learning to learn linkage rules interac-
tively.

The main idea of ActiveGenLink is to evolve a population of candidate
solutions iteratively while building a set of reference links. The algorithm
starts with a random population of linkage rules and an initially empty set
of reference links. In each iteration, it selects a link candidate for which the
current population of linkage rules is uncertain from a pool of unlabeled links.
After the link has been labeled by an human expert, it evolves the population
of linkage rules based on the extended set of reference links. Figure 4.4
summarizes the three steps that are involved in each iteration:

(1) The query strategy selects link candidates to be labeled by the user
from an unlabeled pool of entity pairs (i.e., pool-based sampling [Settles,
2009]). Entity pairs are selected according to a query-by-committee [Se-
ung et al., 1992] strategy, i.e., the selected link candidate is determined
from the voting of all members of a committee, which consists of the
current linkage rules in the population. As the linkage rules from the
population are all trained on the current reference links they represent
competing hypotheses. Thus, they are part of the version space which
is the space of all linkage rules that correctly match the known refer-
ence links. The aim of the query strategy is to select link candidates
which reduce the version space as much as possible.

(2) A human expert labels the selected link as correct or incorrect. Con-

110 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Figure 4.4: Overview of the ActiveGenLink workflow.

firmed links are added to the positive reference link set and declined
links are added to the negative reference link set.

(3) The GenLink genetic programming algorithm evolves the population of
linkage rules. The goal is to find linkage rules which cover the current
set of reference links. The population is evolved until either a maximum
number of iterations is reached or a linkage rule has been found which
covers all reference links.

The pseudocode of ActiveGenLink is provided in Algorithm 4.1.

Listing 4.1: Pseudocode of the ActiveGenLink algorithm. The specific pa-
rameter values used in our experiments are listed in Section 3.5.2.

1 P ← generate initial population
2 U ← generate unlabeled pool
3 R ← empty set of reference links
4

5 while(|R| < maximum links to be labeled) {
6 u ← query strategy selects link candidate from U
7 r ← ask user to label u
8 R ← R ∪ r
9 P ← learn linkage rules from R based on population P

10 }
11

12 return best linkage rule from P

4.2. THE ACTIVEGENLINK ALGORITHM 111

4.2.1 Query Strategy

The goal of the query strategy is to reduce the number of links that need
to be labeled. While many query strategies, such as uncertainty sampling,
assume that a single model is being trained by the learning method, genetic
algorithms train a population of alternative models at the same time. Sec-
tion 4.1.1 already introduced query-by-committee methods, which can take
advantage of this set of competing models based on the voting of a commit-
tee of candidate solutions. Ideally, the committee is a subset of the version
space, which is the set of candidate solutions that correctly match the cur-
rent reference links. In our case, the committee is built by the linkage rules
in the current population. Query-by-committee strategies usually aim to re-
duce the version space by selecting the unlabeled candidate that reduces the
version space the most.

Given the query-by-vote-entropy strategy as a baseline, we now present
an improved strategy which is based on two observations:

• Link Distribution: The unlabeled links are usually not distributed
uniformly across the similarity space but build clusters of links which
convey similar information concerning the characteristics according to
which both interlinked entities are similar.

• Suboptimal Committee: The voting committee, which is built from
the population of linkage rules, may contain suboptimal linkage rules
that do not cover all reference links. As a result, the query-by-vote-
entropy strategy allows linkage rules to vote that only cover a small
part of the set of reference links.

The next paragraphs will take a more detailed look at both observations and
show how we account for them in the proposed query strategy.

Accounting for Link Distribution

Usually multiple link candidates convey similar information concerning the
characteristics according to which both interlinked entities are similar. For
this reason, labeling a single link candidate can be representative of a high
number of related link candidates. Thus, it is not necessary to label the
entire pool of possible link candidates, but only a subset thereof and it is the
goal of the query strategy to minimize the size of this subset of candidates
which need to be labeled.

In order to get a better understanding of this observation, we look at
a simple example using a data set about movies. For illustration we only
consider two dimensions: The similarity of the movie titles as well as the

112 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

similarity of the release date. Figure 4.5 shows the distribution of a set
of link candidates between movies from the LinkedMDB data set used in
Section 4.4 according to these two characteristics. For instance, the cluster

Figure 4.5: Distribution of movies in the similarity space

in the top-right corner represents link candidates between movies that share
a similar title as well as a similar release date, while the cluster in the bottom-
right corner represents link candidates between movies that share a similar
title, but have been released at different dates. We can easily see that a
query strategy needs to label link candidates from all four clusters in order
to include all necessary information to learn an appropriate linkage rule.

The idea of our proposed query strategy is to distribute the links onto
different clusters by only selecting links for labeling that are different from
already labeled links. For measuring the extend to which a specific unla-
beled link differs from an existing reference link we use the Jensen-Shannon
divergence, which has been introduced in Section 4.1.1. Intuitively, we can
interpret the Jensen-Shannon divergence between an unlabeled link candi-
date and a reference link as the amount of information that is needed to
encode the label of the unlabeled link, given that the label of the reference
link is known. If the divergence is zero, we expect every linkage rule to re-
turn the same label for the unlabeled link as it did for the reference link. In
that case the unlabeled link would already be perfectly represented by the
given reference link and there is no need in labeling it. On the other hand,
if the divergence to all existing reference links is large, we expect that the
information gained by labeling the link candidate is not yet contained in the
set of reference links.

Based on the Jensen-Shannon divergence, we propose the query-by-
divergence strategy:

Definition 4.4 (Query-By-Divergence) We define query-by-divergence

4.2. THE ACTIVEGENLINK ALGORITHM 113

as the strategy that selects the unlabeled link candidate that has the maxi-
mum divergence from any existing reference link:

x∗I = argmax
u∈U

argmin
r∈R

DJS(PC(u)||(PC(r))

We now take a closer look at how the result of the query-by-divergence
strategy is computed: At first, the Jensen-Shannon divergence is used to
determine the distance of each unlabeled link to every reference link. For
each unlabeled link, the inner argmin expression selects the divergence from
the closest reference link. By that we get a list of all unlabeled links together
with a divergence value for each link. From this list, the outer argmax
expression selects the unlabeled link for which the highest divergence has
been found.

Accounting for Suboptimal Committee

Both the query-by-vote-entropy as well as the proposed query-by-divergence
are based on the committee voting of the entire committee. When active
learning is used together with genetic algorithms, the committee is built from
the members of the evolved population. The population typically contains
suboptimal linkage rules that do not cover all existing reference links. For
instance, if a data set about movies is deduplicated, the population may
contain linkage rules that solely compare by the movie titles. While these
linkage rules may cover most reference links, they do not fulfill reference
links which relate movies that have the same title, but have been released in
different years. By allowing linkage rules to vote that only cover a subset of
the reference links, they distort the final voting result.

We account for the suboptimal committee by introducing a modified ver-
sion of the committee voting which is based on 3 factors:

• An unlabeled pool U .

• A reference link set R, which is divided into positive reference links R+

and negative reference links R−.

• A committee of linkage rules C. The committee is formed by all linkage
rules in the current population.

We now define the subset of the committee which is fulfilled by a specific
reference link:

114 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Definition 4.5 (Restricted Committee) Give a reference link r, we de-
fine the subset of the committee that fulfills r as:

C(r) =

{
{l ∈ C|l(r) > θ} if r ∈ R+

{l ∈ C|l(r) < θ} if r ∈ R−

, where θ is the global threshold and l a linkage rule in the committee C.

We define the restricted committee voting similarly to the committee vot-
ing PC(l), which we already defined for the query-by-vote-entropy strategy:

Definition 4.6 (Restricted Committee Voting) Given a link u and a
reference link r, the restricted committee voting is defined as:

P̄C(u, r) =

∑
c∈C(r) Pc(u)

|C(r)|

The idea of the restricted committee voting is that only linkage rules
which fulfill a specific reference link are allowed to vote.

Combined Strategy

Based on the query-by-divergence strategy and the restricted committee vot-
ing, we can now define the query strategy used by the ActiveGenLink algo-
rithm.

Definition 4.7 (Proposed Query Strategy) The proposed query strat-
egy selects the unlabeled link candidate that has the maximum divergence
from any existing reference link:

x∗I = argmax
u∈U

argmin
r∈R

DJS(P̄C(u, r)||(P̄C(r, r))

When assessing the divergence between a unlabeled link candidate and
a reference link, using the previously defined restricted committee voting
guarantees that only linkage rules that fulfill the given reference link are
allowed to vote. Thus, if a linkage rule from the population does not fulfill a
specific reference link, it does not distort the computation of the divergence
from that particular reference link.

4.2. THE ACTIVEGENLINK ALGORITHM 115

4.2.2 Building the Unlabeled Pool

The overall goal of the active learning algorithm is to create a linkage rule
that is able to label all possible entity pairs as matches or non-matches with
high confidence. The number of possible entity pairs can be very high for
large data sets and usually far exceeds the number of actual matches. For
this reason, we use an indexing approach to build a sample that does not
include definitive non-matches.

Given two data sets A and B, the initial unlabeled pool U ⊂ A × B is
built according to the following sampling process: The sampling starts by
querying for all entities in both data sets. Instead of retrieving all entities at
once, a stream of entities is generated for each data set. For each property
in the streamed entities, all values are indexed according to the following
scheme:

(1) All values are normalized by removing all punctuation and converting
all characters to lower case.

(2) The normalized values are tokenized into words.

(3) A set of indices is assigned to each token. The indices are generated so
that tokens within an edit distance of 1 share at least one index. The
MultiBlock blocking algorithm is used to generate the index. Multi-
Block will be described in detail in Section 5.3.

(4) The indices of all tokens of a value are merged. If in total more than five
indices have been assigned to a value, 5 indices are randomly selected
while discarding the remaining indices.

After the index has been generated, all pairs of entities that have been
assigned the same index are added to the unlabeled pool until a configured
maximum size is reached. Figure 4.6 illustrates the sampling of a single
property.

Figure 4.6: Sampling of entities by label

116 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

4.3 Previous Work on Active Learning

Section 3.4 already discussed related work in supervised learning of linkage
rules as well as on unsupervised entity matching. The field of related work
that applies active learning to entity matching is significantly smaller. In this
section, we describe previous active learning approaches for learning linear
and threshold-based boolean classifiers as well as active learning approaches
that employ genetic programming. We close this section by discussing the
introduced approaches and comparing them to the ActiveGenLink algorithm
that is proposed in this thesis.

4.3.1 Linear and Threshold-based Boolean Classifiers

Active Atlas

Active Atlas [Tejada et al., 2001] is an entity matching system that integrates
supervised and active learning techniques. The supervised learning algorithm
that is provided by Active Atlas has been introduced in Section 3.4.2. In ad-
dition, Active Atlas integrates an active learning technique for generating
linkage rules based on decision trees. Active Atlas uses the query strategy
that selects link candidates based on the disagreement of a committee. As
Active Atlas learns a single linkage rule at once, the committee is created by
using the bagging technique [Breiman, 1996] to generate multiple versions
of the current linkage rule. The active learning algorithm that is integrated
into Active Atlas has been evaluated on the same data sets as the supervised
variant, as described in Section 3.4.2. The evaluation of the active learning
algorithm shows that the active learning version of Active Atlas needs signif-
icantly fewer reference links in order to achieve similar or better results than
the chosen baseline.

ALIAS

ALIAS [Sarawagi and Bhamidipaty, 2002] is an active learning algorithm that
can be used together with various supervised machine learning algorithms for
generating linkage rules. ALIAS has been evaluated with three supervised
learning algorithms:

(1) Naive Bayes classifiers as implemented inMLC++ [Kohavi et al., 1994].

(2) The C4.5 algorithm for learning decision trees [Quinlan, 1993].

(3) The SVMTorch algorithm for learning support vector machines [Col-
lobert and Bengio, 2001].

4.3. PREVIOUS WORK ON ACTIVE LEARNING 117

For each of the chosen supervised learning algorithms, ALIAS has been eval-
uated on two data sets: A data set that contains citations from CiteSeer
[Giles et al., 1998] and an address data set that has been provided by a tele-
phone company. Figure 4.7 shows an example of a decision tree that has
been learned by ALIAS for the bibliographic data set.

Figure 4.7: Example of a decision tree that has been learned by ALIAS for
a bibliographic data set (adapted from [Sarawagi and Bhamidipaty, 2002]).

The evaluation results show that while decision trees outperform sup-
port vector machines on both data sets when only a few reference links are
available, support vector machines outperform decision trees from the point
the user labeled about 10 to 30 link candidates. Naive Bayes classifiers are
outperformed by both decision trees and support vector machines.

When comparing the results with a random baseline (i.e., the query strat-
egy selects random examples from the unlabeled pool for labeling), ALIAS
managed to achieve the peak F-measure of 97% for the bibliographic data set
and 98% for the address data set after labeling less than 100 link candidates,
while the random baseline only achieved less than 50% on both data sets
after labeling the same number of link candidates.

Arasu et al.

Arasu et al. [2010] propose a scalable active learning algorithm for entity
matching by introducing the assumption of monotonicity of precision. While
they show that their algorithm can scale to large data sets, it is only able
to learn simple linear or boolean classifiers. The proposed active learning
algorithm has been evaluated on two use cases:

(1) Matching two data sets, both containing 106 entities that describe com-
panies.

(2) Matching a set of 105 citations with another set of 106 citations.

118 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

The origin of the data sets is not specified. In addition to evaluating their
proposed approach, Arasu et al. also conduct a comparison with Active Atlas
and ALIAS. On the evaluation data sets, the proposed approach achieved the
peak F-measure after labeling about 100 link candidates and outperformed
both Active Atlas and ALIAS. The time needed by the query strategy to se-
lect a link candidate for labeling is reported as less than a second on average.

RAVEN

RAVEN [Ngonga Ngomo et al., 2011] is an algorithm for active learning of
linear or boolean linkage rules that is specifically targeted at RDF data sets.
RAVEN has been evaluated on three use cases:

(1) Matching diseases from DBpedia and Diseasome2.

(2) Matching drugs from Sider3 and DrugBank4.

(3) Matching side-effects from Sider and Diseasome.

For each use case, the links that are generated by a manually written linkage
rule have been used as reference links. The corresponding linkage rules are
not provided in the paper. On the evaluation data sets, RAVEN was able to
generate linkage rules that achieve an F-measure of over 90% after the user
labeled 4 to 12 link candidates.

4.3.2 Genetic Programming

Freitas et al.

Freitas et al. [de Freitas et al., 2010] present an approach that combines
genetic programming and active learning for learning linkage rules for entity
matching. Their algorithm is based on the supervised genetic programming
algorithm proposed by de Carvalho et al. [2012] as described in Section 3.4.
In order to choose linkage candidates for labeling, it uses a query strategy
that is based on the disagreement of the committee members. Similar to the
query-by-vote-entropy strategy discussed earlier, the query strategy selects
the link candidate for which the committee is the most uncertain.

Freitas et al. evaluated their active learning algorithm on three data sets:

• A synthetic data set that contains person data.

2http://wifo5-03.informatik.uni-mannheim.de/diseasome/
3http://wifo5-03.informatik.uni-mannheim.de/sider/
4http://wifo5-03.informatik.uni-mannheim.de/drugbank/

http://wifo5-03.informatik.uni-mannheim.de/diseasome/
http://wifo5-03.informatik.uni-mannheim.de/sider/
http://wifo5-03.informatik.uni-mannheim.de/drugbank/

4.3. PREVIOUS WORK ON ACTIVE LEARNING 119

• The data set that contains citations from CiteSeer that also has been
used by ALIAS for evaluation.

• The Restaurant data set that has been used for evaluation of a number
of supervised approaches. The Restaurant data set has been described
in detail in Section 3.5.1.

On all three evaluation data sets, Freitas et al. showed that their proposed
algorithm outperforms ALIAS and achieves similar F-measures than the cor-
responding supervised approach by Carhalho et al. when labeling at most
170 link candidates.

EAGLE

EAGLE [Ngonga Ngomo and Lyko, 2012] is another approach that applies
genetic programming and active learning to the problem of learning linkage
rules interactively. EAGLE learns linkage rules that are represented as a tree,
which allows it to learn rules with a similar complexity as ActiveGenLink,
but does not support transformations. Similar to the previously introduced
approach by Freitas et al., EAGLE uses a query strategy that is based on
the disagreement of the linkage rules in the population.

EAGLE has been evaluated on three data sets:

• Interlinking drugs in Dailymed5 and DrugBank6.

• Interlinking movies in DBpedia and LinkedMDB7.

• Interlinking publications from ACM and DBLP [Köpcke et al., 2010].

On the drugs data set, EAGLE achieved an F-measure of 99.9% after labeling
10 link candidates. On the movie data set, EAGLE achieved an F-measure
of 94.1% after labeling 50 link candidates. On the ACM-DBLP data set,
EAGLE compared the achieved results with two other systems: FEBRL and
MARLIN. While FEBRL and MARLIN outperform EAGLE slightly in F-
measure, the runtime performance of EAGLE is significantly higher.

4.3.3 Discussion

In the following, we will discuss various aspects of the previously introduced
active learning algorithms. For each algorithm, we will discuss the used

5http://wifo5-03.informatik.uni-mannheim.de/dailymed/
6http://wifo5-03.informatik.uni-mannheim.de/drugbank/
7http://www.linkedmdb.org

http://wifo5-03.informatik.uni-mannheim.de/dailymed/
http://wifo5-03.informatik.uni-mannheim.de/drugbank/
http://www.linkedmdb.org

120 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

query strategy, enumerate the learned features of the linkage rules, and state
the classifier that is used to carry out the match decision. In each part,
we will discuss how the presented active learning algorithms compare to
ActiveGenLink.

Query Strategy

With the exception of the approach by Arasu et al., all previously introduced
active learning approaches employ a query strategy closely based on either
uncertainty sampling or the query-by-vote-entropy strategy as introduced in
Section 4.1.1.

ActiveAtlas, ALIAS, Freitas et al., EAGLE: The query strategies used
in ActiveAtlas, ALIAS, the approach by Freitas et al., and EAGLE se-
lect the link candidate for which a committee of candidate linkage rules
disagree the most similar to the query-by-vote-entropy strategy. They
only differ in the method that is used to build the committee: Be-
cause Active Atlas and ALIAS learn a single linkage rule instead of a
population of linkage rules, they create a committee by generating mul-
tiple different versions of the currently learned linkage rule. For this
purpose, Active Atlas employs the bagging technique [Breiman, 1996],
while ALIAS uses parameter randomization [Seung et al., 1992]. For
the genetic programming algorithms EAGLE and the one proposed by
Freitas et al., the current population of linkage rules, which has been
evolved by the genetic programming algorithm, serves as committee.

RAVEN: In order to choose a linkage candidate for labeling, RAVEN uses
uncertainty sampling: The linkage candidate for which the current link-
age rule is the least certain (i.e., the predicted probability that the given
link candidate is a true link is close to 50%) and which has not been
labeled already, is chosen by the query strategy.

Arasu et al.: Arasu et al. is the only introduced method that uses a novel
query strategy that has not been proposed in literature before. The pro-
posed query strategy assumes that a similarity space (i.e., each dimen-
sion specifies the similarity according to a specific property) is given.
The goal is to identify a similarity threshold for each dimension of the
similarity space. The assumption of the query strategy is that whenever
a similarity threshold is increased, the precision of the classifier over
the similarity space is increased as well. Based on this assumption, the
query strategy is capable of efficiently selecting link candidates. The
downside of the proposed query strategy is that it is only capable of

4.3. PREVIOUS WORK ON ACTIVE LEARNING 121

learning a set of learning linear classifiers or threshold-based boolean
classifiers without transformations.

ActiveGenLink uses a novel query strategy that aims at distributing the
link candidates that are selected for labeling uniformly across the version
space by selecting link candidates that exhibit a maximum divergence from
any existing reference link. In Section 4.4.4 we will show that the query
strategy that is used by ActiveGenLink outperforms query-by-vote-entropy
on the evaluation data sets.

Learned Features

In the following, we compare which parts a linkage rule are learned by the
introduced approaches and which parts have to be specified manually by the
user.

Active Atlas, ALIAS, Arasu et al.: Active Atlas, ALIAS, and the ap-
proach by Arasu et al. require the user to specify comparisons pairs
that consist of two parts: The property that is to be compared and
the distance measure that is used to compare values of the specified
property. As a single property is specified instead of a pair of prop-
erties, these approaches also require that the schema of the matched
data sets is normalized when finding intra-source duplicates between
sets entities.

Freitas et al.: The approach by Freitas et al. includes an automatic feature
selection that chooses comparisons pairs, consisting of a property and
a distance measure, automatically.

RAVEN, EAGLE: RAVEN and EAGLE use a property matching algo-
rithm that finds pairs of matching properties that are later used by the
learning algorithm for building the linkage rule. RAVEN does not learn
appropriate distance measures, but instead always uses the n-gram dis-
tance measure on properties with string values and a numeric distance
measure for properties that carry numeric values. EAGLE does in-
clude the distance measures into the linkage rule representation and by
that enables the genetic programming algorithm to learn appropriate
distance measures for each compared property.

None of the introduced active learning algorithms learns chains of trans-
formations for normalization of the property values that are to be compared.
Active Atlas allows the user to include a list of manually defined transfor-
mations, but does not build chains of transformations by itself.

122 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

ActiveGenLink includes the definition of discriminative properties for
comparison, the construction of chains of data transformations and the se-
lection of appropriate distance measures into the linage rule representation.
ActiveGenLink is the only algorithm that supports learning linkage rules that
include chains of data transformations to normalize values prior to compari-
son.

Supported Classifiers

Active Atlas supports learning threshold-based boolean classifiers ALIAS,
the approach by Arasu et al., and RAVEN support learning linear classifiers
as well as learning threshold-based boolean classifiers. The genetic program-
ming approaches EAGLE, the approach by Freitas et al., and ActiveGenLink
use an expressive linkage rule representation that enables them to generate
linkage rules that combine comparisons non-linearly beyond pure threshold-
based boolean classifiers.

4.4 Evaluation and Discussion

In this section, we evaluate ActiveGenLink experimentally: Section 4.4.1 will
describe our experimental setup. Section 4.4.2 will evaluate if by labeling a
small number of links, the proposed active learning algorithm is capable of
learning linkage rules with a similar accuracy than the supervised learning
algorithm GenLink on all available reference links. As in contrast to the
supervised learning algorithm, the active learning needs to take all unlabeled
data into account in order to generate the queries, we evaluated the scalability
of the active learning algorithm in Section 4.4.3. Finally in Section 4.4.4, we
will evaluate the contribution of the proposed query strategy compared to
the query-by-vote-entropy strategy.

4.4.1 Experiment Setup

For evaluation of ActiveGenLink, we used the identical six data sets as we
used to evaluate the supervised GenLink algorithm. Section 3.5.1 already
introduced all six evaluation data sets.

Each experiment has been executed by loading all entities in the corre-
sponding data set, but no reference links, and running ActiveGenLink on the
loaded entities. Instead of using a human annotator, the link candidates that
have been selected by the query strategy have been automatically labeled as
correct if the link candidate has been found in the positive reference links

4.4. EVALUATION AND DISCUSSION 123

and as incorrect otherwise. The positive reference links for each data set are
complete, i.e., for each pair of matching entities there is a positive reference
link. Each time a link has been labeled and after the approach updated the
learned linkage rule, we evaluated the performance of the learned linkage rule
using the complete set of reference links. We executed all experiments until
either the learned linkage rule fully covered all reference links or 50 iterations
have been reached. For each experiment we also compared the final perfor-
mance to the performance of the supervised learning approach when being
trained on the complete set of reference links.

Each experiment has been run 10 times, averaging the final results. All
experiments have been run on a 3GHz Intel(R) Core i7 CPU with four cores
while the Java heap space has been restricted to 1GB.

Table 4.1 lists the parameters that have been used in all experiments for
the active learning algorithm. It also lists the parameters that have been
used for the genetic programming algorithm.

Parameter Value

Unlabeled pool size |U| 10,000
Maximum links to be labeled 50

Population size 500
Max. iterations per labeled link 25
Selection method Tournament selection
Tournament size 5
Probability of crossover 75%
Probability of mutation 25%
Stop condition F-measure = 1.0
Penalty factor 0.05

Table 4.1: ActiveGenLink Parameters

4.4.2 Comparison with Supervised Learning

In this section, we evaluate the performance of the ActiveGenLink approach
on the same data sets as have been used to evaluate the supervised GenLink
algorithm. We show that by labeling a small number of links, ActiveGenLink
achieves a comparable performance as GenLink on the complete reference link
set.

Note that the interpretation of the training F-measure is different for the
supervised and the active learning evaluation: In the supervised evaluation
in each run all available reference links have been split into a training set

124 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

and a equal-sized test set for the cross validation. Thus, the training F-
measure denotes the performance on the training set on which the algorithm
has been trained on while the test F-measure denotes the performance on the
test set. In the active learning evaluation, the training F-measure denotes
the performance on the links that have been labeled so far. Here, the test
F-measure denotes the performance on the complete reference link set.

Ontology Alignment Evaluation Initiative

We evaluated the performance of the ActiveGenLink algorithm on the OAEI
data sets in detail. Note that, as the OAEI only compares unsupervised sys-
tems and does not consider systems that are supplied with existing reference
links, ActiveGenLink has an advantage over the participating systems. For
that reason, we used the official OAEI results merely as a baseline for our
approach and evaluated the number of links that had to be labeled in order
to outperform the participating unsupervised systems.

Table 4.2 summarizes the active learning results for the SiderDrugBank
data set. After labeling two links, the test F-measure outperforms the un-

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 4.7 (1.1) 1.000 (0.000) 0.393 (0.091)
2 7.5 (1.7) 1.000 (0.000) 0.484 (0.136)
3 10.7 (2.5) 1.000 (0.000) 0.714 (0.130)
4 15.4 (4.6) 1.000 (0.000) 0.725 (0.141)
5 20.8 (7.4) 1.000 (0.000) 0.725 (0.141)
10 68.4 (2.1) 1.000 (0.000) 0.793 (0.073)
15 117.8 (7.5) 1.000 (0.000) 0.947 (0.006)
20 189.9 (5.7) 1.000 (0.000) 0.962 (0.024)
25 240.1 (13.5) 1.000 (0.000) 0.962 (0.024)
30 308.0 (40.3) 1.000 (0.000) 0.971 (0.011)

GL 301.5 (39.0) 0.972 (0.006) 0.970 (0.007)

Reference System F1

ObjectCoref 0.464 [Hu et al., 2010]
RiMOM 0.504 [Wang et al., 2010]

Table 4.2: Results for the SiderDrugBank data set. The GL row contains the
F-measure that is achieved by the supervised algorithm on the entire set of
reference links. The results of the participants of the OAEI 2010 challenge
are included for comparison.

4.4. EVALUATION AND DISCUSSION 125

supervised ObjectCoref system and after labeling a third link the F-measure
already outperforms the RiMOM system. About 30 links had to be labeled
until a linkage rule could be learned that achieved a similar F-measure than
the ones learned by GenLink by using all 1718 reference links.

The time column states the time in seconds that was needed to execute
both the query strategy that selects the link candidates to be labeled and the
learning of the linkage rules according to the updated reference links. The
time needed to confirm or decline the link candidates is not included.

In order to get a better idea on how the learned linkage rule evolves during
the iterations, we illustrate one active learning run by showing three linkage
rules that have been learned after different number of iterations: Figure 4.8
shows a learned linkage rule after 10 links have been labeled, Figure 4.9 after
labeling 20 links and finally Figure 4.10 after labeling 30 links. The first

Figure 4.8: Example of a learned linkage rule after labeling 10 links.

linkage rule is very simple and only consists of one comparison of the drug
names in both data sets. By looking at the two subsequent linkage rules, we
can see that this specific comparison, with minor modifications, was carried
through all learned linkage rules. The second linkage rule introduces a second
comparison with the brand name of the drug in DrugBank. This comparison
is also carried over to the third linkage rule, which adds a third comparison
that compares the PubChem Compound Identifiers, which identify unique
chemical structures.

Table 4.3 summarizes the active learning results for the NewYorkTimes
data set. AgreementMaker and SEREMI have been outperformed after la-
beling four links. 30 links had to be labeled in order to outperform the

126 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Figure 4.9: Example of a learned linkage rule after labeling 20 links.

Zhishi.links system after an F-measure of 90% has been reached by labeling
25 links. The NewYorkTimes data set is the only data set in which the max-
imum number of 50 links was not sufficient to achieve the same F-measure
as GenLink achieved on the full reference link set.

Frequently Used Record Linkage Data sets

Table 4.4 summarizes the active learning results for the Cora data set. The
results show that after labeling five links, the learned linkage rules already
achieves a F-measure of over 90% on the complete reference link set. After
labeling 40 links, the active learning algorithm achieves similar results as the
supervised learning algorithm on all 3234 reference links.

Table 4.5 summarizes the active learning results for the Restaurant data
set. The results show that labeling nine links was sufficient to achieve the
same performance as GenLink on all reference links.

Comparison With Manually Created Linkage Rules

Table 4.6 summarizes the active learning results for the LinkedMDB data set.
The results show that the active learning algorithm achieves an F-measure

4.4. EVALUATION AND DISCUSSION 127

Figure 4.10: Example of a learned linkage rule after labeling 30 links.

of over 90% by labeling five links. After labeling 15 links the learned linkage
rules almost reached an F-measure of 100%.

Table 4.7 summarizes the active learning results for the DBpediaDrug-
Bank data set. The results show that the active learning algorithm achieves
an F-measure of over 90% by labeling 10 links. After labeling 50 links the
learned linkage rules achieve the same performance as the supervised algo-
rithm on all reference links.

4.4.3 Scalability

In this experiment we show that ActiveGenLink is able to scale to large
data sets. For evaluation we use the example of learning a linkage rule
for interlinking settlements in DBpedia and LinkedGeoData8 [Stadler et al.,
2011]. At the time of writing, DBpedia contains 323,257 settlements while
LinkedGeoData contains 560,123 settlements. The execution of the learned
linkage rules generates over 70,000 links. While, in the case of passive learning
the learning algorithm only needs to take the provided reference links into

8http://linkedgeodata.org/

128 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 7.9 (27.8) 0.500 (0.500) 0.480 (0.128)
2 11.8 (69.5) 1.000 (0.000) 0.501 (0.107)
3 21.1 (159.3) 1.000 (0.000) 0.694 (0.112)
4 29.4 (227.5) 1.000 (0.000) 0.791 (0.023)
5 39.2 (322.1) 1.000 (0.000) 0.727 (0.087)
10 69.7 (563.4) 0.967 (0.033) 0.814 (0.000)
15 104.5 (778.2) 0.978 (0.022) 0.845 (0.035)
20 151.6 (1025.3) 1.000 (0.000) 0.850 (0.037)
25 216.0 (1247.7) 0.989 (0.011) 0.901 (0.087)
30 370.5 (1524.0) 0.958 (0.000) 0.923 (0.125)
35 1046.5 (6080.1) 0.990 (0.010) 0.929 (0.128)
40 1514.3 (5768.6) 0.992 (0.017) 0.931 (0.081)
50 2803.2 (8492.2) 0.993 (0.016) 0.931 (0.080)

GL 975.4 (141.1) 0.977 (0.024) 0.974 (0.026)

Reference System F1 [Euzenat et al., 2011a]

AgreementMaker 0.69
SEREMI 0.68
Zhishi.links 0.92

Table 4.3: Results for the NewYorkTimes data set. The GL row contains the
F-measure that is achieved by the supervised algorithm on the entire set of
reference links. The results of the participants of the OAEI 2011 challenge
are included for comparison.

account, active learning also needs to take the pool of unlabeled data into
account in order to generate the queries. As the unlabeled data consists of
the complete Cartesian product, which in this example amounts to over 180
billion pairs, the active learning algorithm clearly cannot work on the whole
set. For this reason, this experiment evaluates if the sampling algorithm
managed to build a reduced unlabeled pool that is still representative enough
to cover the relevant cases. In order to evaluate the learned linkage rules we
used a manually collected set of 100 positive and 100 negative reference links.
Special care has been taken to include rare corner cases, such as for example
cities that share the same name but do not represent the same city, and
different cities that are located very closely to each other.

4.4. EVALUATION AND DISCUSSION 129

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 2.2 (0.6) 0.500 (0.500) 0.700 (0.023)
2 3.5 (0.1) 0.500 (0.500) 0.840 (0.010)
3 5.1 (0.2) 1.000 (0.000) 0.849 (0.083)
4 8.1 (1.3) 1.000 (0.000) 0.886 (0.065)
5 12.0 (1.2) 1.000 (0.000) 0.916 (0.018)
10 72.2 (3.5) 1.000 (0.000 0.925 (0.053)
15 154.4 (4.6) 1.000 (0.000) 0.932 (0.038)
20 262.3 (11.3) 1.000 (0.000) 0.946 (0.019)
25 375.5 (3.8) 1.000 (0.000) 0.960 (0.009)
30 492.5 (15.7) 1.000 (0.000) 0.960 (0.010)
35 834.6 (184.6) 0.991 (0.009) 0.960 (0.010)
40 1099.4 (326.9) 1.000 (0.000) 0.964 (0.003)

GL 185.8 (26.7) 0.969 (0.003) 0.966 (0.004)

Table 4.4: Results for the Cora data set. The last row contains the results
of the supervised algorithm.

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 1.2 (0.4) 1.000 (0.000) 0.489 (0.037)
2 1.5 (0.5) 1.000 (0.000) 0.637 (0.111)
3 2.2 (0.1) 1.000 (0.000) 0.776 (0.075)
4 2.6 (0.1) 1.000 (0.000) 0.778 (0.029)
5 3.4 (0.1) 1.000 (0.000) 0.761 (0.035)
6 4.2 (0.5) 1.000 (0.000) 0.870 (0.075)
7 5.0 (0.2) 1.000 (0.000) 0.932 (0.059)
8 5.6 (0.2) 1.000 (0.000) 0.935 (0.061)
9 6.2 (0.0) 1.000 (0.000) 0.993 (0.002)
10 6.8 (0.0) 1.000 (0.000) 0.993 (0.003)

GL 6.3 (5.3) 0.996 (0.004) 0.993 (0.006)

Table 4.5: Results for the Restaurant data set. The last row contains the
results of the supervised algorithm.

Passive Learning

Table 4.8 summarizes the cross validation results. In all runs, an F-measure
of 100% has been reached before the 25th iteration.

130 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 2.3 (0.9) 0.500 (0.500) 0.643 (0.151)
2 3.3 (1.0) 1.000 (0.000) 0.706 (0.122)
3 4.3 (1.0) 1.000 (0.000) 0.815 (0.100)
4 6.7 (2.4) 1.000 (0.000) 0.818 (0.065)
5 7.9 (2.5) 1.000 (0.000) 0.911 (0.020)
10 26.9 (12.1) 0.955 (0.045) 0.987 (0.013)
15 40.1 (19.0) 1.000 (0.000) 0.999 (0.002)

GL 99.7 (12.8) 1.000 (0.000) 0.999 (0.002)

Table 4.6: Results for the LinkedMDB data set. The last row contains the
results of the supervised algorithm

Iter. Time in s (σ) Train. F1 (σ) Test F1 (σ)

1 23.4 (3.3) 1.000 (0.000) 0.740 (0.124)
2 38.0 (8.4) 1.000 (0.000) 0.748 (0.118)
3 52.0 (12.6) 1.000 (0.000) 0.646 (0.017)
4 85.3 (29.7) 1.000 (0.000) 0.797 (0.134)
5 101.3 (32.7) 1.000 (0.000) 0.813 (0.150)
10 250.9 (56.1) 1.000 (0.000) 0.945 (0.030)
15 522.8 (259.9) 1.000 (0.000) 0.983 (0.007)
20 700.7 (354.7) 1.000 (0.000) 0.983 (0.007)
25 2558.8 (2107.6) 1.000 (0.000) 0.984 (0.009)
30 4461.2 (3916.9) 1.000 (0.000) 0.984 (0.009)
35 6832.3 (6200.4) 1.000 (0.000) 0.986 (0.010)
40 9885.8 (9104.3) 0.993 (0.007) 0.925 (0.072)
45 14951.6 (13845.9) 0.994 (0.006) 0.989 (0.008)
50 21387.5 (19937.3) 1.000 (0.006) 0.993 (0.008)

GL 3222.2 (1577.7) 0.998 (0.001) 0.994 (0.002)

Table 4.7: Results for the DBpediaDrugBank data set. The last row contains
the results of the supervised algorithm

Active Learning

Next we evaluated if the proposed method is able to build a reference link
set interactively. We employed the same setup as used in the previous ex-
periment. Table 4.9 shows the results for each five iterations.

The runtimes only include the time needed by the algorithm itself and
not the time needed by the human to label the link candidates. It does

4.4. EVALUATION AND DISCUSSION 131

Iter. Time (σ) Train. F1 (σ) Test F1 (σ)

1 2.6s (1.0) 0.984 (0.025) 0.932 (0.059)
10 3.8s (2.1) 0.996 (0.007) 0.932 (0.059)
20 3.9s (2.3) 0.998 (0.004) 0.964 (0.032)
25 4.0s (2.4) 1.000 (0.000) 1.000 (0.000)

Table 4.8: Passive learning

Iter. Time Train. F1 Test F1

5 7.3s 1.000 (0.000) 0.982 (0.023)
10 15.6s 1.000 (0.000) 1.000 (0.000)

Table 4.9: Active learning

further not include the time needed to build the initial unlabeled pool. As
the public endpoints of DBpedia and LinkedGeoData have been used, which
offer very restricted query performance, loading the initial unlabeled pool
required about two hours.

In all three runs, the algorithm managed to learn a linkage rule with an
F-measure of 100% after the second iteration. In the first iteration, it missed
the case that two entities with the same name may in fact relate to different
cities. In the second iteration, it managed to include this rare case in the
proposed link candidates.

On average, ActiveGenLink needed about 1.5 seconds for each iteration,
which includes learning a linkage rule from the existing reference links and
selecting a link from the unlabeled pool. Thus, ActiveGenLink successfully
sampled an unlabeled pool from the original data set that was representative
of the entire data set.

4.4.4 Comparison of Different Query Strategies

In this section, we compare the performance of the proposed query strategy
with two other strategies:

• Random: Selects a random link from the unlabeled pool for labeling
(baseline).

• Entropy: Selects a link according to the query-by-vote-entropy strat-
egy.

Table 4.10 compares the test F-measure after labeling 10 links. In all

132 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Random Entropy Our Approach

Cora 0.604 (0.222) 0.841 (0.041) 0.917 (0.055)
Restaurant 0.568 (0.195) 0.888 (0.029) 0.993 (0.002)
SiderDrug. 0.309 (0.189) 0.666 (0.007) 0.795 (0.044)
NewYorkTimes 0.467 (0.174) 0.756 (0.080) 0.809 (0.039)
LinkedMDB 0.774 (0.235) 0.948 (0.035) 0.988 (0.005)
DBpediaDrug. 0.654 (0.146) 0.902 (0.076) 0.953 (0.011)

Table 4.10: Query Strategy: F-measure after 10 iterations

cases, the query-by-vote-entropy strategy as well as our proposed query strat-
egy outperformed the random baseline. Our approach outperforms the query-
by-vote-entropy strategy on all data sets. For the restaurant data set, our
approach already achieved the maximum F-measure that can be achieved
with GenLink on this data set as shown in Table 4.5.

Table 4.11 compares the test F-measure after labeling 20 links. For the

Random Entropy Our Approach

Cora 0.762 (0.176) 0.938 (0.026) 0.945 (0.024)
Restaurant 0.707 (0.185) 0.994 (0.001) 0.993 (0.001)
SiderDrug. 0.615 (0.191) 0.926 (0.035) 0.954 (0.043)
NewYorkTimes 0.543 (0.182) 0.741 (0.102) 0.859 (0.084)
LinkedMDB 0.885 (0.209) 0.973 (0.125) 0.998 (0.003)
DBpediaDrug. 0.788 (0.156) 0.973 (0.007) 0.989 (0.003)

Table 4.11: Query Strategy: F-measure after 20 iterations

restaurant data set, the query-by-vote-entropy also reaches the maximum
F-measure. For the remaining data sets, our approach outperforms query-
by-vote-entropy strategy.

4.5 Summary

In this chapter, we presented the third main contribution of this thesis: the
ActiveGenLink learning algorithm. ActiveGenLink is an algorithm for learn-
ing linkage rules interactively using active learning and genetic programming.
ActiveGenLink learns a linkage rule by asking the user to confirm or reject
a number of link candidates, which are actively selected by the algorithm.
ActiveGenLink lowers the required level of expertise as the task of generating
the linkage rule is automated by the genetic programming algorithm while the

4.5. SUMMARY 133

user only has to verify a set of link candidates. The proposed query strategy
reduces user involvement by selecting the link candidates to be verified by
the user that are the most informative. ActiveGenLink employs the GenLink
algorithm for learning linkage rules and thus is capable of learning linkage
rules with the same expressivity, i.e., it chooses which properties to compare,
it chooses appropriate distance measures, aggregation functions, and thresh-
olds, as well as data transformations, which are applied to normalize data
prior to comparison.

Within our experiments, ActiveGenLink outperformed state-of-the-art
unsupervised approaches after manually labeling a few link candidates. In
addition, ActiveGenLink usually required the user to label less than 50 link
candidates in order to generate linkage rules with the same performance per-
formance as the supervised GenLink algorithm on the entire set of reference
links. The proposed query strategy required the user to label fewer links
than the query-by-vote-entropy strategy.

134 CHAPTER 4. ACTIVE LEARNING OF LINKAGE RULES

Chapter 5

Execution of Linkage Rules

The growing number and size of available data sets demands efficient methods
for entity matching. A number of indexing methods have been proposed to
improve the efficiency of entity matching by reducing the number of required
entity comparisons by dismissing definitive non-matches prior to compari-
son [Elmagarmid et al., 2007]. Unfortunately, many indexing methods may
lead to a decrease of recall due to false dismissals [Draisbach and Naumann,
2009]. Therefore, increasing the efficiency usually represents a trade-off be-
tween reducing the execution time of the entity matching task on the one
hand and retaining the effectiveness of the entity matching task by avoiding
a significant decrease of recall on the other hand.

While the previous chapters have been concerned with algorithms for
learning linkage rules that are represented using the model that has been
introduced in Section 2.5, the practical value of the introduced linkage rule
representation also depends on the availability of efficient methods for ex-
ecuting learned linkage rules. In this chapter, we propose a data flow to
efficiently execute linkage rules using a multidimensional indexing approach
that guarantees that no false dismissals, and thus no decrease of recall, can
occur. The proposed indexing approach, is called MultiBlock and constitutes
the fourth main contribution of this thesis. The basic idea of MultiBlock is to
map entities to a multidimensional index that preserves the distances of the
entities, i.e., similar entities will be located near to each other in the index
space. While standard blocking techniques block in one dimension, Multi-
Block concurrently blocks by multiple properties using multiple dimensions.
Thereby it increases its efficiency significantly.

We further propose a distributed data flow for executing linkage rule effi-
ciently on a cluster of machines. For this purpose, we employ the MultiBlock
approach to segment the data sets into partitions, which can be executed
on remote machines. MultiBlock enables the parallel indexing of entities on

135

136 CHAPTER 5. EXECUTION OF LINKAGE RULES

different machines as it generates indices for each entity independently and
does not require any global preprocessing. In order to scale to large data
sets, we apply the MapReduce paradigm for distributing and executing the
partitions on multiple machines.

5.1 Scalability Challenges

When executing linkage rules on local or distributed system, three challenges
hinder scalability:

Quadratic Execution Time: Evaluating linkage rules for all pairs of en-
tities scales quadratically.

Parallel Execution: The increasing hardware parallelism demands data
flows that can be parallelized in order to utilize multiple computation
cores at the same time.

Memory Constraints: Data sets may exceed the size of the available mem-
ory and thus cannot be held in memory at once.

In the following paragraphs, we describe each of these challenges and state
how the proposed workflow accounts for each of them.

5.1.1 Quadratic Execution Time

The näıve solution for generating links is to evaluate the linkage rule for
all pairs of entities, creating a link for each pair that the rule classifies as a
match. The disadvantage of the näıve solution is that executing a linkage rule
scales quadratically with the number of entities in the data sets. In order to
improve the efficiency, indexing approaches have been developed, which aim
to dismiss pairs of entities that are definitive non-matches prior to evaluating
a linkage rule. Section 5.4 will provide an overview of existing approaches
for discussion. In Section 5.3, we propose the MultiBlock indexing approach
to reduce the number of required entity comparisons.

5.1.2 Parallel Execution

In addition to reducing the number of comparisons, the efficiency of entity
matching can further be improved by executing multiple comparisons con-
currently. Two approaches are commonly used for this purpose [Michael
et al., 2007]: Firstly, to scale vertically to multi-core processors (scale-up);
and secondly to scale horizontally to distributed systems (scale-out).

5.2. EXECUTION DATA FLOW 137

In order to allow parallel execution of the entity matching process, the
workflow splits the required entity comparisons into tasks that can be exe-
cuted concurrently. While this naturally enables the workflow to scale-up to
multiple cores on the same machine, in Section 5.5 we show how the proposed
workflow can also be scaled-out to distributed systems.

5.1.3 Memory Constraints

Big data sets may exceed the size of the available memory and thus cannot be
held in memory entirely for entity matching. For this reason, we distribute
entities into partitions which are stored in a file-backed cache. Each parti-
tion can be loaded separately and matched against another partition. This
reduces the size of the working set1 of the entity matching task. In addition,
it enables the distribution of partitions to other machines in a distributed
system.

5.2 Execution Data Flow

This section introduces the basic data flow that we propose to execute link-
age rules efficiently. Figure 5.1 illustrates the overall data flow of executing
a linkage rule, which will be detailed in the following paragraphs. The ex-
ecution of a linkage rule begins by retrieving all entities from the two data
sources. Each retrieved entity is indexed and written to the cache. From
the cache, pairs of entities that are potential matches are generated from the
index. For each pair, the linkage rule is evaluated and a link is generated
between each pair of entities that is found matching.

5.2.1 Indexing

Since the evaluation of the linkage rule is computationally expensive, the goal
of the indexing phase is to dismiss definitive non-matches prior to comparison.
This is achieved by assigning a set of indices to each entity by which later
phases can identify definitive non matches. We represent an index as a vector
of natural numbers, i.e., as an element from the set Nn. The overall data
flow is independent from a concrete indexing function. Given a linkage rule
l, a suitable indexing function assigns a set of indices to each entity from the

1The working set of a process is the data which must be held in memory at once for
efficient execution [Denning, 1968]

138 CHAPTER 5. EXECUTION OF LINKAGE RULES

Figure 5.1: Data Flow for executing linkage rules.

input data sets A and B2:

indexl : A ∪B → P(Nn)

A suitable indexing function further adheres to the property that entities
which are matches according to the linkage rule share at least one index:

l(e1, e2) ≥ 0.5 ⇐⇒ indexl(e1) ∩ indexl(e2) 6= ∅

given two entities e1 and e2.

2P(Nn) denotes the power set of Nn, which is the set of all subsets of Nn

5.2. EXECUTION DATA FLOW 139

In the context of this work, we propose the MultiBlock approach for
indexing. The basic idea of MultiBlock is to generate an index for each
entity with the goal of assigning the same index to entities that are potential
matches and a different index to entities that are definitive non-matches.
Section 5.3 will describe MultiBlock in detail.

5.2.2 Caching

After an entity has been retrieved and indexed it is written to a cache. Based
on their index, entities are distributed into blocks. The idea is that entities
that share the same index are written to the same block. The number of
blocks can be configured and is usually smaller than the number of possible
indices. Thus, entities with different indices might end up in the same block.
Entities are assigned a number of blocks based on the following function3:

blockl(e1, e2) = {flatten(b) mod numBlocks|b ∈ indexl(e1, e2)}

Blocks that are bigger than a configured maximum size are further split into
partitions. In our experiments, we set the maximum number of blocks to
100 and split blocks into multiple partitions if they exceeded a size of 10,000
entities. These parameters worked well for data sets of different size.

Each pair of partitions from the same block is now sent to next phase in
order to generate the comparison pairs. As pair of partitions can be held in
memory, the comparison pairs can be generated efficiently as explained in
the next section. On a distributed system a pair of partitions can also be
send to another machine for matching.

Figure 5.2 shows an example cache.

Figure 5.2: Example cache.

3flatten : Nn → N flattens an index vector into a scalar value. Every injective function
is suitable, that is, every function which preserves the distinctness of the indices.

140 CHAPTER 5. EXECUTION OF LINKAGE RULES

5.2.3 Generating Comparison Pairs

In order to generate all comparison pairs for which the linkage rule is evalu-
ated, we select all pairs of partitions from the same block. For each of these
partition pairs, a comparison pair is generated for each pair of entities which
share the same index. More formally, for a pair of partitions Pa and Pb, the
comparison pairs are generated according to:

{(ea, eb)|ia = ib, ia ∈ indexl(ea), ib ∈ indexl(eb), ea ∈ Pa, eb ∈ Pb}

These pairs are then evaluated using the linkage rule to compute the exact
similarity and determine the actual links.

Figure 5.3 illustrates how two caches are compared.

Figure 5.3: Example cache

5.2.4 Matching

The matching phase evaluates the linkage rule for each comparison pair. For
each pair of entities for which the similarity according to the linkage rule is
above a certain threshold, a link is generated.

5.2.5 Filtering

In many data sources the assumption can be made that there are no dupli-
cates inside a single data source itself, i.e., for each real-world object the data
source contains no more than one entity. In that case, generating more than

5.3. THE MULTIBLOCK INDEXING APPROACH 141

one links between two data sources that all share the same source entity but
target different entities in the other data source means that at least one link
is incorrect as the transitive closure of the links would imply that both target
entities are referring to the same real-world entity.

In order to handle case like this, a link limit can be supplied. The link
limit defines the number of links originating from a single entity. Only the n
highest-rated links per source data item will remain after the filtering. If no
limit is provided, all links per entity will be returned.

5.3 The MultiBlock Indexing Approach

The basic idea of MultiBlock is to build a multidimensional index for each
entity that preserves the distances of the entities, i.e., similar entities are
located near each other in the index space. The indexing is built based on
the linkage rule and does not need any additional configuration. MultiBlock
supports the full expressivity of the proposed linkage rule representation.
MultiBlock is organized in two phases:

(1) In the index generation phase, an index is built for each comparison.
The basic idea of the indexing method is that it preserves the distances
of the entities, i.e., similar entities will be located near each other in the
index. The specific indexing method depends on the employed similar-
ity measure. For instance, for each numeric property a one-dimensional
index is built and for each property that contains a geographic coordi-
nate a two dimensional index is built.

(2) In the index aggregation phase, all indexes are aggregated into one
multidimensional index, preserving the property of the indexing that
the indexes of two entities within a given distance share the same index.

We illustrate the indexing by looking at the example of interlinking ge-
ographical entities based on their label and geographic coordinates: In this
case, the index generation phase would generate 2 indices: A 1-dimensional
index of the labels and a 2-dimensional index of the coordinates. The in-
dex aggregation phase would than aggregate both indexes into a single 3-
dimensional index. Figure 5.4 visualizes the index generation and aggrega-
tion in this example. Note that each similarity measure may create multiple
index values for a single entity, which for simplicity is not considered in the
Figure. Figure 5.5 shows the aggregated index for 1,000 cities in DBpedia.

The next section describes each of the two phases of MultiBlock in de-
tail. The subsequent two sections will then provide an overview of various

142 CHAPTER 5. EXECUTION OF LINKAGE RULES

Figure 5.4: Aggregating a geographic and a string similarity

Figure 5.5: Index of 1,000 cities in DBpedia

distance measures and aggregations that can be used in conjunction with our
approach.

5.3.1 Data Flow

In this section, we lay down the general framework of the MultiBlock ap-
proach, which is independent of a specific similarity measure or aggregation.
At the same time, we define which properties a similarity measure or aggre-
gation must adhere to in order to be used in our approach. The subsequent
section will specify various similarity measures and aggregations that can be

5.3. THE MULTIBLOCK INDEXING APPROACH 143

plugged into the framework in order to provide a complete indexing method.
MultiBlock is organized in two phases: At first, for each distance measure,

an index is generated. Afterwards, all distance values are aggregated into a
single multidimensional index.

The indexing phases are executed following the components of the linkage
rule. Analogous to the computation of the similarity of two entities, the
index of a single entity is computed by successively applying the components
of the given linkage rule. Table 5.1 summarizes how computing the similarity
between two entities compares to computing the index of a single entity.

Phase

Step Compute Similarity Compute Index

Input Two entities A single entity
Retrieve Retrieve property paths of the given entity(s)
Transform Transform values
Compare Similarity of two values Index one value
Aggregate Aggregate similarity scores Aggregate indexes

Table 5.1: Steps involved in computing the similarity of two entities compared
to computing the index of a single entity.

Index Generation

For each similarity measure in the linkage rule, an index is built, which
consists of a set of vectors that define locations in the Euclidean space. The
basic idea of the indexing method is that it preserves the distances of the
entities, i.e., similar entities will be located near each other in the index. The
index generation is not restricted to a specific distance measure.

In order to be used for MultiBlock, for each distance measure must define
an additional indexing function. The indexing function has to be defined in
addition to the distance function been introduced in Section 2.5.

In total, for each distance measure, two functions have to be defined:

• The distance function:

fd : Φ× Φ→ R (5.1)

• While the distance function computes the distance between a pair of
values, the indexing function generates an index for a single entity:

index : Φ× [0, 1]→ P(Nn) (5.2)

144 CHAPTER 5. EXECUTION OF LINKAGE RULES

where P denotes the power set (i.e., it might generate multiple indices
for a single entity) and n is the dimension of the index. The first
argument denotes the entity to be indexed, which may be either in
the source or target set. The second argument denotes the similarity
threshold. index includes two modifications of the standard block func-
tion presented in the preliminaries. Firstly, it does not map each entity
to a one-dimensional block, but to a multi-dimensional index. This
way increases the efficiency as the entities are distributed in multiple
dimensions. Secondly, it does not map each entity to a single index,
but to multiple indices at once, similar to multi-pass blocking. This
avoids losing recall if an entity cannot be mapped to a definite index,
such as in some string similarity measures (see Section 5.3.2).

The index function must adhere to the property that two entities whose
distance according to fd is below the threshold must share a block. More
formally, given two values v1, v2 and a threshold θ, fd and index must be
related by the following equivalence:

fd(v1, v2) ≤ θ ⇐⇒ index(v1) ∩ index(v2) 6= ∅ (5.3)

Section 5.3.2 gives an overview over the most common distance measures
that can be used in MultiBlock.

Index Aggregation

In the index aggregation phase, all indexes that have been built in the index
generation phase are aggregated into one compound index. The aggregation
function preserves the property of the index that two entities within a given
distance share the same index vector. Generally, aggregating the indexes
of multiple similarity measures will lead to an increase in dimensionality,
but the concrete aggregation function depends on the specific aggregation
type. For instance, when aggregating a 2-dimensional geographic index and
an 1-dimensional string index using an average aggregation, the resulting
index will be 3-dimensional. Section 5.3.3 outlines the concrete aggregation
functions for the most common aggregation types.

In order to be used for MultiBlock, each aggregation must define the
following functions:

• A function that aggregates multiple similarity values:

fa : Rn × Nn → R (5.4)

5.3. THE MULTIBLOCK INDEXING APPROACH 145

where n is the number of operators to be aggregated. The first argu-
ment denotes the similarity values to be aggregated. As an aggrega-
tion may weight the results of the underlying operators, such as the
weighted average aggregation, the second argument denotes the weight
of the specific operator. This function has already been introduced in
Section 2.5.

• A function that aggregates multiple s:

aggIndex : P(Nn)× P(Nn)→ P(Nn) (5.5)

where P denotes the power set and n is the dimension of the index.
Note that while aggIndexa only aggregates two sets of indices at once,
it can also be used to aggregate multiple sets by calling it repeatedly.

• A function that updates the threshold of the underlying operators in
order to retain the condition that two entities within the threshold
share an index.

modifyThreshold : R× N→ R (5.6)

The first argument denotes the threshold on the aggregation. As in
the similarity aggregation function, the second argument denotes the
weight of the specific operator.

5.3.2 Indexing Distance Measures

As data sets may make use of a variety of different data types, many distance
measures have been proposed to match their values. Section 2.3 provides
an overview of the most common distance measures. In this section, we
show how various distance measures can be integrated into MultiBlock. For
each similarity measure, we specify the distance function and provide the
corresponding indexing function.

Character-Based Similarity

A number of character-based similarity measures have been developed in
literature (cf. Section 2.3.1). We now show how the Levenshtein distance
can be integrated into MultiBlock by adding an indexing function.

Given a finite alphabet Σ and two strings σ1 ∈ Σ∗ and σ2 ∈ Σ∗, we define
the distance function to compute the normalized Levenshtein distance as (cf.
Section 2.3):

fd(σ1, σ2) :=
levenshtein(σ1, σ2)

max(|σ1|, |σ2|)
(5.7)

146 CHAPTER 5. EXECUTION OF LINKAGE RULES

The basic problem of indexing string values under the presence of typo-
graphical errors is the potential loss of recall. We define a indexing function
that avoids false dismissals by indexing multiple q-Grams of the given input
string. For this purpose, we first define a function that assigns a single index
to a given q-Gram σq ∈ Σq:

indexq(σq) :=

q∑
i=0

|Σ|i · σq(i) (5.8)

indexq assigns each possible letter combination of the q-Gram to a different
block.

In order to increase the efficiency, we do not want to index all q-Grams of
a given string, but just as many needed to avoid any false dismissals. We can
make the following observation [Gravano et al., 2001b]: Given a maximum
Levenshtein distance k between two strings, they differ by at most (k · q+ 1)
q-Grams. Given a threshold θ, we can compute the maximum Levenshtein
distance as k := max(|str1|, |str2|) · (1.0 − θ). Consequently, the minimal
number of q-grams that must be indexed in order to avoid false dismissals is:

c(θ) := max(|str1|, |str2|) · (1.0− θ) · q + 1 (5.9)

By combining both functions, we can define the indexing function as:

index(σ, θ) := {indexq(σq);σq ∈ qgrams(σ)[0...c(θ)]} (5.10)

The function starts with decomposing the given string into its q-Grams. From
this set, it takes as many q-Grams as needed to avoid false dismissals and
assigns a index to each. Finally, it returns the set of all indices.

Token-Based Similarity

We now show how the Jaccard distance can be integrated into MultiBlock
by adding an indexing function. Given two token sets A and B, Section 2.3.2
already defined the Jaccard distance as:

Jaccard(A,B) = 1− |A ∩B|
|A ∪B|

(5.11)

From the definition of the Jaccard distance, we can see that it is not
necessary to index all tokens in order to avoid any false dismissals. Given a
token set A and a local distance threshold θ, the number of indices that need
to be indexed at the very least is:

c(A, θ) := d|A| ∗ θe (5.12)

5.3. THE MULTIBLOCK INDEXING APPROACH 147

This results in the final indexing function:

index(A, θ) :=

c(A,θ)⋃
i=1

{hashcode(A)} (5.13)

where hashcode is a function which returns a non-negative integer for
each token.

Numeric Similarity

For numbers in the range [min,max], we can measure the similarity of two
numbers using the normalized difference:

fd(d1, d2) :=
|d1 − d2|

dmax − dmin
where d1, d2 ∈ [dmin, dmax] (5.14)

Using standard blocking without overlapping blocks may lead to false dis-
missals. For that reason, we use overlapping blocks as proposed by [Draisbach
and Naumann, 2009]. The overlapping factor specifies to what extend the
blocks overlap. In addition to [Draisbach and Naumann, 2009]. which uses a
user-specified overlapping factor, we provide a function which computes the
maximum number of indices that does not lead to false dismissals. Using an
overlapping factor of 0.5, the maximum number of indices can be computed
with:

sizes(θ) :=
1

θ
· overlap (5.15)

Based on the index size we can define the indexing function as follows:

indexs(d, θ) :=

{0} if scaled(d) <= 0.5

{sizes(θ)− 1} if scaled(d) >= sizes(θ)− 0.5

{i(d), i(d)− 1} if scaled(d)− i(d) < overlap

{i(d), i(d) + 1} if scaled(d)− i(d) + 1 < overlap

{i(d)}

with scaled(d) := sizes(θ) ·
d− dmin
dmax

i(d) := floor(
d− dmin
dmax

)

(5.16)

Geographic Distance

Blocking geographic coordinates can be reduced to indexing numbers by
using the numeric distance functions on both the latitude and the longitude
of the coordinate, which results in 2-dimensional indices.

148 CHAPTER 5. EXECUTION OF LINKAGE RULES

5.3.3 Indexing Aggregations

In this section, we focus on the most common aggregations: Computing the
average similarity and selecting the minimum or maximum similarity value.
For each aggregation, we define the specify the similarity aggregation function
and define the index aggregation function.

Average Aggregation

The average aggregation computes the weighted arithmetic mean of all pro-
vided similarity values.

fa(v, w) :=
v0 ∗ w0 + v1 ∗ w0 + ...+ vn ∗ wn

n
(5.17)

Two indexes are combined by concatenating their index vectors:

aggIndex(A,B) := {(a1, ..., an, b1, ...bm), a ∈ A, b ∈ B} (5.18)

In order to preserve the condition that two entities within the given
threshold share an index, the local threshold of the underlying distance mea-
sures is modified according to:

modifyThreshold(θ, w) := 1− (1− θ) 1

w
(5.19)

Minimum Aggregation

The minimum aggregation selects the lowest similarity score and thus is
equivalent to the logical conjunction of the individual classifications of all
operators:

fa(v, w) := min(v0, v1, ..., vn) (5.20)

Two indexes are combined by concatenating their index vectors:

aggIndex(A,B) := {(a1, ..., an, b1, ...bm), a ∈ A, b ∈ B} (5.21)

For the minimum aggregation we can leave the threshold unchanged:

modifyThreshold(θ, w) := θ (5.22)

5.4. PREVIOUS WORK ON INDEXING 149

Maximum Aggregation

The maximum aggregation selects the highest similarity score and thus is
equivalent to the logical disjunction of the individual classifications of all
operators:

fa(v, w) := max(v0, v1, ..., vn) (5.23)

In this case, we cannot just aggregate the indices to separate dimensions
in the same way as in the minimum aggregation. The reason for this is that
if one similarity value exceeds the threshold, the remaining similarity values
may be arbitrary low while the entities are still considered as matches. For
this reason, the index vectors of all indexes are mapped into the same index
space:

aggIndex(A,B) := {(a1, ..., an), (b1, ..., bn); a ∈ A, b ∈ B} (5.24)

In case the dimensionality of the two indexes does not match, the vectors
of the lower dimensional index are expanded by setting the values in the
additional dimensions to zero.

For the maximum aggregation we can also leave the threshold unchanged:

modifyThreshold(θ, w) := θ (5.25)

5.4 Previous Work on Indexing

In entity matching [Elmagarmid et al., 2007] a number of indexing methods
to improve the efficiency by reducing the number of required comparisons
are often applied. In this section, we describe previously proposed index-
ing methods in detail and conclude with a discussion and comparison with
MultiBlock.

5.4.1 Blocking

Traditional blocking methods work by partitioning the entities into blocks
based on the value of a specific property [Baxter et al., 2003]. In the sub-
sequent comparison phase, only entities from the same block are compared
reducing the number of comparisons significantly at the cost of a loss in ac-
curacy. Especially in cases where the data is noisy as it is often the case in
Linked Data, similar entities might be assigned to different blocks and thus
not compared in the subsequent comparison phase. For instance, in a data
set about books, a possible choice for the blocking key is the publisher of

150 CHAPTER 5. EXECUTION OF LINKAGE RULES

each book. Using this key, entities that describe books with the same pub-
lisher would be assigned to the same block. This would reduce the number
of required comparisons as entities describing books from different publish-
ers would not need to be compared. On the downside, in cases when the
publisher is misspelled, the corresponding entity would not be identified as
duplicate of entities for which the publisher has been spelled correctly.

In order to further reduce the number of comparisons, multiple blocking
keys can be combined conjunctively into a composite key by concatenating
the values of multiple blocking keys. For instance, in a data set about books,
the publisher and author of each book could both be combined into a single
blocking key by concatenating both values. This reduces the number of com-
parisons as only entities that describe books that share the same publisher
and author will be compared. On the other hand, a misspelling in either
property can result in a false dismissal.

Another approach that combines multiple blocking keys is known as multi-
pass blocking [Hernández and Stolfo, 1998] Multi-pass blocking aims at re-
ducing the number of false dismissals by combining multiple blocking keys
disjunctively. In multi-pass blocking, the blocking is run several times, each
time with a different blocking key. Each run assigns a single block to the
entity resulting in multiple blocks for each entity. For instance, in a data set
about books, the publisher and author of each book could both be used as
blocking keys. Using multiple keys guarantees that even if the value of one
blocking key is misspelled, matching entities will still be found as long as the
values of other keys are spelled correctly. A disadvantage of using multi-pass
blocking is that it usually increases the number of comparisons compared to
using a single blocking key. The reason for this is that, multi-pass blocking
generates multiple blocks for each entity, i.e., one for each blocking key.

Another way of reducing the number of false dismissals is to use phonetic
encoding in order to lessen the effects of spelling errors. The idea of pho-
netic encoding is that characters or syllables that are pronounce similar are
encoded to the same value. Phonetic encoding has already been introduced
in Section 2.3.4. Their usage for blocking is detailed in Christen [2012].

5.4.2 Sorted Neighborhood

The sorted neighborhood method has been proposed in order to improve the
handling of fuzzy data [Hernández and Stolfo, 1995]. The sorted neighbor-
hood method works on the list of entities that has been sorted according
to a user-defined key. The entities that are selected for comparison are de-
termined by sliding a fixed-size window along the sorted list. Only entities
inside the window are selected for comparison. The biggest problem of the

5.4. PREVIOUS WORK ON INDEXING 151

sorted neighborhood Method lies in the choice of the window size. A small
size may miss entities if many similar entities share the same key. A big
size will lead to a decrease in efficiency. A solution for this is to adapt the
windows size while sliding through the list [Yan et al., 2007].

5.4.3 Sorted Blocks

The sorted blocks [Draisbach and Naumann, 2009] method generalizes block-
ing and sorted neighborhood in order to overcome some of their individual
disadvantages. It uses overlapping blocks and is both easy to parallelize and
more stable in the presence of noise.

5.4.4 Q-Gram Indexing

The idea of g-gram indexing is to index different permutations of the q-
grams of each value [Baxter et al., 2003]. For each value, a list of q-grams
is generated by sliding a window of the size q over the characters in the
string [Gravano et al., 2001a]. The value for q must be specified. A typical
value for q is two, in which case q-gram indexing is also referred to as bigram
indexing [Baxter et al., 2003]. For instance, bigram-indexing on the value
“clyde” results in the following q-grams list: {’cl’, ’ly’, ’yd’, ’de’}.

Given a q-gram list, all possible sub-lists of different length are generated.
In the previous example, the following sub-lists of length three would be
generated: {’ly’, ’yd’, ’de’}, {’cl’, ’yd’, ’de’}, {’cl’, ’ly’, ’de’}, {’cl’, ’ly’, ’yd’}.
Given the generated sub-lists, each list is indexed separately. By that, q-gram
indexing assigns multiple indices to each string value.

In order to limit the number of sub-lists that are generated for each value,
a user-provided threshold determines the minimum length of the sub-lists.
Given a threshold tq and a value that generates k q-grams, the minimum
length of the generated sub-lists is computed with [Christen, 2012]:

l = max(1, bk · tqc) (5.26)

Only sub-lists up to the determined minimum length are generated.

5.4.5 Canopy Clustering

Canopy clustering [McCallum et al., 2000a] is an indexing method that uses
clustering to group similar entities. The basic idea of canopy clustering is
the following: Given a linkage rule that is potentially expensive to compute,
in order to use canopy clustering an additional cheap distance measure that

152 CHAPTER 5. EXECUTION OF LINKAGE RULES

can be computed faster than the original linkage rule needs to be defined.
By using the cheap distance, all entities are grouped into overlapping clus-
ters. After clustering is done, only entities from the same cluster need to
be compared with the linkage rule. A common choice for the cheap distance
measure that is used for clustering is the TFIDF (term frequency - inverse
document frequency) measure [McCallum et al., 2000a; Baxter et al., 2003].

5.4.6 Metric Embedding Methods

While blocking and sorted neighborhood methods usually map the property
keys to a single dimensional index, metric embedding methods map the simi-
larity space to a multidimensional space [Hjaltason and Samet, 2003a]. The
fundamental idea of the employed mapping is to preserve the distance of the
entities, i.e., similar entities are located close to each other in the Euclidean
space. Metric embedding methods operate in two steps:

Map: All entities are mapped into a multi-dimensional space by assigning a
location in n-dimensional space to each entity, where n is specified in
advance.

Join: All pairs of entities which are located close to each other in the mapped
space are identified.

More formally, given two sets of entities A and B together with a distance
metric d : A×B → R+, a metric embedding method defines a mapping into
a k-dimensional space [Hjaltason and Samet, 2003a]:

map : A ∪B → Rk (5.27)

The essential property of the embedding space is that an efficient distance
function δ : R+ × R+ → R+ is defined. The reasoning behind the mapping
function is that the distance between each pair of entities a ∈ A and b ∈ B
is preserved through the mapping:

d(a, b) ≈ δ(map(a),map(b)) (5.28)

The amount by which a metric embedding approach diverts from the ideal
case in which the distances in the original space and the mapped space are
identical for all pairs of entities, can be measured by its distortion. The
distortion of a metric embedding approach is specified by two constant factors
c1 ≥ 1 and c2 ≥ 1 [Hjaltason and Samet, 2003a]:

1

c1
· d(a, b) ≤ δ(map(a),map(b)) ≤ c2 · d(a, b) (5.29)

5.4. PREVIOUS WORK ON INDEXING 153

A metric embedding approach for which c2 has an upper bound of 1 is called
contractive [Hjaltason and Samet, 2000] and thereby guarantees that:

δ(map(a),map(b)) ≤ d(a, b) (5.30)

Thus, a contractive embedding approach guarantees that for any given pair
of entities the distance in the mapped space is equal or smaller than the
original distance between both entities.

Estimating an upper bound for c2 is essential in order to avoid false dis-
missals. Given an upper bound c2 and a distance threshold θ, the comparison
pairs in the mapped space that are located within the threshold can be iden-
tified with:

d(a, b) ≤ θ ⇒ δ(map(a),map(b)) ≤ c2 · θ (5.31)

Thus, given a threshold θ, the comparison pairs can be identified by searching
for all entities in the mapped space that are located within a distance of c2 ·θ.

Metric embedding methods that have been proposed for entity matching
include FastMap [Faloutsos and Lin, 1995], MetricMap [Wang et al., 1999],
SparseMap [Gabriela and Martin, 1999], and StringMap [Jin et al., 2003].
Unfortunately, in general, these methods do not guarantee that no false dis-
missals will occur, with the exception of SparseMap for which a variant has
been been proposed by Hjaltason and Samet [2003a] that guarantees that
no false dismissals can occur. All of these approaches require the similarity
space to form a metric space, i.e., the similarity measure must respect the tri-
angle inequality [Hjaltason and Samet, 2003a]. This implies that they cannot
be used with non-metric similarity measures, such as Jaro-Winkler [Winkler,
1990]. A detailed comparison of FastMap, MetricMap and SparceMap can
be found in [Hjaltason and Samet, 2003a].

Another recent approach that uses the characteristics of metric spaces, in
particular the triangle inequality, to reduce the number of similarity compu-
tations, has been implemented in LIMES [Ngonga Ngomo and Auer, 2011].

5.4.7 StringMap

We now describe the general algorithm of a metric embedding method in more
detail on the example of StringMap. The StringMap algorithm is organized
in three phases:

Map: An n-dimensional space is iteratively constructed from the entities.
For each coordinate axis, StringMap chooses two pivot points by using
a heuristic to find a pair of entities that are as far apart as possible. The
position of all other entities along the axis is determined by projecting

154 CHAPTER 5. EXECUTION OF LINKAGE RULES

each entity onto the axis based on its distance to the pivot points of
that axis. Figure 5.6 illustrates the projection of an entity e onto an
coordinate axis that is spanned by two pivot points p1 and p2. This

Figure 5.6: Projection of an entity onto an axis in StringMap.

process is repeated until all n coordinate axis have been build. The
overall runtime of the mapping phase scales linear with the number
of entities. Jin et al. [2003] show that StringMap achieves its optimal
performance if n is between 15 and 25.

Determine Threshold: StringMap, as a variant of FastMap, is not con-
tractive [Hjaltason and Samet, 2000]. For this reason, the distance
between a pair of entities in the mapped space may be bigger than the
original distance between both entities. StringMap proposes a heuristic
to estimate the threshold in the mapped space that corresponds to the
original threshold. The proposed heuristic selects a random subset of
the entire set of entities and finds all pairs of entities in the chosen sub-
set that are within the original threshold. The threshold in the mapped
space is than set to the maximum distance between the found entities.
This heuristic does not guarantee that an upper bound is found for the
mapped threshold that covers all entities that are within the original
threshold.

Join: Given the mapped space together with the determined threshold, the
target is to find all pairs of mapped entities that are within the thresh-
old. In literature, a number of data structures have been proposed that
allow an efficient search for pairs of entities that are located within a
specified distance [Hjaltason and Samet, 2003b]. StringMap constructs
an R-tree for that purpose [Guttman, 1984]. All pairs of entities which
are located close to each other in the mapped space are identified by
querying the R-tee.

StringMap has been evaluated on three data sets:

5.4. PREVIOUS WORK ON INDEXING 155

(1) A set of 54,000 actor names from the IMDB movie database4.

(2) A set of 133,101 person names from the Die Vorfahren Database5.

(3) A set of 20,000 publications from DBLP6.

On the evaluation data sets, StringMap identified close to 100% of all dupli-
cates while outperforming a näıve method that compared all possible pairs.

5.4.8 Discussion

In the following we will introduce previous studies that compare the perfor-
mance of different indexing methods. After that, we will compare properties
of previous indexing methods with MultiBlock.

Performance

Draisbach and Naumann [2009] compare the performance of blocking, sorted
neighbourhood and sorted blocks on a set of 9,763 entities describing audio
records that have been extracted from freeDB7. On the evaluation data set,
sorted neighbourhood and sorted blocks generated fewer false dismissals than
blocking. In addition, sorted blocks generated slightly fewer comparison pairs
than sorted neighbourhood and significantly fewer pairs than blocking.

Baxter et al. [2003] compare the performance of four indexing methods:
blocking, sorted neighbourhood, q-gram indexing and canopy clustering. All
methods have been compared on a synthetic data set that has been gener-
ated using the DBGen Tool [Askarunisa A. et al., 2009]. On the evaluation
data set, q-gram indexing and canopy clustering outperformed blocking and
sorted neighbourhood. The evaluation also showed that the performance of
all indexing methods strongly depends on the chosen parameters. For in-
stance, the performance of blocking varies with the number of characters
that are extracted from each value in order to determine the block.

A more comprehensive comparison of different indexing methods is pro-
vided by Christen [2011]. Six different indexing methods are compared
while each indexing method is evaluated with different parameters: Block-
ing, sorted neighbourhood, q-gram indexing, canopy clustering, StringMap
and suffix-array based indexing. All indexing methods are evaluated on four

4http://www.imdb.com/
5The link provided by Jin et al. [2003] (http://feefhs.org/dpl/dv/indexdv.html)

is no longer active at time of writing.
6http://www.informatik.uni-trier.de/~ley/db/
7http://www.freedb.org/

http://www.imdb.com/
http://feefhs.org/dpl/dv/indexdv.html
http://www.informatik.uni-trier.de/~ley/db/
http://www.freedb.org/

156 CHAPTER 5. EXECUTION OF LINKAGE RULES

real data sets and two synthetic data sets. In terms of runtime performance,
blocking and sorted neighbourhood outperformed all other approaches on
average. On the opposite side, StringMap and q-gram indexing achieved the
worst runtime performance and required longer to execute than the other
methods. In terms of recall, the performance of all indexing methods varied
with the data set as well as the used parameters and thus no clear winner
could be shown. Blocking stands out as it achieved the highest F-measure
on two of the four real data sets.

An experimental comparison of the performance of MultiBlock and ex-
isting indexing methods will be presented in Section 5.6.

Properties

In the following, we compare properties of previous indexing methods with
MultiBlock. We compare three properties:

Lossless: The indexing method guarantees that no false dismissals occur.

Non-Metrics: The indexing method can be used with non-metric distance
measures.

Local: Each entity is indexed independently and thus no global processing
of the entire data set is required. Local methods can be parallelized in
a straightforward way.

Table 5.2 summarizes how MultiBlock compares to existing indexing meth-
ods. The main advantage of MultiBlock over the majority of previous ap-
proaches is that, while significantly reducing the number of comparisons,
MultiBlock guarantees that no false dismissals and thus no loss of recall can
occur and does not require the similarity space to form a metric space. In ad-
dition, it uses a multidimensional index increasing its efficiency significantly.
Another advantage of MultiBlock is that it can work on a stream of entities
as it does not require to preprocess the whole data set.

5.5 Distributed Execution of Linkage Rules

In this section, we propose a data flow for executing linkage rules on a dis-
tributed architecture.

5.5.1 Cluster Programming Models

Before we describe the proposed data flow, we discuss popular approaches
for developing distributed systems [Begoli, 2012].

5.5. DISTRIBUTED EXECUTION OF LINKAGE RULES 157

Property

Method Lossless Non-Metrics Local

Blocking no yes yes
Sorted-Neighborhood no yes no
Sorted Blocks no yes no
Q-grams no yes yes
Canopy Clustering no yes no

FastMap no no no
MetricMap no no no
SparseMap no no no
StringMap no no no
Modified SparseMap yes no no

MultiBlock yes yes yes

Table 5.2: Comparison of different blocking methods

Message Passing

In message-passing systems the processes communicate by exchanging mes-
sages. Each process that runs on the distributed system may sent a mes-
sage to another processes as well as receive messages from other processes.
Message-passing systems are typically shared nothing systems, i.e., concep-
tually the processes don’t share memory but exchange data with messages.

A well-known message-passing system is the Message Passing Interface
(MPI) [Walker and Dongarra, 1996; Snir et al., 1995]. MPI is a standard
that specifies the syntax and semantics of the interfaces for which multiple
implementations for different programming languages have been developed.

A related message-passing model for concurrent programming is the actor
model. In systems using the actor model, each actor encapsulates a specific
behaviour, which decides how that actor reacts to incoming messages. After
receiving a message, an actor modifies its behavior for future messages, which
allows state to be represented. Each actor may also create additional actors.
If an actor creates another actor, it is automatically the supervisor of this
actor. This means that if the actor offloads work to actors it created, it is
responsible for handling failures in these actors. An actor system usually
starts with a single root actor that creates new actors, which in turn may
create other actors. Thereby, actors are organized in a supervision hierarchy.

A couple of programming languages have been developed that are based
on the actor model. An example for this is the Erlang programming lan-

158 CHAPTER 5. EXECUTION OF LINKAGE RULES

guage8 [Armstrong, 2007], which has been developed in 1986. For program-
ming languages that do not support the actor model natively, such as Java,
a number of libraries have been developed. An example is Scala9, which in-
cludes support for the actor model in the standard library. Many of these
systems also allow actors to be distributed across different machines.

Besides MPI and the actor model, many other systems for message-
passing have been developed: The Common Object Request Broker Ar-
chitecture (CORBA) [Object Management Group, 2012] is a standard by
the Object Management Group10 for inter-system communication. Java
RMI [Downing, 1998] is an interface for remote method calls on the Java
Platform and is interoperable with CORBA. The Simple Object Access Pro-
tocol (SOAP) [Gudgin et al., 2007] is a W3C recommendation for exchanging
structured messages based on existing standards, such as XML and HTTP.

MapReduce

MapReduce [Dean and Ghemawat, 2004] is a data flow model for processing
large data sets on a distributed cluster of machines. A popular framework
that supports the MapReduce paradigm is Apache Hadoop11. In addition
to MapReduce, Hadoop also provides a complete framework for distributed
computing. Although, at the time of writing, Hadoop is the most widely
used framework for MapReduce, we will describe the MapReduce paradigm
in general instead of focusing on a specific MapReduce framework.

The data flow of a single MapReduce task consists of 5 steps:

Input Reader: The input reader reads the input files and splits the data
into logical segments. Each segment is sent to a separate map task for
processing.

Map: A map task receives a data segment from the input reader. The data
segment is transformed by a user-provided mapping function. For each
data segment, the mapping function returns a set of key-values pairs,
which are forwarded to the next phase.

Shuffle and Sort: All key-values pairs are grouped by key. For each unique
key, all values with the given key are transferred to a separate reduce
task. In contrast to the map and reduce phase, the shuffle and sort
phase is usually fixed and not user-defined.

8http://www.erlang.org/
9http://www.scala-lang.org/

10http://www.omg.org/
11http://hadoop.apache.org/

http://www.erlang.org/
http://www.scala-lang.org/
http://www.omg.org/
http://hadoop.apache.org/

5.5. DISTRIBUTED EXECUTION OF LINKAGE RULES 159

Reduce: A reduce task receives a key and a list of all values with the given
key. Based on that, a user-provided reduce function computes the
output.

Output Writer: Finally, the output is written to the file system. As each
reducer may be running on a separate machine, typically every reducer
generates a separate file on a distributed file system.

Note that a few simplifications have been made for illustration. For many
real-world problems, a single MapReduce task is not enough. For these cases,
multiple MapReduce tasks can be chained.

Resilient Distributed Data Sets

A recently introduced model for distributed computing are Resilient Dis-
tributed Data Sets (RDDs) [Zaharia et al., 2012]. The basic idea of RDDs is
to allow to derive new data sets from existing data sets by applying a chain
of transformations. These transformations are course-grained, i.e., they are
applied to an entire data set instead of updating individual entities in a data
set. Examples of such transformations are the map and reduce operations,
which are already known from MapReduce. However, in contrast to MapRe-
duce, RDDs are not limited to these two operations and may also define other
transformations, such as join or count operations. A derived data set can
either be recomputed on-the-fly based on the original data set from which it
is derived or it can be persisted on stable storage. RDDs that are recomputed
on-the-fly are very similar to views in databases, while persistent RDDs are
comparable to materialized views.

RDDs can be used to efficiently express other cluster programming mod-
els, such as Hadoop [Zaharia et al., 2012].

5.5.2 MapReduce Data Flow

In this section, we propose a data flow to execute a linkage rule based on the
MapReduce paradigm. We chose MapReduce over message-passing systems,
because MapReduce is simpler to apply as it provides a pre-defined data
flow and automatically distributes processing to multiple machines without
requiring manual specification of the communication between the machines.
We did not use RDDs, because RDDs are a very recent model, which, so
far, is not widely used in the software industry, while MapReduce is a well-
established model.

The overall data flow consists of three MapReduce tasks: One indexing
task for each of the two data sets and a match task. The purpose of the

160 CHAPTER 5. EXECUTION OF LINKAGE RULES

indexing tasks is to generate the MultiBlock index for each entity and to
build partitions of entities that share a similar index. The purpose of the
match task is to match pairs of partitions and to generate a link for each
matching pairs of entities. Figure 5.7 shows an overview of the overall data
flow.

Figure 5.7: Overall MapReduce Data Flow

The subsequent sections describe the indexing and matching tasks in more
detail.

Indexing

Figure 5.8 shows the steps involved in the indexing phase.

Figure 5.8: Indexing MapReduce Task

The Entity Input Reader reads all entities in a specific data set. A
map task is created for each entity.

The Index Map function computes the MultiBlock index for each entity.
After that, for each index it computes a block number. This is done by

5.5. DISTRIBUTED EXECUTION OF LINKAGE RULES 161

flatten each multidimensional index into a scalar value. Listing 5.1 shows
the pseudocode for the Index Map function. Based on the output of the

Listing 5.1: Index map function

1 function map(entity) {
2 //Compute a set of index vectors
3 entity.index ← index(entity)
4 //Compute a set of scalar indices
5 flatIndex ← flatten(entity.index)
6 //Compute output key−value pairs
7 output ← ∅
8 for(i in flatIndex) {
9 block ← i mod numBlocks

10 Add (block, entity) to output
11 }
12 return output
13 }

Index Map function, the MapReduce framework groups all entities by their
block.

The subsequent Index Reduce function receives all entities that share
the same block. All entities that share one block are segmented into partitions
of a specified maximum size. Listing 5.2 shows the pseudocode for the index
reduce function.

Finally, the Partition Output Writer writes the generated partitions
to the output.

Matching

Figure 5.9 shows the steps involved in the matching phase.

Figure 5.9: Matching MapReduce Task

The Partition Pair Input Reader iterates through all blocks and for
each block builds the Cartesian product of all pairs of partitions from this
block. A map task is created for each pair of partitions.

162 CHAPTER 5. EXECUTION OF LINKAGE RULES

Listing 5.2: Index reduce function

1 function reduce(block, entities) {
2 output ← ∅
3 partition ← ∅
4 for(entity in entities) {
5 if (size(partition) < maxPartitionSize) {
6 Add entity to partition
7 }
8 else {
9 Add partition to output

10 partition ← ∅
11 }
12 }
13 return output
14 }

The Match Map function reads the supplied pair of partitions and iter-
ates through all pairs of entities that share an index. For each pair of entities
that share an index, it evaluates the linkage rule. Listing 5.1 shows the pseu-
docode for the Match Map function. The result of the Match Map function

Listing 5.3: Match map function

1 function map(sourcePartition, targetPartition) {
2 Get pairs of entities (sourceEntity, targetEntity) from sourcePartition

↪→ and targetPartition that share an index
3 similarity ← evaluate rule for (sourceEntity, targetEntity)
4 return (sourceEntity, (targetEntity, confidence))
5 }

is a set of key-value pairs. The keys are represented by the source entities
while the values are represented by the target entities and the similarity of
both entities according to the linkage rule.

The Match Reduce function receives all target entities that share a spe-
cific source entity. For each source entity it yields a user-specified maximum
number of links. For this it selects the top-k links with the highest similarity.

Listing 5.4 shows the pseudocode for the Match Reduce function.
Finally, the Link Output Writer writes all generated links to an out-

put.

5.6. EVALUATION AND DISCUSSION 163

Listing 5.4: Match reduce function

1 function reduce(sourceEntity, targetEntitiesWithConfidences) {
2 return up to limit entities from targetEntitiesWithConfidences with the

↪→ highest confidence
3 }

5.6 Evaluation and Discussion

MultiBlock has been evaluated regarding scalability and effectiveness. This
section reports on the results of four experiments in which we used Silk with
MultiBlock to generate links between different data sets.

5.6.1 Experiment Setup

In each experiment, we computed four measurements that are usually used to
compare the experimental performance of different indexing methods [Chris-
ten, 2011, 2012; Baxter et al., 2003]:

Number of Comparisons: The number of pair comparisons that are gen-
erated by a given indexing method. The quality of the generated pairs
is not assessed, i.e., the number of comparisons also includes pairs of en-
tities that are non-matches. The reduction ratio of an indexing method
can be computed by dividing the size of the Cartesian product of all
entities by the number of comparisons that have been generated. The
number of comparisons provides an indication for the runtime of the
subsequent matching phase in which the linkage rule is evaluated for
each comparison pair.

Pair Completeness: The pair completeness is the number of matching
pairs of entities for which a comparison pair has been generated di-
vided by the number of all matching pairs including the ones not found
by the indexing method. An ideal pair completeness of 100% means
that a comparison pair has been generated for all matching pairs and
thus no loss of recall due to false dismissals will occur. Pair complete-
ness does not consider the quality of the generated comparison pairs.
For instance, generating the full Cartesian product achieves a pair com-
pleteness of 100% as all matching pairs of entities are also included in
the Cartesian product.

164 CHAPTER 5. EXECUTION OF LINKAGE RULES

Pair Quality: The pair quality is the number of comparison pairs that rep-
resent matching entities divided by the total number of generated com-
parisons. The pair quality is related to the reduction ratio. While the
reduction ratio measures the reduction in number comparisons without
considering the correctness of the generated comparisons, the pair qual-
ity only measures the reduction of comparison pairs which correspond
to matching entities.

Pair completeness is a measure of completeness, while pair quality is a mea-
sure of correctness. In that sense, pair completeness and pair quality corre-
spond to recall and precision as discussed in Section 3.5.3.

As the experiments have been carried out on different machines, the speci-
fication of the machines that have been used will be stated in each experiment
separately.

5.6.2 Comparison with Other Methods

In this experiment, we compared MultiBlock to other common indexing
methods. We used the person names data set that is included in the reference
implementation of StringMap [Li and Jin, 2010]. The reference implementa-
tion of StringMap is part of the FLAMINGO package for approximate string
matching [Behm et al., 2010]. The evaluation data set consists of two sets of
entities, each containing 2001 person names. No other properties, apart from
the names, are provided. Experiments with data sets that are matched based
on multiple properties for each entity are regarded later. This experiment
has been executed on a virtual machine that has been assigned two cores of
a four core Intel Xeon E5-2609 CPU and 8GB of RAM.

The used linkage rule compares the names of persons in both data sets.
Two person names are considered matching if their Levenshtein distance is
two or less. We compared the performance of six different configurations. A
detailed description of the compared indexing methods is available in Sec-
tion 5.4.

Blocking: Standard blocking on person names. As person names in both
data sets contain spelling errors, we used phonetic encoding to normal-
ize different spellings based on their pronunciation. We compared three
different phonetic encoding algorithms: Soundex [Russell, 1918, 1922],
the New York State Identification and Intelligence System (NYSIIS)
encoding [Taft, 1970] and Metaphone [Philips, 1990].

Sorted Blocks: For the Sorted Blocks method, all person names have been
converted to lower case and assigned a block based on their alphanu-

5.6. EVALUATION AND DISCUSSION 165

meric order. Two different overlapping factors have been evaluated:
10% and 50%.

Q-Grams: All person names have been indexing using bigram indexing. As
bigram indexing recombines the bigrams of each value into sub-lists,
the minimum length of the generated bigrams needs to be specified by
setting the minimum length threshold tq. Three different values for the
threshold tq have been tested: 0.8, 0.9, and 0.95.

StringMap: The StringMap metric embedding algorithm. As explained in
detail in Section 5.4.7, StringMap requires a separate step between the
mapping and the join phase that is used to determine the threshold
in the mapped space that corresponds to the original threshold. The
reference implementation determines the threshold by sampling a user
defined percentage of the data sets and estimating the threshold based
on the mapped distances of the sampled entity pairs. The reference
implementation uses a default sample rate 10% if no percantage is
specified by the user. However, the reference implementation runs all
tests on the included data sets using a sample rate of 50%. We eval-
uated StringMap with two different sample rates: 10% and 50%. The
dimensionality of the mapped space was set to 20 dimensions, which is
the same value as has been used in the reference implementation.

MultiBlock: The MultiBlock indexing method that is proposed in this the-
sis.

Full: Baseline with no indexing method. The linkage rule is evaluated for
the full Cartesian product of both data sets.

All evaluated indexing methods have been implemented in the Silk Link
Discovery Framework. For StringMap, we used the reference implementation
in C++ [Li and Jin, 2010], which is made available by some of the original
authors of StringMap in FLAMINGO [Behm et al., 2010].

Table 5.3 lists the evaluation results. Although the Blocking configura-
tions achieved the lowest execution times, they also generated the highest
number of false dismissals. Soundex is the only phonetic encoding to achieve
a pair completeness of over 50%, i.e., NYISS and Metaphone identified less
than 50% of all duplicates. On the upside, about 95% of all comparison pairs
that have been generated by NYISS and Metaphone denote actual duplicates.
Sorted Blocks achieves a pair completeness of almost 95% and reduces the
number of comparisons by a factor of about 10.

As also confirmed by similar studies [Christen, 2011], Q-grams indexing
achieves a poor performance for low values of the minimum length threshold.

166 CHAPTER 5. EXECUTION OF LINKAGE RULES

Method Comparisons Completeness Quality Runtime

Blocking (Soundex) 5,766 58.07% 4.49% 0.3s
Blocking (NYSIIS) 97 20.85% 95.88% 0.3s
Blocking (Metaphone) 123 26.01% 94.31% 0.3s

Sorted Blocks (10%) 317,339 94.39% 0.13% 0.9s
Sorted Blocks (50%) 446,013 94.62% 0.09% 1.1s

Q-Grams (0.8) 664 77.58% 52.11% 70.3s
Q-Grams (0.9) 225 47.76% 94.67% 2.8s
Q-Grams (0.95) 65 14.57% 100% 1.2s

StringMap (0.1) 335 61.88% 82.39% 3.2s
StringMap (0.5) 34,298 98.78% 1.27% 4.2s

MultiBlock 438,784 100% 0.10% 0.7s

Full 4,004,001 100% 0.01% 4.6s

Table 5.3: Comparison of different indexing methods.

The reason for this is that the number of generated sub-lists explodes for
values that consist of many bigrams [Christen, 2012]. Because of that, q-
grams indexing only outperformed the full method in runtime for thresholds
above 0.8. However, both configurations that outperform the full method
achieve a pair completeness below 50%, i.e., dismiss more than every second
true match. The reason for the poor pair completeness can very likely be
found in the rather noisy data set, which contains many pairs of matching
entities that differ by an edit distance of two.

With a pair completeness of 98.75%, StringMap achieves roughly the same
recall as has been reported by the original authors for this data set[Li and
Jin, 2010]. Also StringMap generated 10 times fewer comparison pairs than
MultiBlock. On the downside, StringMap is the slowest indexing method that
has been compared and almost needs as much time as the full comparison.
In the next experiment, we will analyze the performance of StringMap in
more detail.

MultiBlock outperformed all indexing methods except Blocking, but still
achieved a pair completeness of 100%. MultiBlock reduced the number of
comparison by a factor of about 10 compared to the full evaluation.

5.6. EVALUATION AND DISCUSSION 167

5.6.3 Scalability

In this experiment we evaluated, whether MultiBlock is able to scale to large
data sets. For this purpose, it is essential that MultiBlock reduces the num-
ber of comparisons drastically without dismissing correct pairs. We evaluated
the scalability of MultiBlock by applying it to interlink two geographic data
sets. We used a data set consisting of 182,660 settlements from DBpedia12

and 560,122 settlements from LinkedGeoData13. LinkedGeoData collects in-
formation from the OpenStreetMap project and makes it available as Linked
Data. This experiment has been executed on a virtual machine that has been
assigned two cores of a four core Intel Xeon E5-2609 CPU and 8GB of RAM.

We employed a linkage rule that compares settlements by their labels as
well as by their geographic coordinates. Figure 5.10 depicts the used linkage
rule.

Figure 5.10: Scalability experiment: Linkage rule for linking settlements

First, we interlinked both data sets by evaluating the complete Cartesian
product without the use of any blocking method. As this results in over 100
billion comparisons, it is a clear case when matching the complete Cartesian
product is not reasonable anymore. The link generation took over 5 days
hours and generated 104,365 links. The generated links have been spot-
checked for correctness. Two configurations have been compared to the full
method:

12http://dbpedia.org
13http://linkedgeodata.org

http://dbpedia.org
http://linkedgeodata.org

168 CHAPTER 5. EXECUTION OF LINKAGE RULES

Method Comparisons Completeness Quality Runtime

StringMap (1%) 610,495 99.68% 16.79% 30,731s
StringMap (10%) 610,324 99.97% 16.75% 41,403s
StringMap (50%) 610,494 100% 16.74% 191,308s
MultiBlock 4,023,290 100% 2.59% 595.7s
Full 102,311,884,520 100% 0.0001% 474,023s

Table 5.4: Results of scalability experiment

Method Map Determine Threshold Join

StringMap (1%) 5,792s 62s 24,877s
StringMap (10%) 5,778s 5,936s 29,689s
StringMap (50%) 5,781s 147,603s 37,924s

Table 5.5: Different phases of StringMap: Runtimes.

StringMap: The StringMap metric embedding algorithm. As this data set
is considerably larger than the previous data set, the default sampling
rate of 10% for determining the threshold needs to sample 18266 ·56012
pairs. For this reason, we evaluated a rate of 1% in addition. Although
Jin et al. [2003] propose a method how StringMap can be extended
to include multiple properties, the reference implementation that has
been used in our the experiments only considers the name property for
generating the comparison pairs.

MultiBlock: The MultiBlock indexing method.

Table 5.4 summarizes the evaluation results. The evaluation results show
that MultiBlock and StringMap with a sampling rate of 50% achieved the
full recall.

The most apparent difference between MultiBlock and StringMap is the
big difference in runtime. In order to identify the reason why StringMap
performs much worse than MultiBlock, we analyzed the runtimes of the dif-
ferent phases: A detailed description of each phase has been provided in Sec-
tion 5.4.7. The join time combines the join time of the StringMap algorithm
and the time needed to evaluate the linkage rule for all found comparison
pairs.

The runtime of the mapping phase depends on the number of dimensions
as well as the number of entities and is independent of the sampling rate
used to determine the threshold. When the sampling rate is set to 50%,
91330 · 280061 pairs of entities need to be sampled and thus one-fourth of

5.6. EVALUATION AND DISCUSSION 169

Phase Time

Build index 14 %
Generate comparison pairs 41 %
Similarity comparison 45 %

Table 5.6: The runtimes of the different phases

the entire data set. The required time of 147,603s constitutes as expected
about one-fourth of the runtime of the full method 474,023s. Choosing a
lower sampling rate significantly reduces the time needed to determine the
threshold. The join time only changes slightly as the number of generated
comparisons did not change considerable.

An apparent question is whether the runtime of StringMap could be im-
proved by extending it to use both the labels and the geographic coordinates
for mapping. In this case, the number of comparisons could be reduced by a
factor of about six at best, considering that StringMap generates about six
times more comparison pairs than necessary. However, this would not affect
the mapping time positively as it depends on the number of dimensions as
well as the number of entities. For this reason, StringMap would still be
significantly slower than MultiBlock.

On the other hand, MultiBlock was able to reduce the number of compar-
isons to 4,023,290, by indexing in three dimensions. It generated the identical
104,365 links as in the full evaluation, but ran in only 596 seconds. Multi-
Block reduced the number of comparisons by a factor of over 25,000 and is
almost 800 times faster than evaluating the complete Cartesian product.

In order to determine which phase of MultiBlock is responsible for the
complete runtime, we evaluated the runtimes of the different phases of the
matching process. As we can see in Table 5.6, a big part is spent for creating
the comparison pairs. For this reason future improvements will focus on
using a more efficient algorithm for the comparison pair generation.

5.6.4 Effectiveness

In order to be applicable to discover links between arbitrary data sources,
MultiBlock must be flexible enough to be applied even to complex data sets
without losing recall. For this purpose we employed Silk with MultiBlock to
interlink drugs in DBpedia and DrugBank. DrugBank is a large repository
of almost 5,000 FDA-approved drugs and has been published as Linked Data
on http://wifo5-03.informatik.uni-mannheim.de/drugbank/. Here it is
not sufficient to compare the drug names alone, but also necessary to take the

http://wifo5-03.informatik.uni-mannheim.de/drugbank/

170 CHAPTER 5. EXECUTION OF LINKAGE RULES

Method Comparisons Completeness Quality Runtime

MultiBlock 122,630 100% 1.14% 6s
Full 22,242,292 100% 0.0063% 430s

Table 5.7: Results of experiment 2

various unique bio-chemical identifiers, e.g., CAS number, into consideration.
Therefore, the corresponding linkage rule compares the drug names and their
synonyms as well as a list of well-known and used identifiers of which not
all have to be set on the entity. A slightly simplified version of this rule,
as already used for the evaluation of the GenLink algorithm, is shown in
Figure 3.20 on page 93. This experiment has been run on a 3GHz Intel(R)
Core i7 CPU with four cores and 8GB of RAM.

The employed linkage rule results in 1,403 links. Table 5.7 shows the
results using MultiBlock compared to the full evaluation. Using Silk with
MultiBlock, we achieved a speedup factor of 71 with full recall. The gain in
this example is smaller than in the previous one, because the data set here
is much smaller and the linkage rule is more complicated.

5.6.5 MapReduce

The MapReduce data flow for executing linkage rules on a distributed ar-
chitecture as proposed in Section 5.5 has been implemented in Silk. In the
following, we present evaluation results that have been achieved through run-
ning Silk as part of the Linked Data Integration Framework (LDIF) [Schultz
et al., 2011, 2012b]. LDIF supports a complete data integration data flow
consisting of a vocabulary translation component that translates different
data sets into a consistent schema, an identity resolution component that
uses the Silk Link Discovery Framework in order to identify duplicates and
modules for quality assessment and data fusion. All presented evaluation
results are from [Schultz et al., 2012a].

The evaluation has been carried out by integrating two life science data
sources: KEGG GENES [Ogata et al., 1999; Kanehisa et al., 2010], a set
of sequenced genomes and Uniprot [Bairoch et al., 2005], a set of protein
products derived from genes. After both data sources have been translated
to a single schema, an entity matching tasks was carried out that identifies
pairs of entities that describe that same gene. In order to identify genes,
a number of identifiers, such as the KEGG identifiers [Ogata et al., 1999],
are commonly used. For each pair of entities, the employed linkage rule
compared five different identifiers for equality. Two entities are considered

5.7. SUMMARY 171

Cluster Size Loading Time Matching Time

1 master, 8 slaves 646s 1546s
1 master, 16 slaves 421s 932s
1 master, 32 slaves 324s 580s

Table 5.8: MapReduce runtimes for different cluster sizes.

to relate to the same gene if one of the compared identifiers matches. For the
experiments, a sample of 300,000,000 RDF statements from both data sources
was used, from which the linkage rule accessed 32,211,677 RDF statements.

All experiments have been executed on Amazon Elastic MapReduce14.
The experiments have been run on Amazon EC2 c1.medium instances. Each
c1.medium instance provides five EC2 compute units, while the performance
of each compute unit is comparable to an 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor15. Each instance offers 1.7 GB of RAM.

Table 5.8 compares the runtimes of the entity matching task for differ-
ent number of machines. The purpose of the master machine is limited to
distributing the map and reduce jobs and to managing the distributed file
system. The map and reduce jobs are executed exclusively on the slave ma-
chines. Two runtimes are shown in the table: The loading time indicates the
time that LDIF needed to join all statements with the same subject into a
single entity. The matching time indicates the time needed by Silk to eval-
uate the linkage rule according to the distributed data flow that has been
described in Section 5.5.

When using 16 instead of 8 machines, the matching time is reduced to
60%. By using 32 machines, the matching time is reduced to 62% compared
to 16 machines, and to 37% of the runtime with 8 machines. In each case,
the entity matching task generated 1,084,808 links.

5.7 Summary

In this chapter, we covered methods to efficiently execute linkage rules. We
observed that efforts to increase the efficiency of executing a linkage rule
are usually aimed at reducing the number of linkage rule evaluations by
dismissing definitive non-matches prior to comparison. In the course of that,
we reviewed existing indexing methods, which have been proposed to reduce
the number of required entity comparisons.

14http://aws.amazon.com/elasticmapreduce/
15http://aws.amazon.com/ec2/instance-types/

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/ec2/instance-types/

172 CHAPTER 5. EXECUTION OF LINKAGE RULES

We proposed a novel indexing method called MultiBlock to efficiently
execute linkage rules. The proposed method uses a multidimensional index
in which similar objects are located near each other in order to improve the
efficiency beyond existing methods. We also proposed a distributed data flow
that employs MultiBlock to scale out the execution of a linkage rule by using
the MapReduce paradigm.

We evaluated both the efficiency and the effectiveness of the proposed
MultiBlock approach. Efficiency was demonstrated by showing that Multi-
Block outperforms four previously proposed indexing methods. Effective-
ness was demonstrated by showing that MultiBlock reduces the number of
comparisons significantly without any false dismissals even when used with
complex linkage rules. Finally, we demonstrated that MultiBlock can be run
using the MapReduce paradigm to scale efficiently to a cluster of machines.

While the previous chapters introduced methods to learn and execute
linkage rules, the next chapter presents the Silk Link Discovery Framework,
which implements the proposed techniques.

Chapter 6

The Silk Link Discovery
Framework

The Silk Link Discovery Framework supports users in discovering relation-
ships between entities within different data sources that are represented as
RDF. The Silk Link Discovery Framework is implemented in Scala1 and can
be downloaded from the project homepage2 under the terms of the Apache
License.

Silk provides the declarative Silk Link Specification Language for speci-
fying entity matching tasks, which include the data sources that should be
interlinked, the linkage rules used for matching, as well as the type of RDF
link that should be generated for all pairs of matching entities. The Silk
Link Specification Language supports the full expressivity of the linkage rule
representation that has been introduced in this thesis. An overview of the
Silk Link Specification Language is given in Section 6.1.

In order to address different use cases, Silk provides three applications to
execute link specifications:

Silk Single Machine supports the execution of link specifications on a sin-
gle machine. Silk Single Machine implements the execution workflow
described in Section 5.2 to execute linkage rules efficiently using mul-
tiple threads.

Silk MapReduce supports the execution of link specifications on a clus-
ter consisting of multiple machines. Silk MapReduce implements the
MapReduce data flow described in Section 5.5 for executing linkage
rules on Hadoop clusters.

1http://www.scala-lang.org/
2http://silk.wbsg.de/

173

http://www.scala-lang.org/
http://silk.wbsg.de/

174 CHAPTER 6. THE SILK LINK DISCOVERY FRAMEWORK

Silk Server matches instances from an incoming stream of entities based on
a set of link specifications. It can thus be used as an identity resolution
component within Linked Data applications that consume a stream of
entities to populate a duplicate-free cache. This stream of entities may
for instance originate from a Linked Data crawler. For an overview of
architectures of Linked Data applications that might employ Silk please
refer to Chapter 6 in [Heath and Bizer, 2011].

6.1 Silk Link Specification Language

The Silk Link Specification Language (Silk-LSL) is a declarative language for
representing link specifications. A link specification encapsulates all infor-
mation needed to interlink two data sets. This includes the type of link that
is to be generated, information on how to access the data sets that are to be
interlinked, the linkage rule including a link filter and finally the outputs to
which the link should be written to.

Listing 6.1 shows an example of a link specification that specifies how
links between movies in DBpedia and LinkedMDB are generated. A link
specification consists of four parts:

Prefixes are key-value pairs that define abbreviations for common URL
prefixes. The general pattern for specifying a prefix is:

1 <Prefix id="prefix id" namespace="namespace URI"/>

For instance, a prefix for URLs from the FOAF vocabulary [Brickley
and Miller, 2005] can be defined with:

1 <Prefix id="foaf" namespace="http://xmlns.com/foaf/0.1/"/>

Data Sources define how the input data is accessed. Two kind of data
sources are supported: SPARQL endpoints and RDF files. Additional
kind of data sources can be integrated into the Silk Link Discovery
Framework as plugins.

Linkage Tasks (identified by the <Interlink> directive) specify how spe-
cific types of entities in two data sources are to be interlinked. For
instance, a linking task may specify how to interlink movies in DB-
pedia and LinkedMDB. A detailed description of the components of a
linkage task will be given later .

6.1. SILK LINK SPECIFICATION LANGUAGE 175

Listing 6.1: Example of a links specification.

1 <Silk>

2 <Prefixes>(...)</Prefixes>

3 <DataSources>

4 <DataSource id="dbpedia" type="sparqlEndpoint">

5 <Param name="endpointURI" value="http://dbpedia.org/sparql" />

6 </DataSource>

7 <DataSource id="linkedmdb" type="sparqlEndpoint">

8 <Param name="endpointURI" value="http://data.linkedmdb.org/sparql"/>

9 </DataSource>

10 </DataSources>

11 <Interlinks>

12 <Interlink id="movies">

13 <LinkType>owl:sameAs</LinkType>

14 <SourceDataset dataSource="dbpedia" var="a">

15 <RestrictTo> ?a rdf:type dbpedia-owl:Film </RestrictTo>

16 </SourceDataset>

17 <TargetDataset dataSource="linkedmdb" var="b">

18 <RestrictTo> ?b rdf:type movie:film </RestrictTo>

19 </TargetDataset>

20 <LinkageRule>

21 <Aggregate type="min">

22 <Compare threshold="0.0" metric="levenshteinDistance">

23 <TransformInput function="lowerCase">

24 <Input path="?a/rdfs:label[@lang=’en’]" />

25 </TransformInput>

26 <TransformInput function="lowerCase">

27 <Input path="?b/rdfs:label" />

28 </TransformInput>

29 </Compare>

30 <Compare threshold="400.0" metric="date">

31 <Input path="?a/dbpedia-owl:releaseDate" />

32 <Input path="?b/movie:initial_release_date" />

33 </Compare>

34 </Aggregate>

35 </LinkageRule>

36 <Filter limit="1" />

37 </Interlink>

38 </Interlinks>

39 <Outputs>

40 <Output type="file">

41 <Param name="file" value="links.nt"/>

42 </Output>

43 </Outputs>

44 </Silk>

176 CHAPTER 6. THE SILK LINK DISCOVERY FRAMEWORK

Outputs define the sinks to which generated links are written. Silk supports
different types of outputs including writing all links to a file or writ-
ing them directly to a triple store by using SPARQL/Update [Gearon
et al., 2012]. When writing to a file, the OAEI alignment format is
supported [Ontology Alignment Evaluation Initiative, 2011]. An ac-
ceptance window can be defined for each output. An acceptance win-
dow consists of a minimal confidence as well as a maximum confidence.
Only links that are inside this window will be written to the specific
output. The acceptance window can be used for writing links with a
high confidence, which are to be immediately accepted, and links with
a lower confidence, which need to be verified manually, to separate
outputs.

A linkage task consists of the following parts:

Link Type: The type of RDF link that should be generated between each
pair of matching entities. For instance, the link type can be set to
owl:sameAs in order to follow the common practice of generating
owl:sameAs links between entities that are assumed to represent the
same real-world object. Silk can also be used to detect other kind of
relations. For instance, a property movie:director could be speci-
fied that relates all entities in a data source about movies with their
directors in a data source about persons.

Data Sets: A pair of data sets that are to be interlinked. Data sets can ei-
ther be loaded from a remote SPARQL [Prud’hommeaux and Seaborne,
2008] endpoint or from a local file. In addition, the data set can be
restricted in order to only match a sub set of all entities of the com-
plete data set. For instance, the restriction can be used to only match
entities of a specific type, such as persons. Silk-LSL allows arbitrary
SPARQL patterns to be used as restrictions.

Linkage Rule: The linkage rule defines the condition that must hold true
for two entities in order to generate a link between both entities. The
Silk LSL allows the specification of linkage rules using the representa-
tion that has been introduced in Section 2.5.

Filter: The link filter allows for filtering of the generated links. It can be
used to restrict the number of links that are generated for a single
entity. For instance, by setting the limit to one, Silk will only generate
at most one link for each entity. If a higher number of links have
been generated than the limit allows, only the links with the highest
similarity are retained.

6.2. SILK WORKBENCH 177

A link specification can be executed by the Silk Link Discovery Engine,
which is used by all three Silk applications.

6.2 Silk Workbench

The Silk Workbench is a web application that guides the user through the
process of interlinking different data sources. It provides the following com-
ponents:

Workspace Browser: The Workspace Browser allows the user to manage
different data sources, corresponding linking tasks and outputs.

Linkage Rule Learner: Linkage Rules can be learned either from existing
reference links using the GenLink algorithm or by using the ActiveG-
enLink algorithm, which asks the user to confirm or decline candidate
links in order to generate reference links.

Linkage Rule Editor: Linkage Rules can be viewed and edited using the
Linkage Rule Editor.

Reference Links Manager: Reference links can be loaded and edited us-
ing the Reference Links Manager.

Execution of Linkage Rules: The current linkage rule can be executed
and the generated links can be viewed.

6.2.1 Workspace Browser

The Workspace Browser allows the user to create and edit link specifications.
For each link specification it allows the user to manage their prefixes, data
sources, linking tasks and outputs in a graphical user interface. The individ-
ual parts that make up a link specification have already been described in
detail in the previous section.

Figure 6.1 shows an example workspace. Two link specifications are
shown in this screenshot, while the second one, DBpediaDrugBank, is ex-
panded. DBpediaDrugBank contains two data sources: DBpedia and Drug-
Bank. The DBpedia data source has been expanded by the user, in order to
view its parameters: As the first parameter, the official DBpedia SPARQL
endpoint is specified. As this endpoint is usually under heavy load, the max-
imum number of retries, after a query failed, is set to 100, as specified by
the retryCount parameter. Whenever a query fails a minimum pause time

178 CHAPTER 6. THE SILK LINK DISCOVERY FRAMEWORK

Figure 6.1: Workspace

of 5000 ms is required between two retries, as specified by the retryPause

parameter.
In addition to the data sources, the shown link specification also includes

a linking task for interlinking drugs in both data sets. The linking task is
defined by specifying the following parameters:

source/target: The names of the data sources that are to be interlinked.

source/target dataset: Restrictions that define which entities are to be
matched. In this example, only entities that are marked as drugs are
selected.

link type: The type of link which should be generated for each matching
pair.

A newly created linking task starts with an empty linkage rule and an empty
set of reference links. The remaining components of the Workbench guide the
user through generating a suitable linkage rule and a set of reference links.
The reference links can be used to evaluate the quality of the linkage rule as
well as for learning a linkage rule using the algorithms which are presented
in this thesis.

Finally, all links are to be written to the specified file output. The pa-
rameters are not shown in this example.

6.2. SILK WORKBENCH 179

6.2.2 Linkage Rule Learner

Silk Workbench supports both supervised learning of linkage rules and active
learning of linkage rules. Supervised learning from existing reference links is
supported through the GenLink algorithm. In cases when no reference links
are available, the ActiveGenLink algorithm is used for learning a linkage rule
interactively.

We now illustrate active learning of a linkage rule below. After a new link-
ing task has been created in the Workspace Browser, the user can directly
start the active learning workflow. In each iteration of the ActiveGenLink
algorithm, the GUI shows the five most uncertain links to the user for con-
firmation. Figure 6.2 shows a simple example of a set of links that are to
be verified by the user that have been selected from two data sets that con-
tain movies. The first link candidate has been expanded and displays the

Figure 6.2: Selected Uncertain Links

properties of the two entities that are referred to by the link candidate. For
illustration purposes, we use two simplified data sets in this example, which
only contain three properties, while other properties, such as the movie direc-
tors, have been removed. The score of link candidate represents the average
similarity score according to all linkage rules in the population. The task
of the user is to compare the property values of both entities and to decide
whether both entries refer to the same movie. The shown link candidate is
to be rejected by the user, as both entries refer to distinct movies that share
the same title, but have been released at different dates.

After the user confirmed or declined a set of links, ActiveGenLink evolves

180 CHAPTER 6. THE SILK LINK DISCOVERY FRAMEWORK

the current population of linkage rules. Figure 6.3 shows an excerpt of an
evolved population. The four linkage rules with highest score are shown,

Figure 6.3: Evolved Population (Top 4)

while the first one has been expanded by the user, in order to view its struc-
ture. Three performance measures are shown for each linkage rule in the
population: The MCC, the F-measure as well as the score according to the
configured fitness measure. The expanded linkage rule compares both movies
by their title as well as their release date. The letter case of both titles are
normalized by using a transformation that converts all titles to lower case.
The normalized titles are compared using the Levenshtein distance, allowing
a maximum distance of zero3. The release dates are compared using the date
distance measure, allowing a maximum distance of 388 days. The learned
linkage rule is the result of reference links that represent different corner cases
in the data sets. For instance, by declining the link candidate in Figure 6.2,
a negative reference link is added that forces the learning algorithm to gen-
erate a linkage rule that does not solely compare movies by their title. The
reason for this is that according to the declined link candidate, two movies
with the same title may still represent distinct movies.

The learning process can be ended at any time, usually after executing
a couple of iterations. The user now may choose to either view and further
edit the linkage rule in the linkage rule editor or to directly execute it.

3The actual threshold is 0.64, but the Levenshtein distance only yields integral distances
and 0 is the biggest whole number smaller than the threshold.

6.2. SILK WORKBENCH 181

6.2.3 Linkage Rule Editor

Linkage rules can be viewed and edited in a graphical editor depicted in
Figure 6.4. The editor enables the user to experiment and see how changes

Figure 6.4: Linkage Rule Editor

of the linkage rule affect the accuracy of the generated links. The editor is
divided in two parts: The right part shows the linkage rule and enables the
user to modify it. The left pane contains the most frequent used properties
for the given data sets as well as a list of linkage rule operators, which can
be used to modify to the current linkage rule. In the top right corner of the
editor precision, recall and F-measure based on the given reference links are
shown.

6.2.4 Reference Links Manager

Reference Links can server two purposes: Firstly, the quality of a linkage rule
can be assessed by testing how well the rule performs on a set of reference
links. Secondly, reference links can be used as a basis for learning a new
linkage rule or for improving an existing linkage rule.

The Reference Links Manager allows the user to import an existing set
of reference links. The user may browse through positive and negative ref-

182 CHAPTER 6. THE SILK LINK DISCOVERY FRAMEWORK

erence links and also remove wrong ones. Concerning the task of evaluating
the current linkage rule, the Reference Links Manager enables the user to
drill down on how the current linkage rule performs on a specific reference
link. Via the drill-down feature the individual similarity score of each com-
parison for a specific link can be viewed. This information allows the user
to spot parts of the linkage rule that do not behave as expected or reference
links that are labeled incorrectly. Figure 6.5 shows the drill-down feature.
In the depicted screenshot, the positive reference links are listed. For each

Figure 6.5: Reference Links

reference link, the URIs of the two referred entities are shown in addition to
the similarity score that the current linkage rule assigns to both entities. All
positive reference links that are shown in this example have been correctly
identified as matches by the linkage rule, as indicated by the status column.
When a reference link is selected by the user, an extended view is shown that
annotates the current linkage rule with the output of each operator in the
process of computing the similarity of the two entities that are referred to by
the selected link. In the screenshot, the learned linkage rule, which already
had been shown in Figure 6.3, is annotated. Taking a closer look at the titles
of both movies, which are shown next to the first two input operators, re-
veals that although both titles match, their letter case is inconsistent. After
applying the lower case transformation operators, the normalized titles are
identical. For this reason, the first comparison according to the Levenshtein

6.2. SILK WORKBENCH 183

distance yields a similarity of 100% on the title properties. As the release
dates are identical as well, the second comparison also yields full similar-
ity. Finally, the aggregation selects the minimum similarity score yielding a
overall similarity score of 100%.

184 CHAPTER 6. THE SILK LINK DISCOVERY FRAMEWORK

Chapter 7

Conclusion

Identifying entities in data sources that describe the same real-world object
is a central problem in data integration. This thesis proposed approaches for
learning and executing linkage rules for entity matching. In this chapter, we
summarize the key contributions of this thesis, discuss known limitations of
the proposed approaches, and suggest directions for future work.

7.1 Summary

This thesis focuses on entity matching approaches that employ domain-
specific linkage rules in order to generate links with a high accuracy. The
contributions in this thesis are grounded on an expressive linkage rule rep-
resentation that subsumes linear and threshold-based boolean classifiers and
includes data transformations. Based on this foundation, we proposed genetic
programming algorithms that are capable of learning linkage rules covering
the full expressivity of the proposed representation. We also showed that
learned linkage rules can be executed efficiently by presenting a data flow
that employs a novel indexing technique to reduce the runtime and that can
be executed on distributed system architectures. In the following, we discuss
three central challenges that occur in entity matching, which we tackled in
this thesis.

7.1.1 Lowering the Effort

As pointed out in the introduction, writing a linkage rule by hand is time
consuming and requires a high level of expertise together with detailed knowl-
edge of the data sets. The ActiveGenLink active learning algorithm reduces
the expertise required and the manual effort of interlinking data sources by

185

186 CHAPTER 7. CONCLUSION

automating the generation of linkage rules. The user is only required to
perform the much simpler task of confirming or declining a set of link can-
didates which are actively selected by the learning algorithm to include link
candidates that yield a high information gain. The user does not need any
knowledge of the characteristics of the data set or any particular similarity
computation techniques. Each time the user labeled a link candidate, Active-
GenLink uses the supervised GenLink algorithm in order to learn an update
linkage rule.

We have discussed previous active learning algorithms for learning linkage
rules and highlighted that all previous algorithms known to us use a query
strategy that is based on the disagreement of a committee of candidate so-
lutions. We propose an improved query strategy that aims at selecting link
candidates for labeling that convey different information than the already
labeled link candidates. We show in the experimental evaluation that the
proposed query strategy required the user to label fewer links than a query
strategy that is solely based on the disagreement committee members.

We have shown that ActiveGenLink outperforms previous unsupervised
entity matching systems after labeling at most 30 links on data sets proposed
by the Ontology Alignment Evaluation Initiative. On six evaluation data
sets, labeling at most 50 link candidates was necessary in order to match
the performance that is achieved by the supervised GenLink algorithm on a
much bigger set of reference links.

7.1.2 Increasing the Accuracy

GenLink employs genetic programming in order to learn linkage rules from
existing reference links by using a set of specialized crossover operators. Gen-
Link is capable of learning linkage rules covering the full expressivity of the
linkage rule representation While many previous approaches for learning link-
age rules focus on learning linear or threshold-based boolean classifiers, we
present learning algorithms that generate more expressive linkage rules. In
addition to enable the representation of non-linear classifiers beyond pure
boolean classifiers, we allow linkage rules to include data transformations,
which normalize the values prior to comparison.

In a discussion of previous work on supervised learning algorithms, we
pointed out that a number of previously proposed approaches use the Cora
citation data set and the Restaurant data set for evaluation. In the evaluation
of GenLink, we have shown that GenLink outperforms four previous entity
matching approaches:

• An entity matching system that uses support vector machines for learn-

7.1. SUMMARY 187

ing linear classifiers [Bilenko and Mooney, 2003].

• The state-of-the-art genetic programming approach for entity matching
by de Carvalho et al. [2012].

• Two collective entity matching approaches [Domingos, 2004; Dong
et al., 2005].

In addition to the Cora and the Restaurant data set, we evaluated our ap-
proach on two data sets from the Ontology Alignment Evaluation Initiative
and two data sets that have been interlinked by the LATC EU project.

Compared to previous approaches, GenLink uses a more expressive link-
age rule representation. In particular, many previously proposed approaches
only support linear or threshold-based boolean classifiers. Moreover, none
of the previously proposed approaches is capable of learning a linkage rule
that includes chains of data transformations. We evaluated the effect of dif-
ferent linkage rule representations to the performance of GenLink on all six
evaluation data sets. On two data sets, the capability to represent non-linear
classifiers improved the performance over linear and threshold-based boolean
classifiers. What’s more, the introduction of transformations improved the
performance on all data sets. In particular, we have shown that on the Cora
data set, on which GenLink achieves a validation F-measure of 96.6% and
outperforms the genetic programming algorithm by de Carvalho et al. by
over 5%, the inclusion of data transformations in our proposed linkage rules
representation has a big effect: when running GenLink on the Cora data set
with a limited linkage rule representation that does not include data trans-
formations the performance drops to an F-measure that is similar to the one
that is reported for the genetic programming algorithm by de Carvalho et al.

7.1.3 Increasing the Efficiency

We propose an execution workflow that is both efficient and can be run on
cluster of multiple machines. The execution workflow employs a novel index-
ing method called MultiBlock to efficiently execute linkage rules. MultiBlock
uses a multidimensional index in which similar objects are located near each
other in order to improve the efficiency beyond existing methods. We eval-
uated MultiBlock on different data sets and showed data it substantially
reduces the number of required entity comparisons, while it guarantees that
no false dismissals occur.

On a set of person names, we compared the performance of MultiBlock
to four previously proposed indexing methods. Each indexing method has
been run with different configurations so that overall ten configurations have

188 CHAPTER 7. CONCLUSION

been compared with the MultiBlock approach. MultiBlock was the only
method that achieved a recall of 100% on the evaluation data set. Amongst
the configurations that achieve a recall of at least 50%, MultiBlock also
demonstrated the lowest runtime.

On a large geographic data set, we compared the performance of Multi-
Block with the StringMap indexing approach, which also generates an multi-
dimensional index. While StringMap accomplishes a bigger reduction in the
number of comparisons, the time required for the mapping all entities into
the multidimensional index space took about 10 times longer than runtime
of the entire entity matching task with MultiBlock. MultiBlock reduced the
number of comparisons by a factor of 25,000 and was about 800 times faster
than evaluating the complete Cartesian product.

Finally, we evaluated the scalability of MultiBlock on a large life science
data set that contains over one million duplicates. The evaluation has been
performed on clusters that consist of 8, 16 and 32 machines. Doubling the
number of machines reduced the runtime to about 60% of the runtime with
half as many machines. On the cluster with 32 machines, all one million links
have been generated in about 15 minutes including the time to load the data
set.

7.2 Limitations and Future Work

In what follows, we discuss current limitations of the presented approaches
and promising directions for future work.

7.2.1 Collective Matching

The learning algorithms that have been proposed in this thesis generate link-
age rules that match pairs of entities independently of each other. Thus,
matching data sets using the generated linkage rules does not exploit rela-
tionships between different entities. For instance, if a pair of citations in
a bibliographic data set is identified as match, this does not influence the
matching decision concerning other citations. The promise of collective ap-
proaches is to exploit relationships between different types of entities in order
to improve the overall matching result. For example, if the first author of
two citations is found to be matching together with the citations themselves,
this information can be used to infer that other pairs of citations that refer
to the same author are more likely to match as well. A number of previously
proposed collective approaches have been discussed in Section 3.4.4.

7.2. LIMITATIONS AND FUTURE WORK 189

On the Cora citation data set, collective approaches outperformed previ-
ous approaches that are based on learning linkage rules, but achieved worse
results that GenLink. On this data set, the superior performance of GenLink,
compared to other supervised approaches, mostly depends on the inclusion of
transformations into the linkage rule, as discussed in Section 3.5.4. However,
the discussed previously proposed collective approaches do not learn data
transformations. As the Cora data set is rather noisy and contains many
typographical errors1, combining the learning of linkage rules that include
transformations with collective matching is promising.

In the following, we discuss how GenLink could be extended for collec-
tive matching. Currently when matching citations, a linkage rule is learned
that includes comparisons for a set of properties. For instance, a linkage
rule for matching citations may include a comparison of the author names
that includes data transformations for normalizing author names, a distance
measure that is used for comparing two author names and a distance thresh-
old. When multiple comparisons are aggregated using a weighted average
aggregation, each comparison may also specify a weight that specifies the
influence of a specific comparison to the overall similarity score.

Collective approaches typically assume that the data sets that are to be
matched provide multiple types of entities [Christen, 2012]. For instance, a
citation data set includes entity types such as citations, authors, and venues.
On data sets that provide multiple types of entities, GenLink could be used
to learn multiple linkage rules concurrently, one linkage rule for each type
of entity. In order to support collective approaches in GenLink, the linkage
rule representation could be extended to include relationships to linkage rules
that match related types of entities. Instead of including a comparison of
author names into a linkage rule for matching citations, the linkage rule could
include a pointer to the corresponding linkage rule for matching authors, at
the same place. The pointer would fulfil the role of specifying that match-
ing decisions of two types of entities are interdependent, e.g., matching two
authors influences the matching of citations that refer to these authors. The
weight would fulfill the task of specifying the influence of a given relation
to the overall score. After linkage rules have been learned for each type of
entity that is present in the data set, a collective entity matching approach
could be used to execute all rules concurrently.

As collective approaches do not conduct matching decisions indepen-
dently, but take a global view of the data set, performance can be an issue,
although recent efforts are targeted at improving the matching performance
on large data sets [Rastogi et al., 2011].

1Table 3.7 lists some common errors.

190 CHAPTER 7. CONCLUSION

7.2.2 Distance Measures and Transformations

In our experiments, we have only used a limited number of distance mea-
sures and data transformations. As the evaluation on the Cora data set in
Section 3.5.4 showed, the performance could be further improved by imple-
menting more distance measures and data transformations. In particular,
transformations that remove frequent stop words or normalize person names
could be improve the matching performance. In addition, the use of hybrid
distance measures that combine the advantages of character-based measures
and token-based measures as described in Section 2.3.3 could further improve
the accuracy.

7.2.3 Learning of Functions Parameters

GenLink generates a linkage rule by building an operator tree from a set of
predefined operators. For each operator it also learns a number of parame-
ters. For instance, for each comparison operator it learns a suitable distance
measure, an appropriate distance threshold as well as the operator weight.
In the same way, it finds suitable aggregation functions for aggregation oper-
ators and transformation functions for transformation operators. Currently,
distance measures, aggregation functions and transformation functions are
selected from a user-defined list of functions. If a function needs to be con-
figured (e.g., a transformation function may be configured to filter specific
stop-words), the respective configuration needs to be supplied by the user.

In order to avoid this, GenLink could be extended to learn function pa-
rameters. As GenLink already achieves a high accuracy on all employed
evaluation data sets, this idea has not been explored further so far.

7.2.4 Population Seeding

Instead of starting with a population of random linkage rules, GenLink gen-
erates an initial population that only includes linkage rules that compare
properties with similar values. For our experiments, two values have been
considered similar if the Levenshtein distance between both values after they
have been normalized was one or less. The complete heuristic that we used
to seed the population has been described in Section 3.3.1.

While the employed seeding heuristic worked well on all evaluation data
sets, it could fail if matching entities in different data sets use values that
are not detected as similar. For instance, if values in different data sets use
different units of measurements the current strategy is likely to fail on de-
tecting both values as similar. In order to cover cases that are now missed,

7.2. LIMITATIONS AND FUTURE WORK 191

the heuristic for identifying properties with similar values could be extended
in two ways: The normalization of the values could be improved by applying
more advanced transformations. In addition, instead of using solely the Lev-
enshtein distance for comparing values for similarity, all distance measures
that have been configured to be used by GenLink for learning linkage rules
could be used for this purpose.

7.2.5 Query Strategy

ActiveGenLink uses a query strategy that reduces user involvement by select-
ing link candidates which yield a high information gain. We proposed a query
strategy that outperforms the query-by-vote-entropy strategy by selecting a
link that is as different as possible from any already labeled reference link.
By this, it aims to distribute the labeled links uniformly across the similarity
space. Future work may focus on further improving the distribution of the
link candidates, which are chosen by the query strategy for manual labeling.
For this purpose, clustering algorithms could be employed in order to select
link candidates from the unlabeled pool that are in the center of diverse
cluster of similar unlabeled link candidates. The query strategy could favor
cluster with many link candidates over smaller clusters in order to increase
the number of links that are covered by the selected link candidate.

192 CHAPTER 7. CONCLUSION

List of Figures

1.1 Entity Matching Workflow. 3

1.2 Execution Data Flow. 4

1.3 Woody Allen in Freebase and DBpedia. Retrieved June 18,
2012. 7

1.4 Screenshot of Google Scholar. 9

1.5 Excerpt of an RDF graph. 12

1.6 Interconnected RDF data sources. 13

1.7 LOD cloud from 2011-09-19. 14

2.1 Case normalization. 26

2.2 Concatenation and splitting of properties as examples of a
structural transformations. 28

2.3 Segmentation of a product offer. 28

2.4 Extract a literal value from an URI. 29

2.5 Structure of a linkage rule. 42

2.6 Example of a linkage rule that compares locations. 42

3.1 Example of an entity pair in a geographical data set. 50

3.2 Control flow for genetic programming. 51

3.3 Example of subtree crossover. 54

3.4 Finding compatible properties 58

3.5 Example application of the transformation crossover operator. 62

3.6 Example application of the distance measure crossover operator. 63

3.7 Example application of the threshold crossover operator. . . . 64

3.8 Example application of the combine operators crossover oper-
ator. 65

3.9 Example application of the aggregation hierarchy crossover
operator. 68

3.10 Example of a support vector machine. Green circles indicate
positive reference links, while red circles indicate negative links. 70

193

194 LIST OF FIGURES

3.11 Decision tree that has been learned by the supervised algo-
rithm proposed by Cochinwala et al. 72

3.12 Example of a decision tree that has been learned by Active
Atlas. 73

3.13 Relationship graph between two publications (adapted from:
[Dong et al., 2005]). 75

3.14 Comparison of linkage rules that have been learned for the
Cora data set by two different genetic programming learning
algorithms. 80

3.15 Typical precision-recall diagram. 86
3.16 Cora: Learned linkage rule after 10 generations 88
3.17 Cora: Learned linkage rule after 40 generations 88
3.18 Cora: Learned linkage rule without transformations 89
3.19 Learned linkage rule for the LinkedMDB data set 92
3.20 Original linkage rule for the DBpediaDrugBank data set . . . 93
3.21 Average number of comparisons and transformations 94
3.22 Learning performane . 99
3.23 Number of comparisons . 99
3.24 Number of transformations . 100
3.25 Number of comparisons . 100
3.26 Number of transformations . 101

4.1 Example of an entity pair in a geographical data set. 103
4.2 Active learning workflow. 105
4.3 Kullback-Leibler divergence and Jensen-Shannon divergence. . 109
4.4 Overview of the ActiveGenLink workflow. 110
4.5 Distribution of movies in the similarity space 112
4.6 Sampling of entities by label 115
4.7 Example of a decision tree that has been learned by ALIAS. . 117
4.8 Example of a learned linkage rule after labeling 10 links. . . . 125
4.9 Example of a learned linkage rule after labeling 20 links. . . . 126
4.10 Example of a learned linkage rule after labeling 30 links. . . . 127

5.1 Data Flow for executing linkage rules. 138
5.2 Example cache. 139
5.3 Example cache . 140
5.4 Aggregating a geographic and a string similarity 142
5.5 Index of 1,000 cities in DBpedia 142
5.6 Projection of an entity onto an axis in StringMap. 154
5.7 Overall MapReduce Data Flow 160
5.8 Indexing MapReduce Task . 160

LIST OF FIGURES 195

5.9 Matching MapReduce Task 161
5.10 Scalability experiment: Linkage rule for linking settlements . . 167

6.1 Workspace . 178
6.2 Selected Uncertain Links . 179
6.3 Evolved Population (Top 4) 180
6.4 Linkage Rule Editor . 181
6.5 Reference Links . 182

List of Tables

1.1 Excerpt of a movie database. 1
1.2 Examples of census records. 8
1.3 Excerpt from the Cora data set. 10

2.1 Transformations used in the experiments. 44
2.2 Distance functions used in the experiments. 45
2.3 Aggregation functions used in the experiments. 46

3.1 Experiments in the OAEI instance matching challenges. The
third column states the F-measure of the best system. For
experiments that consist of multiple data sets the harmonic
mean is stated. 78

3.2 Performance comparison of different approaches. 79
3.3 The number of entities in each data set as well as the number

of reference links. 83
3.4 The total number of properties in each data set as well as the

percentage of properties that are actually set on an entity. . . 83
3.5 Parameters . 84
3.6 Results for the Cora data set. The last row contains the best

results of de Carvalho et al. for comparison. 87
3.7 Two examples of false positives. ’-’ indicates missing values. . 89
3.8 Results for the Restaurant data set. The last row contains the

best results of de Carvalho et al. for comparison. 90
3.9 Results for the SiderDrugBank data set. 91
3.10 Results for the NewYorkTimes data set. 91
3.11 Results for the LinkedMDB data set. 92
3.12 Results for the DBpediaDrugBank data set 94
3.13 Representations: F-measure in round 25 95
3.14 Seeding: Initial F-measure . 96
3.15 Seeding: F-measure in round 10 96
3.16 Crossover experiment: F-measure after 10 and 25 iterations. . 97

196

LIST OF TABLES 197

3.17 F-measure after 10 iterations for different bloating control
strategies. 98

3.18 Number of comparisons and transformations in a learned link-
age rule size after 10 iterations for different bloating control
strategies. 98

4.1 ActiveGenLink Parameters . 123
4.2 Results for the SiderDrugBank data set. 124
4.3 Results for the NewYorkTimes data set. 128
4.4 Results for the Cora data set. The last row contains the results

of the supervised algorithm. 129
4.5 Results for the Restaurant data set. The last row contains the

results of the supervised algorithm. 129
4.6 Results for the LinkedMDB data set. The last row contains

the results of the supervised algorithm 130
4.7 Results for the DBpediaDrugBank data set. The last row

contains the results of the supervised algorithm 130
4.8 Passive learning . 131
4.9 Active learning . 131
4.10 Query Strategy: F-measure after 10 iterations 132
4.11 Query Strategy: F-measure after 20 iterations 132

5.1 Steps involved in computing the similarity of two entities com-
pared to computing the index of a single entity. 143

5.2 Comparison of different blocking methods 157
5.3 Comparison of different indexing methods. 166
5.4 Results of scalability experiment 168
5.5 Different phases of StringMap: Runtimes. 168
5.6 The runtimes of the different phases 169
5.7 Results of experiment 2 . 170
5.8 MapReduce runtimes for different cluster sizes. 171

Listings

2.1 Example of a linkage rule in AJAX (from [Galhardas et al.,
2001]). 39

2.2 Two example contraints in Dedupalog (from [Arasu et al., 2009]). 40
3.1 Pseudocode of the GenLink algorithm. The specific parameter

values used in our experiments are listed in Section 3.5.2 . . . 56
3.2 Find compatible properties given a set of reference links R+,

a list of distance measures F d and a distance threshold θ . . . 58
3.3 Pseudocode of the transformation crossover operator. 61
3.4 Pseudocode of the distance measure crossover operator. 63
3.5 Pseudocode of the threshold crossover operator. 64
3.6 Pseudocode of the combine operators crossover operator. . . . 65
3.7 Pseudocode of the aggregation function crossover operator. . . 66
3.8 Pseudocode of the weight crossover operator. 67
3.9 Pseudocode of the aggregation hierarchy crossover operator. . 67
4.1 Pseudocode of the ActiveGenLink algorithm. 110
5.1 Index map function . 161
5.2 Index reduce function . 162
5.3 Match map function . 162
5.4 Match reduce function . 163
6.1 Example of a links specification. 175

198

Bibliography

José Luis Aguirre, Bernardo Cuenca Grau, Kai Eckert, Jérôme Euzenat, Alfio
Ferrara, Robert Willem van Hague, Laura Hollink, Ernesto Jimenez-Ruiz,
Christian Meilicke, Andriy Nikolov, Dominique Ritze, François Scharffe,
Pavel Shvaiko, Ondrej Sváb-Zamazal, Cássia Trojahn, and Benjamin Za-
pilko. Results of the Ontology Alignment Evaluation Initiative 2012. In
Proceedings of the Seventh International Workshop on Ontology Matching
(OM), pages 73–115, 2012.

Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminat-
ing fuzzy duplicates in data warehouses. In Proceedings of the VLDB
Endowment (PVLDB), pages 586–597, 2002.

Peter J. Angeline. Genetic programming and emergent intelligence. In Ad-
vances in Genetic Programming, pages 75–97. MIT Press, 1994.

Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication
with constraints using dedupalog. In Proceedings of the IEEE International
Conference on Data Engineering, pages 952–963, 2009.

Arvind Arasu, Michaela Götz, and Raghav Kaushik. On active learning of
record matching packages. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 783–794, 2010.

Samur Araujo, Arjen de Vries, and Daniel Schwabe. SERIMI results for OAEI
2011. In Proceedings of the Sixth International Workshop on Ontology
Matching (OM), pages 212–219, 2011.

Joe Armstrong. A history of erlang. In Proceedings of the Third ACM
SIGPLAN Conference on History of Programming Languages, pages 1–26,
2007.

Askarunisa A. Askarunisa A., Prameela P. Prameela P., and Ramraj N. Ram-
raj N. DBGEN–database (test) generator-an automated framework for

199

200 BIBLIOGRAPHY

database application testing. International Journal of Database Theory
and Application, 2(3):27–54, 2009.

Amos Bairoch, Rolf Apweiler, Cathy H. Wu, Winona C. Barker, Brigitte
Boeckmann, Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Ro-
drigo Lopez, and Michele Magrane. The universal protein resource
(UniProt). Nucleic Acids Research, 33(1):154–159, 2005.

Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast
blocking methods for record linkage. In Proceedings of the ACM SIGKDD
Workshop on Data Cleaning, Record Linkage, and Object Consolidation,
pages 25–27, 2003.

Edmon Begoli. A short survey on the state of the art in architectures and
platforms for large scale data analysis and knowledge discovery from data.
In Proceedings of the WICSA/ECSA Companion Volume, pages 177–183,
2012.

Alexander Behm, Rares Vernica, Sattam Alsubaiee, Shengyue Ji, Jiaheng
Lu, Liang Jin, Yiming Lu, and Chen Li. UCI Flamingo Package 4.1, 2010.
URL http://flamingo.ics.uci.edu/releases/4.1/.

Christoph Brandt Benjamin Braatz. Graph transformations for the Resource
Description Framework. In Proceedings of the Seventh International Work-
shop on Graph Transformation and Visual Modeling Techniques, pages 90–
105, 2008.

Tim Berners-Lee. Linked Data - design issues. http://www.w3.org/

DesignIssues/LinkedData.html, 2006.

Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource Iden-
tifiers (URI): Generic syntax. http://www.ietf.org/rfc/rfc2396.txt,
1998.

Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in rela-
tional data. ACM Transactions on Knowledge Discovery from Data, 1(1):
5, 2007.

M. Bilenko and R.J. Mooney. Adaptive duplicate detection using learnable
string similarity measures. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
39–48, 2003.

http://flamingo.ics.uci.edu/releases/4.1/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.ietf.org/rfc/rfc2396.txt

BIBLIOGRAPHY 201

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – the story
so far. International Journal on Semantic Web and Information Systems,
4(2):1–22, 2009a.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. DBpedia – a crystal-
lization point for the web of data. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(3):154–165, 2009b.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-
cation. Journal of Machine Learning Research, 3:993–1022, 2003.

Tobias Blickle and Lothar Thiele. Genetic programming and redundancy. In
Proceedings of the Workshop on Genetic Algorithms within the Framework
of Evolutionary Computation, pages 33–38, 1994.

Tobias Blickle and Lothar Thiele. A mathematical analysis of tournament
selection. In Proceedings of the Sixth International Conference on Genetic
Algorithms, pages 9–16, 1995.

Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in
evolutionary algorithms. Evolutionary Computation, 4(4):361–394, 1996.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 1247–1250, 2008.

Vinayak Borkar, Kaustubh Deshmukh, and Sunita Sarawagi. Automatic
segmentation of text into structured records. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 175–
186, 2001.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. Chapman & Hall/CRC, 1984.

Dan Brickley and Libby Miller. FOAF vocabulary specification. http://

xmlns.com/foaf/0.1/, 2005.

Wentao Cai, Shengrui Wang, and Qingshan Jiang. Address extraction: ex-
traction of location-based information from the web. In Proceedings of the
Seventh Asia-Pacific Web Conference on Web Technologies Research and
Development, pages 925–937, 2005.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

202 BIBLIOGRAPHY

José Ramón Cano, Francisco Herrera, and Manuel Lozano. Evolutionary
stratified training set selection for extracting classification rules with trade
off precision-interpretability. Data & Knowledge Engineering, 60(1):90–
108, 2007.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of
supervised learning algorithms. In Proceedings of the 23rd International
Conference on Machine Learning, pages 161–168, 2006.

Moisés G. Carvalho, Alberto H. F. Laender, Marcos A. Gonçalves, and Al-
tigran S. da Silva. Replica identification using genetic programming. In
Proceedings of the ACM Symposium on Applied Computing, pages 1801–
1806, 2008.

Peter Christen. A comparison of personal name matching: Techniques and
practical issues. In Proceedings of the Second International Workshop on
Mining Complex Data, pages 290–294, 2006.

Peter Christen. Febrl: a freely available record linkage system with a graphi-
cal user interface. In Proceedings of the Second Australasian Workshop on
Health Data and Knowledge Management, pages 17–25, 2008.

Peter Christen. Development and user experiences of an open source data
cleaning, deduplication and record linkage system. ACM SIGKDD Explo-
rations, 11(1):39–48, 2009.

Peter Christen. A survey of indexing techniques for scalable record linkage
and deduplication. IEEE Transactions on Knowledge and Data Engineer-
ing, 24(9):1537–1555, 2011.

Peter Christen. Data Matching: Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection. Springer, 2012.

Kenneth L. Clarkson. Fast algorithms for the all nearest neighbors problem.
In Proceedings of the 24th Annual Symposium on Foundations of Computer
Science, pages 226–232, 1983.

Munir Cochinwala, Verghese Kurien, Gail Lalk, and Dennis Shasha. Efficient
data reconciliation. Information Sciences, 137(1):1–15, 2001.

William W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarity. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
201–212, 1998.

BIBLIOGRAPHY 203

William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A com-
parison of string distance metrics for name-matching tasks. In Proceedings
of the Workshop on Information Integration on the Web, pages 73–78,
2003.

Ronan Collobert and Samy Bengio. SVMTorch: Support vector machines
for large-scale regression problems. The Journal of Machine Learning Re-
search, 1:143–160, 2001.

Lewis Conn and Glenys R. Bishop. Exploring methods for creating a longi-
tudinal census dataset. Australian Bureau of Statistics, 2005.

B. Jack Copeland. The Essential Turing. Clarendon Press, 2004.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

Shirley A. Cousins. Duplicate detection and record consolidation in large
bibliographic databases: the COPAC database experience. Journal of In-
formation Science, 24(4):231–240, 1998.

Nichael Lynn Cramer. A representation for the adaptive generation of simple
sequential programs. In Proceedings of the First International Conference
on Genetic Algorithms, pages 183–187, 1985.

Isabel F Cruz, Cosmin Stroe, Federico Caimi, Alessio Fabiani, Catia
Pesquita, Francisco M Couto, and Matteo Palmonari. Using Agreement-
Maker to align ontologies for OAEI 2011. In Proceedings of the Sixth In-
ternational Workshop on Ontology Matching (OM), pages 114–121, 2011.

Ido Dagan and Sean Engelson. Committee-based sampling for training prob-
abilistic classifiers. In Proceedings of the 12th International Conference on
Machine Learning, pages 150–157, 1995.

Moisés G. de Carvalho, Marcos A. Gonçalves, Alberto H. F. Laender, and
Altigran S. da Silva. Learning to deduplicate. In Proceedings of the Sixth
ACM/IEEE-CS Joint Conference on Digital Libraries, pages 41–50, 2006.

Moisés G de Carvalho, Alberto HF Laender, Marcos André Gonçalves, and
Altigran S da Silva. A genetic programming approach to record dedupli-
cation. IEEE Transactions on Knowledge and Data Engineering, 24(3):
399–412, 2012.

204 BIBLIOGRAPHY

Junio de Freitas, Gisele L. Pappa, Altigran S. da Silva, Marcos A. Gonçalves,
Edleno Moura, Adriano Veloso, Alberto H. F. Laender, and Moisés G.
de Carvalho. Active learning genetic programming for record deduplica-
tion. In IEEE Congress on Evolutionary Computation, pages 1–8, 2010.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. In Proceedings of the Sixth Symposium on Operating
Systems Design and Implementation, 2004.

Peter J. Denning. The working set model for program behavior. Communi-
cations of the ACM, 11(5):323–333, 1968.

Debabrata Dey, Sumit Sarkar, and Prabuddha De. Entity matching in het-
erogeneous databases: A distance based decision model. In Proceedings
of the 31st Annual Hawaii International Conference on System Sciences,
pages 305–313, 1998.

Lee R. Dice. Measures of the amount of ecologic association between species.
Ecology, 26(3):297–302, 1945.

AnHai Doan and Alon Y. Halevy. Semantic integration research in the
database community: A brief survey. AI magazine, 26(1):83, 2005.

AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Profile-based object
matching for information integration. IEEE Intelligent Systems, 18(5):
54–59, 2003.

Pedro Domingos. Multi-relational record linkage. In In Proceedings of the
KDD Workshop on Multi-Relational Data Mining, pages 31–48, 2004.

Xin Dong, Alon Halevy, and Jayant Madhavan. Reference reconciliation in
complex information spaces. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 85–96, 2005.

Troy B. Downing. Java RMI: remote method invocation. IDG Books World-
wide, Inc., 1998.

Uwe Draisbach and Felix Naumann. A comparison and generalization of
blocking and windowing algorithms for duplicate detection. In Proceedings
of the Seventh International Workshop on Quality in Databases, pages 51–
56, 2009.

Mohamed G. Elfeky, Vassilios S. Verykios, and Ahmed K. Elmagarmid. TAI-
LOR: A record linkage toolbox. In Proceedings of 18th International Con-
ference on Data Engineering, pages 17–28, 2002.

BIBLIOGRAPHY 205

Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.
Duplicate record detection: A survey. IEEE Transactions on Knowledge
and Data Engineering, 19(1):1–16, 2007.

Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, 2007.

Jérôme Euzenat, Alfio Ferrara, Christian Meilicke, Juan Pane, François
Scharffe, Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej Šváb-Zamazal,
Vojtech Svátek, and Cássia Trojahn. Results of the Ontology Alignment
Evaluation Initiative 2010. In Proceedings of the Fifth International Work-
shop on Ontology Matching (OM), pages 85–117, 2010.

Jérôme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura Hollink,
Christian Meilicke, Andriy Nikolov, Dominique Ritze, Franois Scharffe,
Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej vb Zamazal, and Cssia Tro-
jahn. Results of the ontology alignment evaluation initiative 2011. In Pro-
ceedings of the Sixth International Workshop on Ontology Matching, pages
85–113, 2011a.

Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko,
and Cássia Trojahn. Ontology alignment evaluation initiative: six years of
experience. Journal on Data Semantics XV, pages 158–192, 2011b.

Christos Faloutsos and King-Ip Lin. FastMap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 163–174, 1995.

Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record
matching rules. Proceedings of the VLDB Endowment (PVLDB), 2(1):
407–418, 2009.

Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal of
the American Statistical Association, 64(328), 1969.

Alfio Ferrara, Stefano Montanelli, Jan Noessner, and Heiner Stuckenschmidt.
Benchmarking matching applications on the semantic web. In Proceedings
of the Eighth Extended Semantic Web Conference (ESWC), pages 108–122,
2011.

Roy Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. http://

tools.ietf.org/html/rfc2616, 1999.

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616

206 BIBLIOGRAPHY

Lyle Ford and Lisa Hanson O’Hara. It’s all academic: Google scholar, scirus,
and windows live academic search. Journal of Library Administration, 46
(3-4):43–52, 2008.

Carol Friedman and Robert Sideli. Tolerating spelling errors during patient
validation. Computers and Biomedical Research, 25(5):486–509, 1992.

Hristescu Gabriela and Farach Martin. Cluster-preserving embedding of pro-
teins. Technical report, Rutgers University, 1999.

Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and
Cristian-Augustin Saita. Declarative data cleaning: Language, model, and
algorithms. In Proceedings of the VLDB Endowment (PVLDB), pages
371–380, 2001.

Paul Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1
Update. W3C proposed recommendation. http://www.w3.org/TR/

sparql11-update/, 2012.

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema, and Andrew Fano.
Text mining for product attribute extraction. ACM SIGKDD Explorations
Newsletter, 8(1):41–48, 2006.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an automatic
citation indexing system. In Proceedings of the Third ACM Conference on
Digital Libraries, pages 89–98, 1998.

David E. Goldberg. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Professional, 1989.

David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. In Foundations of Genetic Algorithms,
pages 69–93. Morgan Kaufmann, 1991.

Luis Gravano, Panagiotis G. Ipeirotis, Hosagrahar Visvesvaraya Jagadish,
Nick Koudas, Shanmugauelayut Muthukrishnan, Lauri Pietarinen, and Di-
vesh Srivastava. Using q-grams in a DBMS for approximate string pro-
cessing. IEEE Data Engineering Bulletin, 24(4):28–34, 2001a.

Luis Gravano, Panagiotis G. Ipeirotis, Hosagrahar Visvesvaraya Jagadish,
Nick Koudas, Shanmugauelayut Muthukrishnan, and Divesh Srivastava.
Approximate string joins in a database (almost) for free. In Proceedings of
the VLDB Endowment (PVLDB), pages 491–500, 2001b.

http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/

BIBLIOGRAPHY 207

Lifang Gu, Rohan Baxter, Deanne Vickers, and Chris Rainsford. Record
linkage: Current practice and future directions. Technical report, CSIRO
Mathematical and Information Sciences, 2003.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP version 1.2.
W3C recommendation. http://www.w3.org/TR/soap12-part1/, 2007.

Honglei Guo, Huijia Zhu, Zhili Guo, XiaoXun Zhang, and Zhong Su. Address
standardization with latent semantic association. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1155–1164, 2009.

Antonin Guttman. R-Trees: A dynamic index structure for spatial search-
ing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 47–57, 1984.

Oktie Hassanzadeh and Mariano Consens. Linked movie data base. In Pro-
ceedings of the Second Workshop on Linked Data on the Web, 2009.

Tom Heath and Christian Bizer. Linked Data: Evolving the web into a
global data space. Synthesis Lectures on the Semantic Web: Theory and
Technology, 1(1):1–136, 2011.

Mauricio A Hernández and Salvatore J Stolfo. The merge/purge problem
for large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 127–138, 1995.

Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty:
Data cleansing and the merge/purge problem. Data Mining and Knowledge
Discovery, 2, 1998. Introduced the multi-pass approach for blocking.

Gisli Hjaltason and Hanan Samet. Contractive embedding methods for simi-
larity searching in metric spaces. Technical report, University of Maryland,
2000.

Gı́sli R. Hjaltason and Hanan Samet. Properties of embedding methods
for similarity searching in metric spaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(5):530–549, 2003a.

Gı́sli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric
spaces (survey article). ACM Transactions on Database Systems, 28(4):
517–580, 2003b.

http://www.w3.org/TR/soap12-part1/

208 BIBLIOGRAPHY

John H. Holland. Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. The University of Michigan Press, 1975.

Wei Hu, Jianfeng Chen, Gong Cheng, and Yuzhong Qu. ObjectCoref &
Falcon-AO: Results for OAEI 2010. In Proceedings of the Fifth Interna-
tional Workshop on Ontology Matching (OM), pages 158–165, 2010.

Wei Hu, Jianfeng Chen, and Yuzhong Qu. A self-training approach for re-
solving object coreference on the semantic web. In Proceedings of the 20th
International Conference on World Wide Web, pages 87–96, 2011.

Jeremy A. Hylton. Identifying and merging related bibliographic records. PhD
thesis, Massachusetts Institute of Technology, 1996.

Robert Isele and Christian Bizer. Learning linkage rules using genetic pro-
gramming. In Proceedings of the Sixth International Workshop on Ontology
Matching, pages 13–24, 2011.

Robert Isele and Christian Bizer. Learning expressive linkage rules using
genetic programming. Proceedings of the VLDB Endowment (PVLDB), 5
(11):1638–1649, 2012.

Robert Isele and Christian Bizer. Active learning of expressive linkage rules
using genetic programming. Web Semantics: Science, Services and Agents
on the World Wide Web, 2013.

Robert Isele, Anja Jentzsch, and Christian Bizer. Silk Server – adding missing
links while consuming Linked Data. In Proceedings of the First Interna-
tional Workshop on Consuming Linked Data, pages 85–97, 2010.

Robert Isele, Anja Jentzsch, and Christian Bizer. Efficient multidimensional
blocking for link discovery without losing recall. In Proceedings of the 14th
International Workshop on the Web and Databases (WebDB), 2011.

Robert Isele, Anja Jentzsch, and Christian Bizer. Active learning of expres-
sive linkage rules for the web of data. In Proceedings of the 12th Interna-
tional Conference on Web Engineering (ICWE), pages 411–418, 2012.

Paul Jaccard. Étude comparative de la distribution florale dans une por-
tion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences
Naturelles, 37:547–579, 1901.

Paul Jaccard. The distribution of the flora in the alpine zone. New Phytolo-
gist, 11(2):37–50, 2006.

BIBLIOGRAPHY 209

Matthew A. Jaro. Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida. Journal of the American
Statistical Association, 84(406):414–420, 1989.

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Ian Horrocks. LogMap
and LogMapLt results for OAEI 2012. In Proceedings of the Seventh In-
ternational Workshop on Ontology Matching (OM), pages 152–159, 2012.

Liang Jin, Chen Li, and Sharad Mehrotra. Efficient record linkage in
large data sets. In Proceedings of the Eighth International Conference
on Database Systems for Advanced Applications, pages 137–146, 2003.

Terry Jones. Crossover, macromutation, and population-based search. In
Proceedings of the Sixth International Conference on Genetic Algorithms,
pages 73–80, 1995.

Dmitri V. Kalashnikov and Sharad Mehrotra. Domain-independent data
cleaning via analysis of entity-relationship graph. ACM Transactions on
Database Systems, 31(2):716–767, 2006.

Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. Exploiting
relationships for domain-independent data cleaning. In Proceedings of the
SIAM International Conference on Data Mining, pages 262–273, 2005.

Minoru Kanehisa, Susumu Goto, Miho Furumichi, Mao Tanabe, and Mika
Hirakawa. KEGG for representation and analysis of molecular networks
involving diseases and drugs. Nucleic Acids Research, 38(1):355–360, 2010.

Anitha Kannan, Inmar E. Givoni, Rakesh Agrawal, and Ariel Fuxman.
Matching unstructured product offers to structured product specifications.
In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 404–412, 2011.

Ron Kohavi, George John, Richard Long, David Manley, and Karl Pfleger.
MLC++: A machine learning library in C++. In Tools with Artificial
Intelligence, pages 740–743, 1994.

Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A com-
parison. Data & Knowledge Engineering, 69(2):197–210, 2010.

Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity reso-
lution approaches on real-world match problems. Proceedings of the VLDB
Endowment, 3(1-2):484–493, 2010.

210 BIBLIOGRAPHY

John R. Koza. Genetic programming: on the programming of computers by
means of natural selection. MIT Press, 1993.

John R. Koza. Genetic programming II: Automatic discovery of reusable
programs. Massachusetts Institute of Technology, 1994.

John R. Koza. Genetic programming III: Darwinian invention and problem
solving. Morgan Kaufmann, 1999.

John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec,
Jessen Yu, and Guido Lanza. Genetic programming IV: Routine human-
competitive machine intelligence. Springer, 2005.

Solomon Kullback and Richard A. Leibler. On information and sufficiency.
The Annals of Mathematical Statistics, 22(1):79–86, 1951.

John Lafferty, Andrew McCallum, and Fernando C.N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. In Proceedings of the 18th International Conference on Machine
Learning, pages 282–289, 2001.

William B. Langdon and Riccardo Poli. Fitness causes bloat. In Soft Com-
puting in Engineering Design and Manufacturing, pages 13–22, 1997.

Dongwon Lee, Jaewoo Kang, Prasenjit Mitra, C Lee Giles, and Byung-Won
On. Are your citations clean? Communications of the ACM, 50(12):33–38,
2007.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

Michael Ley. The dblp computer science bibliography: Evolution, research
issues, perspectives. In String Processing and Information Retrieval, Lec-
ture Notes in Computer Science, pages 481–486. Springer, 2002.

Michael Ley. Dblp: some lessons learned. Proceedings of the VLDB Endow-
ment (PVLDB), 2(2):1493–1500, 2009.

Chen Li and Liang Jin. Documentation of the stringmap implementation in
the UCI Flamingo Package 4.1, 2010. URL http://flamingo.ics.uci.

edu/releases/4.1/docs/StringMapDoc.html.

Huajing Li, Isaac Councill, Wang-Chien Lee, and C. Lee Giles. CiteSeerX:
an architecture and web service design for an academic document search
engine. In Proceedings of the 15th International Conference on World Wide
Web, pages 883–884, 2006.

http://flamingo.ics.uci.edu/releases/4.1/docs/StringMapDoc.html
http://flamingo.ics.uci.edu/releases/4.1/docs/StringMapDoc.html

BIBLIOGRAPHY 211

Huifeng Li, Rohini K. Srihari, Cheng Niu, and Wei Li. Location normaliza-
tion for information extraction. In Proceedings of the 19th International
Conference on Computational Linguistics, pages 1–7, 2002.

Ee-Peng Lim, Jaideep Srivastava, Satya Prabhakar, and James Richardson.
Entity identification in database integration. In Proceedings of the Ninth
International Conference on Data Engineering, pages 294–301, 1993.

Sean Luke and Liviu Panait. A comparison of bloat control methods for
genetic programming. Evolutionary Computation, 14(3):309–344, 2006.

Frank Manola and Eric Miller. RDF primer. W3C recommendation. http:

//www.w3.org/TR/rdf-primer/, 2004.

Brian W. Matthews. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) -
Protein Structure, 405(2):442 – 451, 1975.

Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient cluster-
ing of high-dimensional data sets with application to reference matching.
In Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 169–178, 2000a. First use
of the Cora data set in the version it is used today.

Andrew K. McCallum and Kamal Nigam. Employing em in pool-based ac-
tive learning for text classification. In Proceedings of 15th International
Conference on Machine Learning, pages 350–358, 1998.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Sey-
more. Automating the construction of internet portals with machine learn-
ing. Information Retrieval, 3(2):127–163, 2000b. First mention of the Cora
dataset.

Maged Michael, Jose E. Moreira, Doron Shiloach, and Robert W. Wisniewski.
Scale-up x scale-out: A case study using nutch/lucene. In IEEE Interna-
tional Parallel and Distributed Processing Symposium, pages 1–8, 2007.

Martin Michalowski, Snehal Thakkar, and Craig A. Knoblock. Exploiting
secondary sources for unsupervised record linkage. In Proceedings of the
VLDB Workshop on Information Integration on the Web, pages 34–39,
2004.

Alvaro Monge and Charles Elkan. The field matching problem: Algorithms
and applications. In In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, pages 267–270, 1996.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

212 BIBLIOGRAPHY

David J. Montana. Strongly typed genetic programming. Evolutionary Com-
putation, 3(2):199–230, 1995.

Ion Muslea, Steven Minton, and Craig A. Knoblock. Active learning with
multiple views. Journal of Artificial Intelligence Research, 27(1):203–233,
2006.

Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detec-
tion. Morgan & Claypool, 2010.

Gonzalo Navarro. A guided tour to approximate string matching. ACM
Computer Survey, 33, 2001.

Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES – a time-efficient ap-
proach for large-scale link discovery on the web of data. In Proceedings
of the 22nd International Joint Conference on Artificial Intelligence, vol-
ume 3, pages 2312–2317, 2011.

Axel-Cyrille Ngonga Ngomo and Klaus Lyko. EAGLE: Efficient active learn-
ing of link specifications using genetic programming. In Proceedings of the
Ninth Extended Semantic Web Conference (ESWC), pages 149–163, 2012.

Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad
Höffner. RAVEN – active learning of link specifications. In Proceedings
of the Sixth International Workshop on Ontology Matching (OM), pages
25–37, 2011.

Nikolay Nikolaev and Vanio Slavov. Inductive genetic programming with de-
cision trees. In Proceedings of the Ninth European Conference on Machine
Learning, pages 183–190, 1997.

Xing Niu, Shu Rong, Yunlong Zhang, and Haofen Wang. Zhishi.links results
for OAEI 2011. In Proceedings of the Sixth International Workshop on
Ontology Matching (OM), pages 220–227, 2011.

Jan Noessner and Mathias Niepert. Codi: Combinatorial optimization for
data integration: Results for OAEI 2010. In Proceedings of the Fifth In-
ternational Workshop on Ontology Matching (OM), pages 142–149, 2010.

Object Management Group. Common Object Request Broker architecture
specification. http://www.omg.org/spec/CORBA/, 2012.

Hiroyuki Ogata, Susumu Goto, Kazushige Sato, Wataru Fujibuchi, Hidemasa
Bono, and Minoru Kanehisa. KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Research, 27(1):29–34, 1999.

http://www.omg.org/spec/CORBA/

BIBLIOGRAPHY 213

Ontology Alignment Evaluation Initiative. Alignment format and API. http:
//oaei.ontologymatching.org/2011/align.html, 2011.

Lawrence Philips. Hanging on the metaphone. Computer Language, 7(12),
1990.

Riccardo Poli, William B. Langdon, and Nicholas F. McPhee. A field guide
to genetic programming. Lulu Enterprises Uk Limited, 2008.

David M.W. Powers. Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness & correlation. Journal of Machine Learn-
ing Technologies, 2(1):37–63, 2011.

Eric Prud’hommeaux and Andy Seaborne. SPARQL query lan-
guage for RDF. W3C recommendation. http://www.w3.org/TR/

rdf-sparql-query/, 2008.

Dorian Pyle. Data preparation for data mining, volume 1. Morgan Kaufmann,
1999.

J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

John Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers, 1993.

Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current
approaches. IEEE Data Engineering Bulletin, 23(4):3–13, 2000.

Vibhor Rastogi, Nilesh Dalvi, and Minos Garofalakis. Large-scale collective
entity matching. Proceedings of the VLDB Endowment (PVLDB), 4(4):
208–218, 2011.

Lior Rokach and Oded Z. Maimon. Data mining with decision trees: theory
and applications. World Scientific Publishing Company Incorporated, 2008.

R.C. Russell. Index, United States patent 1261167, April 1918.

R.C. Russell. Index, United States patent 1435663, November 1922.

Fatiha Saıs, Nobal Niraula, Nathalie Pernelle, and Marie-Christine Rous-
set. LN2R–a knowledge based reference reconciliation system: OAEI 2010
results. In Proceedings of the Fifth International Workshop on Ontology
Matching (OM), pages 172–180, 2010.

http://oaei.ontologymatching.org/2011/align.html
http://oaei.ontologymatching.org/2011/align.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

214 BIBLIOGRAPHY

Sunita Sarawagi. Information extraction. Foundations and Trends in
Databases, 1(3):261–377, 2008.

Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication us-
ing active learning. In Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 269–
278, 2002.

Andreas Schultz, Andrea Matteini, Robert Isele, Christian Bizer, and Chris-
tian Becker. LDIF–linked data integration framework. In Proceedings of
the Second International Workshop on Consuming Linked Data, 2011.

Andreas Schultz, Andrea Matteini, Robert Isele, Christian Bizer, and
Christian Becker. LDIF–benchmark results. http://ldif.wbsg.de/

benchmark.html, 2012a.

Andreas Schultz, Andrea Matteini, Robert Isele, Pablo N Mendes, Christian
Bizer, and Christian Becker. LDIF–a framework for large-scale linked data
integration. In 21st International World Wide Web Conference, Developers
Track, 2012b.

Burr Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

H. Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by
committee. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 287–294, 1992.

Anestis Sitas and Sarantos Kapidakis. Duplicate detection algorithms of
bibliographic descriptions. Library Hi Tech, 26(2):287–301, 2008.

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-
garra. MPI: The Complete Reference. MIT Press, 1995.

Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer. Linked-
GeoData: A core for a web of spatial open data. Semantic Web Journal,
2011.

Robert L. Taft. Name search techniques. Technical report, Bureau of Systems
Development, New York State Identification and Intelligence System, 1970.

Aynaz Taheri and Mehrnoush Shamsfard. SBUEI: Results for OAEI 2012. In
Proceedings of the Seventh International Workshop on Ontology Matching
(OM), pages 189–196, 2012.

http://ldif.wbsg.de/benchmark.html
http://ldif.wbsg.de/benchmark.html

BIBLIOGRAPHY 215

Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object iden-
tification rules for information integration. Information Systems, 26(8):
607–633, 2001.

David W. Walker and Jack J. Dongarra. MPI: A standard message passing
interface. Supercomputer, 12:56–68, 1996.

Jason Tsong-Li Wang, Xiong Wang, King-Ip Lin, Dennis Shasha, Bruce A.
Shapiro, and Kaizhong Zhang. Evaluating a class of distance-mapping
algorithms for data mining and clustering. In Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 307–311, 1999.

Zhichun Wang, Xiao Zhang, Lei Hou, Yue Zhao, Juanzi Li, Yu Qi, and
Jie Tang. RiMOM results for OAEI 2010. In Proceedings of the Fifth
International Workshop on Ontology Matching (OM), pages 194–201, 2010.

Melanie Weis and Felix Naumann. Detecting duplicate objects in xml doc-
uments. In Proceedings of the International Workshop on Information
Quality in Information Systems, pages 10–19, 2004.

William E. Winkler. String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage. In Proceedings of the Section
on Survey Research, pages 354–359, 1990.

William E. Winkler. Matching and record linkage. In Business Survey Meth-
ods, pages 355–384, 1995.

William E. Winkler. Methods for record linkage and bayesian networks.
Technical report, Series RRS2002/05, U.S. Bureau of the Census, 2002.

William E Winkler and Yves Thibaudeau. An application of the fellegi-
sunter model of record linkage to the 1990 us decennial census. Bureau
of the Census, Statistical Research Division, Statistical Research Report
Series, n. RR91/09, 1991.

Su Yan, Dongwon Lee, Min-Yen Kan, et al. Adaptive sorted neighbor-
hood methods for efficient record linkage. In Proceedings of the Sev-
enth ACM/IEEE-CS Joint Conference on Digital Libraries, pages 185–194,
2007.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy Mccauley, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory

216 BIBLIOGRAPHY

cluster computing. In Proceedings of the Ninth USENIX Symposium on
Networked Systems Design and Implementation, 2012.

Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy and par-
simony in genetic programming. Evolutionary Computation, 3(1):17–38,
1995.

Justin Zobel and Philip Dart. Finding approximate matches in large lexicons.
Software: Practice and Experience, 25(3):331–345, 1995.

	Abstract
	Introduction
	Use Cases
	Data Integration
	Matching Census Data
	Bibliographic Databases
	Publishing Linked Data

	Contributions
	Thesis Outline
	Published Work

	Linkage Rules
	Problem Definition
	Data Preparation
	Standardization
	Stop-Word Removal
	Structural Transformations

	Field Matching
	Character-Based Measures
	Token-Based Measures
	Hybrid Measures
	Other Measures

	Previous Work on Linkage Rules.
	Linear Classifiers
	Threshold-based Boolean Classifiers
	Other Representations

	An Expressive Linkage Rule Representation
	Example
	Semantics
	Discussion
	Representing Common Classifiers

	Summary

	Supervised Learning of Linkage Rules
	Problem Definition
	Genetic Programming
	Generating the Initial Population
	Evolving the Population
	Bloating Control

	The GenLink Algorithm
	Generating the Initial Population
	Evolving the Population
	Crossover Operators
	Bloating Control

	Previous Work on Supervised Learning
	Linear Classifiers
	Threshold-based Boolean Classifiers
	Genetic Programming
	Collective Approaches
	Unsupervised Approaches
	Discussion

	Evaluation and Discussion
	Data Sets
	Experimental Setup
	Evaluation Measures
	Overall Results
	Detailed Evaluation

	Summary

	Active Learning of Linkage Rules
	Active Learning
	Query Strategies
	Uncertainty Sampling
	Query-by-Committee

	The ActiveGenLink Algorithm
	Query Strategy
	Building the Unlabeled Pool

	Previous Work on Active Learning
	Linear and Threshold-based Boolean Classifiers
	Genetic Programming
	Discussion

	Evaluation and Discussion
	Experiment Setup
	Comparison with Supervised Learning
	Scalability
	Comparison of Different Query Strategies

	Summary

	Execution of Linkage Rules
	Scalability Challenges
	Quadratic Execution Time
	Parallel Execution
	Memory Constraints

	Execution Data Flow
	Indexing
	Caching
	Generating Comparison Pairs
	Matching
	Filtering

	The MultiBlock Indexing Approach
	Data Flow
	Indexing Distance Measures
	Indexing Aggregations

	Previous Work on Indexing
	Blocking
	Sorted Neighborhood
	Sorted Blocks
	Q-Gram Indexing
	Canopy Clustering
	Metric Embedding Methods
	StringMap
	Discussion

	Distributed Execution of Linkage Rules
	Cluster Programming Models
	MapReduce Data Flow

	Evaluation and Discussion
	Experiment Setup
	Comparison with Other Methods
	Scalability
	Effectiveness
	MapReduce

	Summary

	The Silk Link Discovery Framework
	Silk Link Specification Language
	Silk Workbench
	Workspace Browser
	Linkage Rule Learner
	Linkage Rule Editor
	Reference Links Manager

	Conclusion
	Summary
	Lowering the Effort
	Increasing the Accuracy
	Increasing the Efficiency

	Limitations and Future Work
	Collective Matching
	Distance Measures and Transformations
	Learning of Functions Parameters
	Population Seeding
	Query Strategy

	List of Figures
	List of Tables
	Listings
	Bibliography

