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Chapter 1

General Introduction

This dissertation comprises four self-contained chapters that address questions from very

diverse fields of research, including mortality research, social interactions, international

cooperation, and statistical software development. While the empirical questions covered

are interdisciplinary in nature and combine the field of economics with demography as well

as political science, it is the underlying common methodology that connects all chapters.

Specifically, each chapter addresses or uses a multiple duration framework that belongs

to the class of multivariate mixed proportional hazard models or constitutes a variation

or extension of this class of models.

The multivariate mixed proportional hazard model is a reduced-form multiple duration

framework, with the marginal duration distributions each satisfying the popular mixed

proportional hazard specification (see Van den Berg, 2001, for an overview). This model

class is designed for use with clustered duration data, whereby spells of the same cluster

are dependent due to unobservable determinants. The clustered spells often reflect several

spells of the same unit, with examples including the life-spans of twin pairs (Chapter 2),

the age of first substance use of siblings living in the same household (Chapter 3), or

the time until several countries incorporate an international agreement into domestic law

(Chapter 4). Here, the unobservable determinants causing a dependence within the cluster

are shared family characteristics and the similar genetic makeup among siblings in the

first two examples and unobserved characteristics of international agreements in the latter

example.

With the timing-of-events approach, Abbring and van den Berg (2003b) introduce a second

source of dependence to the multivariate mixed proportional hazard model for the case
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CHAPTER 1. GENERAL INTRODUCTION

of two parallel durations.1 When duration 2 ends, the subsequent survival of duration 1

is a↵ected via a treatment e↵ect function. Numerous empirical studies use this model to

evaluate the e↵ects of treatments in a bivariate duration framework. While the main field

of application is the evaluation of labor market programs (e.g., see Van den Berg et al.,

2004; Lalive et al., 2005; Abbring et al., 2005), other examples include the e↵ect of patent

grants on the timing of licensing by start-up technology entrepreneurs (Gans et al., 2008),

the e↵ect of cannabis use on cocaine use (Van Ours, 2003) and school dropout (Van Ours

and Williams, 2009), the e↵ect of child birth on relationship duration (Svarer and Verner,

2008), and the e↵ect of bereavement on the spouse’s survival (Van den Berg et al., 2011).

Variations and extensions to the timing-of-events model are presented in Chapters 2 and 3

with the aim of extending its usability to new fields of research. In Chapter 2, we introduce

together with Gerard van den Berg a symmetric version of the timing-of-events approach

to study bereavement e↵ects in twin pairs. Furthermore, in Chapter 3 with Georgios

E↵raimidis, we investigate an extension to multiple spells to study social interaction

e↵ects between siblings for the first-time use of marijuana.

Chapters 4 and 5 address very diverse topics, with the only common theme being the

underlying methodology. A multivariate mixed proportional hazard model is used in

Chapter 4 to study ine�ciencies in international cooperation in the Southern Common

Market (with Christian Arnold and Gerard van den Berg). Finally, in Chapter 5, we

consider together with Gerard van den Berg likelihood-based statistical inference with

left-truncated data in the shared frailty model. This model constitutes a special case of

the multivariate mixed proportional hazard model, whereby the unobserved determinants

are shared within a cluster.

In Chapter 2, we address the question of whether losing your co-twin can a↵ect your

remaining life-span. Twins share a unique bond that can lead to severe emotional stress

and health deterioration once, the bond is broken. We present new empirical evidence

suggesting that the loss of the co-twin can shorten the remaining life-span of the surviving

twin. The identification of such bereavement e↵ects is severely complicated by the similar

genetic makeup and early childhood experiences of twins, which constitute a major source

of the dependence between twin life-spans and are typically not observed. Previous studies

1It should be pointed out that the timing-of-events approach is based on a censored data structure.
Once duration 1 ends, this implies immediate right-censoring of duration 2.

2



CHAPTER 1. GENERAL INTRODUCTION

of twin lifespans limit their attention exclusively to one of the two sources of dependence,

namely the bereavement e↵ect or genetic factors. We present a new identification result on

a symmetric version of the timing-of-events model of Abbring and Van den Berg (2003),

which enables us to unite both strands of the literature in one model by exploiting only

weak covariate variation. Our empirical analysis is based on 9,268 twin pairs from the

Danish Twin Registry, with the results suggesting that a male twin who has lost his

identical co-twin when he reached the age of 75 will live on average 1.6 years shorter due

to the experience of this loss. This bereavement e↵ect is less severe for non-identical twins

or if the loss is experienced at a higher age.

In Chapter 3, we use multivariate duration methods to study social interaction e↵ects. The

behavior of interest in many studies of social interactions is characterized by a transition

time, with examples including the time a person purchases a new product, moves out of the

neighborhood or starts smoking. We introduce a new strategy to identify social interaction

e↵ects from grouped transition data that exploits information in the timing of transitions.

In particular, we account for two sources of dependence between the behavior of members

of a peer group: (1) Once a group member starts to smoke, this directly a↵ects the

subsequent risk of the other group members starting to smoke (‘social interaction e↵ect’).

Such social interaction e↵ects may be highly flexible and di↵er across group members,

covariates and over successive transitions in the group; and (2) Group members may have

similar unobserved characteristics such as risk attitudes or tastes (‘correlated e↵ect’).

This approach is based on the timing-of-events model by Abbring and van den Berg

(2003b), which we extend to multiple parallel spells with varying entry dates and a highly

flexible pattern of successive interactions between di↵erent group members. Moreover, we

present an identification result for this model. The definition of social interactions in terms

of a lagged e↵ect in time enables overcoming the reflection problem (Manski, 1993) in the

presence of correlated e↵ects, without making use of an exclusion restriction. Additionally,

given that the model accounts for selection e↵ects, it enables the study of peer e↵ects in

natural peer groups such as a circle of friends, work colleagues or neighborhoods, which are

often the result of a self-selection process based on similar unobservable characteristics.

This new approach is used to study social interaction e↵ects in the first-time use of

marijuana among siblings growing up together in American households, using data from

the NLSY79. We find that once the oldest sibling in the household starts using marijuana,

3
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this makes it more likely for his younger siblings to engage in the same habit. Conversely,

the marijuana use decision of the younger siblings does not seem to have a contagious

e↵ect on the behavior of the other siblings.

Chapter 4 is concerned with ine�ciencies arising in international cooperation. Compliance

is a key concern in international cooperation, given that contracting is based on the

reliability of all partners. Typically, free-riding is believed to be its main impediment in

international relations. We present an institutional outlier that solves this issue, albeit only

at the cost of other strategic ine�ciencies. In the Southern Common Market (Mercosur),

its four member states of Argentina, Brazil, Paraguay and Uruguay cannot benefit

from the cooperation e↵orts of others, yet are rather inclined to make false promises.

International agreements normally become legally binding once a state incorporates the

international contract at the domestic level. However, in Mercosur, policies are only legally

binding when all four countries have passed a provision. Given Mercosur’s weak provisions

for enforcement, actors prefer to reap benefits from contracting alone, knowing that they

can easily prevent the policy from taking e↵ect at a later stage. We o↵er a formal model

that demonstrates the consistency of our argument.

Empirically, we substantiate our claims with the complete incorporation record of all

Mercosur regulations between 1994 and 2008. A striking feature of Mercosur’s ratification

record is that half of the regulations introduced before 2004 have not entered into force

after five years. We jointly model the ratification hazards of the four members, accounting

for the change of the economic and political environment in the four member countries

over time, as well as unobserved regulation-specific characteristics. For regulations with

high media coverage and political relevance, we find that political actors are more likely

to first make an initial public promise to their Mercosur partners, before subsequently

prolonging ratification at the domestic level when public interest is low.

Finally, Chapter 5 addresses inference in parametric multivariate mixed proportional

hazard models with shared unobserved determinants. With multiple-spell duration data,

an unobserved shared component for groups of spells is often specified in the form of a

shared frailty term. We consider random-e↵ects likelihood-based statistical inference if the

duration data are subject to left-truncation. Such inference with left-truncated data can

be performed in the Stata software package for parametric and semi-parametric shared

frailty models. We show that with left-truncated data, the commands ignore the weeding-

4
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out process before the left-truncation points, a↵ecting the distribution of unobserved

determinants among group members in the data, namely among the group members

who survive until their truncation points. We critically examine studies in the statistical

literature on this issue as well as published empirical studies that use the commands.

Simulations illustrate the size of the (asymptotic) bias and its dependence on the degree

of truncation. We provide a Stata command file for the parametric case that maximizes

the likelihood function that properly takes account of the interplay between truncation

and dynamic selection.

5





Chapter 2

A Unique Bond: Does Losing your

Co-twin a↵ect your Remaining

Life-Span?1

2.1 Introduction

The lives of twins are fundamentally intertwined. Twins share a unique bond, and the

life of one twin may have a direct influence on the life of the other. Studies with bereaved

twins document how the loss of the co-twin can cause severe psychological stress that can

also lead to health deterioration (e.g., see Woodward, 1988; Segal et al., 1995; Segal and

Ream, 1998). The aim of this paper is to identify the e↵ect of bereavement experienced

in adulthood on the residual life expectancy of the surviving twin. Endogeneity concerns

have hampered the empirical analysis of this e↵ect so far (see Hougaard et al., 1992a). As

a main obstacle, twins usually share childhood experiences and have a similar or identical

genetic makeup. Such factors are typically unobservable and strongly influence health

outcomes throughout the whole life cycle of both twins. Overall, it is a challenging task

to capture the complex dependence structure between twin life-spans.

We introduce a new binary survival model to the twin mortality literature that allows to

study the e↵ects of bereavement on the subsequent survival of the bereaved twin and at

the same time accounts for unobservable childhood or genetic e↵ects. The new model is

1This chapter is joint work with Gerard van den Berg. We thank the Danish Twin Registry and Kaare
Christensen for kindly allowing us to use their data.
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CHAPTER 2. TWIN BEREAVEMENT AND MORTALITY

used to estimate bereavement e↵ects in 9,270 adult twin pairs born in Denmark between

1873 and 1930. Our results suggest that a male twin, who has lost his identical co-twin

when he reached the age of 75, will live on average 1.6 years shorter due to the experience

of the loss. This e↵ect is less severe for non-identical twins or if the loss is experienced at

a higher age.

Previous studies are limited to modeling either the bereavement e↵ect or the influence of

genetic factors. Tomassini et al. (2001; 2002)2 and Hougaard et al. (1992a) use survival

models for each twin life-span and include the life-span of the co-twin as an exogenous

time dependent covariate. Hougaard et al. point out the problem with this approach.

Their estimated e↵ect does not only capture the e↵ect of bereavement but also captures

the dependence due to shared genetic factors. The other strand of literature focuses on

this latter type of dependence. The most elaborate approach is based on a bivariate

frailty model that specifies a flexible dependence structure between the frailty terms (e.g.

Hougaard et al., 1992a,b; Yashin and Iachine, 1995a; Wienke et al., 2001). Here, the frailty

terms reflect the influence of unobservable factors such as childhood or genetic e↵ects.

In her discussion of Hougaard et al.’s (1992a) paper, Flourney (1992) argues that a super-

model is needed that accounts for both e↵ect simultaneously: the bereavement e↵ect

and the influence of unobservable correlated factors. In this paper we present such a

unifying model. We include the life-span of the co-twin as a time-dependent covariate in

the model and account for the endogeneity of this variable by including it in the model

as a second equation. With a flexible dependence structure between the two frailty terms

we account for the influence of childhood and genetic e↵ects. Related models are used in

empirical econometric studies on the e↵ect of labor market programs on unemployment

durations. Here, we adapt the established timing of events model by Abbring and Van den

Berg (2003b) to fit our symmetric setup of twins and show that with minimal covariate

variation in the data the components of this new model including the bereavement e↵ect

can be identified from the observed joint distribution of twin life-spans.

In our application we use data on 2,808 monozygotic and 6,462 dizygotic twin pairs from

the Danish Twin Registry. As our analysis exploits the timing of deaths, it is advantageous

2Tomassini et al. (2002; 2001) use a model in which they match each bereaved twin to two not
bereaved twins based on zygosity, age, and sex and compare the two resulting hazard rates after the
age when bereavement takes place. Note that this method also ignores the endogeneity of the time of
bereavement caused by shared genetic factors.

8



CHAPTER 2. TWIN BEREAVEMENT AND MORTALITY

to observe as many exits as possible in the data. The Danish Twin Registry is one of the

oldest existing twin datasets and allows us to use cohorts from 1873 to 1930, ensuring

that 80.8% of the twins have uncensored exits before our window of observation ends

in 2004. The drawback of using such old cohorts is the limited information available on

the twin pairs. The Danish Twin Registry is designed as a medical dataset, providing

information on dates of exit on a daily basis but has very limited information on other

characteristics of the twins. In particular, the observable characteristics available do not

vary within same-sex twin pairs.3 The identification result of Abbring and Van den Berg

(2003b) relies on the assumption of su�cient covariate variation within the unit of interest,

the twin pair in our case. Consequently, their identification result does not apply to our

dataset. In Section 2.3 we present a new identification result for a symmetric4 version of

the timing-of-events model that does not rely on this assumption.5

Our semi-parametric identification result has a wider relevance for the empirical study of

parallel systems and networks and for epidemiological research. The symmetric timing-of-

events model describes a very general setting in which two parallel durations are connected

due to both, observable characteristics and unobservable time-constant factors, and at

the same time the first exit potentially a↵ects the survival of the other. In the most

extreme case, the complete symmetry of our model allows for the two durations to be

indistinguishable in terms of observable characteristics. So even if the durations can

not be indexed (or the index is uninformative) and the only observable covariates are

characteristics of the pair, our identification result still applies. This result is relevant

in cases of datasets with limited observable covariates, such as data of old cohorts or

datasets in which the available covariates, creating the otherwise necessary variation

within duration pairs, are potentially endogenous and therefore have to be excluded.

Our model allows an estimation of bereavement e↵ects among twins while controlling for

the influence of shared genetic factors. However, the symmetric timing-of-events model,

we present for this purpose, can also be used to estimate the dependence between twin

life-spans caused by shared genetic factors while controlling for a potential additional

3The major part of the dataset comprises same-sex twin pairs, since less e↵ort was put into following
up on di↵erent-sex twins in the Danish Twin Registry.

4In contrast to the original timing-of-events model, the model we use here allows for treatment in
both directions. Before the first exit occurs, both life-spans can potentially a↵ect each other.

5Note that in contrast to the model by Abbring and van den Berg, in the identification result presented
here a multiplicative structure is imposed on the bereavement e↵ect function.

9
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causal dependence. There is an extensive field of research with the purpose to quantify

the influence of genetic factors on mortality using data sets similar to ours (e.g., see

Hougaard et al., 1992a,b; Yashin and Iachine, 1995a). Our model allows a comparison of

these di↵erent approaches. In our empirical analysis, we show that the magnitude of the

estimated e↵ects change considerably when either the bereavement e↵ect or the influence

of genetic factors is ignored.

Many bereavement studies focus on conjugal bereavement (e.g., see Bowling, 1987;

Lichtenstein et al., 1998; Lindeboom et al., 2002; Manor and Eisenbach, 2003; Van den

Berg et al., 2011). These studies find convincing evidence that the loss of a spouse can

severely a↵ect mortality shortly after bereavement. However, it remains unclear whether

the measured e↵ect on mortality originates exclusively from emotional stress since the loss

of the spouse also greatly a↵ects the everyday life of the surviving partner. In contrast

to spouses, most adult twins have separate families and support systems. This suggests

that a causal dependence between twin life-spans should be in large part attributed to

the e↵ect of emotional bereavement.

After a brief literature review of the link between bereavement and mortality in Section

2.2, we introduce the symmetric timing-of-events model and address identification in

Section 2.3. In Section 2.4, we shortly introduce the twin dataset from the Danish Twin

Registry. For the purpose of our empirical analysis, we impose some additional structure

on the general symmetric timing-of-events model in Section 2.5 using functional forms

that are well established in the twin mortality literature. Subsequently, our estimation

results are presented in Section 2.6. We sum up with a discussion of our results in Section

2.7 and a brief outlook in Section 2.8.

2.2 The link between bereavement and mortality

The twin studies by Segal et al. (1995, 2002); Segal and Ream (1998) and Woodward

(1988) document how the loss of the co-twin can cause severe emotional stress. The grief

intensity for an identical (monozygotic) twin is often higher than that for other relatives

or spouses (see Segal and Bouchard, 1993; Segal et al., 1995). Besides feelings of despair,

depersonalization (numbness, shock), rumination (preoccupation with the deceased) and

loss of control, bereaved twins also show symptoms such as loss of appetite and vigor, as

well as other physical symptoms (Segal and Blozis, 2002).

10
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According to Selye’s General Adaptation Syndrome (1936; 1955), psychological stress

can be a major cause of disease, given that chronic stress causes long-term biochemical

changes.

Every stress leaves an indelible scar, and the organism pays for its survival

after a stressful situation by becoming a little older. (Hans Selye, Smith, 1969)

Stress theories are specifically applied to bereavement (e.g., see Stroebe and Stroebe,

1987; Stroebe et al., 1993), which is considered a stressful life event with physical health

consequences.6

The psychological manifestations of grief are generally well-documented, and twin studies

have established the existence of a strong psychological reaction to the loss of the co-twin.

Furthermore, the work by Selye (1936; 1955) and Stroebe et al. (1987; 1993) explain the

direct link between the emotional stress of bereavement and health outcomes. However, no

empirical study to date has clearly established a causal dependence between bereavement

and mortality for twins.

2.3 Model and identification result

In the following, we introduce the new bivariate model for twin life-spans, which

constitutes a symmetric version of the timing-of-events model by Abbring and van den

Berg (2003b) (see also Abbring and Heckman, 2007). Following a continuous duration

framework, at age t 2 [0,1) each twin faces a certain risk of dying, given that he has

survived up to this point (mortality hazard). Since we are interested in measuring the

causal e↵ect of the end of one life-span on the subsequent residual life-span of the other

(bereavement e↵ect), we specify the mortality hazard of each twin j = 1, 2 conditional on

the realization of the life-span of the co-twin T
k

. Additionally, we condition on observable

characteristics of the twin pair x and the realization of frailty terms V
j

to account for

childhood e↵ects and the genetic makeup. The resulting mortality hazards of the two

twins are almost symmetric, i.e. their functional forms only di↵er due to the possibly

di↵erent realizations of V1 and V2.

6Furthermore, Sanders (1999) integrates Selye’s well-established general theory of stress in her
Integrative Theory of Bereavement. She points out that besides the familiar stages of grief, patients also
show physiological changes and consequent vulnerability to illness after bereavement (see also Sanders,
1980)
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Model 2.1. The hazard rates of T1|(T2 = t2, x, V1) and T2|(T1 = t1, x, V2) are given by

✓(t|T2 = t2, x, V1) = �(t)�(x)�(t, t2, x)
I(t>t2)V1

✓(t|T1 = t1, x, V2) = �(t)�(x)�(t, t1, x)
I(t>t1)V2,

where the vector of frailties V = (V1, V2)0 is assumed to be drawn from the bivariate

distribution G(v1, v2) and the bereavement e↵ect function is multiplicative in two of its

arguments �(t, t
k

, x) = �
a

(t� t
k

)�
b

(t
k

, x).

In Model 2.1, as long as both twins are alive, each twin j faces a mortality hazard of

�(t)�(x)V
j

. Once the co-twin dies, the mortality hazard of the surviving twin is rescaled

by �
a

(t� t
k

)�
b

(t
k

, x), reflecting the bereavement e↵ect. Here, the first multiplicative term

�
a

describes the dependence of the bereavement e↵ect on the time passed since the loss

occurred, while �
b

accounts for the dependence on the age at the time of bereavement and

the observable variables x. I(t > t
k

) denotes an indicator function that is 1 if the loss

has occurred and 0 otherwise. The function �(t) captures the dependence of the mortality

hazard on age and �(x) holds the e↵ect of the covariates.

Note that given the observed twin pair characteristics x, Model 2.1 allows for two sources

of dependence between life-spans T1 and T2, the first of which is reflected in the joint

distribution of V1 and V2. For instance, for monozyotic twin pairs, we would expect a high

positive correlation between the two terms, due to the twins’ identical genetic makeup.

The second type of dependence is reflected in the bereavement e↵ect function �(t, t
k

, x).

Note that, conditional on x and V , the only dependence between life-spans T1 and T2

comes from the bereavement e↵ect function �(t, t
k

, x). Consequently, this function can be

given a causal interpretation as the e↵ect of the end of one life-span on the other.

In contrast to the frailty terms V that reflect the influence of all time constant unobserved

characteristics such as the genetic makeup, the bereavement e↵ect accounts for the timing

of deaths. This is why the bereavement e↵ect in Model 2.1 can be seen as a local e↵ect,

given that it only a↵ects the hazard rate of the surviving twin after the exit of the

other has occurred. Accordingly, the influence of time-constant unobservable factors V

can be seen as a global e↵ect, since characteristics shaped during childhood and genetic

dispositions influence the mortality hazard of the two twins over their whole life-span,

i.e. 8t 2 [0,1). This terminology provides an intuition for the identifiability of Model

12
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2.1. Since the bereavement e↵ect is assumed to be a local e↵ect, whereas the influence of

upbringing and the genetic makeup is assumed to be global (time-constant), both can be

distinguished.

The structure imposed on the conditional mortality hazards in Model 2.1 assures the

clear distinction between the local bereavement and the global e↵ect of unobservable

factors. Note that the local characteristic of the bereavement e↵ect in Model 2.1 rules out

anticipatory e↵ects, particularly a scenario in which a twin anticipates the future date of

death of his co-twin and is a↵ected by this knowledge to the degree that his mortality

hazard today is a↵ected. Furthermore, the unobservable influences V are assumed to be

purely time-constant (global), thus ruling out unobservable shocks that a↵ect both twins,

such as local epidemics or major events within the family.

In contrast to Model 2.1, the functions � and � in the timing-of-events model of Abbring

and van den Berg (2003b) are allowed to di↵er across the two hazards and only the hazard

of duration 1 can be directly a↵ected by the exit of duration 2.7 In their paper, the authors

already point out that their identification results can be extended in a straightforward

manner to a setting in which the full distribution of (T1, T2)|x is observable and both

durations can potentially be a↵ected by the exit of the other, similar to our setup.

However, a di↵erent identification strategy is needed to identify Model 2.1 in which �

and in particular � is the same in both hazards. The latter implies that all covariates

in the vector x enter both hazards with the same value and have the same e↵ect. The

di�culty arises from this complete symmetry in the covariate e↵ects �(x).

The result by Abbring and van den Berg (2003b) uses the fact that, the two durations are

competing risks until the first exit occurs. Therefore, their proof exploits an identification

result of the mixed proportional hazard competing risk model (Abbring and van den Berg,

2003a). Such a competing risks model requires variation of the covariate e↵ects across the

two hazards in order to trace out the bivariate frailty distribution G(v1, v2). In particular,

it must be assumed that (�1(x),�2(x)) can attain all values over a nonempty open set

� ⇢ (0,1)2 when x is varied over its support X .8 Since it holds in our symmetric setup

that �1(x) = �2(x) = �(x), we cannot exploit this exogenous variation across the two

7The original model also does not need the assumption that the treatment e↵ect can be separated
into two multiplicative parts.

8If �
j

(x) = e�
T
j x then it would be su�cient that the vector x has two continuous covariates that a↵ect

the hazard rates of both risks but with di↵erent nonzero coe�cients, and that are not perfectly collinear.
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hazards in our model.9

Although the original model of Abbring and van den Berg is in some respects more

flexible than Model 2.1, given that it allows for di↵erent baseline hazards and regression

component functions across the two equations, it is also more restrictive in the sense that it

relies on su�cient variation of the covariate e↵ects across the two hazards. Therefore, the

symmetric case of Model 2.1 is not covered by their result. The main di↵erence in terms

of the identification strategy is that while Abbring and Van den Berg’s result exploits

the results from the mixed proportional hazard competing risk model, our identification

strategy exploits the symmetry of the model, enabling us to use of the identification

results of the univariate mixed proportional hazard model by Elbers and Ridder (1982).

By imposing a multiplicative structure on the treatment e↵ect function, we are able to

split the hazard rate into three multiplicative parts reflecting the dependence on time

t, observables x, and unobservable influences V , which is characteristic for a mixed

proportional hazard model. We exploit this structure at several steps throughout our

proof.10

For the purpose of identification, we impose the following assumptions:

Assumption 2.1. The vector x is k-dimensional with 1  k < 1 and � : X ! U ⇢
(0,1). The set X ⇢ Rk contains at least two values.

Assumption 2.2. �
a

: R+ ! (0,1) with lim
s#0 �a(s) < 1 and for �

b

: [0,1) ⇥ X !
(0,1) it holds that @ c 2 (0,1) s.t. �

b

(0, x) = c�(x)�1 8x 2 X .

Assumption 2.3. For the function � : [0,1) ! (0,1) it holds that for all t 2 (0,1)

lim
s#t �(s) < 1 and has integral ⇤(t) :=

R
t

0
�(⌧) d⌧ < 1, 8 t � 0 and further

⇤̃(t, s) :=

Z
t

s

�(⌧)�
a

(⌧ � s) d⌧ < 1, 8 {(t, s) 2 [0,1)2 : t > s}.

9For twins it is very unlikely that observable characteristics such as sex or cohort will a↵ect twin 1
systematically di↵erent compared to twin 2. In our dataset, twins are indexed according to their order
of births. The firstborn has index 1 and the second index 2. But this information is extremely unreliable
especially for the older cohorts. Note further, that since we use cohorts from 1873 onwards, we only have
a very limited set of covariates available in our analysis none of which vary within same-sex twin pairs.
Therefore, we can not rely on su�cient exogenous variation within twin pairs.

10Note that the identification results presented in this section can be straightforwardly extended to
the case where the bereavement e↵ect function di↵ers between the two durations. Thus, if the two spells
can be distinguished in the data, it is possible to identify two separate bereavement e↵ects �1(t, t2, x) and
�2(t, t1, x). The first measures the e↵ect of the exit of duration 1 on duration 2 and the other the e↵ect of
the exit of duration 2 on duration 1. However, in most applications including our twin model the causal
e↵ect is symmetric.
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For some a priori chosen t0, t⇤0 and x0, it holds that
R

t0

0
�(⌧) d⌧ = 1,

R
t

⇤
0

0
�(⌧)�

a

(⌧) d⌧ = 1 and �(x0) = 1.

Assumption 2.4. V is an R2
+-valued time-invariant random vector (V1, V2)0 and is drawn

from distribution G, which does not depend on x, and has a finite positive mean. G is such

that P (V 2 (0,1)2) = 1. Furthermore, for all (t, x) 2 (0,1)⇥X lim
s#t E(V

j

|T
j

� s, T
k

=

t, x) = E(V
j

|T
j

� t, T
k

= t, x).

Assumption 2.5. 9 an open set  2 (0,1)2 with t1 > t2 8 (t1, t2) 2  s.t. at all points

(t1, t2) 2  the function �(t1, t2, x) = ⇤̃(t1, t2)�b(t2, x) is continuously di↵erentiable with

respect to t2.11

Note that for Assumption 2.1, a single dummy variable x that does not need to vary across

the two hazards su�ces, provided that it has an e↵ect. In such a case, �(x) takes on only

two values on X . The timing-of-events model of Abbring and van den Berg (2003b) usually

requires two continuous variables with di↵erent e↵ects to assure identification. For our

model, the most limited case of covariate variation in form of a single dummy variable

su�ces.

Assumption 2.3 restricts the baseline hazard function to be continuous from the right for

all t 2 (0,1). Note that this does not rule out the piecewise constant case or most

functional forms. Furthermore, given that this property only has to hold for strictly

positive values, functional forms with lim
s#0 �(s) = 1 such as the Weibull function are

not ruled out. However, the initial jump of the bereavement e↵ect has to have a finite

limit. Consequently, functional forms of �
a

with lim
s#0 �a(s) = 1 are excluded.

Note that, in contrast to Abbring and van den Berg (2003b), we do not make the

assumption of varying covariates between the two durations, but rather impose a

multiplicative structure on the treatment e↵ect. We also use slightly di↵erent regularity

assumptions because our proof exploits identification results from the mixed proportional

hazard model.

With Assumptions 2.1-2.5, we formulate the following two propositions:

Proposition 2.1. If Assumptions 2.1-2.4 are satisfied, then the functions �,�, �
a

, �
b

from

11Alternative assumption 5: The open set  2 (0,1)2 could also exist for t1 < t2 8 (t1, t2) 2  s.t. at
all points (t1, t2) 2  the function �(t2, t1, x) is continuously di↵erentiable with respect to t1.
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Model 2.1 are non-parametrically identified (up to a scaling factor) from the distribution

of (T1, T2)|x.

Note that G remains undetermined in Proposition 2.1. This leads to:

Proposition 2.2. If Assumptions 2.1-2.5 are satisfied, then Model 2.1, which is

characterized by the functions G,�,�, �
a

, �
b

, is non-parametrically identified (up to a

scaling factor) from the distribution of (T1, T2)|x.

Proof of Proposition 2.1. Identification of � and �: Let Z = min{T1, T2} be the

minimum of the two durations T1 and T2. The survival function of Z|x is given as (see

Appendix 2.A.1 for details)

S
Z

(t|x) =
Z 1

0

e�⇤(t)�(x)w dG
W

(w), with W = V1 + V2. (2.1)

Note that, due to the symmetry of Model 2.1, the distribution of Z has a hazard rate

of the mixed proportional form: ✓
z

(t|x,W ) = ✓(t|T2 � t, x, V1) + ✓(t|T1 � t, x, V2) =

�(t)�(x)W with frailty W = V1 + V2 drawn from distribution G
W

. The results by Elbers

and Ridder (1982), (see also Lancaster, 1990; Van den Berg, 2001, for an overview)12 on

the identification of the mixed proportional hazard model imply that, under Assumptions

2.1-2.4, the model in Equation (2.1), characterized by the functions �, � and G
W

, is

identified up to a scaling factor (see Appendix 2.A.1 for details).

Identification of �
a

: The survival function of duration T
j

given x and given that the exit

of the other duration occurred at T
k

= 0, can be expressed as follows

S(t|T
k

= 0, x) =

Z 1

0

e�
R
t

0 ✓(⌧ |Tk

=0,x,V
j

) d⌧ dG
V

j

|T
k

=0,x(vj),

with ✓(t|T
k

= 0, x, V
j

) = �(t)�(x)�
a

(t � 0)�
b

(0, x)V
j

. Here, we make use of the subset

T
j

|(T
k

= 0, x) of the observable bivariate distribution (T1, T2)|x. Here, duration k exits at

time T
k

= 0, and therefore the hazard of the other duration is a↵ected by bereavement

over the full interval (0,1). Due to the multiplicative structure of the bereavement e↵ect

function, the distribution of T
j

|(T
k

= 0, x) has a hazard rate of the mixed proportional

form: ✓(t|T
k

= 0, x, V
j

) = �̃(t)�̃(x)V
j

with �̃(t) = �(t)�
a

(t) and �̃(x) = �(x)�
b

(0, x).

Again, the results by Elbers and Ridder imply that, under Assumptions 2.1-2.4, the mixed

12See also Kortram et al. (1995a) for the case of only two possible values for �(x).
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proportional hazard model defined by {�̃, �̃, G
V

j

|T
k

=0,x} is identified up to a scaling factor;

moreover, given that � is known, this also identifies �
a

. Note that a key feature of the mixed

proportional hazard model is the independence of observable variables x and unobservable

frailties V . In Appendix 2.A.2, we show that under Assumptions 2.1-2.4, the conditional

frailty distribution G
V

j

|T
k

=0,x does not depend on x. Furthermore, Assumption 2.2 states

that the functions �(x) and �
b

(0, x) are not proportional, assuring that the function �̂(x) =

�(x)�
b

(0, x) generates su�cient exogenous variation.

Identification of �
b

: In the following, we exploit information on the jump of the hazard

rate at the moment of bereavement

lim
s#t ✓(s|Tk

= t, x)

✓(t|T
k

= t, x)
=
�(x)�

b

(t, x) lim
s#t �a(s� t)�(s)E(V

j

|T
j

� s, T
k

= t, x)

�(x)�(t)E(V
j

|T
j

� t, T
k

= t, x)

= �
b

(t, x) lim
s#t

�
a

(s� t)
lim

s#t �(s)

�(t)
. (2.2)

Assumptions 2.2 and 2.3 assure the existence of lim
s#t �a(s�t) and lim

s#t �(s). Accordingly,

the second equality directly follows from Assumption 2.4, stating that lim
s#t E(V

j

|T
j

�
s, T

k

= t, x) = E(V
j

|T
j

� t, T
k

= t, x). Note, that the left hand side of Equation 2.2 is

observable for all (t, x) 2 (0,1)⇥X . Since lim
s#t �a(s� t), lim

s#t �(s) and �(t) are known

from previous steps, we can trace out the function �
b

(t, x) over (0,1)⇥ X .13

Proof of Proposition 2.2. Identification of G: Recall that the functions �,�, �
a

, �
b

in

Model 2.1 are identified under Assumptions 2.1-2.2. The only function that remains

undetermined is the bivariate frailty distribution G. For this last step, we exploit

information of the observed density f(t1, t2|x) for t1 > t2 (see Appendix 2.A.3)

f(t1, t2|x) = c(t1, t2, x)@
2
s1,s2

L
G

�
�(x)(⇤(t2) + �(t1, t2, x)),�(x)⇤(t2)

�
, (2.3)

with c(t1, t2, x) = �(t1)�(t2)�(x)2�a(t1 � t2)�b(t2, x) and �(t1, t2, x) = ⇤̃(t1, t2)�b(t2, x).

Note that all functions on the right hand side of Equation 2.3 are identified, apart

from the cross derivative of the bivariate Laplace transformation @2
s1,s2

L
G

(s1, s2), with

arguments s1 = �(x)(⇤(t2)+�(t1, t2, x)) and s2 = �(x)⇤(t2). The Laplace transformation

L
G

(s1, s2) is known to be a completely monotone function. This property implies that

13Here, �
b

(0, x) is already known from the last identification step.

17



CHAPTER 2. TWIN BEREAVEMENT AND MORTALITY

its cross derivative @2
s1,s2

L
G

(s1, s2) is also completely monotone (see Appendix 2.A.3).

Given that completely monotone functions are real analytic, and that real analytic

functions are uniquely determined by their values on a nonempty open set, the function

@2
s1,s2

L
G

(s1, s2) can be identified on its whole support S = [0,1)2 if we know all its

values on a nonempty open set. In Appendix 2.A.3, we show that under Assumption 2.5,

the function (�(x)(⇤(t2) + �(t1, t2, x)),�(x)⇤(t2)) attains all values on a nonempty open

set ⌥ ⇢ (0,1)2 when t1 and t2 vary over  ⇢ (0,1)2 with t1 > t2.14 This identifies

@2
s1,s2

L
G

(s1, s2) and the integral
R

s1

0

R
s2

0
@2
s1,s2

L
G

(u1, u2) du1du2 subsequently gives us L
G

.

Due to the uniqueness of the Laplace transformation, G is uniquely determined.

2.4 The Danish Twin Registry

In our empirical analysis we use data from the Danish Twin Registry. The registry was

first established in 1954 with the goal of following up on all same-sex twins born since

1873 and surviving as twins at least until the age of 6. However, there is some selectivity in

the very early cohorts, with twins who died young less likely to be included in the sample.

Furthermore, most of the information on characteristics is only available for twins who

survived January 1, 1943. Therefore, we restrict attention to twin pairs still alive at this

date. However, this is not a serious limitation given that we are particularly interested

in the e↵ects of bereavement at higher ages. We use cohorts from 1873 to 1930, assuring

that we observe the exit of most twins prior to January 1, 2004, when our window of

observation ends. While the registry contains some di↵erent-sex twin pairs, most e↵ort

was devoted to following up on same-sex and particularly monozygotic twin pairs. We

refer to Skytthe et al. (2002) for detailed descriptions of the registry and the way in which

it has been collected.

As a result, our sample includes 2,806 monozygotic and 6,462 dizygotic twin pairs, 1,219

of which are di↵erent sex twin pairs. All twins are born between 1873 and 1930 and

both twins in all pairs survived at least until January 1, 1943. The birth and death dates

and resulting individual lifetime durations are observed in days. Individuals still alive

on January 1, 2004 or had emigrated have right-censored durations. Overall, the death

14Note, that if t1 < t2 8 (t1, t2) 2  then the same reasoning can be applied to the function
(�(x)⇤(t1),�(x)(⇤(t1) + �(t2, t1, x))), which then holds the arguments of @2

s1,s2
L
G

in Equation (2.3)
for the case t1 < t2.
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date is observed for 80% of the individuals in our sample. We observe the death cause

for 94.4% of this group, which is classified according to the International Classification

of Diseases(ICD) system, versions 5-8, at the 3-digit level. These are grouped into 12

categories, with the following groups being of specific interest: ‘cardiovascular’ (32.42%,

death due to cardiovascular malfunctions or diseases), ‘apoplexy’ (14.13%), ‘cancer’

(26.03%, death due to malignant neoplasms), ‘suicide’ (1.03%), ‘accidents’ (3.7%) and

‘other’ (including death due to tuberculosis, other infectious diseases, diseases of the

respiratory, digestive or uro-genital system).

For each twin pair in our sample, we observe zygosity, sex, year of birth, season of birth

and region of birth. Note that none of the available covariates vary within the twin pair,

apart from sex. In the previous section, we showed that our model does not rely on this

kind of variation. The information on zygosity is very accurate with a misclassification

rate below 5% (see Holm, 1983; Lykken, 1978). In our analysis, we use an indicator for

being born in Copenhagen to distinguish between rural and urban areas in Denmark.

The additional distinctions between small towns and rural areas outside of Copenhagen

proved to be uninformative in our empirical analysis.

Besides having one of the oldest existing twin datasets in the world, the country of

Denmark is particularly suited for mortality studies using individual lifetime data over a

long time interval. At the beginning of our window of observation in the 1870s, Denmark

already had a quite well-established and comprehensive health care system compared

to the rest of Europe. This is of particular importance for our purposes, given that a

functioning health care system dampens economic shocks that twin pairs are exposed to

over their whole life. Moreover, there were also no major epidemics in Denmark between

1873 and 2004. Recent studies have compared international mortality levels for 1918,

finding that Denmark stands out as the country with the lowest levels of excess mortality

for the 1918–/1919 worldwide influenza pandemic (see Canudas-Romo and Erlangsen,

2008; Ansart et al., 2009). Furthermore, Denmark remained neutral in both World Wars,

and despite being occupied by Germany during the Second World War, casualties were

negligible compared to the rest of Europe. In summary, lifetime data from Denmark from

the 1870s to present provides a dataset that is little a↵ected by economic or direct health

shocks, compared to the rest of Europe.
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2.5 Model of twin life-spans

In the following, we apply the symmetric timing-of-events model introduced in Section

2.3 to the dataset of life-spans from the Danish Twin Registry. For this purpose, we

need to impose additional structure on the functions �,�, � and G in (Model 2.1). In

particular, the vector of frailties (V1, V2) for each twin pair is assumed to be drawn from a

Cherian bivariate Gamma distribution15, which is often used in lifetime models for twins

(see Yashin and Iachine, 1995b; Wienke et al., 2001, 2002) and allows the interpretation

of the individual frailty term as the sum of a shared twin pair-specific term Ṽ0 and an

individual-specific term Ṽ1:

V
j

= Ṽ0 + Ṽ
j

for j 2 1, 2.

Here, each term Ṽ1, Ṽ2 and Ṽ0 is independently drawn from a Gamma distribution.

With this structure, the bivariate Gamma distribution of (V1, V2) has identical marginal

distributions, reflecting the symmetry of life-spans within twin pairs. Their mean is

normalized to one, and consequently the joint distribution of (V1, V2) can be fully described

by two parameters: the variance �2 of V
j

and correlation ⇢ of V1 and V2. The latter

is computed as the ratio of the shared and total variation ⇢ = V ar(Ṽ0)

V ar(Ṽ0+Ṽ

j

)
. Recall that

our sample includes monozygotic (MZ) and dizygotic (DZ) twin pairs. Accordingly, we

estimate separate parameters for both types of zygosity: �2
MZ

, ⇢
MZ

and �2
DZ

, ⇢
DZ

.

In the following, we denote the two life-spans of each twin pair by the vector of random

variables (T1 T2) and their realizations by (t1 t2). The twin life-spans follow a distribution

given by the bivariate survival function S(t1, t2|x) = P (T1 > t1, T2 > t2|x). For a small

part of the twin pairs in our sample, at least one twin is still alive at the end of the

observation window on January 1, 2004. Since the censoring points are determined by the

cohort of the twin pair, this assures independent censoring in our data. Furthermore, the

life-span of one twin is right-censored for a few twin pairs, while the co-twin is observed

to live past this censoring point. Here, right-censoring may occur due to immigration,

for instance, which implies that we do not observe the exact time of bereavement

15Given that we have substantial left-truncation in our dataset, the Gamma distribution would still
be a justified approximation if the true underlying distribution were to di↵er (Abbring and van den Berg,
2007).
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for the co-twin. The first exit could occur any time between the censoring point and

1. Consequently, we have to integrate over the respective interval to account for the

occurrence of all possible exit times.16

S(t1, t2|x) =

8
><

>:

S⇤(t1, t1|x)�
R

t1

t2
S
t2(t1, ⌧ |x) d⌧ , for t1 � t2

S⇤(t2, t2|x)�
R

t2

t1
S
t1(⌧, t2|x) d⌧ , for t1 < t2

with S⇤(t1, t2|x) = (1 + �2�(x)[⇤(t1) + ⇤(t2)])
� ⇢

�

2

(1 + �2�(x)⇤(t1))
� (1�⇢)

�

2 (1 + �2�(x)⇤(t2))
� (1�⇢)

�

2 (2.4)

and partial derivatives S
t

j

(t1, t2|x) = @S(t1,t2|x)
@t

j

, for (j = 1, 2).

As already mentioned in the data section, our dataset only includes twin pairs for which

both twins were still alive on January 1, 1943. This truncation of data has to also be

reflected in the likelihood function. For this purpose, we denote the age of twin j on

January 1, 1943 by t
j,age43. This leads to the survival function conditional on both twins

surviving January 1, 1943

S(t1, t2|T1 > t1,age43, T2 > t2,age43, x) = S(t1, t2|x)S(t1,age43, t2,age43|x)�1

With this, we can derive the likelihood contribution of a twin pair

L(t1, t2, c1, c2|x) = [ c1c2S(t1, t2|x)� c1(1� c2)St2(t1, t2|x)
�(1� c1)c2St1(t1, t2|x) + (1� c1)(1� c2)St1,t2(t1, t2|x) ]

S(t1,age43, t2,age43|x)�1. (2.5)

Here, c1 and c2 denote the censoring indicators for T1 and T2 and S
t1,t2(t1, t2|x) =

@

2
S(t1,t2|x)
@t1@t2

. Note that due to the specific functional form of the Cherian bivariate Gamma

distribution, the likelihood function has a closed form17. The functional forms of S, S
t1 ,

S
t2 and S

t1,t2 and their derivation are presented in Appendix 2.A.4.

16The integrals
R
t1

t2
S
t2(t1, ⌧ |x) d⌧ and

R
t2

t1
S
t1(⌧, t2|x) d⌧ are approximated with numerical integration

methods.
17The only exception are the integrals over the interval of all possible bereavement times for censored

twin pairs.
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For the purpose of our empirical analysis, we also impose additional structure on the

functions �,�, �
a

, �
b

of Model 2.1. The logarithm of �
a

(t) is specified as piecewise constant

with three time intervals after bereavement occurred: the first year after bereavement, the

second to fourth year and after the fourth year. The function ln(�
b

(t
k

, x)) = �age
l

+ �T
�

x

models the dependence of the bereavement e↵ect on the twin’s age at the time t
k

that

she/he experiences the loss of the co-twin and the dependence on observable characteristics

x such as sex and zygosity. Here, p indicates the age interval in which the loss occurred:

ages below 65, 66 to 79 and above 80. The covariate e↵ects enter the hazard as e�
T
x, which

is the standard choice in mixed proportional hazard models and the duration dependence

function � is assumed to follow a flexible version of the Gompertz function, i.e. �(t) =

e↵1t+↵2t
2+↵3t

3
.

We choose a flexible baseline hazard that includes the Gompertz function as a special case

for ↵2 = ↵3 = 0, which is often used in mortality models and is known to give an acceptable

fit. Specifying the correct functional form for the baseline hazard is particularly important

for our analysis, given that we are measuring the impact of intermediate events in a

lifetime. For instance, if the baseline hazard function were specified to be too restrictive

in terms of the slope at higher ages, this lack of flexibility would be reflected in the

causal bereavement e↵ect, which in most cases occurs at higher ages. Note that we use

a very wide range of cohorts 1873 to 1930 in our analysis, for which the aging process

has evidently changed over time. In particular, the life expectancy at higher ages has

drastically increased between 1873 and 1930 (see Gavrilov and Nosov, 1985). In order to

account for this change in the shape of the duration dependence function, we estimate

separate sets of parameters ↵
c1,↵c2 and ↵c3 for three di↵erent cohort groups c 2 {1, 2, 3}:

1873-1899, 1900-1915 and 1916-1930.

With this structure, we can express our model in terms of the logarithm of the hazard

rates of twin 1 and 2 conditional on observable and unobservable variables x and V and

the realization of the other duration

ln ✓(t|T2 = t2, x, V1) = ↵
c1t+ ↵

c2t
2 + ↵

c3t
3 + �0x+ I(t > t2)(�

t

q

+ �age
p

+ x0�x) + ln(V1)

ln ✓(t|T1 = t1, x, V2) = ↵
c1t+ ↵

c2t
2 + ↵

c3t
3 + �0x+ I(t > t1)(�

t

q

+ �age
p

+ x0�x) + ln(V2). (2.6)

Here, �t
q

, �age
p

, �x are parameters that model the e↵ect of bereavement. The indicator for

the three time intervals after bereavement is denoted by q = 1, 2, 3 and p = 1, 2 is the
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CHAPTER 2. TWIN BEREAVEMENT AND MORTALITY

indicator for the three age groups at which bereavement occurs, with ages below 65 being

the reference group.
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CHAPTER 2. TWIN BEREAVEMENT AND MORTALITY

Figure 2.1: Flexible Gompertz-type baseline hazard functions by cohort groups

Note: The baseline hazard functions are based on the estimates of Model IV. A flexible
version of the Gompertz baseline hazard is assumed: �(t) = exp(↵

c1t+ ↵
c2t

2 + ↵
c3t

3).
Left line: cohort group 1873-1899, Middle line: cohort group 1900-1915, Right line:
cohort group 1916-1930.

2.6 Empirical analysis

2.6.1 Estimation results

In our empirical analysis, we estimate four di↵erent bivariate survival models (Table 2.1:

Models I-IV). Models III and IV are the models of interest, while Models I and II are used

for the purpose of comparing our approach to previous models used in the twin mortality

literature. Model II is a correlated frailty model that does not include a bereavement

e↵ect. It represents the strand in the epidemiological literature that models the influence

of shared genetic factors by allowing for a dependence between frailty terms (see Yashin

and Iachine, 1995a; Wienke et al., 2001). Note that a potential causal dependence between

twin life-spans is ignored in these models. In Equations (2.4) - (2.6), this corresponds to

the case of �
a

= �age = �x = 0. On the other hand, Model I is a bivariate survival model,

where the only dependence between twin life-spans conditional on covariates is modeled

via a bereavement e↵ect function. In fact, Model I does not allow for any influence due

to unobservable characteristics of the twin pair. This corresponds to �2 = 0 in Equations

(2.4) - (2.6) and represents the approach in the twin bereavement literature whereby

bereavement is modeled as an exogenous event, ignoring the influence of shared genetic
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factors (see Hougaard et al., 1992a; Tomassini et al., 2002). Finally, Model III represents

the symmetric timing-of-events model that accounts for both the influence of shared

genetic factors and a causal dependence between twin life-spans (Equations (2.4) - (2.6)

with �age = �x = 0 18). In Model IV, we include a more flexible bereavement e↵ect

function allowing, besides zygosity, for a dependence on sex and the age at bereavement.

This corresponds to the model in Equations (2.4) - (2.6).

When comparing the estimates of the correlated Gamma frailty distribution in Model

II to those from Model III, one finds considerably higher estimates of the variance

and the correlation parameters in Model II. This is true for the frailty distribution of

monozygotic (�2
MZ

, ⇢
MZ

), as well as that of dizygotic (�2
DZ

, ⇢
DZ

) twin pairs. In particular,

the correlation between frailties reflecting the influence of shared genetic factors decreases

strongly (around 30%) when including the bereavement e↵ect in Model III. It is clear

from this comparison that the estimated correlation in Model II not only reflects the

time-invariant influence of shared genetic factors but also captures some time-varying

influences such as a causal dependence between twin life-spans.

In Model I, we find relatively high estimates for the bereavement e↵ect, implying that

a monozygotic male twin who is 75 years old and has lost his co-twin at the age of 70

would die on average 2.2 years earlier compared to if he had never experienced this loss.

These high estimates are unsurprising given that they not only capture a bereavement

e↵ect but also the influence of shared genetic factors. We control for this influence in

Models III and IV, finding considerably lower estimates (28% less in terms of residual life

expectancy in Model IV). This illustrates how strongly the estimates of the bereavement

e↵ect are biased in the presence of unobserved shared genetic factors when the model

fails to control for them. Considering these results, it also becomes clear to what extent

previous empirical studies have overestimated a bereavement e↵ect for twins.

Note that we do not report the estimated parameters of the baseline hazard function

in Table 2.1. In Figure 2.1, the function �(t) = e↵c1t+↵c2t
2+↵

c3t
3
is plotted over the age

interval 0-120 for the three cohort groups c = 1, 2, 3 implied by the estimated parameters

in Model IV. Evidently, younger cohorts have a considerably lower mortality hazard at

higher ages compared to the older cohorts. This change in the aging process over time is

known as the late-life mortality deceleration (see Gavrilov and Nosov, 1985).

18The only exception to �x = 0 is the dependence of the bereavement e↵ect on zygosity.
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In Model IV, we find a highly significant positive e↵ect of being male (0.513), reflecting the

shorter life expectancy for males compared to females. When comparing monozygotic male

twins to monozygotic female twins, this estimate implies a higher residual life expectancy

of 2.38 years for females at the age of 75 (see Tables 2a and 2b). Being born in spring has

a weakly significant positive e↵ect on the mortality hazard, in line with the findings of

Doblhammer (2004). If a twin is born in Copenhagen, this increases mortality considerably

(21.4% of the e↵ect of being male), possibly due to a greater exposition to diseases,

pollution or other risk factors in urban areas. Note that despite dizygotic twins being

known to live slightly longer than monozygotic twins, we find a positive e↵ect on mortality

for dizygotic twins compared to monozygotic twins. However, considering that we restrict

attention in this study to twins who survived infancy, this result may be explained by the

fact that identical twins face a higher infant mortality risk compared to fraternal twins,

leading to a selective sample that over-represents healthy identical twins.

We estimate a piecewise constant bereavement e↵ect in Model IV, accounting for three

di↵erent time intervals after bereavement occurred: the fist year after the loss, second to

fourth year and after four years. The overall positive e↵ect is highly significant and slightly

decreases over time. Furthermore, the size of the bereavement e↵ect strongly depends on

zygosity, however we do not find evidence for a dependence on the sex of the twin. The size

of the bereavement e↵ect is almost twice the size for monozygotic compared to dizygotic

twins. This large di↵erence is in line with the findings from psychological studies (see Segal

and Bouchard, 1993; Segal et al., 1995).19 In Model IV, the bereavement e↵ect function

also depends on the age at bereavement. We distinguish between the ages before 65 and

above 80, while ages 66 to 79 constitute the reference group. Evidently, there is a decrease

of the e↵ect of bereavement in the age at which the loss occurs. In particular, the e↵ect

of losing your co-twin after the age of 80 is relatively small, with an implied decrease in

residual life expectancy of 0.58 years (for age 85, monozygotic males).
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Table 2.2: Residual life expectancies for monozygotic male twins

Age No Bereav. Experienced Bereav. at age
60 70 80 90

65 14.22 11.22 - - -
75 7.85 5.82 6.26 - -
85 3.31 2.27 2.48 2.73 -
95 .91 .58 .65 .72 .72

Note: Residual life expectancies in years for monozygotic male
twins implied by the estimates of Model IV. The first column
denotes the age of the twin. Columns 2 to 6 report the
corresponding residual life expectancy, given that bereavement is
never experienced, or experienced at ages 60, 70, 80 or 90.

Table 2.3: Residual life expectancies for monozygotic female twins

Age No Bereav. Experienced Bereav. at age
60 70 80 90

65 17.48 14.26 - - -
75 10.23 7.88 8.4 - -
85 4.67 3.32 3.61 3.93 -
95 1.41 .92 1.01 1.13 1.13

Note: Residual life expectancies in years for monozygotic male
twins implied by the estimates of Model IV. The first column
denotes the age of the twin. Columns 2 to 6 report the
corresponding residual life expectancy, given that bereavement is
never experienced, or experienced at ages 60, 70, 80 or 90.

2.6.2 Residual life expectancies

One advantage of modeling twin life-spans at the individual level is the possibility to

make predictions about residual life expectancies depending on the time when the loss

is experienced. Expected residual lifetimes are relevant for health care policy and are

frequently calculated within demographic and gerontological literature. The expected

19These studies conduct studies with bereaved twins and construct measures of grief intensities for
monzygotic and dizygotic twins. Overall, they document grief intensities of monozygotic twins which are
twice as large as the grief intensities observed for dizygotic twins.
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Table 2.4: Residual life expectancies for dizygotic male twins

Age No Bereav. Experienced Bereav. at age
60 70 80 90

65 13.55 11.91 - - -
75 7.38 6.27 6.73 - -
85 3.06 2.49 2.72 2.98 -
95 .83 .65 .72 .8 .8

Note: Residual life expectancies in years for monozygotic male
twins implied by the estimates of Model IV. The first column
denotes the age of the twin. Columns 2 to 6 report the
corresponding residual life expectancy, given that bereavement is
never experienced, or experienced at ages 60, 70, 80 or 90.

Table 2.5: Residual life expectancies for dizygotic female twins

Age No Bereav. Experienced Bereav. at age
60 70 80 90

65 16.77 15.01 - - -
75 9.7 8.41 8.95 - -
85 4.35 3.62 3.92 4.26 -
95 1.29 1.02 1.12 1.25 1.25

Note: Residual life expectancies in years for monozygotic male
twins implied by the estimates of Model IV. The first column
denotes the age of the twin. Columns 2 to 6 report the
corresponding residual life expectancy, given that bereavement is
never experienced, or experienced at ages 60, 70, 80 or 90.

residual lifetime at age s is computed as follows (see Lancaster, 1990)

E(s) =

R1
s

S(t|x) dt
S(s|x) .

The residual life expectancies for male, female, monozygotic, and dizygotic twins implied

by the estimates of Model IV (Table 2.1) are presented in Tables 2.2-2.5. A male

monozygotic twin who has reached the age of 65 and lost his co-twin at the age of 60

will live on average for 11.22 remaining years. If he never had experienced this loss, he

would live on average for 2 years longer (Tables 2.2) . A very similar pattern is observed
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for female twins (Tables 2.3, 2.5). Since the dependence of the bereavement e↵ect on sex

is insignificant, we set this e↵ect to zero in our calculations in Tables 2.2-2.5.

2.7 Discussion

The structure of the symmetric timing-of-events model in Equation (2.1) in Section 2.3

imposes some implicit assumptions on the underlying process generating the pairs of

twin life-spans. Since identification of the model exploits the timing of the loss, a key

assumption is that the event of losing your co-twin at age t does not a↵ect your own

mortality hazard prior to that date. Abbring and van den Berg (2003b) call this the ‘no-

anticipation’ assumption. In the case of a severe long-term illness, a twin usually learns

about the increased risk of dying of his co-twin when he is diagnosed with a severe illness

before the actual loss occurs. However, this only constitutes a problem in terms of our

model if the own mortality hazard reacts prior to the loss. In any case, some of the

psychological symptoms of grief may already manifest at an early stage when the co-twin

is diagnosed. We argue that following the true meaning of the word, ‘bereavement’ only

takes place when the other person is really gone. Furthermore, the exact timing of the

loss is usually not anticipated. Nevertheless, with long-term terminal illnesses the process

of bereavement may to some degree already take place during the last stage of illness and

the additional e↵ect of loss will be small. In this case, our model would underestimated

the true bereavement e↵ect.20 In light of this, one should interpret our estimated e↵ect

as the e↵ect of actual bereavement, meaning the e↵ect of physically losing the co-twin.

In the symmetric timing-of-events model all unobserved shared factors causing a

dependence between the two life-spans of the twin pair are assumed to be time-invariant

influences. In other words, our model accounts for all unobserved shared factors such

as the genetic makeup or early childhood experiences as long as their influence on the

mortality hazard is time-invariant. But some genetic dispositions manifest themselves

more strongly during a certain stage in your life, leading to an increased mortality hazard.

This additional source of dependence between twin life-spans would lead to an upward

20Consider the case in which a twin whose co-twin is diagnosed with a terminal illness is so severely
a↵ected by this anticipated loss that he himself dies before his co-twin. This very extreme case would
constitute a problem for our model since anticipation would cause the estimated bereavement e↵ect to
capture a causal e↵ect that is reverse.

30



CHAPTER 2. TWIN BEREAVEMENT AND MORTALITY

biased bereavement e↵ect. The investigation of this issue is left to further research. In

particular, one could exploit the detailed information on death causes available in the

Danish Twin Registry. In summary, it is conceivable that unobserved time-varying shared

influences are partly responsible for the dependence between twin life-spans that our

model can-not capture. However, in contrary to previous studies our model controls for

the major source of dependence between twin life-spans, in the form of childhood and

genetic makeup e↵ects.

An additional source for unobserved time-varying shared variation are events that a↵ect

the health of both twins at the same time during their life. However, twins typically have

their own family and support systems and often don’t life in the same area. Furthermore,

living in Denmark during the period 1873 to 2004 reduces the probability of being exposed

to shocks on the national level such as major wars or epidemics. Additionally, the impact

of health shocks is dampened by a well established health care system (see Section 2.4 for

more details).

2.8 Conclusion

The contribution of this paper is twofold. First, we show that the symmetric version

of the timing-of-events model (Model 2.1) can be identified from very limited covariate

variation by imposing a multiplicative structure on the bereavement e↵ect function. More

specifically, the only exogenous variation that we exploit can be generated by a single

dummy variable that does not need to vary between the two durations. The identification

result of this symmetric model has wider relevance for the empirical study of parallel

systems and networks and for epidemiological research. Model 2.1 can be applied to any

symmetric bivariate duration model in which the dependence between durations is caused

by two e↵ects: the influence of time-invariant common factors and a causal e↵ect. In

particular, our identification result still applies if the two durations are not distinguishable

from each other in any way, i.e. the index of duration 1 and 2 is completely uninformative

and the only available covariates are characteristics of the duration pair.

Moreover, our empirical analysis unites two models that previously have exclusively been

used separately by studies analyzing twin life-spans. The symmetric timing-of-events

model allows to disentangle both e↵ects of interest in this strand in the literature: the

causal e↵ect of bereavement and the influence of time-constant shared factors. Further,
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our results reveal that previous studies that ignored the influence of childhood and genetic

e↵ects, severely overestimated the bereavement e↵ect for twins.
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2.A Appendix

2.A.1 Identification of � and �

The survival function of Z|x with Z = min{T1, T2} is derived as follows

P (Z > t|x) = P (T1 > t, T2 > t|x)

=

Z 1

0

Z 1

0

P (T1 > t|x, V1)P (T2 > t|x, V2) dG(v1, v2)

=

Z 1

0

Z 1

0

e��(x)⇤(t)(V1+V2) dG(v1, v2)

=

Z 1

0

e��(x)⇤(t)W dG
W

(w) ,with W = V1 + V2. (2.7)

Note, that for the second equality we exploit that before the first exit occurs no

bereavement e↵ect will cause a dependence between T1 and T2. Consequently, conditional

on x and V the events (T1 > t) and (T2 > t) are independent. We further use Assumption

4 which implies G(v1, v2|x) = G(v1, v2).

In the following, we briefly discuss some of the assumptions used by Elbers and Ridder

(1982) for the identification of a mixed proportional hazard model in view of the model

given in Equation (2.7). Assumption 2.1 assures su�cient covariate variation in form of

at least one dummy variable.21 Further, the distribution of W has to be independent of x

and has a positive and finite mean. Assumption 2.4 assures the independence of (V1, V2)

and x. From this the independence of W = V1 + V2 directly follows. Similarly, as V1 and

V2 are assumed to have finite positive mean, so does W .

2.A.2 Identification of �a

We consider the following hazard rate of mixed proportional form:

✓(t|T
k

= 0, x, V
j

) = �̃
j

(t)�̃
j

(x)V
j

with �̃
j

(t) = �(t)�
a

, �̃
j

(x) = �(x)�
b

(0, x), (2.8)

21Also see Kortram et al. (1995b) for the case of only two possible values for �(x).
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where the frailties V
j

are drawn from G
V

j

|T
k

=0,x for j, k 2 {1, 2} and j 6= k. One necessary

assumption for the identifiability of this mixed proportional hazard model is that the

frailty distribution does not depend on x. Note, that in the above model, the frailties

V
j

are drawn from a conditional distribution. Therefore, we need to show that G
V

j

|T
k

=0,x

does not depend on x. The conditional density of V
j

|(T
k

= 0, x) is given by:

f(v
j

|T
k

= 0, x) =
✓
k

(0|x, V
j

)S
k

(0|x, V
j

)f(v
j

|x)
✓
k

(0|x)S
k

(0|x)
=

R1
0
�(0)�(x)v

k

dG(v
k

|x, V
j

)f(v
j

|x)R1
0
�(0)�(x)v

k

dG(v
k

|x)
=

E(V
k

|x, V
j

)f(v
j

|x)
E(V

k

|x) . (2.9)

According to Assumption 2.4 (V1, V2) are independent of x. Therefore, Equation (2.9)

simplifies to

f(v
j

|T
k

= 0, x) =
E(V

k

|V
j

)f(v
j

)

E(V
k

)
. (2.10)

From Equation (2.10) it also follows that the distribution of (V
j

|T
k

= 0) for j, k 2 {1, 2}
and j 6= k has a positive and finite mean, since G(v1, v2) has this property.

2.A.3 Identification of G

Derivation of a mixing distribution: The density f(t1, t2|x) for t1 > t2 can be expressed

as follows

f(t1, t2|x) =
Z 1

0

Z 1

0

f(t1|T2 = t2, x, V1)f(t2|x, V2) dG(v1, v2)

= c(t1, t2, x)

Z 1

0

Z 1

0

V1V2e
��(x)(⇤(t2)+�1(t1,t2,x))V1e��(x)⇤(t2)V2 dG(v1, v2)

= c(t1, t2, x)@
2
s1,s2

L
G

�
�(x)(⇤(t2) + �1(t1, t2, x)),�(x)⇤(t2)

�
,

with c(t1, t2, x) = �(t1)�(t2)�(x)2�a(t1 � t2)�b(t2, x), �(t1, t2, x) = ⇤̃(t1, t2)�b(t2, x) and

bivariate Laplace transformation L
G

with cross derivative @2
s1,s2

L
G

.

Complete monotonicity: First, we state the definition of absolute monotonicity.

Definition 2.1. Let ⌦ be a nonempty open set in Rn. A function f : ⌦ ! R is absolutely

monotone if it is nonnegative and has nonnegative continuous partial derivatives of all
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orders. f is completely monotone if f � m is absolutely monotone, where m : x 2 {! 2
Rn : �! 2 ⌦} ! �x.22

Note, that this definition states that a function f is completely monotone if it’s derivatives

of all orders exist, and if these derivatives are continuous and have switching signs for each

order (starting with a positive first derivative). From this definition it follows directly that

if a function f is completely monotone then all derivatives of second order of f will also

be completely monotone. Since the bivariate Laplace transformation L
G

(s1, s2) is known

to be a completely monotone function, it directly follows from Definition 1 that the cross

derivative of L given by @2
s1,s2

L
G

(s1, s2) =
@

2L
G

(s1,s2)
@s1@s2

is also completely monotone.

Tracing out the Laplace transformation: The function f : R2
+ ! R2

+ is given by f(t1, t2) =

(�(x)(⇤(t2)+�(t1, t2, x)),�(x)⇤(t2)). It maps the vector (t1, t2) on the vector of arguments

of the Laplace transformation (s1, s2), with s1 = �(x)(⇤(t2) + �(t1, t2, x)) and s2 =

�(x)⇤(t2). In the following we will show that we can vary (t1, t2) on an open set such

that f(t1, t2) will also attain all values in a nonempty open set. Under Assumption 2.5

(with t1 > t2 8 (t1, t2) 2  ) it holds that at all points (t1, t2) in the open set  the first

derivatives of f exist and are continuous and f has Jacobian

J
f

(t1, t2) =

2

4�(x)�(t1)�(t1, t2, x) �(x)(�(t2) +
@�(t1,t2,x)

t2
)

0 �(x)�(t2)

3

5 .

Note, that the determinant of J
f

is given by det(J
f

(t1, t2)) = �(x)2�(t1)�(t2)�1(t1, t2, x),

and since under Assumptions 1-4 the functions �,�, �
a

, �
b

can only attain strictly positive

(and finite) values on  , it follows that det(J
f

(t1, t2)) 6= 0 8 (t1, t2) 2  . Assumption 5

assures that @�(t1,t2,x)
t2

exists and is continuous on  . Therefore, on the nonempty open set

 the function f(t1, t2) is continuously di↵erentiable with invertible Jacobian J
f

. From

the Inverse-Function Theorem it directly follows that there exists an nonempty open set

⌥ ⇢ (0,1)2 such that the function f(t1, t2) attains all values in ⌥ when t1 and t2 vary

over  ⇢ (0,1)2.

22For n = 1 this definition reduces to the familiar definitions in Widder (1946).
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2.A.4 Derivation of the likelihood function

In the following the functional forms of S, S
t1 , St2 and S

t1,t2 are derived. We start with

the survival function S(t1, t2|x) = P (T1 > t1, T2 > t2|x):

S(t1, t2|x) =

8
><

>:

S⇤(t1, t1|x)�
R

t1

t2
S
t2(t1, ⌧ |x) d⌧ , for t1 � t2

S⇤(t2, t2|x)�
R

t2

t1
S
t1(⌧, t2|x) d⌧ , for t1 < t2

Recall, that in the case when the first exit is not observable due to censoring we have

to integrate over all possible exit times. The resulting integrals
R

t1

t2
S
t2(t1, ⌧ |x) d⌧ and

R
t2

t1
S
t1(⌧, t2|x) d⌧ are approximated with numerical integration methods. Here, S⇤(t1, t2|x)

denotes the survival function in the absence of a bereavement e↵ect

S⇤(t1, t2|x) =
ZZ 1

0

P (T1 > t1|x, V1)P (T2 > t2|x, V2) dG(v1, v2)

=

ZZZ 1

0

e�(x)⇤(t1)(Ṽ0+Ṽ1)e�(x)⇤(t2)(Ṽ0+Ṽ2) dG(ṽ0)dG(ṽ1)dG(ṽ2)

=

Z 1

0

e�(x)[⇤(t1)+⇤(t2)]Ṽ0 dG(ṽ0)

Z 1

0

e�(x)⇤(t1)Ṽ1 dG(ṽ1)

Z 1

0

e�(x)⇤(t2)Ṽ2 dG(ṽ2)

= (1 + �2�(x)[⇤(t1) + ⇤(t2)])
� ⇢

�

2 (1 + �2�(x)⇤(t1))
� (1�⇢)

�

2 (1 + �2�(x)⇤(t2))
� (1�⇢)

�

2 .

The last three equalities follow from the assumption that G(v1, v2) is a Cherian bivariate

Gamma distribution with independent terms Ṽ0, Ṽ1, Ṽ2 drawn from Gamma distributions

Ṽ0 ⇠ �(⇢��2, ��2) and Ṽ1, Ṽ2 ⇠ �((1� ⇢)��2, ��2).

In the following S
t

j

is derived. For this purpose we define the functions g
a

, g
b

and g
c

g
a

(s1, s2, x) = 1 + �2�(x)[⇤(s2) + �(s1|s2, x)]
g
b

(s1, s2, x) = 1 + �2�(x)[2⇤(s2) + �(s1|s2, x)]
g
c

(s, x) = 1 + �2�(x)⇤(s).

with �(s1|s2, x) =
R

s1

s2
�(u)�t(u� s2)�age,x(s2, x) du.

We can now derive S
t

j

(t
j

, t
k

|x) = @S(t
j

,t

k

|x)
@t

j

= �P (T
j

= t
j

, T
k

> t
k

|x). Let t
j

� t
k

with
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j, k 2 {1, 2}, j 6= k

S
t

k

(t
j

, t
k

|x) =
ZZ 1

0

P (T
j

> t
j

|T
k

= t
k

, x, V
j

)P (T
k

= t
k

|x, V
k

) dG(v
j

, v
k

)

= �(x)�(t
k

)
ZZZ 1

0

(Ṽ0 + Ṽ
k

)e�(x)[⇤(tk)+�(t
j

|t
k

,x)](Ṽ0+Ṽ

j

)e�(x)⇤(tk)(Ṽ0+Ṽ

k

) dG(ṽ0)dG(ṽ
j

)dG(ṽ
k

)

= �(x)�(t
k

)g
b

(t
j

, t
k

, x)�( ⇢
�

2+1)g
c

(t
k

, x)�(
(1�⇢)
�

2 )g
a

(t
j

, t
k

, x)�(
(1�⇢)
�

2 +1)

[⇢g
a

(t
j

, t
k

, x) + (1� ⇢)g
b

(t
j

, t
k

, x)].

This yields

S
t

j

(t
j

, t
k

|x) =

8
>>>>><

>>>>>:

@S

⇤(t
j

,t

j

|x)
@t

j

+
R

t

j

t

k

S
t1,t2(t1, ⌧ |x) d⌧ , for t
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> t
k

�(x)�(t
k

)g
b
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, x)�( ⇢
�

2+1)g
c

(t
k

, x)�(
(1�⇢)
�

2 )

g
a

(t
j

, t
k

, x)�(
(1�⇢)
�

2 +1)[⇢g
a

(t
j

, t
k

, x) + (1� ⇢)g
b

(t
j

, t
k

, x)] , for t
j

 t
k

.

Finally, S
t1,t2(t1, t2|x) = @

2
S(t1,t2|x)
@t1@t2

= P (T1 = t1, T2 = t2|x) = f ⇤(max{t1, t2},min{t1, t2})
with

f ⇤(t
j

, t
k

) = �(x)2�(t
j

)�(t
k

)�t(t
j

� t
k
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g
b

(t
j

, t
k

, x)�( ⇢
�

2+2)g
a

(t
j

, t
k

, x)�(
(1�⇢)
�

2 +1)g
c

(t
k

, x)�(
(1�⇢)
�

2 +1)
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Chapter 3

Social Interaction E↵ects in

Duration Models: The First-Time

Use of Marijuana among Siblings1

3.1 Introduction

The study of social interactions has been of constant interest in economics and sociology

over the past two decades (e.g., see Borjas, 1995; Manski, 2000; Brock and Durlauf,

2001a,b; Mo�tt, 2001; Sampson et al., 2002; Calvó-Armengol et al., 2009) with the

main di�culty in the identification of social interactions laid out in the seminal work

by Manski (1993). Labeled the reflection problem, in a reduced form linear model, in

which the reference group’s average outcome measures the behavior of peers, it is di�cult

to determine if a person’s behavior a↵ects their peers or vice versa. 2 In this paper, we

introduce a new strategy to identify social interaction e↵ects from grouped transition

data, using a multivariate duration framework. We use this model to study marijuana

use of siblings, allowing for two sources of dependence between the behavior of siblings

conditional on observable characteristics: (1) Once a teenager starts using marijuana, this

may directly a↵ect the subsequent risk of his siblings to engage in the same behavior

(‘social interaction e↵ect’); (2) Siblings may behave similarly due to unobserved family

characteristics (‘correlated e↵ect’). The definition of social interactions in terms of a

1This chapter is joint work with Georgios E↵raimidis.
2Di↵erent versions of Manski’s model are widely used in applications estimating peer e↵ects (e.g., see

Gaviria and Raphael, 2001; Sacerdote, 2001; Cohen-Cole and Fletcher, 2008).
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lagged3 e↵ect in time allows overcoming the reflection problem in the presence of correlated

e↵ects without making use of an instrument as used by Case and Katz (1991) or Monstad

et al. (2011) or an exclusion restriction as suggested by Mo�tt (2001). Furthermore, given

that our approach accounts for unobserved group characteristics, this allows studying

social interactions in natural peer groups such as a circle of friends, work colleagues or

neighborhoods, which are often the result of a self-selection process based on similar

unobservable characteristics. Additionally, social interaction e↵ects are highly flexible in

our model, and may di↵er across di↵erent group members, covariates and over successive

transitions in the group.

In many applications of social interactions, the behavior of interest is characterized by

a transition at a particular point in time following some entry point. Examples include

the time at which a person purchases a new product following its release, or the age at

which a person first has sexual intercourse, moves out of the neighborhood or starts/stops

using drugs. In our empirical application, we study social interaction e↵ects in the use

of marijuana by siblings growing up together in American households4. Substance use is

considered a highly social behavior (see Gaviria and Raphael, 2001; Kawaguchi, 2004).

When a teenager uses marijuana for the first time, this may directly a↵ect the subsequent

behavior of his siblings through several di↵erent channels. To begin with, this transition

may cause his siblings to copy his behavior. Alternatively, such a change in behavior

within the household may reduce the stigma attached to using cannabis, or simply raise

curiosity. Besides these classical channels of social interaction or peer e↵ects, a response

could also be triggered by an information e↵ect or the accessibility of drugs. In particular,

the first transition within a group often constitutes a release of new information, and

additionally, in the case of substance use, an e↵ect of accessibility. One advantage of our

approach is that it can distinguish5 between the e↵ect of the first transition and the

e↵ects of subsequent transitions within a group. Based on this distinction, to some extend

accessibility and information e↵ects may be separated from classical peer e↵ects.6

3Given that our identification results are based on a model in continuous time, the period between
transition and response is practically zero.

4In our application, instead of classical peer groups, we study teenagers growing up in the same
household. Here, ‘correlated e↵ects’ do not arise due to selection e↵ects but rather to similar genetic
factors and childhood e↵ects.

5In our empirical analysis we have not implemented this distinction at this point.
6Although we are aware that our definition of ‘social interaction e↵ects’ in this paper does not only

capture classical peer e↵ects/social interaction e↵ects, we will use this terminology throughout this paper.
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In the model by Manski (1993), social interaction e↵ects are assumed to be homogeneous

across group members, i.e. the action of every group member has the same e↵ect on any

other member. In this chapter, we show that the joined observation of transition times

allows to identify additional dynamics within a group of socially interacting individuals.

Firstly, the degree to which a transition of a group member j a↵ects the behavior of

another member k may depend on the social status or reputation of both members j and

k within the group, as well as the combination of their observable characteristics x
j

and

x
k

. For example, the oldest sibling may have a unique social role within the household,

increasing the degree to which his behavior a↵ects the younger siblings. At the same time,

the oldest sibling may not be as strongly influenced by the behavior of his younger siblings.

In our application, we find evidence for a significant influence of the behavior of the oldest

sibling, but no evidence for an e↵ect of a transition by a younger sibling.7 Similarly, peers

may more strongly a↵ect each other if they have the same gender or belong to the same

age group.

Secondly, the strength of an e↵ect may strongly depend on how many transitions have

been experienced within the group up to this point. Since social interactions may

exhibit di↵erent degrees of contagiousness, we allow for the strength of the e↵ect to

increase/decrease or follow any other pattern with each additional transition experienced

within the group.8 This also captures the extreme case where no transitions have any

e↵ect, apart from the first. With marijuana use, this pattern could arise if interaction

e↵ects are purely driven by the e↵ect of new information or accessibility.

The identification of such patterns facilitates a deeper understanding of how social

interaction e↵ects evolve over time, depending on the composition of the peer group.

It enables policy makers to intervene more e↵ectively by targeting the key members of

groups. If we consider a policy aimed at preventing the early cannabis use of teenagers,

our model can be used to predict how drug use spreads throughout the group over time

and how this pattern depends on the group member initially targeted by such a policy.

The distinct role of such ‘key’, ‘high status’, or ‘influential’ individuals in social networks

is addressed by Ballester et al. (2006), Iyengar et al. (2009) and Aral and Walker (2012).

7A di↵erent application constitutes a supervisor who has a unique social role at their workplace,
increasing the degree to which their behavior may a↵ect his employees. At the same time, the behavior
of employees may strongly influence other co-workers but not necessarily the supervisor.

8Our model also includes the possibility of a negative interaction e↵ect i.e. a transition of a group
member decreases the probability of subsequent transitions within the group.
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Individuals often enter a (peer) group at di↵erent calendar dates. For example, new co-

workers are hired, teenagers join a circle of friends/social network or new children are

born in a household. The key members may be those who enter the group first, such as

the oldest sibling being the first child in the household. In our main model specification,

group members are labeled according to their order of entry.9 Varying entry points play a

crucial role in many applications, because they determine the di↵erent starting points

of an underlying risk process faced by each individual in the sample. In the case of

siblings, this process represents the dependence of the risk to start using marijuana on

age. Besides varying entry points, we also consider the case of a common entry point for

all group members. One such example is the release of a new product, whereby after the

day of release, all members of a peer group simultaneously start to face a certain risk of

purchasing the new product.

In this paper, we present a multivariate mixed (proportional)10 hazard type model that

uses the information in the timing of transitions within groups to identify social interaction

e↵ects in the presence of correlated unobserved characteristics. The idea of exploiting

the timing of events to disentangle a causal e↵ect from a selection e↵ect is introduced

by Abbring and van den Berg (2003b), in the context of treatment evaluation in a

bivariate duration framework. A symmetric version of this two spell model11 is presented in

Chapter 2 to study bereavement e↵ects within twin pairs. Extending the timing-of-events

approach to a general model of multiple parallel spells raises several new issues that are

not encountered in the two-spell setting, such as di↵erences of interaction e↵ects across

di↵erent combinations of group members and how e↵ects may change over subsequent

transitions within the group. Furthermore, we account for di↵erent entry dates across

members and discuss the relaxation of the proportionality assumption. In the following

section, we present our identification results for this extended model.

There is a straightforward intuition for the identification of models exploiting the timing

9This restricts the variation in entry dates to a setting with a predefined entry order, which complicates
identification. In our main model specification, we focus on this case of ordered entry dates. The case of
unrestricted variation in entry times is also discussed briefly. Our results can be extended to this case in
a straightforward manner.

10In Section 3.2.3, we discuss conditions under which the proportionality assumption can be dropped,
leading to a multivariate mixed hazard type model.

11Abbring and van den Berg (2003b) highlight that their model can be straightforwardly extended to
a setting with two full spells, whereby the exit of each spell can a↵ect the survival of the other (also see
Abbring and Heckman, 2007).
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of events.12 The process of successive transitions and responses of the transition hazards

within a group generates distinct patterns in the data, which provides information on

the existence of ‘interaction e↵ects’ vs. ‘correlated e↵ects’. For instance, if transitions

are observed within increasingly shorter intervals, irrespective of when the first transition

occurs, such epidemics-type clustering of transitions indicates that the transitions of peers

positively a↵ect the subsequent transition hazard of the other group members (positive

interaction e↵ect). On the other hand, ‘correlated e↵ects’ create heterogeneity across

groups in the data.13

In the field of discrete choice models, social interaction e↵ects are frequently captured

by a penalty term for deviating from the behavior of other group members in the utility

function of agents (see Brock and Durlauf, 2001b; Blume et al., 2010, for overviews).

Honoré and de Paula (2010) introduce a model of two durations with an endogenous

e↵ect, building on a two player simultaneous game where the exit of one player increases

the potential payo↵ of the other once they also exit. In contrast to this strand of literature

that uses equilibrium models with interdependent utility functions, we do not specify

the underlying behavioral model of social interactions. Rather than assuming that the

observed behavior represents an equilibrium outcome, we understand social interactions

as a dynamic process of successive actions and reactions within a group. A key feature of

the extended timing-of-events approach is that the transition hazard of a group member

may directly react in response to transitions of other members.14

In order to define a social interaction e↵ect in terms of a response in the transition

hazard, we assume that this response does not take place before the transition causing

it has occurred. This corresponds to the ‘no-anticipation’ assumption of Abbring and

van den Berg (2003b). This assumption states that individuals either do not anticipate

the action of fellow peers, or if they do, they do not react to this anticipated action before

it takes place. In applications where forward looking and strategic incentives dominate

the behavior of group members, equilibrium models are more suitable to capture such

dynamics (e.g., see Honoré and de Paula, 2010, 2013). In contrast, our approach focuses

on applications where a transition of a group member is comparable to an unanticipated

12Abbring and van den Berg (2003b) provide a similar intuition for the two spell setting.
13Here, in order to disentangle ‘interaction e↵ects’ from ‘correlated e↵ects’, a crucial identifying

assumption is that correlated unobservable characteristics remain constant over time.
14This is a fundamental di↵erence from the model of Honoré and de Paula (2010), where this type of

direct response in the hazard rate is ruled out.
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shock that causes a systematic change in the behavior of the other members. We argue

that the first-time substance use among siblings constitutes such an event. Teenagers are

often influenced by sources outside the own household that are di�cult to foresee by other

household members. If a teenager is exposed to marijuana at his school, the change in his

behavior is similar to an unanticipated shock to his siblings.

Social interaction e↵ects in cannabis use are studied by e.g. Kandel (1978); Kawaguchi

(2004); Eisenberg (2004) and Clark and Loheac (2007) for American adolescents and by

Pudney (2002); Moriarty et al. (2012) and McVicar and Polanski (2013) for adolescents

living in the United Kingdom. Popular choices of reference/peer groups are the school

grade, classmates or nominated friends.

Additionally, peer e↵ects in smoking or substance use among siblings are addressed

by several studies. Using a large dataset on cigarette smoking from the U.S. Current

Population Surveys, Harris and González López-Valcárcel (2008) find that each additional

smoking sibling in the household raised a young person’s probability of smoking by 7.6%.15

Krauth (2005) uses data on smoking among Canadian youths and finds a small positive

sibling e↵ect after controlling for selection e↵ects, proxied by the degree of selection on

observable variables. Similarly to our empirical study, Altonji et al. (2010) study substance

use among siblings using data from the NLSY97. In contrast to our identification strategy,

their approach relies on an exclusion restriction, i.e. it is assumed that only the substance

use behavior of the older siblings can a↵ect the behavior of the younger siblings but not

vice versa, thereby circumventing the reflection problem. Based on this assumption, the

authors find that marijuana use of younger siblings is positively a↵ected by the example

of their older siblings.

In our empirical analysis, we use data from the National Longitudinal Surveys (NLSY79),

observing the first-time use of marijuana by 8,684 siblings in 5,810 American households,

including 1,549 two-sibling households and 669 households with more than two siblings

growing up together. We find that the first-time use of marijuana by the oldest sibling

in the household has a significant positive e↵ect on the subsequent drug use behavior of

his younger siblings. However, we do not find evidence for an e↵ect of a transition of a

younger sibling.

15Conversely, Chen (2010) finds, using sibling data from the NLSY79, a negative sibling e↵ect for
smoking cigarettes, implying a di↵erentiation e↵ect among siblings.
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In the next section we introduce the multivariate duration model with social interaction

e↵ects and present our identification results. In Section 3.3 we discuss the data set,

estimation method and results of our application. We conclude in Section 3.4.

3.2 A multiple-spell duration model with social in-

teraction e↵ects

In the following, we introduce a model of three parallel spells (J = 3). We restrict attention

to this three-spell case in this section, given that all interesting dynamics occur within

this setting. The extension to more than three spells is straightforward and will not be

further discussed.

3.2.1 General framework

The three group members j = 1, 2, 3 enter into the origin state at member-specific entry

dates d
j

. In our empirical example of first-time drug use, d
j

denotes the calendar date at

which sibling j reaches the threshold age after which he will be exposed to the risk of using

drugs. To achieve a compact notation, we introduce the vector d = (d1 d2 d3)
0
. Next, we

denote by T
j

the duration of member j until he transitions to the new state (e.g. the state

of having used drugs). Furthermore, we introduce the µ-dimensional vector x 2 X ✓ Rµ,

which holds all relevant observed covariates, member- and group-specific, that a↵ect the

realization of the duration variables. Additionally, the behavior of all group members is

a↵ected by unobservable influences denoted by the random vector V = (V1 V2 V3)
0
, drawn

from the non-degenerate trivariate cumulative density function G, which does not depend

on x and has support V ✓ R3
+.

We define our model in terms of conditional transition hazards of each duration T
j

given

the realization of the other two durations T
k

, T
l

, entry dates d, observable influences x
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and unobservable influences V
j

✓
j

(t|T
k

, T
l

, d, x, V
j

) =

8
>>>>>>>>><

>>>>>>>>>:

�
j,0(t, d, x)Vj

�
j,k

(t|T
jk

, d, x)V
j

�
j,l

(t|T
jl

, d, x)V
j

�
j,kl

(t|T
jk

, T
jl

, d, x)V
j

if t  min{T
jk

, T
jl

},

if T
jk

< t  T
jl

,

if T
jl

< t  T
jk

,

if max{T
jk

, T
jl

} < t.

(3.1)

with T
jk

:= T
k

+ d
k

� d
j

for j , k , l = 1 , 2 , 3 such that k 6= j 6= l 6= k and k < l .

The stochastic variable T
jk

denotes the elapsed time between the entry of member j into

the risk process and the transition of member k into the state of interest. In particular, if

its value is negative (positive), then the transition of member k takes place before (after)

the entry of member j.

The above model suggests a straightforward definition of the interaction e↵ect functions

as ratios of the conditional hazard rates in (3.1)

�
j,k

(t|T
jk

, d, x) :=
�
j,k

(t|T
jk

, d, x)

�
j,0(t, d, x)

(3.2)

�
j,kl

(t|T
jk

, T
jl

, d, x) :=
�
j,kl

(t|T
jk

, T
jl

, d, x)

�
j,q

(t|T
jq

, d, x)
for q = argmin

k,l

{T
jk

, T
jl

} , (3.3)

with (3.2) representing the e↵ect of the exit of member k on the hazard of member j and

(3.3) the additional e↵ect of the second exit on the hazard of member j. Note that since

the interaction e↵ect functions are defined in terms of hazard rates conditional on the

realization of V
j

, they have a causal interpretation. The unobservable terms V
j

drop in

the ratios in (3.2) and (3.3). The functions �
j,k

and �
j,kl

are components of the conditional

hazard rates ✓
j

(t|T
k

, T
l

, d, x, V
j

) and are therefore not directly observable from the data.

This poses an identification problem for the social interaction e↵ect functions �
j,k

and

�
j,kl

, which we will address in this section.

The identification results in this section build on the assumptions implied by the structure

of model (3.1). Firstly, the unobservable influences (V1 V2 V3)
0
, which are a source of the

dependence between the three durations, are assumed to be time-constant and enter

the hazard rate multiplicatively, reflecting a reinforcing e↵ect between observable and

unobservable influences. The resulting mixed hazard structure is a popular choice in

duration models (see Lancaster, 1992; Van den Berg, 2001, for an overview). Secondly,
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in model (3.1), the e↵ect of a transition of a member k only enters the hazard rate of

member j after it occurs (for all t > T
jk

). Known as the ‘no-anticipation’ assumption (see

Abbring and van den Berg, 2003b), this restricts the dependence structure between the

three transitions T1, T2 and T3. It plays a crucial role for the identification and estimation

of model (3.2) as it enables expressing the joint distribution of {T1, T2, T3}|{d, x, V } in

terms of conditional distributions {T
j

}|{T
k

, T
l

, d, x, V
j

}.
In this section, we discuss di↵erent sets of assumptions under which the interaction e↵ect

functions (3.2) and (3.3) in Model (3.1) can be identified. We first consider the case of

proportionality of the covariate e↵ects leading to the popular mixed proportional hazard

specification.

Model 3.A. Transition hazard of member j given T
k

, T
l

, d, x and V
j

✓
j

(t|T
k

, T
l

, d, x, V
j

) = �
j

(t)�
j

(x)�
j

(t|T
k

, T
l

, d, x)V
j

with social interaction e↵ect functions

�
j

(t|T
k

, T
l

, d, x) := �
j,k

(t|T
jk

,N
k

, x)Ij,k(t)�
j,l

(t|T
jl

,N
l

, x)Ij,l(t)�
j,kl

(t|T
jk

, T
jl

,N
kl

, x)Ij,kl(t),

where N
j

:=
P3

s=1 I(dj + T
j

> d
s

), N
kl

:=
P3

s=1 I(dq + T
q

> d
s

) with q = arg max
k,l

{T
jk

, T
jl

},
I
j,k

(t) := I(T
jl

� t > T
jk

), I
j,kl

(t) := I(max{T
jk

, T
jll

} < t) with j , k , l = 1 , 2 , 3 such that

k 6= j 6= l 6= k and k < l.

Here, I(.) is the indicator function. The variables N
k

and N
kl

are used to capture the size

of the group at the calendar dates d
k

+ T
k

and max{d
k

+ T
k

, d
l

+ T
l

}, respectively. The
above specification allows the interaction e↵ects to depend on the time of occurrence of

the corresponding transition. In particular, N
j

specifies the number of members who have

entered the risk process at calendar date d
j

+T
j

at which member j transitions. Similarly,

N
kl

gives the number of the members who have entered the risk process at the calendar

date max{d
k

+ T
k

, d
l

+ T
l

}, namely when the second transition of member k or l occurs.

Before the first transition takes place, the hazard rates of the three durations are of the

mixed proportional form. The function �
j

(t) captures the duration dependence and �
j

(x)

reflects the influence of observable member- and group-specific characteristics.

In order to provide some intuition for Model 3.A, we consider a concrete example in Figure

3.1. Here, the individual labeled as 1 (i.e. the individual who enters the risk process
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Figure 3.1: Example of realized transition times

Note: Example for Model A: The first transition T1 = t1 occurs after the other two members
have entered the risk process (d1 = 0 < d2 < d3 < t1). Member 2 is the second to transition at age t2
and member 3 transitions last at age t3. The arrows represent the social interaction e↵ects �

j

, a↵ecting
the subsequent transition hazards of the other two group members once member j transitions.

first) transitions into the state of interest (starts using drugs) first at calendar date t1

(T1 < min{d2 + T2, d3 + T3}, with T1 = t1). By then, the individuals labeled as 2 and 3

have both passed their threshold calendar date (d2 and d3, respectively, with d2 < d3 < t1)

and are at risk of transitioning into the state of interest. Before the first transition has

taken place at calendar date t1, the transition hazard of each member j is given by

�
j

(t)�
j

(x)V
j

. After the first transition at calendar time t1, the interaction e↵ect functions

�2,1(t|t1 � d2, 3, x) and �3,1(t|t1 � d3, 3, x) appear in the hazard rates of the two remaining

durations T2 and T3 for all t > t1 � d
j

for j = 2, 3 respectively. In this example, member

2 is the second to transition at duration T2 = t2, with t2 + d2 > t1 > d3. In this case, an

additional interaction e↵ect term �3,12(t|t1� d3, t2+ d2� d3, 3, x) appears in the hazard of

the surviving duration T3 for all t > t2 + d2 � d3. The interaction e↵ect functions �
j,k

and

�
j,kl

reflect that the transition of a group member a↵ects the behavior of his fellow peers,

resulting in a potential change in their subsequent transition hazards.

To identify Model 3.A, we employ a set of assumptions formalized below.

Assumption 3.A.1. The function �
j

: X!(0,1) is such that it attains all values on an

open connected subset of (0,1) and also �
j

(x⇤) = 1 for some x⇤ 2 X, and j = 1, 2, 3.

Assumption 3.A.2. The function �
j

: R+!(0,1) is measurable and the integrated

baseline hazard rate ⇤
j

(t) :=
R

t

0
�
j

(!)d! exists and is finite for all t > 0 with ⇤
j

(t⇤) = 1

for some particular t⇤ > 0, j = 1, 2, 3.

Assumption 3.A.3. The G is does not depend on x and d. Moreover, for j = 1, 2, 3,

E(V
j

) < 1 .
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Assumption 3.A.4. For j , k , l = 1 , 2 , 3 such that k 6= j 6= l and k < l. Let q =

argmin
k,l

{T
jk

, T
jl

} and ⇡(s, y) = max{0,min{s, y}}. The functions �
j,k

: R+ ⇥ R ⇥
{1, 2, 3} ⇥ X!(0,1), and �

j,kl

: R+ ⇥ R2 ⇥ {1, 2, 3} ⇥ X!(0,1) are measurable, ii)

the quantities

⌥
j,k

(t|s,N
k

, x) :=

Z
t

max{0,s}
�
j

(!)�
j,k

(!|s,N
k

, x)d!,

�
j,k

(t|s,N
k

, x) :=

Z
t

0

�
j,k

(!|s,N
k

, x)d!,

⌥
j,kl

(t|s, y,N
k

, x) :=

Z
t

⇡(s,y)

�
j

(!)�
j,q

(!|min{s, y},N
q

, x)�
j,kl

(!|s, y,N
kl

, x)d!,

and �
j,kl

(t|s, y,N
kl

, x) :=

Z
t

0

�
j,kl

(!|s, y,N
kl

, x)d!

exist and are finite, and iii) �
j,k

(t|s,N
k

, x) and �
j,kl

(t|s, y,N
kl

, x) are either cadlag or

caglad in s and in (s, y), respectively.

Assumption 3.A.1 states that there has to be su�cient variation of the covariate e↵ects for

each member. A su�cient condition for this assumption is the existence of a continuous

group-level characteristic and continuity of the function �
j

. Moreover, it also imposes

some innocuous normalization. Assumption 3.A.2 is not restrictive, given that it allows

for several parametric choices for the baseline hazard. Additionally, it normalizes the

integrated baseline hazard for some particular value. Assumption 3.A.3 is common in the

analysis of the mixed proportional hazard model (see Elbers and Ridder, 1982) and is

necessary to ensure identification16. Finally, Assumption 3.A.4 gives some (rather) weak

finiteness conditions about the underlying interaction e↵ects functions.

Proposition 3.1. Let d1 = 0, (d2, d3) 2 {R̄2
+ : d3 � d2}.17 Under Assumptions 3.A.1-

3.A.4, the set of functions {⇤
j

,�
j

,�
j

,�
j,kl

: j, k, l = 1, 2, 3, k 6= j 6= l, k < l} and G in

Model 3.A are identified from the joint distribution of {T1, T2, T3}|{d, x}.

Thus far, we have considered the case of varying entry dates across members and groups.

In our empirical application, this reflects that siblings usually pass a fixed threshold age

16Ridder and Woutersen (2003) discuss identification of the conventional mixed proportional hazard
model by not imposing any conditions on the first moment of the unobserved term. We do not consider
this case as it would be beyond the scope of this paper.

17We define R̄+ := R+[{1}. The statement d
j

= 1 implies that the corresponding subject never
enters the risk process. Note that, for a maximal group size of M , all groups in the sample of size J < M
can be expressed by setting d

J+1 = ... = d
M

= 1.
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at di↵erent calendar dates, after which they become at risk of using drugs. Here, it should

be pointed out that we do not exploit full variation in d
j

across members.18 Instead, we

only exploit variation across entry dates following a certain order 0  d2  d3. The first

born sibling is never born after the second and so forth.

On the one hand, di↵erent entry dates within groups complicate the identification of

Model 3.A, given that the time until the first transition within a group occurs can no

longer be expressed in terms of a competing risk model, for which standard identification

results exist (see Heckman and Honoré, 1989; Abbring and van den Berg, 2003a). On

the other hand, in assuming that the variation in entry dates is exogenous, the required

variation in covariate e↵ects can be reduced to one dimension (see Assumption 3.A.1).

In the following subsection, we discuss the special case of a common entry date for all

members in a group.

3.2.2 Common entry dates

With some parallel-spell data, all group members enter the risk process at the same

calendar date d1 = d2 = d3 = 0. For example, if a new product is introduced to a market,

each member of a peer group becomes at risk of purchasing the new product at the same

point in time. Similarly, a market specific shock can be seen as a starting point after which

each firm in the market is at risk of defaulting. We first replace Assumption 3.A.1 with

Assumption 3.A.5. The function �
j

: X ! (0,1) is continuous with �
j

(x⇤) = 1 for

some x⇤ 2 X, and j = 1, 2, 3. Moreover, the vector-valued mapping (�1(x),�2(x),�3(x); x 2
X) contains a nonempty open subset of R3

+.

Assumption 3.A.5 requires su�cient variation of the covariate e↵ects across the three

competing exit durations. It is analogous to one of the required assumptions in Abbring

and van den Berg (2003a). Assumption 3.A.5 is a little stronger than Assumption 3.A.1.

Making use of a stronger requirement stems from the fact that we cannot exploit variation

in entry dates in the case of a common entry point for all group members .

18The case of full variation in entry dates across members, that is, when d1, d2, d3 2 R+[{1}, is
a straightforward extension of Model 3.A. The identification of the corresponding model is trivial by
making use of Proposition 3.1.
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Proposition 3.2. Let d1 = 0, d2 = 0, d3 = 0. Under Assumptions 3.A.2, 3.A.3, 3.A.4,

3.A.5, the set of functions {⇤,�
j,k

,�
j,kl

:, k 6= j 6= l, k < l} and G in Model 3.A are

identified from the joint distribution {T1 ,T2 ,T3}|{x}.

A simple two-spell version of Model 3.A with d1 = 0, d2 = 0 is formally introduced in

Abbring and Heckman (2007), with the authors suggesting an identification strategy.

3.2.3 Relaxing the proportionality assumption

In this subsection, we consider a set of conditions under which the proportionality

assumption in Model 3.A may be dropped. For this purpose, we require some of the

covariates to vary over time. More precisely, consider the covariate process �
j

: R+ !
X ✓ Rµ, which is defined as follows: �

j

(t) := (x
0
j

(t) x
0
�j

(t) x
0
g

(t))
0
, where x�j

(t) refers to

the row vector of the individual characteristics of all members besides the j�th member

and x
g

(t) holds all group-specific characteristics. Following Brinch (2008), we denote by

P
�

⇢R+ ⇥ X a family of this type of paths, which leads to the following multiple-spell

duration model

Model 3.B. Transition hazard of duration T
j

given T
k

, T
l

, d, �
j

(t) and V
j

✓
j

(t|T
k

, T
l

, d,�
j

(t), V
j

) = �̃(t,�
j

(t))�
j

(t|T
k

, T
l

, d,�
j

(t))V
j

with social interaction e↵ect functions

�
j

(t|T
k

, T
l

, d, �̃
j

(t)) = �
j,k

(t|T
jk

,N
k

,�
j

(t))Ij,k(t)�
j,l

(t|T
jl

,N
l

,�
j

(t))Ij,l(t)

· �
j,kl

(t|T
jk

, T
jl

,N
kl

,�
j

(t))Ij,kl(t),

where N
k

, I
j,k

(t),N
kl

, and I
j,kl

(t) have the same interpretation as in Model 3.A with

j , k , l = 1 , 2 , 3 such that k 6= j 6= l and k < l.

Furthermore, we employ the following assumptions

Assumption 3.B.1. The function �̃ : R+ ⇥ X!(0,1) is measurable and the integrated

generalized baseline hazard rate ⇤̃(t,�
j

) :=
R

t

0
�̃(!,�

j

(!))d! exists and is finite for all

t > 0 and �
j

2 P
�

,and j = 1, 2, 3.

Assumption 3.B.2. There are two distinct covariate paths �1 2 P
�

and ⇠1 2 P
�

such

that �1(t) = ⇠1(t) for some t 2 (t
a

, t
b

) with t
a

< t
b

and ⇤̃(t
a

,�1) 6= ⇤̃(t
a

, ⇠1).

51



CHAPTER 3. SOCIAL INTERACTION EFFECTS IN DURATION MODELS

Assumption 3.B.3. The function G is such that it does not depend on x and d .

Assumption 3.B.4. For j , k , l = 1 , 2 , 3 such that k 6= j 6= l and k < l . Let q =

argmin
k,l

{T
jk

, T
jl

} and ⇡(s, y) = max{0,min{s, y}}. The functions �
j,k

: R+ ⇥ R ⇥
{1, 2, 3} ⇥ X!(0,1), and �

j,kl

: R+ ⇥ R2 ⇥ {1, 2, 3} ⇥ X!(0,1) are measurable, ii)

the quantities

⌥
j,k

(t|s,N
k

,�
j

) :=

Z
t

max{0,s}
�̃(!,�

j

(!))�
j,k

(!|s,N
k

,�
j

(!))d!,

�
j,k

(t|s,N
k

,�
j

) :=

Z
t

0

�
j,k

(!|s,N
k

,�
j

(!))d!,

⌥
j,kl

(t|s, y,N
kl

,�
j

) :=

Z
t

⇡(s,y)

�̃(!,�
j

(!))�
j,q

(!|min{s, y},N
q

,�
j

(!))�
j,kl

(!|s, y,N
kl

,�
j

(!))d!,

�
j,kl

(t|s, y,N
kl

,�
j

) :=

Z
t

0

�
j,kl

(!|s, y,N
kl

,�
j

(!))d!

exist and are finite, and iii) �
j,k

(t|s,N
k

,�
j

) and �
j,kl

(t|s, y,N
kl

,�
j

) are either cadlag or

caglad in s and in (s, y), respectively.

Assumption 3.B.1 deals with measurability and finiteness conditions of the (integrated)

generalized baseline hazard. Assumption 3.B.2 ensures that two di↵erent covariate paths

exist that agree on an open interval. Note that the latter can be satisfied by simply

considering a single covariate that will meet the condition of Assumption 3.B.2. In

contrast to Assumption 3.A.3, Assumption 3.B.3 does not impose any conditions on the

first moment of the unobserved terms, due to the presence of time-varying covariates

(see Heckman and Taber, 1994; Brinch, 2007). Finally, Assumption 3.B.4 is similar to

Assumption 3.B.4 and is concerned with finiteness conditions of the underlying functions.

Proposition 3.3. Let d1 = 0, (d2, d3) 2 {R̄2
+ : d3 � d2}. Under Assumptions 3.B.1-3.B.4,

the set of functions {⇤̃,�
j,k

,�
j,kl

: j, k, l = 1, 2, 3, k 6= j 6= l, k < l} and G in Model 3.B

are identified from the joint distribution of {T1, T2, T3}|{d, x}.

Note that, in contrast to Model 3.A the finiteness of the first moment of the unobserved

terms is not necessary due to the presence of time-varying covariates (see Heckman and

Taber, 1994; Brinch, 2007).

As in the case with di↵erent entry dates, we can also relax the proportionality assumption

in the setting with common entry dates. In particular, we introduce the covariate process

⇣
j

: R+ ! Z ✓ Rµ̄, which is obtained as follows ⇣
j

(t) := (x
0
j

(t) x
0
g

(t))
0
, and the family

52



CHAPTER 3. SOCIAL INTERACTION EFFECTS IN DURATION MODELS

of such processes P
⇣

⇢R+ ⇥ Z. Note that µ̄ < µ as the process ⇣
j

(t), in contrast to the

process �
j

(t), does not include the characteristics of members other than j. Consider the

following assumptions.

Assumption 3.B.5. It holds �̃(t,�
j

) = �̃(t, ⇣
j

) 8 t > 0,�
j

2 P
�

, ⇣
j

2 P
⇣

, j = 1, 2, 3. 19

Assumption 3.B.6. The vector-valued mapping (⇤̃(t, ⇣1), ⇤̃(t, ⇣2), ⇤̃(t, ⇣3); ⇣1, ⇣2, ⇣3 2
P
⇣

, t 2 R+) contains a nonempty open subset of R3
+.

Assumption 3.B.5 implies that the generalized baseline hazard for each member does

not depend on the individual characteristics of the other group members. Moreover,

Assumption 3.B.6 imposes the condition that the three integrated generalized baseline

hazard can independently of each other vary on R3
+. A su�cient condition for this

statement is the existence of a certain member-specific characteristic that only directly

a↵ects the member but not the other group members.

Proposition 3.4. Let d1 = 0, d2 = 0, d3 = 0. Under Assumptions 3.B.1-3.B.6 the set

of functions {⇤̃,�
j,k

,�
j,kl

: j, k, l = 1, 2, 3, k 6= j 6= l, k < l} and G in Model 3.B are

identified from the joint distribution of {T1, T2, T3}|{d, x}.

3.3 Empirical application

In the following, we present our empirical Application. First, we introduce our data set,

before subsequently discussing the estimation method and finally presenting our results.

3.3.1 Data

In our empirical study, we use data from the National Longitudinal Survey of Youth

1979 (see National Longitudinal Surveys Handbook, 2005, for an introduction), which

was established in an e↵ort to generate a representative sample of young men and women

aged 14 to 21 living in the United States. Respondents are drawn from cohorts 1957 to

1964 and for each respondent, all individuals aged 14 to 21 living in the same household

19We keep the notation simple here. Specifically, we use the same notation for the extended baseline
hazard, �̃, although this function does not depend on the individual characteristics of the other group
members as in the case with varying entry dates.
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at the time of the first round in 1979, were also included in the survey.20 Accordingly,

12,686 respondents are included, living in 7,490 unique households. We restrict attention

to single-respondent households, as well as those with more than one respondent where

the respondents are siblings (blood-related and not blood-related) and grew up together in

their parents’ home.21 We observe 8,684 respondents in 5,810 unique households satisfying

these criteria, of which 1,549 comprise two, 516 three and 153 four to six siblings.

In the 1984 survey, three separate questions were asked, addressing first-time marijuana

use. The respondents were asked in which year and month they started using mari-

juana/hashish for the first time in their life. 5,578 respondents report the month and

year, with 3,723 never having used up to the interview date in 1984. Based on this and

using information on the respondents’ birth dates, we can construct the durations until

first time drug use after passing the threshold age of 7 for each household member. For

the respondents who have never used, the durations are censored at the time of the

interview date. For 178 respondents, no transition times are reported (174 respondents

answer the question with ‘Don’t know’ and 4 were not interviewed or refused to respond)

In addition to the question on first-time drug use, a monthly time-line of marijuana

use for the past 4.5 years was established in July 1984. Furthermore, in the surveys of

1988, 1990, 1992 and 1994-2008, respondents are asked how old they were when they first

used marijuana. Combining the information of these three questions provides a detailed

retrospective picture on drug-use behavior, enabling us to construct an index measuring

the degree of uncertainty in the responses due to inconsistencies in the answers. This

index may be used in a sensitivity analysis.

We combine the detailed information on monthly marijuana-use from January 1979 to

July 1984 with annual information on the amount and frequency for all relevant survey

years. Based on this, we can select the cases in which a first-time use is followed by a

long-term change in drug-use behavior.

The resulting distribution of transition times pooled over all household members is

20This way the households are not complete, in the sense that only the siblings from cohorts 1957 to
1964 are included as respondents in the survey. We will refer to these incomplete groups as households
from now on.

21In the majority of all households selected this way, the siblings grew up living with both biological
parents. We can observe the time when individuals leave their parents home and the reason for this move
(e.g. divorce of the parents). In the analysis of social interaction e↵ects we account for this by ruling out
interactions at calendar dates where the members do not live in the same household.
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Figure 3.2: Distribution of age at first
marijuana use
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Figure 3.3: Distribution of the month at
first marijuana use
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presented in Figures 3.2 and 3.3, with the left figure showing the distribution of age

at transition. Before the age of seven, only very few transitions occur. We drop those

cases from the sample22 and choose the age of seven as the threshold age, after which

siblings become at risk of using drugs. The majority of transitions occurs between the

age of 14 and 18. The right figure depicts the distribution of the month at transition.

There is a strong peak over the summer months of June and July, during which American

teenagers often go to summer camp and/or spend much time outside. In September, the

number of transitions increases again, when teenagers enter a new year in high school and

are exposed to many new influences. In our empirical analysis, we control for the di↵erent

e↵ects by adding time-varying dummies for each month to the vector of covariates. Figure

3.4 shows the estimated transition (baseline) hazards from a single spell Cox proportional

hazard model. There is a substantial di↵erence between the first marijuana use times of

the oldest and youngest siblings in the households, with younger siblings transitioning at

an earlier age compared to their older siblings. This e↵ect could be driven by observable or

unobservable characteristics such as the cohort or character traits, which di↵er between

the oldest and youngest sibling. An alternative explanation is the existence of positive

social interaction e↵ects, whereby younger siblings experience the transitions of their older

siblings, thus making them more likely to transition at an early age. To determine the

22These cases are most likely a result of the measurement error caused by the retrospective nature of
the fist-time drug use question.
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Figure 3.4: Transition hazards of the youngest and oldest sibling in
the household from two separate Cox regressions
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Note: Estimated transition hazard rates of two single spell Cox proportional
hazards models using data on first-time marijuana use from the NLSY79; cohorts
1957-1964 of households with at least three siblings.
Dashed curve: Estimated on sample of the youngest sibling in each household; Solid
curve: Estimated on sample of the oldest sibling in each household.

source of this di↵erence, we now proceed with the estimation of our multivariate duration

model with social interaction e↵ects introduced in the previous section.

3.3.2 Maximum likelihood estimation

Model 3.A provides a general framework of a multiple-spell model with interaction e↵ects,

allowing to specify a variety of models fitting di↵erent applications. In order to estimate a

model using data on first-time marijuana use, we specify functional forms of �
j

, �
j

, �
j

and

G. Accordingly, the semi-parametric form of Model 3.A is reduced to a model with a finite

set of parameters that can be estimated using standard maximum likelihood methods.

Figure 3.5 (dashed line) shows the estimated baseline hazard of a Cox proportional hazard

model with a shared frailty term on the household level and a basic set of covariates.

We use the log-logistic density function to approximate this shape in the estimation of

our model. This function has a positive range and is able to approximate the shape of
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Figure 3.5: Parametric approximation of baseline hazard function
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Note: Estimated baseline hazard functions using data on all households with
at least three siblings from the NLSY79 (cohorts 1957-1964) on first-time marijuana
use.
Dashed curve: Cox proportional hazard model; Solid curve: Parametric proportional
hazard model using a log-logistic probability density function for the baseline
hazard; Both models are estimated with a basic set of covariates and a shared
frailty term on the household level.

the baseline hazard estimated by the more flexible Cox model (see Figure 3.5). In the

main model specification, we assume proportionality of the covariate e↵ects (Model 3.A),

leading to the following baseline and regression component function and the corresponding

integral of this function for sibling j in household i at duration t (counted in months)

�
j

(t) �
j

(x
ij

(t)) =
↵2,j

↵1,j

(
t

↵1,j

)↵2,j�1(1 + (
t

↵1,j

)↵2,j)�2 e�0,j+�
0
x

ij

(t)

⇤̃
j

(t, x
ij

(t)) =
tX

⌧=1

[(1 + (
⌧

↵1,j

)�↵2,j)�1 � (1 + (
⌧ � 1

↵1,j

)�↵2,j)�1] e�0,j+�
0
x

ij

(⌧�1)

with ↵
q,j

= ↵
q,oldest

for j = 1 and ↵
q,j

= ↵
q,young

for j > 1, q = 1, 2.

Furthermore, we specify the social interaction e↵ect function �
j

with several multiplicative

terms, each representing the influence of an experienced transition of a sibling. For a sibling
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j living in a household i members at time t, this yields

�
j

(t|T
i,�j

, x
ij

(t)) =
Y

k2�j

�
j,k

(t|T
i,jk

, x
ij

(t))I(t>T

i,jk

),

with �
j,k

(t|T
i,jk

, x
ij

(t)) = exp( �
k

+ �0
x

x
ij

(t) + �0
x

int

(x
ij

(t)⇥ x
ik

(t) )

and with T
i,�j

:= {T
i,jk

: k 2 �j}, �j := {k 2 J
i

: k 6= j}, �
k

= �
oldest

for j = 1 and

�
k

= �
young

for k > 1.

We capture unobserved heterogeneity in the transition hazards by two additive compo-

nents. The term V
j

of sibling j of household i is given by

V
ij

= V sh

i

+ V ind

ij

.

Here, the random terms V sh

i

and V ind

ij

are independently drawn from distributions Gsh

and Gind with the mean of V
ij

normalized to 1. The first term captures unobserved

heterogeneity of the hazard rates across households, while the second reflects unobserved

heterogeneity within households across di↵erent members. We assume that V sh

i

can attain

two values, msh

1 and msh

2 , with P (V sh

i

= msh

1 ) = psh, representing two types of households

with high or low susceptibility to drug use. Similarly, V ind

ij

can attain two values, mind

1 and

mind

2 , with P (V ind

i

= mind

1 ) = pind. Accordingly, the distribution of V
ij

that is the sum of

V sh

i

and V ind

ij

, has four mass-points. Note that the term V sh

i

that is shared across members

of the same household generates a correlation between terms V
ij

and V
ik

⇢ =
�

2
sh

�

2
sh

+�2
ind

,

where �2
sh

= V ar(V sh) and �2
ind

= V ar(V ind).

We can now construct the hazard rate and survival function of each household member

j 2 J
i

given the transition times of the other members k 2 �j
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) = exp(�
X

l2�j

I(T
i,jk

> 0)[⇤̃
j

(T
i,jl

, x
ij

(t))� ⇤̃
j

(max
k2�j

l

{0, T
i,jk

}, x
ij

(t))]

· �
j

(T
i,jl

|{T
i,�j

}, x
ij

(t)) V
ij

) (3.5)
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with {�j
l

} := {k 2 J
i

: k 6= j ^ T
i,jk

< T
i,jl

}.
In the following, we denote the transition durations of each household i by the vector

of random variables T
i

= (T
i1 ... T

iJ

i

) and their realizations by t
i

= (t
i1 ... t

iJ

i

). The

durations in each household are only observed up to a common calendar date at which

the interview is conducted in 1984. We denote the resulting vector of censoring points as

c
i

= (c
i1 ... c

iJ

i

).23 With this information, we can construct the likelihood contribution of

a household i.
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3.3.3 Results

We estimate our model of first time use of marijuana based on the likelihood specification

described in Section 3.3.2. In our analysis, we use data on 669 households with at least

three siblings growing up together. The results of three di↵erent model specifications

are reported in Table 3.1. Model I represents a simple framework with covariates and

a basic specification of social interaction e↵ects, yet without accounting for unobserved

characteristics (no correlated e↵ects: �2
sh

= �2
ind

= 0). Two parameter estimates for the

social interaction e↵ect functions �
oldest

and �
younger

are reported (�
x

= �
x

int

= 0). The

parameter �
oldest

represents how the transition hazard of a sibling is a↵ected if his/her

oldest sibling starts to use marijuana. �
younger

measures the e↵ect if one of the younger

siblings starts with this habit. In this simple model, we find highly significant and strongly

positive estimates of these parameters. However, Model II reveals that the estimates

in Model I pick up a dependence between group members generated by unobserved

characteristics (correlated e↵ects). When we account for correlated e↵ects in Model II,

23Note that, household members are censored at the same calendar time. The resulting censoring
durations c

i1, ..., ciJi may di↵er due to di↵erent entry dates of the members (age di↵erence between
siblings).
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we still find a highly significant positive e↵ect of a transition of the oldest sibling in the

household, however we do not find a significant e↵ect for the transition of a younger sibling.

In Model III, we allow for additional flexibility of the social interaction e↵ect functions

and find that females are more strongly influenced by a transition of their fellow siblings

than males. Furthermore, we do not find evidence for an e↵ect of family net income on the

strength of social interactions within households. The last two parameters reported for

the social interaction e↵ects reflect the estimated e↵ects of a dummy that has a value of

one if the sibling who starts using drugs and the sibling who is a↵ected by this transition

are both of the same gender. We do not find evidence for this e↵ect of having the same

gender.

The estimated probabilities and mass points described in Section 3.3.2 imply variances

�2
sh

, �2
ind

of the two distributions Gsh, Gind and correlation ⇢ between the unobserved

heterogeneity terms of two group members V
ij

and V
ik

. The parameters are reported in

the under ‘Correlated E↵ects’ in Table 3.1. We find evidence for unobserved heterogeneity

across households (�2
sh

⇡ 0.1), yet not across siblings within households (�2
ind

⇡ 0.01) in

Models II and III. This implies a high correlation of V
ij

and V
ik

between two group

members.

In this empirical section, we find evidence that the oldest sibling in a household influences

his younger siblings in terms of his marijuana use. However, we do not find evidence

for an e↵ect of a younger sibling’s transition. Females are more strongly influenced by

the drug use behavior of their siblings than males. Furthermore, besides observable

characteristics and social interaction e↵ects, unobserved characteristics shared among

siblings also explain a substantial part of the dependence in marijuana use behavior.
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Table 3.1: Estimation results of Model 3.A using sibling data on first time marijuana
use

Model I Model II Model III

Variable estimate st.error estimate st.error estimate st.error

Covariates:

Oldest sibling .281*** (.089) .237*** (.098) .266*** (.099)
Female -.543*** (.064) -.619*** (.071) -.736*** (.09)
Birth year -.015 (.019) .008 (.023) .037 (.031)
Number Siblings -.384*** (.122) -.457*** (.147) -.225 (.194)
Family net income -.019 (.036) -.028 (.044) -.009 (.045)
Father employed -.129** (.064) -.122 (.081) -.211* (.109)
Poverty -.04 (.076) -.036 (.095) -.037 (.093)
Both parents in HH .433*** (.157) .475*** (.186) .516*** (.183)
School attendance .004 (.007) -.002 (.008) -.001 (.008)
White .289*** (.063) .386*** (.082) .376*** (.081)
Urban .225*** (.073) .238*** (.091) .252*** (.089)

Social Interaction E↵ects:

Sibling transitioning:

Oldest sibling �
oldest

.634*** (.08) .347*** (.113) .252* (.146)
Younger sibling �

young

.386*** (.056) .132 (.085) -.019 (.128)

Sibling a↵ected:

Female - - - - .208** (.104)
Birth year - - - - -.033* (.02)
Number Siblings - - - - -.254 (.156)
Family net income - - - - .005 (.028)

Same characteristics:

Female - - - - .119 (.091)
Male - - - - .021 (.095)

Correlated E↵ects:

Shared term �2
sh

- - .118 . .105 .
Indiv. term �2

ind

- - .010 . .008 .
Correlation ⇢ - - .914 . .921 .

Month dummies YES YES YES
Households � 3 sib 669 669 669
Time periods 325 325 325
LogLikelihood -10179.3 -7381.5 -7372.4

Note: Estimation of three specifications of Model 3.A described in Section 3.3.2 using data from
the NLSY79 on first time marijuana use of siblings in American households with at least three
siblings growing up together. Model I: Basic specification of social interaction e↵ects; Model II:
Basic specification of social interaction e↵ects with discrete distribution of unobserved household
characteristics; Model III: Flexible specification of social interaction e↵ects with discrete distribution
of unobserved household characteristics. Estimates are reported for �0,1,�, �k, �x, �int,�

2
sh

,�2
ind

and
⇢, whereby *, **, or *** reflect a 0.1, 0.05, or 0.01 significance level.
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3.4 Conclusion

Our empirical results suggest that the oldest sibling has a distinct social role in the

household i.e. his behavior has a strong influence on the younger siblings, but not vice

versa. This reveals that there can be strong asymmetries across di↵erent household

members in terms of their potential influence on others. Our approach can be used to

identify such key members within a group, and can predict the social multiplier e↵ects over

time. This allows predicting the impact of public policies, depending on which members

are initially targeted.24

Our approach provides an alternative to interdependent utility equilibrium models in

studying social interactions from transition data. We argue that in applications such

as substance use of teenagers, a transition of a peer can have the characteristic of an

unanticipated shock and may directly alter the behavior of other group members. Our

approach exploits the information on the exact timing of actions within a group, whereas

standard approaches do not make use of this information. This may be driven by the

limitations of yearly survey data, which is primarily used in studies of social interactions.

However, register data and data of members of online platforms constitute an increasingly

important data source, providing very detailed information on the timing of actions,

making methods exploiting this information increasingly valuable to empirical research.

24At this point, in our empirical analysis we restrict attention to the identification of key members in
a group and leave the calculation of social multiplier e↵ects over time to future work.
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3.A Appendix

3.A.1 Notation

Before proceeding, we introduce some notation and conventions used throughout this

Appendix. The symbol G with some (double) subscript refers to the corresponding

marginal or bivariate distribution. For instance, G12 denotes the bivariate distribution

of (V1 V2)
0
. No superscript at G denotes, as already adopted in the main text, the

full trivariate distribution of (V1 V2 V3)
0
. Also, we will use the generic symbol L to

denote the Laplace Transform of some probability measure. The (double) superscript

at L will indicate the corresponding (mixed) partial derivative. To give an example,

L(23)
G

denotes the mixed partial derivative with respect to the second and third argument

of the Laplace Transform of G. Finally, let D̄ := {d1 = 0, (d2, d3) 2 R̄2
+ : d3 � d2},

D := {d1 = 0, (d2, d3) 2 R2
+ : d3 � d2}, D1 := {d1 = 0, d2 2 R+, d3 = 1}, and

D21 := {d1 = 0, d2 = 1, d3 = 1}.
For the proof of the propositions we will utilize certain subsurvival functions. More

precisely, for t > 0, x 2 X, d 2 D̄, and j = 1, 2, 3,

Q
T

j

(t|d, x) := P(T
j

> t, T
j

+ d
j

< min
k2{1,2,3} 6=j

(T
k

+ d
k

)|d, x). (3.7)

In addition, for t1, t > 0, x 2 X, and j = 2, 3,

Q
T1(t1, t|d, x) :=

8
><

>:

P(T1 > t1, T2 > t, T1 < T2 + d2|d, x)

P(T1 > t1, T2 > t+ d3 � d2, T3 > t, T1 < min
k2{2,3}

(T
k

+ d
k

)|d, x)
if d 2 D1,

if d 2 D.

Q
T1,T

j

(t1, t|d, x) := P(T1 > t1, T2 > t+ d3 � d2, T3 > t, T1 < T
j

+ d
j

< T
k

+ d
k

|d, x) if d 2 D.

Finally, for t1, tj, tk > 0, x 2 X, and j, k = 2, 3 such that j 6= k,

Q
T1,T

j

,T

k

(t1, tj, tk|d, x) := P(T1 > t1, Tj

> t
j

, T
k

> t
k

, T1 < T
j

+ d
j

< T
k

+ d
k

|d, x) if d 2 D.
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3.A.2 Proof of Proposition 3.1

The proof of Proposition 3.1 consists of three main steps. The first step describes

the identification of the integrated baseline hazards, the regressor functions, and the

distribution function of the unobserved heterogeneity terms. The second step deals with

the identification of the interaction e↵ects caused by the first exit. Finally, the third step

is concerned with the identification of the interaction e↵ects caused by the second exit.

Identification of the set of functions {⇤
j

,�
j

: j = 1, 2, 3} and G. For all t > 0, x 2 X,

and d 2 D21, we have

P [T1 > t|d, x] =L
G1(�1(x)⇤1(t)). (3.8)

Following analogous steps to Elbers and Ridder (1982), we achieve identification of �1,

G1, and ⇤1.

Next, we identify �2 and ⇤2. For almost any t > 0, x 2 X, and d 2 D1, we obtain

@

@t
Q

T2(t|d, x) = �2(x)�2(t)L(2)
G12

(�1(x)⇤1(t+ d2),�2(x)⇤2(t)), (3.9)

It is straightforward, by Assumption B.3, to check that

lim
t!0,d2!0


@

@t
Q

T2(t|d, x)
. @

@t
Q

T2(t|d, x⇤)

�
= �2(x), (3.10)

which leads to identification of �2. For any t > 0, x 2 X, and d 2 D1,

P
"

2\

j=1

(T
j

+ d
j

> t+ d2)
���d, x

#
=L

G12(�1(x)⇤1(t+ d2),�2(x)⇤2(t)). (3.11)

We let t = t⇤ and thus we can trace out L
G12 on an open subset of R2

+ by varying

appropriately d2 and x. Given that L
G12 is real analytic function Abbring and van den Berg

(2003a), we identify L
G12 (and consequently G12) on R2

+. Then, employing the relation

(3.11), we identify ⇤2. The identification of �3,⇤3, and G follows the same line of argument

as that in identification of �2,⇤2, and G12, and is consequently omitted.

For the second and third step note that for t > 0

�
j,k

(t|.) =
Z

t

0

@⌥
j,k

(!|.)
@!

[�
j

(!)]�1 d!,
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and

�
j,kl

(t|.) =
Z

t

0

@⌥
j,kl

(!|.)
@!

[�
j

(!)]�1 �
j,kl

(!|.)d!.

Hence, to identify �
j,k

and �
j,kl

it is su�cient to identify ⌥
j,k

and ⌥
j,kl

, respectively.

Identification of the set of functions {�
j,k

: j, k = 1, 2, 3, j 6= k}. We begin with the iden-

tification of �2,1 and �3,1. Three di↵erent cases are possible: i) 0 < T1  d2, ii)

d2 < T1  d3, and iii) T1 > d3. The identification methodology can be summarized

as follows. We first identify ⌥2,1 for the cases i) and ii), next we identify ⌥3,1 for the

cases i) and ii), and finally we jointly identify ⌥2,1 and ⌥3,1 for the case iii).

For almost all t1 such that 0 < t1  d2, each t > 0, d 2 D1, and x 2 X,

@Q
T1(t1, t|d, x)
@t1

= �1(x)�1(t1)L(1)
G12

(�1(x)⇤1(t1),�2(x)⌥2,1(t|t1 � d2, 1, x)). (3.12)

By the first step, all the quantities on the right hand side are known except for the term

⌥2,1. By exploiting the facts that L(1)
G12

is strictly increasing in its arguments and that

⌥2,1(t|t1 � d2, 1, x) is either cadlag or caglad in t1 � d2 (Assumption A.4), we can identify

⌥2,1 for the case i). Similarly, for almost every t1 such that d2 < t1  d3, all t > t1 � d2,

d 2 D1, and x 2 X,

@Q
T1(t1, t|d, x)
@t1

= �1(x)�1(t1)L(1)
G12

(�1(x)⇤1(t1),�2(x)(⇤2(t1 � d2) + ⌥2,1(t|t1 � d2, 2, x))).

(3.13)

Identical arguments to the previous case give identification of ⌥2,1 for the case ii).

Next, we proceed with the identification of ⌥3,1 for the first two cases. More precisely, for

almost all 0 < t1  d2, all t > 0, d 2 D, and x 2 X we obtain

@Q
T1(t1, t|d, x)
@t1

= �1(x)�1(t1)L(1)
G

(�1(x)⇤1(t1),�2(x)⌥2,1(t+ d3 � d2|t1 � d2, 1, x),

�3(x)⌥3,1(t|t1 � d3, 1, x)). (3.14)

Next, we note that for almost every d2 < t1  d3, all t > 0, d 2 D̄, and x 2 X,

@Q
T1(t1, t|d, x)
@t1

= �1(x)�1(t1)L(1)
G

(�1(x)⇤1(t1),

�2(x) (⇤2(t1 � d2) + ⌥2,1(t+ d3 � d2|t1 � d2, 2, x)) ,

�3(x)⌥3,1(t|t1 � d3, 2, x)). (3.15)
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Recall that ⌥2,1 has been identified for the two above cases. Then, the ⌥3,1 can be uniquely

determined for the corresponding cases.

Finally, we turn our attention to the case iii). Note that for almost all t > 0, d 2 D,

x 2 X,

�
j

(t+ ⌘
j

) =
@Q

T

j

(t|d, x)
@t

h
L(j)

G

(�1(x)⇤1(t+ d3),�2(x)⇤2(t+ d3 � d2),�3(x)⇤3(t))�j

(x)
i�1

,

(3.16)

where j = 2, 3, ⌘2 = d3 � d2, and ⌘3 = 0. For almost all t1 > d3, almost each t > t1 � d3,

d 2 D̄, x 2 X,

�
j

(t+ ⌘
j

)�
j,1(t+ ⌘

j

|t1 � d
j

, 3, x) =
h
L(1j)

G

(�1(x)⇤1(t1),

�2(x)(⇤2(t1 � d2) + ⌥2,1(t+ d3 � d2|t1 � d2, 3, x)),

�3(x)(⇤3(t1 � d3) + ⌥3,1(t|t1 � d3, 3, x)))

⇥ �1(x)�1(t1)�2(x)
i�1@2Q

T1,T
j

(t1, t|d, x)
@t1@t

.

(3.17)

The rest of this part is analogous to the proof of Proposition 1 of Drepper and E↵raimidis

(2012). We fix t1, x, d2, and d3. Define H
j

(t) := ⇤
j

(t + ⌘
j

) and Q
j

(t) :=
@Q

T

j

(t|d,x)
@t

for

0  t  t1�d3, and H
j

(t) := ⇤
j

(t1�d
j

)+⌥
j,1(t+⌘j|t1�d

j

, x, 3) and Q
j

(t) :=
@Q

T1,T
j

(t|d,x)
@t1@t

for t > t1 � d3. Finally, gj:=�1(t1)�1(x)�j

(x) and we supress dependence of ⇤1(t1) and

�
j

(x) on t1 and x, respectively.

The equations (3.16), (3.17), by using the definitions of the previous paragraph, imply

that we have the following system of two di↵erential equations for almost all t > 0

d

dt
H(t) = f (t,H(t)) ,

H(⌧) = �
⌧

, for some specific ⌧ 2 (0, t1 � d3) (initial conditions), (3.18)

where H := (H2 H3)
0
and f := (f2 f3)

0
, with

f
j

(t,H) =

8
><

>:

h
L(2)

G

(�1⇤1(t),�2H2,�3H3)�j

i�1

Q
j

(t)

h
L(12)

G

(�1⇤1 ,�2H2,�3H3)gj
i�1

Q
j

(t)

if 0 < t  t1 � d3,

if t > t1 � d
j

.

It is straightforward to verify that all the requirements of Lemma 1 of Drepper and
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E↵raimidis (2012) are satisfied. Hence, H1 and H2 are uniquely determined on R+ (using

also the fact that H1(0) = H2(0) = 0). By definition, identification of ⌥
j,1(t|t1 � d

j

, 3, x)

follows for each t > d3 � d2 with t1, x, d2, and d3 be fixed. Since ⌥
j,1(t|t1 � d

j

, 3, x) is

either cadlag or caglad with respect to t1� d
j

, identification of ⌥
j,1 for the case t1 > d3 is

obtained. By utilizing all the results of the previous paragraphs we derive identification

of ⌥
j,1 for the cases 0  T1  d2, d2  T1  d3, and T1 > d3.

For the identification of the remaining interaction e↵ect functions, we briefly discuss the

necessary steps which are similar to the preceding paragraphs. Regarding the identification

of �1,2 and �3,2, there are two possible scenarios: i) d2 < T2  d3 � d2, ii) T2 > d3 � d2.

We first identify �1,2 and �3,2 for the case i). In particular, we let d 2 D1 and we identify

�1,2. Based on this result, we can also directly identify �1,3 by considering d 2 D. To

jointly identify �1,2 and �3,2 for the the case ii), we let d 2 D and by making use of

Lemma 1, we achieve identification. Finally, to jointly identify �2,3 and �1,3, we let d 2 D

and working analogously to the previous paragraphs as well as utilizing Lemma 1, we get

the desired result.

Identification of the set of functions {�
j,kl

: j, k, l = 1, 2, 3, k 6= j 6= l, k < l}. We will re-

strict our attention to ⌥3,12; the arguments for the identification of the other combinations

of j, k, l are similar and thus we will omit the proof for the corresponding combinations.

Two scenarios are possible: i) T1  T2 + d2 < T3 + d3 and ii) T2  T1 + d1 < T3 + d3.

We will analyze the case i) as the proof for the case ii) is completely analogous. We can

write for all t > 0, almost all 0 < t1 < d2, almost all t2  d3 � d2, d 2 D, and x 2 X,

@2Q
T1,T2,T3(t1, t2, t|x)

@t1@t2
= L(12)

G

(�1(x)⇤1(t1),�2(x)⌥2,1(t2|t1 � d2, 1, x),

�3(x)⌥3,12(t|t1 � d3, t2 + d2 � d3, 2, x))

⇥ �1(t1)�1(x)�2(t2)�2(x)�2,1(t2|t1 � d2, 1, x), (3.19)

Likewise, for all t > 0, almost all 0 < t1 < d2, almost every t2 > d3 � d2, d 2 D, and
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x 2 X,

@2Q
T1,T2,T3(t1, t2, t|x)

@t1@t2
= L(12)

G

(�1(x)⇤1(t1),�2(x)⌥2,1(t2|t1 � d2, 1, x),

�3(x)⌥3,12(t|t1 � d3, t2 + d2 � d3, 3, x))

⇥ �1(t1)�1(x)�2(t2)�2(x)�2,1(t2|t1 � d2, 1, x). (3.20)

The left hand side of the above equation is observed from the data. By Propositions 3.1 and

3.2, all the quantities on the right-hand side are known except for ⌥3,12. Given that L(23)
G

is

strictly decreasing in its arguments, the identification of ⌥3,12 follows by using also the fact

that ⌥3,12(t|t1 � d3, t2 + d2 � d3,N12, x) is either cadlag or caglad in (t1 � d3, t2 + d2 � d3).

If d2 < t1 < d3, the steps are almost identical by replacing �2(x)⌥2,1(t2|t1 � d2, 1, x)

with �2(x) (⇤2(t1 � d2) + ⌥2,1(t2|t1 � d2, 2, x)) and �2,1(t2|t1 � d2, 1, x) with �2,1(t2|t1 �
d2, 2, x). Similarly, if t1 > d3 we are encountered with a single subcase and we replace

�2(x)⌥2,1(t2|t1 � d2, 2, x) with �2(x) (⇤2(t1 � d2) + ⌥2,1(t2|t1 � d2, 3, x)) and �2,1(t2|t1 �
d2, 1, x) with �2,1(t2|t1 � d2, 3, x).

3.A.3 Proof of Proposition 3.2

The identification strategy we follow is the same as in the proof of Proposition 3.1. Note

that, by construction, we always have N
k

= N
kl

= 3 and consequently, we will omit for

notational simplicity this information.

Identification of the set of functions {⇤
j

,�
j

: j = 1, 2, 3} and G. The result is directly ob-

tained by making use of the distribution of

{min
j2{1,2,3}(T1, T2, T3), argmin

j2{1,2,3}(T1, T2, T3)}|{x} and the identification result of

Abbring and van den Berg (2003a).

Identification of the set of functions {�
j,k

: j, k = 1, 2, 3, j 6= k}. We will give in outline

the proof of the joint identification of ⌥2,1 and ⌥3,1 which, by definition, uniquely

determine the quantities �2,1 and �3,1, respectively. The (joint) identification of ⌥1,2,⌥3,2

and also ⌥1,3,⌥2,3 can be derived in a similar manner and as consequence, we will not

discuss here these two cases.
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Now, for any x 2 X and almost all t > 0, we have

�
j

(t) =
h
L(j)

G

(�1(x)⇤1(t),�2(x)⇤2(t),�3(x)⇤3(t))�j

(x)
i�1 @Q

T

j

(t|x)
@t

. (3.21)

Similarly, we obtain for each x 2 X, almost all 0 < t1 < t, and j = 2, 3

�
j

(t)�
j,1(t|t1, x) =

h
L(1j)

G

(�1(x)⇤1(t1),�2(x) (⇤2(t1) + ⌥2,1(t|t1, x)) ,

�3(x)(⇤1(t1) + ⌥3,1(t|t1, x)))�j

(x)�1(t1)�1(x)]
�1 @

2Q
T1,T

j

(t1, t|x)
@t1@t

.

(3.22)

The equations (3.21) and (3.22) imply that we have a system of two di↵erential equations.

Following similar arguments to the proof of Proposition 3.1 and employing the result of

Lemma 1 of Drepper and E↵raimidis (2012), we can solve with respect to ⌥2,1(t|t1, x)
and ⌥3,1(t|t1, x). Using the fact that the latter quantities are either cadlag or caglad with

respect to t1, the identification of ⌥2,1 and ⌥3,1 follows.

Identification of the set of functions {�
j,kl

: j, k, l = 1, 2, 3, k 6= j 6= l, k < l}. We will re-

strict our attention on ⌥3,12 which automatically, by definition, yields identification of

�3,12. the arguments for identification of the other combinations of j, k, l are similar

and thus we will omit the proof for these cases. There are two possible scenarios: i)

T1 < T2  T3 and ii) T1 < T3  T2.

For all t > 0 and almost all 0 < t1 < t2 < t, we have

@2Q
T1,T2,T3(t1, t2, t|x)

@t1@t2
= L(12)

G

(�1(x)⇤1(t1),�2(x) (⇤2(t1) + ⌥2,1(t2|t1, x)) ,�3(x)⇤3(t3)

�3(x) (⇤3(t1) + ⌥3,1(t2|t1, x) + ⌥3,12(t|t1, t2, x)))
⇥ �1(t)�1(x)�2(x)�2(t2)�2,1(t2|t1, x). (3.23)

The left-hand side of the above equation is observed from the data. By the two previous

results, all the quantities on the right-hand side are known except for ⌥3,21. Given that

L(23)
G

is strictly decreasing in its arguments, the identification of ⌥3,12 follows (using also

the fact that ⌥3,12(t|t1, t2, x) is either cadlag or caglad in (t1, t2) for any t1, t2 > 0 and

x 2 X). Employing the statements of the two preceding results we prove the identification

of �3,12 for the case i) The steps are very similar for the case ii)and thus are omitted.
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The proof is complete.

3.A.4 Proof of Proposition 3.3

Proof of Proposition 3.3. It is straightforward, by Assumption 3.B.2, to show that for all

t 2 (t
a

, t
b

),�1 2 P
�

, and d 2 D21,

P [T1 > t|d,�1] =L
G1(L�1

G1
(⇤̃(t,�1)) + C) (3.24)

for some C 6= 0. Applying the result of Brinch (2007), identification of ⇤̃ follows. Next,

for any t > 0, �1,�2,�3 2 P
�

, and d 2 D,

P

"
3\

j=1

(T
j

+ d
j

> t+ d3)
���d,�1,�2,�3

#
=L

G

(⇤̃(t+ d3,�1), ⇤̃(t+ d3 � d2,�2), ⇤̃(t,�3))

(3.25)

By continuity of ⇤̃(.,�) for any � 2 X and varying appropriately t, d2, and d3, we identify

L
G

which yields identification of G. The identification methodology of the functions which

capture the interaction e↵ects is completely analogous to the proof of Proposition 3.1 and

thus the details are omitted.

3.A.5 Proof of Proposition 3.4

Proof of Proposition 3.4. Consider the scenario ⇣(t) = ⇣1(t) = ⇣2(t) = ⇣3(t) for all t > 0,

that is, all members in the group are characterized by the same realized covariate paths.

Then, for t > 0, ⇣ 2 P
⇣

,

P
"

3\

j=1

T
j

> t
���⇣
#
= L

G

(⇤̃(t, ⇣), ⇤̃(t, ⇣), ⇤̃(t, ⇣))

= L
G̃

(⇤̃(t, ⇣))

with G̃ being the distribution of the random sum V1+V2+V3. Applying the result of Brinch

(2007), we achieve identification of ⇤̃ and G̃. Next, we have for t > 0 and ⇣1, ⇣2, ⇣3 2 P
⇣

,

P
"

3\

j=1

T
j

> t
���⇣1, ⇣2, ⇣3

#
= L

G

(⇤̃(t, ⇣1), ⇤̃(t, ⇣2), ⇤̃(t, ⇣3)).
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By Assumption 3.B.5, the arguments of the Laplace Transform attain all values in an

open subset of R3
+ which in turn, by the real analyticity property, yields identification of

L
G

and consequently of G. The identification strategy for the interaction e↵ects is the

same with the proof of Proposition 3.2 and therefore the details are omitted.
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Chapter 4

Ine�ciencies from Strategic

Behaviour in International

Cooperation: Evidence from the

Southern Common Market1

4.1 Introduction

Under what circumstances do actors cooperate in international relations and which

incorporation mechanism ensures e�cient contracting? International institutions often

have low capabilities to sanction its members for non compliance with signed agreements.

Consequently, international actors have an incentive to free-ride on the cooperation

e↵orts of their partners without contributing themselves by ratifying signed agreements

at the domestic level (Keohane, 1984; Oye, 1985; Snidal, 1985). This paper argues that

institutions can solve this important cooperation dilemma in ways that have previously

not been considered within existing literature on international relations. If treaties

simultaneously enter in force in the whole region only once all signatory states have

ratified, incentives for free riding no longer exist. The short term incentives for individual

defection–a menace to international cooperation, which occupies a prominent place in the

literature–cannot arise.

However, we further argue that solving free riding by such institutional means does not

1This chapter is joint work with Christian Arnold and Gerard van den Berg
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fully eliminate cooperation problems; rather, it merely alters their nature. Participants

cooperating under such a regulatory regime may feel tempted to make promises that they

do not intend to keep. If costs from non-compliance at the domestic level are su�ciently

low, those who contract may wish to reap the benefits of positive public exposure from

contracting now, even in the light of reputation costs from not keeping your promise in

the future. Under such circumstances, actors may sign contracts that would even involve

detrimental e↵ects for them if implemented, because they can easily prevent their e↵ect

in the whole region by refraining from ratification. The result is inflationary contracting

without any e↵ective policy change in the region.

In this paper, we consider the theoretical and empirical implications of a change in the

standard incorporation rules towards a mechanism in which treaties enter in force only

once all signatory states have ratified. We present the case of Mercosur as an empirical

example of this unusual incorporation mechanism and study the empirical implications

using the complete record of ratification durations of all 1,024 regulations adopted in

Mercosur between 1994 and 2008. This paper builds on the work by Arnold (2013), who

outlines the incorporation mechanism and ratification problems in Mercosur in detail.

A striking feature of Mercosur’s ratification record is that only half of all regulations

signed at the negotiation table before 2004 have entered into force within five years of

their introduction. For the other half, at least one of the member countries has not ratified

the regulation after 5 years. Using multivariate duration methods, we find that if actors

are exposed to high public or political pressure at the time of signing an international

agreement, this significantly prolongs the subsequent ratification process at the domestic

level. For example, if there is high public exposure of a regulation in a member country at

the time of contracting, political actors may be inclined to signal a cooperative attitude

by signing the international agreement, knowing that they can easily prevent the policy

change from taking e↵ect in the whole region by prolonging domestic ratification for as

long as necessary. As a result, too many regulations are introduced in Mercosur and some

members pay the costs of domestic ratification while one member’s inactiveness prevents

the policy change from taking e↵ect. We argue in this paper that although the unusual

mechanism in Mercosur prevents the common problem of free-riding,it in fact causes a

new problem of ine�cient contracting.

This paper illustrates the e↵ects from the distinct ratification rules according to the
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following structure. Following a brief literature review on international cooperation in

Section 4.2, we set out with theoretical considerations in Section 4.3. After spotlighting

the consequences of ratification rules for the production of collective goods, we present

our formal model reflecting the incorporation mechanism in Mercosur.

A second part of the paper subsequently turns to the empirical example. In Section 4.4,

we present our data set on regional cooperation in the Southern Common Market, a

regional integration scheme between Argentina, Brazil, Paraguay and Uruguay that uses

the intriguing incorporation rules presented previously. We provide empirical evidence for

our theoretical claims in Section 4.5 with an empirical analysis of the ratification record

on all 1,024 regulations adopted between 1994 and 2008, before Section 4.6 concludes.

4.2 Literature

In principle, international cooperation consists of two steps. Governments contract on

common future conduct. However, authorities still need to keep their promise from the

negotiation tables by altering their behavior in line with the terms of an agreement.

The ratification of international agreements reflects a key step towards such compliance.

Incorporating international rules into domestic law allows national courts to hold their

governments accountable to international commitments (Fearon, 1998; Hathaway, 2007;

Keohane, 1984; Koremenos et al., 2001; Scharpf, 1997).

Institutions facilitate cooperation against the backdrop of an anarchic international

society. They may shape normative beliefs of actors and alter their behavior (Risse et al.,

1999; Checkel, 2005; Finnemore and Sikkink, 1998). Moreover, institutions can change

benefits from certain courses of action, thus taking e↵ect on the choice of optimal strategies

and mitigating the danger of market failure.

Both stages of international cooperation challenge actors in di↵erent ways and institutions

can be supportive on both occasions. Self-interested actors only consent to international

agreements if they expect a positive reward from doing so. First and foremost, they seek to

achieve this by changing the status quo of current conditions of international cooperation.

Actors need to solve distributional conflicts and coordinate on one among many possible

pareto optimal outcomes (Fearon, 1998; Krasner, 1991; Stein, 1983). Institutions reduce

transaction costs during bargaining (Koremenos et al., 2001; Williamson, 1975) by

simplifying the exchange of information between actors, allowing contracting parties
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to identify e�cient bargaining solutions in practice (Young, 1991), and serve as focal

points for the choice between multiple pareto e�cient bargaining solutions (Garrett

and Weingast, 1993). Moreover, institutions o↵er a stable context for the negotiation

of multiple issues at one time. Logrolling and linkage politics may o↵er pareto e�cient

bargaining outcomes where separate bargaining would not lead to conclusive results (Stein,

1980; Tollison and Willett, 1979).

Those who sign international agreements may yet be interested in gains from agreements

other than a mere change in the status quo. For instance, governments can use

international rules as a signal to seeksupport from domestic or transnational advocacy

groups (Büthe and Milner, 2008; Hathaway, 2007; Simmons and Danner, 2010; Whitehead

and Barahona de Brito, 2005). Moreover, country leaders may even want to create distinct

reputations in relation to di↵erent audiences. They can try to maintain a country’s image

as a reliable economic partner at the international level. In the meantime, democratically

liable governments need to safeguard national interests and may try to undermine binding

international contracts with means that are less visible to foreign partners (Kono, 2006).

Once all parties come to an agreement, cooperation problems fundamentally change.

Conventionally, international regulations only produce the intended e↵ect if all contracting

parties make an e↵ort to adapt the necessary behavior. However, given that such adaption

is costly, each contracting party has incentives to save on these investments and hope for

others providing the collective good (Keohane, 1984; Oye, 1985; Snidal, 1985). Actors can

overcome incentives to renege on cooperative behavior when institutions impose costs on

those who defect.

Explicit retaliation compels non-compliers to stick to the cooperative behavior initially

promised. International enforcement institutions such as courts or tribunals can increase

costs for non-compliance to a remarkable extent (Alter, 2002, 2006; Carrubba, 2005;

Downs et al., 1996; Gilligan et al., 2010). Furthermore, domestic institutions can also

play an important role in sanctioning their own governments (Hathaway, 2007); for

instance, national courts (Hathaway, 2003; Powell and Staton, 2009) or interest groups

(Dai, 2006, 2007; Martin, 2008) can hold their own governments accountable. When

international organizations harness domestic counterparts, international and domestic

institutions may commonly exert such pressure on governments (Koremenos et al., 2001).

Institutions permit not only explicit but also implicit ways of retaliation. The reputation
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of a government e↵ectively defines whether partners are willing to cooperate in further

instances (Fearon, 1998; Guzman, 2008; Snidal, 1985). Furthermore, e↵ective monitoring

increases such reputation costs (Kono, 2007).

Despite various explanations concerning how institutions a↵ect actors, theories predict

mixed prospects for successful international cooperation. Some argue that states sign

only those accords that bear little e↵orts for adaption with respect to the status quo

(Downs et al., 1996). However, contracting under high costs can serve as a screening device

to identify those partners who truly wish to implement and comply with a negotiation

result (Long et al., 2007; Martin, 2000, 2005; Simmons and Danner, 2010; Von Stein,

2005). The constraining capacity of international institutions favors few, but well complied

agreements. The more embracing an international institution’s capacity to sanction, the

harder it is for the parties to reach a compromise and engage in cooperation (Fearon,

1998; Goodli↵e and Hawkins, 2006). Nonetheless, only strong enforcement mechanisms can

ascertain e↵ective compliance (Goldstein et al., 2007; Guzman, 2008; Hathaway, 2005).

4.3 How di↵erent ratification rules a↵ect strategic

considerations for international cooperation

Our model reflects classical game theoretic approaches used for the representation of

international cooperation (Snidal, 1985; Stein, 1982). All current models implicitly assume

that each of the contracting parties decides about the e↵ectivity of an international

agreement on its own. Changing this rule has important consequences for the production

of collective goods, as well as an important e↵ect on the strategic structure of international

cooperation.

4.3.1 Free riding and threshold provision

First, all parties agree on a contract and commit to comply with its terms. In a second

step, actors decide whether or not to keep their promise from the negotiation table. If a

government implements the terms of an agreement at the domestic level, it has to bear the

costs of adaption. By contrast, if authorities refrain from doing so and prefer to save the

costs, it may still be the case that other governments invest su�cient e↵orts to produce the

e↵ects from joint action. However, given that not all contracting partners put in practice
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what has been previously agreed, the overall welfare of collaboration declines. Overall,

the investment in a change of the status quo only pays o↵ if all participate, although

each single partner has incentives to free ride on the e↵orts of their partners (Olson, 1965;

Ostrom, 1990).

Such rules for ratification are not the only ones in international politics. Rather than

enacting an international agreement on its own, states may condition the e↵ectiveness

on the commitment of partners. In some international regimes, agreements only become

e↵ective once all signatory countries have ratified.2 Under these rules, only the joint

e↵orts of all trigger actual policy change. Accordingly, as long as one of the contracting

partners lacks ratification, the benefit from the policy change is not produced; therefore,

no motive to free ride on others’ e↵orts arises. In contrast to the rules mentioned above,

each individual party has an incentive to invest in policy adaption, because the production

of the beneficial collective good only occurs if all participate.3

The fundamentally di↵erent e↵ects from both rules can be best understood in a public

goods framework. The production functions for the collective good di↵er between the first

and second set of rules in important ways, as visualized in Figure 4.1. The horizontal axis

depicts the proportion of contributors to a collective good, while the vertical axis charts

the ratio of the collective good that is produced for each of the production functions.

The grey line represents a production function that leads to the free riding commonly

expected in international relations. The more actors that participate in the production of

the collective good, the higher the ratio of the good provided. Incentives for free riding

exist because parts of the collective good are delivered even when only some cooperate.

Defectors are reluctant to invest adaption costs as long as their marginal return from the

collective good remains lower.

The black line exemplifies the production function for the latter ratification rule. Collective

goods produced with such technologies are know as step-level or provision-point goods

within public choice literature (Bagnoli and Lipman, 1989; Kragt et al., 1983; Olson, 1965;

Schram et al., 2008). In contrast to the previous case, the collective good is only produced

once all comply with their commitments. Consequently, those who do not comply with

2Other thresholds for e↵ectiveness of an international agreement are likewise possible.
3Under the former rules, enforcement of contracts had to be accomplished at the international level

via the threat of implicit and explicit sanctions. Now, domestic courts guarantee governments’ e↵ective
compliance with agreements beneficial to them.
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Figure 4.1: Two production functions for the provision of
collective goods
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their obligations are o↵ered no reward for their reluctance and will be eager to keep their

promises from the negotiation table. Of course, this is only true provided that the policy

is beneficial to all parties. In the next section, we discuss the consequences of parties

secretly opposing the policy change.

4.3.2 Changing the nature of the game

The di↵erent rules for ratification fundamentally alter how partners collectively produce

a good and thus change the strategic character of interaction (Heckathorn, 1996). With

the new rules for ratification, actors no longer face the problem of free riding but may

now struggle with ine�cient contracting.

To illustrate these consequences, we conceive of a simple game theoretic model whereby

two players4 A and B interact at two stages. In the first round, they may coordinate on

a common policy that they promise to later ratify. They make their decision based on

the awareness of reputation gains from signaling cooperation today and the anticipated

4In our empirical example of Mercosur four players have to decide on international agreements. The
consequences of this extension is briefly discussed at the beginning of Section 4.5.
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derived utility from their future ratification decision. In the second round, both actors

may choose to keep their promise from the negotiation table or rather defect from their

commitment. Here, they take their decision in the light of reputation costs that arise from

defection and the utility from putting the agreement into practice.

The relationship between these costs and benefits during the two rounds determines

the overall dynamic of the game, leading to three scenarios. First, partners consider

contracting, but cannot find a bargaining solution in the first round that all partners

would agree on. Second, benefits from the new policy are so high that contracting and

subsequent ratification is beneficial to all. Finally, the cooperation trap of the game

played under these rules for ratification is ine�cient contracting. This outcome occurs

if the proposed policy change is not beneficial or even harmful to at least one player and

reputation gains of contracting are relatively high in comparison to negligible reputation

costs from non ratification at the second stage. Under this cost constellation, actors may

engage in contracting and benefit from the reputation gains of their signature, knowing

that they may easily forestall detrimental policies at low costs. Consequently, international

actors sign the international agreement without ratifying it at a later point in time.

We now develop the model in more formal terms. The strategic setting that political actors

face can be described by a two-step cooperation game with incomplete information (see

Figure 4.2). At the first stage (Contracting stage), the two countries A and B choose to

Figure 4.2: Two player two-step game of international cooperation
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Note: Stage 2 of the game is only reached if players cooperate on Stage 1. In particular, an
agreement only enters into force, if both countries first sign the international contract (C,C on Stage 1)
and then ratify it at the Ratification Stage (R,R on Stage 2).
R

j

: reputation gains from contracting of player j = A,B; �r
j

: reputation costs of non ratification; X
j

:
expected utility from ratification stage; U

j

: Utility from policy change being ratified by both players.

introduce a new policy. If neither of the partners cooperates (D,D), both players remain

with the status quo and receive no pay-o↵. In the case where both agree on the introduction

of the policy (C,C), each actor j = A,B receives their expected utility from the ratification

stage X
j

and reputation gain R
j

from their signature. The game subsequently proceeds

to the second stage (Ratification stage). However, if, for example, country B defects while
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A decides to cooperate (C,D), then country A improves its reputation as a cooperative

partner (gains R
A

), whereas country B has to accept a less benevolent standing (loses

R
B

).

Once the regulation reaches the Ratification stage, both actors decide whether or not

to adhere to the terms of the agreement and enact it into domestic law. While in the

first round actors faced the reputation loss �R
j

whenever they defect, they now face

less severe reputation costs �r
j

for not ratifying the agreement.5 Whenever both players

choose to ratify the agreement (R,R), their e↵orts collectively produce the international

policy change with corresponding utility U
j

.

International actors may evaluate the utility of the common policy di↵erently. Those who

have to ratify an international regulation either cherish the policy (U
j

= H) or rather

disapprove a change in the status quo (U
j

= L). At the outset, nature draws the utilities

U
A

and U
B

independently from a distribution with P (U
j

= H) = p and P (U
j

= L) = 1�p,

p 2 [0, 1]. Players know the distribution from which the types U
j

are drawn, while the

realization U
j

is private information to player j.

Concluding the description of the game, we impose the following assumptions on the

payo↵s:

R
j

, r
j

, ⇢, H > 0 (3.1)

�r
j

> L (3.2)

with ⇢ being the discount factor for the payo↵ at the ratification stage. Assumption (3.2)

formalizes the statement that a country of type L will be more strongly harmed by the

policy change than from the reputation loss �r
j

that it would su↵er from defecting at the

second stage. As a result, a country of type L always chooses not to ratify the regulation

as long as the policy would enter into force otherwise.

To understand the dynamic of the game, we first consider possible equilibria at the

ratification stage, given that contracting by both players has taken place. In a second step,

we subsequently turn to the overall dynamic of the game and consider actors anticipating

5As such, defection at the second stage corresponds to choosing an incorporation time of 1. Since
the strategy of infinitely delaying incorporation can only be indirectly observed by the other country, it is
di�cult to publicly condemn this behavior. Instead, political actors have to face a less severe reputation
loss within the political system and against lobbies supporting the law.
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the outcomes at the ratification stage during contracting.

Under assumptions (3.1) and (3.2), di↵erent combinations of types H and L lead to

three di↵erent action situations at the ratification stage, all of which are characterized by

di↵erent Nash equilibria. If a player benefits from a the policy change U
j

= H, irrespective

of the partner’s strategy, a player’s best response is always quick ratification. Thus, if both

players benefit from the policy change U
A

= H,U
B

= H, it will be ratified as quickly as

possible by both players (R,R). If, on the other hand, player A is of type L while player B

is of type H and thus ratifies quickly, the best response of L is to defect (assumption 3.2),

while in response B still has an incentive to ratify quickly to avoid reputation loss �r
B

(D,R). The reversed scenario occurs for U
A

= H,U
B

= L respectively (R,D). As a result,

opposed preferences lead to equilibria whereby one contracting partner does not fulfill their

obligation and hence the policy change never enters into force (ine�cient contracting).

Finally, if both countries are of type U
A

= L,U
B

= L, two equilibria may arise. If A

chooses to defect, the best response of B is quick ratification to avoid reputation costs

�r
B

.6 In turn, the best response of A is to defect (D,R). The second equilibrium occurs in

case of the reversed combination of strategies (R,D). In the following, we assume that the

two players will coordinate on either one of the two equilibria with probability 1
2
. Similar

to the previous case, the policy change never enters into force (ine�cient contracting).

Actors who consider international cooperation during the first round anticipate the

equilibrium outcomes from the ratification stage. From the perspective of player j,

successful contracting leads to the following expected utilities:

X
j

=

8
><

>:

⇢pH

�⇢1
2
(1 + p)r

j

if U
j

= H

if U
j

= L.

Considering the structure of payo↵s in figure 4.2, it is easy to understand under which

conditions both actors are eager to introduce a new policy. As long as X
A

+ R
A

> �R
A

and X
B

+ R
B

> �R
B

, both players’ best response to contracting is to sign the contract

themselves (C,C). For players with U
j

= H, this condition is always satisfied: ⇢pH+R
j

>

�R
j

. Thus, if the policy is beneficial to both parties, actors contract at the first stage

6In order to avoid unnecessary reputation loss, the best response of B to defection is quick ratification.
This can be interpreted as a minor form of free-riding on the defection e↵orts of the other player in order
to avoid reputation loss �r

B

.
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and the regulation is subsequently quickly ratified by both. This theoretical implication

is also in line with our empirical findings presented in Section 4.5. Regulations known to

be beneficial to all members are on average more quickly ratified by all member countries

compared to regulations with unknown preference distributions. Note that in standard

public goods games, the incentive to free-ride would cause a less favorable ratification

record for a mutually beneficial policy change.

A country with U
j

= L will only choose to agree to introducing the new policy if the public

reputation loss from defecting now is larger than the expected (internal) reputation loss

from defecting at the ratification stage:

�⇢1
2
(1 + p)r

j

+R
j

> �R
j

, 1

2
⇢(1 + p)r

j

| {z }
X

j,L

< 2R
j

(3.3)

Condition (3.3) reveals the potential ine�ciency resulting from the legislative mechanism

in Mercosur. If inequality (3.3) holds, a country of type L prefers the risk of an expected

future reputation loss of not ratifying�⇢1
2
(1+p)r

j

to the e↵ective reputation costs�2R
j

of

not signing the agreement during the negotiations. As long as incentives to contract today

are su�ciently high to outweigh the expected losses tomorrow, actors who are secretly

opposed to the regulation (U
j

= L) prefer to publicly sign the international agreement,

knowing that they benefit immediately and can meanwhile prevent the policy at little

cost tomorrow.

Table 4.1 summarizes the equilibrium outcomes of the two-step cooperation game

depending on the utilities derived from the policy change U
A

, U
B

2 {H,L}, expected
utilities X

B,L

, X
A,L

and reputation gains from contracting R
A

, R
B

. Note that the three

highlighted cells in Table 4.1 {U
A

= L, 1
2
X

A,L

< R
A

, U
B

= H}, {U
A

= H,U
B

=

L, 1
2
X

B,L

< R
B

} and {U
A

= L, 1
2
X

A,L

< R
A

, U
B

= L, 1
2
X

B,L

< R
B

} result in the

introduction of the regulation, although the policy change never enters into force, given

that one of the contracting partners fails to keep their promise. We claim in this paper

that the slow ratification behavior observed in Mercosur can be partly explained by this

process of ine�cient contracting.

In the dataset of Mercosur, we only observe the regulations that have passed the

contracting stage, i.e. whereby all members have signed the contract. Accordingly, in the
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Table 4.1: Summary of equilibrium outcomes

Typ H
Typ L

1
2
X

B,L

< R
B

1
2
X

B,L

� R
B

Type H
(C,C) (C,C) (C,D)
(R,R) (R,D) -

Type L

1
2
X

A,L

< R
A

(C,C) (C,C) (C,D)
(D,R) (R,D) or (D,R) -

1
2
X

A,L

� R
A

(D,C) (D,C) (C,D) or (D,C)
- - -

Note: The equilibrium outcomes depend on the realization of preferences
U
A

, U
B

2 {H,L}, expected utilities X
B,L

, X
A,L

and reputation costs R
A

, R
B

.
The first row of each cell represents the combination of strategies of player A and B
at the Contracting stage. The second row reflects the strategies at the Ratification
stage.

empirical analysis we are interested in identifying the factors that increase the likelihood

of the occurrence of ine�cient contracting conditional on the event that the regulation

has been signed by all members. In order to derive an expression for this conditional

probability, in the following we consider R
A

(R
B

) in inequality (3.3) as a positive

random variable that varies across regulations independently from U
A

, U
B

and R
B

(R
A

).

Furthermore, we assume that a component E
j

of R
j

is observable R
j

= E
j

+Runobs

j

. Here,

E
j

denotes a set of observable influences, such as the public and political environment at

the time of contract signing, that directly a↵ect the potential reputation gain (or loss) R
j

(�R
j

) of (not) signing the international agreement. We denote by p
X

j

(R
j

) = P (1
2
X

j,L

<

R
j

) 2 (0, 1] with
@p

X

A

(R
A

)

@R

A

> 0 the probability of a su�ciently high realization of R
j

,

according to which, if country j is of type L, it prefers to publicly sign the regulation

despite secretly opposing it. Furthermore, we assume p � 1
2
.7

Now, we can derive an expression for the probability of country A not ratifying the

regulation given that both A and B have signed it at the contracting stage:

P (D
A

|C
A

, C
B

) =
P (D

A

, C
A

, C
B

)

P (C
A

, C
B

)

=
p(1� p)p

X

A

(R
A

) + 1
2
(1� p)2p

X

A

(R
A

)p
X

B

(R
B

)

p2 + p(1� p)[p
X

A

(R
A

) + p
X

B

(R
B

)] + (1� p)2p
X

A

(R
A

)p
X

B

(R
B

)
. (3.4)

7Note that the parameter p has a rather abstract interpretation since it reflects the distribution of
preferences over the full set of regulations that are discussed (but not necessarily signed) at the negotiation
table. We assume here that it is more likely that a country benefits from a regulation considered at the
negotiation table than to be harmed by it.
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Taking the derivative with respect to E
A

yields:

@P (D
A

|C
A

, C
B

)

@E
A

=
p(1� p)p

X

A

(R
A

)(1� P (D
A

|C
A

, C
B

)) + (1� p)2p
X

B

(R
B

))
@p

X

A

(R
A

)

@E

A

(1
2
� P (D

A

|C
A

, C
B

)

P (C
A

, C
B

)

> 0. (3.5)

The last inequality follows directly from
@p

X

A

(R
A

)

@E

A

> 0 and (3.4) < 1
2
. Thus, the theoretical

model implies that if the public and political environment places increasing pressure on

international decision makers at the negotiation table, ine�cient contracting is more likely

to occur. Indeed, we find empirical evidence of this e↵ect in the ratification behavior of

international actors in Mercosur. Note that the conditional probability in (3.4) is closely

connected to the quantity that we model in the empirical section, where we specify a

statistical model for the ratification durations in Mercosur for all regulations that have

been signed by all signatory members.

4.4 The Southern Common Market

We now present the empirical case of the Southern Common Market, a regional integration

scheme between Argentina, Brazil, Paraguay and Uruguay that uses the regulatory regime

explained above for the ratification of its regulations. Interestingly, its member countries

duly ratify only two-thirds of all policies, but are apparently reluctant to fulfill their

obligations in the extant cases. First, we provide a brief overview over the institution of

Mercosur, before subsequently presenting our ratification data set in detail.

4.4.1 Southern Common Market and the rules for ratification

Figure 4.3 depicts the institutions relevant for regional cooperation and explains the rules

for ratification as established in the Protocol of Olivos (POP) from 1994. According to

this treaty, the member states unanimously take decisions in one of the three decision

bodies: the Common Market Council (CMC), the Common Market Group (CMG) or the

Trade Commission (TC) (Bouzas and Soltz, 2001; Lavopa, 2003; Ventura and Perotti,

2004). Each member state incorporates Mercosur regulations into the respective domestic
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juridical system and subsequently communicates successful ratification to the Secretariat.

However, according to Article 42 POP, a regulation is not yet legally in force; only 30

days after every member state successfully ratified does a regulation develop its binding

character in all Mercosur countries. When one single state complies with the legal term of

an agreement in the Southern Common Market, this member country prepares the e↵ect

of a Mercosur regulation, although it does not yet trigger it. The institutional design

ensures that rules enter into force in all countries at the same time.8

In view of these intriguing rules for ratification, Mercosur represents an apposite case

to observe the dynamics of the theoretical model in practice. Reputation costs from

Figure 4.3: Regulatory framework for International Cooper-
ation in Mercosur
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non ratification are particularly low, while for many regulations the public, political or

institutional environment during contracting ensures high rewards from contracting alone.

This renders political actors in Mercosur particularly susceptible to ine�cient contracting.

Moreover, we can empirically validate whether the theoretical prediction of no free-riding

in the case of mutually beneficial policies is empirically confirmed in Mercosur.

During ratification, the threat of implicit sanctions such as reputation loss is lower in

Mercosur in comparison to other international regimes, given that information concerning

the status quo of ratification is not publicly available. While the secretariat collects

information on successfully incorporated cases, access to this database remains restricted,

with neither interest groups nor citizens able to gain any insight. The Secretariat only

8Alejandro Pastori, who was the legal adviser of the Uruguayan Foreign Minister during the
negotiations of the Protocol of Ouro Preto in 1994, compared this procedure to a swimming pool. All
swimmers would step close to edge. Only if everyone was ready, all would jump at the same time.
(Interview in Montevideo, April 2009)
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provides information for individual regulations, thus making it hard for public actors

to hold their governments accountable.9 Mercosur’s procedures are similar regarding

information vis-Ã -vis partner governments. While meetings and minutes exist that intend

to brief about ratification endeavors in particular policy fields, the overall ratification

record remains o�cially under disclosure.

Typically, e↵ective dispute settlement mechanisms allow for overcoming cooperation

problems with explicit sanctions (Downs et al., 1996; Fearon, 1998; Yarbrough and

Yarbrough, 1997). Mercosur’s institutional provisions remain comparably limited in this

respect and largely intergovernmental in character (Lenz, 2012; Malamud, 2005; Pena and

Rozemberg, 2005). According to the categorization for dispute settlement in international

trade from Yarbrough and Yarbrough (1997), Mercosur’s dispute settlement system would

file in the second weakest category. While a third party may settle a dispute and advice

retaliatory measures, it neither implements nor controls implementation (Bouzas et al.,

2008, 100). In the terms of Keohane et al. (2000), Mercosur’s dispute resolution displays a

moderate level of legalization (Krapohl et al., 2009). Despite the existence of institutions

for conflict adjudication, their independence, access and legal embeddedness do not

provide for an e↵ective enforcement of non-compliance.

4.4.2 Measuring actors’ ratification behavior

Mercosur is not only an intriguing case due to its particular rules for ratification, but

also given it empirical ratification record. We use information relating to the success and

duration of ratification in the four member countries concerning all 1,024 regulations

adopted between 1994 and 2008 (Arnold, 2013).10 Pooling this information, our data set

contains 3,560 data points and o↵ers insight into the ratification success and duration as

measured at the end of 2008.

Mercosur’s members do not incorporate all regulations into the respective domestic legal

bodies, with Table 4.2 o↵ering insight into the dimension of this issue. Half of the

regulations introduced in Mercosur between 1994 and 2003 have not entered in force

five years after their introduction date due to at least one of the member countries failing

9The Secretariat’s website allows for querying the status quo of single regulations, only.
10While the four countries agreed on 1700 regulations overall, only 1024 of them require active

ratification to become legally e↵ective.
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Table 4.2: Percentage of ratification success in Mercosur

Non ratification %

by at least one member 50.4 %

by Argentina 21.7 %
by Brazil 18.8 %
by Paraguay 25.5 %
by Uruguay 26.3 %

Note: Percentage of regulations introduced between 1994
and 2003 that have not been ratified by at least one of the
four Mercosur countries five years after their introduction
(below: non ratification percentage by a specific member
country).

to ratified the agreement at the domestic level. When examining the potential culprits, we

find that the two smaller countries of Paraguay and Uruguay have the worst ratification

record in the region with 25% of the regulations not incorporated into national law five

years after their introduction.

One natural explanation for the poor overall ratification record in Mercosur is the

ine�ciency of the national administrative systems in the region. However, within

Mercosur, Uruguay is known to have by far the most e�cient and least corrupt

administration, although it has the worst ratification record in Merosur, closely followed by

Paraguay. Thus, there has to be a di↵erent explanation for the poor ratification behavior

observed. The strategy of not keeping promises from the negotiation table, as outlined in

Section 4.3.2, may be one way for the economically and geographically smaller countries

of Paraguay and Uruguay to respond to the dominating role of Brazil and possibly also

Argentina within the region. The incorporation mechanism of Mercosur provides the

smaller countries with the same political power as the larger ones, thus enabling them to

prevent policy changes from taking e↵ect in the whole region.

The graphs in Figure 4.4 indicate the development of ratification success over time between

1994 and 2008. The vertical axis shows the success ratio for each country, calculated as

all ratified regulations in relation to the overall number of regulations introduced. The

introduction of regulations briefly peaked in 1996, causing the success ratio to plummet.

The success ratio subsequently increased, reaching a level between 63.0% in Uruguay and

75.7% in Brazil in 2008. Since 1997, while Brazil seems to perform best, Uruguay worst
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Figure 4.4: Ratification success in Mercosur over time
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Note: Ratification success of regulations in Mercosur for all four member countries. The
connected points indicate the incorporation status per country as of the respective year.

and Argentina and Paraguay usually in between. Overall, the ratification success of the

four countries follows a similar path over time.

Moreover, in Figure 4.5 we report the empirical density of the successfully incorporated

ratification spells (grey curve) and the censored cases (blue curve). The upper graph

summarizes the data with the help of boxplots.11

We find that successful ratification takes 585 days on average, with the respective 25%

quantile at 162 days, the median at 330 days and the 75% quantile at 774 days, with a

maximum of 4,161 days. While in 75% of cases, ratification takes less than 26 months (774

days), one-quarter of all policies take between 26 months and 11 years (4,161 days) until

they are ratified. Overall, most of the policies find their way into the respective domestic

legal system in the four member countries in little time, while the right skewed character

of the distribution shows that a substantial number of regulations take considerably more

time.

To explain the variation in the success and duration of ratification in Mercosur

with multivariate analysis, we measure a number of additional variables, capturing

11The black bar within the box stands for the median. The outside edges of the boxes indicate the
25% quantile and the 75% quantile. The whiskers report outliers: any datapoint outside 1.5 times the
interquartile range is printed using a black circle.
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Figure 4.5: Distribution of ratification durations in Mercosur
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Note: Density of the ratification durations for regulations pooled over
all countries. The grey line represents ratification durations of successful
cases, the blue line stands for ratification durations of all regulations not
yet ratified until 2008 (censoring of the observations).

characteristics of the political, institutional and economic context and the regulations

themselves. First, we divide Mercosur’s policies according to a series of categories

(Table 4.3). Among all 3,560 regulations12, politicians adopted 599 of them in the Common

Market Council and bureaucrats signed 2,961 in the Common Market Group and the

Trade Commission. In addition, we distinguish between six policy types. 725 regulations

relate to the common external tari↵, while 800 announce governmental cooperation. In

104 cases, the four members consider Mercosur interna, whereas 87 policies address the

internal market, 276 policies define exceptions from the common external tari↵ and 1,537

concern technical regulations. Moreover, 31 regulations could not be attributed. Finally,

not all countries need to ratify all policies; accordingly, Argentina has to incorporate 870

Mercosur rules into domestic law, Brazil 882 policies, Paraguay 929 policies and Uruguay

879 policies.

In addition to these categories, four additional variables measure the political context

12Here, the regulations are counted several times depending on the number of signatory member
countries.
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Table 4.3: Distribution of ratification durations over three categorical variables

n

Decision Bodies
CMC 599
CMG and TC 2961

Policies
Common External Tari↵ 725
Governmental Cooperation 800
Mercosur Interna 104
Internal Market 87
Tari↵ Exception 276
Technical Regulations 1537
Others 31

Countries
Argentina 870
Brazil 882
Paraguay 929
Uruguay 879

(Table 4.4). ‘Public support of Mercosur in country’ measures citizens’ attitudes regarding

regional cooperation on a yearly basis.13 Survey data from the Latinobarometro shows

that the population adopts a comparably positive stance towards regional cooperation,

on average. Support for Mercosur ranks at 82%, with a standard deviation of 0.06 across

all regulations. The variable ‘Mercosur presidency’ indicates whether the meeting during

which the regulation was signed was held in the respective country, which implies a higher

media coverage of signed regulations and Mercosur topics in general. Mercosur has a

rotating presidency and typically the country chairing the meetings is also the host of

13Since there is no question concerning Mercosur which has been asked every year, three di↵erent
question wordings are used. Despite their di↵erence, all of them address a general consent towards
Mercosur. The question which has been asked most frequently is: “Are you in favor or against economic
integration in Latin America?”. Respondents can answer the question with very much in favour, a little

in favour, a little against and very much against. We coded the two positive categories as consent and
the two negative ones as dissent. In the year 2003, marked with a small star, respondents were asked
“Among the institutions that are on the list, please evaluate them in general terms and give them a mark
between 0 and 10, where 0 is very bad and 10 would be very good, or else tell me whether you have not
heard enough to provide an opinion about: Mercosur”. We rescaled the answers to di↵erentiate between
those who reject Mercosur and those who do not and coded all responses larger and equal to 5 as positive
and those that are smaller than 5 as negative. Finally, in the years 2004, 2006 and 2007, the question was
“Treaties on international free trade have a very positive, positive, negative, very negative or no impact
at all on your employment opportunities?”. Again, we merge the two top categories and the two lower
ones.
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the negotiations. The variable takes a mean of 0.24 and a standard deviation of 0.43.

Furthermore, analyzing media coverage of Mercosur’s trade disputes, Gómez-Mera (2009)

devises an annual score capturing the perceived level of large salient conflicts between

Mercosur’s governments, with a mean of 1.69 and a standard deviation of 1.29 (‘Conflict

level in Mercosur’).

Finally, in order to capture the number of domestic actors who have to be coordinated

for ratification, we introduce the number of veto players (‘Size of opposition in country’)

of the respective domestic political system. We operationalize this number with the index

from Beck et al. (2001). In our sample, this takes a mean of 3.83 and varies with a standard

deviation of 1.22.

We further introduce four variables capturing idiosyncrasies of Mercosur’s policies. We

Table 4.4: Descriptive statistics of measures of the political context and idiosyncrasies
of the regulations

Mean s.d. Min Max

Political Context
Public Support of Mercosur in country 0.82 0.06 0.63 0.94
Mercosur presidency 0.24 0.43 0 1
Conflict level in Mercosur (sqrt) 1.69 1.29 0.00 4.30
Size of opposition in country 3.83 1.22 2 6

Policies
Complexity of Policy 0.29 1.30 -2.41 4.23
Technical annex 0.66 0.47 0 1
Number of references in rreamble (sqrt) 1.83 0.52 0.00 3.87
Overrules Mercosur regulation 0.14 0.35 0 1

approximate the complexity of a regulation with its length and count the number of words

and paragraphs.14 We decompose the variance of regulations’ measures for length into the

principal component in order to tap the latent complexity dimension. Assigning principle

component scores to each regulation, it is possible to interpret complexity on a common

scale (Bartholomew et al., 2008; Joli↵e, 2002). The mean in our pooled sample is 0.29, with

a standard deviation of 1.30. Next, a dummy variable captures whether a policy contains

an annex with comprehensive technical details, taking a mean of 0.66 and a standard

14We use the software JFreq to count the number of words and rely on handcoding for the number of
paragraphs. Both values are log transformed to account for their skewed distributions.
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deviation of 0.47. The number of references to xisting Mercosur rules approximates the

amount of existing Mercosur legislation that a policy builds upon. Taking the square root

to correct for the skew of the variable’s distribution, we report an average of 1.83 and a

standard deviation of 0.52. Finally, another dummy is used to indicate whether a policy

overrules existing legislation, with this variable reporting a mean of 0.14 and a standard

deviation of 0.35.

4.5 Analyzing the ratification behavior in Mercosur

We argue that part of the reason behind Mercosur’s poor ratification record is that the

South American actors follow the incentive structure outlined in the theoretical section.

However, we have to bear in mind that the two-step game of cooperation only captures

the strategic interaction of international actors in a very simplistic way. When analyzing

the data on ratification durations in Mercosur, we have to abstract from this simple

mechanism in several ways.

4.5.1 Relation of cooperation game to empirical analysis

First, after a regulation is signed by the member countries, actors have a larger choice

set than merely to defect (never ratify) or cooperate (ratify as quickly as possible). In

fact, within the boundaries of the domestic administrative system, political actors in

Mercosur can choose practically any ratification duration (measured in days after contract

signing). Accordingly, di↵erent lengths of ratification durations can be interpreted as

di↵erent degrees of defectiveness. If a policy change is disadvantageous, political actors

may decide not to completely defect but rather postpone ratification as long as possible.

Furthermore, many of the observed ratification durations are right-censored due to the

end of the window of observation in 2008. We account for this demanding structure of the

data by using a multivariate continuous duration approach to jointly model the ratification

hazards of the four member countries. This method allows accounting for the continuous

duration characteristic of the data and the corresponding problem of right-censoring.

Second, the preferences of international actors towards a regulation may not remain

constant but rather change over time. This could be due to a change in the political

decision makers themselves, i.e. a shift of power within the domestic decision body or a
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change of the political leader due to elections. Additionally, the economic environment that

the political actors face may also change over time. Thus, regulations that are beneficial

to a country at the time of contract signing may not be beneficial a few years later. We

observe several political and economic variables, capturing such changes over time on a

yearly basis. The use of a hazard rate approach enables us to account for such time-varying

observable changes.

Third, not only two but four countries are involved in international contracting in

Mercosur. However, one can think of two potentially opposing parties at the negotiation

table, namely the countries in favor of the regulation of interest and those potentially

opposing it. Since an increase in the number of international actors also increases the

likelihood of at least one actor secretly opposing the regulation, one would expect a higher

probability of a defective outcome (no policy change). Thus, the problem of ine�cient

contracting outlined in the two player game is magnified in a game with four international

actors.15

It is important to understand that the existence of multiple equilibria in the ratification

period prevents the full identification of the underlying preferences from the observed

ratification behavior. For example, if country A cooperates in the ratification period, while

country B defects, this does not automatically reveal that the regulation is beneficial to

country A, since it is also possible that A anticipated that B will defect and consequently

decided to free-ride on B’s defection e↵ort. Thus, with the given set of assumptions,

identification of the underlying preferences is not possible from the data.

Furthermore, when studying the ratification behavior of international contracting, one

typically only observes the regulations signed by all members, whereas those regulations

already discarded at the negotiation table are usually not documented. Indeed, this is also

true for data on Mercosur. Consequently, the distribution of preferences for regulations

underlying our dataset is highly selective and does not represent the original distribution

from which the utilities/preferences are drawn in the theoretical model. Similarly to the

conditional probability (3.4), in the next section we conduct inference conditional on the

15Note that, in a game with more than two players the problem of multiple equilibira briefly discussed
in Section 4.3.2 will become more complex. For example, a regulation may be discussed addressing an
exception to the common external tari↵ for Brazil that is not beneficial or even harmful to the other
three members. If the public or political pressure to cooperate is su�ciently high, Argentina, Paraguay
and Uruguay will sign the regulation. Several equilibriums are now possible that result in defection. Each
of the three secretly opposing countries could be the one to defect (three possible equilibria).
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event that a regulation has been signed by all necessary member countries.

In summary, the objective of the following empirical study is not to identify the parameters

and preferences of the game presented in the previous section. Rather, the purpose of the

theoretical model is to illustrate the potential for ine�cient contracting induced by the

incorporation mechanism in Mercosur. In the empirical analysis, we focus on identifying

how a certain political, public or institutional environment in a country at the time of

contract signing can lengthen the subsequent time until ratification at the domestic level.

The results suggest that, conditional on a regulation being signed, high political or public

pressure at the time when this decision is made significantly lengthens the subsequent

ratification duration in the four member countries. We o↵er the occurrence of ine�cient

contracting defined in our theoretical model as an explanation for this empirical finding.

4.5.2 Empirical model

We analyze the observed ratification durations in Mercosur using survival analysis, thus

making use of both the success and duration for ratification. In survival models, the unit

of analysis enters the observation period with a discrete characteristic and alters this

state after a certain amount of time. Here, Mercosur’s members adopt a regulation at the

Mercosur level and subsequently change its status once they ratify it domestically. If it

were for the discrete change only, any ordinal model would su�ce. However, event history

models seek to answer how long it takes until a certain event occurs, such that duration

and status are both of interest (Beck and Katz, 1996; Box-Ste↵ensmeier and Jones, 1997;

Johnson and Albert, 1999).

We conceive and model ratification as a process whereby a regulation has a certain

probability of being ratified each day, given that ratification has not succeeded up to this

point. We model such ratification hazards, making use of the popular proportional hazard

assumption that states that the e↵ect of covariates is constant over time and enters the

hazard rate multiplicatively. This leads to the following model for the ratification hazard

of regulation i in country j at ratification duration t:

✓(t|x
ijt

) = �(t) ex
0
ijt

� (Model I and II)

Here, the function �(t) captures the dependence of theratification hazard on the time t
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passed since regulation i was signed by country j. Given that we have little prior knowledge

about the shape of this function, we choose a piecewise constant specification. With each

additional year since contract signing, a new parameter captures the possibly di↵erent

level of the ratification hazard.

The e↵ect of covariates is reflected in the vector �

x0
ijt

� = c+ c
j

+ y
t

+ r
0

i

�r +m0
ij

�m + �0
ijt

��.

Here, the covariate vector x
ijt

includes a constant, dummys for the member countries c
j

,

dummys for each calendar year (1994,...,2008) y
t

and characteristics of the regulation r
i

such as measures of complexity of the document signed or the policy field that it addresses.

m
ij

holds the main variables of interest in our analysis specific to the meeting at which

the contract is signed. These covariates vary across regulations i and/or over the four

countries j and capture the public, political, institutional or economic environment faced

by the political actors at the time of contract signing. The variables of interest include

a dummy indicating whether the regulation is signed by politicians vs. bureaucrats, the

measure of public support of Mercosur in country j at the time, an indicator whether

country j holds the presidency of Mercosur and consequently is the host of the meeting,

a measure of the conflict level in Mercosur and the ratio of delegates at the meeting of

country j. This list of variables reflects the observable component E
j

of R
j

for regulation

i in Section 4.3.2. Additionally, m
ij

includes the size of the politic opposition in country

j (number of veto players) and two measures of trade levels inside and outside Mercosur

in the economic sector that the regulation addresses. This completes the list of covariates

included in the most basic model that we consider (Model I in Table 4.5).

In Model II, a similar set of variables �
ijt

is added, controlling for the change in the above

list of variables m
ij

over time compared to their level at the time of contract signing.16

The idea is to capture the potential change in preferences of the political actors induced

by a change in the politic or economic environment compared to the situation when they

first signed the regulation.

Note that the political or institutional environment at the time of contract signing may

somewhat reflect the environment during the subsequent ratification period. For example,

16In addition we control for a change in the political leader of a country compared to the time of
contracting.
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if public support and media coverage of Mercosur at the time of contract signing is high,

it is more likely that this environment will be similar during the ratification period. The

potential reputation loss r
j

of political actors may be higher during the ratification period,

making them more inclined to ratify quickly. Consequently, inModel I we expect a positive

bias in the estimates of the variables measuring the environment at contract signing. In

order to avoid this bias, we control for the change of these variables �
ijt

during the

ratification period compared to their level at the time of contract signing in Models II-III.

Model III is motivated by the strong heterogeneity in the ratification durations across

the regulations signed in Mercosur. Despite our dataset enabling us to observe many

regulation characteristics driving this heterogeneity in ratification hazards, we are most

likely unable to explain all variation across regulations by observable variables. Although

this problem is usually of no greater concern, due to the duration characteristic of our

dataset, the existence of unobserved heterogeneity across regulations can lead to a bias

in the estimated baseline hazard and covariate e↵ects (Lancaster, 1990; Van den Berg,

2001) 17. We expect a bias of the covariate e↵ects towards zero in Model II compared to

Model III (see Tabel 4.5). The bias is avoided in Model III, where we account for the e↵ect

of unobserved regulation characteristics by a random term V
i

.

✓(t|x
ijt

, V
i

) = �(t) ex
0
ijt

� V
i

(Model III) (3.6)

We assume that V
i

is drawn from a Gamma distribution with mean 1 and variance

parameter �2. Estimates of Model III are reported in Appendix 4.A, specifying an

inverse Gaussian distribution. The estimated covariate e↵ects are a↵ected little by

this change, while the overall model fit is higher in the Gamma model. Note that

V
i

generates dependence between ratification durations of the four member countries

for each regulation. We argue that, conditional on covariates, unobservable regulation

characteristics represent the main source of dependence in our dataset.

Other sources of dependence are also possible. For example, if pressure at the negotiation

table is relatively high compared to the expected costs of non ratification, actors have

an incentive to lie. The theoretical model in Section 4.3.2 predicts that actors secretly

opposing the policy change during the ratification period will respond reversely to the

17A bias occurs if the underlying true model is the mixed proportional hazard model.
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strategy of the international partner as a best response. If player B ratifies quickly, player

A will choose to defect if he is of type L. If, on the other hand, player B defects, A

will free-ride on the defection e↵orts of his partner and choose to ratify quickly to avoid

reputation costs. Thus, depending on the level of pressure during negotiations, there may

exist a negative dependence among ratification durations, caused by strategic interaction.

The existence of such an e↵ect could be investigated by using a correlated frailty model

in order to estimate the sign of correlation depending on the level of pressure during

negotiations. However, this extension is left to further research at this point.

In Table 4.5, we report estimates of the baseline specification without time-varying

controls (Model I) and the specification with time-varying controls (Model II), as well

as the mixed proportional hazard model(Model III). The first two proportional hazard

models rely on the assumption of no dependence within regulations conditional on

covariates. On the other hand, the mixed proportional hazard model accounts for a

dependence based on unobserved regulation characteristics. It is not a priory clear which

model is more suitable to fit the data. In Model II, we e↵ectively assume that we observe

all relevant regulation characteristics influencing the ratification durations of the four

member countries. Conversely, Model III is based on the assumption that unobservable

influences enter the ratification hazard multiplicatively and are independent of covariates.

For this reason, we report both models I and II and restrict attention to e↵ects robust

across the two specifications.

4.5.3 Empirical analysis

We use data on all 1,024 regulations signed between 1994 and 2008 that require ratification

at the domestic level in at least one member country of Mercosur.18 This leads to 3,560

observed ratification durations (Table 4.5).Model I-III represent estimations in continuous

time; however, the set of time-varying variables �
ijt

and the baseline hazard vary on a

yearly basis, leading to 13,057 regulation ⇥ country ⇥ year observations.

In Table 4.5, the estimates of the covariate e↵ects � in equation (5) are reported for

Models I-II and (6) , with standard errors in parentheses. Note that the estimates of the

piecewise constant baseline hazard function and the calendar year dummys are omitted

from the estimation outputs. We present point estimates and corresponding confidence

18Most regulations need to be ratified by all four members.
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Table 4.5: Parameter estimates of three proportional hazard models with Gamma
unobserved heterogeneity distribution

Three Piecewise Constant Models: Model I Model II Model III

Variable Estimate St.Error Estimate St.Error Estimate St.Error

Member Countries
Brazil .235*** (.071) .118 (.077) .217*** (.083)
Paraguay -.095 (.067) -.149** (.074) -.107 (.079)
Uruguay -.078 (.067) -.064 (.068) .044 (.073)

Regulation Characteristics
Governmental cooperation -.76*** (.065) -.775*** (.065) -1.137*** (.109)
Internal market -.639*** (.138) -.641*** (.139) -1.005*** (.229)
Technical regulations -.799*** (.061) -.824*** (.063) -1.307*** (.099)
Exception to common external tari↵ .351*** (.106) .504*** (.107) .745*** (.165)
Mercosur interna -.083 (.131) -.071 (.132) -.215 (.213)
Word count -.026*** (.008) -.023*** (.008) -.022** (.01)
Number articles -.053 (.164) -.056 (.165) -.144 (.255)
Number of references in preamble .071*** (.011) .063*** (.011) .056*** (.018)
Technical annex .117*** (.048) .126*** (.048) .117 (.078)
Overrules Mercosur regulation -.132** (.066) -.125* (.066) -.102 (.1)
Year of contract signing -.07*** (.008) -.249*** (.024) -.281*** (.025)
Deadline stated in regulation .276*** (.058) .256*** (.06) .27*** (.098)

Environment at Contract Signing
Common Market Council -.656*** (.072) -.734*** (.073) -.879*** (.111)
Public support of Mercosur in country -.009** (.004) -.015*** (.005) -.016*** (.005)
Mercosur presidency -.123*** (.045) -.24*** (.064) -.253*** (.065)
Conflict level in Mercosur -.103*** (.018) -.236*** (.055) -.168* (.086)
Percentage delegates other countries -.01*** (.002) -.01*** (.002) -.013*** (.002)
Size of opposition in country -.033* (.02) .023 (.024) .037 (.026)
Exports to Mercosur -.081* (.046) -.07 (.047) .019 (.054)
Imports from rest of world .014 (.01) .025*** (.01) .039*** (.011)

Change since Contract Signing
d Public support of Merc. in country . (.) -.006 (.004) -.005 (.004)
d Presidency of Mercosur . (.) -.087** (.041) -.074* (.042)
d Number of veto players . (.) .074*** (.023) .108*** (.024)
d Conflict level in Mercosur . (.) -.027** (.013) -.012 (.02)
d Exports to Mercosur . (.) -.003 (.063) .086 (.073)
d Imports from rest of world . (.) -.102*** (.039) -.104* (.058)
d Political leader(presidency) . (.) -.15** (.076) -.109 (.081)

Unobs. Heterog. (Gamma Dist.)
log(Variance parameter) . (.) . (.) -.706*** (.089)
Variance Parameter .494

Log Likelihood -5313 -5170 -4995

Regulations 1024 1024 1024
Regulations ⇥ countries 3560 3560 3560
Regulations ⇥ countries ⇥ years 13057 13057 13057

Note: Parameter estimates of three proportional hazard models with a piecewise constant baseline
hazard. Estimates are reported as � coe�cients of Models I-III. Standard errors are reported in
parentheses. Estimates with *, ** or *** reflect a 0.1, 0.05 or 0.01 significance level.
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bands of the piecewiese constant baseline hazard in Figure 4.6. 19

Figure 4.6: Estimates of a piecewise constant baseline hazard
function
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Note: Estimates of the piecewise constant baseline hazard function
�(t) of Model III in Table 4.5. Dotted lines denote 95% confidence bands.

The main focus of the empirical analysis is to measure the e↵ect of the public, political

and institutional environment at the time of contract signing on subsequent ratification

durations. The estimates of Models I-III suggest that if public and political pressure on

international actors during the time of contracting is high, the subsequent ratification

process at the domestic level is slowed significantly in the respective country. The

estimated e↵ects vary in size yet do not change signs across Models I-III (see first five

estimates under ‘Environment at Contract Signing’ in Table 4.5.

In particular, regulations introduced in the Common Market Council have a 1� e�.879 ⇡
0.58% (Model III) lower ratification hazard compared to those introduced in the Common

Market Group or Trade Commission (1 � e�.734 ⇡ 0.52% in Model II). Whereas in the

Common Market Group and Trade Commission bureaucrats sit at the negotiation table,

in the Common Market Council negotiations are conducted by politicians. In general,

19The wider confidence bands for earlier years compared to later years come from rescaling the
confidence bands of estimated coe�cients �0 to confidence bands of hazard ratios: confband(exp(�0)) =
[exp(�lower

0 ), exp(�upper

0 )]. Here, �lower

0 and �upper

0 denote the confidence intervals of the estimated
coe�cients �0.
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regulations signed in the Common Market Council receive higher media attention in the

four member countries compared to those signed by bureaucrats. The significant negative

e↵ect on the ratification hazards suggests that ratification takes significantly longer for

regulations that are initially signed by politicians compared to bureaucrats.

In addition, we find a significant negative e↵ect on the ratification hazard if the public

is more supportive of the Southern Common Market at the time of contract signing.

International actors secretly opposed to a regulation are more inclined to sign it when

public opinion in their country is strongly in favor of regional integration. Thus, in terms

of ratification at the domestic level, the political actors have no incentive to speed up the

process, resulting in a low ratification hazard. A 1% increase in the ratio of supporters in a

country lowers the ratification hazard by 1�e�.016 ⇡ 1.6% in Model III (1�e�.015 ⇡ 1.5%

in Model II).

We find a similar e↵ect for a country holding the presidency of Mercosur at the time of

contract signing. The presidency rotates between members, with the main negotiations

hosted by the respective country, resulting in higher media coverage of the negotiation

outcomes and topics relating to Mercosur in general. This environment puts additional

pressure on political actors to signal an attitude towards international cooperation, thus

making them more inclined to sign regulations that they have little incentive to ratify

later. The estimates in Table 4.5 imply that if a country holds the presidency at the time

of contract signing, this corresponds to a 1 � e�.253 ⇡ 22.4% (Model III) decrease in the

subsequent ratification hazard (1� e�.24 ⇡ 21.3% in Model II).

Furthermore, negotiation outcomes are influenced by the overall level of conflict between

the four members of Mercosur. In times of high levels of conflict, signals are particularly

necessary to communicate a sustained interest in regional cooperation. This places

contracting in Mercosur at center stage, given that it is capable of reassuring the partners

of an interest in cooperation despite few, but salient conflicts. We find a significant negative

e↵ect of � = �.168 for a 1 point increase in the measure of conflict level constructed by

Gómez-Mera (2009), implying a 1�e�.168 ⇡ 15.5% decrease in the subsequent ratification

hazard (1� e�.236 ⇡ 21.0% in Model II).

The ratio of delegates at the negotiation meetings representing the other countries may

influence whether political actors feel pressured to sign a regulation. The estimates in

Model III suggest that a 1% increase in the ratio of foreign delegates at the negotiation
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meeting lowers the ratification hazard by 1� e�.013 ⇡ 1.3% in Model III (1� e�.01 ⇡ 1.0%

in Model II). 20

We do not find evidence of an e↵ect for the size of the politic opposition in a country.

We also include export levels to Mercosur for the regulations addressing internal trade, as

well as import levels from the rest of the world for regulations addressing external trade

in the economic sector that the regulation addresses, with these two variables reflecting

the economic environment that decision makers face at the time of contract signing.

However, we do not find robust evidence for an e↵ect significantly di↵erent from zero for

Models II-III.

Finally, we find strong heterogeneity in ratification hazards across policy types. In

particular, we find that regulations addressing governmental cooperation in Mercosur

have relatively low ratification hazards compared to the reference category of the common

external tari↵ (1 � e�1.137 ⇡ 68.0% less in Model III and 1 � e�0.775 ⇡ 54.0% less in

Model II). Political actors find regulations on general governmental cooperation that

simply announce future cooperation particularly useful to create a positive image in the

press. These regulations allow for making broad cooperative claims without necessarily

changing the status quo through costly adaptation. If political actors wish to create a

positive image as proactive regional leaders, they should be particularly prone to doing

so by relying on these type of policies.

Conversely, regulations addressing the common external tari↵ are beneficial to all members

of Mercosur in most cases . Consequently, ratification is relatively quick. Recall that in the

standard case of regional economic cooperation, the common external tari↵ is one of the

most common policy areas for free riding. A country benefits tremendously if all others

implement a common, higher tari↵, given that private actors prefer to trade with lower

tari↵ barriers. While regional cooperation with short term incentives for defection lead to

expect deviations from a common cooperative course, the ratification rules implemented

in Mercosur prevent such behavior. Here, empirical results are in line with the theoretical

expectations, namely that exceptions from the common external tari↵ are beneficial

policies. Actors are always eager to contract and subsequently ratify such regulations. An

20Note, that at each meeting several regulations are signed. Consequently, delegates of all four member
countries are present at each meeting but depending on the meeting and the decision body (Common
Market Council, Common Market Group or Trade Commission), a di↵erent ratio of country delegates is
present.
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additional benefit from contracting alone does not have any influence on the propensity

to put a policy into practice. Considering the short ratification durations for regulations

addressing the common external tari↵, incentives for free riding clearly do not cause

Mercosur’s eminent ratification issues.

4.6 Conclusion

This paper shows that cooperation problems that arise from incentives for free riding

are not necessarily as intractable as the literature in international relations suggests.

So far, implicit and explicit means of retaliation are believed to be the only means of

solving such cooperation issues. We argue that rules for ratification may do so just the

like. When the last country determines the overall e↵ectiveness of a policy, incentives for

individual defection do not arise. However, the second insight of this paper reveals that

altering ratification rules in this way does not solve all cooperation issues. If incentives for

contracting are high and costs from non ratification low, actors may adopt policies that

provide little benefit from collective action. Under these conditions, ine�cient contracting

may lead to many international rules that are signed, yet not ratified.

We o↵er empirical evidence for our theoretical considerations, based upon the Southern

Common Market, a regional cooperation scheme between Argentina, Brazil, Paraguay and

Uruguay, which adopted 1,024 regulations at the regional level between 1994 and 2008.

Mercosur is particularly suitable for illustrating our theoretical considerations. First, it

uses the above-mentioned rules for ratification, with policies only becoming e↵ective in the

whole region once the last country incorporates a regulation into domestic law. Second,

due to the general institutional provisions, reputation costs of postponing ratification are

particularly low.

We collect and analyze the complete ratification record on all policies and find proof

for our theoretical claims. Rules on the common external tari↵ typically o↵er individual

incentives for defection. By contrast, actors in the Southern Common Market prefer to

realize the collective good and do not depart from commonly agreed policies. Against

the backdrop of low costs for non ratification, incentives from contracting allures actors

to first contract and then refrain from ratification when the utility from collective goods

are low. Politicians are eager to use a high popularity of Mercosur to create a positive

image among their electorate. In the meantime, ratification rules easily allow for halting
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the overall e↵ectiveness of rules that are of little benefit. When bureaucrats decide such

e↵ects do not arise, since these decision makers do not share the same incentives as their

politically accountable principals. In a similar vein, if politicians adopt policies that create

collective goods with a high utility, they do not halt ratification processes and ratification

is swift.

This paper makes an important contribution towards understanding how international

institutions produce outcomes in international cooperation (Jacobson, 2000; Simmons,

2000; Simmons and Danner, 2010; Von Stein, 2005). The ratification rules that the

Southern Common Market uses inhibit free riding, whereby actors incorporate regulations

beneficial to all without regress. However, the institutional design encourages ine�cient

contracting, since actors may adopt policies that provide benefits from contracting only

and refrain from their incorporation.
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4.A Appendix

Table 4.6: Parameter estimates of three proportional hazard models with Inverse
Gaussian unobserved heterogeneity distribution

Three Piecewise Constant Models: Model I Model II Model III

Variable Estimate St.Error Estimate St.Error Estimate St.Error

Member Countries
Brazil .235*** (.071) .118 (.077) .198*** (.082)
Paraguay -.095 (.067) -.149** (.074) -.119 (.079)
Uruguay -.078 (.067) -.064 (.068) .028 (.072)

Regulation Characteristics
Governmental cooperation -.76*** (.065) -.775*** (.065) -1.045*** (.103)
Internal market -.639*** (.138) -.641*** (.139) -.878*** (.223)
Technical regulations -.799*** (.061) -.824*** (.063) -1.162*** (.095)
Exception to common external tari↵ .351*** (.106) .504*** (.107) .673*** (.152)
Mercosur interna -.083 (.131) -.071 (.132) -.095 (.2)
Word count -.026*** (.008) -.023*** (.008) -.025** (.011)
Number articles -.053 (.164) -.056 (.165) -.112 (.255)
Number of references in preamble .071*** (.011) .063*** (.011) .066*** (.018)
Technical annex .117*** (.048) .126*** (.048) .122 (.075)
Overrules Mercosur regulation -.132** (.066) -.125* (.066) -.116 (.098)
Year of contract signing -.07*** (.008) -.249*** (.024) -.272*** (.026)
Deadline stated in regulation .276*** (.058) .256*** (.06) .311*** (.094)

Environment at Contract Signing
Common Market Council -.656*** (.072) -.734*** (.073) -.872*** (.106)
Public support of Mercosur in country -.009** (.004) -.015*** (.005) -.016*** (.005)
Mercosur presidency -.123*** (.045) -.24*** (.064) -.249*** (.065)
Conflict level in Mercosur -.103*** (.018) -.236*** (.055) -.229*** (.084)
Percentage delegates other countries -.01*** (.002) -.01*** (.002) -.013*** (.002)
Size of opposition in country -.033* (.02) .023 (.024) .037 (.025)
Exports to Mercosur -.081* (.046) -.07 (.047) .008 (.053)
Imports from rest of world .014 (.01) .025*** (.01) .035*** (.011)

Change since Contract Signing
d Public support of Merc. in country . (.) -.006 (.004) -.005 (.004)
d Presidency of Mercosur . (.) -.087** (.041) -.075* (.042)
d Number of veto players . (.) .074*** (.023) .103*** (.024)
d Conflict level in Mercosur . (.) -.027** (.013) -.022 (.02)
d Exports to Mercosur . (.) -.003 (.063) .05 (.069)
d Imports from rest of world . (.) -.102*** (.039) -.104** (.05)
d Political leader(presidency) . (.) -.15** (.076) -.106 (.08)

Unobs. Heterog. (Inv. Gaussian)
log(Variance parameter) . (.) . (.) -.473*** (.125)
Variance Parameter .623

Log Likelihood -5313 -5170 -5022
Regulations 1024 1024 1024
Regulations ⇥ countries 3560 3560 3560
Regulations ⇥ countries ⇥ years 13057 13057 13057

Note: Parameter estimates of three proportional hazard models with a piecewise constant baseline

hazard. Estimates are reported as � coe�cients of Models I-III. Standard errors are reported in

parentheses. Estimates with *, ** or *** reflect a 0.1, 0.05 or 0.01 significance level.
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Chapter 5

Inference for Shared-Frailty Survival

Models with Left-Truncated Data1

5.1 Introduction

In this paper, we consider inference for shared-frailty survival models. These are Mixed

Proportional Hazard (MPH) models in which systematic unobserved determinants of

duration outcomes are identical within units or groups of individuals. We allow the

spell durations to be subject to left-truncation, meaning that the duration outcome is

only observed if it exceeds a certain threshold value, and we focus on random-e↵ects

likelihood-based inference. We show that the Stata software package command to estimate

shared-frailty survival models in the presence of left-truncated duration data should not

be applied, given that it maximizes a likelihood function that does not su�ciently take

account of dynamic selection before the truncation points.

In order to explain this and motivate the relevance of our contribution, we start with an

introduction of the survival models with unobserved heterogeneity (or frailty terms) that

are included in Stata for statistical inference. Shared-frailty models are an important class

of such models.

Empirical survival studies or studies in duration analysis commonly adopt some version

of the Mixed Proportional Hazard (MPH) model for the hazard rate. The MPH model

stipulates that the individual hazard rate (or exit rate out of the current state) ✓ depends

on the elapsed duration t, explanatory variables x and unobserved determinants v, such

1This chapter is joint work with Gerard van den Berg.
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that

✓(t|x, v) = �(t)�(x)v

at all t, x, v for some functions � and � (see Lancaster, 1990; Van den Berg, 2001, for

surveys). Here, � is the function of interest, although � is sometimes also of interest.

Typically, at least some elements of the vector x are time-varying, although we ignore this

in this paper for ease of exposition. Notice that without loss of generality, v can be seen

as the joint multiplicative e↵ect of a vector of unobserved determinants on the individual

hazard rate. The term v is often called the frailty term. It is not directly estimated from

the data, given that it varies across individuals. Moreover, in contrast to linear regression

analysis, ignoring unobserved heterogeneity leads to biased estimates of � and �, because

individuals with a high v leave the state of interest on average earlier than individuals with

low v. This phenomenon is called “weeding out” or “sorting”, which may occur at di↵erent

speeds for di↵erent x, causing the composition of survivors in terms of v to change over

time. In general, ignoring this leads to a negative bias in the estimate of �(t) and a bias in

the estimated covariate e↵ects (Lancaster, 1990; Van den Berg, 2001). The most common

approach for inference is to assume that v has a distribution G in the population and to

estimate its parameters along with (the parameters of) � and � using Maximum Likelihood

Estimation, where the likelihood contribution of an individual spell integrates over G. In

econometrics, this is called random-e↵ects estimation. To ensure that identification is not

fully driven by functional form assumptions, it is assumed that x and v are independently

distributed in the population and that E(v) = 1. The population constitutes the inflow

into the state of interest (although this may be modified; see below). By far the most

common functional form for G is the gamma distribution, which can be justified as an

approximation to a wide class of frailty distributions (Abbring and van den Berg, 2007).

The approximation improves with left-truncation of the durations. An alternative frailty

distribution is the inverse-Gaussian distribution.

It is often natural to assume that small subsets of di↵erent individuals or spell durations

share the same value of v. For example, di↵erent unemployment spells of the same person

may share the same unobserved determinant v, or the mortality rates of identical twins

may be assumed to depend on identical unobserved determinants v. In general, the data

may identify groups or units or strata such that di↵erent spells within a group or unit

or stratum share the same v. Data with this feature are often called multi-spell duration
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data. To keep the terminology simple, consider the case where we observe at most two

spells for each unit in the sample. The unit has a given value of v, and we assume that

its spell durations are independent drawings from the univariate duration distribution

of t given x, v, where, naturally, v is unobserved, so that the durations given x are not

independent. Whether x is also identical across spells or individuals within a unit depends

on the context. For ease of exposition, we take the data to consist of a random sample of

units. We return to this below.

The multi-spell MPH model was first proposed by Clayton (1978) and is nowadays known

under the name “shared-frailty model”. Notice that it has the same unknown functions as

the single-spell MPH model, namely �,� and G. The empirical analysis of shared-frailty

models is widespread (see e.g. Hougaard, 2000, and Van den Berg, 2001, for surveys). If the

underlying modeling assumptions are correct, multi-spell data enable identification of the

MPH model under weaker assumptions than single-spell data, and the estimation results

are more robust with respect to functional-form assumptions (see Hougard, 2000; Van den

Berg, 2001, for surveys). By straightforward extension of the estimation with single-spell

data, the most common estimation methods are random-e↵ect procedures where each unit

or group provides a likelihood contribution that integrates over the distribution G of v

across the units and where �,� and G are parameterized.2

The Stata software package o↵ers a large number of pre-programmed estimation routines

for survival analysis. In this sense, Stata is unique among the available software packages

covering survival analysis; indeed, it has become popular among empirical researchers.

The two main survival model estimation commands streg and stcox also capture the

shared-frailty model by invoking the option shared() to indicate which individuals share

the same value of v. Gutierrez (2002) provides an overview of parametric shared-frailty

models in Stata. See Hirsch and Wienke (2012) for an overview of software packages with

estimation routines for shared-frailty models.

Sampling schemes where durations are left-truncated are common in both single-spell and

in multi-spell survival analysis Guo (1992). For example, unemployment duration spells

are often only recorded in register data if the duration exceeds one month. Population

2If di↵erent individuals within a unit or group have di↵erent values of x then Stratified Partial
Likelihood Estimation can be used as an alternative (fixed e↵ects) method Ridder and Tunali (1999);
Chamberlain (1985); Kalbfleisch and Prentice (2011). In Section 5.3 we give a brief overview of the use
of this method in Stata.
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register data typically follow individuals from a given point in calendar time onwards,

with the starting points of the spells that are ongoing at the beginning of the register’s

observation window often also observed. The spells that started, for instance, t0 time

units before the beginning of the observation window are subsequently only observed if

the duration exceeds t0. With the increasing availability of such register data in socio-

economic and health research, the usage of left-truncated duration data has increased.

This also applies to multi-spell data. For example, death causes of Danish twins were

only systematically recorded as of January 1, 1943; therefore, in studying death causes

among those born before 1943, it makes sense to restrict attention to both twin members

being alive on January 1, 1943.3 If the duration from birth until death due to a specific

death cause is the relevant duration variable, then this variable is left-truncated at the

age attained on January 1, 1943. Hence, the left-truncation points as measured in the

age dimension di↵er across twin pairs. In studies with hospital patients, only those who

survive up to the point when the trial period at the hospital starts are observed. If the

patient subsequently experiences remission and relapse, subsequent illness spells may not

be left-truncated.

Stata allows for left-truncation of the duration data through the enter() option when

declaring the data as duration data by the stset command. Importantly, the value t0 of

the truncation threshold may di↵er across individuals (as well as across spells for a given

unit, in the case of the shared-frailty model).

Notice that left-truncation gives rise to a second selection issue, in addition to the selection

generated by the dynamic weeding-out. After all, surviving up to some threshold value

is more likely if the frailty term is small. The Stata routine for shared-frailty models4

ignores the fact that the second selection impacts on the first selection. Restricting the

outcome to exceed a lower threshold implies that the frailty distribution in the sample

systematically di↵ers from that in the population upon inflow into the state of interest.5

If the former distribution is nevertheless assumed to equal the latter, then, as we shall

see, the resulting estimators of � and � are inconsistent. One may redefine the population

3After all, if a twin member is observed to have died before 1943 then it is not known whether this
was due to the cause of interest or due to another cause. In the latter case, the moment of death due
to the cause of interest is right-censored by an event with an unknown distribution, and inference would
include the estimation of this distribution.

4This routine is available since Version 7, up to and including the current Version 13.
5See Ridder (1984) for an account of the di↵erences between frailty distributions in di↵erent types of

single-spell samples.
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to be the survivors at t0, although this only makes sense if t0 is identical across all units

and spells.

The interplay between left-truncation and dynamic selection has always been recognized in

the single-spell survival analysis literature. As we discuss below, the role of this interplay

has been obscured with multiple spells. However, we are not the first to point out the

importance of dealing with the above interplay, including its implication for the frailty

distribution in the sample in shared frailty models. Indeed, Jensen et al. (2004) provide

a lucid account. They contrast the correct likelihood function to the likelihood function

where the interplay is ignored for the case of gamma-distributed frailties, and they discuss

the bias when using the latter. They point out that Nielsen et al. (1992), a seminal paper

in survival analysis, used the incorrect likelihood in the case of left-truncated data in

the shared frailty model. Elsewhere within the literature, Rondeau and Gonzalez (2005)

use the correct likelihood for their semi-parametric estimator of the shared frailty model

in the case of left-truncated data, whereas Do and Ma (2010) use the other likelihood

function for their semi-parametric estimator in the same setting.

With an update to release 12, that carries over to the current release 13, Stata has reacted

to our work. As of this update, estimation of a shared frailty model with streg or stcox

with left-truncated data or gaps generates an error message for the user. The error message

explains how both commands streg and stcox implicitly assume that the corresponding

frailty distribution is independent of the covariates and the truncation points. Although

it is not recommended to use the commands in this setting, the error message may be

overwritten by using the option forceshared.

The remainder of the paper is structured as follows. In Section 5.2, we discuss left-

truncation in multiple spell duration data in more detail. We show the conditions under

which the likelihood function of the parametric model in the streg,shared() command

is misspecified for left-truncated data, and present the correct likelihood function. In

Section 5.3, we demonstrate in a short simulation study with the streg command

how the magnitude of the bias resulting from the misspecification depends on the level

of truncation and variance of the frailty distribution. Additionally, in Section 5.4, we

discuss the analogous problem with the stcox command in Stata for the semi-parametric

estimation of the shared gamma frailty model and discuss how the misspecification may

be fixed. We list published articles that use this Stata command to semi-parametrically

111



CHAPTER 5. SHARED-FRAILTY MODELS WITH LEFT-TRUNCATION

estimate the shared gamma frailty model with left-truncated data. Finally, Section 5.5

concludes. In Appendix 5.A.4, we introduce a corrected parametric Stata command called

stregshared.

5.2 Likelihood specification with left-truncated du-

ration data and shared frailties

Consider a random sample of single spells, where the MPH model applies. The random

sample consists of independent draws from the distribution of T |X for various values

x of X, where T denotes the random duration variable. We consider likelihood-based

inference, and for the moment take �,� and G to be parametric functions. The spell

durations may be independently right-censored, although we are not concerned with that

here. Consequently, the likelihood contribution of a single spell is the probability density

function f
u

(t|x) of T |X evaluated at the observation (t, x), with

f
u

(t|x) = E
v

(f
c

(t|x, v)) =
Z

v

�(t)�(x)v exp(�⇤(t)�(x)v)dG(v)

in which ⇤(t) :=
R

t

0
�(u)du denotes the so-called integrated baseline hazard, and f

c

is the

probability density function of T |X, V .

Next, consider a random sample of units, each with j = 1, 2 spells that share their

frailty term v. Throughout the paper, we assume that, conditional on v and x, the spells

are independent. The likelihood contribution of a unit with non-truncated uncensored

duration outcomes t1|x1 and t2|x2 subsequently equals
R
v

f
c

(t1|x1, v)fc(t2|x2, v)dG(v).

Left-truncation of a single-spell duration outcome variable means that the variable is

only observed if its value exceeds a lower threshold, say t0. Throughout the paper, we are

only concerned with deterministic t0. In a random sample of left-truncated single spells,

the individual likelihood contribution equals f
u

(t|x)/(1 � F
u

(t0|x)), with F
u

being the

distribution function associated with the density f
u

. With multiple spells per unit (or

group or stratum), left-truncation of a spell duration outcome can be defined analogously,

regardless of whether other spells are observed for this unit where the outcome exceeds its

lower threshold. However, sometimes none of the duration outcomes of a unit are observed

or used if at least one of them is left-truncated. The study of cause-specific mortality with
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twin data mentioned in Section 5.1 is such an example. It is useful to consider this case

first for expositional reasons. If the number of spells (observed or not observed) of a unit

is known, the model can be used to derive the likelihood function. Suppose that each unit

consists of two spells j = 1, 2, which are observed conditional on both spell durations

surviving up to their truncation points t01 and t02, respectively. This might be called

“strong left-truncation”. In the simple case of no censoring, the likelihood contribution L

of the unit is now given by the density function of t1, t2|T1 > t01, T2 > t02, x, which can

be expressed as

L =

Z 1

0

f
c

(t1|T1 > t01, x1, v)fc(t2|T2 > t02, x2, v) dG(v|T1 > t01, T2 > t02, x) (5.1)

with x = (x1, x2) and T
j

denoting the random duration variables. Therefore, we average

over the conditional frailty distribution G(v|T1 > t01, T2 > t02, x) in units where both

spells survive up to their truncation points t0j (and given x). This is the distribution of v

in the sample of observed spells, which can be expressed in terms of the model primitives

through

dG(v|T1 > t01, T2 > t02, x) =
(1� F

c

(t01|x1, v))(1� F
c

(t02|x2, v))dG(v)R1
0
(1� F

c

(t01|x1, w))(1� F
c

(t02|x2, w))dG(w)

where

1� F
c

(t0j|xj

, v) = exp(�⇤(t0j)�(xj

)v).

Note that even if only one of the spells j within a unit has t0j > 0, the distribution

G(v|T1 > t01, T2 > t02, x) di↵ers from G(v).

Assuming a gamma-distributed frailty with E(v) = 1 and V ar(v) = �2 yields6

L = �(x1)�(t1)�(x2)�(t2)(�
2 + 1)(1 + �2M(t01, t02))

1/�2
(1 + �2M(t1, t2))

�(1/�2+2), (5.2)

where M(t1, t2) = �(x1)⇤(t1) + �(x2)⇤(t2). For ease of exposition, note that we omit the

dependence of M on x1, x2.

Rather than the above type of left-truncation, we may consider sampling schemes with

di↵erent types of reduced observability of low spell durations in a shared-frailty model.

6See Appendix 5.A.1 for details.
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If only one spell per unit is not left-truncated, one may nevertheless include it in the

data used for inference. However, given that the number of spells per unit equals two,

we directly infer that the other spell duration t
j

satisfies t
j

 t0j. In other words, t
j

is

left-censored rather than left-truncated. The unit then provides a likelihood contribution

equal to
R
v

f(t1|x1, v)F (t2|x2, v)dG(v), where we took j = 2 and F
c

denotes the cumulative

distribution function of t2|x2, v.

Alternatively, the number of spells per unit may not be fixed and may increase with

the sample size. Jensen et al. (2004) provide a detailed formal likelihood derivation in a

rather general dynamic sampling framework where the number of (possibly simultaneously

occurring) spells per unit may increase with the time that units are followed, and where

all observed spells per unit are used for the statistical inference. Under some assumptions,

the likelihood contributions are identical to equation (5.1). In particular, if two spells are

observed for some unit, then the distribution of the frailty term of this unit, conditional

on the two spell durations exceeding t01 and t02, respectively, equals G(v|T1 > t01, T2 >

t02, x).7 Equation (5.2) replicates likelihood equations in e.g. Jensen et al. (2004) and

Rondeau and Gonzalez (2005) for the shared gamma frailty model with left-truncated

data.

We now turn to the likelihood function used in Stata. The Stata Manual (e.g., see Stata,

2009, p.383) provides a likelihood contribution for the case of two possibly left-truncated

spells and a shared gamma frailty model. This is used in the streg command with the

options frailty(gamma) and shared(). In the absence of right-censoring, the likelihood

contribution states that8

L
Stata

= �(x1)�(t1)�(x2)�(t2)(�
2 + 1)(1 + �2(M(t1, t2)�M(t01, t02)))

�(1/�2+2). (5.3)

which evidently di↵ers from Equation (5.2). It is shown in Appendix 5.A.2 that the right

7Because of the dynamically evolving sampling scheme, where new spells per unit may start during
the observation window, they need to make an approximation to deal with changes in the composition
of the inflow during the observation window. This is an additional complication that does not a↵ect the
issues we focus on but which does not allow us to draw on their simulation results to assess the bias due
to ignoring the interplay between left-truncation and dynamic selection.

8We translate the notation of the Stata Manual, as follows: S
ij

(t
ij

) = e��(xij)⇤(tij) and h
ij

(t
ij

) =
�(x

ij

)�(t
ij

), where we omit the index i.

114



CHAPTER 5. SHARED-FRAILTY MODELS WITH LEFT-TRUNCATION

hand side of Equation (5.3) can be rewritten as

L
Stata

=

Z 1

0

f
c

(t1|T1 > t01, x1, v)fc(t2|T2 > t02, x2, v) dG(v) (5.4)

where G(v) is a gamma distribution. This expression corresponds to the likelihood

contribution presented in (Gutierrez, 2002, p.34) for general frailty distributions. By

comparing Equations (5.4) and (5.1), it is clear under which conditions Equations (5.3)

and (5.2) di↵er, as well as the underlying reason for them to di↵er. First, they di↵er

if and only if V ar(v) > 0 and at least one of the following inequalities applies also:

t01 > 0, t02 > 0. Secondly, they di↵er because the conditional densities in Equation

(5.4) are averaged over the inflow distribution G(v) rather than the frailty distribution

G(v|T1 > t01, T2 > t02, x), conditional on the spell durations being left-truncated. The

critical issue is that the likelihood in (5.3) treats the data as if no sorting had taken place

prior to the beginning of the observation window. Therefore, it is implicitly assumed that

the inflow distribution of frailties at t = 0 does not change until the point of truncation.

However, since the subjects are at risk from t = 0 onwards, this assumption cannot hold.

The above problem carries over to the case where the frailty is assumed to follow an

inverse-Gaussian frailty distribution in the streg command. The likelihood function for

a shared frailty model with shared inverse-Gaussian frailties and left-truncated duration

data is derived in Appendix 5.A.3. This may be contrasted to the function given in the

Stata Manual (Stata, 2009, p.383).

An ad-hoc approach to deal with the discrepancy between the likelihood function and

the Stata routine is to simply assume from the outset that the frailty distribution in the

sample does not depend on x and the truncation points. This e↵ectively amounts to a

redefinition of the population, as the inflow into the state of interest at the moment of left-

truncation, with the assumption that in this newly defined population, v is independent of

x and of the elapsed time spent in the state of interest at the truncation point. Under this

assumption, the Stata likelihood is correct. If the truncation points are not dispersed in

the original population then such an approach may make sense. It replaces the assumption

that v and x are independent in the inflow into the state of interest with the assumption

that they are independent at the moment of truncation. If an MPH model guides the exit

rate between the inflow and the truncation point, the latter assumption generally entails

that x and v are dependent in the original population that constitutes the inflow into the
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state of interest.

However, if the truncation points t0j are dispersed then this approach does not make

much sense. For example, consider two units i, i0 each with two spells j. The units have

identical systematic duration determinants including identical x within and across units,

although their left-truncation points di↵er. In obvious notation, we take 0 < t0i1 = t0i2 <

t0i01 = t0i02 < 1, so that there is no dispersion of truncation points within each unit. The

ad-hoc approach would require the distribution of v in the first unit at t0i1 to equal the

distribution of v in the second unit at t0i01. However, in the first unit, in between t0i1 and

t0i01, the frailty distribution changes with time in accordance to the shared frailty model,

leading to a di↵erent distribution at t0i01 than at t0i1. By implication, the distributions

of v at t0i01 would di↵er across units, not because the units behave di↵erently, but rather

due to the way in which they have been sampled.

The Stata issues discussed thus far refer to the use of the options shared and frailty() in

the streg command, in conjunction with the use of the option enter() in the command

stset. The streg command with the options shared and frailty() corresponds to

parametric shared-frailty models. However, Stata also o↵ers a routine for the semi-

parametric estimation of shared-frailty models, which can also be applied in the case

of left-truncated data. In Section 5.4, we discuss this routine in detail and explain how it

su↵ers from a very similar misspecification as in the parametric case.

We finish this section by revisiting the cases where the Stata likelihood function and our

own likelihood function coincide. Recall that if none of the spells are left-truncated then

they coincide, and if there is no systematic unobserved heterogeneity (so Var(v) = 0)

then they coincide as well. If a unit or group always consists of one single spell, the Stata

likelihood and our likelihood do not coincide, but our likelihood should then coincide with

the likelihood of the MLE estimator for a single-spell MPH setting with left-truncated

data. We know that the latter is correctly specified in Stata. By implication, with left-

truncated data, the Stata estimator for the shared frailty model with a single spell per

unit does not equal the Stata estimator for the corresponding MPH model with single-

spell data. This is readily verified. In the latter case, the frailty distribution conditions on

survival until the truncation point, whereas in the former case it does not.

According to Hirsch and Wienke (2012), none of the other software packages with

estimation routines for shared-frailty models allow for left-truncation, with the exception
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of an R package called Frailtypack. This uses the semi-parametric Rondeau and Gonzalez

(2005) estimator, which uses a full likelihood function that takes account of the interplay

between dynamic selection and left-truncation (their estimator penalizes non-smoothness

of the baseline hazard function �(t)).

5.3 Simulation results

Recall that we are not primarily interested in small-sample properties of estimators,

but rather in the appropriate choice of likelihood function, which should be visible in

estimates based on a large sample. We simulate data from a shared frailty model, with

the sample consisting of units each comprising two spells with a shared gamma frailty. The

baseline hazard �(t) follows either a Weibull specification (�(t) = ↵t↵�1) or a Gompertz

specification (�(t) = e↵t). Furthermore, �(X) = eX� with X = (1 x) and x being a single

time-constant covariate.

In a first step, the covariate x
ij

is drawn from a standard normal distribution for each

spell j of unit i, and the frailty term v
i

is drawn from a gamma distribution with E(v) = 1

and V ar(v) = �2 for each unit i. The unknown model parameters are � ⌘ (�0, �1),↵ and

�2. These have the following possible values:

�0 = 0, �1 = 1, ↵ = 1, �2 2 {0.5, 1, 2}. (5.5)

In the case of the Weibull model, ↵ = 1 implies the Exponential model with no duration

dependence of the baseline hazard, whereas the Gompertz model with ↵ = 1 incorporates a

strong positive duration dependence. We present simulation results for both cases to reflect

applications ranging from economics to mortality studies. Furthermore, we distinguish

between three di↵erent values of the variance �2 of the frailty distribution. These values

are in line with those in the simulations in Jensen et al. (2004).

In a second step, for given covariates, frailty terms and parameter values, the durations t
i1

and t
i2 are drawn independently from the distributions F

c

(t
j

|x
ij

v
j

), j = 1, 2, respectively.9

Next, we draw the left-truncation thresholds t0i1 and t0i2 from a uniform distribution with

9We use the following transformation of the variable u drawn from a uniform distribution U(0, 1):
t
ij

= ↵�1 log(1 � ↵ log(1 � u
ij

)(eXij�v
i

)�1) which is the inverse of the cumulative distribution function
F
c

(t
ij

|X
ij

, v
i

) = 1� exp(�eXij�↵�1(e↵tij � 1)v
i

).
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range (0, b). All units with t
i1  t0i1 or t

i2  t0i2 are dropped. This way the sample only

contains those units for which both spell durations exceed their left-truncation points. The

fraction c 2 [0, 1] of data that are dropped due to left-truncation can be fine-tuned by

modifying b. E↵ectively, the sample size of 50,000 units is determined by the requirement

that each of the spells of these units has a duration exceeding a left-truncation point. In

fact, if the data are sampled from the Exponential model and if �2 is large, the estimation

of the parameters �0,↵ is numerically cumbersome.10 This suggests that a larger sample

is needed for reliable inference, however in light of the computational burden, we opt for

the alternative of assuming that the researcher knows that �0 = 0.

Figure 5.1: Simulation results of an Exponential shared gamma frailty model
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Note: Simulation results of an Exponential shared gamma frailty model with left-truncated data
using the Stata command streg with the option shared().

In the last step of the simulation procedure we use the stset and streg commands to

10More precisely, the estimation routine su↵ers from occasional numerical problems. This even occurs
in the absence of left-truncation (c = 0) if �2 � 4.
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Figure 5.2: Simulation results of a Gompertz shared gamma frailty model
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Note: Simulation results of a shared gamma frailty model with Gompertz duration dependence
and left-truncated data using the Stata command streg with the option shared().

estimate a shared frailty model in Stata,

. stset duration, failure(cens==0) enter(t0)

. streg x , distribution(gompertz) frailty(gamma) shared(id) nohr

The results are summarized in Figures 5.1 and 5.2. The panels show the estimates of

the constant �0 (in the case of the Gompertz specification), the covariate e↵ect �1, the

Gompertz duration dependence parameter ↵, and the variance �2 of the gamma frailty

distribution. We performed separate simulations with 30 di↵erent truncation rates c 2
[0, 1), and we connect the resulting points to obtain the displayed curves.

All estimates move away from their true value as the truncation rate c increases from zero.

In particular, the covariate e↵ect and the level of the hazard rate are under-estimated at

any positive truncation rate.
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In general, this is to be expected. As c increases, the simulated distributions of t0i1 and t0i2

move to the right, and thus the di↵erence between G(v) and G(v|T
i1 > t0i1, Ti2 > t0i2, x)

increases. With truncated data, units with large v will have exited the state relatively

often before having reached the truncation point, so the mean of v|T
i1 > t0i1, Ti2 >

t0i2, x decreases in t0ij. As the mean of the frailty distribution is fixed to E(v) = 1 in

the estimation, this decrease in the mean is compensated by an under-estimation of the

magnitude of the other determinants of the level of the individual hazard rate (which by

themselves have increasing e↵ects on the individual hazard rate).

The bias towards zero of the estimate �1 can be explained analogously. The true frailty

distribution after truncation G(v|T
i1 > t0i1, Ti2 > t0i2, x) depends on the covariates x.

Spells with a large value of exp(X
ij

�) as well as a large v
i

terminate on average earlier

than other spells. Therefore, in the case of a positive �1, an observation in the truncated

sample with a large x is more likely to have a small v
i

than observations with a low x.

The association between x and the observed hazard rates right after the truncation point

is therefore smaller than �1. If one neglect this by ignoring the dynamic selection before

the truncation point, the resulting estimate of �1 will be biased towards zero.

Figures 5.1 and 5.2 also show that the bias of the estimates depends on the variance of

the frailty distribution. As the latter increases, the estimates of the hazard level and the

covariate e↵ect move further away from their true values. Again, this is what would be

expected. Notice that none of the biases vanish for the sample size n ! 1 for a given

truncation rate.

It is important to bear in mind that the simulation results in Figures 5.1 and 5.2 depend

on the choice of baseline hazard and the gamma frailty distribution, as well as the choice

of the parameter values. For di↵erent models, the magnitude of the bias may di↵er from

the presented results.

For Stata users who wish to avoid misspecification of the likelihood function when

estimating shared frailty models with left-truncated duration data, we programmed the

Stata command stregshared, implementing the changes to the likelihood discussed in

Section 5.2. In Appendix 5.A.4, we provide a brief description of this new command.

Simulations using stregshared confirm that the estimator is correct and that the

estimates converge to their true values as n ! 1 independent of the level of truncation.

An alternative to the shared frailty model is stratified partial likelihood estimation,
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if di↵erent individuals within a unit or group have di↵erent values of x (Ridder and

Tunali, 1999; Chamberlain, 1985; Kalbfleisch and Prentice, 2011). This alternative model

is implemented in Stata with the option strata() in the stcox command. It has the

advantage, that the functional form assumptions imposed on the frailty distribution in

the shared frailty model, are not needed. However, with this (fixed e↵ects) method only

variation within units is exploited and thus a substantial part of the information in the

data is lost.

5.4 Inference for semi-parametric shared frailty mod-

els

The Stata command stcox with the option shared() allows for the semi-parametric

estimation of a shared-frailty model where G(v) is assumed to be a gamma distribution,

�(x) = exp(x0�), and �(t) is an unspecified function (Cleves et al., 2008). This command

can be used in conjunction with the left-truncation option enter() in the command

stset.

5.4.1 Inference with non-truncated data

The semi-parametric estimation method is developed by Therneau and Grambsch (2000),

who do not discuss left-truncation of the duration data. The estimator maximizes a

profiled penalized partial likelihood (PPL) using two nested loops. In the inner loop,

for a given value of the frailty variance parameter ✓, the following log penalized partial

likelihood function is maximized to derive optimal values for the vector of covariate

coe�cients � and the frailty vector v

PPL(�, v; ✓) = l(�, v)� g(v; ✓) (5.6)

with l(�, v) =
UX

j=1

X

i2U
j

[(x
i

� + v
i

)� log
X

l2R
j

exp(x
l

� + log v
l

)]

and g(v; ✓) =� 1

✓

GX

g=1

(log(v
g

)� v
g

).
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In this penalized model, � reflects the unconstrained and v the constrained parameter

vector. The index j = 1, ..., U runs over the ordered failure times, U
j

denotes the set of

failures at time t
j

and R
j

is the set of observations k that have not failed before t
j

(that

is, all k such that t
j

 t
k

). The function l(�, v) is the log partial likelihood function from

a standard Cox regression with optimal values of the frailty terms v treated like observed

covariate e↵ects11. The penalty function g(v; ✓) in (5.6) reflects the negative log density

of the gamma frailty distribution. It penalizes the distance between the fitted gamma

distribution and the estimated frailty terms.

In the outer loop, the optimal values for � and v depending on the value of ✓ are substituted

in (5.6), resulting in the log profile penalized partial likelihood

PPL(✓) = logL(�(✓), v(✓); ✓). (5.7)

Therneau and Grambsch (2000, p.256-258) show that the observed data log-likelihood can

be expressed as

L(✓) = PPL(✓) +
GX

g=1

[
1

✓
� log(

1

✓
+ d

g

)� 1

✓
log ✓ + log(

�(1
✓

+ d
g

)

�1
✓

)]. (5.8)

Here, d
g

is the number of failures in group g. Therneau and Grambsch further suggest

that it is useful to maximize L(✓)+
P

G

g=1 dg rather than (5.8), since the PPL(✓) converges

to l(�̂)�P
G

g=1 dg as ✓ goes to zero. The Stata command stcox maximizes L(✓)+
P

G

g=1 dg

based on (5.8) over ✓ and the final estimates of � and v are obtained by maximizing the

log penalized partial likelihood in (5.6) using the optimal value of ✓.

We should point out that apart from the issues discussed in this paper, the stcox

command with the shared option also has the disadvantage of under-estimating the

reported standard errors of the estimated � coe�cients, given that they are obtained

under the assumption that the true variance of the gamma frailty distribution equals the

estimated variance (Cleves et al., 2008).

An alternative to using the penalized partial log-likelihood in (5.6) in the inner loop

is to directly maximize the full likelihood using the EM algorithm (see Parner, 1997;

Therneau and Grambsch, 2000). The advantage of the PPL over the full likelihood

11The expression for l(�, v) in Equation (5.6) handles ties by using the Peto-Breslow approximation
(Peto, 1972; Breslow, 1974).
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approach constitutes that the baseline hazard function � drops from the partial likelihood

in (5.6), thus strongly reducing the parameter space to optimize over. Consequently, this

renders estimation using the PPL much faster compared to using the EM approach.

In their description of the PPL, Therneau and Grambsch (2000) do not mention how

to deal with left-truncated data. Nevertheless, Stata o↵ers the option to estimated the

semi-parametric shared frailty model with left-truncated data. In fact, in Stata only the

at risk set R
j

in (5.6) is adjusted for truncation in the inner loop, i.e. R
j

is adjusted

to the set of observations k that have not failed before t
j

and have additionally passed

their truncation point t0k (that is, all k such that t0k < t
j

 t
k

). However, since the

penalty function g(v; ✓) in (5.6) that reflects the frailty distribution remains unchanged,

the resulting profile penalized partial likelihood su↵ers from the same misspecification as

in the parametric case that we outline in detail in our paper. In the same way as streg,

the stcox command ignores the weeding-out process before the left-truncation points,

a↵ecting the distribution of unobserved determinants.

These findings are confirmed by our simulation results using the command stcox with

the option shared in a similar manner as reported for the Weibull or Gompertz model

in the previous section. Given that the semi-parametric estimator does not impose the

Weibull or Gompertz functional form for the duration dependence �, standard errors are

larger than above. However, point estimates should be close to their asymptotic values

with our sample size. Instead, it emerges that the estimates are similar to those obtained

with the appropriate streg command, for all truncation rates c considered.

5.4.2 Left-truncated data: correcting the misspecification

Correcting the evident misspecification in the semi-parametric estimation command is not

as straightforward as in the parametric case. In fact, with left-truncated data, the PPL

of Therneau and Grambsch can no longer be used; instead, a full likelihood approach

has to be employed. In the following, we explain in detail why the concept of using a

penalized partial model does not carry over to left-truncated data, and show how the

full likelihood approach using the EM algorithm suggested by Parner (1997) can be

adjusted to account for left-truncation in the data. We implement this adjusted estimator.

However, simulations reveal that due to the large parameter space to optimize over and

the additional uncertainty that comes from the approximation of the baseline hazard at

123



CHAPTER 5. SHARED-FRAILTY MODELS WITH LEFT-TRUNCATION

the truncation points �(t0), the estimator is highly unstable in samples of reasonable size.

We conclude that further research is needed in this area before a usable estimator can be

o↵ered.

For non-truncated data, Therneau and Grambsch (2000, p.253-255) provide a justification

for using the penalized partial likelihood estimator presented in (5.6) for the case of

gamma frailties. They show that for a given frailty variance parameter ✓, the solution to

the penalized score equations of (5.6) coincides with the solution to the EM-algorithm of

Parner (1997), which is based on the full likelihood. However, this result does not carry

over to the case of left-truncation. In particular, in order to account for the change in the

frailty distribution caused by left-truncation, the penalty function g(v; ✓) in (5.6) would

have to be replaced by a function that reflects the negative frailty log density conditional

on the durations T having passed their truncation points t0

g
trunc

(v|T > t0, x; ✓) =� log
GY

g=1

(1� F
c

(t0g|xg

, v
g

))f
v

(v
g

; ✓)

(1� F
u

(t0g|xg

; ✓))

=�
GX

g=1


log f(v

g

; ✓)� A0g(�, �)vg � 1

✓
log(1 + ✓A0g(�, �))

�
(5.9)

with A0g(�, �) =
X

l2Q
g

exp(x
l

�)⇤(t0l) and ⇤(t) =

Z
t

0

�(u)du.

Here, the index g runs over the groups 1, ..., G, f
v

is the density function of V , F
u

is

the cumulative distribution function of T |X, F
c

the one of T |X, V and Q
g

denotes the

set of observations in group g. In contrast to the penalty function g(v; ✓) in (5.6), the

conditional log density function in (5.9) depends on the baseline hazard function � as

well as the covariate coe�cients �. In a penalized partial likelihood such as in (5.6),

the partial likelihood function l(�, v) may depend on both parameters, constraint (v)

and unconstrained (�), while the penalty function g(v; ✓) depends on the constraint

parameter alone (see Therneau and Grambsch, 2000, p.120). This central property of

a penalized model would be violated if g(v|T > t0, x; ✓) were to be used as a penalty

function. Consequently, with left-truncated data, the resulting full likelihood can not be

conveniently reduced to a penalized partial likelihood. Furthermore, the main advantage

of the PPL, namely that the baseline hazard function � drops from the penalized partial

likelihood in (5.6), can no longer be exploited. In other words, with left-truncated data,

it is necessary to go back to the full likelihood approach in line with Parner (1997), which
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we briefly outline in the following.

In the inner loop, maximization of the full likelihood with the EM algorithm involves the

two usual steps. In the Maximization step, the function � and the parameter vector �

is estimated using a standard Cox regression, with v treated as a fixed value or o↵set.

In the Expectation step, the conditional expectation of v given the data is computed

using the estimates of � and � from the previous step. In the case of gamma frailties,

the computation is straightforward (see Nielsen et al., 1992; Klein, 1992; Therneau and

Grambsch, 2000, p.253)

E(v
g

|T = t, x) =
d
g

+ 1
✓

A
g

(�, �) + 1
✓

. (5.10)

Adjusting the EM algorithm in the inner loop to the case of left-truncated data simply

involves a small change in the Maximization Step. The set of observations at risk in the

partial likelihood is adjusted to account for the left truncation points (that is, R
j

=

{k : t0k < t
j

 t
k

}. There is no need to explicitly account for the change in the frailty

distribution in the Expectation step, given that the estimates of v are computed using

all information in the data (see Equation (5.10)), thereby capturing the e↵ects of left-

truncation.

In addition to adjusting the Maximization step of the EM algorithm in the inner loop, we

also have to account for the changes in the outer loop in the log profile likelihood. This

involves deriving the full data log-likelihood function conditional on the durations having

passed their truncation points. The log likelihood contribution for group g is given as (for

ease of notation we ignore censoring here)

log f
trunc

(t|T > t0, x)

= log

R
v

Q
l2Q

g

f
c

(t
l

|x
l

, v
g

) dG(v)
R
v

Q
l2Q

g

(1� F
c

(t0l|xl

, v
g

)) dG(v)

= log

Q
l2Q

g

(exl

��(t
l

))(�1)dgL(d
g

)
v

[A
g

(�, �)]

L
v

[A0g(�, �)]

=
X

l2Q
g

log(exl

��(t
l

))� (
1

✓
+ d

g

) log(1 + ✓A
g

(�, �)) +
1

✓
log(1 + ✓A0g(�, �)) +m

g

(✓)

with m
g

(✓) = d
g

log ✓ + log
�(1

✓

+ d
g

)

�(1
✓

)
and A

g

(�, �) =
X

l2Q
g

exl

�⇤(t
l

). (5.11)

Here, L
v

is the Laplace transform with respect to the frailty distribution G(v) and L
(q)
v
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is its q’s derivative. The last equality follows from the assumption of gamma-distributed

frailties, which implies L
v

(s) = (1+ ✓s)�
1
✓ and L

(q)
v

[s] = (�✓)q(1+ ✓s)�( 1
✓

+q) �(
1
✓

+q)

�( 1
✓

)
. In the

outer loop, the optimal values for ⇤(t
l

), ⇤(t0l) and � from the inner loop are substituted

in (5.11) and the resulting profile log-likelihood

logL
trunc

(⇤(t
l

; ✓),⇤(t0l; ✓); �(✓); ✓) (5.12)

is maximized over ✓. In contrast to the log profile likelihood in (5.7), here the cumulative

baseline hazard functions evaluated at each failure time ⇤(t
l

; ✓) and each truncation point

⇤(t0l; ✓) need to be computed based on the current value of ✓. Estimates of ⇤(t
l

; ✓) are

taken from the solution to the EM algorithm of the inner loop. However, the points ⇤(t0l; ✓)

need to be approximated based on the estimates of the cumulative baseline hazard function

at the realized failure times ⇤(t
l

; ✓).

Depending on the lack of dispersion in the truncation points across the sample, this

approximation can be highly imprecise. Indeed, the extreme case of no dispersion is not an

uncommon one. In several applications, every spell in the sample has the same truncation

point t0. For example, the life-spans of twins are sometimes only observed if they have

reached a certain age t0. Furthermore, unemployment spells are often only recorded in

register data if the duration exceeds one month. In these examples no failures are observed

on the interval 0 to t0. Nonetheless, in order to account for the weeding-out process over

this interval, it is necessary to know the baseline hazard function over the same interval

0 to t0. In parametric models such as the Gompertz model, the baseline hazard function

over the missing years 0 to t0 is e↵ectively extrapolated from the interval [t0,1) based on

the parametric form assumed. In the semi-parametric case, no information on the function

�(t) over the interval [0, t0) exists and thus approximation becomes increasingly arbitrary

with longer truncation intervals. In a more favorable truncation scheme, truncation points

are evenly spread out on some interval [0, c) and su�ciently many failures are observed

over this range.

Simulations with grouped duration data and dispersed truncation points show that

estimations even turn out to be very slow and unstable with this favorable truncation

scheme, with estimates strongly depending on the choice of starting values. Due to the

computational complexity of the EM approach, our simulations are restricted to 2,000

groups with 5 members resulting in a sample size of 10,000. It is conceivable that the
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approximation of ⇤(t
l

; ✓) improves with increasing sample size, which may in turn improve

the stableness of the estimator. However, the question of whether this procedure performs

well with larger sample sizes remains open.

5.4.3 The use of Stata’s semi-parametric shared frailty estima-

tor with left-truncated data in empirical work

Stata’s stcoxmodel has been frequently used in the empirical literature to estimate shared

gamma frailty models, and sometimes the data are left-truncated. Gottard and Rampichini

(2006) study the e↵ects of poverty on time to childbirth among young women in Bolivia.

In their data, individuals within a region are assumed to share their frailty term, and are

only included in their sample if they have reached at least the age of 14 at the time of the

survey in 1998. Hence, left-truncation points vary across individuals. They state that they

use the stcox, shared command in their empirical analysis. Another example is provided

by Studenski et al. (2011), who study the e↵ect of gait speed on survival among elderly

individuals. They use data from 9 di↵erent cohort studies and estimate shared gamma

frailty models with Stata in a sensitivity analysis of their main results, with the frailty

taken to be cohort-study-specific. The individual lifetime durations are left-truncated by

the entry age into the study. Hemmelgarn et al. (2007) study multidisciplinary care for

elderly patients with chronic kidney disease, including its e↵ect on survival. They assume

shared frailties for matched treated and untreated individuals, and estimate shared frailty

models with Stata and/or SAS. Their data are subject to left-truncation. Matching on

age ensures that both lifetime durations need to exceed a left-truncation point in order

for the pair to be included in the sample.

5.5 Conclusion

This paper analyzes the implications of ignoring the e↵ect of left-truncation of duration

data on the distribution of unit-specific unobserved determinants in the sample, if multiple

durations are observed per unit. In the presence of unobserved heterogeneity, it is vital

to correctly account for the truncation that influences the composition of survivors in the

sample, especially if the truncation thresholds vary across units.

Stata users estimating shared frailty models with the streg or stcox command need

127



CHAPTER 5. SHARED-FRAILTY MODELS WITH LEFT-TRUNCATION

to be aware that with left-truncated data, the estimators of the covariate e↵ects, the

duration dependence and the variance of the frailty distribution may be inconsistent. The

magnitude of the bias depends on the level of truncation, as well as on the variance of the

frailty distribution of the data generating process. The good news is that the parameter

estimates for the covariate e↵ects are typically biased towards zero. Therefore, in the

worst case, e↵ects have been underestimated by Stata.
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5.A Appendix

First, note that the gamma and Inverse-Gaussian distributions are both special cases of

the non-negative exponential family with density

f(v) = v�e��vm(v)�(�,�)�1. (5.13)

A shared frailty model with a frailty distribution of this family has the following survival

function (see Hougard, 2000):

S(t1, t2|x) =
Z 1

0

v�e�(�+M(t1,t2))vm(v) dv
1

�(�,�)

=
�(�,�+M(t1, t2))

�(�,�)
, (5.14)

with M(t1, t2) = �(x1)⇤(t1) + �(x2)⇤(t2). The second equality follows from the fact that

(5.13) is equivalent to �(�,�) =
R1
0
v�e��vm(v) dv and therefore �(�,� + M(t1, t2)) =

R1
0
v�e�(�+M(t1,t2))vm(v) dv.

5.A.1 Gamma frailty

Let us assume a gamma distributed frailty with E(v) = 1 and V ar(v) = �2. This implies

the following restrictions on the density function in (5.13)

� = 1/�2 � 1, � = 1/�2, m(v) = 1, �(�,�) = ��(�+1)�(� + 1), (5.15)

where �(�2) is the gamma function. Substituting the expression for �(�,�) into the right

hand side of equation (5.14) leads to

S(t1, t2|x) = (1/�2 +M(t1, t2))�1/�2
�(1/�2)

1/�2�1/�2

�(1/�2)

= (1 + �2M(t1, t2))
�1/�2

. (5.16)

Since f(t1, t2|x) = @

2(1�S(t1,t2|x))
@t1@t2

it follows

f(t1, t2|x) = @M(t1, t2)

@t1

@M(t1, t2)

@t2
(�2 + 1)(1 + �2M(t1, t2))

�(1/�2+2). (5.17)
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Finally, let us consider the likelihood contribution of a group i comprising two subjects

with truncation points t01 and t02 and no censoring. Combining the results from equation

(5.16) and (5.17) leads to

f(t1, t2|T1 > t01, T2 > t02, x) =
f(t1, t2|x)
S(t01, t02|x)

= �(x1)�(t1)�(x2)�(t2)(�
2 + 1)(1 + �2M(t01, t02))

1/�2
(1 + �2M(t1, t2))

�(1/�2+2)

which is equation (5.2) from section 2.

5.A.2 Likelihood function in the Stata Manual

The Stata Reference Manual (Stata, 2009, p.383) presents the following likelihood

contribution for a group i of a shared frailty model with a gamma frailty in the case

of no censoring

L = �(x1)�(t1)�(x2)�(t2)(�
2 + 1)(1 + �2(M(t1, t2)�M(t01, t02)))

�(1/�2+2).

Rearranging and choosing � = 1/�2 � 1 and � = 1/�2 according to (5.15) yields

L = �(x1)�(t1)�(x2)�(t2)
(�+M(t1, t2)�M(t01, t02))�(�+3)�(� + 3)

(�)�(�+1)�(� + 1)
.

Since we know that �(� + 2,� + x) = (� + x)�(�+3)�(� + 3) from (5.15) and that �(� +

2,�+ x) =
R1
0
v�+2e�(�+x)vm(v) dv from equation (5.14) it follows

L = �(x1)�(t1)�(x2)�(t2)

Z 1

0

v2e�(M(t1,t2)�M(t01,t02))v
v�e��vm(v)

��(�+1)�(� + 1)
dv

and once the restrictions (5.15) for the gamma distribution are imposed again

L =

Z 1

0

f(t1, t2|T1 > t01, T2 > t02, x, v) dG(v).
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5.A.3 Inverse-Gaussian frailty

Let us assume Inverse-Gaussian distributed frailty terms. Like with the gamma frailty,

this imposes restrictions on the density in (5.13)

� = �1/2, m(v) =  1/2⇡�1/2e�
 

v v�1, �(�1/2,�) = e�(4 �)1/2 .

Assuming  = � gives a mean frailty of 1 and choosing �2 = 1/(2�) yields V ar(v) = �2.

Substituting the expression for �(�,�) into the right hand side of equation (5.14) leads to

S(t1, t2|x) =
exp(�(4( 1

2�2 )(
1

2�2 +M(t1, t2)))1/2)

exp(�(4( 1
2�2 )2)

1
2 )

= exp(1/�2 � 1/�2(1 + 2�2M(t1, t2))
1/2). (5.18)

Since f(t1, t2|x) = @

2(1�S(t1,t2|x))
@t1@t2

it follows

f(t1, t2|x) = @M(t1, t2)

@t1

@M(t1, t2)

@t2

(1 + �2(1 + 2�2M(t1, t2))�
1
2 )S(t1, t2|x)

1 + 2�2M(t1, t2)
. (5.19)

Finally, let us consider the likelihood contribution of a group i comprising two subjects

with truncation points t01 and t02 and no censoring. Combining the results from equation

(5.18) and (5.19) yields

f(t1, t2|T1 > t01, T2 > t02, x)

=
f(t1, t2|x)
S(t01, t02|x)

= �(x1)�(t1)�(x2)�(t2)

⇥ (1 + �2(1 + 2�2M(t1, t2))�
1
2 ) exp(1/�2 � 1/�2(1 + 2�2M(t1, t2))1/2)

(1 + 2�2M(t1, t2)) exp(1/�2 � 1/�2(1 + 2�2M(t01, t02))1/2)
.

5.A.4 The command stregshared

Syntax

The command stregshared (see http://vandenberg.vwl.uni-mannheim.de/2999.0.html)

is designed as an alternative to streg when fitting a shared gamma frailty model to left-

truncated duration data. The size of the units over which the frailties are shared should

not exceed two when using stregshared. The functional form of the baseline hazard can
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be specified as piecewise constant, Weibull, exponential or Gompertz. The command has

a similar syntax to streg:

stregshared varlist [if] [in], shared(varname) [ noconstant

distribution(baseline) cuts(numlist) ]

Description

stregshared is implemented as a v0 evaluator and uses Stata’s modified Newton-Raphson

maximization algorithm. The command fits the same shared frailty model as the streg

command with the shared() option, with the only di↵erence being the adjusted likelihood

function described in Section 2. Like streg, it requires the data to be defined as duration

data by stset and uses the same variables in the same format as input arguments as

streg.

Options

noconstant suppresses the constant term. The default is to include a constant in the

model. Note that varlist should not include a constant term, when the option noconstant

is not used.

distribution(baseline) sets the baseline hazard function to be of the type baseline, where

baseline can be specified as weibull, exponential or gompertz. If this option is not used,

a Weibull model is estimated. Note that the piecewise constant model requires this option

to be specified as d(exponential).

cuts(numlist) specifies the cuto↵ points of a piecewise constant baseline hazard. When

the options noconstant and d(exponential) are used, the option cuts(numlist ) allows

estimating a piecewise constant model. Here, numlist holds the list of cuto↵ points, where

the numbers have to be in strictly ascending order. For example, if the baseline function

should be piecewise constant on the intervals [0, 5.5), [5.5, 10) and [10,1], use: nocon

d(exponential) cuts(5.5,10). The option cuts() cannot be used with d(weibull) or

d(gompertz).
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shared(varname) specifies a variable defining the units within which the frailty is shared.

The variable in varname is the same variable used in the option shared of streg. Recall

that stregshared can only deal with a unit size of one or two spells. It is not a problem

for the command if some (but not all) of the units only have one spell and others have

two. However, it cannot be used with units holding more than two spells. The shared()

option has to be specified.

Comparison to streg

Given that the stregshared command was designed as an alternative to streg, it

is intended to work in a very similar way. Therefore, if one uses the original streg

Stata command after stset to estimate a shared gamma-frailty model with a Weibull

distribution

. stset duration, failure(fail == 1) enter(truncation)

. streg x1 x2 x3, shared(id) d(weibull) frailty(gamma) nohr

the same arguments can be used with the stregshared command in order to estimate

the same model with the adjustment in the likelihood function from Section 2:

. stset duration, failure(fail == 1) enter(truncation)

. stregshared x1 x2 x3, shared(id) d(weibull)

Here, id is the variable that identifies the unit. The same variable is used in the

option shared() in streg. Note that the option nohr which causes streg to display

the estimated parameter values rather than of the hazard ratios, is not used in our

command. stregshared will display the parameter values as well as the hazard ratios

in the estimation results.

In this example, the data are left-truncated and thus the enter(truncation) option in

stset is used, with truncation being the variable that holds the left-truncation points

for each spell. If the enter() option is not used in stset, stregshared and streg will

yield the same estimation results.
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Saved Results

When an estimation is run with stregshared, the command shows the choice of baseline

function, the starting values, the number of units and total observations used in the

estimation and, finally, the estimation results. These results include the parameter

estimates, standard deviations, values of the test statistics and the hazard ratios.

stregshared saves the following in e():

Scalars :

est base ancillary parameter (for Weibull or Gompertz function)

est theta frailty parameter

Matrices :

est b coe�cient vector

est matrix complete matrix of estimation results

(estimates, std. err. and test statistics)

To display the matrix of estimation results after running stregshared, type:

matrix list e(est matrix)
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