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1. Introduction

Given real-valued observations X1, . . . , Xn with a common cumulative distribu-
tion function (cdf) F , many important statistics Tn can be rewritten as or approx-
imated by functionals of the empirical process Gn = (Gn(x))x∈R, where Gn(x) =√
n(Fn(x) − F (x)) and Fn(x) = n−1

∑n
t=1 I1(Xt ≤ x). A typical example is given by

the Kolmogorov-Smirnov test statistic. When knowledge of the distribution of Tn is
required, e.g. for the construction of confidence sets or the determination of critical
values for tests, knowledge of the distributional properties of Gn would help. In the
case of independent and identically distributed (i.i.d.) random variables and a con-
tinuous cdf F , it is well known that the distribution of (Gn(F−1(u)))u∈(0,1) does not
depend on the particular F . As a consequence, the distribution of the Kolmogorov-
Smirnov test statistic Tn = supx∈R |Gn(x)| is invariant under F which makes the
choice of critical values quite easy. In the case of dependent random variables, how-
ever, this situation changes dramatically. It is well known (see also Theorem 2.1
below) that the distribution of Gn and also its weak limit as n tends to infinity de-
pend on the particular dependence properties of the underlying process. Since these
properties are usually not known in advance it is important to have a method of es-
timating the distribution of Gn at hand. It is known that, under certain conditions,
blockwise bootstrap methods provide a consistent approximation; see e.g. Bühlmann
(1994; 1995) and Naik-Nimbalkar and Rajarshi (1994). In this paper we derive results
of this type for an alternative bootstrap method, the so-called dependent wild boot-
strap. This approach was first proposed by Shao (2010) for functionals of the sample
mean and is very easy to implement. This property is preserved in the case of missing
data, where, in contrast, the algorithms for ordinary block-bootstrap methods have to
be adjusted properly. Dependent wild bootstrap methods have already been success-
fully applied in the field of hypothesis testing; see Shao (2011), Leucht and Neumann
(2013), and Smeekes and Urbain (2013). Here, we show that an obvious adaptation
of this approach to the empirical process is consistent under rather weak conditions
on the original process (Xt)t∈N and on a wide range for the tuning parameter of the
bootstrap process. The tuning parameter of the dependent wild bootstrap plays a
similar role as the block length for classical block-based methods. In the present case
the blocky structure refers to the covariances of the bootstrap variables rather than
the data itself which assures that the dependence structure between two consecutive
observations is captured by this resampling method.
In Section 4 we present applications of our general consistency results to statistics of
different types, including the Kolmogorov-Smirnov statistic as well as degenerate and
non-degenerate von Mises statistics. A small simulation study reported in Section 5
sheds some light on the finite sample behavior of the bootstrap approximation and it
seems that the performance of the dependent wild bootstrap is comparable to that
of the classical moving block bootstrap introduced by Künsch (1989) and Liu and
Singh (1992) and the tapered block bootstrap of Paparoditis and Politis (2001).

2. Assumptions, the empirical process

Suppose that we observe X1, . . . , Xn from a (strictly) stationary and real-valued
process (Xt)t∈Z. We denote by F the common cumulative distribution function of
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the Xts and by Fn the empirical distribution function, i.e.

Fn(x) =
1√
n

n∑
t=1

I1(Xt ≤ x).

For simplicity, we assume that F is continuous although we think that our results
can be generalized to discontinuous cdf’s. The empirical process Gn = (Gn(x))x∈R is
given by

Gn(x) =
√
n (Fn(x) − F (x)) .

We assume

(A1) (Xt)t∈Z is strictly stationary and absolutely regular (β-mixing) with mixing
coefficients satisfying

∑∞
r=1 βX(r) < ∞. The cumulative distribution func-

tion F of X0 is continuous.

The following result is a special case of Theorem 1 in Rio (1998).

Theorem 2.1. Suppose that (A1) is fulfilled. Then

Gn
d−→ G,

where G = (G(x))x∈R is a Gaussian process with continuous sample paths, EG(x) =
0, and cov(G(x), G(y)) =

∑∞
r=−∞ cov( I1(X0 ≤ x), I1(Xr ≤ y)). Here, convergence

holds with respect to the supremum metric, i.e., supf∈FL
|Ef(Gn) − Ef(G)| −→ 0

holds with FL = {f : F := {h : R → R is càdlàg} → R | f bounded , |f(h1) −
f(h0)| ≤ ‖h1 − h0‖∞}.

Remark 1. (i) The above characterization of weak convergence can be found in
van der Vaart and Wellner (2000, Section 1.12).

(ii) Doukhan, Massart and Rio (1995, Section 1) discussed several notions of
mixing and concluded that absolute regularity (β-mixing) is an appropriate
condition in the context of the study of empirical processes due to Berbee’s
maximal coupling. Later, Rio (2000, Theorem 7.2) derived a uniform CLT
for stationary and strong mixing (α-mixing) processes under the condition
α(r) = O(r−κ), for some κ > 1. We think that our results below may also
be proved under alternative dependence conditions, such as strong mixing or
weak dependence conditions from Doukhan and Louhichi (1999). For sake of
definiteness, we restrict ourselves to the notion of absolute regularity here.

3. Dependent wild bootstrap for the empirical process

The so-called dependent wild bootstrap was introduced by Shao (2010) for smooth
functions of the sample mean. In the case of weakly dependent and real-valued
random variables X1, . . . , Xn, the idea of the dependent wild bootstrap is to construct
the pseudo-observations as follows:

X∗t = X̄n +
(
Xt − X̄n

)
ε∗t,n, t = 1, . . . , n.

Here, X̄n = n−1
∑n

t=1Xt and (ε∗t,n)nt=1 is a triangular scheme of weakly dependent
random variables that is independent of X1, . . . , Xn. Shao (2010) verified that under
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certain regularity conditions

sup
x∈R

∣∣P (√n [H(X̄n)−H(EX1)
]
≤ x

)
− P ∗

(√
n
[
H(X̄∗n)−H(X̄n)

]
≤ x

)∣∣ P−→ 0,

where H is a smooth function and X̄∗n = n−1
∑n

t=1X
∗
t .

In our case of the empirical process, the role of the Xts above is taken by the
processes ( I1(Xt ≤ x))x∈R. Following the idea of Shao (2010), we define bootstrap
counterparts of Yt = I1(Xt ≤ x) and of Fn as

Y ∗t = Ȳn + (Yt − Ȳn)ε∗t,n

= Fn(x) + ( I1(Xt ≤ x) − Fn(x)) ε∗t,n

and

F ∗n(x) = Fn(x) +
1

n

n∑
t=1

( I1(Xt ≤ x) − Fn(x)) ε∗t,n. (3.1)

This leads to the following bootstrap version of the empirical process:

G∗n(x) =
1√
n

n∑
t=1

(
Y ∗t − Ȳn

)
=

1√
n

n∑
t=1

( I1(Xt ≤ x) − Fn(x)) ε∗t,n

= G∗,0n (x) − R∗n(x),

where

G∗,0n (x) =
1√
n

n∑
t=1

( I1(Xt ≤ x)− F (x))ε∗t,n

and R∗n(x) = (Fn(x)− F (x)) n−1/2
∑n

t=1 ε
∗
t,n.

Remark 2. Since supx∈R |Fn(x)− F (x)| = OP (n−1/2) we obtain that

sup
x∈R
|R∗n(x)| = sup

x∈R
|Fn(x)− F (x)|

∣∣∣∣∣n−1/2
n∑
t=1

ε∗t,n

∣∣∣∣∣ = OP ∗(
√
ln/n)

under mild assumptions stated below. (We write Y ∗n = OP ∗(rn) if ∀ε > 0 ∃K(ε) <∞
such that P (P ∗(|Y ∗n /rn| > K(ε)) > ε) −→

n→∞
0.) Hence, we can analyze G∗,0n instead of

G∗n in the sequel.

Note that the result of Shao (2010) remains valid if the Xts are Rd-valued random
vectors. Therefore, it is clear that, under appropriate conditions, the distribution
of (G∗n(x1), . . . , G

∗
n(xd))

′ consistently approximates that of (Gn(x1), . . . , Gn(xd))
′ for

any x1, . . . , xd ∈ R, d ∈ N. In fact, we show under a condition slightly stronger than
(A1) and under simple conditions for the ε∗t,ns that this is indeed the case. Moreover,
we prove stochastic equicontinuity on the bootstrap side which yields convergence of
(G∗n)n∈N to the desired limit.

The process (G∗n(x))x∈R is intended to mimic the stochastic behavior of (Gn(x))x∈R
which is asymptotically Gaussian. In view of this, and to simplify the mathematical
part below, we choose the random variables ε∗1,n, . . . , ε

∗
n,n from a Gaussian process.

We impose the following condition:
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(A2) For all n, (ε∗t,n)t=1,...,n is a centered stationary Gaussian process with
n∑
r=1

|cov(ε∗1,n, ε
∗
r,n)| = O(ln) and An(s, t) := cov(ε∗s,n, ε

∗
t,n)→n→∞ 1.

The sequence (ln)n∈N has to be chosen such that

ln −→
n→∞

∞ and ln/n −→
n→∞

0. (3.2)

The role of the parameter ln is similar to that of the block length in blockwise boot-
strap methods. For a long time, these blockwise methods have been known to be con-
sistent if the block length tends to infinity within a certain “corridor”, i.e., ln → ∞
but ln = o(nδ), for δ ∈ (0, 1/2); see e.g. Bühlmann (1994; 1995) and Naik-Nimbalkar
and Rajarshi (1994). However, a recent result of Wieczorek (2013) shows that the
weaker conditions of ln →∞ and ln = o(n) are still sufficient for consistency. In our
context, it is clear that the above assumptions on (ln)n∈N are some sort of minimal
condition for the dependent wild bootstrap to work: The condition ln →∞ takes care
that the dependence structure of the original process X1, . . . , Xn is asymptotically
captured. On the other hand, ln/n → 0 implies that the conditional distribution of
G∗n is non-degenerate.

Remark 3. (i) A simple special case of a process satisfying the above conditions
is given by defining ε∗t,n = Ut/ln where (Ut)t≥0 is an Ornstein-Uhlenbeck pro-
cess, i.e. a Gaussian process with continuous sample paths, EUt = 0 and
cov(Us, Ut) = exp(−|s− t|) ∀s, t ≥ 0. In this case, the practical implementa-
tion is rather easy since a discrete sample of an Ornstein-Uhlenbeck process
forms an AR(1) process, that is,

ε∗t,n = e−1/lnε∗t−1,n +
√

1 − e−2/ln ε∗t ,

where ε∗0,n, ε
∗
1, . . . , ε

∗
n are independent standard normal variables. Other choices

of the covariance structure of ε∗1,n, . . . , ε
∗
n,n are considered in Section 5, too.

(ii) There are also other variants of the dependent wild bootstrap in the literature.
Shao (2011) proposed a blockwise wild bootstrap procedure, where variables
from blocks of length ln are multiplied with one and the same auxiliary random
variable. To deal with heteroskedasticity in the context of unit root testing,
Smeekes and Urbain (2013) proposed, besides the dependent wild bootstrap
and the blockwise wild bootstrap as in Shao (2010, 2011), an autoregressive
wild bootstrap. Of course, in view of (i), the latter is a special case of our
variant of the dependent wild bootstrap.

As usual, we have to prove convergence of the finite-dimensional distributions
to the correct limits and stochastic equicontinuity of the processes (G∗,0n )n∈N. The
first task is rather easy since the finite-dimensional distributions are by construction
centered Gaussian. It only remains to show that, for arbitrary x, y ∈ R,

cov∗(G∗,0n (x), G∗,0n (y)) =
1

n

n∑
s,t=1

( I1(Xs ≤ x) − F (x)) ( I1(Xs ≤ y) − F (y))An(s, t)

P−→ cov(G(x), G(y)). (3.3)
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Since cov(Gn(x), Gn(y)) = n−1
∑n

s,t=1E[( I1(Xs ≤ x)−F (x))( I1(Xt ≤ y)−F (y))], the

proof of (3.3) will essentially follow from

E

∣∣∣∣∣ 1n
n∑

s,t=1

{
( I1(Xs ≤ x)− F (x))( I1(Xt ≤ y)− F (y))

− E( I1(Xs ≤ x)− F (x))( I1(Xt ≤ y)− F (y))
}
An(s, t)

∣∣∣∣∣
2

−→
n→∞

0.

To this end, but also for the proof of stochastic equicontinuity of (G∗n,0)n∈N, we have
to replace assumption (A1) by the following slightly stronger assumption:

(A3) (Xt)t∈Z is strictly stationary and absolutely regular (β-mixing) with coeffi-
cients satisfying

∑∞
r=1 r

2βX(r) <∞.

Remark 4. Some preliminary calculations suggest that we could also employ Rio’s
(1998) approach to prove stochastic equicontinuity of the bootstrap process. Sup-
pose that the variables ε∗1,n, . . . , ε

∗
n,n are obtained from a Gaussian process (Ut)t≥0

via ε∗t,n = Ut/ln . If the process (Ut)t≥0 is absolutely regular with coefficients βU(r),
r > 0, then it follows from independence of the Xts and the ε∗t,ns that the bi-
variate process ((Xt, ε

∗
t,n))t=1,...,n is absolutely regular with coefficients βX,ε∗(r) ≤

βX(r) + βU(r/ln). Unfortunately, although the βX(r)s are summable we only ob-
tain that

∑n−1
r=0 βX,ε∗(r) = O(ln) which would require for the proof of stochastic

equicontinuity of (G∗,0n )n∈N an additional restriction on the sequence (ln)n∈N beyond
the obviously necessary conditions ln → ∞ and ln/n → 0. In view of this, we have
decided to use a different approach tailor-made for our problem at hand.

The following lemma provides the key result for proving that the finite-dimensional
distributions of the bootstrap empirical process converge to the correct limit.

Lemma 3.1. Suppose that (A2) and (A3) are fulfilled. Then, for arbitrary x, y ∈ R,

cov∗
(
G∗,0n (x), G∗,0n (y)

) P−→ cov (G(x), G(y)) .

Corollary 3.1. Suppose that (A2) and (A3) are fulfilled. Then, for arbitrary x1, . . . , xk ∈
R, k ∈ N,

(G∗n(x1), . . . , G
∗
n(xk))

′ d−→ (G(x1), . . . , G(xk))
′ in probability.

It turns out that the proof of stochastic equicontinuity of (G∗,0n )n∈N is more delicate
than that of Lemma 3.1. We have to prove that for each ε > 0 and η > 0 there exists
a grid −∞ = x0 < x1 < . . . < xM−1 < xM =∞ such that

P

(
P ∗

(
max
1≤i≤M

sup
x∈(xi−1,xi]

∣∣G∗,0n (x) − G∗,0n (xi)
∣∣ > ε

)
≤ η

)
−→
n→∞

1. (3.4)
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(As usual, we set G∗,0n (−∞) = G∗,0n (∞) = 0.) To this end, we prove that

E

[
P ∗

(
max
1≤i≤M

sup
x∈(xi−1,xi]

∣∣G∗,0n (x) − G∗,0n (xi)
∣∣ > ε

)]

= E E∗

[
I1

(
max
1≤i≤M

sup
x∈(xi−1,xi]

∣∣G∗,0n (x) − G∗,0n (xi)
∣∣ > ε

)]
≤ η2 (3.5)

for all n ≥ n0(ε, η), which implies by Markov’s inequality that

P

(
P ∗

(
max
1≤i≤M

sup
x∈(xi−1,xi]

∣∣G∗,0n (x) − G∗,0n (xi)
∣∣ > ε

)
> η

)
≤ η ∀n ≥ n0(ε, η)

and, therefore, (3.4).
As a first step, the following lemma provides upper estimates for the fourth mo-

ment of increments of G∗,0n over certain intervals Ij,k = (xj,k−1, xj,k]. To find appro-
priate grid points xj,k we adapt an idea from Viennet (1997) for strictly stationary
and absolutely regular processes (ξt)t∈Z on (Ω,A, P ) with summable coefficients of
absolute regularity. Using the representation β(σ(ξ0), σ(ξk)) = 1

2
E‖P ξk|ξ0 − P ξk‖V ar,

where ‖Q‖V ar denotes the total variation norm of a signed measure Q, she shows
that there exists a nonnegative function b ∈ L1(P ) such that var(n−1/2

∑∞
t=1 ψ(ξt)) ≤

4
∫
b(x)ψ2(x) dP (x) holds for all ψ ∈ L2(P ). This implies, for any choice of −∞ <

x0 < x1 · · · < xM <∞, M ∈ N, that

M∑
k=1

var

(
n−1/2

n∑
t=1

I1(xk−1,xk](ξt)

)
≤ 4

∫ ∞
−∞

b(x) dP (x) < ∞,

i.e., we obtain an upper bound not depending on the fineness of the decomposition
of R. In view of this, it becomes apparent that Viennet’s idea is tailor-made for
proving a result such as Lemma 3.2 below. Since we estimate fourth moments of the
increments, we have to carry over this approach to higher moments; see the proof of
the following lemma for details.

Lemma 3.2. Suppose that (A2) and (A3) are fulfilled. Then, there exists a dyadic
sequence of grid points −∞ = xj,0 < xj,1 < . . . < xj,2j =∞, j ∈ N, with xj,k = xj+1,2k

such that, for all j ∈ N, k ∈ {1, . . . , 2j},

EE∗
[(
G∗,0n (xj,k−1) − G∗,0n (xj,k)

)4] ≤ K0

(
2−2j + n−1 2−j

)
,

for some K0 <∞.

Remark 5. Although we have to show (3.4) which is a result on the conditional
distribution of G∗,0n given X1, . . . , Xn, we prove first an unconditional result for the
increments of G∗,0n . Taking the expectation w.r.t. the original sample allows us to take
advantage of the fixed dependence structure of X1, . . . , Xn, with

∑∞
r=1 r

2βX(r) <∞.
In contrast, if the process (Ut)t≥0 is absolutely regular with coefficients satisfying∫∞
0
βU(r) dr < ∞ and if ε∗t,n = Ut/ln , then the ε∗t,n are also absolutely regular, how-

ever, with mixing coefficients satisfying only
∑∞

r=1 βε∗(r) = O(ln). Thus, working
with conditional expectations alone would be more difficult and probably go along
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with additional assumptions on the tuning parameter ln.

With the grid points chosen in the proof of Lemma 3.2, we can prove similarly to
Theorem 15.6 in Billingsley (1968) that we have the desired stochastic equicontinuity
(in probability) for the bootstrap processes:

Corollary 3.2. Suppose that (A2) and (A3) are fulfilled. Then for each ε > 0 and
η > 0 there exists a grid −∞ = x0 < x1 < . . . < xM−1 < xM =∞ such that

P

(
P ∗

(
max
1≤i≤M

sup
x∈(xi−1,xi]

∣∣G∗,0n (x) − G∗,0n (xi)
∣∣ > ε

)
≤ η

)
−→
n→∞

1.

As a consequence of the Corollaries 3.1 and 3.2, we obtain the convergence of the
bootstrap processes G∗n to the same limit as for the original processes Gn.

Theorem 3.1. Suppose that (A2) and (A3) are fulfilled. Then

G∗n
d−→ G in probability.

Here, the convergence holds with respect to the supremum metric with the additional

qualification “in probability”, i.e., supf∈FL
|E∗f(G∗n)− Ef(G)| P−→ 0 holds.

4. Applications

In this section we discuss some specific applications of our results above. The-
orem 2.1 and 3.1 act as master theorems that imply bootstrap consistency in some
particular cases of interest.

4.1. Quantile estimation. Quantile estimation plays an important role in financial
risk management since several risk measures like the value-at-visk or the expected
shortfall can be represented as functions of quantiles.

For q ∈ (0, 1), the q-quantile of F is defined as tq = F−1(q) = inf{x : F (x) ≥ q}.
This can be conveniently estimated by its empirical counterpart,

tn,q = F−1n (q).

We impose the following additional condition:

(A4) F is continuously differentiable at tq and F ′(tq) > 0.

For
√
n(tn,q− tq), Sun and Lahiri (2006) and Sharipov and Wendler (2013) proved

consistency of the block bootstrap in the case of strong mixing processes. The next
theorem follows immediately as a special case of the Theorems 1 and 2 in Sharipov
and Wendler (2013).

Theorem 4.1. (Sharipov and Wendler (2013))
Suppose that (A1) and (A4) are fulfilled. Then

(i) tn,q − tq = q−Fn(tq)

F ′(tq)
+ oP (n−1/2),

(ii)
√
n(tn,q − tq)

d−→ Zq ∼ N(0, var(G(tq))/(F
′(tq))

2).



8

On the bootstrap side, we define

t∗n,q = F ∗n
−1(q),

where F ∗n is defined as in (3.1). Note that a non-standard feature in this context
is that F ∗n is not monotonously non-decreasing. Therefore,

√
n(t∗n,q − tn,q) ≤ x is

not equivalent to F ∗n(tn,q + x/
√
n) ≥ q but to inf{F ∗n(s) : s ≤ tn,q + x/

√
n} ≥ q. In

view of this, we cannot obtain the asymptotic distribution of
√
n(t∗n,q − tn,q) directly

from the asymptotics of P ∗(F ∗n(tn,q + x/
√
n) ≥ q). The following theorem states first

the validity of a Bahadur representation for t∗n,q which eventually leads to the limit

distribution for
√
n(t∗n,q − tn,q).

Theorem 4.2. Suppose that (A2), (A3) and (A4) are fulfilled. Then

(i) t∗n,q − tn,q = Fn(tq)−F ∗n(tq)
F ′(tq)

+ oP ∗(n
−1/2),

where we write R∗n = oP ∗(an) if P ∗(‖R∗n‖2/|an| > ε)
P−→ 0, ∀ ε > 0.

(ii)
√
n(t∗n,q − tn,q)

d−→ Zq ∼ N(0, var(G(tq))/(F
′(tq))

2) in probability.

Corollary 4.1. Suppose that (A2), (A3) and (A4) are fulfilled. Then

(i) supx∈R
∣∣P ∗ (t∗n,q − tn,q ≤ x

)
− P (tn,q − tq ≤ x)

∣∣ P−→ 0
(ii) With c∗γ := inf{c : P ∗(|t∗n,q − tn,q| ≤ c) ≥ γ}, 0 < γ < 1,

P
(
tq ∈ [tn,q − c∗γ, tn,q + c∗γ]

)
−→
n→∞

1 − γ.

4.2. Kolmogorov-Smirnov-test. A classical test problem in mathematical statis-
tics is given by

H0 : F = F0 vs. H1 : F 6= F0.

Based on observations X1, . . . , Xn ∼ F , we give a decision rule with nominal size
γ ∈ (0, 1) based on the Kolmogorov-Smirnov test statistic,

Tn = sup
x∈R

√
n|Fn(x) − F0(x)|.

The null hypothesis is rejected if the value of the test statistic is larger than the
(1 − γ)-quantile of the distribution of Tn which in turn depends on the dependence
structure of the data. Even in case the latter is not completely specified our bootstrap
procedure can be successfully applied to approximate these quantiles. To this end,
we define a bootstrap version of the test statistic T ∗n = supx∈R

√
n|F ∗n(x)−Fn(x)| and

the corresponding bootstrap quantile

t∗γ = inf{x : P ∗(T ∗n > x) ≥ γ}.

Theorem 4.3. Assume that (A2) and (A3) are fulfilled and that there exists some
x ∈ R with var(G(x)) > 0. Then

P0

(
Tn > t∗γ

)
−→
n→∞

γ.
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Remark 6. Our master theorems, Theorem 2.1 and Theorem 3.1, can also be invoked
to set up a two-sample test. Based on observations X1, . . . , Xn and Y1, . . . , Yn of two
independent absolutely regular, strictly stationary processes (Xn)n and (Yn)n, one
aims to decide whether the marginal distribution of these processes PX and P Y are
identical, i.e.

H0 : PX = P Y versus H1 : PX 6= P Y .

The Kolmogorov-Smirnov type test statistic is then given by

T̂n = sup
x∈R

√
n|F (X)

n (x)− F (Y )
n (x)|,

where F
(X)
n and F

(Y )
n denote the empirical distribution functions based on X1, . . . , Xn

and Y1, . . . , Yn, respectively. Denoting the corresponding empirical processes by G
(X)
n

and G
(Y )
n and their independent limits by G(X) and G(Y ), we get

T̂n = sup
x∈R
|G(X)

n −G(Y )
n |

d−→ sup
x∈R
|G(X) −G(Y )|,

and the dependent wild bootstrap method can again be applied to derive critical
values of the test statistic.

4.3. von Mises statistics. A von Mises (V -) statistic based on X1, . . . , Xn is defined
as

Vn =
1

n2

n∑
s,t=1

h(Xs, Xt). (4.1)

It is well known that many important statistics are of the form (4.1). Simple ex-
amples are the usual variance estimator (with h(x, y) = (x − y)2/2), Gini’s mean
difference (h(x, y) = |x− y|) and, more importantly, test statistics of L2-type such as
the Cramér-von Mises test statistic. We assume that the kernel h : R2 → R satisfies
the following condition.

(A5) h is continuous, bounded and symmetric w.r.t. permutation of its arguments,
i.e. h(x, y) = h(y, x). Moreover, let h, hF (·) :=

∫
h(·, y)dF (y), and h(x, ·)

have bounded variation (uniformly in x).

Beutner and Zähle (2013b) proposed a partial integration approach to derive limit
distributions of V -statistics based on results on convergence of empirical processes in
(weighted) sup-norms. Under (A5) the statistic Vn can be represented as a Stieltjes
integral

Vn =

∫∫
h(x, y)dFn(x)dFn(y).

Note that, with V =
∫∫

h(x, y) dF (x) dF (y),

Vn − V =

∫∫
h(x, y) d(Fn − F )(x) d(Fn − F )(y)

+ 2

∫
hF (x) d(Fn − F )(x).
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It follows from Lemmas 3.4 and 3.6 in Beutner and Zähle (2013b) that we can apply
integration by parts and obtain

Vn − V =

∫∫
(Fn − F )(x−)(Fn − F )(y−) dh(x, y)

− 2

∫
(Fn − F )(x−) dhF (x), (4.2)

where g(z−) denotes the limit from the left of a function g at point z. This rep-
resentation allows to infer from a convergence result for the empirical process the
asymptotic behavior of the V -statistic, both in the degenerate (with hF ≡ 0) and
the non-degenerate case. The following result is an immediate consequence of Theo-
rem 3.15 in Beutner and Zähle (2013b) and our Theorem 2.1.

Theorem 4.4. Suppose that (A1) and (A5) hold. Then

(i)
√
n (Vn − V )

d−→ −2
∫
G(x) dhF (x).

(ii) If Vn is degenerate, i.e. if hF ≡ 0, then

nVn
d−→
∫∫

G(x)G(y) dh(x, y).

Both limit distributions depend on the covariance structure of the process G which
might be unknown in applications. Thus, quantiles of the (asymptotic) distributions
(e.g. to derive critical values of the Cramér-von Mises statistic for data with unspec-
ified dependence structure) cannot be determined analytically. This difficulty can be
circumvented by the application of the bootstrap method of Section 3.

In the non-degenerate case, we mimic Vn − V by V ∗n − Vn, where, because of
F ∗n(x) = n−1

∑n
t=1 I1(Xt ≤ x)(1 + ε∗t,n − ε̄∗n),

V ∗n =

∫∫
h(x, y) dF ∗n(x) dF ∗n(y)

=
1

n2

n∑
s,t=1

h(Xs, Xt)(1 + ε∗s,n − ε̄∗n)(1 + ε∗t,n − ε̄∗n).

We obtain that

V ∗n − Vn =
1

n2

n∑
s,t=1

h(Xs, Xt)(ε
∗
s,n − ε̄∗n)(ε∗t,n − ε̄∗n)

+
2

n

n∑
s=1

hFn(Xs)(ε
∗
s,n − ε̄∗n)

=

∫∫
(F ∗n − Fn)(x−) (F ∗n − Fn)(y−) dh(x, y)

− 2

∫
(F ∗n − Fn)(x−)dhF (x) + r∗n,

where r∗n = −2n−1
∑n

s=1(hFn(Xs)− hF (Xs))(ε
∗
s,n − ε̄∗n) and hFn(·) =

∫
h(x, ·)dFn(x).

It turns out that r∗n is asymptotically negligible and Theorem 3.1 eventually yields
consistency of the bootstrap approximation in the non-degenerate case.
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In the degenerate case, where the right normalizing factor is n rather than
√
n,

we have to proceed in a different way. It can be conjectured from recent results from
Leucht and Neumann (2013) (under some variant of Doukhan and Louhichi’s (1999)
weak dependence instead of β-mixing) that the term n−1

∑n
s,t=1 h(Xs, Xt)(ε

∗
s,n −

ε̄∗n)(ε∗t,n − ε̄∗n) converges to the correct limit. On the other hand, the additional
term 2

∑n
s=1 hFn(Xs)(ε

∗
s,n− ε̄∗n) is of the same order and disturbs the intended conver-

gence. In fact, we have to take into account that hF ≡ 0 which also implies V = 0.
Therefore, (4.2) simplifies to

Vn =

∫∫
(Fn − F )(x−) (Fn − F )(y−) dh(x, y),

which suggests the bootstrap approximation

V ∗n =

∫∫
(F ∗n − Fn)(x−) (F ∗n − Fn)(y−) dh(x, y)

=
1

n2

n∑
s,t=1

h(Xs, Xt)(ε
∗
s,n − ε̄∗n)(ε∗t,n − ε̄∗n).

Asymptotic validity of this approximation has been shown in Leucht and Neumann
(2013) under conditions different from those imposed here while consistency of a block
bootstrap method for non-degenerate U -statistics was proved in Dehling and Wendler
(2010). In our context, consistency follows again from Theorem 3.1. All consistency
results are summarized in the following theorem.

Theorem 4.5. Suppose that (A2), (A3) and (A5) hold. Then,

(i)
√
n (V ∗n − Vn)

d−→ −2
∫
G(x) dhF (x) in probability.

(ii) If Vn is degenerate, i.e. if hF ≡ 0, then

nV ∗n
d−→
∫∫

G(x)G(y) dh(x, y) in probability.

5. Simulations

To provide some idea of the finite sample properties of the different bootstrap
methods, we report the results of a small simulation study.

We investigated the size of the Kolmogorov-Smirnov test, with a nominal size
chosen as γ = 0.05, 0.1. Data were generated from a stationary AR(1)-process,

Xt = θ Xt−1 + ηt, t ∈ N,
where θ = 0, 0.5, 0.7 and ηt ∼ N (0, 1 − θ2) are independent. With this choice, the
Xts have a standard normal distribution.

Our primary intention was to compare the performance of the dependent wild
bootstrap with that of well-established block bootstrap methods. We have chosen
two variants of the block bootstrap methodology, the moving block bootstrap (MBB)
of Künsch (1989) and Liu and Singh (1992), which consists of independently drawing
blocks of observations and then patching them together to a bootstrap time series,
and the tapered block bootstrap (TBB) by Paparoditis and Politis (2001). The latter
method has superior bias properties than the classical block bootstrap; see Section 2
in Paparoditis and Politis (2001) for details. These methods are compared with three
versions of the dependent wild bootstrap (DWB1 – 3). While all of them are clearly
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in the spirit of the original proposal by Shao (2010), the first one is the special case
of an autoregressive wild bootstrap also employed in Leucht and Neumann (2013)
and Smeekes and Urbain (2013). The autocovariance function of the wild bootstrap
variables Wt,n obeys Assumption 2.2 in Shao (2010) with q = 1 in the first two
cases and with q = 2 in the third case. According to Remark 2.1 in that paper, the
third variant shares the superior asymptotic bias properties with the tapered block
bootstrap while the first two variants have inferior bias properties comparable to those
of the moving block bootstrap. Finally, to show the necessity of not neglecting the
dependence of the data, we also included Wu’s (1986) (independent) wild bootstrap.
Here is a summary of the technical details:

• WB: Wu’s (1986) (independent) wild bootstrap

ε∗t,n ∼ N (0, 1) i.i.d.

• DWB1: Discretely sampled Ornstein-Uhlenbeck process (autoregressive wild
bootstrap)

ε∗t,n = e−1/lnε∗t−1,n + ζt, t ∈ N,
where ζt ∼ N (0, 1− e−2/ln) are i.i.d.
• DWB2: MA-process, rectangular weight function

ε∗t,n = ζt + · · · + ζt−ln+1,

where ζt ∼ N (0, 1/ln) are i.i.d.
• DWB3: MA-process, triangular weight function

ε∗t,n = cn,1ζt + · · · + cn,lnζt−ln+1,

where cn,k = 0.5 − |(k − 0.5)/ln − 0.5|, ζt ∼ N (0, 1/cn) are i.i.d. with cn =
c2n,1 + · · ·+ c2n,ln .
• MBB

The original time series Y1, . . . , Yn (Yt = I1(Xt ≤ x), here) is split in nonover-
lapping blocks of length ln. From these blocks, bootstrap blocks are generated
by drawing with replacement; then these blocks are patched together to a
bootstrap series Y ∗1 , . . . , Y

∗
n .

• TBB
To reduce bias problems, Paparoditis and Politis (2001) proposed to split

Y1, . . . , Yn in blocks of length ln, apply a taper to these blocks, that is,

Z(i−1)ln+k = cn,kY(i−1)ln+k/
√
cn.

From these new blocks a bootstrap version is generated by drawing with re-
placement.

In the latter five cases the tuning parameter ln plays a similar role. For simplicity,
we have used the same values ln = 8, 10, 12, 15, 20, 30 for all methods. To avoid
having an incomplete block with the blockwise methods, we have chosen sample sizes
n = 240, 480, 960 that are multiples of the ln. We repeated the simulations N = 1000
times, each with B = 1000 bootstrap resamplings. The implementation was carried
out with the aid of the statistical software package R; see R Core Team (2012).

In the case of independent observations (θ = 0), the classical (independent) wild
bootstrap has quite a similar performance as the five time series bootstraps, however,
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Table 1. Empirical size (n = 240, θ = 0)

WB DWB1 DWB2 DWB3 MBB TBB
α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.064 0.113 0.079 0.133 0.068 0.130 0.069 0.128 0.069 0.126 0.064 0.119

ln = 10 0.082 0.154 0.068 0.140 0.069 0.128 0.068 0.137 0.065 0.127

ln = 12 0.086 0.158 0.071 0.134 0.070 0.135 0.079 0.137 0.063 0.126

ln = 15 0.085 0.169 0.077 0.129 0.071 0.125 0.077 0.131 0.068 0.110

ln = 20 0.092 0.173 0.059 0.129 0.060 0.123 0.067 0.133 0.054 0.112

ln = 30 0.131 0.225 0.087 0.148 0.076 0.138 0.095 0.149 0.073 0.122

Table 2. Empirical size (n = 240, θ = 0.5)

WB DWB1 DWB2 DWB3 MBB TBB

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.257 0.334 0.086 0.174 0.085 0.163 0.087 0.161 0.080 0.163 0.081 0.160

ln = 10 0.087 0.171 0.084 0.157 0.086 0.157 0.086 0.158 0.079 0.143

ln = 12 0.092 0.176 0.077 0.157 0.076 0.151 0.084 0.154 0.071 0.140

ln = 15 0.098 0.187 0.073 0.155 0.076 0.139 0.079 0.152 0.067 0.132

ln = 20 0.101 0.177 0.078 0.140 0.073 0.125 0.076 0.138 0.059 0.112

ln = 30 0.141 0.240 0.083 0.166 0.730 0.143 0.094 0.169 0.070 0.130

Table 3. Empirical size (n = 240, θ = 0.7)

WB DWB1 DWB2 DWB3 MBB TBB
α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.397 0.487 0.122 0.204 0.127 0.211 0.147 0.224 0.133 0.207 0.141 0.215

ln = 10 0.117 0.195 0.116 0.191 0.124 0.208 0.112 0.190 0.115 0.200

ln = 12 0.115 0.192 0.108 0.186 0.112 0.186 0.108 0.183 0.105 0.177

ln = 15 0.119 0.202 0.101 0.179 0.094 0.179 0.101 0.177 0.086 0.166

ln = 20 0.119 0.190 0.090 0.159 0.081 0.145 0.091 0.156 0.077 0.131

ln = 30 0.151 0.254 0.098 0.186 0.083 0.164 0.108 0.196 0.073 0.142

Table 4. Empirical size (n = 480, θ = 0)

WB DWB1 DWB2 DWB3 MBB TBB
α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.054 0.116 0.057 0.122 0.054 0.122 0.053 0.119 0.058 0.124 0.056 0.114

ln = 10 0.061 0.112 0.051 0.102 0.052 0.103 0.056 0.103 0.051 0.099

ln = 12 0.084 0.152 0.077 0.139 0.073 0.136 0.084 0.139 0.076 0.132

ln = 15 0.065 0.149 0.057 0.131 0.057 0.128 0.062 0.134 0.052 0.127

ln = 20 0.101 0.161 0.083 0.152 0.081 0.147 0.083 0.149 0.075 0.136

ln = 30 0.091 0.157 0.061 0.127 0.063 0.123 0.068 0.133 0.058 0.117

it fails drastically in the two cases of dependence (θ = 0.5, 0.7). The three versions of
the dependent wild bootstrap showed a similar performance as the block bootstrap
methods while, as expected in view if the asymptotic results for the bias, DBW3
and TBB are slightly better than the other competitors. It is quite apparent that the
empirical size is in almost all cases higher than the nominal one. This is due to the fact
that, for all five bootstrap schemes, covariances are systematically underestimated.
In our case of an AR(1)-process with all covariances positive, this effect explains the
oversizing of the test.
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Table 5. Empirical size (n = 480, θ = 0.5)

WB DWB1 DWB2 DWB3 MBB TBB
α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.238 0.325 0.095 0.143 0.094 0.147 0.099 0.150 0.094 0.149 0.094 0.146

ln = 10 0.094 0.151 0.094 0.150 0.092 0.147 0.096 0.148 0.086 0.140

ln = 12 0.084 0.159 0.077 0.146 0.068 0.141 0.077 0.145 0.069 0.144

ln = 15 0.084 0.159 0.072 0.138 0.068 0.131 0.077 0.140 0.064 0.127

ln = 20 0.088 0.167 0.074 0.142 0.063 0.133 0.076 0.144 0.063 0.129

ln = 30 0.101 0.159 0.091 0.129 0.087 0.129 0.092 0.132 0.076 0.122

Table 6. Empirical size (n = 480, θ = 0.7)

WB DWB1 DWB2 DWB3 MBB TBB

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.420 0.504 0.120 0.177 0.133 0.191 0.146 0.199 0.132 0.188 0.142 0.197

ln = 10 0.101 0.173 0.099 0.177 0.109 0.189 0.101 0.178 0.106 0.187

ln = 12 0.102 0.165 0.099 0.164 0.102 0.171 0.098 0.159 0.100 0.163

ln = 15 0.105 0.169 0.097 0.154 0.095 0.150 0.093 0.150 0.091 0.141

ln = 20 0.106 0.160 0.090 0.146 0.085 0.146 0.088 0.151 0.083 0.139

ln = 30 0.113 0.179 0.098 0.150 0.095 0.144 0.099 0.154 0.081 0.131

Table 7. Empirical size (n = 960, θ = 0)

WB DWB1 DWB2 DWB3 MBB TBB
α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.064 0.129 0.063 0.131 0.062 0.126 0.064 0.126 0.062 0.129 0.063 0.124

ln = 10 0.071 0.129 0.064 0.126 0.067 0.124 0.071 0.128 0.065 0.125

ln = 12 0.057 0.109 0.053 0.109 0.053 0.101 0.054 0.107 0.053 0.105

ln = 15 0.069 0.123 0.061 0.118 0.063 0.111 0.062 0.114 0.064 0.111

ln = 20 0.061 0.120 0.053 0.110 0.050 0.108 0.051 0.117 0.047 0.104

ln = 30 0.086 0.140 0.074 0.126 0.068 0.124 0.074 0.125 0.064 0.115

Table 8. Empirical size (n = 960, θ = 0.5)

WB DWB1 DWB2 DWB3 MBB TBB

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.254 0.361 0.081 0.141 0.079 0.140 0.083 0.140 0.080 0.143 0.079 0.142

ln = 10 0.082 0.150 0.086 0.145 0.089 0.148 0.084 0.146 0.083 0.141

ln = 12 0.080 0.133 0.071 0.132 0.075 0.128 0.077 0.134 0.075 0.128

ln = 15 0.059 0.136 0.051 0.121 0.046 0.120 0.055 0.126 0.054 0.116

ln = 20 0.071 0.119 0.065 0.116 0.059 0.114 0.065 0.116 0.058 0.111

ln = 30 0.085 0.147 0.064 0.138 0.056 0.126 0.067 0.140 0.061 0.122

6. Proofs

Proof of Lemma 3.1. We define

Tn,1 = cov∗
(
G∗,0n (x), G∗,0n (y)

)
=

1

n

n∑
s,t=1

( I1(Xs ≤ x)− F (x))( I1(Xt ≤ y)− F (y))An(s, t)

and

Tn,2 = cov(G(x), G(y)) =

∞∑
r=−∞

E[( I1(X0 ≤ x)− F (x))( I1(Xr ≤ y)− F (y))].

Then ∣∣cov∗
(
G∗,0n (x), G∗,0n (y)

)
− cov(G(x), G(y))

∣∣ ≤ |Tn,1 − E[Tn,1]| + |Tn,2 − E[Tn,1]|.
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Table 9. Empirical size (n = 960, θ = 0.7)

WB DWB1 DWB2 DWB3 MBB TBB
α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ln = 8 0.445 0.524 0.107 0.177 0.122 0.197 0.136 0.220 0.116 0.199 0.134 0.217

ln = 10 0.097 0.172 0.097 0.174 0.112 0.189 0.102 0.173 0.110 0.190

ln = 12 0.089 0.162 0.091 0.166 0.092 0.168 0.086 0.164 0.090 0.168

ln = 15 0.075 0.154 0.074 0.147 0.078 0.147 0.074 0.151 0.076 0.153

ln = 20 0.076 0.127 0.073 0.122 0.067 0.119 0.068 0.126 0.067 0.120

ln = 30 0.084 0.160 0.066 0.129 0.061 0.121 0.067 0.136 0.062 0.118

Proposition 1 in Section 1.1 and Lemma 3 in Section 1.2 of Doukhan (1994) yield | cov( I1(X0 ≤
x), I1(Xr ≤ y))| ≤ 2βX(r) which in turn implies

∑∞
r=1 | cov( I1(X0 ≤ x), I1(Xr ≤ y))| ≤ 2

∑∞
r=1 βX(r) <

∞. Now we obtain by majorized convergence that

Tn,2 ≤
∞∑

r=−∞
|cov( I1(X0 ≤ x), I1(Xr ≤ y))| (1 − (1− |r|/n)+An(0, r)) −→

n→∞
0.

Denote Zs,x = I1(Xs ≤ x)− F (x) and Zt,y = I1(Xt ≤ y)− F (y). We have that

E[(Tn,1 − ETn,1)2]

=
1

n2

n∑
s,t,u,v=1

An(s, t)An(u, v) {E[Zs,xZt,yZu,xZv,y] − E[Zs,xZt,y]E[Zu,xZv,y]}

=
1

n2

n∑
s,t,u,v=1

An(s, t)An(u, v) cum(Zs,x, Zt,y, Zu,x, Zv,y)

+
1

n2

n∑
s,t,u,v=1

An(s, t)An(u, v) {E[Zs,xZu,x]E[Zt,yZv,y] + E[Zs,xZv,y]E[Zt,yZu,x]}

=: Tn,11 + Tn,12, (6.1)

where cum(Z1, Z2, Z3, Z4) = E[Z1Z2Z3Z4]−E[Z1Z2]E[Z3Z4]−E[Z1Z3]E[Z2Z4]−E[Z1Z4]E[Z2Z3]
denotes the joint cumulant of real-valued and centered random variables Z1, . . . , Z4. Let 1 ≤ s ≤
t ≤ u ≤ v ≤ n, r = max{t− s, u− t, v − u}. As a prerequisite to estimate Tn,11, we prove that

|cum(Zs, Zt, Zu, Zv)| ≤ 8 βX(r), (6.2)

where Zs denotes either Zs,x or Zs,y. To see this, we distinguish between three cases, r = t − s,
r = u− t and r = v − u.

(i) r = t− s
Note that |Zs|, |Zt|, |Zu|, |Zv| ≤ 1. We obtain again from a covariance inequality for absolutely
regular processes that |E[ZsZtZuZv]| = | cov(Zs, ZtZuZv)| ≤ 2βX(r) and |E[ZsZt]| ∨ |E[ZsZu]| ∨
|E[ZsZv]| ≤ 2βX(r), which implies

|cum(Zs, Zt, Zu, Zv)| ≤ 8 βX(r).

(ii) r = u− t
Here, we have | cov(ZsZt, ZuZv)| ≤ 2βX(r) and |E[ZsZu]| ∨ |E[ZsZv]| ∨ |E[ZtZu]| ∨ |E[ZtZv]| ≤
2βX(r), which yields

|cum(Zs, Zt, Zu, Zv)| ≤ | cov(ZsZt, ZuZv)| + |E[ZsZu]E[ZtZv]| + |E[ZsZv]E[ZtZu]|
≤ 2βX(r) + 4 β2

X(r).

(iii) r = v − u
This case is analogous to (i).
Since |An(s, t)| ≤ 1 we obtain from (6.2) that

|Tn,11| ≤
4!

n2

∑
1≤s≤t≤u≤v≤n

| cum(Zs, Zt, Zu, Zv)| = O(n−1). (6.3)
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Moreover, we obtain again by a covariance inequality and since
∑n−1
r=0 An(0, r) = O(ln) that

|Tn,12| = O(ln n
−1), (6.4)

which completes the proof. �

Proof of Lemma 3.2. To find an appropriate grid, we have to take into account the impact of the
dependence structure on sums of mixed fourth moments of the increments of the processes G∗,0n .
Since the dependence between the bootstrap random variables ε∗1,n, . . . , ε

∗
n,n gets stronger as n→∞,

we do not lose much by estimating the fourth moments of the increment of G∗,0n over the interval
(x, y] as

E E∗
[(
G∗,0n (x) − G∗,0n (y)

)4] ≤ 3

n2

n∑
s,t,u,v=1

∣∣∣E [Z̃sZ̃tZ̃uZ̃Zv]∣∣∣ ,
where Z̃w = I1(Xw ∈ (x, y])− P (Xw ∈ (x, y]).

For arbitrary s1 ≤ . . . ≤ su ≤ t1 ≤ . . . ≤ tv, u, v ∈ N, let PXt1
,...,Xtv |Xs1

=x1,...,Xsu=xu(B),
defined for x1, . . . , xu ∈ R and B ∈ Bv, denote a regular conditional distribution of (Xt1 , . . . , Xtv )′

given Xs1 , . . . , Xsu . For 1 ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ n, we use the estimates∣∣∣cov(Z̃s1 , Z̃s2Z̃s3Z̃s4)
∣∣∣

=
∣∣∣E [ I1(Xs1 ∈ (x, y])

(
Z̃s2Z̃s3Z̃s4 − E[Z̃s2Z̃s3Z̃s4 ]

)]∣∣∣
≤ 4

∫
(x,y]

sup
B∈B3

∣∣∣PXs2
,Xs3

,Xs4
|Xs1

=z(B) − PXs2
,Xs3

,Xs4 (B)
∣∣∣ PXs1 (dz) (6.5)

and, for u = 2, 3,∣∣∣cov(Z̃s1 · · · Z̃su , Z̃su+1 · · · Z̃s4)
∣∣∣

≤

∣∣∣∣∣E
[
u−1∏
w=1

Z̃sw I1(Xsu ∈ (x, y])
(
Z̃su+1

· · · Z̃s4 − E[Z̃su+1
· · · Z̃s4 ]

)]∣∣∣∣∣
+ P (Xsu ∈ (x, y])

∣∣∣∣∣E
[
u−1∏
w=1

Z̃sw

(
Z̃su+1 · · · Z̃s4 − E[Z̃su+1 · · · Z̃s4 ]

)]∣∣∣∣∣
≤ 4

∫
Ru−1×(x,y]

sup
B∈B4−u

∣∣∣PXsu+1
,...,Xs4 |(Xs1 ,...,Xsu )′=(z1,...,zu)

′
(B) − PXsu+1

,...,Xs4 (B)
∣∣∣

PXs1
,...,Xsu (dz1, . . . , dzu)

+ PX0((x, y]) 2 βX(su+1 − su−1). (6.6)

On the other hand, according to equation (2) on page 3 in Doukhan (1994), we have∫
Ru

sup
B∈Bv

∣∣∣PXt1
,...,Xtv |(Xs1

,...,Xsu )′=(z1,...,zu)
′
(B) − PXt1

,...,Xtv (B)
∣∣∣ PXs1

,...,Xsu (dz1, . . . , dzu)

= β(σ(Xs−1, . . . , Xsu), σ(Xt1 , . . . , Xtv )) ≤ βX(t1 − su). (6.7)

Inspired by (6.5), (6.6) and (6.7), we define

∆r(x) = βX(r) F (x)

+ sup
m,n∈N

∫
Ru−1×(−∞,x]

sup
B∈Bv

∣∣∣PXr,...,Xr+n−1|(X−m+1,...,X0)
′=(zm,...,z1)

′
(B) − PXr,...,Xr+n−1(B)

∣∣∣
PX−m+1,...,X0(dzm, . . . , dz1)

and

∆(x) =

∞∑
r=0

∆r(x).
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It is clear that ∆ is monotonously non-decreasing and thatD := limx→∞∆(x) ≤ 2
∑∞
r=0 βX(r) <∞.

Moreover, it follows from |∆(x) − ∆(y)| ≤ 2K|F (x) − F (y)| + 2
∑∞
r=K βX(r) for all x, y ∈ R and

K ∈ N that ∆ is a continuous function. According to the previous considerations, to prove the
assertion of the lemma, we construct a dyadic system of intervals related to ∆ as follows.

For j ∈ N0, 0 ≤ k ≤ 2j , we define

xj,k =

 ∆−1(D k 2−j), for 1 ≤ k < 2j ,
−∞, for k = 0,
∞, for k = 2j

.

Let j ∈ N0 and 1 ≤ k ≤ n be arbitrary. Let, for the time being, Z̃s = I1(Xs ∈ (xj,k−1, xj,k]) −
P (Xs ∈ (xj,k−1, xj,k]). We have

EE∗
[(
G∗,0n (xj,k−1) − G∗,0n (xj,k)

)4]
≤ 3

n2

n∑
s,t,u,v=1

E[Z̃sZ̃tZ̃uZ̃v]

≤ 3 4!

n2

∑
1≤s≤t≤u≤v≤n

| cum(Z̃s, Z̃t, Z̃u, Z̃v)|

+
3

n2

n∑
s,t,u,v=1

∣∣∣E[Z̃sZ̃t]E[Z̃uZ̃v] + E[Z̃sZ̃u]E[Z̃tZ̃v] + E[Z̃sZ̃v]E[Z̃tZ̃u]
∣∣∣ .

According to (6.5) and (6.6), the first term on the right-hand side is of order O(n−12−j). The second
one is of order O(2−2j), which yields the assertion. �

Proof of Corollary 3.2. We prove (3.5), which implies the assertion of the corollary. According to
our dyadic grid points xj,k, we define projections Πj as

Πjg(x) = g(xj,k) if x ∈ Ij,k = (xj,k−1, xj,k].

Let Jn be such that 2Jn ≤ n < 2Jn+1. We have, for 0 ≤ J0 < Jn,

max
1≤k≤2J0

sup
x∈(xJ0,k−1,xJ0,k]

∣∣G∗,0n (x) − G∗,0n (xJ0,k)
∣∣

≤
Jn∑

j=J0+1

∥∥ΠjG
∗,0
n − Πj−1G

∗,0
n

∥∥
∞ +

∥∥G∗,0n − ΠJnG
∗,0
n

∥∥
∞ . (6.8)

We choose any α ∈ (0, 1/4) and define thresholds λj = 2−jα. We obtain by Lemma 3.2 and Markov’s
inequality that

E
[
P ∗
(∥∥ΠjG

∗,0
n − Πj−1G

∗,0
n

∥∥
∞ > λj

)]
≤

2j−1∑
k=1

E
[
P ∗
(∣∣G∗,0n (xj,2k−1) − G∗,0n (xj,2k)

∣∣ > λj
)]

≤ 2j−1
K0 (2−2j + n−12−j)

λ4j
= K0 2j(4α−1),

which implies that

E
[
P ∗
(∥∥ΠjG

∗,0
n − Πj−1G

∗,0
n

∥∥
∞ > λj for some j ∈ {J0 + 1, . . . , Jn}

)]
≤ K0

∞∑
j=J0+1

2j(4α−1) ≤ η2

2
, (6.9)

if J0 is sufficiently large. Moreover,
∞∑

j=J0+1

λj ≤
ε

2
, (6.10)
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again for sufficiently large J0.
Furthermore, we use the rough estimate∥∥G∗,0n − ΠJnG

∗,0
n

∥∥
∞

≤ max
1≤t≤n

{|ε∗t,n|} max
1≤k≤2Jn

{
1√
n

n∑
t=1

| I1(Xt ∈ IJn,k) − P (Xt ∈ IJn,k)|

}
≤ max

1≤t≤n
{|ε∗t,n|} max

1≤k≤2Jn

{
|Gn(xJn,k) − Gn(xJn,k−1)| + 2

√
nP (X0 ∈ IJn,k)

}
and obtain that

E
[
P ∗
(
‖G∗,0n − ΠJnG

∗,0
n ‖∞ >

ε

2

)]
≤ η2

2
, (6.11)

which completes, in conjunction with (6.8), (6.9) and (6.10), the proof. �

Proof of Theorem 4.2. (i)

According to Theorem 2.1, (Gn)n∈N converges (w.r.t. the supremum metric) to the process G
which posesses continuous sample paths. Therefore,

Fn(tn,q) = q + oP (n−1/2) (6.12)

and, since F ′(tq) > 0,

tn,q
P−→ tq. (6.13)

Furthermore, by Theorem 3.1, (G∗n)n∈N converges in probability to the same limit G. Therefore,
the largest jump of F ∗n is of order oP∗(n

−1/2) and we obtain

F ∗n(t∗n,q) = q + oP∗(n
−1/2). (6.14)

Since F ′ is continuously differentiable and F ′(tq) > 0 we also obtain

t∗n,q
P∗−→ tq. (6.15)

Armed with these prerequisites, we can now derive the Bahadur representation for t∗n,q. Stochastic

equicontinuity of (G∗,0n )n∈N stated in Corollary 3.2 and supx∈R |G∗n(x) − G∗,0n (x)| = OP∗(
√
ln/n)

imply in conjunction with (6.15) that

F ∗n(t∗n,q) − Fn(t∗n,q) = F ∗n(tq) − Fn(tq) + oP∗(n
−1/2). (6.16)

On the other hand, it follows from (6.12) and (6.14) that

F ∗n(t∗n,q) − Fn(t∗n,q) = Fn(tn,q) − Fn(t∗n,q) + oP∗(n
−1/2).

Furthermore, we obtain from stochastic equicontinuity of (Gn)n∈N, (6.13) and (6.15) that(
Fn(tn,q) − Fn(t∗n,q)

)
−
(
F (tn,q) − F (t∗n,q)

)
= n−1/2

(
Gn(tn,q) − Gn(t∗n,q)

)
= oP∗(n

−1/2).

These two approximations lead to

F ∗n(t∗n,q) − Fn(t∗n,q) = F (tn,q) − F (t∗n,q) + oP∗(n
−1/2)

= (tn,q − t∗n,q) (F ′(tq) + oP∗(1)) + oP∗(n
−1/2). (6.17)

Rearranging terms we obtain from (6.16) and (6.17) that

t∗n,q − tn,q =
Fn(tq) − F ∗n(tq)

F ′(tq)
+ oP∗(n

−1/2).

(ii)

This is an immediate consequence of (i) and Theorem 3.1. �
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Proof of Theorem 4.3. We obtain from the Theorems 2.1 and 3.1 and the continuous mapping the-
orem that

Tn
d−→ T := sup

x∈R
|G(x)| (6.18)

and

T ∗n
d−→ T in probability. (6.19)

Absolute continuity of the distribution of T will be derived from a result from Lifshits (1984).
First we compactify the domain of the limit process. Define

G̃(y) =


0, if y = 0,

G(F−10 (y)), if 0 < y < 1,
0, if y = 1

.

It is obvious that supx∈R |G(x)| = supy∈[0,1] |G̃(y)|. The process ((G̃(y))y∈[0,1] is a centered Gaussian
process defined on a compact set and with continuous sample paths. Hence, Proposition 3 of Lifshits

(1984) can be applied and it follows that supy∈[0,1] G̃(y) is absolutely continuous w.r.t. Lebesgue

measure on (0,∞). For the same reason, the distribution of supy∈[0,1](−G̃(y)) is also absolutely

continuous on (0,∞). Hence, the distribution of supy∈[0,1] |G̃(y)|, and therefore also that of T has

not an atom unequal to 0. However, since P (T 6= 0) = 1, we obtain that the distribution of T is
absolutely continuous. Therefore, we obtain from (6.18)

sup
x∈R
|P (Tn ≤ x) − P (T ≤ x)| −→

n→∞
0, (6.20)

and from (6.19)

sup
x∈R
|P ∗(T ∗n ≤ x) − P (T ≤ x)| P−→ 0 (6.21)

by Polya’s Theorem. This implies

|P (Tn > t∗α) − α|
≤ |P (Tn > t∗α) − P ∗(T ∗n > t∗α)| + |P ∗(T ∗n > t∗α) − α|
≤ sup

x
|P (Tn > x) − P ∗(T ∗n > x)| + oP (1).

Therefore, we obtain that P (Tn > t∗α)−→n→∞ α, as required. �

Proof of Theorem 4.4. The assertions follow from Theorem 3.15 in Beutner and Zähle (2013b) and
it remains to validate its prerequisites (a) to (c) with an = n.

(a) We have to check the assumptions of their Lemmas 3.4 and 3.6. Condition (a) of Lemma 3.4
is satisfied due to the comments after their Assumption 3.2. Moreover, hF is continuous
and has bounded variation under (A5), which yields (b) and (c). The last assumption of
Lemma 3.4 follows from boundedness of h. Condition (a) of Lemma 3.6 is contained in
condition (a) of Lemma 3.4. Assumptions (b) to (d) follow immediately from (A5).

(b) This assertion follows from their Remark 3.16.
(c) Convergence of the empirical process to a Gaussian process with continuous paths follows

from our Theorem 2.1.

�

Proof of Theorem 4.5. (i)
We first show that r∗n, defined after Theorem 4.4, is of order oP∗(n

−1/2). We have

−1

2
r∗n =

1

n2

n∑
s=1

Ws,n(ε∗s,n − ε̄∗n),
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where Ws,n =
∑n
t=1[h(Xs, Xt)−

∫
h(Xs, x)F (dx)]. Note that

E[W 2
s,n] =

n∑
t1,t2=1

EWs,t1,t2 ,

where Ws,t1,t2 = (h(Xs, Xt1) −
∫
h(Xs, x) dF (x))(h(Xs, Xt2) −

∫
h(Xs, x) dF (x)). Let, w.l.o.g.,

t1 ≤ t1 + r = t2. If t1 ≤ s ≤ t2, then max{|t1 − s|, |t2 − s|} ≥ r/2. In the case of t2 − s ≥ r/2,

Berbee’s lemma allows us to choose X̃t2 independent of Xt1 , Xs such that X̃t2
d
= Xt2 and P (X̃t2 6=

Xt2) ≤ βX([r/2]). This implies

|EWs,t1,t2 | =

∣∣∣∣E(h(Xs, Xt1)−
∫
h(Xs, x) dF (x))(h(Xs, Xt2)− h(Xs, X̃t2)

∣∣∣∣
≤ 4 ‖h‖2∞ βX([r/2]).

Analogously we obtain in the case of s− t1 ≥ r/2 that

|EWs,t1,t2 | ≤ 4 ‖h‖2∞ βX([r/2]).

If s ≤ t1 ≤ t2 or t1 ≤ t2 ≤ s, we can proceed similarly. If, for example, s ≤ t1 ≤ t1 + r = t2, then

we can choose X̃t2 independent of Xt1 , Xs such that X̃t2
d
= Xt2 and P (X̃t2 6= Xt2) ≤ βX(r). This

leads to

|EWs,t1,t2 | =

∣∣∣∣E(h(Xs, Xt1)−
∫
h(Xs, x)F (dx))(h(Xs, Xt2)− h(Xs, X̃t2)

∣∣∣∣ ≤ 4 ‖h‖2∞ βX(r).

Since
∑∞
r=1 r

2βX(r) <∞, we obtain from the above estimates that

max
1≤s≤n

E[W 2
s,n] = O(n). (6.22)

Since
n∑

s1,s2=1

∣∣E∗[(ε∗s1,n − ε̄∗n)(ε∗s2,n − ε̄
∗
n)]
∣∣ = O(n ln), (6.23)

we obtain that

EE∗

( n∑
s=1

Ws,n(ε∗s1,n − ε̄
∗
n)

)2
 = O(n2ln),

which implies that

r∗n = oP∗(n
−1/2). (6.24)

Recall that

V ∗n − Vn

=

∫∫
h(x, y) d(F ∗n − Fn)(x) d(F ∗n − Fn)(y) + 2

∫
hF (x) d(F ∗n − Fn)(x) + r∗n.

If we could validate the corresponding formulae of partial integration, we would end up with

V ∗n − Vn =

∫∫
(F ∗n − Fn)(x−)(F ∗n − Fn)(y−) dh(x, y)

− 2

∫
(F ∗n − Fn)(x−) dhF (x) + oP∗(n

−1/2). (6.25)

It then follows from the proof of Theorem 4.4 that the function Φ: ({g ∈ D(R̄) : ‖g‖∞ < ∞}, ‖ ·
‖∞) → R given by Φ(f) = −2

∫
f(x−)dhF (x) +

∫∫
f(y−)dh(x, y) is continuous (this is equivalent

to checking assumption (c) of Theorem 3.15 in Beutner and Zähle (2013b)). Hence, the assertion
follows from Theorem 3.1 and the continuous mapping theorem provided that (6.25) holds. Since
F ∗n − Fn and hF are bounded càdlàg functions of bounded variation by assumption (A5) and since
limx→±∞(F ∗n − Fn)(x) = 0,∫

hF (x) d(F ∗n − Fn)(x) =

∫
(F ∗n − Fn)(x−) dhF (x)
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can be deduced from Lemma B.1 in Beutner and Zähle (2013a). Finally,∫∫
h(x, y) d(F ∗n − Fn)(x) d(F ∗n − Fn)(y)

=

∫∫
(F ∗n − Fn)(x−)(F ∗n − Fn)(y−) dh(x, y) (6.26)

can be verified in a similar manner as Lemma 3.6 in Beutner and Zähle (2013b). Since (F ∗n −
Fn)(F ∗n − Fn) and h are of bounded variation and continuous, respectively, we first get from Gill et
al. (1995, Lemma 2.2) that∫ a2

a1

∫ b2

b1

h(x, y) d(F ∗n − Fn)(x) d(F ∗n − Fn)(y)

=

∫ a2

a1

∫ b2

b1

(F ∗n − Fn)(x−)(F ∗n − Fn)(y−) dh(x, y)

−
∫ a2

a1

(F ∗n − Fn)(x−)(F ∗n − Fn)(b2) dh(x, b2) −
∫ b2

b1

(F ∗n − Fn)(y−)(F ∗n − Fn)(a2) dh(y, a2)

+

∫ a2

a1

(F ∗n − Fn)(x−)(F ∗n − Fn)(b1) dh(x, b1) +

∫ b2

b1

(F ∗n − Fn)(y−)(F ∗n − Fn)(a1) dh(y, a1)

+ (F ∗n − Fn)(a2)(F ∗n − Fn)(b2)h(a2, b2) − (F ∗n − Fn)(a2)(F ∗n − Fn)(b1)h(a2, b1)

− (F ∗n − Fn)(a1)(F ∗n − Fn)(b2)h(a1, b2) + (F ∗n − Fn)(a1)(F ∗n − Fn)(b1)h(a1, b1)

for finite intervals (a1, a2] and (b1, b2]. Obviously, the last four summands tend to zero as−a1,−a2, b1, b2 →
∞. The same holds true for the summands two to five since h(·, x) is of bounded variation uniformly
in x under (A5). Noting that h generates a finite signed measure on R2, we can deduce (6.26) from
continuity from below of finite measures as in the proof of Lemma B.1 in Beutner and Zähle (2013a).

(ii) This result follows from (6.26) and Theorem 3.1.

�
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Mathématiques et Applications 31. Springer, Paris.

Shao, X. (2010). The dependent wild bootstrap. J. Amer. Statist. Assoc. 105, 218–
235.

Shao, X. (2011). A bootstrap-assisted spectral test of white noise under unknown
dependence. J. Econometrics 162, 213–224.

Sharipov, O. Sh. and Wendler, M. (2013). Normal limits, nonnormal limits,
and the bootstrap for quantiles of dependent data. Statist. Probab. Lett. 83, 1028–
1035.

Smeekes, S. and Urbain, J.-P. (2013). Unit root testing using modified wild
bootstrap methods. Manuscript.

Sun, S. and Lahiri, S. N. (2006). Bootstrapping the sample quantile of a weakly
dependent sequence. Sankhya 68, 130–166.

Van der Vaart, A. W. and Wellner, J. A. (2000). Weak Convergence and
Empirical Processes. With Applications to Statistics. New York: Springer.

Viennet, G. (1997). Inequalities for absolutely regular sequences: application to
density estimation. Probab. Theory Relat. Fields 107, 467–492.

Wieczorek, B. (2013). Personal communication.
Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression

analysis (with discussion). Ann. Statist. 14, 1261–1350.


	Cover page WP Word 14-01
	dwb_vwl
	1. Introduction
	2. Assumptions, the empirical process
	3. Dependent wild bootstrap for the empirical process
	4. Applications
	4.1. Quantile estimation
	4.2. Kolmogorov-Smirnov-test
	4.3. von Mises statistics

	5. Simulations
	6. Proofs
	References


