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Abstract

Endogeneity in network formation hinders the identification of the role that
social networks play in generating spillovers, peer effects and other externalities.
This paper tackles this problem and investigates how the link network between
articles on the German Wikipedia influences the attention and content generation
individual articles receive. Identification exploits local exogenous shocks on a small
number of nodes in the network. It can thus avoid the usually required, but strong,
assumptions of exogenous observed characteristics and link structure in networks.

Exogenous variation is generated by natural and technical disasters or by articles
being featured on the German Wikipedia’s start page. The effects on neighboring
pages are substantial; I observe an increase of almost 100 percent in terms of both
views and content generation. The aggregate effect over all neighbors is also large: I
find that a view on a treated article converts one for one into a view on a neighboring
article. However, the resulting content generation is small in absolute terms.

My approach also applies if, due to a lack of network data, identification through
partial overlaps in the network structure fails (e.g. in classrooms). It helps bridge
the gap between the experimental and social network literatures on peer effects.
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1 Introduction

This paper measures the spillovers of attention and contribution effort transmitted
through links in German Wikipedia. Understanding how links channel human attention
is important in a wide range of settings, such as peer production, advertisement or public
decision making. To give an example, such knowledge can be useful in peer production to
more effectively discover unnoticed mistakes, bugs or biases. Analogously citations and
their effect on attention play an important role in scientific production and innovation.
Yet, endogeneity in the formation of networks has been a constant obstacle for those who
try to measure peer effects or the role of social networks in generating spillovers or other
externalities. While correlations between nodes’ network positions and their outcomes
abound, exogenous sources of variation that allow us to pin down causes and distinguish
them from effects are usually hard to observe. I address this issue by exploiting local
exogenous shocks on a small number of nodes in Wikipedia’s article network.

This paper contributes to the literature in two ways. Firstly, I measure spillovers
of attention and how they convert to content production in the German Wikipedia by
exploiting the fact that sudden spikes in attention affect not only the shocked nodes in
a network, but are also transmitted to their neighbors (Carmi et al. (2012)). I exploit
large-scale events like natural disasters and accidents or the advertisement of featured
articles on Wikipedia’s start page as exogeneous sources of sudden spikes in the attention
an article receives. Previous research in the field of peer production has analyzed the
correlation between a node’s position in a network and the outcomes of interest (Fersht-
man and Gandal (2011), Claussen et al. (2012) or Kummer et al. (2012)). However, the
outcome variable might itself drive network position, thus giving rise to the classic en-
dogeneity problem. Moreover, nodes are likely to be peers (Bramoullé et al. (2009)) and
researchers interested in measuring interactions between them face the reflection problem
laid out by Manski (1993). This paper overcomes these two problems by exploiting local
exogenous treatments of single nodes in Wikipedia’s article network.

Secondly, I modify the framework of Bramoullé et al. (2009) to allow the incorporation
of local and randomized treatments and their spillover effects after shocks in a network
setting. I show how it is possible to use exogenous treatments of individual nodes in
networks, which are the focus of both Carmi et al. (2012) and the present paper, as a
new and complementary source of identification beside partial overlaps in the network
structure (Bramoullé et al. (2009), De Giorgi et al. (2010)). The suggested formalization
is quite general and nests not only exogenous treatments of single nodes in networks, but
also partial population treatments (Moffitt (2001), Dahl et al. (2012)). The identification
strategy uses a combination of exogenous shocks and an estimator based on comparing
differences. After obtaining reduced form estimates based on minimal assumptions, I ex-
ploit knowledge of the network structure to back out the structural parameters describing
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the spillover effects. Finally, some of my insights carry over to impact evaluation studies
based on a two-stage randomization over sub-populations (villages) and then individuals
inside sub-populations (Angelucci and De Giorgi (2009), Kuhn et al. (2011), Crépon et
al. (2013)). It becomes clear why the reduced form coefficients are boundary estimates if
detailed link information is not available. I show under which conditions it is possible to
derive both the upper and the lower bound estimates of the parameter of interest. This
second (typically lower) bound is a second contribution to the literature. My contribu-
tion to the literature is discussed in Section 2. Detailed information about the formal
framework is presented in Section 3.

In the application, I exploit two sources of variation that trigger substantial changes in
the attention that certain pages receive at a known (ex-post) point in time: (i) exogenous
and unpredictable large-scale events such as earthquakes or plane crashes and (ii) articles
that are chosen to be advertised on Wikipedia’s homepage and are thus highly visible for
24 hours. To obtain my dataset I augment the publicly available data dumps provided
by the Wikimedia Foundation1 with data on the link structure between articles, data on
the download frequency of pages and information on major media events which occurred
during our period of observation. I use 23 large-scale events, 34 articles that were featured
on Wikipedia’s main page, and all their respective network neighbors. The resulting
dataset contains information on views and content generation of almost 13,000 articles,
14 days before and after the events (more than 750,000 observations). Details about the
data are provided in Section 4.

I document substantial effects for neighboring pages of featured articles for both atten-
tion (= views) and content generation (= editing activity). Articles in the neighborhood
of the shocked area were viewed 35 more times on average. For large events, I even
observe spillovers of attention and content generation to pages that are two clicks away
from the (originally non-existent) disaster page. The effect corresponds to an increase
of almost 100 percent in terms of views and also editing activity also almost doubled.
On the aggregate, the effects are very large. Over all neighbors I find that each view on
the treated page translates to a view on one of the neighbors. However, given the small
baseline editing activity, the content generation triggered by having a featured article
(or even a natural disaster) in the neighborhood is small in absolute terms. It takes
one thousand views before an additional revision occurs. In short, links matter for the
attention that a node in a citation network receives, but much less for the content that
is generated on such nodes. This may be justified given the maturity that the German
Wikipedia had reached by 2007. More results can be found in Section 5.

My extension of the framework of Bramoullé et al. (2009) is the first formalization
1I have access to a database that was put together in a joint effort of the University of Tübingen, the

IWM Tübingen and the ZEW Mannheim. It is based on data from the German project, which currently
has roughly 1.4M articles and thus provides us with a very large number of articles to observe.
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that allows exogenous treatment of single nodes in networks that I am aware of. The
model helps us to understand how frequently measured reduced form estimates of an ITE
can be related to the “structural” social or spillover effects. It also highlights how to back
out the parameter of interest if detailed link information is available or estimate the upper
and the lower bounds of the parameter of interest, if it is not. I apply these techniques to
my data and obtain an interval estimator for the spillover effect of interest, finding that
an average increase of ten views on the neighboring pages results in an increase of 2.22
to 2.92 views on the page in the center. These results suggest that placing links has an
effect, but that it is small. For more details please refer to the results in Section 5.

The hyperlink network between articles can be interpreted as a citation network.
Thus, my findings allow for a more abstract reading when interpreting Wikipedia as a
peer production tool for the documentation of human knowledge. Consequently their
relevance extends to other settings of peer production including open source software or
scientific research. While it is true that my strategy requires a lot from the data2, recent
advances in data handling techniques and the increasing availability of data on social
interactions will provide further applications where this strategy can be used.

There are two sets of results in this paper. Firstly, Section 3 discusses the structural
peer effects model and identification through local treatments in networks. Detailed
derivations of the estimator and the bounds are in Appendix B. Secondly, empirical
results and how to relate my reduced form estimates to the structural model are described
in Section 5. The relevant literature and this paper’s contributions are discussed in
the next section (2). Section 4 discusses the data collection and the relevant variables.
Concluding remarks, limitations and avenues for further research are offered in Section
6. The Appendix contains summary statistics, robustness checks, additional figures and
a discussion of why network neighbors should not react to their neighbor’s treatment.

2 Literature

This paper builds on two important strands of the literature: firstly that on social
effects, such as peer effects or spillovers (cf. Manski (1993)) in networks and secondly
that which uses pseudo-treatments to causally identify economic effects (typically not in
a network context).

Social effects3 or spillovers in a network are generally difficult to identify because they
2Exogenous treatments of individuals in in networks (or groups) could rarely be observed in previous

studies. Researchers often have the network structure and no exogenous source of identification, or
exogenous variation yet no information on the network structure. However, such data are increasingly
available from field experiments or online sources.

3In what follows I use the term “social effects” in the broad sense that Manski (1993) uses it in
order to subsume “social norms, peer influences, neighborhood effects, conformity, imitation, contagion,
epidemics, bandwagons, herd behavior, social interaction or independent preferences.” (cf. ibid.)
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are frequently confounded with other individual-specific characteristics or network dy-
namics. One prominent subbranch of this literature investigates the relationship between
a node’s network position and its performance.

A series of papers is dedicated to the identification of peer effects. These are difficult
to identify when both the peers’ average characteristics and their average performance
influence individual outcomes (Manski 1993). One of the most well-known approaches to
disentangling these effects is to exogenously vary the composition of peer groups (Sac-
erdote (2001), Imberman et al. (2009)). Imberman et al. (2009), for example, exploit
variation in the peer groups of Houston and Louisiana’s incumbent school children due
to evacuee inflow in the aftermath of the hurricanes Katrina and Rita. Their identifica-
tion strategy is based on the large variation in peer groups and the random allocation of
evacuees after the event.

Other approaches use network structure or, more precisely, the existence of partial
overlaps (open triads) wherein a peer is connected to two other peers, who themselves
are not connected to each other (De Giorgi et al. (2010) and Bramoullé et al. (2009)). In
such a situation the outcome of the peer who is connected to both nodes is instrumented
with the performance of one peer before analyzing its influence on the other. I extend
that formal framework to allow the inclusion of exogenous treatments and combine it
with a simple difference-in-differences estimator (rather than using an IV approach in a
cross-section). I thus use a completely different source of identification to measure peer
effects. Using exogenous sources of variation for identification has the advantage of not
requiring the network structure to be independent of observables. Furthermore the strat-
egy also works in the absence of open triads in the network structure,4 which renders the
notation compatible with a two-layered setting with randomization across subpopulations
(villages, classrooms, etc.) and subsequent treatment of randomly selected individuals
within subpopulations. Ballester et al. (2006), finally, propose a strategy for identifying
the “key player” of a group or a network, which is a very different purpose from the one
in the present study. Nevertheless, since my analysis of the network shares features of the
one in their paper, I was able to draw upon some of their insights and their formalization
of the network structure.

Another relevant branch of this literature has focused on the effect of knowledge
spillovers on production in social networks. Fershtman and Gandal (2011) investigate in-
direct and direct knowledge spillovers in the production of open source software. Claussen
et al. (2012) using panel data to control for unobserved heterogeneity, consider the elec-
tronic gaming industry. Oestreicher-Singer and Sundararajan (2012) contribute by ex-
ploiting Amazon’s link network and showing that items connected through a visible
link influence each other three times more than when the link is invisible. Kummer

4Formally open triads are equivalent with linear independence of the adjacency matrix of the graph
that represents the network (typically denoted by G) and its own square.
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et al. (2012), following Halatchliyski et al. (2010) who analyze authors’ contributions in
two related knowledge domains, considers the network of linked articles on the German
Wikipedia. The strategy of the above mentioned papers exploits variations in the link
network, between or within nodes, and relates them to the outcome of interest. If a posi-
tive relationship is found, it is taken as prima facie evidence for the existence of spillover
effects of knowledge or economic success. However, this strategy could be criticized if
the network position is not exogenous; it is often difficult to identify exogenous sources
of variation in a network. The strategy pursued in this paper, as in Carmi et al. (2012),
approaches the problem from another angle. I do not attempt to measure spillover effects
by looking at variation in the link structure. Instead I consider how shocks are trans-
mitted within a given link structure. The estimates are based on the observation that
articles that are linked to a shocked article receive a spillover, while similar articles that
are not linked to a shocked article do not. I will show below the conditions under which
such an approach can be successful (Section 3). However, this approach will fail if the
conditions are not satisfied (cf. Appendix C).

As for the second stream of literature, on treatment effects, it is well established that
social effects or spillovers play an important role in the causal identification of treatment
effects. More precisely, it can be difficult to identify the causal effect of a treatment in the
presence of social effects or spillovers, because they might lead to a violation of the Stable
Unit Treatment Value Assumption (SUTVA) and hence compromise the validity of the
control group (Ferracci et al. (2012)). Since such externalities threaten the identification
of treatment effects, researchers have come to understand the importance of adding a
second layer of randomization at the level of classrooms, villages, districts etc. (Miguel
and Kremer (2003), Angelucci and De Giorgi (2009), Kuhn et al. (2011) and many more).
Since such randomization immediately lends itself to computing indirect treatment effects,
many of the aforementioned papers put special emphasis on them. Crépon et al. (2013)
are concerned about the possibility that labor market programs have a negative impact on
the non-eligible. They test their hypothesis by both randomizing over treated populations
and varying the treatment intensity. There is a close relationship between the idea of
randomizing across subunits and the Partial Population Experiment that Moffitt (2001)
suggested as a solution to the Reflection Problem Manski (1993). Dahl et al. (2012)
provide an example of such an experiment, exploiting the introduction of a new policy
that made it easier for some fathers to leave their jobs and spend time at home with
their babies and measuring how the increased take-up of treated fathers impacted the
probability that their (old-regime) peers’ also decided to stay at home.

This study uses the treatment of peers in a network to identify spillovers and asks
under which circumstances it is, in general, possible to causally identify spillovers or peer
effects when treatment of peers can be observed. This paper might be somewhat unusual
for readers who are familiar with this literature, because it is not focused on the effect
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of treatment itself but instead uses treatments to identify the spillover effect. Hence, it
exploits the violation of the SUTVA to measure the indirect treatment effects and identify
the spillover effect. Moreover, in order to identify spillovers I use the fact that exogenous
treatment sometimes affects only a single node and use the local network formed by
nearby neighbors as an analogue to “villages” over which nature has randomized. Such
local treatments are analogous to the Partial Population Treatment coined by Moffitt
(2001) and might be dubbed “Mini Population Treatments”. This idea is not new; it has
been used increasingly often in recent studies. In a widely-quoted paper Aral and Walker
(2011) develop an approach based on hazard modeling and use randomized treatments
of individuals in networks to measure contagion. Most closely related to my approach is
a study in the realm of e-commerce. Using the same method as this paper, Carmi et al.
(2012) analyze the effect of the external shocks of recommendations by Oprah Winfrey
on the product network of books on Amazon. They find that a recommendation not only
triggers a spike in sales of the recommended book but also of books adjacent in Amazon’s
recommendation network. They measure demand in terms of the products’ sales ranks
and, like this paper, use a difference-in-differences strategy. They obtain a control group
by exploiting the fact that Amazon’s algorithm chooses different books to highlight in the
recommendation network at different points in time. Their data structure allows analysis
of which characteristics of the linked items can predict a higher spillover, which is beyond
the scope of this paper. Although applying a similar estimation method, my contribution
adds in two ways. Firstly, I provide a formalization of why this source of exogenous
variation ensures identification of the social/spillover parameter and of how to relate the
reduced form estimators to the structural parameter of interest. Secondly, the German
Wikipedia is a quite different type of network, as it is a citation network of articles that
are created in a peer production process. This network is formed by a very large number
of links (edges) that are not set to an a priori fixed number of items. Moreover, the
links are placed by humans rather than an algorithm. Another difference is that my data
structure allows the direct observation of visits (attention) to the linked sites. Rather
than sales I analyze the decision to contribute information to the article. The insights I
obtain are hence complementary and my results suggest that more studies of the many
different types of networks are needed before all phenomena can be understood.

In a somewhat more qualitative field experiment “offline”, Berge (2011) compares
peers of individually treated and non-treated agents to measure knowledge spillovers
from a business training program in Tanzania. Using in-depth interviews he finds that
“indirectly-treated” male clients become more “business minded”, discussing business
more, increasing their loans and becoming more risk averse. Once again we see a close
relationship between their work and randomized treatment of villages or small groups.
Hence it is not surprising that a paper by Banerjee et al. (2012) exploits very detailed
information on village networks to analyze the spread of information about microfinance
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through the villages.
This paper contributes to the literature by providing a simple formalization that

includes exogenous local treatments into an existing framework to analyze peer effects
in networks (Bramoullé et al. (2009)). It provides a formalization of why this approach
guarantees identification and shows how to relate the reduced form estimators to the
structural parameter of interest. As in the approach of Bramoullé et al. (2009), local
treatments as source of exogenous variation ensure identification of the social parameter
even in the famously underidentified model by Manski (1993). Yet the extension in
this paper guarantees identification based on a complementary source of exogeneity. An
additional advantage is that the formalization applies to the randomized treatment of
subpopulations (Partial Population Treatment) in general. Moreover, all of my insights
can be applied directly if only one member of the subpopulation (one pupil in a class,
one villager in a community) is treated (Mini Population Treatment). I also derive an
upper and a lower bound coefficient of interest that can be obtained even without any
information on the network structure itself.

On the one hand, this paper shows how treatments diffuse across networks if the agents
are linked and how average and indirect treatment effects can be related to a structural
parameter that quantifies spillovers. On the other hand it formalizes a relatively new way
to identify peer effects and spillovers in networks, based on truly exogenous variation. It
thus helps bridge the gap between the experimental and social network literatures.

Finally, a source of exogenous variation in this paper is natural disasters, accidents and
large scale events. Several papers other than Imberman et al. (2009) have been dedicated
to natural disasters or other sources of exogenous variations on Wikipedia. Ashenfelter
and Greenstone (2004) exploit the effect of a change in mandated speed limits on the
number of fatal car accidents to estimate the value of a statistical life. A well-known
paper by Zhang and Zhu (2011) uses the blocking of Wikipedia by the government in
mainland China to measure the effect on the incentives to contribute. Keegan et al.
(2013) analyze the structure and dynamics of Wikipedia’s coverage of breaking news
events. They contrast the evolution of articles on breaking news events with the genesis
of non-breaking news (and “historical” articles) and find that breaking news articles
emerge into well-connected collaborations more rapidly than non-breaking news articles.
For this reason they hypothesize that breaking news articles may become an important
source of new content contributors.

This paper’s application illustrates a new way of looking at content networks such as
the one formed by Wikipedia articles. It provides new insights into the dynamics of user
activity in the world’s largest knowledge repository, measures how users allocate their
attention and shows how attention is converted into contributions.
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3 The Empirical Model

In what follows I will discuss the empirical model. I first give a basic and informal
intuition of my estimation approach (subsection 3.1). Next I discuss the assumptions
made to identify the effect of the exogenous treatments I use (subsection 3.2) and the
reduced form estimation used in the regressions (subsection 3.3). The last and most
extensive subsection (3.4) describes the structural model. There I discuss how and under
which assumptions the researcher can identify the parameter that measures spillovers
from the reduced form estimates if she observes the network information. In the same
section I also show how to compute an upper and a lower bound for the coefficient when
the network information is not available. An important case where my arguments do
not apply are situations where the neighbors of the treated nodes/individuals observe the
treatment and adjust their outcome as a reaction.5 Appendix C shows, how the structural
model would have to be extended to include such a possibility and which cahllenges to
identification of the spillover parameter would emerge as a result.

3.1 Basic Intuition - Throwing Stones into a Pond

This subsection provides an intuitive explanation of the data structure and the esti-
mation approach. The basic idea of the research approach can be imagined as “throwing
stones into a pond and tracing out the ripples”. The design of this paper uses the fact that
certain nodes were affected by a large increase of attention, that this was exogeneous, and
that ex-post it is known to the researcher when exactly the pseudo-experiment occurred.
Moreover, since the link structure is also known, it is possible to observe what happens
to the directly or indirectly neighboring nodes. As in a pond, we would expect the largest
effect on the directly hit node and a decreasing amount of attention the further away an
article is from the epicenter.

The schematic representation in Figure 1 shows how the data is structured. Wikipedia
articles are the nodes of the network. They are represented by a circle with a letter inside.
Each circle represents a different article in the German Wikipedia. Articles are connected
to each other via links, which are visible on Wikipedia as highlighted blue text. Clicking
on such text forwards the reader to the next article and these links form the edges of my
directed network. In Figure 1 and 2, they are represented by a line between two nodes.
Moreover, an important aspect of my identification strategy requires the observation of
two disconnected subnetworks at the same time. This is represented by showing them as
network L and network C facing each other in both figures. I will maintain this notation
also in all derivations that follow. I focus on subnetworks around a start node. These
start nodes are denoted by subscript 0. Hence, the start node of the two networks are

5E.g. classmates, that react with protest to an unfair punishment of their peer.

9



Figure 1: Schematic representation of a start node and its direct and indirect neighbors
in two subsections of the network.
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Notes: The Figure illustrates the structure of the data. Wikipedia articles are the nodes of the network. Each circle with a
letter inside represents a different article in the German Wikipedia. Articles are connected to each other via links, which are
represented as lines. In general the network may be directed or undirected (Wikipedia articles are directed). The left side of
the figure draws on a representation in a working paper on network formation by Claussen, Engelstaetter and Ward.

denoted by `0 and c0. The nodes that receive a direct link from a start node (direct
neighbors) in network L form the set of direct neighbors L1 and a focal node from that
set is sometimes denoted as `16. The set of indirect neighbors7 in the network L forms
L2 and so on. Analogously the set C1 is made up of direct neighbors of the start node in
network C and C2 are the indirect neighbors of node c0

In a typical network in which the outcome of the individual nodes depends on the
outcome of their neighbors we would observe many correlations and cross influences, but
it would be difficult to discern where they originate from or whether they are due to
underlying and unobserved background factors which merely affect the nodes in similar
ways. The schematic representation of Figure 2 illustrates the mechanism of local exoge-
nous shocks (“the stone in a pond”). The shocked node is colored in dark blue, the direct
neighbors are colored in light blue and so on. As I will show formally in the next sections,
identification of the spillover hinges on the ability to observe a valid second network from
which it is possible to infer what the outcomes would have been if no treatment had
taken place. If this is possible, we can use these outcomes for comparing the size of
the outcomes layer by layer. More information about how the layers are identified and

6While the set L0 consists only of one node (L0 = {`0}), set L1 consists of multiple nodes.
7Indirect neighbors are defined as receiving at least one link from a node in set L1 without themselves

being in L1. Hence the shortest path from the start node to an indirect neighbor is via two clicks.
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Figure 2: Schematic representation of a local treatment, which affects only one of the
two subnetworks and there only a single node directly.

A

B

C

H

I

J

G

K

E

D

F

A

B

C

H

I

J

G

K

E

D

F

treated

neighbor

2 clicks away

not treated

neighbor

2 clicks away

Network L Network C

Notes: The design of this paper uses the fact that certain nodes were affected by a large and exogenous increase of attention,
and that it is known to the researcher when the pseudo-experiment occurred. The Figure illustrates the effect of a large local
shock on Wikipedia, which affects only subnetwork L. The shocked node is colored in dark blue, the direct neighbors are colored
in light blue and so on. If we observe a valid second network from which it is possible to infer what the outcomes would have
been if no treatment had taken place, we can use these outcomes for comparing the size of the outcomes layer by layer.

obtained is provided in Section 4.

3.2 Identifying Assumptions for the Treatment Effects

Uncovering the spillover parameter, will be based on estimating Difference in Differ-
ences for each layer seperately. To clarify the assumptions in the reduced form estimation
by layer, I use the control-treatment notation from impact evaluations (cf. Angrist and
Pischke (2008)). Doing so serves two purposes: first, it highlights the parallels between
the methodology based on ideas similar to the Partial Population Treatment (cf. Moffitt
(2001)). Second, it provides a better intuition of the crucial assumptions made. Termi-
nology and notation are inspired by Kuhn et al. (2011). Readers who are familiar with
Average and Indirect Treatment Effects and the assumptions of a Difference-in-Differences
strategy might prefer to merely browse the formulas or skip this section.

Even though it is a core concept in impact evaluation I briefly discuss the Average
Treatment Effect (cf. Angrist and Pischke (2008) it in the context of my application (first
part of this subsection). I revisit the concept of Indirect Treatment Effects as analyzed
in Kuhn et al. (2011) in light of my content network with equidistant layers of articles
around a shock in the second part of this subsection. The identifying assumption of
the reduced form analysis will be as follws: Absent treatment, the control observations
have a similar rate of change across time as the treated subnetworks, i.e. they grow at
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similar rates and are affected similarly by any dynamics that affect the entire Wikipedia
(weekday dynamics etc.).

3.2.1 Average Effect of Direct Treatment (ATE)

Consider node in network i ∈ {`, c} in period t. The ATE measures the effect of
treatment on the treated. We would like to compare the observed outcome after treatment
to the (unobservable) outcome of the same individual if we had not treated them.

E[y1
`0,t|d`0,t = 1]− E[y0

`0,t|d`0,t = 1](1)

` denotes the subnetwork which is treated in period t and the subscript c the subnetwork
that is not. di,t indicates if node i itself was directly treated or not. Superscript 1 denotes
the outcome of a treated observation and superscript 0 the outcome of the untreated
counterpart. One of these cannot be observed and hence is counterfactual. E[y0

`0,t|d`0,t =
1] denotes the (counterfactual) outcome that we would observe for `0 in period t, had it
not been treated.

The challenge lies in the fact that the second term in this difference cannot be ob-
served. We estimate the counterfactual observation of the treated using a comparable
node/individual8 in a period where it is not treated. I take two approaches to obtain
such an observation: (i) a simple approach compares the observation “before and after”
the treatment, and attributes all observed changes in outcomes to the treatment. This is
equivalent to making the assumption that, absent treatment, the node/individual would
have the same outcome as in the previous period.9

Assumption ATE-before-after:

E[y0
`0,t|d`0,t = 1] = E[y0

`0,t−1|d`0,t−1 = 0](2)

Using this as counterfactual observation has the advantage of being as close to the treated
observation as possible. However, it will fail to capture any period-specific effects that
would have affected all nodes even without any treatment. Any such effects (weekday
fluctuations, shocks etc.) will simply be attributed to the treatment. (ii) Alternatively,
“difference-in-differences” uses a distinct comparison group. This could be individuals in
the same populations, which were not eligible for treatment. The (unobservable) counter-
factual outcomes of the treated nodes are assumed to be the treated nodes’/individuals’
pre-treatment outcome plus the change of the non-treated control observation.

8A node, which is believed to be affected by treatment in similar ways.
9If the object/individual was observed more than once before treatment it might be possible to further

improve this approach by accounting for trends in the outcomes etc.
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Assumption ATE-DiD:

E[y0
`0,t|d`0,t = 1] = E[y0

`0,t−1|d`0,t−1 = 0] +(3)

+ {E[y0
c0,t|dc0,t = 0]− E[y0

c0,t−1|dc0,t−1 = 0]}

It is worth stressing this fact in the context of Wikipedia articles. The crucial assumption
is not that the articles are very similar, but merely that they evolve in a similar way,
i.e. on average they have similar growth in readership and edits and they are subject to
similar intertemporal fluctuations.

3.2.2 Indirect Treatment Effect (ITE)

While the ATE can be defined on a single group of eligible nodes, the “indirect
treatment effect” or ITE requires the introduction of at least one additional group of
nodes/individuals that are not eligible for treatment.10 The ITE measures the (spillover
or externality) effect of treatment of eligible objects/individuals on the outcomes of non-
eligibles. As for the ATE, we cannot observe the outcome of the non-eligibles had the
eligibles not been treated. Well known papers that estimate ITEs are Angelucci and
De Giorgi (2009), Kuhn et al. (2011) or Crépon et al. (2013), to name a few.

Since the distance to the epicenter of the treatment is known in my application, we can
measure several ITEs and compare the nodes of the subnetworks by layer. ITE1 refers
to direct neighbors of the eligible nodes in a treated subnetwork. Analogously, ITE2

refers to nodes that are two steps away, ITE3 to three steps away and so on. Miguel
and Kremer (2003) is a well-known example where distance layers were included in the
estimation to incorporate a similar notion of distance to treatment in a real world setup.

The richness of my dataset will require an even more involved notation, since I have
to differentiate along four dimensions (treatment, time, distance and subnetwork). To
capture the notion of layers in the estimation, I useDxr,t as shorthand that takes the value
1 if both of the two following conditions are simultaneously satisfied: (i) the subnetwork
x was treated and (ii) there exists a treated node with a shortest distance of r steps.11

For direct neighbors we have:

ITE1 = E[y1
`1,t|D1

`1,t, d
0
i,t]− E[y0

`1,t|D1
`1,t, d

0
i,t](4)

As before, dmathbf1i,t indicates if node i was directly treated or not in period t.12

10A good example would be an intervention to foster the reintegration into the jobmarket after pater-
nity/maternity leave, for which people without children would not be eligible.

11In an estimation by layers the minimum distance to the treated node is exactly r steps.
12To save space treatment status is indicated by superscripts, dmathbf0i,t otherwise. Notation has to

be more involved here, because it is no longer possible to talk of a single node, as the treated nodes can
have many different neighbors.
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y1
`r,t is now the outcome if some neighbor in Dxr was treated in t, and y0

`r,t denotes the
outcome if nobody in that set was treated.

The object of interest is the ITEr, Generally, for any range r:

ITEr = E[y1
`r,t|D1

`r,t, d
0
i,t]− E[y0

`r,t|D1
`r,t, d

0
i,t](5)

As for the ATE, the ITE has to be estimated, since the counterfactual outcome in the
absence of treatment cannot be observed. We again estimate the counterfactual outcome
by using two methods: (i) a comparison of the same individual before and after treatment
and (ii) a Difference in Differences between neighbors in the compared subnetworks.

Assumption ITEr-before-after:

E[y0
`r,t|D1

`r,t, d
0
i,t] = E[y0

`r,t−1|D0
`r,t−1, d

0
i,t−1](6)

Estimating an ITEr from a before-after estimation has the same advantages and draw-
backs as the ATE. Analogously, the drawbacks can be accounted for by computing a
difference-in-differences estimator. In the context of an ITE, we need to observe com-
parable, but untreated, subpopulations (e.g. villages, classrooms, or here, subnetworks)
in which we have information about which individuals/nodes are eligible for treatment
and which are non-eligible. Ideally we would like to observe a random selection of the
subpopulations in which any treatments are to be administered, and in the second step
we administer treatment to the eligible nodes. Moreover, we observe both subpopulations
before the treatment of one takes place.

Assumption ITEr-DiD:

E[y0
`r,t|D1

`r,t, d
0
i,t] = E[y0

`r,t−1|D0
`r,t−1, d

0
i,t−1] +(7)

+ {E[y0
cr,t|D0

cr,t, d
0
i,t]− E[y0

cr,t−1|D0
cr,t−1, d

0
i,t−1]}

In words, this means that the counterfactual outcome of the neighbors of the treated
can be obtained by computing their pre-treatment outcome plus the average change
of the neighbors of the eligible node in a non-treated control group. As before, the
crucial assumption is not that the nodes in the control group are very similar to those
of the treated subnetwork, but rather that they grow similarly and that the way they
are affected by Wikipedia-wide fluctuations is the same as long as no treatment occurs.
Before moving on to the econometric specification, I conclude this section by summarizing
the identification result in terms of the Difference-in-Differences estimator:
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Conclusion ITEr DiD: If Assumption ITEr-DiD holds, the difference below identifies
the ITEr.

ITEr = E[y1
`r,t|D1

`r,t, d
0
i,t]− {E[y0

`r,t−1|D0
`r,t−1, d

0
i,t−1] +(8)

+ (E[y0
cr,t|D0

cr,t, d
0
i,t]− E[y0

cr,t−1|D0
cr,t−1, d

0
i,t−1])}

Hence, our estimator of the ITE1 is based on the pre-treatment outcomes and comparing
the change in the outcomes of direct neighbors of the eligible nodes in a treated subnetwork
to the direct neighbors of the eligible nodes in the non-treated subnetwork. Note that
this conclusion also applies to the ATE, when setting r to 0.

3.3 Reduced Form Analysis

To obtain the ITEs for each layer, I apply reduced form regressions which allow the
understanding of the impact of the local treatment on both the treated pages and their
neighbors. These are very similar in spirit to the analysis in Carmi et al. (2012). The idea
is to compare pages grouped by their distance to the page which experiences treatment
to their analogue in the control group (L0 to C0, L1 to C1,...). I denote all reduced form
coefficients by φ. Furthermore, I define “treatment” for each set of pages along the lines
of the indirect treatment effects (ITEr) in the previous section.13 I let s indicate the day
relative to day 0, the day when the treatment is administered. Hence s runs from -14
to 14. λs is an indicator, which takes the value 1 if t = s and 0 otherwise. Each set of
pages that corresponds to one layer in the network is regressed seperately. So if I focus
on the treated nodes, the neighbors and the indirect neighbors, it results in the following
system of fixed effect regression equations, which all are based only on dummy variables:

L0.) Diff-in-Diffs specification at level L0:

(9) yit = φL0
i +

∑
s∈S

φL0
1,sλs +

∑
s∈S

φL0
2,s(λs ∗ treatL0,i) + ξit

...treatL0: treatment on the very page; S = {−14, ..., 14}

L1.) At level L1 (treatL1 featured (in theory) 1 click away):

(10) yit = φL1
i +

∑
s∈S

φL1
1,sλs +

∑
s∈S

φL1
2,s(λs ∗ treatL1,i) + ξit

13The dummy in the regression for the neighbors (sets L1 and C1) takes the value 1, not if the node
was itself treated, but if the corresponding start node (`0) was treated in t (and 0 otherwise).
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L2.) At level L2 (treatL2 featured (in theory) 2 clicks away):

(11) yit = φL2
i +

∑
s∈S

φL2
1,sλs +

∑
s∈S

φL2
2,s(λs ∗ treatL2,i) + ξit

In words, I run the same difference-in-differences on three levels (on L0, L1 and L2

(shown only for large events)). treatL0,i is an indicator variable for a page that is (going
to be) featured on Wikipedia’s main page, treatL2,i takes the value of 1 for pages that
are two clicks away from pages that are (going to be) affected by such a shock. The cross
terms correspond to this indicator variable multiplied with the time dummies. Thus, a
cross term captures whether treatment has occurred at a given point in time or not. For
an observation in the control-group this variable will always take a value of 0, while for
an observation in the treated group this variable will take a value of 1 if it corresponds to
the event time the time-dummy aims to capture. Hence, if the treatment is effective, the
coefficients of the cross terms are expected to be 0 before treatment occurs and positive
for the periods after the treatment. The ITEs from the previous subsection are captured
by the φ2 coefficient that corresponds to day 0 in the regressions above. I look at φL1

2,0 for
the ITE1, which corresponds to L1 and analogously at φL0

2,0 for L0 and φL2
2,0 for L2.

Other than the cross terms I also include page fixed effects and another full set of time
dummies (event time) to control for general (e.g. weekday-specific) activity patterns in
Wikipedia. This procedure is crude because it does not consider several important factors
such as how well neighbors are linked among each other or how large the peak of interest
is on the originally shocked page. Yet, it is useful, since the results from the reduced form
analysis are based on minimal assumptions and provide guidance as to whether attention
spillovers exist at all. They also allow us to see, how far they carry over, and whether
they result in increased production. Finally, they allow me to provide a lower bound and
an upper bound estimate of the aggregate spillover effects to be expected.

3.4 Structural Form Analysis and Bounds

Beyond measuring the size of the ITEs, I am interested in quantifying the size of
the spillovers of attention that exist between Wikipedia articles on normal days. In this
section, I augment the well known linear-in-means model for peer effects, as formulated
in Manski (1993), with exogenous shocks. Departing from the version that was used
by Bramoullé et al. (2009)14, I show how exogenous shocks can be exploited to identify
spillovers (or peer effects). This is possible in my modification of the model, even if the
nodes characteristics or the network structure are endogenous. In other words, exogenous
shocks are used as a focal lens to identify the spillovers, which is usually very challenging.

14They show how identification of peer effects can be achieved in social networks, using an IV-strategy.
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Recall that the underlying relationship of interest is the role of links in content gener-
ation and whether an article is more likely to be improved because of spillovers through
links. The mechanism we have in mind, is that attention from article A can be diverted
to article B if a link exists and that some of the users who get to see B start to edit it.
Thus, the first thing to show is, how much attention spills via links, which can be modeled
using the well known linear-in-means model of the type discussed in Manski (1993), who
shows that the coefficient of interest is generally very hard to identify.

I start from the same form of the model.15 In this section I provide only the point of
departure and the main results, the details and derivations can be found in the appendix.16

yit = α

∑
j∈Pit

yjt
NPit

+Xit−1β + γ

∑
j∈Pit

Xjt−1

NPit

+ εit

yit denotes the outcome of interest in period t and Xit−1 are i’s observed characteristics
at the end of period t − 1.17 Pit is the set of i’s peers and NPit

the number of i’s peers.
α is the coefficient of interest: It captures the effect of the performance of i’s peers and
in the present context it measures how the views of an article are influenced by the
views of the adjacent articles. The coefficient vector β accounts for the impact of i’s
own characteristics and γ measures the effect of the peers’ average characteristics on i’s
performance. In the setting of this paper β accounts for how the page’s own length or
quality might affect how often it is viewed and γ captures how length and quality of
neighboring pages affect views of page i. Bramoullé et al. (2009) suggest a more succinct
representation based on vector and matrix notation:

yt = αGyt + βXt−1 + γGXt−1 + εt E[εt|Xt−1] = 0

Clearly this model and, specifically, measuring the social parameter α is of interest to
a very large literature. To incorporate exogeneous variation, I augment this model by
including a vector of treatments, which, for simplicity, is assumed to take the value of
1 for only one treated node and the value of 0 otherwise. This captures the notion of a
local treatment condition, under which only one node is exposed to treatment (a “Mini
Population Treatment”).

(12) yt = αGyt + Xt−1β + γGXt−1 + δ1Dt + εt E[εt|Dt] = 0

A few remarks: G is a NxN matrix. Gij = 1
NPi
−1 if i receives a link from j and Gij = 0

otherwise. For the treated side Dt is a vector consisting of zeros and ones that indicates
15Note that it is easy to add a fixed effect to the model, but that it will be eliminated when taking

differences. Consequently, I omit it for ease of notation.
16The derivations involve quite heavy notation, but are otherwise relatively straightforward.
17Note, that I can observe the current state of a Wikipedia article once a day at a fixed time.
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which nodes are treated. In some of the proofs and in my application I will assume a
local treatment that affects only a single node. Formally this is written as Dt = e`0; that
is, a vector of zeros and a unique one in the coordinate that corresponds to the treated
node. On the untreated subnetwork we have Dt = 0, a vector of zeros.

Note that I do not require that the structure of the network (G) is exogenous, but
rather which node gets treated. It is worth stressing that my setup is fundamentally
different from Bramoullé et al. (2009) because it will use an entirely different source
of identification. Moreover, there will be no requirements needed concerning the linear
independence of G and G2.

In this model, the reduced form expectation conditional on “treatment” is given by:

E[yt|Dt] = (I− αG)−1[(β + γG)E[Xt−1|Dt] + δ1Dt](13)

Define the set of observations in the subnetwork where treatment occurs in t by the
subscript ` and a comparison group in which no node is treated by the subscript c. If
these sets of nodes can also be observed one period earlier, a difference-in-differences
estimator can be computed.

Result 1: Denote the difference in difference estimator as

DiD := [E[y`,t|D`,t]− E[y`,t−1|D`,t−1]]− [E[yc,t|Dc,t]− E[yc,t−1|Dc,t−1]]

and assume that the treatment affects only the contemporary outcome of the treated node
and not its exogenous characteristics.18 Then the DiD contains the following quantity:

DiD = δ1Dt(I + αG + α2G2 + α3G3 + ...)

In words, this result means that the node is affected by both treatment and second and
higher order spillovers, the positive feedback loop that ensues as the neighbors increase
their performance in sync with their peers. Instances of a higher order effects19 are α2δ1

in the second round or α3δ1 in the third round and so on. The other important factor is
whether and how often spillovers of a given order q arrive. This depends on the number
of indirect paths of length q that go from the shocked node `0 to any focal node j.
Proof: For a proof please refer to Appendix B.3.

My result shows that the difference-in-differences approach alone will not directly
reveal α, the social parameter of interest, because nodes might have a feedback effect
on each other. The neighbor’s change in performance (due to the original impulse) will

18The independent characteristics X should not be immediately affected by treatment because this
would threaten the identification of the spillover. However, they may adjust over time. As long as we
can observe one period where only the outcome is affected, but not the characteristics, the result holds.

19Note that I am considering the homogeneous network, so all spillovers have the same magnitude.

18



affect the neighbors’ neighbors, but also feed back on the treated neighbor. The estimator
will also observe all the changes in outcome at the end of this process, when all higher
order spills have taken place. In some applications this will be the object of interest to
the researcher, however in the present context, the research is motivated by the desire to
know the effect of the link structure and not of the treatment per se. Consequently it is
warranted to dig deeper in order to understand the structural parameters.

Computing the parameters is not necessarily feasible, because it requires the knowl-
edge of the complete link structure. However, a closer look at the nodes independently
reveals that limited information about the link structure suffices to acquire additional
information about the parameters. In the following two subsections I show how to get
the point estimate for the peer effects coefficient if the network is known and I show how
to derive upper and lower bound estimates for the parameter if no information about the
network is available.

3.4.1 Estimator of the Peer Effects Parameter if the Network Structure can
be Observed

If the network structure can be observed, the peer effect parameter α can be backed
out by computing the higher orders of the network graph (G-matrix). To know how
many spillovers arrive in each round, it suffices to focus on the entries Gij, G

2
ij, G

3
ij, ...

that document the number of paths via 1, 2, 3,... links from the treated node to the
neighboring node in question. With this information it is straightforward to compute by
how much the observed effect at the node in question has to be discounted and to use
this information to compute the true average effect.

3.4.2 Upper and Lower Bound Estimates of the Peer Effects Parameter if
the Network Structure is Unobserved

If the network structure cannot be observed, it is possible to obtain boundary esti-
mates for the peer effects based merely on the separate comparison of the directly treated
nodes and their counterparts (L0 vs. C0) in the control group and their neighbors (L1 vs.
C1). While randomization and information on the network together are rarely available,
a separate comparison of eligible and non-eligible nodes in randomly treated communities
or networks is frequently available in empirical settings. Yet, even in such situations it
shall be possible to obtain a lower bound estimate for the coefficient α, if the researcher is
willing to make some rigorous, but not uncommon, assumptions. In what follows I briefly
show how to obtain the bounds. The idea behind this derivation is to select two specific
“extreme” types of networks which either minimize or maximize second and higher or-
der spillovers. These benchmark networks are schematically represented in Figure 3. I
use a directed network with only “outward bound” links emanating from `0 to `1 ∈ L1
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Figure 3: Schematic representation of the two extreme networks, used to compute the
upper and lower bound estimates of the parameters of interest.

Network A (outbound) Network B (fully connected)

Notes: The “ outbound network” (left) is used to obtain the upper bound estimate. It is a directed
network with only “outward bound” links. Holding the number of nodes and the observed ITEs fixed,
the social parameter will be estimated to be largest in this type of network. The fully connected network
(right), is the benchmark case from which the lower bound of the social parameter can be estimated.

to obtain the upper bound estimate of the social/spillover parameter α. The opposed
benchmark is a fully connected network, where every node is the direct neighbor of every
one of its peers. From there I obtain the lower bound estimate of the social parameter.
A more detailed account is provided in Appendix B.4.

If we ignore higher order spillovers,20 we can obtain an upper bound estimate for
the ATE (δ1) by applying the difference-in-differences estimator on the level of directly
treated nodes (L0) and a suitable comparison group (C0) . After that I can move on
to estimate the upper bound for the parameters for spillovers (α) by combining it with
a second difference-in-differences estimator at the neighbor level. Let DiD(`a−ca) denote
such a difference-in-differences (a ∈ {0, 1}) whether the nodes are in the center of the
network (L0 or C0) or are the neighbors of the start nodes (L1 vs. C1):

δ̂1 = D̂iD0 = ∆̂`0− ∆̂c0(14)

α̂ = D̂iD1

D̂iD0
NP`1

• ∆̂`0 := 1
NP`0

∗∑
i(yi,`0,t=1 − yi,`0,t=0)

• ∆̂c0 := 1
NPc0

∗∑
i(yi,c0,t=1 − yi,c0,t=0)

with D̂iD1 = ∆̂`1− ∆̂c1 and the definitions of ∆̂`1 and ∆̂c1 paralleling those of ∆̂`0
and ∆̂c0. In my application’s reduced-form estimations of the previous section DiD1

20Or maintain the assumption that we can observe the nodes’ performance before any higher order
spillovers arrive at the treated node
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corresponds to φL1
2,0 and DiD0 is estimated by φL0

2,0. This upper bound estimator would
be suitable under the potentially quite strong assumption that higher order spillovers
are negligible. I proceed to show how to compute the lower bound estimates under the
assumption of maximal second order spillovers. The lower bound gives an idea of the
maximal size of the problem that might result from trusting the easily computed upper
bound estimates.

It is also possible to compute a lower bound estimate for α and δ1. This bound can be
obtained by imagining that the network is fully connected, i.e. every node links to every
other node, assuming that all effects are of the same sign, strictly ordered and (w.l.o.g)
positive.21 Further computations in Appendix B show that in a network with N nodes,
the lower bound of the estimator for α is characterized by the solution to the following
quadratic equation:

(15) α2 − [DiD0

DiD1
+ (N − 1)]α + (N − 1) = 0

This equation has two solutions, one of which lies between 0 and 1. The closed form
solution for α is hence given by:

(16) α = 1
2[DiD0

DiD1
+ (N − 1)]−

√
1
4[DiD0

DiD1
+ (N − 1)]2 − (N − 1)

Recall that all the quantities required are readily available from the reduced form
estimations. DiD1 corresponds to φL1

2,0 and DiD0 is estimated by φL0
2,0. In Appendix

B.4 I provide a proof for my claims and explain how this bound is derived. Which of
the estimates is more accurate will depend on the size of the spillover effect, but to
a very large extent also on the real network structure and the number of nodes. The
upper bound estimator would be quite suitable if the researcher assumes (potentially
quite strong) that higher order spillovers are negligible. It would also be appropriate in
networks with very sparse connections among its members. The lower bound estimator
might be more suitable if the researcher believes the network to be highly connected and
expects the spillover coefficient to be relatively large. The bounds have several limitations
(cf. Appendix B.4) and for some applications the bounds might turn out to be to wide
to be actually informative. Still, taken together, the bounds can provide a useful first
characterization of the spillover parameters in question.

4 Data

This section gives detailed information about the dataset. Subsection 4.1 explains
how the database was put together and the procedure I used to extract the dataset that

21The precise assumption is DiD0 > DiD1 > HOB > 0, as stated and explained in Lemma 1
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I use. Subsection 4.2 describes the dataset itself.

4.1 Preparation of the Data and Definition of the Treated and
Control Group

The dataset is based on a full-text dump of the GermanWikipedia from theWikimedia
toolserver. To construct the history of the articles’ hyperlink network for the entire
encyclopedia, it was necessary to parse the data and identify the links. From the resulting
tables, I constructed a time-varying graph of the article network, which provided the
foundation for how I sample articles in my analysis. Furthermore, information about
the articles, such as the number of authors who contributed up to a particular point
in time or the existence of a section with literature references was added. Hence, the
data I use are based on 153 weeks of the the entire German Wikipedia’s revision history
between December 2007 and December 2010. Since the data are in the order of magnitude
of terabytes, it was not be possible to conduct the data analysis using only in-memory
processing. We therefore stored the data in a relational database (disk-based) and queried
the data using Database Supported Haskell (DSH) (Giorgidze et al. (2010)).22

“Featured articles” were found by consulting the German Wikipedia’s archive of pages
that were selected to be advertised on Wikipedia’s main page (“Seite des Tages”) between
December 2007 and December 2010. To reduce the computational burden and to avoid
the risk of temporal overlaps of different treatments, I focus on pages that were selected
on the 10th of a month. I identified all the pages that received a direct link (L1) or an
indirect link (L2) from such a featured article more than a week before treatment. I
evalutated links with this time gap before the shock actually occurred to make sure that
the results are not driven by endogeneous link formation.23 Having fixed the set of pages
to observe, I extracted daily information on the contemporary state of the articles (page
visits, number of revisions, number of distinct authors that contributed, page length,
number of external links etc.). I determine these variables on a daily basis, 14 days
before the event occurred (on a neighboring page) and 14 days after the shock (giving a
total of 29 observations per page).

To identify major events, I consulted the corresponding page on Wikipedia and se-
lected the 26 largest events with spontaneous onset. For each of these events we identified
the page that corresponds to the event, which are considered to be in the set “L0” (some-
times also called “start pages”). Note that this page is typically created after the event

22This is a novel high-level language allowing the writing and efficient execution of queries on nested
and ordered collections of data.

23I thus only include pages that had a link before it was known that the start page will be hit. I
furthermore exclude pages that receive their indirect (L2) link via a page that has more than 100 links,
since such pages are very likely either pure “link pages” very general pages (such as pages about a year),
that bare only a very weak relationship to the shocked site.
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occurred24, which obliges me to identify the pages, that user will most likely turn to until
the disaster’s page is in place. To achieve this, I used the link data to identify the set
of pages that later shared a reciprocal link with the start page. Such a reciprocal link
indicates that they were closely related to the event. After the event page came in to
existence they were only one click away (set “L1”). Next, we identified those pages that
received a link from an L1 page (unidirectional) (2 clicks away set “L2”)

I am most interested in attention spillovers and content provision, which are not
directly related to the events but rather a consequence of the spike in interest and the
resulting improvements to the linked pages. Hence, I will not focus on the treated pages
directly, but on the set L1 that are “one click away”, in my analysis of the “featured
articles”.25 For disasters the shock is very large and the event page usually does not exist
at the time of the shock, so the L1 pages might have been treated themselves.26 Hence,
I focus on the indirectly linked set of pages (L2) in the analysis below.

The approach I take in this paper hinges on the availability of a valid control group. To
obtain such observations I pursue two distinct strategies. The first approach uses pages
which are similar but unlikely to be affected by the treatment. For a first comparison I
selected articles and neighbors thereof that were featured either later or earlier in time.
Given such a similar page, I identified their direct and indirect neighbors when the event
occurred on the treated page. This gives me a set L2control which is similar in both size
and characteristics to the sampled pages (before the shock). Yet, the choice of the start
pages in the comparison group is somewhat arbitrary.27 I address this issue by simulating
a treatment on the treated pages 42 days before the disaster or event occurred. I refer
to the articles in this “placebo-treatment” as L2placebo, because for them t = 0 when no
actual treatment occurred. By design, this comparison group consists of the same set of
articles (treated and their neighbors). This comes at the cost of observing the articles at
a different point in time. A third control group of “unrelated” observations results from
applying a placebo to the control group.28

For disasters I proceeded along similar lines. I focused on the network around older
catastrophes that occurred at a different point in time and were not from exactly the

24Usually it takes up to two days until the event receives its own page.
25Effects on the pages that are 2 clicks away were to small too be measured.
26Some of the consequences of major events, such as earthquakes, might change the state of the world

and thus trigger a change in content, which is merely due to the event (e.g. destruction of an important
monument). Consequently, I do not emphasize the change in activity on the pages that are only one
click away for disasters. I also exclude pages if they were later directly linked to the event page.

27Ideally the selection of comparison pages should be based on matching procedures, which is unfor-
tunately not possible without computing the characteristics of all the 1,000,000 nodes. My approach is
however quite robust independently of how I specify the control group. I also compared to the neighbors
around articles of similar size and relative importance, about similar topics, but in a remote geographic
space or technical domain. Such a change in the specification of the control group does not affect my
results. (available upon request).

28This set of observations actually emerged as an artifact from the data extraction. Nevertheless it
provides yet another group that can be compared to the treated group.
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same domain, to avoid overlaps in the link network (Lcontrol). Alternatively, I observe the
same set of pages seven weeks before the disaster (Lplacebo).

In Table 4 shows which featured articles were chosen by my procedure and included in
the data. In general, they cover various topics such as innovations (e.g. the CCD-sensor),
places (Helgoland), soccer clubs (Werder Bremen) or art history topics (Carolingian book-
illustrations). I show the number of observations that received a link from an article before
it was featured, separated by whether or not they belong to a time-series with actually
treated observations.29 It ranges from 2,088 to 33,872. Table 5 shows the number of
articles that belong to each featured article. Table 7 shows which events were included in
the data and shows the associated number of observations for each of them. The dataset
includes both natural disasters as well as technical or economic catastrophes.

4.2 A Closer Look at the Dataset

Summary statistics for the data on large events are shown in Table 6. The data
contains 425,981 observations from 7,379. From the table it can be seen that the average
page contains 5658 bytes of content and has undergone 84 revisions. However, the median
is substantially lower at 3885 bytes and only 40 revisions. Also, the summary statistics of
the first differences (variables starting with “Delta:” reveal that on a typical day nothing
happens on a given page on Wikipedia. This highlights the necessity to use major events
as a focal lense for analyzing activity on Wikipedia30, which is confirmed by the visual
inspection of the direct and indirect effect of treatments.

In Figure 4 I plot the average clicks (left column) and the average number of added
revisions (right columns) for the three groups of pages zero clicks away (upper row), one
click away (middle row) and two clicks away (lower row). The two lower rows in this
figure contains four lines. The first represents the treated group or its neighbors when
they were actually treated, hence “ flag_treated = 1 and placebo_state = 0”. The second
line represents the same group but during the placebo treatment at an earlier point in
time. The third line (flag_treated = 0 and placebo_state = 0) shows the control group
at the time when the real shock occurred and the fourth line represents the “unrelated”
observations, which are never treated and taken in the placebo period.31 The upper row
contains four lines showing the control group and the directly treated nodes, which are
created only after the onset of the event. Most of these 23 pages did not exist at all before

29Note, that each page shows up 29 times in the raw data and was sampled twice (placebo and real
treatment), so that the number of corresponding pages (treatment or control) can be inferred by dividing
the number of observations by 58.

30Further descriptive analyses that compare treated and control groups before and during treatment
show that the groups are very similar in their activity levels before the shocks occurred and that the
control group did not change its behavior during treatment. These tables and their description were
omitted for reasons of brevity. They are available from the author upon request.

31For greater ease of representation I included a graphical representation of only two variables. The
summary statistics for these groups before and after treatment are also available as tables upon request.
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Figure 4: Contrasting means of clicks vs. number of added revisions over time: looking
at all 4 groups in one plot.
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Notes: The upper row shows the average effect on the event pages (which by definition were created after the
event), the middle row the directly treated pages (L1, with reciprocal link), and the lower row for the pages that
are one click away from L1. The left column shows the average number of clicks the right column shows the average
number of edits. The outcomes are shown for the treated articles and the control groups separately. Directly hit
pages received up to 8,500 additional clicks and up to 40 new revisions on average. Pages that will have a reciprocal
link received up to approx. 2,500 clicks and up to 5 additional revisions. However, not only the treated pages, but
also their neighbors received 35 additional clicks and up to 0.04 additional revisions on average.
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the onset of the event and therefore only a few have a placebo condition available. The
row shows that the directly affected pages experience a very large spike of 8,500 clicks per
day on average. The number of additional revisions peaks on the first days of treatment,
when the pages are created: an average of almost forty revisions are added to a page on
the first day. On the pages that are to share a reciprocal a link from the treated page
the effect is quite pronounced: while the clicks on the average L1 page increase by 2,500,
the absolute value of the average increase in revision activity is only five. When I look at
pages that are two clicks away, the effects are much smaller, especially for revisions, but
quite pronounced. The clicks on the average adjacent page go up by 35 and the absolute
value of the average increase in revision activity is already no more than 0.04.

A summary of the data from “featured articles” are shown in Table 3. The data
contains 317,550 observations from 5,489 pages32 on the main variables. Note that this
corresponds to a much smaller number of pages per treatment, which is due to the fact
that I focus on the directly linked pages in this condition. The table shows that the
median page contains 4833 bytes of content and has undergone 48 revisions. In this
sample, the mean is substantially higher at 6794 bytes and 95 revisions. As before, the
summary statistics of the first differences show clearly how little activity occurs on a
normal day on any given page on Wikipedia.

Figure 5 plots the aggregate dynamics around the day when the start node was shown
on Wikipedia’s main page and corresponds to Figure 4 for the large event condition. I
plot the average clicks (left column) and the average number of added revisions (right
columns), but now only for the treated pages and direct neighbors. As before, each
of the four figures contains four lines, one for each condition that can be obtained by
combining treatment (yes/no) and placebo (yes/no). The major difference to the large
events condition is the brevity of the treatment. Attention rises from typical levels, below
50 views, to more than 4200 views on average, but immediately returns to the old levels
the day after treatment is administered. A very similar pattern can be observed for the
neighbors where attention is almost twice as high as on a usual day and then falls back to
the old levels. A similar pattern can be observed for the number of revisions. Excepting
large events, activity rises already before t = 0. Nevertheless, on the day of treatment
the spike of activity is also pronounced for the neighbors.

32Since pages were observed also in the placebo condition, each page is sampled twice, and hence I
observe 10,950 distinct time series.
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Figure 5: “Today’s featured articles”: Contrasting means of clicks vs. number of added
revisions over time: looking at all 4 groups in one plot.
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Notes: The upper row shows the average outcome on the directly treated pages (set L0 containing 63 pages total),
the lower row for the pages one click away (set L1, which contains 5,489 pages). The left column shows the average
number of clicks the right column shows the average number of edits. The outcomes are shown for the treated
articles and the control groups separately.

5 Estimation Results

In what follows I present my estimation results and discuss their interpretation. Before
I proceed with the details of my estimations, it is worth recalling a few important facts.
The point of departure of the estimations in this paper is estimating Equation 11 (Section
3.3) for large events and Equation 10 for “featured articles” . This is due to two reasons:
first, the two conditions differ in how local the treatment I exploit for estimation is.
Second, only the “featured articles” exist at the time of treatment, while the page at the
center of a large event treatment typically does not exist and will instead be created in
the following days.

Moreover, I avoid potentially endogenous link formation during treatment by con-
sidering only links that had been in place a week before the treatment. When a page is
found to lie in both the treatment and control groups it is excluded from the estimation,
because including such pages will bias the estimated coefficients towards zero. Extremely
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broad pages with a very large number of links (e.g. pages that correspond to years) were
excluded from estimation to avoid biases from oversampling. Finally, I use the seven
observations from two weeks before treatment (days -14 through to -8) as the reference
group in the estimations and I include only flow variables such as views, new revisions,
new authors etc. to guarantee that my results are not driven by any anticipation effects.33

The following two subsections report the results for both conditions.

5.1 Large Events

For this group the estimation concerns the set of L2 pages that are two clicks away
from the epicenter: the future page about the disaster. This is not because closer pages
are uninteresting, but because the shock of the analyzed events is very big and likely
to directly affect pages that will eventually be directly and bidirectionally linked. If,
for example, a city in the province under consideration was hit by the earthquake, the
added content on that page might simply cover this very fact. In such a case, this is not
an improvement that arose from the increased attention that results from the adjacent
event, but a change that is directly caused by the treatment. As explained above, this
is not the effect I am primarily interested in. Consequently I focus on pages that were
indirectly linked at the time of the shock and that never became directly linked enter the
sample. These articles are no longer likely to be directly affected by the treatment on the
page two clicks away.34 Moreover, to make sure that my L2 pages are not directly related
to the event I checked whether a page that was in L2 when I evaluated the network a
week before the shock was going to be linked to the page of the disaster later. Since this
indicates a potential direct relationship, I eliminated such pages from the sample.

The results of the estimation of the model for L2 nodes are shown in Table 1. The
table shows the results for clicks in the first three columns and the results for the number
of added revisions in Columns 4,5 and 6. All the specifications are OLS panel regressions
which include a fixed effect for the page and standard errors are clustered on the event
level (23 clusters). Note that I run each regression twice to take advantage of my two
comparison groups: first I contrast the treated pages against the control group and then
I contrast it with the placebo treatment, i.e. with the treated articles themselves, but

33Anticipation effects are impossible for disasters but cannot be entirely ruled out in the “featured
articles” condition, where sophisticated users, who can obtain the information about pages that are
going to be presented soon. In fact the editors of the daily featured article, have to edit the article in the
week before it is advertised, to make sure it fits into the corresponding box on Wikipedia’s main page.
This alone results in increased activity during the week before treatment. After carefully studying this
process, I am not very concerned about this feature of the data, because the magnitude of the day-0
effect suggests that the vast majority of attention influx is due to readers who do not anticipate which
page is to be advertised.

34The results for the L1 group are included in the appendix. The effects are very large and statistically
significant. The estimated coefficients for the L0 group (not reported) are close to 4,500 for clicks and
between 20 and 25 for revisions. However, due to the lack of sufficient observations, even these very large
coefficient estimates are not statistically different from zero.
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Table 1: Relationship of clicks/added revisions and time dummies for indirect neighbors
of shocked articles (2 clicks away from epicenter) in the large events condition.

clicks del revisions

(1) (2) (3) (4) (5) (6)
compare control compare placebo compare all compare control compare placebo compare all

t = -2 3.172 3.487 2.065 0.010 0.015 0.008
(4.709) (4.545) (4.431) (0.009) (0.010) (0.008)

t = -1 0.978 3.144 3.450 0.010 0.026*** 0.017**
(3.993) (3.742) (3.866) (0.010) (0.008) (0.008)

t = 0 37.391** 36.047** 35.394** 0.003 0.021* 0.004
(14.421) (14.386) (14.287) (0.011) (0.011) (0.010)

t = 1 35.020*** 35.397*** 36.757*** 0.049** 0.062** 0.055**
(11.098) (11.113) (11.082) (0.024) (0.023) (0.023)

t = 2 38.767*** 44.730*** 42.319*** 0.037** 0.043*** 0.038***
(13.650) (13.589) (13.523) (0.014) (0.012) (0.012)

t = 3 22.069** 30.895*** 25.945*** 0.021* 0.025** 0.024**
(9.168) (8.730) (8.448) (0.011) (0.011) (0.010)

t = 4 17.601** 21.918*** 19.063*** 0.026** 0.028** 0.026**
(7.065) (6.917) (6.838) (0.012) (0.013) (0.012)

Constant 29.900*** 29.994*** 30.735*** 0.033*** 0.032*** 0.031***
(1.001) (1.289) (0.664) (0.002) (0.002) (0.001)

All cross Yes Yes Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes Yes Yes

Observations 162338 104214 323158 154959 99477 308469
Number of Pages 7379 4737 14689 7379 4737 14689
Adj. R2 0.003 0.003 0.002 0.001 0.001 0.000

Notes: The table shows the results of the reduced form regressions to estimate the ITE in the large events condition. Columns
(1)-(3) show the results for clicks and Columns (4-6) for new edits to the articles . Specification (1) and (4) contrast treated
and comparison group; (2) and (5) show the comparison of treated articles with themselves but seven weeks earlier (placebo
treatment). In Columns (3) and (6) I juxtapose the treated subnetworks with all available comparison groups at the same
time. Fixed Effects Panel-Regressions with heteroscedasticity robust standard errors. The unit of observations is the outcome
of a page i on day t. The time variable is normalized and runs from -14 to 14.; Only crossterms closer to treatment are shown,
but all were included. Reference group t-14 to t-5; standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1; no. of obs.
= 323158; no. of clusters = 44; no. of articles = 7379.

simulating a (placebo) treatment 42 days (i.e. 7 weeks) before the real shock. The third
column compares the shocked pages against all the available comparison groups at once.

For ease of representation the table only shows the coefficients for the cross terms
from two periods before the shock until four periods after the shock. As explained above,
until the onset of the event (periods -2 to 0), we would expect insignificant effects for the
cross terms and after the event has occurred a positive effect would imply that some form
of spillover is present. Very much in line with the visual evidence, the average increase in
clicks relative to the control group (Column 1) amounts to 35-38.7 more clicks on average.
For the placebo treatment (Column 2) this effect is almost equal, but a bit larger from
the second day onwards.

This is somewhat different for the number of revisions (as the graphical analysis had
already suggested), since the effects are much smaller. A small effect is consistently
revealed from the first day after the treatment. This effect is small in absolute terms,
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since roughly one in twenty to thirty pages gets an additional revision. Yet, given the
low levels in average activity on a given page on a given day, this is still a noteworthy
effect. Moreover, when comparing the pages with the placebo treatment I observe a small
increase in editing activity before the onset of the event, which is however not confirmed
by the comparison with the control group. The size of the effect still more than doubles
after day 1, at which point the comparison with the control group suggests a drastic
increase in editing activity.

5.2 Neighbors of Featured Articles

Table 2 shows the results for the “featured articles”. For this reduced form estimation
I consider the model for L1 nodes (Equation 10) in Section 3.3. This is the relevant group
here because the treatment takes place entirely inside Wikipedia35 and it is “completely
local” in the sense that no two articles can be featured at the same time. Hence, the
different nature of the treatment guarantees that only the treated page is directly affected
and any variation in the neighbors is almost certainly a result of the processes that take
place inside Wikipedia.

The first three columns of the table show the results with clicks as the dependent
variable. The estimation is the same as in Table 1 and the clustering is implemented
on the level of events as before. The main insight of this table is that it confirms the
statistical significant of the effect and provides a quantification of its size. The size of the
effect is estimated to be 33.1 to 34.6 additional clicks on the average neighbor page on
the day of treatment. In terms of revisions (Columns 4-6), I observe an important effect
of about 0.032 additional revisions one day after the treatment of the neighbor page.
Note two things here: first, the effect is very small in absolute terms and corresponds to
one additional edit per thirty pages. Second however, this is an increase in contribution
activity of eighty to one hundred per cent.

I test the robustness of my results by excluding the first third of the “featured ar-
ticles”.36 Table 8 shows the result of the test and adds a new dependent variable, the
change in the number of editors (in Columns 5 to 6). Results reveal the same patterns as
Table 1, but at lower significance levels. The number of authors moves largely in parallel
with the number of revisions, indicating that twice as many new authors as usual edit the
article due to the treatment of their neighbor. Yet, while this is a large effect in relative
terms it means that only one in seventy articles is edited by a new author.

Another way of understanding the meaning of these point estimates is to aggregate
the changes in clicks and revisions over all neighboring articles and then averaging over

35Unlike in the disaster case, when an article is advertised on German Wikipedia’s start page this is
usually not covered by media or anything of the like.

36This is clearly not final, but splitting the sample is a common and useful first check to test whether
the results are robust.
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Table 2: Relationship of clicks/added revisions and time dummies for direct neighbors of
shocked articles in the ’featured articles’ condition.

clicks del revisions

(1) (2) (3) (4) (5) (6)
compare control compare placebo compare all compare control compare placebo compare all

t = -2 -5.064 -2.629 -3.139 -0.028** -0.018* -0.019**
(4.051) (3.477) (3.062) (0.011) (0.011) (0.008)

t = -1 2.149 4.792 3.957 -0.021* -0.004 -0.007
(3.082) (4.187) (3.242) (0.012) (0.008) (0.007)

t = 0 33.128*** 34.638*** 34.008*** -0.006 0.004 0.004
(9.162) (9.294) (9.082) (0.009) (0.008) (0.007)

t = 1 -0.158 0.773 0.645 0.032** 0.033** 0.030**
(2.266) (3.214) (2.346) (0.012) (0.014) (0.012)

t = 2 -2.523 -3.700 -3.438 0.015* 0.017 0.014
(2.965) (3.144) (2.758) (0.008) (0.011) (0.009)

t = 3 -8.373** -3.807 -5.864 -0.011 -0.012 -0.013
(3.371) (5.435) (3.949) (0.012) (0.013) (0.011)

t = 4 -2.557 2.038 0.054 -0.016 -0.009 -0.008
(2.766) (5.615) (3.535) (0.014) (0.009) (0.008)

Constant 31.982*** 35.354*** 32.534*** 0.043*** 0.046*** 0.042***
(0.816) (0.768) (0.580) (0.002) (0.002) (0.001)

All cross Yes Yes Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes Yes Yes

Observations 120758 166518 240900 115269 158949 229950
Number of Pages 5489 7569 10950 5489 7569 10950
Adj. R2 0.004 0.003 0.002 0.000 0.000 0.000

Notes: The table shows the results of the reduced form regressions to estimate the ITE in the ’featured articles’ condition.
Columns (1)-(3) show the results for clicks and Columns (4-6) for new edits to the articles. Specification (1) and (4) contrast
treated and comparison group; (2) and (5) show the comparison of treated articles with themselves but seven weeks earlier
(placebo treatment). In Columns (3) and (6) I juxtapose the treated subnetworks with all available comparison groups at the
same time. Fixed Effects Panel-Regressions with heteroscedasticity robust standard errors. The unit of observations is the
outcome of a page i on day t. The time variable is normalized and runs from -14 to 14.; Only crossterms closer to treatment
are shown, but all were included. Reference group t-14 to t-5; standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1;
no. of obs. = 240900; no. of clusters = 63; no. of articles = 5489.

the 34 different “featured article” clusters. This is done in Figures 6 and 7 in order to
summarize and illustrate the insights from the “featured articles” condition. I find that
on average there are 4000 clicks on all neighbors taken together (Figure 6). Given that
the average treated articles received an additional 4000 clicks this corresponds to a one
to one conversion of clicks on the treated page to clicks on one of the neighbors. In other
words, the average visitor clicks on exactly one of the links. The total number of revisions
on the neighboring pages (Figure 7) increases approximately from 4.5 to 8.5. This is an
additional four changes, which means that the 4000 initial additional clicks are converted
in 4000 additional clicks on neighbors and four new revisions or a ratio of 1000:1000:1.

Finally I report results of an extended analysis which is omitted here, for reasons
of space.37 I include the number of clicks on the treated page in the regression and,
as expected, the number of links on the neighboring pages is positively related to that

37They are available from the author upon request.
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value. Moreover, I split the sample into well-connected articles with many links and
poorly connected ones with few, but I do not find a significant relationship between this
variable and the number of visits. The same is true for a variable that captures whether
a page is very long or not. I get a positive but insignificant point estimate for page views.
However, when I consider only “stubs”, i.e. pages that do not exceed a length of 1500
bytes, I find a much stronger relative effect in the number of edits. This indicates that
new content is provided on pages where the existing content is limited.

5.3 Bounds for the Structural Estimator

Unfortunately I cannot compute the precise structural estimator because the full
matrix G formed by the German Wikipedia is too large to be computed in memory.
Hence I cannot solve for G2 and higher orders of the link matrix.38 However, it is
possible to present upper and lower bound estimates of the structural parameters that
are discussed in Subsection 3.4 and derived formally in Appendix B.

To compute these values the researcher has to decide where to evaluate the number of
peers. I choose to evaluate the coefficients at the median which is 31 for indirect neighbors
of disaster pages and 36 for neighbors of “featured articles”. This is a crude first evaluation
which primarily serves to highlight how easy it is to retrieve the structural parameters
once this decision is made. The rest reduces to a back of the envelope calculation.

To compute the upper bound of the social/spillover parameter α and the shock δ1 I
use Equation 40. My preferred estimates are taken from the “featured article” condition.
Estimates from the disaster condition are reported in parentheses. δ1 is directly estimated
to be 4,200 (2,440 in the disaster condition) The estimate of α is 0.292 (34/4,190*N=36)
based on “featured articles” (based on disasters: (38/2,440*N=31) = 0.483).

Computing the lower bound estimates is slightly more involved since it involves plug-
ging the estimates and the number of nodes into the closed form solution given in Equation
46. This gives the point estimator for the lower bound of α, which is estimated to be
α̂ = 0.222 for “featured articles” and α̂ = 0.320 for disasters.

To conclude this section I attempt to quantify the meaning of these results: literally
they mean that if the average clicks on the neighboring pages are increased by ten, this
alone would result in an increase of 2.215 to 2.92 clicks on the page, which all come
from the neighbors. Even though caution is needed to make the following claim, the
results suggest that placing links has an effect, but that it is small. Provided this out of
equilibrium thought experiment is warranted: creating additional links from neighbors
that increase aggregate viewership of the neighbors by 200 is predicted to result in 1.61
additional views on the target page.39 While this absolute effect in clicks is very small, the

38Ongoing work is attempting to solve this issue. If these efforts are fruitful, the results might be
included in a revised version of this paper.

39As before I use the median number of neighbors for these thought experiments. Consequently 200
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conversion to content is even smaller than that since even huge shocks did not generate
many revisions on neighboring articles. This suggests that placing links strategically will
only generate large effects, if the pages that link out are very frequented. However, for
the normal traffic on a typical Wikipedia page we would expect very small effects.

6 Conclusions, Limitations and Further Research

This paper investigates how the network of links between articles on the German
Wikipedia influences the attention and content generation individual articles receive. I
use large scale media events and natural disasters as observable exogenous shocks to
analyze the spillovers of attention and content generation mediated through links. I find
substantial spillovers of attention in terms of both views and editing activity. Articles
in the neighborhood of shocked articles received 35 more visits on average - an increase
of almost 100 percent. The findings indicate that links that point to an article influence
how much attention a node will receive. My structural estimates suggest that an article
will receive 30 percent of the number of average views on neighboring articles. Hence, by
placing links to oft frequented nodes and thus increasing the average daily views on their
neighbors by ten, one could obtain three additional daily visits to an article.

My results also indicate that the spillovers in attention may be driven to a large extent
by users who only look up information. The analysis of the “featured articles” suggests
that the average visitor clicks on exactly one of the links. Yet, while increased content
provision is large in relative terms, it is modest in absolute terms. The total number
of daily revisions on the neighboring pages (Figure 7) increases approximately from 4.5
to 8.5, which is a small increase given the size of the treatment. Hence, my estimates
suggest that using the link network is probably an expensive and inefficient strategy for
channeling contribution flows.

My results may be interesting for wiki administrators charged with channeling flows of
content contribution, be it when setting up a firm wiki or when realizing the Wikimedia
Foundation’s vision of a world in which “every single human being can freely share in
the sum of all knowledge” (Wikimedia-Foundation (2013)). A promising area for further
analysis would investigate whether new authors are attracted by the events or whether
contributions are made only by authors that previously contributed to the subject. Future
studies should also investigate if these estimates apply only to mature wikis like the
German Wikipedia or whether the small size of the effects will pertain on younger wikis
with less content. This question can only be analyzed via studying smaller or younger
Wikis, which would be a promising endeavor. However, when interpreting my results

aggregate view correspond to five more views on average. The quantification is based on the upper bound
estimates of α in the “featured article” condition (and would be 3.31 for disasters).
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on a more abstract level and considering Wikipedia as a setting of peer production or
a citation network that documents human knowledge, it is probably advantageous that
this paper uses data from a mature wiki. The findings suggest that the attention to a
certain field or project will be higher if it receives links from other articles in other areas.

This paper suffers from several limitations. Most importantly, the strategy of ex-
ploiting local exogenous treatments will not allow the identification of the social spillover
parameter if neighbors of the treated nodes observe the treatment and adjust their out-
come as a reaction to the mere fact that their neighbor was treated. An example would
be a teacher who selectively punishes or favors a single student: if the other pupils react
to the special treatment, by changing their motivation to study for the subject, then their
changed performance will reflect the sum of the spillover and their behavioral adjustment.
In Appendix C, I outline that case and illustrate formally why the spillover parameter
can no longer be identified. Moreover, future research should thoroughly exploit the het-
erogeneity in intensity of direct treatment effects. In particular, I hope to understand
how attention, currently measured as average effect, is distributed across neighbors. Is it
evenly distributed or do users herd to only a few of the linked pages? Another promising
area would use the methodology based on exogenous local treatments alongside that based
on the network structure and the exploitation of open triads (Bramoullé et al. (2009),
De Giorgi et al. (2010)). The approaches are complementary; research along these lines
will result in valuable insights. Finally, my evaluation of the structural parameters of
the underlying dynamic with which attention is transmitted between neighboring pages
is based on several assumptions. Most importantly it was not yet possible to surmount
the computational hurdle of exploiting the detailed network information when obtaining
the structural estimates. Future research should include this information and investigate
which population parameter should be optimally included for relating reduced form and
structural parameters.
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A Data-Appendix

A.1 Summary Statistics for “Today’s Featured Articles”

Table 3: Summary statistics: direct neighbors of shocked articles in the ’featured articles’
condition

mean sd min p10 p50 p90 max
Length of page (in bytes) 6794 6784 17 51 4833 15262 81585
Number of authors 33 35 1 2 21 77 324
Clicks 33 131 0 0 0 77 20384
Number of Revisions 95 130 1 3 48 237 1382
Links from Wikipedia 118 301 0 6 36 286 9484
Dummy: literature section .3 .46 0 0 0 1 1
Number of images 2.3 8.1 0 0 1 5 319
Number language links 13 18 0 0 6 37 180
References (footnotes) 1.3 4.5 0 0 0 4 182
Links to further info 2.3 4.2 0 0 1 6 155
time variable (normalized) 0 8.4 -14 -12 0 12 14
Delta: Number of Revisions .042 .39 0 0 0 0 42
Delta: Length of page 2.1 159 -31473 0 0 0 31462
Delta: Number of authors .015 .13 0 0 0 0 9
Delta: Links from Wikipedia .054 1.1 -90 0 0 0 438
Delta: Number of images .00099 .27 -50 0 0 0 132
Delta: References .0014 .097 -18 0 0 0 18
Delta: Links further info .00078 .1 -19 0 0 0 16

Notes: The table shows the distribution of the main variables. The unit of observations is the outcome of a page
i on day t. The time variable is normalized and runs from -14 to 14.; no. of obs. = 317550; no. of start pages =
63; no. of articles = 5489.
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Table 4: Included “featured articles” and the number of observations that are associated
with them.

flag_real_treatment
name of event 0 1 Total

No. No. No.
Afrikaans 5,481.0 1,943.0 7,424.0
Alte_Synagoge_(Heilbronn) 1,885.0 1,131.0 3,016.0
Banjo-Kazooie 5,191.0 2,030.0 7,221.0
Benno_Elkan 5,133.0 2,900.0 8,033.0
Bombardier_Canadair_Regional_Jet 4,205.0 1,073.0 5,278.0
CCD-Sensor 31,001.0 2,871.0 33,872.0
Charles_Sanders_Peirce 11,716.0 3,219.0 14,935.0
Das_Kloster_der_Minne 1,827.0 1,102.0 2,929.0
Deutsche_Bank 10,005.0 9,860.0 19,865.0
Eishockey 4,698.0 4,698.0 9,396.0
Ekel 10,295.0 5,336.0 15,631.0
Fahrbahnmarkierung 1,276.0 1,276.0 2,552.0
Geschichte_Ostfrieslands 7,453.0 6,177.0 13,630.0
Geschichte_der_deutschen_Sozialdemokratie 9,599.0 8,033.0 17,632.0
Glanzstoff_Austria 14,094.0 1,537.0 15,631.0
Glorious_Revolution 6,206.0 2,668.0 8,874.0
Granitschale_im_Lustgarten 3,857.0 928.0 4,785.0
Gustav_Hirschfeld 6,438.0 1,740.0 8,178.0
Hallenhaus 2,117.0 2,001.0 4,118.0
Helgoland 8,120.0 5,104.0 13,224.0
Jaroslawl 12,789.0 5,829.0 18,618.0
Jupiter_und_Antiope_(Watteau) 1,160.0 928.0 2,088.0
Karolingische_Buchmalerei 4,843.0 4,553.0 9,396.0
Katholische_Liga_(1538) 1,682.0 464.0 2,146.0
Martha_Goldberg 1,595.0 1,595.0 3,190.0
Naturstoffe 9,338.0 9,222.0 18,560.0
Paul_Moder 1,798.0 1,682.0 3,480.0
St._Martin_(Memmingen) 1,653.0 1,711.0 3,364.0
Stabkirche_Borgund 1,421.0 899.0 2,320.0
Taiwan 5,017.0 4,669.0 9,686.0
USS_Thresher_(SSN-593) 3,712.0 1,479.0 5,191.0
Visum 1,624.0 1,624.0 3,248.0
Wenegnebti 1,798.0 1,363.0 3,161.0
Werder_Bremen 8,555.0 8,323.0 16,878.0
Total 207,582.0 109,968.0 317,550.0

Notes: For each “featured article”, the table shows the number of observations associated with all articles that are
one clicks away from a start page. Observations associated with actually “featured articles” are shown separately
from control observations. Pages included 5,489.
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Table 5: Included “featured articles” that were advertised on German Wikipedia’s start
page and the number of articles that are associated with them (1 clicks away).

name of event No.
Afrikaans 128.0
Alte_Synagoge_(Heilbronn) 52.0
Banjo-Kazooie 125.0
Benno_Elkan 139.0
Bombardier_Canadair_Regional_Jet 92.0
CCD-Sensor 586.0
Charles_Sanders_Peirce 258.0
Das_Kloster_der_Minne 51.0
Deutsche_Bank 343.0
Eishockey 162.0
Ekel 270.0
Fahrbahnmarkierung 44.0
Geschichte_Ostfrieslands 235.0
Geschichte_der_deutschen_Sozialdemokratie 306.0
Glanzstoff_Austria 270.0
Glorious_Revolution 153.0
Granitschale_im_Lustgarten 83.0
Gustav_Hirschfeld 142.0
Hallenhaus 71.0
Helgoland 228.0
Jaroslawl 321.0
Jupiter_und_Antiope_(Watteau) 36.0
Karolingische_Buchmalerei 162.0
Katholische_Liga_(1538) 37.0
Martha_Goldberg 55.0
Naturstoffe 320.0
Paul_Moder 61.0
St._Martin_(Memmingen) 59.0
Stabkirche_Borgund 40.0
Taiwan 167.0
USS_Thresher_(SSN-593) 90.0
Visum 56.0
Wenegnebti 55.0
Werder_Bremen 292.0
Total 5,489.0

Notes: For all “featured articles”, the table shows the number of associated articles that are two
clicks away from one of the corresponding start pages (be it treated or control).
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A.2 Summary Statistics for Disasters

Table 6: Summary statistics: indirect neighbors of shocked articles (2 clicks away from
the epicenter) in the large events condition

mean sd min p10 p50 p90 max
Length of page (in bytes) 5658 6287 16 33 3885 13210 76176
Number of authors 29 34 1 1 18 71 435
Clicks 33 174 0 0 0 70 29865
Number of Revisions 84 133 1 2 40 211 2083
Links from Wikipedia 123 447 0 5 31 269 27611
Dummy: literature section .2 .4 0 0 0 1 1
Number of images 1.3 2.4 0 0 0 4 57
Number language links 13 18 0 0 7 37 179
References (footnotes) 1.3 4.2 0 0 0 4 150
Links to further info 2.7 5.1 0 0 1 7 130
time variable (normalized) 0 8.4 -14 -12 0 12 14
Delta: Number of Revisions .035 .35 0 0 0 0 44
Delta: Length of page 1.8 106 -22416 0 0 0 27500
Delta: Number of authors .013 .12 0 0 0 0 11
Delta: Links from Wikipedia .049 2.5 -1148 0 0 0 216
Delta: Number of images .00047 .078 -27 0 0 0 20
Delta: References .0014 .13 -32 0 0 0 29
Delta: Links further info .0011 .12 -15 0 0 0 31

Notes: The table shows the distribution of the main variables. The unit of observations is the outcome of an
article i on day t. The time variable is normalized and runs from -14 to 14.; no. of obs. = 425981; no. of start
pages = 44; no. of articles = 7379.
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Table 7: Included disasters, associated observations and the associated number of pages
(2 clicks away).

flag_real_treatment
name of event 0 1 Total

No. No. No.
Air-France-Flug_447 4,495.0 1,392.0 5,887.0
Air-India-Express-Flug_812 19,662.0 1,711.0 21,373.0
Amoklauf_von_Winnenden 2,088.0 2,146.0 4,234.0
Bahnunfall_von_Halle_(Belgien) 2,436.0 580.0 3,016.0
British-Airways-Flug_38 6,699.0 1,624.0 8,323.0
Buschfeuer_in_Victoria_2009 928.0 957.0 1,885.0
Deepwater_Horizon 8,178.0 3,596.0 11,774.0
Erdbeben_in_Haiti_2010 15,602.0 6,322.0 21,924.0
Erdbeben_in_Sichuan_2008 11,571.0 1,508.0 13,079.0
Erdbeben_von_LâĂŹAquila_2009 3,654.0 1,885.0 5,539.0
Flugzeugabsturz_bei_Smolensk 12,412.0 8,758.0 21,170.0
GrubenunglÃĳck_von_San_JosÃľ 8,033.0 551.0 8,584.0
Josef_Fritzl 6,264.0 1,044.0 7,308.0
Kaukasuskrieg_2008 18,705.0 1,276.0 19,981.0
KolontÃąr-Dammbruch 4,669.0 1,073.0 5,742.0
Luftangriff_bei_Kunduz 113,767.0 7,772.0 121,539.0
Northwest-Airlines-Flug_253 65,279.0 1,276.0 66,555.0
Sumatra-Erdbeben_vom_September_2009 4,002.0 2,726.0 6,728.0
US-Airways-Flug_1549 7,888.0 5,220.0 13,108.0
UnglÃĳck_bei_der_Loveparade_2010 15,283.0 13,572.0 28,855.0
Versuchter_Anschlag_am_Times_Square 10,353.0 1,334.0 11,687.0
Wald-_und_TorfbrÃďnde_in_Russland_2010 13,485.0 2,204.0 15,689.0
ZugunglÃĳck_von_Castelldefels 1,508.0 493.0 2,001.0
Total 356,961.0 69,020.0 425,981.0

Notes: For each event, the table shows the number of observations associated with all articles that
are two clicks away from a start . Observations associated with actually “featured articles” are shown
separately from control observations. Pages included 7,379

name of event No.
Air-France-Flug_447 102.0
Air-India-Express-Flug_812 369.0
Amoklauf_von_Winnenden 74.0
Bahnunfall_von_Halle_(Belgien) 52.0
British-Airways-Flug_38 144.0
Buschfeuer_in_Victoria_2009 33.0
Deepwater_Horizon 203.0
Erdbeben_in_Haiti_2010 379.0
Erdbeben_in_Sichuan_2008 227.0
Erdbeben_von_LâĂŹAquila_2009 96.0
Flugzeugabsturz_bei_Smolensk 368.0
GrubenunglÃĳck_von_San_JosÃľ 149.0
Josef_Fritzl 129.0
Kaukasuskrieg_2008 346.0
KolontÃąr-Dammbruch 99.0
Luftangriff_bei_Kunduz 2,107.0
Northwest-Airlines-Flug_253 1,151.0
Sumatra-Erdbeben_vom_September_2009 116.0
US-Airways-Flug_1549 226.0
UnglÃĳck_bei_der_Loveparade_2010 499.0
Versuchter_Anschlag_am_Times_Square 202.0
Wald-_und_TorfbrÃďnde_in_Russland_2010 273.0
ZugunglÃĳck_von_Castelldefels 35.0
Total 7,379.0

Notes: For each event in the data, the table shows the number of pages that are two clicks away
from one of the two associated start pages (be it treated or control).
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A.3 Additional Regression and Figures

Figure 6: Figure contrasting the mean of clicks on featured articles, with the aggregated
clicks on all neighboring pages.
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Notes: The figure shows the aggregated effect on the pages that are one click away. The average treated page
received up to 4000 additional clicks, all neighbors together received approx. the same number of additional clicks

Figure 7: Figure showing the aggregated new revisions on all neighboring pages.
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B The empirical model and structural identification
of the parameter of interest.

B.1 Introductory remarks

This section presents the structural model and discusses the parameters of interest,
the challenges in identifying them and the approach taken to tackle them.

I depart from the well known linear-in-means model as formulated by Manski (1993)40

This model is based on the idea, that agent i’s performance depends not only on her own
characteristics, but also on both the performance and he characteristics of i’s peers:

(17) yit = α

∑
j∈Pit

yjt
NPit

+Xit−1β + γ

∑
j∈Pit

Xjt−1

NPit

+ εit

where yit denotes the outcome of interest in period t and Xit−1 are i’s observed charac-
teristics at the end of period t− 1 (beginning of period t)41 Pit is the set of i’s peers and
NPit

represents the number of i’s peers. β measures the effect of i’s own characteristics
and γ accounts for how i’s performance is affected by the peers’ average characteristics.
α is the coefficient of interest. In the present context it measures how the clicks on page
A are influenced the clicks on the adjacent pages. Bramoullé et al. (2009) suggest a more
succinct notation based on vector and matrix notation:

yt = αGyt + βXt−1 + γGXt−1 + εt E[εt|Xt−1] = 0

Clearly this model and specifically measuring α is of general interest to a very large liter-
ature. Moreover the linear in means model provides the weakest basis for identification.
Hence, I conjecture that the insights carry over to less weakly identified models.

B.2 Setup and Basic Intuition

Augment the model (eq. 17) by observable and locally applied treatments (shocks):

(18) yit = α

∑
j∈Pit

yjt
NPit

+Xi,t−1β + γ

∑
j∈Pit

Xj,t−1

NPit

+ δ1Dit + εit

where the new coefficient δ1 measures the direct effect if a node(page) is treated.
Note that Xit−1β may contain an individual fixed effect and an additively separable

age-dependent part: Xit−1β = βi + X̃i,t−1β1 + β2f(age). To see how local treatments can
40Note that it is easy to add a fixed effect to the model, but that it will be eliminated when taking

differences. Consequently, I omit it for ease of notation.
41The choice of the temporal structure depends on the application that the researcher has in mind. In

the present application many independent variables are stock variables (articles’ characteristics such as
page length), while the dependent variables are typically flows (clicks or new revisions).
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be used as a source of identification, consider two pairs of nodes.

B.2.1 Local application of treatment

First, consider 2 connected nodes, where one is treated (`0) in period t and the
neighbors are not treated (`1 ∈ L1). Assume for simplicity that `0 is the only treated
node in `1’s neighborhood.

(19) `0 :: y`0t = α

∑
j∈P`0t

yjt
NP`0t

+X`0t−1β + γ

∑
j∈P`0t

Xjt−1

NP`0t

+ δ11 + ε`0t

(20) `1 ∈ L1 :: y`1t = α
y`0t + ∑

j∈P`1t/`0 yjt

NP`1t

+X`1t−1β + γ

∑
j∈P`1t

Xjt−1

NP`1t

+ δ10 + ε`1t

B.2.2 Controls in remote part of the network around c0

Second, take two remote nodes c0 and c1 ∈ C1, where nobody gets treated:

(21) c0 :: yc0t = α

∑
j∈Pc0t

yjt
NPc0t

+Xc0t−1β + γ

∑
j∈Pc0t

Xjt−1

NPc0t

+ δ10 + εc0t

(22) c1 ∈ C1 :: yc1t = α

∑
j∈Pc1t

yjt
NPc1t

+Xc1t−1β + γ

∑
j∈Pc1t

Xjt−1

NPc1t

+ δ10 + εc1t

From this equation it can easily be seen, how the local treatment will allow to measure
the spillover or peer effect. This will be possible despite the richness in other sources of
variation, provided (i) the shocks are large enough and (ii) the “control network” allows
to credibly infer the dynamics in the “treated network”, had no treatment taken place.
To formalize this more concretely, I will take a small detour and rewrite the model in the
more succinct notation, that was already mentioned above.

B.2.3 Condensed Notation

I use the notation suggested by Bramoullé et al. (2009) and incorporate the newly
proposed vector of treatments. The equations above can be written in Matrix notation
and X might include a time-dependent component (e.g. a linear function of age) as well:

(23) yt = αGyt + Xt−1β + γGXt−1 + δ1Dt + εt E[εt|Xt−1] = 0

G is a NxN matrix, which captures the link structure in the network. Gij = 1
NPi
−1

if i receives a link from j and Gij = 0 otherwise. Note that I do not require G to be
exogenously given, but only Dt, a vector which is 1 at the treated nodes (if they are
currently treated) and 0 otherwise. In some of the proofs and in my application I will
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assume a local treatment that affects only a single node. Formally this is written as
Dt = e`0; that is, a vector of zeros and a unique one in the coordinate that corresponds
to the treated node. On the untreated subnetwork we have Dt = 0, a vector of zeros.

It is worth stressing that my setup is fundamentally different from Bramoullé et al.
(2009), because it will not be based on finding an instrument for Gy. Instead, I use an
entirely different source of identification based on differences and exogenous shocks that
affect only one part of the network. Hence, there will be no requirements on the linear
independence of G and G2.

B.3 Proof of Result 1

I shall now proceed to provide the formal argument for Result 1. To increase the
readability I will make a few assumptions to keep things simple. Most importantly I
assume the network G to be stable over time but I allow Xt to change dynamically. I set
the comparison group (which was indexed by c) to be the group itself S periods earlier,
which results in an S-period Difference in Differences. This setting is reasonably close
to comparing the evolution of nodes in a very stable network during a post and a pre-
treatment stage. Importantly the nodes in the network have to be observed over time and
have to evolve in a stable fashion, to ensure that the first differences are the same at t and
t − S.42 At the end of the formal derivations I will discuss the consequences of relaxing
the requirement of a stable network or the consequences of adding the assumption that
Xt does not change between the periods of observation.

Result 1: A Difference in Differences estimator contains the following quantity:

DiD = δ1Dt(I + αG + α2G2 + α3G3 + ...)

Proof.
The reduced form corresponding to equation 23 is given by:

(24) yt = (I− αG)−1[Xt−1β + γGXt−1 + δ1Dt + εt]

and the expectation conditional on the “treatment” is:

E[yt|Dt] = (I− αG)−1[(β + γG)E[Xt−1|Dt] + δ1Dt + E[εt|Dt]] =b.A.(25)

=b.A. (I− αG)−1[(β + γG)E[Xt−1|Dt] + δ1Dt]
42The setting is reasonably close to the “placebo condition” of my application below.
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Taking the first difference, we obtain:

∆tE[y|D] = E[yt|Dt]− E[yt−1|Dt−1] =(26)

= (I− αG)−1[(β + γG){E[Xt−1|Dt]− E[Xt−2|Dt−1]}+ δ1∆Dt] =

= (I− αG)−1[(β + γG){E[Xt−1|Dt]− E[Xt−2|Dt−1]}+ δ1Dt]

...where ∆Dt = Dt −Dt−1 and the second equality holds, because treatments are
assumed to start in period t, but not before. That difference contains the time-dependent
component and the effect of any changes in the independent variables.43

Now consider the control group formed by the same network, but S periods earlier:

yt−S = αGyt−S + Xt−S−1β + γGXt−S−1 + δ1Dt−S + εt−S

The first difference of the reduced form’s conditional expectations are:

∆t−SE[y|D] = E[yt−S|Dt−S]− E[yt−S−1|Dt−S−1] =

= (I− αG)−1[(β + γG){E[Xt−S−1|Dt−S]− E[Xt−S−2|Dt−S−1]}+ δ1∆Dt−S] =

= (I− αG)−1[(β + γG){E[Xt−S−1|Dt−S]− E[Xt−S−2|Dt−S−1]}+ 0]

with ∆Dt−S = 0, since treatments are assumed to start in period t, but not earlier.
Proceeding to take the Difference in Differences, we obtain:

DiD := ∆ytE[y|D]− ∆yt−SE[y|D] =

= (I− αG)−1 [(β + γG){E[Xt−1|Dt]− E[Xt−2|Dt−1]}+ δ1Dt]−

− (β + γG){E[Xt−S−1|Dt−S]− E[Xt−S−2|Dt−S−1]}]

Denoting the change in the expectation of Xt−1 conditional on Dt more concisely by
{E[Xt−1|Dt]− E[Xt−2|Dt−1]} = ∆t(E[X|D]) and rearranging gives:

DiD = (I− αG)−1 [(β + γG){∆t(E[X|D])−∆t−S(E[X|D])}+ δ1Dt](27)

which reduces to:

DiD = (I− αG)−1{δ1Dt}(28)

if ∆t(E[X|D]) = ∆t−S(E[X|D]). Thus, the identifying assumption is that the ex-
pected changes of the pages between t−1 and t are the same as from t−S−1 and t−S.

43If βXit is modeled to contain an additively separable age-dependent part as in our example above,
∆Xit−Sβ would contain df(age)

dt (to be eliminated by taking the Difference in Differences).
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This is satisfied if ∆Xt|Dt is stationary of order one.
Provided (I− αG)−1 is invertible we can use the property that (I− αG)−1 =∑∞

s=0 αsGs44, the general impact of a local treatment is:

DiD = δ1Dt(I + αG + α2G2 + α3G3 + ...)(29)

which completes the proof.

Discussion of the assumptions used:

1. E[εt|Dt] = 0

2. α is smaller than the norm of the inverse of the largest eigenvalue of G. A regularity
condition to ensures that the expression (I− αG)−1 = ∑∞

s=0 αsGs is well defined.

3. I assumed the network to be stable over time and used it’s earlier state as control
observation. Formally this is written as G`,t = G`,t−1 = G and Gc,t = G`,t−S = G.
This assumption could be relaxed, but only at the expense of strengthening the
following assumption.

4. ∆t(E[X|D])−∆t−S(E[X|D]), which means that the expected changes of the pages
between t−1 and t are the same as from t−S−1 and t−S45. This is the analogue
of the well known common trends assumption.

5. SUTVA on the level of subnetworks: the non-treated subnetwork is not affected by
treatment of the treated subnetwork. In the present context SUTVA holds for my
placebo condition and, given the size of the Wikipedia network, it is also plausibly
satisfied for the control group formed by a remote part of the network.

The proof for the control group consisting of remote nodes is analogous. It relaxes the
third assumption and requires a more general formulation of the fourth. The qualitative
meaning of the generalized assumption will be the same: Absent treatment the treated
network and the control network must “evolve in the same way.” To be more precise, the
link formation and the way in which the characteristics of the nodes change over time
have to be the same (common trends) in both networks in order to guarantee that the
counterfactual outcome of the treated network can be inferred from its own past and the
evolution in the control network.46 However, I have to maintain the assumption that
the network formation process is not affected by the treatment. If this is the case, all

44G is invertible if α < 1 (Bramoullé et al. (2009)) and the infinite sum is well defined if α is smaller
than the norm of the inverse of the largest eigenvalue of G (Ballester et al. (2006)).

45Particularly, any time trends or other dynamics, is to be eliminated by the Differences in Differences,
if df(age)

dt is the same evaluated at t-S and at t.
46The derivations require a lot of notational overhead and the resulting conditions are quite unwieldy.

Assumption 4 would refer not only to ∆X, but to ∆GX, in order to allow for relaxing Assumption 3.
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estimates of indirect treatment effects, will reflect a sum of the treatment on the existing
network and new spillovers due to the changes in the link network (cf. Comola and Prina
(2013)), which will lead to upward biases if not accounted for.

B.3.1 Estimating α: Analysis on the Node Level

Above we have shown what is measured by the Difference in Differences. From now on
I shall refer to a node in the control condition by c and to a node in the treated condition
by `. Hence let us recollect that, if Dt denotes the vector of treatments which is 1 at the
treated nodes and 0 otherwise, estimation of the difference in differences identifies:

DiD = δ1Dt(I + αG + α2G2 + α3G3 + ...)(30)

When taking the analysis back from the level of treated networks and look at the nodes
individually it is worth noting that for each focal node j its own row in this set of
equations is all that matters. To simplify this analysis I will now begin to use the local
treatment assumption, which exploits the fact that only a single node in the network is
treated. This is like a partial population treatment Moffitt (2001) with only one single
node (a mini population) being treated.

Local Treatment Assumption: Under the local treatment assumption Dt = ei,
where ei is an elementary vector with node i being the only treated node.

Node that if only one node is treated, the spillover dynamic is greatly simplified. With
D = ei the only factor to be evaluated for each node is its corresponding ji element in
the matrix G, G2 and it’s higher orders.

The information that’s contained in the higher orders of the adjacency matrix G will
be the same as the information from the sampling strategy in combination with knowing
who was affected by the local treatment. Some nodes (L0) are known to be directly
treated, and some (L1) have a direct link so that the entry in G that links them to
the treated node is positive. However, for those who only have an indirect link, the
corresponding entry in G takes the value 0 and only the relevant element of G2 will be
greater than 0.

If only one node in the network is treated, we distinguish a shocked node `0 ∈ L0, a
neighbor `1 ∈ L1 and the indirect neighbors (2 clicks away, 3 clicks away etc.) as follows:

`0 : DiD0 = δ1(1 + 0 + α2G2
ii + α3G3

ii + ...)

`1 : DiD1 = δ1(0 + αGij + α2G2
ij + α3G3

ij + ...)(31)

`2 : DiD2 = δ1(0 + 0 + α2G2
ik + α3G3

ik + ...)

etc.
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Differentiating the nodes with respect to their distance from `0 and estimating these
strata separately results in as many estimation equations as can reasonably be traced
and two parameters to be estimated. This fact is the basic idea of this paper, because it
enables the researcher to back out the estimates for the structural parameters α and δ1.
All that is needed is a sequence of reduced form Differences in Differences estimates for
increasingly large link-distances. If the precise information on G and its higher orders is
available the parameters can be directly estimated.47 If not, it is possible to compute an
upper and a lower bound for the parameters α and δ1. In the next subsection I proceed
to show how the boundary estimates can be computed.

B.4 Estimating Bounds for the Parameters of Interest

If the researcher lacks information on G it is possible to compute an upper and a
lower bound for the parameters α, the parameter that accounts for the social effect or
spillover, and δ1, the treatment effect (net of spillovers). This is useful, since the precise
information on G is often not easy to obtain or computing its higher orders might confront
the researcher with substantial computational challenges. In what follows I will show how
to obtain these bounds. In Subsection B.4.1, I will give and intuitive account underlying
the bounds and in Subsection B.4.2, I will set up the preliminaries, including a Lemma
that will be used for obtaining both bounds. Subsection B.4.3 obtains the upper bound
and Subsection B.4.4, finally, provides the proof for the lower bound.

B.4.1 Intuition for obtaining Bounds

The goal in this section is to back out a lower and an upper bound estimate for α and
δ1, that is based only on the estimated DiD’s and the number of nodes. In my proofs I
use the local treatment assumption (only one individual in the network is treated), for
both ease of notation and understanding, which applies to “today’s featured articles”.48

To see why we can bound the parameter, even without knowing the details of the
network structure, we can select two ‘specific ‘extreme” types of networks which either
minimize or maximize the higher order effects. For greater convenience, I repeat the
illustration of such networks in Figure 8. The network that minimizes higher order
spillovers is a directed network with only “outward bound” links from `0 to `1 ∈ L1 49.
This implies no links between the nodes in L1 and will serve as upper bound.

47To do this use all the ij values that correspond to each individual focal node j as weights for α, α2,
α3, etc. and minimize a quadratic loss function. Unfortunately I cannot show this here, because the full
matrix G formed by the German Wikipedia is too large to be computed in memory.

48I conjecture that extending the proof to partial population or randomized treatments will be straight
forward. It merely means taking into account that more than one node gets treated and that the effects
from the treated can also spill to the other treated, which will render the formulas quite unwieldy.

49and possibly further on to `2 ∈ L2, `3 ∈ L3 and so on.
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Figure 8: Schematic representation of the two extreme networks, used to compute the
upper and lower bound estimates of the parameters of interest.

Network A (outbound) Network B (fully connected)

Notes: The “ outbound network” (left) is used to obtain the upper bound estimate. It is a directed network with
only “outward bound” links. Holding the number of nodes and the observed ITEs fixed, the social parameter
will be estimated to be largest in this type of network. The fully connected network (right), is the benchmark
case from which the lower bound of the social parameter can be estimated.

The opposite type of network is a network, where every node is the direct neighbor of
every one of its peers50. Considering the fully connected network is useful for two reasons:
First, the fully linked structure implies that there are only tow types of nodes (treated
or not) and that higher order spillovers are the same for every node of the same type.
Second, given α and N , the fully connected network has the greatest second and higher
order spillovers. Every node affects every other node via a direct link and everybody will
get second and higher round spillovers from every other node. This allows to derive a
closed form solution for the lower bounds of the relevant parameters.

B.4.2 Preliminaries

Before I proceed to characterize the bounds of the coefficient, it is useful to point out a
fact that will be important in the argument that follows. First, note that the formulas in
equation 31 can be rewritten without explicit characterization of the higher order spills:

DiD0 = δ1 +HO`0(32)

DiD1 = α

NP`1
δ1 +HO`1(33)

where HO`0 = δ1(α2G2
ii+α3G3

ii+ ...) and HO`1 = δ1(α2G2
ij+α3G3

ij+ ...). These effects
typically depend on the underlying network of peers and need to take into account the
network structure. However, I can use a simple insight concerning the size of the higher

50I will sometimes refer to this network as “classroom” network
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order effects.

Lemma 1 Given the total effect, larger higher order effects, imply smaller coefficients,
i.e. for DiD0 > DiD1 > HOB > HOA ≥ 0: for any HOA < HOB, αA > αB and
δA1 > δB1 .51

Proof. We have to make the following two comparisons:

DiD0 = δA1 +HOA vs. DiD0 = δB1 +HOB

DiD1 = αA

NP`1
δA1 +HOA vs. DiD1 = αB

NP`1
δB1 +HOB

This can be transformed as follows:

δA1 = DiD0 −HOA vs. δB1 = DiD0 −HOB(34)

αA = (DiD1 −HOA)
δA1

NP`1 vs. αB = (DiD1 −HOB)
δB1

NP`1(35)

From equation 34 it is immediately obvious that HOA < HOB implies δA1 > δB1 . For
comparing α substitute the corresponding δ1 from 34 into 35, define HOA := HOB − ε
(for ε > 0) and rewrite equation 35 as

αA = a

b
NP`1 vs. αB = a− ε

b− ε
NP`1(36)

defining a = (DiD1 −HOA) and b = DiD0 −HOA. Comparing αA vs. αB is equivalent
to comparing a

b
vs. a−ε

b−ε . Since we have a, b, ε > 0, ε < b and ε < a:

a

b
− a− ε
b− ε

> 0 ⇔ a(b− ε)− b(a− ε) > 0

⇔ aε < bε

⇔b.A. a < b

The last inequality holds by the initial assumptions, which completes the proof.
With this lemma in hand we can now proceed to derive benchmarks (upper and lower

bound estimates) for the parameters of interest.
51Note that the requirement DiD1 > HOB has bite, since it implies α < 0.5. This assumption need

not be satisfied in all applications, but it applies well to settings where the spills dissipate quickly and to
settings where the direct effect on the treated is much larger than on the neighbors (DiD0 >> DiD1).
This is the case in most applications and certainly so in the present one.
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B.4.3 Upper Bound: Network without higher order spillovers.

In the “outbound” network higher order spills back to the originating nodes do not
exist52: HO`0 and HO`1 would be 0. This is equivalent to assuming:

(37) DiD =b.A. δ1Dt(I + αG + 0 + 0 + ...)

which is equivalent to having53:

DiD0 = δ1 for treated L0− nodes(38)

DiD2 = 0 for L2

...analogously for L3 and higher

By Lemma 1 this assumption leads to an upper bound of both the coefficients If all effects
are of the same sign and DiD0 > DiD1 > HO > 0.54 The difference in differences for a
node `1 ∈ L155 would simply reduce to:

DID1 = α

NP`1
δ1(39)

A consistent estimator of δ1 and the observed difference in difference will be enough to
estimate α. In the “outbound network”, we can obtain such an estimate from applying
the the Difference in Differences estimator on the level of directly treated nodes and then
move on to estimate α:

δ̂1 = D̂iD0 = ∆̂`0− ∆̂c0(40)

α̂ = D̂iD1

D̂iD0
NP`1

• ∆̂`0 := 1
NP`0

∗∑
i(yi,`0,t=0 − yi,`0,t=1)

• ∆̂c0 := 1
NPc0

∗∑
i(yi,c0,t=0 − yi,c0,t=1)

with the definition of D̂iD1 and the underlying ∆̂`1 and ∆̂c1 paralleling the definition
of ∆̂`0 and ∆̂c0.
Discussion: The assumption in equation 37 implies no “multiplication-effects” or

52Admittedly, in such a network, endogeneity would not be a problem in the first place.
53D`0 denotes the value of D at the central node, that is related to the focal node.
54DiD0 (DiD1) denotes the Difference in Differences for treated nodes (neighbors). For the reverse

relationships (DiD0 < DiD1 < HO < 0) the estimate based on assuming an “outward bound” network
gives a lower bound, if the effects go in opposite directions, my claims do not necessarily hold and will
have to verified by the researcher. Slightly more involved assumptions will be needed.

55Which corresponds to an Indirect Treatment Effect or an “Externality”
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“feedback-loops” between the nodes.56 In the light of the formalization presented here,
this is a strong assumption. However, in the impact evaluation literature with fixed and
stable classroom sizes or villages, this assumption is almost taken implicitely, whenever
the researchers report merely the ATE and ITEs. (cf. Angelucci and De Giorgi (2009),
Carmi et al. (2012), Dahl et al. (2012), etc. etc.).

Having said that, the upper bound estimator is quite suitable if higher order spillovers
are negligible. In what follows I compute the lower bound estimates under the assumption
of maximal higher order spillovers. This will give a sense of the maximal size of the bias
that might result from assuming away the higher order complexities of a network.

B.4.4 Lower Bound: Network with maximum higher order spillovers.

In this subsection I derive the lower bound estimates under the assumption of a
fully connected network. Formally, consider the matrix G, that corresponds to a fully
connected network:

G =



0 1
N−1

1
N−1 ... 1

N−1
1

N−1 0 1
N−1 ... 1

N−1
1

N−1
1

N−1 0 ... 1
N−1

. . . .

. . . .
1

N−1
1

N−1
1

N−1 ... 0


First, observe that all nodes are direct neighbors, i.e. NP`0 = NP`1 = NP` = N − 1.
Next, note that there are only two types of nodes: Directly treated nodes and neighbors.
Let us now characterize the higher order spillovers that arrive at the treated node. From
equation 31 we know that the spillovers that arrive at a node in L0 are given by:

`0 : DiD0 = δ1(1 + 0 + α2G2
ii + α3G3

ii + ...)

The formula above points out that no spillovers of order 1 arrive at the treated node, since
i does not link on to himself.57 But in a network characterized by G, (and maintaining
local treatment) the second order spillovers arrive from every neighbor, i.e. NP` times,
third order spillovers arrive (N − 1)2 − (N − 1) times etc.58 The number of channels for

56Neglecting higher-order spillovers is like implicitely introducing a temporal structure where a spillover
takes time to occur and taking a snapshot after the first order effect. This is possible if, for example,
spillovers are slow or if the temporal structure of the available data is fine grained enough.

57Note that this is precisely the point where the local treatment assumption is most useful, because
had we treated T > 1 nodes, then we would have to count T-1 direct spillovers that arrive at i, which
obviously would render the following considerations less tractable.

58Counting the number of channels for third and higher order spillovers is a matter of combinatorics:
The number of channels for higher order increases at an almost exponential rate, leading to potentially
very large effects, that are moderated only by the decrease of the primary effects during transmission.

55



spillovers of order S is given by:

#channelsii,S = (N − 1)S−1 − (N − 1)S−2 + (N − 1)S−3 + ...

=
S−1∑
s=1

(N − 1)s(−1)(S−1)−s S ≥ 2

The sum of second and higher order spillovers arriving at the treated node is:

HOii =
inf∑
S=2

δ1
αS

(N − 1)S#channelsii,S

=
inf∑
S=2

δ1
αS

(N − 1)S
S−1∑
s=1

(N − 1)s(−1)(S−1)−s

All non-treated neighbors are the same and the number of channels for spillovers of
order S from node i to node j is computed almost59 in the same way:

#channelsij,S = (N − 1)S−1 − (N − 1)S−2 + (N − 1)S−3 + ...

=
S−1∑
s=0

(N − 1)s(−1)(S−1)−s S ≥ 2

Again the sum of second and higher order spillovers at the neighboring nodes is:

HOij =
inf∑
S=2

δ1
αS

(N − 1)S#channelsij,S(41)

=
inf∑
S=2

δ1
αS

(N − 1)S
S−1∑
s=0

(N − 1)s(−1)(S−1)−s

Before we can move on to derive the lower bound estimates, note that we have∑S−1
s=1 (N − 1)s(−1)(S−1)−s < (N − 1)S−1 which will be a convenient fact for simplify-

ing the estimation of the lower bound.

HOii =
inf∑
S=2

δ1
αS

(N − 1)S
S−1∑
s=1

(N − 1)s(−1)(S−1)−s <(42)

<
inf∑
S=2

αS

(N − 1)S (N − 1)S−1 =

= 1
(N − 1)

inf∑
S=2

αS = α2

(N − 1)
1

1− α

Let us call this expression HOii. Analogously we obtain HOij = α2

(N−1)
1

1−α . These
values can now be used in the equations 32 and 33 from above (and rewritten here for

59s now starts at 0.
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convenience):

DiD0 = δ1 +HO`0

DiD1 = α

NP`1
δ1 +HO`1

With lemma 1 in hand we can plug in the upper bounds that we derived for higher
order effects in a fully connected network to back out the lower bounds of the coefficients
α and δ1, which are characterized by the following two equations.

DiD0 = δ̂1 +HO`0(43)

DiD1 = α̂

NP`1
δ̂1 +HO`1(44)

It is somewhat tedious, but straight forward to show, that solving this system of
equations results in a quadratic equation for α̂:

(45) α̂2 − [DiD0

DiD1
+ (N − 1)]α̂ + (N − 1) = 0

The closed form solution for α̂ is hence given by:

(46) α̂1/2 = 1
2[DiD0

DiD1
+ (N − 1)] + /−

√
1
4[DiD0

DiD1
+ (N − 1)]2 − (N − 1)

It is easy to see that under weak regularity conditions60 one solution is above 1 and
another one between 0 and 1. The latter one is the solution for α̂ and it can easily be
used to retrieve δ̂1 from equation 32

Discussion: Note that this closed form solution requires only the number of nodes,
and the two estimates from the Difference in Differences (for treated nodes and neighbors).
It can be computed when nothing is known about the network, except how many agents
and who was treated. It is thus as readily available as the upper bound estimators.

Clearly, one would immediately wish for more61. Also, having more information about
the network structure or even the link strength between nodes is certainly desirable and,
generally, will allow for more interesting additional results. Finally, while the proof here
advantageously uses the local treatment assumption, I conjecture, that it is straightfor-
ward to extend it to treatments of more than one node.

60DiD0 > DiD1, which is to be expected for most treatments and follows from α < 0.5 and N > 1
61Note that if there is reason to believe that α is greater than 0.5 an analogue of Lemma 1 that relaxes

my assumption of α < 0.5 is required.
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C Aside: Reaction to treatment of the neighbor

Everything above was derived under the assumption that nodes do not observe or
at least do not react to the local treatment of their neighbors. This is appropriate
for neighbors of Wikipedia articles that get advertised on the start page.62 In general
however, subjects might observe treatment of their neighbors and react to the fact.

An example are children at school, who get annoyed or jealous when their peer was
treated in a nice way and they were not.63 In such situations the students/villagers might
react to merely observing the treatment of their neighbors by selecting a different value for
the outcome variable. To model such a situation we need to further augment the model
in equation 18 by both the observable treatments (shocks) that are locally applied, and
a term that captures the possible reaction to the treatment of the neighbor.

(47) yit = α

∑
j∈Pit

yjt
NPit

+Xitβ + γ

∑
j∈Pit

Xjt

NPit

+ δ1Dit + δ2

∑
j∈Pit

Djt

NPit

+ εit

Where δ1 measures the direct treatment effect and the new coefficient δ2 measures
reactions of the node, when it “observes” treatment of one (or several) of its peers. Con-
sider again two connected nodes, where one is treated (`0) in period t and the neighbors
are not treated (`1 ∈ L1). Assume for simplicity that `0 is the only treated node in `1’s
neighborhood. Similarly, but different, we have:

(48) `0 :: y`0t = α

∑
j∈P`0t

yjt
NP`0t

+X`0tβ + γ

∑
j∈P`0t

Xjt

NP`0t

+ δ11 + δ2

∑
j∈P`0t

0
NP`0t

+ ε`0t

(49)

`1 ∈ L1 :: y`1t = α
y`0t + ∑

j∈P`1t/`0 yjt

NP`1t

+X`1tβ+γ
∑
j∈P`1t

Xjt

NP`1t

+δ10+δ2
1 + ∑

j∈P`1t/`0 Djt

NP`1t

+ε`1t

Now we get two types of spillover effects in this model: First the “pure spillover”
α, due to the effect of treatment on the outcome of `0. But second, also the “behavior
change” of the node, δ2, when it “observes” treatment of its peer kicks in.

Applying a Difference in Differences strategy alone will measure the joint effect of these
two “spillovers”. It will not identify α seperately, unless δ2 is believed to be 0. If this
assumption is not warranted only the total “treatment-of-peer”-effect can be measured.
Depending on the application we might care about the effect of treatments, in which case
this aggregate effect will be interesting. It is simply important to be aware that it is not
possible to identify the pure spillover effect in such a setting.

62For two reasons: (i) Wikipedia articles cannot react and (ii) the advertisement is not associated with
any changes in the real world, so there is no reason for any updates.

63Other examples entail economic agents in a village, who observe that their neighbor was refused a
social service for failure to comply with a requirement (e.g. sending their kids to school) or commuters
in a city, who observe when their friends got caught (after the local transport authority increased the
frequency of controls and the punishment for failure to present a valid ticket).
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