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ABSTRACT
We propose a graph-based semantic model for representing
document content. Our method relies on the use of a se-
mantic network, namely the DBpedia knowledge base, for
acquiring fine-grained information about entities and their
semantic relations, thus resulting in a knowledge-rich docu-
ment model. We demonstrate the benefits of these semantic
representations in two tasks: entity ranking and comput-
ing document semantic similarity. To this end, we couple
DBpedia’s structure with an information-theoretic measure
of concept association, based on its explicit semantic rela-
tions, and compute semantic similarity using a Graph Edit
Distance based measure, which finds the optimal match-
ing between the documents’ entities using the Hungarian
method. Experimental results show that our general model
outperforms baselines built on top of traditional methods,
and achieves a performance close to that of highly special-
ized methods that have been tuned to these specific tasks.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.2.4 [Artificial Intelligence]: Se-
mantic Networks; I.2.7 [Artificial Intelligence]: Natural
Language Processing

Keywords
Document modeling; Semantic network mining; DBpedia;
Entity relatedness; Document semantic similarity.

1. INTRODUCTION
Recent years have seen a great deal of work on develop-

ing wide-coverage semantic technologies and methods em-
bedding semantic models within a wide spectrum of appli-
cations, crucially including end-user applications like, for
instance, question answering [16, 47], document search [14]
and web-search results clustering [34]. Complementary to
this trend, many research efforts have concentrated on the
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automatic acquisition of machine-readable knowledge on a
large scale by mining large repositories of textual data such
as the Web [2, 9] (inter alia), and exploiting collaboratively-
constructed resources [40, 36, 21, 25]. As a result of this, re-
cent years have seen a remarkable renaissance of knowledge-
rich approaches for many different Natural Language Pro-
cessing (NLP) and Information Retrieval (IR) tasks [27].

But while recent research trends indicate that semantic
information and knowledge-rich approaches can be used ef-
fectively for high-end IR and NLP tasks, much still remains
to be done in order to effectively exploit these rich models
and further advance the state of the art in these fields. Most
of the approaches which draw upon document representa-
tions, in fact, rely solely on morpho-syntactic information
by means of ‘flat’ meaning representations like vector space
models [44]. Although more sophisticated models have been
proposed – including conceptual [17] and grounded [8] vector
spaces – these still do not exploit the relational knowledge
and network structure encoded within wide-coverage knowl-
edge bases such as YAGO [25] or DBpedia [6].

In this paper, we aim at overcoming these issues by means
of a knowledge-rich method to represent documents in the
Web of Linked Data. Key to our approach is the combina-
tion of a fine-grained relation vocabulary with information-
theoretic measures of concept associativity to produce a
graph-based interpretation of texts leveraging large amounts
of structured knowledge, i.e., disambiguated entities and ex-
plicit semantic relations, encoded within DBpedia. Our con-
tributions are as follows:

• We propose a graph-based document model and present
a method to produce structured representations of texts
that combine disambiguated entities with fine-grained se-
mantic relations;

• We present a variety of information-theoretic measures
to weight different semantic relations within an ontology,
and automatically quantify their degree of relevance with
respect to the concepts they connect. Edges in the seman-
tic graphs are thus weighted so as to capture the degree of
associativity between concepts, as well as their different
levels of specificity;

• We evaluate our model using two highly relevant tasks,
namely entity ranking and computing document similar-
ity. We show that our approach not only outperforms
standard baselines relying on traditional, i.e., ‘flat’, doc-
ument representations, but also produces results close to
those of highly specialized methods that have been par-
ticularly tuned to the respective tasks.
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• We develop a new measure, based on graph edit distance
techniques, in order to compute document similarity us-
ing our semantic graphs. Our approach views comput-
ing semantic distances within an ontology as a concept
matching problem, and uses the Hungarian method for
solving this combinatorial optimization problem.

As a result of this, we are able to provide a complete frame-
work where documents are semantified by linking them to
a reference knowledge base, and subgraphs of the knowl-
edge resource are used for complex language understanding
tasks like entity ranking and document semantic similarity.
Results on entity ranking show that our weighting scheme
helps us better estimate entity relatedness when compared
with using simple, unweighted paths. Moreover, by comple-
menting large amounts of knowledge with structured text
representations we are able to achieve a robust performance
on the task of computing document semantic similarity, thus
competing with ‘flat’ approaches based on either word or
conceptual vector spaces, while at the same time providing
a general, de-facto parameter-free model.

2. MODELING DOCUMENT CONTENT
WITH ONTOLOGY-BASED GRAPHS

We present our method to generate structured representa-
tions of textual content using DBpedia as the backend ontol-
ogy. To this end, we opt for graph-based methods since: (i)
they are general in nature, and can be used with any knowl-
edge graph, i.e., a knowledge resource that can be viewed as
a graph, regardless of its specific vocabulary; (ii) they have
been shown to be effective for language understanding tasks
when combined with labeled and unlabeled resources (cf.,
e.g., [36, 26]). In the following, we first briefly introduce
DBpedia, the resource used in our methodology, in Section
2.1. Sections 2.2 through 2.3 illustrate instead the main
phases of our approach.

2.1 DBpedia
Our approach relies on the information and structure en-

coded within an underlying knowledge base. In this work, we
opt for DBpedia [6], since it provides a wide-coverage knowl-
edge base with many (i.e., more than 1000) fine-grained
explicit semantic relations between entities. However, our
method can be also used with any other lexical or ontolog-
ical resource, e.g. YAGO [25], provided it can be cast as a
knowledge graph containing disambiguated entities and ex-
plicit semantic relations.

DBpedia is a community effort to extract structured infor-
mation from Wikipedia and make this information available
on the Web as a full-fledged ontology. The key idea behind
DBpedia is to parse infoboxes, namely property-summarizing
tables found within Wikipedia pages, in order to automati-
cally acquire properties and relations about a large amount
of entities. These are further embedded within an ontol-
ogy based on Semantic Web formalisms like: i) representing
data on the basis of the best practices of linked data [5]; ii)
encoding semantic relations using the resource description
framework (RDF), a generic graph-based data model for de-
scribing objects and their relationships. In the following,
we refer to RDF triples in DBpedia consisting of a subject,
predicate and object as a directed relation from Subj to Obj ,
connected by the labeled relation Pred .

Naturally, we can view DBpedia as a graph, whose nodes
are entities and edges capture explicit semantic relations be-
tween them. For instance, an entity like “Bob Dylan” is
connected in DBpedia to other entities by means of state-
ments such as db:Bob_Dylan rdf:type dbo:MusicalArtist

or db:Bob_Dylan dbo:genre db:Folk_rock, and so on1. We
now show how we can use this structure to produce graph-
based representations from an input consisting of sets of
entities such as those mentioned in natural language texts.

2.2 Semantic graph construction
Let Cdb be the full set of DBpedia’s concepts and entities2

and C an arbitrary subset of it, given as input – e.g., the
set of entities mentioned within a document. In the first
phase of our methodology, we create from the set of input
entities a labeled, directed graph G = (V,E) containing i)
the entities themselves, ii) their semantic relations, as well as
iii) any additional entity that is related to any of the input
ones by means of some relation in the ontology. That is,
C ⊆ V ⊆ Cdb and E ⊆ V ×R×V , where r ∈ R is a semantic
relation found in DBpedia, e.g., rdf:type, dbo:birthDate
or dbp:genre (we do not make any distinction between A-
box and T-box statements, since we remain agnostic as to
the specific vocabulary used by our underlying resource).
Additionally, we want to associate a weight w with each edge
(vi, r, vj) ∈ E, in order to capture the degree of associativity
between the source and target nodes – i.e., how strongly
related the two corresponding entities are.

To produce our semantic graphs, we start with a set of
input entities C and create a labeled directed graph G =
(V,E) as follows: a) first, we define the set of nodes V of G
to be made up of all input concepts, that is, we set V := C;
b) next, we connect the nodes in V based on the paths found
between them in DBpedia. Nodes in V are expanded into a
graph by performing a depth-first search along the DBpedia
graph and successively adding all outgoing relations3 r, thus
adding all simple directed paths v, v1, . . . , vk, v

′ of maximal
length L that connect them to G, i.e., V := V ∪{v1, . . . , vk},
E := E∪{(v, r1, v1), . . . , (vk, rk, v

′)}. As a result, we obtain
a sub-graph of DBpedia containing the initial concepts, to-
gether with all edges and intermediate concepts found along
all paths of maximal length L that connect them. In this
work, we set L = 2 following a large body of evidence from
previous related work [36, 28].

Figure 1 illustrates an example of a semantic graph gener-
ated from the set of entities { db:Bob_Dylan, db:Monterey_
Country_Fairgrounds, db:Mozambique_(Song), db:Johnny_
Cash }, e.g. as found within the sentence “Dylan played
Mozambique at Monterey right before Cash”. Starting from
these seed entities, we perform a depth-first search to add
relevant intermediates concepts and relations to G (e.g.,
foaf:Person or db:Folk_music). As a result of this, we ob-
tain a semantically-rich graph: additional nodes and edges
provide us with a rich structured context, in which the ini-
tial concepts are now connected by a variety of entities and
explicit semantic relations.

1We abbreviate URI namespaces with common prefixes, see
http://prefix.cc for details.
2Hereafter, we use concept and entity interchangeably to
refer to resources of the knowledge base, i.e., DBpedia URIs.
3We filter out any administrative information and data using
a list of stop-URIs provided by [28] and extended by us.
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db:Bob Dylan 

db:Mozambique (Song) 

db:Johnny Cash 

db:Monterey 
Country Fairgrounds 

dbo:associatedBand 

db:Monterey Pop Festival 

dbp:location 

dbo:artist 
db:American folk music 

dbp:genre 

foaf:Person 

dbo:genre 

db:Folk music 

dbo:stylisticOrigin 
db:Desire (Bob Dylan album) 

dbo:album 

dbo:MusicalArtist rdf:type rdf:type 

Figure 1: Sample semantic graph.

2.3 Semantic relation weighting
So far, our method simply connected a set of input enti-

ties by traversing the DBpedia graph – i.e., similar in spirit
to graph-based approaches to Word Sense Disambiguation
using lexical resources [36]. However, in contrast to lexi-
cal resources like WordNet, our backend ontology contains
many different, fine-grained semantic relations: accordingly,
not all relations are equally informative and questions arise
about what kind of information to take into account when
building the semantic graphs. For instance, in our exam-
ple there exists multiple paths between the source nodes
db:Bob_Dylan and db:Johnny_Cash, due to the typical high
density of the DBpedia graph. Connecting paths, however,
include highly informative relations (e.g., the two entities
being linked directly via dbo:associatedBand), as well as
generic ones (both being entities of rdf:type foaf:Person),
which tend to apply to a very large amount of entities (i.e.,
all persons in DBpedia) and thus carry low discriminative
power – e.g., in order to identify relations useful for comput-
ing semantic similarity (see Section 4). But while previous
work [28] restricted the semantic relations used to build se-
mantic graphs to a small, manually-selected set, we opt here
instead for an automatic approach based on relation-specific
edge weighting. This is because, while a manual approach
ensures overall good quality, it does not scale and needs to
be tuned for every knowledge base in turn. Consequently,
we extend our semantic graphs by weighting their edges.
Weights are meant to capture the degree of associativity be-
tween concepts in the graph – i.e., the degree of relevance of
an edge (i.e., semantic relation) for the entities it connects.
The key idea underlying our weighting is to reward, for a
given source node, those edges and target nodes that are
most specific to it. At the core of our edge weighting lies
the notion of Information Content (IC ):

ICXPred (ωPred) = − log (P (ωPred)) ,

where P (ωPred) is the probability that the random variable
XPred describing the type of edge, i.e. a specific semantic
relation, shows the outcome ωPred . This measure makes the
assumption that specificity is a good proxy for relevance –
cf., for instance the rdf:type vs. dbo:associatedBand pred-
icates. We can compute these IC values for all types of pred-
icates, as we have the full DBpedia graph available and can
query for all potential realizations of the random variable
XPred. In our example, an edge labeled with rdf:type will
accordingly get an IC which is comparably lower than, say,
one labeled with dbo:associatedBand.

Joint Information Content (jointIC). While the Infor-
mation Content of semantic relations provides us with a
way to distinguish general vs. specific connections, it only
covers the a-priori specificity of an edge, i.e., regardless
of the entities it actually connects. However, as shown
in Figure 1, the same type of edge, e.g. rdf:type, can
lead to very general concepts with low discriminative power
(foaf:Person), but also to very informative (because rare)
ones, like dbo:MusicalArtist, which do, in fact, provide
valuable information. We capture this by adding the con-
ditional information content IC (ωObj |ωPred) to our weight-
ing scheme, which accounts for the concept the predicate is
pointing to, given that the edge has already been observed.
Formally, given an edge e = (Subj ,Pred ,Obj ) we compute
the information content of the joint probability distribution,
IC (ωPred , ωObj ), which we take as our weighting function:

wjointIC (e) = IC (ωPred) + IC (ωObj |ωPred) .

In our example, the rdf:type edge leading to dbo:Musical

Artist accordingly receives a much higher weight than that
pointing to the far more generic foaf:Person.

Combined Information Content (combIC). Joint in-
formation content, although taking into account predicate
and object specificity at the same time, can nevertheless
penalize infrequent objects that occur with infrequent pred-
icates – e.g., db:American_folk_music being overall very
infrequent, but getting a high probability (and, hence, a low
IC ) when occurring conditional on dbo:genre. We propose
to mitigate this problem by computing the joint information
content while making an independence assumption between
the predicated and the object. The resulting weights are
then computed as the sum of the Information Content of
the predicate and the object:

wcombIC (e) = IC (ωPred) + IC (ωObj ) .

Information Content and Pointwise Mutual Infor-
mation (IC+PMI). An alternative way to compute the
strength of association between the predicate and the ob-
ject is by means of Pointwise Mutual Information (PMI):

PMI (ωPred , ωObj ) = log
P (ωPred , ωObj )

P (ωPred)P (ωObj )
.

PMI measures the mutual dependence between the two vari-
able outcomes ωPred and ωObj , and can thus be seen as a
measure of how much deviation from independence there
is between the two outcomes, i.e., the specific predicate and
object found along a DBpedia graph edge. Our hunch here is
to use PMI to find a middle ground between the assumption
of full dependence (jointIC) or independence (combIC) be-
tween predicates and objects. We additionally combine PMI
with the IC of the predicate, in order to bias our weights to-
wards less frequent, and thus more informative, predicates:

wIC+PMI (e) = IC (ωPred) + PMI (ωPred , ωObj ) .

3. GRAPH-BASED ENTITY RANKING
We present an extrinsic evaluation of the different weight-

ing schemes we developed in order to build weighted seman-
tic graphs from DBpedia. This is because semantic relation
weighting makes a contribution of its own, and it can be
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Figure 2: Entity ranking workflow.

used for a variety of tasks other than semantic graph con-
struction – e.g., RDF triple ranking [23]. Consequently, we
explore here a task-based evaluation on ranking related en-
tities [24] in a knowledge base.

Task description. Entity ranking [12] is the task of order-
ing a given set of entities on the basis of their relevance
with respect to a specific reference entity. In our case,
since we work with DBpedia as knowledge base, we take,
e.g., db:Bob_Dylan as reference and try to compute, how
strongly db:Johnny_Cash is related to it, in comparison to
db:Folk_music or db:Mozambique_(Song), and so on. This
ranking task has the advantage that it provides a focused,
extrinsic evaluation of our different weighting methods: be-
sides, there exists established gold standard datasets against
which we can compare our approach. Entity ranking can be
seen as similar in spirit to computing word relatedness [49],
except that in our setting we are given as input unambiguous
entity references, rather than potentially ambiguous words.
Besides, entity ranking also plays a key role in Entity Link-
ing (EL) [10, 29], since EL relies on estimating the degree of
relatedness between candidate entity references of different
mentions in text. That is, within a global document-level
EL approach, entity mentions can be jointly disambiguated
by maximizing their degree of semantic overlap as obtained,
for instance, from information stored within a knowledge
base – cf. AIDA [26].

Entity ranking method. We present an overview of our
approach in Figure 2. Given a reference entity ref and a
set of entities ECand (both found in DBpedia), our method
ranks these entities by performing three main steps:

1) we build a semantic graph following the procedure of Sec-
tion 2.2 using all candidate entities ECand , as well as the
reference instance as input concepts;

2) we weight graph edges by edge cost, which is defined as

c(e) = wmax − w (e) , (1)

where w(.) is any of the three weighting functions defined
in Section 2.3, and wmax is the globally highest possible
weight in the DBpedia graph for the selected weighting
function;

3) finally, we compute (weighted) semantic distances be-
tween entity pairs – i.e., the reference entity ref and each
of the entities cand in ECand in turn – as the minimum
path cost between them in our weighted graph:

distance(ref , cand) = min
p∈paths(ref ,cand)

cp(ref , cand) .

db:Duluth, 
Minnesota 

dbo:country 

db:United States 

db:Mozambique 
(Song) 

db:Bob Dylan 

dbo:album 
dbp:artist 

dbo:birthPlace 

db:Desire  
(Bob Dylan album) 

Figure 3: Example of multiple paths between enti-
ties with different semantic specificity.

Unwghtd jointIC combIC IC+PMI
Hollywood Celebr. 0.639 0.541 0.690 0.661
IT Companies 0.559 0.636 0.644 0.583
Television Series 0.529 0.595 0.643 0.602
Video Games 0.451 0.562 0.532 0.484
Chuck Norris 0.458 0.409 0.558 0.506
All 21 Entities 0.541 0.575 0.624 0.579

Table 1: Performance on the entity ranking KORE
dataset (best results are bolded).

We then rank the entity pairs increasingly by semantic
distance. Each single path cost between two entities is
calculated as the sum of the edge costs along their undi-
rected connecting path p:

cp(ref , cand) =
∑

e∈{(ref,r1,v1),...,(vk,rk,cand)}

c(e) . (2)

As a result of our method, we are able to determine the de-
gree of relatedness between two arbitrary instances within
our background knowledge base as the inverse of their se-
mantic distance. We briefly illustrate our method in Figure 3
with an example using db:Bob_Dylan and db:Mozambique_

(Song) as input entity pair. When looking at the entity
db:Bob_Dylan (the musician), we note that it is not di-
rectly connected to his song, db:Mozambique_(Song). How-
ever, thanks to the fact that DBpedia encodes very spe-
cific facts – namely i) that Bob Dylan is the main artist
of the album db:Desire_(Bob_Dylan_album), and ii) that
db:Mozambique_(Song) is a song contained in that very same
album – we are able to estimate a high degree of semantic
relatedness between the two input entities.

Note that our weighting scheme plays a crucial role in
estimating the degree of semantic overlap. If we look, for
instance, to another entity pair such as the one consist-
ing of db:Bob_Dylan and db:United_States, we note that
in DBpedia these entities are connected by a short, albeit
rather uninformative (because unspecific), path consisting of
a single intermediate entity (db:Duluth,_Minnesota). Our
weighting captures this by assigning a low weight to edges
denoting general semantic relations such as dbo:birthPlace
and dbo:country. As a result of this, we are able to rank
db:Mozambique_(Song) higher than db:United_States, al-
though both are connected to the reference entity db:Bob_

Dylan by a path of equal length.

Experimental setting and evaluation. We use the KO-
RE entity ranking dataset from Hoffart et al. [24]. The
dataset consists of 21 different reference entities from four
different domains, namely IT companies, Hollywood celebri-
ties, television series, video games, and Chuck Norris (a sin-
gleton dataset). For each ranking problem, Hoffart et al.
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Figure 4: Document semantic similarity workflow.

selected a set of 20 candidate entities, which were found
to be related with different degrees to the reference entity.
Relatedness assessments were obtained from human judges
using a crowd-sourcing approach. As an example, the entity
“Apple Inc.” (from the ‘IT Companies’ category) is paired
with, among others, the following other entities:

Reference entity Apple Inc.

Related entity Steve Jobs (1), Steve Wozniak (2), . . .
(rank) Silicon Valley (9), NeXT (10) . . .

Ford Motor Company (20)

Naturally, different entities have different degrees of relat-
edness with the concept of “Apple” as a company. “Steve
Jobs”, for instance, ranks highest, having been a key figure
of the company. In the middle range, instead, we find re-
lated companies such as “NeXT”, another company founded
by Steve Jobs (rank 10). Finally, at the end of the ranking
we find “Ford Motor Company”, which is only marginally re-
lated to “Apple”, being also an American company but from
a completely different industry.

We follow the original evaluation setting of Hoffart et al.
and compute Spearman’s rank correlation coefficient ρ for
each reference entity in turn. Overall results are then ob-
tained by averaging over all reference entities in the dataset.
We report our results in Table 1, where we compare our
different weighting schemes from Section 2.3. As baseline
we use an unweighted version of the DBpedia graph: this
amounts to computing entity relatedness simply as a func-
tion of distance in the network. Looking at the overall per-
formance of the three alternative weighting schemes for all 21
ranking tasks, we observe that combIC consistently outper-
forms the baseline and both jointIC and IC+PMI on three
domains out of four. When looking at specific domains,
jointIC does not always improve the baseline, as results for
Chuck Norris and Hollywood celebrities are actually getting
worse. Nevertheless, on average all 3 weighting methods im-
prove the baseline, with combIC, which shows an average
increase of 15.5% (statistically significant for each task at
p ≤ .001 level using a paired t-test), achieving the best re-
sults. When compared with the original results from Hoffart
et al. [24], our method achieves a performance slightly lower
than their original proposal (ρ = 0.673), while at the same
time outperforming all its approximations (ρ = 0.621 and
0.425). Overall, we take these performance figures to indi-
cate the high quality of weighted connecting paths between
entities in DBpedia. Consequently, we now take this idea
one step further and use these paths to provide a structured
representation of unstructured data, i.e. natural language

Desire, a key folk 

music album from 

the 70’s, is mostly 

known for 

Mozambique. 

Dylan played […] 

right before Cash. 

db:Desire (Bob 
Dylan album) 

dbp:artist 

db:Folk music 

dbo: 
stylisticOrigin 

db:American 
folk music 

db:The Band 

db:The Basement 
Tapes 

dbo:previous 
Work 

5.1 

db:Bob Dylan db:Johnny Cash rdf:type rdf:type foaf:Person 

dbo:artist 5.3 

dbp: 
associatedBand 

4.8 

4.7 
5.2 

1.5 1.5 

Doc B 

Doc A 

max weight 6.0 

dbp:genre 

5.1 

dbp:genre 
4.4 

Figure 5: Graph document comparison (numbers on
the graph edges indicate edge weights).

texts. We then use these graph-based semantic representa-
tions to compute semantic similarity between documents.

4. COMPUTING DOCUMENT SIMILARITY
We present an application of our semantic graphs to the

task of computing semantic similarity between texts. We
provide an overview of our approach in Figure 4. Our method
starts with the output of an entity disambiguator, which is
used to identify a set of concepts from the input texts (1).
Next, connecting paths between entities are collected, in or-
der to identify the sub-graph of DBpedia covered by each
document (2). Nodes in the semantic graph consist of con-
cepts capturing the main topics of the documents: in addi-
tion, edges in the graph are weighted to identify the semantic
relations that are most relevant for these concepts (3). Fi-
nally, we view computing semantic similarity as a matching
problem between the concepts of different documents, and
apply a Graph Edit Distance based similarity measure to
identify the ‘best’ connecting paths between the documents’
concepts (4). As a result, we are able to output the degree
of similarity of the two input documents.

4.1 Document graph construction
Given an input text document, we first semantify it by

identifying the set of concepts it contains. To this end,
words and phrases are annotated with DBpedia concepts
using a document entity linking system, e.g., DBpedia Spot-
light [32]. Given a mention and its candidate entities, the
entity linker finds its most likely meaning in context – e.g.,
like Spotlight, using a Vector Space Model (based on a bag-
of-words approach). Accordingly, given a document, we
are able to obtain a set of disambiguated entities associ-
ated with its words and phrases. In the two example doc-
uments of Figure 5, we extract, for instance, key concepts
like db:Bob_Dylan, db:Johnny_Cash and db:Desire_(Bob_

Dylan_album). We call these extracted concepts the source
nodes V d

s of a document graph Gd = (V d, Ed), V d
s ⊆ V d

representing document d. Gd is built by applying the pro-
cedure described in Section 2.2 while using V d

s as the set of
input entities.

4.2 Graph-based document similarity
Since we represent documents as weighted DBpedia sub-

graphs (Section 2), we can naturally formulate computing
document similarity as a graph matching problem. While
there exist exact graph matching algorithms, e.g. based on
graph isomorphism, we require our measure to be able to
effectively quantify degrees of similarity. Consequently, we
opt for an application of Graph Edit Distance techniques for
our specific problem.
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Graph Edit Distance (GED, [18]) is a general, inexact
graph matching method that defines the distance between
two graphs in terms of the minimum cost of edit operations
needed to transform one graph into the other. In general, a
GED measure needs to define edit cost functions for inser-
tion, deletion, and modification for both nodes and edges.
However, given our specific problem setting, we drop some of
these requirements and define only cost functions for nodes.
This is because, given a pair of semantic graphs, generated
using the method from Section 2, these actually consist of
two subgraphs of the same background model, namely DB-
pedia. As a result, no cost function over edges needs to be
defined, since an edge existing or not in one graph will also
be present or not in the other, given the fact that both doc-
ument graphs belong in fact to the same supergraph. Thus,
edit operation on edges solely cannot occur and, accordingly,
we define edge cost functions to yield zero.

We define cost operations for nodes as follows. Note that,
since we work with a well-defined ontology that represents
concepts by unique URIs, we can rely on the fact that nodes
in the DBpedia graph are unique. As a result, we do not need
to account for label mismatch between concepts – e.g., the
entity “Bob Dylan” being identified by db:Robert_Allen_

Zimmerman in a graph, and referred to as db:Bob_Dylan in
another one (or vice versa). Thus, in contrast to standard
GED approaches, we define node modifications on the basis
of the underlying edge structure, i.e., weighted distances in
the graph, as opposed, for instance, to the application of
string similarity measures like Levenshtein distance on node
labels. The modification cost between two nodes is defined,
analog to Section 3, as the sum of the edge costs along their
connecting path (cf. Equation 2). By employing our edge
cost function (Equation 1) we capture the fact that the closer
(i.e., more semantically related) two nodes are, the lower the
cost to modify one into the other is.

An exact solution to the GED problem can be found with
a tree search over all possible edit operations, which, how-
ever, is computationally intractable for any reasonably-sized
graph. In this work, we accordingly adapt an approximation
method based on bipartite graph matching for finding the
minimal edit cost [41]. This precomputes the cheapest node
modification costs for each node pair first, and stores them
into a cost matrix. Since in our case there can exist multiple
paths between two nodes (and, thus, multiple such modifica-
tion costs), we always select the cheapest node modification
operation as the cheapest connecting path. Next, the matrix
is extended with the cost for node insertion and deletion –
which we define as equal to the most expensive node modifi-
cation operation in the matrix (see below for details). Com-
puting the GED is now a bipartite graph matching problem
between the source nodes of the two graphs, with the objec-
tive of minimizing the edit cost and subject to the restriction
of a strict one-to-one matching (as every node can only be
modified exactly once). We solve this minimization problem
using the Hungarian method (also known as Kuhn-Munkres
or Munkres’ algorithm). After computing the GED, we ap-
ply a simple normalization step to eliminate the effect of
different graph, i.e., document sizes.

We summarize our approach in Algorithm 1. Given two
semantic graphs Gi and Gj , representing documents di and
dj (Section 2), we perform the following steps:

i) lines 1–9: for each pair of source nodes V i
s × V j

s we find
the cheapest undirected path pi,j with cost ci,j using Di-

Algorithm 1 Graph-based semantic similarity

Input: Document DBpedia subgraphs
Gi = (V i, Ei), Gj = (V j , Ej)

Parameter: Maximal path length nmax

1: function SubgraphDistance(Gi, Gj)
2: P ← ∅ . set of cheapest paths
3: for all (vi, vj) ∈ V i

s × V j
s from Gi, Gj do

4: if vi = vj then
5: ci,j ← 0
6: else
7: ci,j ← DijkstraCheapestPath(vi, vj)

8: P ← P ∪ {
(
pi,j , ci,j

)
}

9: cmax ← maxp∈Plength≤nmax
(cp)

10: for all (pi,j , ci,j) ∈ P do

11: if pi,jlength ≤ nmax then

12: ci,j ← ci,j/cmax

13: else
14: ci,j ← 1

15: Dm ← {di,j}i=1,...,m, j=1,...,m,m = max(|V i
s |, |V j

s |)
16: for all di,j do
17: if i ≤ j then . Be i ≥ j
18: di,j ← ci,j

19: else
20: di,j ← cmax

21: M ← HungarianCheapestMatching(Dm)
22: dist(Gi, Gj) ← (

∑
m∈M mcost)/|V i

s ∪ V j
s |

return dist(Gi, Gj)

jkstra’s algorithm (edges along the path are weighted by
one of our three measures from Section 2.3). In our ex-
ample in Figure 5, for instance, we compute the cheapest
path between db:Bob_Dylan and db:Johnny_Cash from
Doc A, and each of db:Desire_(Bob_Dylan_album) and
db:Folk_music from Doc B in turn. The highest weighted
edge, here dbo:artist, is assigned a cost of 0.7 (assum-
ing a global upper edge cost limit wmax = 6.0, Equation
1), whereas the lowest weighted edge, namely the two
rdf:type relations, are both assigned a cost of 6.0−1.5 =
4.5. Given these costs, the cheapest path between, for in-
stance, db:Johnny_Cash and db:Folk_music is the one
through db:American_folk_music. Note that, in order
to avoid long paths between very distant (and thus se-
mantically unrelated) concepts, we limit the search based
on a maximum search depth parameter nmax .

ii) lines 10–14: we next compute the node modification
costs for each pair of source nodes. For paths found ex-
ceeding the path limit nmax , we set their cost to that
of the most expensive path cmax found within the input
graph pair. Since it might not be the case that both
graphs are fully connected, we also set cmax as the cost
for unconnected source node pairs. Finally, we normalize
all cost values.

iii) lines 15–20: we build the final edit distance matrix Dm

from the previously computed modification costs, as well
as the costs of the node insertion and deletion operations,
which we set to cmax . This is to account for the fact
that, given an arbitrary document pair, the cardinality
of their sets of entities does not need to be the same: in
this case, additional nodes are treated the same as very
distant ones.
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DKPro [3] 0.21
TakeLab [45] 0.08

Cosine baseline 0.56

Table 2: Results on the LP50 dataset (Pearson r
correlation coefficient, best results are bolded).

iv) lines 21-22: the edit distance matrix Dm represents a bi-
partite matching problem, which we solve with the Hun-
garian method. This finds the optimal, cost-minimal as-
signment in our node operations matrix, while ensuring
that each node will only be edited once. We finally nor-
malize the graph edit distance costs to account for the
number of source entities in the two input documents.

As a result of the execution of the algorithm, the normal-
ized graph edit distance between Gi and Gj is returned.
In our example, we will get a mapping from db:Bob_Dylan

to db:Desire_(Bob_Dylan_album) (cost 1.3) and from db:

Johnny_Cash to db:Folk_music (cost 0.9 + 0.8). The final
similarity score is then given by the sum of these edit costs
(3.0), normalized by the number of distinct source entities
in both documents (6).

4.3 Experiments
Experimental setting. We evaluate our approach with a
benchmarking dataset for document semantic similarity, in
order to be able to compare our method against other state-
of-the-art systems. To this end, we use the LP50 dataset
[31], namely a collection of 50 news articles from the Aus-
tralian Broadcasting Corporation (ABC), which were pair-
wise annotated with similarity rating on a Likert scale from
1 (very different) to 5 (very similar) by 8 to 12 different hu-
man annotators. To obtain the final similarity judgments,
Lee et al. averaged for each pair the scores of all annota-
tors: however, the final collection of 1,225 relatedness scores
has only 67 distinct values. Consequently, Spearman’s rank
correlation is not appropriate to evaluate performance on
this data and we opt instead, following previous work, for
instance [17], for Pearson’s linear correlation coefficient (r).

Results and discussion. We report our performance fig-
ures on the LP50 dataset in Table 2, where we show the
Pearson product-moment correlation coefficient r between
the human gold standard and our graph-based approach
(GED). In order to evaluate our method across different en-
tity linking systems we test with both DBpedia Spotlight
[32] and TagMe [15], two state-of-the-art systems [10]. For
each tagger, we compute its performance with respect to dif-
ferent values for the maximum depth of the path search in

the cost computation (nmax). We compare our GED-based
method with a variety of baselines:

i) a semantically-informed baseline which computes the Jac-
card similarity coefficient over the set of entities identi-
fied within the input documents, namely sim(d1, d2) =
C1∩C2

C1∪C2 , where C1 and C2 represent the set of concepts
identified by the entity tagger (i.e., TagMe or Spotlight)
within documents d1 and d2, respectively;

ii) an unsupervised baseline computed as the cosine distance
of a standard bag-of-words Vector Space Model;

iii) two strong supervised baselines based on two publicly
available supervised systems, namely DKPro [3] and Take-
Lab [45], both trained on standard SemEval STS datasets.

In general, using our graph-based approach to document
semantic similarity we are able to beat all baselines by a
large margin, achieving a correlation coefficient of up to 0.63
(nmax = 2, using Spotlight and either combIC or IC+PMI
weighting). This is equal to a relative improvement of 16.0%
over the semantically-informed Jaccard baseline and 11.6%
over the cosine bag-of-words baseline4. The results indicate
that our method is able to always perform above the Jaccard
baseline for nmax ≤ 3, and achieves the best performance for
nmax = 2. These parameter values are indeed in-line with
the optimal ones found by previous research contributions
making use of graphs derived from Wikipedia or DBpedia
[36, 28], which also showed the benefits of mining informa-
tion from short, highly specific paths. This, in turn, makes
our model virtually parameter-free, because it implies that
we can simply set the only tunable parameter of our method,
namely the depth of the search used for concept matching,
to standard values (i.e., 2 or 3) which are known to yield
good performance across many different tasks. When look-
ing at the performance of the different weighting measures,
we see that we consistently obtain the best results using ei-
ther combIC or IC+PMI, which corroborates our previous
findings on entity ranking (Section 3). Finally, we notice
that the different baselines show large performance varia-
tions. The simple cosine baseline turns out to be a difficult
competitor – e.g., outperforming the simple Jaccard base-
lines computed from both TagMe and Spotlight annotations
– which indicates that semantifying the input texts and ap-
plying a simple entity overlap measure is not enough to yield
a robust performance. The supervised baselines, DKPro and
TakeLab, both show instead an extremely low performance
rate, although they were reported as being among the top
systems of the SemEval STS 2012 shared task. This is be-
cause both systems are supervised in nature, and thus able
to yield accurate performance only when in-domain labeled
data are available.

Next, in order to better understand the performance of
our method, we compare it in Table 3 with an unweighted
version that does not use edge weighting (i.e., all edge modi-
fications have the same cost), as well as previous results from
the literature. When computing semantic distances without
weighting i.e., using the Hungarian method for mapping, but
applied to unweighted paths only, we achieve up to r = 0.61
when using Spotlight and a maximum depth of 3 – 12.5%

4All differences in performance are statistically significant
at p < 0.05 using Fisher’s Z-value transformation unless
otherwise noted.
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r
GED-based (weighted) 0.63
GED-based (unweighted) 0.61

Bag-of-Words [31] 0.1-0.5
LSA [31] 0.60
ESA – original [17] 0.72
ESA – reimplemented [4] 0.46-0.59

Table 3: System comparison on the LP50 data.

above the semantically-informed Jaccard baseline and 8.3%
over the cosine bag-of-words baseline. This indicates the
overall robustness of our GED method, which exploits high-
quality semantic paths from DBpedia. Similar to our re-
sults on entity ranking, additional performance gains can be
achieved thanks to weighting semantic relations.

When comparing our approach to the state of the art on
this dataset we see that, while we outperform robust meth-
ods such as LSA [11], we are nevertheless not able to achieve
a performance as high as that of Explicit Semantic Analy-
sis (ESA, [17]). Our method, however, has clear advantages
over ESA in that it provides a fully unsupervised approach
that practically requires no tuning, and thus can be applied
to arbitrary data and domains with virtually no changes.
The original performance figures for ESA [17] have been crit-
icized in fact for being based on a cut-off value used to prune
the vectors being over-fitted to the LP50 data [4] – cf. also
the much lower performance obtained by re-implementations
like [4] and [22], among others. Thus, we take these figures
to be promising in that our approach to document semantic
similarity, while being based on a general document model
with many potential applications – e.g. ranking related en-
tities (cf. Section 3) – is nevertheless able to come close in
performance to a highly specialized method like ESA, which
has been tuned for this specific task and dataset.

Error analysis. In order to gain additional insights into
the performance of our method, we performed an error anal-
ysis of its output. To this end, we focused on the manual
analysis of documents deemed closest or most distant from
the human judgments. When looking at specific document
pairs, we found that our knowledge-rich approach is able to
estimate well the similarity between documents with little
or partial word overlap: connecting paths between DBpedia
entities, in fact, were found to implicitly cover a wide range
of topical associations, ranging from near-synonymity (“U.S.
intelligence” and “CIA”) all the way to metonymic relations
(“White House” and “Bush administration”). However, since
it relies only on DBpedia entities and their document men-
tions, our approach will perform badly in cases where i)
the input documents contain few or no entities, or ii) they
share the same entities, but describe different events. For
instance, our method will give a very high similarity score
to the following two sentences, although they describe com-
pletely different events: (a) Obama started his second term
in the White House; (b) Obama will soon leave the White
House. But while our approach could be extended to include
relations between entities which are automatically extracted
from text, cf. recent work on building event graphs from
documents [20], our results seem also to suggest that in the
case of text similarity we can often get away without a deep
analysis of the documents’ sentences, since entity overlap

is a good proxy for topical affinity. This is highlighted by
the following two sentences from the LP50 data, which, al-
beit very different, belong to documents which were deemed
highly similar by the annotators:

• Nigerian President Olusegun Obasanjo said he will weep
if a single mother sentenced to death by stoning for having
a child out of wedlock is killed, but added he has faith
the court system will overturn her sentence. [. . . ]

• An Islamic high court in northern Nigeria rejected an
appeal today by a single mother sentenced to be stoned
to death for having sex out of wedlock. [. . . ]

5. RELATED WORK
The recent years have seen a great deal of work on com-

puting semantic similarity [49]. This is arguably because
semantic similarity provides a valuable model of semantic
compatibility that is widely applicable to a variety of com-
plex tasks, including both pre-processing tasks like Word
Sense Disambiguation [38] and coreference resolution [39],
and high-end applications such as information retrieval [14]
or multi-document summarization [33], to name a few.

Most of the previous work on semantic similarity has con-
centrated on computing pairwise similarity of words, al-
though recent efforts concentrated on the broader task of
text similarity [4], as also shown by community efforts such
as the shared tasks on Semantic Textual Similarity [1]. Over-
all, the best results in these evaluation campaigns have been
obtained by supervised models combining large feature sets
[3, 45], although questions remain on whether this approach
can be easily ported to domains for which no labeled data
exists. In contrast, in this work we presented an unsu-
pervised model that requires virtually no parameter tuning
and exploits the implicit supervision provided by very large
amounts of structured knowledge encoded in DBpedia.

This work is, to the best of our knowledge, the first to ex-
ploit a wide-coverage ontology (i.e., other than small-scale
semantic lexicons like WordNet) within a general-purpose al-
gorithm for computing semantic similarity based on a graph-
based similarity measure. Our method effectively uses large
amounts of structured knowledge and can be used in prin-
ciple with other such resources like, e.g., YAGO [25], pro-
vided they contain explicit semantic relations. Seminal work
on representing natural language as semantic networks fo-
cused on queries [7]. Recently, graph-based representations
from DBpedia have been explored by [28] for labeling top-
ics, as obtained from a topic model, rather than providing
structured representations of arbitrary texts. In addition,
they limit graph construction to a small set of manually se-
lected DBpedia relations. The work closest to ours is that
of [42], who use graph-based representations of snippets for
Web search results clustering. Their method also builds a
document-based semantic graph from Wikipedia concepts,
as obtained from the output an entity disambiguator. How-
ever, similarly to [43], they do not exploit explicit semantic
relations between entities (which we show to be beneficial
for both entity ranking and semantic similarity).

Previous work in computing semantic distances on linked
data relied on disambiguated input [37], a requirement which
is very hard to satisfy for most applications working with
natural language text. In contrast, our approach relies on
automatic entity linking techniques, which allow us to link
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entity mentions in text to well-defined entities within an on-
tology. From a general perspective, our work can be viewed
as building upon seminal research work in IR that explored
the use of controlled vocabularies [30], originally introduced
for library systems. The proposed method can thus be seen
as instance of an advanced Knowledge Organization System
(KOS) [48, 13], since it relies at its core on a wide-coverage
ontology to represent documents. However, as opposed to
these approaches, we do not create a controlled vocabulary
for a specific document collection, but instead reuse an ex-
isting, background ontology which contains general world
knowledge. We use this knowledge source to represent the
entities found documents, as opposed to using the docu-
ments’ headings or metadata. The Jaccard similarity we
report in Section 4.3 consists, in fact, of a baseline method
that uses DBpedia as controlled vocabulary: we build upon
this intuition and extend it by using the information encoded
within the structure of the DBpedia network.

6. CONCLUSIONS
In this paper, we proposed a method for exploiting large

amounts of machine-readable knowledge, i.e., entities and
semantic relations, encoded within DBpedia, in order to pro-
vide a structured, i.e. graph-based, representation of natu-
ral language texts. Our results on entity ranking and docu-
ment semantic similarity indicate that, thanks to an effective
weighting of the semantic relations found within the seman-
tic network, as well as a robust concept matching technique,
we are able to achieve competitive performance on both
these hard NLP tasks, while at the same time providing
an unsupervised model which is practically parameter-free
– namely, whose only tunable parameter can be fixed based
on well-established findings from previous work.

This is the first proposal to exploit a Web-scale ontol-
ogy to provide structured representations of document con-
tent, and computing semantic distances in a knowledge-rich
fashion. We build thematically upon previous contribu-
tions which showed the beneficial effect of exploiting large
amounts of knowledge for enhancing text comparison [46,
35] (inter alia). In our work, we take this line of research
one step further by: (a) using a truly ontological resource
for content modeling (as opposed, e.g., to semantic lexicons
such as WordNet); (b) developing an information-theoretic
measure to identify semantically specific, highly informa-
tive relations between entities in a large knowledge graph;
(c) defining a new method, based on graph edit distance
techniques, to quantify degrees of semantic similarity be-
tween documents: this views semantic similarity as a con-
cept matching problem and uses the Hungarian method for
solving the combinatorial optimization problem.

Our vision, ultimately, is to show how entity linking and
disambiguation techniques can enable an open-domain struc-
tured representation of documents, and accordingly an even
larger Web of Semantic Data, on which semantic technolo-
gies (e.g., search) can be enabled. Accordingly, we focused
in this first initial step primarily on entities, since they are
the bulk of wide-coverage knowledge resources like DBpedia.
Clearly, extending this entity-centric model – for instance,
by means of event-structured graphs [20] or RDF predicates
[19] – is the next logical step. Besides, as future work we
plan to develop methods to jointly perform entity disam-
biguation and compute semantic similarity. We are also in-
terested in applying our techniques within domains other

than newswire data, and investigating domain adaptation
techniques for the graph construction phase. Our graphs
naturally model fine-grained information about documents:
accordingly, we will explore their application to complex,
high-end task such as aspect-oriented IR, as well as fine-
grained document classification and clustering for IR.
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