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Abstract

The work on hand deals with different topics within the theory of ligand binding.

The introductory part includes a motivation and basic definitions and presents the
mathematical model of equilibrium ligand binding theory, which is based on the Grand
Canonical Ensemble of Statistical Mechanics.

The second chapter presents an alternative derivation of the Grand Canonical Par-
tition Function based on a Markov chain model for the ligand binding dynamics of
an individual molecule. Moreover, properties of the model are discussed and briefly
compared to properties of another processes with the same stationary distribution.

Chapter 3 deals with the decoupled sites representation (DSR, Onufriev et al. (2001)),
the underlying mathematical problem and possible generalizations. Moreover, the term
“decoupled molecule” is defined and properties of decoupled molecules are discussed.

In Chapter 4, the DSR is transfered –as far as possible– to molecules binding two
different types of ligands. Furthermore, the special structure of the system of algebraic
equations which has to be solved, if a decoupled molecule shall be calculated is dis-
cussed and properties of decoupled molecules are analyzed. Moreover, algorithms to
find decoupled molecules are presented.

Chapter 5 transfers results of the algebraic theory of Chapters 3 and 4 to probability
theory and thus relates being decoupled to stochastic independence and conditional
stochastic independence of certain random variables.

Chapter 6 discusses possible interpretations of complex roots (with imaginary part
nonzero) of the binding polynomial and their connection to cooperative ligand binding.

Finally, Chapter 7 presents examples of how ligand binding theory can be used for
modeling biological regulatory processes.
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Zusammenfassung

Die vorliegende Arbeit behandelt verschiedene Themen innerhalb der Ligandenbindung-
steorie.

Der einleitende Teil beinhaltet eine Motivation und grundlegende Definitionen und
führt das mathematische Modell der Ligandenbindung im Gleichgewicht, welches auf
dem Großkanonischen Ensemble der Statistischem Mechanik beruht, ein.

Das zweite Kapitel stellt eine alternative Herleitung des Großkanonischen Ensembles
durch ein Markovkettenmodell der Bindedynamik eines einzelnen Moleküls vor. Außer-
dem werden Eigenschaften dieses Modells diskutiert und diese mit denen einer anderen
ähnlichen Markovkette mit derselben stationären Verteilung verglichen.

Kapitel 3 nimmt sich der decoupled sites representation (DSR, Onufriev et al. (2001)),
der Struktur der entsprechenden mathematischen Fragestellung und möglichen Ve-
rallgemeinerungen an. Außerdem wird der Begriff des entkoppelten (“decoupled”)
Moleküls eingeführt und Eigenschaften entkoppelter Moleküle vorgestellt.

In Kapitel 4 wird die DSR –soweit möglich– auf Moleküle mit zwei verschiedenen
Typen von Liganden übertragen. Weiterhin wird die spezielle Struktur des Systems al-
gebraischer Gleichungen, welches gelöst werden muss wenn entkoppelte Systeme gesucht
werden, diskutiert und Eigenschaften von entkoppelten Molekülen analysiert. Außer-
dem werden Algorithmen vorgestellt, die es erlauben, die erwähnten algebraischen Sys-
teme zu lösen.

Kapitel 5 überträgt die Resultate der algebraischen Theorie der beiden vorherigen
Kapitel in die Wahrscheinlichkeitstheorie und verbindet die Eigenschaft eines Moleküls
entkoppelt zu sein mit stochastischer Unabhängigkeit, bzw. bedingter stochastischer
Unabhängigkeit bestimmter Zufallsvariablen.

Kapitel 6 diskutiert mögliche Interpretationen komplexer (nicht reeller) Nullstellen
des Bindepolynoms und deren Verbindung zu kooperativem Binden des Liganden.

Abschließend stellt Kapitel 7 Beispiele vor, wie Ligandenbindungsteorie auch für die
Modellierung biologischer Regulationsprozesse benutzt werden kann.
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Preface

The work on hand presents the major part of my scientific research of my time as a
research assistant at the Institute of Mathematical Stochastics in Göttigen. The reason
for me working on the topic of ligand binding can be found in my last one and a half
years of being a student in mathematics at the University of Bayreuth. Having finished
the studies in biology, I was looking for ways to combine both disciplines. This search
brought me into contact with Prof. G. Matthias Ullmann who leads the Computational
Biochemistry Group at the University of Bayreuth. He introduced me to an unsolved
problem of ligand binding and thus, I read some theory about this topic from time
to time. At the end of my studies of mathematics, I was looking for a position as a
research assistant providing the possibility to write a PhD thesis. Luckily, I quickly
found an advertisement offering a position as a research assistant for stochastics with
applications in natural sciences, especially physics and biology. The job at the Univer-
sity of Göttingen which I applied for, was offered by Prof. Martin Schlather. I was
surprised when I read that he graduated as well at the University of Bayreuth, and
even more, when I found out that he had also written his Diploma Thesis on Robust
Statistics with Prof. Helmut Rieder as advisor. These circumstances show that this
work does not only deal with coincidence, but that it also results from it. I got the job
and was initially working on stochastic processes in population genetics (allele frequen-
cies). However, talking to Prof. Martin Schlather about my unofficial minor project of
ligand binding theory, he encouraged me to put more effort on it and to publish the
results. This support and his open mind prepared the ground for this work.

As already mentioned, this work presents the major part of my scientific work of the
last three years. Thus, most of the results have already been published (Martini and
Ullmann, 2013; Martini, Habeck, and Schlather, 2014; Martini, Schlather, and Ullmann,
2013a,b,c). I would like to emphasize at this point that in this work, bigger parts of all
my publications were adopted verbatim. However, some notations, abbreviations and
formulas of the text have been amended at several points in order to create a coherent
whole text. Moreover, in some chapters, new results were incorporated. For the sake
of readability, in particular, to avoid a fragmented text e.g. when the ligand “proton”
was substituted by a general “ligand” in Chapter 3, some minor changes are not in-
dicated, but at the beginning of each chapter the publication(s) which the chapter is
based on and from which text passages were adopted are mentioned and new results are
highlighted. Moreover, concerning the style of this work, it shall be pointed out that
even some simple statements are presented in form of a lemma for the sake of a good
overview and structure. If the corresponding statement is too obvious or well-known a
proof will not be given.

Before we start with the introduction, I would like to express my thankfulness to the
people who influenced this work.
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CHAPTER 0. PREFACE

I would like to thank Prof. Martin Schlather for being open-minded about every
application of mathematics, in particular stochastics, to other sciences as well as for
his encouragement and for his constant support.

Moreover, I would like to thank Prof. G. Matthias Ullmann for introducing me to
this topic and for his support whenever I asked for it.

I would also like to thank the coauthor of the latest paper (Martini, Habeck, and
Schlather, 2014) Michael Habeck for the comfortable working atmosphere and creative
discussions.

Furthermore, I am thankful to the following persons with whom I had intense and
helpful discussions which also influenced this work: Alexander Malinowski, Kristin Blu-
menröther, Tobias Dorsch, Mareike Busmann, Timo Aspelmeier and Ulf Fiebig.

Finally, I would like to thank Marco Oesting and Madeline Lips for comments on the
text.

Johannes W.R. Martini
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January 2014
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1 Introduction

In this introducing chapter, the main vocabulary will be explained and the basics of
the corresponding mathematical framework, which can be found in several textbooks
(e.g. Ben-Naim, 2001; Cantor and Schimmel, 1980; Wyman and Gill, 1990) will be
summarized. This chapter will not present any new ideas or results, except for the way
the content is presented, some terms which are not used in literature and the fact that
Henderson-Hasselbalch curves will be introduced as a complex-valued function.

The theoretical explanation of the term “titration curve” is in parts adopted verbatim
from the publications Martini et al. (2014), Martini et al. (2013c) and Martini and
Ullmann (2013).

1.1 Motivation

(Bio-)Chemists come into contact with ligand binding theory in the first semesters
of their studies, when pH-dependent proton binding to aminoacids is discussed. The
binding properties are usually summarized in a deterministic binding curve (titration
curve), which is a rational function in the proton activity (10−pH) and which describes
the average number of protons bound to a biomolecule. Titration curves can be inves-
tigated from different points of view.

We can regard the curves from a practical point of view and ask how the proton
binding might be changed if certain properties of the molecule’s structure are altered.
This question may be of interest for chemical properties of the substance such as poly-
merization or breaking properties of a material at a certain pH-value.

We can regard the curves as algebraic objects and ask questions of algebraic geom-
etry and computational algebra: Is it possible –from a mathematical point of view–
to construct a molecule with a certain proton binding curve? If two molecules share
certain proton binding properties, do other properties have to be identical as well?

We can ask for the origin of these rational curves, and why these curves have this
structure. These questions will lead us to an interpretation of the curves as the expec-
tation of a family of distributions. Thus, questions of probability theory and statistical
physics can be asked: Which characteristics of the family of probability measures cor-
respond to certain characteristics of the binding curve? How can systems be modeled,
which consist of a small number of molecules and which can not be described by the
expectation sufficiently well?

And we can ask questions about biological or biochemical processes in which ligand
binding is involved: How does proton/electron cotransport work? Which effect has a
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CHAPTER 1. INTRODUCTION

change of the concentration of a repressor molecule which binds to DNA on the gene
regulation network? Which molecule might be the best target for a drug, if a biochem-
ical pathway shall be blocked?

To put it in a nutshell, ligand binding theory is multifaceted, combines a lot of
different disciplines, involves fields of pure and applied mathematics and can be relevant
for a lot of real applications.

1.2 Ligand, target molecule and binding site

Even though, the term “ligand” is widely used in biological, biochemical, pharmaco-
logical, medical and other scientific literature (see e.g. Brennan et al., 2012; Hameed
et al., 2013; Kragh-Hansen, 2013; Leppänen et al., 2013), precise definitions of this term
in biochemistry or molecular biology textbooks are rare. Alberts et al. (2008) defines
it the following way:

“The substance that is bound by the protein –whether it is an ion, a small molecule,
or a macromolecule such as another protein– is referred to as a ligand for that pro-
tein”. (Alberts et al., 2008, p. 153, Chapter 3)

Obviously, this description leaves some questions open: Does the molecule a ligand
binds to, have to be a protein? Is a peptide or a single amino acid unsatisfying to use
the term “ligand” for a potential binding partner? What is the characteristic of the
bond? Can a ligand bind covalently to a protein?

The characteristics of the bond are described indirectly in the subsequent sentence
explaining selectivity:

“The ability of a protein to bind selectively and with high affinity to a ligand depends
on the formation of a set of weak, noncovalent bonds –hydrogen bonds, electrostatic
attractions, and van der Waals attractions– plus favorable hydrophobic interactions”.
(Alberts et al., 2008, p. 153, Chapter 3)

Following this description, in this work a ligand will be understood as any particle
which can bind non-covalently to a target molecule (not necessarily a protein). More-
over, the target molecule and the ligand will be assumed to be of different molecule
species. The region of a target molecule to which a ligand can bind will be called a
binding site. If a target molecule has only one binding site, the choice which molecule
is regarded as the ligand and which one as the target molecule will be arbitrary. Usu-
ally, the smaller molecule (if the molecules are not of equal size) is considered to be the
ligand. Target molecules can have several binding sites for the same type of ligand (e.g.
hemoglobin and O2, see Alberts et al. (2008)). The binding sites are usually assumed
to be non-overlapping. However, in the used models, overlapping binding sites can
be interpreted as non-overlapping binding sites with infinite interaction energy, which
represents exclusionary occupation of the respective binding sites. Possible conforma-
tional changes of a target molecule, when certain binding sites are occupied will not be
considered in this work.

2



CHAPTER 1. INTRODUCTION

1.3 Titration curve

Let M be a target molecule species with n binding sites for ligand L. Moreover, let a
certain amount of both substances be dissolved in a liquidity. Then a certain target
molecule M1 can exist in 2n (micro)states: Each site can be occupied or unoccupied.
Thus, the state of M1 at a fixed time m can be described by an n-tuple

M1,m = k = (k1, ..., kn) ∈ {0, 1}n

indicating whether site i is occupied (ki = 1) or not (ki = 0). Since we do not know in
which state the molecule M1 is at time m, and since this information will not give any
information about the other target molecules, it is appropriate to describe the system
by a probability distribution on the set {0, 1}n, stating how likely it will be to find a
certain microstate k, if we “draw” a molecule Mj from the solution at random. This
distribution on {0, 1}n depends on the concentration of the ligand L. However, the
“availability” of ligands for the target molecules does not have to be proportional to
the ligand’s concentration, since intermolecular forces between the ligand molecules can
reduce or increase the availability of the ligand for the target molecules. In extreme
examples a higher concentration of the ligand can even reduce the availability for a
target molecule, due to high intermolecular attracting forces of the ligand molecules.
Since we are interested in a general physical description, similar to the laws for ideal
gases, we describe the system by equations based on the ideal case and consequently
have to use some sort of idealized concentration, the chemical (or thermodynami-
cal) activity λ. The titration curve of a certain binding site i is defined as the
probability of site i being occupied, dependent on the chemical activity λ. The overall
titration curve is defined as the sum of the titration curves of all binding sites.

1.3.1 Experimental determination

A well-known traditional way to determine overall titration curves in the case of the
ligand being a proton, is an acid-base titration experiment: a known number of target
molecules is dissolved at a certain pH value. The number of protons in the solution is
changed by adding either a (strong) acid or base. Since, at a higher proton activity,
the target molecules will bind more protons, not all of the added protons will be free in
the solution. The number of protons which are absorbed by the solute is given by the
difference of added protons and the increase of free protons (which can be measured as
a change of the pH-value).

For other systems of target molecule and ligand, chemical and physical properties
in different states have to be used to determine the overall titration curves or the
titration curve of individual sites (e.g. absorption of light in the case of hemoglobin
and O2/CO, see Horecker (1943)). Moreover, sophisticated methods such as Nuclear
Magnetic Resonance Spectroscopy can be used to investigate the binding to individual
sites.

3



CHAPTER 1. INTRODUCTION

1.3.2 The mathematical description

The classical derivation of the mathematical framework for ligand binding curves is
mainly the following idea (Schellman, 1975): A single target molecule in solution can
be regarded as a subsystem within the much larger system of the solution. Assuming
that the interaction of these subsystems is negligible but that a molecule can exchange
ligand particles as well as energy with the environment which has a fixed average tem-
perature T , we can use the Grand Canonical Ensemble of Statistical Mechanics to
describe the binding of the ligand to a target molecule.

The Grand Canonical Ensemble relates each microstate the molecule can access with
a certain weight. The probability of a microstate is then given by its weight divided by
the sum of the weights of all possible microstates. The sum of all weights is also called
the (Grand Canonical) Partition Function (see Subsection 1.3.3 for a sketch of its
derivation). Since a target molecule has only a finite number of binding sites, the Par-
tition Function reduces from a power series to a polynomial: the binding polynomial.

To write down this concept precisely in equations, the following notation will be used
in this work:

� T denotes the absolute temperature in °Kelvin,

� R denotes the Boltzmann constant,

� µ denotes the chemical potential of the ligand and

� K := {0, 1}n denotes the set of all microstates.

Moreover, for a microstate k = (k1, ..., kn) ∈ K,

� G(k) denotes its energy level, relative to some reference state, usually {0}n,

� and |k| :=
n∑
i=1

ki denotes the number of occupied sites in microstate k.

� {k ∈ K||k| = i} is called the macrostate i.

Note that G(k) describes the energy of molecule M in microstate k, which means it
depends on the target molecule M and the ligand we are describing. The use of a
second index or a second variable is avoided for the sake of a simplified notation.

Using this notation, the Grand Canonical Ensemble states that the weight wght(k)
of a microstate k is given by

wght(k) := exp

(
−G(k) + µ|k|

RT

)
(1.1)

(see e.g. Ben-Naim, 2001; Landau and Lifschitz, 1987; Reif, 1987). The weight wght(k)
is often also called the Gibbs factor. The corresponding probability of this micro-
state is

PM,µ(k) :=
wght(k)

Φ(M)
, (1.2)

4



CHAPTER 1. INTRODUCTION

where Φ(M) =
∑
k∈K

wght(k) is the above mentioned Grand Canonical Partition Func-

tion of molecule M . Since the activity λ is defined by

λ := exp
( µ

RT

)
(1.3)

(Cohen et al., 2008), we see that, for a molecule with a finite number of ligand binding
sites, the Grand Canonical Partition Function is a polynomial (the binding polyno-
mial) in the variable activity, if we rewrite Eq. (1.1):

wght(k) = exp

(
−G(k) + µ|k|

RT

)
= g(k) · λ|k|, (1.4)

where |k| ≤ n and where

g(k) := exp

(
−G(k)

RT

)
(1.5)

is called the Boltzmann factor or microstate constant of microstate k.

The setup described above presents a family of distributions on {0, 1}n which is
parameterized by the activity λ. The titration curves of certain binding sites and the
overall titration curve are derived by applying operators to the parameterized family
of distributions or to image measures under certain maps. For instance, the titration
curve of a certain site, which has already been defined previously as the probability of
site i being occupied, dependent on λ, is given by the rational function

Ψi(λ) :=
Ei(M)

Φ(M)
(1.6)

with
Ei(M) =

∑
{k∈K|ki=1}

g(k)λ|k| (1.7)

denoting the joint weight of all microstates in which site i is occupied. Moreover,
defining Xi to be the projection from {0, 1}n on the i-th coordinate, Xi is a Bernoulli
random variable and the probability of Xi being equal to 1 coincides with its expecta-
tion. Thus, we can express Eq. (1.6) also as the expectation Eλ of the random variable
Xi:

Ψi(λ) =
Ei(M)

Φ(M)
= EλXi. (1.8)

The expectation carries the index λ, since the probability measure which is used to
calculate it, depends on λ. Correspondingly, the overall titration curve is given by

Ψ(λ) =

n∑
i=1

Ψi(λ) =

∑n
i=1Ei(M)

Φ(M)
=

n∑
i=1

EλXi = Eλ|k|, (1.9)

As illustrated, the stochastic setup with a family of measures, parameterized by the
activity of the ligand λ, leads to algebraic objects –polynomials and rational functions–
as titration curves. The simplest structure of a titration curve of an individual site is
the following:

5



CHAPTER 1. INTRODUCTION

Definition 1 (Henderson-Hasselbalch titration curve). A titration curve of a certain
site i is called Henderson-Hasselbalch titration curve, if a g ∈ C∗ exists such that

Ψi =
gλ

gλ+ 1
. (1.10)

Remark 2. The reader might wonder why the constant g in Definition 1 can be a
complex number. Indeed, one should ask whether this extension makes any sense, since
an interpretation of a complex valued probability does not exist. For this reason, at
this point, g should be regarded as a positive real number. However, a motivation for
this formal extension will we given in Chapter 3 and at least a partial interpretation
of complex valued Henderson-Hasselbalch curves as part of a system of several binding
sites will be given in Chapter 6.

1.3.3 Sketches of approaches to derive the Grand Canonical Ensemble

In this subsection we shortly present sketches of two approaches for a derivation of the
(Grand) Canonical Ensemble. The purpose of these sketches is to illustrate where the
structure of Eqs. (1.1,1.2) comes from and why an exponential function is involved.
Another approach, based on a model of the dynamics of a system can be found in
Chapter 2.

The concept of the first approach is presented in different physics textbooks and based
on a Taylor expansion of a certain function. We will present this concept following the
textbook by Reif (1987, pp. 236-239): We start with the Microcanonical Ensemble
by regarding a closed system with fixed number of particles N and fixed energy level
E0 of the whole system. The system can only access the microstates with this fixed
number of particles and the given energy level.

A1 We assume an uniform distribution on the accessible microstates.

We extend this ensemble to a model in which the considered system can change its
energy state due to contact with a heat-reservoir. This extended model is called the
Canonical Ensemble. We consider a small system A which exchanges energy with
a much larger heat-reservoir A′ and use the notation A0 for the total system which is
composed of A and A′. Moreover, let the corresponding energies be denoted by E0, E
and E′, with

E0 = E + E′,

according to the law of energy conservation. If A has a certain fixed state k of energy
E, the number of accessible states for the composed system A0 (with A = k) should be
equal to the number of possible states for system A′ at energy E′. Since the composed
system A0 is a microcanonical system, each microstate of A0 has the same probability.
Consequently, the probability of A being in microstate k is proportional to the number
of possible states of A′ at energy E′:

P (A = k) = c |{k′|A′ has energy E′ in state k′}| =: cCar(E′), (1.11)

with c denoting a normalization constant, k′ a state of system A′, and |{...}| =Car(E′)
the cardinality of the set at energy E′. We are interested in the function Car(E′). We

6



CHAPTER 1. INTRODUCTION

use the natural logarithm and a Taylor expansion at E′ = E0 to receive

ln(Car(E′)) = ln(Car(E0)) +

(
∂ ln(Car(E′))

∂E′

)
|E′=E0

(E′ − E0) + ... (1.12)

Moreover, we know from Chapter 3 in Reif (1987) that for

β(E′) :=

(
∂ ln(Car(E′))

∂E′

)
the relation

β(E′) =
1

k T (E′)

holds with a constant k and the absolute temperature T (E′) of the heat reservoir at
energy E′. Since E � E0, we can assume that

A2 a change of E of the size of its own range is so small compared to E0 that the
temperature of the heat reservoir is not changed.

Assumption A2 implies that β is a constant (independent of E′) for the considered
scales and that consequently all derivatives of higher order are zero. This gives

ln(Car(E0 − E)) = ln(Car(E0))− βE (1.13)

and thus
Car(E0 − E)) = Car(E0) exp(−βE). (1.14)

This means we can rewrite Eq. (1.11) in the idealized form

P (A = k) = C exp(−βE), (1.15)

with a new constant C since Car(E0) is fixed. This procedure can be extended to
describe a subsystem exchanging also particles with a bigger system which gives the
Grand Canonical Ensemble.

A second approach which is also based on Assumption A2 can avoid the Taylor
expansion of Car(E′) and instead uses another functional equation. Assuming that

A3 the probability that the system A is in state k with energy E only depends on
the temperature of the reservoir

and Assumption A2, Eq. (1.11) gives

P (A = k) = c0Car(E0 − E) = c1Car(E1 − E) (1.16)

for E, |(E1 − E0)| � E0, E1. We define the functions

f0(E) :=
Car(E0 − E)

Car(E0)
(1.17)

and

f1(E) :=
Car(E1 − E)

Car(E1)
. (1.18)

7



CHAPTER 1. INTRODUCTION

Then

f1(E) =
Car(E1 − E)

Car(E1)
=

Car(E0 + E1 − E0 − E)Car(E0)

Car(E0)Car(E0 + E1 − E0)
= (1.19)

=
f0(E0 − E1 + E)

f0(E0 − E1)
.

Eq. (1.16) gives
c̃1f1(E) = c̃0f0(E) (1.20)

and thus, with Eq. (1.19)

f0(E0 − E1 + E) =
c̃0

c̃1
f0(E)f0(E0 − E1) (1.21)

In particular, for E = 0 this gives c̃0
c̃1

= 1. Thus, f0 fulfills

f0(F + E) = f0(F ) · f0(E) (1.22)

for E,F � E0, which shows that ln ◦f0 is linear.

A potential target for criticism for both derivations is Assumption A2, since this
assumption is obviously an approximation which will never be strictly fulfilled but
which provides the desired result of Car(E) being the exponential function more or less
directly.

1.4 Overview

This work presents several topics within the theory of ligand binding. It is largely based
on the publications Martini et al. (2014), Martini and Ullmann (2013), Martini et al.
(2013a,b,c). Many text passages were adopted verbatim from these publications.

Chapter 2 describes an alternative way to derive the structure of the parameterized
family of distributions described by Eqs. (1.2,1.4). The approach is based on a Markov
chain model for the ligand binding dynamics of a single molecule. It is shown that
the stationary distribution of the Markov chain coincides with the laws of the Grand
Canonical Ensemble, if the chemical activity of the ligand is identified with a ratio
of the probability of the environment providing a ligand, and the probability of the
environment taking a ligand up. The chapter is based on the publication Martini et al.
(2014).

Chapter 3 reconsiders the Decoupled Sites Representation (DSR), a theoretical tool
originally presented by Onufriev et al. (2001), from a more mathematical point of view.
The DSR is a theoretical instrument which allows to regard complex titration curves
of biomolecules with several interacting ligand binding sites as composition of isolated,
non-interacting sites, each with a standard Henderson-Hasselbalch titration curve. In
this chapter, the mathematical framework in which the DSR is embedded is presented
and mathematical proofs for several statements in the periphery of the DSR are given.
These proofs also identify exceptions. It is highlighted that –to apply the DSR to any
arbitrary molecule– it is necessary to extend the set of binding energies from R to a

8



CHAPTER 1. INTRODUCTION

stripe within C. An important observation in this context is that even positive in-
teraction energies (repulsion) between the binding sites will not guarantee real-valued
binding energies in the decoupled system, at least if the molecule has more than four
ligand binding sites. Moreover, it is shown that for a given overall titration curve it is
not only possible to find a corresponding system with an interaction energy of zero but
with any arbitrary fixed interaction energy. This result also affects practical work as it
shows that for any given titration curve, there is an infinite number of corresponding
hypothetical molecules. Chapter 3 is based on the publication Martini and Ullmann
(2013) but also presents additional results.

In Chapter 4, the Decoupled Sites Representation is transfered to a situation with a
target molecule binding two different types of ligands at disjunct sets of binding sites.
In particular, the existence of decoupled systems for n1 and one binding sites for the
respective ligand is proven and some difficulties and limits of this transfer are high-
lighted. A major difference to the DSR for one type of ligand is the loss of uniqueness
of the decoupled system. Moreover, properties which all decoupled molecules share
are presented. For the case of more than one binding sites for both types of ligands,
algorithms are presented which exploit the special structure of the algebraic systems
to reduce the problem to the case of only one type of ligand. The corresponding pub-
lications are Martini et al. (2013b) and Martini et al. (2013a).

Chapter 5 deals with the stochastic interpretation of the Decoupled Sites Represen-
tation for one and for two types of ligands. The algebraic description using polynomials
(e.g. the binding polynomial) and rational functions (e.g. titration curves) which is used
to characterize systems of molecules and their ligand(s) is translated into stochastics.
The shifted point of view facilitates some proofs and physical interpretations. This
chapter is based on Martini et al. (2013c).

Chapter 6 discusses the relation between different definitions of cooperative ligand
binding and complex valued measures in decoupled systems. It is based in parts on
Martini and Ullmann (2013) but also presents other results. The relation between the
Hill coefficient and complex roots of the binding polynomial is discussed for molecules
with two binding sites. A publication investigating this relation in more detail is planed.

Chapter 7 shows how ligand binding theory, in particular titration curves can be
used for modeling biological regulatory and sensing processes. In more detail, simple
models for a two component gene regulatory system and for olfactory senses of insects
are presented. Chapter 7 shall be the draft for two publications.
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2 Modeling the Binding Dynamics of a
Molecule With a Finite Number of
Binding Sites Using a Markov Chain

The following chapter presents the main part of the paper Martini et al. (2014). Main
passages were adopted verbatim from this paper. The comparison of the dynamics of
the presented model to the dynamics given by the transition matrix of the common
Metropolis-Hastings algorithm in Section 2.4 has not been incorporated in the paper.

2.1 Motivation

Titration experiments as described in Section 1.3 are a classical procedure in chemistry
and produce titration curves that characterize the overall binding of L to M . Titration
curves for protons binding to aminoacids can be found in nearly every biochemistry
textbook and have been studied for a century (Henderson, 1913; Hasselbalch, 1916;
Tanford and Kirkwood, 1957; Martini et al., 2013b,a). The mathematical model for
titration curves is based on the binding polynomial (bp). As described in the intro-
ductory chapter, it is a function of the chemical activity of the ligand and derived as
a special case of the Grand Canonical Partition Function (GCPF), if molecule M is
regarded as a system that can take up a finite number n of particles (Schellman, 1975;
Cantor and Schimmel, 1980; Wyman and Gill, 1990). Its origin in statistical mechan-
ics reemphasizes that it characterizes stochastic properties of a system: It defines a
family of distributions over the number of bound ligands, which is parameterized by
the chemical activity of the ligand (the temperature is fixed). However, the GCPF
describes only the thermodynamic equilibrium, a steady state of a system consisting of
a large number of molecules, in which every single molecule follows its own dynamics
of releasing and binding ligands.

It seems obvious that another approach to derive the well-known laws of equilibrium
might be based on modeling the ligand binding dynamics of a single molecule. In
this chapter, we derive the GCPF for a system with a finite number of binding sites,
starting from modeling the binding dynamics. We use a Markov chain model in discrete
time and use some reasonable assumptions about the binding dynamics of the molecule
to deduce the transition probabilities. This approach facilitates the understanding
of the equilibrium distribution, especially the composition of the probabilities of the
microstates and provides an idea of how the chemical activity (which is not necessarily
bounded by 1) could be interpreted from a stochastic point of view. Moreover, it also
allows us to model the system’s way into equilibrium.
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CHAPTER 2. DYNAMICS OF A SINGLE MOLECULE

2.2 Binding dynamics of a single molecule as a Markov chain
model

We will model the binding state of the individual molecule M1 by a Markov chain on
the set of tuples K := {0, 1}n, with M1,m denoting the state of molecule M1 after
m “time steps”. M1,m = k = (k1, . . . , kn) ∈ K indicates whether a ligand molecule
occupies site i (ki = 1) or not (ki = 0). We make the following assumptions concerning
ligand binding dynamics to deduce transition probabilities and equilibrium laws:

A1 The time between step m and m+ 1 is so short that the binding state of only one
site can change. Using the `1-Norm

|k| :=
n∑
i=1

|ki|

this means |M1,m −M1,m+1| ≤ 1.

A2 For k, l ∈ K with |k − l| = 1, the probability of a transition k 7→ l is a product of
three factors:

A2-1 the random choice of a binding site that may change its binding state,

A2-2 the probability that the environment provides a ligand molecule or takes it up
(depending on the state of the chosen site) and

A2-3 the probability barrier given by the difference of the energies of microstates k, l
of the target molecule.

A3 Since the concentration of L is assumed much higher than that of M , we assume
that the binding of the ligand to the individual target molecules occurs stochastically
independently. This means that the molecules of type M do not interact, and a small
reduction or an increase of the number of free ligand molecules, due to an uptake or
release by molecules M , does not affect the probability of A2-2.

Assumption A3 guarantees that we can describe the whole system of all target
molecules by modeling only one target molecule. In the following, the probability
factors of A2 will be specified, which allows us to deduce the matrix of transition prob-
abilities and subsequently its stationary distribution.

Ad A2-1: Since the first probability factor describes the choice of a site, there is
no need to discriminate between the sites at this point. Consequently, we assume a
uniform distribution which means this factor equals 1

n .

Ad A2-2: If the chosen site is not occupied, the second factor of probability A2
is given by probability θ1 6= 0, which can be interpreted as the “availability” of the
ligand. It incorporates the spatial availability, geometric orientation of the ligand to
the binding site and how “costly” it is to decouple the ligand from its environment
(e.g. the energy required to remove hydrogen bonds between the ligand and the solvent
molecules). In the case of a chosen site being occupied, probability θ2 characterizes
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the barrier of releasing the ligand molecule. In most cases θ2 can be considered as
being equal to 1. However, e.g. in supersaturated solutions or due to weak solubility of
the ligand, the release of a ligand molecule might be of energetic disadvantage for the
environment. Both factors θ1 and θ2 depend on the ligand concentration and describe
the energetic state of the environment.

Ad A2-3 : The third and last factor pk,l models the probability barrier given by
the energy difference of the target molecule, when a ligand is released or taken up. In
contrast to A2-2, this factor is not assumed to depend on the environment, i.e. on the
energy state of the solution. Let G(k), G(l) denote the energy levels of the states k
and l. We are looking for a function pk,l := p(G(k), G(l)) −→ [0, 1] with pk,l = 1 if
G(l) ≤ G(k). This means that if the energy level is the same, or is reduced by the
transition, there will not be an energy barrier that impedes the transition (expressed
as a probability). However, if energy is required, i.e. G(l) > G(k), then pk,l < 1. Since
pk,l is a probability, it can be represented by

pk,l = min(1, f(G(l)−G(k))) (2.1)

for an appropriate nonnegative function f(x) which is different from the zero function
and which depends only on the energy differences. Some properties of f are reasonable
to assume

f(x+ y) = f(x)f(y), (2.2)

f(x) ∈ (0, 1) if and only if x ∈ (0,∞), (2.3)

f is monotone. (2.4)

The first property models that an additional energy barrier represents a second fac-
tor: The probability of overcoming a barrier x + y shall be equal to the probability
of overcoming x and subsequently y. This characteristic of function f is also required
for consistency with possible extensions of this model by incorporating intermediate
states. The second property expresses that only a transition that requires energy poses
a probability barrier. Monotonicity is reasonable, too.

Lemma 3. a) A value β ∈ R+ exists such that f(x) = exp(−βx).
b) pk,l < 1 =⇒ pl,k = 1.

Proof. a) This part is well-known but the proof is sketched for the sake of completeness.
Due to Eq. (2.3), we can apply the natural logarithm (on x ∈ (0,∞)) leading to
Cauchy’s functional equation, which means ln(f) is linear, according to Eq. (2.2). Thus,
f is an exponential function with −β < 0, according to Eq. (2.3). Part b) is a direct
consequence of a).

2.2.1 The transition probabilities

With assumptions A1-A3 we obtain, for a certain molecule M1, a Markov chain M1,m

on the set of states {0, 1}n, with n denoting the number of binding sites. For |k| < |l|
and |l − k| = 1, the transition probabilities are given by

qk,l := P (k 7→ l) =
1

n
θ1pk,l, (2.5)
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where θ1 denotes the “availability” of the ligand. If |k| > |l|, |l − k| = 1:

qk,l =
1

n
θ2pk,l (2.6)

with θ2 denoting the “resistance”. The probability of staying in the present state l is:

ql,l = 1−
∑
k 6=l

ql,k =

= 1− 1

n

θ1

∑
{k | |k|>|l|,|k−l|=1}

pl,k + θ2

∑
{k | |k|<|l|,|k−l|=1}

pl,k

 (2.7)

Example 4. For a molecule with two binding sites for ligand L, we use the notation
0 := (0, 0), 1 := (0, 1), 2 := (1, 0), 3 := (1, 1) as a new composite index. The matrix of
transition probabilities is

1− 1
2 (θ1(p0,1 + p0,2)) 1

2θ1p0,1
1
2θ1p0,2 0

1
2θ2p1,0 1− 1

2 (θ1p1,3 + θ2p1,0) 0 1
2θ1p1,3

1
2θ2p2,0 0 1− 1

2 (θ1p2,3 + θ2p2,0) 1
2θ1p2,3

0 1
2θ2p3,1

1
2θ2p3,2 1− ( 1

2θ2(p3,1 + p3,2))


2.2.2 Aperiodicity, connectivity and detailed balance

We know that the Markov chain with transition probabilities defined by Eqs. (2.5-2.7)
is aperiodic and connected. Aperiodicity can clearly be seen because the system can
return to its initial state within one time step, which means it remains in this state, or
in two time steps by going there and back. Connectivity is also obvious since every state
can be reached. Consequently, the Markov chain has a unique stationary distribution π
to which the system’s distribution will converge and which we will characterize. If the
matrix fulfills the detailed balance condition, we will be able to calculate the stationary
distribution quickly, according to the procedure described in the following lemma.

Lemma 5. Let Q = (qi,j)i,j∈{1,...,n} be a transition matrix on a connected space. More-
over, let π = (π1, . . . , πn) denote its unique stationary distribution fulfilling the detailed
balance condition. Then the stationary distribution can be calculated in the following
way:

1) Choose a reference state k, and define πk = 1.

2) Calculate the ratios πi
πk

of all pairs {i, k} with qi,k 6= 0 by πi
πk

=
qk,i
qi,k

.

3) If qi,k = 0 choose any path (i, . . . , k) with probability greater than zero and calcu-
late the pairwise ratio.

4) Normalize the distribution.
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Proof. First note that πi 6= 0 ∀i ∈ {1, . . . , n}, since the space is connected. The
described procedure gives the stationary distribution because the detailed balance con-
dition means

πiqi,k = πkqk,i,

which gives the ratio πi
πk

if qi,k 6= 0. Since the space is connected, a path from i to k
exists with probability greater than zero. Thus, if qi,k = 0, we can calculate the ratios
pairwise “along the path” to calculate the ratio πi

πk
.

In other words, Lemma 5 states that for a given reference state, the ratio of the
probabilities of the stationary distributions are identical to the ratios of the expected
flux between two states (pairwise) along any path. This statement is actually one
direction of Kolmogorov’s criterion (Kelly, 2011). Even though it is not obvious that the
matrix of Example 4 satisfies the detailed balance equation, we will use the procedure
of Lemma 5 and show that the obtained distribution is stationary, for the special case
of two binding sites.

Example 6. We use the same abbreviations for the different states as in Example 4.
We calculate the probabilities of the stationary distribution the following way:

π(0) ∝ 1

π(1) ∝
1
2θ1p0,1

1
2θ2p1,0

=
θ1p0,1

θ2p1,0

π(2) ∝
1
2θ1p0,2

1
2θ2p2,0

=
θ1p0,2

θ2p2,0

π(3) ∝
1
2θ1p2,3 · π(2)

1
2θ2p3,2

=
θ2

1p0,2p2,3

θ2
2p3,2p2,0

,

where ∝ means proportional to (of course with the same factor for all equations).

For the weights of Example 6 it is not obvious that we would obtain the same prob-
ability distribution if we compared π(3) with π(1) :

π(3) =
θ2

1p0,1p1,3

θ2
2p3,1p1,0

.

To see that the weights do not depend on the choice of the path, Lemma 7 which is an
obvious result from the definition of pi,j is helpful. It will also be used subsequently to
show that our model satisfies the detailed balance condition for any number of binding
sites.

Lemma 7.
pi,j
pj,i

= f(G(j)−G(i)) (2.8)

This statement will be used to prove Proposition 8.

Proposition 8. For every number of binding sites n, the matrix of transition prob-
abilities defined by Eqs. (2.5-2.7) is detailed balanced with respect to its stationary
distribution.
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Proof. We use Kolmogorov’s criterion (Kelly, 2011), which (in simple words) states that
a stochastic matrix and its stationary distribution fulfill the detailed balance condition
if and only if the probability for “walking on a closed path” is independent of the
direction. More precisely, this means, the matrix (qi,j) fulfills the detailed balance
condition if and only if

qk,i1qi1,i2 · · · qir−1,irqir,k = qk,irqir,ir−1 · · · qi2,i1qi1,k (2.9)

for any path (k, i1, i2, . . . , ir, k) and any r ∈ N. We show that the matrix of transition
probabilities defined by Eqs. (2.5-2.7) satisfies Eq. (2.9) and firstly identify qk,l = P (k 7→
l). Let a closed path (k = i0, i1, i2, . . . , ir, ir+1 = k) be given. First note that if a path
includes a step which changes the state of more than one binding site, both directions
will have probability zero, since qj,l = 0 = ql,j if |j − l| > 1. The probability of all
other transitions from j to l with |j − l| ≤ 1 are nonzero, since all factors which the
probabilities qj,l are built of are nonzero. Moreover, if at a certain step, the state is
not changed, the factor qj,j cancels out on both sides. Thus, without loss of generality,
every step of the path changes the state, that is ij 6= ij+1∀j ∈ {0, . . . , r}. Since every
probability qi,j includes the factor 1

n on both sites, it cancels out. Moreover, since the
path is closed, the power of the factor θ1 on one side of the equation is equal to the
power of θ2 (we return to the initial state, every ligand which is taken up has to be
released afterwards). Using the other “direction” of the path every factor θ1 of the
left side will be substituted by a factor θ2. However, since both factors have the same
power, they all cancel. The remaining factors are given by pi,j and we see, that the
matrix (qi,j) satisfies Eq. (2.9) if and only if

pk,i1pi1,i2 · · · pir−1,irpir,k
pk,irpir,ir−1 · · · pi2,i1pi1,k

= 1,

which is true since Lemma 7 states that the left site is equal to f(0) = 1.

Remark 9. In our model, the probability of a transition from k to l, with |k − l| = 1
is composed of a uniform proposal distribution on the states of the “neighborhood” and
of an acceptance rate given by θ1pi,j or θ2pi,j, depending on the state of the chosen
site. Even though this structure resembles the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970), our model does not coincide with this algorithm: The
factor θi is not part of the proposal distribution, since otherwise, the proposal probabil-
ities do not sum up to one. Consequently, the acceptance probability is different to the
one commonly used for the Metropolis-Hastings algorithm, since it is bounded by θi.

2.2.3 The stationary distribution

Proposition 10. The stationary distribution on the set of states is given by a normal-
ized version of

P (l) =

(
θ1

θ2

)|l|
f(G(l)−G({0}n)). (2.10)

Proof. We know that the Markov chain fulfills the detailed balance condition. Using
Lemma 5 with the reference state {0}n, we receive Eq. (2.10).

15



CHAPTER 2. DYNAMICS OF A SINGLE MOLECULE

Since we assumed the molecules to bind ligands independently (A3), the distribution
of the states within the solution in equilibrium will be close to the stationary distribu-
tion of a single molecule, due to the Law of Large numbers, if the number of molecules
is sufficiently large.

2.2.4 Activation energies

In the model presented in Section 2.2.1 we did not incorporate activation energy bar-
riers. However, an extension of our model is straightforward: Assuming, that an ac-
tivation energy barrier between two states i, j is a “symmetric” barrier, given by an
instable transition intermediate state ei,j , we can rewrite Eq. (2.1):

pi,j = min(1, f(G(ei,j)−G(i))) ·min(1, f(G(j)−G(ei,j))). (2.11)

Assuming that ei,j has an energy level higher than those of states i, j (activation energy,
instable state), the second factor equals 1. This gives for the ratios

pi,j
pj,i

=
min(1, f(G(ei,j)−G(i)))

min(1, f(G(ei,j)−G(j)))
= f(G(j)−G(i)) (2.12)

This result shows that we can add any additional “symmetric” probability barriers and
the stationary distribution will be unchanged.

2.3 Comparison to the Grand Canonical Partition Function

As mentioned in the introduction, the Grand Canonical Partition Function (or “binding
polynomial” for a finite number of binding sites) is usually formulated as a function in
the variable “chemical activity” which is denoted by λ:∑

k∈K
f(G(k)−G({0}n))λ|k|. (2.13)

It coincides with the stationary distribution of our model if we identify θ1
θ2

=: λ. Thus,
chemical activity might be interpreted as the ratio between “availability” and “resis-
tance”, in our model.

2.4 Comparison of the dynamics defined by the presented
transition matrix to that induced by the commonly used
matrix for the Metropolis-Hastings algorithm

As already mentioned in Section 2.1, the presented model can also be useful for modeling
the way of a system into equilibrium. However, since there is an infinite number of
transition matrices with the same stationary distribution, it is neither clear which one
is really appropriate to model the dynamics of ligand binding, nor which characteristics
can be used to decide which transition matrix is “best”. For this reason, the two
different models which were mentioned in this chapter –the presented model and the
transition matrix of the common Metropolis-Hastings algorithm– will be compared in
an example to illustrate differences between the corresponding binding dynamics.
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Figure 2.1: Simulated dynamics of a system consisting of 104 target molecules, each
with one binding site, starting at time t = 1 from the state in which all
molecules are unoccupied, over 150 time steps. The configuration λ =
10−1.5, g1 = 102 was chosen. Black line: Dynamics with the presented
model (P1), red line: Dynamics with the common Metropolis-Hastings
matrix (P2), blue line: Equilibrium.

Example 11. In this example the way into equilibrium of a system consisting of n
target molecules, each with one binding site for its ligand, is simulated starting from
the state in which all of them are unoccupied. We choose the reference 0 and f(G(1))
to be g1 ≥ 1 (the occupied state has a lower energy level than the unoccupied state),
arbitrarily. The stationary distribution on the two possible states is given by

P (0) =
1

g1λ+ 1
and P (1) =

g1λ

g1λ+ 1
, (2.14)

with 0 denoting the unoccupied and 1 the occupied state. Assuming that θ2 = 1 and
thus θ1 = λ, the transition matrix of the presented model is

P1 := (pi,j)i,j∈{1,2} =

1− λ λ

1
g1

1− 1
g1

 (2.15)

where pi,j denotes the probability of a transition from state i − 1 to state j − 1. The
matrix of the common choice for the Metropolis-Hastings algorithm, with a proposal
distribution which always proposes the other state, is

P2 :=

1−min(1, g1λ) min(1, g1λ)

min(1, 1
g1λ

) 1−min(1, 1
g1λ

)

 . (2.16)

To point out the major differences between the dynamics defined by the matrices P1 and
P2, an example was calculated with λ = 10−1.5, g1 = 102, n = 104 target molecules and
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m = 150 time steps. How the system reaches equilibrium, following the two different
transition matrices, is illustrated in Fig. 2.1.

One thing which can be observed in this example is that the system described by
the commonly used transition matrix of the Metropolis-Hastings algorithm, is close
to equilibrium after five time steps. This characteristic is of advantage for the usual
purpose of “drawing” from its stationary distribution. However, for describing the
dynamics of real phenomena it might not be appropriate, since this fact makes a scaling
of the discrete time difficult: No matter how short a time step is, the system is quickly
close to equilibrium. A second characteristic of the dynamics of a system described by
P2 is the huge overrun after the first time step. Both characteristics are results of the
same property of P2: a negative second eigenvalue with comparatively small absolute
value. A small absolute second eigenvalue characterizes the convergence rate, which
will be illustrated in Example 13, after a helpful lemma.

Lemma 12. Let P ∈ Rn×n be a stochastic matrix and η = (η1, ..., ηn) be a left-
eigenvector for the eigenvalue e: Then

e = 1 or
n∑
i=1

ηi = 0.

Proof. Since P is stochastic

n∑
i=1

ηi = η


1
1
...
1

 = ηP


1
1
...
1

 = eη


1
1
...
1

 = e
n∑
i=1

ηi.

Example 13. Let us regard the example of a stochastic matrix P ∈ R2×2 of a con-
nected Markov chain, with stationary distribution π and a second eigenvector η with
corresponding eigenvalue eη 6= 1. Since eη 6= 1, we know from Lemma 12 that the sum
of the entries of η is 0. For a starting distribution v = (v1, v2) we know that coefficients
α1, α2 ∈ R exist such that v = α1π + α2η, since the span 〈π, η〉 = R2. The equation

1 = v1 + v2 = α1 (π1 + π2)︸ ︷︷ ︸
=1

+α2 (η1 + η2)︸ ︷︷ ︸
=0

shows that α1 = 1. The convergence of the vector vPn → π is illustrated by the equation

vPn = (π + α2η)Pn = π + α2e
n
ηη

in which the summand α2e
n
ηη converges to 0 as n→∞. The speed of the convergence

is determined by the absolute value of eη.

Example 13 illustrated –for the case of matrices in R2×2– why the absolute value of
the second eigenvalue is a characteristic of the speed of convergence to the stationary
distribution (for analogous statements for larger matrices and more general statements
see e.g. Seneta (2006)). We will compare some properties of the dynamics described
by P1 and P2 and their dependence on the chemical activity in Proposition 14. In the
following, let ei denote the second eigenvalue of Pi, respectively.
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Proposition 14. a) If λ = g−1
1 , then e2 = −1 and the system described by P2 is

periodic. It will not generally converge to its stationary distribution.

b) If g1λ > 1, then e2 = − 1
g1λ

and if g1λ < 1, then e2 = −g1λ. In particular, e2 is
always smaller than or equal to zero.

For P1, let θ2 = 1 and thus λ = θ1 ≤ 1. Then the following statements hold:

c) If g1 = λ = 1, then e1 = −1 and the system described by P1 is periodic. It will
not generally converge to its stationary distribution.

d) If g1 ≥ 1, then e1 = 1 − 1
g1
− λ and if g1 < 1, then P1 is identical to P2 and

e1 = e2 = −g1λ.

e) e1 ≥ e2 ∀λ, g1.

f) Let 0 < λ < 1. Moreover, let [a, b] ⊂ (0, 1] denote the interval in (0, 1], on which
|e1| ≥ |e2| (as functions of λ). Then, for g1 →∞ : a→ 0 and b→ 1.

Proof. a) If λ = g−1
1 , P2 has the entry 1 on its secondary diagonal, and 0 on its

diagonal. Its characteristic polynomial is P2(t) = t2 − 1, which has the roots
t1,2 ∈ {±1}. The lengths of all closed paths can be divided by 2, consequently
the greatest common divisor of the lengths of closed paths is 2 and the Markov
chain is periodic. Starting with any distribution will lead to the same distribution
within two steps. The distribution will not converge.

b) If g1λ > 1, the characteristic polynomial is given by P2(t) = t(t− 1 + 1
g1λ

)− 1
g1λ

.
Calculate its roots. Analogously for g1λ < 1.

c) If g1 = λ = 1, we find the matrix described in a).

d) θ2 = 1 implies λ = θ1 ≤ 1. If g1 ≥ 1, the characteristic polynomial of this matrix
is P1(t) = (1−λ− t)(1− 1

g1
− t)− λ

g1
. Its roots are given by t1,2 ∈ {1, 1− 1

g1
−λ}.

If g1 < 1, the matrix P1 coincides with P2 (Note here that Eq. (2.15) is P1 for
the case of g1 ≥ 1).

e) We know from d) that if g1 < 1, the matrices are identical and consequently
e1 = e2. For g1 ≥ 1, we distinguish between three cases: g1λ < 1, g1λ > 1 and
g1λ = 1.
So let g1λ < 1: What has to be shown is

−g1λ ≤ 1− 1

g1
− λ

If λ = 0 this relation is true. For λ > 0 we can rewrite this inequality as

0 ≤ 1− 1

g1︸ ︷︷ ︸
≥0

+ (g1 − 1)︸ ︷︷ ︸
≥0

λ.

The right side describes a linear equation with nonnegative slope which is non-
negative if λ ∈ (0, 1]. Consequently, the statement is true for this case.
Let g1λ > 1: What has to be shown is

− 1

g1λ
≤ 1− 1

g1
− λ which is equivalent to 0 ≤ g1λ− λ− g1λ

2 + 1.

19



CHAPTER 2. DYNAMICS OF A SINGLE MOLECULE

Figure 2.2: The absolute second eigenvalues of P2 (red line) and P1 (black line) as
a function of λ for fixed g1 = 102 (Example 15). Note that e2 is always
smaller than or equal to 0, which means e2 is the negative of the red line.

The right side is a polynomial of degree two in the variable λ. Its leading coeffi-
cient is negative, it has value 1 at λ = 0 and 0 at λ = 1. Thus, it is nonnegative
in between.
Let g1λ = 1. Then e2 = −1 which is the smallest second eigenvalue a stochastic
matrix can have.

f) Let g1 grow. Then, for g1 large enough, g1λ > 1 and 0 ≤ 1 − 1
g1
− λ. What has

to be shown is that the set on which

1

g1λ
≤ 1− 1

g1
− λ which is equivalent to 0 ≤ g1λ− λ− g1λ

2 − 1

tends to (0, 1]. The right side is a polynomial of degree two in the variable λ. Its
leading coefficient is negative and the interval on which the inequality is true is
bounded by the polynomial’s roots. Its roots are given by

− 1

2g1
(−g1 + 1±

√
g1(g1 − 6) + 1).

We can rewrite this to

1

2
− 1

2g1
±

√
1

4
− 6

4g1
+

1

4g2
1

Consequently, for growing g1, the roots tend to {0, 1}, respectively.

Proposition 14 showed that the presented model has several advantages compared
to the commonly used matrix for the Metropolis-Hastings algorithm if the dynamics of
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CHAPTER 2. DYNAMICS OF A SINGLE MOLECULE

a system into equilibrium shall be modeled: In the case of g1 6= 1, it will converge to
the stationary distribution for any value λ ∈ [0, 1]. In contrast, P2 produces a periodic
Markov chain at an important value of λ: the pKa-value λ = g−1

1 , which is used in
chemistry as a characteristic of the titration curve. Moreover, it was shown, that the
dynamics described by P2 always tend to create fluctuations due to the negative second
eigenvalue. Concerning the convergence rate, part f) of Proposition 14 showed, that for
growing g1, the interval on which |e2| ≤ |e1| grows, too. As a final illustrating example
of this chapter, the interval on which |e2| ≤ |e1| will be calculated exactly, for the setup
of Example 11.

Example 15. In this example, it will be demonstrated, for which values of λ, the
absolute value of e1 is equal or greater than that of e2 in the setup of Example 11. The
probability constant was given by g1 = 102. Thus, we have to distinguish between the
cases λ < 10−2 and λ > 10−2. Recall that if λ = 10−2, the system described by P2 will
not converge, according to Proposition 14 a).
Let λ < 10−2 and thus g1λ < 1. We are interested in the values of λ which satisfy

100λ ≤ 99

100
− λ.

This is true if and only if λ ≤ 99
10100 which holds for the bigger part of the interval

(0, 10−2).
Let λ > 10−2, then g1λ > 1 and we are interested in the values of λ which satisfy

1

100λ
≤
∣∣∣∣ 99

100
− λ

∣∣∣∣ .
This is true on the closed interval [a, b] with a, b the roots of P (λ) = −100λ2 + 99λ− 1.
This gives the approximated interval of [0.0102, 0.9798] ∪ {1}. For the comparison of
the absolute second eigenvalues, see Fig. 2.2.
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3 The Decoupled Sites Representation

The following chapter is essentially the paper Martini and Ullmann (2013) with Sec-
tion 3.7 being based on Martini et al. (2014). At certain points the text was altered
and some arguments in proofs were changed. Moreover, new content was added: In
Section 3.2.1 binding and interaction energies are introduced in a different way, Propo-
sition 19 was extended by the reverse statement, and Definition 21, Section 3.4 and
Propositions 29 and 32 were added.

3.1 Motivation

The investigation of activity-dependent average binding of ligands to binding sites of a
molecule in equilibrium is a key field of biochemistry, since many biological processes
are based on or regulated by non-covalent binding processes. For instance, the binding
of protons to proteins can change the charge distribution across the macromolecule
and thus affect the catalytic center of an enzyme, the affinity to the substrate (or to
another type of ligand), and the target molecule’s tertiary structure (Garcia-Moreno,
1995). Moreover, electron or proton transport chains in oxidation processes and photo-
synthesis can be described by binding properties of the carrier proteins (Becker et al.,
2007; Medvedev and Stuchebrukhov, 2006; Till et al., 2008).

As mentioned in the introduction, the titration curve of a molecule with only one
binding site is described by a Henderson-Hasselbalch (HH) curve (Hasselbalch, 1916;
Henderson, 1913, Eq. (1.10)). The mathematical description of titration curves of indi-
vidual sites of macromolecules is much more complicated than that of small molecules
with only one binding site. The more complicated shape of the titration curve of macro-
molecules is a result of interaction between the different sites (Bombarda and Ullmann,
2010; Onufriev and Ullmann, 2004; Tanford and Kirkwood, 1957). This interaction
can lead to titration curves exhibiting strong deviations from the classical Henderson-
Hasselbalch shape (Ackers et al., 1983; Bashford and Karplus, 1991; Bombarda and
Ullmann, 2010; Onufriev and Ullmann, 2004).

The Decoupled Sites Representation (DSR) was developed to find a simple expres-
sion for the complex shape of overall titration curves and of titration curves of the
individual sites (Onufriev et al., 2001; Onufriev and Ullmann, 2004). The main result
is that for any given macromolecule with n ligand binding sites and interaction between
these sites, a hypothetical molecule with n non-interacting binding sites exists which
possesses the same overall titration curve. “Existence” refers here to the mathematical
point of view, in terms of a tuple of n binding energies and not in terms of a certain
chemical structure. Even though Onufriev et al. (2001) described how to calculate the
corresponding decoupled system, the mathematical structure of the problem was not
investigated deeply. In this chapter, we investigate the mapping of binding energies and
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CHAPTER 3. THE DECOUPLED SITES REPRESENTATION

interaction energies of a molecule to its binding polynomial. A first result is that all
molecules sharing the same binding polynomial form an algebraic variety. Due to the
special structure of the equations defining the sub-variety consisting of the molecule
without interaction, no methods of algebraic geometry are required to prove the exis-
tence and uniqueness (with respect to an equivalence relation) of the decoupled system.
Moreover, we show that the DSR can be generalized: For a given binding polynomial, it
is not only possible to find a system without interaction with this binding polynomial,
but it is possible to find systems with any interaction energy t with the same binding
polynomial as long as the interaction energy is the same between all sites. We call this
extension the generalized DSR, which shows that the DSR is not a special result of the
“lack of interaction”, but a consequence of identical interaction energies.

3.2 A molecule and its binding polynomial

3.2.1 Molecules with several ligand binding sites

In general, the binding properties of a ligand to its target molecule in equilibrium can
be described by the relative energy levels of the microstates of the target molecule
(see Chapter 2). For instance, for a molecule with three binding sites, the binding
behavior in equilibrium is described by the relation of the energies of the eight possible
microstates. Choosing the completely unoccupied state as the reference, we call the
energies of microstates with only one site occupied the binding energy Gi of site i:

G((0, 0, 0)) = 0 G((1, 0, 0)) =: G1 G((0, 1, 0)) =: G2 G((0, 0, 1)) =: G3.

The difference between the energy level of a state with the first and the second sites
occupied (1, 1, 0) and the sum of the two energies of the corresponding microstates with
single occupation is called the interaction energy W1,2 (Ben-Naim, 2001; Cantor and
Schimmel, 1980; Wyman and Gill, 1990):

G((1, 1, 0))−G1 −G2 =: W1,2.

Thus, all states with exactly two occupied sites define all pairwise interaction energies.
In the case of a target molecule with three or more binding sites, interaction terms of
higher order can be required to describe the system completely:

G((1, 1, 1))−G1 −G2 −G3 −W1,2 −W1,3 −W2,3 =: W1,2,3.

However, in the following chapter, a model which incorporates only pairwise interaction
terms is underlying. This means that all interaction energies of higher order are as-
sumed to be zero and the energy levels of all microstates are determined by the energies
of the microstates with not more than two bound ligands. This reduction facilitates
notation and the major statements of this chapter are likewise true for the generalized
model with interaction energies of higher order.

Let us regard a target molecule M with n binding sites for ligand L. The ligand
binding properties of the molecule can be characterized by n binding energies G1, ..., Gn
and n(n−1)

2 pairwise interaction energies W1,2, ...,W1,n, ...,Wn−1,n, where Wi,j is the
interaction energy of the i-th and j-th ligand binding site. Since titration properties are
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determined by these energies, every other system of ligand binding sites with identical
binding and interaction energies, is regarded as being equal to M , since the average
overall titration as well as the titration curve of every individual site are identical.
Thus, every molecule can be identified with at least one element

M ∈ R
n(n+1)

2 . (3.1)

(We will show later that, to use the DSR as a general tool, it is necessary to extend the
domain of energies from R to a stripe within C.) Moreover, there is no natural order
of the binding sites within a molecule. Thus, one has to notice that one and the same
molecule can be identified with several tuples which is illustrated by Example 16 .

Example 16. Let n = 3. Then the tuple

(G1, G2, G3,W1,2,W1,3,W2,3) = (1, 2, 3, 1, 2, 3)

and
(G1, G2, G3,W1,2,W1,3,W2,3) = (2, 3, 1, 3, 1, 2)

belong to the same molecule.

This is a result of the disorderliness of the binding sites: One can number the binding
sites in any order. However, it is important that the interaction energies are permuted
accordingly. This property motivates the definition of an equivalence relation.

Definition 17. Let
a = (Ga1, G

a
2, ...G

a
n, ...W

a
n−1,n)

and
b = (Gb1, G

b
2, ...G

b
n, ...W

b
n−1,n) ∈ R

n(n+1)
2 .

Then a is equivalent to b (Notation: a ∼ b) if and only if a permutation σ of (1, ..., n)
exists such that

a = (Gbσ(1), G
b
σ(2), ...G

b
σ(n),W

b
σ(1),σ(2),W

b
σ(1),σ(3), ...,W

b
σ(n−1),σ(n)). (3.2)

This means that every molecule can be identified with exactly one element

M ∈ Rm�∼ (3.3)

with m = n(n+1)
2 .

Remark 18. a) The reader might ask why the new notation with binding and interac-
tion energies was introduced: Of course it is as well possible to choose an order for the
2n microstates and to describe the molecule by the tuple of the corresponding 2n energy
levels (or reduced to a model with only pairwise interaction which means describing the
energy levels of states with only one or two sites occupied). However, the distinction be-
tween ”binding” and ”interaction” energies is used in literature (e.g. Ben-Naim, 2001;
Onufriev et al., 2001) and it is of advantage for descriptions and definitions.
b) Concerning the equivalence relation: At several points in this work, a tuple notation
will be used. However, in most cases a tuple has to be interpreted as a representative
of an equivalence class, which means that the corresponding statement is true for the
equivalence class (the molecule).
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Having defined the set of molecules, we investigate how an element M is mapped to
its binding polynomial, which is an element of R[λ] (the polynomial ring in one variable
λ and coefficients in R).

3.2.2 The binding polynomial

Recall, that the binding polynomial of a molecule M was defined by

Φ(M) :=
∑
k∈K

exp

(
−G(k)

RT

)
λ|k| (3.4)

in Subsection 1.3.2 (Schellman, 1975; Wyman and Gill, 1990). Recall that g(k) =

exp
(
−G(k)
RT

)
is called the Boltzmann factor or –in this work– also the probability

constant of state k. Analogously, gi := exp
(
−Gi
RT

)
is called the binding constant of

site i and wi,j := exp
(
−Wi,j

RT

)
the interaction constant of sites i, j.

Due to the reduction to only pairwise interaction terms, the energy of a microstate
k = (k1, ..., kn) is given by

G(k) :=
n∑
i=1

kiGi +
n∑
i=1

n∑
j>i

kikjWi,j . (3.5)

Analogously, the probability constant of microstate k (see Section 1.3.2), writes

g(k) =
n∏
i=1

exp

(
−kiGi
RT

)∏
i<j

exp

(
−kikjWi,j

RT

) . (3.6)

Since, the structure of the energies of a microstate (in Eq. (3.5)) translates to products
for the constants (in Eq. (3.6)), we can factor the map

Φ :
Rm�∼ −→ R[λ]

M 7→ Φ(M)

which maps the tuple of energies to the binding polynomial into Φ = Φ2 ◦ Φ1 with

Φ1 :
Rm�∼ −→ R+m

�∼ (3.7)

(G1, ...Gn, ...Wn−1,n) 7→
(

exp

(
− G1

RT

)
, .., exp

(
−Gn
RT

)
, ..., exp

(
−Wn−1,n

RT

))
mapping the energies to binding and interaction constants, and

Φ2 :
R+m

�∼ −→ R[λ] (3.8)

(g1, g2, ..., gn, ..., wn−1,n) 7→
∑
k∈K

 n∏
i=1

gkii ∏
i<j

w
kikj
i,j

λ|k|

 .
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mapping the tuple of constants to the polynomial. Analogously to the notation of
energies and probability constants of microstates, the notation with lowercase letters
is used to indicate that we are considering the image of Φ1:

(g1, ..., gn, ..., wn−1,n) := Φ1(G1, ...Gn, ...Wn−1,n).

Moreover, R[λ] denotes the polynomial ring in the variable λ and coefficients in R.
Note that Φ1 is well defined since

a ∼ b⇐⇒ Φ1(a) ∼ Φ1(b).

Φ1 being a bijection, we can work with its image values –that is every molecule M is
described by (gM1 , ..., gMn , ..., w

M
n−1,n)– and concentrate on the investigation of Φ2:

The map is well defined as for two representatives of the same equivalence class

a ∼ b =⇒ Φ2(a) = Φ2(b).

Moreover, we can rewrite Φ2 without using microstates k ∈ K but with focus on the
coefficients of Φ(M):

Φ2(g1..., wn−1,n) =

∏
i∈N

gi∏
i<j

wi,j

λn +
∑
p∈N

 ∏
i∈N,i 6=p

gi ∏
i<j,j 6=p

wi,j

λn−1+

∑
(p1,p2)∈N2

p1 6=p2

 ∏
p1 6=i 6=p2

gi ∏
i<j

p1 6=j 6=p2

wi,j


λn−2 + ...

...+
∑
i∈N

giλ+ 1 (3.9)

with N := {1, ...n}.

In this section, up to now, we defined a molecule as an equivalence class and inves-
tigated the map, which calculates the corresponding binding polynomial, superficially.
A question which might arise at this point is why the binding polynomial is an im-
portant quantity. Why is the map to the binding polynomial considered, even though
it just represents the sum of the weights of the microstates? An answer is given by
Proposition 19 which states that there is a one to one correspondence between binding
polynomials and overall titration curves.

Proposition 19. Let M be a molecule with

Φ(M) = anλ
n + an−1λ

n−1 + an−2λ
n−2 + ...+ a1λ+ 1.

Then its overall titration curve is given by

Ψ(λ) = Eλ|k| =
nanλ

n + (n− 1)an−1λ
n−1 + (n− 2)an−2λ

n−2 + ...+ a1λ

Φ(M)
. (3.10)

Moreover, for any overall titration curve Eλ|k|, the corresponding binding polynomial
is unique.
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Proof. For the first part of the statement, a counting or combinatorial argument can
be found in the paper by Martini and Ullmann (2013), on which this chapter is based.
An even simpler argument is its stochastic definition: The coefficient ai is the sum of
all probability constants g(k) with |k| = i. Consequently, the probability of | · | being
equal to i is:

PM,λ(|k| = i) =
aiλ

i

Φ(M)
.

The definition of the expectation gives Eq. (3.10).
For the second statement, let two titration curves be identical for every nonnegative
value of λ:

nanλ
n + ...+ a1λ

anλn + ...+ a1λ+ 1
=

nbnλ
n + ...+ b1λ

bnλn + ...+ b1λ+ 1
(3.11)

which is equivalent to

(nanλ
n + (n− 1)an−1λ

n−1 + ...+ a1λ)(bnλ
n + bn−1λ

n−1 + ...+ b1λ+ 1) =

= (nbnλ
n + (n− 1)bn−1λ

n−1 + ...+ b1λ)(anλ
n + an−1λ

n−1 + ...+ a1λ+ 1). (3.12)

Each side of Eq. (3.12) represents a polynomial
2n∑
i=0

ciλ
i of degree 2n. Since Eq. (3.12)

is true for any nonnegative λ, the coefficients on both sites have to be equal:

ck =

n∑
i=1

iaibk−i =

n∑
i=1

ibiak−i (3.13)

where ai = bi = 0 for i > n and i < 0. Moreover, a0 = b0 = 1. This gives

c1 = 1 · a1 · 1 = 1 · b1 · 1.

The fact that ai = bi for all i ∈ {0, ..., n} is shown by induction.
For this, let us assume that we know ai = bi for all i ∈ {0, ..., k} we show that this
implies ak+1 = bk+1:

ck+1 =

n∑
i=1

iaibk+1−i =

k+1∑
i=1

iaibk+1−i =

=
n∑
i=1

ibiak+1−i =
k+1∑
i=1

ibiak+1−i =

= (k + 1)ak+1 +
k∑
i=1

iaibk+1−i = (k + 1)bk+1 +
k∑
i=1

ibiak+1−i.

Since bi = ai for all i ∈ {0, ..., k} the second summand on both sites are equal and
consequently ak+1 = bk+1.

Note here, that the second part of Proposition 19 states the following: By definition,
the titration curve is the expected value of the distribution of the sum S as a function of
λ. Due to the parametrization of the family of distributions of S, the whole distribution
of S can be calculated for every activity λ from its expectations. In other words:
The family of expectations determines the corresponding family of measures on the
macrostates {0, ..., n}.
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Remark 20. From now on all molecules will be described by their image with respect
to Φ1, which will also be indicated by the use of lowercase letters.

3.3 The Decoupled Sites Representation

At first, we will define what the term “decoupled sites” means and show equivalences
to other definitions in Proposition 26.

Definition 21. A molecule L = (g1, ..., gn, w1,2, ..., wn−1,n) is called decoupled or said
to have decoupled sites if wi,j = 1 ∀i, j.

Onufriev et al. (2001) presented the main result of the Decoupled Sites Representation
(DSR), saying that for every molecule M = (gM1 , ..., wMn−1,n) exactly one decoupled
system L = (g1, ..., gn, 1, .., 1) exists such that

Φ2(M) = Φ2(L).

However, it is possible that this might require the use of complex energies and proba-
bility constants with a nonzero imaginary part which is illustrated by Example 22.

Example 22. Let M be a molecule with two interacting binding sites and

(gM1 , gM2 , wM1,2) = (1, 1, 2).

Another molecule L = (g1, g2, 1) with the same binding polynomial solves, according to
Eq. (3.9), the system

g1g2 = gM1 gM2 wM1,2 = 2

g1 + g2 = gM1 + gM2 = 2.

Solving these equations gives the unique solution L = (g1, g2, 1) = (1 + i, 1− i, 1) which
is equal to (1− i, 1 + i, 1) since we are dealing with equivalence classes.

This example shows that if the DSR shall be valid for all molecules, it is necessary
to allow gi, wi,j ∈ C \ {0} =: C∗. This set would be appropriate as it guarantees the
existence of a decoupled system with the same bp, and additional bps with coefficients
in C \ R do not have to be considered. However, complex numbers with imaginary
part iy 6= 0 pose a problem for physical interpretation as it might not be regarded as
binding ”energy”. Some ideas on possible interpretations of this phenomenon can be
found in Chapter 6.

Having illustrated the motivation of a formal extension of the domain of energies, we
have to adapt the definitions. In Eq. (3.8) the domain and image space of the map Φ2

has to be changed to

Φ2 :
C∗m�∼ −→ C[λ] (3.14)

where the definition of the equivalence relation ”∼” in Eq. (3.2) is not affected. How-
ever, one has to think about the appropriate domain of Φ1. As exp : C −→ C∗ is not
bijective it is necessary to change Eq. (3.7) to

Φ1 :
Dm

�∼ −→ C∗m�∼ (3.15)
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with D := {x+ iy|x ∈ R, y ∈ [−π, π[ } ⊂ C. Consequently, Eq. (3.3) rewrites

M ∈ Dm

�∼. (3.16)

To simplify notation we will use

D :=
Dm

�∼ and H :=
C∗m�∼.

With this framework we can express the DSR as a proposition. If not mentioned
explicitly, a molecule will always be understood as an element of H, that is as an
equivalence class on the set of binding and interaction constants.

Proposition 23 (The Decoupled Sites Representation). Let M = (gM1 , ..., gMn , ..., w
M
n−1,n)

be a molecule. Then a unique molecule L = (g1, ..., gn, 1, ..., 1) exists, such that

Φ2(M) = Φ2(L).

Moreover, the binding constants of L are given by gi = − 1
ri

with (ri)i=1,...,n the roots of
Φ2(M).

The proof of Proposition 23 presented in Martini and Ullmann (2013) was based
on the properties of Φ2. The argumentation was the following: We define On :=
{(g1, g2, ..., gn, 1, ..., 1) ∈ H}, the set of all molecules without interaction, and show that
Φ2 is injective on On. Moreover, we show that

Φ2(On) = Φ2(H) =: Im(Φ2),

i.e. the image set of the restriction is still the same. This means that

Φ2,On : On −→ Im(Φ2)

is also surjective to Im(Φ2), thus bijective and consequently an inverse map

Φ−1
2,On

: Im(Φ2) −→ On

exists. This gives
L = Φ−1

2,On
◦ Φ2(M). (3.17)

Bijectivity of Φ2,On guarantees existence of the inverse map and thus uniqueness of L.
For the details of this argumentation see Martini and Ullmann (2013).

However, in this work, some arguments shall be outsourced by using Vieta’s formulas
of which a proof is included in the argumentation described above.

Proof of Proposition 23. Let a polynomial Φ2(M) = anλ
n + ... + a1λ + 1 be given.

Eq. (3.9) shows how the coefficients are composed of the binding and interaction con-
stants. In particular, if we look for a decoupled molecule L = (g1, ..., gn, 1, ..., 1), its
binding constants have to satisfy the following system of equations:

an =
∏
i∈N

gi
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an−1 =
∑
k∈N

∏
i∈N
i 6=k

gi

...

a1 =
∑
k∈N

gk

Since the binding constants are the variables, this system of equations describes an affine
algebraic variety. However, due to its very special structure, no methods from algebraic
geometry are required. Vieta’s formulas state that the solutions are given by − 1

ri
with ri

denoting the roots of Φ(M). Uniqueness is given, because of the introduced equivalence
relation: All permutations of the binding constants with interaction constants equal to
one describe the same molecule.

The second statement of the DSR, which says that the binding constants of the de-
coupled system are given by the negative inverses of the roots of the binding polynomial,
underlines once more that the domain of the binding constants has to be extended, if
the DSR shall be valid for every molecule. Another important point is that uniqueness
of the decoupled system for every binding polynomial, is not a result of the lack of in-
teraction, but of the reduced number of variables, since the interaction constants were
fixed to one. Thus, for instance, we can fix the interaction constants to any other value
of wi,j = t ∀ i, j and find a hypothetical molecule which has the predefined binding
polynomial. This statement is a generalization of the DSR.

Proposition 24 (Generalized DSR). Let M = (gM1 , ..., gMn , ..., w
M
n−1,n) be a molecule.

Then ∀ t ∈ C∗ a unique system L = (g1, ..., gn, t, ..., t) exists such that

Φ2(M) = Φ2(L).

Proof. Since we fixed all interaction constants to the same value, the proof of Propo-
sition 23 can be transfered directly. Using Eq. (3.9) gives the following system which
the binding constants of molecule L have to solve:

an = t
n(n−1)

2

∏
i∈N

gi

an−1 = t
(n−1)(n−2)

2

∑
k∈N

∏
i∈N
i 6=k

gi

...

a1 =
∑
k∈N

gk

The power of t can be brought to the left site, which gives new coefficients and the
system of equations of Propostion 23.
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Remark 25. The generalized DSR described in Proposition 24 is a generalization of the
DSR to any value t of all interaction constants wi,j. However, note that all interaction
constants are fixed to the same value. This allowed to factor out a power of t in each
equation and to use the proof of Propostion 23. A further generalization to any value
of (w1,2, w1,3, ...) = (t1, t2, ...) with ti 6= tj is also possible, but we cannot use the proof
of Propostion 23, since we cannot factor out a power of t. Since fixing (w1,2, w1,3, ...) =
(t1, t2, ...) leads to a system of n equations and n variables one might assume that the
existence of a solution is obvious. However this is not clear since the system does not
consist of (non-contradictory) linear equations. Thus, methods of algebraic geometry
or computer algebra have to be used. We will present a proof for the case n = 3 later.

3.4 Properties of decoupled molecules

Using the second part of Proposition 23, we can prove the following statements:

Proposition 26. Let M be a molecule.

a) Then the following statements are equivalent:

i) M is decoupled.

ii) The energy G(k) of a microstate k = (k1, ..., kn) is the sum of the energies
of the corresponding states with only one site occupied:

G(k) =

n∑
i=1

kiGi.

iii) The probability constant g(k) of microstate k is the product of the corre-
sponding constants of the states with only one site occupied:

g(k) =

n∏
i=1

gkii .

b) Let M = (g1, ..., gn, 1, ..., 1) be a decoupled molecule. Then each binding site of M
has a Henderson-Hasselbalch titration curve described by

Ψi =
giλ

giλ+ 1
.

c) If M is a molecule whose titration curves of the individual sites are all of Henderson-
Hasselbalch shape, then a decoupled molecule M ′ exists, which has the same titra-
tion curve at each individual site. Moreover, M and M ′ share the same binding
constants.

Proof. a) i)⇔ ii): Definition of G(k).
ii)⇔ iii): Definition of g(k), bijective map Φ1.

b) Let the tuple M = (g1, ..., gn, 1, ..., 1) be a decoupled system and a representative
from its equivalence class. Moreover, let

M−i := (g1, ..., gi−1, gi+1, ..., gn, 1, ..., 1)
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denote the tuple with n − 1 binding sites describing M as if site i was missing.
Then,

PM,λ(Xi = 1) = EλXi
Eq. (1.8)

=
Ei(M)

Φ(M)

Eqs. (1.7,3.6)
=

giλΦ(M−i)

Φ(M)

Prop. 23
=

=

giλ
∏
k 6=i

(λ+ 1
gk

)
∏
k 6=i

gk∏
k

(λ+ 1
gk

)
∏
k

gk
=

λ

λ+ 1
gi

=
giλ

giλ+ 1
.

c) Let al denote the sum of the products of all l-element subsets of {g1, ..., gn}. The
overall titration curve is the sum of all titration curves of individual sites:

Ψ(λ) =
n∑
i=1

Ψi
HH shape

=
n∑
i=1

giλ

giλ+ 1
(3.18)

Note here that it is not clear up to now, whether the gi’s are the binding constants
of molecule M . They are given by the HH curves of the binding sites. Eq. (3.18)
can be rewritten to

n∑
i=1

(
giλ

∏
k 6=i

(gkλ+ 1)

)
∏
k

(gkλ+ 1)
=

n
∏
k

(gkλ+ 1)−
∑
i

∏
k 6=i

(gkλ+ 1)∏
k

(gk + 1)
=

n(anλ
n + an−1λ

n−1 + ...+ 1)− an−1λ
n−1 − 2an−2λ

n−2 − ...− (n− 1)a1λ− n
anλn + an−1λn−1 + ...+ 1

=

=
nanλ

n + (n− 1)an−1λ
n−1 + ...+ a1λ

anλn + an−1λn−1 + ...+ 1
.

Since the overall titration curve is of the special form which is described in
Proposition 19, the denominator is the binding polynomial. Starting from this
polynomial, decoupling returns the initial binding constants. This means the
molecule M shares its titration curves of each site with the decoupled molecule
M ′ = (g1, ..., gn, 1, ..., 1).

What remains to be shown is that the binding constants of M coincide with the
gi’s. This is the case, since the definition of the titration curve of a certain binding
site gives: ∑

{k∈K|ki=1}
gM (k)λ|k|

Φ2(M)
=

∑
{k∈K|ki=1}

gM ′(k)λ|k|

Φ2(M)

and thus ∑
{k∈K|ki=1}

gM (k)λ|k| =
∑

{k∈K|ki=1}

gM ′(k)λ|k|.

Since the polynomials are identical if and only if every coefficient is identical, in
particular, this implies that

gi = gMi ,

which is the first coefficient.
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Remark 27. The initial intention of formulating Proposition 26 was to show the equiv-
alence of a molecule being decoupled and possessing HH curves at each binding site.
However, it turned out to be difficult to show that if each binding site has a HH titra-
tion curve the interaction has to be trivial, in the case of more than three binding sites.
This difficulty shall be illustrated in Example 28, and proofs for the equivalence of a
molecule being decoupled and all sites exhibiting HH titration curves will be given for
the cases of two and of three binding sites in Subsections 3.5 and 3.6.

Example 28. Let

M = (gM1 , gM2 , gM3 , gM4 , wM1,2, w
M
1,3, w

M
1,4, w

M
2,3, w

M
2,4, w

M
3,4)

be a molecule with HH-curves at every binding site:

Ψi(λ) =
giλ

giλ+ 1
.

Analogously, to the proof of Proposition 26 c), we sum up the titration curves, cal-
culate the binding polynomial and see that M ′ = (g1, ..., gn, 1, ..., 1) is decoupled and
shares all titration curves of the individual sites with M . Analogously to the proof of
Proposition 26 c), comparing coefficients of the numerator of the titration curves of
the individual sites gives gi = gMi . The remaining coefficients give conditions on the
interaction constants. In the case of four binding sites, the second coefficients of the
four titration curve give the following equations:

g2w1,2 + g3w1,3 + g4w1,4 = g2 + g3 + g4

g1w1,2 + g3w2,3 + g4w2,4 = g1 + g3 + g4

g1w1,3 + g2w2,3 + g4w3,4 = g1 + g2 + g4

g1w1,4 + g2w2,4 + g3w3,4 = g1 + g2 + g3

Moreover, the third coefficients give the equations

g2g3w1,2w1,3w2,3 + g2g4w1,2w1,4w2,4 + g3g4w1,3w1,4w3,4 = g2g3 + g2g4 + g3g4

g1g3w1,2w1,3w2,3 + g1g4w1,2w1,4w2,4 + g3g4w2,3w2,4w3,4 = g1g3 + g1g4 + g3g4

g1g2w1,2w1,3w2,3 + g1g4w1,3w1,4w3,4 + g2g4w2,3w2,4w3,4 = g1g2 + g1g4 + g2g4

g1g2w1,2w1,4w2,4 + g1g3w1,3w1,4w3,4 + g2g3w2,3w2,4w3,4 = g1g2 + g1g3 + g2g3

and the fourth coefficients state:

w1,2w1,3w1,4w2,3w2,4w3,4 = 1.

To show that M itself is decoupled we would have to show that

(w1,2, w1,3, w1,4, w2,3, w2,4, w3,4) = (1, 1, 1, 1, 1, 1)

is the unique solution of this system for every choice of binding constants. However,
this is not obviously the case, since the equations are polynomials in several variables.
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3.5 Special considerations of the case n=2

At first, we will improve the statement of Proposition 26 b) and c) for the case of two
binding sites, followed by an example for Proposition 24 for n = 2.

Proposition 29. Let M be a molecule with two binding sites. Then M is decoupled if
and only if both binding sites exhibit a HH titration curve.

Proof. ”⇒”: see Proposition 26.
”⇐”: As explained in Example 28, w1,2 has to satisfy g1g2 = g1g2w1,2 and consequently
w1,2 = 1 is the unique solution.

Example 30. Let M be a molecule with two interacting binding sites described by
M = (a, b, c). Then a system (d, e, 4) exists with the same bp

Φ2(a, b, c) = abcλ2 + (a+ b)λ+ 1.

A system (d, e, 4) with the same bp has to solve the equations:

4de = abc, d+ e = a+ b

Thus, d has to solve

d2 − (a+ b)d+
abc

4
= 0.

For example, the system (a, b, c) = (1, 1, 2) shares its binding polynomial

P (λ) = 2λ2 + 2λ+ 1

with the system (1 + 1√
2
, 1− 1√

2
, 4). Its decoupled system is given by (1− i, 1 + i, 1).

Moreover, it is not only possible to fix the interaction constant w1,2, but also a
binding constant gi to find a unique solution.

Proposition 31. Let M = (a, b, 1) be a system without intrinsic interaction. Then for
every d ∈ C∗ \ {a+ b} a system L = (d, a+ b− d, ab

d(a+b−d)) exists, which has the same
binding polynomial. Moreover, all systems sharing the same binding polynomial are of
this shape.

Proof. Calculating the bp of L proves the first result. The argumentation to prove the
second statement is the following: Let L be a molecule possessing the same bp, then
L = (gL1 , g

L
2 , w

L
1,2) has to solve the following equations:

gL1 g
L
2 w

L
1,2 = ab

gL1 + gL2 = a+ b.

Defining d := gL1 proves the second result.

In Proposition 31, we showed that for a given binding polynomial

Φ2(a, b, 1) = a2λ
2 + a1λ+ 1
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and any binding constant d ∈ C∗ \ {a + b}, we can find a molecule M = (d, e, w)
possessing this bp. Note that it is not possible to find a system L = (d, a+b−d, ab

d(a+b−d))
if d = a+ b, as this leads to a division by zero. Moreover, there is no t ∈ C such that

et = 0 = a+ b− d.

The exception d = a+ b can be interpreted the following way: If both molecules share
the same bp, the equation

a+ b = d+ e

is true. Thus, if d is changed, this equation will allow to adapt e, accordingly. If d
comes close to a+ b and thus e close to zero, the distribution of the binding energies on
the two binding sites of the corresponding molecule will become extremely asymmetric.
A small absolute value of the binding constant e has to be compensated by a great
interaction constant w. The exception d = a+ b corresponds to the limit case of e = 0
(Ge = ∞) and w = ∞ (W = −∞). It can be interpreted physically as molecule with
only one ligand binding site since an infinite amount of energy is required to bind the
ligand to the second binding site.

3.6 Special considerations of the case n=3

Analogously to Proposition 29, we will improve Proposition 26 for the special case of
n = 3:

Proposition 32. Let M be a molecule with three binding sites. Then M is decoupled
if and only if all three binding sites exhibit a HH titration curve.

Proof. ”⇒”: see Proposition 26.
”⇐”: As explained in Example 28, (w1,2, w1,3, w2,3) has to satisfy

g2w1,2 + g3w1,3 = g2 + g3

g1w1,2 + g3w2,3 = g1 + g3

g1w1,3 + g2w2,3 = g1 + g2.

This linear system can be rewritten to 0 w1,2 w1,3

w1,2 0 w2,3

w1,3 w2,3 0

g1

g2

g3

 =

0 1 1
1 0 1
1 1 0

g1

g2

g3


which gives  0 w1,2 − 1 w1,3 − 1

w1,2 − 1 0 w2,3 − 1
w1,3 − 1 w2,3 − 1 0


︸ ︷︷ ︸

=:A

g1

g2

g3

 =

0
0
0

 (3.19)

Since (g1, g2, g3) 6= (0, 0, 0) Eq. (3.19) can only be true if

det(A) = 2(w1,2 − 1)(w1,3 − 1)(w2,3 − 1) = 0.
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However, since gi 6= 0, one of the factors of det(A) being equal to zero implies that the
other interaction constants are equal to one, too. Thus, (w1,2, w1,3, w2,3) = (1, 1, 1) is
the unique solution to the system, which also satisfies the remaining equation

w1,2w1,3w2,3 = 1.

The next proposition generalizes Proposition 24 even further for the case of three
binding sites.

Proposition 33. Let M = (a, b, c, 1, 1, 1) be a molecule. Then for every (t1, t2, t3) ∈
C∗3 a system L = (g1, g2, g3, t1, t2, t3) exists such that

Φ2(a, b, c, 1, 1, 1) = Φ2(g1, g2, g3, t1, t2, t3). (3.20)

Proof. Eq. (3.20) means (g1, g2, g3) is a solution to the system

f1 : abc = t1t2t3g1g2g3

f2 : ab+ ac+ bc = t1g1g2 + t2g1g3 + t3g2g3

f3 : a+ b+ c = g1 + g2 + g3

We will show that a solution exists, independently of the choice of (a, b, c) and (t1, t2, t3).
To this end, we regard equations f1, f2, f3 as polynomials in

C[g1, g2, g3, a, b, c, t1, t2, t3].

We used the computational algebra system Magma to calculate the Gröbner basis
(w.r.t. the lexicographic order: g1 > g2 > g3 > a > b > c > t1 > t2 > t3) of the
corresponding ideal 〈f1, f2, f3〉. This Gröbner basis consists of 11 polynomials. The
second elimination ideal is generated by the last polynomial which is of degree six in
g3 with constant term a0 6= 0 (as a, b, c, t1, t2, t3 6= 0). This means that for any choice
of a, b, c, ti ∈ C∗ we will find six solutions of g3 (with multiplicity). The Extension
Theorem (Cox et al., 2008, p. 165) tells us that those partial solutions can be extended
to solutions to the first elimination ideal if the leading coefficients of the generators
(regarded as polynomials in g2) of the first elimination ideal do not all vanish at the
partial solution. Looking at the second polynomial, we see that the leading coefficient
is t1. This means, in the present situation of t1 6= 0, all solutions can be extended.
Regarding the first polynomial of the Gröbner basis shows that the leading coefficient
is 1 6= 0. This means those solutions can be extended further to full solutions of the
whole system. Obviously, this leads to six simultaneous solutions of equations f1, f2, f3

(with multiplicity). For additional information about the Gröbner basis, the Extension
and the Elimination Theorem see Cox et al. (2005, 2008).

We will give an example.

Example 34. Let M = (2,−1
2 , 4, 1, 1, 1) be a system without interaction. We look for

molecules L = (g1, g2, g3, 2, 4, 3) with the same bp and use the computer algebra system
Maxima to calculate the solutions of the system

−1

6
= g1g2g3
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5 = 2g1g2 + 4g1g3 + 3g2g3

11

2
= g1 + g2 + g3.

The six solutions for (g1, g2, g3) are approximately given by the set

{(5.313833028641072,−0.10698947820485, 0.29315667609982),

(4.928390901432182, 0.62565997888068,−0.054051184028884),

(0.60206626291414, 4.953815261044177,−0.055881066899869),

(0.31463862460357,−0.10021762785637, 5.285578747628083),

(−0.083397327599447, 5.199003322259136, 0.38439389576735),

(−0.075531559612602, 0.4287288758266, 5.146802325581396)}.

All molecules described by the different solutions have the same binding polynomial and
the same interaction energies but different binding energies. Note that the precision is
necessary to see that the binding polynomials are identical.

A nice by-product of Proposition 23 is the following potential algorithm for the
calculation of a molecule (d, e, f, t1, t2, t3) with a given bp in a different way.

Proposition 35. Let M = (a, b, c, 1, 1, 1) be a molecule without interaction. Moreover,
let L = (d, e, f, t1, t2, t3) be a molecule possessing the same bp. Then a permutation
σ ∈ S3 exists such that (d, e, f) is a fixed point of the following potential algorithm:

d1 := 1, e1 := 1, f1 := 1

Pi(λ) :=
abc

t1t2t3
λ3+

(
ab+ ac+ bc

t1
+ difi

(
1− t2

t1

)
+ eifi

(
1− t3

t1

))
λ2+(a+b+c)λ+1

(λi,1, λi,2, λi,3) := Roots of Pi

(di+1, ei+1, fi+1) :=

(
− 1

λi,σ(1)
,− 1

λi,σ(2)
,− 1

λi,σ(3)

)
.

Moreover, every fixed point (h, i, j) of this potential algorithm satisfies

Φ2(a, b, c, 1, 1, 1) = Φ2(h, i, j, t1, t2, t3).

Proof. (d, e, f) is a fixed point for the right permutation σ if
(
−1
d ,−

1
e ,−

1
f

)
are the

roots of

P (λ) :=
abc

t1t2t3
λ3 +

(
ab+ ac+ bc

t1
+ df

(
1− t2

t1

)
+ ef

(
1− t3

t1

))
λ2 + (a+ b+ c)λ+ 1.

According to Proposition 23,
(
−1
d ,−

1
e ,−

1
f

)
are the roots of the polynomial

Q(λ) := defλ3 + (de+ df + ef)λ2 + (d+ e+ f)λ+ 1.

To show that (d, e, f) is a fixed point, we have to show that P (λ) = Q(λ) which means

abc

t1t2t3
= def (3.21)
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(
ab+ ac+ bc

t1
+ df

(
1− t2

t1

)
+ ef

(
1− t3

t1

))
= (de+ df + ef) (3.22)

(a+ b+ c) = (d+ e+ f). (3.23)

Correctness of Eqs. (3.21− 3.23) is a result of

Φ2(a, b, c, 1, 1, 1) = Φ2(d, e, f, t1, t2, t3).

For the second statement, let (h, i, j) be a fixed point. Then (− 1
h ,−

1
i ,−

1
j ) are the

roots of the corresponding polynomial. This means (h, i, j) fulfills Eqs. (3.21 − 3.23)
and consequently

Φ2(a, b, c, 1, 1, 1) = Φ2(h, i, j, t1, t2, t3).

Remark 36. a) Two open questions concerning this potential algorithm are whether
it always converges to a fixed point (attraction of a solution) and which of the six
possible solutions will be found. The attraction of the solution is not obvious since
a small perturbation of the coefficients may have a huge effect on the roots of the
polynomial and thus the roots of a polynomial at a certain step might not be close
to the roots of the polynomial of the step before.

b) Moreover, up to now it is not clear whether this algorithm is useful, since solutions
can also be calculated by solving the corresponding system of algebraic equations
under the use of a computer algebra program such as Maxima or Magma. How-
ever, this algorithm exploits the special structure of the problem and it will be
extended to other problems which can not be solved with standard procedures, in
Chapter 4.

Example 37. We have implemented this potential algorithm using the computer algebra
system Maxima to calculate a solution of Example 34. Let M = (2,−1

2 , 4, 1, 1, 1) be a
system without interaction. We look for a system L = (d, e, f, 2, 4, 3) with the same
binding polynomial. The algorithm described in Proposition 35 gives, for 1000 iteration
steps:

(d, e, f) = (4.92839118225807, 0.62565999882172,−0.054051181079786).

This represents the second solution of Example 34.

These results draw the following picture: For a given binding polynomial P (λ) and
interaction constants t1, t2, t3 there are in general six different corresponding molecules
possessing the bp P (λ). If two interaction constants are equal, e.g. t1 = t2, the role of
g2 and g3 in the system of equations given by the coefficients and the map Eq. (3.9)
is identical. This means if (g1, g2, g3, w1, w2, w3) = (d, e, f, t1, t1, t3) is a solution, then
(d, f, e, t1, t1, t3) is a solution, too. Due to the equivalence relation Eq. (3.2) both
solutions are equivalent which means that there are not more than three different
solutions. In the case of t1 = t2 = t3 all solutions coincide, resulting in the uniqueness
of the solution which is the statement of the (generalized) DSR.
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3.7 Decoupled sites in the model of Chapter 2

We will shortly highlight what decoupled sites, for every fixed chemical activity, mean
for the presented model of the molecule’s ligand binding dynamics in Chapter 2. Propo-
sition 26 states that a molecule is decoupled if and only if the energy G(k) satisfies

G(k) = k1 ·G1 + k2 ·G2 + . . .+ kn ·Gn (3.24)

for any microstate k = (k1, . . . , kn). Eq. (3.24) directly implies that the energy differ-
ence between two neighboring states, e.g.

(k1, . . . , km−1, 0, km+1, kn) and (k1, . . . , km−1, 1, km+1, kn),

only depends on the site m which has a different binding state. Due to the structure of
the transition probabilities (Eqs. (2.5-2.7)) this means that the probability of changing
the occupation state of a certain site does not depend on the state of the other binding
sites. Thus, in the presented model, decoupled sites translate into a transition matrix
qi,l that satisfies a certain kind of stationarity: qi,l = q̃i−l for a distribution q̃ and any
pair i, l. Note that, in a decoupled molecule, the rows of the transition matrix cannot
be identical, i.e. the transition distribution depends on the state.
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4 The Decoupled Sites Representation For
Two Different Types of Ligands

The following chapter deals with the transfer of the DSR to molecules that bind two
different types of ligands. It presents results of the papers Martini et al. (2013a) and
Martini et al. (2013b) and the text is in main parts adopted verbatim from these publi-
cations, except for notational adaption to the previous chapters. Note that the premise
that all coefficients of the binding polynomial are positive will be added in Proposi-
tion 55. This precondition was not used in the paper (Martini et al., 2013a). However,
the proof presented in the paper, is not totally satisfying since the last argument that
the appearing polynomial of degree two has at least one root which is nonzero is not
obvious. The added premise is not a problem, since all “real” molecules will have this
feature, and it may be required to prove the DSR for other cases, as well.

4.1 Motivation

In this chapter, the Decoupled Sites Representation will be transfered to molecules with
two different types of ligands. In particular, this transfer is of interest since proteins
involved in the transport of substances across membranes often bind several ligands.
Examples are the active or passive co-transport of different ligands driven by the con-
centration gradients at the membrane. Moreover, the DSR may also be applied to
receptors with different types of ligands. Transporter molecules as well as receptors
have been objects of investigations in the last years (e.g. Becker et al., 2007; Gnacadja,
2011; Till et al., 2008).

From a mathematical point of view, the transfer of the DSR is not trivial since one
has to deal with polynomials of the polynomial ring in two variables C[λ, κ], which
means it is not straightforward to calculate the binding polynomials “roots” to find a
decoupled system.

In the following, we will summarize the mathematical basics of ligand binding in
equilibrium, for molecules with different types of ligands. We use a model in which every
microstate energy is the sum of binding and pairwise interaction energies, analogously
to the model presented in Chapter 3. Again, the main results of this chapter are equally
true for the extended model with interaction terms of higher order.

4.2 Two different types of ligands and one binding polynomial

4.2.1 Molecules with binding sites for two different types of ligands

At first, we transfer the setup described in Section 3.2 to the situation of two different
types of ligands. We assume that the ligands do not share binding sites, which means
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that there are two disjunct sets of binding sites which can only be occupied by one
type of ligand. Analogously to Eqs. (3.1-3.3), we receive the following framework: The
equilibrium binding properties of a molecule M with n1 binding sites for ligand L1

(sites 1, 2, ..., n1) and n2 binding sites for ligand L2 (sites A1, A2, ..., An2) are described

by an m := (n1+n2)(n1+n2+1)
2 -tuple

(gM1 , ..., gMn1
, gMA1

, ..., gMAn2
, wM1,2, ..., w

M
1,An2

, ..., wMA1,A2
, ..., wMAn2−1,An2

)

= M ∈ C
∗m
�∼. (4.1)

Note here, that we directly start from the set of binding and interaction constants, that
is from the image of Φ1 and forget about its domain (Φ1 is bijective). Since Φ1 will not
be considered, we will use the notation Φ for the map Φ2 of Chapter 3. To describe a
molecule with two types of ligands by Eq. (4.1) appropriately, the equivalence relation
of Definition 17 has to be adapted, which is illustrated by Example 38.

Example 38. Let S and M be two molecules with one binding site for ligand L1 and
one binding site for ligand L2:

M =

(
1, 2,

1

2

)
S =

(
2, 1,

1

2

)
.

Using the equivalence relation of Definition 17 with n = n1 + n2 gives

M ∼ S.

However, the role of the ligands which bind to S and M is permuted and, thus, the
molecules should not be regarded as equal. For this reason we adapt Definition 17.

Definition 39. Let C∗m with m = (n1+n2)(n1+n2+1)
2 be the set of all tuples describ-

ing molecules with n1 binding sites for ligand L1 and n2 binding sites for ligand L2.
Moreover, let

M =
(
gM1 , ..., gMn1

, gMA1
, ..., gMAn2

, wM1,2, ..., w
M
1,An2

, ..., wMAn2−1,An2

)
and

N =
(
gN1 , ..., g

N
n1
, gNA1

, ..., gNAn2
, wN1,2, ..., w

N
1,An2

, ..., wNAn2−1,An2

)
.

Then M is equivalent to N (Notation: M ∼ N) if and only if two permutations σ1 of
(1, ..., n1) and σ2 of (1, ..., n2) exist such that

M =
(
gNσ1(1), ..., g

N
Aσ2(n2)

, wNσ1(1),σ1(2), ..., w
N
σ1(1),Aσ2(n2)

, ..., wNAσ2(n2−1),Aσ2(n2)

)
. (4.2)

To simplify notation we will henceforth write gi for gMi if it is clear to which molecule
the binding constant belongs to. Moreover, we use the microstate notation and

C∗m�∼ =: Gn1,n2

with ” ∼ ” of Definition 39.
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4.2.2 A binding polynomial in two variables

Analogously to Eq. (3.4), we define the binding polynomial in the ligand activities λ
and κ of a molecule M , with n1 binding sites for ligand L1 and n2 binding sites for
ligand L2 by

Φ(M) =
∑
k∈K

g(k)λS1(k)κS2(k) (4.3)

with S1(k) :=
n1∑
i=1

ki and S2(k) :=
n2∑
i=1

kAi denoting the number of bound ligands of both

types. Moreover, as in the previous chapters, g(k) denotes the microstate constant of
state k. Analogously to Eqs. (1.6-1.8), the average amount of bound ligand to site i in
equilibrium is given by

Ψi =

∑
{k∈K|ki=1}

g(k)λS1(k)κS2(k)

∑
k∈K

g(k)λS1(k)κS2(k)
=:

Ei(M)

Φ(M)
. (4.4)

Eq. (4.4) leads to the following overall titration curves for ligands L1 and L2.

ΨL1 =

n1∑
i=1

Ei(M)

Φ(M)
(4.5)

ΨL2 =

An2∑
i=A1

Ei(M)

Φ(M)
(4.6)

4.3 On decoupling molecules with two types of ligands

To get an idea, and to point out some problems with the transfer of the DSR, we give
two simple examples of hypothetical molecules whose bp can be calculated easily.

Example 40. Let M = (gM1 , gMA , w1,A) = (1
2 , 2,

1
3) be a molecule with one binding site

for each type of ligand. Then:

Φ(M) =
1

3
λκ+

1

2
λ+ 2κ+ 1

E1(M) =
1

3
λκ+

1

2
λ

EA(M) =
1

3
λκ+ 2κ.

Moreover, we see here that it is not possible to decouple this system as the map

Φ : (g1, gA, w1,A) 7→ (g1gAw1,A, g1, gA)

which gives the coefficients of the polynomial, is injective. Thus, it is impossible to find
a molecule (g1, gA, 1) with the same binding polynomial.
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Example 41. Let M = (gM1 , gM2 , gMA , w
M
1,2, w

M
1,A, w

M
2,A) = (1

2 , 2, 3,
1
2 , 2,

1
3) be a molecule

with two binding sites for ligand L1 and one for ligand L2. Then,

Φ(M) = λ2κ+
1

2
λ2 + 5λκ+

5

2
λ+ 3κ+ 1.

In this situation of two and one bindings sites Φ is a map

Φ : G2,1 −→ C∗5.

Here, the image space C∗5 represents the polynomials in two variables with 6 coeffi-
cients including the constant term which equals 1. Thus, it should not be injective
and decoupling might be possible. However, intuitively, it is clear, that not all inter-
action energies can be trivial, as this would reduce the domain to C∗3/ ∼. Looking
for another molecule with the same binding polynomial means searching for a solution
(g1, g2, gA, w1,2, w1,A, w2,A) to the system

1 = g1g2gAw1,2w1,Aw2,A

1

2
= g1g2w1,2

5 = g1gAw1,A + g2gAw2,A (4.7)

5

2
= g1 + g2

3 = gA.

As gA is fixed, the solutions to system (4.7), that is all molecules with bp Φ(M), form
an algebraic variety V ⊂ C∗5 defined by four polynomials. This means, under certain
conditions on the polynomials, dim(V ) = 1. The systems without interaction between
the binding sites for the same type of ligand are given by

V ∩ {(g1, g2, w1,2, w1,A, w2,A) ∈ C∗5|w1,2 = 1}.

We used the computer algebra program Maxima to calculate the solutions. In this special
situation we receive the following tuples sharing the same binding polynomial but with
non-interacting sites for ligand L1:

(2.2807762, 0.2192236, 3, 1, 0.6288467, 1.0601419),

(0.2192236, 2.2807762, 3, 1, 1.0601419, 0.6288467),

(2.2807762, 0.2192236, 3, 1, 0.1018987, 6.5424460),

(0.2192236, 2.2807762, 3, 1, 6.5424460, 0.1018987).

Note that, as we are dealing with equivalence classes, the first and the second pair of
the solutions coincide. Calculating the same with w1,A = 1 or w2,A = 1 does not give
any solution. Remarkably, fixing g1 = 1 or g2 = 1 is solvable, however we will not
investigate this phenomenon further, as we are interested in decoupling the system,
which means setting interaction constants to 1.
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Example 41 leads to the conjecture that it is possible to decouple the binding sites
for the same type of ligand. However, it is not generally possible to decouple different
binding sites for different types of ligands which was illustrated by Example 40. For
this reason we call a system decoupled if its binding sites for the same type of ligand
do not interact directly:

Definition 42. A molecule N = (g1, ..., gn1 , gA1 , ..., gAn2 , w1,2, ..., wAn2−1,An2
) with bind-

ing sites for two different ligands is called decoupled if

wi,j = 1 ∀{i, j} ⊂ {1, 2, ..., n1}, ∀ {i, j} ⊂ {A1, A2, ..., An2}

A very important point which is illustrated in Example 41 is the loss of uniqueness
of the decoupled system which is given in the case of one type of ligand (Proposition
23). We formulate the DSR for two types of ligands the following way:

Conjecture 43. Let

M = (gM1 , ..., gMn1
, gMA1

, ..., gMAn2
, wM1,2, ..., w

M
An2−1,An2

)

be a molecule with n1 binding sites for ligand type L1 and n2 binding sites for ligand
type L2. Then at least one decoupled molecule N exists, such that

Φ(M) = Φ(N).

Since we did not find a general proof for Conjecture 43 we will investigate the case
n2 = 1 first. The problem with proving this conjecture generally, is the following:
One could use Hilbert’s weak Nullstellensatz and show that the ideal generated by the
polynomials (analogously to Eqs. (4.7)) does not contain unity. Then the existence of
a solution would be guaranteed. However, to use this approach, one has to calculate
the ideal generated by the polynomials (e.g. the corresponding Gröbner basis) without
writing down the polynomials explicitly as n1 and n2 are not fixed. Another similar
argumentation –with the same problem– would be to calculate a Gröbner basis to find
partial solutions in an elimination ideal and to extend theses solutions to full solutions
of the system under the use of the Extension Theorem. This approach has already
been used to prove Proposition 33. Another approach would be the use of a higher-
dimensional analog of the Bezout-Theorem. Yet, this would only give a statement for
varieties in projective space. The most promising idea might be to use the special
structure of the polynomials to give a proof constructively by reducing the problem to
the proof of the DSR for one type of ligand (Proposition 23). We will compare the
approach of calculating the Gröbner basis and using the Extension and Elimination
Theorems to the concept of exploiting the special structure of the algebraic systems to
prove Conjecture 43 for n2 = 1 in the next section. Moreover, we will investigate which
unique properties all decoupled molecules share. The fact that a decoupled system is
not unique was illustrated by Example 41. However, Proposition 44 shows that at least
the binding constants are unique (except for permutations):

Proposition 44. Let

Φ(M) = an1,n2λ
n1κn2 + an1−1,n2λ

n1−1κn2 + ...a0,n2κ
n2 + an1,n2−1λ

n1κn2−1...+ 1
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be a bp of a molecule with n1 binding sites for ligand L1 and n2 binding sites for ligand
L2. Let

N = (gN1 , ..., g
N
n1
, gNA1

, .., gNAn2
, 1, ..., wNn1,An2

, 1..., 1)

and
K = (gK1 , ..., g

K
n1
, gKA1

, .., gKAn2
, 1, ..., wKn1,An2

, 1..., 1)

be two different corresponding decoupled systems. Then two permutations σ1 of {0, ..., n1}
and σ2 of {0, ..., n2} exist, such that

(gNi )n1
i=1 = (gKσ1(i))

n1
i=1

and
(gNAi)

n2
i=1 = (gKAσ2(i)

)n2
i=1.

Proof. A decoupled system is in the preimage of Φ(M) with respect to the map M 7→
Φ(M). In particular, it has to solve the subsystem of equations given by its coefficients
{ai,0}n1

i=1. As this subsystem is free of the binding constant variables {gAi}
n2
i=1 of ligand

L2 it represents the case of the DSR for one type of ligand. Consequently, according
to Proposition 23, the set {gi}n1

i=1 can be calculated from the roots of

an1,0λ
n1 + an1−1,0λ

n1−1 + ...+ 1,

which shows (gNi )n1
i=1 = (gKσ1(i))

n1
i=1. The same is true for the subsystem of equations

given by {a0,i}n2
i=1 which gives the second result.

4.4 Molecules with n to one binding sites

4.4.1 The Decoupled Sites Representation

At first we will prove Conjecture 43 for the case (n1, n2) = (2, 1) to compare the
approach of calculating the Gröbner basis and using the Elimination and Extension
Theorems to the exploitation of the special structure of the varieties we are dealing
with. Note that Proposition 46 includes the statement of Proposition 45. However, we
will illustrate the different approaches for proving Conjecture 43 on the basis of the
proof of Proposition 45.

Proposition 45. Let

M = (gM1 , gM2 , gMA , w
M
1,2, w

M
1,A, w

M
2,A)

be a molecule with two binding sites for ligand L1 and one binding site for ligand L2.
Then a molecule

N = (g1, g2, gA, 1, w1,A, w2,A)

exists such that
gA = gMA and Φ(M) = Φ(N).

Proof. Let
Φ(M) = a2,1λ

2κ+ a2,0λ
2 + a1,1λκ+ a1,0λ+ a0,1κ+ 1
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be the binding polynomial of molecule M . A molecule N = (g1, g2, gA, 1, w1,A, w2,A) is
a solution to the algebraic system

gM1 gM2 gMA w
M
1,2w

M
1,Aw

M
2,A = a2,1 = g1g2gAw1,Aw2,A

gM1 gM2 wM1,2 = a2,0 = g1g2

gM1 gMA w
M
1,A + gM2 gMA w

M
2,A = a1,1 = g1gAw1,A + g2gAw2,A (4.8)

gM1 + gM2 = a1,0 = g1 + g2

gMA = a0,1 = gA

We regard these equations as polynomials in

C[g1, g2, gA, w1,A, w2,A, a2,1, a2,0, a1,1, a1,0, a0,1]

and use the computational algebra system Magma to calculate the Gröbner basis GB of
the corresponding ideal (w.r.t. the lexicographic order g1 > g2 > gA > w1,A > ... > a0,1,
see Cox et al. (2008)). Note that in this situation it is not enough to see that (the
reduced) Gröbner basis is unequal to {1}, since this only implies that a solution to
the system exists. However this does not show that a solution exists for any choice of
(gM1 , gM2 , gMA , w

M
1,2, w

M
1,A, w

M
2,A) ∈ C∗6. For the following argumentation it is important

to see that a2,1, a2,0, a0,1 are nonzero. The last of 17 polynomials of the Gröbner basis
is

P17 = w4
2,Aa

2
2,0a

2
0,1 − w3

2,Aa2,0a1,1a1,0a0,1 − 2w2
2,Aa2,1a2,0a0,1+

+w2
2,Aa2,1a

2
1,0a0,1 + w2

2,Aa2,0a
2
1,1 − w2,Aa2,1a1,1a1,0 + a2

2,1

and it defines the fourth elimination ideal (Elimination Theorem). Since its leading
coefficient is nonzero, we will find four solutions for w2,A. Moreover, since its constant
term is nonzero, w2,A = 0 is not a solution. As the leading coefficient of the 16th
polynomial (regarded as a polynomial in w1,A)

P16 = w1,Aa2,1a2,0a0,1 + wA2,Aa
2
2,0a

2
0,1 − w2

2,Aa2,0a1,1a1,0a0,1−

−2w2,Aa2,1a2,0a0,1 + w2,Aa2,1a
2
1,0a0,1 + w2,Aa2,0a

2
1,1 − a2,1a1,1a1,0

is a2,1a2,0a0,1 and will not vanish in the solutions of P17 = 0, all solutions of w2,A

can be extended to solutions of the third elimination ideal (Extension Theorem). To
extend the solutions to the second elimination ideal, consider the tenth polynomial
with leading coefficient 1. Moreover, to see that the partial solutions can be extended
further, consider the sixth and the first polynomial with leading coefficients w2

2,Aa2,0a0,1

and 1, respectively. Thus, this procedure leads to four solutions of the full system (only
two of them are different w.r.t. the equivalence relation of Definition 39). For more
information on the Elimination and Extension Theorems see Cox et al. (2005, 2008).

Note that the proof of Proposition 45 also showed that

Φ(G2,1) ⊃ {a2,1λ
2κ+ a2,0λ

2 + a1,1λκ+ a1,0λ+ a0,1κ+ 1|ai,j ∈ C∗},
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which means all polynomials of this shape have a preimage w.r.t. Φ. To calculate the
energies of the decoupled molecule N in Proposition 45 one can use a computational
algebra system (Magma, Maxima) to solve Eqs. (4.8) or use some special properties of
this system: In general, not only for this choice of ni, the coefficients (ai,0)i=1,...,n1 define
a system of algebraic equations which allows to calculate (g1, ..., gn1) (Proposition 23).
Analogously, (a0,i)i=1,...,n2 give (gA, ..., gAn2 ). In system (4.8), with the same argument,
w1,A and w2,A are given by

w1,A = − 1

g1λzi

w2,A = − 1

g2λzj

where λzi are the roots of
a2,1

gA
λ2 +

a1,1

gA
λ+ 1.

This calculation can also be used to prove Proposition 45 and will be used in the
following to prove the more general case of (n1, 1) binding sites.

Proposition 46. Let M be a molecule with n1 binding sites for Ligand L1 and one
binding site for ligand L2 (which is denoted as site A). Then a decoupled molecule
N = (g1, ..., gn1 , gA, 1, ..., wn1,A) exists with

Φ(M) = Φ(N).

Proof. Let

Φ(M) = an1,1λ
n1κ+ an1,0λ

n1 + ...+ a1,1λκ+ a1,0λ+ a0,1κ+ 1

be the binding polynomial of M . Again, a decoupled molecule N is a point of the
algebraic variety V in the variables g1, ..., gA, w1,A, ..., wn1,A defined by the coefficients
ai,j and the corresponding equations. The equations of coefficients an1,0, ..., a1,0 are
free from the variables wi,j since we are looking for a decoupled system. Thus, Propo-
sition 23 gives

(g1, ..., gn1) =

(
− 1

λz1
, ...,− 1

λzn1

)
with λzi the roots of

an1,0λ
n1 + an1−1,0λ

n1−1 + ...+ a1,0λ+ 1. (4.9)

Moreover, a0,1 gives gA. The remaining equations can be rewritten

an1,1

gA
=

n1∏
i=1

giwi,A

an1−1,1

gA
=

n1∑
j=1

n1∏
i=1,i 6=j

giwi,A

...

47



CHAPTER 4. THE DSR FOR TWO DIFFERENT TYPES OF LIGANDS

a1,1

gA
=

n1∑
i=1

giwi,A.

Thus, the products giwi,A are determined by the roots of

an1,1

gA
λn1 +

an1−1,1

gA
λn1−1 + ...+

a1,1

gA
λ+ 1. (4.10)

Consequently, the interaction energies wi,A can be calculated as the binding energies gi
are already known.

4.4.2 The maximal number of decoupled molecules and properties they
share

The proof of Proposition 46 also shows how many different decoupled molecules exist
at most.

Corollary 47. Let M be a molecule with n1 binding sites for Ligand L1 and one binding
site for ligand L2. Then at most n1! different decoupled molecules exist.

Proof. The proof of Proposition 46 shows that at most (n1!)2 tuples exist which cor-
respond to the different permutations of the roots of polynomial (4.9) and polynomial
(4.10) and which solve the system. However, n1! tuples represent the same molecule.
Thus, the maximal number of different decoupled molecules is n1!.

Example 48. We illustrate the binding curves of individual sites of a system with two
binding sites for ligand L1 (activity λ) and one binding site for ligand L2 (activity κ)and
its corresponding decoupled systems. We used other hypothetical binding and interaction
constants than in Example 41 to observe titration curves which can be distinguished by
eye. To this end, let

M = (g1, g2, gA, w1,2, w1,A, w2,A) = (900, 900, 300, 10−4, 1000, 2000)

be a molecule. Its decoupled molecules are given by

N = (1799.955, 0.04500113, 300, 1, 1500.004, 1333.33)

K = (1799.955, 0.04500113, 300, 1, 0.03333491, 59997167).

The titration curves of the individual sites of the molecules are illustrated in Fig. 4.1.

An interesting observation is the fact that in the titration curves of the individual
sites of the decoupled molecules of Example 48, the area of transition between 0.1 and
0.9 probability of occupation is comparatively small. However, it is difficult to quantify
this characteristic. Moreover, regarding the titration curves of the decoupled molecules,
it seems that the titration curve of site 1 of molecule K is a composition of the left
part of site 1 and the right part of site 2 of molecule N . Analogously, the curve of site
2 of molecule K seems to be composed of the remaining parts of the curves of sites
1, 2 of molecule N . This observation leads to the conjecture, that there is a unique
set of “bricks” all decoupled molecules are built of. We will investigate this in the
following. As the titration curves of individual sites are sums of the probabilities of the
microstates in which the individual site is occupied, the constants of the microstates,
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Figure 4.1: Activity dependent ligand binding to each site of the original molecule M
(left column) and of the decoupled molecules N (middle column) and K
(right column) of Example 48. A logarithmic scale of the ligand activities
λ and κ is used. The probability of occupation is encoded by the colors,
according to the colorbars.
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Table 4.1: Constants of all microstates of the different molecules of Example 48: M =
(900, 900, 300, 10−4, 1000, 2000) and the corresponding decoupled molecules
N , K. The binding sites 1 and 2 for the first type of ligand are described
by the first and the second entry of the microstate. The third entry of the
microstate corresponds to site A, the binding site for the second ligand.

Microstate M N K

(0, 0, 0) 1 1 1
(0, 0, 1) 300 300 300
(0, 1, 0) 900 0.04500113 0.04500113
(1, 0, 0) 900 1799.955 1799.955
(1, 1, 0) 81 81 81
(0, 1, 1) 5.4 · 108 18000.4 8.09982 · 108

(1, 0, 1) 2.7 · 108 8.09982 · 108 18000.4
(1, 1, 1) 4.86 · 1010 4.86 · 1010 4.86 · 1010

which are listed in Table 4.1 can give information about this observation. We see here,
that in the decoupled systems of Example 48, the probabilities of the two events in
which one ligand of type L1 and the the second ligand are bound, are permuted. These
probabilities are the unique “bricks” all decoupled molecules are built of. Before we
formulate this as a proposition, we define the term macrostate for molecules with two
types of ligands:

Definition 49. Let M be a molecule with (n1, n2) binding sites. It is said to be in
macrostate (i, j), i ≤ n1, j ≤ n2 if –in its current microstate– exactly i ligands of type
L1 and exactly j ligands of type L2 are bound.

Proposition 50. Let M be a molecule with n1 binding sites for ligand L1 and one
binding site for ligand L2. Moreover, let the order of the sites in the decoupled molecules
be fixed to the same permutation. Then the following statements hold:

a) For every microstate k with unoccupied site A, all decoupled molecules share the
same microstate constant g(k).

b) For every macrostate (i, 1) with occupied site A and i occupied sites for ligand L1,(
n1

i

)
numbers exist such that for any decoupled molecule the tuple of its constants

of microstates belonging to this macrostate is a permutation of these numbers.

c) The permutation of microstate constants of macrostate (1, 1) fixes the permuta-
tions of the microstate constants of all other macrostates (i, 1).

d) Every decoupled molecule can be identified one to one with a permutation of the
microstate constants of macrostate (1, 1).

Proof. a) Let k be a microstate in which site A is unoccupied. Then its constant is
the product of the binding constants of the sites which are occupied. According
to Proposition 44 all decoupled molecules share the same binding constants which
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gives the first statement since the permutation of {g1, ..., gn1} was assumed fixed,
previously.

b) Let k be a microstate in which site A is occupied. Eq. (1.5), together with the
assumption of only pairwise interaction, states that its constant is the product
of the binding constants of all occupied sites and their interaction constants. As
the interaction constants of any pair of binding sites for the same type of ligand
are 1, this reduces to

g(k) = gA

n1∏
i=1

gkii w
ki
i,A. (4.11)

Since the decoupled systems share the binding constant gA and since the products
(giwi,A)i=1,...,n1 correspond to the permutations of the roots of polynomial (4.10),
the microstate constants of different decoupled systems belonging to the same
macrostate are permutations.

c) Let a permutation of the microstate constants belonging to macrostate (1, 1) be
chosen. Then all interaction constants are determined as the microstate constants
are given by a product of gigAwi,A and gi, gA are known. Thus, the molecule is
known and all other constants are determined.

d) Let N,K be two different decoupled molecules. Then their permutation of the
microstate constants of macrostate (1, 1) differs, as otherwise N = K, due to iden-
tical binding and interaction constants (injectivity). Conversely, every permuta-
tion of the microstate constants solves the system described by polynomial (4.10)
(surjectivity).

Remark 51. In Proposition 50 we used the term permutation for permutations of
numbers. This means that different permutations of the symmetric group Sn can be
regarded as equal if some numbers are equal.

4.4.3 The existence of point-wise decoupled systems for fixed activity of
the second ligand

Regarding the one-dimensional titration curve of site 1 of molecule K of Example 48
for fixed ligand activity − log(κ) = 6, we see that it is not of classical Henderson-
Hasselbalch form (Fig. 4.2). This means that even though the ligand binding sites have
a trivial interaction constant in the decoupled molecule, the sites interact. This result
may be counterintuitive since the binding sites for ligand L1 do not interact directly.
However, a secondary interaction of the binding sites for ligand L1 results from the
interaction with the second ligand. Let M = (g1, g2, gA, w1,2, w1,A, w2,A) be a molecule
with two binding sites for ligand L1 (sites 1, 2) and one binding site for ligand L2

(site A). We investigate the following question: Which conditions on the binding and
interaction constants are necessary to let the titration curves of the individual sites Ψ1

and Ψ2 be of HH shape for all κ?

Proposition 52. Let M = (g1, g2, gA, w1,2, w1,A, w2,A) be a molecule.
Then the one-dimensional titration curves of sites 1 and 2 are of HH shape for all κ if
and only if w1,2 = 1 and (w1,A = 1 or w2,A = 1).
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Figure 4.2: Activity dependent ligand binding to site 1 of molecule K of Example 48
for fixed activity of the second ligand: 6 = − log(κ).

Proof. ”=⇒“ Let M be a molecule as described. Its bp is given by

Φ(M) = g1g2gAw1,2w1,Aw2,Aλ
2κ+ g1g2w1,2λ

2+

(g1gAw1,A + g2gAw2,A)λκ+ (g1 + g2)λ+ gAκ+ 1.

Since the sites 1 and 2 are of HH shape for all κ, they are in particular decoupled for
κ = 0. This implies w1,2 = 1, according to Proposition 29. Thus, the titration curve of
site 1 has the shape

(g1g2gAw1,Aw2,Aκ+ g1g2)λ2 + (g1gAw1,Aκ+ g1)λ

Φ(M)
. (4.12)

We know that for all fixed κ, site 1 has a HH titration curve. This implies in particular
that Eq. (4.12) can be rewritten (for fixed κ) as

g′1(κ)λ

g′1(κ)λ+ 1
. (4.13)

where g′1(κ) depends on κ but not on λ. Equality of Eq. (4.12) and Eq. (4.13) shows
that a factor a(κ) ∈ C[λ] exists (a(κ) has to be of degree one), such that

a(κ)g′1(κ)λ = (g1g2gAw1,Aw2,Aκ+ g1g2)λ2 + (g1gAw1,Aκ+ g1)λ (4.14)

and
a(κ)(g′1(κ)λ+ 1) = Φ(M). (4.15)

Regarding these polynomials as elements of C[λ], we see that the constant term of Φ(M)
is given by gAκ+ 1. Moreover, the constant term of (g′1(κ)λ+ 1) is 1. This implies that
a(κ) has constant term gAκ+ 1. Since g′1(κ) is independent of λ, Eq. (4.14) implies

g′1(κ) =
(g1gAw1,Aκ+ g1)

gAκ+ 1
(4.16)

a(κ) =
(gAκ+ 1)g2(gAw1,Aw2,Aκ+ 1)

(gAw1,Aκ+ 1)
λ+ (gAκ+ 1). (4.17)
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The same arguments for site 2 show that its titration curve is of shape of Eq. (4.13)
with

g′2(κ) =
(g2gAw2,Aκ+ g2)

gAκ+ 1
. (4.18)

As the overall titration curve is the sum of the individual curves we have necessarily

g′1(κ)λ

g′1(κ)λ+ 1
+

g′2(κ)λ

g′2(κ)λ+ 1
= (4.19)

=
2(g1g2gAw1,Aw2,Aκ+ g1g2)λ2 + (g1gAw1,A + g2gAw2,Aκ+ g1 + g2)λ

Φ(M)
.

Hence, a b(κ) must exist which is independent of λ such that

(g′1(κ)λ+ 1)(g′2(κ)λ+ 1)b(κ) = Φ(M). (4.20)

Again, a comparison of the constant term of the polynomials gives b(κ) = (gAκ + 1).
Thus, comparing the leading coefficients of the polynomials of Eq. (4.20) yields

(g1gAw1,Aκ+ g1)(g2gAw2,Aκ+ g2)

gAκ+ 1
= g1g2gAw1,Aw2,Aκ+ g1g2 (4.21)

which gives
(w1,A + w2,A)κ = (1 + w1,Aw2,A)κ ∀κ

and thus
w1,A(1− w2,A) = 1− w2,A. (4.22)

Eq. (4.22) shows that w2,A 6= 1 implies w1,A = 1.

”⇐=“ Without loss of generality, let w1,A = 1 = w1,2. Then, using notation of
Eqs. (4.16, 4.17) we can rewrite

a(κ)(g′1(κ)λ+ 1) = Φ(M)

and
a(κ)g′1(κ)λ = (g1g2gAw2,Aκ+ g1g2)λ2 + (g1gAκ+ g1)λ.

Thus, the 1-dimensional titration curve for fixed κ (Eq. (4.12)) reduces to

(g1g2gAw2,Aκ+ g1g2)λ2 + (g1gAκ+ g1)λ

Φ(M)
=

g′1(κ)λ

g′1(κ)λ+ 1
=

g1λ

g1λ+ 1
. (4.23)

Moreover, the titration curve of site 2 for fixed κ is given by

(g1g2w2,Aκ+ g1g2)λ2 + (g2gAw2,Aκ+ g2)λ

Φ(M)
=

=
(g2gAw2,Aκ+ g2)λ(g1λ+ 1)

(g1λ+ 1)a(κ)
=

g′2(κ)λ

g′2(κ)λ+ 1
,

with g′2(κ) of Eq. (4.18).
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Proposition 52 can be interpreted the following way: The different binding sites for
the same type of ligand have HH shape, for all activities of the second ligand if and
only if they are not “connected”. To avoid different interpretations, we give an exact
definition of this term:

Definition 53. Let M be a fixed tuple with binding sites 1, ..., n1 for ligand L1 and
binding sites A1, .., An2 for Ligand L2. Moreover, let i,j ∈ {1, ..., n1, A1, ...An2}. The
sites i and j are called connected if a path I = {(i, k1), (k1, k2), ..., (kp, j)} exists with
wi 6= 1 ∀i ∈ I.

Using this definition we conjecture that Proposition 52 can be generalized to molecules
with more binding sites.

Conjecture 54. Let M be a molecule with binding sites 1, ..., n1 for ligand L1 and
binding sites A1, .., An2 for ligand L2. Then the one-dimensional titration curves of the
binding sites ligand L1 are of HH shape for all κ if and only if all binding sites for
ligand L1 are pairwise not connected.

4.5 Molecules with n to two binding sites

We prove the DSR for the special case of two binding sites for both ligands, and
present an iterative approach to calculate decoupled systems with (n, 2) bindings sites.
Exemplarily, this is used subsequently to decouple a molecule with (4, 2) binding sites.

4.5.1 Two to two binding sites

We formulate the DSR as proposition for the case n1 = n2 = 2.

Proposition 55. Let

M = (gM1 , gM2 , gMA , g
M
B , w

M
1,2, w

M
1,A, w

M
1,B, w

M
2,A, w

M
2,B, w

M
A,B)

be a molecule with two binding sites for each type of ligand whose binding polynomial
has real, positive coefficients, only. Then a decoupled molecule

N = (g1, g2, gA, gB, 1, w1,A, w1,B, w2,A, w2,B, 1)

exists, with
Φ(M) = Φ(N).

Proof. We will use the special structure of the algebraic equations we are dealing with
to prove Proposition 55. The binding polynomial of M is

Φ(M) = a2,2λ
2κ2 + a2,1λ

2κ+ a2,0λ
2 + a1,2λκ

2 + a1,1λκ+ a1,0λ+ a0,2κ
2 + a0,1κ+ 1.

We seek for a molecule

N = (g1, g2, gA, gB, 1, w1,A, w1,B, w2,A, w2,B, 1)
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with the same binding polynomial. The bp gives a system of eight equations corre-
sponding to its coefficients

a2,2 = g1g2gAgBw1,Aw1,Bw2,Aw2,B

a2,1 = g1g2gAw1,Aw2,A + g1g2gBw1,Bw2,B

a2,0 = g1g2

a1,2 = g1gAgBw1,Aw1,B + g2gAgBw2,Aw2,B

a1,1 = g1gAw1,A + g1gBw1,B + g2gAw2,A + g2gBw2,B

a1,0 = g1 + g2

a0,2 = gAgB
a0,1 = gA + gB

(4.24)

The binding energies gi can be calculated using the equations given by the coefficients
with only one type of ligand, according to Proposition 23:

(g1, g2) =

(
− 1

λz1
,− 1

λz2

)
with λzi denoting the roots of

a2,0λ
2 + a1,0λ+ 1.

Analogously, (gA, gB) can be calculated using a0,2, a0,1. Thus, in general for any choice
of (n1, n2), the subsystem of equations given by the coefficients ai,0 and a0,j , is enough
to calculate (gi)i=1,...,n1+n2 . With the same argument equations a2,2 and a2,1 give the
products gAw1,Aw2,A and gBw1,Bw2,B by calculating the roots of

a2,2

g1g2
λ2 +

a2,1

g1g2
λ+ 1. (4.25)

Analogously, a2,2 and a1,2 give g1w1,Aw1,B and g2w2,Aw2,B. This means we have al-
ready found (gi) solving the subsystem {a0,j , aj,0}, and products (giwi,Awi,B)i=1,2,
(gjw1,jw2,j)j=A,B such that all equations, except for a1,1 are solved. The remaining
question is whether the products can be factorized such that all required conditions
are fulfilled. As we know the binding constants we can rewrite the conditions on the
products to

w1,Aw1,B = b1

w2,Aw2,B = b2

w1,Aw2,A = bA (4.26)

w1,Bw2,B = bB

g1gAw1,A + g2gBw2,B + g1gBw1,B + g2gAw2,A = a1,1

If (wi,j) solving system (4.26) exist then the whole system will be solved. Rearranging
the first four equations of system (4.26) shows that we can solve them simultaneously
for any choice of w1,A 6= 0 if and only if bAbB

b2b1
= 1. However, this is true as the bis are

derived from the roots of polynomials and fulfill in particular

a2,2 = w1,Aw1,Bw2,Aw2,B

B∏
i=1

gi = b1b2

B∏
i=1

gi = bAbB

B∏
i=1

gi.
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Consequently, we can solve the first four equations to receive expressions depending on
w1,A, only, and plug them into the last equation which gives a polynomial of degree
two. Unfortunately, contrarily to the statement of the proof presented in Martini et al.
(2013a), it is not obvious (or even not correct) that the polynomial has to have a
root which is nonzero. However, this would be required if we want to stop here, since
w1,A = 0 does not solve system (4.26). We will prove the statement that a solution
exists by a contradiction: Assume now, that a solution to the system does not exist.
Regarding the polynomial(

g1gA + g2gB
bB
b1

)
w2

1,A − a1,1w1,A + g1gBb1 + g2gAbA, (4.27)

we see, that if the leading term vanishes, we receive a linear equation (a1,1 6= 0), which
has a solution which is nonzero if the constant term does not vanish. Conversely, if the
constant term equals zero, we will receive a linear equation, with a nonzero solution, if
the leading term is nonzero. Since we assume that a solution does not exist, we know
that the leading coefficient as well as the constant coefficient have to be zero:

g1gAb1 + g2gBbB = 0 (4.28)

and
g1gBb1 + g2gAbA = 0. (4.29)

Recall, that a permutation of the negative inverses of the roots of a polynomial with
positive coefficients was chosen for g1b1 := N1 and g2b2 := N2 (analogously for gAbA =:
NA and gBbB =: NB). Assuming that a solution to the system does not exist implies
that Eqs. (4.28, 4.29) are true for permutations of N1, N2 or NA, NB:

gAN1 + g2NB = 0 and gBN1 + g2NA = 0 (4.30)

gAN2 + g2NB = 0 and gBN2 + g2NA = 0 (4.31)

gAN1 + g2NA = 0 and gBN1 + g2NB = 0 (4.32)

Eqs. (4.30,4.31) imply that N1 = N2, which means that they are real valued and
consequently positive, since they are the negative inverses of roots of a polynomial
with positive coefficients (if the imaginary part was nonzero, they would have to be
complex conjugates). Moreover, Eqs. (4.31,4.32) then imply that gAN1 = gBN1 and
thus gA = gB are real valued. This implies that NA = NB ∈ R and thus g2 ∈ R+. This
gives a contradiction, since –with all those factors positive– Eqs. (4.28, 4.29) can not
be fulfilled.

Remark 56. The proof of Proposition 55 instructs us how to calculate a solution for
the algebraic system. A generalization of this procedure might be adequate to prove the
DSR without fixing n1 and n2.
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4.5.2 Decoupling a molecule with four and two binding sites for different
ligands

Here, we illustrate the decoupling of a hypothetical molecule with four binding sites for
ligand L1 and two binding sites for ligand L2. Let the sites for L1 be denoted by 1, ..., 4
and the binding sites for L2 be called A,B. Even though the hypothetical molecule
has only six binding sites, decoupling is challenging. To find a decoupled molecule for
a system with four and two binding sites, we have to solve system (4.33) consisting of
14 polynomial equations (one equation per coefficient) with 14 variables given by the
binding constants and the interaction constants. To facilitate identifying the structure
of the system, which is required to understand how we find solutions, we use the fol-
lowing substitutions:

ξi := giwi,Awi,B

aj4,1 := g1g2g3g4gjw1,jw2,jw3,jw4,j

aj3,1 := g1g2g3gjw1,jw2,jw3,j + g1g2g4gjw1,jw2,jw4,j +
+ g1g3g4gjw1,jw3,jw4,j + g2g3g4gjw2,jw3,jw4,j

aj2,1 := g1g2gjw1,jw2,j + g1g3gjw1,jw3,j + g1g4gjw1,jw4,j +
+ g2g3gjw2,jw3,j + g2g4gjw2,jw4,j + g3g4gjw3,jw4,j

aj1,1 = g1gjw1,j + g2gjw2,j + g3gjw3,j + g4gjw4,j

with i ∈ {1, 2, 3, 4} and j ∈ {A,B}. A look at system (4.33) reveals that it consists of
three systems of the type described in the proof of Proposition 23 and a system which
is a sum of two systems of the same structure ({ai,1}i=1,2,3,4).

a4,2
gAgB

= ξ1ξ2ξ3ξ4

a3,2
gAgB

= ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4

a2,2
gAgB

= ξ1ξ2 + ξ1ξ3 + ξ1ξ4 + ξ2ξ3 + ξ2ξ4 + ξ3ξ4

a1,2
gAgB

= ξ1 + ξ2 + ξ3 + ξ4

a4,1 = aA4,1 + aB4,1

a3,1 = aA3,1 + aB3,1

a2,1 = aA2,1 + aB2,1

a1,1 = aA1,1 + aB1,1

a0,2 = gAgB

(4.33)
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a0,1 = gA + gB

a4,0 = g1g2g3g4

a3,0 = g1g2g3 + g1g2g4 + g1g3g4 + g2g3g4

a2,0 = g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4

a1,0 = g1 + g2 + g3 + g4

To find a decoupled system for Example 58, we tried to use the standard command
“algsys” of the computer algebra system Maxima to solve the system. However, it was
too complicated to be solved directly by this general approach. Instead we used the
special structure of the system to deduce an iterative procedure, similar to Proposi-
tion 35, with decoupled systems as fixed point: Regarding the system of polynomial
equations we see that the equations given by a4,0, a3,0, a2,0, a1,0 do neither contain any
interaction constant as variable, nor the binding constants gA, gB. Thus, we have four
equations with the four variables g1, g2, g3, g4. This subsystem can be solved using the
well known procedure: gi = − 1

zi
where zi denote the roots of the polynomial

P1(x) = a4,0x
4 + a3,0x

3 + a2,0x
2 + a1,0x+ 1.

Analogously, coefficients a0,2, a0,1 immediately give a solution for (gA, gB). Hence, the
binding energies are unique, except for permutations. We chose any permutation which
means we fix the binding constants. The products ξi = giwi,Awi,B can be calculated
using equations a4,2, a3,2, a2,2, a1,2: Again, these products are the negative inverses of
the roots of the polynomial

P2(x) =
a4,2

gAgB
x4 +

a3,2

gAgB
x3 +

a2,2

gAgB
x2 +

a1,2

gAgB
x+ 1.

Note, that this is the major step which distinguishes between the different decoupled
molecules: We have fixed an order of the binding constants previously, and have to
relate the roots of P2 and the products giwi,Awi,B. In general, we will receive different
decoupled molecules for different permutations of the roots of P2 (if they do not coincide
due to identical binding constants, etc.). As we know the binding constants gi, these
solutions give conditions on wi,Awi,B. Regarding equations a4,1, a3,1, a2,1, a1,1 we see
that the system is the sum of two “ordinary” systems which could be solved by the
well known procedure previously described, if we knew {aAi,1}i=1,2,3,4. As this is not the
case we use the iterative approach described in Proposition 57.

Proposition 57. Let the algebraic system (4.33) be given. Let (gi)i=1,...,4 be a solution
to the subsystem {a4,0, a3,0, a2,0, a1,0}, (gA, gB) be a solution to {a0,2, a0,1}. Further-
more, let the products (wi,Awi,B)i=1,...,4 be a solution to {a4,2, a3,2, a2,2, a1,2} for the
given binding constants (gi)i=1,2,3,4,A,B and let σn be a sequence of permutations of
{1, ..., 4}. We consider the following algorithm:

1) aA,0i,1 := ai,1, i ∈ {1, 2, 3, 4}

2) Pn(x) :=
aA,n4,1

gA
x4 +

aA,n3,1

gA
x3 +

aA,n2,1

gA
x2 +

aA,n1,1

gA
x+ 1
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3) (zn1 , z
n
2 , z

n
3 , z

n
4 ) := the roots of Pn

4) wni,A := − 1
zn
σn(i)

gi

5) wni,B :=
wi,Awi,B
wni,A

6) Calculate aB,ni,1 using equations {ai,1}i=1,2,3,4 and

7) restart with aA,n+1
i,1 := ai,1 − aB,ni,1

Then, x = (w1,A, w1,B, w2,A, w2,B, w3,A, w3,B, w4,A, w4,B) is a solution to the subsystem
{ai,n}i,n 6=0 which satisfies the conditions on the products (wi,Awi,B)i=1,...,4 if and only
if a permutation σ ∈ S4 exists such that x is a fixed point of the algorithm with σn ≡ σ
(the constant sequence).

Proof. Let x be a solution to the subsystem, satisfying the conditions on the products
(wi,Awi,B)i=1,...,4. Then

wni,A = wi,A ⇒ wni,B =
wi,Awi,B
wi,A

= wi,B ⇒ aB,ni,1 = aBi,1 ⇒ aA,n+1
i,1 = aAi,1

which gives
wn+1
i,A = wi,A = wni,A

if the correct permutation of the roots is used.
Conversely, let x be a fixed point and, without loss of generality, let σ be identity. Then
wni,A = wn+1

i,A = wi,A. This means that the roots of Pn coincide with the roots of Pn+1.
As both polynomials have the same roots and the same constant term, this shows that
all coefficients are equal, which implies aA,ni,1 + aB,ni,1 = ai,1, and that equations ai,1 are
satisfied. Consequently, x solves the system.

Example 58. Let the molecule be described by M = (G,W ) with

G = (g1, g2, g3, g4, gA, gB) = (4 · 103, 10, 2 · 103, 500, 103, 10)

W = (wi,j)i,j=1,2,3,4,A,B =



1 0.1 0.1 0.05 10 1
0.1 1 0.5 0.5 103 2 · 103

0.1 0.5 1 0.05 102 10
0.05 0.5 0.05 1 102 20
10 103 102 102 1 0.1
1 2 · 103 10 20 0.1 1


For the sake of a clear view, we use a matrix notation for W which repeats information
but underlines which pairwise interaction is described. The binding polynomial of the
molecule is given by

Φ(M) =

= 1022λ4κ2 + 2.5001 · 1016λ4κ+ 250000λ4+

+5.1002 · 1020λ3κ2 + 1.800602 · 1015λ3κ+ 1575000λ3+

+3.0190 · 1016λ2κ2 + 2.69328 · 1012λ2κ+ 966500λ2+

+2.3040 · 1010λκ2 + 3.0054 · 108λκ+ 6510λ+
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1000κ2 + 1010κ+ 1

The binding to the individual sites is illustrated in Fig. 4.4. We used the iterative
approach described in Proposition 57 to calculate 24 different decoupled molecules, which
correspond to the different permutations of the roots of Pn in step 3) of Proposition 57.
The titration curves of the individual binding sites of two different decoupled molecules
N and K are illustrated in Fig. 4.4. The binding constants of the decoupled molecules
are always coinciding and given by (rounded):

GDe = (6358.026, 150.328, 1.468, 0.178, 1009.009, 0.991).

The interaction constants of two chosen decoupled molecules N,K are (rounded)

WN =



1 1 1 1 45.323 75.119
1 1 1 1 56.358 162.473
1 1 1 1 487.352 23.900
1 1 1 1 79.618 1.384

45.323 56.358 487.352 79.618 1 1
75.119 162.473 23.900 1.384 1 1



WK =



1 1 1 1 45.336 6.810 · 10−05

1 1 1 1 56.464 2550.214
1 1 1 1 486.320 23.950
1 1 1 1 79.613 97028.384

45.336 56.464 486.320 79.613 1 1
6.810 · 10−5 2550.214 23.950 97028.384 1 1


Remark 59. a) The fixed point algorithm described in Proposition 57 can easily be

generalized to a situation of (n, 2) binding sites. Only the degree of the polynomial
whose roots have to be calculated increases.

b) We note that it is not clear whether this procedure will always be attracted by its
fixed point. However, our numerical test suggest that it converges quickly.

c) The algorithm described in Proposition 57 can also be used with site B as reference
site (aB,0i,1 := ai,1, ...). In all examples we calculated, this altered procedure led to
another molecule with different titration curves of sites A and B. However, the
titration curves of sites 1, ..., 4 only depend on the chosen permutation of the
products wi,Awi,B, and not on the choice of the reference site. In particular, this
shows that our iterative approach has at least two (which equals n2!) fixed points
for any permutation of the products (wi,Awi,B)i=1,..,4. Switching the reference
site and calculating the decoupled molecules with our iterative procedure and all
possible permutations of the roots of Pn gives additional 24 decoupled molecules
sharing other titration curves of the binding sites for the second ligand. Moreover,
not only the reference site, but also the starting point can be changed (e.g. aA,0i,1 :=
1
2ai,1). Yet, we do not know how the choice of the starting point and reference site
determines which fixed point will be reached. It might be the case that the choice
of the reference site implies that a certain fixed point is attractive and the other
one repulsive.
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Figure 4.3: Ligand binding to site 1 of the decoupled molecule K of Example 58, de-
pendent on log(λ) for fixed log(κ) = −3.

d) Our implementation is based on the R function “polyroot” (R Core Team, 2012)
and we regarded the permutation which was returned by this function as id ∈ S4.

Regarding the titration curve of site 1 of the decoupled molecule K for fixed activity
log(κ) = −3 (Fig. 4.3), we can see an extreme form of secondary interaction, which we
have already described, previously in this chapter: Even though none of the binding
sites for ligand L1 interact directly, their one-dimensional titration curves are not of
classical Henderson-Hasselbalch shape when the activity κ of the second ligand is fixed.
Secondary interaction between the binding sites for ligand L1 is a result of the interac-
tion with the second ligand: As site 1 of the decoupled molecules has a great binding
constant (compared to the other binding sites), it will be occupied at a comparatively
low activity. With an increase of activity λ, more ligands will bind to the other sites
which will enhance the binding of the second ligand, in particular to site B. However,
this decreases the affinity of ligand L1 to site 1, due to the small interaction constant
w1,B of molecule K.
Analogously to our observation in the first part of this chapter, we see here once more
that in the decoupled molecules, the area of transition from 0.1 to 0.9 occupation
probability is small compared to the original molecule (Fig. 4.4).
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Figure 4.4: Activity dependent ligand binding to each site in the original molecule M (left pair of columns) and the decoupled molecules N
(middle pair of columns) and K (right pair of columns) of Example 58. A logarithmic scale of the ligand activities λ and κ is used.
The probability of occupation is encoded by the colors, according to the colorbars.
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4.6 Unique features shared by all decoupled molecules

Fig. 4.4 creates the suspicion that the binding curves of the individual sites for ligand
one of the decoupled system N in Example 58 are similar to those of the decoupled
molecule K in a certain way: The titration curve of site 1 of molecule K seems to share
the “right part” with site 4 of molecule N and its “left part” seems to be identical to
the “left part” of site 1 of molecule N . We have already described this observation for
the case of (n1, 1) binding sites. Analogously, to the first part of this chapter, we want
to identify unique features all decoupled molecules share. We will have a look on the
microstate constants of the different molecules first. Table 1 lists the non-trivial mi-
crostate constants of the molecules M , N and K of Example 58. Microstates constants
which are not listed are identical for the molecules N and K (when the permuta-
tion of the binding constants is fixed). We see here, that the microstate constants of
macrostate (1, 1) of molecules N and K are not permutations of each other. However,
for all macrostates in which the binding sites for one type of ligand are fully occupied,
the corresponding microstate constants are permutations. We can prove this statement
in general.

Proposition 60. Let M be a molecule with n1 binding sites for ligand L1 and n2 bind-
ing sites for ligand L2. Moreover, let the order of the sites in the decoupled molecules
be fixed to the same permutations. Then the following statements hold:

a) For any microstate k with only one type of ligand bound, all decoupled molecules
share the same microstate constant g(k).

b) For every macrostate (i, n2),
(
n1

i

)
numbers exist such that for any decoupled

molecule the tuple of its constants of microstates belonging to this macrostate is a
permutation of these numbers. Analogously, this statements holds for macrostates
(n1, j).

c) The permutation of microstate constants of macrostate (1, n2) fixes the permu-
tations of the microstate constants of all other macrostates (i, n2). Analogously,
for macrostate (n1, 1) and (n1, j).

Proof. a) As the permutation of the binding sites is fixed, and since the constants
g(k) are the product of the binding constants they are identical for all decoupled
molecules.

b) Let k be a microstate of macrostate (1, n2). Its constant is given by

g(k) = gigA1gA2 · · · gAn2wi,A1 · · · wi,An .

The coefficients an1,n2 , an1−1,n2 , ..., a1,n2 are enough to calculate these constants
which are the negative inverses of the roots of a polynomial. Thus, for any decou-
pled molecule, the constants correspond to a permutation of these roots as the
decoupled molecule has to fulfill the equations given by an1,n2 , an1−1,n2 , ..., a1,n2

in particular. Let k1 be a microstate of macrostate (i, n2). Then its constant is
the product of i microstate constants belonging to macrostate (1, n2) divided by n2∏

j=1

gAj

i−1

.

This proves b) and c).
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Table 4.2: Microstate constants of molecules M and the two corresponding decoupled
molecules N and K of Example 58. The constants of microstates which are
not listed are identical for molecules N and K.

Macrostate Microstate M N K

(1, 1) (1, 0, 0, 0, 1, 0) 4 · 107 290757860 290757860
(0, 1, 0, 0, 1, 0) 107 8548419 8564541
(0, 0, 1, 0, 1, 0) 2 · 108 721821.7 720293.5
(0, 0, 0, 1, 1, 0) 5 · 107 14315.07 14314.21
(1, 0, 0, 0, 0, 1) 4 · 104 473343.6 0.4291216
(0, 1, 0, 0, 0, 1) 2 · 105 24206.05 379944.48
(0, 0, 1, 0, 0, 1) 2 · 105 34.76863 34.84239
(0, 0, 0, 1, 0, 1) 105 0.2443494 17135.27

(2, 1) (1, 1, 0, 0, 1, 0) 4 · 1010 2.463328 · 1012 2.468703 · 1012

(1, 0, 1, 0, 1, 0) 8 · 1011 208001453616 207622407458
(1, 0, 0, 1, 1, 0) 1011 4125056936 4126026921
(0, 1, 1, 0, 1, 0) 1012 6.115341 · 109 6.113904 · 109

(0, 1, 0, 1, 1, 0) 2.5 · 1011 121278630 121500042
(0, 0, 1, 1, 1, 0) 5 · 1011 10240671 10218376
(1, 1, 0, 0, 0, 1) 8 · 107 1.156100 · 1010 1.645112 · 105

(1, 0, 1, 0, 0, 1) 8 · 107 1.660577 · 107 15.08632
(1, 0, 0, 1, 0, 1) 2 · 107 116703.229 7419.357
(0, 1, 1, 0, 0, 1) 2 · 109 849193.2 13357436.4
(0, 1, 0, 1, 0, 1) 109 5.968020 · 103 6.569103 · 109

(0, 0, 1, 1, 0, 1) 108 8.572232 6.024124 · 105

(3, 1) (1, 1, 1, 0, 1, 0) 4 · 1014 1.762208 · 1015 1.762314 · 1015

(1, 1, 0, 1, 1, 0) 5 · 1013 3.494787 · 1013 3.502202 · 1013

(1, 0, 1, 1, 1, 0) 1014 2.950970 · 1012 2.945415 · 1012

(0, 1, 1, 1, 1, 0) 1.25 · 1015 8.675993 · 1010 8.673431 · 1010

(1, 1, 1, 0, 0, 1) 8 · 1010 405581389998 5783603
(1, 1, 0, 1, 0, 1) 2 · 1010 2850373606 2844339211
(1, 0, 1, 1, 0, 1) 2 · 109 4094166 260837
(0, 1, 1, 1, 0, 1) 5 · 1011 2.093692 · 105 2.309452 · 1011

(4, 1) (1, 1, 1, 1, 1, 0) 2.5 · 1016 2.50009 · 1016 2.50009 · 1016

(1, 1, 1, 1, 0, 1) 1012 9.99964 · 1010 9.99964 · 1010

(1, 2) (1, 0, 0, 0, 1, 1) 4 · 107 2.164640 · 1010 1.962988 · 104

(0, 1, 0, 0, 1, 1) 2 · 1010 1376483919 21646399232
(0, 0, 1, 0, 1, 1) 2 · 109 17097219 17097219
(0, 0, 0, 1, 1, 1) 109 1.962988 · 104 1.376484 · 109

(2, 2) (1, 1, 0, 0, 1, 1) 8 · 1013 2.979592 · 1016 4.249163 · 1011

(1, 0, 1, 0, 1, 1) 8 · 1012 3.700932 · 1014 3.356164 · 108

(1, 0, 0, 1, 1, 1) 2 · 1012 4.249163 · 1011 2.702022 · 1010

(0, 1, 1, 0, 1, 1) 2 · 1016 2.353405 · 1013 3.700932 · 1014

(0, 1, 0, 1, 1, 1) 1016 2.702022 · 1010 2.979592 · 1016

(0, 0, 1, 1, 1, 1) 1014 3.356164 · 108 2.353405 · 1013

(3, 2) (1, 1, 1, 0, 1, 1) 8 · 1018 5.094274 · 1020 7.264887 · 1015

(1, 1, 0, 1, 1, 1) 2 · 1018 5.848904 · 1017 5.848904 · 1017

(1, 0, 1, 1, 1, 1) 2 · 1016 7.264887 · 1015 4.619706 · 1014

(0, 1, 1, 1, 1, 1) 5 · 1020 4.619706 · 1014 5.094274 · 1020
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4.7 Decoupling a molecule with three to three binding sites

Finally, we show how the algorithm of Proposition 57 can be extended to more than
two binding sites for both ligands by presenting an iterative procedure for the case of
(3, 3). Let

PM (λ, κ) = a3,3λ
3κ3 + a3,2λ

3κ2 + a3,1λ
3κ+ a3,0λ

3+

a2,3λ
2κ3 + a2,2λ

2κ2 + a2,1λ
2κ+ a2,0λ

2+

a1,3λκ
3 + a1,2λκ

2 + a1,1λκ+ a1,0λ+

a0,3κ
3 + a0,2κ

2 + a0,1κ+ 1

be a binding polynomial. We look for a corresponding decoupled molecule N . Let the
sites for ligand L1 be denoted by 1, 2, 3 and for ligand L2 by A,B,C. The coefficients
(ai,0)i=1,2,3 and (a0,j)j=A,B,C give the binding constants. Let a permutation be chosen,
that is, the order of the sites be fixed. Then the roots of the polynomial

P1(x) =
a3,3

gAgBgC
x3 +

a2,3

gAgBgC
x2 +

a1,3

gAgBgC
x+ 1

give the products (giwi,Awi,Bwi,C)i=1,2,3. Analogously to the case of (4, 2) binding sites
the choice of the permutation is an important step to distinguish between different
solutions. Having solved this subsystem, system (4.35) is left to be solved. We use
analogous substitutions to the case of (4, 2) binding sites to facilitate understanding
the structure of the system (aAB1,2 denotes the part of coefficient a1,2 derived from mi-
crostate with sites A and B occupied):

ξjki := giwi,jwi,k

ajk3,2 := gjgkξ
jk
1 ξjk2 ξjk3

ajk2,2 := gjgk(ξ
jk
1 ξjk2 + ξjk1 ξjk3 + ξjk2 ξjk3 )

ajk1,2 := gjgk(ξ
jk
1 + ξjk2 + ξjk3 )

aj3,1 := gjg1w1,jg2w2,jg3w3,j

aj2,1 := gjg1w1,jg2w2,j + gjg1w1,jg3w3,j + gjg2w2,jg3w3,j

aj1,1 := gjg1w1,j + gjg2w2,j + gjg3w3,j

with i ∈ {1, 2, 3} and j, k ∈ {A,B,C}, j 6= k

(4.34)

Thus, the systems consisting of equations ajk3,2, a
jk
2,2, a

jk
1,2 and aj3,1, a

j
2,1, a

j
1,1 are of well

known form and we see that the remaining equations given by the bp are the sum of
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the three systems:
a3,2 = aAB3,2 + aAC3,2 + aBC3,2

a2,2 = aAB2,2 + aAC2,2 + aBC2,2

a1,2 = aAB1,2 + aAC1,2 + aBC1,2

a3,1 = aA3,1 + aB3,1 + aC3,1

a2,1 = aA2,1 + aB2,1 + aC2,1

a1,1 = aA1,1 + aB1,1 + aC1,1

(4.35)

To solve this system of equations we used the iterative procedure described in Propo-
sition 61 which is an extension of the algorithm of Proposition 57.

Proposition 61. Let the algebraic system (4.35) be given. Moreover, let (gi)i=1,...,3,A,..,C

and (wi,Awi,Bwi,C)i=1,...,3 be known (fixed permutations are chosen) and let σn be a se-
quence of permutations of {1, 2, 3}. We consider the following algorithm:

1) aAB,0i,2 := ai,2, i ∈ {1, 2, 3}

2) Pn(x) :=
aAB,n3,2

gAgB
x3 +

aAB,n2,2

gAgB
x2 +

aAB,n1,2

gAgB
x+ 1

3) (zn1 , z
n
2 , z

n
3 ) := the roots of Pn

4) wni,Aw
n
i,B := − 1

zn
σn(i)

gi

5) wni,C :=
wi,Awi,Bwi,C
wni,Aw

n
i,B

6) Calculate aC,ni,1 using equations {aCi,1}i=1,2,3 of (4.34) and wni,C .

7) Use the procedure of Proposition 57 with a sequence of permutations σn2 and the

condition on the products wni,Aw
n
i,B to calculate wni,A and wni,B from ai,1 − aC,ni,1 =

aA,ni,1 + aB,ni,1 .

8) Use wni,A, w
n
i,B, w

n
i,C to calculate aAC,ni,2 and aBC,ni,2 .

9) Restart with aAB,n+1
i,2 := ai,2 − aAC,ni,2 − aBC,ni,2 .

Then x = (w1,A, w1,B, w1,C , w2,A, w2,B, w2,C , w3,A, w3,B, w3,C) is a solution to system
(4.35) which satisfies the conditions on the products (wi,Awi,Bwi,C)i=1,...,3 if and only
if two permutations σ1, σ2 ∈ S3 exist such that x is a fixed point of the algorithm with
σn ≡ σ1 and σn2 ≡ σ2 (constant sequences).

Proof. Let x = (w1,A, w1,B, w1,C , w2,A, w2,B, w2,C , w3,A, w3,B, w3,C) be a solution to sys-
tem (4.35) which satisfies the conditions on the products (wi,Awi,Bwi,C)i=1,...,3.

Let wni,A = wi,A, wni,B = wi,B and wni,C = wi,C . As x solves the system, aAC,ni,2 = aACi,2
and aBC,ni,2 = aBCi,2 and consequently aAB,n+1

i,2 = aABi,2 . The roots of the polynomial give
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exact solutions wn+1
i,A wn+1

i,B and thus exact solutions wn+1
i,C = wi,C , if the appropriate

permutation σ1 is used. This means aC,n+1
i,1 = aCi,1. As wn+1

i,A wn+1
i,B = wi,Awi,B, if an

appropriate permutation σ2 is used in the procedure of Proposition 57, wi,A and wi,B
will be fixed. Consequently,

aAB,n+1
i,2 = aAB,ni,2 = aABi,2 and Pn = Pn+1.

Conversely, let x = (w1,A, w1,B, w1,C , w2,A, w2,B, w2,C , w3,A, w3,B, w3,C) be a fixed point
and σ1, σ2 be identity (without loss of generality). Then:
wni,Aw

n
i,B = wn+1

i,A wn+1
i,B ⇒ Pn = Pn+1 ⇒ aAB,ni,2 = aAB,n+1

i,2 . This means x satisfies all
equations given by ai,2. Since x is a fixed point (wi,A, wi,B)i=1,2,3 has to be a fixed

point of the iterative procedure described in Proposition 57. Since aC,ni,1 = aC,n+1
i,1 , this

means (wi,A, wi,B)i=1,2,3 also solve aA,ni,1 + aB,ni,1 + aC,ni,1 = ai,1 which shows that x solves
the system.

We implemented the iterative procedure described in Proposition 61 to give an ex-
ample with (3, 3) binding sites.

Example 62. Let the molecule be described by M = (G,W ) with

G = (g1, g2, g3, gA, gB, gC) = (4 · 103, 10, 2 · 103, 500, 103, 10)

W = (wi,j)i,j=1,2,3,A,B,C =



1 0.001 0.01 10 10 1000
0.001 1 0.05 100 1000 2000
0.01 0.05 1 100 100 1000
10 100 100 1 0.001 0.01
10 1000 100 0.001 1 0.05

1000 2000 1000 0.01 0.05 1


Then two decoupled molecules are given by N = (Gde,WN ) and K = (Gde,WK) with

Gde = (g1, g2, g3, gA, gB, gC) = (5996.485, 13.51409, 4.936015·104, 1509.304, 0.6932945, 2.389161·10−3)

WN =



1 1 1 46.94515 514.7757 153.93242
1 1 1 180.15859 395.1010 96.96765
1 1 1 1645.26622 341.0639 13.88127

46.94515 180.15859 1645.26622 1 1 1
514.7757 395.1010 341.0639 1 1 1
153.93242 96.9676 13.88127 1 1 1



WK =



1 1 1 46.94539 514.6135 2.654036 · 10−5

1 1 1 180.15843 395.1741 23184.93
1 1 1 1645.25945 341.1083 336723.6

46.94539 180.15843 1645.25945 1 1 1
514.6135 395.1741 341.1083 1 1 1

2.654036 · 10−5 23184.93 336723.6 1 1 1


The titration curves of all individual sites of molecules M , N and K are illustrated in
Fig. 4.5.
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Figure 4.5: Activity dependent ligand binding to each site in the original molecule M (left pair of columns) and the decoupled molecules N
(middle pair of columns) and K (right pair of columns) of Example 62. A logarithmic scale of the ligand activities λ and κ is used.
The probability of occupation is encoded by the colors, according to the colorbars.
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5 The Meaning of the Decoupled Sites
Representation in Terms of Statistical
Mechanics and Stochastics

The following chapter presents results of the paper Martini et al. (2013c). The text is
in main parts adopted verbatim except for notational adaption to the previous chapters
including altered mathematical symbols at several positions.

5.1 Motivation

In Chapter 3 and Chapter 4, the Decouples Sites Representation was discussed for one
and two types of ligands. All results were based on an algebraic view on the theory.
However, as presented in the introduction and in Chapter 2, the algebraic model is a
result of the probabilistic setup of statistical mechanics and its concept of the Grand
Canonical Partition Function. In this chapter, the DSR is reconsidered from a stochas-
tic point of view. It closes the circle from the initial stochastic model, to an algebraic
description in which the DSR was developed and analyzed, back to its meaning in
statistical mechanics and stochastics. In this regard, we translate results in the pe-
riphery of the DSR, which were derived within the algebraic model, into stochastics.
The shifted point of view facilitates some proofs and physical interpretations and pro-
vides the basis for future work which might investigate how certain phenomena of the
algebraic concept can be interpreted stochastically.

5.2 One type of ligand

In the following, we investigate the stochastic features of the Decoupled Sites Repre-
sentation for one type of ligands.

Remark 63. In the previously described setup of Chapter 3 and Chapter 4, we allowed
the binding and interaction constants to be complex valued. This made the use of the
fundamental theorem of algebra possible and facilitated theory. However, a complex
valued binding constant of a certain binding site translates into a “complex probabil-
ity measure”. This phenomenon and its possible physical interpretations will partly be
discussed in Chapter 6. In this chapter, we assume that all molecules which we talk
about have real, positive binding and interaction constants. Moreover, instead of re-
garding equivalence classes we will focus on a map of tuples on measures. This is, in
the following section, of advantage as otherwise the equivalence relation has also to be
transfered to the image space when certain maps are defined. This transfer would lead
to a notation which is more complicated than necessary. However, all results can be
directly transfered to the case with equivalence classes of tuples and of measures.

As already has been described in Chapter 1, the basis for this work is the map

P : R+m −→ L(K)(λ) (5.1)
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P (M)({k}, λ) =
g(k)λS(k)

Φ(M)
(5.2)

which maps a tuple to a family of distributions on the set of microstates K which is
parameterized by λ ∈ [0,∞). L(K)(λ) denotes the set of functions f : [0,∞) −→ L(K)
mapping the activity λ onto a distribution on K and S(k) the number of the occupied
sites in state k (S(k) is used instead of |k| since, the function will be split in S1(k) and
S2(k) in the case of two ligands).

Lemma 64. The map P given by Eq. (5.2) mapping a tuple onto a family of measures
is injective.

Proof. Let M and N be two tuples and P (M) = P (N) ∀k ∈ K,∀λ. Then

P (M)({0}n, λ) =
1

Φ(M)
=

1

Φ(N)
= P (N)({0}n, λ)

for every λ. This implies that Φ(M) = Φ(N). Since the measures of a state k with only
one site occupied shall be identical for every value of λ, we receive gMi = gNi . Conse-
quently, with the same argument for states with two sites occupied, this gives identical
interaction constants of M and N (We can continue this procedure for interaction
constants of higher order, for the extended model).

Since the map P is injective, we can use the letter M also for its image P (M) and
M({k}) for P (M)({k}) describing the probability of microstate k depending on λ.
We will investigate which properties, the family of distributions of a tuple has. The
random variables Xi will always denote the Bernoulli variables indicating whether site
i is occupied (Xi = 1) or not (Xi = 0).

Proposition 65. Let M = (g1, ..., gn, 1, ..., 1) be a decoupled system, and let Mλ be
the corresponding family of measures on the power set of K. Let {Xi}1≤i≤n be the
Bernoulli variables which describe the occupation state of the individual sites. Then
∀λ ∈ [0,∞), {Xi}1≤i≤n are stochastically independent.

Proof. Let m1 +m2 = n and let k0 denote the corresponding microstate of the following
event. Then

Mλ(Xi1 = ... = Xim1
= 0, Xj1 = ... = Xjm2

= 1) = Mλ({k0}) =

Eqs. (1.2,3.6)
=

(
m2∏
l=1

gjl

)
λm2

Φ(M)
=

m2∏
l=1

(gjlλ)
m1∏
l=1

1

Φ(M)

Prop. 23
=

m2∏
l=1

(gjlλ)
m1∏
l=1

1

n∏
i=1

(giλ+ 1)

=

Prop. 26
=

m1∏
l=1

Mλ(Xil = 0)

m2∏
l=1

Mλ(Xjl = 1).

The Law of Total Probability shows that the probability can be factored also in the
case of m1 +m2 < n.
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Proposition 65 shows that the natural intuition, saying that decoupled sites in the
algebraic system correspond to stochastic independence of the Bernoulli variables in
the stochastic setup, is correct. This gives the following view on the Decoupled Sites
Representation for one type of ligand: A molecule M with n binding sites for the ligand
is given. It corresponds to a family of measures on {0, 1}n which is parametrized by
the ligand activity λ. We look for a family of product measures N on {0, 1}n such that
S(M) = S(N) for any choice of λ. S(M) denotes the distribution of the function S
with respect to the measure M on the domain.
Since we showed in Chapter 4 that not all interaction constants can be trivial and that
the one-dimensional titration curves do not have to be of classical HH shape (Martini
et al., 2013b), the question arises how a decoupled molecule with two different types
of ligands can be interpreted from a stochastic point of view. We will investigate this
phenomenon in the next section.

5.3 Two types of ligands

In Chapter 4, we showed that in the case of two different types of ligands and the
constraint that both overall titration curves of a molecule M shall be preserved, there
is not in general a molecule N , in which all interaction constants are trivial and which
possesses the same overall titration curves (Example 40). Thus, we call a molecule with
different types of ligands decoupled if all interaction constants of binding sites for the
same type of ligand are equal to one (Definition 42). Moreover, it was shown that even
though in a decoupled molecule, the binding sites for the same type of ligands do not
interact directly, the one-dimensional titration curves, when the activity of the second
ligand is fixed, are not in general of HH shape (Figures 4.2 and 4.3). In the following
we will investigate how this non-HH shape can be interpreted stochastically and where
HH titration curves are hidden.

In this chapter, the notation

k = (k1, k2) = (xk1, ..., x
k
n1
, xkA1

, ..., xkAn2
)

will be used for the microstate of a molecule with n1 binding sites for ligand L1 and n2

binding sites for ligand L2. The lowercase letter xi is used to indicate that it describes a
value of the random variable Xi and k1 and k2 are used to subdivide k into microstates
for the binding sites for the different ligands (k1 = (xk1, ..., x

k
n1

) and k2 = (xkA1
, ..., xkAn2

)).

All tuples in this section are assumed to have real valued, positive interaction and
binding constants. Analogously to Subsection 5.2, we consider the map

P : R+m −→ L(K)(λ, κ) (5.3)

P (M)({k}, λ, κ) =
g(k)λS1(k)κS2(k)

Φ(M)
, (5.4)

with Si(k) the number of bound ligands of type i in state k. We will again use the letter
M as well for its image P (M) to facilitate notation. Moreover, note that we defined
the map P again on the set of tuples, without using the equivalence relation, to avoid
transferring it to the set of measures. Using the equivalence relation would only lead
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to a more complicated notation. Before we prove some general statements, we will give
an illustrating example.

Example 66. We choose a hypothetical decoupled molecule

M = (g1, g2, gA, w1,2, w1,A, w2,A) = (2,
3

2
, 2, 1,

3

2
,
8

3
)

with two binding sites for ligand L1 and one binding site for ligand L2. These bind-
ing and interaction energies were chosen as example in which the polynomial and the
probabilities of the states are easy to calculate. For a temperature of 300◦ Kelvin these
constants translate to the binding and interaction energies of −(1.7, 1.0, 1.7, 0, 1, 2.5) in
kJ/mol, since gi = exp(−βGi) with β = 1

RT and T the absolute temperature in Kelvin
and R the Boltzmann constant. We will not present the translation of constants into
energies anymore, in the following examples. Thus, let X1, X2 be the Bernoulli vari-
ables describing the binding state of the sites 1 and 2. The binding polynomial of M is
given by

Φ(M) = 24λ2κ+ 3λ2 + 14λκ+ 3.5λ+ 2κ+ 1.

Moreover,

Mλ,κ(X1 = 1) =
24λ2κ+ 3λ2 + 6λκ+ 2λ

Φ(M)
(5.5)

Mλ,κ(X2 = 1) =
24λ2κ+ 3λ2 + 8λκ+ 1.5λ

Φ(M)
(5.6)

Mλ,κ(X1 = 1, X2 = 1) =
24λ2κ+ 3λ2

Φ(M)
(5.7)

For the choice (λ, κ) = (1, 1) we receive

M1,1(X1 = 1) ·M1,1(X2 = 1) =
35

47.5
· 36.5

47.5
6= 27

47.5
= M1,1(X1 = 1, X2 = 1) (5.8)

which shows that the random variables X1 and X2 are not stochastically independent for
all choices of (λ, κ). The situation changes if we consider the conditional distribution
on microstates {k ∈ K|k2 = 0} (distribution on the microstates in which site A is
unoccupied) or on {k ∈ K|k2 = 1} (distribution on the microstates in which site A is
occupied):
Let Mλ,κ(·|k2 = i) denote the conditional distribution on {k ∈ K|k2 = i}. A conditional
binding polynomial of M is given by

Φ(M)|k2=0 = 3λ2 + 3.5λ+ 1.

and thus

Mλ,κ(X1 = 1|k2 = 0) =
3λ2 + 2λ

Φ(M)|k2=0
(5.9)

Mλ,κ(X2 = 1|k2 = 0) =
3λ2 + 1.5λ

Φ(M)|k2=0
(5.10)

Mλ,κ(X1 = 1, X2 = 1|k2 = 0) =
3λ2

Φ(M)|k2=0
(5.11)
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which demonstrates independence of X1 and X2 with respect to the family of conditional
distributions for any choice of (λ, κ):

Mλ,κ(X1 = 1|k2 = 0) ·Mλ,κ(X2 = 1|k2 = 0) =
(3λ2 + 2λ)(3λ2 + 1.5λ)

Φ(M)2
|k2=0

=

=
3λ2Φ(M)|k2=0

Φ(M)2
|k2=0

=
3λ2

Φ(M)|k2=0
= Mλ,κ(X1 = 1, X2 = 1|k2 = 0). (5.12)

This result might be obvious as in a decoupled system the one-dimensional titration
curves of an individual site is of HH shape if the activity κ of the second ligand equals
zero. However, conditional stochastic independence is also given if the condition is
changed to k2 = 1:

Φ(M)|k2=1 = 24λ2κ+ 14λκ+ 2κ.

Mλ,κ(X1 = 1|k2 = 1) =
24λ2κ+ 6λκ

Φ(M)|k2=1
(5.13)

Mλ,κ(X2 = 1|k2 = 1) =
24λ2κ+ 8λκ

Φ(M)|k2=1
(5.14)

Mλ,κ(X1 = 1, X2 = 1|k2 = 1) =
24λ2κ

Φ(M)|k2=1
(5.15)

which gives
Mλ,κ(X1 = 1|k2 = 1) ·Mλ,κ(X2 = 1|k2 = 1) =

= Mλ,κ(X1 = 1, X2 = 1|k2 = 1) ∀(λ, κ) ∈ [0,∞)2.

We will formulate the observation of Example 66 generally in Proposition 67.

Proposition 67. Let M be a decoupled molecule with n1 binding sites for ligand L1 and
n2 binding sites for ligand L2. Then the random variables {Xi}n1

i=1 are conditionally
stochastically independent for every condition k2 = c with c ∈ {0, 1}n2. Moreover,
∀ (λ, κ) ∈ [0,∞)2 and 1 ≤ i ≤ n1 a g′c,i ∈ R+ exists such that

Mλ,κ(Xi = 1|k2 = c) =
g′c,iλ

g′c,iλ+ 1
. (5.16)

Proof. Let k2 = c ∈ {0, 1}n2 describe the state

XAσ(1) = ... = XAσ(l) = 1 and XAσ(l+1)
= ... = XAσ(n2)

= 0

with σ a permutation of {1, ..., n2} and l ≤ n2. Let K|k2=c := {k ∈ K|k2 = c} and let
k ∈ K|k2=c. Then

g(k) =
l∏

i=1

gAσ(i) ·
n1∏
j=1

(
gj

l∏
i=1

wj,Aσ(i)

)xkj
(5.17)

and, due to the definition of conditional probability:

Mλ,κ(Xi = 1|k2 = c) =

∑
k∈K|k2=c,x

k
i =1

g(k)λS1(k)κl∑
k∈K|k2=c

g(k)λS1(k)κl
=
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Eq. (5.17)
=

∑
k∈K|k2=c,x

k
i =1

(
n1∏
j=1

(
gj

l∏
i=1

wj,Aσ(i)

)xkj
λS1(k)

)
∑

k∈K|k2=c

(
n1∏
j=1

(
gj

l∏
i=1

wj,Aσ(i)

)xkj
λS1(k)

)
The last term equals the description of the titration curve of site i in a decoupled
molecule with only n1 binding sites for one type of ligand and binding constants

g′c,j := gj

l∏
i=1

wj,Aσ(i) . (5.18)

Eq. (5.18) proves the statements (and allows to calculate g′c,i).

Remark 68. In other words, Proposition 67 means that if we use the condition that the
second ligand occupied its binding sites according to a fixed microstate, the complex of
the decoupled molecule and the bound molecules of the second ligand can be regarded as
a new molecule with different binding constants, but with independent sites. Note here
that the condition necessarily has to be that strict (microstate of the second ligand). A
relaxation is not possible, if independence of the sites for ligand L1 shall be guaranteed.

Corollary 69. The two-dimensional titration curve of a certain site of a decoupled
molecule is a parameterized convex combination of one-dimensional HH curves.

Proof.

Mλ,κ(Xi = 1) =
∑

c∈{0,1}n2
Mλ,κ(Xi = 1|k2 = c)Mλ,κ(k2 = c),

where Mλ,κ(Xi = 1|k2 = c) is a HH curve, according to Proposition 67, and∑
c∈{0,1}n2

Mλ,κ(k2 = c) = 1.

We will illustrate the statement of Corollary 69 with an example.

Example 70. Let M = (g1, g2, gA, w1,2, w1,A, w2,A) = (2, 3
2 , 2, 1,

3
2 ,

8
3) be the decoupled

molecule of Example 66. Then

Mλ,κ(X1 = 1) =

= Mλ,κ(X1 = 1|k2 = 0)Mλ,κ(k2 = 0) +Mλ,κ(X1 = 1|k2 = 1)Mλ,κ(k2 = 1). (5.19)

Note that, since in this example, there is only one binding site for ligand L2, k2 ∈ {0, 1}
and thus Mλ,κ(k2 = 1) = Mλ,κ(XA = 1) is the titration curve of site A and Mλ,κ(k2 =
0) = 1 −Mλ,κ(k2 = 1). Thus, the titration curve of site 1 is a convex combination of
two HH curves weighted by the curve of site A. To calculate (5.19) we need to know
the distribution of XA:

Mλ,κ(XA = 0) =

=Φ(M)|k2=0︷ ︸︸ ︷
3λ2 + 3.5λ+ 1

Φ(M)
Mλ,κ(XA = 1) =

=Φ(M)|k2=1︷ ︸︸ ︷
24λ2κ+ 14λκ+ 2κ

Φ(M)
(5.20)
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and consequently

Mλ,κ(X1 = 1) =
3λ2 + 2λ

Φ(M)|k2=0

Φ(M)|k2=0

Φ(M)
+

24λ2κ+ 6λκ

Φ(M)|k2=1

Φ(M)|k2=1

Φ(M)
=

=
24λ2κ+ 3λ2 + 6λκ+ 2λ

Φ(M)
= (5.5).

The curves Mλ,κ(X1 = 1|k2 = 0), Mλ,κ(X1 = 1|k2 = 1), Mλ,κ(k2 = 1) as well as the
convex combination Mλ,κ(X1 = 1) are illustrated in Fig 5.1.

The previous results draw the following picture: The algebraic decoupling of molecules
with two different types of ligands corresponds to finding a conditionally stochastically
independent system with the same overall titration curves. In detail, this means that,
for a given family of measures M on {0, 1}n1+n2 , we look for a family of measures N such
that all conditional measures N|k2 are product measures on {0, 1}n1 for every k2 ∈ K2,
N|k1 are product measures for every k1 ∈ K1 and S1(M) = S1(N), S2(M) = S2(N).
Compared to the setup with only one type of ligand we have an additional constraint
since the function S was split into two parts. This constraint makes it impossible to
find a family of product measures on {0, 1}n1+n2 for every given M . Consequently,
the constraint of being a product measure is relaxed. However, the weakening of the
constraints leads to the existence of several different solutions. A naturally arising
question is which features the different distributions of different decoupled molecules
share. We will compare the decoupled molecule of Examples 66, 70 with the other
decoupled molecule sharing the same overall titration curves.

Example 71. Let M = (g1, g2, gA, w1,2, w1,A, w2,A) = (2, 3
2 , 2, 1,

3
2 ,

8
3) be the molecule

of Example 66 and let N = (2, 3
2 , 2, 1, 2, 2) be the second decoupled molecule with the

same bp (the maximal number of decoupled systems is 2, according to Corollary 47).
Then

Nλ,κ(Xi = 1|k2 = 0) = Mλ,κ(Xi = 1|k2 = 0), i = 1, 2

Nλ,κ(X1 = 1|k2 = 1) = Mλ,κ(X2 = 1|k2 = 1)

and
Nλ,κ(X2 = 1|k2 = 1) = Mλ,κ(X1 = 1|k2 = 1)

These equations mean that the decoupled molecules M and N share the same conditional
HH titration curves. However they are permuted in the case of k2 = 1.

We can formulate this observation as proposition.

Proposition 72. Let M and N be two different decoupled molecules with n1 binding
sites for ligand L1 and n2 binding sites for ligand L2 sharing the same binding poly-
nomial. Moreover, let the order of the binding sites be equal, that is gMi = gNi ∀i ∈
{1, .., ., An2}. Then the following statements hold:

a) Nλ,κ(Xi = 1|k2 = {0}n2) = Mλ,κ(Xi = 1|k2 = {0}n2) ∀λ, κ ∈ [0,∞)

b) A permutation σ of {1, ..., n1} exists such that

Nλ,κ(Xi = 1|k2 = {1}n2) = Mλ,κ(Xσ(i) = 1|k2 = {1}n2)
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Figure 5.1: First row: Activity dependent ligand binding to each site of the tuple M
of Example 70. Logarithmic scales of the activities of the ligands are used.
The probability of a site being occupied is encoded by colors, according
to the color bar on the right side of the figure. Second row: Conditional
binding curves of site 1 and 2 for the conditions “site A is unoccupied” (black
line) and “site A is occupied” (red line). The superposition represents the
titration curve of site 1, however was calculated using the conditional HH
curves and the titration curve of site A: M(X1 = 1) = M(X1 = 1|k2 =
0)M(k2 = 0) +M(X1 = 1|k2 = 1)M(k2 = 1).
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Proof. a) According to Eq. (5.18) g′i,c = gi, and gMi = gNi since the order of the sites
is assumed to be fixed.

b) Again, Eq. (5.18) proves the statement, since the products

gj

n2∏
i=1

wj,Aσ(i)

have to solve a subsystem of equations given by the coefficients ai,n2 of the bp
and consequently are permutations of each other, since they correspond to the
roots of a polynomial (Proposition 23).

To complete our illustrations, we give a final example of a system with two bind-
ing sites for each ligand. This example shows, how to deal with the weights of the
superposition in the case of more than one binding site for both ligands.

Example 73. Let the decoupled tuple M = (g1, g2, gA, gB, w1,2, w1,A, w1,B, w2,A, w2,B, wA,B)
= (2, 16, 4, 8, 1, 8, 4, 1

16 ,
1
32 , 1) be given. Its binding polynomial is

Φ(M) = 64λ2κ2 + 96λ2κ+ 32λ2 + 2049λκ2 + 136λκ+ 18λ+ 32κ2 + 12κ+ 1

We calculate the conditional HH curves of site 1, exemplarily.

M(X1 = 1|k2 = (0, 0)) =
32λ2 + 2λ

32λ2 + 18λ+ 1
=

2λ

2λ+ 1
(5.21)

M(X1 = 1|k2 = (0, 1)) =
32λ2κ+ 64λκ

32λ2κ+ 68λκ+
=

4λ2 + 8λ

4λ2 + 8.5λ+ 1
=

8λ

8λ+ 1
(5.22)

M(X1 = 1|k2 = (1, 0)) =
64λ2κ+ 64λκ

64λ2κ+ 68λκ+ 4κ
=

16λ2 + 16λ

16λ2 + 17λ+ 1
=

16λ

16λ+ 1
(5.23)

M(X1 = 1|k2 = (1, 1)) =
64λ2κ2 + 2048λκ2

64λ2κ2 + 2049λκ2 + 32κ2
=

64λ

64λ+ 1
(5.24)

The corresponding weights for the superposition are given by:

M(k2 = (0, 0)) =
32λ2 + 18λ+ 1

Φ(M)
(5.25)

M(k2 = (0, 1)) =
32λ2κ+ 68λκ+ 8κ

Φ(M)
(5.26)

M(k2 = (1, 0)) =
64λ2κ+ 68λκ+ 4κ

Φ(M)
(5.27)

M(k2 = (1, 1)) =
64λ2κ2 + 2049λκ2 + 32κ2

Φ(M)
(5.28)

Thus, we receive the following representation of M(X1 = 1) with Eqs. (5.21− 5.28):

M(X1 = 1) = (5.21) · (5.25) + (5.22) · (5.26) + (5.23) · (5.27) + (5.24) · (5.28) (5.29)

The binding curves of the individual sites as well as the HH curves and the corresponding
weights are illustrated in Fig. 5.2.
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Figure 5.2: First column: Activity dependent ligand binding to each site of the tuple M
of Example 73 . Logarithmic scales of the activities of the ligands are used.
The probability of a site being occupied is encoded by colors, according to
the color bar on the right side of each image. Second column: Conditional
binding curves of site 1 for the different microstates of ligand L2 (k2 ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}). Third column: probabilities of the different
microstates of the binding sites for the second ligand.
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Remark 74. In a decoupled molecule M with only one type of ligand, the following
calculation rule for the binding constants of a microstate k = (xk1, ..., x

k
n) is a direct

result of stochastic independence of the binding sites:

Mλ(k) = Mλ(xk1, ..., x
k
n) =

n∏
i=1

(
Mλ(Xi = 1)x

k
i ·Mλ(Xi = 0)1−xki

)
. (5.30)

The sum of all probabilities of microstates belonging to the same macrostate gives the
probability of the macrostate

Mλ(S(k) = i) =
∑

{k|S(k)=i}

Mλ(k) =
aiλ

i

Φ(M)
(5.31)

which the decoupled molecule obviously shares with every molecule with the same binding
polynomial, since the coefficient ai of the polynomial as well as the polynomial Φ(M) are
identical (the coefficient ai is given by the sum of all constants of the microstates with
macrostate i). These equations can be transfered to the case of a decoupled molecule N
binding two ligands. For a microstate k = (k1, k2) = (xk1, ..., x

k
n1
, ..., xkAn2

), Eqs. (5.30-

5.31) translate to:
Nλ,κ(k) = Nλ,κ(xk1, ..., x

k
An2

) =

= Nλ,κ(k2)

n1∏
i=1

(
Nλ,κ(Xi = 1|k2)x

k
i ·Nλ,κ(Xi = 0|k2)1−xki

)
(5.32)

and

Nλ,κ(S1(k) = i, S2(k) = j) =
∑

{k|S(k)=(i,j)}

Nλ,κ(k) =
ai,jλ

iκj

Φ(M)
(5.33)

Due to the symmetric role of the two ligands Eq. (5.32) can also be rewritten with k1

instead of k2 (and i ∈ {A1, ..., An2}). The coefficient ai,j is given by the sum of all
constants of microstates belonging to macrostate (i, j).
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6 Complex Measures and Cooperativity

Definition 75, Example 79, Lemma 86, Corollary 87 and Example 90 have already been
presented in Martini and Ullmann (2013) and have been adopted verbatim.

6.1 Motivation

In Chapter 3, it was shown that –to use the DSR as general tool– we need to extend the
domain of the energies to a stripe within the complex numbers. In this chapter, some
ideas about how complex binding constants in a decoupled system can be interpreted
are presented. In particular, it is discussed what complex binding constants can mean
for the original system. The main idea presented in this chapter is to relate complex
roots of the binding polynomial to positive cooperative binding of the ligand to the
original molecule. This idea is not totally new, and has already been used in Onufriev
and Ullmann (2004), Ullmann and Ullmann (2011) and Martini and Ullmann (2013).
The intention of this chapter is to investigate the ideas more rigorously, as far as
possible. Since the presentation and discussion of this phenomenon also includes the
question whether a polynomial has complex roots, it will not be possible to treat this
topic satisfactory. However, this knowledge about the difficulty of the nature of the
problem shall not prevent us from trying to solve it. We will forthwith see that the
problem starts with the definition of cooperativity.

6.2 Cooperativity

Cooperativity is a term which is used to describe the fact that different binding sites of
a molecule can interact. The most stressed example is the target molecule hemoglobine
with O2 as a ligand: Positive cooperativity between the four binding sites is what makes
this molecule an effective transporter from a region with a higher O2 partial pressure to
regions where it is consumed. Cooperativity was the main topic in many publications
(e.g. Ben-Naim (2001); Hunter and Anderson (2009); Ullmann and Ullmann (2011))
and has recently become of importance in gene regulation and cell biology (e.g. Gutier-
rez et al. (2012); Sugiyama et al. (2013)). However, in most publications it is hardly
mentioned that there are two different definitions which are not equivalent but which
are often presented together, without distinguishing between them explicitly (e.g. see
Stefan and Le Novère, 2013). The first definition is based on the change of affinity of a
binding site to its ligand if another site becomes occupied. The second definition, based
on the Hill coefficient is often described as a “measure” of cooperativity, but should be
seen as another definition. In the following, we will consider both definitions but with
different vocabulary, and investigate their relations. All binding and interaction con-
stants describing a molecule are regarded as a positive real number. Complex numbers,
with imaginary part nonzero are only considered, if a binding polynomial is factored.
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Definition 75. Let M = (g1, ..., gn, w1,2, ..., wn−1,n) be a molecule. The ligand is said
to bind

� positive-cooperatively to sites i and j if and only if wi,j > 1.

� non-cooperatively to sites i and j if and only if wi,j = 1.

� negative-cooperatively to sites i and j if and only if wi,j < 1.

Thus, positive-cooperative binding to site i and j means that binding of the ligand
to site i increases the affinity of the ligand to site j and vice versa. This definition is
commonly used (Berg et al. (2007); Ben-Naim (2001); Ullmann and Ullmann (2011))
and is adequate to characterize biochemical regulatory mechanisms by pointing out
whether a ligand enhances or represses the binding to other sites. The second definition
requires some preliminary: The following definition is based on Hill (1910, 1913).

Definition 76 (Hill Plot and Hill Coefficient). Let Ψ be an overall titration curve of
a molecule M with n binding sites. Then the function

H(log(λ)) := log

(
Ψ

n−Ψ

)
(6.1)

as a function of log(λ) is called Hill Plot of the overall titration curve. Its slope at
the point of n/2 saturation is called the Hill Coefficient ηH of this curve.

Remark 77. In literature, Eq. (6.1) is frequently also written as

H(log(λ)) := log

(
Ψ̃

1− Ψ̃

)
.

This coincides with the presented version, since Ψ̃ is usually used as normed version of
Ψ as it is used in this work (Ψ̃ = Ψ/n).

Definition 76 gives the second definition of cooperativity:

Definition 78. Let M = (g1, ..., gn, w1,2, ..., wn−1,n) be a molecule. The ligand is said
to bind

� Hill-positive-cooperatively to the molecule if ηH > 1.

� Hill-non-cooperatively to the molecule if ηH = 1.

� Hill-negative-cooperatively to the molecule if ηH < 1.

Regarding Definition 76 and based on the previous chapters, it is not obvious, why
the Hill Coefficient should be related to cooperativity in any way. Nevertheless, we
will see that it is a useful tool: Comparing different Henderson-Hasselbalch titration
curves, we will see, if we plot them as functions of log(λ) that their shapes are identical.
Except for the pKa−value, there is nothing to distinguish between them. In particular,
the slope at half saturation is always the same. Having the example of hemoglobin in
mind, we think of a molecule to have a certain type of cooperativity if the difference
in the chemical activity ∆λ, which is required to transit from a low value of EλS to a
high expectation Eλ+∆λS is low. Descriptively, this should be the case, since as soon
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as a ligand binds, the binding to the other sites will be enhanced which induces the
binding at the other sites. Thus, in a relatively small interval of the activity scale, a
mixed population of microstates will be present. At most values of activity, nearly the
whole the population of hemoglobin molecules will be fully unoccupied or, at a higher
activity, fully occupied. Or as Hunter and Anderson (2009) describes cooperativity
in the first headline: “It’s All or Nothing”. This concept of cooperativity creates
the idea that we can measure cooperativity as a slope of Ψ(log(λ) and we compare
it to the slope of a Henderson-Hasselbalch titration curve. If the slope of an overall
curve is greater to that of a Henderson-Hasselbalch curve, this should be caused by an
interaction of that kind, that the binding of the ligand to a site enhances the binding to
the other sites. Consequently, we need a characteristic of the slope of a titration curve
which we compare to that of a Henderson-Hasselbalch titration curve. If possible, the
charateristic should be normed: ηHH = 1. This is what the Hill Coefficient satisfies:
The nonnegative function Ψ(log(λ)) as a function of log(λ) increases if and only if
n−Ψ(log(λ)) decreases and consequently if and only if Ψ

n−Ψ increases. This is still true
if we apply the monotone function log to the equation. Moreover, for a Henderson-
Hasselbalch curve, we receive:

log

(
Ψ

1−Ψ

)
= log

(
g10log(λ)

)
= log(g) + log(λ). (6.2)

As a function of log(λ), Eq. (6.2) is linear with slope 1, which means in particular that
the Hill Coefficient of a Henderson-Hasselbalch curve µHH equals 1. Thinking about
a molecule with several binding sites, which all are energetically identical gi = gj and
without interaction, the overall titration curve will be of Henderson-Hasselbalch shape.
If all gi = gj and the binding sites cooperate positively, the Hill Coefficient should be
greater than 1. For the case of two binding sites, this result is presented in Proposi-
tion 89.

However, a problem with Definition 78 is obvious: It does not distinguish between
the individual binding sites. Even though the Hill Coefficient is used as a “measure” for
cooperativity it is impossible to represent the interaction between the binding sites if
they are not homogeneous. A discrimination between the sites in its initial application
for hemoglobin was not necessary but it is of importance if other target molecules
are investigated. An idea to extract more information from the overall titration curve
could be the extension of the concept of the Hill Coefficient by investigating the slope
at the points of (1, 2, ..., n− 1) to describe the interaction of each site with the rest of
the system. However, even this extension does not solve the main problem of the Hill
Coefficient: Even in the case of only two binding sites, a measure which is based on the
overall titration curve can not distinguish between the different types of cooperativity
of Definition 75, which is illustrated by Example 79:

Example 79. The following molecules are examples of positive-, negative-, or non-
cooperative ligand binding, but share the same overall titration curve:

(2, 1, 0.5), (1.5 +
√

1.25, 1.5−
√

1.25, 1),

(
0.1, 2.9,

100

29

)
.

Since we want to relate the different types of cooperativity with complex roots of the
binding polynomial, we give a third definition
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Definition 80. Let M be molecule. M is said to bind its ligand DSR-cooperatively
if Φ(M) has a complex root with imaginary part nonzero.

In the following, we will present and discuss some properties of derivatives of the
binding polynomial and the overall titration curve. Moreover, we will rewrite the Hill
Coefficient in a different form and investigate the relation between the different types
of cooperativity in the special case of n = 2, afterwards. We use the notation

f ′ :=
d

d log(λ)
f.

All derivatives are understood with respect to log(λ).
Calculating the derivative shows that the Hill coefficient is a linear function of the
derivative of the titration curve Ψ at Ψ = n

2 .

Lemma 81. (
log

(
Ψ

n−Ψ

))′
=

1

ln(10)

nΨ′

−Ψ2 + nΨ
. (6.3)

Thus, the Hill Coefficient can be rewritten as

ηH =

(
log

(
Ψ

n−Ψ

))′
|Ψ=n

2

=
4

n ln(10)
Ψ′|Ψ=n

2
. (6.4)

Moreover, the overall titration curve also writes

Lemma 82.

Ψ =
Φ′

ln(10)Φ
. (6.5)

Proof. The derivative of a monomial aiλ
i is:

(aiλ
i)′ = ln(10)iaiλ

i.

The relation of the binding polynomial Φ and the titration curve (Proposition 19)
proves the statement.

For Ψ = n
2 , Ψ′ can be expressed as

Lemma 83.

Ψ′|Ψ=n
2

=

(
Φ′′

ln(10)Φ

)
|Ψ=n

2

− n2 ln(10)

4
(6.6)

Proof. Eq. (6.5) gives

Ψ′ =
Φ′′Φ− Φ′Φ′

ln(10)Φ2
=

Φ′′

ln(10)Φ
− Φ′Φ′

ln(10)Φ2
, (6.7)

which implies the statement, since Ψ = Φ′

ln(10)Φ = n
2 is the point, where the function is

evaluated.

The following simple statement will turn out to be useful:
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Lemma 84. Let Φ = anλ
n + an−1λ

n−1 + an−2λ
n−2 + ... + 1 be a binding polynomial.

Let a family of polynomials be defined by

Φt(λ) := Φ(tλ) with t ∈ (0,∞).

Then Φ has only real roots if and only if Φt(λ) has only real roots for every t ∈ (0,∞).

Proof. r is a root of Φ if and only if r
t is a root of Φt.

Remark 85. Lemma 84 is not only a useful tool (which will be used in Proposition 89),
but has also a biophysical interpretation of an altered reference solution with a different
chemical activity.

6.3 Two binding sites

Lemma 86. A molecule described by (g1, g2, w1,2) ∈ R+3 requires the use of complex
binding constants with a nonzero imaginary part to be presented as decoupled system if
and only if

(g1 + g2)2 < 4g1g2w1,2. (6.8)

Proof.
Φ(g1, g2, w1,2) = g1g2w1,2λ

2 + (g1 + g2)λ+ 1

A system (d, e, 1) without interaction has to solve the equations:

de = g1g2w1,2 and d+ e = g1 + g2.

Thus, d has to solve
d2 − (g1 + g2)d+ g1g2w1,2 = 0

which shows that d /∈ R if and only if (g1 + g2)2 < 4g1g2w1,2.

The following corollary illustrates that complex binding energies with nonzero imag-
inary part are an indicator for negative interaction energies (w1,2 > 1) in the original
molecule in the case of two binding sites.

Corollary 87 (Repulsion). Let (g1, g2, w1,2) ∈ R+3 be a molecule with two ligand
binding sites and interaction constant w1,2 ≤ 1. Then the binding constants of the
corresponding decoupled system are real.

Proof.
w1,2 ≤ 1 =⇒ g2

1 + (2− 4w1,2)g1g2 + g2
2 ≥ (g1 − g2)2 ≥ 0.

This implies
(g1 + g2)2 ≥ 4g1g2w1,2

which proves the statement due to Lemma 86.

Corollary 87 states, that repulsion (w1,2 ≤ 1) guarantees real roots in the decoupled
system, in case of a molecule with two binding sites.
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Lemma 88 (Hill Coefficient for a molecule with two binding sites). For a molecule
M = (g1, g2, w1,2) with two binding sites, the Hill Coefficient is given by

µH = 4

(
g1g2w1,2λ

2

Φ

)
|Ψ=1

. (6.9)

Proof. Using Eqs. (6.4) and (6.6) gives (with n = 2)

ηH =

(
log

(
Ψ

2−Ψ

))′
|Ψ=1

=
4

2 ln(10)

((
Φ′′

ln(10)Φ

)
|Ψ=1

− 4 ln(10)

4

)
=

=
2

ln(10)

((
ln(10)2(4g1g2w1,2λ

2 + (g1 + g2)λ)

ln(10)Φ

)
|Ψ=1

− ln(10)

)
=

=
2

ln(10)

(
ln(10)

(
1 +

2g1g2w1,2λ
2)

Φ

)
|Ψ=1

− ln(10)

)
=

(
4g1g2w1,2λ

2

Φ

)
|Ψ=1

For the relation of the different types of cooperativity, we receive the following im-
plications for the case of a molecule with two binding sites:

Proposition 89. Let M = (g1, g2, w1,2) be a molecule. Then the following implications
are valid:

i) If M is DSR-cooperative then it binds its ligand positive-cooperatively.

ii) If g1 = g2 then M binds its ligand positive-cooperatively if and only if it binds its
ligand DSR-cooperatively.

iii) M binds its ligand DSR-cooperatively if and only if it binds its ligand
Hill-positive-cooperatively.

Proof. i) Corollary 87.

ii) Lemma 86 with g1 = g2.

iii) To show iii) we use Lemma 88 and show that(
4g1g2w1,2λ

2

Φ

)
|Ψ=1

> 1⇔ Φ has complex roots with nonzero imaginary part.

For this, let t denote the activity at which Ψ = EtS = 1. Let us regard the
polynomial

Φt(λ) = g1g2w1,2t
2λ2 + (g1 + g2)tλ+ 1

as described in Lemma 84. We will show that(
4g1g2w1,2λ

2

Φ

)
|Ψ=1

> 1⇔ Φt has complex roots with nonzero imaginary part.
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The condition Ψ = 1 means, that the corresponding measure (since we translated
the measure to t) at λ = 1 has expectation 1:

2
g1g2w1,2t

2

Φt(1)︸ ︷︷ ︸
=:P2

+
(g1 + g2)t

Φt(1)︸ ︷︷ ︸
=:P1

= 1,

with Pi denoting the probability of i sites being occupied, in the measure defined
at Φt(1). Since Φt(1) is a constant, Φt(λ) shares its roots with the probability
generating function of the measure of Φt(1)

Φt(λ)

Φt(1)
= P2λ

2 + (1− 2P2)λ+ (1− P2 − 1 + 2P2)︸ ︷︷ ︸
=P2

,

which has non-real roots if and only if

(1− 2P2)2 < 4P 2
2 ⇔ 1 < 4P2 = 4

(
g1g2w1,2λ

2

Φ(λ)

)
|Ψ=1

.

Here, the very right equation represents the Hill coefficient, according to Lemma 88.

6.4 More binding sites

For the case of two binding sites, Section 6.3 showed that DSR-cooperativity is equiv-
alent to Hill-positive-cooperativity. Moreover, both types of cooperativity imply the
positive-cooperativity defined by w1,2 > 1. An interesting question is, which statements
on the relations of the different types of cooperativity can be transfered to molecules
with more than two binding site. Example 90 shows that Corollary 87 can not simply
be transfered to the case of five binding sites.

Example 90. Let us regard the molecule

Φ1(M) = (g1, g2, g3, g4, g5, w1,2, w1,3, w1,4, w1,5, w2,3, w2,4, w2,5, w3,4, w3,5, w4,5) =

=

(
2, 2, 2, 2, 2,

1023

1024
,
1023

1024
,

1

1024
,
1023

1024
,
1023

1024
,

1

1024
,

1

1024
,

1

1024
,

1

1024
,

1

1024

)
with positive interaction energies (repulsion). However, its bp has two complex roots
with nonzero imaginary part which can be shown easily by an investigation of its ex-
tremes. This example demonstrates that even if repulsion is assumed, decoupling can
require the use of complex binding energies.

As explained at the beginning of this section, the Hill coefficient is related to the
idea that positive-cooperative binding leads to a family of distributions in which a
small change in ligand activity is sufficient to transit from a distribution in which the
main part of the molecule population is fully unoccupied to a distribution with the
main part of the molecules fully occupied. Thus, we can also investigate directly the
slope of Ψ as a function of log(λ): Instead of Eq. (6.1), we investigate the slope of
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Ψ(log(λ)). This can be used to calculate the Hill coefficient with Eq. (6.4) and has the
advantage of being linear due to the linearity of the differential operator:

Ψ′ =

(
n∑
i=1

Ψi

)′
=

n∑
i=1

Ψ′i (6.10)

To see to which value of Ψ′|Ψ=n
2

a Hill coefficient of 1 corresponds to, we write down

the following lemma.

Lemma 91. Let Ψ be a HH curve. Then Ψ′
Ψ= 1

2

= ln(10)
4 .

Proof. Either use that ηHH = 1 and Eq. (6.4) or calculate the derivative of gλ
gλ+1 and

use gλ
gλ+1 = 1

2 ⇔ gλ = 1.

Lemma 92. Let Ψ be a HH curve with bp gλ+ 1 and let Varλ(X) denote the activity
dependent variance of the Bernoulli variable X, describing whether site i is occupied
or not. Then Ψ′ = ln(10)VarλX. Moreover, Varλ(X) = gλ

(gλ+1)2
.

Proof. Ψ′ = ln(10)gλ(gλ+1)−g2λ2
(gλ+1)2

= ln(10)
gλ

gλ+ 1︸ ︷︷ ︸
=Eλ(X)=Eλ(X2)

− ln(10)
(gλ)2

(gλ+ 1)2︸ ︷︷ ︸
=E(X)2

.

Proposition 93. Let Ψ be an overall titration curve and let S denote the random
variable describing the number of occupied sites. Then Ψ′ = ln(10)Varλ(S).

Proof. Eq. (6.7) gives the statement, since this equation is the variance of S (except
for the factor ln(10)).

Remark 94. We already have mentioned that the parameterization of the family of
distributions that we deal with are very special and that from the expected values we
can calculate the whole family of distributions of S. Here, another remarkable property
was shown: The variance of a fixed distribution for a certain activity λ is related to the
change of the expected value of the family if the activity is changed.

Corollary 95. Let Φ be a binding polynomial of degree n with only real roots, let
{Xi}i=1,...,n be the corresponding decoupled system and let Ψ be the corresponding overall
titration curve. Then

Ψ′ ≤ ln(10)
n

4
, (6.11)

which is equivalent to Varλ(S) ≤ n
4 . If all binding constants of the decoupled system are

identical, we get Ψ′|Ψ=n
2

= ln(10)n4 , which means the Hill coefficient is 1.

Proof. Var(Xi) = p− p2 ≤ 1
4 ∀p ∈ [0, 1]. The maximum of Var(Xi) is 1

4 . If all binding
constants are identical, the curves will have their maximal value at the activity at which
Ψ = n

2 .

Corollary 95 gives a criterion to decide whether a polynomial has complex roots.
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Example 96. Let us regard the polynomial Φ = λ2 +λ+ 1. The variance of the family
of distributions is given by

Varλ(S) =
4λ2 + λ

λ2 + λ+ 1
−
(

2λ2 + λ

λ2 + λ+ 1

)2

=

=
λ3 + 4λ2 + λ

(λ2 + λ+ 1)2
.

For λ = 1 this gives 2
3 ≥

1
2 . Consequently Φ has to have complex valued roots with

nonzero imaginary part, according to Corollary 95.
Without having checked which calculation rules can be transfered from probability mea-
sures to complex valued Bernoulli measures, we will treat these measures as if they were
“usual” probability measures. We will see that the formula for the variance of the sum
of independent variables is true for this example. Calculating the roots of the binding
polynomial shows that S can be interpreted as the sum of the independent Bernoulli
variables X1, X2 with

P (X1 = 1) =
(0.5 +

√
3

2 i)λ

(0.5 +
√

3
2 i)λ+ 1

and

P (X2 = 1) =
(0.5−

√
3

2 i)λ

(0.5−
√

3
2 i)λ+ 1

.

The variance of X1 is given by

Varλ(X1) =
(0.5 +

√
3

2 i)λ

(0.5 +
√

3
2 i)λ+ 1

−

(
(0.5 +

√
3

2 i)λ

(0.5 +
√

3
2 i)λ+ 1

)2

=

=
(0.5 +

√
3

2 i)λ

((0.5 +
√

3
2 i)λ+ 1)2

.

Calculating Varλ(X2), shows that Varλ(S) = Varλ(X1) + Varλ(X2) for these complex
distributions.

The next proposition shall demonstrate that we can use the well-known calculation
rules for variances of independent variables, as well for the variances of complex normed
measures for the Bernoulli variables of the decoupled system.

Proposition 97. Let Φ be a binding polynomial of degree n and let {Xi}i=1,...,n be
the corresponding decoupled system which may have complex Bernoulli distributions.
Moreover, let Ψ be the corresponding overall titration curve. Then

Var(S) =
n∑
i=1

Var(Xi).

Proof.

ln(10)Var(S) = Ψ′ =

(
n∑
i=1

Ψi

)′
=

n∑
i=1

Ψ′i
HH, Lemma 92

=
n∑
i=1

ln(10)Var(Xi).
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6.5 Complex normed measures in probability theory

The emergence of complex-valued normed measures in the Decoupled Sites Represen-
tation is not surprising, since the Bernoulli measures correspond to the roots of a
polynomial. Already if we only consider single discrete distributions on {0, ..., n} and
not parameterized families it is known that the roots of the probability generating
function give independent Bernoulli variables whose sum has the original distribution.
However, discrete measures give not the only motivation leading to questions on ex-
tended probabilities or quasi probabilities. The topic has been discussed in several
publications in the context of quantum mechanics and splitting certain processes into
independent parts (e.g. Burgin and Meissner, 2012; Cox, 1955; Feynman, 1987; Har-
tle, 2008; Hofmann, 2009; Mückenheim et al., 1986; Parisi, 1983; Zak, 1998). Thus,
extended probabilities seem to provide a way of dealing with certain kinds of depen-
dencies of variables in a formal stochastic independent setup. We can consider this
concept of extended probabilities in two different ways in probability theory:

• As a quantity telling us something about the original system, without investigat-
ing complex-valued normed measures as an own separate object in probability
theory.

• As an own topic in probability theory in which dependencies of variables can be
encoded in complex-valued normed measures with formal independent variables.

In this chapter, extended probabilities were only described as an indicator for coop-
erativity in the original system, but were neither investigated deeply from a measure
theoretic or probabilistic point of view, nor was a possible philosophic meaning dis-
cussed. From a measure theoretic point of view, extended probabilities should not pose
a lot of problems. Obviously, Kolmogorov’s first axiom of the measure being real-valued
and positive will be violated, but his second and third axioms

P (Ω) = 1 and P (A1 ∪A2 ∪ ...) =

∞∑
i=1

P (Ai) (6.12)

for disjunct events (Ai)i∈N are valid for extended probabilities, as well. Moreover,
Kolmogorov’s axioms are already presented in an abstract form and the interpretation
of the “meaning” of probability defined by Kolmogorov’s axioms is more or less given
by the Law of Large numbers. Thus, an extension to complex-valued normed measures
should not be a fundamental problem. However, some of the well-known consequences
of the axioms will not be valid, since the first axiom is violated. Thus, one of the first
consequences of the axioms –the monotonicity– cannot be derived if complex-valued
measures are considered. A detailed analysis which laws of probability theory can be
transfered to extended probabilities is required. This analysis has not yet been done in
this work, due to the lack of a motivating example from theoretical probability theory.
Building up theory on extended probabilities including rewriting the main results of
probability theory is not satisfying if no benefit for the theory can be realized. Thus,
a first task might be to identify applications of a formal independence of variables
to certain theoretical questions and to relate complex-valued probabilities to certain
kinds of stochastic dependencies. If there are examples in which the use of extended
probabilities is of advantage, rewriting the basics of probability theory with extended
probability measures might be valuable.
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7 Modeling Regulatory And Sensing
Processes With Titration Curves

In this chapter, two examples will be presented of how titration curves can be used
to model biological phenomena. The first example is an approach of modeling a two-
component gene regulatory system of bacteria. Modeling gene expression regulatory
systems mathematically is a topic of current research and several different mathemati-
cal approaches have been used to model different gene regulatory switches or networks.
Among the different approaches deterministic models based on titration curves or on
differential equations (e.g. Brown, 2010; Buchler and Louis, 2008; Grima, 2010; Karls-
son et al., 2007; Kuttler and Hense, 2008) can be found as well as stochastic approaches
which were in particular used to investigate the propagation of noise in signals in bio-
logical information processing systems theoretically (e.g. Kærn et al., 2005; Monteoliva
et al., 2013; Thattai and van Oudenaarden, 2002; Walczak et al., 2009). Here, a model
for a two-component gene regulatory system shall be presented which is based on titra-
tion curves. It has the advantage of simple equations, but the limitations of a model
whose basic assumptions (large number of the molecules involved in signal transduction,
stochastic independence of certain processes) might be violated in a cell. Moreover, an-
other disadvantage of this model is that it only focuses on the stationary equilibrium
states and that it does not consider the dynamics of the system in nonequilibrium.
Nevertheless, the model should be appropriate to investigate some properties of the
respective modeled gene regulatory systems.
The second example is a model for the olfactory sensing of insects. A difference to
the gene regulation model is that only one binding step is considered (the binding of
an odorant to a receptor), however with different ligands competing for one and the
same binding site. This situation is also given in several other biologically or medically
relevant situations involving receptors and several competing drugs.

7.1 Modeling a two-component system

7.1.1 Motivation

In a fluctuating environment, the survival of organisms strongly depends on their ability
to adapt quickly to new conditions. To respond to changes in an appropriate way,
environmental conditions have to be sensed and the information has to be transmitted
to a gene regulatory level to express the genes for required gene products such as special
enzymes, accordingly. Different signal transduction and gene regulatory systems with
different signal processing properties have evolved for different situations. A special
type of gene regulatory system is the so-called two component system of eubacteria.
It consists of a sensing enzyme, usually a sensor-kinase, which is connected to a
receptor on the surface of the cell. If the receptor binds a signaling-molecule, the sensor-
kinase becomes active and phosphorylates the response regulator, which is the second
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component of the system. The response regulator can only bind to a certain DNA
sequence to start transcription if it is phosphorylated. Therefore, the phosphorylated
form of the response regulator shall be called the active form. Thus, the overall signal
transfer consists of three steps: The ligand binding of the signal to the receptor, the
activation of the response regulator and the ligand binding of the activated response
regulator to the DNA binding site. We will model the first and the third step with
ligand binding curves.

7.1.2 The model

To model the response of cells to a signal transmitted by a two component system we
split the regulatory system into three parts, which we model separately and which we
combine afterwards:

� The number of activated sensor-kinase molecules

� The number of activated response regulator molecules

� The transcriptional activation of target genes

In the following we will present the assumptions which we make to model each part of
the system.

The number of activated sensor-kinase molecules

We model the activation of the kinase molecules in the following way: We assume that
each kinase molecule has its own receptor and that the kinase is active at a certain time
point if and only if a ligand is bound to the corresponding receptor at the same time.
Moreover, we assume that the activity of the kinase is not coregulated by a feedback
mechanism, which might reduce its activity after a period of high gene expression level,
but only by its receptor. Thus, this way of activating the kinase equals usual ligand
binding theory, when a ligand binds reversibly to the target molecule. Assuming that
the receptor has only one binding site, the probability of a receptor being occupied
in thermodynamical equilibrium is described by the classical Henderson-Hasselbalch
titration curve

giλ

giλ+ 1
(7.1)

with λ denoting the chemical activity of the ligand and gi a transformation of the free
energy of the binding reaction which depends on temperature. Since the number of
cells in a population and consequently the number of receptors is high, the number of
active kinase molecules in the population should be close to

k
giλ

giλ+ 1
(7.2)

with k denoting the total number of kinase molecules in all cells (Law of Large Numbers,
assumption of stochastic independent binding).
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The number of activated response regulator molecules

We assume that if the number of activated sensor kinases increases, the number of
activated response regulator will increase until a steady state will be reached, in which
the number of deactivations equals the number of activations per unit time. We as-
sume that both reactions – activation and deactivation– are catalyzed enzymatically
by the sensor kinase and an antagonistic phosphatase. The substrate for the respec-
tive reaction is the deactivated or the activated form of the response regulator. Since
we do not know anything about an allosteric regulation of the kinase, we assume a
Michaelis-Menten kinetic for the activation as well as for the deactivation. Thus, these
assumptions lead to the equation in which the difference between two Michaelis-Menten
kinetics is zero (steady state):

0 =
Vk(rt − ra)c

Kk + (rt − ra)c
− Vp(ra)c

Kp + (ra)c
, (7.3)

with Vk, Vp denoting the maximum velocity of the enzyme catalyzed reaction (k=kinase,
p=phosphatase), Ki the respective Michaelis constant, r the number of response regu-
lator molecules (in total (rt) or the number of active molecules (ra)) and c a factor to
convert the number of molecules to concentration. Note that Vk is proportional to the
number of active kinase molecules given by Eq. (7.2). Rewriting Eq. (7.3) shows, that
the number of active response regulator molecules in steady state ra is a root of the
polynomial

P (ra) = a2r
2
a + a1ra + a0 (7.4)

with
a2 = (Vp − Vk)

a1 = (rtVk − rtVp − Vk
Kp

c
− Vp

Kk

c
)

a0 = Vkrt
Kp

c
.

Even though P (ra) is a polynomial of degree two, its roots are not obvious, since the
coefficients depend on the other variables. We summarize the effects of a change of
certain parameters on its roots in Proposition 98.

Proposition 98. a) For any choice of rt, Vk, Vp,Kp,Kk, c > 0 exactly one root of
P (ra) is in the interval (0, rt).

b) Let Vk,1 < Vk,2. Let P1(ra) and P2(ra) denote the corresponding polynomials
with identical rt, Vp,Kp,Kk, c > 0 but with different maximal kinase activities
Vk,1, Vk,2, respectively. Moreover, let ra,i denote the root of Pi in the interval
(0, rt). Then,

ra,1 < ra,2.

c) For Vk,n →∞ and all other parameters fixed, ra,n → rt.

d) Let rt,1 < rt,2. Let P1(ra) and P2(ra) denote the corresponding polynomials with
identical Vk, Vp,Kp,Kk, c > 0 but with total number of response regulator rt,1, rt,2,
respectively. Moreover, let ra,i denote the root of Pi in the interval (0, rt,2). Then,

ra,1 < ra,2.
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Proof. a) Note that P (0) = a0 > 0 and P (rt) = −VpKkc rt < 0. Consequently,
the Intermediate Value Theorem states that there is at least one root in the
interval [0, rt]. Since P is a polynomial of degree two, it has another real root.
If (Vp − Vk) < 0, then P tends to −∞ if |ra| → ∞ which implies the other root
to be smaller than 0, again according to the Intermediate Value Theorem. If
(Vp − Vk) > 0 the same arguments show, that the second root is greater than rt.
If Vk = Vp only one root exists.

b) We regard the polynomial

P2−1 := P2 − P1 = (Vk,2 − Vk,1)(b2r
2
a + b1ra + b0),

with

b2 = −1, b1 = (rt −
Kp

c
), b0 = rt

Kp

c

which gives the difference between the values of P2 and P1. Recall that P2(0) >
P1(0) > 0. Thus, it is sufficient to show that P2−1 > 0 on the interval [0, rt), since

this implies ra,1 < ra,2. The roots of P2−1 are given by ra,0 = −Kp
c and r̃a,0 = rt.

In the case of Vk,1 < Vk,2, P2−1 tends to −∞ if |ra| → ∞ which shows, that it is
positive on [0, rt).

c) Let Vk,n →∞ be a sequence of positive numbers. Without loss of generality, we
can assume the sequence to be monotone increasing. Let Pn denote the corre-
sponding sequence of polynomials. Part b) implies that the sequence of roots ra,n
(⊂ [0, rt]) is monotone increasing and bounded. Consequently, it will converge.
What remains to be shown is that it will really converge to the upper bound rt. We
show that for every ε > 0, an index nε exists such that ra,n ∈ (rt − ε, rt] ∀n > nε.
Let ε > 0 be chosen arbitrarily. Then

Pn(rt − ε) = a2(rt − ε)2 + a1(rt − ε) + a0 =

= Pn(rt) + (−2rtε+ ε2)a2 − εa1. (7.5)

We know that, Pn(rt) = −VpKkc rt < 0. Moreover,

(−2rtε+ ε2)a2 − εa1 =

= ε

(
(−2rt + ε)(Vp − Vk)− (rtVk − rtVp − Vk

Kp

c
− Vp

Kk

c
)

)
=

= ε

(
(rt − ε+

Kp

c
)Vk + (−rt + ε+

Kk

c
)Vp

)
. (7.6)

Since, for ε′ < rt +
Kp
c , the factor that Vk is multiplied with is positive, for Vk

large enough Eq. (7.6) and Eq. (7.5) will be positive. This means, that from this
value of Vk on, the roots will be in the interval (rt − ε′, rt] ⊂ (rt − ε, rt], due to
the Intermediate Value Theorem (Pn(rt − ε) > 0 > Pn(rt)).

d) As described, Pi denotes the polynomial with total number of response regulator
rt,i. All other parameters are identical for P1 and P2. Then P2(0) > P1(0) > 0
and

P2 − P1 = ((rt,2 − rt,1)Vk − (rt,2 − rt,1)Vp)ra + (rt,2 − rt,1)Vk
Kp

c
.
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If Vk = Vp, the graphs of the polynomials will not intersect, which means P2 > P1

on R and ra,2 > ra,1. In the case of Vk 6= Vp, P2 − P1 has a single root at

ra,0 = −
Vk

Kp
c

Vk − Vp
.

In the case of Vk > Vp, the root is negative and consequently P2 > P1 on R+,
which gives the statement.
If Vp > Vk, then

P2(ra,0) =
VpVkKpKk

c2(Vk − Vp)
< 0,

which implies that the roots of P2 and P1 are in a part of the domain on which
P2 > P1. This gives the statement.

Proposition 98 shows that the polynomial resulting from Eq. (7.3) has the properties
that a reasonable model should provide. Firstly, part a) shows, that the number of
active response regulator, if all other variables are fixed, is unique, positive and smaller
than the total number of response regulators. Secondly, part b) shows, that if all
variables, except for the number of active kinases, are fixed, the number of active
response regulator molecules will increase, if the number of active kinases is increased
and vice versa. Thirdly, part c) illustrates that for a fixed number of response regulator
molecules rt and increasing kinase activity, ra can be close to rt. The last statement
shows, that an increase of rt leads to a higher number of active response regulator
molecules ra. We illustrate the effect of an altered Vk on the number of active response
regulator ra in Example 99.

Example 99. As an example we set Vk = aVp for a ∈ R+, Vp = 5,
Kp
c = Kk

c = 105

and rt = 106. The number of active response regulator molecules ra, dependent on a,
is illustrated in Fig. 7.1.

Example 99 shows how the number of active response regulator ra depends on Vk,
which is the target point of the signal from outside: the concentration of the signal
molecule in the environment changes the number of active kinases and consequently
Vk.

The transcriptional activation of target genes

For modeling the last part of the regulatory system we assume that a gene is active and
transcribed with a certain rate if an active response regulator is bound to the DNA. In
one cell, with only one binding site for the active response regulator at the DNA, this is a
stochastic variable, but it can be described in a deterministic way using ligand binding
curves of shape of Eq. (7.1), when the whole population is described (Law of Large
Numbers, regarding cells as independent identically distributed gene expression random
variables, fixed time point). Another possibility to justify the deterministic description
in the case of regarding only one cell over time, is the assumption of ergodicity and
consequently the convergence of the mean over time to the expected value of the variable
for fixed time. Analogously to Eq. (7.2) we model the gene expression level by

G = Gmax,th

g2[ra]

g2[ra] + 1
(7.7)
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with G denoting the level of gene expression and Gmax,th the theoretical maximal level

of gene expression, if g2[ra]
g2[ra]+1 = 1. Moreover, g2 is a constant characterizing the binding

of the active response regulator to the DNA and [ra] the concentration (or activity) of
active response regulator. Note, that the practical maximal level of gene expression is
lower, since it is also bounded by the condition ra < rt, with rt fixed. The practical
maximal level of gene expression within a cell is given by

Gmax,pr = Gmax,th

g2[rt]

g2[rt] + 1
(7.8)

Example 100. To give an example of how the gene expression level may depend on
the signal from outside, we extend Example 99. For this, we choose rt to equal a
concentration of 10−9 (the total number of 106 molecules translated into concentration
in volume/volume). Moreover, we set g1 = 106, g2 = 107 and assume the maximum
of Vk to be 20. This choice for the variables leads to the response curves presented in
Fig. 7.1. Note that the gene expression level is not a ligand binding curve for a molecule
with one binding site. In this example, the absolute slope of the gene response curve,
dependent on the activity λ is relatively high. In this regard, this curve resembles an
overall titration curve with more than one binding site and cooperative binding. This
fact shows that the response regulator mediated signal can deviate qualitatively from
Henderson-Hasselbalch curves.

We calculated other examples, in which other quantities were changed. For instance,
it is also possible to set the parameters in such a way that the concentration at which
half maximal gene expression is reached differs significantly from the concentration at
which half maximal number of kinase molecules is activated.

7.1.3 One enzyme for phosphorylation and dephosphorylation of the
response regulator

In some two-component systems, the enzyme which is responsible for activation and
for deactivation can be the same. Of course, an enzyme can always catalyze both
directions, but here the situation will be considered that an activated kinase transfers
a phosphoryl group from GTP to the response regulator and an deactivated sensor
kinase removes the phosphoryl group from a response regulator producing inactivated
response regulator and free phosphate. This situation might be true, for example, for
the Gac/Rsm system (e.g. Brown, 2010). In this situation, we can rewrite Eq. (7.3)
substituting

Vk = k
giλ

giλ+ 1
and Vp = k

1

giλ+ 1

and Kk = Kp, which gives

0 =
k giλ
giλ+1(rt − ra)c
Kk + (rt − ra)c

−
k 1
giλ+1(ra)c

Kp + (ra)c
. (7.9)

Eq. (7.9) directly shows that in this special case of the model, the concentration of the
active response regulator is constant for varying total number of sensor kinase molecules,
since k > 0 cancels out. Of course, in a model incorporating the dynamics, a system
with reduced number of sensor kinase molecules will react more slowly. Assuming that

95



CHAPTER 7. MODELING WITH TITRATION CURVES

Figure 7.1: The number of active response regulator molecules ra in steady state, as a
function of the factor a describing the maximal velocity of the kinase com-
pared to the deactivating phosphatase (Vk = aVp). All other variables are
fixed (as described in Example 99, rt = 106). The other pictures illustrate
the number of active kinase (Vk), the number of active response regulator
ra and G, relatively to Gmax,pr, as a function of the activity of the signal
molecule (negative logarithmic scale). Red line: A Henderson-Hasselbalch
curve with identical position of the half maximum.
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the Michaelis-constants for both directions are identical and abandoning the factor c
by using concentrations [ri] instead of ri, we receive the polynomial(
− giλ

giλ+ 1
+

1

giλ+ 1

)
[ra]

2 +

(
−Kk +

giλ

giλ+ 1
[rt]−

1

giλ+ 1
[rt]

)
ra +

giλ

giλ+ 1
[rt]Kk.

A signal transduction system in which the same enzyme catalyzes the phosphorylation
as well as the dephosphorylation reaction (dependent on the respective binding state)
should possess a higher sensitivity to a signal from outside than a signal transduction
system with two separate enzymes for these reactions, since the signal simultaneously
suppresses the phosphatase activity and enhances the kinase reaction.

7.2 Modeling olfactory sensing

7.2.1 Motivation

Since in olfactory sensing, the binding of an odor to a receptor plays the key role,
we would like to model the electroantennographic response of beetles under the use of
titration curves. In particular, we are interested in signals, caused by compositions of
different odorants.

7.2.2 The model

We assume that the electric electroantennographic response is caused by ion channels
which open if and only if a corresponding receptor is occupied by a signal molecule.
The intensity of the signal corresponds to the number of occupied receptors. We will
not incorporate feedback loops, which for example might close the ion channels after
some time. Thus, the intensity of the signal can directly be translated to a number of
occupied receptors and consequently can be described by a ligand binding curve. In
this basic model, we will assume that each receptor has only one binding site.

7.2.3 One type of receptor with two different types of ligands

If olfactory sensing shall be modeled, of special interest is the situation in which a
receptor can be stimulated by different substances. Thus, the ligand binding model has
to be adapted. A receptor with one common binding site for two types of ligands can
exist in three different states 0, A,B, where 0 denotes the unoccupied state, A denotes
the state with a bound molecule of L1 and B denotes the state of being occupied by
ligand L2. In this first model, only one binding site exists which can be occupied
exclusively by one of the ligands. As described in Chapter 2 and Chapter 3, the
probabilities of being in a certain state depends on the relative energy levels of the
state. Analogously to the previous chapters, λ, κ denote the activity of the ligands
in the environment and gi the binding constants. The probability of a receptor being
occupied by any ligand is given by

Ψ(λ, κ) :=
g1λ+ g2κ

g1λ+ g2κ+ 1
. (7.10)

The fraction of receptors occupied by ligand L1 is

Ψ1(λ, κ) :=
g1λ

g1λ+ g2κ+ 1
. (7.11)
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Analogously, for the fraction of receptors occupied by the second ligand L2:

Ψ2(λ, κ) :=
g2κ

g1λ+ g2κ+ 1
. (7.12)

Obviously Ψ = Ψ1 + Ψ2. We will compare the signal which is generated by L1 at
activity λ1 in the absence of L2 to the signal increase caused by the addition of L1

when L2 is already present at activity κ. The signal increase is given by:

∆1(λ, κ) := Ψ(λ, κ)−Ψ2(0, κ) =

=
g1λ+ g2κ

g1λ+ g2κ+ 1
− g2κ

g2κ+ 1
=

g1λ

(g1λ+ g2κ+ 1)(g2κ+ 1)
(7.13)

Proposition 101 (Signal attenuation by other ligands). In this model, the signal in-
crease generated by L1 at activity λ in the presence of a second ligand L2 at activity κ,
is smaller than the signal generated by L1 at activity λ and L2 at activity κ, which is
smaller than the signal generated by L1 at activity λ if a second ligand is absent:

∆1(λ, κ) < Ψ1(λ, κ) < Ψ1(λ, 0). (7.14)

Proof. For κ > 0 and g2 > 0, Eq. (7.14) states

g1λ

(g1λ+ g2κ+ 1)(g2κ+ 1)
<

g1λ

g1λ+ g2κ+ 1
<

g1λ

g1λ+ 1

which is obviously true.

We will give an example.

Example 102. Eq. (7.10)-(7.13) are evaluated for the values g1 = 106, g2 = 0.5 ·
106, κ = 10−5.5. The curves are illustrated in Fig. 7.2.

7.2.4 Phenomenological description

Kosanke-Schütz et al. (2011) investigated the signal in nerves of the Colorado potato
beetle when certain flavors were used as stimulus sequentially. The basic model pre-
sented in this section is not appropriate to describe this situation fully, since nerves
have a mixed population of receptors and a receptor might have different, maybe over-
lapping binding sites. Thus, it is not surprising that some of the effects observed by
Kosanke-Schütz et al. (2011) are impossible in the basic model. Additionally, one has
to take into account that slightly different results of experiments can be regarded as
being equal in practice. For instance, Type I interaction (Definition 103) cannot be
observed in this model, even if we extend the model to a mixed population of different
kinds of receptors, which will be discussed later. However, it can be observed in prac-
tice, if a certain difference of two amplitudes is not significant. In the following, some
aspects of interacting odors will be discussed, based on the basic model, which will be
extended afterwards. Kosanke-Schütz et al. (2011) divided interactions between differ-
ent ligands into different types, which will be explained in the following. For this, they
used 12 different substances, each in a fixed concentration as stimulus or background.
Distinguishing between stimulus and background is important, since asymmetries in
the interactions were observed if the role was commuted. Interaction always refers to
an interaction between two ligands L1, L2 at certain fixed activities (λ0, κ0) with L2 as
background.
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Figure 7.2: The signal caused by ligand L1 as a function of λ in the absence of a
second ligand (Ψ1(λ, 0), black curve) and for κ = 10−5.5 (Ψ1(λ, 10−5.5), red
curve). The common signal of both ligands is illustrated by the green curve
(Ψ(λ, 10−5.5)) and the signal difference (∆1(λ, 10−5.5)) is illustrated by the
blue curve. The values g1 = 106, g2 = 0.5 · 106, κ = 10−5.5 were used.

Definition 103 (Type 1 Interaction). An interaction between two stimuli is called a
Type 1 Interaction between stimulus L1 and background L2 at (λ0, κ0) if

∆1(λ0, κ0) = Ψ1(λ0, 0). (7.15)

Obviously, Proposition 101 states that a Type 1 Interaction is impossible (also in
mixed populations of receptors). However, the difference might not be detectable in an
experiment if in a mixed population of receptors, for those receptors to which L1 binds
to g2 is close to 0, which means that L2 does not bind well to the receptors for L1.

As expected from this model, in all other cases of interactions described by Kosanke-
Schütz et al. (2011), the observed amplitude of the reaction to the test stimulus was
reduced by the presence of a background. To distinguish between these interactions
further, the interaction of a stimulus with itself as background was compared to the
situation with the other substance as background. For this reason, we will use the
notation ∆1(λ0, λ0) for Ψ1(2λ0, 0) − Ψ1(λ0, 0) to indicate that the same substance in
the same concentration was used as a background.

Definition 104 (Type 3 Interaction). An interaction between two stimuli is called a
Type 3 Interaction between stimulus L1 and background L2 at (λ0, κ0) if

∆1(λ0, κ0) = ∆1(λ0, λ0) (7.16)

Lemma 105. Eq. (7.16) holds if and only if

g2κ0 = g1λ0.

Proof. Eq. (7.16) can be translated to

g1λ0

(g1λ0 + g2κ0 + 1)(g2κ0 + 1)
=

g1λ0

(g1λ0 + g1λ0 + 1)(g1λ0 + 1)
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⇐⇒ (g1λ0 + g2κ0 + 1)(g2κ0 + 1)− (2g1λ0 + 1)(g1λ0 + 1) = 0

⇐⇒ (g2κ0)2 + (g1λ0 + 2)g2κ0 + (g1λ0 + 1)(−2g1λ0) = 0

⇐⇒ g2κ0 = 0.5

(
−2− g1λ0 ±

√
4 + 12g1λ0 + 9g2

1λ
2
0

)
⇐⇒ g2κ0 = 0.5 (−2− g1λ0 ± (2 + 3g1λ0))

g2κ0≥0⇐⇒ g2κ0 = 0.5 (−2− g1λ0 + (2 + 3g1λ0))⇐⇒ g2κ0 = a1λ0

Definition 106 (Type 2 Interaction). An interaction between two stimuli is called a
Type 2 Interaction between stimulus L1 and background L2 at (λ0, κ0) if

∆1(λ0, κ0) > ∆1(λ0, λ0) (7.17)

Lemma 107. Eq. (7.17) holds if and only if

g2κ0 < g1λ0.

Proof. Analogously to the proof of Lemma 105.

Definition 108 (Type 4 Interaction). An interaction between two stimuli is called a
Type 4 Interaction between stimulus L1 and background L2 at (λ0, κ0) if

∆1(λ0, κ0) < ∆1(λ0, λ0) (7.18)

Lemma 109. Eq. (7.18) holds if and only if

g2κ0 > g1λ0.

Proof. Analogously to the proof of Lemma 105.

What is conspicuous in this classification is, that it depends on the activities (λ0, κ0)
how the interaction of L1 and L2 is classified. This means that a pair (L1, L2) which
might show Type 2 interaction can also show Type 3 or 4 interaction at different
concentrations.

7.2.5 Different types of receptors

Assuming that the overall signal measured by the electroantennographic recordings is
a weighted sum of the signals Ψ(1), ...,Ψ(n) of different types of receptors, we receive

Ψ =
n∑
i=1

ωiΨ
(i) with weights ωi with

n∑
i=1

ωi = 1. (7.19)

Proposition 101 can be transfered directly to this extended situation since it is true for
every summand. This also implies that absolute Type 1 interaction does neither exist
in this extended model. However, as already mentioned, observed Type 1 interaction
is an indicator for the spectra of receptors to which the respective ligand can bind,
being more or less disjunct. The question arises how this concept can be transfered to

100



CHAPTER 7. MODELING WITH TITRATION CURVES

other measurable quantities. We think that properties of the (maybe further modified)
function

Ψ(λ, 0)−∆1(λ, κ)

Ψ(0, κ)
, (7.20)

which describes how “overlapping” the signals produced by the different ligands are at
certain activities might offer appropriate quantities. Its numerator also describes how
“far” the function Ψ is from a certain linearity

Ψ(λ, 0)−∆1(λ, κ) = Ψ(λ, 0)−Ψ(λ, κ) + Ψ(0, κ) (7.21)

which will be close to zero for approximate Type 1 interaction.
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