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Abstract

The maximum a-posteriori (MAP) query in statistical relational models computes
the most probable world given evidence and further knowledge about the domain.
It is arguably one of the most important types of computational problems, since it
is also used as a subroutine in weight learning algorithms. In this thesis, we discuss
an improved inference algorithm and an application for MAP queries. We focus
on Markov logic (ML) as statistical relational formalism. Markov logic combines
Markov networks with first-order logic by attaching weights to first-order formulas.

For inference, we improve existing work which translates MAP queries to in-
teger linear programs (ILP). The motivation is that existing ILP solvers are very
stable and fast and are able to precisely estimate the quality of an intermediate so-
Iution. In our work, we focus on improving the translation process such that we
result in ILPs having fewer variables and fewer constraints. Our main contribution
is the cutting plane aggregation (CPA) approach which leverages symmetries in
ML networks and parallelizes MAP inference. Additionally, we integrate the cut-
ting plane inference [Rie08] algorithm which significantly reduces the number of
groundings by solving multiple smaller ILPs instead of one large ILP. We present
the new Markov logic engine ROCKIT which outperforms state-of-the-art engines
in standard Markov logic benchmarks.

Afterwards, we apply the MAP query to description logics. Description logics
(DL) are knowledge representation formalisms whose expressivity is higher than
propositional logic but lower than first-order logic. The most popular DLs have
been standardized in the ontology language OWL and are an elementary compo-
nent in the Semantic Web. We combine Markov logic, which essentially follows
the semantic of a log-linear model, with description logics to log-linear description
logics. In log-linear description logic weights can be attached to any description
logic axiom. Furthermore, we introduce a new query type which computes the
most-probable ’coherent’ world. Possible applications of log-linear description
logics are mainly located in the area of ontology learning and data integration. With
our novel log-linear description logic reasoner ELOG, we experimentally show that
more expressivity increases quality and that the solutions of optimal solving strate-
gies have higher quality than the solutions of approximate solving strategies.
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Zusammenfassung

Die maximum a-posteriori (MAP) Anfrage in statistischen relationalen Modellen
berechnet die wahrscheinlichste Welt, wenn Evidenz und weiteres Wissen iiber
die Domiéne gegeben sind. Sie ist nachgewiesener Weise eines der wichtigsten
Berechnungsprobleme, da sie auch als Unterprogramm in Gewichtslernalgorith-
men bendtigt wird. In dieser Dissertation diskutieren wir einen verbesserten In-
ferenzalgorithmus und eine Anwendung fiir MAP Anfragen. Markov Logik (ML)
wird als statistischer relationaler Formalismus verwendet. Markov Logik kom-
biniert Markov Netzwerke mit Pradikatenlogik, so dass Gewichte an pridikatenlo-
gische Formeln angehéngt werden konnen.

In Bezug auf Anfrageoptimierung optimieren wir existierende Arbeiten, welche
MAP Anfragen zu ganzzahligen linearen Programmen (engl. integer linear pro-
grams ILP) iibersetzen. Die Motivation hierbei ist, dass existierende ILP Loser
sehr stabil und schnell sind und eine genaue Abschitzung der Qualitét einer Zwis-
chenlosung ermdglichen. In unserer Arbeit wird der Ubersetzungsprozess so verbes-
sert, dass wir ILPs mit weniger Variablen und weniger Nebenbedingungen erhal-
ten. Unser Hauptbeitrag ist der Cutting Plane Aggregations (CPA) Ansatz, welcher
Symmetrien in ML Netzwerken ausnutzt und MAP Anfragen parallelisiert. Zusétz-
lich integrieren wir den Cutting Plane Inference [Rie08] Algorithmus, welcher die
Anzahl der Nebenbedingungen signifikant reduziert indem statt einem groem ILP
mehrere kleinere ILPs gelost werden. Wir prasentieren eine neue Markov Logik
Engine ROCKIT, welche existierende Engins, die dem neuesten Stand der Technik
entsprechen, in Qualitédt und Leistung iibertrifft.

AnschlieBend wenden wir MAP Anfragen auf Beschreibungslogiken an. Be-
schreibungslogiken (eng. description logics DL) sind Wissensrepriasentationsfor-
malismen, dessen Ausdrucksstidrke hoher als in Aussagenlogik aber niedriger als in
Pradikatenlogik ist. Die bekanntesten DLs wurden in der Ontologiesprache OWL
standardisiert und sind elementarer Bestandteil des Semantischen Webs. Wir kom-
binieren Markov Logik, welche im Wesentlichen die Semantik eines log-linearen
Modells hat, mit Beschreibungslogiken zu log-linearer Beschreibungslogiken (engl.
log-linear description logics). In log-linearen Beschreibungslogiken kann jedem
Beschreibungslogikaxiom ein Gewicht hinzugefiigt werden. Auerdem fiihren wir
einen neuen Anfragetyp ein, welcher die wahrscheinlichste kohdrente Welt (engl.
most-probable coherent world) berechnet. Mogliche Anwendungen von log-linear-
en Beschreibungslogiken befinden sich hauptsichlich in den Gebieten des Ler-
nens von Ontologien und der Datenintegration. Mit unserem neuen log-linearen
Beschreibungslogikableiter ELOG zeigen wir experimentell, dass mehr Expres-
sivitdt die Qualitit erhoht und dass die Losung von optimalen Losungsstrategien
eine hohere Qualitét hat als approximative Losungsstrategien.



Contents

1

2

Introduction
1.1 Informal Motivation and Problem Description. . . . . ... ... ..
1.1.1 Impact of Maximum A-Posteriori (MAP) Inference in Mar-
kov Logic Applications . . . . . ... ... .. ........
1.1.2  Leveraging Integer Linear Programming for Solving MAP
Queries . . . . . ... e
1.1.3 Integrating Degrees of Confidence into Description Logics .
1.2 ResearchQuestions . . . . . . . ... ... ... ...,
1.2.1 Efficient Inference in Markov Logic . . . . . ... ... ...
1.2.2  Application in Description Logics . . . . . .. ... ... ..
1.3 Informal Contribution . . ... ... .. ... ... ..........
1.3.1 Cutting Plane Aggregation . . . ... .............
1.3.2 Log-Linear Description Logics . . . ... ... ... ....
14 Outline . . . ... ... . e
1.4.1 Efficient Inference in Markov Logic . . . . . ... ... ...
1.4.2  Application in Description Logic . . . ... ... ... ...
1.5 OwnPublishedWork . . . . ... ... ... ... ... . ....

Preliminaries

2.1 MarkovNetworks . . . .. ... ...
2.1.1 Log-linearModels . . . .. ... ................
2.1.2 Marginal Inference . ... .. ... ... ... .. ......
2.1.3 Maximum A-Posteriori (MAP) Inference . . . . . ... ...

2.2 Function Free First Order Logic (FOL). . . . . ... ... .. ....

2.3 MarkovLogic(ML) . ..... ... .. .. .. . ... . ... . ...
2.3.1 Observed Predicates and Types . . . .. ... ... .....
232 Grounding . ... ...

2.4 Integer Linear Programming (ILP) . . . . ... ... ... .. ....

2.5 Description Logic (DL) . . ... ... ... ..............
2.5.1 Syntaxof EL™ ...
252 Semanticsof EL™T ...



vi

IT

CONTENTS

Efficient Inference in Markov Logic 39
MAP Inference in ML With ILP 41
3.1 Standard ILP Translation. . . . . . ... ................ 42
3.2 Optimized ILP Translation. . . . .. ... .. .. ... ....... 43
3.3 Cutting Plane Inference (CPI) . . . . .. ... ... ... ...... 45
3.4 Cutting Plane Aggregation (CPA) . . . . . ... ... ... ..... 48
34.1 Symmetry DetectioninILP ... ............... 54

3.4.2 Computation of Counting Features . ... ... ... .... 55

3.5 Combining and Parallelizing the CPA and the CPI Approach . ... 57
3.5.1 Combining the CPI and the CPA Approach . . . . ... ... 57

3.5.2 Parallelizing the CPI and the CPA Approach . . . . .. ... 58
Leveraging RDBMS 61
41 Grounding . . . . . ... 62
4.2 Finding Violated Constraints . . . . ... ... ... ......... 65
4.3 Computation of Counting Features . . . . ... ............ 70
Related Work 73
5.1 LiftedInference . . . . .. .. ... ... .. ... ... ... 74
5.2 Inference in ML With Weighted SAT Algorithms . . . . .. ... .. 77
5.3 State-of-the-art Markov Logic Systems . . . . .. ... ....... 79
Experiments 81
6.1 Markov Logic Engine ROCKIT . ... .. ... ... ......... 81
6.2 Benchmarks . . ... ... ... ... .. ... . 83
6.3 Experimental Setup . . . . . ... ... ... ... . ... .. 85
6.4 ExperimentalResults . . . .. ... ... ................ 86
6.4.1 The CPA Method Reduces the Number of ILP Constraints . 86

6.4.2 CPA Decreases Runtime . . . ................. 88

6.4.3 ROCKIT Outperforms Other Markov Logic Systems . . .. 90

6.4.4 Runtime Declines With the Number of Cores . . . ... .. 92
Conclusion and Future Work 95
7.1 Concluding Example . . . ... ... ... ... .. ... . ... 95
7.2 Conclusion . ... ... .. ... 97
73 FutureWork . . . . ... 99
Application in Description Logics 101
Log-Linear Description Logics 103
8.1 Possiblelog-linear DLs . . . . ... ... ... .. ... .. ..... 104
82 Theory . . .. .. e 106

82.1 Syntax . .. ... ... 106



CONTENTS vii

8.2.2 Semantics . . . . . ... 107

8.3 Towards a ML Representation . . . . . ... .............. 109
8.3.1 Normalization . .. ... .. ... ... ... ..... 110

8.3.2  Transformation of Completion Rulesto FOL . . . . . .. .. 115

8.3.3 Additionof Axioms . . . .. .. ... .o L. 120

8.3.4 The Most Probable Coherent Ontology Query . . . ... .. 122

8.3.5 Transformationtoa ML Network . . ... .......... 124

8.4 Extension of ML to Formulas in Conjunctive Normal Form . . . . . 126
8.4.1 Reduction to Conjunctions . . . . .. .. ........... 127

8.4.2 ILP Translation of Conjunctions . . . . .. .......... 128

8.4.3 Extending the CPA Approach With Conjunctions . . . . . . 129

9 Related Work 135
9.1 Probabilistic Description Logics . . . . ... ... .......... 135
9.1.1 P-SROIQ . ... ... . 136

9.12 DiSPOnte. . . ... ... . .. 138

9.13 PR-OWL . .. ... . . 139

9.2 Possibilistic Description Logics . . . . .. ... ... ......... 141
9.3 Fuzzy Description Logics . . . ... ... ... ... ......... 142
9.4 Systems . . . ..o 144
10 Experiments 149
10.1 Log-Linear DL Reasoner ELog . . . . ... .. ............ 149
10.2 Applications . . . . . . . ... . e 151
10.2.1 Ontology Learning and Ontology Debugging . . .. .. .. 151
10.2.2 Ontology Matching . . . ... ... ... ... ....... 152
10.2.3 Activity Recognition . .. ... .. .. ... ... ...... 156

103 Benchmarks . . . .. ... ... ... L 156
10.3.1 Ontology Matching . . . ... ... .. ............ 156
10.3.2 Ontology Learning . . ... .................. 160

10.4 Experimental Setup . . . . . . ... ... ... 161
10.5 Experimental Results . . . . . ... ... .. .............. 163
10.5.1 Increasing the Expressivity Improves the Quality . . . . . . 163
10.5.2 ELog has a Higher Quality Than Approximate Approaches 166
10.5.3 ELog can Process Large Ontologies . . . . ... .. ... .. 169

11 Conclusion and Future Work 171
11.1 Conclusion . . .. .. .. ... . ... . 171

11.2 Future Work . . . . . . . . . . . 174



viii CONTENTS



List of Figures

1.1
1.2
1.3

3.1

6.1
6.2

6.3

6.4

10.1
10.2
10.3

10.4
10.5

10.6

Informal example for maximum a-posteriori queries. . . . . . .. .. 4
Informal example for description logics. . . . ... ... ... .... 9
Informal example for log-linear description logics. . . . . . ... .. 14
Parallelization of constraint finding, constraint aggregation, and

ILP solving [NNS13]. . . . . . .. . . . 59
Screenshot of the online web-interface of ROCKIT.. . . . . ... .. 82
Comparison of runtimes of ROCKIT with/without CPI and with/without
CPA (inspired by [NNS13]). . . . . . .. .. . oo . 89
Comparison of runtimes per second of ROCKIT and state-of-the art

MLN engines (inspired by [NNS13]). . ... ... ... ... .... 91
Performance improvements of ROCKIT with CPA on multiple cores
[INNSI3]. . . 93
Screenshot of the online web-interface of ELOG. . . . . .. ... .. 150
Difference between ontology matching and ontology learning. . . . 152
Structure of the CONFERENCE and LARGE BIOMED ontology match-

ing benchmarks (inspired by [Meill]). . . . . .. ... .. ... ... 158
Results for increasing expressivity of the conference benchmark. . . 164
Results for ELOG compared with other approaches on the CON-
FERENCE benchmark. . ... ...... ... ... ... ..... 167
Results for ELOG compared with other approaches on the LARGE
BIOMED benchmark. . ... ... .. ... ..... .. ... ... 170

X



LIST OF FIGURES



List of Tables

2.1
2.2

2.3

24

3.1
32
33
34
3.5

4.1

4.2

6.1
6.2

8.1

8.2
8.3
8.4
8.5

9.1

10.1

10.2

The friends & smokers MLN [SDO8]. . . ... ... ......... 28
The Herbrand base of the friends & smokers MLN [SDO8] for two
constants AnnaandBob. . . . . .. ... oo oL 28
Full grounding of the friends & smokers MLN for the constants
Annaand Bob. . . .. .. ... ..o 31

The DL £L£** with range restrictions and without concrete domains. 34

An example of the standard ILP transformation (inspired by [NNS13]). 44

An example of the optimized ILP transformation [NNS13]. . . . . . 45
An example of ground clauses that can be aggregated [NNS13]. . . 49
An example of the aggregated ILP formulation [NNS13]. . . .. .. 51
Example clauses for the approximate counting feature algorithm. . . 56

An example for finding violated constraints of a first order formula

with negative weight. . . . . . . .. ... . L L L oL 69
A summary for finding violated constraints with RDBMS. . . . . . . 70
Some characteristics of the ML benchmark datasets [NNS13]. ... 85
Number of ILP constraints generated by ROCKIT with and without

CPI as well as with and without CPA (inspired by [NNS13]). . . . . 88
Syntax of the log-linear ££** with range restrictions and without

concrete domains. . . . . .. ... 106
The normalization rules derived from [BBLO5Sb]. . . . ... ... .. 111
Normalized axioms of Ontology O, of Example 23. . . ... .. .. 114
The completion rules from [BBLO5a] (from [NNS11]). . ... ... 116
The set of first-order formulas F [NNS11]. . . .. ... ....... 117
Combination functions of various fuzzy logics [HahO1, LSOS8]. . . . 143

Number of classes, properties, and deterministic axioms in the

CONFERENCE ontologies. . . ... ... ... ............. 157
Number of weighted equivalent axioms in the merged CONFER-
ENCEalignments. . . . . . .. .. ... ... 157

X1



Xii

10.3

10.4

10.5

10.6

LIST OF TABLES

Number of classes, properties, and deterministic axioms in the

LARGE BIOMED ontologies. . . ... .. ... ............ 159
Number of weighted equivalent axioms in the merged LARGE BIOMED
alignments. . . . .. ... 160
Results for the ontology learning benchmark with increasing ex-
PIESSIVILY. . . . o o vt e e e e e e 166

Results of ELOG compared with a Greedy approach on the ontol-
ogy learning benchmark. . . . . .. ... ... ... ... ....... 169



Acknowledgement

It is a great feeling to write the acknowledgment of a thesis - my thesis. When
I started four years ago in Mannheim, this was so far away. In fact, it still felt
far away when my Professor Heiner Stuckenschmidt told me to start writing this
document one year ago. And now, its finished. I can hardly believe it! But this
thesis would never have been possible without the help of so many great people.

First, I want to thank you, Mathias Niepert, for your great supervision espe-
cially in the first years. Thank you for sharing your exceptional ideas and for
endless, fruitful, and really joyful discussions. Although I tried, I never reached
your level of knowledge. You are not only the best supervisor that one could have
(and I am not saying this now, because I have to) but also became a friend.

The same happened with Christian Meilicke - we became friends. Especially
in the beginning and at the end, you always had a listening ear for me and nice
suggestions. Stay as you are!

Furthermore, I thank you, Heiner Stuckenschmidt for the great time working
for you. You are probably the best boss one can have. You gave me much freedom
to freely choose topics I want to do but always took care that I stayed in the right
direction. Thank you for giving me enough time to finish this thesis but thank you
also for the final push to get it done.

I thank you, Sebastian Riedel, for being the second referee of my thesis and for
the very spontaneous invitation to the hackatron in London over New Years Eve. It
was a great time!

I also thank my colleges for the great time and for the many very nice evenings
with maybe too much beer discussing relevant and not so relevant things. I hope
that we will stay in touch. I thank my friends for just being there although the
frequency of meetings decreased in the last time and has to be increased again in
the near future. I thank my family who supported me all the way through and who
always were eager to understand what I am actually doing all the time. I devote
you the ’Informal Motivation’ and ’Informal Contribution’ sections which might
help you to get a rough intuition. I thank my friend Volker Wolf for building my
self-confidence and skills in early years. Last but not least, I would like to thank
my girlfriend Stefanie Schraeder for her love and inspiration.



Chapter 1

Introduction

One major task of artificial intelligence is to find an abstract representation of real-
world problems. Most of these modeling problems require the ability of machines
to reason about the modeled knowledge. In the past, researchers have mostly been
concerned with deterministic knowledge representation, thereby largely ignoring
uncertainty. However, many domains can not be correctly represented by only us-
ing deterministic facts. On the other hand, there are many pure probabilistic mod-
els like Bayesian Networks or Markov Models which are not suitable to represent
complex relational structures. Thus, the need arose to combine both worlds.

For a long time, there has not been much cross-fertilization between the knowl-
edge representation and the statistical relational artificial intelligence communities.
Recently, more and more interaction has taken place, and languages have been de-
veloped, which can incorporate both complex relational structure and uncertainty.
These languages are summarized under the umbrella of statistical relational lan-
guages. One of the most prominent languages is Markov logic [RD06] which has
already been applied in many different research fields although it has only recently
been developed. Section 1.1.1 outlines several of its applications and provides an
intuitive explanation of Markov logic.

Research on inference in statistical relational models has mainly focused on
marginal inference, which is the task to compute a-posteriori probabilities. In con-
trast, the maximum a-posteriori inference (MAP) (sometimes also referred to as
most probable explanation (MPE) inference) has not been studied so extensively.
The MAP query computes the most probable world given evidence and knowl-
edge about the domain. It is arguably one of the most important types of com-
putational problems since it is also used as a subroutine in weight learning algo-
rithms [RD0O6, LD0O7]. Furthermore, most of the current applications of Markov
logic use MAP inference. We refer again to Section 1.1.1 for a verification of this
claim and an informal introduction to MAP inference. Thus, this thesis focuses on
MAP inference.

In the first part, we aim to lower the runtime and thus increase the efficiency
of MAP queries in Markov logic. Most state-of-the-art Markov logic solvers incor-

1



2 CHAPTER 1. INTRODUCTION

porate approximate algorithms in order to lower the solving times. However, the
disadvantage of most of these algorithms is that they are not able to determine if
the optimal solution is found or whether they are stuck in a local maximum.

Integer linear programming (ILP) is able to compute a relative gap of every
intermediate solution which specifies the worst case difference to the optimal solu-
tion. In most ILP solvers, users can specify the minimal gap of the final solution.
This includes setting very small gaps and, thus, obtaining (close to) optimal solu-
tions. Furthermore, (mixed) ILP is a very established research field. The existing
solvers are heavily used in industry and thus are very stable and fast. We refer to
Section 1.1.2 for a more in-depth discussion of these advantages and for an exam-
ple of the construction of an integer linear program.

Consequently, we transform MAP queries to integer linear programs. In par-
ticular, we build upon existing work [Rie08] that already translated MAP queries
to integer linear programs. We further optimize the translation process by creat-
ing as compact integer linear programs as possible. Compact in this case refers to
reducing the number of required ILP variables and constraints. Our main contribu-
tion in this context is the cutting plane aggregation (CPA) approach which detects
context-specific symmetries within models. The explicit translation of these sym-
metries to ILP does not only lead to more compact ILPs, but also enables the solver
to detect these symmetries and, thus, apply faster solving strategies. For getting an
intuition about the aggregation strategy we forward the reader to Section 1.3.1.

In the second part, we satisfy a need which mainly occurs in the research ar-
eas of ontology learning and ontology matching. In these areas, scientists develop
approaches to compute the degree of confidence or thrust for description logic ax-
ioms. However, these confidence values lack a clearly defined semantics. Further-
more, classical description logics, which enable machines to automatically read
and infer new knowledge, are only capable of dealing with deterministic knowl-
edge. Probabilistic extensions of classical description logics are mostly theoretical
or require probabilities and not confidence values as input. If we naively incor-
porate all the learned axioms to the description logic knowledge base, we often
result in conflicts. Thus, we require inference mechanisms which repair all con-
flicts generated by weighted description logic axioms by keeping as much learned
information as possible. We refer to Section 1.1.3 for further details of this problem
statement and intuitive examples about description logics.

In order to respond to that need, we develop a new uncertain description logic
called log-linear description logics. This logic extends the classical description
logics (DL) to cope with degrees of confidence. The syntax of log-linear DLs
allows to attach weights to first-order formulas, and its semantics is based on log-
linear models. Furthermore, we introduce a new query type which queries for
the most probable coherent ontology. Section 1.3.2 gives the reader an informal
intuition about log-linear description logics and the novel query.

For computing the most probable coherent ontology, the fast solution tech-
niques developed in Part I are of special importance, as they provide an efficient
possibility to solve log-linear description logics queries. Especially, our novel most
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probable coherent ontology query can be efficiently solved since symmetries are
exploited.

In order to make our theoretical findings usable for other scientists from dif-
ferent domains, this thesis presents two systems ROCKIT and ELOG, which im-
plement the theoretical findings. With these systems, the user can formulate and
efficiently solve several concrete problems from different domains.

The remaining part of this introductory chapter is organized as follows: First,
we want to take a step back and motivate the content of this thesis on an infor-
mal level using illustrative examples in Section 1.1. Afterwards, we formulate the
research questions (see Section 1.2), which emerge from the needs formulated in
Section 1.1. Then, Section 1.3 describes the two main contributions cutting plane
aggregation and log-linear description logics on an informal level. The main goals
of Section 1.1 and Section 1.3 is to enable readers from a different domain to
glimpse the main motivation and contributions of this thesis and to give domain
experts a quick and informal overview. Finally, we give an outline of the thesis and
expose our contributions within the sections (see Section 1.4) and briefly mention
our main publications for this thesis (see Section 1.5).

1.1 Informal Motivation and Problem Description

In the following we motivate the thesis topic and describe the problems addressed
within this thesis in an informal way so that readers from other domains can follow
this motivation.

Since both parts deal with maximum a-posteriori (MAP) inference, Section 1.1.1
first gives an informal intuition about this inference type on an illustrative exam-
ple. Then, this section introduces Markov logic as the statistical relational language
used throughout this thesis and give an overview of current application areas and,
finally, motivates the necessity of improving the performance of MAP inference by
pointing out the importance of MAP inference in Markov logic applications.

We motivate our usage of integer linear programming (ILP) for MAP inference
in Part I by work out main advantages compared to traditional solving strategies in
Section 1.1.2. This section also provides an informal explanation of the construc-
tion of integer linear programs using our previous example.

Finally, Section 1.1.3 exposes the need of an extension of classical description
logics that is able to cope with degrees of confidence. This need arose especially
from the areas of ontology learning and ontology matching where machine learning
algorithms create confidence values for description logic axioms. This need is the
motivation of the novel uncertain description logic extension presented in Part II.
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200

50

Figure 1.1: Informal example for maximum a-posteriori queries. The example
shows workers, who can be assigned to machines. Each assignment generates a
profit.

1.1.1 Impact of Maximum A-Posteriori (MAP) Inference in Markov
Logic Applications

In maximum a-posteriori (MAP) inference we are interested in computing the most
probable world given evidence [KF09]. Let us explain this term with a motivating
example, in which we have given two workers w; and wy and two machines m;
and msy. Each worker can work on each machine. However, workers create dif-
ferent amounts of profits when assigned to specific machines. If we assign w; to
machine m; we gain for instance 200. The described world and all existing profit
assignments are illustrated in Figure 1.1.

Furthermore, let us assume that there exist two restrictions in our world, saying:

(1) One worker can be assigned to maximal one machine.

(2) One machine can be assigned to maximal one worker.

These restrictions are called hard, since they must hold in our world and must
not be violated. Our goal is now to maximize the sum of the weights of the truth
assignments. In this case the total gain of the worker machine assignment can be
reinterpreted as probabilities given that we normalize over the sum of all possi-
ble outcomes. To that end, this is equivalent to the maximum a-posteriori (MAP)
inference query which computes the most probable world.

Let us illustrate on our small example what the sum of the weights of the true
assignments means. If we assign worker w; to machine m, the edge between w;
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and m; holds in our world - or in other words the edge is assigned to true. Our
sum of the truth assignments is 200, because we just have this one assignment.

On a first glimpse, we might also consider this first assignment as a good start
towards a most probable world, since we grabbed the highest possible profit first.
This behavior is called greedy. According to this greedy strategy, we try to grab the
second highest profit next, which is 150. We can realize this profit by either assign-
ing true to the pair (w1, m2) or to the pair (wg,m1). However, both assignments
violate our restriction (1) or (2), respectively. Thus, none of these assignments
is a possible world. Possible worlds are also called models. Last, we can assign
worker ws to machine mo, since it does not violate any hard constraints and, conse-
quently, is a model. The sum of the weights of our two truth assignments (wy,m;)
and (wg, mg) is 250.

In our small example, it is easy to see that this is not the assignment with
the highest profit. The correct result of the MAP query are the truth assignments
(w1, mg) and (w2, m;), which have a total sum of 300. This small example il-
lustrates that the problem of computing the MAP query is not trivial. A greedy
strategy often does not compute the most probable world.

In this thesis, we do not want to restrict our-selves to the proposed worker-
machine problem, but want to operate on a formal language. The language we
utilize in this thesis is Markov logic [RD06]. An important aspect of this language,
which is not covered by our example so far, is the possibility to define so-called soft
constraints. Syntactically, soft constraints are constraints with a weight attached.
Intuitively, the higher the weight, the higher is the probability that this constraint
holds in the final MAP state.

We could for instance turn our second constraint into a soft constraint, such
that:

(2) One machine can be assigned to maximal one worker (weight 100).

In this case, we get a revenue of 100 for each machine if we assign maximal one
worker to this machine. Consequently, our state (w1, ms2) and (w2, m1) now has a
total sum of the weights of truth assignments of 500. Of this amount, 300 relates to
the truth assignments (w1, mz) and (wz,m1) and 2 - 100 to the truth assignment of
soft rule (2) - one for each machine. If we consider the truth assignments (w1, m1)
and (ws, m1 ), which were no model before, this combination is now allowed. The
sum of the weights of these truth assignments is 450. This time only 100 of the
450 are allocated to the soft rule (2) since only machine my gets a 100 reward.
Machine m; violates the rule because two workers are assigned to it. The MAP
state remains (wy,msy) and (wy,mq) unless we assign a weight less than 50 to
our soft rule. Then, the MAP state changes to (w1, m1) and (w2, m1). However,
the remarkable difference is that the truth assignments (wy,m;) and (we, m1) are
now a possible world, since our constraint (2) has become soft.

Due to its declarative nature, Markov logic allows for fast prototyping. Al-
though Markov logic has only been developed in 2006, there already exist nu-
merous applications. One main application area is natural language processing.
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More precisely, there exist approaches for improving spoken language understand-
ing [MRRLO08a], semantic role labeling [RMR08, MRR(09a, MRR(09b], weighted
abduction [BHD* 11], and sentiment analysis [ZNSS11]. Another area is biomed-
ical informatics, where Markov logic has been successfully applied for comput-
ing genetic interactions [RKO05], predicting the three dimensional structure of pro-
teins [LF09], and extracting bio-molecular events [RCTTO09]. Further applications
include tasks in the Semantic Web, like ontology matching [NMS10], entity res-
olution [SD06a, PD08], information extraction [SBS*11], and modeling temporal
relations [HBLL10]. Additionally, Markov logic has been applied to other classi-
cal machine learning problems like data mining [Dom07] and collective classifi-
cation [CM11]. Recently, Markov logic has been employed to marketing related
topics. Dierkes et al. [DBK11] estimates for example the effect on word of mouth
and Singla et. al [SKLGO8] detects social relationships in consumer photo col-
lections. Substantially improvements were gained by applying Markov logic in
activity recognition [HNS11], where the task is to recognize human activities from
sensor data.

Most of the applications of Markov logic incorporate MAP inference. For ver-
ification of this claim, we browsed through the first search results for *Markowv
Logic’ at Google Schoolar! and filtered publications which apply Markov logic.
Out of the first 60 search results, 18 publications aims at applications of Markov
logic?>. From these 18 publications, 67% (12 publications) use MAP queries,
22% (4 publications) apply marginal inference, which is the task of computing a-
posteriori probabilities, and 11% (2 publications) use both query types. Although
this evaluation might not adequately represent all Markov logic applications, it
nevertheless shows that the maximum a-posteriori query plays an important role in
Markov logic applications.

For these applications, it is crucial to further improve the performance of MAP
inference. At the moment, most applications have to restrict the size of their
knowledge bases such that it can be handled by state-of-the-art ML solvers. If
MAP queries can be solved faster, larger knowledge bases can be processed in
less amount of time. Overall, this will further increase the acceptance of Markov
logic as representation language. Thus, Part I of this thesis investigates in novel
approaches which solve MAP queries faster.

'Searched for http://scholar.google.de/scholar?qg=%22Markov+logic%
22&btnG=&hl=de&as_sdt=0%2C5 on 25th of March 2014.

’The other 42 publications focus on the general presentation of Markov logic in broader con-
texts or mention ML as general solving technique (12 publications), improve parameter learning (11
publications) or structure learning (8 publications), and extend Markov logic or improve inference
mechanisms (11 publications).
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1.1.2 Leveraging Integer Linear Programming for Solving Maximum
A-Posteriori Queries

Most of the state-of-the-art Markov logic solvers implement approximate approach-
es for solving MAP queries in Markov logic. Their solving strategy is based on
algorithms like MAXWALKSAT which steadily improves the solution by flipping
variables. We forward the reader to Section 5.2 for details about the MAXWALK-
SAT algorithm. Those approximate algorithms might converge to a local maximum
without having any possibility to detect that there exist another higher state. Tech-
niques like restarting these algorithms several times with different solutions and
randomly flipping variables which do not improve the solution try to overcome lo-
cal maximas. Nevertheless, these algorithms have no indication about the quality
of the current solution. In particular, they have no possibility to provide an esti-
mation on how large the GAP between the actual solution and the optimal solution
is.

During the solving process of integer linear programs (ILP) [Sch99] it is al-
ways possible to calculate the current lower and upper bound of any solution. The
relative distance between the lower and upper bound is referred to as the (relative)
gap of a solution. The lower the gap, the higher is the quality of the solution. Thus,
ILP solvers allows to specify the relative worst case gap of the actual solution com-
pared to the optimal solution. In fact, most state-of-the-art solvers in integer linear
programming allow users to set a relative minimal gap parameter a solution must
have. This includes the possibility of setting very small gap parameters and, thus,
computing (close-to) optimal solutions. In other words, the user can define the
necessary quality of the solution.

Another main advantage of ILP compared to algorithms like MAXWALKSAT
is that ILP is not only a very established research field, but its solvers are also
heavily applied in industry. The main industrial application area is operations re-
search [WGO04]. Operations research includes financial and marketing engineer-
ing, transportation, revenue management, and many more business-related areas
in which efficient solving strategies for complex real-world problems are required.
Around (mixed) integer programming numerous books have been published, like
for example [Sch99, Wol00]. Listing scientific work would go beyond the scope of
this thesis. Searching for ’Integer Linear Programming’ in Google Scholar returns
over 53,000 scientific papers®. Thus, there is a large need for very stable and fast
solvers like Gurobi *. Those solvers implement a very large variety of scientific
optimization techniques and are optimized on large real-world benchmarks.

These are the main reasons why integer linear programming has been used in
previous work [Rie08] to solve MAP queries in Markov logic networks. In the first
part of this thesis, we improve this work by providing novel translation strategies
which significantly reduce the size of the ILP translation and leverage symmetries

>We searched on the 03.02.2014 for * Integer Linear Programming’ including quota-
tion marks on http://scholar.google.de/.
4http ://www.gurobi.com/
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in Markov logic networks.

In principle, integer linear programming maximizes a given linear objective
subject to linear inequality constraints [Sch99]. The variables within the objective
and the constraints are integer. In order to get an intuition of integer linear pro-
grams, we translate our basic problem introduced in Section 1.1.1 to an ILP. We
refer the reader to Section 2.4 for a formal introduction of ILPs.

We first have to define ILP variables. In our case, we introduce one variable per
edge of Figure 1.1. Let x (., ,,,) be the variable which represents the edge between
worker wy and machine m;. Correspondingly, we define the variables x(y,, )
T (wg,my)s AN T (yy m,)- Next, we set all variables to binary, which means that they
can either have the value 1 or the value 0. Semantically, setting the variable to 1
means that the corresponding edge is assigned frue in our word, and 0 means that
the corresponding edge is set to false.

Next, we build the objective of our problem. Our aim is to maximize the profit.
Thus, our objective is defined as followed

obj = max 200 - T (wyma) 190 T (0 mo) + 150 Xy my) + 50 Ty o) -

If we solve this ILP, every variable z is set to 1 which means that every worker
is assigned to every machine. The objective obj of our ILP is 550. However, this
violates our restrictions (1) and (2) that we have defined. Thus, we have to add
constraints in form of linear inequalities that ensure that our two restrictions are
not violated. We add the following four constraints:

(1) One worker can be assigned to maximal one machine.
x(whml) + x(wg,m1) <=1
x(whm2) + x(wg’mz) <=1

(2) One machine can be assigned to maximal one worker.
x(whml) + w(whmz) <=1
Z‘(wZ,ml) + x(wg’mz) <=1

All of these constraints must hold. The solution of our updated ILP returns
T(wi,mz) = Tlwgymy) = 1 A0 Ty my) = T(wy,my) = 0 With an objective of 300.
This is equivalent to our previously determined MAP state (wy,m2) and (wa,m1).
Again, this example is very informal and should just illustrate the basic ideas of
integer linear programs in general and how problems can be translated into its
syntax.

In the first part of this thesis, we present several novel translations of Markov
logic networks, which include hard and soft formulas, to integer linear programs
for solving MAP queries. These improved translations result in more compact
ILPs containing fewer variables and fewer constraints than existing translations by
exploiting symmetries within Markov logic networks. These techniques decrease
the solving times and, consequently, increase the efficiency of MAP inference.
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Figure 1.2: Informal example for a coherent (left side) and incoherent (right side)
ontology. The circles model classes. The dashed lines symbolize disjointness and
the solid lines represent subsumption in which the super-class is located above the
sub-class.

1.1.3 Integrating Degrees of Confidence into Description Logics

In real-world applications, uncertainty often occurs as degree of confidence or
trust [NNS11]. The semantic web community, for example, has developed numer-
ous of approaches, which generate confidence values for description logic axioms.
Description logics form the theoretical foundations of ontologies. When build-
ing an ontology about a certain domain, we enable the machine to not only read
the knowledge but to also extract additional knowledge not explicitly stated in the
ontology.

Originally originating from philosophy, ontologies nowadays play a central
role in the vision of the Semantic Web of Tim Berners-Lee [BLHL*01]. In his
vision, intelligent agents can process and manipulate information meaningfully to
perform tasks like finding the best hospital for a specific treatment in a radius of
30 miles. To that end, todays web, which is designed for human reading, has to
be turned into the Semantic Web, in which information is stored in a machine-
readable way. Since ontologies inherit the well-founded semantics of description
logics, they are proposed as data representation languages.

The application areas of ontologies are many. Ontologies are frequently used in
the medical and bio-informatics domain to structure information [SK02, ABB*00].
Further applications include software engineering [HMS10], libraries [TVO03], agri-
culture [XWO07, LLS06], and many more.

One simple example ontology is visualized on the left side of Figure 1.2. In
this example, we defined several classes like Animal, Cat and Brand. Classes
are sometimes also called concepts. For simplicity, we omit roles and instances
in our example. Figure 1.2 contains two different types of logical dependencies
between classes. The first type is subsumption, which is visualized with a solid
line, where the super-class is located above the sub-class. We say, for example,
that Animal subsumes Cat, or that C'at is a subclass of Animal. Semantically,
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machines can infer that every C'at is an Animal. The second type is disjointness.
Disjointness relations are drawn with a dashed line. In our example, we have given
that Animal and Brand are disjoint. Thus, nothing can be an Animal and a
Brand at the same time. Due to the clearly defined semantics, machines can infer
new knowledge like that C'at and Brand are disjoint. This knowledge can not be
stated explicitly in the ontology.

After this informal introduction of ontologies, let us take a closer look on the
degrees of confidence generated by Semantic Web applications. Two main areas
that generate such degrees of confidence for description logic axioms are ontology
matching [ESO7] and ontology learning [CMSV09, WLB12]. In ontology learn-
ing, (semi-)automatic techniques are applied on either structured or unstructured
data to learn new axiom types. Several workshops have been taken place in this
area [Bre06]. For a general overview of ontology learning approaches we forward
the reader to [Zho07, CMSV09, Bre06, WLB12]. In ontology matching we take
two ontologies as input and find correspondences between their entities (like con-
cepts or roles). These correspondences often have a degree of confidence attached.
Ontology matching is a special case of ontology learning. We forward the reader
to Section 10.2.1 and Section 10.2.2 for an explanation and for more in-depth dis-
cussions about ontology matching and learning.

An example of such confidence values learned by a tool in ontology learning
for subsumption axioms might be the following:

* Jaguar subsumes Cat with confidence value 0.5 and
e Jaguar subsumes Brand with confidence value 1.2.

These confidence values have no clearly defined semantics. Furthermore, clas-
sical description logics are no adequate representation of the learned axioms since
they often lead to contradictions within the ontology. If we integrate the two
learned axioms in our previous example ontology we obtain the ontology depicted
on the right side of Figure 1.2. This ontology now contains a contradiction, since
Jaguar is defined as a subclass of Brand and Cat but Brand and Cat are in-
ferred to be disjoint. Thus, our ontology states that a Jaguar is a Brand and a
Clat although it is forbidden that something is a Brand and a C'at at the same time.
This contradiction leads to the conclusion that Jaguar is not allowed to have any
elements. In Section 2.5 we formally introduce this contradiction as incoherence.
An ontology where no such contradiction exists is called coherent.

Hence, formalisms are needed that incorporate these various types of confi-
dence values in a well-defined semantic. Furthermore, new inference types are
required which repair all conflicts generated by weighted description logic axioms
by keeping as much learned information as possible. In other words, we require
novel queries which return the most probable ontology while utilizing the logical
concept of coherency.
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1.2 Research Questions

After this informal motivation, we formulate precise research questions to address
the challanges formulated at the end of Section 1.1.2 and Section 1.1.3. These
research questions are split in two parts, which are in line with the general structure
of this thesis.

1.2.1 Efficient Inference in Markov Logic

Part I deals with questions on improving the efficiency of maximum a-posteriori
queries. In particular, we improve existing techniques which translates the MAP
problem into ILP constraints. This includes a novel approach which detects sym-
metries within Markov logic networks. Leveraging these symmetries leads to more
compact ILP translations and, thus, to faster solutions of MAP queries than state-
of-the art algorithms.

The research questions which we answer in Part I are as follows:

Q1 Can we improve existing ILP translation techniques such that we reduce the
size of the ILP and make the symmetries of the model more explicit to sym-
metry detection heuristics?

Q2 How can we parallelize the solution process and tightly integrate relational
database management systems (RDBMS) within this process?

Q3 Does our new techniques reduce runtime and outperform existing Markov
logic systems with respect to runtime and quality of the results?

There are some dependencies between the questions. Since Q1 asks for im-
provements in existing translations, we first have to clarify how current approaches
translate the MAP query to an ILP. Analogously, we first have to state our trans-
lation improvements by answering Q1 before we can think about improvements
in the solution process in Q2. These improvements include the tight integration
of relational database management systems in the solution process and the paral-
lelization of important parts of the this process.

In Q3 we address the experimental verification of the improvements made
when answering Q1 and Q2. In exhaustive experiments, we clarify the effects
of our improvements on runtime and compare our novel Markov logic engine with
other state-of-the art MAP solvers.

1.2.2 Application in Description Logics

Classical description logic is only capable to express deterministic knowledge. In
Part II, we discuss a novel possibility of incorporating uncertainty to classical de-
scription logics. Other previous approaches have mainly been studied on a theo-
retical level [Luk08, Cos05, LS08]. Since log-linear models have been integrated
in many practical applications [MRRLO8a, ZNSS11, NMS10, CM11], we define
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a novel uncertain description logic which inherits its semantics from log-linear
models. This logic differs from other probabilistic description logics as it allows
to attach weights (and not probabilities) to any description logic axiom and as its
semantic allows to compute the most probable coherent ontology. Furthermore,
we apply extended solving techniques from Part I to efficiently compute the most
probable coherent ontology.

Part IT answers the following research questions:

Q4 How can we combine log-linear models with description logics and define the
query of a most-probable coherent ontology?

QS5 Can we efficiently compute the most-probable coherent ontology utilizing the
theory of Part I?

Q6 Can we experimentally verify that a solution’s quality increase with increas-
ing expressivity and that optimal solving strategies result in higher quality
solutions than approximate solving strategies?

Again, we have dependencies within and between the research questions. We
first have to present the general idea of combining log-linear models with descrip-
tion logics and define its exact syntax and semantic which addresses the first part of
Q4. From the syntax and semantics, the notion of a most-probable coherent ontol-
ogy can emerge which copes the second part of Q4. In Q5 we ask if it is possible to
apply the solving techniques from Part I for the computation of the most-probable
coherent ontology. To that end, we first need to fully understand the notion of a
most-probable coherent ontology.

Finally, Q6 aims at the experimental verification of the computation of the
most-probable coherent ontology. While both parts of the question ask for an in-
crease in quality, the first part ask for varying expressivity and the second part
addresses the optimality of the solving strategy.

1.3 Informal Contribution

This section aims to present the two main contributions of this thesis to readers
from other domains in a very informal way utilizing examples. In particular, we
intuitively explain our new cutting plane aggregation approach in Section 1.3.1
and our new uncertain description logic called log-linear description logic in Sec-
tion 1.3.2.

1.3.1 Cutting Plane Aggregation

One of our main contributions in this thesis is a new translation technique to in-
teger linear programs called cutting plane aggregation (CPA) approach [NNS13]
which increase the efficiency of MAP queries in Markov logic. The CPA approach
improves existing ILP translations such that ILPs have fewer variables and fewer
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constraints. Most importantly, the CPA methodology helps the internal symmetry
detection techniques of ILP solvers to detect symmetries within the ILP model and
thus solve the ILPs faster. We refer the reader to Section 3.4.1 for details about
symmetry detection in ILP.

In the following, we give the reader an informal intuition about the basic idea of
the aggregation. Please note that the following small example is incomplete since
it does not cover soft rules and formulas with disjunction and lacks generalization.
Furthermore, we ignore the efficient use of database systems, the integration of an
existing efficient optimization called cutting plane inference, and omit paralleliza-
tion techniques.

For this example, we recapitulate the four ILP constraints for the following
restrictions from Section 1.1.2:

(1) One worker can be assigned to maximal one machine.
T(wymy) T (wy,my) <= 1
T(wi,ma) T T (wa,me) < 1

(2) One machine can be assigned to maximal one worker.
T(wy,my) T (wymy) <= 1

T(wgmy) T T (wa,mg) <= 1

The cutting plane aggregation algorithm aggregates these four ILP constraints
to just two constraints:

2% (w1 m1) F T(wime) T L(wamy) < 2 (a)
x(wl’mZ) + x(’lUQ,ml) + Qx(w2’m2) S 2 (b)

In this example, we halved the number of required constraints from 4 to 2.
However, the number of required variables remained constant. Later, we will show
that we are also able to reduce the number of required variables significantly when
aggregating soft constraints.

Let us go through all of the different cases to verify that the aggregation does
not violate restrictions (1) and (2). If we set z(,,, ;) = 1, it is not allowed to set
T(wimy) = 1 OF T(yym,) = 1 because this would violate constraint (a). In fact,
it is forced due to constraint (a) that Z'(, m,) = T(wy,m,) = 0. Variable Z(y, )
can be set to 1 or 0, but this does not violate restriction (1) or (2). Respectively, if
T (ws,ms) = 1, constraint (b) forces 'y, my) = T(wy,my) = 0-

If (4, ,my) = 1 itis not allowed that z(,,, ,,,) = 1 because this would violate
constraint (a) and it is not allowed to set (y, m,) = 1 due to constraint (b). Thus,
we then get Ty, m,) = T(wy,mo) = 0. Variable z(y, ) is free to envolve to 0
or 1. However, this does not violate restriction (1) or (2). Correspondingly, if
T(wy,my) = 1 We also force 'y mi) = Z(wg,me) = 0, but allow x(y, 1,y = 0 or
T(wy,m,) = 1. Again, neither restriction (1) or (2) is violated.
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Figure 1.3: Informal example of an ontology in log-linear description logic (left
side) and it’s corresponding most probable coherent ontology (right side). The
circles model classes. The dashed lines symbolize disjointness and the solid lines
represent subsumption in which the super-class is located above the sub-class.

1.3.2 Log-Linear Description Logics

Part II introduces a novel uncertain description logic called log-linear description
logic [NNS11, NN11]. This logic responds to the need of introducing a well-
defined semantics for confidence values attached to description logic axioms for-
mulated in Section 1.1.3. It allows (but do not force) the assignments of weights
to any description logic axiom. If we assign no weight, the axiom behaves like an
ordinary deterministic axiom. If a weight is assigned, the axiom may or may not
hold in our a-posteriori ontology.

In this context we define a novel query type which asks for the most-probable
coherent ontology. The query produces an ontology that is coherent and entails
axioms so that their given a-priori weights are maximized. Intuitively, the higher
the weights of the axioms, the more likely they are entailed in the output ontology.

In the following, we give the reader an intuition how log-linear description
logics knowledge bases are build and what a most probable coherent ontology is.
Again, please notice that the following example is heavily simplified. Exact defi-
nitions of syntax and semantics follow in Section 8.2. The example does not cover
any solving technique for the most-probable coherent ontology, but rather shows
the importance of the problem.

The left side of Figure 1.3 illustrates an example of a log-linear knowledge base
where we integrated the confidence values from Section 1.1.3. We have attached
weights to some axioms. In particular, we attached the weight 0.5 to C'at subsumes
Jaguar and the weight 1.2 to Brand subsumes Jaguar.

The most probable coherent ontology of our toy example entails Brand sub-
sumes Jaguar but drops the axiom Cat subsumes Jaguar since the weight 1.2 is
higher than the weight 0.5. Both axioms can not be in the most probable coherent
ontology, because then the ontology would become incoherent. The most probable
ontology is visualized on the right side of Figure 1.3.
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Please note that with increasing number and higher complexity of the axioms
(e.g. by including inter-dependencies between roles and concepts), the computa-
tion is far more complex than just taking the maximum value of two numbers. In
Part II of this thesis, we provide an efficient solving strategy by transforming the
problem into a Markov logic network and applying the solving techniques from
Part I to them.

1.4 Outline

This thesis is split in two parts. Part I discusses efficient algorithms for MAP
inference in Markov logic. Thereby, our main contribution is the concept of cutting
plane aggregation, which optimizes the ILP translation by aggregating hard and
soft ground formulas. This aggregation enables symmetry detection algorithms
of current ILP solvers to detect symmetries more easily and, thus, compute faster
solutions. Part II responds to the need to introduce a well-defined semantic for
degrees of confidence by introducing a novel uncertain description logic called
log-linear description logic. In particular, we present the idea of computing the
most-probable coherent ontology and present efficient ways for computation. This
efficient computation apply the improvements of Part I such that we translate log-
linear description logics to a Markov logic network and apply our fast solving
techniques from Part I.

In the following, we describe the outline of this thesis, give the main references,
and highlight our contributions within the respective chapters.

Preliminaries (Chapter 2) In the preliminaries section, we formally introduce
the theoretical foundations required for both Part I and Part II. First, we intro-
duce Markov networks mainly utilizing the sources [RD06, Sin12, Kok10, KF09]
and first order logic from [GN88]. The maximum a-posteriori (MAP) query is
explained in the context of Markov networks. Then, we are in a position to de-
fine Markov logic (ML), which is essentially a combination of Markov networks
and first order logic, by summarizing mainly [RD06]. Within Markov logic, we
formally introduce grounding of Markov logic networks, observed predicates, and
types. These concepts are briefly sketched in [Rie08, NRDS11]. However, we ex-
plain them in more detail. For example, we explicitly define how evidence reduces
the number of groundings.

In Part I we translate Markov logic networks to integer linear programs (ILP).
Thus, we formally introduce integer linear programming mainly utilizing [Sch99].
Correspondingly, we define the syntax and semantics of description logics from
[BBLOS5a, NBO3], since Part II extends them to log-linear description logics. Some
formulations in the preliminary section are taken from our publications [NNS13,
NNSI11].
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1.4.1 Efficient Inference in Markov Logic

MAP Inference in ML with ILP (Chapter 3) Sebastian Riedel [Rie08, Rie09]
already applied integer linear programming for solving MAP queries. Section 3.1
presents his translation of the MAP query for Markov logic to ILP. His translation
usually requires more than one ILP constraint per ground clause. We then improve
his translation in Section 3.2 and provide a novel optimized ILP translation that
always requires only one ILP constraint per ground clause, irrespectively if the
weight of the ground clause is positive or negative.

After these two translation techniques, Section 3.3 introduces cutting plane in-
ference (CPI) developed by Riedel [Rie08, Rie(09] as a meta-algorithm that usually
leads to lower solving times. The main idea of cutting plane inference is to add only
the violated constraints to the solution and solve several often much smaller ILPs
until no more violated constraints remain. The reason for describing CPI is that it
can be combined with our novel cutting plane aggregation method as described in
Section 3.5.

The cutting plane aggregation (CPA) algorithm is explained in Section 3.4. The
CPA method aggregates more than one ground clause to so-called counting con-
straints. These counting constraints then result in much fewer ILP constraints than
without aggregation. Furthermore, the required ILP variables are also reduced.
However, most importantly, the aggregation makes symmetries more explicit to
state-of-the-art ILP solvers. We managed to parallelize major steps of solving
MAP queries. Details are described in Section 3.5. The optimized ILP transla-
tion, our novel CPA method, and the parallel MAP algorithm combined with CPI
are published in [NNS13].

Leveraging RDBMS (Chapter 4) Inspired by Riedel [Rie08, Rie09], we also
apply relational database management systems (RDBMS). We use them for effi-
cient grounding, for finding the violated constraints in each cutting plane inference
iteration, and for computing the counting features in our cutting plane aggregation
approach. Precise algorithms show how to construct database queries for all three
purposes. This chapter contains new and unpublished work which has only been
sketched in [NN11, Rie08, Rie(09].

Related Work (Chapter 5) Since our cutting plane aggregation method detects
symmetries in Markov logic network, we discuss other symmetry detection ap-
proaches. Hence, Section 5.1 explains different approaches, which are summa-
rized under the umbrella of lifted inference, from various sources. However, since
most of the lifted inference algorithms only cover special cases, no state-of-the
art Markov logic system uses symmetry detection methodologies for solving MAP
queries. Most frequently, MAP queries in Markov logic are solved with weighted
SAT algorithms which are discussed in Section 5.2. They are summarized mainly
from [KSJ97, RD06, NRDS11, SD06b]. Finally, Section 5.3 propose details about
the existing Markov logic systems against which we compare our algorithms. The
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information originates from [Rie08, NRDS11], information on the systems’ web-
sites, and personal experience gained while conducting the experiments.

Experiments (Chapter 6) Our experiments compare our novel Markov logic en-
gine ROCKIT against the state-of-the-art Markov logic systems. To that end, Sec-
tion 6.1 presents ROCKIT and covers some technological details. The experiments
are performed on standard Markov logic benchmarks (see Section 6.2). Details
about the experimental setup are provided in Section 6.3. Our results in Section 6.4
then empirically show that the cutting plane aggregation method reduces the num-
ber of ILP constraints and decreases runtime. Furthermore, our novel MLN engine
RoOCKIT outperforms other Markov logic systems. Last, our experiments demon-
strate that runtime declines with the number of cores. Parts of the experiments have
been published in [NNS13].

Conclusion and Future Work (Chapter 7) Finally, we draw a conclusion over
Part I and outline future work. Furthermore, Section 7.1 provides a comprehen-
sive example, which shows that the CPA algorithm supports the aggregation of
transitive clauses and considers evidence.

1.4.2 Application in Description Logic

Log-Linear Description Logics (Chapter 8) We start Part II with our second
main contribution of this thesis: log-linear description logics [NNS11]. Log-linear
description logics are a combination of classical description logics with log-linear
models. The inference algorithm we propose is restricted to certain description
logics, which are summarized from various sources in Section 8.1. For presentation
purposes, we choose the description logic £L£*" since its complexity is manageable
and since it is frequently used to model knowledge in the medical domain. The
syntax and semantics are summarized in Section 8.2.

For efficient query solving, log-linear DL knowledge bases are translated to
Markov logic networks in Section 8.3. In this context, we also introduce a novel
query that returns the most probable coherent ontology. This adapted MAP query
can be solved efficiently with the solving techniques described in Part I. In general,
this chapter is an extended version of our publications [NN11, NNS11] enriched
with a presentation of alternative description logics to EL** (see Section 8.1), the
transformation to Markov logic networks (see Section 8.3.5), and several illustra-
tive examples. As we will learn, we require the ability to weight conjunctions of
literals. Thus, we have to extend Markov logic such that it can assign weights to
any conjunctive normal form. In addition, we provide a novel and not yet published
extension of the CPA approach of Part I to conjunctive formulas in Section 8.4.

Related Work (Chapter 9) There have been many attempts to combine classical
description logics with some kind of uncertainty. We examine different probabilis-
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tic, possibilistic, and fuzzy description logics and compare them to our novel log-
linear description logic. Thereby, the main structure is inspired by [LSOS8], but ex-
tended with several other sources. To the best of our knowledge, Section 9.4 lists all
existing systems which combine description logics with probabilistic, possibilistic,
or fuzzy description logic again aiming at identifying similar systems. Through-
out the related work section, we are especially targeting the question whether any
other logic subsumes log-linear description logic or can compute some kind of
most probable coherent ontology.

Experiments (Chapter 10) Our experiments have two goals. First, we show
that increasing expressivity leads to higher quality in the results. Our second fo-
cus lies on comparing optimal and approximate approaches showing that optimal
approaches have higher quality.

To that end, we first present our novel log-linear description logic reasoner
ELOG. Section 10.1 discusses some implementation details. Furthermore, we
point out possible application areas of log-linear description logics in ontology
learning and ontology matching (see Section 10.2). Thus, our benchmarks intro-
duced in Section 6.2 also originate from these areas. Finally, we describe our
experimental setup including different quality measures and discuss experimental
results in Section 10.4 and Section 10.5, respectively. In [NNS11] only preliminary
experiments in ontology learning have been performed.

Conclusion and Future Work (Chapter 11) Finally, we draw a conclusion and
outline future work. This conclusion mainly covers Part II of this thesis. However,
it also underlines the interconnection of both parts since Part II exploits the efficient
computation methods from Part I.

1.5 Own Published Work

Among all of my publications, I have selected the following three publications
as main references for this thesis. All three publications are joint work with my
supervisor Dr. Mathias Niepert and two of them are joint work with my supervis-
ing professor Prof. Heiner Stuckenschmidt. In this thesis, some text, definitions,
lemmas, theorems, figures, and tables are taken from these publications. At the
beginning of each Chapter, I precisely specify which sections cover parts of which
publication and outline which parts go beyond the respective publication. In order
to respect my (co-)authors, I use the more general pronoun *we’ throughout this
thesis.
The main publication used in Part I is:

» Jan Noessner, Mathias Niepert, and Heiner Stuckenschmidt. Rocklt: Ex-
ploiting Parallelism and Symmetry for MAP Inference in Statistical Rela-
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tional Models. In Proceedings of the 27th Conference on Artificial Intelli-
gence (AAAI), Bellevue, Washington, USA, 2013. [NNS13]

Part II is mainly based on:

* Mathias Niepert, Jan Noessner, and Heiner Stuckenschmidt. Log-Linear De-
scription Logics. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI), Barcelona, Spain, 2011. [NNS11]

* Jan Noessner and Mathias Niepert. ELOG: A Probabilistic Reasoner for
OWL EL. In Proceedings of the the 5th International Conference on Web
Reasoning and Rule Systems (RR), Galway, Ireland, Springer-Verlag, 2011.
[NNI11]
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Chapter 2

Preliminaries

In the last years, probabilistic graphical models and logics have been combined
to statistical relational languages. We refer the reader to [dSBAROS] for a survey
over different probabilistic languages. Among all those languages, Markov logic
is arguable one of the most popular ones.

In Section 2.3 we define Markov logic as a combination of Markov networks
and first order logic. Thus, Section 2.1 and Section 2.2 introduce Markov networks
and first order logic, respectively. Marginal inference and maximum a-posteriori
(MAP) inference are the two main inference tasks existing in probabilistic graphi-
cal models and thus also in statistical relational models. In Section 2.1.2 we define
marginal inference, where we aim to find the real a-posteriori probabilities of ax-
ioms within a model. The goal of the maximum a-posteriori (MAP) inference
task, which is further discussed in Section 2.1.2, is to find the most probable world
given evidence. In this thesis, we focus on the latter inference task. For infer-
ence in Markov networks traditional algorithms often require to ground, that is to
instantiate, the whole Markov network. This process is explained in Section 2.3.2.

Since Part I exploits integer linear programming for inference, Section 2.4 for-
mally introduces integer linear programming. Finally, Section 2.5 introduces de-
scription logics because Part II extends them to log-linear description logics.

The formal definitions and equations of Section 2.1 are taken from [RDO6,
Sin12, Kok10] with additional explanations inspired by [KF09] and some other
sources. Section 2.1.2 and Section 2.1.3 are a very brief summary of [KF09].
Some text and examples of Section 2.2 and Section 2.3 are taken from our publica-
tion [NNS13] extended with further information mainly from [GN88] and [RD06].
Observed predicates and types (see Section 2.3.1) as well as the grounding of
Markov logic networks are very briefly sketched in [Rie08, NRDS11]. We ex-
plain these concepts in more detail. Furthermore, we explicitly explain how the
number of groundings can be reduced due to evidence. The explanation of integer
linear programming in Section 2.4 is summarized from [Sch99] extended with sev-
eral other sources. The main references for the introduction to description logics
in Section 2.5 are [BBL05a, NBO3, NNS11].

21
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2.1 Markov Networks

Historically, the concept of Markov networks (also known as Markov random
fields) has first been discovered in the thesis of the German physicist Ernst Ising
[Isi25]. Later, Preston [Pre74] and Spitzer [Spi71] made Markov models available
for non-mathematicians and presented applications in other areas [KS80].

Markov networks (also known as Markov random fields) belong to graphical
models. A graphical model is a probabilistic model where the conditional de-
pendence between random variables is modeled with a graph. In case of Markov
networks, this graph is undirected.

Formally, a Markov network is an undirected graphical model that defines a
joint distribution over a set of variables X = {X;, X5,..., X} € X [Pea89]. It
is composed of an undirected graph G and a set of potential functions ¢y. The
values associated with the potential function may be any real number. They do
not represent probabilities and thus are not necessary normalized. The graph has
a node for each variable, and the model has a potential function for each clique
in the graph. A clique is defined as a subset of nodes in a graph such that these
nodes are fully connected [BNO7]. A potential function is a non-negative real-
valued function of the state of the corresponding clique. The state of the clique
is composed of all possible states of its nodes. In this thesis, we assume that the
variables associated to the nodes are binary (X; = true or X; = false). For a clique
including for instance three nodes, we get 23 = 8 possible states where each state
is associated with a real number. The joint distribution represented by a Markov
network is given by

P(X =2)= 7 TTonCry)

where z(;, is the state of the variables that occur in the kth clique. Due to the as-
sumed independence between the variables, we compute their probability by mul-
tiplying the states of the cliques. Which states we have to multiply is given by the
specific truth assignment X = x. The partition function Z is defined as the sum
over all joint distributions of x

Z = [Tow(zmy)

zeX k

and ensures that the joint distribution is correctly normalized.

2.1.1 Log-linear Models

There are many different possible representations of the parametrization of Markov
networks. Despite the classical representation as a product over potential on cliques,
we can also represent them as log-linear models. Log-linear models allow us to in-
corporate both uncertain and deterministic dependencies between description logic
axioms. The ability to integrate heterogeneous features make log-linear models a
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commonly used parametrization in areas such as natural language processing and
bioinformatics and a number of sophisticated algorithms for inference and param-
eter learning have been developed. In this thesis, we focus on the representation as
log-linear models

P(X =2x)= %QXP(Zwifi(x))

in which each potential is replaced by an exponentiated weighted sum. This thesis
focuses on binary features f;(z) € {0,1}. Here, we have one feature corresponding
to each possible state z,, of each clique, with its weight being log ¢, (7 {1y If we
have, for example, a clique including three nodes, we get 23 = 8 different features
fi(z). For one particular truth assignment, one out of those eight features is one
(fi(x) = 1) and the others are zero. Example 1 illustrates the connection between
the classical representation and the representation as log-linear models.

Example 1. Consider a very simple Markov network containing three binary vari-
ables {A, B,C'} € X. Let us assume that (A and B) and (B and C') are connected.
Thus, our network has two maximal cliques; ki € {A, B} and ks € {B,C'}. Fur-
thermore, we assume the following values for the potential functions are given

¢k1 ‘ bO bl ‘ ¢k2 ‘ CO Cl ‘
a |1 4 w3 10
at |2 3 vl 1 2

where e.g. a' means A = true and a° means A = false respectively. For X =

{A,B,C} and x = {a*,b°, c*} we get the following normal probability distribution
P(X=x)= lqbk (a',0") - ¢p, (B°, 1) = Lo10="Lag
Z EA 7 Z
and the following log-linear distribution

P(X = :13)1 = %exp (wat 4o far go () + wbo7c11fbo7c1 (93))
= 5 exp (log(10) - 1 +log(2) - 1) = 520

where all other fj(x) = 0. Since Z has not changed, this example shows that the
two distributions are equivalent.

We now turn our attention to inference. In Markov networks as well as in all
probabilistic graphical models, there exist two main types of inference queries,
which are the conditional probability query and the maximum a-posteriori query.

2.1.2 Marginal Inference

The (conditional) probability query computes the posterior probability distribution

P(X|E =e)



24 CHAPTER 2. PRELIMINARIES

over the values x of (a subset of) all variables X given the evidence values e of E.
This inference type is also referred to as marginal inference.

Exact inference algorithms can be roughly divided in two classes. The first
class consists of algorithms based on variable elimination. Thereby, the exponen-
tial blowup is avoided by caching intermediate results and performing the sum-
mation of the joint distribution from the inside out rather than from the outside
in [KF09, BB72]. The second class of algorithms are based on the sum-product
belief propagation, which reformulates the idea of variable elimination. They build
a so-called clique tree which edges deliver messages. These messages are equiv-
alent to the factors of the variable elimination algorithm. The nodes of the clique
tree are the variables involved in the direct input and output factors. Each clique
takes the incoming messages, multiplies them, sums out one or more variables, and
sends an outgoing message to another clique. The computation of the posterior
probability over all variables can be efficiently implemented using bidirectional
messages [SS90, BB72].

Exact marginal inference in Markov Networks is #P-COMPLETE [Rot96]. Thus,
a variety of approximative inference algorithms have been developed. One group
of algorithms are propagation-based algorithms, which use other data structures
like cluster graphs rather than clique trees. Most of these algorithms are based on
the so-called loopy belief propagation [Pea89], because the cluster graphs often
contain undirected cycles. The idea of this algorithm is that the clusters within the
cluster graph are smaller than those in the clique tree. Thus, the message passing
steps are less expensive. When propagating the messages the algorithm ignores
the existence of loops and permits the nodes to communicate as if there were no
loops. After several iterations, the algorithm usually converges to an approximative
probability distribution.

Another group consists of algorithms that sample particles from some distribu-
tion. A particle is an instantiation to some or all variables. Markov chain Monte
Carlo methods [GRS96] or more precisely the Gibbs sampling algorithm [LLR81]
is the most used algorithm within this group. The basic idea of Gibbs sampling
is the creation of a sequence of samples that get closer and closer to the desired
posterior distribution. Instead of always sampling from the a-priori distribution,
we fetch only initially a sample based on this distribution. This initial sample is
then modified by iterating over each unobserved variables, sampling a new value
given the current sample. This new sample can be computed very efficiently, since
the assignment of every other value is given.

2.1.3 Maximum A-Posteriori (MAP) Inference

In this thesis, we concentrate on the second type of query, the maximum a-posteriori
(MAP) query. Sometimes this type of query is also called most probable explanation.
In MAP queries the task is to find the most probable world given evidence. Let
E = e be the given evidence. Then, we aim to find an assignment of all non-
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evidence variables X = x so that

argmax P(X=x|E =e).
X

In the following, we often call evidence variables observed variables and non-
evidence variables hidden variables. The assignment x which lead to the maximal
P is called maximum a-posteriori (MAP) state. If more than one assignment leads
to the same result, we can pick a random one. Finding such an assignment is not
a trivial problem, since the assignment in which a single potential function picks
its most likely value is often not the optimal assignment for the global Markov
network. Example 2 illustrates this problem.

Example 2. Let us recall the Markov network from Example 1. Let us furthermore
assume that no evidence is given. If we first take the optimal assignment ¢y, (1) =
4 with 1 = {a®,b'} for the single potential function ®k,» we have limited choices
for the second function ¢y,. In fact, the maximal value for ¢y, given our previous
decision then is ¢, (x2) = 2 with x2 = {b',c'}. This results in P(X = 1) = %8
where x = {a°,b',c!}. This is not the maximal possible result for P, since we
received a higher value in Example 1. In fact, the assignment z* = {a*,b", c'}
from Example 1 is the MAP-state of this small example.

MAP Inference is NP-COMPLETE [Shi94]. Many algorithms divide MAP-
query inference into two parts. First, they compute the maximal unnormalized
possible value for the distribution P (also called max-marginals) and then, they
extract the corresponding maximal assignment of every variable. For computing
the max-marginals we can reuse the variable elimination and sum-product belief
propagation algorithms from marginal inference, except that we compute the max-
imum instead of the sum inside the algorithm. In case of the latter one, we result
in higher complexity because the required max-sum operations do not commute.
In a second step, we have to extract the corresponding maximal assignments. We
cannot determine the maximizing value (e.g. true or false) of a variable while we
eliminate variables because we do not yet know which is the optimal strategy dur-
ing elimination. However, we can determine a maximizing value given the values
of the variables that have not yet been eliminated. Thus, we can trace back the
solution and successively pick the values of the variables until we reached the last
eliminated variable. The result then is the most likely assignment.

Many approximate algorithms for marginal inference can be adapted for MAP
inference [WFO01]. In case of the loopy belief propagation algorithm, we can com-
pute the max-marginals by slightly adapting the message passing algorithm. How-
ever, in practice, the algorithm tends to converge less often as, for example, the
sum-product algorithm. Decoding the (approximate) max-marginals to the corre-
sponding (approximate) maximal assignments is also much more difficult in loopy
cluster graphs. However, it has been shown that the approximate MAP solution
is robust against large perturbations and is guaranteed to be a strong local max-
ima. More recently, Kolmogorov [Kol06] developed a convergent algorithm called
TRW-S which guaranteed to converge, although it can get stuck in local maxima.
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Approximate algorithms based on sampling are widely used for solving MAP
queries. One of the most successful algorithms is discussed in dept in the scope of
Markov logic in Section 5.2. Since Markov logic is build on Markov networks (see
Section 2.3), the algorithm can also be applied to Markov networks.

2.2 Function Free First Order Logic (FOL)

Since Markov logic combines first order logic and Markov models, we recall some
basic concepts of function free first-order logic (FOL) [GN88]. Compared to nat-
ural language, the syntax and semantic of first order logic is well-defined and thus
given a first-order logic theory we can mechanically infer new knowledge. Due
to disambiguate formulations and huge parsing and interpretation difficulties this
is currently almost impossible for natural language. However, first order logic is
limited to hard facts and can not express uncertainty.

In the following, we provide a formal definition of function free first-order
logic. A term is either a constant or a variable. An atom p(¢y,...,t,) consists of
a predicate p/n of arity n followed by n terms t;. A literal ¢ is an atom a or its
negation ~a. We call the former non-negated and the latter negated literal.

Formulas are recursively constructed from literals using logical connectives
and quantifiers. If F} and F> are formulas, the following expressions are also
formulas:

* conjunction of formulas (£ A F»), which is true iff both F and F5 are true,

* disjunction of formulas (F} v F5), which is true iff F} or F5 is true,

* implication (£} = F5 = -F] A Fy), which is true except if 7 is true and F5

is false,

* equivalence (F} < Fy = (F} = Fy) A (Fy = F1), which is true iff F; and

F5 have the same truth value, and

* universal quantification (V = F), which is true iff F} is true for every object

x in the domain.
In this thesis, we assume for the sake of readability that all formulas are univer-
sally quantified. Due to this assumption, formulas do not contain existential quan-
tification (3 x Fi, which is true iff F} is true for one object x in the domain).
All presented algorithms and optimizations can be adapted to work for existential
quantification.

A clause

c=liv...vV¥

is a disjunction of literals. Horn clauses are clauses with at most one positive
literal. Each first order formula can be converted to the prenex conjunctive normal
form (CNF) where we first specify all quantifiers and the corresponding variables
followed by a conjunction of clauses. Since we omit existential quantification,
we get a conjunction of clauses where all variables are assumed to be universally
quantified of the form

(liav...vlhm)A. oo AUna Vi m).
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A substitution ¢ = {v1/t1,...,v;/t4} is an assignment of terms ¢; to variables v;.
A theory is a finite set of clauses implicitly defining a conjunction of these clauses.
An expression is an atom, literal, clause or theory. An expression is ground if it
does not contain any variables. An analogous definition holds for ground atoms,
ground literals, and ground clauses. A tautology is a clause which is true in every
possible interpretation.

The Herbrand base H is the set of all possible ground atoms. A Herbrand
interpretation is a subset of the Herbrand base. All ground atoms in the Herbrand
interpretation are assumed to be true while all others are assumed to be false. A
Herbrand interpretation / is a Herbrand model of a set of first-order formulas S,
written as =7 S, if and only if it satisfies all groundings of formulas in S. A
Herbrand interpretation [ satisfies a clause c, written as I & c, if there exists a
ground atom ¢ (negated ground atom —¢) in ¢ with £ € I (¢ ¢ I). A Herbrand
interpretation [ satisfies a theory 7', written as I & T, if it satisfies all the clauses
ceT.

2.3 Markov Logic (ML)

Markov logic [RD06] is a first-order template language for undirected graphical
models like Markov networks. It combines first-order logic with log-linear models
by assigning weights to first-order formulas. The formalism allows one to build
knowledge bases incorporating both, deterministic and probabilistic knowledge.

Due to its expressiveness and declarative nature, numerous real-world prob-
lems have been modeled with Markov logic. Especially in the realm of knowledge
management applications such as data integration [WWO08, NMS10, SD06a], on-
tology refinement [WWOS], and information extraction [PD07, KD08], Markov
logic allows for rapid prototyping and competitive results. Other examples include
spoken language understanding [MRRLO8b], event modeling [TDOS], and activity
recognition [HNS11] to name but a few.

More formally, a Markov logic network M is a finite set of pairs (F;, w;), 1 <
t < n, where Fj is a clause in function-free first-order logic and wj; is a real number.
Together with a finite set of constants C' = {cy, ..., ¢y, }, it defines a Markov network,
the ground Markov logic network Mg, with

* one binary node for each possible grounding of each predicate occurring in
M and

* one feature for each possible grounding of each clause F; occurring in M
with feature weight w;.

Hence, a Markov logic network defines a log-linear probability distribution
over Herbrand interpretations (possible worlds). For a possible world x the proba-
bility is defined as

P(x) = %exp (Z wmi(x)) .
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weight | clause
1.4 | —smokes(x)
2.3 | —cancer(x)
4.6 | —friends(z,y)
1.5 | —smokes(x) v cancer(x)
1.1 —smokes(x) v —friends(z,y) v smokes(y)

Table 2.1: The friends & smokers MLN [SDO08].

Herbrand base
smokes(Anna), smokes(Bob),
cancer(Anna), cancer(Bob),
friends(Anna, Anna), friends(Anna, Bob),
friends(Bob, Anna), friends(Bob, Bob)

Table 2.2: The Herbrand base of the friends & smokers MLN [SDO08] for two
constants Anna and Bob.

where n;(x) is the number of true groundings of clause F; in x and Z is a normal-
ization constant. Every subset of the Herbrand base is an interpretation (possible
world). Each ground atom in the Herbrand base corresponds to one binary random
variable in the ground Markov logic network.

If w; = oo we refer to the formula as hard formula which must hold in the KB,
while for w; € R we call the formula a soft formula which holds to a certain degree.

As in Markov networks, we distinguish between MAP inference and marginal
inference. We refer the reader to Section 2.1.3 and Section 2.1.2 for details. In
this thesis we focus on MAP inference as learning algorithms typically employ
inference algorithms as subroutines. Hence, being able to compute MAP states
of Markov logic networks more efficiently also helps to improve learning algo-
rithms [RD06, LD0O7]. In order to compute the MAP state (sometimes also re-
ferred to as the maximum probable explanation), given evidence E = e, we have to
compute the maximization problem

argmax P(X=x|E=e)
X

where the maximization is performed over all possible worlds (Herbrand interpre-
tations) x compatible with the evidence. Intuitively, the higher the weight of a
clause, the less probable is a possible world violating groundings of said clause
within a MAP state.

Example 3. Table 2.1 depicts the weighted clauses of the Friends & Smokers MLN.
The Herbrand base for two constants Anna and Bob is depicted in Table 2.2.
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2.3.1 Observed Predicates and Types

Inference approaches for Markov logic networks often require a complete ground-
ing which can become intractable large. As prerequisite for the next section, in
which we explain the grounding procedure in detail, we introduce two practical
ways which reduce the number of groundings and are reused in the following sec-
tion. The first is observed predicates which are predicates whose groundings are
given due to evidence. Second, types typify variables so that their constants belong
to different scopes.

We start with introducing observed predicates [Rie08]. For observed predicates
the closed world assumption holds. This means that all ground atoms of this predi-
cate not listed in the evidence are false or, in other words, each possible grounding
of an observed predicate must be given due to evidence E. Thus, we can exclude
all groundings of observed predicates from the set of variables X for which we
compute the MAP-state. For distinguishing observed predicates from the normal
predicates, the latter ones are also called hidden predicates or query predicates.
Whenever we just talk about predicates we refer to hidden predicates. Please note
that we may define evidence for a strict subset of the literals of hidden predicates.

Types define different scopes for variables. These scopes are disjoint set of
constants. Formally, a type 7 consists of a finite set of constants and is a subset
of the Herbrand universe. Example 4 illustrates the usage of types. If we do not
explicitly define types (like in Example 3), we assume that we have one global set
of constants (Herbrand base) for all variables.

Example 4. In Example 3 every variable refers to the same scope, containing the
constants Anna and Bob. However, if we have a formula like drives(x,y) A
fastCar(y) = fastDriver(z) then it is useful to define different types of vari-
able x and variable y. Reasonable type assignments in this example are x € P
and y € C, where P and C are disjoint sets of constants representing persons
and cars, respectively. If we now define the constants { Anna, Bob} = P and
{Bmuw, Audi} = C, we result in 4 ground clauses. Without the definition of types,
we obtain 16 ground clauses.

2.3.2 Grounding

Grounding Markov logic networks is a pre-processing step required for (most)
solving techniques. In this section, we construct a set G containing all ground
clauses of a Markov logic network. This set of ground clauses is required as input
for the methods presented in Chapter 3.

Similar to constraint propagation techniques [Mac77, Apt99], in which the
range of the variables are successively reduced through the evaluation of con-
straints, we simplify the ground clauses due to the given evidence. Evidence allows
us to omit literals or even whole ground clauses.

We begin with constructing the set G2 which contains all the ground clauses
and their weights ignoring evidence. We define a MLN consisting of a finite num-
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ber of clauses ¢ with weight w. Each clause consists of a set of variables X'(c¢).
Each variable = € X'(c) is assigned to one type 7. As explained in the last section,
atype T is a subset of the Herbrand universe. The type 7 which refers to variable
x is denoted with 7 (z). Usually, a MLN has only few types shared over multiple
clauses and variables. If no type has been assigned to a variable, we assign her a
new type. This new type then consists of all constants in the Herbrand universe.
The set G2 is now constructed as followed:

1. Set Gy to the empty set.

2. For each first-order logic clause c substitute every variable x with every con-
stant t € T (x).

3. Add every (variable-free) ground clause g resulting from Step 2 with its
weight w to G2

Note that the number of ground clauses g € G2 is usually much larger than the
number of clauses ¢ containing variables. For one clause ¢ we result in

[T 7))

zeX (c)

ground clauses g.

If we consider evidence we can reduce the number and the complexity of
ground clauses in G Let E = e be the given evidence. For the ground clause
g € G let L*(g) be the set of ground atoms occurring unnegated in g and L™ (g)
be the set of ground atoms occurring negated in g. Let G be an initially empty set
of all ground clauses after considering evidence. For every ground clause g € G2
we perform the following:

If any positive ground atoms ¢ € L*(g) in the ground clause g is

* set to false by the given evidence, we replace this literal ¢ in g with false

which is tantamount of deleting ¢ from g or

* set to true by the given evidence, we can drop the entire clause g, since it

always evolves to true (tautology).
In case any negative ground atoms ¢ € L™ (g) is
* set to true by the given evidence, we can drop out this atom ¢ from the clause
g or
* set to false by the given evidence, we can drop the entire clause g, since it
always evolves to true (tautology).
If clause g has not been dropped and if clause g still contains at least one literal,
we add g to G.

Intuitively, some ground clauses can be ignored because they evolve to a tautol-
ogy due to evidence. For other ground clauses we can at least reduce the complex-
ity by omitting some literals due to evidence. Overall, evidence leads to a reduction
of the number and the complexity of ground clauses.

Please note that the final set G only contains hidden literals. These hidden
literals consist of hidden predicates only. All literals constructed from observed
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weight | clause
1.4 | —=smokes(Anna)
1.4 | —smokes(Bob)
2.3 | —cancer(Anna)
2.3 | —cancer(Bob)
4.6 | —friends(Anna, Anna)
4.6 | —friends(Anna, Bob)
4.6 | —friends(Bob, Anna)
4.6 | —friends(Bob, Bob)

1.5 —smokes(Anna) vcancer(Anna)

1.5 | =smokes(Bob) v cancer(Bob)
1.1 | —smokes(Anna) v —friends(Anna, Anna) v smokes(Anna)

1.1 —smokes(Anna) v —friends(Anna, Bob) vsmokes(Bob)
1.1 | =smokes(Bob)v —friends(Bob, Anna) vsmokes(Anna)
1.1 —~smokes(Bob) v —friends(Bob, Bob) v smokes(Bob)

Table 2.3: Full grounding of the friends & smokers MLN for the constants Anna
and Bob. The gray clauses and atoms can be dropped due to given evidence.

predicates have been eliminated due to evidence. In practical implementations, we
do not need to store the whole set ga”. We can directly check if a clause can be
simplified or dropped due to evidence after its generation with substitution. Sec-
tion 4.1 leverages relational database management systems for efficient grounding.
Example 5 illustrates the grounding on the friends & smokers example.

Example 5. We recall the MLN of Example 3. Let us again assume that there are
2 constants Anna and Bob. Let us also assume that there is evidence that Anna is
a smoker and that Anna and Bob are mutual friends:

e1 := smokes(Anna),
eg := friends(Anna, Bob), e3 := friends(Bob, Anna)

Then, we compute the set G all by substituting every variable with every constant in
every clause. This results in 8 ground atoms and in 14 ground clauses shown in
Table 2.3.

Due to the given evidence, we can reduce the number of clauses to 9. Fur-
thermore, the number of ground atoms can be reduced from 8 to 5 due to given
evidence. The resulting ground Markov logic network would consist of 5 vari-
ables and 9 features. The dropped clauses and literals are highlighted in gray in
Table 2.3.
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2.4 Integer Linear Programming (ILP)

In order to compute a maximum a-posteriori state of a Markov logic network, we
formulate the problem as an integer linear program (ILP). We briefly recall some
basic definitions and concepts of integer linear programming starting with linear
programming.

Linear programming is concerned with optimizing a linear objective function
over a finite number of real-valued variables, subject to a set of linear constraints
over these variables. From a mathematical perspective, it can be defined as the
problem of finding a point on a convex polyhedron, determined by the given linear
(in-)equalities, at which the linear objective function attains a minimum or maxi-
mum [Sch99].

The canonical form of a linear program is

max c’'x
subjectto Ax < b
x > 0

where x represents a vector of variables, ¢ and b are vectors of real-valued coeffi-
cients, and A is a matrix of coefficients. An integer linear program (ILP) is a linear
program where each unknown variable is required to have integer values.

Example 6. The integer linear program max 0.5z + 1.0y subject to x + y < 1 and
x,y €{0,1} has the solution x = 0 and y = 1 with objective value 1.0.

Linear programs are usually solved with the simplex algorithm [Dan51]. The
algorithm first constructs a feasible solution at a vertex of the polytope. Then,
it traverses a sequence of vertices, such that consecutive vertices are equal or con-
nected by a polyhedron edge and the objective function strictly improves along any
traversed edge until the optimal edge is found [GKO07]. Although the algorithm has
a poor worst case complexity of exponential time [Min72] the average complexity
is polynomial-time for most problems. It has been proven to be very efficient in
practice [Sch99].

In integer linear programs one of the most common solving techniques are
branch-and-bound algorithms. Thereby, we first apply the simplex algorithm on
the problem. If the solution is integer, we found an optimal integer solution. If not,
we choose one variable that has a non-integer value (e.g. x = 3.3) and restrict that
variable to the next lower integer value (x <= 3) for one problem and to the next
higher integer value for the other (x >= 4). This process is then repeated on each
of the sub-problems. Thus, we partition the problem into smaller sub-problems.
If a sub-problem undercuts the costs of a known feasible solution (maximization
problem) it is excluded from all further partitionings. The challenge is to choose
the optimal partition strategy. We refer the interested reader to [LW66] for a good
survey of strategies. The complexity of ILP problems is NP-COMPLETE [Sch99].

Since many real world problems like for instance in the area of operations
research [HLH90] can be translated to (integer) linear problems, there is the need
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of very efficient solving techniques. Thus, there have been exhaustive studies on
optimizing algorithms and implementing very efficient and stable solvers.

2.5 Description Logic (DL)

Formally, each description logic is a subset of first-order logic. The reason for
restricting the expressivity of first-order logic is to decrease the theoretical com-
plexity of reasoning tasks. As first-order logic, description logics (DL) formalize
an application domain. This domain is described with concepts, which correspond
to unary predicates, properties (also called roles), which denote binary predicates,
and individuals (or instances), which can be seen as first-order logic constants.
Concepts, roles, and individuals are also called entities. One concrete formaliza-
tion is called ontology. From a set-theoretic interpretation, a concept is interpreted
as a set of individuals and a property is interpreted as a set of pairs of individuals.
Compared to databases, the domain of interpretation can be infinite and the open
world assumption holds. The latter one assumes that facts which are not known to
be true and not known to be false are unknown [NBO3].

Tim-Berners-Lee’s idea of a web of data that can be processed by machines,
which is also referred to as Semantic Web [BLHL*01], has given description log-
ics a new impetus. In order to enable researchers to build applications which
are able to find implicit consequences of its explicitly represented knowledge,
the World Wide Web Consortium (W3C) published the Web Ontology Language
(OWL) [MVH*04] which is based on the description logic SHOZN (P). Although
the reasoning complexity of OWL is lower than for full first-order logic it is still
intractable for larger ontologies. Thus, most applications restricted themselves to
less powerful description logics. Later, the most important ones have been imple-
mented as profiles in the new OWL 2 standard [MPSP*09, MGH*09].

In the past years researchers developed a huge variety of different description
logics. For easier categorization researchers developed a naming convention which
describes the operators which are allowed in the respective logic. For example,
the already mentioned DL SHOZN (P) follows this naming convention. In the
following, we use these naming conventions without further explanation. We refer
the interested reader to [NB03] for further details.

In Part II of this thesis, we combine description logics with Markov logic to
log-linear description logics. The logical component of the presented theory is
based on description logics for which consequence-driven reasoning is possible.
We forward the reader to Section 2.5.2 for an introduction of consequence-driven
reasoning and to Section 8.1 for an overview of other description logics which
support consequence-driven reasoning and thus can be transferred to log-linear
description logics in a straight-forward way. One of these description logics is
EL + + which we use in this thesis to explain the idea of log-linear description
logics.
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Name ‘ Syntax ‘ Semantics ‘
top T AT

bottom L %}

nominal {a} {a®}
conjunction cnD ctnD?
existential {ze ATy e AT:
restriction . (z,y) ert Ay eCT}
GCI CcD ctc Dt

RI 710..0TLET rlzo...orfgrz
RR ran(r)c C rf c AT x CT

Table 2.4: The DL £L£** with range restrictions and without concrete domains.

2.5.1 Syntaxof L

In this section, we introduce the syntax of EL*" as one possible underlying de-
scription logic of our novel log-linear description logics. Although log-linear de-
scription logics are applicable also to more expressive DLs, we choose E£** for
two reasons. First, its expressive power is sufficient for many real world ontologies
especially in the medical domain [MGH*09, BBLO8]. Second, the complexity of
EL™ is manageable so that it suits best for presentation purposes.

In particular, we focus on the DL EL** without concrete domains, henceforth
denoted as EL*". The following definitions and explanations are mainly taken
from [BBL0O5a, BBLO8, NB0O3, NNS11].

Concept and role descriptions in EL£** are defined recursively beginning with a
set Nc of concept names, a set Ng of role names, and a set N, of individual names,
and are built with the constructors depicted in the column “Syntax” of Table 2.4.
We write a and b to denote individual names; r and s to denote role names; and
C and D to denote concept descriptions. In the following, we often omit the term
names and will just speak of e.g. concepts, individuals, and roles.

A constraint box (CBox) is a finite set of general concept inclusion (GCI),
role inclusion (RI), and range restriction (RR) axioms. Domain restriction axioms
can be expressed with a GCI of the form 3r.7 © C' and thus are not included in
Table 2.4.

A finite set of GCIs without any Rls is called a TBox. A GCI is defined as
C c D and is constructed from two concept descriptions C' and D. Each of these
concept descriptions are recursively build by replacing them with T, 1, {a}, Cn D,
Jr.C, or a plain concept name from N¢c. A Rl is of the form rj o ... o 1y, € r with
r, s € Nr. We allow role inclusion axioms where k = 0 written as € C r. With these
axioms, we can express reflexive roles. The RR has the form ran(r) c C.

Given a CBox C, we use BC¢ to denote the set of basic concept descriptions,
that is, the smallest set of concept descriptions consisting of the top concept T, all
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concept names used in C, and all nominals {a} appearing in C. A CBox C is in
normal form if all GCIs have one of the following forms, where C',Cy € BC¢ and
DeBCou{l}:

01 = D;

Cl = HT.CQ;

CinCyc D;

Ir.Ch c D;

and if all role inclusions are of the form

rCs;
r1org E S.

By applying a finite set of rules and introducing new concept and role names,
any CBox C can be turned into a normalized CBox of size polynomial in C. We
forward the reader to Section 8.3.1 for details. For any ££7" CBox C we write
norm(C) to denote the set of normalized axioms that result from the application of
the normalization rules to C.

In Example 7 we present a small example ontology which we reuse in Part II,
when we dive into log-linear description logics. The ontology has already been
introduced in our informal introduction of description logics in Section 1.1.3 and
is visualized in the left part of Figure 1.2.

Example 7. Let us consider the following small example ontology O;.

Cat € Animal A cat is an animal.

Animaln Brand € 1 Something can not be an animal and a brand.
Jaguar € Cat A Jaguar is a cat.

Jaguar € Brand A Jaguar is a brand.

There is a contradiction in this ontology, because a jaguar is supposed to be an
animal and a brand although the concepts Animal and Brand are disjoint and
Cat is known to be a subclass of Animal. The CBox of this example is C = {Cat ©
Animal, Animal n Brand € 1, Jaguar € Cat, Jaguar © Brand}. All GCIs are
in normal form.

2.5.2 Semanticsof EL£*F

The semantics are defined in terms of an interpretation Z = (A%, ). An interpre-
tation is an assignment of elements from the real world to symbols of a description
logic. A is the non-empty domain of the interpretation and - is the interpretation
function which assigns to every A € N¢ a set AZ ¢ AZ, to every r € Ny a relation
rT ¢ AT x AT, and to every a € N; an element a” € AL,

In the following, basic naming conventions of different axiom types are dis-
cussed with intuitive examples. A concept C' is subsumed by a concept D with
respect to a CBox C, written C £¢ D, if CT ¢ D7 in every model of C. In the
following, we often write C for S¢. For instance, the expression C'at & Animal
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intuitively means that every Cat is also an Animal. If a concept C' is disjoint
with a concept D (and vice versa), written C' 11 D £ 1, it means that no instance
can be assigned to both classes C' and D. In our example, the class Animal is
disjoint with the class Brand. We say that a concept name C' is the domain of
a role name r written as 37T € C, if (x,y) € v implies 2 € CZ. For example,
ddrives.T © Human states that Human is the domain of drives. Similarly, a
concept C' is the range of a role name r, written as ran(r) ¢ C, if (x,y) €
implies y € C. In more expressive description logics range axioms are also often
represented as T © Vr.C'. For example, we can express that concept C'ar is the
range of role drives using the term ran(drives) € Car. Please note that although
range axioms are not part of the L definition, Section 8.3.1 shows how we can
integrate them into ££*" and thus into log-linear EL£*™.

With role inclusion axioms, many important dependencies between properties
can be modeled. In £L£7 role hierarchies can be expressed as r E s, transitive roles
are represented with r; oy £ s, and reflexive roles are constructed by setting & = 0
which is written as € € s.

An interpretation Z satisfies an axiom c if the condition in the column “Se-
mantics” in Table 2.4 holds for that axiom. The combination of explicitly defined
axioms which lead to the derivation of this axiom c is called an explanation. An in-
terpretation Z is a model of a CBox C if it satisfies every axiom in C. A normalized
CBox is classified when subsumption relationships between all concept names are
made explicit. A CBox C is coherent if for all concept names C' in C we have that
C ¢c1. If a CBox is not coherent we call it incoherent. For every axiom ¢ and
every set of axioms C’, we write C & c if every model of C is also a model of {c}
and we write C = C"if C = ¢’ for every ¢’ € C'.

For a finite set Ny € NcUNR of concept and role names the set of all normalized
axioms constructible from Ny, is the union of (a) all normalized GClIs constructible
from concept and role names in Ny and the top and bottom concepts; and (b) all
normalized RIs constructible from role names in Ny. We refer to a pair consisting
of a CBox and an ABox as ontology. An ontology (C,.A) is said to be coherent if
C is coherent.

Example 8. Ontology O defined in Example 7 is incoherent, since the knowledge
base satisfies Jaguar € 1. The explanation for this is that:

Jaguar € Cat (1)
Cat © Animal (2)
Jaguar € Brand (3)

Animaln Brandc L (4)

We can infer from (1) and (2) that Jaguar = Animal (5). In axiom (4) we
can replace the more specific concept name Animal with Jaguar due to (5) and
Brand with Jaguar because of (3). This then leads to Jaguar N Jaguar ¢ 1
which is equivalent to Jaguar E 1.

Reasoning services in EL*" such as consistency and instance checking can be



performed in polynomial time. Most modern reasoners use model-building meth-
ods such as optimized tableau reasoning [HSTOO] or extensions like hyper tableau
reasoning [MSHO7] for inference in description logics. For satisfiability checking
tableau reasoning systematically constructs a representation model by applying a
finite set of tableau rules (tableau is the french name for table). One rule always
consists of a premise and a conclusion. If the premise is given, then the conclusion
is derived. A set of such rules is called a tableau calculus. The main principle of
tableau rules is to break complex constructs into smaller ones until complementary
literals are produced or no further deduction is possible. If complementary literals
are produced it is concluded that this set of formulas is unsatisfiable [MHO09].

In contrast to tableau reasoning, consequence-driven reasoning derives logical
consequences of axioms using inference rules. In particular, a set of rules are it-
eratively applied until no new logical consequences can be inferred. During this
procedure all implied subsumption relations are produced. Thus, after reasoning
the ontology is materialized. Since the used rules derive consequences of given ax-
ioms, such procedures are referred to as consequence-based rules [SKH11, BS13].
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Part 1

Efficient Inference in Markov
Logic

Not everything that can be counted counts,
and not everything that counts can be counted.
(Albert Einstein)
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Chapter 3

Maximum A-Posteriori Inference
in Markov Logic With Integer
Linear Programs

In this part of the thesis, we focus on improving the efficiency of maximum a-
posteriori inference in Markov logic. The maximum a-posteriori (MAP) query
computes the most probable world given evidence. Details and a formal definition
of the MAP query are given in Section 2.1.3. In particular, we apply integer lin-
ear programming for solving MAP queries. Integer linear programming is a very
established possibility to solve optimization problems by maximizing a given lin-
ear objective subject to linear constraints. Section 2.4 formally introduces integer
linear programming.

The advantages of utilizing ILP compared to traditional approaches for solving
weighted SAT problems are that ILP is a very established and exhaustively studied
research field and there exist numerous efficient ILP solvers. Moreover, ILP solvers
guarantee a certain solution quality.

Consequently, integer linear programming has been used in many tasks to solve
MAP problems [KPRYO05, CL0O7]. For Markov logic, Riedel [Rie08] has proposed
a translation of MLNs to ILPs. His translation was inspired form previous work
in the area of mathematical programming [Wil99]. Compared to the general trans-
lation of Markov networks to ILP [TCKGO5] the translation proposed by Riedel
is more compact. Another translation was proposed in the context of max-margin
weight learning for MLNs [HMO09] where the MAP query was formulated as a
linear relaxation of an ILP and a rounding procedure was applied to extract an
approximate MAP state. Section 3.1 discusses the translation of Riedel [Rie08]
which needs three constraints for each soft formula.

Section 3.2 and Section 3.4 provide the answer to research question Q1 of
Section 1.2.1:

Q1 Can we improve existing ILP translation techniques such that we reduce the
size of the ILP and make the symmetries of the model more explicit to sym-
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metry detection heuristics?

In Section 3.2, we will provide a new and even more compact ILP translation
of MAP queries for Markov logic. This translation is novel, since it requires only
one linear constraint per ground clause, irrespective of the ground clause being
weighted or unweighted.

This ILP translation can still be optimized such that grounding the whole Mar-
kov network becomes unnecessary. In this context, the concept of cutting plane
inference (CPI) [Rie08], which solves multiple smaller ILPs in several iterations,
has shown remarkable performance increases. In the CPI algorithm, we start with
the given evidence and add only the violated constraints. Then, we compute an
intermediate solution and again add the violated constraints with respect to this
solution. This process is repeated until no violated constraint remain. Riedel’s
cutting plane inference algorithm is explained in Section 3.3.

In Section 3.4 we present the major contribution of Part I which we call cutting
plane aggregation (CPA). The CPA method aggregates ground clauses by exploit-
ing symmetries. Contrary to existing symmetry exploitation and lifted inference
algorithms (see Section 5.1) that can cope with no or only a limited amount of
evidence, the presented approach specifically exploits symmetries induced by evi-
dence. Moreover, the model symmetry is exploited by presenting it to ILP solvers
in such a way that the solvers’ internal symmetry detection algorithms can take
advantage of it.

Furthermore, we provide an algorithm that combines our cutting plane aggre-
gation approach with Riedel’s cutting plane inference method in Section 3.5.1.
Combining the CPA with the CPI algorithm results in a lower number of ILP con-
straints than CPI or CPA separately. Additionally, the parallelization presented
in Section 3.5.2 exploit multi-core architectures. Both leads to lower runtimes as
we will show in our experimental section. The parallelization algorithm of Sec-
tion 3.5.2 answers the first part of the research question Q2:

Q2 How can we parallelize the solution process and tightly integrate relational
database management systems (RDBMS) within this process?

Section 3.2, Section 3.4, and Section 3.5 is our work [NNS13]. Some text pas-
sages, definitions, tables, and graphics are taken from our publication [NNS13].
We extended our cutting plane aggregation algorithm to work also with hard con-
straints. Section 3.1 and Section 3.3 present a revised version of [Rie08].

3.1 Standard Integer Linear Program Translation

We start with the standard ILP translation of the MAP query as proposed by [Rie08,
Wil99]. As input we require a set of ground clauses G whose construction is ex-
plained in Section 2.3.2.

For transforming the MAP query into an ILP, we associate one binary ILP
variable xy € {0, 1} with each ground atom ¢ occurring in the set of ground clauses.
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For a ground clause g let L*(g) be the set of ground atoms occurring unnegated in
g and L™ (g) be the set of ground atoms occurring negated in g.

First, we encode the given evidence by introducing linear constraints of the
form x;, < 0 or ¢y > 1 depending on whether the evidence set the corresponding
ground atom / to false or true.

For every ground clause g € G with weight w, # oo, we add a novel binary
variable z, and add the following constraints to the ILP:

o+ Y, (T-z4) >z
LeL*(g) LeL=(g)

ry<zg VUleL(g)
(1-x¢)<zg YUleL (g)

The first constraint ensures that the binary variable z, is zero if all positive (neg-
ative) literals ¢ of g are false (true). The constraints in the second line force the
binary variable z, to be one if one non-negated literal ¢ is true while the latter
constraints force the binary variable z, to be one if one negated literal £ is false,
respectively.

The number of ILP constraints needed for one clause g amounts 1 + |L*(g)| +
|L~(g)|- If one clause contains for instance 3 literals, the number of constraints
needed is 4.

For every g with weight w, = oo, that is, a hard clause, we add the following
linear constraint to the ILP

E Ty + 2 (1-xp)>1.

LeL*(g) LeL=(g)

Finally, the objective of the ILP is

max Z WyZg,
9¢g
where wy is the weight of ¢ and z, € {0, 1} is the binary variable previously asso-
ciated with ground clause g. We compute a MAP state by solving the ILP whose
solution corresponds one-to-one to a MAP state x where x = true if the corre-
sponding ILP variable is 1 and « = false otherwise.

Table 3.1 depicts three example clauses and the respective ILP formulations. It
visualizes that we need more than one ILP constraint for each soft clause in this
standard translation. In the next section we present an optimized translation where
we need at most one ILP constraint for every clause.

3.2 Optimized Integer Linear Program Translation

We now improve the standard ILP translation presented in Section 3.1 so that it
requires only one linear constraint per ground formula. In order to transform the
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weight ground clause max 1.1z; — 0.5z,
subject to

1.1 1V -T2 VI3 $1+(1—$2)+$3221
1 <21
(1 - $2) <z1
r3 <21

-0.5 T VT2 (1—$1)+£L'QZZQ
(I-z1) <2
T2 < 29

) 21V To (1—1’1)+1’221

Table 3.1: An example of the standard ILP transformation (inspired by [NNS13]).
We need multiple constraints for each soft clause.

MAP query problem to an ILP we again have to first ground, that is, instantiate, the
first-order theory specified by the Markov logic network. We refer to Section 2.3.2
for details. After grounding, we receive the set G.

We again associate one binary ILP variable x, with each ground atom ¢ oc-
curring in the set of ground clauses. For a ground clause g let L*(g) be the set
of ground atoms occurring unnegated in g and L™ (g) be the set of ground atoms
occurring negated in g.

As before, we encode the given evidence by introducing linear constraints of
the form x, < 0 or xy > 1 depending on whether the evidence set the corresponding
ground atom / to false or true.

For every ground clause g € G with weight w, > 0, wy € R, we add a novel
binary variable z, and the following constraint to the ILP:

Z Ty + Z (1 =) > 2.

LeL*(g) LeL=(g)

Because the ILP aims to maximize the objective and because the weight w is
greater than zero, the variable z, will always try to become as large as possible.
Thus, we do not need any constraints for forcing the variable to become one. We
just need the above constraint which ensures that z, has to be zero if the ground
clause g is false in the current truth assignment.

For every g with weight w, < 0, w € R, we add a novel binary variable z, and
the following constraint to the ILP:

>, we+ Y, (L-z) <(IL7 ()] +[L7(9)])zg.

LeL*(g) LeL=(g)

In case of negative weights (w < 0) the variable z, tries to be as small as
possible. Consequently, we do not need further constraints to restrict the variable
to zero. The above constraint forces the variable z, to become one if the ground
clause g is true in the current truth assignment and thus is the only constraint we
need. This constraint is novel and differs from the standard formulation of [Rie08,
Wil99, HMO09] described in Section 3.1.
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weight  ground clause max 1.1z; — 0.5z,
subject to

1.1 T1V-axavay ~ x1+(l-x2)+x3>2

-0.5 TV T (1—$1)+I2§2‘22

[ TV To (1—%1)-%%221

Table 3.2: An example of the optimized ILP transformation [NNS13]. We just
need one constraint for each soft clause.

If a ground clause has zero weight we do not have to add the corresponding
constraints.

In case of hard clauses with weight w, = oo the transformation stays as before.
We add the following linear constraint to the ILP:

Yomg+ Y, (I-w) 21

LeL*(g) LeL=(g)

Finally, the objective of the ILP is:

max Z WyZg,
geg

where wy is the weight of ¢ and z, € {0, 1} is the binary variable previously asso-
ciated with ground clause g.

Table 3.2 depicts three clauses and the respective ILP formulations for w > 0,
w < 0, and w = co. Again, note that the presented transformation is more efficient
than the one described in [Rie08, Wil99] since it only requires one constraint per
ground clause instead of three. To that end, we encourage the reader to compare
this table with Table 3.1.

Currently, we assumed that we have to include every ground clause in the set
G in our ILP. In real world problems, this often leads to a very large amount of
clauses resulting in oversized and often intractable integer linear programs. In the
next Section, we will focus on a concept called cutting plane inference, which often
leads to a significant smaller number of required constraints.

3.3 Cutting Plane Inference (CPI)

Cutting plane methods for ILPs begin by solving the linear relaxation of the given
ILP, that is, the ILP without the requirement that the solution has to be integer.
The approach proceeds to test whether the computed solution is integer. If it is
not, there exists a linear inequality separating the optimal objective value from the
convex hull of the true feasible set. This inequality is called a cut. A cut can be
added as a constraint to the linear program which is then resolved. This process is
repeated until a complete integer solution is found.

While the basic idea is similar to that from operations research for solving
integer linear programs, the cutting plane inference (CPI) approach for Markov




46 CHAPTER 3. MAP INFERENCE IN ML WITH ILP

logic [Rie08] is a meta-algorithm operating between the grounding algorithm and
the ILP solver. Instead of immediately adding one constraint for each ground
clause to the ILP formulation, the ILP is initially formulated so as to enforce the
evidence to hold in any solution. Based on the solution of this more compact ILP
one determines the violated constraints, adds these to the ILP, and solve the ILP
again. This process is repeated until no constraints are violated by an intermediate
solution.

This can often greatly reduce the number of linear constraints of the resulting
ILP. Indeed, in numerous practical applications the application of the cutting plane
inference algorithm has made previously intractable MAP queries solvable within
seconds [Rie08, NMS10, NNS11].

Our CPI implementation is illustrated in Algorithm 1. It starts with the interme-
diate solution (Herbrand interpretation) H ) cn containing the evidence atoms
and all axioms which belong to a ground clause consisting of one axiom only and
having a positive weight. The set of ground clauses whose corresponding linear
constraint have been added to the ILP are denoted by Gy p. This set consist initially
of the ground clauses encoding H (9, The set Gnew contains the violated constraints
which are added in each CPI iteration. Line 1-4 perform this initialization.

The CPI algorithm performs the following sequence of steps in iteration . Line
6 sets Gnew to the empty set. Depending on the weight of the ground clauses, we
determine the violated constraints as follows (Lines 7-11):

* For every ground clause g € G \ Gy p with wy > 0 or wy = co which is not
satisfied by the current intermediate solution H (t), we add g to Gnew; and

* For every ground clause g € G \ G p with w, < 0 which is satisfied by the
current intermediate solution H (t), we add g to Gnew.

If no violated ground clauses were found in step 2 (which means that set Gnew
is empty), then the current solution H ) is optimal with respect to the set of all
ground clauses and we are done. In this case, we jump from Line 12 to Line 18
and return the MAP state in Line 19.

Otherwise, we add exactly the linear constraints based on the set Gnew to the
ILP in Line 14. Then, Line 15 adds every ground clause g € Gpew to the set Gy p.
Finally, we solve this ILP obtaining the next intermediate solution H (t+1) in Line
16, and proceed again with Line 6.

Constraints corresponding to violated ground clauses are added to the ILP. In
many cases, this iterative addition of constraints leads to ILPs with far less con-
straints than the ILP that would result from naively adding all constraints.

The algorithm for determining the ground clauses violated in an intermediate
solution in Step 1 must be very efficient as the benefit of more compact ILPs would
be neutralized otherwise. Based on existing work [Rie08], we use a relational
database management system to compute the violated clauses. The computation of
the violated clauses can be formulated as a sequence of join queries. Details are
described in Section 4.2.
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Algorithm 1 Cutting plane inference (CPI) algorithm.
Input: G: Set of all ground clauses

Input: E: Set of all evidence axioms

Output: H*: Maximum a-posteriori state
PERFORMCPI

1: Gp < Eu all g € G having one literal only and a weight wy > 0.

2: Initial solution H(®) « all atoms in G p.

3: transfer each g € G p to linear constraints and add them to the ILP.

4: t <0

5: repeat

6:  Gnew < @

7. for every ground clause g € G \ G p do

N (weight w, >0 or w, = co  and g is not satisfied with H®) ) or
' ( weight w, < 0 and g is satisfied with H(*))

then
9: add g to Gpew.
10 end if

11:  end for
12: if gnew *J then

13: t<—t+1

14: transfer each g € Gnew to linear constraints and add them to the ILP.
15: add every g € Gnew to the set G p.

16: solve the ILP and set H®) to the solution of the ILP.

17:  end if

18: until gnew =g
19: return H®

Example 9. Let us revisit the friends & smokers MLN from Example 3. Let us
again assume that there are 2 constants Anna and Bob. Let us also assume that
there is evidence that Anna is a smoker and that Anna and Bob are mutual friends:

g1 := smokes(Anna),
g2 := friends(Anna, Bob), g3 := friends(Bob, Anna)

In Example 5 we already noted that the naive grounding of the MLN would lead
to 14 clauses and 8 ground atoms. If we consider evidence, we result in 9 ground
clauses and 5 ground atoms. Now, let us apply the cutting plane inference algo-
rithm. We have that H®) = {g1, 92,93} and Gip = {g1,92,93}. We proceed to
determine the violated ground clauses given H (0).

(1) —smokes(Anna)

(2) —friends(Anna, Bob)

(3) —friends(Bob, Anna)

(4) -smokes(Anna) v cancer(Anna)

(5) —smokes(Anna) v =friends(Anna, Bob) v smokes(Bob)
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Only the ground clauses (4) and (5) have to be added to G p since all others consist
solely of evidence atoms. The ILP is updated and resolved, obtaining H M
{91, 92,93, 94,95} with g4 := smokes(Bob) and g5 := cancer(Anna). Again, the
violated ground clauses in G \ G| p are determined:

(1’) —smokes(Bob)
(2’) -smokes(Bob) v cancer(Bob)
(3’) —cancer(Anna)

All of these ground clauses are added to Gy p, the ILP is updated accordingly and
resolved, obtaining H @) = {91, 92,93} There are no violated ground clauses and,
therefore, the current solution is optimal and H (2) is a MAP state. Thus, we only
had to translate 5 clauses to the ILP plus 3 clauses which model the given evidence.

The previous example demonstrates that the number of clauses which need
to be translated to ILP constraints is often much smaller when we use the CPI
method. The naive grounding without evidence consideration leads to 14 clauses,
grounding with evidence consideration results in 9 clauses, and applying the CPI
algorithm lead to 5 clauses, a bit more than one third of the clauses of the naive
formulation. In all three cases, we have to add 3 more constraints to model the
given evidence. Please note, that in larger problems with more constraints and more
evidence axioms, this reduction is usually larger. We forward to our experiments
in Chapter 6 for details.

We now turn to the novel cutting plane aggregation method, the main contribu-
tion of Part I of this thesis. The cutting plane aggregation approach bundles clauses
of the ground MLN that exhibit symmetry during the CPI phase. This allows us to
reduce not only the number of constraints, but also to enable internal symmetry de-
tection mechanisms of ILP solvers to work more efficiently by detecting symmetry
in the resulting constraints.

3.4 Cutting Plane Aggregation (CPA)

In this section, we further optimize the translation of ground clauses to ILP con-
straints. More concretely, we introduce a novel approach that aggregates sets of
constraints so as to make the resulting ILP have (a) fewer variables (b) fewer con-
straints and (c) its symmetries more exposed to the symmetry detection approaches
implemented in ILP solvers. Compared to [NNS13], we additionally aggregate
hard constraints.

We first demonstrate that evidence often introduces symmetries in the resulting
sets of ground clauses and, therefore, at the feature level. The proposed approach
aggregates ground clauses exposing this type of symmetry to symmetry detection
algorithms of the ILP solvers. These algorithms apply heuristics to test whether
the constraint matrix of the ILP exhibits symmetries in form of permutations on
its variables. For an overview of existing principles and algorithms for detecting
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g 4; c w l; c w
g1 1V Y1 VY2 1.0 1V

g2 | 2V | ~y1Vyz | 1.0 x2v | —~y1Vye | 1.0
g3 | mx3v | ~y1vys | 1.0 ~ -x3Vv

ga | ~xaV | ~y1vys | 1.0 ~24V | ~y1Vys | 1.0
g5 | ~x5V | vy | 1.0 -r5V | y1vys | 1.0
g6 | TeV -1 00 TeV ~Y1 00

Table 3.3: An example of ground clauses that can be aggregated [NNS13].

and exploiting symmetries in integer linear programs, we forward the reader to
Section 3.4.1.

We describe the cutting plane aggregation (CPA) approach in two steps. First,
we explain how the ground formulas are aggregated and, second, we discuss how
these aggregated ground formula are transformed to ILP constraints.

Definition 1. Let G € G be a set of n weighted ground clauses and let ¢ be a
ground clause. Let weights be in R U co. We say that G can be aggregated with
respect to c if (a) all ground clauses in G all have the same weight and (b) for
every g; € G,1 <i < |G|, we have that g; = ;v c where {; is a (positive or negative)
literal for eachi,1 < i <|G)|.

Please note that this definition aggregates weighted ground clauses and hard
ground clauses, which is an extension compared to [NN10]. Intuitively, it is not a
difference for condition (a) if weight w is in the real numbers w € R or infinitive
w = 00,

Example 10. Table 3.3 lists a set of 6 ground clauses. The set of clauses {g1, g2, g3}
can be aggregated with respect to —~y1 V y2 since we can write each of these ground
clauses as £; v —y1 V yo with {1 := 21,9 = x9, and {3 := ~x3.

Before we describe the algorithmic advantages of finding ground clauses that
can be aggregated and the corresponding ILP formulation of such clauses, we pro-
vide a typical instance of a Markov logic network resulting in a large number of
clauses that can be aggregated. In Example 11 CPA aggregates 100 clauses to only
1 clause by considering evidence.

Example 11. Let us revisit the example MLN in Table 3 and consider the clause
—-smokes(x) v cancer(x). Let us assume that there are 100 constants C1, ..., C1op
for which we have evidence smokes(C;),1 < i < 100. For 1 < i < 100, let z; be
the ILP variable corresponding to the ground atom smokes(C;) and y; be the ILP
variable corresponding to the ground atom cancer(C;). The initial ILP would con-
tain the constraints x; > 1 encoding the evidence. Due to evidence -smokes(C;) v
cancer(C;),1 < i < 100, would simplify to cancer(C;),1 < i < 100,. Hence, the
naive translation would add 100 constraints y; > z; to the ILP and the objective of
the ILP with respect to these clauses would be max 1.5z1 + ... + 1.5z109. However,
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here we can aggregate the ground clauses cancer(C;),1 < i < 100, for ¢ = false
and ¢; = cancer(C;),1 < i < 100.

Detecting the optimal clauses ¢ with which a set of ground clauses G can be ag-
gregated is not a trivial problem. An optimal strategy which minimizes the number
of clauses c is computational expensive. Thus, we suggest an approximate strategy.
The strategy is presented in Section 3.4.2.

The following lemma provides the basis of a novel ILP translation for aggre-
gated ground clauses, that is more efficient and allows the ILP solver to detect the
inherent symmetry introduced by the evidence.

Lemma 2. Let G € G be a set of ground clauses with weight w and let ¢ be a
ground clause. Moreover, let us assume that G can be aggregated with respect to
¢, that is, that each g € G can be written as {; v c. The aggregated feature € for
the aggregated clauses G with weight w maps each interpretation I to an integer
value as follows

Crm |G| if Tec
f (I)—{ {liveeGTEl)Y  otherwise }

For each set of ground clauses G € G with weight w = oo, we require f&(I) > |G|

Proof. An individual feature f9([I) is defined as

1 ifleg
9Ty —
) _{ 0 otherwise

Since all g € G share the same weight, we can aggregate the features to an aggre-
gated feature by

e =3 ).

geG

Now we are in the position to distinguish two cases:

I = c¢: Since each g € G can be written as ¢; v ¢, each g is satisfied if I £ c.
Thus, each individual feature function returns f9(I) = 1. Consequently, the
aggregated feature function has to return f¢(I) = Ygec A1) =G].

It c: If I # ceachclause g € G equals g = ¢; v false = ¢;. Thus, the individual
feature function f9(I) of each clause g returns

1 ifIEl;
90Ty =
£ _{ 0 otherwise

Finally, we rewrite the aggregated feature function as

I =3 D) =|{tiveeG|TE LY.

geG
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max 0.5z7 — 1.529

l; c w subject to

1V T1+To+2x3+3Y1 221

oV Y1 0.5 z1<3

T3V
Y ~ (1-z1)+za+(1-m3) <20

ToV | Y1 V-ys | -1.5 3-y1 < 29
-3V 3-(1-y2) <29

TV 1+ (1-m2)+(1-23)+3(1-9y1) >3
—ToV =1 e3¢}
T3V

Table 3.4: An example of the aggregated ILP formulation [NNS13]. For the sake
of simplicity, we denote the ground atoms and ILP variables with identical names.

Please note, that this lemma is also valid for sets of ground clauses GG containing
only one g. In this case, the individual feature f9(1) equals the aggregated feature
fE(I) and the choice of ¢ is arbitrary. O

The feature resulting from the aggregation, therefore, counts the number of
literals ¢; that are satisfied whenever the ground clause c is not satisfied and returns
the number of aggregated clauses otherwise.

Please also note that an encoding of this feature as a factor in a factor graph
would need space exponential in the number of ground atoms even though the fea-
ture only has a linear number of different possible values. The feature, therefore,
is highly symmetric — each assignment to the random variables corresponding to
the positive (negative) literals that has the same Hamming weight results in the
same feature weight contribution. This constitutes a feature-specific local form
of finite exchangeability [Fin72, Dia77] of random variables induced by the evi-
dence. Therefore, we denote this form of finite exchangeability as context-specific
exchangeability.

While standard models such as factor graphs cannot represent such symmetric
features compactly, one can encode these counting features directly with a number
of constraints that is linear in the number of aggregated clauses. We now describe
this translation in more detail.

As before, for any ground clause ¢, let L*(¢) (L™(c)) be the set of ground
atoms occurring unnegated (negated) in c. Let G € G be a set of n ground clauses
with positive weight w > 0, w € R that can be aggregated with respect to c, that is,
for each g € G we have that g = x; v c or g = ~x; Vv ¢ for a ground atom z; and a
fixed clause c. We now add the following two linear constraints to the ILP:

Yooz Yy, (T-z)+ Y, nze+ Y n(l-z)>2z2¢ (3D

(zive)eG (~zive)eG LeL*(c) LeL=(c)

and
G <n (3.2)
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Linear Constraint 3.1 introduces the novel integer variable z for each aggregation.
Whenever a solution satisfies the ground clause c this variable has the value n and
otherwise it is equal to the number of literals ¢; satisfied by the solution. Since
Constraint 3.1 alone might lead to values of z that are greater than n, the linear
Constraint 3.2 ensures that the value of z¢ is at most n. However, linear Constraint
3.2 only needs to be added if clause c is not the constant false.

We now turn to the case when we can aggregate clauses with negative weight.
Let G ¢ G be a set of n ground clauses with weight w < 0 that can be aggregated
with respect to c, that is, for each g € G we have that g = x; vcor g = -x; v cfora
ground atom x; and a fixed clause c. We now add the following linear constraints
to the ILP:

Yoox+ Y, (I-z)<zg (3.3)

(zive)eG (~zive)eG
and
nwy < 2 forevery £ € L*(c) (3.4)
and
n(l-xy) < zg forevery £ € L™ (¢) (3.5)

Linear Constraint 3.3 introduces an integer variable zg. Intuitively, this variable
counts the number of clauses in G that are satisfied. Since the weight is negative,
zg tries to be as small as possible. With Formula 3.3 we count every satisfied
ground atoms x; in g = x; vV ¢ and every satisfied literal —x; in g = —x; v ¢ for
each g € GG so that variable z; must not become smaller than the sum of both.
Equation 3.4 and Equation 3.5 ensures that zg > n if one of the positive or negative
literals £ in c are satisfied. Although we result in few more constraints for negative
constraints, their number is still much smaller since we usually can aggregate many
ground clauses g. Furthermore, the number of constraints is constant with respect
to all existing aggregated clauses G. In the formulation of Section 3.2 each of those
ground clauses would require one constraint.

In case of hard clauses with infinitive weight, each G € G has weight w = oo.
We have to add only one linear constraint for each GG which is as followed:

Yoox+ Y (I-z)+ Y, nzg+ Y n(l-z)2n (3.6)

(zive)eG (~zive)eG LeL*(c) LeL=(c)

In the case of aggregating hard clauses, no new integer variable is required.
We only need one constraint, which ensures that each clause g € G is satisfied. If
the solution satisfies one of the aggregated literals £ € L*(¢) (and ¢ € L™ (c)) all
clauses g € GG are also satisfied. In this case, the last part of the ILP constraint
DobeL () ML+ LpeL(c) n(1-xy) > n is fulfilled. In case none of the aggregated
literals £ € L*(c) (or —€ € L™(c)) are satisfied, all literals z; v ¢ (and —~z; v ¢) must
be satisfied. This is covered by the first part of the restriction, which then ensures
Z(mive)eG Zi + Z(ﬁxi\/c)eG(l - ;) 2.

For each of the integer variables z, which has been introduced for an aggre-
gated set of clauses with w, € R, we add the term wy2¢ to the objective function
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where w,, is the weight of any of the aggregated clauses. For hard clauses with
infinitive weights, nothing has to be added to the objective function. If a ground
clause has zero weight we do not have to add the corresponding constraints. Ta-
ble 3.4 shows a set of aggregated ground clauses and the corresponding integer
linear program.

Please note that the length of constraints increases when we apply our cut-
ting plane aggregation algorithm. However, due to the lower number of variables
required and due to the increased ability of ILP solvers to detect symmetries, run-
times are reduced. The interested reader is referred to Section 6.4.2 for an empirical
confirmation.

We now have the following theorem.

Theorem 3. Let M be a Markov logic network and ILP(M) be the ILP formula-
tion with aggregated cutting planes. Each solution of ILP(M) corresponds one-
to-one to a maximum a-posteriori state of the Markov logic network M.

Proof. Weighted MAX-SAT problems have been transferred to ILP formulations
[BF98]. Building on these results, we have to show that our ILP translation above
correctly translates the aggregated features from Lemma 2. Let G € G be a set
of aggregated ground clauses with weight w. Moreover, let us assume that G can
be aggregated with respect to ¢, that is, that each g € G can be written as /; Vv c.
Let I be any interpretation. For each aggregated feature f¢(I) we introduced an
integer ILP variable z¢ and added w - 2 to the objective. For showing the correct
translation, we have to show that zg = f&(I).

In case of w > 0, the ILP constraints in Formula 3.1 and Formula 3.2 ensure
that zg = fE(I).

e If I = ¢, then Formula 3.2 ensures that zg < |G|. Since the ILP tries to
maximize zg and Formula 3.1 does not further restrict zg we can conclude

that z¢ = |G| = f9(I).

 If I # ¢, Formula 3.1 restricts zg to [{¢; vc e G | I E {;}| < 2. Again, due
to maximization and since Formula 3.2 does not further restrict z, we can
conclude |[{¢; vce G| I E{;} = 2.

In case of w < 0, the ILP constraints in Formula 3.3, Formula 3.4, and For-
mula 3.5 ensure that zg = f¢(I).

 If I £ ¢, then Formulas 3.4 and Formulas 3.5 ensure that z; > |G|. Formu-
las 3.4 go through all literals ¢ € L*(¢) in clause c and set z¢ > |G| if one of
them is entailed in /. Similarly, Formulas 3.5 go through all negated literals
¢ € L™(c) in clause c and set zg > |G| if one of them is not entailed in I.
Since [ & ¢, z¢ is set to z¢ > |G| because at least one £ € L*(c) : I = £ or one
e L™ (c):I# L. Since w < 0 the ILP tries to minimize z¢ and Formula 3.3
does not further restrict z, we conclude z¢ = |G| = f¢(I).
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o If I # ¢, we obtain zg > 0 according to Formulas 3.4 or Formulas 3.4. Then,
Formula 3.3 ensures |[{{; Vce G | I = {;}| > z¢. Again, since w < 0 the ILP
minimizes zg and thus [{¢; vce G | [ E {;}] = 2.

O

Example 12 shows a simple but typical example how the cutting plane aggrega-
tion approach can decrease the number of constraints and the number of required
variables significantly. In this small example we can reduce the number of con-
straints from 100 to 1.

Example 12. Let us revisit Example 11. We established that we can aggregate the
ground clauses cancer(C;),1 < i <100, for ¢ = false and ¢; = cancer(C;),1 <i <
100. Now, instead of using 100 linear constraints and 100 novel summands in the
objective function we add the following single linear constraint:

Y1+ ...+ Y100 < 2g

and the term 1.5zq to the objective function. Not only is the representation more
compact but it also allows ILP solvers to more straight-forwardly detect symmetry
in the model since permutations of the variables lead to an identical ILP.

3.4.1 Symmetry Detection in ILP

Despite the reduction of the number of ILP variables and ILP constraints, our
aggregation also makes symmetries explicit for state-of-the-art ILP solvers. An
ILP is defined to be symmetric, if its variables can be permuted without changing
the structure of the problem [Mar03]. We start with a brief summary of the sur-
vey [Marl0] about symmetry detection in integer linear programs extended with
the concept of orbit branching [OLRS11, OLRSO07].

Most of the symmetry detection algorithms assume that next to the objective
function and the ILP constraints a so called symmetry group is given as input.
A symmetry group contains permutations of variables that lead to a similar ILP.
Computing this symmetry group is an NP-COMPLETE problem. Practical algo-
rithms focus instead on computing symmetry groups for the LP-relaxation of the
original ILP problem. In the LP-relaxation, all binary constraints of variables (e.g.
x € {0,1}) are replaced by its relaxation (e.g. 0 < < 1). Thus, the solution usu-
ally does not fulfill the integer requirement of ILPs. Those problems then can be
mapped to colored graphs and efficiently solved with efficient graph isomorphism
algorithms [ARMSO03] (like for instance with the tool SAUCY [DLSMO04]).

If such a symmetry group is given, there exist a vast amount of approaches,
which exploit symmetries for solving ILPs. Most of them share the idea of intro-
ducing new constraints due to symmetry information that reduce the search space
of possible solutions. Those constraints are called symmetry breaking inequalities
since they break the symmetry of variables. We distinguish between so-called dy-
namic symmetry breaking inequalities and static symmetry breaking inequalities.
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Static symmetry inequalities are added to the initial formulation. The practical
weakness is the large number of inequalities that have to be introduced. Techniques
like ordering the variables and taking intelligent subsets of all possible inequalities
reduce its number [Pug06].

Dynamic symmetry breaking inequalities introduces inequalities during the so-
lution process. Those inequalities might be not correct, when adding them in the
beginning. However, at the node in the enumeration tree in which they are intro-
duced it is guaranteed that they do not prevent the discovery of the optimal solution.
A well-known dynamic approach is orbit branching [OLRS11, OLRS07]. Orbits
are sets of variables that are equivalent with respect to the symmetry remaining in
the problem after branching. This can include symmetries that were not existent at
the root node. These orbits are then used to create a valid partitioning of the fea-
sible region. This partitioning significantly reduces the effects of symmetry while
still allowing a flexible branching rule.

Our cutting plane aggregation approach makes symmetries more explicit, be-
cause the interchangeability of variables is more obvious. Without applying our
CPA algorithm, symmetry detection algorithms have to detect exchangeable vari-
ables among different constraints, taking the weights in the objective into account.
To the best of our knowledge, this is beyond the implemented symmetry detection
mechanisms of state-of-the-art ILP solvers.

If we apply our CPA method, we formulate a lower number of counting con-
straints into ILP constraints. The ILP constraints contain more variables within a
single constraint all being linked to only one variable in the target function. This
makes it easier to check for exchangeable variables. Let us recall Example 12.
In this example, every pair of variables y; is exchangeable. Before aggregation,
we had 100 single constraints, each linked with one variable in the target func-
tion. Thus, an algorithm would have needed to detect that whole constraints are
symmetric, which also includes checking equality of the weights in the objective.
After applying the CPA method just one constraint remains, in which algorithms
can easily detect that every pair of variables y; is symmetric.

3.4.2 Computation of Counting Features

Next, special attention is paid on the strategy finding the ground clauses c (see
Definition 1) which minimize the number of counting features. This problem can
be solved optimally with algorithms that detect symmetries in propositional for-
mulas such as SAUCY [DSMO08] or, alternatively, by reducing it to the frequent
itemset mining problem for which several robust algorithms as APRIORI [BK02]
exist. However, exhaustive experiments showed that time savings due to aggre-
gation were neutralized by executing the exact approach and parsing the received
symmetries. Especially, when we combine the CPA with the CPI method (refer to
Section 3.5.1) these algorithms need to be called in each CPI iteration.

There’s an analogy to selectivity analysis for query processing in relational
databases. Since it is infeasible to store the data distribution over all tables, rela-
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g 61 62 53 w
g1 1V Y1V 29 1.0
g2 ToV =Yy1Vv Z29 1.0
gs 1V -1V 29 1.0
ga T3V =Yy1Vv z23 1.0
gs 1V -Y1V | 23 1.0
g6 | T4V | -1 1.0

Table 3.5: Example clauses for the approximate counting feature algorithm. For
k = 1 we result in 3 counting features, for £ = 2 we obtain 5 counting features,
and for k£ = 3 we get 4 counting features. Thus, we choose k* = 1 as optimal
aggregation strategy.

tional database management systems estimate the best join order by maintaining
histograms over columns [Cha98]. Similarly, computing the most compact CPA
feature aggregation is inefficient.

Therefore, we implemented a greedy algorithm that only estimates the optimal
aggregation scheme. This algorithm initially gets a set of ground clauses G/ from
a first-order formula f. Let n be the number of literals of formula f. Each ground
clause in G/ has the form g=F0v...vl,,m<n. All clauses share the same
weight because they all originate from one first order formula. Please note that
the length m of each ground clause g might be lower than n due to elimination of
literals because of evidence.

The algorithm stores, for each first-order clause, the violated groundings g in
a table with n columns where each column represents one literal position of the
clause. For each column k, we compute the set of distinct rows Ry, of the ta-
ble that results from the projection onto the columns {1,...,n} \ {k}. Let k* =
argming {|Ry|} be the minimal number of distinct entries of Ry, for all k. The
groundings are then aggregated with respect to the rows in R».

Example 13 illustrates how the algorithm works.

Example 13. Table 3.5 depict 6 ground clauses which are stored in the set G'. The
maximal length of clauses is n = 3.

Now we start the algorithm with k = 1. We compute the number of counting
features c leaving out {1. We result in 3 counting features:

“YLVe, —Yyi1Vzs, -y
For k =2, we result in 5 counting features:
r1Vz9, X9V=zo, X3VZ3 X1VZ3 T4
Setting k = 3 results in 4 counting features:
T1V-oYyr X2VoYr T3V YL T4V oYl

Finally, we choose k* = 1 as optimal aggregation strategy because it results in the
lowest number of counting features.
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3.5 Combining and Parallelizing the Cutting Plane Ag-
gregation and the Cutting Plane Inference Appraoch

Within this section we discuss how we can combine the CPA algorithm with the
CPI concept and explain how to parallelize this combined algorithm.

3.5.1 Combining the CPI and the CPA Approach

Combining the cutting plane aggregation algorithm, which we discussed in Sec-
tion 3.4, and the cutting plane inference concept, which was introduced in Sec-
tion 3.3, is relatively straight-forward. Intuitively, we have to apply cutting plane
aggregation on the violated constraints, which we get in each cutting plane infer-
ence loop. The modified algorithm is depicted in Algorithm 2.

Algorithm 2 Algorithm which integrates CPA into CPI.
Input: G: Set of all ground clauses

Input: E: Set of all evidence axioms

Output: H*: Maximum a-posteriori state
PERFORMCPIANDCPA

1: GiLp < Eu all g € G having one literal only and a weight wg > 0.
2: Initial solution H(®) « all atoms in GiLp-
3: transfer each g € G p to linear constraints and add them to the ILP.
4: t <0
5: repeat
6 Onew < @
7 for every ground clause g € G \ G p do
(weight w, >0 orw, = co  and g is not satisfied with H®) ) or

o]

( weight w, < 0 and g is satisfied with H®) )
then
9: add g to Gnew.
10: end if

11:  end for
12: if gnew * Q then

13: t<—t+1

14: Gagg < aggregation of set Gpew according to Lemma 2.

15: transfer each G € gagg to linear constraints and add them to the ILP,
16: add every g € Gnew to the set G p.

17: solve the ILP and set H® to the solution of the ILP.

18:  end if

19: until gnew =g
20: return H®

This algorithm differs only in Line 14 and Line 15 from Algorithm 1. While
we originally just translated the new ground atoms Gpey to ILP constraints, we now
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apply the cutting plane aggregation algorithm on the set Gnew (Line 14) and add
the aggregated clauses to the ILP (Line 15).

Example 14 illustrates the benefit of combining the cutting plane inference with
the cutting plane aggregation approach. In the example, we show that applying
the concept of cutting plane aggregation together with the cutting plane inference
algorithm compared to just applying the cutting plane inference algorithm reduces
the constraints from 10 to 2. The example is kept simple as it aggregates clauses
with just one literal. For an example, in which the CPA approach aggregates more
than one constraint, we forward to Section 7.1. In our experiments in Chapter 6.4.1,
we will show that our CPA method also aggregates many formulas with more than
one literal.

Example 14. Let us revisit the example MLN in Table 3 and consider the clause
—smokes(x) v —friends(x, y) vsmokes(y) with weight w = 1.1. Let us assume that
there are 100 constants C1, ..., Cioo for which we have evidence that the first 20
constants are friends with each other: friends(C;, C;),1 <14, j < 20. Furthermore,
we know that the first 10 constants smoke: smoke(C;),1 <1 < 10.

If we apply neither the cutting plane inference nor cutting plane aggregation
approach, the resulting ILP consists of 100 - 100 = 10, 000 constraints.

If we only apply the cutting plane inference concept, we result in 100 violated
ground clauses (before applying evidence)

—smokes(C;) v —friends(Cj, C;) v smokes(C;), 1<i<10<5<20
which are reduced to 10 ground clauses due to given evidence
smokes(C;), 10<j<20.

Thus, the resulting ILP would consist of 10 restrictions. The temporary solution
after the first iteration is smokes(C;) for 1 < i < 20. Since no more constraints are
violated, this temporary solution is also the final MAP state which we reached in 1
iteration.

If we now combine the CPI approach with the CPA method, we can aggregate
the 10 ground clauses with ¢ = false and {; = cancer(C;), 10 < i < 20. This results
in only 2 ILP constraints

20
> cancer(C;) > z4
i=10

24 <10

where z4 is an integer variable. The objective just consists of max 1.1z,.

3.5.2 Parallelizing the CPI and the CPA Approach

We are able to parallelize important parts of the MAP inference algorithm. While
there are some generic parallel machine learning architectures such as GRAPHLAB
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Figure 3.1: Parallelization of constraint finding, constraint aggregation, and ILP
solving [NNS13].

[LGK*10], which could in principle be used for parallel MAP inference, we pro-
vide the first system that parallelizes MAP inference in statistical relational models
combining the CPI and the CPA method. Our parallelization algorithm is summa-
rized in Figure 3.1 and will now be explained in more detail.

First, the algorithm reads in the Markov logic network, which includes the
weighted first-order formulas and the evidence axioms. Based on this information,
it creates relational database tables and fills them with values. We refer the reader
to Chapter 4 for further details.

After preprocessing, we perform several but at least one CPI rounds until no
new violated constraints are found. Within one CPI round, the algorithm first finds
violated ground clauses and performs the CPA algorithm on them. This process is
parallelized since each first order formula can be processed separately. Therefore,
we initially put each first order formula in a stack s. Then, we create one thread
per available processor. Each of these threads now fetches a first order formula
from s, processes it, and fetches the next formula until s is empty. Please note, that
for the first round, we can skip the process of finding violated constraints. Instead,
we encode all evidence axioms and all ground clauses with positive weights which
consist of one literal only to the ILP. For further information about the realization
of finding the violated constraints within each CPI iteration and the computation
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of the counting features for the CPA approach we forward the reader to Section 4.2
and Section 4.3.

Afterwards, all aggregated clauses from each formula are fetched from each
thread and are combined. Then, they are transferred to ILP constraints and added
to the ILP from the previous iteration. Please note that we reuse the ILP from the
previous iteration instead of creating a new one due to efficiency reasons.

Finally, we compute the (temporary) MAP-state utilizing an ILP solver which
is able to solve mixed integer problems in parallel. The basic idea of parallelizing
branch-and-bound algorithms is based on the fact that different nodes in the MIP
tree search can be processed independently. In the following, we will briefly sketch
a standard parallelization algorithm [BBGS88]. Initially, they create one process per
available processor and assume that all those processes are free. Every free process
fetches the next node with the maximum upper bound and calculates its solution. If
this solution is integer but not the optimal solution, its objective is stored centrally
as the current best lower bound. If the solution is not integer, it introduces a new cut
and creates new nodes which need to be processed. If all nodes are processed the
problem is solved. Thus, the nodes within the search tree are computed in parallel.
Generally, parallelization works better for models, which have to explore a large
search tree while models which spend most of the time solving the root node can
not be efficiently parallelized.



Chapter 4

Leveraging Relational Database
Management Systems (RDBMS)

Within this chapter, we precisely show how we can leverage relational database
management systems (RDBMS) to perform important tasks like grounding (refer
to Section 4.1), finding violated constraints (refer to Section 4.2) for each CPI loop,
and performing the feature aggregation within the CPA approach. In this way, we
take advantage of the highly sophisticated query optimization and indexing tech-
nologies of relational database systems. Thus, this chapter exhaustively answers
the second part of research question Q2 of Section 1.2.1:

Q2 How can we parallelize the solution process and tightly integrate relational
database management systems (RDBMS) within this process?

The general idea of exploiting RDBMS for CPI was first proposed by Riedel
[Rie08]. However, the construction of the queries that are necessary to receive
the violated ground clauses was only briefly sketched in his work. In this section,
we provide detailed algorithms how the query construction is performed. Further-
more, we illustrate strategies how the counting features of our CPA approach can
be implemented with RDBMS 4.3.

Please note that we decided to use the SQL syntax rather than relational al-
gebra operators throughout this chapter since we assume that readers feel more
comfortable reading SQL queries. However, the translation of the SQL query con-
struction algorithms to algebra operators is straight forward. We refer the reader
to [Bea09, CO93, Dat89, Bra84] for further references to SQL, relational algebra,
and their interconnection.

All sections in this chapter are our work. The translation to SQL queries has
been very briefly sketched in our work [NN11, NNS13].

61
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4.1 Grounding

Grounding of Markov logic networks can be efficiently implemented in RDBMS.
This section describes how SQL queries are constructed to compute all groundings
efficiently. We formulate the SQL queries in a way that query optimization tech-
niques of state-of-the-art RDMS systems can greatly improve the execution speed
by optimizing the join order. The underlying theory for this section is discussed in
Section 2.3.2.

As a prerequisite, we first have to encode evidence of observed predicates
in relational database tables. Evidence of hidden predicates is filtered as a post-
processing step afterwards. Furthermore, evidence of hidden axioms are implicitly
considered when finding the violated constraints for cutting plane inference. We
refer the reader to the next section for details.

For every observed predicate p,/n with arity n, we create a table P, with n
columns. The name of the table equals the name of the observed predicate. We
name the columns fieldoO, ..., field (n—1). All atoms p,(t1,...,t,) for the
observed predicate p, which are {rue due to evidence are stored in one row each.
Each term ¢; is stored in a separate cell in the ¢th column. Thus, all atoms that are
not stored in table P, are false due to given evidence.

Then, we construct one SQL query per first-order formula f. For a first-order
formula f let L} (f) be the set of observed atoms occurring unnegated in f and
L (f) be the set of observed atoms occurring negated in f. Furthermore, we define
sets S, for each variable v occurring in f. Initially, those sets are empty. During
the following algorithm, these sets will be used to store the position of variable v
within predicates.

Algorithm 3 constructs the SQL statement for one first order formula f. The
SQL query performs an inner join for every negated atom (line 9) and subtracts the
evidence for every positive atom (line 11 and 12). Since subtracting tables is not
a standard feature in SQL, we perform a left join with the table P, and keep only
those values of P, which are null [CO93]. On a first glimpse, the reader might
think this should be the other way round. However, we implicitly transform the

formula f from
Veve

where ¢° represents an observed literal and ¢ a hidden literal to the form

N0 =\ "

Thus, we have a conjunction of all negated observed literals which result in the
described join strategy.

The algorithm needs at last one negated atom to be able to build the FROM
clause (line 7). More precisely, it requires a negated atom for every variable v
which only occurs in non-negated observed atoms. For every such variable v, we
thus add a dummy literal —p(v) to f in a pre-processing step. The assigned type
of variable v in the new literal —p(v) is inherited. Note that if v is typed, the set of
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Algorithm 3 SQL query for computing the grounding of formula f.

Input: f: afirst order clause

Input: L (f), L;(f): set of observed atoms occurring negated / unnegated in f
Output: sqL a SQL statement for grounding formula f

GETSQLFORGROUNDING
1. S, < @ for every variable v in f.
2: FROM « '/
3: WHERE < ‘WHERE '/
4: 1«0
5: for every atom p, in L, (f)u L} (f) with variables vy, ..., v, do
6: if atom p, in L, (f) and i = 0 then
7: FROM < FROM + ' FROM P, x0 '
8: elseif atom p, in L, (f) and i > 0 then
o: FROM <« FROM + ' INNER JOIN P, xi ON '/
10:  elseif atom p, in L} (f) then
11: FROM < FROM + ' LEFT JOIN P, xi ON '/
12: WHERE < WHERE + ‘x7.field0 IS NULL’ [+ ‘AND']
13:  end if
14:  for every variable v; € {vy,..., v, } do
15: for every element s in S,,; do
16: FROM <« FROM + ‘xi.fieldj = s ' [+ ‘AND’]
17: end for
18: add ‘xi.fieldj’ toset Sy,
19:  end for
200 1< 1+1
21: end for

22: SELECT <« ‘SELECT’

23: for every variable v in f do

24:  SELECT < SELECT+ ‘s ' [+ ', '] whereseS,
25: end for

26: SQL < SELECT + FROM + WHERE
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substitutable constants of v may be smaller than the Herbrand universe. We refer
to Section 2.3 for a definition of types.

In the second part of the algorithm (line 14-19) we construct the join predicates.
Intuitively, we introduce a join predicate for every pair of equal variables. This is
done by storing the table and field ids of each prior occurrence of variable v; in
a set S,,. If we find a new occurrence of variable v; we add a join predicate for
every entry in S,; (line 15-17).

In this way, the SQL query contains a the maximal number of join predicates
which provides the relational database management system with maximal informa-
tion about the interlinking between joins. This information is efficiently used by
RDBMS for optimizing the join order.

The SELECT part includes every variable v of formula f. For its construction
we can take a random element s from S, as representation for variable v (line 23-
24). In the end, we put the constructed query parts together to the final SQL query
(line 25).

For the sake of clarity, we used the notation [+ ‘AND’ ] twice in the algo-
rithm. It means that the string *AND’ is only attached if we did not reach the last
element of the list. This prevents that the where statement (line 12) and the join
predicates (line 16) end with the command ‘AND’, respectively. The notation [+
*, "1 works analogous. Please note, that for reasons of readability Algorithm 3
does not support constants within literals like friend(“Anna”,z). However, the
required extension of the algorithm is trivial, since we just have to include them in
the where clause.

Example 15 reuses the smokers example to explain the above definitions. The
SQL query is relatively simple, since we only have one observed predicate in the
example formula. In the next section, we will extend the current query formulation
to find violated constraints within a cutting plane inference loop.

Example 15. Let us revisit the friends & smokers MLN from Example 3. Let us

define the predicate friends as observed predicate and smokes as hidden predicate.

Let us assume we have given the evidence: friends(Anna, Bob), friends(Bob, Anna)
Then, we initially create the following table:

friends
field0 fieldl
Anna Bob
Bob Anna

Then, the SQL query to ground the formula
—smokes(x) v —friends(z,y) v smokes(y)

is the following
SELECT x0.field0 as x, x0.fieldl as y FROM friends x0
and has the result
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X Yy
Anna Bob
Bob Anna

which translates to the ground clauses

—smokes(Anna) v smokes(Bob) and -smokes(Bob) v smokes(Anna)

4.2 Finding Violated Constraints

In the previous section, we showed how RDBMS can be efficiently used for ground-
ing Markov logic networks. Now, we get one step further and compute the violated
constraints required for cutting plane inference. We refer to Section 3.3 for a de-
tailed discussion of cutting plane inference. For this purpose, we will extend the
SQL formulation of the grounding in a way that it returns only the violated con-
straints.

First, we need to create additional tables in which we store the temporary so-
lution of the last CPI iteration. As we did for the observed predicates before, we
now create a table P}, with n columns for every hidden predicate py,/n with arity
n. The name of the table equals the name of the hidden predicate. Again, we name
the columns £ieldo, .., field (n-1). Let H®) be the current intermediate so-
lution of iteration ¢. Then, we store all atoms py, (¢1, ..., t, ) of all predicates which
are true in the intermediate solution H® in the respective table P,. Each term
t; is stored in a separate cell in the ith column. Thus, all atoms which are not
stored in table P, are false in the intermediate solution H (1), Please note, that the
intermediate solution also contains the evidence axioms for the hidden predicates,
which are thus implicitly included in the query.

As a prerequisite, we need to define the negated and non-negated set of hidden
atoms. For a first-order formula f let L; ( f) be the set of hidden atoms occurring
unnegated in f and L, (f) be the set of hidden atoms occurring negated in f.

In our SQL query, we want to query the set Gnew Which contains only the new
violated constraints of the current CPI iteration. Thus, we need to subtract the
violated constraints Gy p from the previous rounds. This is done by introducing
a table F' for every first order formula f. The columns wvy,...,v,, of table F' are
representing all distinct variables of formula f.

We first discuss how to retrieve violated constraints if the first order formula
has a positive weight w > 0 and afterwards we turn our attention to the more
complex case of negative weights w < 0. Finally, we examine the case of positive
and negative weights of conjunctions.

Clauses With Positive Weights

If the clause f = ¢ v ... Vv £, with hidden literals ¢; has a positive weight w > 0
all violated ground clauses are defined as the set of all ground clauses where — f =
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Algorithm 4 Algorithm for generating the SQL query for finding the violated con-
straints of a first order formula with positive weights.

Input: f: afirst order formula

Input: L} (f), L, (f): set of observed atoms occurring negated / unnegated in f
Input: L;(f), L, (f): set of hidden atoms occurring negated / unnegated in f
Output: sQL a SQL statement for grounding formula f

GETSQLFORCPIPOSWEIGHT

1: execute GETSQLFORGROUNDING(f, L} (f), L, (f)). Keep all internal vari-
ables initialized.

2: for every atom pp, in L, (f) u L; (f) with variables vy, ..., v,, do

3. if atom py in L, (f) and i > O then

4 FROM < FROM + ' INNER JOIN P xi ON '

5. elseif atom py, in L} (f) then

6: FROM < FROM + ' LEFT JOIN P, xi ON '/

7 WHERE < WHERE + ‘x7.field0 IS NULL’ + ‘AND’

8 end if

9:  for every variable v; € {v1,...,v,} do

10: for every element s in SUJ. do

11: FROM < FROM + ‘x%.fieldj = s / [+ ‘AND’]

12: end for

13: add ‘xi.fieldj’ toset Sy,

14:  end for

15 1< i+1

16: end for

17: FROM < FROM + ' LEFT JOIN F' £ ON '

18: WHERE < WHERE + ‘f.v IS NULL’ where v is any variable in f

19: for every variable v in f do

20:  for every element s in S, do

21: FROM < FROM + ‘f.v = s ' [+ ‘AND’]
22:  end for
23: end for

24: SQL <« SELECT + FROM + WHERE
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-1 A ... A =f, holds in the current intermediate solution H ®), Since - f consists
of conjunctions of literals, we can utilize SQL joins with the tables in which the
intermediate solution is stored to retrieve all ground clauses.

Algorithm 4 constructs the SQL query for computing the violated constraints.
Itis directly based on Algorithm 3 and extends the computed SQL snippets SELECT,
FROM, and WHERE. Thus, we take the final strings of those SQL snippets from
Algorithm 3 as initial values for Algorithm 4 (line 1). Furthermore, we also take
the final content of the sets S, for each variable v and the value of variable ¢ of
Algorithm 3 as input for Algorithm 4.

For retrieving every violated constraints we implicitly transfer the formula f
to - f, turning the disjunction of literals to conjunction of the respective negated
literals. Thus, in case of a (originally) negated literal p;, we perform an inner join
on its intermediate solution table P, (line 4). In case of a non-negated literal, we
subtract its respective table P}, by performing a left join on P}, and keep only those
values of P, which are null (line 6-7).

In the second part of the algorithm (line 9-14) we construct the join predicates.
This is exactly the same as in Algorithm 3. Intuitively, we introduce a join predicate
for every pair of equal variables. This is done by storing the table and field ids of
each prior occurrence of variable v; in a set Svj. Then, if we find a new occurrence
of variable v; we add a join predicate for every entry in Sy, (line 10-12).

The third part of the algorithm (line 17-23) ensures that we only get the new
violated constraints. Thus, we subtract table ' which contains the violated con-
straints of formula f found in previous iteration (line 17-18). In line 19-23 we then
build the joint predicates for table F' analogous to line 9-14.

As in Algorithm 3, we used the notation [+ ‘AND’ ] in line 11 and line 21
meaning that the join predicate items are connected with the string *AND’ but
must not end with it.

Example 16 illustrates Algorithm 4 and its requirements. After query execu-
tion, the results are then directly used to build ILP constraints and are stored in the
respective table F' for duplicate detection in the next iteration.

Example 16. Let us revisit Example 15 from the last section. We are interested in
the SQL query for finding the violated constraints for the first-order formula

f1:= —smokes(x) v —friends(z,y) v smokes(y).

Additionally to the existing friends table, we now construct a smokes table
for the hidden predicate smokes with one column field0. We assume that the
intermediate solution H(®) in iteration t = 0 contains smokes(Anna), which is
implicitly the evidence for the hidden predicate smokes. The evidence is put into the
smokes table. Furthermore, we create a table £1 storing all previously violated
constraints for duplicate detection. Since we are in the first iteration, table £1 has
no entries yet. In summary, we now have the following tables:
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friends smokes £l
field0 fieldl fieldO X y
Anna Bob Anna
Bob Anna
Then, the SQL query for finding the violated constraints of formula f1 is the fol-

lowing.

SELECT x0.field0 as x, x0.fieldl as y FROM friends x0
INNER JOIN smokes x1 ON x1.field0 = x0.field0

LEFT JOIN smokes x2 ON x2.field0 = x0.fieldl

LEFT JOIN f1 f ON f.y = x0.fieldl AND f.x = x0.field0
AND f.x = x1.field0

WHERFE x2.field0 IS NULL AND f.y IS NULL

and has the result

X Yy
Anna Bob

which translates to the ground clause

—smokes(Anna) v smokes(Bob)

Algorithm 5 Algorithm for generating the SQL query for finding the violated con-
straints of a first order formula with negative weights.

Input: f: afirst order clause

Output: sQL a SQL statement for grounding formula f

GETSQLFORCPINEGWEIGHT

—

1: f <« formula consisting of all observed literals of f.
2: £yq < NULL
3: SQL <« '/
4: for every hidden literal ¢ in f do
5. if ;5 #+ NULL then negate ¢, in fend if
6 Add/lto f.
7: f « fwhere each hidden literal ¢ is negated.
8:  SQL <« SQL + GETSQLFORCPIPOSWEIGHT(f) [+ ¥ UNION ALL ']
9: Lojg <L
10: end for

Clauses With Negative Weights

In case of negative weights w < 0, the query for retrieving all violated constraints
is more complex. Assume that we have a first order clause f with weight w < 0 of
the form

f=bliv...v{,
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f f
{3
14 " ~ls 14
1 ZS 1
—ls 7,
£2 fz; —|€1 A 52
—|£1 / 63 —|£1 A —\62 N 63
I N not violated

Table 4.1: An example for finding violated constraints of a first order formula
f =101V £y v {3 with negative weight.

with either non-negated or negated hidden literals ¢;. For each cutting plane infer-
ence iteration we then have to include every ground clause except those for which
—f ==fy A...A =L, holds in the current intermediate solution H ®),

The SQL query to retrieve all ground clauses but those for which - f holds
in the current intermediate solution is a union of several join queries. Those join
queries can be constructed with Algorithm 4. Let f be the first order formula
with negative weight and let f be a first order formula which only consists of the
observed literals of f. Then, the query is constructed as described in Algorithm 5.

The algorithm can be explained best on a generic example. Let us assume we
have the first-order formula f := £1Vv /o Vv {3 consisting of three hidden literals ¢;. We
now apply Algorithm 5 on f. Since this formula has 3 literals, the loop (line 4-10)
is executed three times. In the first iteration we obtain f = ¢;. Thus, Algorithm 4
is started with f = —/; (line 8). We have to negate fin line 7 because Algorithm 4
computes the SQL query for the negated formula. In the second iteration, we
receive f = -l A €2 and in the last iteration we get f = =l A =ly A5, If we
union the formulas f over all three iterations, we obtain every grounding except
for —f = =1 A =f2 A ~f3 which is exactly what we intended. Table 4.1 shows the
different sub-formulas fwhich are generated with respect to its coverage of f.

Conjunctions

Finding the violated constraints for weighted conjunctions of the form /1 A ... A4,
is based on the algorithms for clauses.

If the weight of the conjunction is positive w > 0, the violated constraints are
determined with =(¢1 A...ALy) = =l1 V...V —=L,. Thus, Algorithm 5 can be reused
with input formula f = -6 v ...V ={,.

In case of negative weights w < 0, we have to add an ILP constraint within
a CPI iteration, if the current solution entails 1 A ... A £,,. Thus, we can reuse
Algorithm 4 for clauses with positive weights.

We can conclude that performing cutting plane inference for clauses with posi-
tive weights is usually more efficient than for to clauses with negative weights since
the number of violated ground clauses is often larger for the latter case. The oppo-
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weight
w >0 w<0
more efficient | less efficient
Algorithm 4 Algorithm 5
conjunction | less efficient | more efficient
of literals Algorithm 5 Algorithm 4

clause

Table 4.2: A summary for finding violated constraints with RDBMS. We recapit-
ulate algorithms and efficiency for clauses and conjunction of literals with positive
and negative weights.

site holds for weighted conjunctions. Here, conjunctions with negative weights are
usually more efficient than conjunctions with positive weights. Table 4.2 summa-
rizes these findings.

4.3 Computation of Counting Features

A key component within our CPA approach is the decision which literals should
be aggregated to a counting constraint. In Section 3.4.2 we already discussed the
computation of counting features on an abstract level. We argued that exact ap-
proaches, which find the optimal aggregation strategy, are not feasible, because
their runtime dominates the runtime savings due to the aggregation. Thus, we de-
scribed a greedy approach which was inspired by join order optimization strategies
from relational databases. For readability, we now recapitulate the core component
of the greedy algorithm of Section 3.4.2:

“The algorithm stores, for each first-order clause, the violated groundings g
in a table with n columns where each column represents one literal position of
the clause. For each column k, we compute the set of distinct rows Ry, of the
table that results from the projection onto the columns {1,...,n} ~ {k}. Let k* =
argming{|Ry|} be the minimal number of distinct entries of Ry, for all k. The
groundings are then aggregated with respect to the rows in Ryx.

An efficient way to determine the number | Ry| of distinct entries Ry, is to use a
SELECT COUNT SQL query. Please note, that we implemented the computation
of counting features not with RDBMS. For more details and justification, we refer
the interested reader to Section 6.1. Let sQL be the SQL query to compute the
(violated) groundings for first order clause f. This query is retrieved from Algo-
rithm 3, Algorithm 4, or Algorithm 5 depending whether the CPI method is applied
or not and whether the weight of the formula is negative or positive. We now delete
the SELECT part of the query so that sQL starts with the string FROM. Then, we
retrieve the number of distinct entries | Rx| with the following query

‘SELECT COUNT (x) FROM (' +

‘SELECT DISTINCT {v(¢)lie{l,...n}~{k}} " +sQL+ )’

where the ¢;s are the hidden literals occurring in the first-order clause f. Literal
/), is not selected. Method v(¥;) returns a reference to a column for all variables oc-
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curring in ¢;. We chose a nested query, since for several RMDBS implementations
anested COUNT query shows a higher performance than its non-nested alternative.
Example 17 constructs a sample query. We now construct queries to compute every
|Rk| and determine the optimal d with d = argmin, {| Ry}

Example 17. We recapitulate Example 16. Within this example we presented the
SQOL query for retrieving the violated constraints of formula

f1:= —smokes(x) v —friends(z,y) v smokes(y).

We now want to determine the aggregation strategy according to our greedy algo-
rithm. Since the predicate friends is defined to be observed, n = 2 hidden literals
01 = smokes(x) and {5 = smokes(y) remain. After removing the current SELECT
part, variable sSQL has the value
SQL ;= FROM friends x0
INNER JOIN smokes x1 ON x1.field0 = x0.field0
LEFT JOIN smokes x2 ON x2.field0 = x0.fieldl
LEFT JOIN f1 f ON f.y = x0.fieldl AND f.x = x0.field0
AND f.x = x1.field0
WHERE x2.field0 IS NULL AND f.y IS NULL
We now provide some examples that illustrate the return values of method v ().
We obtain v(smokes(x)) = x0. field0 because x0. field0 is a reference to a
column of variable x. Another possible value for v(smokes(x)) is x1.fieldO.
We can choose randomly between those values. Please note that if the literal con-
tains more than one distinct variable, more than one reference is returned.
Finally, the query for computing the number of distinct entries |Rs| (including
literal —smokes(x) and excluding literal smokes(y)) is the following:
‘SELECT COUNT (#*) FROM (SELECT DISTINCT x0.field0O 7 + SQL
+ )

The algorithm can be optimized by storing the result of the original SQL query
in a temporary table and query this temporary table with the above COUNT queries
instead of recomputing it every time. Our experiments showed that when sSQL is
complex, the execution time of the queries for determining d was reduced when re-
sults were pre-computed. However, if the result of the original query was large, we
noticed a performance decrease when we pre-stored the result. Overall, runtimes
of both strategies were comparable.
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Chapter 5

Related Work

Our main contribution in Part I is a new aggregation method for the translation of
MAP queries to ILPs. With the help of this translation, we make symmetries ex-
plicit to state-of-the-art ILP solvers. Section 5.1 summarizes over several so-called
lifted inference approaches, which also detects symmetries in statistical relational
languages. However, those approaches require large sets of indistinguishable ob-
jects which is usually not given in real-world networks.

In their main Markov logic publication, Richardson and Domingos [RD06]
proposed MAXWALKSAT for solving MAP-queries. MAXWALKSAT is an ap-
proximate random walk algorithm for solving weighted SAT problems [KSJ97].
Section 5.2 explains the algorithm and its most important extensions in detail.

MAXWALKSAT is the standard inference algorithm for MAP inference imple-
mented in the most established MLN engine ALCHEMY [DJK*]. More recently,
the MLN engine TUFFY [NRDS11] used relational database management systems
(RMDBS) to ground Markov logic networks more efficiently. TUFFY also runs
MAXWALKSAT on the ground model. The MLN system MARKOV THEBEAST
basically implements Riedel’s CPI inference algorithm [Rie08] presented in Sec-
tion 3.1 and Section 3.3. Section 5.3 discusses all three systems in more detail.

Section 5.1 has been summarized from many different publications within the
area of lifted inference. The initial hair color example is taken from [Poo03].
Some text snippets might be identical with the related work section of our publi-
cation [NNS13]. However, our summary in this thesis is much more exhaustive.
Section 5.2 is a summary originated from many sources including [KSJ97, RD06,
NRDSI11, SD0O6b]. The weighted SAT algorithm (Algorithm 6) is a combination
of the algorithm presented in [NRDS11, KSJ97] with small corrections. The sum-
mary about state-of-the-art Markov logic systems is based on the respective pub-
lications of the systems [Rie08, NRDS11], information on the systems’ websites,
and personal experience gained while conducting the experiments.
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5.1 Lifted Inference

Lifted inference performs inference directly on the first-order logic clauses instead
of operating on the ground clauses. It exploits symmetries in the probabilistic
models resulting from statistical relational languages. The benefit of investigating
symmetries on the first-order logic level is that full grounding of Markov logic
network can be avoided.

In lifted inference variables are assumed to be random variables over the ground-
ings. An atom hairColor(z) could for example have the probability of 0.01 for = =
purple, meaning that one per-cent of the groundings of = have hairColor(purple).
Thus, lifted inference treats sets of indistinguishable objects as one. If we have
many large sets of indistinguishable objects, lifted inference can yield exponential
speed-ups over traditional approaches [Poo03].

As the name implies, the main principle of lifted inference is to take an existing
probabilistic inference algorithm like the ones we presented in Section 2.1.2 and lift
it by carrying out inference over groups of random variables that behave similarly
during the algorithm’s execution. In other words, these algorithms are often lifted
version of standard (probabilistic) inference algorithms [JGMS10].

In the following, we first discuss the more established lifted inference algo-
rithms for marginal inference and then turn to the more related work by summariz-
ing the work dealing with lifted MAP inference. Finally, we will briefly introduce
the recent idea of lifting linear programming.

Lifted Marginal Inference The field of lifted marginal inference is better ex-
plored than lifted MAP inference. Thus, we first briefly sketch historically impor-
tant work in this field although lifted MAP inference is more closely related to our
novel CPA approach.

The first lifted marginal inference approach is based on first-order variable
elimination (FOVE) [Poo03]. They provide an exact inference approach in which
they combine first order resolution with variable elimination. Analogous to substi-
tution in theorem proving, they introduce a splitting operation, in which they are
not only concerned about the instances created, but also about the instances left
over. Milch et al. [MZK*08] further improved the FOVE algorithm by introducing
counting formulas to compactly represent interchangeability within large poten-
tials during variable elimination. Another improvement is made by Kirsynski et
al. [KP09] who introduced a new data structure called aggregation parfactors.

Singla and Domingos [SDOS8] provide the first lifted inference algorithm for
exact and loopy belief propagation. They create a set of supernodes and super-
features, corresponding to sets of nodes and features that are indistinguishable
given the evidence, and apply belief propagation to this network. Later, Kersting
et al. [KANO9] provide counting belief propagation as a generalization of Singla
and Domingos lifted belief propagation algorithm. Their approach can be applied
to any factor graph without necessarily knowing the corresponding first-order for-
mulas. In a first step they compute a compressed factor graph. This is done by sim-
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ulating belief propagation while tracking which nodes and factors send the same
messages. If they sent the same messages the corresponding nodes and factors
are grouped together. In a second step, they perform belief propagation on the
compressed factor graph.

Another branch of literature is lifted knowledge compilation and theorem prov-
ing [dB11, dBTM* 11, GD12] which is inspired by logical resolution where lifted
inference is commonly performed. The algorithm of [GD12] exploits the symme-
tries within the logical structure of the first order model which allows more com-
putation to be done on the first-order level. This is done by transferring the first-
order probabilistic inference task to a first-order weighted model counting problem.
In weighted model counting we determine the sum of the weights that satisfies a
knowledge base. In their experiments they show that they can identify and lift
additional structures which were not discovered by Milch et al. [MZK*08]. In
[dBTM*11, dB11] they also exploit model counting for lifted inference and focus
on compiling circuits. Furthermore, they showed that some existing lifted infer-
ence approaches have a model-theoretic counterpart. Their definition of domain
lifted inference as a class of problems in which inference must run in polynomial
time helps to characterize the classes of probabilistic models to which lifted infer-
ence applies. Gogate and Domingos [GD10] propose a lifted version of AND/OR
search which is closely related to [dBTM*11] except that the latter one supports
caching and introduced additional operators.

Recently, lifted Markov chain Monte Carlo [Niel2, VG12] approaches arose
from classical particle based sampling methods. Niepert [Niel2] constructs a
colored undirected graph whose automorphism groups are equivalent to the per-
mutation groups. These permutation groups are then used to build an orbital
Markov chain on which sampling is performed. He shows that it converges faster
than traditional MCMC sampling in both experiments and theory. Venugopal and
Gogates [VG12] propose an algorithm which explicitly considers the structure of
the corresponding first-order logic clauses. Their main idea is to partition the first-
order atoms in the model into disjoint clusters in a special way. Given such a set
of clusters, they transfer the Gibbs sampling to a message passing algorithm. Each
message from a sender to a receiving cluster is a truth assignment to all ground
atoms that are in the Markov blanket of the receiving cluster.

While there are several other approaches to lifted inference such as bi-simula-
tion based approximate inference [SDGO09] all those approaches are limited to lift
marginal inference and can not be applied to MAP inference in a straight forward
way.

Lifted MAP Inference To the best of our knowledge Braz et al. [dASBARO6]
was the first work which explicitly focus on lifted MAP inference. They extended
the first-order variable elimination algorithm of Pole [Poo03] by introducing lifted
assignments which are assignments over groups of indistinguishable random vari-
ables. They distinguish between universally quantified lifted assignments where
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the assignment is valid for all values of a set of logical variables and existentially
quantified lifted assignments where a specific number of substitutions make a sub-
formula true. Furthermore, they specify a new operator called mpe replacing the
maximization function in the non-lifted MAP inference. The mpe operator not
only returns the maximum value of the function but also the assignments which
lead to this maximum value. Since the mpe operator is decomposable they can
then replace the sum operator in their modified FOVE Algorithm [Poo03] with the
mpe operator.

Apsel and Brafman [AB12] introduced an approach for MAP inference that
takes advantage of uniform assignments. Uniform assignments are groups of ran-
dom variables that have identical assignments in some intermediate solutions. These
uniform assignments can then be replaced by a single representative which simpli-
fies the model so that the MAP state of the compressed model is identical to the
MAP state of the original model. In particular, they define new operators which
enables to analyze the model’s structure regardless of domain size. Their simplifi-
cation method can be run as preprocessing step. Unfortunately, no code is publicly
available.

Automorphism groups of graphical models were used to lift variational ap-
proximations of MAP inference [BHR13]. Within a group they summarized ran-
dom variables and feature functions with identical marginals and expectations. We
attempted to compute automorphism groups as an alternative method for aggregat-
ing constraints but experiments showed that calling a graph automorphism algo-
rithm in each CPI iteration dominated the overall solving time. The work of Jha
et al. [JGMS10] focus on transforming MLNs with a set of transformation rules
to simpler ones. However, their approach is restricted to a small subset of rules in
which for instance transitivity can not be processed. For example, their approach
excludes models that contain a clause where the same predicate appears more than
once. Furthermore, it only works if the inference can be done fully on the lifted
level.

Lifted Linear Programs Recently, some ideas of lifting linear programs were
proposed. Mlandenov et al. [MAK12] computed approximate solutions to linear
programs by reducing the LP problem to a pairwise Markov random field over
Gaussians and applying lifted Gaussian belief propagation. Their work is build
on multi-evidence lifting [AKS11]. In multi-evidence lifting, ground networks for
all inference tasks has to be constructed. On the union of these networks a color
passing algorithm computes the joint lifted network. With the help of this network
symmetries across inference tasks are exploited. Finally, a modified message pass-
ing algorithm is run on the joint network. Mlandenov et al. [MAK12] improved the
idea of multi-evidence lifting [AKS11] in a way that it can be computed by standard
linear program solvers and that it does not have to compute lifted networks in each
iteration of the interior-point method again. Similar to the approach of [BHR13]
lifted linear programming can be used to approximate LP relaxations [Asa06] of
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the MAP ILP.

General Disadvantages and Contribution The main general disadvantage in
lifted inference lays in the fact that MLNs from real world problems are often
highly connected. They also often contain many evidence axioms and many vari-
ables per formula. In other words, the overall number of sets of indistinguishable
objects and the sets themselves are very small. In these types of MLNGs lifted infer-
ence shows no better performance than standard inference approaches.

In many lifted inference papers, they evaluate their approaches with datasets
where they artificially populate a relatively simple model with many instances
which then results in large sets of indistinguishable objects. Our following ex-
periments are based on real-world datasets where no artificial instances are neither
populated nor added.

Contrary to previous work, we use a more compact ILP formulation with a
one-to-one correspondence between ground clauses and linear constraints, tightly
integrates the CPI and the CPA approach, and estimates the optimal aggregation
scheme avoiding a costly exact computation in each CPI iteration. Moreover, con-
trary to lifted inference approaches operating solely on the first-order level, we
exploit evidence-induced local symmetries on the ground level.

5.2 Inference in Markov Logic With Weighted SAT Algo-
rithms

The state-of-the art algorithm of solving maximum a-posteriori queries in Markov
logic is MAXWALKSAT. The original algorithm [KSJ97] was developed to solve
general problems with soft and hard constraints and was proposed for ML by
Richardson and Domingos [RD06]. Historically, it was adapted from the WALK-
SAT [SKC94] algorithm which is one of the fastest and robust algorithms for solv-
ing hard formulas in conjunctive normal form. The goal of the algorithm is to
maximize the objective of a truth assignment. The objective is calculated by sum-
ming up the weight of all satisfied clauses in the current truth assignment ¢*.

The pseudo-code of MAXWALKSAT is displayed in Algorithm 6. As input it
needs a set of weighted clauses and a set of atoms occurring in these clauses. Fur-
thermore, the user can specify several parameters including MAXFLIPS, MAXTRIES,
and ¢. The meaning of these parameters are explained below.

The algorithm starts with a random truth assignment to the set of atoms. Be-
ginning with these assignment, it picks one violated ground clause g € G randomly.
Then, it either flips a random atom in g with probability ¢ or it flips the atom in
q which maximizes the objective. Flipping an axiom means to remove it from the
truth assignment if contained or add it to the truth assignment if not contained. If
the new objective after the flip is larger than the old one, we keep g flipped. Oth-
erwise, we do not flip g and leave everything unchanged. This process is repeated
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Algorithm 6 MAXWALKSAT algorithm for solving MAP queries in Markov logic
[NRDS11, KSJ97].

Input: G: a set of weighted ground clauses

Input: A: a set of atoms

Input: MAXFLIPS, MAXTRIES, ¢

Output: ¢* a truth assignment to A

MAXWALKSAT

I: OBJGLOBAL <« +00

2: for 1 to MAXTRIES do

3 OBJ « 400

4: 0 <« arandom truth assignment to .4

5:  for 1 to MAXFLIPs do

6: get arandom g € G that is violated.

7 RAND <« a random float number between 0 and 1.

8 if RAND < ¢ then

9: flip a random atom a in g and compute the objective OBJITEMP.
10: else

11: flip an atom a in g so that the objective OBITEMP increases most.
12: end if

13: if OBJTEMP > 0BJ then

14: OBJ < OBJTEMP

15: else

16: reverse the flip of a.

17: end if

18:  end for
19:  if oBJ > 0BJGLOBAL then o* < o, 0BIGLOBAL <« 0OBJ end if
20: end for
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MaXFLIPS times. In order to avoid running in local maxima, we execute the algo-
rithm MAXTRIES times, each time starting with a new truth assignment. Finally,
the truth assignment with the highest objective is returned.

One of the main drawbacks of the MAXWALKSAT algorithm is that it requires
a full grounding of the current Markov logic network. Even for medium sized
problems the full grounding can become very large and it’s computation is time and
memory consuming. LAZYSAT [SDO06b] is an optimized version of MAXWALK-
SAT which only loads ground clauses when they are needed. Instead of computing
the total objective, it computes the change of the objective when flipping axiom
a. Furthermore, it maintains lists containing the active atoms and active ground
clauses. Initially, these lists contain all atoms which are not satisfied by the cur-
rent truth assignment and all clauses activated by those axioms, respectively. An
axiom or ground clause is active if it is contained in the the active axioms or active
ground clauses list, respectively. By adding an axiom or a ground clause to the cor-
responding list, we activate it. Every time we flip an axiom a which is not activated
we activate a and the clauses in which a occurs. Consequently, there will remain
axioms and ground clauses in the end, which were never activated. The number of
activated axioms and clauses raises with the number of flips. In their experiments
they showed that LAZYSAT reduces the required memory significantly, because a
lower number of axioms and clauses needed to be loaded. However, they could
not achieve a significant lower runtime compared to MAXWALKSAT. We avoid
complete grounding for many real-world problems because we apply cutting plane
inference [Rie08].

Riedel [Rie08] employed relational database systems to speed up grounding.
Later, Niu et al. [NRDS11] copied this idea and showed in their experiments signif-
icant performance and memory savings. Thus, we also employ relational database
systems for grounding.

Another drawback of MAXWALKSAT and it’s variants is the missing possibil-
ity to measure the quality of the result [NRDS11]. Even if it achieved the optimal
result, there is no possibility to notice this. Since we exploit ILP solvers we inherit
the gap parameter which specifies an approximate solution’s worst-case precision.

5.3 State-of-the-art Markov Logic Systems

In this section we will describe existing systems which solve Markov logic net-
works. In the following comparison, we are especially interested in the systems’
algorithms for solving MAP queries. Most of the discussed systems will be used
to compare them with our novel Markov logic engine in Section 6.

The first system which was developed for solving Markov logic networks was
ALCHEMY'. The first version was released in 2006. Very recently, ALCHEMY2?
has been released. The main difference compared to the previous version is the

'http://alchemy.cs.washington.edu/
*http://code.google.com/p/alchemy-2/
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implementation of lifted inference algorithms. However, the implemented lifted
inference algorithms are only applicable for marginal inference. There is no im-
plementation for lifted inference for MAP queries yet. Thus, we will compare our
system with ALCHEMY and not ALCHEMY2. For solving MAP queries ALCHEMY
and ALCHEMY?2 both implement MAXWALKSAT and the more memory efficient
LAZYSAT. Those algorithms have been discussed in dept in Section 5.2

Historically, the next MLN system after ALCHEMY was MARKOV THEBEAST?.
The system was developed between 2007 and 2009 by Riedel [Rie08, Rie09]. It
was the first MLN system which exploits databases for grounding. Riedel reim-
plemented the database language D [DD95, Rie09]. MAP queries are solved with
cutting plane inference. We refer to Section 3.3 for an in-dept discussion of the
CPI algorithm. Furthermore, it translates ground clauses into ILP constraints as
described in Section 3.1. Compared with our translation, Riedel’s translation re-
quires more ILP constraints per soft ground clause and does not exploit symmetries
within constraints. The original version of MARKOV THEBEAST implements a
comparable slow ILP solver. For fair runtime comparisons in the following experi-
mental section, we implemented an interface to GUROBI. GUROBI is currently the
fastest available ILP solver and is also used in our novel MLN engine. We forward
to Section 6.1 for details.

Recently, the MLN system TUFFY [NRDS11]* was developed. The newest
available version which we will use in our experiments was released in December
2012. They use relational databases for solving MLNSs like first intended by Riedel.
They also use MAXWALKSAT as MAP inference algorithm. The MLN engines
ALCHEMY and TUFFY have a parameter specifying the number of MAXWALK-
SAT [KSJ97] flips.

ALCHEMY and TUFFY perform several transformations on the set of input for-
mulas so as to obtain clauses with positive weights only [DLK*08, NRDS11].
While we are able to process arbitrary formulas with positive and negative weights
under the original Markov logic semantics, we performed the same transformations
to achieve comparability to the existing MLN engines’.

Recently, a general framework for statistical relational learning called KCre-
ator [TFL*10] has been developed which focus on the easy usability and interface
designs [KIBFT11]. The MAP inference algorithm uses the Alchemy implemen-
tation directly for inference. Since it focuses more on interface designs and inte-
gration of many statistical relational languages but not on fast inference algorithms
we did not include it in our evaluation.

*http://code.google.com/p/thebeast

*http://hazy.cs.wisc.edu/hazy/tuffy/download/

SThe formula transformation can be disabled by setting the parameter
simplify negative_weight_and_conjunction to false in our MLN engine’s configu-
ration file.



Chapter 6

Experiments

With the following experiments we assess the performance and effectiveness of
employing our CPA method and parallelization and answer research question Q3:

Q3 Does our new techniques reduce runtime and outperform existing Markov
logic systems with respect to runtime and quality of the results?

In this context, we compare our novel MLN system ROCKIT with the Markov logic
engines MARKOV THEBEAST, TUFFY, and ALCHEMY. We refer to Section 5.3
for a description of the mentioned MLN systems.

To that end, we first describe our Markov logic system ROCKIT in Section 6.1.
Then, we turn our attention to the used benchmarks in Section 6.2, discuss the ex-
perimental setup in Section 6.3, and present the experimental results in Section 6.4.

Some of the results have already been published in [NNS13], however we per-
formed more exhaustive experiments for this thesis. Some text passages, graphics,
and results are copied from our publication [NNS13]. In particular, we show that
runtime also decreases when we do not combine the CPA with the CPI method
but solely apply CPA without CPI. Furthermore, we indicate that the CPA algo-
rithm also aggregates more complex formulas containing at least two hidden pred-
icates. A shorter version of the technical details of ROCKIT has been published
in [NNS13].

6.1 Markov Logic Engine ROCKIT

We have implemented the previously presented concepts of CPA and CPI as well as
our algorithms for leveraging relational database management systems in a novel
Markov logic engine'. In this Chapter we dive a little bit deeper into some of it’s
components and state and explain our technology choices like the underlying ILP
solver and the used database system. In addition to the source-code of ROCKIT, a
documentation and installation instructions, we also provide an easy-to-use web-
service. The web-service features a web interface where users can upload MLNs

"http://code.google.com/p/rockit/

81


http://code.google.com/p/rockit/

82 CHAPTER 6. EXPERIMENTS

and compute MAP states”. Figure 6.1 provides a screenshot of the user interface.
Furthermore, programmers can integrate the MLN engine in their application via
existing REST interfaces.

D et e
computational services

Online Markov Logic Network (MLN) Solver

Welcome to the online interface of the Markov logic network solver rockIt. Rocklt selves maximum a-posteriori
queries formulated in Markov fogic networks. In rockIt you can define both, deterministic knowledge (hard
formulas) and probabilistic knowledge (soft formulas). We refer to hitps://code.google.com/o/rockit/ for further
informatior.

Run RockIt

input: ©file Ourl | Durchsuchen_

data: ©file Ourl | Durchsuchen_

qap: \ dafault E”

version: ‘ 0.1 (current version) E”
| add process |

Figure 6.1: Screenshot of the online web-interface of ROCKIT. Users can easily
solve their MLLNs without any configuration and installation effort.

ROCKIT utilizes the relational database management system MYSQL? for ef-
ficient computation of groundings and violated constraints for each CPI iteration.
We chose MYSQL because of the ability to define in-memory tables. As the name
implies, in-memory tables are stored on the main memory. If combined with hash
indexes the response times are much lower compared to tables which are stored on
hard disk memory.

We achieved further remarkable performance gains by optimizing the proce-
dure of inserting data into the tables. For up to 1000 records we formulate one
large INSERT statement including every record. For larger number of records, we
use the LOAD DATA functionality, where MYSQL reads data very efficiently from
a comma separated text file. In both techniques, hash indexes are only updated once
after all data has been inserted which makes them much faster than single INSERT
statements. The limit of 1000 records was determined experimentally.

The computation of the counting features was implemented in JAVA and not
with SQL queries as intended in Section 3.4.2. To that end, we use hash maps
to store all aggregated literals ¢; as values and all literals with respect to whom
we aggregated all /;’s as keys. During addition we check if some literals can be
omitted due to evidence. In the following, we compare the SQL and JAVA variant
and motivate our choice towards the JAVA implementation.

The user interface is available at http://executor.informatik.uni-mannheim.
de/systems/rockit/.
3http ://www.mysqgl.com/products/community/
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The JAVA variant and the SQL variant presented in Section 3.4.2 both use hash
technology to determine the &£ which results in the smallest number of counting
constraints. The difference between the variants lies in evidence consideration. In
order to explain this, we first have to distinguish between two types of evidence
consideration. In type (a) whole clauses can be omitted due to evidence and in type
(b) single literals within a clause can be dropped due to evidence. If every literal
is dropped, we can omit the whole clause. For more formal definitions we refer to
Section 2.3.2. Type (a) is implicitly included in the SQL queries of Algorithm 4
and Algorithm 5. Thus, evidence consideration of type (a) is considered in both the
SQL and the Java implementation. However, type (b) is only considered in the Java
implementation. There, we can check for evidence before we put them in the hash
map hyg. In the SQL implementation evidence of type (b) is not considered in the
decision of an optimal & since including it in SQL queries leads to complex queries
containing if conditions and having longer runtimes. We refer to Section 4.2 for
further details.

If evidence of type (b) is not considered it results in slower runtimes because
the number of resulting ILP constraints are larger and because the aggregation
strategy changes compared to considering evidence of type (b). Consequently, we
implemented the Java variant with evidence detection of type (b).

We use GUROBI* as ROCKIT’s internal ILP solver. According to Koch et
al. [KAA™11], who executed different ILP systems on standard ILP benchmarks,
GUROBI is currently the fastest available ILP solver. Furthermore, it parallelizes
the branch and bound algorithm and uses symmetry detection heuristics. For the
latter one, they implemented orbit branching [OLRS11, OLRS07] with further non-
published optimizations. We refer to Section 3.4.1 for a brief overview of symme-
try detection approaches. Furthermore, they offer a free academic license and a
frequent mailing list support. In ROCKIT we only initiate one ILP for each MAP
state computation. This is then enriched with additional violated constraints in ev-
ery cutting plane inference iteration. This requires much less execution time than
initiating a new ILP instance for every CPI iteration.

A typical input parameter of current ILP solvers like GUROBI is the integrality
gap parameter specifying an approximate solution’s worst-case precision. This
parameter provides the ILP solver with the maximum ratio between the objective
value of the integer program and its relaxation. Thus, it guarantees a particular
solution quality. Users of ROCKIT can set this gap parameter to values ranging
from 107! to 10719,

6.2 Benchmarks

We use the following established benchmark MLNs for empirical evaluation. As
these MLLNs have been used in several previous publications, we ensure compara-
bility to existing results.

4http ://www.gurobi.com/
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Entity Resolution (ER) Entity resolution is the problem of finding records which
belong to the same real-world entities. Singla and Domingos [SD06a] com-
bined several existing approaches for entity resolution. The benchmark they
created for their experiments consists of 10 predicates where 4 of them are
hidden predicates. In total there exist 7,720 formulas where 1,276 have a
weight which is not zero. It has 12,892 evidence atoms and the completely
grounded Markov logic network consists of 390,720 clauses.

Information Extraction (IE) In information extraction the task is to extract data-
base records from text or semi-structured sources. The benchmark is taken
from the experimental section of [PDO7]. In their work they performed the
segmentation of all records and entity resolution together in a single inte-
grated inference process. The benchmark has 18 predicates where 2 of them
are hidden. It has 1,024 formulas each of them having a weight not equal to
zero. Furthermore, we obtain 258,079 evidence axioms and 340,737 clauses
after a complete grounding.

Link Prediction (LP) This benchmark has been the first Markov logic bench-
mark which was created. It is used in the experimental section of the fa-
mous Markov logic publication [RD06]. It models the connections of differ-
ent activities from a university department with its faculty, staff, and stu-
dents [RDO6]. The task is then to find who is advised by whom. This
benchmark has only 1 hidden and 21 observed predicates and 24 formu-
las. Although the number of formulas is relatively small compared to other
benchmarks, the complexity of the formulas is comparable high. The LP
benchmark contains 1,031 evidence axioms and evolve to 354,587 clauses if
grounded.

Protein Interaction (PR) The protein interaction (PR) benchmark describes in-
teractions with proteins, enzymes, and phenotypes. To the best of our knowl-
edge the benchmark was created within the genetic interaction extraction
challenge [Néd05]. One of six teams applied Markov logic and achieved
the best result in the competition. The benchmark has the highest number of
formulas (2,503 formulas, thereof 2,461 formulas with non-zero weight) and
the highest number of ground clauses (40,234,321) of all five benchmarks.
Furthermore, it consists of 5 observed and 2 hidden predicates and 1,031
evidence atoms.

Relational Classification (RC) The relational classification benchmark performs
classification on the CORA [MNRSO00] dataset. In [NRDS11] the MLN was
used to compare the performance of TUFFY to the ALCHEMY system. With
4 predicates (thereof 1 hidden predicate), 17 formulas, 99,161 evidence ax-
ioms, and 202,215 ground clauses the benchmark is comparably small. How-
ever, the formulas have a relatively high complexity.
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ER IE LP PR RC
predicates 10 18 22 7 4
thereof hidden 4 2 1 2 1
formulas 7,720 1,024 24 2,503 17
thereof w # 0 1,276 1,024 24 2,461 17
evidence 12,892 258,079 1,031 12,999 99,161
clauses 390,720 340,737 354,587 40,234,321 202,215

Table 6.1: Some characteristics of the ML benchmark datasets [NNS13].

The ER, IE, LP, and RC datasets were taken from the TUFFY web-page. These
datasets were used in the publication [NRDS11]. The PR dataset was directly
downloaded from the ALCHEMY website and weights were learned with ALCHEMY.
Table 6.1 summarizes the properties of the five benchmarks.

6.3 Experimental Setup

In our experiments we compare different system configurations of ROCKIT and
other MLN systems with respect to their runtime and their quality of the result-
ing approximate MAP state (interpretation). For measuring the quality of an in-
terpretation we compute its objective. The objective of an interpretation x is the
non-normalized sum of the number of true groundings n;(x) of all clauses F; in x.

Obj(x) = Z win;(x)

We refer to Section 2.3 for further details and a formal definition of Markov
logic. Intuitively speaking, the interpretation x has a higher quality than another
interpretation y, if its objective Obj () is higher than Obj(y).

For our experiments we implemented a separated component, which computes
the objective of an interpretation without constructing an ILP problem. This com-
ponent first reads a systems approximate MAP state and generates database tables
as described in Section 4.2. Then, it builds one SQL query per formula which
counts all non-violated groundings and multiplies the result with the respective
weight of the first-order formula. The sum over all formulas, finally, results in the
objective.

Out of the objective, we compute the relative error € of a system’s solution.
The relative error is a common way of analyzing the quality of approximate ap-
proaches [KF09]. We say that a specific MAP state x reaches a certain relative
error e if

Obj(z) > Obj(z™)-(1-¢)

where z* is the optimal MAP state and thus Obj(z*) is the highest possible ob-
jective.
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In our experiments, we measured the time needed to compute an interpretation
whose objective has a relative error of at most € = 1077, 7 € {1,2,3,10}, with
respect to the optimal objective. For determining this optimal objective we used
ROCKIT to compute an ILP solution x19 whose objective value has a relative error
of at most 107!? and computed the actual objective Obj(z19) of the interpretation
corresponding to this ILP solution. From this value we computed Obj(z,) for
1 < 7 < 3 by multiplying Obj(x10) with 1 — 107" For finding the solution z1¢ we
set the relative gap parameter of ROCKIT to 1071V,

An exception was the LP benchmark, where no system could generate a solu-
tion with a relative error € of 107*° or 1073. To that end, we computed Obj(z2)
for € = 1072 with ROCKIT and determined Obj (1) by multiplying Obj(22) with
(1-1071)/(1-1072).

The MLN systems were run, for each 7 € {1,2,3,10}, with an increasing
number of MaxWalkSAT flips for ALCHEMY and TUFFY or with decreasing values
of Gurobi’s relative gap parameter for MARKOV THEBEAST and ROCKIT until
a parameter configuration achieved an interpretation weight of at least w,, or until
one hour had passed, whichever came first.

All experiments were performed on a virtual machine with 8 GB RAM and 2
cores with 2,4 Ghz, unless otherwise stated.

6.4 Experimental Results

In the following experimental results, we empirically show that our CPA method
(a) reduces the number of ILP constraints, (b) decreases runtime, and that (c)
ROCKIT outperforms the state-of-the-art ML systems ALCHEMY, MARKOV THE-
BEAST, and TUFFY (version 0.3) [NRDS11]> both in terms of efficiency and qual-
ity of the results. Furthermore, we will show that (d) the runtime of ROCKIT with
the CPA method declines with the number of cores.

6.4.1 The CPA Method Reduces the Number of ILP Constraints

Let us first turn our attention to the question whether our CPA algorithm reduces the
number of ILP constraints irrespective if it is combined with the CPI approach or
not. We address that question by counting the ILP constraints for each benchmark
and for four different configurations: without CPI and without CPA, without CPI
and with CPA, with CPI and without CPA, as well as with CPI and with CPA.
Furthermore, we experimentally show that our CPA algorithm does not only
aggregate simple clauses containing exactly one literal, but is also aggregating
complex clauses consisting of more than one literal. To that end, we categorize
the number of counting constraints in simple and complex counting constraints
whenever we applied our CPA approach. Since one aggregated constraint might

>http://research.cs.wisc.edu/hazy/tuffy/
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aggregate either just a few or very many constraints, we also compute the per-
centage of constraints which has been aggregated in simple or complex counting
constraints.

Table 6.2 lists the number of ILP constraints with/without CPI and with/without
CPA and provides details about simple and complex counting constraints. When
we apply neither CPI nor CPA the number of ILP constraints equals the number of
(ground) clauses in Table 6.1 since our translation requires exactly one constraint
per ground clause.

The number of ground clauses always decreases significantly when we apply
the CPA algorithm. Let us first examine the decrease of constraints with CPA in the
case where we disable CPI. There, the highest absolute decrease is measured for
the PR benchmark where the number of constraints is reduced from 40, 234, 321 to
1,404, 026 constraints. The highest relative difference exists in the LP benchmark,
where we get 9,401 constraints with CPA and 354, 587 without applying CPA
which is 38 times larger. The benchmark with the lowest relative difference is the
IE benchmark. It has 4.8 times fewer constraints if CPA is applied. Let us now
turn our attention to the case where we combine CPI with CPA. Here, the highest
absolute and the highest relative decrease are both measured on the PR dataset
where the constraints decreased from 2,688,122 to 1,573. Thus, with CPA we
had 1709 times fewer number of constraints then without CPA. The IE benchmark
has the lowest relative decrease of constraints which is 4,041/932 = 4.3 times
lower with CPA.

As a side effect, we also experimentally prove that the number of constraints
always decreases if we apply cutting plane inference. This observation is made for
the case where CPA is disabled and enabled. In case CPA is disabled, the highest
absolute decrease was measured for the PR dataset where we obtained 40, 234, 321
constraints without CPI and 2, 688, 122 with CPL. In case CPA is enabled, we again
measured the highest absolute decrease for the PR dataset, where we get 1, 404, 026
constraints without CPA and 1,573 with CPA.

In summary, the lowest number of constraints were achieved when CPI and
CPA are combined. We obtain at least 202,215/10,064 = 22 times (RC bench-
mark) at at most 40,234, 321/1,573 = 25,578 times (PR benchmark) lower num-
ber of constraints with CPI and with CPA compared to disabling CPI and disabling
CPA.

We now examine the complexity of the constraints which are aggregated with
CPA. Let us first define some upper numbers for counting constraints with only
one literal which we called simple counting constraints. In general, the number of
simple counting constraints can be as most as large as the number of formulas with
a weight not equal zero because we can aggregate all ground clauses with only one
single literal to one counting constraint and we compute the aggregation separate
for each first order formula. The reader is encouraged to compare the number of
formulas in Table 6.1 with the number of simple counting constraints in Table 6.2.

In almost all datasets we aggregated some complex ground clauses. The only
exception is the PR benchmark where we result in no complex counting constraints
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ER IE LP PR RC

w/o CPIw/o CPA 390,720 340,737 354,587 40,234,321 202,215
w/o CPIw/ CPA 24986 70,944 9,401 1,404,026 21,074

thereof & counting constraints

- & = simple 1,250 1,013 15 2,499 14
(85%) (38%) (12%) (21%) (39%)
- & = complex 23,736 69,931 9,386 1,401,527 21,060
(15 %) (62%) (88%) (79%) (61%)
w/ CPIw/o CPA 357,056 4,041 31,658 2,688,122 164,047
w/ CPIw/ CPA 10,782 932 6,617 1,573 10,064
thereof < counting constraints
O = simple 719 481 17 1,573 9,772
(89%) (94%) (14%) (100%) (53%)
<& = complex 10,063 451 6,600 0 22
(11%) (6%) (86%) (0%) (47%)

Table 6.2: Number of ILP constraints generated by ROCKIT with and without
CPI as well as with and without CPA (inspired by [NNS13]). Simple counting
constraints aggregate clauses with exactly one literal whereas complex counting
constraints aggregate clauses consisting of at least two literals. The per cent num-
ber below indicates the relative amount of clauses which were aggregated with
simple or complex counting constraints, respectively. For determining these num-
bers we applied the relative error 10710 for ER, IE, RC, and PR benchmarks and
the relative error 0.01 for the LP benchmark.

with CPI and with CPA. Without CPI, we have a relatively high number of complex
counting constraints of 1,401, 527. 79% of all constraints have been aggregated in
one of the 1,401,527 counting constraints while 21% were aggregated in one of
the 2,499 simple counting constraints. Obviously, none of the complex ground
clauses has been violated within the cutting plane inference loops. This property
of the PR benchmark also leads to the higher relative reduction of ILP constraints
compared to other benchmarks.

6.4.2 CPA Decreases Runtime

After showing that our CPA method reduced the number of ILP constraints signif-
icantly we now inspect how this reduction affects runtime. To this end, we again
compare the runtime for the four different ROCKIT configurations. For each con-
figuration and each benchmark we measured the time needed to compute an inter-
pretation whose objective has a relative error of ar most ¢ = 1077, 7 € {1,2, 3,10},
with respect to the optimal objective. We refer the reader to Section 6.3 for a de-
tailed description how we determined the relative error of each benchmark.
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Figure 6.2: Comparison of runtimes per second of ROCKIT with/without CPI and
with/without CPA (* gap not reached in 1 hour, ** out of memory, *** did not
terminate within 1 hour). Applying CPA is always faster than not applying CPA.
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Figure 6.2 displays the runtime results in seconds for every benchmark, ev-
ery relative error, and every configuration. When we compare the runtimes of the
configuration *with CPI and with CPA’ with the runtimes with CPI and without
CPA’ we notice that runtimes are always lower when we enabled CPA except for
the IE benchmark where runtimes are almost equivalent. The largest difference is
measured for the PR benchmark where the runtime without CPA is 84 seconds and
with CPA is 13 seconds. The same applies when we compare the two configura-
tions where CPI is disabled. Runtimes are always higher *without CPI and with
CPA’ compared to the configuration *without CPI and without CPA’. For the RC
benchmark we measure the lowest difference of 3 seconds for the relative errors
e = {1071,1072,1073}. The largest difference occurs in the LP benchmark where
we obtain a runtime of 35 seconds without CPA and a runtime of 5 seconds with
CPA. This huge runtime decrease is due to much lower solving times of the ILP.
The runtime of the SQL queries have been marginal.

In our experiments we observed a tendency that the difference of the runtime
between enabling and disabling our CPA approach was higher, when more con-
straints were aggregated. The reader is encouraged to compare the runtimes of
Figure 6.2 with the number of constraints in Table 6.2. However, one would have
to examine the effect of CPA on many more datasets to speak of a clear correlation.

As a side effect our experiments also examined the effect of disabling or en-
abling CPL. For the PR benchmark we were not able to compute any solution with-
out CPI since the MLN became intractable large. In particular, we got an out of
memory exception if we also disabled CPA and were not able to solve the MLN
within one hour if we enabled CPA. With CPI runtimes were faster for the 1IE
benchmark and for the LP benchmark (both without CPA). Almost equal runtimes
were achieved for the RC benchmark and for the LP benchmark (both with CPA).
Lower runtimes were measured for the ER benchmark. The explanation of these
lower runtimes with CPI are that almost all constraints are violated and thus we
have to add almost as many constraints with CPI than without CPI. This results
in lower runtimes since CPI needs to query for violated constraints at least twice
and might have to perform more than one CPI iteration. Overall, we still strongly
recommend using CPI because if CPI is slower the loss of runtime is usually low.
However, for some problems CPI can compute a MAP-state which would be in-
tractable without CPL

6.4.3 ROCKIT Outperforms Other Markov Logic Systems

In this section we present the results of the comparison of our system ROCKIT with
other Markov logic systems MARKOV THEBEAST, TUFFY, and ALCHEMY. These
systems are presented in Section 5.3. For our system ROCKIT we used the config-
uration with CPI and with CPA. We refer to Section 6.4.2 for details on alternative
configurations and their runtime results. As described in the experimental setup
in Section 6.3, we measured the time needed to compute an interpretation whose
objective has a relative error of at most € = 1077, 7 € {1,2, 3,10}, with respect to
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Figure 6.3: Comparison of runtimes per second of ROCKIT and state-of-the art
MLN engines TUFFY, MARKOV THEBEAST, and ALCHEMY for different gaps (*
gap not reached in 1 hour, ** out of memory, *** did not terminate within 1 hour).
ROCKIT is always faster and reaches a higher error for some datasets. (inspired
by [NNS13])
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the optimal objective for each MLN system and each benchmark.

The results for every benchmark, every relative error, and every system are
visualized in Figure 6.3. ROCKIT is more efficient and is always able to compute
a higher objective than TUFFY, MARKOV THEBEAST, and ALCHEMY.

For the ER benchmark only the systems MARKOV THEBEAST and ROCKIT
can generate solutions with a relative error lower than € = 1071, ROCKIT needs 7
seconds to compute a MAP state reaching all relative errors while MARKOV THE-
BEAST needs 48 seconds. TUFFY and ALCHEMY can only generate a solution
satisfying the error € = 10! within 38 seconds and 60 seconds, respectively. In the
IE benchmark, every system reach the lowest error € = 1071, ROCKIT requires
3.6 seconds, MARKOV THEBEAST requires 11.3 seconds, TUFFY requires 28 sec-
onds, and ALCHEMY requires 340 seconds. On the LP benchmark no system is
able to generate a MAP state with relative error € = 1073 or lower. ALCHEMY
is also not able to reach e = 1072 on this dataset. The runtimes of the systems
RockIT, MARKOV THEBEAST, TUFFY, and ALCHEMY are 7 seconds, 40 sec-
onds, 20 seconds, and 59 seconds, respectively. The highest performance differ-
ence between ROCKIT and the other MLN systems is measured for the PR dataset.
While MARKOV THEBEAST and ALCHEMY can not generate any solution be-
cause they ran out of memory, TUFFY needs 398 seconds for computing a solution.
Contrary to this, ROCKIT only needs 13 seconds to compute a solution which er-
ror was lower or equal than 1070, Last, we turn our attention to the RC dataset.
ALCHEMY could not find any solution within one hour. TUFFY did not reach the
relative error € = 1071°. For computing a solution with a relative error of € = 1073
TUFFY needs 16 seconds. The fastest runtimes for ROCKIT and MARKOV THE-
BEAST for generating a MAP state with an error lower than € = 10719 are 8 seconds
and 43 seconds, respectively.

In all cases, ROCKIT was able to compute a higher weighted solution in less
time. Overall, TUFFY showed the second best performance, directly followed by
MARKOV THEBEAST in our experiments. The highest runtimes were measured
for ALCHEMY.

We conjecture that ROCKIT with CPI and without CPA is more efficient than
MARKOV THEBEAST because of ROCKIT’s more compact ILP formulation and
the use of MySQL as database system. The runtimes of ROCKIT with CPI and
without CPA are visualized in Figure 6.3.

6.4.4 Runtime Declines With the Number of Cores

The last issue we address in these experiments is the question weather the paral-
lelization of the MAP query leads to runtime improvements. To that end, we ex-
amine if runtime declines with the number of cores. In particular, we run ROCKIT
with CPI and with CPA on the same virtual machine with 8 GB RAM with a vary-
ing number of 2,4 Ghz cores.

Figure 6.4 summarizes the runtime comparison for 1, 2, 4, and 8 cores. For
each benchmark, the runtime decreases when the number of cores increases with
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Figure 6.4: Performance improvements of ROCKIT with CPA on multiple
cores [NNS13]. We show the results for the lowest gap 10719 for ER, IE, RC,
and PR benchmarks and the gap 0.01 for the LP benchmark.

a diminishing reduction in runtime. Tendentielly, the largest runtime decreases
are achieved between the runtimes between 1 core and 2 cores, the second largest
runtime decreases are between 2 and 4 cores and the least runtime decreases are
measured between 4 and 8 cores. A counter example is the PR benchmark, where
the runtime between 2 cores and 4 cores decreases 0.6 seconds while we measured
a large runtime decrease of 1.3 seconds between 4 and 8 cores.

When comparing the runtimes of 1 and 8 cores, the ER benchmark has a rela-
tive runtime decrease of 22%, the IE benchmark has a runtime decrease of 15%, the
LP benchmark has the highest relative decrease of about 53%, the PR benchmark’s
relative decrease is 36%, and the RC benchmark has a decrease of 25%. The high
runtime decrease for the LP benchmark is because the aggregation of clauses with
more than one literal can be efficiently processed in parallel.
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Chapter 7

Conclusion and Future Work

Section 7.2 draws a conclusion over the whole Part I of this thesis in which we
address the research questions mentioned in Section 1.2 and Section 7.3 points
out future work directions. Additionally, Section 7.1 provides a comprehensive
example which covers the most important concepts of CPA in Part L.

7.1 Concluding Example

In order to quickly being able to gasp the main contribution of Part I, we provide an
encompassing example. The example intuitively illustrates the basic idea behind
our novel cutting plane aggregation method (see Section 3.4) and its difference to
our novel optimized ILP translation (see Section 3.2). The reader should be famil-
iar with Markov logic as introduced in Section 2.3 and integer linear programming
explained in 2.4 to understand this example.

Previous examples were kept simple in a way that they aggregated only clauses
with one literal. In this section we construct a example which shows how our CPA
method (a) aggregates clauses with more than one literal, (b) exploit evidence, and
(c) can aggregate transitivity formulas if evidence occurs. Transitivity formulas
present a challenge for symmetry detection approaches [Rie08].

However, please note that for brevity reasons important issues like negative
weights, the concepts of cutting plane inference and its integration with our CPA
algorithm (Section 3.3 and Section 3.5.1), and leveraging relational database sys-
tems for grounding (Chapter 4) are not covered in this example.

We start with defining a MLN with one transitive formula, the ground clauses,
and the given evidence.

Example 18. We define a MLN with only one formula which expresses the transi-
tivity of the friends relationship.

1.1 friends(xz,y) A friends(y,z) = friends(zx, z)
When we transform this formula to the conjunctive normal form, we get:

1.1 =friends(x,y) v =friends(y, z) v friends(z, z)

95
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Furthermore, let us assume that we retrieved the following n ground clauses:

1.1 -friends(A,B1) Vv =friends(By,C) v  friends(A,C)
1.1 -friends(A,By) Vv =friends(Bs,C) Vv  friends(A,C)
1.1 -friends(A,B,) Vv =friends(B,,C) v friends(A,C)

If we have evidence that A and all B;s are friends
friends(A,B;) i1e{l,...,n}

our retrieved ground clauses reduce to:

1.1 - friends(B1,C) v  friends(A,C)
1.1 - friends(B2,C) v  friends(A,C)
1.1 -friends(B,,C) v friends(A,QC)

Please note, that the retrieved ground clauses in Example 18 can either result
from all possible groundings or originate from violated constraints within a cut-
ting plane inference iteration. How we ground a MLN if evidence is considered
is explained in Section 2.3.2. Now let us transform the ground clauses into ILP
constraints as it is described in Section 3.1.

Example 19. Let us assume that the MLN and the retrieved ground clauses from
Example 18 is given. We introduce a binary ILP variable for each atom and one
binary z; variable per ground clause. For presentation reasons, we use the same
names for literals than for ILP variables. When we now apply the standard ILP
translation of Section 3.1, we result in the following ILP.
max1.1z; +---+ 1.1z,
(1 - friends(By,C)) + friends(A,C) < 1
(1- friends(Bs2,C)) + friends(A,C) < z9

(1- friends(B,,C)) + friends(A,C) < z,
We result in n ILP constraints and n summands in the objective.

In the standard ILP translation as illustrated in Example 19, we define exactly
one ILP constraint and one summand in the objective for each ground clause. Since
the weight of our ground clause is positive, the z variable will always fry to become
one. Thus, the ILP constraint must force the z variable to become zero, if the
ground clause evaluates to false. If the ground clause has a negative weight, we
need to introduce an ILP constraint which forces the z variable to become one, if
the ground clause evaluates to true, respectively. For details, we refer the reader to
Section 3.1. This translation is novel since it requires only one ILP constraint per
ground clause, irrespectively if the weight is positive or negative.

If we now apply our CPA strategy described in Chapter 3, we can significantly
reduce the number of the summands in the objective and required ILP constraints.
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Example 20. We again use the MLN and the retrieved ground clauses from Exam-
ple 18. We also introduce a binary ILP variable for each atom and use the same
variable name. This time, we introduce only one integer variable z. If we now
apply our novel CPA method, we result in the ILP:
max 1.1z
z<n

n- friends(A,C) + (1 - friends(B1,C)) + ...+ (1 - friends(B,,C)) <z

We now require only 2 ILP constraints and 1 summand in the objective.

Due to the CPA method, we could reduce the required ILP constraints from
n (Example 19) to 2 (Example 20) and the summands in the objective from n to
1, respectively. This was possible, because we could aggregate every retrieved
ground clause to one so-called counting feature. This counting feature is then
represented by one integer variable z which is in this example the only required
summand in the objective. Furthermore, the counting feature translates to two ILP
constraints. The first constraint ensures that the z variable is not larger than the
number of aggregated clauses. In combination with the second constraint, the 2
variable becomes n if friends(A,C) is true. If friends(A,C) is false, the z
variable counts the number of true friends(A, B;) atoms. We refer the reader to
Chapter 3 for details.

Please note, that we omitted the trivial translation of the evidence axioms into
the ILP for clarity reasons. In order to encode evidence, we have to add additional
n ILP constraints of the form

friends(A,B;)>1 Vie{l,---,n}

in Example 19 and Example 20.

7.2 Conclusion

In the first chapter of this thesis we presented the novel cutting plane aggregation
(CPA) algorithm which improves the translation of maximum a-posteriori (MAP)
queries to integer linear programs (ILPs). For formal definitions of MAP queries
and ILPs we refer to Section 2.1.3 and Section 2.4, respectively. On the one hand
the CPA algorithm leads to fewer ILP constraints and fewer ILP variables and on
the other hand it makes symmetries explicit to state-of-the-art ILP solvers.

Within this conclusion we recall and answer the research questions which we
set up in Section 1.2.1:

Q1 Can we improve existing ILP translation techniques such that we reduce the
size of the ILP and make the symmetries of the model more explicit to sym-
metry detection heuristics?

Existing work requires more than one constraint for translating one ground
clause to an integer linear program. In the translation of [Rie08, Wil99], one
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weighted ground clause consisting of e.g. three literals results in four linear con-
straints. Riedel [Rie08] suggested cutting plane inference (CPI) for solving MAP
queries. In CPI we solve several smaller ILPs which often leads to significant
runtime reductions. Hereby, we add only those constraints to the ILP which are
violated by the current solution and solve the ILP. This is repeated until no vio-
lated constraints remain. The resulting MAP state is equivalent to the MAP state
received without CPI. We refer to Section 3.3 for details.

In Chapter 3 we introduced two improved translation techniques. First, we
showed in Section 3.2 that it is possible to translate every ground clause to exactly
one ILP constraint irrespectively if it is weighted or unweighted.

Second, we provide an aggregation technique called cutting plane aggregation
in Section 3.4 which allows to aggregate more than one ground clause to one ILP
constraint. Within this translation, we exploit symmetries on the ground clause
level and aggregate clauses using counting constraints. This makes symmetries
explicit to the symmetry detection mechanisms of state-of-the-art ILP solvers. We
refer to Section 3.4.1 for details. Since the CPA method operates on ground clauses
we may call this a bottom-up approach. Contrary to this, most approaches in the
related field of lifted inference (see Section 5.1) discover symmetries on the first-
order level which can be seen as top-down approach. Our approach is the first
aggregation approach which tightly integrates the cutting plane inference (CPI)
methodology with the CPA approach. For details about the CPI method please
read Section 3.3. With respect to our aggregation technique, we only estimate
the optimal aggregation scheme avoiding a costly exact computation in each CPI
iteration. The algorithm used for this estimation is described in Section 3.4.2. We
experimentally discovered that exact approaches neutralize the runtime benefits
gained by the CPA concept.

Q2 How can we parallelize the solution process and tightly integrate relational
database management systems (RDBMS) within this process?

We can parallelize important parts of the MAP query solving process, since
our aggregation technique can be processed for each first-order logic formula sep-
arately. In particular, we parallelize the computation of the violated constraints
within each cutting plane inference iteration and the algorithm for estimating the
optimal aggregation scheme. Furthermore, we use the capability of state-of-the-art
ILP solvers like GUROBI to solve ILPs in parallel. The complete parallelization
pipeline is depicted in Figure 3.1 and described in Section 3.5.2. For a very brief
sketch of the properties of the solver GUROBI we refer to Section 6.1.

Riedel [Rie08] was the first who showed that relational database management
systems can be efficiently used for solving MAP queries. However, he only briefly
sketched this technique. In this thesis, we exactly define how the evidence of MLNs
are stored in database tables and we provide exact algorithms how efficient SQL
queries are constructed. Chapter 4 contains SQL query creation algorithms for
determining the ground clauses of a MLN (Section 4.1), finding the violated con-
straints within a CPI iteration (Section 4.2), and computing the counting features
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for CPA (Section 4.3). For the latter one we finally preferred an implementation
within Java because of better possibilities of evidence consideration. The interested
reader is referred to Section 4.3 for details.

Q3 Does our new techniques reduce runtime and outperform existing Markov
logic systems with respect to runtime and quality of the results?

The research question Q3 is answered empirically in Section 6.4. For the ex-
periments we used five established Markov logic benchmarks. Details about the
origin of these benchmarks and its properties are described in Section 6.2. Our
experiments show that the number of ILP constraints is often drastically reduced
when applying the CPA algorithm. We also showed, that the CPA approach aggre-
gated a significant number of non-trivial constraints consisting of more than one
literal. Runtimes were always faster with CPA than without CPA except in one
case, where runtimes were almost equal. Furthermore, there is a weak tendency
that the relative runtime decrease is higher if the relative ILP constraint reduction
is higher. As a side effect, we also show a reduction of constraints and runtime
improvements in most cases with CPL.

Furthermore, we compared our approach against the three state-of-the-art Mar-
kov logic solvers MARKOV THEBEAST, ALCHEMY, and TUFFY with respect to
runtime and quality of the solution. As quality measure we use the relative error
which is described in Section 6.3. The quality of the solution is higher, if the
measured relative error of the solution is lower. On all benchmarks our Markov
logic solver ROCKIT reached a lower relative error in less time than the solvers
MARKOV THEBEAST, ALCHEMY, and TUFFY.

7.3 Future Work

There are several further directions for future work. In the following, we select a
few promising extensions.

Extension of the aggregation strategy Currently, our cutting plane aggregation
algorithm allows that only one literal is different while all other literals must be
equal. It is possible to extend cutting plane aggregation such that clauses with
two different literals can be aggregated. However, the resulting optimization prob-
lem would be quadratic. Thus, we either would have to apply quadratic solving
strategies or we would have to linearisize the problem by applying and lineariza-
tion [RRRO6].

Integration of lifted inference algorithms In the last years more and more
work in lifted inference arose. While most work focus on lifting marginal in-
ference, some of this work also lift maximum a-posteriori inference. Future in-
vestigations include the questions if such approaches can be combined with our



CPA approach. Promising starting points for possible integrations are the ap-
proaches [AB12, BHR13]

Generalization of the CPA approach Currently, we presented CPA for Markov
logic. However, the basic idea of cutting plane aggregation can be generalized to
detect symmetry groups in arbitrary integer linear programs. For significant effect
of CPA, the ILPs have to follow certain characteristics like often have the same
objective weights for many variables. To that end, a first step is to investigate the
aggregation potential of real-world ILP problems.

Extension of our ROCKIT solver For MAP inference we experimentally ver-
ified that our ROCKIT solver is currently the fastest existing solver. However,
we only implemented basic algorithms for marginal inference and learning which
have not yet been evaluated against other systems. For improving marginal in-
ference, the integration of existing symmetry detection algorithms [Niel2, Niel3]
into ROCKIT and their further development are possible next steps. For parameter
learning, a starting point for further implementations is the work from Lowd and
Domingos [LDO7].



Part 11

Application in Description Logics

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.
(Albert Einstein)
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Chapter 8

Log-Linear Description Logics

In real-world applications, uncertainty occurs often in form of degrees of confi-
dence or trust. The semantic web community, for instance, has developed numer-
ous data mining algorithms to generate confidence values for description logic ax-
ioms with ontology learning and matching being two prime applications [EMS* 11,
Bre06, WLB12]. Most of these confidence values have no clearly defined seman-
tics. Confidence values based on lexical similarity measures, for instance, are in
widespread use while more sophisticated algorithms that generate actual proba-
bilities make often naive assumptions about the dependencies of the underlying
probability distribution. Hence, formalisms and inference procedures are needed
that incorporate degrees of confidence in order to represent uncertain axioms and
to compute answers to probabilistic queries while utilizing the logical concepts of
coherency and consistency. [NNS11]

To respond to this need, we introduce log-linear description logics as a novel
formalism for combining deterministic and uncertain knowledge. We describe a
convenient representation of log-linear description logics that allows us to adapt
existing concepts and algorithms from statistical relational Al to answer standard
probabilistic queries. In particular, we formulate maximum a-posteriori queries
and present an efficient algorithm that computes most probable coherent mod-
els, a reasoning service not supported by previous probabilistic description logics.
[NNS11]

The presented reasoning approach for log-linear DLs is restricted to DLs where
consequence-driven reasoning is possible. An incomplete list of such DLs can be
found in Section 8.1. Log-linear description logics are thus a combination of de-
scription logics and log-linear models. We refer the reader to Section 2.1.1 for an
introduction of log-linear models and to Section 2.5 for details about description
logics. The syntax of log-linear description logics is that of the underlying descrip-
tion logic where it is possible (but not necessary) to assign real-valued weights
to axioms. The semantics is defined by a log-linear probability distribution over
coherent ontologies. The syntax and semantic are introduced in Section 8.2. The
fact that we only consider coherent worlds is one of the differences to Part I of

103
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this thesis. In principle, log-linear description logics can be mapped to a concrete
Markov logic network, which models the coherency with hard rules and allows to
assign weights to each description logics axiom. Thus, Part II is an application
of Part I. Section 8.3 guides through the steps which are necessary to transform a
description logic to its corresponding log-linear description logic and, finally, to a
Markov logic network. In this context, we also define the novel query which asks
for the most probable coherent ontology.

As we will learn, we require the ability to weight conjunctions of literals in
order to correctly translate the log-linear description logic semantic to a Markov
logic networks. However, Markov logic only supports weighted clauses. If the
conjunctive normal form of a first-order logic formula consists of more than one
clause, Markov logic solvers usually apply heuristics, which split them into multi-
ple weighted clauses. However, this leads to a different semantic. Thus, Section 8.4
presents an extension of Markov logic such that it can deal with weighted conjunc-
tions. In fact, we even further generalize the Markov logic syntax so that it works
with weighted formulas in conjunctive normal form. Furthermore, we extend our
cutting plane aggregation approach of Part I such that it can aggregate conjunctions
as well.

Generally, this chapter answers the research questions Q4 and Q5 from Sec-
tion 1.2.2:

Q4 How can we combine log-linear models with description logics and define the
query of a most-probable coherent ontology?

QS Can we efficiently compute the most-probable coherent ontology utilizing the
theory of Part I?

In particular, Section 8.2 and Section 8.3.1 until Section 8.3.4 address Q4 while
Section 8.3.5 and Section 8.4 tackle Q5.

This chapter describes an extended version of our publications [NNS11] with
several illustrative examples. We took text passages, pictures, and examples from
our publications [NNS11, NN11]. However, we explain normalization in Sec-
tion 8.3.1 much more exhaustive by using mainly the sources [BBL05a, BBLO5b,
BBLOS]. Our representation in this thesis focuses on connecting Part I with Part II
in Section 8.3.5 which is not contained in [NNS11, NN11]. Furthermore, Sec-
tion 8.1 goes beyond the content of [NNS11] and is summarized from various
different sources. Section 8.4 contains a not yet published idea of extending the
ILP formulation to arbitrary conjunctions.

8.1 Possible Log-Linear DLs

Our novel log-linear description logic extends classical description logics. Each
classical DL can be transformed to log-linear DL as long as consequence-driven
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reasoning is supported [Kr610, BBLO5a]. We refer the reader to Section 2.5.2 for
details about consequence-driven reasoning.

In the following, we provide an incomplete list of such description logics.
For details regarding naming conventions of description logics we refer the reader
to [NBO3].

e ELRO (also called £EL£*, OWL 2 profile EL) is able to perform scalable
TBox reasoning. Classification can for example be performed in polynomial
time. To that end, ££*™ is used in many large medical ontologies [BBL05a,
BBLO8].

* SROEL(M, x) is an extension of £L + + with local reflexivity (Self), con-
junctions of roles, and concept products. Kroetsch [Kr610] proved that the
corresponding calculus is in polynomial time.

e SROZQ-RL (OWL 2 profile RL) is designed for applications which need a
relatively high expressivity without resulting in too complex inference prob-
lems [BS13].

* Horn—-SHIQ is arestriction of the DL SHZQ which do not contain non-
deterministic constructors such as positive disjunction. Compared to E£*,
Horn — SHZQ supports inverse roles and functional restrictions [Kaz09].

* Horn-SROZQ and Horn—-SHOZQ are the Horn variants of the underly-
ing description logics of OWL 1 DL and OWL 2 DL, respectively [ORS10].
For enabling consequence-driven reasoning they first translate the knowl-
edge base in polynomial time into DATALOG® which allows sets of constants
and then again in polynomial time into DATALOG which heavily blows up
the number of ground formulas.

o ALCH is the first DL which contains also non-Horn clauses for which a
rule set have been found such that consequence driven reasoning is possible
[SKH11].

For presenting the idea of log-linear description logics, we focus particularly on
the description logic £L** which captures the expressivity of numerous ontologies
in the medical and biological sciences and other domains. The DL ££*7 is also the
underpinning of the web ontology language profile OWL 2 EL is based [BBLO05a].
It is possible to express disjointness of complex concept descriptions as well as
range and domain restrictions [BBLOS]. In addition, role inclusion axioms (RIs)
allow the expression of role hierarchies r C s, reflexive roles ¢ € s, and transitive
roles 7 o r £ r. We refer to Section 2.5.1 and Section 2.5.2 for the definition of the
Syntax and Semantics of ££** with range restrictions and without nominals and
concrete domains.
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Name Syntax
top T
bottom L
nominal {a}
conjunction cnD
existential restriction Ir.C

deterministic CBox CP

GCIP ccD

RIP 710...0TLCr
RRP ran(r)c C
uncertain CBox CY

GCIV (CeD,w)
RIY (rio..ory Er,w)
RRY (ran(r) € C,w)

Table 8.1: Syntax of the log-linear ££** with range restrictions and without con-
crete domains.

8.2 Theory

Within this Section we explain the Syntax and the Semantics of log-linear descrip-
tion logics using the DL £L£*". Please note again, that we can use every description
logic for which consequence-driven reasoning is possible.

In Section 8.2.1, we describe how we assign weights to each description logic
axiom in a way that some axioms are deterministic (they must hold) and some ax-
ioms are uncertain (they may hold). The semantic of log-linear description logics,
described in Section 8.2.2, allows us to assign a probability to each possible set of
axioms. This probability is zero if this set of axioms lead to an incoherent ontology
or does not entail every deterministic axiom. Else, the probability depends on the
sum of the weights of the entailed uncertain axioms. The higher this sum is, the
higher is the probability of the given set of axioms.

8.2.1 Syntax

The syntax of log-linear description logics is equivalent to the syntax of the un-
derlying description logic except that it is possible to assign weights to GCIs and
RIs. More formally, a log-linear ££** CBox C = (CP,CY) is a pair consisting of
a deterministic ££*+ CBox CP and an uncertain CBox CY = {{c, w.)} which is a
set of pairs (¢, w.) with each ¢ being a EL*" axiom and w a real-valued weight as-
signed to c. In Table 8.1 we summarize the syntax of log-linear description logics.
The only difference compared to Table 2.4 in Section 2.5 is the introduction of an
additional uncertain CBox.

While the deterministic CBox contains axioms that are known to be true, the
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uncertain CBox contains axioms for which we only have a degree of confidence.
Intuitively, the greater the weight of an axiom the more likely it is true. This follows
the same intuition as in Markov logic, since both inherit log-linear models. Every
axiom can either be part of the deterministic or the uncertain CBox but not both.
The deterministic CBox is assumed to be coherent.

As stated in Section 2.5 we can normalize each GCI and RI axioms. This is,
of course, also possible for the uncertain axioms. Given a ££*" CBox C we use
BCc to denote the set of basic concept descriptions occurring in CP or CY. Details
about normalization for log-linear description logics follows in Section 8.3.1.

Example 21 assigns weights to some of the axioms of ontology O; which we
defined in Example 7. If we interpret the assigned weights isolated, they mean that
it is more likely that Jaguar £ Brand holds than that Jaguar € Animal is true,
which is again more likely than Jaguar € Cat is entailed in the solution.

Example 21. We modify the Ontology O1 of Example 7 by assigning weights to
some axioms. We call this log-linear ontology (’)fL :

Cat © Animal A cat is an animal.

Animaln Brand € 1 Something can not be a brand and a cat.
(Jaguar c Cat,0.5) A Jaguar is a cat.

(Jaguar © Animal,0.9) A Jaguar is an animal.

(Jaguar € Brand, 1.2) A Jaguar is a brand.

In this example, we defined the CBox C = (CP,CY) with the deterministic CBox
CP = {Cat © Animal, Animal N Brand © L} and the uncertain CBox CY =
{{Jaguar c Cat,0.5), (Jaguar c Animal,0.9),(Jaguar © Brand,1.2)}. The
set of basic concept descriptions is BCe = { Animal, Brand, Cat, Jaguar}.

8.2.2 Semantics

The semantics of log-linear DLs is based on joint probability distributions over
coherent EL* CBoxes. The weights of the axioms determine the log-linear prob-
ability distribution. For a ££" CBox C = (CP,CY) and a CBox C’ over the same
set of basic concept descriptions and role names, we have that

1oy (Z w ) if C' is coherent
P(C')={ 7P\ lewaei et Be) - anq ¢ P,

0 otherwise

where Z is the normalization constant of the log-linear probability distribution P'.

The probability of a CBox C’ is zero if C' is incoherent or if not all hard axioms
from the deterministic CBox CP are entailed in C’. If C’ is coherent and C’ = CP,
then the probability is the normalized exponential sum over all weights w,. which

'Please note that we set 2 {(esweyecUicreey = 0 if no c exist, and that we exclude this special case
in our definition for clarification.
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correspond to an axiom c. This is expressed by % exp (¥, w.). All those axioms ¢
must be entailed in C’ and the axiom weight pair (c, w.) must be an element in the
uncertain TBox CY. This is expressed with the sum condition o = {{c,w.) € CY :
C'=c}.

In this thesis, we are not interested in the exact value of the normalization
constant Z since we aim at computing the most probable coherent world. For
this computation, we need to find a coherent ontology with the highest probability,
which is not influenced by dividing through a constant 7.

The semantics of the log-linear description logic ££*" leads to exactly the
probability distributions one would expect under the open world semantics of de-
scription logics. Incoherent ontologies or those ontologies which do not entail all
given hard axioms have the overall probability 0. All other ontologies have a prob-
ability greater than 0. We demonstrate these effects on the following example.

Example 22. Let us recapitulate the weighted ontology OILL from Example 21.
We obtain a set of four basic concept descriptions BC¢ = { Animal, Brand, Cat,
Jaguar}. Our deterministic CBox is C° = {Cat © Animal,Cat n Brand = 1}
and the uncertain CBox is CY = {(Jaguar = Cat,0.5), (Jaguar € Animal,
0.9), (Jaguar c Brand, 1.2)}.

We now compute the probability of different CBoxes C":

e If C' = {Cat € Animal}, we get the probability P(C") = 0 because C" #
CP. This means that C' does not entail all axioms of the deterministic CBox
CP. In particular, the axiom C'at 1 Brand E 1 is not entailed.

e IfC" ={Cat € Animal,Catr Brand € L}, we get the probability P(C") =
Z Y exp(0). This time, we have that C" = CP and C" is coherent, but since
no weight axiom pair of CY is entailed in C' we have no weights w, to sum

up.

e IfC" = {Cat © Animal,Cat 1 Brand € 1, Jaguar € Brand}, the prob-
ability is P(C") = Z 'exp(1.2). Again, CP is entailed in C' and C' is
coherent. Since one axiom ¢ = (Jaguar & Brand,1.2) of the uncertain
CBox CV is entailed in C', we take the exponential of its weight w, = 1.2.

e IfC" ={Cat € Animal,Catn Brand € L, Jaguar  Cat}, the probability
is P(C") = Z Y exp(1.4). Since C' & CP and C" is coherent, the probability
is not 0. This time, two axioms c¢1 = Jaguar € Cat and ¢y = Jaguar &
Animal are entailed in C' and are both elements of CY, written as c1,Co €
CY. Axiom ¢ is explicitly encoded in C" while axiom co can be inferred from
Jaguar € Cat and Cat € Animal. Consequently, we compute the sum over
their corresponding weights w., = 0.5 and w¢, = 0.9.

o IfC" = {Cat = Animal,Cat N Brand € 1,Jaguar € Cat, Jaguar
Brand}, we get the probability P(C") = 0 because C' is incoherent. We
refer the reader to Example 8 for an explanation.
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The normalization constant Z is calculated by summing up all (non-zero) probabil-
ities of all possible CBoxes C'. However, even for this small example, the possible
number of C' which are coherent and for which C' = CP holds is not trivial to
determine.

8.3 Towards a Markov Logic Representation

A way of efficient query answering in log-linear description logics is to translate its
semantic into a Markov logic network. To that end, we represent CBoxes as sets of
first-order sentences attached with weights modeling the uncertain and determinis-
tic axioms. For this representation we ask the reader to recapitulate first-order logic
and in particular the definitions of Herbrand base, Herbrand model, and Herbrand
interpretation from Section 2.2. Furthermore, the reader should be familiar with
Markov logic (see Section 2.3).

The transformation into a Markov logic network enables us to reuse the stan-
dard inference methods in ML. We can for instance compute the a-posteriori prob-
ability of description logic axioms by applying marginal inference queries. How-
ever, this is out of the scope of this thesis. We refer the interested reader to [NNS11]
for details. In the following, we concentrate on maximum a-posteriori inference. If
we apply the MAP query on the semantic of log-linear description logic we obtain
a novel query type. This novel query computes the most probable coherent ontol-
ogy. For solving this query we can apply the efficient solving techniques presented
in Part L.

Transforming a description logic knowledge base for which consequence-driven
reasoning is possible (see Section 8.1) into its log-linear variant and, finally, to its
Markov logic representation follows five general steps. In the following sections,
we dive deeper into each of these steps taking the description logic ££*" without
nominals and concrete domains as an example.

First, the knowledge base has to be normalized to the set of axioms on which
the completion rules are build. This means that composed axioms has to be cor-
rectly decomposed. In our case, we need to be able to know the set of normalized
axioms for each non-normalized axiom after normalization. In many cases this is
trivial. However, there are some exceptions like the domain restrictions in ££7.
Section 8.3.1 introduces the normalization of an ££** CBox.

After normalization of the axioms, Section 8.3.2 shows how the completion
rules, which exist for any DL for which consequence driven-reasoning is possi-
ble, are transformed to first-order logic rules. Thereby, the normalized axioms are
mapped to logical literals. Then, the uncertain axioms are integrated to the logical
model in Section 8.3.3. This is were we need the link between the non-normalized
and normalized axioms.

We are now in the position to define the novel query type of computing the most
probable coherent ontology in Section 8.3.4. In Section 8.3.5 we finally combine
all components and transform the problem to a specific Markov logic network. On
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this ML network, the techniques for solving MAP queries in ML from Part I can
be applied.

8.3.1 Normalization

The normalization step is a fundamental requirement for transforming a DL into a
log-linear DL. Existing normalization algorithms have to be changed so that they
are able to return the normalized axioms for one specific non-normalized axiom
c. Usually, those algorithms normalize the whole CBox C without tracking the
normalization for one specific axiom.

In this section, we focus on the normalization algorithms of ££*" as an ex-
ample of one possible description logic. The presented normalization algorithm
is combined from [BBLO05a, BBLO5b, BBLO8] where they proved that all of the
following transformations can be performed in linear time. In particular, we first
introduce normalization leaving over range axioms and then point out how range
axioms can be eliminated.

Let BC,. be the concept names in an axiom c. The normalization of an axiom
c in EL*" with range restrictions but without concrete domains is done in two
steps. First, we define the function normp (c¢) which returns a set of axioms only
containing the following normalized GClIs

Cic D;

Cy & dr.Cy;
Cl M CQ = D;
37’.01 = D,

the following normalized range restriction

ran(r) c C,

and/or the following normalized role inclusions axioms

rcs;
r1orgES

where C1,Cy € BC.and D e BC,u {1}.

The function normaj (¢) iteratively applies the normalization rules NF1-NF5
of Table 8.2 until none of the rules can be applied any more. Similarly the function
normaz(C) applies the rules NF6-NF8 iteratively on the set of axioms C until for
axiom c € C any new axiom can be inferred. The function normp (c) is then defined
as

norma(c) = normas(normay(c)).

The normalization rules in Table 8.2 are equivalent with the rules in [BBLO5b],
except that we added rule NF4 for normalizing range restrictions. Almost all rules
follow some similar characteristics. The only exception is Rule NF8, where we
split axioms of type B £ Cn D into B £ C and B © D. The basic idea of
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NF1 710...0TLES > {rio...org_1 Cu,uorycs}
NF2A CnDcE N (D A,CnAcE}

NF2B DnCeE > (D A,CnAcE}

NF3 3r.CeD > {(Ce A 3r.Ac D)}

NF4 ran(r) g C > {ran(r)e A, AcC}

NF5 LeC > %)

NF6 CccD > {Ce A/ Ac D}

NF7 BearC > {Be3ar.A,AcC}

NF8 BeCnD = {BcC,Bc D}

Table 8.2: The normalization rules derived from [BBLO5b] without range elimi-
nation. All r;, s are role names. All C,D ¢ BC, are the non-normalized axioms
and u denotes a new role name and A a new concept name. All B, C, D and E can
be already normalized or not yet.

all other rules is to introduce new concept names A like in rule NF2A-NF7 or
new role names u like in rule NF1 in order to simplify axioms. The rules often
focus on further simplifying a concept description C or D which is not normalized
yet. It is important to know that the concepts B, C', D, and F are not necessarily
normalized. In Rule NF2A the concept C can for example be in BC,. or not.

The reason for splitting the rule applications in two phases is to remain the
linear size of the normalized CBox. If we apply all rules together, we might get a
quadratic blowup due to the dublication of concept B by Rule NF8.

Currently, our normalization of an axiom c still contains axioms of type ran(r)
C. Eliminating these axiom types requires the normalized axioms of the whole
CBox C. A CBox C is transferred to a normalized CBox still containing range re-
strictions of the form ran(r) = C where C' € BC¢ by normalizing each axiom ¢ in
C with

norma(C) = {norma(c) : ce C}.
Example 23 illustrates the normalization function norma.

Example 23. Our example ontology O1 from Example 7 is already normalized.
Thus, we introduce a new ontology Os. Informally, this ontology describes the
world from the eyes of a tiger.

Animaln Plant € 1 Something can not be an animal and a plant. (1)
Tiger © Animal N 3eats.(Animal N Jeats.Plant) (2)

A Tiger is an animal which eats animals which eat plants.
ran(eats) € Animal  Everything which can be eaten is an animal. (3)

Axioms (1) and (3) are already normalized. Axiom (2) does not change when we
apply the function normasi, but for normp, we obtain



112 CHAPTER 8. LOG-LINEAR DESCRIPTION LOGICS

normax(Tiger © Animal N Jeats.(Animal N Jeats. Plant)) =
{Tiger c Animal, Tiger c Jeats. A1, A1 € Animal, Ay € Jeats.Plant}

by applying rules NFS8, NF6 introducing A1 and NFS8. Thus, the normalized ontol-
ogy according to the function normp is the union of all normalized axioms:

norma (O2) =

{Animal n Plant € 1,

Tiger © Animal, Tiger € Jeats. A1, A1 € Animal, A; € Jeats.Plant,
ran(eats) c Animal}

We are now in the position to define the function normg(c,Cporm, ) Which elim-
inates range restrictions of the form ran(r) © C. Algorithm 7 does specify the
exact steps of the function. The input is a normalized CBox Cporm , = norma(C)
and a description logic axiom c € Cy,orm - It outputs the set of normalized axioms
for c. However, it also changes the input set Cy,ory, , such that all range restriction
axioms are correctly normalized if the function normg (¢, Cporm , ) has been called
for every c € Cporm., -

The only axiom types which interact with range restrictions are of form ¢ #
ran(r) c Aor ¢ # C c 3s.D. If the input axiom ¢ does not have this form, c is
already normalized and is returned (Line 1). Else, we initialize the return value
norm, which will contain the normalized axioms for c at the end, with the empty
set (Line 2).

Then, we iterate over each s for which C contains role inclusions r € t1,t; &
to, ...t € s (Line 3). In case the input axiom ¢ has the form ran(s) c A (Line 4),
we

* delete each axiom ran(s) € A in Cporm , (Line 5).

* introduce a new concept name X, p for each axiom C' £ 3s.D in CBox
Crorm, (Line 7). Intuitively, X, p denotes the range of s intersected with
the extension of concept name D.

* exchange every axiom of the form C' £ 3s.D in CBox Cyorm, With the
axioms C' & 35.X p, X p € D, and X, p £ A (Lines 8-9) and add X p ©
A to the return value norm (Line 10).

* if 5 is defined as a reflexive role with € £ s in Cporm , (Line 12), then add
T Ato Cporm, (Line 13) and to return value norm (Line 14).

e return the axioms in set norm (Line 22).

If axiom c has the form C' £ 3s.D (Line 16) and if a new concept name X, p
has been introduced due to a range restriction (Line 17), return the set of axioms
{C =35.X; g, X5 p € D} (Line 18 and Line 22).

When we compare this algorithm for eliminating range restrictions with the
original algorithm from [BBLOS8], we notice two differences. First, our algorithm
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Algorithm 7 Algorithm for range restriction normalization (inspired by [BBLOS]).

Input: C,orm ,: @ normalized CBox containing range restrictions norma (C)
Input: c: description logic axiom where ¢ € Cy,orm 4
Output: norm: set of normalized axioms
normg (¢, Crorm)
1: if not c =ran(r) c A and not ¢ = C & 3s.D then return {c} end if
2: norm < @
3: for each s for which C contains role inclusions r S ¢1,t E to,...,t, E sdo

4: ifc=ran(s) c A then
5: delete axiom ran(s) A in Cporm,, -
6: for each C £ 35.D in CBox Cy,orm , do
7: introduce a new concept name X p.
8: delete C' £ 3s.D from Cp,orm,, -
9: addC'c 35.X; p, Xy pE D, and X p E At0 Crormy-
10: add X, p € A to norm.
11: end for
12: if s is defined as a reflexive role with € € s in Cy,orm, , then
13: add T = A to Crorm,, -
14: add T £ A to norm.
15: end if
16:  elseif C = 3s.D then
17: if a new concept name X, p has been introduced due to a range restriction
then
18: add C € 35.X g and X, g € D to norm.
19: end if
20:  end if
21: end for

22: return norm
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(1) norm(Animal n Plant € 1) = {Animal 1 Plant € 1}

) norm(Tiger © Animal N Jeats.(Animal N Jeats.Plant)) =
{Tiger c Animal, Tiger € Jeats. Xeats Ay, Xeats, A, E A1,
Ay £ Animal, Ay € Jeats. Xeats, Plant> Xeats,Plant € Plant}

3) norm(ran(eats) € Animal) =
Xeats, A, E Animal, Xeats plant E Animal.

Table 8.3: Normalized axioms of Ontology O, of Example 23.

returns the axioms for one specific range axiom c in step (4) while the algorithm
in [BBLO8] just returns the changed CBox. Second, we avoid the definition of
A € ranc(r) of [BBLOS] by explicitly performing the changes for every s for
which 7 € t1,...,t, © s € C. Of course, this includes the case s = r. These
changes do not influence soundness and completeness of the normalization.

In the last step, we only return those axioms, which are added due to the nor-
malization of axiom c. From Step (3) we only add the axioms of type X; g € A
because the axioms C' £ 35.X, p and X, g £ D are equivalent to the axiom
C c© 3s.D. This latter axiom is not added due to the axiom c but has been in
the CBox before. In Step (4) we add T © A, because this axiom is directly derived
from the axiom c.

Finally, we combine both normalization functions norma and normg and are
now able to normalize an axiom ¢ with respect to a CBox C with the function

norm(c) = {normg(d,norma(C)) : d € norma(c)}.

This function returns the set of normalized axioms of ¢ by first applying normp
on c¢ and, then, eliminating the range restrictions with normg on each axiom d
returned by norma. We result in the full normalization of a CBox C written as
norm(C), when we normalize each axiom ¢ € C with norm(¢). Example 24 illus-
trates the application of the function normg.

Example 24. We recapitulate ontology Oy and its normalized version norma (Os)
from the previous example (Example 23). This example examines the effect of the
function normg on the range axiom ran(eats) © Animal. It has the form ran(r) ©
A where axiom A equals Animal and role r = s = eats. Here, only one role is
affected because we do not have any role inclusions. According to Algorithm 7, we

* delete ran(eats) = Animal from norma(Os) (Line 5),

* introduce new concept names X cqis. 4, for Tiger € eats. Ay and Xeqrs, Plant
for Ai € Jeats.Plant (Line 7),

* exchange the axioms Tiger € Jeats. Ay with Tiger € Jeats. Xeats A,
Xeats, A, € A1, and Xeqis, A, E Animal as well as Ay € Jeats. Plant with
A E EIeats-AXVeats,Plantr Xeats,Plant © Plant, and Xeats,Plant € Tiger
(Lines 8-9). Furthermore, we add the description logic axioms {Xcqts A, E
Animal, Xeats plant € Animal} to norm (Line 10).
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* add no further axioms, since no reflexive roles are defined in our example
(Line 12-14), and

e return norm (Line 22).

For the axiom Tiger © Jeats.A; the function normg returns the set {Tiger
Jeats. Xeats, Ay > Xeats,A, E A1} due to Lines 16-18 and Line 22. All other ax-
ioms are not changed, because they are neither of form C £ 3s.D nor of form
ran(r) © A. We now conclude this example with Table 8.3 which contrasts the
non-normalized axioms with the normalized axioms.

Most normalization algorithms like the ones described by [BBL0O5b, BBLO0S]
just perform the normalization for the whole CBox C. However, we require to
know the mapping of one specific axiom c to its normalized axioms. In most cases
it is trivial to receive this mapping. However, in some cases it requires caution like
in the range elimination algorithm of EL£*™.

8.3.2 Transformation of Completion Rules to First Order Logic

The second step of translating a logic to its corresponding log-linear logic is to
translate the completion rules into a set of deterministic first-order formulas. Each
description logic for which consequence-driven reasoning is possible, has a finite
set of completion rules. We refer the reader to Section 8.1 for a list of those de-
scription logics. In the case of ££" Baader et al. [BBL05a] build them on the
basis of the six different axiom types occurring in an normalized CBox and prove
their soundness and completeness.

Let C be the implicitly defined initial CBox which contains the normalized ax-
ioms. Let BC be the set of all concept names. Let C; € BCuU {1} be concept names
including the bottom element 1, and r; be role names. According to [BBLO05a],
we can classify the ontology by deriving new axioms of the types C7 & D and
C1 € 3r.Cy. To that end, we apply the rules in Table 8.4 iteratively until all rules
do not derive new axioms.

The general structure of the rules in Table 8.4 are all similar. First, they iterate
over all combinations of a certain number of concepts or roles. Please note that
those concepts and roles are not mutually exclusive. Thus, it might occur in some
assignments that e.g. C; = Ca. Then, we define the axiom which is derived from
the current CBox C followed by the conditions which must hold to derive the ax-
iom. We only add axioms which are either of the form C'; £ C9 (added by rules
CR1, CR2, CR4, and CR5) or of the form C © 3r.C5 (added by rules CR3, CR10,
and CR11). All conditions but the last one state the axioms which have to be in
CBox C and from which the axiom that we want to add is derived. In rule CR1
we formulate for example the transitivity characteristic of the subsumption axiom
which says that if an axiom C is subsumed by an axiom C and the axiom C
is again subsumed by an axiom C'3, we can infer that the axiom C] is also sub-
sumed by the axiom C3. The last condition always requires that the CBox C must
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For all C1,C5,C3 we add Cq € C3to C if

Cl ECQGC,CQEC3€C,and01 ECg¢C

For all Cl, CQ, Cg, Cyweadd CicCytoCif

CieCyelC, Cy ECgEC,aHdCQF\CgEC4¢C

For all C,C5,C5 and all r we add C £ 3r.C5 to C if

Cl = CQ € C, CQ = 37‘.03 € C, and Cl = 37’.03 ¢C

For all C1,Cy, C3,Cy4 and all » we add C7 c Cy to C if

Cl EHT.CQEC,CQ ‘ECgEC, Hr.Cg'EC4eC,andC’1 ‘EC4¢C
For all C1,C5 and all » we add C; € 1 to C if
CiearCyeC,Coc1eC,andCiELEC

... We exclude the completion rules CR6-CR9

for nominals and concrete domains . . .

For all C1, C5 and all r1, 79 we add Cy € 3r3.C3 to C if

Cl c 37“1.02 eC, Cg c 37“2.03 € C, and Cl c 37“3.03 ¢C

For all C,C5,C5 and all r,r9, 73 we add C € 3r1.C3 to C if
rMErg € C, Cl c E|7“2.Cg €C, and Cl c 37“1.02 ¢C

CR1

CR2

CR3

CR4

CR5

CR10

CR11

Table 8.4: The completion rules from [BBLO5a] (from [NNS13]). All C; are
concept names, and all r; are role names.

not contain the the axiom already. We exclude rules CR6-CR9 since we exclude
nominals and concrete domains. Please note that our representation slightly differs
from the representation in [BBL05a] since our representation makes the following
translation to first-order rules more obvious.

We now turn our attention to the transformation of those rules to first-order
logic formulas. In this translation we introduce a first-order literal for each of the
axiom types which occur in the transformation rules. Furthermore, each comple-
tion rule is translated into one first-order rule, which is essentially the same as a
hard Markov logic rule.

In case of the description logic ££*" we define first-order literals fore each of
the six axiom types occurring in a normalized CBox. We are now in the position to
define a bijective function ¢ that, given a finite set of concept and role names Ny,
maps each normalized EL* CBox over Ny to a subset of the Herbrand base of F
with respect to Ny.

Definition 4 (CBox Mapping). Let Nc and NRr be sets of concept and role names
and let Ny € Nc U NR be a finite set. Let T be the set of normalized EL*" axioms
constructible from Ny. Moreover, let H be the Herbrand base of F with respect to
Nuy. The function ¢ : p(T) — w(H) maps normalized CBoxes to subsets of H as
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Fy Ve:sub(c,c)
Fy, Ve:sub(e,T)
F5 Vi, c9,c3:sub(eq,c) Asub(cg, c3) = sub(eq, cs)
Fy Vep,co,c03,¢q : sub(eq,ce) Asub(er,e3) Aint(ca, cs,cq) = sub(c, cq)
F5 VYep,co,c3,1:sub(eq,co) Arsup(ca,r,cs) = rsup(ci,r,cs)
Ve, r, e, cs,cq i rsup(cr,r, c2) A sub(ca,cs) Arsub(cs,r, cq)
= sub(cy,cq)

Fg

F; Vey,co,r,7m0 TSUP(CMH,CQ) /\I?SUb(TLTQ) = TSUP(Cl,Tz,Cz)

Vey,co,c3,71,72,73 1 msup(ct, r1, c2) Arsup(ca, T2, c3) A pcom(ry,r2,73)

F
8 = rsup(ci,rs,c3)

Fy Ve:=sub(e, 1)

Table 8.5: The set of first-order formulas F [NNS11]. Groundings of the formulas
have to be compatible with the types of the predicates specified in Definition 4. 1
and T are constant symbols representing the bottom and top concept.

follows: (p(C) = Ueec ¢(c€))

Cl cD > sub(Cl, D)
Cll_ICQ ED - int(Cl,C’g,D)
CycarCy +— rsup(Cq,r,C)
Ir.CicD  — rsub(Cy,r, D)
rcs ~  psub(r,s)
rioreErs > pcom(ry,ra,T3).

All predicates are typed meaning that r,s,7;(1 < i < 3) are role names, Cy,C5
are basic concept descriptions, and D is a basic concept description or the bottom
concept.

The set of formulas F are listed in Table 8.5. The constant symbols 1 and T
represent the bottom and top concept. The formulas are derived from the E£
completion rules of Table 8.4. In the formulas F} and F> we add the trivial axioms
C c C and C c T for all concepts C'. Please note that these two rules are en-
compassed by rule F'3. The formulas F3, Fy, F5, Fg, F7 and Fg directly map to the
derivation rules CR1,CR2, CR3,CR4,CR10, and C R11, respectively. Formula
Fy ensures coherency since it prohibits the derivation of axioms of the form C' C |.

We can omit the derivation rule C'R5, which would result in the first-order for-
mula Vey, e, rsup(eq,r,ca) A sub(ca, L) = sub(cq, 1), because this formula
never infers new information. This is the case because sub(cz, 1) is always false
because formula Fy states that V¢ : —=sub(c, 1). Due to better readability, we de-
cided to write the formulas as implications. Please note that implications can be
transformed to clauses as introduced in Section 2.2 by negating the left part of the
implication.

We now prove that, relative to a finite set of concept and role names, the func-
tion ¢ induces a one-to-one correspondence between Herbrand models of the first-
order theory F and coherent and classified £E£"" CBoxes.
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Lemma 5. Let N¢ and NR be sets of concept and role names and let Ny € Nc UNR
be a finite set. Let T be the set of normalized EL axioms constructible from Ny
and let H be the Herbrand base of F with respect to Ny. Then,

(a) for any C ¢ T we have that if C is classified and coherent then o(C) is a
Herbrand model of F; and

(b) for any H ¢ H we have that if H is a Herbrand model of F then o' (H) is
a classified and coherent CBox.

Proof. In this proof, we utilize the fact that the completion rules in Table 8.4
are proven to classify E£" knowledge bases without nominals and concrete do-
mains [BBLO5a]. These set of rules are sound and complete. Additionally, we
use the fact that each completion rule CRX has a direct translation to a first-order
rule F, € F (of Table 8.5) where CR1, CR2, CR3, CR4, CR10, and CR11 map
to rules F3, Fy, F5, Fg, F7, and Fg, respectively. Rule F} is a special case of
CR1 where p~!(c) = C; = Cy = C3 and rule F} is a special case of CR1 where
¢ '(c)=C1=Cyand 7' (T) = Cs.

(a) Let us assume that ¢(C) is no Herbrand model and C is classified and co-
herent. Then, there must exist at least one literal £ € ¢(C) such that one
first-order formula Fy € F is violated. If Fy is violated, we conclude that
¢ = sub(C, 1). Since C c 1 = ¢ (sub(C,1)) we conclude that C is not
coherent which is a contradiction.

If any other formula F, is violated, we conclude that the corresponding com-
pletion rule CRX derives ¢~ !(¢) ¢ C. Since the set of completion rules is
proven to be sound for ££*" knowledge bases without nominals and con-
crete domains [BBLO5a], we conclude that C is not classified. This again
results in a contradiction.

(b) Let us assume that o~ '(H) is not classified but H is a Herbrand model.
Then, there exist at least one axiom ¢ ¢ ¢~ (H) which can be derived with
one of the completion rules since it is proven that they are complete for EL£**
knowledge bases without nominals and concrete domains [BBL05a]. Let us
refer to this completion rule with CRX. Then, the first-order rule F;, must
derive from H the corresponding axiom ¢(c) ¢ H. Thus, H is no Herbrand
model of F since rule F}, is violated. This is a contradiction.

Additionally, let us assume that ¢! (H) is not coherent but H is a Herbrand
model. Then, there exists according to the definition of incoherence a class
C € ¢ '(H) such that {C © L} € ¢ 1(H). From this we conclude, that
©(C £ 1) € H. However, this leads to a violation of rule Fy and thus to the
conclusion that H is no Herbrand model. Again, this is a contradiction.

O
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From Lemma 5 we know that, relative to a finite set Ny of concept and role
names, each normalized CBox over Ny that is classified and coherent, corresponds
to exactly one Herbrand model of . Thus, we can use the first-order logic formu-
las in Table 8.5 to classify a EL£* CBox and to check if this CBox is coherent.

Example 25 illustrates how the translation is performed and how the inco-
herency of a simple ontology can be derived. We encourage the reader to com-
pare the method of determining the incoherency via translating the ontology to
first-order clauses with the traditional method illustrated in Example 8.

Example 25. Let Oy be the ontology which we defined in Example 7. The ontology
has the concept names Nc = { Animal, Brand, Cat, Jaguar} but no role names.
According to Definition 4 we can transform the axioms of the ontology to first-order
literals as follows:

Cat c Animal - sub(Cat, Animal)
Catn Brand & 1 > int(Cat, Brand, L)
Jaguar € Cat > sub(Jaguar,Cat)
Jaguar € Brand > sub(Jaguar, Brand)

If we now apply the set of first-order formulas F from Table 8.5 we can derive
the following new axioms with the following formulas:

Formula Axioms

sub(Animal, Animal), sub( Brand, Brand), sub(Cat,Cat),
sub(Jaguar, Jaguar)

Fy sub(Animal, T), sub(Brand, T), sub(Cat, T), sub(Jaguar, T)

F sub(Jaguar, Animal)

Fy sub(Jaguar, 1)

Fy —sub(Animal, 1), =sub(Brand, 1), ~sub(Cat, 1), ~sub(Jaguar, 1)

Fy

The axioms inferred from Formulas I\ and F5 are trivial. Formula F3 infers
that sub(Jaguar, Animal) because

sub(Jaguar,Cat) A sub(Cat, Animal) = sub(Jaguar, Animal)
and Formula Fy infers that sub(Jaguar, L) due to

sub(Jaguar,Cat) A sub(Jaguar, Brand) A int(Cat, Brand, 1)
= sub(Jaguar, 1).

Formulas F5 to Fg are not applied since our model does not contain role names.

Due to the existence of Formula Fy the grounded set of first-order formulas is
no model since Formula Fy does not allow sub(Jaguar, 1) to be true. However,
this fact was inferred by Formula Fy. According to Lemma 5 we can conclude that
our original CBox is not coherent.

If the ontology is coherent, our rule set classifies the ontology. However, if the
ontology is incoherent the rules do not guarantee full classification. An incoherent
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ontology is always not completely classified, if the corresponding first-order logic
variant of the completion rule C'R5 can infer new knowledge. If we add the first-
order logic variant of C'R5 to our rule set, incoherent ontologies would also be
classified. In our case, however, it is enough that we can guarantee the ontology to
be classified if it is coherent.

8.3.3 Addition of Axioms

Until now we translated the coherency checking and the classification into a set
of first-order formulas and translated the description logic axioms into first-order
logic literals. Speaking in terms of Markov logic networks, our network just con-
tains hard formulas at the moment. The next step is to add the uncertain axioms
from CY and the certain axioms from CP to the model.

We extend the normalization of £E£"" CBoxes to log-linear ££" CBoxes as
follows. The log-linear CBox is called EL|.

Definition 6. Let C = (CP,CY) be a L] CBox. Then, norm| (C) = norm(CP)u
U(c,wC)ECU norm({c}).

In this definition we define the normalized log-linear CBox normi (C) out
of the non-normalized CBox C which consists of the deterministic CBox CP and
the uncertain CBox CV. The normalization function norm(...) has already been
introduced in Section 8.3.1. In particular, the function norm({c}) returns the nor-
malized axioms for one single axiom c.

The normalized log-linear CBox normy (C) consists of all distinct elements of
all normalized axioms within the deterministic CBox norm(CP) and of the union of
all axioms ¢ in the uncertain CBox Uy, )ecv norm({c}). We need this definition
of a normalized log-linear CBox later, when we formally define the computation
of the maximum a-posteriori (MAP) query.

Lemma 5 provides the justification for constructing the logical representation
of a EL[[ CBox as follows:

Let G be a set of weighted ground formulas carrying the uncertain information.
This set is derived from the axioms in the uncertain CBox CV as follows. For every
pair (c,w.) € C U we add the conjunction of ground atoms

( /\ gv wC)
gep(norm({c}))

to G. For every axiom c € CV we retrieve its set of axioms norm({c}). This
set contains at least one axiom. Those normalized axioms are then transformed
to its logical equivalences as described in Definition 4. The conjunction of these
equivalences are then put as one weighted ground formula into the set of G. The
number of weighted ground formulas in G equals the number of weighted non-
normalized axioms in CY.
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The set K is constructed analogously from the deterministic CBox CP except
that we do not associate weights with the ground formulas.

K ={g:gep(norm({c})),VcecCP}

Like before, we go through all axioms ¢ in CP and fetch the logical ground
atoms of the normalized axiom ¢ with ¢(norm({c})). The difference of the con-
struction of set JC compared to the construction of set G lies in the fact that the
information from which axiom c the ground atom g is derived is not longer main-
tained in set . Thus, the size of the set K is smaller or equal than the number of
axioms in the deterministic CBox CP.

Intuitively, this difference can be explained as follows: Later in the transla-
tion to the Markov logic network, the ground atoms in set K are just evidence,
where each atom g is set to true, irrespectively from which axiom c it was derived.
However, the formulas in set G are translated to weighted soft formulas.

With these two transformations, we bridged the gap between the ontological
perspective and the logical perspective, which can be seen as the Markov logic
perspective. The axioms in the uncertain CBox CY has been normalized and trans-
formed to its logical equivalences stored in set G. The same was done for the
deterministic CBox CP where the logical equivalences of the normalized axioms
are put into the set /C.

We illustrate this transformation again on an example. Since our log-linear on-
tology OlLL from Example 21 is already normalized and thus would result in no
conjunctions of soft weights, we define a new log-linear variant of O from Exam-
ple 23 and illustrate how it is transferred to the logical perspective in Example 26.

Example 26. We assign weights to some of the axioms of ontology Qs from Exam-
ple 23 and create the log-linear ontology OQLL :

Animal n Plant € 1 (1)
cP (Tiger © Animal N Jeats.(Animal N Jeats.Plant),1.1) (2)
cY (ran(eats) © Animal,0.3) (3)

Table 8.3 contains the mapping of the normalized axioms from Oa. From these, we
can derive the normalized ontology

normp (O5F) = norm(CP) u Uic,weyecu norm({c}) =
{Animal n Plant c 1}u

{Tiger c Animal, Tiger € Jeats. Xeats Ay, Xeats, A, E A1,
Ay € Animal, Ay € 3eats. Xeqis, Plants Xeats,Plant € Plant
Xeats, A, E Animal, Xeats plant € Animal}.

The set K containing the logical axioms for the deterministic CBox CP and the set
G containing the weight axiom pairs for the uncertain CBox C U consist of:
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K int(Animal, Plant, 1) (1)
(sub(Tiger, Animal) A rsup(Tiger, eats, Xeqrs, A, )A

sub(Xeats Ay, A1) A sub(Ar, Animal) Arsup(Ar, eats, Xeats, Plant)N  (2)
SUb(Xeats,Planh Plant)a 11)

(sub(Xeats, A, , Animal) A sub(Xeats, Piant, Animal), 0.3) (3)

Please refer to Table 8.3 for the full set of normalized axioms.

8.3.4 The Most Probable Coherent Ontology Query

Under the given syntax and semantics of log-linear description logics we can ask
the same two types of queries as in Markov networks or Markov logic. We distin-
guish between the marginal inference introduced in Section 2.1.2 and the maximum
a-posteriori inference defined in Section 2.1.3. In context of log-linear description
logics, the conditional probability query, which is in principle a more specific ver-
sion of the marginal query, answers the questions: “Given a log-linear description
logic CBox, what is the probability of a conjunction of axioms?”. The difference
compared to the traditional conditional probability query lies in the fact, that we
condition on the axioms in the deterministic CBox. For details and for an algorithm
solving conditional probability queries we refer the reader to [NNS11].

In this thesis we focus on the maximum a-posteriori (MAP) query. In case of
log-linear description logic the query answers the question: “Given a log-linear
ELT™ CBox, what is a most probable coherent deterministic EL*" CBox over the
same concept and role names?” In the context of uncertain description logics, the
MAP query is crucial as it infers a most probable classical ontology from an un-
certain one. The MAP query also captures two important problems that frequently
occur in the context of Ontology learning and ontology matching. Recently, the
MAP query of log-linear description logics have also been used in activity recog-
nition. We refer the reader to Section 10.2 for details of these application areas.

Let us turn to the theoretical foundation of the MAP queries. The following
theorem combines the previous results and formulates the log-linear E£*" MAP
query as a maximization problem subject to a set of logical constraints.

Theorem 7. Let C = (CP,CY) be a EL™ CBox, let Ny be the set of concept and
role names used in normy | (C), and let H be the Herbrand base of F with respect
to Ny. Moreover, let K be the set of ground formulas constructed from C° and let
G be the set of weighted ground formulas constructed from CV. Then, with

H = argmax Z wa (8.1)
{HH: ey (KUF)} {(Gweg)eG: =Gl

we have that ¢~ (I:I ) is a most probable coherent CBox over Ny that entails CP.

Proof. We show that cp‘l(ﬁ ) is a (a) most probable (b) coherent CBox over Ny
that (c) entails CP.
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(a) The MAP query computes a most probable world. In Section 2.1.1 and Sec-
tion 2.1.3 we defined the MAP query in log-linear models as followed. Let x
be a truth assignment to variables X'. Let f;(z) be binary features associated
with a weight w;. Then, the MAP query computes the most probable world
with

1
X = argmax —_ exp (Z wl-fi(x)) .

Since % is constant and the exponential function is a monotonous increasing
function, we obtain

1
X = — exp (argmax Zwlfl(x)) = argmax Zwlfl(x)

We now associate each binary weight feature pair f;(2) and w; with G and w
oy )1 if(Gwg)eG:En G
such that fi(w) = { 0 otherwise

probable world and ¢~ (H') a most probable CBox.

. Concequently, H is a most

(b) We know from Lemma 5 that for any H' ¢ H we have that if H’ is a Herbrand
model of F then ¢ '(H') is a classified and coherent CBox. From H we
know that H ¢ H. Furthermore, H entails K U F. From this follows that
H =y F and thus H is a Herbrand model of F. Consequently, H is classified
and coherent.

(c) Since H Fg (KUF) we can conclude that H 4 (K). Since CP = (K) we
can conclude that ¢~ (H) entails CP.

O]

Theorem 7 illustrates how we can compute the maximum a-posteriori (MAP)
query in log-linear description logics to retrieve the most probable coherent CBox.
Intuitively, the theorem uses the general definition of a MAP query from Sec-
tion 2.1.3 and constructs a specific maximum a-posteriori query. This query re-
turns a CBox which maximizes the weights of the uncertain CBox CY, entails the
deterministic CBox CP, and is coherent. Please note that the MAP query derives a
most probable CBox and classifies it at the same time.

In order to be able to perform this computation, we have to (a) transform the
log-linear CBox to logical formulas, (b) compute the MAP query based on these
formulas, and, (c) transform the result back into description logic axioms. For (a)
the mapping from description logics to logical formulas from the last section is
reused. The logical representation depict the set KC, which contains the literals con-
structed from the deterministic CBox CP, and the set G, which contains weighted
conjunctions derived from the uncertain CBox C U In (b) we search the Herbrand
base H which maximizes the sum of the weights w¢ of each G € G. Every of such
G has to be entailed in H. Please note, that we use a capital G here to emphasize
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that GG contains conjunctions of literals. Furthermore, this Herbrand base has to en-
tail all literals in G and the ground formulas constructed out of the hard rule set F.
This hard rule set F consist of the formulas listed in Table 8.5. After we computed
the Herbrand base I we can, finally, transform it back to the description logic view
(step (c)) by the function 90‘1 (I:[ ) and result in the most probable coherent CBox.

8.3.5 Transformation to a Markov Logic Network

The mapping from log-linear DL to logic and back has been exhaustively defined
in the last sections. Thus, we now require to develop a solving technique for the
concrete MAP query given in Theorem 7. For this, we translate the theorem into
a concrete Markov logic network (MLN) and can then reuse the efficient ways of
solving MAP queries by translating it into integer linear programs presented in
Part L. In theory, the previous sections already build a Markov network. However,
the following algorithm wraps up the theoretical findings, illustrates the intercon-
nection between previous components.

Let Nc and Ng be sets of concept and role names, respectively. Let IC be the set
of ground formulas constructed from CP and let G be the set of weighted ground
formulas constructed from CV. Then, we construct the following MLN network.

1. We encode every literal £ € }C as evidence.

2. We introduce the predicates sub and rsup as hidden predicates and the pred-
icates int, rsub, psub, and pcom as observed predicates. This means, that
for the latter predicates all literals which are not encoded in the evidence are
implicitly set to false.

3. We add each formula f € F as hard clause to the MLN.

4. We construct the two types T and Tr, where 7o contains constants rep-
resenting all concept names in N¢ and Tx contains all role name constants
from NR, respectively. We then use those types to restrict the possible con-
stants for variables of the formulas of step (3).

5. We add the weighted ground formulas (G, w¢) € G to the MLN.

For details about the components of a MLN we refer the reader to Section 2.3.
Especially for the definition of types as well as hidden and observed predicates we
recommend to read Section 2.3.1.

After this transformation, we can compute the MAP query with the techniques
presented in Part I. For step (5) we require the ability to compute the MAP queries
for weighted conjunctions. To that end, we require to extend Markov logic such
that it can handle weighted conjunctions. This extension will be explained in Sec-
tion 8.4. Example 27 illustrates the MLN construction and provides the MAP query
result.
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Example 27. Let us recapture the log-linear ontology OQLL from Example 26. The
concept and role names are Nc = { Animal, Tiger, Plant} and Ng = {eats}. For
easier replicability, we print the two sets K and G again:

K int(Animal, Plant, 1) (1)
G (sub(Tiger, Animal) A ... A sub(Xeats, Plant, Plant),1.1) (2)
(sub(Xeats, o, , Animal) A sub(Xeats Plant, Animal),0.3) (3)

For brevity we omitted some translations of axiom (2) and replaced them with
dots. We refer to Example 26 for a full list of axioms.

We now transform the log-linear ontology (’)2LL into a MLN performing the
following steps:

~

. We encode {int(Animal, Plant, 1)} € K as evidence.
2. We set the hidden and observed predicates as described.

3. We add every formula in F from Table 8.5 as hard clauses:
F1 (sub(c,c), c0)
Fy (sub(c,T),00)
F5 (-sub(cy,c2) v —sub(ca,c3) Vv sub(cy, c3), 00)
Fy Vei,c9,c3,¢4 : sub(cy, ca) A sub(cq,cs) Aint(ca,cs, cq) = sub(cy,cq)

Fy (=sub(c, 1), 00)

4. After construction, the two types contain the constants T¢ = { Animal, Plant,
Tiger} and Tr = {eats}. Each variable c,c; is now associated with type
To and each variable r; with type Tg (with 1 < i < 4) in each Formula.

5. We add the following weighted conjunctions to the MLN:
(sub(T'iger, Animal) A ... A sub(Xeats, Plant, Plant),1.1)

(sub(Xeats, A, , Animal) A sub(Xeats, Piant, Animal),0.3)

If we compute the MAP query of the MLN, we reach the objective 1.1. This
means that the most-probable coherent ontology entails axioms (1) and (2) but not
axiom (3). Axiom (3) is in conflict with axiom (2) since rule Fy derives

sub(Xeats, Plant, Plant) A sub(Xeats, Plant, Animal) A
int(Animal, Plant, 1) = sub(Xeats, Plant, L)-

Since (2) has a higher weight than (3) the MAP state contains axiom (2) and not
axiom (3).
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8.4 Extension of Markov Logic to Formulas in Conjunc-
tive Normal Form

The correct translation of log-linear description logic to Markov logic networks re-
quires the ability to assign weights to conjunctions of literals. However, traditional
Markov logic assigns weights only to disjunctions of literals (called clauses). If
the conjunctive normal form of a weighted first-order formula contains more than
one clause, then Richardson and Domingos [RD06] divide the associated weight
through the number of clauses and split the clauses in individual formulas. Exam-
ple 28 illustrates this procedure and shows the consequences.

Example 28. We have the following weighted first-order formula taken from [RD06]:

(Friends(xz,y) = Smokes(x) < Smokes(y),2.2) (1)
The conjunctive normal form of this first-order formula is:
((=Friends(z,y) v Smokes(x) v ~Smokes(y))A (2)

(~Friends(x,y) v -Smokes(x) v Smokes(y)),2.2)

The approximation from [RDO6] splits this in the following two clauses:
(~Friends(x,y) v Smokes(x) v =Smokes(y),1.1) (3)
(=Friends(x,y) v -Smokes(z) v Smokes(y),1.1) (4)

Let us now assume that we have a possible world

x = {Friends(A, B), Smokes(A),~Smokes(B)}.

If we use the original translation (2), we receive the probability
1 1
P(x)=— 2.2.0)=—.
(x) = exp(22:0) =

However, if we use the approximation of clause (3) and (4), we recieve for the same
world x the probability

1 1
P(x) = Eexp(l.l -1+1.1-0) = — €XP 1.1.

Thus, this approximation leads to different probabilities of the same possible world.

In Example 28 we have gained an intuition that this approximation often leads
to different semantic representations. In this Section, we extend the semantics
of Markov logic such that they can deal with arbitrary weighted CNF formulas.
Furthermore, we extend our optimized ILP translation (see Section 3.2) and our
novel CPA approach (see Section 3.4) from Part I to work with conjunctions of
literals.

In particular, we first recall an approach, which creates new predicates for each
clause in a conjunctive normal form and connects this predicate with a hard rule
to the results of this clause [FABR*13, Jan04]. Replacing the clauses by its rep-
resenting predicates, results in a conjunction of literals. Second, we show how
conjunctions of literals can be translated to ILP constraints (in Section 8.4.2) and
integrated into the CPA and CPI aggregation (in Section 8.4.3).
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Please note that the generalization of integer translation to weighted CNFs is a
side-product of this thesis. Extending the CPA algorithm with conjunction is novel
and has not been published and experimentally verified yet. The idea of splitting
the weighted CNF formulas into separate conjunctions of disjunctions have been
introduced in [FdBR* 13, Jan04].

8.4.1 Reduction to Conjunctions

Our goal is to semantically interpret a weighted CNF formula f correctly. This
formula f has the form

(fiwg)=(c1 A...Acn,wy)

where each ¢; is a clause of the form ¢; = 0; 1 V...V {; ..

To that end, we first simplify the formula to be a conjunction of literals by
introducing a new predicate p.; for each clause c¢;. This reduction is inspired by
existing methods [FABR*13, Jan04]. We refer the reader to this literature for for-
mal justifications.

Let X (c¢;) be the set of variables of clause ¢;. Then, we construct the novel
literal p.,(x1,...,zy) out of the variables x1,...,x, € X(¢;). Consequently, the
arity of predicate p., equals the size of X'(¢;). Trivially, if the clause ¢; consists
of only one literal, we do not have to introduce a new predicate. Additionally, we
have to link the new literal p, (z1,...,x,) with the clause ¢;, which is translated
to the logical statement

(gz’,l V... Vgi,m) <:>pci(xla---7xn)'

Similar to Section 3.2, we distinguish between positive and negative weights.
This prevents us from having to model both directions. If w; > 0 we only have to
encode the direction = which leads to multiple hard clauses

<_‘£i,1 Vpci(-rb S 71:71)7 00)7 ey <_‘€i,m Vpci(l'b cee 7xn)7 OO)

This hard clauses model the implication: if ¢;, then p.,(z1,...,2,). This means
that pc,(z1,...,2,) can not be true if ¢; is false. Since the weight is positive,
De; (%1, ..., zyn) always tries to become frue to maximize the weights, and thus
have to be forced to false if c; is false.

If wy < 0 we have to encode the < direction which leads to the hard clause

(Ei,l V...V gi,m \Y ﬁpCi(l‘l, . ,xn), OO>
Respectively, the clause now models the implication: if p.,(x1,...,xy), then ¢;.
Since the weight is negative, p,(z1,...,x,) tries to become false if possible

to avoid the realization of the negative weight. However, our constraint forces
De; (1, ..., Tp) to be true whenever ¢; is true.
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Since these are all normal hard clauses, they can be translated to the ILP like
any other hard clause. We refer the reader to Section 3.2 for details.

Finally, we replace each clause ¢; with its literal p,, (1, ..., x,) which result
in a conjunction of literals

(/'\pci(xlwu ,xn),fwf).

Example 29 illustrates the transformation process. This transformation can be
performed in polynomial time [Jan04]. Although in some cases many hard formu-
las have to be created, the computation of hard formulas is usually very efficient
when utilizing the CPA and the CPI algorithm. We are now in the position that
we only have to come up with new ILP translations for conjunctions to cope with
general weighted CNF formulas.

Example 29. In this example we reuse the first-order formula f in CNF form from
Example 28

((~Friends(z,y) v Smokes(x) v ~Smokes(y))A (2)
(=Friends(x,y) v -Smokes(x) v Smokes(y)), 2.2)

to illustrate the reduction to conjunctions. We introduce two new predicates p1 and
p2 and add the following two hard clauses to the MLN:

(Friends(z,y) v p1(z,y), ), (-Smokes(x) v p1(x,y), co),
(Smokes(y) v p1(x,y), oo)

(Friends(z,y) v p2(x,y), ), (Smokes(z) v pa(x,y), o),
(~Smokes(y) v pa(x,y),o0)

Finally, we transformed the soft CNF formula f to hard rules and the following
soft conjunction rule

(p1(z,y) Apa(z,y),2.2).

8.4.2 Integer Linear Program Translation of Conjunctions

The previous section provides us a conjunction which needs to be translated in
ILP constraints. To that end, we first have to ground the conjunction. This works
similarly to the grounding of clauses, which is explained in Section 2.3.2, except
that the rules for omitting literals or clauses due to evidence change. Since those
changes are straight forward we do not describe them here.

From now on we assume that we have given a set H containing all conjunctions
of grounded literals h with

h=lin...NELp.

associated with a weight wj, which can be either infinitive or a real number. We
use the letter A for conjunctions of grounded literals and the letter g for clauses.
From now on, we shorten the term conjunctions of grounded literals by just saying
grounded conjunctions. The literals ¢; (1 < ¢ < n) can be negated or unnegated.
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For translating h into ILP constraints, we distinguish between the cases where
weight wy, is infinitive (hard formula), positive, and negative. This is done analo-
gous to Section 3.2.

One binary ILP variable z, is associated with each ground atom ¢ occurring in
the set of all grounded conjunctions and all ground clauses. For a ground conjunc-
tion h let L*(h) be the set of ground atoms occurring unnegated in h and L~ (h)
be the set of ground atoms occurring negated in h.

For every ground conjunction i € ‘H with weight w > 0, w € R, we add a novel
binary variable 2, the term wy, - 2, to the objective, and the following constraint to
the ILP:

> wmet+ y, (L=z) 2 (IL*(R)| + L7 (h))z-

LeL*(h) teL=(h)

For every h with weight wy, <0, w € R, we add a novel binary variable 2y, the
term wy, - zj, to the objective, and the following constraint to the ILP:

Yooag+ > (T—z) <(ILT(R)|+|L7(R)| - 1) + zp.
teL*(h)  teL(h)

For every h with weight wy, = co, we add the following constraint to the ILP:

>, we+ Y, (T—z) 2 |[L7(R)+|L7(R)].

LeL*(h) LeL=(h)

The idea behind the translation of conjunctions to ILP constraints is analogous
to the translation of disjunctions of literals (also called clauses) in Section 3.1 and
Section 3.2. Thus, we refer the reader to these sections for comments on the ILP
constraints.

8.4.3 Extending the Cutting Plane Aggregation Approach With Con-
junctions

Conjunctions are integrate-able into the cutting plane inference (CPI) and cutting
plane aggregation (CPA) approaches. The algorithm for CPI does not change
when including conjunctions. However, violated constraints of conjunctions are
of course detected differently than for disjunctions. For details about violated con-
straints for conjunctions we forward the reader to Section 4.2.

Weighted conjunctions can also be aggregated with our new CPA approach.
The aggregation approach is similar to the aggregation of clauses. Thus, Defini-
tion 1 also holds for conjunctions. Consequently, we end up with a set H c H of
n weighted conjunctions of grounded literals, which are aggregated with respect
to c. In our case c is a conjunction of grounded literals. As before, we name the
non-aggregated literal ¢;.

However, we obtain differences in the semantic. Thus, it requires to set up a
new version of Lemma 2 which is as follows:
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Lemma 8. Let H € H be a set of conjunctions of ground literals (called ground
conjunction) with weight w and let c be a ground conjunction. Moreover, let us
assume that H can be aggregated with respect to ¢, that is, that each h € H can
be written as {; A c. The aggregated feature fY for the aggregated conjunction H
with weight w maps each interpretation I to an integer value as follows

fH(I):{ {linceH|ITELY if Tec }

0 otherwise

Proof. The proof is analogous to the proof of Lemma 2. We first define the indi-
vidual feature f"(TI) as

h B 1 Zf Ieh
) _{ 0 otherwise '

The features can be aggregated to

=3 M

heH

since all h € H share the same weight w. Again, we distinguish two cases:

It c: If I # ¢ we can conclude that no h € H is satisfied since each h = ¢; A ¢ =
L; A false = false. In this case, each individual feature function returns
fM(I) = 0 and thus the aggregated feature function must return f7(I) =

Sherr fM(I) =0.

I = ¢: Since each h € H is equivalent to ¢; A ¢ = £; A true = ¢;, it is a requirement
for h being satisfied that c is satisfied . Under the condition that [ k& ¢, the
individual feature function f(I) of each clause h returns

h _ 1 if Ted;
i) _{ 0 otherwise

Finally, we rewrite the aggregated feature function as

P = Y D) =t nce H|TE6)].

heH

Please note that this lemma is also valid for sets of ground conjunctions H con-
taining only one h. In this case, the individual feature f"(I) equals the aggregated
feature f1(T). O

The feature resulting from the aggregation, therefore, counts the number of
literals ¢; that are satisfied whenever the ground conjunction c is satisfied. If the
conjunction c is not satisfied, every conjunction evaluates to false. Thus, the feature
function returns zero in this case.

Consequently, the ILP translation is different for aggregated conjunctions H
than for clauses.



8.4. EXTENSION OF ML TO FORMULAS IN CONJUNCTIVE NORMAL FORM131

For any ground conjunction ¢, let L*(¢) (L™ (c¢)) be the set of ground atoms
occurring unnegated (negated) in c. Let H € H be a set of n ground conjunctions
that can be aggregated with respect to c, that is, for each h ¢ H we have that
h =z; Acor h = -z; A c for a ground atom z; and a fixed clause c. Additionally,
we introduce n = |H|. We now introduce a new integer variable zy and add the
term wy, - zg to the objective.

In case the weight is positive (w > 0) we add the following constraints to the
ILP:

Z i + Z (1-z) > 2q (8.2)
(zive)eH (~zive)eH
nxy > zp forevery £ € L™ (c) (8.3)
and
n(l-xz;) > zy forevery £ € L™ (c) (8.4)

The only syntactical difference to the case of clauses with negative weights
is the use of > instead of <. The constraint formulation follows the intuition that
in conjunctions every non-negated literal has to be satisfied, and every negated
literal must not be satisfied. Thus, our integer variable zfr is only allowed to be
greater than zero, if every (negated) literal in the aggregated conjunction c is (not)
satisfied. This is ensured by Equation 8.3 and Equation 8.4, respectively. If c is
satisfied, Equation 8.2 ensures that zy is at most the number of (non-)satisfied
(negated) literals.

In case the weight is negative (w < 0) we add the constraint

Yo onxe+ Y, n(l-z)-n-m+ Y wxi+ y, (1-z) <zg (85)

LeL*(c) LeL=(c) (zive)eH (~zive)eH

where m = |L*(¢)| + |L™(c)| is the number of literals in ¢. The idea behind
this restriction is a little bit tricky. Since we are dealing with negative weights, the
integer variable zp intuitively wants to be as small as possible. This means, we
have to ensure that 2 is at least as high as the output of function £ (I).

In case all £ € L*(c¢) (£ € L™ (c)) are satisfied, the constraint simplifies to

n-m-n-m+ >y x+ . (1-z).

(xive)eH (-~zive)eH

Thus, we basically count the true £ € L™ (¢) (=f € L™ (¢)) literals.

Next, we examine the case where not all £ € L*(c) (¢ € L™(c)) are true (false).
Correspondingly, the left side of our constraint has a result smaller or equal than 0.
The reason for this is that

Y nae+ Y, n(l-z)-n-m<-n,
LeL*(c) LeL=(c)
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since at least one of the m literals £ € L™ (¢) (£ € L™(c¢)) is not satisfied.
For hard constraints with infinite weights (w = o), we add the constraint:

Yo onxe+ Yy, n(l-z)+ Y, i+ Y, (I-z;)>n-(m+1) (8.6)

LeL*(c) LeL=(c) (xve)eH (—zive)eH

where m = |L*(¢)| + |L™(c)| is the number of literals in c¢. This constraint
models the requirement that every literal £ € L*(¢) (=¢ € L™ (c)) must be satisfied
as well as every literal z; of form (x; v ¢) € H (-x; of form (-x; v ¢) € H) must
be satisfied.

For our extended Markov logic semantic, we require an updated version of
Theorem 3 which is as followed.

Theorem 9. Let M be a Markov logic network allowing weighted formulas in
conjunctive normal form. Furthermore, let ILP(M) be the ILP formulation with
aggregated cutting planes. Each solution of ILP(M) corresponds one-to-one to a
maximum a-posteriori state of the Markov logic network M.

Proof. The conversion of weighted CNF to hard clauses and weighted conjunc-
tions have been shown by [Jan04]. Theorem 3 showed the correctness for clauses.
In order to proof the theorem above, we have to show that our ILP translation of
the aggregation of conjunctions correctly translates the aggregated features from
Lemma 8.

Let H c H be a set of aggregated ground conjunctions with weight w. More-
over, let us assume that H can be aggregated with respect to conjunction c, that
is, that each h € H can be written as ¢; v c¢. Let I be any interpretation. For each
aggregated feature f(I), we introduced an integer ILP variable zg and added
w - z¢ to the objective. We now have to show that zz = f(T).

In case of w > 0, the ILP constraints in Formula 8.2, Formula 8.3, and For-
mula 8.4 ensure that zz = f5(1I).

o If I & ¢, then all literals ¢ € L™(c) (- ee L™ (c)) are satisfied and For-
mula 8.3 and Formula 8.4 restrict zy to zy < |H|. However, Formula 8.2
further restricts zp to zyy < [{¢; Ace H| I = ¢;}|. Due to w > 0 the ILP tries
to maximize zz. Thus, we can conclude z7 = £ (I) = |[{tinc e H| I = ¢;}).

o If I # c, at least one literal £ € L*(c) (=¢ ee L™(c)) is satisfied. Thus, at
least one instance of Formula 8.3 or Formula 8.4 ensure that zg < 0. Thus,
we obtain zg = fH(I) = 0.

In case of w < 0, the ILP constraint in Formula 8.5 ensures that zg = f¢(I).

o If I & ¢, then then all literals ¢ € L*(c) (¢ ee L™(c)) are satisfied and
Formula 8.5 simplifies to

n-m-n-m+ Yy x+ y (l-z)<zy.
(zive)eH (-zive)eH
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The remaining part ensures that zr > |[{¢; Ac e H | I = ¢;}|. Since w < 0 the
ILP tries to minimize z and we conclude zz; = f2(I) = |{t;nce H|I &

4}

o If I # c, at least one literal £ € L*(c) (~£ €e L™(c)) is not satisfied. Thus,
we can infer from Formula 8.5 that

Z nwp + Z n(l-xzy)-n-m+ Z T;+ Z (1-2;)<

LeL*(c) LeL=(c) (zyve)eH (~xive)eH
(n-1)m-n-m+ Z T + Z (1-z;)=
(zive)eH (~zive)eH
-n+ Yy i+ oy, (I-m)<
(zive)eH (~zive)eH

-n+n<0<zy.

Since w < 0 the ILP minimizes 2 and thus we get 27 = f7(I) = 0.
O

With this extension of our cutting plane aggregation methodology, we are now
able to aggregate weighted conjunctions. This allows us to efficiently solve the
Markov logic networks which are constructed for computing the most probable
coherent world in log-linear description logics.
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Chapter 9

Related Work

In the following, we describe several description logics which can deal with some
kind of uncertainty. According to Lucasiewicz and Straccia [LS08] they can be
categorized into probabilistic, possibilistic, and fuzzy description logics. We se-
lected the approaches according to their degree of importance in the community
and if a usable implementation exists. To the best of our knowledge, Section 9.4
contains all existing systems which combine any description logic with some kind
of uncertainty 9.4.

Throughout the description of existing uncertain description logics our aim
is to compare them with log-linear description logic. In particular, we want to
answer the question if any other uncertain description logic is able to compute a
most-probable coherent ontology.

The broad structure in probabilistic, possibilistic, and fuzzy description log-
ics as well as some explanations are inspired by [LS08]. However, most con-
tent result from an extensive literature research of various different sources. De-
spite [LSO8], the main sources within Section 9.1 have been: [LukOS8] for Sec-
tion 9.1.1, [FABT*11, RKTO07] for Section 9.1.2, and [dCL06, LdC12, Las08] for
Section 9.1.3. For Section 9.2 the main sources where [DLP94, QJPD10] and
Section 9.3 is mainly summarized from [LS08]. Section 9.4 is based on several
publications describing the respective system.

9.1 Probabilistic Description Logics

Before we describe the existing approaches in probabilistic description logics we
briefly recall the main properties of probabilistic logic. For illustration, we present
the classic probability logic described in [Nil86] and summarized in [LSOS]. Be-
yond this, there have been published a large variety of formal languages based on
probabilistic logic. For more probabilistic languages we refer to the surveys [H4j01,
Hai96].

Let ¢ and 1 be basic events. Then, other events can be recursively constructed
by the connectives —¢, ¢ v 1, and ¢ A . A probabilistic formula assigns a real

135
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number p € [0, 1] to an event. Intuitively, e.g. rain_tomorrow > 0.7 means that
it will rain tomorrow with a probability of 0.7. Finally, a probabilistic knowledge
base is a set of probabilistic formulas. We skip the detailed definitions of the se-
mantics here. For details about the semantics, the reader is referred to [Nil86].
However, we want to briefly illustrate the computation of probabilities in order to
be able to point out the difference to possibilistic logic later in Section 9.2. A prob-
ability interpretation Pr is a probability function which maps a concrete world to
a probability. Hereby, the following relationships hold:

Pr(¢ntp) = Pr(¢) + Pr(y) - Pr(¢v);
Pr(¢vy) =Pr(¢) + Pr(y) - Pr(¢ )
Pr(-v) =1- Pr(¢).

In the following, we concentrate on three approaches which represent the three
main variants of combining probabilistic models with description logics. First,
Section 9.1.1 presents P — SROZQ [Luk08] which defines conditional proba-
bilities about concepts and statements expressing uncertain knowledge about ob-
jects. Then, Section 9.1.3 describes PR-OWL [Cos05, dCL06] which is based
on Bayesian networks. Finally, we introduce a semantic based on probabilistic
prolog [RKTO07, FABT*11] in Section 9.1.2.

Not included in the following sections is the the probabilistic description logic
defined in [Luk07]. They combine description logic programs under answer set
programming [EIL*08] and well-founded semantics with independent choice logic
[Poo08]. For query processing all answer sets have to be computed out of which
an integer linear program is constructed.

In delimitation to log-linear description logics, non of these approaches build
their semantics on Markov logic networks and compute the most probable coherent
ontology as it was introduced in Chapter 8.2.

911 P-SROIQ

To the best of our knowledge, the probabilistic description logic P — SROZQ
[Luk08] is the most expressive description logics that combine conditional proba-
bilities about concepts and statements expressing uncertain knowledge about in-
stances. The first provides statistical information about a large number of in-
stances (also called terminological probabilistic knowledge), while the latter one
defines a particular degree of belief for one specific instance (also called assertional
probabilistic knowledge). Each of the probability statements has two probabilities
attached where the first one represents the probability to which the statement is at
least true and the second one is the probability to which the statement is at most
true. The terminological probabilistic statement (HasFourW heels|Car)[0.9,1]
for instance means that cars have four wheels with a probability of at least 0.9. A
P - SROZQ terminological box consists of a classical knowledge base 1" and a
finite set of terminological probabilistic statements P. The assertional probabilistic
statements P, are created relative to an individual o. The statement ‘John‘s car is a
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sports car with probability of at least 0.8 is expressed by the conditional constraint

(SportsCar|T)[0.8,1] € Pjohn'scar- Thus, each individual in a P — SROZQ as-

sertional box can have a a finite set of assertional probability statements assigned.
In P - SROZQ there exist three main reasoning problems [Luk08, LSOS]:

Probabilistic termionological box consistency. Given a probabilistic terminolog-
ical knowledge base PT" with a classical knowledge base 7" and a finite set
of terminological probabilistic statements P, decide if PT" is consistent. In-
formally, PT is consistent if any inconsistencies can be naturally resolved
by preferring more specific pieces of knowledge to less specific ones.

Probabilistic knowledge base consistency. The probabilistic knowledge base is
consistent if the terminological knowledge base PT' is consistent and if 7' U
P, is satisfiable for every probabilistic individual o. Thus, the consistency of
the terminological knowledge base PT' and the and the satisfiablility of the
probabilistic individuals P, is done separately.

Tight lexicographic entailment. Intuitively, tight lexicographic entailment infers
as much new knowledge as possible so that we prefer more specific pieces of
knowledge to less specific ones in case of local inconsistencies. For termino-
logical tight lexicographic entailment, we search for the maximal number of
terminological probabilistic statements P that are entailed in P7". The same
idea is applied to the assertional box.

Example 30 (inspired by [LS08]) illustrates these three reasoning types.
Example 30. Let us assume that T = {SportsCar € Car} and

P = {(HasFourW heels|Car)[0.9,1],
(FHasSeats.{ four}|Car)[0.9,1],
(=3HasSeats.{ four}|SportsCar)[0.7,1]}.

When we now reason about SportsCar the inconsistency can be resolved by pre-
ferring the more specific statement (-3HasSeats.{ four}|SportsCar)[0.7,1] ov-
er the less specific statement (3HasSeats.{ four}|Car)[0.9,1]. Thus, our prob-
abilistic termionological box is consistent.

Let us now define an assertional box consisting only of one individual John’s car
and containing the conditional probability statement

(SportsCar|T)[0.8,1] € Propn’s car-

Then, our whole probabilistic knowledge base is again consistent since the proba-
bilistic terminological box is consistent and T' U Pjypy, s car IS consistent. In termi-
nological tight lexical entailment the new axiom

(HasFourW heels|SportsCar)[0.9,1]

can be inferred. New tight lexical consequences for the individual John’s car are
the axioms (~3HasSeats.{ four}|1)[0.7,1] and (HasF ourW heels|T)[0.72,1].
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Consistency checking of P — SROZQ can be reduced to the problem whether
a classical knowledge base is decidable and whether a system of linear constraints
is solvable. In particular, a sequence of problems have to be solved, where the vari-
ables of the linear constraints are computed by deciding classical knowledge base
satisfiability problems. Tight lexical entailment can solved with a similar tech-
nique. However, the complexity is much higher. We refer the interested reader
to [LukO8] for details and precise complexity results. The system PRONTO [KIlil1]
implements these inference algorithms including some optimizations (see Sec-
tion 9.4).

A predecessor of the presented probabilistic description logic P - SROZQ is
the less expressive probabilistic description logic P - SHOQ [GL02]. Further-
more, the probabilistic logics in [Hei94, Jae94] are related. However, the prob-
abilistic variant of ALC [Hei94] does not allow inference about assertions while
the logic introduced by Jaeger et al. [Jae94] only allows concept assertions but
mention the possibility to extend their approach to role assertions. The presented
probabilistic description logic P — SROZQ allows both, role and concept asser-
tions. Jaeger et al. [Jae94] presents an inference technique where they combine
terminological and assertional probabilistic knowledge into one probability space
and apply cross entropy minimization. Cross entity minimization is a measure of
information dissimilarity of two probability measures [SJ81].

Finally, we conclude that the semantic and the query tasks of P — SROZQ
are not comparable with the semantics of log-linear description logic and with the
query of finding the most probable coherent ontology presented in Chapter 8.

9.1.2 DISPONTE

The semantic DISPONTE [BLRA11] (Distribution Semantics for Probabilistic On-
tologies) is closely related to the probabilistic logic P — SROZQ (see previ-
ous section). According to [LSO08], DISPONTE is based on previous work of
Lukasiewicz [LukO1b, LukOla] which combines probabilistic logic programming
with conditional constraints. We devote her an extra section because of the exis-
tence of the system BUNDLE [RBLZ13] which recently won the best paper award
at the Web Reasoning and Rule Systems (RR 2013)! conference.

Furthermore, there are some mentionable differences. First, DISPONTE de-
fines exact probabilities p for an axiom @ and no minimal and maximal range
as in P — SROZQ. Intuitively, the statement p : @ means that axsiom a is
true with probability p and false with probability 1 — p. Similar to Jaeger et
al. [Jae94] they distinguish between conditional probabilities about concepts (e.g.
0.9 :: Car © HasFourW heels) and assertional probabilities about concrete in-
stances (e.g. 0.8 :: johnscar : SportsCar).

Second, the semantics is based on probabilistic prolog (PROBLOG) [RKTO07,
FdBT*11]. Compared to classical first-order logic, probabilistic prolog is based

"http://rr2013.uni-mannheim.de/
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on logic programming and thus inherit the closed-world assumption. In first-order
logic, a < b has three models {a,b}, {a,-b}, and {-a, b} while the equivalent
expression a : —b in logic programming only has one model {-a,-b}. The inter-
pretation of the latter case is that there exist no expression which makes b true and,
hence, there is no applicable rule that makes a true either.

In Riguzzi et al. [RBLZ12] they extended the DISPONTE semantic with epi-
demic probabilities. In epidemic probabilities we express the degree of our belief
in a certain axiom, while the usual statistical probability is the probability concern-
ing random individuals from certain populations.

Since DISPONTE is closely related to P — SROZQ (which was presented in
the previous section), we can conclude the semantics of DISPONTE is not compa-
rable with the semantics of log-linear description logics as well.

9.1.3 PR-OWL

Another strand of literature uses (modifications of) Bayesian networks as underly-
ing probabilistic formalism. Since standard Bayeasian networks have limited ex-
pressiveness of their attribute-value representation, they can not express sentences
like give me all students of an age older than eighteen. It would be necessary to
build a new Bayesian network for each instance value change [dCLO06].

Thus, the probabilistic ontology language PR-OWL [Cos05, dCL06, LdC12]
is based on the multi-entity bayesian network (MEBN) logic [LdC12, LasO8].
MEBN specifies a first-order language for modeling probabilistic knowledge bases
as parametrized fragments of Bayesian networks. The idea of lifting Bayesian net-
works to first order logic is related to the idea of combining Markov networks (see
Section 2.1 with first-order logic to Markov logic (see Section 2.3).

Before discussing PR-OWL we intuitively introduce multi-entity bayesian net-
works [Las08, WML*02]. Probabilistic knowledge is expressed in MEBN frag-
ments which is a knowledge structure that represents probabilistic knowledge about
a collection of related hypotheses [dCL06]. Like in traditional Bayesian networks,
MEBN fragments contain nodes consisting of random variables in a directed graph.
These random variables are extended to provide an inner structure so that first-
order logic formulas can be represented. A random variable could for instance
be Friend(x,y) where z and y stand for any arbitrary person. Each node has a
parametrized list of arguments [LdC12]. These arguments are restricted with so
called context nodes. An example of a context node is IsPerson(x) which de-
fines the possible candidates for variable x. Thus, context nodes are comparable
with types in Markov logic (see Section 2.3.1). If a node (like Friend(x,y)) has
no incoming edges, it is is called an input node. A node with incoming edges is
called a resident node. Each resident node has a distribution which defines the
probabilities of its instances given the instances of the parent nodes. Usually, these
distributions are defined as static tables. However, since MEBN allows nodes to
have an arbitrary number of instances, it is also possible to define functions de-
pending on the input values. We could for instance define a mathematical function
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which returns a probability that a person smokes which depends on the number of
its smoking friends. Generally, any sentence that can be expressed in first-order
logic can also expressed in MEBN as a joint distribution over truth-values of sets
of first order logic sentences. For details about the exact syntax and semantics
we refer the reader to [Las08, WML*02]. An illustrative example can be found
in [LdC12].

As in traditional Bayesian networks, inference requires a query and a set of ev-
idence variables. For inference, MEBN are translated into a situation-specific clas-
sical Bayesian network by creating and combining instances of the MEBN frag-
ments. This process can be compared with the procedure of grounding a Markov
logic network (see Section 2.3.2). Once we constructed the classical Bayesian net-
work, we are able to perform all the standard inference tasks which are possible for
Bayesian networks including marginal inference and maximum a-posteriori infer-
ence as described in Section 2.1.2 and Section 2.1.3, respectively.

PR-OWL adds new definition to the standard OWL which enables to create
MEBN. Future goals include detailed complexity analysis of sub-languages of PR-
OWL and the identification of efficient exact or approximate reasoning algorithms
of other domains which can be applied to PR-OWL. Parts of the syntax and the
semantics were implemented in the tool UNBBAYES-MEBN[dCLC*08] which
provide a GUI and a translation of MEBN to classical Bayesian networks. Please
refer to Section 9.4 for details.

There seems to be an active community on PR-OWL which recently pub-
lished PR-OWL 2.0 [CLdC13]. Koller et al. [KLP97] defines the probabilistic
logic P — Classic based on Bayesian networks and provide a lifted inference-
based algorithm. They prove that for Bayesian networks for which polynomial
time reasoning is possible, the inference of their probabilistic logic is also poly-
nomial. Ding and Yun [DP04] propose a set of transformation rules to map OWL
ontologies to directed acyclic graphs of a classic Bayesian network and provide
an algorithm to compute the corresponding probability tables. This technique has
been applied in ontology matching [MNJOS5]. Another closely related approach is
published in [YCOS5].

We conclude that it is in principle possible to compute maximum a-posteriori
queries out of the situation-specific classical Bayesian network. However, there
is a difference in semantics between Bayesian networks and Markov networks.
While the graph constructed in Bayesian networks has directed edges, the graph
of Markov network has undirected edges. Although there has been some attempts
to transfer Bayesian networks to Markov networks and vice versa using essential
graphs, they still often result in essential graphs with different meaning [FLO7].
Thus, the semantics of the maximum a-posteriori query in log-linear description
logics can not be modeled in PR-OWL.
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9.2 Possibilistic Description Logics

In this section we explain possibilistic description logics and the corresponding
system PossDL [QJPD10]. Early work in possibilistic description logics has been
published by [Holl13]. However, since they do not consider reasoning about im-
precise concepts and individuals, we summarize from [QJPD10]. Possibilistic de-
scription logics is a combination of possibilistic logic and description logics. In the
syntax of possibilistic description logics probabilities are attached to any arbitrary
description logics axiom x. Thus, a possibilistic axiom is a probability axiom pair
(z,p) where p € (0, 1].

For understanding the semantics we first emphasize the semantics of possibilis-
tic logics [DLP94, DLP91]. A distribution of possibility is a so-called membership
function Pr that maps elements ¢ and v to the unit interval [0, 1] where 0 means
non-membership and 1 stands for complete membership. Intuitively, the function
Pr represents the degree to which a world is possible. For computing the proba-
bilities of combinations of elements, the following properties hold:

Pr(¢ ny) =max(Pr(¢), Pr(y))
Pr(¢v i) =min(Pr(¢), Pr(v))
Pr(=¢) =1-min(Pr(¢), Pr(¢))

The above properties can be inferred from the axioms of probabilistic logic. We
encourage the reader to compare them to the properties defined in Section 9.1 and
to read [LS08] for mathematical justifications. Thus, probabilistic logic is a super-
class of possibilistic logic. Intuitively, in possibilistic logics we are interested if
current scenarios are possible whereas in probabilistic logics, we are interested in
the particular probability of the scenarios.

We are now in the position to explain the inference tasks which occur when we
combine possibilistic logic with description logics. We define Bs, = {z|(z,p) €
B,w > «}. Thus, Bs,, filters those axioms which have a possibility p greater than
a certain . An important question is to compute the inconsistency degree Inc(B)
of a knowledge base B. Intuitively, Inc(B) is the maximal degree « where B,, is
barely incoherent. With this degree, we are able to define the following inference
tasks for possibilistic description logics [QJPD10]:

* A DL Axiom z is a plausible consequence of a knowledge base B if B, r,,.(5) F
xZ.

* A DL Axiom =z is a possibilistic consequence of a knowledge base B to
degree v if By, is consistent, Bs,  x, and for all 5 > a we get Byg # .

* A possibilistic DL axiom (x, p) is a consequence from a knowledge base B
if p > Inc(B) and Bsy, E x.

Example 31 (inspired by [QPJO7]) explains the above definitions and query
types in more detail.



142 CHAPTER 9. RELATED WORK

Example 31. Let us assume that we have a DL knowledge base

B ={(Birdc CanFly,0.8),(HasWing c Bird,0.95),
(HasWing(Tweety), 1), (-CanFly(Tweety),1)}.

Then, Bso.g = B is inconsistent. However,

Bso.95 = {{HasWing € Bird,0.95), (HasWing(Tweety), 1),
(~CanFly(Tweety),1)}

is consistent. Thus, Inc(B) = 0.8. Since B>os = Bird(Tweety) we can in-
fer because of the first query, that Tweety is plausible to be a bird. Further-
more, Bird(Tweety) is a possibilistic consequence to degree 0.95 since Bsg 95 =
Bird(Tweety) but B>y # Bird(Tweety). According to the last query, the ax-
iom (Bird(Tweety),0.9) is a consequence from B, because its probability 0.9 >
Inc(B) = 0.8 and Bsy.g E Bird(Tweety).

After we understood the query types of possibilistic description logics, it be-
comes clear that they are very different from the most probable coherent world
query asked in log-linear description logics. In the most-probable coherent world
we often prefer many axioms with low weights over few axioms with high weights
if their overall sum is higher. This is illustrated in Example 22. In possibilistic de-
scription logics, we cut every axiom which is under a certain probability «. Thus,
we can not compare those two queries.

9.3 Fuzzy Description Logics

Fuzzy description logics is based on fuzzy logic. Fuzzy-logic, which is a sub-
category of so-called many-valued logics, defines a more refined range for truth and
false values. In particular, the usual true/false convention is expressed as a degree
within [0, 1] of being true/false. A frequently used example is the expression of
a tall man. Since the height of a man is graded, we might prefer to say that a
man is to 80% tall rather than defining a fix boarder at which a man is tall or not
tall [LSO8].

Fuzzy formulas often have the form ¢ > [ or ¢ < u where [, u € [0, 1] which
encode the degree of truth of ¢ is at least [ or at most w [Hah01]. Thus, the fuzzy
interpretation Z maps a basic true/false value to the interval [0, 1] and defines com-
bination functions Z(¢ A ¢) and Z(¢ Vv 1)), implication functions Z(¢ = ), and
negation functions Z(—¢). In literature, several different functions have been pro-
posed which all satisfy different properties. Table 9.1 lists the most popular imple-
mentations. For details which properties are satisfied with which implementations,
we refer the reader to [HdhO1, Nov06].

In literature, there exist several approaches which combine description log-
ics with fuzzy logic to fuzzy description logicsfuzzy description logics. We refer
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Lukasiewicz logic ~ Godel logic Product logic Zadeh logic
L(pntp) | max(¢p+1p-1,0) min(e,1)) ¢ xv min(¢, 1)
Z(ovy) | min(o+¢,1) maz (¢, ) P+Y-Ppxy maz(¢,v)
(6= )| min(1-6+v,1) YOS min(1u/6) maz(1 - 6,1

SRS

Z(-9) -9 -9

otherwise 0 otherwise

ifp=0 {1 if$p=0

Table 9.1: Combination functions of various fuzzy logics [H4h01, LSOS].

to [LS08] for a survey. Newer approaches include Straccia [StrO5a] in which he in-
troduces a fuzzy logic with concrete domains in which fuzzy modifiers are allowed
and the reasoning algorithm is based on a mixture of completion rules and bounded
mixed integer programming. Bobillo et al. [BDGRS09] introduce a fuzzy logic un-
der the Godel semantics. More theoretical work discuss the question whether de-
scription logics with general concept inclusion axioms are decidable [BP11, BP12]
by giving strong indications for undecidability. Simou et al. [SMSS10] present op-
timization techniques like degree normalization, assertional box partitioning, and
optimized greatest lower bounds that have the potential to improve the performance
of fuzzy-DL systems.

In the following, we briefly report fuzzy SHOZN (D) [StrO5b, Str06] since this
approach is comparable expressive with respect to the description logic language,
the allowed fuzzy constructs, and the underlying fuzzy logics.

The syntax of fuzzy SHOZN (D) allows to define fuzzy datatypes. We can for
example define a fuzzy concept Y oung which expresses the degree of youthfulness
of a person’s age. We could for example use a left-shoulder function expressing
that a person is young until she is 10 years old, then linearly decreasing the de-
gree of youth until 30. Having an age older than 30 she is defined as not being
young any more. With that knowledge, we then can define further fuzzy concepts
like YoungPerson = Person n Jage.Y oung. Additionally, fuzzy modifiers like
very apply to fuzzy sets to change their membership functions. To that end, we
assign a function to each fuzzy modifiers like fyery = x2. With this knowledge
we could define a VeryY oungPerson with Person n Jage.very(Y oung). We
refer to [StrO5b] for further functions specifying fuzzy set membership degrees and
formal introduction of syntax and semantics of fuzzy SHOZN (D).

Reasoning tasks in fuzzy description logics include the standard problems like
satisfiablity of fuzzy knowledge bases, deciding the satisfiability of concepts rela-
tive to fuzzy knowledge bases, and deciding logical consequences of fuzzy axioms
from fuzzy knowledge bases. Despite these reasoning tasks there exist two addi-
tional queries. First, the best truth value bound query computes the best lower and
upper truth value bounds of an axiom a. Second, the best satisfiability bound of a
concept c intuitively determines the maximal degree of truth that the concept ¢ may
have over all individuals [StrO5b, LS08]. These queries can be solved with mixed
integer linear programming [SBO7].

Log-linear description logics does not allow a degree of truth value since it is
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based on classical first-order logic. Thus, syntax and semantics of fuzzy description
logics are not comparable with log-linear description logics. However, in future
work we might integrate fuzzy concepts in log-linear description logics.

9.4 Systems

To the best of our knowledge, there exist six other systems next to our system
ELOG which combine description logics with some kind of uncertainty. Two out
of these six systems (namely BUNDLE and POSSDL) are not publicly available
any more. All systems except INCERTO are based on one of the probabilistic, pos-
sibilistic, and fuzzy logics that we described previously. Since we already argued
in the respective sections above, that the semantics of these logics are not com-
parable with the semantics of log-linear description logics, we conclude that we
can not compare our system ELOG with them. The system INCERTO also utilizes
Markov logic as background logic. However, they only support marginal inference
and their semantics is different from those of log-linear description logics.

For details, we refer the reader to the respective sections about the systems
below.

PRONTO

Klinov [Klil11] developed in his dissertation the probabilistic reasoner PRONTO?.
Afterwards, Klinov starts working at the company CLARKPARSIA where he did
further developments on PRONTO. When Klinov left CLARKPARSIA they decided
to skip the further development. Since PRONTO is not longer under an open-source
license it is not available for download any more.

PRONTO [KIlil1] is an implementation of P — SROZQ (refer to Section 9.1.1)
and supports all the inference types mentioned in Section 9.1.1. For inference,
PELLET? is used.

BUNDLE

The reasoner BUNDLE [RBLZ13, BLRA11]* stands for ‘Binary decision diagrams
for uncertain reasoning on description logic theories’ and is based on the DISPONTE
semantics introduced in Section 9.1.2. For inference, BUNDLE iteratively finds
each explanation and then builds a binary decision diagram for computing the prob-
ability of the query. In particular, it first queries for a single explanation. Then, it
iteratively removes each axiom in this explanation and asks again for another sin-
gle explanation in the remaining set of axioms. This process is continued until no
more explanations are found. Binary decision diagrams, finally, allows an efficient
computation of the probabilities which directly result from the explanations.

ttp://weblog.clarkparsia.com/2007/09/27/introducing—pronto
Shttp://clarkparsia.com/pellet/
*https://sites.google.com/a/unife.it/ml/bundle
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Internally, BUNDLE exploits the description logic reasoner PELLET to query
explanations. Currently, the possible queries are restricted to retrieving the proba-
bility of the subsumption of two concepts, concept and property assertions, and the
satisfiability of all concepts or specific concepts. Furthermore, consistency can be
checked and a hierarchy can be computed.

UNBBAYES-MEBN

The focus of the tool UNBBAYES-MEBN[dCLC*08]° lies on its GUI interface,
which allows to graphically model most of the functionality of PR-OWL (see Sec-
tion 9.1.3). It allows users to model probabilistic knowledge bases without hav-
ing to rely on a deep knowledge in PR-OWL. For integrating logical functions
UNBBAYES-MEBN uses the knowledge representation tool POWERLOOM® pro-
viding multiple build-in deductive reasoning capabilities. The support of the con-
struction of situation-specific classical Bayesian networks enables UNBBAYES-
MEBN to perform reasoning tasks. However, in the current implementation queries
are restricted to a single random variable instance which is not allowed to have any
evidence below it [dCLC*08].

PossDL

PossDL [QJPDI10] is a reasoner for possibilistic description logics (refer to Sec-
tion 9.2), which was developed in 2011 from Jeff Pan. According to [QJPD10] it
has been implemented as an extension of the Neon Toolkit’. However, it is not
available for download.

The reasoner supports the computation of the inconsistency degree as well as
instance and subsumption checking with a necessity degree. Despite the fact that
they use the PELLET reasoner for computing the query answers, no further details
about their algorithms have been published.

FIRE

The focus of the fuzzy reasoning engine FIRE [SSSKO06, SSS13] is on efficient
storage and querying of fuzzy description logics as described in Section 9.3. For
storing a triple store is used. Possible queries implemented in FIRE are satisfia-
bility checking, subsumption and entailment of concepts and axioms, and deter-
mination of the best lower and upper truth value bounds of an axiom. For these
inference tasks, FIRE implements the tableau algorithm proposed by [SSP*07].

5http ://unbbayes.sourceforge.net/changes-report.html
*http://www.isi.edu/isd/LOOM/PowerLoom/
"http://neon-toolkit.org/wiki/MainPage
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INCERTO

To the best of our knowledge, INCERTO? is the only reasoner which uses Markov
logic for probabilistic description logics. They directly translate the description
logic axioms to Markov logic so that concepts correspond to unary predicates,
roles correspond to binary predicates, and individuals to constants. The description
logic axioms are translated to first-order logic formulas®. Example 32 illustrates
the translation.

Example 32. Ler O1 be the ontology which we defined in Example 21. When we
translate it according to the semantic used in INCERTO we obtain the following
first-order formulas:

(1) Cat c Animal Cat(xz) = Animal(x)

(2) Catn Brandc 1 Cat(z) = -Brand(x)

(3) (Jaguar = Cat,0.5) (Jaguar(x) = Cat(x),0.5)

(4) (Jaguar c Animal,0.9) (Jaguar(z) = Animal(x),0.9)
(5) (Jaguar = Brand, 1.2) (Jaguar(z) = Brand(x),1.2)

Their main objective is to learn the weights of axioms through the analysis of
individuals. Furthermore, they provide exact and approximate marginal inference.
However, computing the most probable coherent ontology is not supported. In fact,
the translation presented in Example 32 does not allow this computation, since no
incoherency is derived. Only when dummy individual assertions are inserted it is
possible to derive a contradiction. On a first glimpse, creating one individual ¢ for
every concept C' and adding the concept assertions C'(c¢) leads to a similar semantic
than log-linear description logic. However, appearances are deceptive as shown in
Example 33.

Example 33. For illustrating the difference in the semantic, let us modify the
weight of the following axiom to

(Jaguar € Animal,0.5)

leaving the other axioms unchanged.
If we now compute the most probable coherent world with log-linear descrip-
tion logics, we obtain the result

(1) Cat c Animal
(2) Catn Brandc 1L
(5) Jaguar € Brand

since the weight of axiom Jaguar © Brand (= 1.2) is higher than the sum of
the weights of Jaguar € Animal and Jaguar € Cat (= 0.5+ 0.5 =1.0).

$https://code.google.com/p/incerto/
9Their exact translations are available at http://incerto.googlecode.com/files/
TranslationOWL2FOL.pdf


https://code.google.com/p/incerto/
http://incerto.googlecode.com/files/TranslationOWL2FOL.pdf
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Let us now introduce for every concept Animal, Brand, Cat, and Jaguar the
corresponding concept assertions Animal(a), Brand(b), Cat(c), and Jaguar(3j).
As before, we have to choose either axiom (3) and (4) or axiom (5). This time, how-
ever, the sum of the weights derived from axiom (3) and (4) is 0.5+ 2-0.5 = 1.5,
since we infer Animal(c) from Cat(c). Thus, we count the weight of Jaguar
Animal twice - one time due to Animal(c) and one time due to Animal(a). Con-
sequently, we receive a different result for the translation performed by INCERTO:

(1) Cat € Animal

(2) Catn Brandc 1L
(3) Jaguar € Cat

(4) Jaguar € Animal

The difference in semantics illustrated in Example 33 becomes worse when
we consider object properties and their relation to concepts like domain and range
restrictions. To the best of our knowledge, there exist no feasible algorithm which
leads to the identical syntax. Consequently, we are not able to compare ELOG with
INCERTO.
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Chapter 10

Experiments

To complement the presented theory we also assessed the practicality of the reason-
ing algorithms. After all, the development of the theory was motivated primarily by
the need for algorithms that, given a set of axioms with confidence values, compute
a most probable coherent ontology.

Before we report about experimental results, we present details about our log-
linear description logic reasoner ELOG, which implements the MAP-query for
log-linear description logics, in Section 10.1. In the experiments, we focus on
answering the last research questions from Section 1.2.2:

Q6 Can we experimentally verify that a solution’s quality increase with increas-
ing expressivity and that optimal solving strategies result in higher quality
solutions than approximate solving strategies?

The question asks for an increase in quality. However, its first part asks if the
quality increases if we increase the expressivity while its second part asks if optimal
solving strategies lead to higher quality than than approximate strategies.

We address the research question by conducting experiments in the area of
ontology learning and ontology matching since they are the targeted application
areas of log-linear description logics. We refer the interested reader to Section 10.2
for details about (possible) applications.

This chapter provides more exhaustive experiments than our publications [NN11,
NNS11]. Some text passages, pictures, and results especially for the ontology
learning benchmarks are taken from our publications [NN11, NNS11].

10.1 Log-Linear DL Reasoner ELOG

We have implemented the computation of the most-probable coherent ontology in
the log-linear description logics reasoner ELOG. In this section we will dive a little
bit deeper into implementation details.

As for ROCKIT, we also provide a similar easy-to-use web-service for ELOG

149
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D it o _
. _ systems
computational services

ELOG Reasoner

Welcome to the online interface of the probabifistic (or more precise log-finear) description fogic solver ELog. Log-linear
description logics are a family of probabilistic logics integrating various concepts and methods from the areas of knowledge

representation and reasening and statistical refational AL In ELog users can define both hard and soft axioms and
compute marginal inference as well as the most probable coherent ontology. Please refer also to http://code. google. com/p/eflog-
reasoner/ for details.

The theoretical foundations of the reasoner and seme experimental results are presented in the paper "Log-Linear Description
Logics" (accepted for presentation at IICAT 201 1; download here (Bibtex))

setting: | Reasoner ) ‘
ontology: ®file Durl| Browse. | Nofile selected. |

version: | 1.0 (current version) v ‘

| add process |

Figure 10.1: Screenshot of the online web-interface of ELOG. Users can easily
solve their log-linear ontologies without any configuration and installation effort.

in addition to the source-code, a documentation, and installation instructions'. Fig-
ure 10.1 provides a screenshot of the user interface. Furthermore, programmers can
integrate the MLN engine in their application via existing REST interfaces.

Computing the most probable coherent ontology with ELOG is implemented
for EL**. As mentioned earlier, it is straight forward to implement more expres-
sive description logics like introduced in Section 8.1. For parsing ontologies, we
implement the OWLAPI?. Thus, ELOG supports every ontology format which is
also supported by the OWLAPI including the XML, functional, and turtle syntax.
Weights are encoded by attaching the annotation property confidence, having
the weight as value, to the respective axiom.

All axioms that are outside of the scope of £L£*" are not considered. Normal-
ization is implemented in Java utilizing some efficient graph data structures from
the JGRAPH? library. In particular, the graph pre-materialize subsumption trees.
Consequently, less cutting plane inference loops have to be performed and runtime
decreases. The normalized ontology is then translated into a Markov logic network
as described in Section 8.3. As Markov logic solver, we integrate our ROCKIT
solver which implements the theory of Part I of this thesis. After the execution of
RockIT, ELOG translates the retrieved MAP state back to ontology axioms and
returns a materialized OWL ontology.

Please note that ELOG also implements alternative algorithms for computing

"The user interface is available at http://executor.informatik.uni-mannheim.
de/systems/elog/.

2http ://owlapi.sourceforge.net/

*http://jgrapht.org/
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the most probable world like a greedy algorithm. Furthermore, there are possibili-
ties to compute marginal probabilities as well.

10.2 Applications

The maximum a-posteriori query for log-linear description logics can be applied
in areas where we have given uncertain axioms and aim to find the most probable
coherent ontology. Intuitively, it returns the ontology where the least (weighted)
amount of axioms are thrown away such that the resulting ontology is just coherent.
Research areas where those ontologies are constructed are ontology learning and
ontology matching. Furthermore, log-linear description logics have recently been
applied in the area of activity recognition. This section gives a brief overview about
these areas and briefly illustrates how log-linear DL can be applied in each of them.

10.2.1 Ontology Learning and Ontology Debugging

In ontology learning, (semi-)automatic techniques are applied on either structured
or unstructured data to learn new axiom types. Several workshops have been taken
place in this area [Bre06]. For extracting ontologies from unstructured data, there
exist two general framework. The earlier one called TextToOnto and was build
by Maedche and Staab [MS04]. Later, Cimiano and Volker published the sys-
tem Text20nto [CV05]. A comparison between the two systems can be found
in [CMSV09]. Johanna Voelker published several additional articles in this field
like learning disjointness axioms [VVSHO7] and enriching ontologies with axioms
of higher complexity [VN11]. For a general overview of ontology learning ap-
proaches we forward the reader to the following surveys: [ZhoO7] gives a more
general overview of ontology learning, Ciminao et al. [CMSV09] provides a com-
prehensive and concise overview, and [Bre06, WLB12] survey methods to learn
ontologies from text.

The ontology learning community has developed and applied numerous ma-
chine learning and data mining algorithms to generate confidence values for DL
axioms. However, most of these confidence values have no clearly defined se-
mantics. Confidence values based on lexical similarity measures, for instance, are
in widespread use while more sophisticated algorithms that generate actual prob-
abilities make often naive assumptions about the dependencies of the underlying
probability distribution. Hence, formalisms are needed that incorporate these vari-
ous types of confidence values in order to compute most probable ontologies while
utilizing the logical concepts of coherency and consistency.

With help of the MAP query of log-linear description logics, we can help ontol-
ogy learning scientists to repair their ontologies while guarantying to maximize the
sum of the remaining learned axioms. Intuitively, ELOG returns as many axioms
with possibly high weights so that the output ontology remains coherent. Since
almost all approaches in ontology learning create axioms attached with confidence
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Figure 10.2: Difference between ontology matching and ontology learning.

values, we can model them directly as uncertain CBox CV in log-linear description
logics. If there exist a deterministic ontology as background knowledge, we can
integrate its axioms by mapping them to the deterministic CBox CP.

This task is related to ontology debugging [PSKO05]. In ontology debugging,
the task is to detect and correct incoherencies and inconsistencies within ontolo-
gies. However, according to Stuckenschmidt [Stu08] ontology debugging systems
in and before 2008 were mostly theoretical. In practical applications they failed
in well-foundness, robustness, or performance with respect to run-time. For de-
tails, we refer the interested reader to [Stu08]. More recent ontology debugging
systems either focus on interactive debugging with the goal to minimize user in-
teraction [SFFR12, RSFF12] or examine the theoretical properties of ontology de-
bugging without providing scalable implementations [T* 13].

10.2.2 Ontology Matching

In ontology matching we take two ontologies O and O, as input and find corre-
spondences between their entities (like concepts or roles). These correspondences
often have a weight (called confidence value) attached. A set of correspondences
M is called alignment. An alignment is called coherent if O; u(©OUM is coherent.
Please refer to [ESO7] for a more formal and exhaustive introduction to ontology
matching.

Figure 10.2 illustrates the difference between ontology learning and ontology
matching with respect of connections between axioms. In ontology learning, uncer-
tain and deterministic axioms can occur between any kind of entities. In ontology
matching, deterministic axioms only connect entities within one ontology while
uncertain axioms only connect entities between ontologies. Thus, the application
of ontology matching is a specialized application of ontology learning.

Furthermore, matching systems and existing benchmarks often focus on find-
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ing equivalence correspondences (axioms of type A = B), which semantically
means they aim to identify classes, properties, or instances which belong to the
same real-world entities. There is a central initiative, called the ontology align-
ment evaluation initiative (OAEI) [EMS*11, SE13], which has been evaluating
and comparing different matching systems for nine years now. The goal of the
initiative is to compare alignment systems on the same basis and point out their
strength and weaknesses.

Fewer approaches exist for complex matching. Here, the task is to detect
more complex correspondences which include for example more than two enti-
ties or relationships between different entities like classes and roles. In Ritze et.
al [RMSZS09, RVMSZ10] they extracted complex axioms based on existing struc-
tural and lexical patterns and applied techniques from natural language process-
ing on complex matching tasks, respectively. Closely related is the work from
Dhamankar et al. [DLD*04] in which they extract complex matches in database
schema.

Over the past years, the importance of producing coherent alignments has
been shown and algorithms have been developed for making alignments coher-
ent [MSTO7, Meill] and, additionally, for awarding structural similarities with
the introduction of soft constraints [NMS10]. We implemented those strategies in
the CODI matcher, which was able to gain competitive results at the OAEI cam-
paign [HSNM11, NN10]. Additionally, we applied similar ideas in the area of
instance matching [NNMS10].

Log-linear description logics guarantee for a specific description logic, that
the alignment is coherent and that, intuitively speaking, we drop as few other
(weighted) alignments as possible. To that end, the two merged input ontologies
are taken as the deterministic CBox CP while the created alignments with the con-
fidence values are encoded as the uncertain CBox CY.

In ontology matching, two specialized alignment repair systems called AL-
COMO [Meill, MST07]* and LOGMAP [JRG11]® have been developed. Repair-
ing alignments is the task to take a given alignment and return an (almost) coherent
alignment while maximizing the sum of the confidence values. This is equivalent
to the task of finding the most-probable coherent ontology applied on the ontology
C)lLJCDQLJJ\4.

However, these systems are restricted to the application in the area of ontology
matching since they exploit the fact that uncertain knowledge only occurs berween
ontologies. Thus, they can not cope with the application areas ontology learning
and activity recognition. In the following sections we discuss their algorithms in
further detail since we compare ELOG against them in our experimental section.
The explanations of the systems are mainly summarized from [JRMGH13].

4http://web.informatik.uni—mannheim.de/alcomo/
Shttp://www.cs.ox.ac.uk/isg/projects/LogMap/
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Alcomo

The basic idea of ALCOMO is to avoid computing all minimal incoherent alignment
subsets, but to first classify both ontologies O; and O separately using an OWL
reasoner. After classification, ALCOMO solves two interconnected problems at the
same time: (i) the reasoning problem to detect if a mapping is incoherent and (ii)
the optimization problem of taking confidences into account in an appropriate way.
In both problems ALCOMO implements an optimal and an approximate (greedy)
approach. In our experiments we refer to ALCOMO optimal, if both problems are
solved in an optimal way and to ALCOMO greedy, if in both tasks the approximate
variant is chosen.

The reasoning problem checks if a given set of alignments M is coherence.
In the approximate approach a limited number of patterns are checked which can
be done in quadratic time with respect to the alignment size. These patterns take
subsumption and equivalence alignments between concepts and properties into ac-
count. Let us assume that we have for instance two correspondences A; = C € M
and By = Dy € M where A1, B1 € O1 and Cs, Dy € Oy. Then, one pattern of
ALCOMO checks if O = Ay £ By and O = Cy € —=Ds. Please note, that due to the
classification at the beginning, these entailments can be checked in constant time.
If this holds, it follows that O; U O3 U M = Cs E 1 and thus that the alignment
M is incoherent. However, it is known that these rules do not cover all types of
possible incoherencies and thus do not ensure coherency. It is also not known for
which underlying description logic full alignment coherency is ensured [Meill].

The complete reasoning approach uses a description logics reasoner as a black
box and is based on classical black-box approaches for repairing ontologies as
described in [SHCvHO7]. The reasoner is used to compute so-called minimal
unsatisfiability-preserving sub-TBoxes (MUPS) which are, descriptively speaking,
minimal conflict sets. We refer the reader to [Meill, SHCvHO7] for details. In
order to reduce the number of reasoner calls, ALCOMO uses the result of the ap-
proximate reasoning algorithm as starting point. If it is inconsistent, it is further
reduced. This is permissible because it is proven that the results of the approximate
technique always entails the results of the complete reasoning techniques [Meil1].

With respect to the optimization problem, ALCOMO implements a global op-
timal diagnosis which maximizes the sum of the given confidence values. For
detecting this optimum, ALCOMO implements an A*-search [HNR68]. The algo-
rithm starts with a complete alignment in the root node and reduces one correspon-
dence from the alignment for each successor step. The candidate for removal is
detected with the reasoning techniques sketched above. Optimizations are made
by storing the MUPS that have been previously found with the approximate rea-
soning techniques and by using a heuristic function to estimate the remaining costs
for a search node. Again, we refer the interested reader to [Meil 1] for details. For
large search problems, however, this global optimal diagnosis is not feasible.

The second algorithm implemented to tackle the optimization problem is a
greedy algorithm. In this algorithm we initially start with an empty alignment M’
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and a set M in which the correspondences are ordered according to their confi-
dence value - starting with the highest one. Then we iterate over M and put the
correspondence ¢ € M to the alignment M’ if the alignment M’ is still coher-
ent. Else, we take the next correspondence. Coherence checking can again be
performed with either the approximate or the complete reasoning approach.

LogMap

The basic idea of LOGMAP is to translate the ontologies O and O into a set P
of Horn clauses and apply the linear Dowling-Gallier algorithm for propositional
Horn satisfiability [DG84] multiple times for repairing alignments.

The translation is restricted to only three axiom types. Subsumption axioms
of form A © B are translated to the rule A = B, disjointness axioms of form
An Bt 1 are translated to A A B = False, and axioms of type A11...MA,c B
are translated to A; A...A A, = B. All equivalence correspondences in alignment
M are split into two subsumption alignments, translated to horn clauses, and put
into a set M’. The following algorithm starts with the full alignment.

The repair algorithm of LOGMAP goes through every variable v (correspond-
ing to ontological entities) in P. As an optimization, the variables are ordered in
a preprocessing step so that a variable C' comes before D whenever D € C'in Oy
or in Oy. The motivation behind this ordering is that if a class is unsatisfiable,
its subclass is also unsatisfiable. Thus, the class needs to be repaired first, before
repairing its subclasses.

For each variable v LOGMAP checks with the linear Dowling-Gallier algorithm

if PuM’' u{True = v} is satisfiable. If it is satisfiable, LOGMAP proceeds with
the next variable v. If it is not satisfiable, LOGMAP operates on an overestimated
set of conflict mappings M which is returned by the slightly modified Dowling-
Gallier algorithm. Instead of computing a diagnosis for the unsatisfiable variable
v, LOGMAP aims to find the repairs of the smallest size. To that end, the algorithm
goes through all subsets R, of the conflict mappings M, of size = 1. It then
checks with the Dowling-Gallier algorithm if P u M’ U {True = v}
R, is satisfiable. If yes, it removes R, from the mappings M’. If more than one
R, with size = 1 exists, it takes the one for which the sum of the confidence values
is minimal. If no R, with size = 1 is found it increases the size by 1 and checks
all subsets again. Since the size of M, and R, are manageable in practice, the
complexity of this last procedure is not critical.

The algorithm is approximate since it does not consider many axiom types and
thus the encoding of the ontologies O; and O3 is incomplete. Properties are, for
example, completely ignored. Compared to log-linear description logics imple-
mented in £EL£*", LOGMAP only supports the rules F'-Fy and Fy of Table 8.5 and
only the two axiom types sub and int of the six axiom types from Definition 4.
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10.2.3 Activity Recognition

Recently, log-linear description logics has been applied in the field of activity
recognition [HRN*12, HRS13] in which the current human activity has to be
predicted on the basis of light-weight wearable and environmental sensors. In
their work, Helaoui et al. created an ontology representing a multilevel activity
recognition framework. The lowest level is called atomic gesture and equals the
data which can directly be derived from the current sensor data (like ReachMilk
and MoveM:ilk). The next level are the manipulative gestures (like F'etchM1ilk)
which are derived from several atomic gestures. Afterwards, simple activities (like
PutawayMilk) are again derived from several manipulative gestures and, finally,
several simple activities lead to one complex activity (like CleaningUp). The
levels are connected with several uncertain axioms represented in the uncertain
CBox CY and some hard disjointness axioms mapped to the deterministic CBox
CP. An example of one uncertain axiom connecting manipulative gestures with
atomic gestures is

(FetchMilk 2 ManipulativeGesture n JhasActor(Personn
JhasAtomicGesture.ReachMilk),0.8)

Finally, they utilize our ELOG reasoner to infer the next level activities until the
last level is reached.

10.3 Benchmarks

With our experiments we cover the application areas ontology matching (see Sec-
tion 10.2.2) and ontology learning (see Section 10.2.1). For experiments with
log-linear description logics on activity recognition we refer the interested reader
to [HRS13].

10.3.1 Ontology Matching

The benchmarks in ontology matching originate from the ontology alignment eval-
uation initiative (OAEI). We selected the CONFERENCE (see Section 10.3.1) and
the LARGE BIOMED (see Section 10.3.1) benchmarks due to the existence of dis-
jointness axioms and due to the fact that these benchmarks were not artificially
created.

CONFERENCE Benchmark

As the name implies, the CONFERENCE benchmark consists of 15 ontologies which
describe different scientific conferences. These ontologies have been initially cre-
ated at a workshop at the University of Economics in Prague and have been im-
proved later by Meilicke and Svab. For details we refer to [SSB*05]. Reference
alignments have been created between all pairs of seven ontologies, resulting in
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subsumption 25 49 33 84 71 132 41
+ disjointness 52 63 76 491 145 133 41
+ domain and range restrictions| 149 149 100 543 184 193 73
+ all other EL** axioms 263 331 293 865 309 505 186
every axiom 318 408 335 903 341 539 193

Table 10.1: Number of classes, properties, and deterministic axioms in the CON-
FERENCE ontologies.
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cmt 51 31 45 36 20 29
conference - 36 61 60 41 42
confof - 49 41 27 25
edas - - - 56 49 41
ekaw - - - - 51 29
iasted - - - - - 60

Table 10.2: Number of weighted equivalent axioms in the merged CONFERENCE
alignments if no threshold is applied. The total number is 880.

21 pairs for which a reference alignment exists. The number of classes, proper-
ties, and axiom types of these seven ontologies are displayed in Table 10.1. The
number of axiom types are ordered according to increasing expressiveness. First,
only subsumption axioms of form A c B are counted. Then, we add the number of
disjointness axioms of type An B t 1, domain and range restrictions, all remaining
EL'™ axioms, and, finally, every existing axiom. This expressiveness staggering is
needed for our experiments in Section 10.5.1.

Inspired by [Meill], we aggregated all matcher results of the 2013 OAEI cam-
paign, which have been above the string equality boarder®. Thus, we aggregated the
results of YAM++, LOGMAP, AML, ODGOMS1, STRINGSAUTO, SERVOMAP,
MAPSSS, HERTUDA, WIKIMATCH, WESEE-MATCH, IAMA, HOTMATCH, CI-
DER and its variants. Details about most of these systems as well as references to
their respective publications can be found at [AEE™12].

6http ://oaei.ontologymatching.org/2013/conference/eval.html
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The computation of the aggregation of the alignment results is similar to Meil-
icke [Meill]. For each of the 21 pairs, we union the alignments A, ..., .4, of
each matching system to one alignment

A=A

To that end, we first span the confidence values w of each correspondence (w,a)
in alignment A; to the range of (0, 1] with w = 0 if (w,a) ¢ A;. In that way, we
ensure that all matching results are weighted equally. Afterwards, we union all
alignments by taking the average of all confidence values

(w,a) e A= (Z{wi|(wi, a) € A;}/n,a).

)

Note that all alignments a are equivalent axioms between classes or properties.
Table 10.2 lists the number of weighted equivalent axioms with w > 0 in the merged
alignment if no threshold is applied.

Since log-linear description logics require a CBox C = (CP,CY), we merge
two ontologies to the deterministic CBox CP and set the aggregated alignment .4
as uncertain CBox CY. The left part of Figure 10.3 visualizes the structure of the
CONFERENCE benchmark and, exemplarily, the merge process for the EKAW and
EDAS ontology. Thus, we obtain 21 different CBoxes in total.

LARGE BIOMED Benchmark

Since the ontologies in the CONFERENCE benchmark are relatively small, we ad-
ditionally perform experiments on the LARGE BIOMED benchmark®. The bench-
mark consists of the three datasets Foundational Model of Anatomy (FMA)’, Na-

8We took the small fragments of the benchmark.
9http ://sig.biostr.washington.edu/projects/fm/
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Figure 10.3: Structure of the CONFERENCE (left) and LARGE BIOMED (right) on-
tology matching benchmarks (inspired by [Meil1]).
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tional Cancer Institute Thesaurus (NCI)!°, and SNOMED clinical terms'!. Being
semantically rich and consisting of thousands of classes the benchmark is one of
the toughest in the OAEI campaign. In 2012 only six out of 21 systems were able
to compute results for each of the three combinations. 11 systems could compute
at least one combination.

The properties of the benchmark are summarized in Table 10.3. Since the
benchmark only contains the overlapping fragments, we obtain different ontologies
depending on the respective matching canidate. There exist, for example, two
fragments of the FMA ontologies - one containing the axioms overlapping with
the NCI ontology and one containing the axioms overlapping with the SNOMED
ontology. For details about the axiom expressiveness levels, please study their
description in the CONFERENCE benchmark.

Although reference alignments between each of the datasets exist, we decided
not to use it for our evaluation since they have been created automatically by uti-
lizing the Unified Medical Language System (UMLS)'? as dictionary, harmoniz-
ing the output of different matching systems, and repairing the reference alignment
with LOGMAP'3. Consequently, the resulting silver standard is build such that best
results will be achieved with the LOGMAP repair technique. Optimal techniques
will always result in lower f-scores.

As for the conference benchmark, we union the results from the different match-
ing systems. We restricted our alignment to Systems which were able to com-
pute results for each of the three combinations. This was the case for the systems

“http://ncit.nci.nih.gov/

"http://www.ihtsdo.org/index.php?id=545

Phttp://www.nlm.nih.gov/research/umls/

BPor details we refer to http://www.cs.ox.ac.uk/isg/projects/SEALS/ocaei/
2012/harmo2012.html
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classes 3696 10157| 6488 23958 13412 51128
properties 24 24 63 82 18 51
subsumption 3693 10154| 4917 18946 16287 31299
+ disjointness 3732 10196| 5022 19099| 16287 31299
+ domain and range restrictions | 3732 10196| 5130 19233| 16287 31299
+ all other EL£* axioms 7521 20449 14269 50218 33673 122221
every axiom’ 7548 20478 | 15634 54452 | 47104 122221

Table 10.3: Number of classes, properties, and deterministic axioms in the LARGE
BIOMED ontologies.


http://ncit.nci.nih.gov/
http://www.ihtsdo.org/index.php?id=545
http://www.nlm.nih.gov/research/umls/
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/harmo2012.html
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/harmo2012.html

160 CHAPTER 10. EXPERIMENTS

NCI SNOMED
FMA 3396 10760
NCI - 18842

Table 10.4: Number of weighted equivalent axioms in the merged LARGE
BIOMED alignments if no threshold is applied. The total number is 32998.

AROMA, GOMMA, LoGMAP, MAPSSS, SERVOMAP, and YAM++. For de-

tails about most of these systems and further references, we again refer to [AEE*12].
The unification of alignments and the mapping to a log-linear CBox C is performed

exactly as described for the CONFERENCE benchmark in Section 10.3.1. The sizes

of the unified alignments are mentioned in Table 10.4. The right part of Figure-

fig:datasets visualizes the structure of the LARGE BIOMED benchmark and, exem-

plarily, the merge process for the SNOMED and NCI ontology.

10.3.2 Ontology Learning

For the evaluation in ontology learning, we used the EKAW ontology from the
CONFERENCE benchmark as the gold standard. It consists of 77 classes and 33
object properties. Furthermore, we have 71 subsumption, 74 disjointness, 39 do-
main and range, and 125 other ££** axioms. When materialized, we observe 148
subsumption and 2,299 disjointness axioms. We refer to Table 10.1 for details.

We decided to generate confidence values using a “crowdsourcing” service.
Probably the best known crowdsourcing platform is the Amazon Mechanical Turk
(AMT)'*. With AMT, Amazon offers numerous options for designing customized
questionnaires. Due to its relatively high publicity (about 100,000 tasks were avail-
able at the time of this writing), it attracts a lot of users and consequently seems
most suitable for our scenario.

We generated human intelligence tasks by creating questionnaires each with
10 yes/no questions. Half of these were used to generate confidence values for
subsumption (disjointness) axioms. For the pair of class labels Conference_Paper
and Poster_Session, for instance, the two types of yes/no questions were:

(a) Is every Conference_Paper also a Poster_Session?
(b) Can there be anything that is both a Conference_Paper and a Poster_Session?

For each pair of classes and for each type of question we obtained 9 responses
from different AMT workers. A worker received 0.03 USD for each completed
HIT. Overall, we paid 315.56 USD in worker compensation. The confidence value
for a subsumption (disjointness) axiom was computed by dividing the number of
“yes” (“no”) answers by 9. We applied a threshold of 0.5, that is, only when the
majority of the 9 workers answered with “yes” (“no”) did we assign a confidence

“http://www.mturk.com
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value to the axiom. Moreover, we halved the weights of the disjointness axioms
for reasons of symmetry. This resulted in 2,507 axioms (84 subsumption and 2,423
disjointness) with confidence values.

10.4 Experimental Setup

As already mentioned in the introduction of this chapter, our experiments cover
the two research questions Q13 and Q14. Question Q13 asks if the quality im-
proves with increasing expressivity. In order to address this question, we perform
experiments on ontologies with varying expressivity with our ELOG £L£*™ rea-
soner. The lowest level of expressiveness only contains weighted or deterministic
subsumption axioms of form A c B. In the next level of expressiveness, we add
disjointness axioms like AN B & 1. Then, domain and range restrictions are added,
and, finally, all remaining axioms entailed by the description logic ££** are added.

Question Q14 states that computing the most probable coherent ontology with
optimal algorithms, like our ELOG EL*™ reasoner, lead to solutions with higher
quality than the computation with approximate approaches. For verifying this
claim, we conduct experiments with several approximate algorithms. In our on-
tology matching experiments, we compare our algorithm with the ontology align-
ment repair systems ALCOMO (see Section 10.2.2) and LOGMAP (refer to Sec-
tion 10.2.2. Both systems are specialized for ontology matching and exploit the
fact that weighted axioms are equivalent (subsumption) axioms and only occur be-
tween two ontologies.

In our ontology learning benchmark, we could not identify a system against
which we could compare our algorithm. We refer to the related work section (Sec-
tion 9.4) for in-depth discussions of potential systems and their differences. Thus,
we compare our ELOG approach with a greedy algorithm which is often employed
in ontology learning scenarios. The greedy algorithm sorts the axioms in descend-
ing order according to their confidence values and adds one axiom at a time to an
initially empty ontology. However, it adds an axiom only if it does not render the
resulting ontology incoherent. To compute precision and recall scores we materi-
alized all subsumption and disjointness axioms of the resulting ontology. We used
the reasoner Pellet for the materialization of axioms and the coherence checks.

In ontology matching and ontology learning, it is a common technique to apply
a threshold o which means that only weighted axioms with a weight w with w > «
are selected. The other axioms are dropped. The motivation behind this technique
is the idea that weights below that threshold should not be considered because of
too low quality. We conduct experiments with varying thresholds.

The CONFERENCE benchmark experiments and the experiments in ontology
learning were performed on a virtual machine with 8 GB RAM and 2 cores with
2,4 Ghz. The LARGE BIOMED experiments were executed on a virtual machine
with 60 GB RAM and 2 cores.

For measuring the quality, we applied different measures.
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Objective As already used for evaluation of Part I in Section 6.3, we also com-
pute the objective for most-probable coherent ontologies in log-linear description
logics. The objective of a resulting CBox C’ is defined as the non-normalized sum
of the weights w, of the weighted axioms c entailed in O

Obj(C) = Z We.
{{c,we)eCYC =c)
The objective is the straightest quality measure, since it is directly coupled
with the result of the algorithm. If the algorithm is able to return a higher sum, the
objective will be higher. We report the objective for every benchmark.

F-Measure Arguable, F-measure is the most widely used quality measure in in-
formation retrieval and was introduced by Rijsbergen in 1979 [vR79]. We summa-
rize the definitions mainly from [MKSW99]. The main idea behind this measure
is to compare the output of the system against a gold standard. This gold standard
contains the correct outcome for this problem. The generation of such gold stan-
dards is often performed by human annotators. Gold standards are also often called
reference and the systems output is often named hypothesis.

The f-measure returns a number between O and 1, where 0 means that the
reference and the hypothesis are completely different and 1 means that they are
equivalent. The f-measure is defined as the harmonic mean of precision and recall.
Precision measures the percentage of how many elements in the reference were
correctly found by the algorithm. Contrary, recall measures how many of the ele-
ments the algorithm has found were correct according to the reference. For their
definition we thus introduce the total number in the reference IV, the total number
of elements in the hypothesis M, and the number of correct elements C. Correct
elements are elements which occur in the reference and in the hypothesis. Now we
are in the position to formally define precision P, recall I, and f-measure F’ as

Pzg, R:g, and F:Q'P'R.
M N P+R

Consequently, the f-measure returns the percentage how close the algorithm
was able to compute the solution expected (and often generated) by humans. One
goal of our experiments will be to experimentally verify that an increase in the
objective also slightly increases the f-measure.

F-measure values are computed for the CONFERENCE and ontology learning
benchmark. We did not provide f-measure results for the LARGE BIOMED bench-
mark because only a silver standard is provided. More reasons are given in Sec-
tion 10.3.1.

Number of Unsatisfied Classes Counting the number of unsatisfied classes is a
common measure in ontology debugging and was identified by Meilicke and Stuck-
enschmidt [MSO08] as one of the key quality measures in ontology matching. As
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the name implies, the measure returns the number of classes that are unsatisfiable.
Formally, the measure is defined as

unsatC(C") = {d|C" e dc 1}

where d represents a class within the CBox C’. The lower the number of unsatisfied
classes, the higher is the quality of the repaired ontology or the repaired alignment.

We compute the number of unsatisfied classes with the HERMIT [SMHO08]
reasoner since it is known from related publications [JRMGH13] that HERMIT
outperforms other reasoners in the computation of unsatisfied classes. However,
we were not able to compute the unsatisfied classes for the NCI and SNOMED pair
under 5 hours, and thus are not able to provide the number of unsatisfied classes
for the LARGE BIOMED benchmark.

10.5 Experimental Results

Our experimental result cover research questions Q13, which asks if increasing
expressivity leads to higher quality, and Q14, which claims that optimal solving
strategies like ELOG lead to higher quality compared to approximate approaches.
In the ontology matching domain, we compare against specialized optimal and
approximate alignment debugging algorithms. In ontology learning, we compare
ELOG against a greedy approach. Question Q13 and Q14 are discussed in Sec-
tion 10.5.1 and Section 10.5.2, respectively.

Furthermore, Section 10.5.3 contains results of ELOG on larger ontologies.
We show that its runtime is faster and can cope with larger ontologies than other
optimal approaches.

10.5.1 Increasing the Expressivity Improves the Quality

In order to measure if more expressivity also leads to higher quality we perform
experiments with ontologies having different levels of expressivity. We conduct
experiments in the areas of ontology matching and ontology learning. In case
of ontology matching, we focus only on the CONFERENCE benchmark, since the
LARGE BIOMED benchmark does not provide a gold-standard. For detailed ex-
planations about the provided silver standard and why it is not sufficient for our
purposes we refer the reader to 10.3.1.

Ontology Matching Benchmark Figure 10.4 visualizes the results for varying
expressiveness and different thresholds for the CONFERENCE benchmark. Please
note, that the scale in each chart changes at threshold 0.2 from 0.01 to 0.1 steps,
since there exists none or only very few conflicts if applying high thresholds. Con-
sequently, the differences between the expressiveness levels increase with lower
thresholds in all charts. Hence, we focus on our following detailed analysis of
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Figure 10.4: Results for different thresholds and increasing expressivity of the
CONFERENCE benchmark. With increasing expressivity, f-measure and runtime (in
seconds) are increasing. Contrary, the sum of the objectives and incoherent classes
decrease. This effects are stronger the lower the threshold is since more conflicts
occur. For thresholds lower than 0.12 the HERMIT reasoner failed in computing the
number of incoherent classes. In total, the conference benchmark contains 2.973
classes.
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the different quality measures on threshold areas below 0.2 since results for higher
thresholds were almost equivalent for almost all quality measures.

With respect to f-measure (upper left figure) we observe a higher value with
increasing expressivity. Thus, only evaluating subsumption axioms have lower
f-measure scores than if disjointness axioms are added. Higher f-measures are
achieved if domain and range axioms are also taken into account and the highest
f-measure result is obtained if we incorporate full ££** expressivity.

In terms of objective (lower left figure) we get the opposite picture. With in-
creasing expressivity the objective decreases. The reason for this lies in the fact
that with increasing expressivity more and more conflicts occur. Consequently,
more and more correspondences are omitted due to incoherency. Since the number
of weighted axioms stays constant, the objective decreases. Thus, in our setting the
objective measures the amount of conflicts that have been avoided which is why
we prefer low objectives over high objectives in our scenario. Please note, that this
is the case because we apply the same optimal algorithm for every expressivity and
every threshold.

The sum of unsatisfiable classes (lower right figure) is again higher with de-
creasing expressivity. In case we only include subsumption, we observe the highest
number of unsatisfiable classes in the final alignment while we retrieve only very
few unsatisfiable classes for full EL£** expressivity. Since low number of satisfi-
able classes is preferred over high numbers this shows an increase in quality. The
reason why we obtain unsatisfied classes at all for E£** expressivity is that the ex-
pressivity of our underlying ontologies is higher than £L£*". However, as discussed
in Section 8.1 many alternative more expressive DLs can be extended to log-linear
description logics DLs which would result in lower numbers of unsatisfied classes
or would even guarantee consistency.

Last, we provide the runtime in seconds in the lower right figure. We observe
an increase in runtime with increasing number of resolved conflicts, since runtimes
are higher for low thresholds. Furthermore, runtimes also increase with increasing
expressivity.

In summary, our experiments on the CONFERENCE benchmark showed that the
quality increases with increasing expressivity. Most importantly, f-measure results
are higher. After our reinterpretation of the objective quality measure to a measure
which returns the amount of avoided conflicts, we conclude that more conflicts are
resolved with higher expressivity. Finally, the number of unsatisfiable classes is
lower if expressivity increases which is again an increase in quality.

Ontology Learning Benchmark We performed experiments with varying ex-
pressivity on the ontology learning benchmark. The experimental results are given
in Table 10.5. Since weighted axioms were given for subsumption and disjointness
axioms, we decided to evaluate f-measure and objective results separately for sub-
sumption and disjointness axioms. Furthermore, we include precision and recall in
the evaluation.
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Axiom type Algorithm Precision ‘ Recall ‘ F-Measure | Objective
only weighted axioms| 0.609 | 0.611 0.610 59.9
Subsumption | + domain and range | 0.709 | 0.599 0.649 56.0
everything 0.840 | 0.568 0.677 54.2

only weighted axioms| 0.948 | 0.960 | 0.954 1103
Disjointness | + domain and range | 0.975 | 0.945 0.960 1056
everything 0.992 |0.937 0.964 1025

Table 10.5: Results for the ontology learning benchmark with increasing expres-
sivity. Runtimes were 5.2 seconds with only weighted axioms and 5.6 seconds with
everything.

If we examine the results for subsumption axioms, we observe an increase in
Precision from 60.9% over 70.9% to 84% if we include only weighted subsump-
tion and disjointness axioms, include domain and range axioms, and perform the
experiments on full EL**, respectively. Precision increases if false positive axioms
are removed due to conflict avoidance. Contrary to this, recall values decrease from
61.1% to 56.8% since some of the removed axioms are true positives. However, the
increase in precision compensate the decrease in recall since we observe increas-
ing f-measure values from 61% over 64.9% to 67.7%. Intuitively, we can conclude
that more false positives are removed than true positives. Additionally, the objec-
tive also increases from 50.9% over 52% to 54.2% with increasing expressiveness.

Similar, but smaller effects are measured in case of disjointness axioms. For ex-
ample, we only have an increase of f-measure of 1% between taking only weighted
axioms and taking full ££*" expressivity. This is due to the very large number
of true positive disjointness axioms. This large number evolves from the fact that
we materialize disjointness axioms for evaluation. Since in this ontology, disjoint-
ness is often introduced on upper levels of the class hierarchy, we obtain many
disjointness combinations in lower levels after materialization.

For both subsumption and disjointness axioms the objective decreases with
increasing expressivity, which is a similar effect that we observed in the ontol-
ogy matching benchmark above. With increasing expressivity more conflicts are
resolved which lead to a lower objective. Runtimes for full ££7* axioms were
slightly higher (5.6 seconds) than with only weighted axioms (5.2 seconds).

Conclusively, f-measure increased and the objective decreased with increasing
expressivity in the ontology learning benchmark. Thus, we observed higher quality
with increasing expressivity in both benchmarks.

10.5.2 ELOG has a Higher Quality Than Approximate Approaches

In this section, we experimentally address the question if optimal algorithms (like
ELOG) lead to higher quality than approximate algorithms. To that end, we com-
pare ELOG against different algorithms.
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Figure 10.5: Results for ELOG compared with other approaches on the CONFER-
ENCE benchmark. For thresholds lower than 0.12 the HERMIT reasoner failed in
computing the number of incoherent classes. In total, the conference benchmark
contains 2.973 classes.
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Ontology Matching Benchmark In ontology matching we compare us against
the alignment debugging tools LOGMAP and ALcOMO. The latter system pro-
vides a greedy and an optimal algorithm. For details about the systems and their
algorithms, we refer to Section 10.2.2 and Section 10.2.2, respectively.

The results for the CONFERENCE benchmark are visualized in Figure 10.5.
Again, we change the scale in each chart at threshold 0.2 from 0.01 to 0.1 steps,
since there exists none or only very few conflicts if applying high thresholds and
results were almost equivalent for all systems. In the following, we focus on the
discussion of results for thresholds below 0.2.

Our system ELOG and the optimal algorithm of ALCOMO had the highest f-
measure scores (upper left figure). The approximate algorithms of ALCOMO and
LOGMAP reached lower f-measure scores. Similarly, the objective (lower left fig-
ure) of ELOG and the optimal algorithm of ALCOMO are higher than for the ap-
proximate algorithms of ALCOMO and LOGMAP.

ELOG has the highest number of unsatisfied classes (lower right figure) of all
three algorithms. However, having 53 inconsistent classes is only 1.7% compared
to the total sum of classes of 2.973. After some observations we discovered that one
conflict often produces several inconsistent classes. Furthermore, all inconsisten-
cies were caused from axioms which are out of the scope of ££**. The advantage
of ELOG compared to the approximate algorithms of LOGMAP and ALCOMO is
that it is proven to be coherent for the description logic ££**. Please also note,
that many more expressive description logics than ££** can be transformed to log-
linear DLs. For an overview we refer to Section 8.1. Choosing a more expressive
DL would lead to a reduction of the incoherent classes in our experiments. How-
ever, possible drawbacks like longer runtimes would have to be experimentally
investigated. This is left to future work.

The attentive reader of the figures may be confused by the slightly higher ob-
jective results of ELOG compared to the optimal algorithm of ALCOMO. Since
both algorithms are optimal, one might think that they must return similar results.
However, ELOG has slightly more unsatisfied classes and thus detects slightly less
conflicts. This leads to a slightly higher objective. The differences in f-measure
originate from the fact that problems often have more than one optimal solution.
Each of this optimal solution has the same objective but most probable different
f-measure scores. Thus, ELog might choose a different one than the optimal algo-
rithm of ALCOMO.

With respect to runtimes (upper right figure), the approximate algorithms of
LoGMAP and ALCOMO were faster especially for lower thresholds. Our system
ELOG, outperformed the approximate ALCOMO algorithm for thresholds higher
than 0.15. Except for the range 0.11 and 0.12, the exact ALCOMO algorithm was
slower than ELOG and did not terminate within one hour for thresholds below 0.09.

Overall, we can conclude that for the CONFERENCE benchmark our ELOG sys-
tem is able to compete with state of the art alignment debugging tools. It achieves
higher f-measure and objective scores than the approximate algorithms. With re-
spect to runtime it outperforms the optimal algorithm of ALCOMO. This is remark-
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Axiom type | Algorithm Precision‘Recall‘F—Measure Objective

Subsumngion| GTEdY | 0784 [0.514] 0620 50.1
ubsump ELOG | 0.840 |0568| 0.677 542
Disiointness | GTeedy | 0935 [0.990 [ 0.961 1010

L ELOG | 0937 |0992| 0.964 1025

Table 10.6: Results of ELOG compared with a greedy approach on the ontology
learning benchmark. ELOG achieves a higher f-measure and objective. Runtimes
of the greedy approach and ELOG were 40.3 and 5.6 seconds, respectively.

able since LOGMAP and ALCOMO are specialized on ontology matching. They
leverage the fact that weighted axioms can only occur between ontologies and that
those axioms are either subsumption or equivalence axioms. In ELOG it is however
possible to attach weights to any arbitrary axiom.

Ontology Learning Benchmark Consequently, neither LOGMAP nor ALCOMO
can deal with our ontology learning benchmark. Thus, we compare our ELOG
system against a greedy algorithm which is described in Section 10.4.

As before, weighted subsumption and disjointness axioms are evaluated sep-
arately. Figure 10.6 summarizes the results. Precision, Recall, F-measure, and
objective results were higher for the ELOG approach for subsumption axioms.
Here, the greedy algorithm achieved 62% of f-measure while the ELOG algorithm
reached 67.7% f-measure. The objective of the greedy algorithm is 50.1 compared
to 54.2 in case of the optimal ELOG algorithm. For disjointness axioms we again
observe a similar but weaker effect. Please refer to Section 10.5.1 for reasons why
the effect is weaker.

With respect to runtimes, it is remarkable that ELOG’s algorithm needs on av-
erage 5.6 seconds while the greedy algorithm requires 40.3 seconds. Thus, the
optimal algorithm ELOG was over 7 times faster. Note that the 5.6 seconds in-
clude the time to classify the ontology. The reason for this huge time difference
is that the greedy algorithm has to check the coherency of the ontology for every
weighted axiom. Since the ontology learning benchmark contains a large number
of weighted axioms, this procedure is slow.

In summary, these results indicate that EL.OG is more effective and efficient
than the greedy approach for small to medium sized ontologies.

10.5.3 ELOG can process large ontologies

In order to show the ability of ELOG to process larger ontologies, we perform
experiment on the LARGE BIOMED ontology matching benchmark. Figure 10.6
visualizes runtime in seconds and A objective of ELOG, LOGMAP, and ALCOMO.
The A objective is the result of the subtraction of the lowest objective 0bj; min =
min(obj, sVs) from each objective obj; s where ¢ stands for a specific threshold
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Figure 10.6: Results for ELOG compared with other approaches on the LARGE
BIOMED benchmark.

and s for a system configuration. We decided to compute the A objective since
otherwise the differences between the algorithms were not adequately visible.

The results verify that ELOG achieves higher objectives than the approximate
algorithms of LOGMAP and ALCOMO where the objectives of LOGMAP are lower
than the approximate ALCOMO algorithm. However, the approximate algorithms
of LOGMAP and ALCOMO have lower runtimes and show a constant and linear
behavior with lower thresholds, respectively. Contrary, the runtime of ROCKIT
increases exponentially.

With respect to runtime, ELOG outperforms the optimal algorithm of ALCOMO
which does not terminate within one hour for thresholds less than 0.7. This is in
line with our runtime observation for the CONFERENCE benchmark (upper right
chart of Figure 10.5) where the optimal algorithm of ALCOMO is also slower for
most thresholds and is not able to compute a result for thresholds below 0.08.

Again, please note that this is remarkable, since ALCOMO is specialized for re-
pairing ontology alignments only while ELOG can deal with any weighted axiom.



Chapter 11

Conclusion and Future Work

Finally, we conclude Part II of this thesis and draw future work perspectives. Fur-
thermore, the link between Part I and Part II will be made explicit.

11.1 Conclusion

In Part II of this thesis we define log-linear description logics which allows to at-
tach weights to arbitrary description logic axioms. Furthermore, a novel query type
which computes the most-probable coherent ontology evolves from the semantics
of log-linear description logics. Log-linear description logic were converted to a
Markov logic network such that we can apply our techniques introduced in Part I
for efficient MAP query solving. Thus, we applied or techniques in Part I to effi-
ciently solve the most-probable coherent ontology of Part II. Our novel log-linear
description logic reasoner ELOG implements log-linear description logics based
on the DL ££**. However, our techniques can be applied to more expressive DLs
as the ones mentioned in Section 8.1.

In the following, we answer the research questions from Section 1.2.2 in detail.

Q4 How can we combine log-linear models with description logics and define the
query of a most-probable coherent ontology?

We showed that we can combine log-linear models with description logics by
assigning weights to arbitrary description logic axioms. This splits our CBox into
an uncertain CBox CY containing the weighted axioms and a certain CBox CP
containing the non-weighted axioms. The latter one is assumed to be coherent,
while CY U CP usually contains conflicts. This describes the syntax of log-linear
description logics in a nutshell. We refer to Section 8.2.1 for details.

The semantics assigns a probability to each deterministic CBox C’. This prob-
ability is zero if CBox C’ is incoherent or does not entail each axiom of the de-
terministic CBox CP. This latter case ensures that each C’ with a weight greater
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than zero is a semantic superset of the given deterministic CBox CP. If C’ is co-
herent and entails CP the semantics follows a log-linear probability distribution.
Section 8.2.2 formalizes these cases and gives descriptive examples.

The semantics of log-linear description logic allows to define a novel query
type which asks for the most probable coherent ontology. The need for this novel
query originates from the areas of ontology learning and ontology matching. We
refer the reader to Section 10.2 for details. In both disciplines machine learning
techniques are applied to create confidence values for description logic axioms.
However, the resulting ontology is often incoherent. Thus, researchers aim to com-
pute a coherent ontology while keeping as many information as possible.

Log-linear description logics define not only a possible semantic for the loosely
coupled confidence values but also defines the maximum a-posteriori query which
answers the following question:

“Given a log-linear EL™* CBox, what is a most probable coherent determin-
istic EL™™ CBox over the same concept and role names?”

We refer the reader to Section 8.3.4 for formal definitions.

QS5 Can we efficiently compute the most-probable coherent ontology utilizing the
theory of Part 1?

The answer of QS is actually even more general. Section 8.3 shows how log-
linear description logic CBoxes can be transformed to a Markov logic represen-
tation. With this Markov logic representation it is on the one hand possible to
perform MAP inference and thus to compute the most probable coherent ontology.
On the other hand, we can apply Markov logic techniques for marginal inference.
This latter issue is, however, not addressed in this thesis. We refer to [NNS11] for
details.

For transforming log-linear description logics into a Markov logic representa-
tion it is required that the underlying deterministic description logic has a finite set
of materialization rules. Section 8.1 provides a list of such DLs and motivates our
choice to demonstrate the procedure utilizing the description logic E£*7.

The transformation requires four steps. First, the deterministic and uncertain
CBox CP and CV is required to be normalized. When normalizing CV it is required
to link each normalized axiom to its original axiom which can make normaliza-
tion more challenging. The normalization is exemplarily performed for ££* in
Section 8.3.1.

In the second step we transform the set of materialization rules to first-order
logic (see Section 8.3.2. Afterwards, we add the axioms from the deterministic
CBox CP as evidence and the weighted axioms CY to the model. In the latter case,
we have to make sure that the weight is correctly linked to the axiom. To that end,
we iterate through all weighted non-normalized axioms, and add a weighted con-
junction of all associated normalized axioms. This is the reason why it is required
to link the normalized axioms and the non-normalized axioms. Section 8.3.3 ap-
proaches the addition of axioms.
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Finally, Section 8.3.5 puts the components together and constructs an ML net-
work. However, if we would like to apply the solving techniques of Part I, we
require the ability to attach weights to conjunctions. In Markov logic we can only
attach weights to clauses. If weights are attached to conjunctions, Richardson and
Domingos [RD06] advise to split the conjunction of clauses into separate formulas,
containing one clause each, and divide the weight by the number of clauses. This,
however, leads to a different semantic. In order to be able to integrate conjunctions
in a semantically correct way, we extend the semantic of Markov logic. We first
apply existing methods [FABR* 13, Jan04] to reduce a formula in conjunctive nor-
mal form to conjunctions of literals by introducing additional hard conjunctions.
Then, we model conjunctions as ILP constraints, integrate them into CPI, and, fi-
nally, extend our CPA approach in a way that we can also aggregate conjunctions.
Details are explained in Section 8.4.

Q6 Can we experimentally verify that a solution’s quality increase with increas-
ing expressivity and that optimal solving strategies result in higher quality
solutions than approximate solving strategies?

For experimental verification, we performed exhaustive experiments which are
described in Chapter 10. First, we implemented the translation of log-linear de-
scription logics to Markov logic in a new log-linear description logic solver ELOG
which exploits ROCKIT from Part I for MAP query solving. Furthermore, we se-
lected benchmarks from the main application areas ontology learning and ontology
matching. As quality measures we introduced f-measure, objective, and number of
incoherent classes.

With respect to the first part of Q6 we experimentally verified an increase in
f-measure and a decrease in the number of incoherent classes with increasing ex-
pressivity for both the ontology learning and ontology matching benchmark. Fur-
thermore, we observed a decrease in objective with increasing expressivity. This
decrease is explained by the fact that more conflicts are resolved with increasing
expressivity. In this scenario, it is required to reinterpret the objective as a measure
of the amount of conflicts that have been avoided. In summary, we can conclude
that the quality increases with increasing expressivity.

For addressing the second part of Q6, we compared ELOG with several approx-
imate approaches. Our exhaustive literature review in Chapter 9 and in particular
our analysis of presumably every existing probabilistic, possibilistic, or fuzzy de-
scription logic reasoner in Section 9.4 showed that none of these systems is able to
compute a most-probable coherent ontology. Thus, we were only able to compare
our system ELOG with the alignment debugging tools LOGMAP and ALCOMO.
We refer to Section 10.2 for system descriptions. In ontology learning, we com-
pared us against a greedy algorithm described in Section 10.4. In both the ontology
learning and ontology matching benchmark ELOG achieved higher f-measure and
objective scores than approximate algorithms. The number of unsatisfied classes
were slightly higher, since the expressivity of the benchmarks were beyond E£7.
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However, when implementing more expressive description logics (see Section 8.1
the number of unsatisfied classes would decrease. The advantage of log-linear de-
scription logics compared to the approximate approaches in ontology matching is
that ontologies are guarantied to be coherent if they do not exceed the underlying
DL (in our case EL£*).

Additionally, we measured the runtime of the algorithms and performed ex-
periments on larger ontologies (see Section 10.5.3). Generally, we observed an
increase in runtime with increasing expressivity. Furthermore, we discovered that
ELOG is able to process larger ontologies.

In the ontology learning experiments, runtimes of the greedy algorithm are sig-
nificantly slower than our ELOG algorithm. In the ontology matching experiments,
runtime of ELOG are (mostly) slower compared to the approximate algorithms
of LOGMAP and ALCOMO. However, ELOG was faster than the optimal algo-
rithm of ALCOMO in both the smaller and larger ontology matching benchmark.
In fact, ALCOMO does not terminate for lower thresholds. This is remarkable since
ALCOMO (and LOGMAP) are especially optimized for alignment repairing tasks.
Thus, only weighted subsumption axioms between two ontologies are allowed. In
ELOG it is possible to attach weights to every axiom type everywhere in the ontol-

ogy.

11.2 Future Work

There are several possible future research directions. In the following, we point out
the most promising ones.

Implement more expressive log-linear DLs Our implementation of log-linear
description logics is based on the description logic £L£**. However, there exist sev-
eral more expressive description logics which can be transferred to log-linear de-
scription logics in a straight-forward way. Section 8.1 provides an incomplete list.
In future, more implementations of different description logics are planned. One
of the most promising extensions is SROZQ — RL since it is the underlying DL
for the OWL 2 profile RL. In this context, it has to be experimentally determined if
the increase in quality of a more expressive description logic like SROZQ — RL
justifies the (probable) longer runtimes compared to EL£*.

Set starting solutions In our experiments we noticed that especially in the field
of ontology matching approximate algorithms generate comparable results in lower
runtimes. These approximate solutions can be set as starting solutions in our solver
ELOG. This starting solutions are then set as starting points in the ILP solvers for
MAP state computation. Thus, this extension could also be seen as general exten-
sion for our MLN solver ROCKIT. However, in general Markov logic networks we
experimentally prove that approximate algorithms like MAXWALKSAT produce
less qualitative results in higher runtimes.
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Integrate additional constraints One strength of our formulation of the most-
probable coherent ontology query as Markov logic networks is the easy extendabil-
ity with additional constraints. Thus, log-linear description logics are extendable
with e.g. temporal restrictions. We could for instance add constraints such that
a may not be a teacher of b if a died before b was born. An interesting research
direction is the integration of fuzzy concepts into log-linear description logics by
modeling the fuzziness with Markov logic constraints.

Reinterpret weights as utilities The semantics of log-linear description log-
ics could presumably be changed such that weights can be interpreted as utili-
ties [Fis70]. Then, solutions having higher utilities are preferred among those
with lower utilities if these solutions are in conflict with each other. Ragone et
al. [RND*(09a, RND*09b], for example, model preferences as weighted formulas
within a specific description logic. In their work, they assign utilities to axioms
and maximize the utilities by maximizing their sum. In our ILP formulation of the
MAP query, we also maximize the sum of the weights of the true description logic
axioms. This connection has to be further elaborated and the semantics of log-
linear description logics has to be adapted such that it follows the characteristics of
utilities [Fis70].

Apply log-linear description logics Up to now, log-linear description logics
have only been applied in activity recognition [HRN"12, HRS13]. In this the-
sis, we also performed experiments in the area of ontology learning and ontology
matching. In future research, we plan to integrate log-linear description logics into
existing ontology learning approaches. A promising starting point is the work of
Fleischhacker et al. [FMVN13]. Additionally, we encourage other domains like the
biomedical research area to add confidence values to the facts of their ontologies.
In case of conflicts, these can then be resolved by computing the most probable
coherent ontology.
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