
Estimating Deterministics in

Univariate Time Series

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Wirtschaftswissenschaften

der Universität Mannheim

vorgelegt von

Christopher Paul Walsh

Mai 2014



Abteilungssprecher: Prof. Dr. Eckhard Janeba

Referent: Prof. Dr. Enno Mammen

Korreferent: Prof. Dr. Carsten Trenkler

Tag der Verteidigung: 26. Mai 2014



Acknowledgements

First of all, I wish to thank my advisors Carsten Trenkler and Enno Mammen.

They were always there when I needed them and gave me enough freedom to

potter on with my work. Thanks also goes to Kyusang Yu, who was literally

always around to answer more or less qualified questions.

Special thanks goes to my former colleague Michael Vogt without whom the

journey would have been so much more difficult and so much less amusing.

I would also like to thank Uta Pigorsch and Carsten Trenkler for giving me

the opportunity to teach the next generation of econometricians, thereby learning

something myself.

Further thanks goes to the fellow members of my CDSE cohort who endured all

the course work with me and provided for interesting and fun conversations over

the years we were together.

I am also very grateful to all the friends I have made in my time here in

Mannheim, especially for all the moral support they provided. In total they,

especially Lena, have been a vital component in making my time in Mannheim

one of the most enjoyable periods of my life so far.

Last but by no way least, thanks goes to my mum and dad, who have always

trusted and backed me. I am sure Lena and I will be very grateful if they continue

to do so.

Mannheim, 29th April 2014

Christopher Walsh



Contents

1 Introduction 1

1.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Modelling nonstationarity . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Chapter 2 - based on joint work with M.Vogt . . . . . . . . 9

1.3.2 Chapter 3 - based on joint work with M.Vogt . . . . . . . . 10

1.3.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 An additive Model 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Estimation of mθ . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Estimation of m0, . . . ,md . . . . . . . . . . . . . . . . . . 18

2.3.3 Estimation of the AR Parameters . . . . . . . . . . . . . . . 22

2.4 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Asymptotics for m̃θ . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Asymptotics for m̃0, . . . , m̃d . . . . . . . . . . . . . . . . . 26

2.4.4 Asymptotics for the AR Parameter Estimates . . . . . . . . 27

2.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A Volatility Model 41



CONTENTS v

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Estimation of the Nonparametric Model Components . . . . 46

3.3.2 Estimation of the Parametric Model Components . . . . . . 47

3.4 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Asymptotics for the Nonparametric Model Components . . . 51

3.4.2 Asymptotics for the Parametric Model Components . . . . . 52

3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.1 Estimation of the Covariance Matrix Σ . . . . . . . . . . . . 62

3.6.2 Efficiency Gains . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.3 Locally Stationary Covariates . . . . . . . . . . . . . . . . . 63

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Non-additive Season-trend Model 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Data Illustration using Weather Data . . . . . . . . . . . . . . . . . 72

4.4.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.3 The Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Comment on bandwidth selection . . . . . . . . . . . . . . . 84

4.4.5 Comparison to other models . . . . . . . . . . . . . . . . . . 87

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendices 93

Appendix A Proofs for Chapter 2 95

A.1 Proof of Theorem 2.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Proofs of Theorems 2.4.3 and 2.4.4 . . . . . . . . . . . . . . . . . . 100



vi CONTENTS

A.3 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix B Proofs for Chapter 3 119

B.1 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1.1 Restatement of results from Appendix A.1 . . . . . . . . . . 119

B.2 Proofs of Theorems 3.4.2 and 3.4.3 . . . . . . . . . . . . . . . . . . 121

B.2.1 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2.2 Proof of Theorem 3.4.2 . . . . . . . . . . . . . . . . . . . . . 123

B.2.3 Proof of Theorem 3.4.3 . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 143



Chapter 1

Introduction

This thesis deals with regression approaches to analyse certain nonlinear and non-

stationary univariate discrete time series models. A univariate discrete time series

consists of regular observations of a one dimensional dynamic process. Let Yt ∈ R
denote the observation of a particular dynamic process at time point t. The pro-

cess is defined for equally spaced time points. Typically, it is assumed that the

process has and always will exist. Thus the process can be described by the infinte

sequence of random variables {Yt}t∈Z1.

We assume that we only observe the process at T equally spaced consecutive

time points, say t = 1, . . . , T . Thus the observations {Yt}t=1,...,T correspond to

T regular measurements of a dynamic process. This type of data is collected in

many scientic fields. These range from economics, finance, engineering, hydrology,

atmospheric sciences, acoustics and seismology to mention just a few. Hence, there

is a vast amount of different models for such data, spread across these fields (see

e.g. Fuller (1996), Hamilton (1994), Mills and Markellos (2008) , Machiwal et al.

(2012), Mudelsee (2010) and Quinn and Hannan (2001)).

The main objective in time series modelling is to either capture the dynamics of

the underlying process or to replicate certain aspects of its stochastic behaviour

such as certain moments or distribution functions. The models are estimated

1Alternatively the process is assumed to have a particular beginning in which case Z is replaced

by N and the random variable Y0 is denoted the intial value of the process.
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based on the sample {Yt}t=1,...,T . Given the estimated model, further analysis

can be conducted such as forecasting, signal extraction, turning point anaylsis or

determining dynamic causal effects.2

Before introducing our models and their related results in Chapters 2, 3 and 4, we

will use the rest of this introductory chapter to recap the concept of “stationarity”

due to its importance in modelling time series processes. Following this we will

see that real data series do not always seem to be stationary. This is illustrated

by two data series that we will apply our models to in the subsequent chapters.

Finally, we will review a common decomposition method to incorporate certain

nonstationarities. We will also mention some modelling approaches that can be

seen to fall within this framework, the focus being on models related to ours.

1.1 Stationarity

Most introductory texts on time series analysis deal with models for so called

stationary processes. Stationarity essentially means that the stochastic mechanism

of the process satisfies some sort of time invariancy. Before restating the most

common types of stationary processes considered in the literature, we will give a

brief example to illustrate why the concept of stationarity is so helpful.

The dynamics of the process {Yt}t∈Z are governed by the collection of all finite

dimensional joint distribution functions of {Yt}t∈Z. Suppose we were interested

in looking at the dependence structure over one time period only. This would be

contained in the collection of joint distributions {FYt−1,Yt}t∈Z. In general, {FYs−1,Ys}
= {FYt−1,Yt} for s 6= t so there is not really all that much we can say about

the dependence structure over one period even if we observed the entire process

{Yt}t∈Z. The situation changes dramatically if we knew that the joint distributions

{FYt−1,Yt}t∈Z were time invariant, i.e. {FYs−1,Ys} = FY0,Y1 for ∀t ∈ Z. In this case

FY0,Y1 would contain all one needs to know about the dependence structure over

one time period and it could be arbitrarily well estimated for a large enough

2Sometimes no explicit model is used. An example is forecating using exponential smoothing.

See Gijbels et al. (1999) for a comparison of exponential smoothing with kernel regression.
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sample. This discussion extends to any other finite dimensional joint distribution

of {Yt}t∈Z. Stationarity essentially assumes some similar kind of time invariancy.

Two types of stationarity assumptions are most commonly invoked. Firstly,

stationarity may refer to strict stationarity, which entails that the joint distribution

of all finite dimensional tuples of the process {Yt}t∈Z are time invariant. Thus for

any finite set of time indices (t1, . . . , tn), we have

FYt1 ,...,Ytn = FYt1+t,...,Ytn+t ∀t ∈ Z. (1.1)

Secondly, stationarity may refer to weak or covariance stationarity which means

that the first two unconditional moments of the process coordinates {Yt}t∈Z are

time invariant, i.e.

E[Yt] = µ, ∀t ∈ Z (1.2)

E[Yt+hYt] = c(h) ∀t, h ∈ Z (1.3)

Hence, under weak stationarity the observations {Yt}t=1,...,T form a sequence of

random variables, whose means are constant and whose covariances between two

observations h periods apart depend only on h.3 The name weak stationarity is

explained upon realising that a strictly stationary series is also weakly stationary

as long as we allow for second moments to exist.

The striking thing is, that when we look at actual data many time series do

not seem to satisfy either of these stationarity conditions. Two examples are

provided in Figures 1.1 and 1.2. The example in Figure 1.1 is taken from the

atmospheric sciences. The plot gives the minimum monthly surface temperature

in the Antarctic from September 1957 to December 2004. It is clearly visible

that there are some regular seasonal movements and a time varying mean, clearly

violating (1.2)

3If the process is Gaussian, then the entire behaviour of the time series {Yt}t∈Z is modelled

by the first two moments and the two types of stationarity conincide.



4 Chapter 1. Introduction

Time

M
in

. T
em

pe
ra

tu
re

 in
 °

C

1960 1970 1980 1990 2000

−
40

−
20

0

Figure 1.1: Monthly minimum near-surface temperatures (in ◦C) at Faraday sta-

tion.

1995 2000 2005 2010

−
0.

10
0.

00
0.

05
0.

10

Time

Lo
g 

R
et

ur
ns

Figure 1.2: Plot of S&P 500 log returns from 10th April 1993 until 2nd February

2014



1.2 Modelling nonstationarity 5

In Figure 1.2 on the other hand we see an example from the financial world. The

plot shows the daily log returns of the S&P 500 index from 10th April 1993 until

2nd February 2014. In comparison to the previous example in Figure 1.1 there is no

clear discernible seasonal pattern or a clearly visible time varying mean. However,

one can see that the second moment of the daily log returns is time dependent.

The variation in the log returns is fairly low at first. From about 1997 until 2004

it is higher before falling back to a more moderate level. The increase in the

recent crisis is visible and is followed by a more stable lower level from about 2012

onwards. Both of the time series depicted in Figure 1.1 and Figure 1.2 will be used

as illustrations of our modelling framework in Chapters 2 and 3 later on.

1.2 Modelling nonstationarity

To be able to construct models for the processes in Figure 1.1 or Figure 1.2 one

needs to relax the stationarity assumption. Looking at the stationarity conditions

(1.1) - (1.3) we see that a straightforward way to incorporate nonstationarity

is to either allow for time varying first or second moments, i.e. a relaxation of

the weak stationarity conditions or to allow for the joint distribution function

of the observations to depend on time, i.e. a relaxation of the condition for strict

stationarity. These are essentially the three deviations from stationarity mentioned

in Chapter 9 of Fuller (1996).

For the time being we will postpone violations of the type seen in Figure 1.2 until

we introduce our modelling framework for such data in Chapter 3 and concentrate

on the frequently observed violation of the stationarity assumption arising from

regularly occuring seasonal patterns or the existence of some trending behaviour

in the series under study.

In terms of allowing for a time varying mean, Fuller (1996) goes on to establish

what he calls the “traditional model for economic time series”, which amounts to

a decomposition of the observed time series {Yt}t∈Z into the sum of a “trend” (Tt),
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a “seasonal” (St) and an “irregular” or noise component (Zt), i.e.4

Yt = Tt + St + Zt ∀t ∈ Z. (1.4)

This decomposition or some form of it can be found in many other sources, e.g.

Bosq (1998), Brockwell and Davis (2002), Heiler (2001) or Wildi (2006). The de-

composition is also popular in economic data agencies (Eurostat (2009), Destatis

(2004)) due to many researchers wanting so-called seasonally adjusted data, which

removes an estimate for the seasonal component from the original data.

Without imposing any further structure on the components in (1.4), they are of

course not identified. It should be clear that the components are only identified

up to an additive constant. The identification issue goes beyond this. In fact,

the irregular component may pick up some of the seasonal component or parts

of the seasonal component my be shifted into the trend component. Thus the

reasercher must in some way add additional structure to the modelling framework

of (1.4). Sometimes there may be some form of guidance in setting these restric-

tions. Examples would include Mudelsee (2010) arguing for AR(1) structures in

the irregular component of climate time series models or Hamilton (1994) for the

use of the linear deterministic time trends when modelling GNP data. In general

though the researcher is free to set the restrictions as he sees most appropriate for

the problem at hand. This has led to a diverse amount of modelling approaches

that can all be viewed as a version of the decomposition in (1.4) a point that is

eloquently made by Fuller (1996) on p.475:

”While the model [in (1.4)] is an old one indeed, a precise definition of the

components has not evolved. This is not necessarily to be viewed as a weakness of

the representation. In fact, the terms acquire meaning only when a procedure is

used to estimate them, and the meaning is determined by the procedure.“

The dependence on the estimation method should always be borne in mind as

different methods can lead to conflicting results as pointed out by Canova (1998)

when using the estimated irregular component to model business cycles.

4A related model is the multiplicative model: Yt = TtStZt, an example of which will be given

in Chapter 3.
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In the remainder of this section we provide some examples of the modelling

approaches encountered in the literature that can be cast in the form of (1.4). The

overview is necessarily limited and we restrict the focus to models that are close to

ours.5 We will also try to categorize the approaches in terms of the assumptions

they impose upon the components in the decomposition. This categorization will

help position our models in the current literature. In all the remaining chapters we

will treat the irregular component (Zt) as a zero mean stationary process. Thus

the non-irregular part captures the mean of Yt, which we shall write as

µt = Tt + St ∀t ∈ Z

One broad delineation of the models considered in the literature can then be made

with regards to the modelling of the mean µt.

The first broad group of models treats the mean as being purely a function

of time and thus deterministic. The modelling of the mean may then be done

using parametric functions (see Fuller (1996), Hamilton (1994) or Hendry (1995)).

Alternatively, one may use nonparametric models that refrain from specifying a

parametric functional form. Examples include Truong (1991), Altman (1993),

Härdle et al. (1997), Hall and Keilegom (2003), and Shao and Yang (2011).

The second broad group considers the mean µt to be stochastic. One way is

to model the individual components in the mean µt as stochastic processes, the

so called unobservable component models or structural time series models (see

Harvey (1989), (1993)). It is also possible to model the mean µt stochastically

by specfying it to be a function of other stationary processes. Note, that this is

generally used to model stationary processes. In a parametric framework one can

use distributed lag models (see Hendry (1995)). Using nonparametric functions

of stationary processes to model the trend has been considered in Truong and

Stone (1994), Schick (1994) and Lin et al. (1999). There has been some work to

extend this approach to allow for nonparamtric functions of certain non-stationary

processes. For a summary on such approaches see Tjøstheim (2012).

5For a further overview with a focus on the identifying assumptions on the individual compents

see Wildi (2006).
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The final method we will consider are so-called unit root processes (see Hamilton

(1994)). This can also be included in the framework of (1.4) by setting µt =

Yt−1. In this case interest lies in modelling the differenced series ∆Yt = Yt −
Yt−1 = Zt. A popular approach is by considering this difference to follow an

autoregressive moving average (ARMA) process, introduced by Box and Jenkins

(1970). Extensions modelling higher order differences by ARMA models leads to

the family of autoregressive integrated moving average (ARIMA) models.

It should be borne in mind that the modelling approaches mentioned above are

not necessarily distinict from one another. For example, Harvey (1985) shows that

a certain unobserved component model may be cast as an ARIMA model with

additional restrictions or can be reduced to a model with a deterministic linear

time trend.

To finish the discussion on models that fit (1.4), it should be noted that most of

theses approaches rely on retrieveing the stationary irregular component from the

original series by a suitable transform of the original series. But as the transform

depends on the chosen model there can be no unique stationary rendering trans-

form. A point made more pointedly by Harvey (1985) when referring to the use

of ARIMA models:

“Indeed, the remarkable thing about differenced economics time series is not that

they are sometimes nonstationary, but rather that they are occasionally station-

ary.”

Lastly, we will mention one additional approach to dealing with nonstationarities

that cannot be cast in the form of (1.4). However, our model in Chapter 3 can

be seen as falling within this type of model class. The idea is to approximate

nonstationary processes by stationary processes locally around each time point.

The resulting processes are termed locally stationary. The concept and much of

the theoretical work was done in in a series of papers by Dahlhaus (1996b), (1996a),

(1997). An overview on the present state of modelling locally stationary processes

is given in Dahlhaus (2012).
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1.3 Summary

In this section we will provide a summary of the models considered in Chapters 2,

3 and 4. We will also show how these models relate to the decomposition in (1.4).

1.3.1 Chapter 2 - based on joint work with M.Vogt

The model in Chapter 2 will consist of specifying a seasonal component St with a

known period. Furthermore, the trend component Tt will consist of nonparametric

functions of time and other variables thus representing a mixture between the

deterministic and stochastic case. Additional structure is imposed by requiring

the components to be additive. This is done to circumvent the well known curse

of dimensionality. Finally, we will model the stationary irregular component Zt

by an autoregressive process of order p, AR(p). Thus, we will be considering the

model

Yt,T = mθ(t) +m0(
t

T
) +

d∑
j=1

mj(X
j
t ) + εt for t = 1, . . . , T, (1.5)

with {(X1
t , . . . , X

d
t , εt)} a (d + 1)-dimensional stationary process. This model fits

into the framework in (1.4) with:

1. St = mθ(t), which is a periodic function with known period θ, i.e. mθ(t) =

mθ(t+ kθ) for all k ∈ N.

2. Tt = m0( t
T

) +
∑d

j=1 mj(X
j
t ), which is the sum of the smooth function of

rescaled time m0 and the sum of component functions mj that depend

smoothly on the regressors Xj
t .

3. Zt = εt, which is a stationary AR(p) process.

Model (1.5) can be seen as a nonparametric extension of a distributed lag model

that additionally allows for a nonparemtric trend function. Special mention should

be made here to the fact that due to the inclusion of the nonparametric trend func-

tion m0, the model cannot be viewed as an extension of the augmented distributed
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lag model, i.e. one cannot include lagged dependent variables in the set of regressor

variables. We will suggest estimators for the components of the model in (1.5). We

will also provide theoretical results on the asymptotic behaviour of our estimators

and apply our model to the data plotted in Figure 1.1.

1.3.2 Chapter 3 - based on joint work with M.Vogt

In Chapter 3 we will apply a model similar to the one in Chapter 2 to a particular

transform of the dependent data. The model will be used to analyse the data

plotted in Figure 1.2. Thus, the emphasis will be on modelling the volatility.

Specifically, we will model the process as being zero mean, but having a scaling

function that is modelled as a product of individual components. The model will

be given by

Yt,T = τ0(
t

T
)

d∏
j=1

τj(X
j
t )εt for t = 1, . . . , T (1.6)

with εt a GARCH(1,1) process, a member of the fairly general yet parsimonious

family of nonlinear processes introduced by Bollerslev (1986). By squaring and tak-

ing logarithms this model can also be written as in (1.4). Using the aforementioned

transform, we obtain

log Y 2
t,T = log τ 2

0 (
t

T
) +

d∑
j=1

log τ 2
j (Xj

t ) + log ε2
t for t = 1, . . . , T (1.7)

This model fits into the framework in (1.4) for the transformed dependent variable

log Y 2
t,T with:

1. St = 0.

2. Tt = log τ 2
0 ( t

T
) +

∑d
j=1 log τ 2

j (Xj
t ), which is the sum of a smooth function of

rescaled time and the sum of component functions that depend smoothly on

the regressors Xj
t .

3. Zt = log ε2
t a stationary process.
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Estimators for the components of the model in (1.6) are suggested. Theoretical

results on the asymptotic behaviour of our estimators are provided as well as a

way to interpret them. Finally, the model will be applied to the data plotted in

Figure 1.2.

1.3.3 Chapter 4

In Chapter 4 we will give a model that will serve as a generalization of the struc-

ture in (1.4) for the deterministic case with a known seasonal period θ. Using a

nonparmateric formulation such a model can be written as

Yt,T = mθ(t) +m0(
t

T
) + εt for t = 1, . . . , T, (1.8)

with {εt} some stationary process, mθ a periodic function with known period θ

and m0 a smooth function of rescaled time. The intriguing thing about this model

is the dual use of the oberservation time point t. Not only does it give us the time

point, but it also carries the information on the season the observation was made

in.

The model in (1.8) uses this information to model the season and the trend

component as a sum. However, a priori, there seems to be no reasaon why such an

approach should by adopted. In particular, it may be that there is some change

in the season over time, which cannot be captured with the above model due to

the constancy of each season over the entire obseration period.

Instead of specifying the seasonal component to be overlaid on the trend compo-

nent we will think of the process as having an underlying season-trend function.

Such a model will be given by

Yt,T = m(
t

T
, st) + εt for t = 1, . . . , T,

with {εt} some stationary process, st denoting the season Yt,T was made in and

m(·, ·) : [0, 1] × {0, . . . , θ − 1} → R the season-trend function. We will see that

the season-trend function will be interpretable as a regression function with a

categorical and a continuous regressor. We will estimate the model using a German

temperature series and compare it to the additive specification in (1.8).
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Chapter 2

An additive Model

In this chapter, we study a nonparametric additive regression model suitable for a

wide range of time series applications. Our model includes a periodic component,

a deterministic time trend, various component functions of stochastic explana-

tory variables, and an AR(p) error process that accounts for serial correlation in

the regression error. We propose an estimation procedure for the nonparametric

component functions and the parameters of the error process based on smooth

backfitting and quasi-maximum likelihood methods. Our theory establishes con-

vergence rates as well as asymptotic normality of our estimators. Moreover, we

are able to derive an oracle type result for the estimators of the AR parameters:

Under fairly mild conditions, the limiting distribution of our parameter estimators

is the same as when the nonparametric component functions are known. Finally,

we illustrate our estimation procedure by applying it to a sample of temperature

and ozone data collected on the Antarctic Peninsula.

2.1 Introduction

In many time series applications, the data at hand exhibit seasonal fluctuations as

well as a trending behaviour. A common way to incorporate these features is to

assume that the data generating process can be written as the sum of a seasonal

part, a deterministic time trend and a stationary stochastic process. In most cases,
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the structure of these three components is largely unknown. Hence, in order to

estimate them, it is important to have flexible semi- and nonparametric methods

at hand.

Let {Yt,T , t = 1, . . . , T} be the time series under investigation. A general semi-

parametric framework which decomposes Yt,T into a seasonal, a trend and a sta-

tionary stochastic component is given by the regression model

Yt,T = mθ(t) +m0

( t
T

)
+m(Xt) + εt for t = 1, . . . , T (2.1)

with E[εt|Xt] = 0. Here, mθ is a periodic function with a known period θ and m0

is a deterministic time trend. The stochastic component consists of the residual εt

and of the term m(Xt) which captures the influence of the d-dimensional stationary

covariate vector Xt = (X1
t , . . . , X

d
t ). We do not impose any parametric restrictions

on the component functions mθ, m0 and m. Moreover, we allow for correlation in

the error terms εt which are modelled by a stationary AR(p) process. Note that,

as usual in nonparametric regression, the time argument of the trend function m0

is rescaled to the unit interval.

Two special cases of model (2.1) have been considered in the literature. The fixed

design setting Yt,T = m0( t
T

) + εt has been analyzed for example in Truong (1991),

Altman (1993), Hall and Keilegom (2003), and Shao and Yang (2011) who provide

a variety of methods to estimate the nonparametric trend function m0 and the AR

parameters of the error term. Interestingly, they establish an oracle type result for

the parameter estimators. In particular, they show that the limiting distribution

of the estimators is unaffected by the need to estimate the nonparametric function

m0. A second special case of model (2.1) is the setting Yt = m(Xt) + εt. The

problem of estimating the AR parameters in this setup has been studied under the

restriction that {Xt} is independent of the error process {εt}.Truong and Stone

(1994), Schick (1994) and Lin et al. (1999) show that under this restriction an

oracle type result holds analogous to that in the fixed design setting.

In this chapter, we study estimation of the parametric and nonparametric com-

ponents in the general model (2.1). We allow Xt and εt to be dependent, thus

dispensing with the very restrictive assumption that the covariate process is inde-
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pendent of the errors. In order to circumvent the well-known curse of dimension-

ality we assume the function m to be additive with component functions mj for

j = 1, . . . , d, thus yielding

Yt,T = mθ(t) +m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + εt for t = 1, . . . , T. (2.2)

A full description of model (2.2) together with a discussion of its components is

given in Section 2.2.

Our estimation procedure is introduced in Section 2.3. The nonparametric com-

ponents mθ and m0, . . . ,md are estimated by extending the smooth backfitting

approach of Mammen et al. (1999), who derived its asymptotic properties in a

strictly stationary setup. Due to the inclusion of the periodic and the determinis-

tic trend components our model dynamics are no longer stationary. In Subsections

2.3.1 and 2.3.2, we describe how to incorporate this type of nonstationarity into

the smooth backfitting procedure. Given our estimates m̃θ and m̃0, . . . , m̃d of the

functions mθ and m0, . . . ,md, we can construct approximate expressions ε̃t of εt.

Using these, the parameters of the AR(p) error process are estimated via a quasi-

maximum likelihood based method, the details of which are given in Subsection

2.3.3.

Section 2.4 contains our results on the asymptotic properties of our estimators. In

Subsections 2.4.2 and 2.4.3, we provide the convergence rates of the nonparametric

estimators m̃θ and m̃0, . . . , m̃d as well as their Gaussian limit distribution. The

asymptotic behaviour of the parameter estimators of the AR(p) error process is

studied in Subsection 2.4.4. There, we show that the parameter estimators are

asymptotically normal. Deriving the limit distribution of the parameter estimators

is by far the most difficult part of the theory developed in this chapter. To do

so, we need to establish a higher-order stochastic expansion of the first derivative

of the likelihood function. This requires substantially different and much more

intricate techniques than in the analysis of the special cases previously discussed

in the literature.

As will be seen, the asymptotic distribution of our parameter estimators generally

differs from that of the oracle estimators constructed under the assumption that the
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additive component functions are known. Thus, the additional uncertainty which

stems from estimating the component functions becomes visible in the asymptotic

distribution of our parameter estimators. Under fairly mild conditions on the

dependence structure between the covariates Xt and the errors εt, however, the

limiting distribution will turn out to coincide with that of the oracle estimators.

The key restriction on the dependence structure is that E[εt|Xt+k] = 0 for all

k = −p, . . . , p. This can be thought of as p-lag past and future exogeneity. Most

importantly, it is much weaker than imposing independence between {Xt} and

{εt}. Thus, our theory generalizes the oracle type results found in the simpler

settings discussed above.

Our estimation procedure is illustrated with a real data example in Section 2.5.

We apply it to a sample of monthly minimum temperature and ozone data from

the Faraday/Vernadsky research station on the Antarctic Peninsula. These data

were first analyzed in Hughes et al. (2007) who use a parametric regression model

with AR errors. Hence, our analysis can be regarded as a semiparametric extension

to their study.

2.2 Model

Before we introduce our estimation procedure, we have a closer look at model (2.2)

and comment on some of its features. We observe a sample of variables {Yt,T , Xt}
for t = 1, . . . , T , where Yt,T is real-valued and Xt = (X1

t , . . . , X
d
t ) is a strictly

stationary Rd-valued random vector. As already noted in the introduction, the

data are assumed to follow the process

Yt,T = mθ(t) +m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + εt for t = 1, . . . , T (2.3)

with E[εt|Xt] = 0, where mθ is a periodic component with some known integer-

valued period θ, m0 is a deterministic trend, and the mj are nonparametric func-

tions of the regressors Xj
t for j = 1, . . . , d. Moreover, {εt} is a stationary AR(p)
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process of the form

εt =

p∑
i=1

φ∗i εt−i + ηt for all t ∈ Z,

where φ∗ = (φ∗1, . . . , φ
∗
p) is the vector of parameters and the residuals ηt are assumed

to be martingale differences.

The additive functions in model (2.3) are only identified up to an additive con-

stant. To identify them, we assume that∫ 1

0

m0(x0)dx0 = 0 and

∫
mj(xj)pj(xj)dxj = 0 for j = 1, . . . , d, (2.4)

where pj is the marginal density of Xj
t . The covariates Xj

t are supposed to take

values in a bounded interval which without loss of generality is taken to be [0, 1]

for each j = 1, . . . , d. Throughout this chapter, x0 is used to denote a point in

rescaled time. Moreover, we write x = (x0, x−0) with x−0 = (x1, . . . , xd).

To be able to do reasonable asymptotics, we let the trend function m0 in model

(2.3) depend on rescaled time t
T

rather than on real time t. If we defined m0 in

terms of real time, we would not get additional information on the structure of

m0 locally around a fixed time point t as the sample size increases. Within the

framework of rescaled time, in contrast, the function m0 is observed on a finer

and finer grid of rescaled time points on the unit interval as T grows. Thus,

we obtain more and more information on the local structure of m0 around each

point in rescaled time. This is the reason why we can make reasonable asymptotic

considerations within this framework.

Unlike m0, we let the periodic component mθ in model (2.3) be a function of real

time t. This allows us to exploit its periodic character when doing asymptotics:

Assume we want to estimate mθ at a time point tθ ∈ {1, . . . , θ}. As mθ is periodic,

it has the same value at tθ, tθ + θ, tθ + 2θ, tθ + 3θ, and so on. Hence, if mθ depends

on real time t, the number of time points in our sample at which mθ has the

value mθ(tθ) increases as the sample size grows. This gives us more and more

information about the value mθ(tθ) and thus allows us to do asymptotics.
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2.3 Estimation Procedure

We now describe how the various components of model (2.3) are estimated. Our

procedure consists of three steps. In the first step, the periodic model component

mθ is estimated. The estimation of the nonparametric functions m0, . . . ,md is ad-

dressed in the second step. Finally, we use the estimates of the additive component

functions to construct estimators of the AR parameters.

2.3.1 Estimation of mθ

For any time point t = 1, . . . , T , let tθ = t − b t
θ
cθ with bxc denoting the largest

integer, smaller than or equal to x. Our estimate of the periodic component mθ is

defined as

m̃θ(t) =
1

Ktθ,T

Ktθ,T∑
k=1

Ytθ+(k−1)θ,T for t = 1, . . . , T, (2.5)

where Ktθ,T = 1 + bT−tθ
θ
c is the number of observations that satisfy t = tθ + kθ for

some k ∈ N. The estimate has a very simple structure: It is the empirical mean of

observations that are separated by a multiple of θ periods.1 Later on, we will show

that m̃θ is asymptotically normal. Note that this result is robust to the presence

of the deterministic trend function m0. In particular, we will see that the effect of

the unknown time trend m0 on the estimate m̃θ can be asymptotically neglected.

2.3.2 Estimation of m0, . . . ,md

We next introduce the estimates of the functions m0, . . . ,md. For the time being

let us assume that the periodic component mθ is known. Later on, mθ will be

replaced by its estimate m̃θ. Given that mθ is known, Zt,T = Yt,T − mθ(t) is

1We are estimating a periodic sequence instead of a periodic function as we only observe the

periodic component at equidistant time points and do not want to make any additional functional

form assumptions.
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observable. This allows us to rewrite model (2.3) as

Zt,T = m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + εt. (2.6)

In order to estimate the functions m0, . . . ,md in (2.6), we extend the smooth

backfitting approach of Mammen et al. (1999). The asymptotic properties of this

approach are well understood in a strictly stationary setup. Our setting, however,

involves a deterministic time trend component which makes the model dynamics

nonstationary. In what follows, we describe how to extend the smooth backfitting

procedure to allow for the nonstationarities present in our setting.

To do so, we first introduce the auxiliary estimates

q̂(x) =
1

T

T∑
t=1

Kh

(
x0,

t

T

) d∏
k=1

Kh(xk, X
k
t )

m̂(x) =
1

T

T∑
t=1

Kh

(
x0,

t

T

) d∏
k=1

Kh(xk, X
k
t )Zt,T

/
q̂(x).

q̂(x) is a kernel estimate of the density q(x) := I(x0 ∈ [0, 1])p(x−0) with p

being the joint density of the regressors Xt = (X1
t , . . . , X

d
t ). Moreover, m̂(x)

is a (d + 1)-dimensional Nadaraya-Watson estimate of the regression function

m(x) = m0(x0) + . . .+md(xd). In these definitions,

Kh(v, w) =
Kh(v − w)∫ 1

0
Kh(s− w)ds

is a modified kernel weight, where Kh(v) = 1
h
K( v

h
) and the kernel function K(·)

integrates to one. These weights have the property that
∫ 1

0
Kh(v, w)dv = 1 for all

w, which is needed to derive the asymptotic results for the backfitting estimates.

Given the smoothers q̂ and m̂, we define the smooth backfitting estimates

m̃0, . . . , m̃d as the minimizers of the criterion∫
[0,1]d+1

(
m̂(x)− g0(x0)− . . .− gd(xd)

)2
q̂(x)dx, (2.7)
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where the minimization runs over all additive functions g(x) = g0(x0)+ · · ·+gd(xd)
whose components satisfy

∫ 1

0
gj(xj)p̂j(xj)dxj = 0 for j = 0, . . . , d. Here, p̂j is a

kernel estimator of pj for j = 0, . . . , d and we define p0(x0) = I(x0 ∈ [0, 1]).

Explicit expressions for these estimators are given below in (2.9) and (2.12).

According to the definition in (2.7), the backfitting estimate m̃ = m̃0 + . . .+ m̃d

is an L2-projection of the (d+ 1)-dimensional Nadaraya-Watson smoother m̂ onto

the space of additive functions with respect to the density q̂. In particular, note

that q̂ estimates the product of a uniform density over [0, 1] and the density p of

the regressors Xt. This shows that rescaled time is treated in a similar way to an

additional stochastic regressor which is uniformly distributed over [0, 1] and inde-

pendent of the variables Xt. The heuristic idea behind this is the following: Firstly,

as the variables Xt are strictly stationary, their distribution is time-invariant. In

this sense their stochastic behaviour is independent of rescaled time t
T

. Thus

rescaled time behaves similarly to an additional stochastic variable that is inde-

pendent of Xt. Secondly, as the points t
T

are evenly spaced over the unit interval, a

variable with a uniform distribution closely replicates the pattern of rescaled time.

By differentiation, we can show that the solution to the projection problem (2.7)

is characterized by the system of integral equations

m̃j(xj) = m̂j(xj)−
∑
k 6=j

∫ 1

0

m̃k(xk)
p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃c (2.8)

with
∫ 1

0
m̃j(xj)p̂j(xj)dxj = 0 for j = 0, . . . , d. As we do not observe the vari-

ables Zt,T = Yt,T −mθ(t), we define the kernel estimates in (2.8) in terms of the

approximations Z̃t,T = Yt,T − m̃θ(t). In particular, we let

p̂j(xj) =
1

T

T∑
t=1

Kh(xj, X
j
t ) (2.9)

p̂j,k(xj, xk) =
1

T

T∑
t=1

Kh(xj, X
j
t )Kh(xk, X

k
t ) (2.10)

m̂j(xj) =
1

T

T∑
t=1

Kh(xj, X
j
t )Z̃t,T/p̂j(xj) (2.11)
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for j, k = 1, . . . , d with j 6= k, where p̂j is the one-dimensional kernel density

estimator of the marginal density pj of Xj
t , p̂j,k is the two-dimensional kernel

density estimate of the joint density pj,k of (Xj
t , X

k
t ), and m̂j is a one-dimensional

Nadaraya-Watson smoother. Moreover,

p̂0(x0) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
(2.12)

p̂0,k(x0, xk) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
Kh(xk, X

k
t ) (2.13)

m̂0(x0) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
Z̃t,T/p̂0(x0) (2.14)

for k = 1, . . . , d and m̃c = 1
T

∑T
t=1 Z̃t,T . Note that it would be more natural to

define p̂0(x0) = I(x0 ∈ [0, 1]), as we already know the “true density” of rescaled

time. However, for technical reasons, we set p̂0(x0) = 1
T

∑T
t=1 Kh(x0,

t
T

). This

creates a behaviour of the estimate p̂0 in the boundary region of the support [0, 1]

analogous to that of p̂j at the boundary.2

In our theoretical analysis, we work with the smooth backfitting estimators char-

acterized as the solution to the system of integral equations (2.8). Note however

that in general, the system of equations (2.8) cannot be solved analytically. Nev-

ertheless, the solution can be approximated by an iterative projection algorithm

which converges for arbitrary starting values; see Mammen et al. (1999), who es-

tablish the asymptotic properties of this algorithm under very general high order

conditions. Our technical arguments will show that these high order conditions

are satisfied in our framework.

2Alternatively, we could define p̂0(x0) =
∫ 1

0
Kh(x0, v)dv. (Note that

∫ 1

0
Kh(x0, v)dv = 1 for

x0 ∈ [2C1h, 1 − 2C1h], where [−C1, C1] is the support of the kernel function K.) Moreover, we

could set p̂0,k(x0, xk) = p̂0(x0)p̂k(xk), thereby exploiting the “independence” of rescaled time

and the other regressors.
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2.3.3 Estimation of the AR Parameters

To motivate the third step in our estimation procedure, we shall initially con-

sider an infeasible estimator of the model parameters. Suppose that the functions

mθ,m0, . . . ,md were known. In this situation, the AR(p) error process εt would

be observable, since

εt = Yt,T −mθ(t)−m0

( t
T

)
−

d∑
j=1

mj(X
j
t ). (2.15)

The parameters φ∗ := (φ∗1, . . . , φ
∗
p) of the error process could thus be estimated by

standard maximum likelihood methods. In particular, we could use a conditional

maximum likelihood estimator of the form

φ̂ = arg max
φ∈Φ

lT (φ), (2.16)

where Φ is a compact parameter space and lT is the conditional log-likelihood

given by

lT (φ) = −
T∑

t=p+1

(
εt − εt(φ)

)2
(2.17)

with εt(φ) =
∑p

i=1 φiεt−i. Note that φ̂ has a closed form solution which is identical

to the usual least squares estimate. We will, however, not work with this closed

form solution in what follows. Instead we will formulate our proofs in terms of the

likelihood function. This makes it easier to apply our arguments to other error

structures such as ARCH processes. We give some comments on how to extend

our approach in this direction in Section 2.6.

As the functions mθ,m0, . . . ,md are not observed, we cannot use the standard

approach from above directly. However, given the estimates m̃θ, m̃0, . . . , m̃d from

the previous estimation steps, we can replace εt by the estimates

ε̃t = Yt,T − m̃θ(t)− m̃0

( t
T

)
−

d∑
j=1

m̃j(X
j
t ) (2.18)
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and use these as approximations to εt in the maximum likelihood estimation. The

log-likelihood then becomes

l̃T (φ) = −
T∑

t=p+1

(
ε̃t − ε̃t(φ)

)2
(2.19)

with ε̃t(φ) =
∑p

i=1 φiε̃t−i. Our estimator φ̃ of the true parameter values φ∗ is now

defined as

φ̃ = arg max
φ∈Φ

l̃T (φ). (2.20)

2.4 Asymptotics

In this section, we analyze the asymptotic properties of our estimators. The first

subsection lists the assumptions required for our analysis. The following subsec-

tions describe the main asymptotic results, with each subsection dealing with a

separate step of our estimation procedure.

2.4.1 Assumptions

To derive the asymptotic properties of the nonparametric estimators

m̃θ, m̃0, . . . , m̃d, the following assumptions are needed.

(A1) The process {Xt, εt} is strictly stationary and strongly mixing with mixing

coefficients α satisfying α(k) ≤ ak for some 0 < a < 1.

(A2) The variables Xt have compact support, say [0, 1]d. The density p of Xt

and the densities p(0,l) of (Xt, Xt+l), l = 1, 2, . . . , are uniformly bounded.

Furthermore, p is bounded away from zero on [0, 1]d.

(A3) The functions m0 and mj (j = 1, . . . , d) are twice differentiable with Lipschitz

continuous second derivatives. The first partial derivatives of p exist and are

continuous.
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(A4) The kernel K is bounded, symmetric about zero and has compact support

([−C1, C1], say). Moreover, it fulfills the Lipschitz condition that there exists

a positive constant L with |K(u)−K(v)| ≤ L|u− v|.

(A5) There exists a real constant C and a natural number l∗ such that E[|εt|ρ
∣∣Xt] ≤

C for some ρ > 8
3

and E[|εtεt+l|
∣∣Xt, Xt+l] ≤ C for all l ≥ l∗.

(A6) The bandwidth h satisfies either of the following:

(a) T
1
5h→ ch for some constant ch.

(b) T
1
4

+δh→ ch for some constant ch and some small δ > 0.

The above assumptions are very similar to the conditions needed for smooth

backfitting in the stationary case to be found e.g. in Mammen et al. (1999), Mam-

men and Park (2006) or Yu et al. (2011). It should also be mentioned that we do

not necessarily require exponentially decaying mixing rates as assumed in (A1).

These could alternatively be replaced by sufficiently high polynomial rates. We

nevertheless make the stronger assumption (A1) to keep the notation and structure

of the proofs as clear as possible.

In order to show that the estimators of the AR parameters are consistent and

asymptotically normal, we additionally require the following assumptions.

(A7) The parameter space Φ is a compact subset of {φ ∈ Rp | φ(z) = 1−φ1z−. . .−
φpz

p 6= 0 for all complex z with |z| ≤ 1 and φp 6= 0}. The true parameter

vector φ∗ = (φ∗1, . . . , φ
∗
p) is an interior point of Φ.

(A8) E[ε4+δ
t ] <∞, for some δ > 0.

(A9) There exists a real constant C and a natural number l∗ such that

E[|εt|
∣∣Xt+k] ≤ C and E[|εtεt+l|

∣∣Xt+k, Xt+l] ≤ C for all l with |l| ≥ l∗ and

k = −p, . . . , p.

The compactness assumption in (A7) is standard. (A8) and (A9) are technical

assumptions needed to show asymptotic normality.
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2.4.2 Asymptotics for m̃θ

We start by considering the asymptotic behaviour of the estimate m̃θ. The next

theorem shows that it is asymptotically normal.

Theorem 2.4.1. Assume that E|εt|ρ <∞ for some ρ > 2 and let (A1) be fulfilled.

Then
√
T (m̃θ(t)−mθ(t))

d−→ N(0, Vθ)

for all t = 1, . . . , T , where

Vθ = θ
∞∑

k=−∞

Cov(W0,Wkθ)

with Wt = Yt,T −mθ(t)−m0( t
T

) =
∑d

j=1mj(X
j
t ) + εt.

As m̃θ and mθ are periodic, this trivially implies that

sup
t=1,...,T

|m̃θ(t)−mθ(t)| = sup
t=1,...,θ

|m̃θ(t)−mθ(t)| = Op

( 1√
T

)
.

The proof of Theorem 2.4.1 is straightforward: We have

m̃θ(t)−mθ(t) =
1

Ktθ,T

Ktθ,T∑
k=1

m0

(tθ + (k − 1)θ

T

)
+

1

Ktθ,T

Ktθ,T∑
k=1

Wtθ+(k−1)θ

=: (A) + (B).

The term (A) approximates the integral
∫ 1

0
m0(u)du. It is easily seen that the

convergence rate is O( 1
T

). As
∫ 1

0
m0(u)du = 0 by the normalization in (2.4), we

obtain that (A) is of the order O( 1
T

) and can thus be neglected asymptotically.

Noting that {Wt} is mixing by (A1) and has mean zero by our normalization, we

can now apply a central limit theorem for mixing variables to the term (B) to get

the normality result of Theorem 2.4.1.
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2.4.3 Asymptotics for m̃0, . . . , m̃d

The main result of this subsection characterizes the limiting behaviour of the

smooth backfitting estimates m̃0, . . . , m̃d. It shows that the estimators converge

uniformly to the true component functions at the one-dimensional nonparametric

rates no matter how large the dimension d of the full regression function. Moreover,

it characterizes the asymptotic distribution of the estimators.

Theorem 2.4.2. Suppose that conditions (A1) – (A5) hold.

(a) Assume that the bandwidth h satisfies (A6)(a) or (A6)(b). Then, for Ih =

[2C1h, 1− 2C1h] and Ich = [0, 2C1h) ∪ (1− 2C1h, 1],

sup
xj∈Ih

∣∣m̃j(xj)−mj(xj)
∣∣ = Op

(√ log T

Th

)
(2.21)

sup
xj∈Ich

∣∣m̃j(xj)−mj(xj)
∣∣ = Op(h) (2.22)

for all j = 0, . . . , d.

(b) Assume that the bandwidth h satisfies (A6)(a). Then, for any x0, . . . , xd ∈
(0, 1),

T
2
5

 m̃0(x0)−m0(x0)
...

m̃d(xd)−md(xd)

 d−→ N(B(x), V (x))

with the bias term B(x) = [c2
h(β0(x0) − γ0), . . . , c2

h(βd(xd) − γd)]
′

and the covariance matrix V (x) = diag(v0(x0), . . . , vd(xd)). Here,

v0(x0) = c−1
h cK

∑∞
l=−∞ γε(l) and vj(xj) = c−1

h cKσ
2
j (xj)/pj(xj) for

j = 1, . . . , d with γε(l) = Cov(εt, εt+l), σ2
j (xj) = Var(εt|Xj

t = xj) and the

constants ch = limT→∞ T
1/5h and cK =

∫
K2(u)du. Furthermore, the

functions βj are the components of the L2(q)-projection of the function

β defined in Lemma A.3.3 of Appendix A.3 onto the space of additive

functions. Finally, the constants γj can be characterized by the equation∫ 1

0
αT,j(xj)p̂j(xj)dxj = h2γj + op(h

2) for j = 0, . . . , d, with αT,j also given in

Lemma A.3.3 of Appendix A.3.
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As described in Subsection 2.3.2, rescaled time t
T

behaves similarly to an addi-

tional uniformly distributed regressor that is independent of the other regressors.

This consideration allows us to derive the above result by extending the proving

strategy of Mammen et al. (1999). The details are given in Appendix A.1.

2.4.4 Asymptotics for the AR Parameter Estimates

Lastly, we establish the asymptotic properties of our estimator φ̃ of the AR param-

eters φ∗. The technical details can be found in Appendix A.2. The first theorem

shows that φ̃ is consistent.

Theorem 2.4.3. Suppose that the bandwidth h satisfies (A6)(a) or (A6)(b). In

addition, let assumptions (A1) – (A5) and (A7) be fulfilled. Then φ̃ is a consistent

estimator of φ∗, i.e. φ̃
P−→ φ∗.

The central result of our theory specifies the limiting distribution of φ̃.

Theorem 2.4.4. Suppose that the bandwidth h satifies (A6)(b) and let assump-

tions (A1) – (A5) together with (A7) – (A9) be fulfilled. Then it holds that

√
T (φ̃− φ∗) d−→ N(0, V ∗)

with

V ∗ = Γ−1
p (W + Ω)Γ−1

p .

Here, Γp is the autocovariance matrix of the AR(p) process {εt}, i.e. Γp = (γ(i−
j))i,j=1,...,p with γ(i− j) = E[ε0εi−j]. Moreover, W = (E[η2

0ε−iε−j])i,j=1,...,p and the

matrix Ω is defined in equation (A.24) of Appendix A.2.

Consider for a moment the case in which the functions mθ and m0, . . . ,md are

known. In this case, we can use the “oracle” estimator φ̂ defined in (2.16) to

estimate the AR parameters φ∗. Standard theory tells us that φ̂ is asymptotically

normal with asymptotic variance Γ−1
p WΓ−1

p . Theorem 2.4.4 thus shows that in

general the limiting distribution of our estimator φ̃ differs from that of the oracle

estimator. There is however a wide range of cases where φ̃ has the same asymptotic

distribution as φ̂. This oracle type result is stated in the following corollary.
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Corollary 2.4.1. Suppose that all the assumptions of Theorem 2.4.4 are fulfilled

and that E[εt|Xt+k] = 0 for all k = −p, . . . , p. Then

√
T (φ̃− φ∗) d−→ N(0,Γ−1

p WΓ−1
p ).

Corollary 2.4.1 follows directly from the proof of Theorem 2.4.4: Inspecting the

functions defined in Lemma A.2.1 and realizing that they are identically equal to

zero under the assumptions of the corollary, the matrix Ω is immediately seen to

be equal to zero as well. The corollary shows that the oracle result holds under

fairly mild conditions on the dependence structure between Xt and εt, in particular

under much weaker conditions than independence of the processes {Xt} and {εt}.
To give an example where the conditions of the corollary are satisfied but where the

processes {Xt} and {εt} are not independent, consider the following: Let the errors

be given by the AR(p) process εt =
∑p

i=1 φ
∗
i εt−i + ηt with ηt = σ(Xt)ξt, where σ is

a continuous volatility function and {ξt} is a process of zero-mean i.i.d. variables

that is independent of {Xt}. A simple argument shows that E[εt|{Xt}] = 0 in this

case, i.e. strict exogeneity holds. The assumption in the corollary, which can be

thought of as p-lag past and future exogeneity also holds, whereas it is easily seen

that the processes {Xt} and {εt} are not independent given that the function σ is

non-constant.

Note that our theory also reestablishes the oracle result derived in the simpler

setup without stochastic covariates, i.e. in the model

Yt,T = mθ(t) +m0

( t
T

)
+ εt for t = 1, . . . , T (2.23)

with E[εt] = 0. In this case, the periodic component can be estimated as described

in Subsection 2.3.1. Moreover, we can use a Nadaraya-Watson smoother of the

form (2.14) to approximate the trend component m0. A vastly simplified version

of the proof for Theorem 2.4.4 shows that the limiting distribution of the AR

parameter estimates is identical to that of the oracle estimates in this setting. In

particular, the stochastic higher-order expansion derived in Lemma A.2.1 is not

required any more. The arguments of the much simpler Lemma A.2.2 are sufficient

to derive the result. To understand the main technical reasons why the argument
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simplifies so substantially, we refer the reader to the remarks given after the proof

of Lemma A.2.2 in Appendix A.2.

The normality results of Theorem 2.4.4 and Corollary 2.4.1 enable us to calculate

confidence bands for the AR parameter estimators and to conduct inference based

on these. To do so, we need a consistent estimator of the asymptotic variance of

φ̃. Whereas such an estimator is easily obtained under the conditions of Corollary

2.4.1, it is not at all trivial to derive a consistent estimator of V ∗ in Theorem 2.4.4.

This is due to the very complicated structure of the matrix Ω which involves

functions obtained from a higher-order expansion of the stochastic part of the

backfitting estimates (see Theorem A.1.1 in Appendix A.1). To circumvent these

difficulties, one may try to set up a bootstrap approach to estimate confidence

bands and to do testing. The normality result of Theorem 2.4.4 can be used as a

starting point to derive consistency results for such a bootstrap procedure. Some

suggestions how to bootstrap are given in Section 2.6.

2.5 Application

In this section we apply our estimation procedure to a set of monthly temperature

and ozone data from the Faraday/Vernadsky research station on the Antarctic

Peninsula.3 A strong warming trend has been identified on the whole peninsula

during the past 50 years. In particular, the monthly mean temperatures at Faraday

station have considerably increased over this time (cf. Turner et al. (2002), Turner

et al. (2005)). According to Hughes et al. (2007), the rise of the mean temperature

is mostly due to an increase in the minimum temperature. They argue that to

understand and quantify the warming on the peninsula an appropriate statistical

model of the minimum temperature is called for. Following their lead we will

focus on modelling the minimum temperature and consider stratosperic ozone as a

potential explanatory variable. The data used in our analysis is plotted in Figure

3The data can be downloaded from the webpage of Suhasini Subba Rao http://www.stat.

tamu.edu/~suhasini/data.html. Alternatively, it is available on request from the British

Antarctic Survey, Cambridge.
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2.1. The upper panel contains the monthly minimum near-surface temperatures at

Faraday station from September 1957 to December 2004. The lower panel shows

the monthly level of stratospheric ozone concentration measured in Dobson units

over the same period. For more information on the data consult Hughes et al.

(2007), where a detailed description of them can be found.
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Figure 2.1: The upper panel shows the monthly minimum near-surface temper-

atures (in ◦C), the lower one the monthly stratospheric ozone concentrations (in

Dobson units) at Faraday station.
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Hughes et al. (2007) propose a parametric model with a linear time trend and a

parametrically specified periodic component with a period of 12 months to fit the

temperature and ozone data. Their baseline model is given by the equation

Yt = a0 + a1 sin
(2π

12
t
)

+ a2 cos
(2π

12
t
)

+ a3t+ εt, (2.24)

where Yt denotes the minimum temperature and a = (a1, . . . , a3) is a vector of

parameters. In addition, they consider the extended model

Yt = a0 + a1 sin
(2π

12
t
)

+ a2 cos
(2π

12
t
)

+ a3t+ a4Xt−1 + εt, (2.25)

where the linear covariate Xt−1 denotes the lagged detrended and deseasonalized

ozone concentration. In their analysis, they find a strong linear upward trend in the

minimum temperatures. Moreover, they observe considerable autocorrelation in

the residuals and propose an AR model for εt. Using an order selection criterion,

they find an AR(1) model to be most suitable, which also fits nicely with the

preference for AR(1) errors when using discrete time series to model climate data

as mentioned in Mudelsee (2010).

We now introduce a framework that can be regarded as a semiparametric ex-

tension of the parametric models (2.24) and (2.25). Our baseline model is given

by

Yt,T = mθ(t) +m0

( t
T

)
+ εt for t = 1, . . . , T, (2.26)

where Yt,T are minimum monthly temperatures, mθ is a seasonal component and

m0 is a nonparametric time trend. We additionally consider an extended version

of (2.26) having the form

Yt,T = mθ(t) +m0

( t
T

)
+m1(Xt−1) + εt for t = 1, . . . , T, (2.27)

where as before, the variables Xt−1 denote lagged monthly stratospheric ozone

concentration levels that have been detrended and deseasonalized as in Hughes

et al. (2007). The nonparametric functions in (2.26) and (2.27) are identified by

the normalizations used in (2.4). Following Hughes et al. (2007) we assume the

variables εt to have an AR(1) structure and allow for the minimum temperatures

to have a 12-month cycle by setting θ = 12.
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Before giving our estimates we will provide the preferred fits of the models (2.24)

and (2.25) given in Hughes et al. (2007) in order to compare our estimates to theirs.

Their models are fitted using observations up until and including December 2003.

For the model (2.24) their preferred fit is

Yt = 6.25 sin
(2π

12
t
)

+ 6.95 cos
(2π

12
t
)

+ 0.0105t+ εt, (2.28)

with εt = 0.566εt−1 + ηt and ηt distributed as a converse GEV. Their preferred fit

for the model in (2.25) is

Yt = 6.61 sin
(2π

12
t
)

+ 7.22 cos
(2π

12
t
)

+ 0.0091t− 0.0267Xt−1 + εt, (2.29)

with εt = 0.562εt−1 + ηt and ηt distributed as a converse GEV.

We now turn to the estimation of our models (2.26) and (2.27). As in Hughes et

al. (2007) we will estimate our models using the observed data up until December

2003. Using our three step procedure outlined in Section 2.3, we can estimate the

additive component functions of (2.26) and (2.27) together with the AR parameter

of the error term.

The estimate of the periodic component mθ is given by the circles in Figure 2.2.

The corresponding estimated 95% pointwise confidence bands are given by the

dotted lines. Using the dashed line we have superimposed the estimated periodic

function from the parametric model (2.29), whose values are given on the right

y-axis. Two differences between our periodic component estimate and the para-

metric estimate given in (2.29) become apparent immediately. Firstly, our periodic

component gives the lowest estimated monthly effect in the southern hemisphere

winter month of August, whereas the lowest estimated monthly effect is in July and

August, when using the parametric model. Secondly, in contrast to the parametric

component our estimate is not symmetric: The fall in the minimum temperature

from January to August is more gradual than the increase from August until

January. Interestingly, the median monthly minimum temperature also follows

this pattern as can be seen in the boxplot of the monthly minimum temperatures

provided in Figure 1(b) of Hughes et al. (2007).
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Figure 2.2: The circles represent the estimates of the seasonal component mθ of

models (2.26) and (2.27) along with the estimated 95% pointwise confidence bands

(dotted lines). The dashed line is 6.61 sin
(

2π
12
t
)

+ 7.22 cos
(

2π
12
t
)

, the estimate of

the seasonal component from the fitted parametric model in (2.29) obtained by

Hughes et al. (2007).

Figure 2.3 shows the smooth backfitting estimates of the additive functions m0

and m1 in model (2.27) along with the slope estimates obtained in the parametric

model (2.29). As the Nadaraya-Watson estimate of m0 in the simpler model (2.26)
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is very similar to the estimate in (2.27), we do not plot it separately. For the

estimation of the functions m0 and m1, we have used an Epanechnikov kernel

and bandwidths selected by a simple plug-in rule. To check the robustness of our

results, we have additionally repeated our analysis for a wide range of different

bandwidths. As the results are very similar, we only report the findings for the

bandwidths chosen by the plug-in rule.
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Figure 2.3: Estimation results for model (2.27). The solid lines are the smooth

backfitting estimates m̃0 and m̃1, the dotted lines are pointwise 95% confidence

bands. The dashed lines provide the slope estimates from the fitted parametric

model in (2.29) obtained by Hughes et al. (2007).

From the shape of m̃0 together with the rather tight 95% confidence bands in

the left hand panel of Figure 2.3, there seems to be a strongly nonlinear upward

moving trend in the minimum monthly temperature. At first, the temperature

increases quite sharply until about 1972. It then falls until roughly 1979. The

subsequent equally steep increase until about 1986 is followed by a much flatter
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non-monotonic rise until 2004. Not only is the linear parametric trend in (2.29) not

capable of capturing this nonlinear pattern, we can also see that it overestimates

the overall trend increase in the monthly minimum temperature over the entire

estimation period.

The estimate m̃1 in the right hand panel of Figure 2.3 suggests that the lagged

ozone concentration level has a negative effect on the minimum temperature. Al-

though the effect appears to be nonlinear again, the deviation from linearity does

not seem to be as severe as for m̃0. Furthermore, the difference in the overall

slope between our estimate and the parametric estimate provided in (2.29) is not

so obvious as for the estimated trend components.

From the third step of our estimation procedure, we obtain estimated AR pa-

rameters of 0.57 and 0.58 for the models (2.26) and (2.27) respectively. These

are essentially identical to the estimates obtained by Hughes et al. (2007) in the

parametric models (2.28) and (2.29). Not only are the point estimates identical,

but the parameter uncertainty is also fairly similar. Recall from the discussion in

Subsection 2.4.4, that estimating confidence intervals for the parameter estimate

in the extended model (2.27) is extremely involved if we are not willing to make

the assumptions of Corollary 2.4.1. Thus, we shall be content with giving the

estimated 95% confidence band for the simple model (2.26) here, which is given by

[0.49, 0.67]. The corresponding estimated band for the simple parametric model

(2.28) is [0.51, 0.62]. So, the estimated 95% confidence band for the parametric

model (2.28) is slightly narrower than the one for our simple model (2.26). To sum-

marize, it seems like the residual process displays significant positive persistence

which is a common phenomenon for climate data (see Mudelsee (2010)).

Above we have compared the estimates of the different model components of

our models (2.26) and (2.27) with their respective counterparts in the parametric

models (2.28) and (2.29) of Hughes et al. (2007). As a final comparison we will

repeat the forecasting exercise in Hughes et al. (2007), i.e. we compute rolling

one-step ahead forecasts of the minimum temperature for the twelve months from

January 2004 until December 2004. The results are presented in Figure 2.4.
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Figure 2.4: Forecasting results for the period from January 2004 to December

2004. The solid line shows the actual minimum temperatures in 2004, the dashed

line gives the one-step ahead forecasts based on the extended model (2.27), and the

dotted line depicts the corresponding forecasts based on the simple model (2.26).

To calculate the one-step ahead forecast for time point t0 + 1, we estimate the

model based on the observations at t = 1, . . . , t0. The estimated trend function

m̃0 is extrapolated constantly into the future. The estimated mean squared error

(MSE) of the forecasts based on model (2.27) is 10.27, whereas for the simple
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model (2.26) it amounts to 9.70. Note that these are somewhat lower than those

in Hughes et al. (2007), who report an estimated MSE of 11.09 for model (2.28).

Moreover, note that the estimated MSE for the simpler model (2.26) is slightly

lower than the one for the extended model (2.27). This indicates that in terms of

forecasting, we do not gain from including the lagged ozone level as an additional

covariate. Thus, if the interest lies in forecasting then the simpler model (2.26)

may be the better choice.

2.6 Concluding Remarks

We have studied a semiparametric regression framework whereby the time series

under consideration is modelled as the sum of a periodic function, a deterministic

time trend, an additive function of stationary covariates and an AR(p) residual.

We have provided a method to estimate the various components of this model and

have established the asymptotic properties of our estimators. In particular, we

have shown that the estimators of the nonparametric component functions as well

as those of the AR parameters are asymptotically normal. Importantly, in a wide

range of cases the limiting distribution of the AR parameter estimators is the same

as when the nonparametric component functions are known.

Our theory can be extended in several directions. As briefly mentioned in Sub-

section 2.3.3, our proving strategy may be applied to other error structures as

well. An important example is the case in which we suspect the residuals to be

heteroskedastic and model them via an ARCH(p) process. Going along the lines

of the proofs for Theorems 2.4.3 and 2.4.4, the ARCH parameter estimators can

be shown to be consistent and asymptotically normal. The only difference to the

AR case is that the conditional likelihood has a more complicated form, making

it more tedious to derive the expansion of the first derivative of the likelihood

function in the normality proof.

Our proving strategy may also be applied to ARMA(p, q) and GARCH(p, q)

residuals. This is most easily seen for a causal and invertible ARMA(1, 1) process
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{εt} which satisfies the equation

εt − φ∗εt−1 = ηt + θ∗ηt−1

for some white noise residuals ηt. In this case, the conditional likelihood can be

written as

lT (φ, θ) = −
T∑
t=1

(
εt − εt(φ, θ)

)2
with εt(φ, θ) =

t−1∑
k=1

(−θ)k−1(φ+ θ)εt−k,

which has a very similar structure to the likelihood function of the AR(p) case.

The only notable difference is that the sum over k in the definition of εt(φ, θ) now

has t− 1 elements rather than only a fixed number p. As the elements of the sum

are weighted by the coefficients (−θ)k−1(φ + θ) which decay exponentially fast to

zero this does not cause any major problems in the proofs. In particular, we can

truncate the sum at min{t − 1, C log T} for a sufficiently large C, the remainder

being asymptotically negligible. After this truncation, the arguments of the AR(p)

case apply more or less unchanged.

Moving to the higher order ARMA(p, q) setup, the structure of the likelihood

function becomes much more complicated. It is thus convenient to base the esti-

mation of the parameters on a criterion function which is a bit simpler to handle.

In particular, consider a causal and invertible ARMA(p, q) process {εt} of the form

εt −
p∑
i=1

φ∗i εt−i = ηt +

q∑
j=1

θ∗jηt−j

and write φ∗ = (φ∗1, . . . , φ
∗
p) as well as θ∗ = (θ∗1, . . . , θ

∗
q). Due to the invertibility

1 +
∑q

j=1 θ
∗
j z
j 6= 0 for all complex |z| ≤ 1, there exist coefficients ρ∗k = ρk(θ

∗) with

(
1 +

q∑
j=1

θ∗j z
j
)−1

=
∞∑
k=0

ρ∗kz
k

for all |z| ≤ 1. Using this, we obtain that

∞∑
k=0

ρ∗k

(
εt−k −

p∑
i=1

φ∗i εt−k−i

)
= ηt.



2.6 Concluding Remarks 39

Truncating the infinite sum on the left-hand side, we now define the expressions

ηt(φ, θ) =

t−p−1∑
k=0

ρk(θ)
(
εt−k −

p∑
i=1

φiεt−k−i

)
and estimate the ARMA coefficients φ∗ and θ∗ by minimizing the least squares

criterion

lT (φ, θ) =
T∑
t=1

ηt(φ, θ)
2.

This criterion function again has a very similar structure to that of the AR(p)

setup. In particular, setting ρ0(θ) = 1 and ρk(θ) = 0 for k > 0 yields the con-

ditional likelihood of the AR(p) case. As the coefficients ρk(θ) (as well as their

derivatives with respect to θ) decay exponentially fast to zero, a truncation ar-

gument as in the ARMA(1, 1) case allows us to adapt the proving strategy of

Theorems 2.4.3 and 2.4.4 to the setup at hand.

Let us now turn to another important issue which concerns the limiting distribu-

tion of the AR parameter estimators. As discussed at the end of Section 2.4, the

asymptotic variance of the estimators has a very complicated structure in general.

This makes it extremely difficult to come up with a consistent estimator for the

asymptotic variance. In many cases, it will thus not be possible to use the limit-

ing distribution to compute confidence bands and critical values of test statistics.

Bootstrap procedures may provide a way to circumvent this problem. In partic-

ular, it may be possible to extend standard bootstrap procedures for parametric

AR processes as provided in Gonçalves and Kilian (2004) to the approximated AR

variables ε̃t.

Our last remark is on the issue of data driven bandwidth selection in our frame-

work. As shown e.g. in Altman (1990), Hart (1991), Herrmann et al. (1992) and

Hart (1994), estimating the bandwidth in time direction in the fixed design set-

ting Yt,T = m( t
T

) + εt may become problematic when the errors are correlated. In

particular, standard techniques like cross-validation perform very poorly in this

case. In our setting, analogous difficulties are to be expected. A starting point to

develop and analyze automatic bandwidth selection procedures in our framework
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may be the badnwidth selection techniques for smooth backfitting estimates in the

stationary setup as discussed in Mammen and Park (2005).



Chapter 3

A Volatility Model

In this chapter, we study a semiparametric multiplicative volatility model, which

splits up into a nonparametric part and a parametric GARCH component. The

nonparametric part is modelled as a product of a deterministic time trend compo-

nent and of further components that depend on stochastic regressors. We propose

a two-step procedure to estimate the model. To estimate the nonparametric com-

ponents, we extend the standard smooth backfitting procedure of Mammen et al.

Mammen et al. (1999). The GARCH parameters are estimated in a second step

via a quasi maximum likelihood approach. We show consistency and asymptotic

normality of our estimators. Our results are obtained using mixing properties and

local stationarity. Finally, we illustrate our method using financial data.

3.1 Introduction

Given the ever-changing economic and financial environment, it is quite plausible

that many financial time series behave in a nonstationary way. Especially over

longer horizons, structural changes may occur. Thus, the technical assumption of

stationarity is likely to be violated in many cases. This issue has been pointed

out by numerous authors in recent years. In particular, it has been claimed that

many interesting stylized facts of financial return and volatility series can be neatly

explained by employing nonstationary models (see e.g. Mikosch and Stărică (2000),
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(2003), (2004)).

One way to deal with nonstationarities in financial time series is the theory

on locally stationary processes. The latter has been introduced in a series of

papers by Dahlhaus (1996b), (1996a), (1997). Intuitively speaking, a process is

locally stationary if over short periods of time (i.e. locally in time) it behaves

approximately stationary, even though it is globally nonstationary. In recent years,

many locally stationary models have been proposed in the financial time series

context. Usually, these models are extensions of parametric time series models

allowing for the parameters to change smoothly over time. An example is the

class of ARCH processes with time-varying parameters introduced by Dahlhaus

and Rao (2006).

A related locally stationary model which has been explored in a number of studies

is given by the equation

Yt,T = τ
( t
T

)
εt for t = 1, . . . , T, (3.1)

where Yt,T are log-returns, τ is a smooth deterministic function of time and {εt} is

a standard stationary GARCH process with E[ε2
t ] = 1. As usual in the literature

on locally stationary models, the time-varying parameter τ does not depend on

real time t, but on rescaled time t
T

. We comment on this feature in more detail in

Section 3.2. Model (3.1) has been considered for example in Feng (2004), where

the τ -function is estimated nonparametrically. Engle and Rangel (2008) work with

a closely related model, where the τ -component is modelled parametrically as a

flexible exponential spline function. A multivariate generalization of model (3.1)

is studied in Hafner and Linton (2010).

Model (3.1) can be considered as a GARCH process with time-varying parame-

ters, with certain restrictions imposed on the parameter functions. In particular,

the unconditional volatility level E[Y 2
t,T ] is given by the time-dependent function

τ 2( t
T

), which is allowed to vary smoothly over time. In reality, the volatility level is

unlikely to change deterministically over time. Instead it reflects and varies with

changes in the economic and financial environment. Therefore, the τ -function

should depend on certain economic and financial variables. In model (3.1), these
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dependencies are not modelled explicitly. Instead, rescaled time serves as a catch-

all for omitted explanatory variables.

These considerations show that in a more realistic version of model (3.1), the

τ -function should depend on economic and financial influences. However, there is

clearly no way to come up with a model that incorporates all relevant variables.

One way to deal with this is to use rescaled time as a proxy for the omitted

variables. To formalize these ideas, we propose the model

Yt,T = τ
( t
T
,Xt

)
εt, (3.2)

where Yt,T are log-returns, Xt is an Rd-valued random vector of economic or finan-

cial covariates and τ is a smooth function of time and the variables Xt. As before,

{εt} is a standard GARCH process. To countervail the curse of dimensionality, we

split up the τ -function into multiplicative components thus yielding the model

Yt,T = τ0

( t
T

) d∏
j=1

τj(X
j
t )εt, (3.3)

where τ0 and τj for j = 1, . . . , d are smooth functions of time and of the regressors

Xj
t , respectively. As will be seen in Section 3.2, the multiplicative specification of

the τ -function in (3.3) not only avoids the curse of dimensionality but also allows

for a direct interpretation of the various components.

In the following sections, we give an in-depth theoretical treatment of model

(3.3). The complete formulation of the model together with its assumptions is

given in Section 3.2. In Section 3.3, we propose a two-step procedure to estimate

both the nonparametric and the parametric components of the model. To estimate

the nonparametric functions τj for j = 0, . . . , d, we extend the smooth backfitting

procedure of Mammen et al. (1999) to our locally stationary stetting. Having

estimates τ̃j of the functions τj, we can construct approximate expressions ε̃t of

the GARCH variables εt. This allows us to estimate the GARCH parameters of

the model via approximate quasi-maximum likelihood methods in a second step.

Consistency and asymptotic normality of our estimators are shown in Section 3.4.

The contribution in this chapter is twofold. From a technical point of view,

we extend the asymptotic results for model (3.1) to a more general framework
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in which the τ -function depends both on rescaled time and stochastic regressors.

This vastly complicates both steps of the asymptotic analysis and as a result, we

cannot extend existing proving techniques as provided in Hafner and Linton (2010)

in a straightforward manner. In particular, novel and intricate arguments are

required to derive the asymptotic behaviour of the GARCH estimates obtained in

the second estimation step. In terms of volatility modelling, we introduce a flexible

framework which allows to capture both nonstationarities and influences from the

economic and financial environment. As the component functions τj in our model

are completely nonparametric, we are able to explore the form of the relationship

between volatility and its potential sources. Therefore, our model allows us to

extend existing parametric studies on the sources of volatility as conducted e.g. in

Engle and Rangel (2008) and Engle et al. (2008).

To illustrate the usefulness of our model and to complement the technical analy-

sis, we present an empirical example in Section 3.5. There, the model is applied to

S&P 500 return data using various interest rate spreads as explanatory variables.

3.2 The Model

Suppose we observe a sample of daily log-returns Yt,T of a financial time series

and a sequence of daily Rd-valued random stationary covariate vectors Xt =

(X1
t , . . . , X

d
t ) for t = 1, . . . , T . We assume the log-return series follows the process

Yt,T = τ0

( t
T

) d∏
j=1

τj(X
j
t )εt for t = 1, . . . , T (3.4)

with

εt = σtηt

σ2
t = w0 + a0ε

2
t−1 + b0σ

2
t−1.

Here, τ0 and τj (j = 1, . . . , d) are smooth nonparametric functions of time and

the stochastic regressors, respectively. Furthermore, {εt} is a strictly stationary

GARCH process, which is assumed to be independent of the covariate process
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{Xt}. The residuals of the GARCH process are assumed to be i.i.d. with zero

mean and unit variance. For simplicity, we restrict attention to the GARCH(1,1)

specification.

In order to conduct meaningful asymptotics, we let the function τ0 depend on

rescaled time t
T

rather than on real time t. Thus, τ0 is defined on (0, 1] rather

than on {1, . . . , T}. In the remainder of this chapter, we denote rescaled time

by x0 ∈ (0, 1]. It relates to observed time t ∈ {0, . . . , T} through the mapping

t = [x0T ], where [x] denotes the smallest integer weakly larger than x. If we

defined the function τ0 in terms of observed time, we would not get additional

information on the structure of τ0 around a particular time point t as the sample

size T increases. Within the framework of rescaled time, in contrast, the function

τ0 is observed on a finer and finer grid on the unit interval as T grows. Thus, we

obtain more and more information on the local structure of τ0 around each point

x0 in rescaled time. This is the reason why we can make meaningful asymptotic

considerations within this framework. A detailed discussion of the concept of

rescaled time can be found in Dahlhaus (1996a).

For a sufficiently smooth trend function τ0, we have∣∣Yt,T − Yt(x0)
∣∣ ≤ C

∣∣∣ t
T
− x0

∣∣∣Ut, (3.5)

where C is a constant independent of x0, t and T , Yt(x0) = τ0(x0)
∏d

j=1 τj(X
j
t )εt,

and Ut =
∏d

j=1 τj(X
j
t )εt. Note that due to the stationarity of Xt and εt both

{Yt(x0)} and {Ut} are strictly stationary processes. As Ut = Op(1), we obtain

from (3.5) that ∣∣Yt,T − Yt(x0)
∣∣ = Op

(∣∣∣ t
T
− x0

∣∣∣). (3.6)

Therefore, if t
T

is close to x0, then Yt,T is close to Yt(x0) at least in a stochastic

sense. Put differently, locally in time, the process {Yt,T} is close to the stationary

process {Yt(x0)}. In this sense, the process {Yt,T} is locally stationary.

We close this section with a remark on the interpretation of the nonparamet-

ric components of model (3.4). First, note that the functions τ0, . . . , τd and the

GARCH residual εt are only identified up to a multiplicative constant in model

(3.4). Thus we are free to rescale them in a suitable way. Given the independence
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between Xt and εt assumed later in (V3), normalizing the components such that

E[ε2
t ] = 1 yields

E[Y 2
t,T |Xt] = τ 2

0

( t
T

) d∏
j=1

τ 2
j (Xj

t ). (3.7)

Thus, the product of the τ -components gives the volatility at time t conditional

on the covariates Xt. If we additionally scale the model components to satisfy

E[
∏d

j=1 τ
2
j (Xj

t )] = 1, we obtain that

E[Y 2
t,T ] = τ 2

0

( t
T

)
, (3.8)

i.e. the deterministic function of time τ 2
0 ( t

T
) gives the time-varying unconditional

volatility level. In (3.7), τ 2
0 ( t

T
) thus specifies the unconditional volatility level and

the product of the remaining components
∏d

j=1 τ
2
j (Xj

t ) is the multiplicative factor

by which the volatility conditional on Xt deviates from the unconditional level.

3.3 Estimation Procedure

We now turn to the two-step estimation procedure alluded to in the introduction to

this chapter. In the first step, we provide estimates of the nonparametric functions

τ0, . . . , τd. In the second step, we use these nonparametric estimates to obtain

estimators of the GARCH parameters.

3.3.1 Estimation of the Nonparametric Model Compo-

nents

In order to estimate the nonparametric functions τ0, . . . , τd, we first transform the

multiplicative model (3.4) into an additive one and use the results from Chapter 2.

Given the resulting estimators of the additive model we retrieve the estimimates

of the components in the multiplicative model by applying the reverse transform.

The transform we apply to (3.4) is to first square it and then take logarithms.
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This yields

Zt,T = m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + ut, (3.9)

where Zt,T := log Y 2
t,T , mj := log τ 2

j for j = 0, . . . , d, and ut := log ε2
t . This fits

into the model structure considered in Chapter 2 without a periodic component,

i.e. with θ ≡ 1. Note that the functions m0, . . . ,md in (3.9) are only identified up

to an additive constant. To identify them, we assume that∫ 1

0

m0(x0)dx0 = 0 and

∫
R
mj(xj)pj(xj)dxj = 0 for j = 1, . . . , d,

where pj is the marginal density of Xj
t . Furthermore, we normalize E[ut] = 0,

which introduces a constant mc to (3.9)1, and we are left with

Zt,T = mc +m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + ut, (3.10)

In Section 3.4, we will give a set of sufficient conditions to ensure that the as-

sumptions in Chapter 2 are fulfilled thus enabling us to obtain estimators of the

nonparametric component functions m̃0, . . . , m̃d. To get the estimators of the mul-

tiplicative components we apply the reverse transform to get

τ̃j =
√

exp(m̃j)

for j = 0, . . . , d.

3.3.2 Estimation of the Parametric Model Components

To motivate the second step in our estimation procedure, we first consider an

infeasible estimator of the model parameters. Suppose that the nonparametric

components τ 2
0 , ..., τ

2
d were known. In this situation, the GARCH variables ε2

t

would be observable, since

ε2
t =

Y 2
t,T

τ 2
0 ( t

T
)
∏d

k=1 τ
2
k (X t

k)
. (3.11)

1This constant was subsumed into the periodic component mθ in Chapter 2.



48 Chapter 3. A Volatility Model

The GARCH parameters φ0 := (w0, a0, b0) could thus be estimated by standard

quasi maximum likelihood methods, where the quasi log-likelihood is given by

lT (φ) = −
T∑
t=1

(
log v2

t (φ) +
ε2
t

v2
t (φ)

)
. (3.12)

Here, φ = (w, a, b) and

v2
t (φ) =

 w
1−b for t = 1

w + aε2
t−1 + bv2

t−1(φ) for t = 2, . . . , T
(3.13)

is the conditional volatility of the GARCH process with starting value v2
0(φ) =

w/(1− b).
As the functions τ 2

0 , . . . , τ
2
d are not observed, we cannot apply this standard

approach. However, given the estimates τ̃ 2
0 , . . . , τ̃

2
d from the first estimation step,

we can replace ε2
t by the standardized residuals

ε̃2
t =

Y 2
t,T

τ̃ 2
0 ( t

T
)
∏d

k=1 τ̃
2
k (X t

k)
(3.14)

and use these as approximations to ε2
t in the quasi maximum likelihood estimation.

The quasi log-likelihood then becomes

l̃T (φ) = −
T∑
t=1

(
log ṽ2

t (φ) +
ε̃2
t

ṽ2
t (φ)

)
, (3.15)

where analogously to (3.13),

ṽ2
t (φ) =

 w
1−b for t = 1

w + aε̃2
t−1 + bṽ2

t−1(φ) for t = 2, . . . , T
(3.16)

is the approximate conditional volatility. Our estimator φ̃ of the true parameter

values φ0 is now defined as

φ̃ = arg max
φ∈Φ

l̃T (φ), (3.17)
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where the parameter space Φ is assumed to be compact. In comparison to this, the

standard maximum likelihood estimator for the case in which the τ -components

are known is defined as

φ̂ = arg max
φ∈Φ

lT (φ). (3.18)

3.4 Asymptotics

In Section 3.4.1 we treat the nonparametric estimates τ̃0, . . . , τ̃d. Section 3.4.2

gives results on the asymptotic behaviour of the GARCH estimates φ̃. In order to

establish the asymptotic properties of our nonparametric estimators we make the

following assumptions on the model components.

(V1) The process {Xt, εt, σt} is strictly stationary and strongly mixing with mixing

coefficients α satisfying α(k) ≤ ak for some 0 < a < 1.

(V2) The functions τ0 and τj (j = 1, . . . , d) are twice (continuously) differentiable,

strictly positive, and bounded away from zero with Lipschitz continuous sec-

ond derivatives.

(V3) The variables Xt and εt are independent and the error process is normalized

s.t. E[log ε2
t ] = 0.

(V4) The conditional volatility σ2
t is bounded away from zero and the GARCH

residuals ηt have a density with respect to Lebesgue measure which is bounded

in a neighbourhood of zero.

(V5) The variables Xt have compact support, say [0, 1]d.

(V6) The kernel K is bounded, has compact support ([−C1, C1], say) and is sym-

metric about zero. Moreover, it fulfills the Lipschitz condition that there

exists a positive constant L such that |K(u)−K(v)| ≤ L|u− v|.

(V7) The density p of Xt and the densities p(0,l) of (Xt, Xt+l), l = 1, 2, . . . , are

uniformly bounded. Furthermore, p is bounded away from zero on [0, 1]d.

The first partial derivatives of p exist and are continuous.
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(V8) Let Zt = Zt,T −m0( t
T

). For some θ > 8
3
, E[|Zt|θ] <∞.

(V9) The conditional densities fXt|Zt of Xt given Zt and fXt,Xt+l|Zt,Zt+l of

(Xt, Xt+l) given (Zt, Zt+l), l = 1, 2, . . . , exist and are bounded from above.

(V10) The bandwidth h satisfies either of the following:

(a) T
1
5h→ ch for some constant ch.

(b) T
1
4

+δh→ ch for some constant ch and some small δ > 0.

As already mentioned in Section 3.2 assumption (V1) restricts the nonstationarity

in the model to result from the time-varying component τ0. The interpretation of

τ 2
0 (·) as the unconditional volatility level is given by the independence of Xt and εt

in (V3).2 Note that in assumption (V3) we are stipulating the contemporaneous

independence of the two processes not their full independence. Assumption (V4)

validates the transform used in the first estimation step leading to the additive

model (3.9). Assumption (V2) ensures the additive components in the trans-

formed model (3.10) satisfy the appropriate degree of smoothness for the results

from Chapter 2 to hold. The regression error ut in the transformed model (3.10)

is conditionally mean zero due to the independence of Xt and εt and the normal-

ization of the error process in (V3). (V5) is only needed for the second estimation

step. For the first step, we could allow the support of Xt to be unbounded and

estimate the functions τ0, . . . , τd uniformly over compact subsets of the support.

However, for ease of notation, we assume (V5) throughout. The remaining condi-

tions ensure that the respective assumptions in Chapter 2 are fulfilled.

Essentially the same remarks to those following the assumptions for the additive

model in Chapter 2 can be made here. Again the assumptions needed to establish

the asymptotic behaviour of the nonparametric functions are very similar to the

conditions that can be found in Mammen et al. (1999) for the strictly stationary

2The independence condition could be replaced by the requirement that E[ε2t |Xt] =

E[ε2t ] a.s. and E[log ε2t |Xt] = 0. However, these are so restrictive that not much is gained

in moving away from independence apart from vastly complified arguments in the proofs and

additional unverifiable low-level conditions.
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case. It should also be mentioned again that we could do away with the assump-

tion of exponentially decaying mixing rates in (V1) in favour of sufficiently high

polynomial rates. The stronger assumption (V1) is again retained to keep the

notation and structure of the proofs as clear as possible.

In order to derive the consistency and asymptotic normality of the GARCH

parameter estimators in the second estimation step we will additionally need the

following assumptions.

(V11) The parameter space Φ is a compact subset of {φ ∈ R3 |φ = (w, a, b) with 0 <

κ ≤ w, a ≤ κ < ∞ and 0 ≤ b < 1} with constants κ and κ. The true

parameter φ0 = (w0, a0, b0) is an interior point of Φ and a0 + b0 < 1.

(V12) E[ε8+δ
t ] <∞, for some δ > 0.

(V11) is a standard assumption in the theory on GARCH models. Note it also

implies that σ2
t is bounded away from zero, which was assumed in (V4). The

moment condition in (V12) is needed to show asymptotic normality of the GARCH

estimates.

3.4.1 Asymptotics for the Nonparametric Model Compo-

nents

As we are mainly interested in the squared version of the τ̃0, . . . , τ̃d in our multi-

plicative model, we will restrict ourselves to reporting these. Their derivation is

based on obtaining the asymptotic properties of the estimators m̃0, . . . , m̃d for the

additive components in the transformed model (3.10) and then using the fact that

due to the transform τ̃ 2
j = exp(m̃j) for j = 0, . . . , d these results easily carry over

to the multiplicative components in (3.4).

Theorem 3.4.1. Suppose that conditions (V1) – (V9) hold.

(a) Assume that the bandwidth h satisfies either (V10)(a) or (V10)(b). Then,
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for Ih = [2C1h, 1− 2C1h] and Ich = [0, 2C1h) ∪ (1− 2C1h, 1],

sup
xj∈Ih

∣∣τ̃ 2
j (xj)− τ 2

j (xj)
∣∣ = Op

(√ log T

Th

)
(3.19)

sup
xj∈Ich

∣∣τ̃ 2
j (xj)− τ 2

j (xj)
∣∣ = Op(h) (3.20)

for all j = 0, . . . , d.

(b) Assume that the bandwidth h satisfies (V10)(a). Then, for any x0, . . . , xd ∈
(0, 1),

T
2
5

 τ̃ 2
0 (x0)− τ 2

0 (x0)
...

τ̃ 2
d (xd)− τ 2

d (xd)

 d−→ N(Bτ (x), Vτ (x)),

with the bias term Bτ2(x) = [τ 2
0 (x0)c2

hβ0(x0), . . . , τ 2
d (xd)c

2
hβd(xd)]

′ and the

covariance matrix Vτ2(x) = diag(τ 4
0 (x0)v0(x0), . . . , τ 4

d (xd)vd(xd)). Here,

v0(x0) = c−1
h cK

∑∞
l=−∞ γu(l) and vj(xj) = c−1

h cKσ
2/pj(xj) for j = 1, . . . , d

with cK =
∫
K2(u)du, γu(l) = Cov(ut, ut+l) and σ2 = Var(ut) for

ut = log ε2
t . Furthermore, the functions βj(xj) are the components of the

L2(p)-projection of the function β defined in Lemma A.3.3 of Appendix A.3

onto the space of additive functions.

As already remarked, the above follows from Theorem 2.4.2 established in Chap-

ter 2 and the smoothness of the transform τ̃ 2
j = exp(m̃j) for j = 0, . . . , d. Restate-

ments of the expansions needed to show the equivalent of Theorem 2.4.2 for the

transformed model (3.10) are provided in Appendix B.1. Recalll that the proofs

exploit the fact that rescaled time behaves similarly to a uniformly distributed

random variable that is independent of the other covariates.

3.4.2 Asymptotics for the Parametric Model Components

Given the estimators for τ 2
0 , . . . , τ

2
d from the first step, the GARCH parameters

φ0 are estimated by φ̃ as outlined in Section 3.3.2. In this subsection, we look
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at consistency and asymptotic normality of φ̃. The following theorem establishes

consistency.

Theorem 3.4.2. Suppose that the bandwidth h satisfies (V10)(a) or (V10)(b).

In addition, let assumptions (V1) – (V9) and (V11) be fulfilled. Then φ̃ is a

consistent estimator of φ0, i.e.

φ̃
P−→ φ0.

We next give a result on the limiting distribution of the GARCH estimates which

shows that these are asymptotically normal.

Theorem 3.4.3. Suppose that the bandwidth h satifies (V10)(b) and let assump-

tions (V1) – (V9) together with (V11) – (V12) be fulfilled. Then it holds that

√
T (φ̃− φ0)

d−→ N(0,Σ).

Details on the covariance matrix Σ can be found in Appendix B.2 (see equation

(B.14)).

The proof of asymptotic normality is the theoretically most challenging part in

this chapter. The details are postponed to the Appendix B.2. For now we will be

content with providing an outline. By the usual Taylor expansion argument, we

arrive at
√
T (φ̃− φ0) = −

( 1

T

∂2l̃T (φ̄)

∂φ∂φT

)−1 1√
T

∂l̃T (φ0)

∂φ
,

where φ̄ is an intermediate point between φ̃ and φ0. As in the standard case, we

can show that the second derivative on the right-hand side converges in probability

to a deterministic matrix. The asymptotic distribution is thus determined by the

term 1√
T

∂l̃T (φ0)
∂φ

, which we rewrite as

1√
T

∂l̃T (φ0)

∂φi
=

1√
T

∂lT (φ0)

∂φi︸ ︷︷ ︸
=:A1

+
( 1√

T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi

)
.︸ ︷︷ ︸

=:A2

We will show that this term is asymptotically normal. The main challenge to do

so is to derive a stochastic expansion of the term A2. This requires rather involved
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and nonstandard arguments which are presented in detail in Appendix B.2. In

particular, we cannot just extend the arguments presented in Hafner and Linton

(2010) to fit our setting. Once we have provided the expansion of A2, we are in

a position to apply a central limit theorem to the sum A1 + A2, which completes

the proof. We will see that the term A2 is itself asymptotically normal and thus

contributes to the limit distribution of 1√
T

∂l̃T (φ0)
∂φ

. As a consequence, we obtain

a larger asymptotic variance than in the standard case (where only the term A1

occurs). This reflects the additional uncertainty that results from not knowing the

functions τ0, . . . , τd.

3.5 Application

To illustrate our model, we apply it to a sample of daily financial data spanning

the period from 10th April 1993 until 2nd February 2014. The estimated model is

given by

Y 2
t,T = τ 2

0

( t
T

) 3∏
j=1

τ 2
j (Xj

t−1)ε2
t , (3.21)

where Yt,T are S&P 500 log-returns and the covariates are three different lagged

interest rate spreads all calculated from data provided in the H.15 release of the

Federal Reserve.3 One of the spreads we will use as a regressor is the difference

between the yields on Moody’s seasoned Baa and Aaa corporate bonds.4 This can

be thought of as a credit default spread as it in some way caputres the difference

in the default risk of high graded and low graded corporate debt. Our second

regressor is a measure of credit risk for highly rated corporate debt as provided by

the difference between the yield on Moody’s Aaa corporate bonds and the interest

rate of 20 year constant maturity U.S. treasuries.5 The final regressor we include

3The interest rate data are from the Federal Reserve Statistical Release H.15 available online

at www.federalreserve.org/releases/h15/data.htm. The historical prices of the S&P 500 are from

Yahoo! Finance available at finance.yahoo.com.
4The original source is Moody’s Investor Services. More information can be found on the

research pages of the St.Louis Fed at research.stlouisfed.org.
5The 20 year treausuries were used to get a close maturity match to the corporate bonds.
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is the difference between the interest rate on 3 month eurodollar deposits and

the interest rate for 3 month U.S. treasury bills.6 This can be interpreted as a

measure for the additional default risk faced by non-U.S. versus U.S. banks. It is

also related to the TED spread, an indicator for the risk of bank default, which is

defined as the difference between the 3 month LIBOR and the interest rate on 3

month U.S. treasuries.

The estimation results for the nonparametric model components are presented

in Figures 3.1 and 3.3. The bandwidths for the function fits are chosen by a rule

of thumb following the application in Yu et al. (2011).
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Figure 3.1: Plot of S&P 500 log returns from 10th April 1993 until 2nd February

2014

6The original source is Bloomberg and CRTB ICAP Fixed Income & Money Market Products.
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The solid line in Figure 3.1 gives the estimate of τ̃ 2
0 . The dashed lines are the

pointwise 95% confidence intervals. Due to the normalization of the other compo-

nent estimates discussed later on, τ̃ 2
0 only estimates the time varying unconditional

volatility level in (3.8) up to a multiplicative constant. Comparing the estimate

in Figure 3.1 with the log return series of the S&P 500 in Figure 3.2 we see that

the estimate captures the periods of increased log return variance from 1997 until

2003 and from 2007 until 2012.
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Figure 3.2: Plot of S&P 500 log returns from 10th April 1993 until 2nd February

2014

However, we can also see in Figure 3.2 that the second period was more severe

than the first in terms of magnitude, which is not captured by our estimate. The

main reason for this is that our regressors have more explanatory power in the

recent crisis.
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The estimated components τ̃ 2
j for j = 1, 2, 3 are given in Figure 3.3. The solid

lines again represent the estimators τ̃ 2
j and the dashed lines are the pointwise 95%

confidence intervals.
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Figure 3.3: Estimates of τ 2
j for j = 1, 2, 3. Spreads measured in percentage points.
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The estimates τ̃ 2
j have been normalized such that τ̃ 2

j (xmj ) = 1, where xmj is the

median observed realization of the j-th covariate Xj
t over the modelling period.

This means that the effect of the j-th covariate on volatility is normalized to 1 if

it takes a “normal” (i.e. its median) value. As

E[Y 2
t,T |Xt] = τ 2

0

( t
T

) 3∏
j=1

τ 2
j (Xj

t−1), (3.22)

the normalization allows for the estimates τ̃ 2
j for j = 1, 2, 3 to be interpreted as

the multiplicative effect of the covariate Xj
t−1 on S&P 500 volatility. To illustrate

this, let us compare volatility between two different settings: Hold all the covariates

except the j-th fixed at some value x−j and change the j-th regressor Xj
t−1 from its

median xmj to some value xj. From (3.22), one can then see that the conditional

volatility is changed by the factor τ 2
j (xj)/τ

2
j (xmj ) = τ 2

j (xj) as τ 2
j (xmj ) has been

normalized to one. Consequently, the fits τ̃ 2
j (xj) estimate the factor by which the

volatility level gets increased or dampened, when the j-th covariate changes from

a normal value (i.e. its median) to some other more extreme value.

We now look at the estimated component functions in Figure 3.3. First of all,

the top panel shows the estimated multiplicative effect on volatility of the lagged

difference in the corporate bond yields between Moody’s Baa and Aaa rated bonds.

The estimate is increasing and highly nonlinear. In particular, for low spreads of

up until 2 percentage points the multiplicative effect is close to 1 and lower than 2.

For values of the spread between 2 and 2.5 percentage points the effect increases

linearly up until about 4.5. For all larger yield differences the effeect remains at

that level. Notice, that for high spreads the neutral multiplicative factor of 1 is

well outisde the 95% confidence bands.

The middle panel gives the estimated factor on volatility of the lagged difference

between interest on Moody’s Aaa graded corporate bonds and 20 year constant

maturity U.S. treausuries. Although the effect is increasing again, it is much more

linear. Furthermore, we can see that the estimated effects are much lower, ranging

from about 0.9 until just below 1.4.

Finally, the bottom panel gives the estimated multiplicative factor for the dif-

ference between the interest rates on three month Eurodollar deposits and three
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month treasuries. The shape is similar to the first effect in the top panel. However,

the range is much larger with the largest estimated effect being above 10. Note

though, that the confidence bands are also much wider showing the imprecision in

the estimate due to having observed few spreads larger than 3 percentage points.

We will finish the discussion of the nonparametric estimates by comparing the

estimates of time varying unconditional volatility in our model and the simpler

model without covariates (see (3.1)). In Figure 3.4 the solid line is a rescaled

version of τ̃ 2
0 that estimates the unconditional volatility level in our model. The

dashed line is the estimated unconditional volatility obtained from the simpler

model.
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Trend only model

Figure 3.4: Time-varying unconditional volatilities for our model and the simpler

model (3.1) without regressors.

Both curves in Figure 3.4 clearly show the volatility increase in the two recent
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crises periods. We can also see that the estimated unconditional volatility level

in our model is much lower in the recent financial crisis than the estimate from

the simpler model without covariates. As already mentioned, this suggests that

our regressors explain a considerable part of volatility in the recent crisis. During

the earlier crisis, however, the difference between the two curves is not so striking.

Thus, the explanatory power of our covariates in this period seems to be much

lower. This is quite plausible as our regressors are mainly from the U.S. financial

sector and the turbulences between 1997 and 2003 were not primarily driven by

events in this sector.

We finish our application with the estimation results for the parametric model

components. In Table 3.1, we compare the GARCH estimates of our model with

the ones obtained from the simpler model (3.1) and from a standard GARCH(1,1)

model.

w̃ ã b̃ ã+ b̃ H̃L

Standard GARCH(1,1) 0.000 0.085 0.908 0.992 90

Model with trend 0.035 0.078 0.885 0.963 19

Model with trend and covariates 0.047 0.073 0.878 0.951 15

Table 3.1: GARCH parameter estimates for GARCH(1,1) and for models (3.1)

and (3.21),

The sum of the two estimated parameters ã + b̃ reported in the penultimate

column of Table 3.1 measures the persistence of shocks to volatility. One can

see that this persistence measure decreases from 0.992 to 0.963 when accounting

for time-varying unconditional volatility. This is in line with previous findings

in the literature (compare e.g. Feng (2004)). Including our covariates in the

model further decreases the estimated persistence to 0.951. Note that the reported

decrease in persistence is quite dramatic even though it may seem rather small

at first sight (compare the discussion in Lamoureux and Lastrapes (1990) and

Mikosch and Stărică (2000) on this issue). To give some meaning to the numerical
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values of the persistence we will consider the half life of variance as in Lamoureux

and Lastrapes (1990), which for a GARCH(1,1) model with parameters (ω, a, b) is

defined by HL = 1− [ln(2)/ln(a + b)]. The half life of volatility for the GARCH

component gives the number of days it takes for a shock to the GARCH component

to diminish to half its initial value. The last column of Table 3.1 provides the

estimated half-lifes for the three competing models. Allowing for time varying

unconditional volatility leads to a substantial decrease of the estimated half life

from 90 trading days, which is more than four months to 19 trading days, which

corresponds to roughly one month. Additionally including our regressors leads to

a further decrease of the estimated half life to 15 trading days, which corresponds

to 3 weeks.

To sum up, our results suggest that we can explain a good deal of S&P 500

volatility by our model. We have also seen that the regressors we included were

more important in the recent financial crisis. Furthermore, it was seen that the

persistence remaining in the GARCH component falls even further upon including

our regressors. It should also be noted that we included additional regressors in the

model (3.21).7 Not only were some of the variables considered not available for the

entire modelling period, but they also seemd to have little extra explanatory power:

Using our procedure with all the considered regressors led to some of the estimated

95% confidence bands containing the horizontal line at one. This was taken as

indication for no effect of the respective regressor. By successively removing such

regressors we arrived at our model (3.21). Of course, for an in-depth analysis

one would also need to validate the model. Such a model validation procedure

would also help in choosing the covariates. One possible model selection method

is described in Nielsen and Sperlich (2003). Finally, it would also be interesting to

look at the forecasting performance of the model.

7These included lags of: an estimate for the slope of the yield curve given by the difference

in interest rates on ten year and three month U.S. treasuries; the difference in corporate bond

rates for financial and non-financial companies; the growth rate in the number of trades and

the difference between the interest rate of ten year U.S. treasuries and their inflation protected

variants.
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3.6 Extensions

We use this section to discuss possible extensions and amendments to the model.

3.6.1 Estimation of the Covariance Matrix Σ

It is not at all trivial to construct a consistent estimate of the covariance matrix

Σ introduced in Theorem 3.4.3. This is due to very complicated structure of Σ.

In particular, the exact expression for Σ involves functions obtained from a higher

order expansion of the stochastic part of the backfitting estimates (see Theorem

B.1.1 in Appendix B.1). It is very complicated to calculate the exact form of these

functions and even more challenging to give consistent estimates for them. The

construction of a consistent estimate of Σ is thus a difficult theoretical problem.

3.6.2 Efficiency Gains

We next discuss how to gain efficiency in the estimation of both the nonpara-

metric and parametric components of the model. For this purpose, we adapt the

procedure in Hafner and Linton (2010).

First consider the nonparametric model components. If we knew the variables

σt, we could divide the multiplicative model (3.4) by them to obtain

Yt,T
σt

= τ0

( t
T

) d∏
j=1

τj(X
j
t )ηt. (3.23)

Squaring and taking the logarithm would then yield an additive regression model

with error terms vt := log η2
t −E[log η2

t ]. These terms have a smaller variance than

the errors ut = log ε2
t in the additive regression (3.10). In particular, Var(vt) =

Var(log η2
t ) ≤ Var(log σ2

t ) + Var(log η2
t ) = Var(ut). This suggests that at least

for j = 1, . . . , d, the infeasible smooth backfitting estimates based on equation

(3.23) are more efficient in terms of asymptotic variance than our estimates.8 Not

8Whether the infeasible estimate for j = 0 is more efficient depends on the autocorrelations of

the errors ut. Specifically, there are efficiency gains if and only if
∑∞
k=−∞Cov(u0, uk) > Var(vt).
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knowing the variables σt, we could use our estimation procedure to get initial

estimates of them. Plugging these estimates into (3.23), it should be possible to

obtain feasible smooth backfitting estimates with smaller asymptotic variance.

We now come to the parametric model components. Again, it should be possible

to adapt the procedure described in Hafner and Linton (2010) to our setting in

order to gain efficiency in the estimation of the parametric model parts. In the

case of normally distributed GARCH residuals ηt, we may even be able to obtain

estimates that reach the semiparametric efficiency bound. We omit the details

and refer the interested reader to the description of the procedure in Hafner and

Linton (2010).

3.6.3 Locally Stationary Covariates

It should also possible to allow for locally stationary regressors in model (3.4). In

this case,

Yt,T = τ0

( t
T

) d∏
j=1

τj(X
j
t,T )εt for t = 1, . . . , T,

where εt is a strictly stationary GARCH residual as before, but where the covari-

ates Xj
t,T now form a locally stationary process for each j = 1, . . . , d.

In this extended model, we face the following problem: If the regressors are

locally stationary, their stochastic behaviour may change over time. As a conse-

quence, rescaled time will not behave like an additional regressor any more that is

independent of the other covariates, thus drastically complicating the asymptotic

analysis.

If the stochastic behaviour of the regressors changes smoothly over time, we

should nevertheless be able to get the smooth backfitting procedure to work. In

particular, we conjecture that in this case we still obtain one-dimensional uniform

nonparametric convergence rates. Moreover, if the covariates are assumed to be

mixing, it should also be possible to prove asymptotic normality of the GARCH

estimates.



64 Chapter 3. A Volatility Model

3.7 Conclusion

We have proposed a new semiparametric volatility model, which generalizes the

class of models Yt,T = τ( t
T

)εt, as for example considered in Feng (2004) and Engle

and Rangel (2008). These models are able to account for nonstationarities in the

volatility process. In addition, we are able to include covariates in a nonparametric

way, hence allowing us to flexibly capture the effects of the financial and economic

environment.

We have derived the asymptotic theory both for the nonparametric and the para-

metric part of the model. To estimate the nonparametric model components, we

have extended the smooth backfitting approach of Mammen et al. (1999) to our

nonstationary setting. Given the backfitting estimators, we were able to construct

GARCH parameter estimates and to show that they are asymptotically normal.

In particular, they converge at the fast parametric rate even though the nonpara-

metric smoothers from the first step have slower nonparametric convergence rates.

We concluded by illustrating the strengths of our model by applying it to financial

data. In particular, our semiparametric approach allows us to estimate the form of

the relationship between volatility and its potential sources. Therefore, we manage

to go beyond existing parametric approaches such as in Engle and Rangel (2008)

and Engle et al. (2008).



Chapter 4

Non-additive Season-trend Model

In this chapter we shall return to the “classical” decomposition given in (1.4)

Yt = Tt + St + Zt ∀t ∈ Z. (4.1)

However, we will only consider the deterministic case, i.e. restricting the seasonal

component St and the trend component Tt to be functions of time. Furthermore,

it shall be assumed that the seasonal component has a known period θ, which will

essentially be given by the frequency at which we observe the underlying process.

Thus, for quarterly data, we would set θ = 4, whereas for monthly observations

we would choose θ = 12. We will provide a model that refrains from additively

decomposing the trend and seasonal components as in (4.1). The resulting season-

trend function can be interpreted as a regression function with a categorical and

a continuous covariate by rearranging the data. Based on this interpretation an

estimator for the season-trend function will be suggested. Finally, an application

of the model to a a German monthly temperature series illustrates the use of the

model and compares its fit to one obtained from an additive model.
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4.1 Introduction

In the deterministic case a nonparametric model for the setting in (4.1) was given

in Chapter 1 by

Yt,T = m0(
t

T
) +mθ(t) + Zt ∀t ∈ 1, . . . , T. (4.2)

with m0 a smooth deterministic trend and mθ a periodic function with known

period θ. In Chapter 2 we considered an extenstion to (4.2) by including further

additive components that were functions of stationary regressors. Extensions to

(4.2) necessitating the estimation of the period have also been considered. These

include the recent contributions of Vogt and Linton (2014), who allow for the error

process to be nonstationary and Sun et al. (2012), who do not include a trend and

consider an i.i.d. error process. These papers also provide further references to

models dealing with period estimation. Most notably, these include the classical

parametric models and models similar to (4.2) with the sampling of the observa-

tions done at random and hence non-equidistant time points.

Both the aforementioned papers by Vogt and Linton (2014) and Sun et al. (2012),

as indeed the model in Chapter 2, deal with the seasonal component by essentially

using the dummy variable approach to obatin what they term a seasonal sequence.1

The seasonal component is modelled by

St = mθ(t) =
θ∑
l=1

θlI(t = nθ + l for some n ∈ N) (4.3)

with θl giving the seasonal effect in season l. To avoid the lengthy notation in the

indicator function we will introduce the modulo operator and write the above as

St = mθ(t) =
θ−1∑
k=0

θkI(t mod θ = k). (4.4)

1The term seasonal sequence is used as there are infinitely many functions of time that have

a periodic behaviour at equidistant time points. We will not make this explicit nomenclatural

distinction and refer to a periodic function even if we are only actually dealing with a periodic

sequence.
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The change of index from l to k is intentional to highlight that the interpretation

of the seasonal effects has changed due to the use of the modulo operator. As the

modulo operator gives us the remainder, the seasonal effect θ1, . . . , θ11 are the same

in (4.3) and (4.4). However, the seasonal effect θ12 in (4.3) now corresponds to θ0 in

(4.4). It should also be remarked, that in both formulations (4.3) and (4.4), the first

season seasonal effect, θ1, is the effect of the season the first observation falls into.

In some cases we may want to change the ordering of the seasons. This can be easily

achieved by replacing the indicator function in (4.4) by I((t+ s1 − 1) mod θ = k)

with s1 the season of the first observation. We will ignore this reordering until we

turn to the application in section 4.4.

Using the compact formulation involving the modulo, the time varying mean in

the additive decomposition model of (4.2) is given by

µt,T = Tt + St

= m0(
t

T
) +

θ−1∑
k=0

θkI(t mod θ = k) ∀t ∈ 1, . . . , T.

The model for {Yt,T} is then given by

Yt,T = m0(
t

T
) +

θ−1∑
k=0

θkI(t mod θ = k) + Zt ∀t ∈ 1, . . . , T. (4.5)

for {Zt} a zero mean stationary process.

We see from (4.5), that the observatoin time point is essentially used twice as

a regressor, once as the argument for the trend and once as the argument for the

seasonal component. It seems quite natural to do this as we are using two distinct

pieces of information about each time point. Firstly, we are using the fact that time

progresses linearly to justify its use in the trend function. And secondly we are

using the seasonally recurring informational content in the seasonal component.

These two separate pieces of information contained in the observation time point

are illustrated in Figure 4.1. Each small tick denotes an observation time point.

As is customary in nonparametric trend estimation, the observed time points have

been rescaled to the unit interval. Thus the first observation occurs at 1
T

, the
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second at 2
T

and so on until the last observation which occurs at T
T

= 1. Hence,

all the observations are 1
T

apart from each other.
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4θ
T

5θ
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θ
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θ
T

θ
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θ
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Figure 4.1: Illustration of observations in rescaled time and their seasonal links.

The first piece of information contained in the observation time point, namely

the order within the sample, is illstrated by the arrangement of the observations

within the unit interval. The braces above the time line indicate the second piece

of information contained in the observation time point, namely its link to other

time points in the same season.

The modelling framework in (4.5) uses these two pieces of information on the

observation time point to disentangle the seasonal and trend components by requir-

ing them to be additive, i.e. overlaying them. The seasonal component is assumed

to be a periodic function, linking observations in the same season. The smooth

trend component uses the first piece of information by linking each observation

with observations close to it in time. The resulting overall time varying mean in

(4.5) is the sum of the two. In the next section, we will introduce a modelling

framework that also utilizes the two distinct pieces of information contained in

the observation time point. However, we will refrain from imposing an additive

structure as in (4.5).

4.2 Model

In this section we will use the two distinct pieces of information contained in

the observation time point, namely its order over time and the season it is in,

to construct a model that does not rely on an additive decomposition of seaonal

and trend effects. This will result in a model with a season-trend function. In
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order to interpret this function we will rearrage the data, so that the season-trend

function can be interpreted as a regression function. The idea is to consider the

time varying mean of the process as a function that combines both the seasonal

and the trend component in a function m(·, ·) defined on [0, 1] × {0, . . . , θ − 1}.
This leads to the model for the real-valued process {Yt,T} given by2

Yt,T = m(
t

T
, t mod θ) + Zt ∀t = 1, . . . , T. (4.6)

with {Zt} a zero mean stationary error process.

In order to interpret the season-trend function m(·, ·) we will rearrange the data

as illustrated in Figure 4.2 for θ = 12. The observation time points are denoted

by points in the figure. The vertical axis keeps track of the season the observation

was made in, whereas the horizontal axis gives the observed time point in rescaled

time. All observation time points are still 1
T

apart in the rescaled time direction.

The points in a given season are also still θ
T

apart in rescaled time direction, but

one season apart in the season direction.3

Using a data arrangement as in Figure 4.2 allows us to view m(·, ·) in (4.6) as a

regression function. Given the zero mean stationary error {Zt} we see that

E[Yt,T |
t

T
= u, tmod θ = k] = m(u, k) (4.7)

for u ∈ [0, 1] and k ∈ {0, 1, . . . , θ − 1}. The regression function m(u, k) can thus

be interpreted as the determinstic trend at rescaled time point u in season k. This

includes combinations of (u, k) that are not observed. With this interpretation of

m(·, ·), the estimation of m(·, ·) looks like a mean regression problem with a con-

tinuous covariate supported on [0, 1] and a categrorical covariate taking values in

{0, . . . , θ−1}. This is the approach we will follow, when constructing an estimator

for the season-trend function m(·, ·) in the next section.

2Similarly to the remark after (4.4), one can change the second argument of m to (t + s1 −
1) mod θ with s1 the season the first observation was made in so as to rearrange the seasonal

effects..
3Although not visible from the graph this will also be true for observations in season 11 and

0 once an appropriate distance measure in the seasonal direction is used.
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Figure 4.2: Data Arrangement in season-time space with θ = 12.

4.3 Estimation

We will construct our estimator for m(·, ·) using the interpretation of m(·, ·) as

a mean regression function in a setting with a continuous covariate supported on

[0, 1] and a categrorical covariate taking values in {0, . . . , θ− 1}. We will base our

estimator on the one considered in Hall et al. (2007) for the regression with mixed

data in an i.i.d. setting. Following their suggestion we estimate the regression

mean m(·, ·) using kernel methods by smoothing in the rescaled time direction, i.e

in the direction of the continuous regressor, using the kernel Kh(u,
t
T

) = 1
h
K(

u− t
T

h
).

Smoothing in the seasonal direction, i.e. in the direction of the discrete regressor, is

done using the kernel Lλ(x, t mod θ) = λd(x,t mod θ) with the exponent d(x, t mod θ)

measuring the distance between x and t mod θ. The bandwidths are given by h

and λ. Combining these kernels into a product kernel we can define a local constant

estimator for m(·, ·) by

m̂(u, x) = arg min
m(u,x)

T∑
t=1

(Yt,T −m(u, x))2Kh(u,
t

T
)Lλ(x, t mod θ). (4.8)

for u ∈ [0, 1] and x ∈ {0, . . . , θ − 1}.
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The use of the kernel Lλ(x, t mod θ) including the distance measure in the ex-

ponant is recommended in Hall et al. (2007) for the case of ordered categorical

covariates, which is clearly the case here. In fact, we have even more structure

in our categorical covariate. Not only do we know that they are ordered, but we

also know that they are circular, with the “lowest” season following the “highest”.

For example, take θ = 12 and denote the seasons by months. The ordering of the

months is clear and it is also obvious that December, the “highest” month, is fol-

lowed by January, the “lowest” month. This additional structure in the covariate

is incorporated by defining the distance measure d(x, t mod θ) by

d(x, t mod θ) = min{|x− t mod θ|, |x+ θ − t mod θ|}.

Note that due to the circularity, d(x, t mod θ) ∈ {0, . . . b θ
2
c}, with bxc the largest

integer, smaller than or equal to x. The closed form solution to (4.8) is given by

m̂(u, x) =
1
T

∑T
t=1 Yt,TKh(u,

t
T

)Lλ(x, tmod θ)
1
T

∑T
t=1Kh(u,

t
T

)Lλ(x, tmod θ)

Denoting the product kernel by W(h,λ)(u, x, t) = Kh(u,
t
T

)Lλ(x, tmod θ) we can

rewrite the estimator as

m̂(u, x) =

∑T
t=1W(h,λ)(u, x, t)Yt,T∑T
t=1W(h,λ)(u, x, t)

.

Given the estimated season-trend function m̂(u, x) we can retrieve an estimator

for the error process. This is given by

Ẑt = Yt,T − m̂(
t

T
, st) ∀t = 1, . . . , T, (4.9)

with st denoting the season that observation t was made in.
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4.4 Data Illustration using Weather Data

In this section we will illustrate our estimation procedure using weather data ob-

tained from the German weather service, the DWD4. We will show how to interpret

the estimate and briefly discuss some issues in implementing the estimator. The

focus will be on using our estimator as an initial data analytic step. In doing so

we hope to be able to see possible violations of any additionally imposed structure

on the season and trend specification. Specifically, we will use our estimate to

investigate possible deviations from imposing additivity as in (4.2).

4.4.1 The Data

The data used to illustrate our estimation procedure are monthly air tempera-

ture measurements from the weather station on the Zugspitze, Germany’s highest

mountain. The data run from August 1900 until December 2013 and consist of the

monthly average of the average daily temperature measurements5. Thus, our total

sample consists of T = 1349 monthly observations6. Denote the monthly average

temperature at time t by Tempt. The data are plotted in Figure 4.3.

By purely looking at the data plot it is difficult to judge, whether there is a

seasonal pattern or not. Furthermore, it is virtually impossible in this case to

discern whether it is plausible to assume an additive structure for the season

and trend function as in (4.2). In the following, we will see that estimating our

season-trend function may help in judging whether such a specification seems at

all plausible.

4The DWD provides a vast amount of historical weather and climate data at

http://www.dwd.de/datenservice.
5On each day, three measurements were taken. One in the morning, one at midday and one

in the evening. The daily measurement times were changed in January 1987 and again in April

2004. For more information see the relevant pages at http://www.dwd.de
6The values for May, June, July and August 1945 seem to have been imputed by the DWD

as the station was under US control in this period and no daily values are available.
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Figure 4.3: Plot of Tempt, the monthly average of the average daily measured

temperature on the Zugspitze.

4.4.2 The Model

We will set the number of seasons to θ = 12, i.e. equal to the number of months

in a year. As the first observation is in August, i.e. s1 = 8, we will use the

reordering of the seasons so that the first seasonal effect θ1 in the additive model

(4.2) corresponds to January. Thus, the model we will use for our monthly mean

temperature is

Tempt,T = m(
t

T
, (t+ 7) mod θ) + Zt ∀t = 1, . . . , T = 1349 (4.10)
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with {Zt} a zero mean stationary process and m(·, ·) defined on [0, 1]×{0, . . . , 11}.
The corresponding additive model as in (4.2) is obtained by setting

m(
t

T
, t mod θ) = m0(

t

T
) +mθ(t)

with m0 a smooth deterministic trend component and mθ the periodic component,

which using the dummy variable approach as in (4.4) is given by

mθ(t) =
θ−1∑
k=0

θkI((t+ 7) mod θ = k).

Hence, the additive model we will use for the monthly mean temperature is given

by

Tempt,T = m0(
t

T
) +

θ−1∑
k=0

θkI((t+ 7) mod θ = k) + Zt ∀t = 1, . . . , T (4.11)

for {Zt} a zero mean stationary process and m0 a smooth deterministic trend

function.

4.4.3 The Estimate

In this subsection, we will present the estimate of the season-trend function m(u, x)

for the temperature model in (4.10). The estimate m̂(u, x) was obtained as de-

scribed in section 4.3 using the bandwidths (h, λ) = (0.24, 0.06). We will comment

on how these bandwidths were chosen in section 4.4.4. The estimate is calculated

over the grid {(u, x) : u ∈ { 1
T
, 2
T
, . . . , t−1

T
, 1} and x ∈ {0, 1, . . . , 11}}. At first we

will present two ways to illustrate the estimated seasonal-trend function m̂(u, x).

In comparing the estimate of our model with the estimate of the additive model in

(4.11) we will also make use of the interpretation of the estimated seasaon-trend

function m̂(u, x) as an estimated seasonal curve for every rescaled time point u or

as the estimated time trend for every season x.
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Figure 4.4: Perspective plots of estimated season-trend function m̂(u, x) with

bandwidth choice (h, λ) = (0.24, 0.06). Left Panel: View from January 2013.

Right Panel: View from December 1900.

The first way to illustrate the estimate m̂(u, x) is given in Figure 4.4. Note,

that although m(·, ·) is only defined at the seasons x ∈ {0, 1, . . . , 11}, for ease of

interpretation the estimate is depicted using perspective plots7. The labelling on

the rescaled time axis has been done using the time points prior to rescaling and the

season indicators have been labelled using the corresponding month abbreviations.

The perspective plot in the right panel is obtained from the one in the left panel by

rotating it through 180◦. This enables us to see the whole season-trend function

estimate. Returning to the two interpretations of the estimate, the seasonal curve

7The plot only uses the estimates at yearly intervals from June 1901, corresponding to u =

11/T up until June 2012, which corresponds to u = 1331/T . Reducing the amount of points in

the perspective plots was needed as using all time points would have made the perspective plot

so dense that no shape would be visible.
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for every rescaled time point is obtained by taking slices parallel to the season axis.

The other interpretation of the estimate as an estimated time trend for every season

can be seen by taking slices parallel to the rescaled time axis. These estimated

trends for each season are depicted by the ‘horizontal’ lines on the estimated

surface. In general, the mean monthy temperature seems to have increased slightly,

peaking in about 1950 before dropping down to a trough in about 1970 and then

increasing again until today. This rough pattern seems to be common across all

seasons, although the increases and drops vary in magnitude.

An alternative way to present the estimate of the season-trend function is to look

at the contour plot corresponding to the above perspective plots, which is given

in Figure 4.5.
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Figure 4.5: Contour plot of estimated seasonal trend function with bandwidth

choice (h, λ) = (0.24, 0.06).



4.4 Data Illustration using Weather Data 77

Taking vertical slices one obtains the estimated seasonal curve at the respective

rescaled time point, whereas taking horizontal slices yields the estimated time

trends for the respective season. The general pattern of a mean temperature

rise until about 1950, a subsequent fall until about 1970 and the continuing rise

until the present day is again visible. However, one can now we begin to see

that this pattern is not the same over all seasons. One difference is with respect

to the maximal estimated temperature difference within a season. Comparing the

horizontal slices of the estimated contour for March and the summer months of July

and August, one can see that the change in March over the entire period is less than

1◦C, whereas it is approaching 2◦C for Juli and August. This observed difference

in the range of the estimated mean monthly temperature by month is made more

explicit in table 4.1. The first row (Max.) provides the largest estimated mean

monthly temperature by month over the observation period. The second row

(Min.) gives the corresponding smallest estimated mean monthly temperature.

Finally, their differenc is in the third row (Range) from which we see that the

maximal difference of the estimated mean monthly temperature is 0.72◦C in March

and 1.85◦C in August.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Max. -10.16 -10.88 -9.19 -6.35 -1.80 1.27 3.03 3.34 0.54 -2.04 -6.54 -9.38

Min. -11.43 -11.49 -9.91 -7.43 -3.05 -0.22 1.45 1.49 -0.43 -3.51 -7.54 -10.00

Range 1.27 0.61 0.72 1.08 1.25 1.49 1.58 1.85 0.97 1.47 1.00 0.62

Table 4.1: Maximum (Max.), Minimum (Min.) and Range (Range) of estimated

mean monthly temperature by month.

Not only does the maximal difference of the estimated mean monthly temper-

ature vary by month, but the shape of the estimated trend itself als varies by

month. This can be seen more clearly by plotting the estimated seasonal trends

by month as in Figure 4.6. The shape of the trends in March, April, May and

June are very similar. The trends in July and August are also very similar and

differ from the four preceding months by the absence of a drop in the middle of

the observation period. The remaining six trends cannot be grouped so easily and
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are quite different to the other trends in terms of shape.
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Figure 4.6: Plot of estimated seasonal trends by month with bandwidth choice

(h, λ) = (0.24, 0.06) for January until June (left hand panel) as well as July until

December (right hand panel).

Of course this difference in the estimated trend over each season cannot be seen
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when one estimates the additive model (4.11). Instead, m̂0, the estimated trend

in the additive model, is a weighted average of the estmiated seasonal trends in

Figure 4.6. In Figure 4.7 one can see that the estimated trend in the additive model

has a shape similar to the one seen for the July and August trends in Figure 4.6.

This is not so surprising given that the shape of the trends for March to June are

fairly similar and the range of the estimated trends is largest in July and August,

as seen in table 4.1.
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Figure 4.7: Plot of estimated trend m̂0 from additive model (4.11) with bandwidth

h = 0.2.

Up until now, we have focused mainly on the interpretation of the season-trend

function as giving the estimated time trend for every season. Let us now turn to

the other interpretation of it providing a seasonal curve for every rescaled time

point. From the estimated season-trend function m̂(u, x) the estimated season

curve at rescaled time point u0 is given by

{m̂(u0, x) : x ∈ {0, . . . , θ − 1}}.

Figure 4.8 provides a plot of these estimated seasonal curves for seven different
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time points. If the season-trend function m(u, x) were additive as in (4.11), then

we would expect the estimated seasonal curves {m̂(u, x) : x ∈ {0, . . . , θ − 1}} to

have a similar shape and roughly be parallel.
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Figure 4.8: Plot of estimated seasonal trends with bandwidth choice (h, λ) =

(0.24, 0.06) for u ∈ {1/T, 270/T, 540/T, 810/T, 1080/T, 1} .

As we can see for the seven chosen time points the seasonal curves do indeed
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have the same shape. However, we again observe that the seasonal curves have

changed over time, with the estimated effect of the summer months having in-

creased, whereas the estimated seasonal effect in December having hardly changed

at all.

Comparison of estimate to actual data

In this subsection, we see how our estimate compares to the actual data series. To

do so we compare the fit of our model at the observed combinations of time and

season with the actual series. The fit of our model is given by m̂( t
T
, (t+7) mod 12).

In Figure (4.9) we see a plot of the fit along with the actually observed monthly

mean Temperature (Tempt,).
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Figure 4.9: Plot of fitted versus actual mean monthly temperature with bandwidth

choice (h, λ) = (0.24, 0.06).
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The fit is given by the black line plotted in the background. The actual monthly

temperature is plotted using the grey line in the foreground. The fit seems to

capture the seasonal fluctation quite well. The model fit also displays a slight

upward movement particularly in the summer months. However, the peaks are

not fitted so well in particular those in the negative direction.

We will take a closer look at the discrepancy between the estimated and the

actual mean temperature by analysing the residual process, i.e. the estimated

error process, given by

Ẑt = Tempt − m̂(
t

T
, (t+ 7) mod 12) ∀t = 1, . . . , T.

The interest will be in determining what additional structure remains in the resid-

ual process. The plot of the residual process over time is given in Figure 4.10.
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Figure 4.10: Plot of residual process over time.
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We can see that the residual process displays occasional large outliers in particu-

lar in the negative direction, which given the fitted versus actual plot in Figure 4.9

most likely result from overestimating the monthly mean temperature for months

with large negative values of Tempt. From the residual plot we can also see that

there seems to be some slight positive persistence and possibly an increase in

variation over time.

Figure 4.11 provides the estimated autocorrelations up to lag 72 of the residual

process. The dashed lines in the graph correspond to 1.96/
√
T and −1.96/

√
T ,

which would be the asymptotic 95% pointwise confidence bands if the residual

process were independent white noise (see Brockwell and Davis (1991)).
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Figure 4.11: Estimated autocorrelation function of residual process.

Looking at the estimated autocorrelation function in Figure 4.11 two things
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become apparent. Firstly, the seemingly positive persistence of the residual process

is confirmed by the estimated autocorrelation of the first lag being somewhat larger

than the remaining lags. Secondly, the estimated autocorrelation function does

not seem to indicate any additional periodicity, which would result in a sinusoidal

shape. As we will see in the next section, these two findings have a lot to do with

the choice of the smoothing bandwidths.

4.4.4 Comment on bandwidth selection

When implementing the estimate in Subsection 4.4.3 we used the bandwidth choice

(h, λ) = (0.24, 0.06). In this subsection, we will explain how we arrived at this

particular choice. As in all nonparametric estimation settings, the choice of the

smoothing parameters is crucial. However, without distributional results for our

estimator, we cannot use the popular method of plug-in bandwidths, which rely on

asymptotic expansions of the respective estimators. Furthermore, it is known that

in trend estimation, standard crossvalidation procedures do not work when the

error term is autocorrelated, in particular when the error process is positively cor-

related (see for example Altman (1990),Altman (1993), Hart (1991), Hart (1994),

Hall and Keilegom (2003) or Herrmann et al. (1992)). All the aforementioned

studies look at bandwidth selection in nonparametric trend estimation without

any seasonality. In our setting, crossvalidation also appears to result in under-

smoothing in the time direction when the error is positively autocorrelated.

Without guidance from statistical theory to help choose our bandwidths, we fol-

lowed a modelling principal mentioned in Mudelsee (2010) for climate data models,

namely that the residual process should contain little structure. Thus we estimated

our model for a large number of bandwidths and then chose the bandwidths that in

some way minimized the structure in the residual process. The bandwidth in the

rescaled time direction (h) was taken from {0.05, 0.055, 0.06, . . . , 0.29, 0.295, 0.3}
and the one in the seasonal direction (λ) was taken from {0, 0.02, . . . , 0.28, 0.3}. In

total, this resulted in the need to estimate 816 models, one for each pair of band-

widths (h, λ). For each choice of bandwidths we then computed the estimated auto-

correlation function of the residual process, denoted by {ρ̂k(h, λ) : k = 0, 1, 2, . . . }.
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To capture the idea of minimizing the structure in the residual process, we chose

to minimize the sum of squared estimated autocorrelations up to some order p,

i.e. set

(hp, λp) = arg min
h,λ

p∑
k=1

ρ̂k(h, λ)2,

with ρ̂k denoting the estimated lag k autocorrelation of the residual process and

p the number of lags included in the sum. Using this criterion, we computed

(hp, λp) for different values of p. The results are given in Table 4.2. The choice of

(h, λ) = (0.24, 0.06) was made due to the closeness of the values in the last three

columns of Table 4.2 to this pair of values.

p 12 24 36 48 60 72 84 96

hp 0.18 0.24 0.24 0.24 0.215 0.24 0.245 0.25

λp 0.00 0.00 0.04 0.04 0.08 0.06 0.06 0.06

Table 4.2: Bandwidth choice that maximizes sum of estimated squared autorcor-

relations of error up to order of lag in first column.

To finish this comment on bandwidth choice, we want to highlight the effect of

the bandwidths on the estimate and the residual process. When comparing the

estimate over all 816 model one can see that the overall shape of the estimates are

similar. Increasing λ, the smoothing parameter in the seasonal direction leads to

a dampening of the estimated season-trend function. Increasing h, the bandwidth

in the rescaled time direction leads the seasonal trends shown in Figure 4.6 to

become smoother. In contrast ‘wigglier’ seasonal trends are obtained for smaller

bandwidths h.

The effect of the bandwidth choice on the residual process is even more pro-

nounced. Firstly, by eye there is hardly any recognizable difference when varying

h in [0.14,0.3] and λ in [0.00,0.14]. However, for smaller values of h, the estimated

autocorrelations at multiples of lag 12 start to decrease markedly. This is seen in

the upper panel of Figure 4.12, which gives the estimated autocorrelation function
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for the residual process with the extreme bandwidth choice (h, λ) = (0.05, 0.06).

The larger negative autocorrelations at lags 12, 24, 36 and 48 are clearly visible.
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Figure 4.12: Upper panel: Estimated autocorrelation function of residual process

for (h, λ) = (0.0.5, 0.06). Lower panel: Estimated autocorrelation function of

residual process for (h, λ) = (0.24, 0.30).

The other clearly visible impact of the bandwidth choice on the residual process
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pertains to large values of λ, which lead to a sinusoidal pattern in the estimated

autocorrelation function as illustrated in the lower panel of Figure 4.12 for the

bandwidth choice (h, λ) = (0.24, 0.30).

4.4.5 Comparison to other models

In this final subsection, we will compare the estimate from our model with esti-

mates obtained from three competing models. We will consider the nonparametric

additive model in (4.11) and two parametric additive models: One using a linear

time trend, and the other a more flexible cubic time trend. The seasonal compo-

nent will be modelled using the dummy variable approach in all of the models.

Using θ = 12 and the fact that the first observation is in August the competing

models are:

(I) Tempt,T = m0(
t

T
) +

11∑
k=0

θkI((t+ 7) mod 12 = k) + Zt

(II) Tempt,T = β0 + β1t+ β2t
2 + β3t

3 +
11∑
k=0

θkI((t+ 7) mod 12 = k) + Zt

(II) Tempt,T = β0 + β1t+
11∑
k=0

θkI((t+ 7) mod 12 = k) + Zt

In all three models we follow the estimation procedure in Chapter 2 to first estimate

the parameters of the seasonal component. Subtracting the estimated seasonal

component from the monthly mean temperature we then estimated the respective

trend components. The parametric trends are estimated by least squares. The

trend in the nonparametric additive component model in (I) is estimated using a

local constant estimator.

We will focus solely on comparing the fits and the residual processes of the

competing models with ours. As it is difficult to discern much by overlaying the

fits we have plotted the difference of the fit from our model to the ones for the

three competing models in Figure (4.13).
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Figure 4.13: Upper panel: Difference of fits between our model and model (I).

Middle panel: Difference of fits between our model and model (II). Lower panel:

Difference of fits between our model and model (III).
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As we have already seen the additive model fit is in close accordance with our

model fit. This visible again in the top panel of Figure (4.13). The largest difference

between the two fits is at the beginning of the sample with our model fitting an

at most 0.8◦C higher temperature than the additive model. The difference in the

fits then reduces to below 0.5◦C. It is also seen to be quite symmetric without

one of the models systematically etimating a higher temperature than the other.

In contrast modelling the trend using a cubic time trend results in a much less

symmetric difference of fits. Especially at the end of the observation period the fit

using the model with the cubic trend is systematically higher than the one from

our model. The behaviour of the fit of the linear trend model in the bottom panel

seems to be intermediate to the other two fits.

In total, all the fits are fairly close to one another with none deviating from our

fit by more than 1◦C at any point in time. Furthermore, there seems to be little

difference in the quality of the fits for all the models as the residual processes and

their respective estimated autocorellation functions are virtually identical.

4.5 Concluding Remarks

We have introduced a model that avoids decomposing the time series under study

into a periodic component, a trend component and a noise component. Instead,

the model is characterised by a season-trend function that can be interpreted

as a regression function when rearranging the data. We have illustrated how

to interpret the estimate obtained from the model by appplying it to a German

temperature series. There it was seen that the behaviour of our estimate is fairly

similar to the one obtained from the additive specifications. This in turn is strongly

dependent on the chosen bandwidth as we will show next. To do so, we have

plotted the fitted temperature versus the actual mean monthly temperature for

our model (4.10) and the additive model (4.11) in Figure 4.14 for a different choice

of bandwidths than in Section 4.4. For the additive model we have set h = 0.05

and for our model we have taken (h, λ) = (0.05, 0.0.6).
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Figure 4.14: Upper panel: Fit versus actual mean monthly temperature for our

model with bandwidth choice (h, λ) = (0.05, 0.06). Lower panel: Fit versus actual

mean monthly temperature for addtive model with bandwidth choice h = 0.05.
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The fit in the upper panel seems to capture the “medium” swings in the monthly

temperature much better than the fit for the additive model in the lower panel.

Hence, although this bandwidth choice leaves additional structure in the residual

process as is evident from Figure 4.10, it seems to produce a model that fits

the mean monthly temperature much better than the one in Section 4.4. This

highlights how important the bandwidth choice is in our model. Consequently, it

would be desirable to have a data dependent bandwidth selection method. One

possibility may be to use a local linear estimator in the rescaled time direction

and select the bandwidths by adapting the one sided cross validation approach

introduced by Hart and Yi (1998), which is well behaved for autocorrelated errors

as shown in Hart and Lee (2005).

Given a reliable bandwidth selection method one could apply our model to sea-

sonally unadjusted economic time series. This would be especially interesting

given the extensive use of additive decomposition models in data agencies. In this

context one would also want to be able to test for additivity.

Lastly, one could look at the choice of θ, in particular with respect to the ro-

bustness of the estimate and the possible estimation of θ.
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Appendix A

Proofs for Chapter 2

In this appendix we have collected all the proofs needed to establish the results in

Chapter 2 on the additive model.

A.1 Proof of Theorem 2.4.2

In this appendix, we prove Theorem 2.4.2, which describes the asymptotic be-

haviour of our smooth backfitting estimates. For the proof, we split up the esti-

mates into a “stochastic” part and a “bias” part. In Theorem A.1.1, we provide a

uniform expansion of the stochastic part. This result is an extension of a related

expansion given in Mammen and Park (2005) in the context of bandwidth selec-

tion in additive models. The bias part is treated in Theorem A.1.2. The proof of

both theorems requires uniform convergence results for the kernel smoothers that

enter the backfitting procedure as pilot estimates. These results are summarized

in Appendix A.3. Note that the two theorems A.1.1 and A.1.2 are not only needed

for the second estimation step but also for the derivation of the asymptotics of the

AR estimates in the third step. Throughout this appendix, we use the symbol C to

denote a finite real constant which may take a different value on each occurrence.
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Proof of Theorem 2.4.2

We decompose the backfitting estimates m̃j into a stochastic part m̃A
j and a bias

part m̃B
j according to

m̃j(xj) = m̃A
j (xj) + m̃B

j (xj).

The two components are defined by

m̃S
j (xj) = m̂S

j (xj)−
∑
k 6=j

∫ 1

0

m̃S
k (xk)

p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃S

c (A.1)

for S = A, B. Here, m̂A
k and m̂B

k denote the stochastic part and the bias part of

the Nadaraya-Watson pilote estimates defined as

m̂A
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )εt/p̂j(xj) (A.2)

m̂B
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )
[
(mθ(t)− m̃θ(t))

+m0

( t
T

)
+

d∑
k=1

mk(X
k
t )
]
/p̂j(xj) (A.3)

for j = 0, . . . , d, where we set X0
t = t

T
to shorten the notation. Furthermore,

m̃A
c = 1

T

∑T
t=1 εt and m̃B

c = 1
T

∑T
t=1{(mθ(t) − m̃θ(t)) + m0( t

T
) +

∑d
k=1mk(X

k
t )}.

We now analyse the convergence behaviour of m̃A
j and m̃B

j separately.

We first provide a higher-order expansion of the stochastic part m̃A
j . The follow-

ing result extends Theorem 6.1 in Mammen and Park (2005) (in particular their

equation (6.3)) to our setting.

Theorem A.1.1. Suppose that assumptions (A1) – (A5) apply and that the band-

width h satisfies (A6)(a) or (A6)(b). Then

sup
xj∈[0,1]

∣∣∣m̃A
j (xj)− m̂A

j (xj)−
1

T

T∑
t=1

rj,t(xj)εt

∣∣∣ = op

( 1√
T

)
,

where rj,t(·) := rj(
t
T
, Xt, ·) are absolutely uniformly bounded functions with

|rj,t(x′j)− rj,t(xj)| ≤ C|x′j − xj|

for a constant C > 0.



A.1 Proof of Theorem 2.4.2 97

Proof. As Mammen and Park (2005) work in an i.i.d. setting, we cannot apply

their Theorem 6.1 directly. In what follows, we outline the arguments needed to

extend their proof to our framework. For an additive function g(x) = g0(x0) +

. . .+ gd(xd), let

ψ̂jg(x) = g0(x0) + . . .+ gj−1(xj−1) + g∗j (xj) + gj+1(xj+1) + . . .+ gd(xd)

with

g∗j (xj) = −
∑
k 6=j

∫ 1

0

gk(xk)
p̂j,k(xj, xk)

p̂j(xj)
dxk +

d∑
k=0

∫ 1

0

gk(xk)p̂k(xk)dxk.

Using the uniform convergence results from Appendix A.3 and exploiting our model

assumptions, we can show that Lemma 3 in Mammen et al. (1999) applies in our

case. For m̃A(x) = m̃A
0 (x0) + . . .+ m̃A

d (xd), we therefore have the expansion

m̃A(x) =
∞∑
r=0

Ŝrτ̂(x),

where Ŝ = ψ̂d · · · ψ̂0 and τ̂(x) = ψ̂d · · · ψ̂1[m̂A
0 (x0)− m̂A

c,0] + . . . + ψ̂d[m̂
A
d−1(xd−1)−

m̂A
c,d−1] + [m̂A

d (xd)− m̂A
c,d] with m̂A

c,j =
∫ 1

0
m̂A
j (xj)p̂j(xj)dxj. Now decompose m̃A(x)

according to

m̃A(x) = m̂A(x)− m̂A
c +

∞∑
r=0

Ŝr(τ̂(x)− (m̂A(x)− m̂A
c )) +

∞∑
r=1

Ŝr(m̂A(x)− m̂A
c )

with m̂A(x) = m̂A
0 (x0) + ... + m̂A

d (xd) and m̂A
c = m̂A

c,0 + . . . + m̂A
c,d. We show that

there exist absolutely bounded functions at(x) with |at(x)− at(y)| ≤ C‖x− y‖ for

a constant C s.t.

∞∑
r=1

Ŝr(m̂A(x)− m̂A
c ) =

1

T

T∑
t=1

at(x)εt + op

( 1√
T

)
(A.4)

uniformly in x. A similar claim holds for the term
∑∞

r=0 Ŝ
r(τ̂(x)− (m̂A(x)− m̂A

c )).

As m̂A
c = (d+ 1) 1

T

∑T
t=1 εt, this implies the result.
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The idea behind the proof of (A.4) is as follows: From the definition of the

operators ψ̂j, it can be seen that

Ŝ(m̂A(x)− m̂A
c ) =

d−1∑
j=0

ψ̂d · · · ψ̂j+1

( d∑
k=j+1

Sj,k(xj)
)

(A.5)

with

Sj,k(xj) = −
∫ 1

0

p̂j,k(xj, xk)

p̂j(xj)
(m̂A

k (xk)− m̂A
c,k)dxk.

In what follows, we show that the terms Sj,k(xj) have the representation

Sj,k(xj) = − 1

T

T∑
t=1

( pj,k(xj, X
k
t )

pj(xj)pk(Xk
t )
− 1
)
εt + op

( 1√
T

)
(A.6)

uniformly in xj. Thus, they essentially have the desired form 1
T

∑
twt,k(xj)εt with

some weights wt,k. This allows us to infer that

Ŝ(m̂A(x)− m̂A
c ) =

1

T

T∑
t=1

bt(x)εt + op

( 1√
T

)
(A.7)

uniformly in x with some absolutely bounded functions bt satisfying |bt(x)−bt(y)| ≤
C‖x− y‖ for some C > 0. Moreover, using the uniform convergence results from

Appendix A.3, it can be shown that

∞∑
r=0

Ŝr(m̂A(x)− m̂A
c ) =

∞∑
r=0

Sr−1Ŝ(m̂A(x)− m̂A
c ) + op

( 1√
T

)
(A.8)

uniformly in x, where S is defined analogously to Ŝ with the density estimates

replaced by the true densities. Combining (A.7) and (A.8) completes the proof.

To show (A.6), we exploit the mixing behaviour of the variables Xt. Plugging

the definition of m̂A
k into the term Sj,k, we can write

Sj,k(xj) = − 1

T

T∑
t=1

(∫ 1

0

p̂j,k(xj, xk)

p̂j(xj)p̂k(xk)
Kh(xk, X

k
t )dxk − 1

)
εt.
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Then applying the uniform convergence results from Appendix A.3, we can replace

the density estimates in the above expression by the true densities. This yields

Sj,k(xj) = − 1

T

T∑
t=1

(∫ 1

0

pj,k(xj, xk)

pj(xj)pk(xk)
Kh(xk, X

k
t )dxk − 1

)
εt + op

( 1√
T

)
=: S∗j,k(xj) + op

( 1√
T

)
uniformly for xj ∈ [0, 1]. In the final step, we show that

S∗j,k(xj) = − 1

T

T∑
t=1

( pj,k(xj, X
k
t )

pj(xj)pk(Xk
t )
− 1
)
εt + op

( 1√
T

)
again uniformly in xj. This is done by applying a covering argument together

with an exponential inequality for mixing variables. The employed techniques are

similar to those used to establish the results of Appendix A.3.

We now turn to the bias part m̃B
j .

Theorem A.1.2. Suppose that (A1) – (A5) hold. If the bandwidth h satisfies

(A6)(a), then

sup
xj∈Ih

|m̃B
j (xj)−mj(xj)| = Op(h

2) (A.9)

sup
xj∈Ich

|m̃B
j (xj)−mj(xj)| = Op(h) (A.10)

for j = 0, . . . , d. If the bandwidth satisfies (A6)(b), we have

sup
xj∈Ih

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h
2) (A.11)

sup
xj∈Ich

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h) (A.12)

for j = 0, . . . , d.
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Proof. The result follows from Theorem 3 in Mammen et al. Mammen et al.

1999. To make sure that the latter theorem applies in our case, we have to show

that the high-order conditions (A1) – (A5), (A8), and (A9) from Mammen et al.

1999 are fulfilled in our setting.1 This can be achieved by using the results from

Appendix A.3, in particular the expansion of m̂B
j given in Lemma A.3.3, and by

following the arguments for the proof of Theorem 4 in Mammen et al. 1999. To see

that (A.9) – (A.10) have to be replaced by (A.11) – (A.12) in the undersmoothing

case with h = O(T−( 1
4

+δ)), note that

∫ 1

0

αT,j(xj)p̂j(xj)dxj =
1

T

T∑
t=1

mj(X
j
t ) +Op(h

2)

with 1
T

∑T
t=1 mj(X

j
t ) = Op(

1√
T

), where αT,j(xj) is defined in Lemma A.3.3.

Using this in the proof of Theorem 3 of Mammen et al. 1999 instead of∫ 1

0
αT,j(xj)p̂j(xj)dxj = γT,j + op(h

2) with γT,j = O(h2) gives (A.11) – (A.12).

By combining Theorems A.1.1 and A.1.2, it is now straightforward to complete

the proof of Theorem 2.4.2.

A.2 Proofs of Theorems 2.4.3 and 2.4.4

This appendix contains the proofs of Theorems 2.4.3 and 2.4.4, which show con-

sistency and asymptotic normality of the AR estimates. By far the most difficult

part is the proof of asymptotic normality. After giving some auxiliary results and

proving consistency, we run through the main steps of the normality proof post-

poning the major technical difficulties to a series of lemmas. The main challenge

of the proof is to derive a stochastic expansion of 1√
T

∂l̃T (φ∗)
∂φ

. This expansion is

given in Lemmas A.2.1 – A.2.4. Note that as in Appendix A.1, C denotes a finite

real constant which may take a different value on each occurrence.

1Note that (A6) is not needed for the proof of Theorem 3 as opposed to the statement in

Mammen et al. 1999.
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Auxiliary Results

Before we come to the proofs, we list some simple facts that are frequently used

throughout this section. For ease of notation, we work with the likelihood functions

lT (φ) = −
T∑
t=1

(εt − εt(φ)
)2

l̃T (φ) = −
T∑
t=1

(ε̃t − ε̃t(φ)
)2
,

where εt(φ) =
∑p

i=1 φiεt−i and ε̃t(φ) =
∑p

i=1 φiε̃t−i. These differ from the functions

defined in (2.17) and (2.19) only in that the sum over t starts at the time point

t = 1 rather than at t = p+ 1. Trivially, the error resulting from this modification

can be neglected in the proofs.

To bound the distance between lT and l̃T , the following facts are useful: From

the convergence results on the estimates m̃θ, m̃0, . . . , m̃d, it is easily seen that

max
t=1,...,T

|εt − ε̃t| = Op(h). (R1)

Using (R1), we can immediately infer that

max
t=1,...,T

sup
φ∈Φ
|εt(φ)− ε̃t(φ)| = Op(h). (R2)

Moreover, noting that ∂εt(φ)
∂φi

= εt−i and analogously ∂ε̃t(φ)
∂φi

= ε̃t−i, we get

max
t=1,...,T

sup
φ∈Φ

∣∣∣∂εt(φ)

∂φi
− ∂ε̃t(φ)

∂φi

∣∣∣ = Op(h). (R3)

Proof of Theorem 2.4.3

Let lT (φ) and l̃T (φ) be the likelihood functions introduced in the previous subsec-

tion. We show that

sup
φ∈Φ

∣∣∣ 1

T
l̃T (φ)− 1

T
lT (φ)

∣∣∣ = op(1). (A.13)
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This together with standard arguments yields consistency of φ̃. In order to prove

(A.13), we decompose 1
T
l̃T (φ)− 1

T
lT (φ) into

1

T
l̃T (φ)− 1

T
lT (φ) =

1

T

T∑
t=1

(
ε2
t − ε̃2

t

)
+

2

T

T∑
t=1

(
ε̃t − εt

)
ε̃t(φ)

+
2

T

T∑
t=1

εt
(
ε̃t(φ)− εt(φ)

)
+

1

T

T∑
t=1

(
ε2
t (φ)− ε̃2

t (φ)
)
.

Using (R1) – (R3), it is straightforward to show that the four terms on the right-

hand side of the above equation are all op(1) uniformly in φ. This shows (A.13).

Proof of Theorem 2.4.4

By the usual Taylor expansion argument, we obtain

0 =
1

T

∂l̃T (φ̃)

∂φ
=

1

T

∂l̃T (φ∗)

∂φ
+

1

T

∂2l̃T (φ̄)

∂φ∂φT
(φ̃− φ∗)

with some intermediate point φ̄ between φ∗ and φ̃. Rearranging and premultiplying

by
√
T yields

√
T (φ̃− φ∗) = −

( 1

T

∂2l̃T (φ̄)

∂φ∂φT

)−1 1√
T

∂l̃T (φ∗)

∂φ
.

In what follows, we show that

1

T

∂2l̃T (φ̄)

∂φ∂φT
P−→ H (A.14)

1√
T

∂l̃T (φ∗)

∂φ

d−→ N(0,Ψ) (A.15)

with Ψ = 4W + 4Ω and H = −2Γp, where Γp is the autocovariance matrix of

the AR process {εt}, W = (E[η2
0ε−iε−j])i,j=1,...,p and Ω is given in (A.24). This

completes the proof.

Proof of (A.14). By straightforward calculations it can be seen that

sup
φ∈Φ

∣∣∣ 1

T

∂2l̃T (φ)

∂φ∂φT
− 1

T

∂2lT (φ)

∂φ∂φT

∣∣∣ = op(1)
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and 1
T
∂2lT (φ̄)
∂φ∂φT

P−→ H. This yields (A.14).

Proof of (A.15). We write

1√
T

∂l̃T (φ∗)

∂φi
=

1√
T

∂lT (φ∗)

∂φi
+
( 1√

T

∂l̃T (φ∗)

∂φi
− 1√

T

∂lT (φ∗)

∂φi

)
.

Introducing the notation φ∗0 = −1, we obtain that

1√
T

∂l̃T (φ∗)

∂φi
− 1√

T

∂lT (φ∗)

∂φi
=

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−k − ε̃t−k)εt−i
)

+

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−i − ε̃t−i)ε̃t−k
)

=

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−k − ε̃t−k)εt−i
)

+

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−i − ε̃t−i)εt−k
)

+ op(1),

(A.16)

where the last equality follows from the fact that (εt−i − ε̃t−i)(ε̃t−k − εt−k) =

Op(h
2) = op(

√
T ) uniformly in t, k, and i by (R1). In what follows, we derive a

stochastic expansion of the terms

QT = Q
[k,i]
T :=

1√
T

T∑
t=1

(εt−k − ε̃t−k)εt−i.

By symmetry this also gives us an expansion for Q
[i,k]
T and thus by (A.16) also for

the difference 1√
T

∂l̃T (φ∗)
∂φi

− 1√
T

∂lT (φ∗)
∂φi

.

Introducing the shorthand X0
t = t

T
, we have

εt − ε̃t =
(
m̃θ(t)−mθ(t)

)
+

d∑
j=0

(
m̃j(X

j
t )−mj(X

j
t )
)
.

From Appendix A.1, we know that the backfitting estimates m̃j(xj) can be de-

composed into a stochastic part m̃A
j (xj) and a bias part m̃B

j (xj). This allows us
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to rewrite the term QT as

QT = QT,θ +
d∑
j=0

QT,V,j +
d∑
j=0

QT,B,j (A.17)

with

QT,θ =
1√
T

T∑
t=1

εt−i

[
m̃θ(t− k)−mθ(t− k)−

d∑
j=0

1

T

T∑
s=1

mj(X
j
s )
]

QT,V,j =
1√
T

T∑
t=1

εt−im̃
A
j (Xj

t−k)

QT,B,j =
1√
T

T∑
t=1

εt−i

[
m̃B
j (Xj

t−k) +
1

T

T∑
s=1

mj(X
j
s )−mj(X

j
t−k)

]
for j = 0, . . . , d. In Lemmas A.2.3 and A.2.4, we will show that

QT,θ = op(1) (A.18)

QT,B,j = op(1) for j = 0, . . . , d. (A.19)

Moreover, Lemmas A.2.1 and A.2.2 establish that

QT,V,0 = op(1) (A.20)

QT,V,j =
1√
T

T∑
t=1

gj

( t
T
,Xt

)
εt + op(1) for j = 1, . . . , d, (A.21)

where gj = g
[k,i]
j are deterministic functions whose exact forms are given in the

statement of Lemma A.2.1. These functions are easily seen to be absolutely

bounded by a constant independent of T . Inserting the above results in (A.17),

we obtain

QT =
1√
T

T∑
t=1

[ d∑
j=1

gj

( t
T
,Xt

)]
εt + op(1).

Using this together with (A.16) now yields

1√
T

∂l̃T (φ∗)

∂φi
− 1√

T

∂lT (φ∗)

∂φi
=

1√
T

T∑
t=1

hi

( t
T
,Xt

)
εt + op(1) (A.22)
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with the absolutely bounded function

hi

( t
T
,Xt

)
=

d∑
j=1

p∑
k=0

2φ∗k

[
g

[k,i]
j

( t
T
,Xt

)
+ g

[i,k]
j

( t
T
,Xt

)]
, (A.23)

where we suppress the dependence of hi on the parameter vector φ∗ in the notation.

As a result,

1√
T

∂l̃T (φ∗)

∂φi
=

1√
T

∂lT (φ∗)

∂φi
+

1√
T

T∑
t=1

hi

( t
T
,Xt

)
εt + op(1)

=
1√
T

T∑
t=1

[
2ηtεt−i + hi

( t
T
,Xt

)
εt

]
+ op(1)

=:
1√
T

T∑
t=1

Ut,T + op(1),

i.e. the term of interest can be written as a normalized sum of random variables

Ut,T plus a term which is asymptotically negligible. Using the mixing assumptions

in (A1), it is straightforward to see that the variables {Ut,T , t = 1, . . . , T} form an

α-mixing array with mixing coefficients that decay exponentially fast to zero. We

can thus apply a central limit theorem for mixing arrays to obtain that

1√
T

∂l̃T (φ∗)

∂φi

d−→ N(0, ψii)

with ψii = limT→∞ E( 1√
T

∑T
t=1 Ut,T )2. Using the Cramer-Wold device, it is now

easy to show that

1√
T

∂l̃T (φ∗)

∂φ

d−→ N(0,Ψ)

with Ψ = (ψij)i,j=1,...,p, where Ψ = 4W + 4Ω and Ω = (ωij)i,j=1,...,p with

ωij =
1

2

∞∑
l=−∞

E
[
η0ε−iεl

∫ 1

0

hj(u,Xl)du
]

+
1

2

∞∑
l=−∞

E
[
η0ε−jεl

∫ 1

0

hi(u,Xl)du
]

+
1

4

∞∑
l=−∞

E
[
ε0εl

∫ 1

0

hi(u,X0)hj(u,Xl)du
]
. (A.24)
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In order to complete the proof of asymptotic normality, we still need to show

that equations (A.18) – (A.21) are fulfilled for the terms QT,θ, QT,V,j, and QT,B,j.

We begin with the expansion of the variance components QT,V,j for j = 1, . . . , d,

as this is the technically most interesting part.

Lemma A.2.1. It holds that

QT,V,j =
1√
T

T∑
s=1

gj

( s
T
,Xs

)
εs + op(1)

for j = 1, . . . , d. The functions gj are given by

gj

( s
T
,Xs

)
= gNWj (Xj

s ) + gSBFj

( s
T
,Xs

)
with

gNWj (Xj
s ) = E−s

[ Kh(X
j
−k, X

j
s )ε−i∫ 1

0
Kh(X

j
−k, w)dw pj(X

j
−k)

]
gSBFj

( s
T
,Xs

)
= E−s[rj,s(Xj

−k)ε−i],

where E−s[ · ] is the expectation with respect to all variables except for those depend-

ing on the index s and the functions rj,s(·) = rj(
s
T
, Xs, ·) are defined in Theorem

A.1.1 of Appendix A.1.

Proof. By Theorem A.1.1, the stochastic part m̃A
j of the smooth backfitting

estimate m̃j has the expansion

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑
s=1

rj,s(xj)εs + op

( 1√
T

)
uniformly in xj, where m̂A

j is the stochastic part of the Nadaraya-Watson pilot

estimate and rj,s(·) = rj(
s
T
, Xs, ·) is Lipschitz continuous and absolutely bounded.

With this result, we can decompose QT,V,j as follows:

QT,V,j =
1√
T

T∑
t=1

εt−im̂
A
j (Xj

t−k) +
1√
T

T∑
t=1

εt−i

[ 1

T

T∑
s=1

rj,s(X
j
t−k)εs

]
+ op(1)

=: QNW
T,V,j +QSBF

T,V,j + op(1).
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In the following, we will give the arguments needed to treat QNW
T,V,j. The line of

argument for QSBF
T,V,j is essentially identical although some of the steps are easier

due to the properties of the rj,s functions.

Plugging the definition (A.2) of the estimate m̂A
j (xj) into the term QNW

T,V,j, we get

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )

1
T

∑T
v=1Kh(X

j
t−k, X

j
v)
εt−i

)
εs. (A.25)

In a first step, we show that

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )µt

)
εs + op(1), (A.26)

where µt := q−1
j (Xj

t−k)εt−i with qj(xj) =
∫ 1

0
Kh(xj, w)dw pj(xj). To do so, decom-

pose 1
T

∑T
v=1 Kh(xj, X

j
v) as 1

T

∑T
v=1 Kh(xj, X

j
v) = qj(xj) +Bj(xj) + Vj(xj) with

Bj(xj) =
1

T

T∑
v=1

E[Kh(xj, X
j
v)]− qj(xj)

Vj(xj) =
1

T

T∑
v=1

(
Kh(xj, X

j
v)− E[Kh(xj, X

j
v)]
)
.

Notice that supxj∈[0,1] |Bj(xj)| = Op(h) and supxj∈[0,1] |Vj(xj)| = Op(
√

log T/Th).

Using a second order Taylor expansion of f(z) = (1 + z)−1 we arrive at

1
1
T

∑T
v=1 Kh(xj, X

j
v)

=
1

qj(xj)

(
1 +

Bj(xj) + Vj(xj)

qj(xj)

)−1

=
1

qj(xj)

(
1− Bj(xj) + Vj(xj)

qj(xj)
+Op(h

2)
)

uniformly in xj. Plugging this decomposition into (A.25), we obtain

QNW
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )

qj(X
j
t−k)

εt−iεs −QNW,B
T,V,j −Q

NW,V
T,V,j + op(1)
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with

QNW,B
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )
Bj(X

j
t−k)

q2
j (X

j
t−k)

εt−iεs

QNW,V
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )
Vj(X

j
t−k)

q2
j (X

j
t−k)

εt−iεs.

All that is required to establish (A.26) is to show that both QNW,B
T,V,j and QNW,V

T,V,j

are op(1). As supxj∈Ih |Bj(xj)| = Op(h
2) and supxj∈Ich |Bj(xj)| = Op(h), we can

use Markov’s inequality together with (A9) to get that QNW,B
T,V,j = op(1). In order

to show that QNW,V
T,V,j = op(1), let Ev[·] denote the expectation with respect to the

variables indexed by v. Then

∣∣QNW,V
T,V,j

∣∣ =
∣∣∣ 1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )

q2
j (X

j
t−k)

εt−i

×
( 1

T

T∑
v=1

(Kh(X
j
t−k, X

j
v)− Ev[Kh(X

j
t−k, X

j
v)])
)
εs

∣∣∣
≤ 1√

T

T∑
t=1

|εt−i|
q2
j (X

j
t−k)

sup
xj∈[0,1]

∣∣∣ 1

T

T∑
s=1

Kh(xj, X
j
s )εs

∣∣∣
× sup

xj∈[0,1]

∣∣∣ 1

T

T∑
v=1

(Kh(xj, X
j
v)− Ev[Kh(xj, X

j
v)])
∣∣∣

= Op

( log T

Th

)( 1√
T

T∑
t=1

|εt−i|
q2
j (X

j
t−k)

)
= Op

( log T

Th

√
T
)

= op(1),

as 1√
T

∑T
t=1 |εt−i| q

−2
j (Xj

t−k) = Op(
√
T ) by Markov’s inequality.

In the next step, we replace the inner sum over t in (A.26) by a determinis-

tic function that only depends on Xj
s and show that the resulting error can be

asymptotically neglected. Define

ψt,s = Kh(X
j
t−k, X

j
s )µt − E−s[Kh(X

j
t−k, X

j
s )µt],

where E−s[·] is the expectation with respect to all variables except for those de-

pending on the index s. With the above notation at hand, we can rewrite (A.26)
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as

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

E−s[Kh(X
j
t−k, X

j
s )µt]

)
εs +RNW

T,V,j + op(1),

where

RNW
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

ψt,sεs. (A.27)

Once we show that RNW
T,V,j = op(1), we are left with

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

E−s[Kh(X
j
t−k, X

j
s )µt]

)
εs + op(1)

=
1√
T

T∑
s=1

E−s[Kh(X
j
−k, X

j
s )µ0]εs + op(1)

=:
1√
T

T∑
s=1

gNWj (Xj
s )εs + op(1)

with µ0 = q−1
j (Xj

−k)ε−i and qj(X
j
−k) =

∫ 1

0
Kh(X

j
−k, w)dw pj(X

j
−k).

Thus it remains to prove that RNW
T,V,j = op(1). To do so, define

P := P
(∣∣∣ 1√

T

T∑
s=1

1

T

T∑
t=1

ψt,sεs

∣∣∣ > δ
)

for a fixed δ > 0. Then by Chebychev’s inequality

P ≤ 1

T 3δ2

T∑
s,s′=1

T∑
t,t′=1

E
[
ψt,sεsψt′,s′εs′

]
=

1

T 3δ2

∑
(s,s′,t,t′)∈S

E
[
ψt,sεsψt′,s′εs′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈Sc

E
[
ψt,sεsψt′,s′εs′

]
=: PS + PSc ,

where S is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′, t, t′ ≤ T such that (at least)

one index is separated from the others and Sc is its complement. We say that an

index, for instance t, is separated from the others if min{|t− t′|, |t− s|, |t− s′|} >
C2 log T , i.e. if it is further away from the other indices than C2 log T for a constant

C2 to be chosen later on. We now analyse PS and PSc separately.
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(a) First consider PSc . If a tuple (s, s′, t, t′) is an element of Sc, then no index

is separated from the others. Since the index t is not separated, there exists

an index, say t′, such that |t − t′| ≤ C2 log T . Now take an index different

from t and t′, for instance s. Then by the same argument, there exists an

index, say s′, such that |s − s′| ≤ C2 log T . As a consequence, the number

of tuples (s, s′, t, t′) ∈ Sc is smaller than CT 2(log T )2 for some constant C.

Using (A8), this suffices to infer that∣∣PSc∣∣ ≤ 1

T 3δ2

∑
(s,s′,t,t′)∈Sc

C

h2
≤ C

δ2

(log T )2

Th2
→ 0.

(b) The term PS is more difficult to handle. First note that S can be written as

the union of the disjoint sets

S1 = {(s, s′, t, t′) ∈ S | the index t is separated}
S2 = {(s, s′, t, t′) ∈ S | (s, s′, t, t′) /∈ S1 and the index s is separated}
S3 = {(s, s′, t, t′) ∈ S | (s, s′, t, t′) /∈ S1 ∪ S2 and the index t′ is separated}
S4 = {(s, s′, t, t′) ∈ S | (s, s′, t, t′) /∈ S1 ∪ S2 ∪ S3 and the index s′ is separated}.

Thus, PS = PS1 + PS2 + PS3 + PS4 with

PSr =
1

T 3δ2

∑
(s,s′,t,t′)∈Sr

E
[
ψt,sεsψt′,s′εs′

]
.

for r = 1, . . . , 4. In what follows, we show that PSr → 0 for r = 1, . . . , 4. As

the four terms can be treated in exactly the same way, we restrict attention

to the analysis of PS1 .

We start by taking a cover {Im}MT
m=1 of the compact support [0, 1] of Xj

t−k.

The elements Im are intervals of length 1/MT given by Im = [m−1
MT

, m
MT

) for

m = 1, . . . ,MT − 1 and IMT
= [1− 1

MT
, 1]. The midpoint of the interval Im

is denoted by xm. With this, we can write

Kh(X
j
t−k, X

j
s ) =

MT∑
m=1

I(Xj
t−k ∈ Im)

×
[
Kh(xm, X

j
s ) + (Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))
]
.

(A.28)
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Using (A.28), we can further write

ψt,s =

MT∑
m=1

{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µt

− E−s[I(Xj
t−k ∈ Im)Kh(xm, X

j
s )µt]

}
+

MT∑
m=1

{
I(Xj

t−k ∈ Im)(Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s ))µt

− E−s[I(Xj
t−k ∈ Im)(Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))µt]

}
=: ψAt,s + ψBt,s

and

PS1 =
1

T 3δ2

∑
(s,s′,t,t′)∈S1

E
[
ψAt,sεsψt′,s′εs′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈S1

E
[
ψBt,sεsψt′,s′εs′

]
=: PA

S1
+ PB

S1
.

We first consider PB
S1

. Set MT = CT (log T )h−3 and exploit the Lipschitz con-

tinuity of the kernel K to get that |Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s )| ≤ C

h2
|Xj

t−k−
xm|. This gives us

∣∣ψBt,s∣∣ ≤ C

h2

MT∑
m=1

(
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

|µt|

+ E
[
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

|µt|
])
≤ C

MTh2

(
|µt|+ E|µt|

)
.

Plugging this into the expression for PB
S1

, we arrive at∣∣PB
S1

∣∣ ≤ 1

T 3δ2

C

MTh2

∑
(s,s′,t,t′)∈S1

E
[
(|µt|+ E|µt|)|εsψt′,s′εs′|

]︸ ︷︷ ︸
≤Ch−1

≤ C

δ2 log T
→ 0.

We next turn to PA
S1

. Write

PA
S1

=
1

T 3δ2

∑
(s,s′,t,t′)∈S1

( MT∑
m=1

γm

)
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with

γm = E
[{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µt

− E−s[I(Xj
t−k ∈ Im)Kh(xm, X

j
s )µt]

}
εsψt′,s′εs′

]
.

By Davydov’s inequality, it holds that

γm = Cov
(
I(Xj

t−k ∈ Im)µt − E[I(Xj
t−k ∈ Im)µt], Kh(xm, X

j
s )εsψt′,s′εs′

)
≤ C

h2

(
α(C2 log T )

)1− 1
q
− 1
r ≤ C

h2

(
aC2 log T

)1− 1
q
− 1
r ≤ C

h2
T−C3

with some C3 > 0, where q and r are chosen slightly larger than 4
3

and 4,

respectively. Note that we can make C3 arbitrarily large by choosing C2 large

enough. From this, it is easily seen that PA
S1
→ 0.

Combining (a) and (b) yields that P → 0 for each fixed δ > 0. As a result,

RNW,V
T,V,j = op(1),

which completes the proof for the term QNW
T,V,j. As stated at the beginning of the

proof, exactly the same arguments can be used to analyze the term QSBF
T,V,j.

Lemma A.2.2. It holds that

QT,V,0 = op(1).

Proof. As in Lemma A.2.1, we can write

QT,V,0 =
1√
T

T∑
t=1

εt−im̂
A
0

(t− k
T

)
+

1√
T

T∑
t=1

εt−i

[ 1

T

T∑
s=1

r0,s

(t− k
T

)
εs

]
+ op(1)

=: QNW
T,V,0 +QSBF

T,V,0 + op(1).

We again restrict attention to the arguments for QNW
T,V,0, those for QSBF

T,V,0 being

essentially the same. Plugging the definition of m̂A
0 (x0) into the term QNW

T,V,0 yields

QNW
T,V,0 =

1√
T

T∑
s=1

1

T

T∑
t=1

wt,sεt−iεs
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with wt,s = Kh(
t−k
T
, s
T

)/ 1
T

∑T
v=1Kh(

t−k
T
, v
T

). Now let {ρT} be some sequence that

slowly converges to zero, e.g. ρT = (log T )−1. By Chebychev’s inequality,

P
(∣∣QNW

T,V,0| > CρT
)
≤ C

E(QNW
T,V,0)2

ρ2
T

with

E(QNW
T,V,j)

2 =
1

T 3

T∑
s,s′,t,t′=1

wt,swt′,s′E[εt−iεsεt′−iεs′ ].

The moments E[εt−iεsεt′−iεs′ ] can be written as covariances if one of the indices

s, s′, t, t′ is different from the others. Exploiting our mixing assumptions, these

covariances can be bounded by Davydov’s inequality. With the help of the resulting

bounds, it is straightforward to show that E(QNW
T,V,j)

2/ρ2
T goes to zero, which in turn

yields that QNW
T,V,j = op(1).

Note that the above argument for QT,V,0 is much easier than that for QT,V,j

presented in Lemma A.2.1. The main reason is that the weights wt,s and wt′,s′ are

deterministic allowing us to separate the expectations E[εt−iεsεt′−iεs′ ] from the

weights. In contrast, in Lemma A.2.1 we have the situation that

QNW
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

wt,sεt−iεs

with wt,s = Kh(X
j
t−k, X

j
s )/

1
T

∑T
v=1Kh(X

j
t−k, X

j
v). In this case,

E(QNW
T,V,j)

2 =
1

T 3

T∑
s,s′,t,t′=1

E[wt,swt′,s′εt−iεsεt′−iεs′ ]. (A.29)

If the covariate process {Xt} is independent of {εt}, then E[wt,swt′,s′εt−iεsεt′−iεs′ ] =

E[wt,swt′,s′ ]E[εt−iεsεt′−iεs′ ] and similar arguments as those for the term QNW
T,V,0

yield that QNW
T,V,j = op(1). However, if we allow Xt and εt to be dependent,

then the expectations in (A.29) do not split up into two separate parts any

more. Moreover, since the weights wt,s and wt′,s′ depend on all the Xj
t for t =

1, . . . , T , applying covariance inequalities like Davydov’s inequality to the expres-

sions E[wt,swt′,s′εt−iεsεt′−iεs′ ] is of no use any more. This necessitates the much
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more subtle arguments of Lemma A.2.1 to exploit the covariance structure of the

processes {Xt} and {εt}.
We finally turn to the analysis of the terms QT,θ and QT,B,j.

Lemma A.2.3. It holds that

QT,θ = op(1).

Proof. We write

QT,θ =
1√
T

T∑
t=1

εt−i
[
m̃θ(t− k)−mθ(t− k)

]
− 1√

T

T∑
t=1

εt−i

[ d∑
j=0

1

T

T∑
s=1

mj(X
j
s )
]

=: QT,θ,a +QT,θ,b

and consider the two terms QT,θ,a and QT,θ,b separately. For QT,θ,a, we have

QT,θ,a =
θ∑

tθ=1

1√
T

Ktθ,T∑
r=1

εtθ+(r−1)θ−i
(
m̃θ(tθ − k)−mθ(tθ − k)

)
=

θ∑
tθ=1

(
m̃θ(tθ − k)−mθ(tθ − k)

)︸ ︷︷ ︸
=op(1)

( 1√
T

Ktθ,T∑
r=1

εtθ+(r−1)θ−i

)
︸ ︷︷ ︸

=Op(1)

= op(1).

Recalling the normalization of the functions mj in (2.4), a similar argument yields

that QT,θ,b = op(1) as well.

Lemma A.2.4. It holds that

QT,B,j = op(1)

for j = 0, . . . , d.

Proof. We start by considering the case j 6= 0: Let Ih = [2C1h, 1 − 2C1h] and

Ich = [0, 2C1h) ∪ (1 − 2C1h, 1] as defined in Theorem 2.4.2. Using the uniform
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convergence rates from Theorem A.1.2, we get

|QT,B,j| =
∣∣∣ 1√
T

T∑
t=1

εt−i

[
m̃B
j (Xj

t−k) +
1

T

T∑
s=1

mj(X
j
s )−mj(X

j
t−k)

]∣∣∣
≤ Op(h

2)
1√
T

T∑
t=1

|εt−i|I(Xj
t−k ∈ Ih) +Op(h)

1√
T

T∑
t=1

|εt−i|I(Xj
t−k /∈ Ih).

By Markov’s inequality, the first term on the right-hand side is Op(h
2
√
T ) = op(1).

Recognizing that by (A9), E[|εt−i|I(Xj
t−k /∈ Ih)] ≤ Ch for a sufficiently large

constant C, another appeal to Markov’s inequality yields that the second term is

Op(h
2
√
T ) = op(1) as well. This completes the proof for j 6= 0.

The proof for j = 0 is essentially the same: We have

|QT,B,0| =
∣∣∣ 1√
T

T∑
t=1

εt−i

[
m̃B

0

(t− k
T

)
+

1

T

T∑
s=1

m0

( s
T

)
−m0

(t− k
T

)]∣∣∣
≤ Op(h

2)
1√
T

T∑
t=1

|εt−i|I
(t− k

T
∈ Ih

)
+Op(h)

1√
T

T∑
t=1

|εt−i|I
(t− k

T
∈ Ich

)
= Op(h

2
√
T ) +Op(h)

1√
T

T∑
t=1

|εt−i|I
(t− k

T
∈ Ich

)
.

As
∑T

t=1 I( t−k
T
∈ Ich) ≤ CTh for a sufficiently large constant C, Markov’s inequality

yields that the second term on the right-hand side is Op(h
2
√
T ) = op(1) as well.

A.3 Auxiliary Results

For completeness, we collect some standard type uniform convergence results in

this appendix which were used to prove Theorem 2.4.2 in Appendix A.1. These

can be shown by small modifications of standard arguments as given for example

in Bosq (1998), Masry (1996) or Hansen (2008). We start with the kernel density

estimates p̂j and p̂j,k. Using the notation p0(x0) = I(x0 ∈ (0, 1]), we have the

following result.
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Lemma A.3.1. Suppose that (A1) – (A5) hold and that the bandwidth h satisfies

(A6)(a) or (A6)(b). Then

sup
xj∈Ih

∣∣p̂j(xj)− pj(xj)∣∣ = Op

(√ log T

Th

)
+ o(h) (A.30)

sup
0≤xj≤1

∣∣p̂j(xj)− κ0(xj)pj(xj)
∣∣ = Op

(√ log T

Th

)
+O(h) (A.31)

sup
xj ,xk∈Ih

∣∣p̂j,k(xj, xk)− pj,k(xj, xk)∣∣ = Op

(√ log T

Th2

)
+ o(h) (A.32)

sup
0≤xj ,xk≤1

∣∣p̂j,k(xj, xk)− κ0(xj)κ0(xk)pj,k(xj, xk)
∣∣ = Op

(√ log T

Th2

)
+O(h) (A.33)

for j, k = 0, . . . , d with j 6= k, where κ0(v) =
∫ 1

0
Kh(v, w)dw and Ih = [2C1h, 1 −

2C1h].

We next consider the convergence behaviour of the one-dimensional Nadaraya-

Watson smoothers m̂j defined in (2.11) and (2.14). For the stochastic part m̂A
j ,

we have

Lemma A.3.2. Under (A1) – (A5) together with (A6)(a) or (A6)(b),

sup
xj∈[0,1]

∣∣m̂A
j (xj)

∣∣ = Op

(√ log T

Th

)
(A.34)

for all j = 0, . . . , d.

For the bias part m̂B
j , we have the following expansion:

Lemma A.3.3. Under (A1) – (A5) together with (A6)(a) or (A6)(b),

sup
xj∈Ih

∣∣m̂B
j (xj)− µ̂T,0 − µ̂T,j(xj)

∣∣ = op(h
2) (A.35)

sup
xj∈Ich

∣∣m̂B
j (xj)− µ̂T,0 − µ̂T,j(xj)

∣∣ = Op(h
2) (A.36)
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for all j = 0, . . . , d, where

µ̂T,0 = − 1

T

T∑
t=1

( d∑
j=1

mj(X
j
t ) + εt

)
µ̂T,j(xj) = αT,0 + αT,j(xj) +

∑
k 6=j

∫ 1

0

αT,k(xk)
p̂j,k(xj, xk)

p̂j(xj)
dxk + h2

∫
β(x)

q(x)

pj(xj)
dx−j.

Here, αT,0 = 0 and

αT,k(xk) = mk(xk) +m′k(xk)
hκ1(xk)

κ0(xk)

β(x) =
d∑

k=0

∫
u2K(u)du

(∂ log q(x)

∂xk
m′k(xk) +

1

2
m′′k(xk)

)

with κ0(xk) =
∫ 1

0
Kh(xk, w)dw and κ1(xk) =

∫ 1

0
Kh(xk, w)(w−xk

h
)dw.

Lemma A.3.3 can be proven by going along the lines of the arguments for The-

orem 4 in Mammen et al. (1999). To see that

µ̂T,0 = − 1

T

T∑
t=1

( d∑
j=1

mj(X
j
t ) + εt

)
, (A.37)

note that

m̂B
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )
(
mθ(t)− m̃θ(t)

)/
p̂j(xj)

+
1

T

T∑
t=1

Kh(xj, X
j
t )
[
m0

( t
T

)
+

d∑
k=1

mk(X
k
t )
]/
p̂j(xj)
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for j = 0, . . . , d with X0
t = t

T
. Moreover,

1

T

T∑
t=1

Kh(xj, X
j
t )
(
mθ(t)− m̃θ(t)

)/
p̂j(xj)

=
θ∑

tθ=1

(
mθ(tθ)− m̃θ(tθ)

) 1

T

Ktθ,T∑
k=1

Kh(xj, X
j
tθ+(k−1)θ)

/
p̂j(xj)

=
1

θ

θ∑
tθ=1

(
mθ(tθ)− m̃θ(tθ)

) 1

Ktθ,T

Ktθ,T∑
k=1

Kh(xj, X
j
tθ+(k−1)θ)︸ ︷︷ ︸

P−→κ0(xj)pj(xj) uniformly in xj

/
p̂j(xj) + op(h

2)

=
1

θ

θ∑
tθ=1

(
mθ(tθ)− m̃θ(tθ)

)
+ op(h

2)

uniformly in xj and

1

θ

θ∑
tθ=1

(
mθ(tθ)− m̃θ(tθ)

)
= −1

θ

θ∑
tθ=1

1

Ktθ,T

Ktθ,T∑
k=1

(
m0

(tθ + (k − 1)θ

T

)
+

d∑
j=1

mj(X
j
tθ+(k−1)θ) + εtθ+(k−1)θ

)

= −1

θ

θ∑
tθ=1

1

Ktθ,T

Ktθ,T∑
k=1

( d∑
j=1

mj(X
j
tθ+(k−1)θ) + εtθ+(k−1)θ

)
+ op(h

2)

= − 1

T

T∑
t=1

( d∑
j=1

mj(X
j
t ) + εt

)
+ op(h

2).

Combining the above calculations with the arguments from the proof of Theorem

4 in Mammen et al. 1999 yields formula (A.37) for µ̂T,0.



Appendix B

Proofs for Chapter 3

In this appendix we have collected all the proofs needed to establish the results in

Chapter 3 for the multiplicative volatility model.

B.1 Proof of Theorem 3.4.1

As mentioned before Theorem 3.4.1, the proof rests on the corresponding results

for the additive model of Chapter 2. These were proven in Appendix A.1. The

result in Theorem 3.4.1 is established by the smoothness of the reverse transform

τ̃ 2
j = exp(m̃j) for j = 0, . . . , d.

B.1.1 Restatement of results from Appendix A.1

Recall that the backfitting estimates m̃j can be decomposed into a stochastic part

m̃A
j and a bias part m̃B

j according to

m̃j(xj) = m̃A
j (xj) + m̃B

j (xj).

The two components are defined by

m̃S
j (xj) = m̂S

j (xj)−
∑
k 6=j

∫
m̃S
k (xk)

p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃S

c (B.1)
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for S = A, B. Here, m̂A
k and m̂B

k denote the stochastic part and the bias part of

the Nadaraya-Watson pilote estimates defined as

m̂A
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )ut/p̂j(xj) (B.2)

m̂B
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )
[
mc +m0

( t
T

)
+

d∑
j=1

mj(X
j
t )
]
/p̂j(xj) (B.3)

for j = 0, . . . , d, where we set X0
t = t

T
to shorten the notation. Furthermore,

m̃A
c = 1

T

∑T
t=1 ut and m̃B

c = 1
T

∑T
t=1{mc +m0( t

T
) +

∑d
j=1 mj(X

j
t )}.

We next state the results of Appendix A.1 under the assumptions of our model

in Chapter 3. As before, we first give the higher order expansion of the stochastic

part m̃A
j . Then we state the corresponding expansion for the bias part m̃B

j .

Theorem B.1.1. Suppose that assumptions (V1) – (V9) apply and that the band-

width h satisfies (V10)(a) or (V10)(b). Then uniformly for 0 ≤ xj ≤ 1,

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑
t=1

rj,t(xj)ut + op

( 1√
T

)
,

where rj,t(·) := rj(
t
T
, Xt, ·) are absolutely uniformly bounded functions with

|rj,t(x′j)− rj,t(xj)| ≤ C|x′j − xj|

for a constant C > 0.

Theorem B.1.2. Suppose that (V1) – (V9) hold. If the bandwidth h satisfies

(V10)(a), then

sup
xj∈Ih

|m̃B
j (xj)−mj(xj)| = Op(h

2) (B.4)

sup
xj∈Ich

|m̃B
j (xj)−mj(xj)| = Op(h) (B.5)



B.2 Proofs of Theorems 3.4.2 and 3.4.3 121

for j = 0, . . . , d. If the bandwidth satisfies (b), we have

sup
xj∈Ih

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h
2) (B.6)

sup
xj∈Ich

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h) (B.7)

for j = 0, . . . , d.

These expansions can be combined to show the equivalent of Theorem 2.4.2

for the transformed model (3.10). By a second order Taylor expansions of τ̃ 2
j =

exp(m̃j) for j = 0, . . . , d the result of Theroem 3.4.1 follows due to the smoothness

of the exponential function.

B.2 Proofs of Theorems 3.4.2 and 3.4.3

This appendix contains the proofs of Theorems 3.4.2 and 3.4.3, which show con-

sistency and asymptotic normality of the GARCH estimates. In particular the

proof of asymptotic normality is rather involved. To establish the normality result

we will thus start by providing the general idea of the proof which is based on

an expansion of the likelihood. The subsequent steps needed to move from this

expansion to establishing the asymptotic normality of our estimators contain the

major challenges. These have been collected in a series of lemmas at the end of this

appendix. As already pointed out in Section 3.4.2, the main difficulty is to derive

a stochastic expansion of 1√
T

∂l̃T (φ0)
∂φ

. The expansion is given in Lemmas B.2.1 –

B.2.3. Throughout this appendix C will again denote a finite real constant which

may take a different value on each occurrence.

B.2.1 Auxiliary Results

To start with, we state some facts about the behaviour of the approximate GARCH

variables ε̃t and of the conditional volatilities ṽ2
t (φ), which were defined in Subsec-

tion 3.3.2. As will become clear these will be used in the proofs Theorems 3.4.2



122 Appendix B. Proofs for Chapter 3

and 3.4.3. For ease of notation, we use the shorthand τ(x) =
∏d

j=0 τj(xj) in what

follows.

(G1) We can express ε̃2
t − ε2

t as

ε̃2
t − ε2

t = ε2
t

[τ 2( t
T
, Xt)− τ̃ 2( t

T
, Xt)

τ 2( t
T
, Xt)

+Rε

( t
T
,Xt

)]
with supx∈[0,1]d+1 |Rε(x)| = Op(h

2).

(G2) The conditional volatility v2
t (φ) has the expansion

v2
t (φ) = w

t−1∑
k=1

bk−1 + a
t−1∑
k=1

bk−1ε2
t−k + bt−1 w

1− b
,

which yields that

ṽ2
t (φ)− v2

t (φ) =
t−1∑
k=1

abk−1(ε̃2
t−k − ε2

t−k).

(G3) It holds that

max
1≤t≤T

sup
φ∈Φ

∣∣ṽ2
t (φ)− v2

t (φ)
∣∣ = Op(h).

(G4) It holds that
1

ṽ2
t (φ)

− 1

v2
t (φ)

=
v2
t (φ)− ṽ2

t (φ)

v2
t (φ)v2

t (φ)
+Rt(φ)

with max1≤t≤T supφ∈Φ |Rt(φ)| = Op(h
2).

(G5) The derivatives of v2
t (φ) with respect to the parameters w, a, and b are given

by

∂v2
t (φ)

∂w
=

t−1∑
k=1

bk−1 +
bt−1

1− b

∂v2
t (φ)

∂a
=

t−1∑
k=1

bk−1ε2
t−k

∂v2
t (φ)

∂b
= w

( t−1∑
k=1

(k − 1)bk−2 +
(t− 1)bt−2

1− b
+

bt−1

(1− b)2

)
+ a

t−1∑
k=1

(k − 1)bk−2ε2
t−k.
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The above facts are straightforward to verify. We thus omit the details.

B.2.2 Proof of Theorem 3.4.2

Let lT (φ) and l̃T (φ) be the likelihood functions introduced in (2.17) and (2.19) and

define

l(φ) = E
[ 1

T
lT (φ)

]
.

By the triangle inequality,

sup
φ∈Φ

∣∣ 1

T
l̃T (φ)− l(φ)

∣∣ ≤ sup
φ∈Φ

∣∣ 1

T
l̃T (φ)− 1

T
lT (φ)

∣∣+ sup
φ∈Φ

∣∣ 1

T
lT (φ)− l(φ)

∣∣.
From standard theory we know that

sup
φ∈Φ

∣∣ 1

T
lT (φ)− l(φ)

∣∣ = op(1)

and that l(φ) is a continuous function of φ with a unique maximum at φ0. If we

can further show that

sup
φ∈Φ

∣∣ 1

T
l̃T (φ)− 1

T
lT (φ)

∣∣ = op(1), (B.8)

then standard theory on M-estimation implies φ̃
P−→ φ0.

We will show (B.8) by decomposing 1
T
l̃T (φ)− 1

T
lT (φ) into the sum of three uni-

formly op(1) terms.

1

T
l̃T (φ)− 1

T
lT (φ)

= − 1

T

T∑
t=1

(
log ṽ2

t (φ) +
ε̃2
t

ṽ2
t (φ)

)
+

1

T

T∑
t=1

(
log v2

t (φ) +
ε2
t

v2
t (φ)

)
=

1

T

T∑
t=1

(
log v2

t (φ)− log ṽ2
t (φ)

)
+

1

T

T∑
t=1

ε2
t

( ṽ2
t (φ)− v2

t (φ)

ṽ2
t (φ)v2

t (φ)

)
+

1

T

T∑
t=1

1

ṽ2
t (φ)

(ε2
t − ε̃2

t )

=: (A) + (B) + (C).



124 Appendix B. Proofs for Chapter 3

In order to prove that the three terms (A), (B), and (C) are indeed uniformly

op(1), it suffices to show that

max
1≤t≤T

sup
φ∈Φ

∣∣ṽ2
t (φ)− v2

t (φ)
∣∣ = op(1) (B.9)

1

T

T∑
t=1

∣∣ε̃2
t − ε2

t

∣∣ = op(1) (B.10)

v2
t (φ) ≥ vmin > 0 and ṽ2

t (φ) ≥ vmin > 0 for some constant vmin. (B.11)

(B.9) is implied by (G3). For the proof of (B.10), we use (G1) together with

Theorem 3.4.1 to obtain

1

T

T∑
t=1

∣∣ε̃2
t − ε2

t

∣∣ ≤ 1

T

T∑
t=1

ε2
t

∣∣∣τ 2( t
T
, Xt)− τ̃ 2( t

T
, Xt)

τ 2( t
T
, Xt)

+Rε

( t
T
,Xt

)∣∣∣
= Op(h)

1

T

T∑
t=1

ε2
t = Op(h).

Finally, (B.11) is automatically satisfied, as by (V11)

v2
t (φ) = w

t−1∑
k=1

bk−1 + a
t−1∑
k=1

bk−1ε2
t−k + bt−1 w

1− b
≥ w ≥ κ > 0.

The same holds true for ṽ2
t (φ).

B.2.3 Proof of Theorem 3.4.3

By the usual Taylor expansion argument, we obtain

0 =
1

T

∂l̃T (φ̃)

∂φ
=

1

T

∂l̃T (φ0)

∂φ
+

1

T

∂2l̃T (φ̄)

∂φ∂φT
(φ̃− φ0)

with some intermediate point φ̄ between φ0 and φ̃. Rearranging and premultiplying

by
√
T yields

√
T (φ̃− φ0) = −

( 1

T

∂2l̃T (φ̄)

∂φ∂φT

)−1 1√
T

∂l̃T (φ0)

∂φ
.
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The proof will be completed upon showing that

1√
T

∂l̃T (φ0)

∂φ

d−→ N(0, Q) (B.12)

1

T

∂2l̃T (φ̄)

∂φ∂φT
P−→ J, (B.13)

where Q is some covariance matrix to be specified later on and J is an invertible

deterministic matrix. Thus we see that the asymptotic covariance matrix given in

Theorem 3.4.3 is

Σ = J−1QJ−1. (B.14)

Proof of (B.12). Let v2
t = v2

t (φ0) and ṽ2
t = ṽ2

t (φ0) in order to lighten notation.

Writing out the i-th element of left hand side of (B.12) we get

1√
T

∂l̃T (φ0)

∂φi
= − 1√

T

T∑
t=1

(
1− ε̃2

t

ṽ2
t

)∂ṽ2
t

∂φi

1

ṽ2
t

Succesively replacing the approximate expressions we can show that

1√
T

∂l̃T (φ0)

∂φi
=− 1√

T

T∑
t=1

(
(1− ε̃2

t

ṽ2
t

)− (1− ε2
t

v2
t

)
)∂ṽ2

t

∂φi

1

ṽ2
t

(A)

− 1√
T

T∑
t=1

(
1− ε2

t

v2
t

)∂ṽ2
t

∂φi

( 1

ṽ2
t

− 1

v2
t

)
(B)

− 1√
T

T∑
t=1

(
1− ε2

t

v2
t

) 1

v2
t

(∂ṽ2
t

∂φi
− ∂v2

t

∂φi

)
(C)

− 1√
T

T∑
t=1

(
1− ε2

t

v2
t

) 1

v2
t

∂v2
t

∂φi
(D)

Notice that the term in (D) is 1√
T

∂lT (φ0)
∂φi

and will thus by standard arguments

contribute to the asymptotic distribution. In what follows, we will show that the

term (A) will also contribute to the limiting distribution, whereas the terms (B)

and (C) will be asymptotically negligible. We will deal with each term individu-

ally starting with (B) and (C). The results will be established by replacing the
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truncated conditional volatilities v2
t by σ2

t and then repeatedly appealing to the

martingale difference structure of ηt = σ2
t − ε2

t and the results stated in Subsection

B.2.1.

We will start with (C) as it is slightly more complicated than (B). Replacing v2
t

by σ2
t we obtain

(C) =− 1√
T

T∑
t=1

[(v2
t − ε2

t )− (σ2
t − ε2

t )]
(∂ṽ2

t

∂φi
− ∂v2

t

∂φi

) 1

(v2
t )

2

− 1√
T

T∑
t=1

(σ2
t − ε2

t )
(∂ṽ2

t

∂φi
− ∂v2

t

∂φi

)((σ2
t )

2 − (v2
t )

2

(v2
t σ

2
t )

2

)
− 1√

T

T∑
t=1

(σ2
t − ε2

t )
(∂ṽ2

t

∂φi
− ∂v2

t

∂φi

) 1

(σ2
t )

2

Using (G2), we can show that |σ2
t − v2

t | = bt−1|σ2
1 − w

1−b |. This implies that the

first two terms are negligible and we get

(C) = − 1√
T

T∑
t=1

(σ2
t − ε2

t )
(∂ṽ2

t

∂φi
− ∂v2

t

∂φi

) 1

(σ2
t )

2
+ op(1).

As ηt = σ2
t −ε2

t is a martingale difference, we can use results from empirical process

theory to show that (C) = op(1). Analogously, we obtain that (B) = op(1).

Next we will consider the term (A), which will be easier to analyse be splitting

it in two:

(A) = − 1√
T

T∑
t=1

(
(1− ε̃2

t

ṽ2
t

)− (1− ε2
t

v2
t

)
)∂ṽ2

t

∂φi

1

ṽ2
t

= − 1√
T

T∑
t=1

(ε2
t − ε̃2

t )
1

v2
t

1

ṽ2
t

∂ṽ2
t

∂φi
− 1√

T

T∑
t=1

ε̃2
t

( 1

ṽ2
t

− 1

v2
t

) 1

ṽ2
t

∂ṽ2
t

∂φi

=: (A1) + (A2).

Next we will present the steps needed to deal with (A2). The results for (A1)

are established in an analogous fashion. As before, replacing the approximate
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espressions by the exact ones and using the results from Subsection B.2.1 we

obtain

(A2) =
1√
T

T∑
t=1

ε2
t

(v2
t − ṽ2

t

v2
t v

2
t

)∂v2
t

∂φi

1

v2
t

+ op(1)

Now replacing the occurences of the truncated conditional volatilities in the de-

nominator by σ2
t results in

(A2) =
1√
T

T∑
t=1

ε2
t

(v2
t − ṽ2

t

σ2
t σ

2
t

)∂v2
t

∂φi

1

σ2
t

+ op(1)

=
1√
T

T∑
t=1

(v2
t − ṽ2

t

σ2
t σ

2
t

)∂v2
t

∂φi
+

1√
T

T∑
t=1

(ε2
t − σ2

t )
(v2

t − ṽ2
t

σ2
t σ

2
t

)∂v2
t

∂φi

1

σ2
t

+ op(1)

=
1√
T

T∑
t=1

(v2
t − ṽ2

t

σ2
t σ

2
t

)∂v2
t

∂φi
+ op(1)

with the last equality again due to the Martingale difference argument. Defining

G
[i]
t :=

∂v2t
∂φi

1
σ2
t σ

2
t
, using (G1) – (G3)) and writing m(x) = mc+m0(x0)+ . . .+md(xd)

for short, we can infer that

(A2) =
1√
T

T∑
t=1

G
[i]
t

t−1∑
k=1

abk−1(ε2
t−k − ε̃2

t−k) + op(1)

=
1√
T

T∑
t=1

G
[i]
t

t−1∑
k=1

abk−1ε2
t−k

[τ 2( t−k
T
, Xt−k)− τ̃ 2( t−k

T
, Xt−k)

τ 2( t−k
T
, Xt−k)

+Op(h
2)
]

+ op(1)

=
1√
T

T∑
t=1

G
[i]
t

t−1∑
k=1

abk−1ε2
t−k

[exp(ξt−k)[m( t−k
T
, Xt−k)− m̃( t−k

T
, Xt−k)]

exp(m( t−k
T
, Xt−k))

]
+ op(1)

=
1√
T

T∑
t=1

G
[i]
t

t−1∑
k=1

abk−1ε2
t−k

[
m
(t− k

T
,Xt−k

)
− m̃

(t− k
T

,Xt−k

)]
+ op(1)

where the third equality is by a first order Taylor expansion with an intermediate

point ξt−k between m( t−k
T
, Xt−k) and m̃( t−k

T
, Xt−k). We are now in a position to

use the stochastic expansion of our estimators in the additive model, which were

given in Appendix B.1. To do so, split the regression function and the estimators
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into their additive components and use the expansion of the component estimators

into their respective bias and variance parts, denoted by (Aj2,B) and (Aj2,V ) to get

We finally split up the difference m( t−k
T
, Xt−k) − m̃( t−k

T
, Xt−k) into its additive

components and decompose the various components into their bias and stochastic

parts. This yields

(D) = (Dc)−
d∑
j=0

(DV,j) +
d∑
j=0

(DB,j) + op(1)

with

(Dc) =
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

[
(mc − m̃c) +

d∑
j=0

1

T

T∑
s=1

mj(X
j
s )
]

(DV,j) =
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−km̃

A
j (Xj

t−k)

(DB,j) =
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

[
mj(X

j
t−k)− m̃

B
j (Xj

t−k)−
1

T

T∑
s=1

mj(X
j
s )
]

for j = 0, . . . , d, where for ease of notation we have used the shorthand X0
t−k = t−k

T
.

As in Appendix A, m̃A
j denotes the stochastic part of the backfitting estimate m̃j

and m̃B
j denotes the bias part.

In Lemmas B.2.1 – B.2.3, we will show that

(Dc) =
1√
T

T∑
t=1

gc,Dut + op(1) (B.15)

(DV,j) =
1√
T

T∑
t=1

gj,D

( t
T
,Xt

)
ut + op(1) (B.16)

(DB,j) = op(1) (B.17)

for all j = 0, . . . , d with ut = log(ε2
t ). Here, gc,D is a constant which is specified in

Lemma B.2.2 and gj,D for j = 0, . . . , d are functions whose exact forms are given
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in Lemma B.2.1. Using (V12), these functions are easily seen to be absolutely

bounded by a constant independent of T . To summarize, we obtain that

(D) =
1√
T

T∑
t=1

[
gc,D +

d∑
j=0

gj,D

( t
T
,Xt

)]
ut + op(1).

Repeating the arguments from above, we can derive an analogous expression for

(C). We thus get that

(C) + (D) =
1√
T

T∑
t=1

g
( t
T
,Xt

)
ut + op(1)

with a function g( t
T
, Xt) = gc +

∑d
j=0 gj(

t
T
, Xt) whose additive components are

absolutely bounded. Recalling that (A) = op(1) and (B) = op(1), we finally obtain

that
1√
T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi
=

1√
T

T∑
t=1

g
( t
T
,Xt

)
ut + op(1) (B.18)

with an absolutely bounded function g.

We next consider the term 1√
T

∂lT (φ0)
∂φi

more closely. W.l.o.g. we can take φi = a.

(The case φi = b runs analogously and the case φi = w is much easier to handle.)

By similar arguments to before,

1√
T

∂lT (φ0)

∂φi
= − 1√

T

T∑
t=1

(
1− ε2

t

v2
t

)∂v2
t

∂φi

1

v2
t

= − 1√
T

T∑
t=1

(1− η2
t

σ2
t

) t−1∑
k=1

bk−1ε2
t−k + op(1).

Furthermore,

1√
T

T∑
t=1

(1− η2
t

σ2
t

) t−1∑
k=1

bk−1ε2
t−k =

T−1∑
k=1

bk−1 1√
T

T∑
t=k+1

(1− η2
t

σ2
t

)
ε2
t−k

=

C2 log T∑
k=1

bk−1 1√
T

T∑
t=k+1

(1− η2
t

σ2
t

)
ε2
t−k + op(1)

=
1√
T

T∑
t=1

(mint,T∑
k=1

bk−1ε2
t−k

)(1− η2
t

σ2
t

)
+ op(1),



130 Appendix B. Proofs for Chapter 3

where C2 > 0 is a sufficiently large constant and mint,T := min{t − 1, C2 log T}.
For the second equality, we have used the fact that the weights bk and bi converge

exponentially fast to zero as i, k → ∞. This implies that only the sums up to

C2 log T with some constant C2 are asymptotically relevant. Summing up, we

have that

1√
T

∂lT (φ0)

∂φi
= − 1√

T

T∑
t=1

(mint,T∑
k=1

bk−1ε2
t−k

)(1− η2
t

σ2
t

)
+ op(1). (B.19)

Combining (B.18) and (B.19) yields

1√
T

∂l̃T (φ0)

∂φi
=

1√
T

∂lT (φ0)

∂φi
+

1√
T

T∑
t=1

g
( t
T
,Xt

)
ut + op(1)

=
1√
T

T∑
t=1

{
g
( t
T
,Xt

)
ut −

(mint,T∑
k=1

bk−1ε2
t−k

)(1− η2
t

σ2
t

)}
+ op(1)

=:
1√
T

T∑
t=1

Zt,T + op(1),

i.e. the term of interest can be written as a normalized sum of random variables

Zt,T plus a term which is asymptotically negligible.

We now apply a central limit theorem for mixing arrays to the term 1√
T

∑T
t=1 Zt,T .

In particular, we employ the theorem of Francq & Zaköıan (2005), which allows the

mixing coefficients of the array {Zt,T} to depend on the sample size T . Verifying

the conditions of this theorem, we can conclude that

1√
T

∂l̃T (φ0)

∂φi
→ N(0, σ2)

with

σ2 = E
[
λ2(X0)u0

]
− 2E

[
λ1(X0)u0

( ∞∑
k=1

bk−1ε2
−k

)(1− η2
0

σ2
0

)]
+ E

[( ∞∑
k=1

bk−1ε2
−k

)2(1− η2
0

σ2
0

)2]
+ 2E

[
λ1,1(X0, Xl)u0ul

]



B.2 Proofs of Theorems 3.4.2 and 3.4.3 131

− 2E
[
λ1(X0)u0

( ∞∑
k=1

bk−1ε2
l−k

)(1− η2
l

σ2
l

)]
− 2E

[
λ1(Xl)ul

( ∞∑
k=1

bk−1ε2
−k

)(1− η2
0

σ2
0

)]
,

where we use the shorthand λ1(x) =
∫ 1

0
g(w, x)dw, λ2(x) =

∫ 1

0
g2(w, x)dw, and

λ1,1(x, x′) =
∫ 1

0
g(w, x)g(w, x′)dw. Using the Cramer-Wold device, it is now easy

to show that
1√
T

∂l̃T (φ0)

∂φ
→ N(0, Q).

The entries of the matrix Q can be calculated similarly to the expression σ2. We

omit the details as the formulas are rather lengthy and complicated.

Proof of (A.14). By straightforward but tedious calculations it can be seen that

sup
φ∈Φ

∣∣∣ 1

T

∂2l̃T (φ)

∂φ∂φT
− 1

T

∂2lT (φ)

∂φ∂φT

∣∣∣ = op(1).

From standard theory for GARCH models, we further know that

1

T

∂2lT (φ̄)

∂φ∂φT
P−→ J

with some invertible deterministic matrix J . This yields (A.14).

In order to complete the proof of asymptotic normality of the GARCH estimates

we still need to show that equations (B.15) – (B.17) are fulfilled for the terms

(Dc), (DV,j), and (DB,j). We begin with the expansion of the variance components

(DV,j), as this is the technically most interesting part.

Lemma B.2.1. It holds that

(DV,j) =
1√
T

T∑
s=1

gj,D

( s
T
,Xs

)
us + op(1)

with

gj,D

( s
T
,Xs

)
= gNWj,D (Xj

s ) + gSBFj,D

( s
T
,Xs

)
for j = 0, . . . , d. The functions gNWj,D and gSBFj,D are absolutely bounded. Their exact

form is given in the proof (see (B.24) and (B.27) – (B.29)).
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Proof. We start by giving a detailed exposition of the proof for j 6= 0. By Theo-

rem B.1.1, the stochastic part m̃A
j of the smooth backfitting estimate m̃j has the

expansion

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑
s=1

rj,s(xj)us + op

( 1√
T

)
uniformly in xj, where m̂A

j is the stochastic part of the Nadaraya-Watson pilot es-

timate and the function rj,s(·) = rj(
s
T
, Xs, ·) is Lipschitz continuous and absolutely

bounded.

With this result, we can decompose (DV,j) as follows:

(DV,j) =
1√
T

T∑
t=1

∂v2
t

∂φi

1

σ2
t σ

2
t

t−1∑
k=1

abk−1ε2
t−km̃

A
j (Xj

t−k)

=
1√
T

T∑
t=1

t−1∑
k=1

abk−1ε2
t−k

∂v2
t

∂φi

1

σ2
t σ

2
t

m̂A
j (Xj

t−k)

+
1√
T

T∑
t=1

t−1∑
k=1

abk−1ε2
t−k

∂v2
t

∂φi

1

σ2
t σ

2
t

[ 1

T

T∑
s=1

rj,s(X
j
t−k)us

]
+ op(1)

=: (DNW
V,j ) + (DSBF

V,j ) + op(1).

In the following, we will give the exact arguments needed to treat (DNW
V,j ). The

line of argument for (DSBF
V,j ) is essentially identical although some of the steps are

easier due to the properties of the rj,s functions.

W.l.o.g set φi = a and let mi,k = max{k+1, i+1}. Using ∂v2
t /∂a =

∑t−1
i=1 b

i−1ε2
t−i

and m̂A
j (xj) = 1

T

∑T
s=1Kh(xj, X

j
s )us/

1
T

∑T
v=1Kh(xj, X

j
v), we get

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1 (B.20)

×
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )

1
T

∑T
v=1Kh(X

j
t−k, X

j
v)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]
.

In a first step, we replace the sum 1
T

∑T
v=1 Kh(X

j
t−k, X

j
v) in (B.20) by a term

which only depends on Xj
t−k and show that the resulting error is asymptotically
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negligible. Let qj(xj) =
∫ 1

0
Kh(xj, w)dw pj(xj). Furthermore define

Bj(xj) =
1

T

T∑
v=1

E[Kh(xj, X
j
v)]− qj(xj)

Vj(xj) =
1

T

T∑
v=1

(
Kh(xj, X

j
v)− E[Kh(xj, X

j
v)]
)
.

Notice that supxj∈[0,1] |Bj(xj)| = Op(h) and supxj∈[0,1] |Vj(xj)| = Op(
√

log T/Th).

From the identity 1
T

∑T
v=1 Kh(xj, X

j
v) = qj(xj) + Bj(xj) + Vj(xj) and a second

order Taylor expansion of (1 + x)−1 we arrive at

1
1
T

∑T
v=1 Kh(xj, X

j
v)

=
1

qj(xj)

(
1 +

Bj(xj) + Vj(xj)

qj(xj)

)−1

(B.21)

=
1

qj(xj)

(
1− Bj(xj) + Vj(xj)

qj(xj)
+Op(h

2)
)

uniformly in xj. Plugging this decomposition into (B.20), we obtain

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )

qj(X
j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]
− (DNW,B

V,j )− (DNW,V
V,j ) + op(1)

with

(DNW,B
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )
Bj(X

j
t−k)

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]

(DNW,V
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )
Vj(X

j
t−k)

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]
.

As supxj∈Ih |Bj(xj)| = Op(h
2) and supxj∈Ich |Bj(xj)| = Op(h), we can proceed sim-

ilarly to the proof of Lemma B.2.3 later on to show that (DNW,B
V,j ) = op(1). Next

we will show that (DNW,V
V,j ) = op(1). Let Ev[·] denote the expectation with respect
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to the variables indexed by v, then

∣∣(DNW,V
V,j )

∣∣ =
∣∣∣ T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−i

×
( 1

T

T∑
v=1

(Kh(X
j
t−k, X

j
v)− Ev[Kh(X

j
t−k, X

j
v)])
)
us

]∣∣∣
≤

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
( 1√

T

T∑
t=mi,k

∣∣∣ 1

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−i

∣∣∣
× sup

xj∈[0,1]

∣∣∣ 1

T

T∑
v=1

(Kh(xj, X
j
v)− Ev[Kh(xj, X

j
v)])
∣∣∣

× sup
xj∈[0,1]

∣∣∣ 1

T

T∑
s=1

Kh(xj, X
j
s )us

∣∣∣)
= Op

( log T

Th

) T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
( 1√

T

T∑
t=mi,k

∣∣∣ 1

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−i

∣∣∣)︸ ︷︷ ︸
=Op(

√
T ) by Markov’s inequality

= Op

( log T

Th

√
T
)

= op(1).

Together with the fact that (DNW,B
V,j ) = op(1), this yields

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )µ

i,k
t us

]
+op(1), (B.22)

where we use the shorthand µi,kt = (qj(X
j
t−k)σ

2
t σ

2
t )
−1ε2

t−kε
2
t−i.

In the next step, we replace the inner sum over t in (B.22) by a term that only

depends on Xj
s and show that the resulting error can be asymptotically neglected.

Define

ξ(Xj
t−k, X

j
s ) := ξi,kt (Xj

t−k, X
j
s ) := Kh(X

j
t−k, X

j
s )µ

i,k
t − E−s[Kh(X

j
t−k, X

j
s )µ

i,k
t ],

where E−s[·] is the expectation with respect to all variables except for those de-
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pending on the index s. With the above notation at hand, we can write

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

E−s[Kh(X
j
t−k, X

j
s )µ

i,k
t ]us

]
+ (RNW

V,j ) + op(1),

where

(RNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

]
(B.23)

=

C2 log T∑
k=1

abk−1

C2 log T∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

]
+ op(1)

for some sufficiently large constant C2 > 0. Once we show that (RNW
V,j ) = op(1),

we are left with

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

E−s[Kh(X
j
t−k, X

j
s )µ

i,k
t ]us

]
+ op(1)

=
1√
T

T∑
s=1

( T−1∑
k=1

abk−1

T−1∑
i=1

bi−1T −mi,k

T
E−s[Kh(X

j
−k, X

j
s )µ

i,k
0 ]
)
us + op(1).

As the terms with i, k ≥ C2 log T are asymptotically negligible, we can expand the

i and k sums to infinity, which yields

(DNW
V,j ) =

1√
T

T∑
s=1

( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E−s[Kh(X
j
−k, X

j
s )µ

i,k
0 ]
)
us + op(1) (B.24)

=:
1√
T

T∑
s=1

gNWj,D (Xj
s )us + op(1)

with

µi,k0 =
1

qj(X
j
−k)

1

σ2
0σ

2
0

ε2
−kε

2
−i

qj(X
j
−k) =

∫ 1

0

Kh(X
j
−k, w)dw pj(X

j
−k).
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Thus it remains to show that (RNW
V,j ) = op(1), which requires a lot of care.

We will prove that the term in square brackets in (B.23) is op(1) uniformly over

i, k ≤ C2 log T , which yields the desired result. It is easily seen that

P := P
(

max
i,k≤C2 log T

∣∣∣ 1√
T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

∣∣∣ > δ
)

≤
C2 log T∑
k=1

C2 log T∑
i=1

P
(∣∣∣ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

∣∣∣ > δ
)

︸ ︷︷ ︸
=:Pi,k

for a fixed δ > 0. Then by Chebychev’s inequality

Pi,k ≤
1

T 3δ2

T∑
s,s′=1

T∑
t,t′=mi,k

E
[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=

1

T 3δ2

∑
(s,s′,t,t′)/∈Γi,k

E
[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=: P 1

i,k + P 2
i,k,

where Γi,k is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′ ≤ T and mi,k ≤ t, t′ ≤ T such

that one index is separated from the others. We say that an index, for instance t,

is separated from the others if min{|t − t′|, |t − s|, |t − s′|} > C3 log T , i.e. if it is

further away from the other indices than C3 log T for a constant C3 to be chosen

later on. We now analyse P 1
i,k and P 2

i,k separately.

(a) First consider P 1
i,k. If a tuple (s, s′, t, t′) is not an element of Γi,k, then

no index can be separated from the others. Since the index t cannot be

separated, there exists an index, say t′, such that |t−t′| ≤ C3 log T . Now take

an index different from t and t′, for instance s. Then by the same argument,

there exists an index, say s′, such that |s− s′| ≤ C3 log T . As a consequence,

the number of tuples (s, s′, t, t′) /∈ Γi,k is smaller than CT 2(log T )2 for some
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constant C. Using (C(V12)), this suffices to infer that∣∣P 1
i,k

∣∣ ≤ 1

T 3δ2

∑
(s,s′,t,t′)/∈Γi,k

C

h2
≤ C

δ2

(log T )2

Th2
.

Hence, |P 1
i,k| ≤ Cδ−2(log T )−3 uniformly in i and k.

(b) The term P 2
i,k is more difficult to handle. We start by taking a cover {Im}MT

m=1

of the compact support [0, 1] of Xj
t−k. The elements Im are intervals of length

1/MT given by Im = [m−1
MT

, m
MT

) for m = 1, . . . ,MT −1 and IMT
= [1− 1

MT
, 1].

The midpoint of the interval Im is denoted by xm. With this, we can write

Kh(X
j
t−k, X

j
s ) =

MT∑
m=1

I(Xj
t−k ∈ Im) (B.25)

×
[
Kh(xm, X

j
s ) + (Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))
]
.

Using (B.25), we can further write

ξ(Xj
t−k, X

j
s ) =

MT∑
m=1

{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t

− E−s[I(Xj
t−k ∈ Im)Kh(xm, X

j
s )µ

i,k
t ]
}

+

MT∑
m=1

{
I(Xj

t−k ∈ Im)(Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s ))µ

i,k
t

− E−s[I(Xj
t−k ∈ Im)(Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))µ

i,k
t ]
}

=: ξ1(Xj
t−k, X

j
s ) + ξ2(Xj

t−k, X
j
s )

and

P 2
i,k =

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[
ξ1(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[
ξ2(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=: P 2,1

i,k + P 2,2
i,k .
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We first consider P 2,2
i,k . Set MT = CT (log T )3h−3 and exploit the Lips-

chitz continuity of the kernel K to get that |Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s )| ≤

C
h2
|Xj

t−k − xm|. This gives us

∣∣ξ2(Xj
t−k, X

j
s )
∣∣ ≤ C

h2

MT∑
m=1

(
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

µi,kt (B.26)

+ E
[
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

µi,kt
])

≤ C

MTh2

(
µi,kt + E[µi,kt ]

)
.

Plugging (B.26) into the expression for P 2,2
i,k , we arrive at

∣∣P 2,2
i,k

∣∣ ≤ 1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[∣∣ξ2(Xj

t−k, X
j
s )
∣∣∣∣usξ(Xj

t′−k, X
j
s′)us′

∣∣]
≤ 1

T 3δ2

C

MTh2

∑
(s,s′,t,t′)∈Γi,k

E
[
(µi,kt + E[µi,kt ])|usξ(Xj

t′−k, X
j
s′)us′|︸ ︷︷ ︸

≤Ch−1

]
≤ C

δ2

1

(log T )3
.

We next turn to P 2,1
i,k . Write

P 2,1
i,k =

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

( MT∑
m=1

Sm

)
with

Sm = E
[{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t − E−s[I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t ]
}

× usξ(Xj
t′−k, X

j
s′)us′

]
and assume that an index, w.l.o.g. t, can be separated from the others.
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Choosing C3 � C2, we get

Sm = Cov
(
I(Xj

t−k ∈ Im)µi,kt − E[I(Xj
t−k ∈ Im)µi,kt ],

Kh(xm, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

)
≤ C

h2
(α([C3 − C2] log T ))1− 2

p ≤ C

h2
(a(C3−C2) log T )1− 2

p

≤ C

h2
T−C4

with some C4 > 0 by Davydov’s inequality, where p is chosen slightly larger

than 2. Note that the above bound is independent of i and k and that we

can make C4 arbitrarily large by choosing C3 large enough. This shows that

|P 2,1
i,k | ≤ Cδ−2(log T )−3 uniformly in i and k with some constant C.

Combining (a) and (b) yields that P → 0 for each fixed δ > 0. This implies that

(RNW,V
V,j ) = op(1),

which completes the proof for the term (DNW
V,j ).

As stated at the beginning of the proof, the term (DSBF
V,j ) can be treated in

exactly the same way. Following analogous arguments as above, one obtains

(DSBF
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

E−s[rj,s(Xj
t−k)ζ

i,k
t ] us

]
+ op(1)

(B.27)

=
1√
T

T∑
s=1

( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E−s[rj,s(Xj
−k)ζ

i,k
0 ]
)
us + op(1)

=:
1√
T

T∑
s=1

gSBFj,D

( s
T
,Xs

)
us + op(1)

with ζ i,kt = (σ2
t σ

2
t )
−1ε2

t−kε
2
t−i.

Finally, the proofs for j = 0 are very similar but somewhat simpler and are thus



140 Appendix B. Proofs for Chapter 3

omitted here. For completeness we provide the functions gNW0,D and gSBF0,D :

gNW0,D

( s
T

)
=
( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−kε

2
−i
]) ∫ 1

0

Kh(
s
T
, v)∫ 1

0
Kh(v, w)dw

dv

(B.28)

gSBF0,D

( s
T
,Xs

)
=
( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−kε

2
−i
]) ∫ 1

0

r0,s(w)dw. (B.29)

Lemma B.2.2. It holds that

(Dc) =
1√
T

T∑
s=1

gc,Dus

with

gc,D =
∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−iε

2
−k

]
.

Proof. Using the fact that

m̃c =
1

T

T∑
s=1

Zs,T = mc +
1

T

T∑
s=1

m0

( s
T

)
+

d∑
j=1

1

T

T∑
s=1

mj(X
j
s ) +

1

T

T∑
s=1

us,

we arrive at

(Dc) = −
( 1

T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

)( 1√
T

T∑
s=1

us

)
with Gt =

∂v2t
∂φi

(σ2
t σ

2
t )
−1. Now let mi,k = max{k+ 1, i+ 1} and assume w.l.o.g. that

φi = a. Then

1

T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k =

1

T

T∑
t=1

( t−1∑
i=1

bi−1ε2
t−i

) 1

σ2
t σ

2
t

t−1∑
k=1

abk−1ε2
t−k

=

C2 log T∑
k=1

abk−1

C2 log T∑
i=1

bi−1 1

T

T∑
t=mi,k

1

σ2
t σ

2
t

ε2
t−iε

2
t−k + op(1)
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with some sufficiently large constant C2. Using Chebychev’s inequality and ex-

ploiting the mixing properties of the variables involved, one can show that

max
i,k≤C2 log T

1

T

T∑
t=mi,k

( 1

σ2
t σ

2
t

ε2
t−iε

2
t−k − E

[ 1

σ2
t σ

2
t

ε2
t−iε

2
t−k

])
= op(1).

This allows us to infer that

1

T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k =

C2 log T∑
k=1

abk−1

C2 log T∑
i=1

bi−1 1

T

T∑
t=mi,k

E
[ 1

σ2
t σ

2
t

ε2
t−iε

2
t−k

]
+ op(1)

=
∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−iε

2
−k

]
+ op(1),

which completes the proof.

Lemma B.2.3. It holds that

(DB,j) = op(1)

for j = 0, . . . , d.

Proof. We start by considering the case j = 0: Define

Jh = {t ∈ {1, . . . , T} : C1h ≤
t

T
≤ 1− C1h}

Juh,c = {t ∈ {1, . . . , T} : 1− C1h <
t

T
}

J lh,c = {t ∈ {1, . . . , T} :
t

T
< C1h},

where [−C1, C1] is the support of K. Using the uniform convergence rates from

Theorem B.1.2 and assuming w.l.o.g. that φi = a, we get

|(DB,0)| =
∣∣∣ 1√
T

T∑
t=1

∂v2
t

∂a

1

σ2
t σ

2
t

t−1∑
k=1

abk−1ε2
t−k

×
[
m0

(t− k
T

)
− m̃B

0

(t− k
T

)
− 1

T

T∑
s=1

m0

( s
T

)]∣∣∣



142 Appendix B. Proofs for Chapter 3

≤ Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(t− k ∈ J lh,c)

+Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(t− k ∈ Juh,c)

+Op(h
2)
C√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(t− k ∈ Jh)

=: (D
J lh,c
B,0 ) + (D

Juh,c
B,0 ) + (DJh

B,0).

By Markov’s inequality, (DJh
B,0) = Op(h

2
√
T ) = op(1). Recognizing that

(i) I(t− k ∈ Juh,c) ≤ I(t ∈ Juh,c) for all k ∈ {0, . . . , t− 1}

(ii)
∑T

t=1 I(t ∈ Juh,c) ≤ C1Th,

we get (D
Juh,c
B,0 ) = Op(h

2
√
T ) = op(1) by another appeal to Markov’s inequality.

This just leaves (D
J lh,c
B,0 ), which is a bit more tedious. By a change of variable

j = t− k,

(D
J lh,c
B,0 ) ≤ Op(h)

1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−i

t−1∑
j=1

abt−j−1ε2
jI(j ∈ J lh,c)

= Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−iI

([ t
2

]
∈ J lh,c

) t−1∑
j=1

abt−j−1ε2
jI(j ∈ J lh,c)

+Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−iI

([ t
2

]
/∈ J lh,c

) t−1∑
j=1

abt−j−1ε2
jI(j ∈ J lh,c)

=: (A) + (B),

where [x] denotes the smallest integer larger than x. Realizing that [t/2] ∈ J lh,c only

if t < 2C1hT , we get (A) = Op(h
2
√
T ) = op(1) once again by Markov’s inequality.

In (B) we can truncate the summation over j at [t/2] − 1, as I(j ∈ J lh,c) = 0 for
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j ≥ [t/2] if [t/2] /∈ J lh,c. We thus obtain

(B) ≤ Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−i

[t/2]−1∑
j=1

abt−j−1ε2
j

= Op(h)
1√
T

T∑
t=1

b[t/2]

t−1∑
i=1

bi−1

[t/2]−1∑
j=1

abt−j−1−[t/2]ε2
t−iε

2
j .

By a final appeal to Markov’s inequality we arrive at

(B) = Op(h)Op

( 1√
T

)
= op(1),

thus completing the proof for j = 0.

Next consider the case j 6= 0. Similarly to before, we have

|(DB,j)| ≤ Op(h
2)

1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(Xj

t−k ∈ Ih)

+Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(Xj

t−k /∈ Ih)

= Op(h
2
√
T ) +Op

( h√
T

) T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(Xj

t−k /∈ Ih)︸ ︷︷ ︸
=:RT

with Ih = [2C1h, 1− 2C1h] as defined in Theorem 2.4.2. Using (V12), it is easy to

see that RT = Op(h), which yields the result for j 6= 0.
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