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Summary

How to Offer the Right Products at the Right Time

and in the Right Quantity

Jochen Schlapp

Across virtually all industries, firms share one common objective: they strive to match

their supply with customer demand. To achieve this goal, firms need to offer the right

products at the right time and in the right quantity. Only firms that excel in all three

dimensions can provide products with a high customer value and achieve extraordinary

profits. This thesis investigates specific challenges that a firm has to overcome on its

way to a good match between supply and demand. The first essay investigates how a

firm can already select the right products during the product development phase. To

make good resource allocation decisions, the firm needs to collect valuable information,

and incentivize information sharing across the entire organization. The key result is

that the firm needs to balance individual and shared incentives to achieve this goal.

However, such compensation schemes come at the cost of overly broad product portfolios.

The second essay examines how uncertain customer demand patterns affect seasonal

products. Specifically, the timing of the product’s availability is crucial. Too early, and

high opportunity and inventory costs may devour profits. Too late, and the firm loses

its customers. In short, the firm has to balance a product’s market potential with the

costly market time. This tradeoff may induce a firm to stock more inventories to satisfy a

smaller market potential. Lastly, the third essay investigates how customer substitution

influences the inventory decisions of different supply chain members in the presence of

upstream competition. We find that customer substitution has a non-monotonic effect

on the supply chain members’ decisions, and that left-over inventories may decline even

when initial inventories are raised.
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Chapter I

Introduction

Across virtually all industries, firms share one common objective: they strive to match

their supply with customer demand (Cachon and Terwiesch, 2009, p. 2). This is a

demanding task even for the most successful firms since customer demand is, in general,

hard to predict. However, the rewards of outperforming rival firms on this challenge

are substantial. By better matching supply with demand a firm can reduce costs and

increase revenues. Thereby, the firm can operate more profitably and ultimately create

a sustainable competitive advantage. For any firm, the key to a better match between

supply and demand is to offer the right products at the right time and in the right quantity

(Lee, 2004; Slone, 2004). Only firms that excel in all three dimensions can provide

products with a high customer value and achieve extraordinary profits. Interestingly,

already falling short of one of these three dimensions is sufficient for products to fail in

the market place. As the following examples illustrate, evidence for this phenomenon

abounds in practice.

For instance, choosing the right products is of utmost importance in the pharmaceu-

tical industry, where product development costs are tremendous. As reported in DiMasi

et al. (2003), the total drug development costs for a single product can easily reach $800

million. Naturally, when making such huge investments in bad products that later “flop”

on the market or do not receive approval due to adverse side effects, firms eventually

suffer from eroding profits. “Blockbuster” products, in contrast, boost firm profits, as

these products can easily generate annual revenues exceeding $1 billion (Girotra et al.,

2007). As such, in the pharmaceutical industry, firm performance is closely related to

top management’s ability to reliably select the right products for development.

Yet, simply offering the right product is not enough. In 2009, the swine flu pandemic

spread all over Europe. To reduce the number of infections and to avoid a presumed high

mortality rate in the population, government agencies together with the pharmaceutical

industry intended to provide vaccination that should help immunize the population.

In Germany, such a vaccine was made publicly available at the end of October 2009.
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I. Introduction

By this time, however, the number of new infections had already peaked and people

were realizing that the adverse effects of the swine flu were rather weak (Seuchen-Info,

2010). Due to this observation, the population considered the vaccination as unnecessary,

and vaccine demand dropped dramatically. This development had disastrous financial

implications. From the overall production of 34 million doses, 29 million doses remained

idle and had to be destroyed at the end of the flu season. The total costs of this mistimed

market introduction were estimated to surpass $300 million (Briseño, 2011).

Cisco Systems Inc. is a famous example for a company that experienced the severe

repercussions of offering the right products at the right time but in the wrong quantity.

Due to unexpectedly strong demand, Cisco faced a $3.8 billion backlog in customer orders

in October 2000 (Lakenan et al., 2001). Because this inventory shortage clearly limited

Cisco’s profitability, Cisco heavily expanded production capacities to build sufficient

stocks to meet future customer demand. During this adaptation of the desired inventory

levels, however, customer demand massively dropped. Eventually, Cisco was forced to

write-down $2.25 billion in inventories in 2001 due to excessive stocks.

The above examples clearly demonstrate that a firm has to overcome manifold

challenges on its way to a good match between supply and demand. Importantly, these

challenges evolve dynamically over time as a product matures. At the very beginning,

the firm’s most important task is to choose the right products and to allocate scarce

resources across multiple product ideas. Then, once a product is fully developed, the

firm has to decide on the right time to make the product available on the market. Finally,

after the product’s introduction, the firm has to keep the right quantity of inventories

on stock to best satisfy customer demand. Moreover, firms also have to account for

the mutual interdependencies between these fundamental decisions. This dissertation

examines specific challenges that a firm experiences during these three different stages of

a product’s life, and provides explicit guidance on how to efficiently manage the tradeoffs

involved.

The first essay (joined work with Nektarios Oraiopoulos and Vincent Mak), pre-

sented in Chapter II, investigates a significant organizational challenge that is inherent

to many R&D projects: How can a firm get informed opinions about a product’s future

market value when the people with the best information are the ones who most want to

see their product succeed? This problem is particularly relevant when the different units

who run these R&D projects compete among each other for scarce resources. Given the

high uncertainty embedded in R&D projects, firms struggle to detect the most promising

2



I. Introduction

projects early on. To overcome these difficulties and to make good resource allocation

decisions, the firm needs to collect valuable information. However, information sharing

among the different units cannot be taken for granted. Instead, individual units need

to be incentivized to not only evaluate their projects thoroughly, but also to truthfully

reveal their findings. The former requires an emphasis on individual performance, while

the latter relies on the existence of a common goal across the organization. Motivated

by this commonly observed tension, we address the following question: How can a firm

incentivize individual project teams to exert effort to improve the evaluation of their

own projects, and at the same time achieve cooperation and information sharing across

the different teams?

To answer this question, we develop a game-theoretic model that combines moral

hazard during the product evaluation stage with adverse selection during the information

revelation stage. In essence, the firm needs to design an incentive scheme that induces

project managers to exert effort ex-ante, and to truthfully disclose their findings ex-post.

Our analysis reveals that such a contract must incorporate a combination of individual

and shared incentives, i.e., a bonus for the manager’s own performance and a bonus

for the firm’s overall performance. Interestingly, we find that managerial compensation

decreases in the manager’s quality of information: the more precise a manager can

determine his product’s future market value, the lower his expected compensation. Our

study also explores how the incentive misalignment between the managers and the firm

affects the firm’s evaluation strategy. The firm’s limited ability to infer the managers’

private information can lead to an under- or over-investment in information. Yet, the

firm always spreads its resources into too many products.

Chapter III (joined work with Moritz Fleischmann) looks at two different sources of

uncertainty that a firm is confronted with when offering seasonal products. Specifically,

for many seasonal products, firms do not only experience uncertainty in the magnitude

of customer demand, but also in the timing of the product’s actual selling season. This

is particularly true for products that are heavily affected by exogenous factors such as

weather conditions or the spread of diseases. For these products, a fundamental challenge

for each firm is to determine how much inventory to stock, and equally importantly, when

to make the products available for sale. Too early, and high opportunity and inventory

costs may devour profits. Too late, and the firm loses its customers. Given the need

to balance these two adverse effects, we answer the following research question: For a

seasonal product, what inventory timing and scale should a firm choose to best satisfy

3



I. Introduction

uncertain customer demand over an uncertain selling season?

To address this question, we build an analytical framework that allows a firm to

simultaneously choose its inventory scale and timing in order to effectively manage both

sources of demand uncertainty. Our results establish that the firm’s optimal inventory

strategy aims at resolving two intertwined tradeoffs. While the demand scale uncertainty

gives rise for the classical newsvendor tradeoff, the timing uncertainty creates a tension

between the product’s market potential and its market time. In combination, these

two tradeoffs create a subtle interaction between the firm’s inventory scale and the

inventory timing. Surprisingly, we find that the firm may raise its inventory levels

when the product’s market potential decreases. This happens because the firm can at

the same time shorten the product’s availability period, and a shorter selling season is

cheaper to serve. Importantly, we also show that the timing uncertainty has more severe

repercussions on a product’s profitability than an unknown demand scale. The reason

for this finding is that the firm is not able to lower the product’s inventory costs without

at the same time reducing the product’s market potential.

The study presented in Chapter IV (joined work with Moritz Fleischmann) takes

a different perspective by focusing on a specific coordination issue arising in supply

chains. In particular, we investigate how customer substitution influences the inventory

decisions of different supply chain members in the presence of upstream competition and

vertical information asymmetry among the supply chain partners. Our study is moti-

vated by our observations in the agrochemical market. This market is shaped by two

key characteristics: customers have a high willingness to buy substitute products in case

of stock-outs, and manufacturers initiate their production long before the wholesalers

commit to their final order quantities. As a result, making good inventory decisions is

a challenging task for both manufacturers and wholesalers. This is true because manu-

facturers have only limited information about the wholesaler’s future order quantities,

and they need to anticipate their rivals’ behavior and the indirect effects of substituting

customers. The wholesaler, in turn, is restricted in his decision by the manufacturers’

inventory decisions. Additionally, the wholesaler has to balance inventories across prod-

ucts in order to successfully manage the direct effects of customer substitution. Inspired

by these observations, we study the following question: Given customer substitution and

a finite selling season, what are the optimal inventory decisions of different members of

a supply chain?

To answer this question, we study a two-stage supply chain in which potentially mul-
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I. Introduction

tiple manufacturers sell partially substitutable products for a single season through a

monopolistic wholesaler. Our analysis establishes the wholesaler’s optimal inventory de-

cision. We find that inventory levels are non-monotonic in the manufacturers’ production

decision and customer substitution rates. Interestingly, the wholesaler may increase in-

ventories for a product although customers are more willing to substitute away from this

product. We find that these counter-intuitive results are the more prominent, the more

heterogeneous the products and the higher the customers’ willingness to buy substitute

products. We also explore a manufacturer’s optimal inventory decision. Surprisingly,

our study reveals that inventories may decrease under competition. This happens be-

cause a monopolistic manufacturer can coordinate the availability of all products, while

such an availability tradeoff is impossible under competition. Moreover, we show that

a manufacturer’s left-over inventories at the end of the selling season may decline even

when initial inventories are raised.

5



Chapter II

Resource Allocation Decisions under

Imperfect Evaluation

with Nektarios Oraiopoulos and Vincent Mak1

2.1 Introduction

Launching new products has always been a daunting task even for the most successful

organizations. Scholars early on highlighted that given the high uncertainty embedded

in such projects, identifying the “winners” upfront is rather unlikely, and as such, com-

mitting substantial resources early on may not always be the most prudent strategy.

Instead, scholars suggest that a firm should engage in parallel pursuits, and refine its

resource allocation decisions as more information becomes available (Nelson, 1961). A

parallel search approach allows a firm to explore a much broader set of ideas (Kor-

nish and Ulrich, 2011), develop a much more robust and adaptable business strategy

(Beinhocker, 1999), and gain a competitive advantage in environments characterized

by unforeseeable uncertainty and complex performance landscapes (Sommer and Loch,

2004). Despite these indisputable benefits, the management of parallel projects involves

substantial challenges. A fundamental one stems from the fact that these projects of-

ten co-exist within a product portfolio, and therefore, compete with each other for the

same scarce resources. This challenge is widespread in companies that manage parallel

projects and is nicely summarized in Sharpe and Keelin (1998, p.45): “how do you make

good decisions, in a high-risk, technically complex business when the information you

1The research presented in this chapter is based on a paper entitled “Resource Allocation Decisions
under Imperfect Evaluation and Organizational Dynamics”, coauthored with Nektarios Oraiopoulos
and Vincent Mak.
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II. Resource Allocation Decisions under Imperfect Evaluation

need to make those decisions comes largely from the project champions who are compet-

ing against one another for resources?” This is the primary question we address in this

essay.

This question is particularly relevant in industries where tough resource allocation

decisions need to be made. For example, given its skyrocketing costs and its highly un-

certain nature, the pharmaceutical industry has been struggling to improve its decision

making processes. Consider the recent restructuring of GlaxoSmithKline (GSK) dis-

cussed in Huckman and Strick (2010). When GlaxoWellcome and SmithKline Beecham

merged in 2000, the new company announced the creation of six independent Centers of

Excellence for Drug Discovery (CEDD) focused on different therapeutic areas, a unique

concept that sought to bring the entrepreneurial culture of a biotech R&D to the gigan-

tic new company. If a compound progressed through Phase IIa, the leadership of the

CEDD unit would present the compound to the centralized Development Investment

Board (DIB) which would ultimately decide whether the compound would receive the

substantial resources required to progress to Phase IIb. A key aspect of this restruc-

turing was the incentive scheme which, in an effort to promote decentralization and

mimic small biotech companies, offered substantial rewards to scientists and executives

for progressing compounds that originated from their own CEDD. Naturally, this policy

raised serious concerns about the emergence of ferocious competition among the different

CEDDs.

A diametrically opposite reward structure was adopted by Wyeth Pharmaceuticals

(Huckman et al., 2010). The fundamental premise of Wyeth’s restructuring efforts was

to motivate scientists to look beyond their departmental “silos” and strengthen synergies

across the various therapeutic areas, and as such, the bonuses of all eligible scientists in

R&D were based on the degree to which the entire organization achieved its objectives.

In general, promoting such synergies is perceived to be beneficial for organizations, but in

the case of running parallel projects it is often considered absolutely vital as such shared

incentives facilitate better communication across the organization. This is stressed in

Loch et al. (2006, ch. 6) who argue that the successful implementation of running parallel

projects critically relies on the ability of top management to elicit credible information

from their product development teams, and subsequently disseminate this information

to the rest of the organization. This information, in turn, is the key to efficient resource

allocation decisions that strengthen “star” projects and abandon “flops”. Under this

collective reward policy, however, a key concern at Wyeth was that it failed to reward

7



II. Resource Allocation Decisions under Imperfect Evaluation

exceptional achievements by specific project teams.

The goal of this essay is to understand how a firm should design its incentive schemes

in order to balance these two opposing forces: to incentivize individual project teams

to exert effort to improve the evaluation of their own projects with the need to achieve

cooperation and information sharing across the different project teams. Specifically, and

given the information-intensive nature of such resource allocation decision processes, we

address the following question: how can a firm balance individual and shared incentives,

so that its product managers are willing to acquire the necessary information, and equally

importantly, to share it with the rest of the organization?

It is worth noting that in such highly technical and complex environments as the

ones faced in the pharmaceutical industry, neither the acquisition nor the dissemination

of reliable information can be dictated by traditional top-down management approaches.

As Sharpe and Keelin (1998) explain, traditional top-down approaches are ineffective be-

cause no single executive could know enough about the highly complex projects that the

company is considering. Moreover, even the most sophisticated quantitative approaches

have limited value given that it is impossible for senior management to see the “quality

of thinking”2 behind those valuations. As a result, project funding decisions were pri-

marily driven by the advocacy skills of project champions. The following quote by one of

the executives highlights quite vividly his perception regarding the lack of transparency

in the evaluation process: “Figures don’t lie, but liars can figure.” (Sharpe and Keelin,

1998, p. 46). To capture these two key aspects of the decision making process, we

develop a game-theoretic model that combines moral hazard ex-ante (at the information

acquisition stage) with adverse selection ex-post (at the information revelation stage).

Our study makes three contributions to the existing literature. First, we show that

by offering a combination of individual and shared incentives, the firm can incentivize

managers to undertake highly accurate evaluation efforts and to truthfully disclose their

findings. Interestingly, more accurate information leads to lower pay-performance sen-

sitivity for both the individual and shared incentives. This highlights a key difference

between incentivizing information acquisition and inducing higher efforts in a moral haz-

ard setting where an agent’s effort (stochastically) improves the outcome of the project.

For the latter, standard principal-agent theory suggests that pay-performance sensitivity

increases as the effort has more influence on the final outcome, i.e., as the environment

2This term was used by one of the executives in Sharpe and Keelin (1998) to illustrate that senior
managers could not rank these recommendations with respect to their rigor or robustness.
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II. Resource Allocation Decisions under Imperfect Evaluation

becomes less noisy (e.g., Holmstrom, 1979). In contrast, we show that if the agent can

obtain a less noisy signal about the outcome, his pay-performance sensitivity decreases.

Moreover, the total wage of a project manager decreases as the accuracy of his infor-

mation increases. The reason behind this counter-intuitive finding is that, through the

incentive mechanism, more accurate information leads to a better alignment between the

managers’ and the firm’s interests, thereby reducing the managers’ information rents.

Second, we show that the misalignment of incentives (hereafter referred to as de-

centralization) between the firm and its product managers has a non-uniform effect on

the firm’s product evaluation strategy (i.e., the decision on how much information to

acquire ex-ante). As we would expect, decentralization increases the effective cost of

such information, and therefore, for a wide range of parameters, the firm under-invests

in information acquisition. However, for intermediate information acquisition costs and

very reliable information, decentralization may lead the firm to over-invest in informa-

tion. This result is driven by top management’s inability to distinguish informative

signals from uninformative ones when project managers possess private information.

Importantly, this has implications for the firm’s product portfolio scope: decentraliza-

tion is driving the firm to spread its resources into too many products. Lastly, our

analysis identifies under what conditions higher information accuracy and acquisition

costs might amplify or mitigate the firm’s profit losses and the total welfare losses due

to decentralization.

2.2 Related Literature

The challenges associated with resource allocation processes have been central in the

new product development (NPD) literature. A thorough review of this literature can be

found in Kavadias and Chao (2007). Recently, an emerging stream has accounted for the

decentralized nature of modern NPD processes (Terwiesch and Xu, 2008; Siemsen, 2008;

Chao et al., 2009; Sommer and Loch, 2009; Mihm, 2010; Mihm et al., 2010; Xiao and Xu,

2012) and the reality that incentive mechanisms play a central role in such processes.

The effect of incentive schemes on the effectiveness of resource allocation processes is

more explicitly studied in Chao et al. (2009), Hutchison-Krupat and Kavadias (2013),

and Chao et al. (2013). Chao et al. (2009) compare a policy in which a senior manager

empowers the divisional manager to adapt the innovation budget to the divisional sales
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versus a policy in which the senior manager directly controls the division through a fixed

budget. Hutchison-Krupat and Kavadias (2013) characterize optimal funding decisions

across different resource allocation processes such as top-down, bottom-up, and strategic

buckets. Lastly, Chao et al. (2013) study incentive schemes in a stage-gate process where

senior management has to rely on a privately informed project manager in order to

make go/no-go decisions. They emphasize the role of uncertainty regarding the quality

of the project idea, and show how it might make an organization overly conservative

in its project selection process, i.e., projects that would have been profitable do not

get approved. We contribute in the above stream of resource allocation processes by

capturing the dynamics arising when multiple product managers compete for the same

resources. All of the aforementioned papers are concerned with the level of resources

allocated to a single product, and as such, they do not address the challenges associated

with managing a portfolio of projects.

To our knowledge, the only other paper that analyzes incentives for parallel projects

is Ederer (2013). By combining both a theoretical and experimental analysis, he shows

that when workers can freely learn the best practices from each other, the firm can only

incentivize innovation by establishing group incentives. This happens because individ-

ual pay-for-performance incentive schemes encourage imitation and free-riding on the

successful ideas of others. While we also highlight the importance of group incentives

for an organization developing new products, our work differs from Ederer (2013) in

several aspects. Most notably, in our setting the outcome of the product evaluation is

not public information, and thus, the firm needs to incentivize the managers to reveal

their information truthfully. Another recent stream of work in NPD has studied parallel

search in the context of innovation tournaments (Terwiesch and Xu, 2008; Kornish and

Ulrich, 2011; Boudreau et al., 2011), but the tradeoffs involved in these settings are con-

siderably different than the resource allocation decisions within a single firm. As such,

despite the extensive discussion in the NPD community about the necessity of running

parallel projects (see Loch et al., 2006, and references therein) we know very little about

how to manage such a process within the boundaries of the firm.

Our work also touches upon a central question in the capital budgeting literature

in corporate finance. The stream most related to our setting begins with the seminal

work of Stein (1997) which focuses on the role of corporate headquarters in allocating

resources among competing projects. In particular, he compares the efficiency of inter-

nal capital markets with respect to the external ones. In a series of follow-up papers,

10
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Bernardo et al. (2001), Stein (2002), and Inderst and Laux (2005) examine the role of

incentives in mitigating agency costs, and specifically, the potential private benefits that

agents enjoy from controlling more capital, thereby reflecting a preference for “empire

building”. Closer to our work, Friebel and Raith (2010) develop a model in which pay-

for-performance incentives create an endogenous empire building motive, which in turn,

might prevent a manager from truthfully communicating his private information. They

show that the firm can induce truthful communication by using shared incentives, and

they compare the benefits and costs of integration once such information rents are taken

into account.

All of the above papers assume that information regarding the type of the project

is perfect and freely available to the agent, but not to the principal. On the contrary, in

our setting, acquiring reliable information is associated with substantial costs incurred

privately by the agent, and thus, the agent will only exert that effort if he is incentivized

to do so. To the best of our knowledge, the only other paper that studies project selection

when the agent is incentivized to acquire costly information is Lambert (1986). Our

model, however, differs in a number of ways. Most notably, Lambert (1986) considers a

single-agent setting, and as such, his model does not address the issues that we discussed

earlier regarding competition for resources among parallel projects.

2.3 Model Setup

Consider a firm that is faced with the decision of allocating its resources across multiple

projects. The key decision for the firm is whether to choose a narrow product portfolio

scope or a broader one. To capture this tradeoff in a mathematically tractable way,

we assume that the firm is contemplating two projects, and we examine under what

conditions the firm decides to allocate all of its resources in a single project (narrow

scope) versus spreading them evenly across both projects (broad scope). The market

value that the firm realizes from each project depends on two parameters: (i) the inherent

market potential of each project, which is uncertain upfront and can be either good or

bad; and (ii) the resources that the firm invests in the project. The firm seeks to

maximize its profits by allocating resources to good projects and forgoing investments

in bad ones.

A central element of our model is the product evaluation stage in which the firm
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can acquire costly information regarding each project’s potential. This information is

acquired through extensive experimentation by each project’s respective product man-

ager. Then, upon observing the outcome of this experimentation process, each product

manager makes a recommendation to the senior management of the firm (from hereon,

the firm), and the firm decides how much resources to allocate in each project. For exam-

ple, in the case of GSK, the head of each R&D unit (i.e., of each CEDD) would present

a compound to the centralized Development Investment Board, and subsequently, the

board members would decide about the progress of the compound in the next stage (the

extremely resource-intensive Phase IIb). Similarly, at Wyeth there was a centralized

Discovery Review Board that was responsible for making funding decisions across all

therapeutic areas. As discussed extensively in the aforementioned examples, the “qual-

ity of thinking” behind such recommendations by the product managers is very hard to

verify, and even less so to contract upon. As such, there can be considerable information

asymmetry between the product managers and the firm.

In our setting, the presence of information asymmetry is reflected both in the “qual-

ity of thinking” as well as in the truthfulness of the recommendation that the product

managers submit to the firm. We model the former by acknowledging that information

acquisition (e.g., experimentation) is a costly process and can be done at various levels

of quality (e.g., robustness checks may satisfy only some minimum standards, or may

be very thorough). In particular, we assume that each product manager can choose

between a high-effort and a low-effort evaluation process for his product. The chosen

effort level is not observed by the firm. For the manager, high-effort evaluation comes

with a private cost, while the cost of low-effort evaluation is normalized to zero. The

latter form of information asymmetry aims to capture the fact that not all product man-

agers truthfully communicate the results of their experimentation, especially when they

compete for resources with one another. In short, our model incorporates ex-ante moral

hazard (at the information acquisition stage) with ex-post adverse selection (at the rec-

ommendation stage), and as such, if the firm desires high-effort product evaluation and

truthful recommendations, it has to design appropriate incentive schemes. Lastly, upon

observing the managers’ recommendation, the firm decides on its resource allocation

strategy.

To summarize, the sequence of events is as follows (see Figure 2.1): (i) The firm

announces the compensation scheme to the product managers; (ii) Each manager chooses

his evaluation effort levels and incurs the associated private effort costs; (iii) Then, each
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manager observes a private and imperfect signal and makes a recommendation to the

firm regarding his product’s potential; (iv) Based on the managers’ recommendations,

the firm allocates resources to the products; (v) The products are launched and their

market value is realized. The firm receives the corresponding payoffs and compensates

its managers. In the following three subsections, we explain our modeling assumptions

regarding the above stages in more detail.

Figure 2.1.: Timing of events.

Product evaluation stage Resource allocation stage

Time

Firm:

Managers:

Announce
compensation

scheme
Allocate
resources

Exert
evaluation

effort

Give
recommen-

dation

Realize
profits

Receive
compensation

The Product Evaluation Stage

New projects carry significant uncertainty regarding their market potential. We capture

this uncertainty by assuming that two ex-ante identical products i and j can either have

high (θi = G) or low (θi = B) market potential.3 The true potential of each product is

unknown to the firm and its managers, and both states are considered ex-ante equally

likely.4 By evaluating his product, manager i receives an imperfect signal si ∈ {g, b}
which indicates whether product i has high (si = g) or low (si = b) market potential.

In line with prior work on NPD (Loch et al., 2001; Thomke, 2007), we capture the

informativeness of the signal for both products i and j by the parameter q to which we

refer to as signal fidelity. Mathematically, q represents the conditional probability that

the signal is reflective of the true market potential, i.e., Pr(si = g|θi = G) = Pr(si =

b|θi = B) = q. Importantly, the fidelity q depends on the chosen effort level ei which

can be high (ei = h) or low (ei = l). High-effort evaluation requires a cost c > 0

which is privately incurred by the product manager, and results in a signal of fidelity

q ∈
(

1
2
, 1
]
. In contrast, low effort is costless for the product manager, but results in

3For notational simplicity, we define explicitly only the parameters for project i. An identical set of
parameters applies for product j as well.

4This assumption is done for expositional clarity and does not affect qualitatively any of our results.
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an uninformative signal, i.e., q = 1
2
. Note that our assumptions cover the full range of

product evaluation difficulty. We capture products that are so complex such that high-

effort product evaluation only leads to a marginal information gain, and we also capture

very simple products for which high-effort evaluation perfectly reveals the product’s

market potential.

Upon observing the signal si, manager i revises his prior belief for his product’s

market potential to account for the new information. In particular, since both states are

ex-ante equally likely, the posterior beliefs are given by Pr(θi = G|si = g) = Pr(θi =

B|si = b) = q. Then, manager i submits his recommendation mi ∈ {g, b} about his

product’s potential to the firm. If mi = si, then a manager truthfully reveals his signal.

Thus, manager i’s action space is fully characterized by his product evaluation effort, ei,

and his subsequent recommendation, mi.

The Resource Allocation Stage

Once the firm receives the managers’ recommendations, then it has to decide on whether

to allocate all of its resources to a single product or split them evenly between products

i and j. The market value to the firm generated by product i, denoted by νi, depends

on both, its inherent potential θi as well as the amount of resources invested in it.

More specifically, we assume that if product i has a bad market potential (θi =

B), then it generates zero market value regardless of the resources invested into it.

Similarly, a product that has a good potential (θi = G), but does not receive any

resources for development, also generates zero market value. In contrast, for products of

good potential that receive resources, their generated value increases as more resources

are allocated to them because more resources improve a product’s quality and thus its

market value. In particular, if the firm splits resources evenly across two products, then

each good product’s market value is v1 > 0. If the firm allocates all resources to a single

good product, then this product’s market value is v2 > v1. The above mathematical

expressions imply that resources create value when they are allocated to products with

good potential, while resources are wasted when they are allocated to products of bad

market potential.

Note that if the firm realizes increasing returns, i.e., v2 > 2v1, then the choice of

product portfolio scope becomes a trivial question as it is always optimal to allocate all

resources to a single project. Therefore, in the remainder of this essay, we focus on the
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more interesting case where the marginal value of investing more resources in a product

is decreasing, i.e., 2v1 > v2. In other words, all else being equal, allocating one unit

of resources to two good products yields higher profits that allocating both units into

a single good product. This assumption is also in line with recent empirical work that

shows that firms with a broader product portfolio scope experience higher performance

(Klingebiel and Rammer, 2014).

The Compensation Scheme

As discussed in our motivating examples companies often struggle to strike a balance

between individual incentives (e.g., rewarding a specific CEDD for its performance in

the case of GSK) and shared incentives (e.g., as in Wyeth where divisions were rewarded

based on the R&D performance of the entire organization). While the former is typical

in agency relationships and requires little justification, our model also illustrates why, in

many settings, the latter might be equally important. In particular, it can be readily seen

that, if a manager’s payoff depends only on the performance of his own product, then

the manager is always better off by communicating a positive recommendation for his

product, so that he receives more resources from the firm. Thus, information becomes

unreliable, and therefore, irrelevant for the resource allocation decisions of the firm.

However, once shared-incentives are included in the compensation scheme, a manager

who observes a bad signal, and anticipates that his product is likely to fail, becomes

more likely to “step aside” and allow his peer’s product to receive more resources.

In line with prior literature on shared-incentives (Rotemberg and Saloner, 1994;

Siemsen et al., 2007; Friebel and Raith, 2010), we focus on compensation schemes of

the following structure: ŵi = k0 + ksνi + kpνj, where k0 is a fixed wage, ks is the self-

product sensitivity that determines the manager’s share from the performance of his own

product, and kp is the respective peer-product sensitivity.5 Our compensation scheme is

mathematically equivalent to ŵi = k0 + (ks − kp)νi + kp(νi + νj). Intuitively, (ks − kp)
determines the share that each manager receives from his own product’s value, and kp

determines the share that the managers receive from the firm’s overall performance.

Consistent with the aforementioned papers, we restrict attention to linear compensation

contracts that are symmetric between the two agents.

5Where appropriate, we use the notation x̂ to denote a random variable, and distinguish it from its
expected value which, for notational convenience, we denote by x.
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We employ a linear compensation scheme for three reasons. First, under fairly gen-

eral conditions, Holmstrom and Milgrom (1987) have shown that optimal compensation

schemes are linear in the aggregated outcome when agents influence outcomes through

a series of actions. Based on this fundamental result, linear compensation schemes have

become pervasive in the academic literature when studying, e.g., incentive design (Siem-

sen et al., 2007), relative performance evaluation (Aggarwal and Samwick, 1999), optimal

organizational forms (Friebel and Raith, 2010), or sales force management (Caldieraro

and Coughlan, 2009). Second, contract linearity allows us to derive analytical results in

a complex setting that combines ex-ante moral-hazard with ex-post adverse-selection,

and facilitates the required mathematical exposition. Lastly, linear schemes are intuitive

and easily implementable, and thus, widely found in practice. For example, at Wyeth

employees received shares of an overall bonus pool.

Our focus on symmetric contracts is based on the theory of equity (Adams, 1963).

In the words of Akerlof and Yellen (1988, p.45): “All textbooks consider it self-evident

that the most important aspect of a compensation system is its accordance with workers’

conceptions of equity”. A more detailed discussion about the numerous studies that

provide support for this theory can be found in Akerlof and Yellen (1990), Fehr and

Schmidt (1999), and Bolton and Ockenfels (2000). In our setting, given that managers

are ex-ante identical, an asymmetric contract would be hard to put in place without the

firm suffering severe repercussions from the managers’ sense of unfairness. As such, in

the remainder of our analysis we assume a symmetric contract structure. It is worth

noting though, that our characterization of the optimal product evaluation strategy

holds for asymmetric contract structures as well (the analysis is available upon request

from the authors).

Given the compensation ŵi, manager i’s utility Ûi is comprised of ŵi net his effort

cost, i.e., Ûi = ŵi− cI{ei=h}, where I{A} is the indicator function of event A. Following a

typical assumption in the principal-agent literature, we assume that the managers have

limited liability, i.e., ŵi ≥ 0. We also assume that the managers are risk-neutral. As

a result, the fixed term k0 only raises wages without inducing effort, so it is always

optimal for the firm to set k0 = 0. Thus, the optimal compensation scheme is uniquely

defined by the tuple k = (ks, kp). Finally the firm’s profit is the sum of the market

value of all of its products minus the agents’ compensation, which can be written as

Π̂(k) = (1 − ks − kp)(νi + νj). For ease of exposition, we refer to manager i’s expected

wage and utility, and the firm’s expected profit by wi, Ui, and Π, respectively, where the
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expectation is taken over the products’ market potential, θ.

2.4 Analysis

In this section we characterize the firm’s optimal product evaluation and resource al-

location strategy. To ensure that the derived equilibrium solution is subgame perfect,

we solve our model by backwards induction. Therefore, we first determine the firm’s

optimal resource allocation policy for any given outcome of the product evaluation stage

(section 2.4.1). Then, we characterize the optimal product evaluation strategy (section

2.4.2) given that the firm acts rationally (i.e., maximizes profits) in the resource alloca-

tion stage. In doing so, we also derive the optimal contract structure for each type of

product evaluation strategy, and thus, account for the information rents that the firm

incurs for each strategy.

2.4.1. The Optimal Resource Allocation Strategy

Once the firm receives the recommendations of the two managers, it decides on how

much resources to allocate to each product. Clearly, a manager’s recommendation is

useful to the firm only if the manager reports truthfully his signal, and additionally, he

exerted a high-effort product evaluation. When the managers do not report truthfully

their signals, their recommendations are not informative to the firm. Consequently, the

firm allocates the resources based on its prior beliefs, which implies that resources should

be split evenly across products. When the managers report truthfully their signals, the

firm needs to consider three different cases for the evaluation stage: (i) both managers

exert low effort, e = (l, l); (ii) manager i exerts high effort, while manager j exerts

low effort, e = (h, l); and (iii) both managers exert high effort, e = (h, h).6 Then, an

optimal resource allocation strategy maps the managers’ product evaluation strategy

e = (ei, ej) together with the received recommendations m = (mi,mj) into the resource

allocation strategy that maximizes expected profits. Note that, as we show in the next

section, through the design of an appropriate contract, the firm can always anticipate

the evaluation strategy of its managers and whether or not they report truthfully their

6Throughout, we adopt the convention that in case of asymmetric effort levels, manager i always exerts
high effort, while manager j exerts low effort.
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signals. Lemma 2.1 fully characterizes the firm’s optimal resource allocation for any

possible state of e and m. All proofs are provided in Appendix A.

Lemma 2.1. Define qa ≡ v1/2(v2− v1), qb ≡ (3v1− v2)/2v1, and note that v1/v2 < qb <

qa. Then, for a given evaluation strategy e, a signal fidelity q, and received recommenda-

tions m, the firm’s optimal resource allocation is summarized in Table 2.1, where “—”

indicates that the result holds for any possible realization of the respective parameter.

Table 2.1.: Optimal resource allocation.

Evaluation Efforts Signal fidelity Received recommendations Optimal resource
e = (ei, ej) q m = (mi,mj) allocation

(l, l) — — split evenly

(h, l)

q < qb — split evenly

qb ≤ q < qa
(g,−) split evenly
(b,−) all to product j

qa ≤ q
(g,−) all to product i
(b,−) all to product j

(h, h)

q ≤ v1/v2 — split evenly

q > v1/v2

(g, b) all to product i
(g, g)

split evenly
(b, b)

Lemma 2.1 presents some intuitive properties of the firm’s optimal resource alloca-

tion strategy. First, when both managers exert low effort, the firm does not receive any

useful information, so it decides to split resources evenly across the two products. In

the case where only manager i pursues high-effort evaluation for his product, then the

firm will only direct all of its resource to the most promising product, if the information

fidelity is high enough. Otherwise, if q < qa (q < qb), then the good (bad) signal for

product i is discarded, and resources are still split evenly. The last case also highlights

the substitution effect between the two products: even if there is no high-effort recom-

mendation for the product at hand (in this case product j), it might still be optimal to

invest all resources into it as long as there is reliable information that product i is of low

market potential. Lastly, when both managers exert high effort, the optimal resource

allocation depends on both managers’ recommendations. If the two managers give iden-

tical recommendations for the products, then, again, an equal split of the resources is

the preferable choice. If, on the other hand, the recommendations are different, then all

resources should be directed to the most promising product.
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2.4.2. The Optimal Product Evaluation Strategy

Given the firm’s optimal resource allocation strategy, we are now ready to derive the

firm’s optimal product evaluation strategy. Our analysis proceeds in two steps. We

begin by establishing the first-best benchmark under the assumption that the product

managers and the firm are integrated as a single entity. This allows us to illustrate the

key properties of the optimal product evaluation strategy based on the firm’s operating

environment, namely, the information fidelity, q, and the information acquisition cost, c

(Proposition 2.1). Then, we study how a decentralized firm can induce different product

evaluation strategies by designing appropriate incentive structures (Propositions 2.2 and

2.3), and subsequently, we derive the optimal product evaluation strategy of a decen-

tralized firm (Proposition 2.4).

The Integrated Firm

The integrated firm’s optimal product evaluation strategy solves

e∗fb = arg max
e

Πfb(e),

where Πfb(e) = Eθ[νi + νj|e] − c(I{ei=h} + I{ej=h}) denotes the firm’s ex-ante expected

profit under the evaluation strategy e.

Proposition 2.1. Let qc ≡ (3v1− v2)/v2, and define ζ1 ≡ 1
4
(qv2− v1), ζ2 ≡ 1

4
(2v1− v2),

and ζ3 ≡ 2ζ1−ζ2. The integrated firm’s optimal product evaluation strategy is as follows:

(i) If q < qc, then, e∗fb = (h, h) for c ≤ ζ1; and e∗fb = (l, l) elsewhere.

(ii) If q ≥ qc, then, e∗fb = (h, h) for c ≤ ζ2; e∗fb = (h, l) for ζ2 < c ≤ ζ3; and

e∗fb = (l, l) elsewhere.

Figure 2.2 visualizes the results of Proposition 2.1 and illustrates the key properties

of the first-best evaluation strategy. Firstly, as we would intuitively expect, high-effort

evaluation is undertaken only when the information fidelity is sufficiently high, q >
v1
v2

, and the evaluation cost sufficiently low, c ≤ max{ζ1, ζ3}. Otherwise, the value of

information does not justify its cost, and the firm decides to forgo the rather inefficient

evaluation process. Remarkably, even if evaluation costs are zero, the firm never exerts

high-effort product evaluation if q ≤ v1
v2

. In this case, effort is meaningless because the
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Figure 2.2.: The integrated firm’s optimal product evaluation strategy.

q

c

1v1/v2 qc

(l, l)

(h, h)
ζ1

ζ2

ζ3

(h, l)

Notes: The firm’s optimal product evaluation strategy is (i) e∗fb = (h, h) in the light gray
region; (ii) e∗fb = (h, l) in the dark gray region; and (iii) e∗fb = (l, l) in the white area.

information fidelity is so low that product evaluation cannot reliably identify a product’s

market potential.

Secondly, for moderate q values (v1
v2
< q < qc), the firm adopts a rather coarse

evaluation strategy by either exerting high effort for both products or none. However,

for higher q values (q ≥ qc) and moderate costs c (ζ2 < c ≤ ζ3), the firm finds it optimal

to pursue high-effort evaluation for only one of its products. In fact, even if the firm can

obtain perfect information, i.e., q approaches 1, it still remains optimal to pursue only

low-effort evaluation for the second product. Moreover, if a product’s market value is

relatively insensitive to the allocated resources, i.e., v2 <
3
2
v1, then the asymmetric effort

strategy, e = (h, l), is never optimal (i.e., qc > 1). On the contrary, if the market value

is very sensitive to the invested resources (v2 approaches 2v1), then pursuing high-effort

for only a single product is optimal for a wide range of parameters (as qc approaches 1
2
).

The Decentralized Firm

In this section, we account for the decentralized nature of modern NPD projects, and

the potential misalignment of incentives that stem from it. As such, to elicit the neces-

sary information the firm needs to design appropriate incentive schemes. As discussed
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earlier, managers can pursue three different evaluation strategies, and to induce each

one of them, the firm needs to offer a different incentive scheme. Thus, to derive the

firm’s optimal product evaluation strategy we first need to account for the managers’

information rents that vary across these contracts.

Throughout our analysis, we focus on truth-inducing contracts. Intuitively, non-

truth-inducing contracts provide no value to the firm, and therefore, the firm would

never reward a manager for providing useless information, i.e., ks = kp = 0 for any

non-truth-inducing contract. Moreover, the next Lemma states that a contract that

incentivizes only one product manager to exert high-effort evaluation can never be in-

centive compatible. Intuitively, given ex-ante identical managers, if the contract terms

are such that one of the managers decides to exert high-effort, so does the other.

Lemma 2.2. No feasible truth-inducing symmetric compensation scheme exists such

that, in equilibrium, managers choose different effort levels during product evaluation.

By Lemma 2.2, to find the firm’s optimal product evaluation strategy, we only

need to investigate the firm’s optimal contract that induces truth-telling and high effort

by either both managers or neither. Consider first the simpler case where the firm

incentivizes both managers to pursue a low-effort evaluation strategy. In that case, the

optimal contract is ks = kp = 0. This contract is clearly incentive compatible in effort

because no manager has an incentive to exert high effort, since then he would incur

a cost without receiving any reward. In short, the firm can induce low-effort product

evaluation by simply offering no reward to its managers, and in that case, the firm

optimally splits resources evenly across products (since v2 < 2v1) to obtain an expected

profit Π(k = (0, 0)) = v1.

We now examine the more interesting case where the firm incentivizes both man-

agers to exert high-effort evaluation and to truthfully report their signals. In that case,

the firm’s objective is to maximize the expected value of both products net the man-

agers’ wages. More formally, the firm solves the following optimization problem (the
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exact derivation can be found in the proof of Proposition 2.2):

max
ks,kp

Π(k) = (1− ks − kp)
1

2
(qv2 + v1) (2.1)

s.t. ksqv2 + kpqv1 ≥ kpqv2 + kp(1− q)v1 (IC-g)

kpqv2 + kp(1− q)v1 ≥ ks(1− q)v2 + kpqv1 (IC-b)

2ksqv2 − 8c ≥ ksv2 (IC-e)

ks, kp ≥ 0. (LL)

Constraints (IC-g) and (IC-b) ensure that both managers truthfully reveal a good and

a bad signal, respectively. High-effort product evaluation is incentivized by (IC-e), and

the limited liability constraint (LL) guarantees that wages are non-negative. Since high

effort is costly for the managers, the firm has to pay a strictly positive wage to induce

truth-telling and high effort. Thus, (LL) never binds in optimum. In contrast, (IC-e)

is always binding because the firm pays just as much as necessary to induce high-effort

evaluation. Furthermore, it is harder to motivate a manager to reveal a bad than a good

signal. Hence, truthful revelation of bad signals (IC-b) also binds at optimality. Figure

2.3 graphically illustrates the optimization problem and Proposition 2.2 characterizes

the optimal contract, k?.

Proposition 2.2. The optimal contract that induces truth-telling and high-effort product

evaluation by both managers is k?s = 8c
(2q−1)v2

and k?p = 8(1−q)c
(2q−1)(qv2−(2q−1)v1)

. Moreover,
k?p
k?s
< 1 and the ratio decreases in q and v2, while it is invariant in c.

The optimal contract exhibits several interesting properties. First, with simple

algebraic manipulation it can be readily seen that both k?s and k?p decrease in q. In other

words, managers who can acquire better information receive a smaller share of each

product’s value. This counter-intuitive finding can be explained by recalling that the

optimal contract is determined by the intersection of constraints (IC-e) and (IC-b) (see

Figure 2.3), which ensure high-effort product evaluation ex-ante and truthful revelation

of bad signals ex-post, respectively. Consider k?s which is determined solely by constraint

(IC-e). From (IC-e) we see that as the fidelity, q, increases, all else being equal, exerting

high effort becomes more rewarding for the manager than exerting low effort. This

happens because the only reason for the manager to exert high effort is so that he can

credibly indicate the product’s high potential to the firm, and therefore, request more
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Figure 2.3.: The decentralized firm’s optimization problem.
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Notes: The light gray region indicates the set of all feasible contracts that induce truth-telling
and high effort. The optimal contract (k?s , k

?
p) is at the intersection of (IC-b) and (IC-e).

resources for it. Clearly, the credibility of the manager’s recommendations, and thus,

his incentive to exert high effort in the first place increase as the information fidelity

increases. As such, higher information fidelity makes higher effort more rewarding for

the manager. At the same time, the firm realizes that it can now lower the manager’s

share of his project value, k?s , while still ensuring that his effort incentive constraint

(IC-e) is satisfied. That is why k?s decreases in q.

To see why k?p decreases in q, recall that the reason why a manager with a bad signal

might report a good signal is that he can request more resources for his project. These

resources, however, are only beneficial to the manager if his project eventually succeeds

in the market. As the information fidelity increases, and given that the manager has

observed a bad signal, the likelihood that his project will “defy the odds”, and turn into

a success, is shrinking. As a result, lying to the firm becomes less rewarding, and all else

being equal, the firm can incentivize truth-telling with a lower k?p. In fact, if q = 1, then

k?p = 0 (but k?s > 0), i.e., the firm completely abandons shared incentives if managers

can acquire perfect information. Intuitively, managers always truthfully report their

signals, as there is no value in claiming resources for a project that is bound to fail. It is

worth noting the stark contrast regarding the effect of a noisier environment on the pay-

performance sensitivities (i.e., k?s and k?p) between our model and the standard theory
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on principal-agent models. For instance, Holmstrom (1979) shows that pay-performance

sensitivity increases as the effort has more influence on the final outcome, i.e., as the

environment becomes less noisy. This comparison highlights the fundamentally different

nature of incentives that induce higher effort for information acquisition versus standard

moral-hazard settings where an agent’s effort stochastically improves the outcome of the

project.

Second, both k?s and k?p decrease as v2 increases, i.e., when allocating all the resources

to a single project becomes more rewarding. The former happens because a higher v2

makes exerting effort more rewarding for the manager: if his project receives the entire

resource budget, its market value will be much higher, and so will his share of that value.

The latter happens because a higher v2 makes the manager more willing to disclose a

bad signal truthfully: if his peer’s product succeeds, he will also receive a share from

that high value project. Thus, as v2 increases, the firm need not pay as high k?s and k?p

to incentivize the managers to exert high-effort and report truthfully. Interestingly, k?s

is invariant in v1 while k?p increases in v1. A higher v1 erodes the value from ex-post

“winner-picking”, and therefore, it has the exact opposite effect of v2 when it comes to

incentivizing truth-telling. It has no effect, however, when it comes to incentivizing high

effort ex-ante, as due to symmetry the manager might still receive v1 in either case (i.e.,

under high or low effort).

Third, the ratio between k?p and k?s decreases in both q and v2, but it is invariant in

c . Figure 2.3 illustrates how k?s ensures high-effort evaluation, while the ratio
k?p
k?s

ensures

truth-telling. To see why the cost c does not affect a manager’s truth-telling propensity,

note that each manager decides on his recommendation after incurring the effort cost.

Hence, effort costs are sunk costs and do not affect a manager’s recommendation. To see

why k?p is decreasing more steeply in q than k?s , note that information of higher fidelity

is always more crucial ex-post (i.e., when a bad signal has actually been realized) than

ex-ante (i.e., when either a good or a bad signal can be realized). In other words,

when choosing his effort level, a manager does not yet know whether a high evaluation

fidelity raises or reduces the expected value of his product. Due to this ambiguity, k?s

is only moderately decreasing in q. In contrast, when the manager decides whether to

truthfully report his bad signal, q has a direct detrimental effect on the value of his

project. Therefore, k?p is more sensitive to the manager’s information fidelity.

This result bears important managerial implications for the optimal balance between

individual and shared incentives. It states that in environments of higher information
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fidelity (high q) or where “winner-picking” is more crucial (high v2), the firm needs

to shift its focus towards rewarding based on the performance of individual project

units rather than on company-wide metrics. So far, our discussion was focused on the

pay-performance sensitivities k?s and k?p. One might think that even though k?s and k?p

decrease in q and increase in c, the total utility of a manager might increase in the fidelity

of his information and decrease in his effort costs. Rather surprisingly, Proposition 2.3

shows that this is not the case.

Proposition 2.3. A manager’s expected utility Ui(k
?) decreases in q and v2, and in-

creases in c; while the firm’s expected profit Π(k?) increases in q and v2, and decreases

in c.

Proposition 2.3 states a counter-intuitive result: a manager’s utility decreases in

the information fidelity of the evaluation process, that is, when the manager can provide

better information to the firm. Similarly, when this information becomes more important

(i.e., v2 increases), the manager’s utility decreases as well. Thus, even though a higher

q and higher v2 raise the expected value of each product, the drop in k?s and k?p is so

steep that it leaves each manager with a lower expected utility. On the contrary, a

manager’s utility increases in c as both k?s and k?p increase in c. This can be explained

as follows. Recall from our discussion following Proposition 2 that both a higher q

and higher v2 reduce the misalignment in incentives between the managers and the

firm. As such, they make the manager more willing to exert high effort and also to

disclose his signals truthfully. Conversely, a higher c makes high effort more costly for

the manager, and widens the incentive misalignment with the firm. A lower (higher)

misalignment in incentives, in turn, results in lower (higher) information rents for the

manager, and consequently, to higher (lower) profits for the firm. Having characterized

the optimal contract structure, we can now derive the optimal evaluation strategy for

the decentralized firm.

Proposition 2.4. Define ζ4 ≡ ζ1 · 2qv2−v2
2qv2+2v1

· qv2−(2q−1)v1
v2−(2q−1)v1

. The decentralized firm’s optimal

product evaluation strategy is to incentivize both managers to exert (i) high effort if

c ≤ ζ4; and (ii) low effort if c > ζ4. Moreover, ζ4 < ζ1 and there exist parameter values

such that ζ4 > ζ2.

As we would intuitively expect, the presence of information asymmetry between the

managers and the firm makes the process of product evaluation “more expensive” to the
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firm. As a result, the area for which product evaluation is undertaken shrinks. This is

clearly illustrated in Figure 2.4 which plots the optimal evaluation strategy under decen-

tralization vis-à-vis the optimal policy of the integrated firm (dashed line): In the region

ABFEC a decentralized firm does not undertake any high-effort product evaluation but

an integrated firm does. Mathematically, this corresponds to ζ4 < max{ζ1, ζ3}.
Interestingly, however, this result does not imply that the decentralized firm always

undertakes less evaluation effort compared to the integrated one. On the contrary, when

ζ4 > ζ2 (region CED in Figure 2.4), the decentralized firm undertakes more evaluation

effort by exerting high-effort evaluation for both products whereas an integrated firm

exerts high-effort evaluation for only one of them. In other words, the decentralized firm

is actually over-investing in information acquisition compared to the first-best policy.

This over-investment in information is caused by the firm’s inability to observe neither

the managers’ efforts nor the outcomes of their evaluation. In addition, as discussed in

Lemma 2.2, the firm cannot offer a truth-inducing contract that incentivizes a high-effort

evaluation for one product and a low-effort evaluation for the other one. Consequently,

either manager can claim that he exerted high-effort evaluation, and therefore, request

resources for his project.

Figure 2.4.: The decentralized firm’s optimal product evaluation strategy.

q

c

1v1/v2

(l, l)

ζ1

ζ2

ζ3

(h, h)

A

B C
D

E

F

ζ4

Notes: The firm’s optimal contract induces (i) e∗ = (h, h) in the light gray region; and (ii)
e∗ = (l, l) in the white area.
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2.5 The Effect of Decentralization on the

Firm’s Product Portfolio Scope and

Welfare Implications

So far, we have discussed the effect of decentralization on the firm’s optimal product

evaluation strategy. This evaluation strategy, in turn, determines the information that

the firm has available when making its resource allocation decisions, and therefore,

the firm’s product portfolio scope. While the extant literature in NPD has studied

extensively the information acquisition process for a single project (e.g., Thomke, 2007,

and references therein) and the resource allocation decisions for the product portfolio

(e.g., Kavadias and Chao 2007, and references therein), the effect of the former on the

latter has been rather overlooked. In this section, we begin by investigating how changes

in the firm’s evaluation strategy affect its product portfolio scope. We then examine the

firm’s profits and the social welfare, and identify the conditions where decentralization

leads to greater or lesser profit and welfare losses.

2.5.1. Product Portfolio Scope

Before discussing the effect of decentralization on the firm’s product portfolio scope, it

is instructive to clarify the relationship between the product evaluation strategy and the

product portfolio scope for the integrated firm. From Lemma 2.1 and Proposition 2.1,

we have the following direct observations: (i) when the firm pursues low-effort evaluation

for both products, it always ends up splitting resources evenly across products, and thus,

developing both products; (ii) when the firm pursues high-effort evaluation for only one

of the products, and the information is relatively reliable, then the firm always develops a

single product; (iii) when the firm pursues high-effort evaluation for both of its products,

then it is equally likely that the firm develops one or two products.

In other words, there is a non-monotonic relationship between the extent of product

evaluation and the number of products that the firm develops: a firm with little infor-

mation spreads its risks across both products to increase the chance that at least one

product is successful, a partially informed firm makes a crude decision by developing

only one, while a fully informed firm might choose either allocation strategy depend-
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ing on its refined information. This non-monotonic effect is illustrated in Figure 2.5

which plots the integrated firm’s expected product development scope for all possible

cases (dashed line). Proposition 2.5 sheds light on how decentralization affects the firm’s

product portfolio scope.

Proposition 2.5. Let nfb and n be the expected number of products developed by the

integrated and decentralized firm, respectively. Then, for any given q and c, decentral-

ization weakly increases a firm’s expected product portfolio scope, i.e., n ≥ nfb.

Proposition 2.5 highlights that decentralization leads a firm to broaden its product

portfolio scope compared to an integrated firm. Recall from Proposition 4 that in some

regions, decentralization results in under-investment in information (region ABFEC in

Figure 2.4), while in others it results in over-investment (region CED in Figure 2.4).

In either case, decentralization impedes an asymmetric high-effort evaluation strategy,

which corresponds to launching a single product on the market. Instead, the decen-

tralized firm has to choose between spreading its bets across products under limited

information versus a more refined, but overly costly, product portfolio allocation. Our

result regarding the role of decentralization on the firm’s product portfolio scope is also

consistent with Thomas (2011) who shows that the observed product range of multina-

tional firms exceeds the optimal firm-level response to differences in consumer preferences

and the retail environment.7

2.5.2. Profit and Welfare Loss

To measure the efficiency of the firm’s contract scheme, we employ two different perfor-

mance indicators: the firm’s percentage profit loss, which captures the effect of decen-

tralization on the firm’s profits, ηp ≡ 1− Π(e?)
Πfb(efb)

, and the percentage welfare loss, which

reflects the loss in total welfare due to decentralization, ηw ≡ 1−Π(e?)+Ui(e
?)+Uj(e

?)

Πfb(efb)
. These

two performance measures quantify the implications of decentralization on two different

levels of aggregation. While ηp captures the effect on the firm’s level, ηw measures the

contract’s social efficiency for the entire system (firm and managers).

7The recent work of Alonso et al. (2008), and Rantakari (2008) also discusses how decentralization
might lead to inefficiencies in an organization’s decision making processes. Their work, however, is
not concerned with product evaluation and resource allocation decisions, but rather with the tradeoff
of coordination (across the divisions) versus adaptation (to the local market conditions).
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Figure 2.5.: Expected scope of product development.
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Notes: The firm’s expected product development scope under decentralization (solid line) and
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Proposition 2.6. If the integrated and the decentralized firm both pursue a low-effort

product evaluation strategy for the two products, then ηp = 0. If the decentralized firm

under-invests in product evaluation, then the percentage profit loss increases in q and v2,

and decreases in c. In any other case, the percentage profit loss decreases in q and v2,

and increases in c.

According to Proposition 2.6, the effect of decentralization varies significantly across

the different regions depicted in Figure 2.4. Recall from Figure 2.4 that if the cost of

information acquisition is very high (c > max{ζ1, ζ3}), then both the integrated and

decentralized firm do not exert any high-effort product evaluation, and therefore, the

decentralized firm does not need to incentivize its managers. As such, the decentralized

firm is able to accrue all the profits (ηp = 0). When the decentralized firm under-invests

in product evaluation (region ABFEC in Figure 2.4), then ηp increases in q and v2, and

decreases in c. Intuitively, as the decentralized firm under-invests in product evaluation,

a higher q implies that more valuable information is lost, and therefore the profit loss

becomes steeper. Obviously, this effect is even more severe as v2 increases, and the value

of ex-post winner-picking is higher. Lastly, when the firm induces high-effort product

evaluation (region under ACE) for both products, ηp decreases in q and v2, and increases

in c. As discussed in Proposition 2.3, in that region a higher q or v2 reduce the incentive

misalignment between the managers and the firm, while a higher c widens it. The former

effect reduces the firm’s profit losses, whereas the latter increases it.
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Proposition 2.7. If the decentralized firm pursues the same product evaluation strategy

as the integrated firm, then there is no welfare loss under decentralization, ηw = 0.

Otherwise, if the decentralized firm under-(over-)invests in product evaluation, then the

percentage welfare loss increases (decreases) in q and v2, and decreases (increases) in c.

According to Proposition 2.7, if decentralization does not affect the firm’s optimal

evaluation strategy, then there is no welfare loss; the total generated value remains intact

and it is only the distribution of profits between the firm and the managers that changes.

As discussed in Figure 2.4, this happens either when the information fidelity is very high

and the evaluation cost very low, or at the other extreme, when the information fidelity

is very low and the evaluation cost very high. In the former case, information acquisition

is so effective that both firms always evaluate both products, while in the latter, it is so

ineffective that both firms always choose to forgo costly product evaluation. In reality,

most firms face environments where valuable information is also costly. Importantly,

in these regions, decentralization interferes with the firm’s optimal evaluation strategy,

and leads to a welfare loss.

Similar to the percentage profit loss, the effects of the evaluation fidelity and cost on

the percentage welfare loss, ηw, vary significantly across the regions. If the decentralized

firm collects less information than is socially optimal, i.e., under-invests in product

evaluation, then the welfare loss is most severe when the fidelity of information is high

and the evaluation costs are low. In contrast, if the decentralized firm gathers more

information than an integrated firm, i.e., the firm over-invests in product evaluation,

then the social value of this additional information gain increases as the information

fidelity becomes higher and the evaluation costs lower.

2.6 Conclusions

This essay aims at understanding a key concern of many senior R&D executives: “how

do you make good decisions when the information you need to make those decisions

comes largely from the project champions who are competing against one another for

resources” (Sharpe and Keelin, 1998, p.45). Prior academic literature has extensively

discussed the importance of such a question when managing parallel projects (e.g., Loch

et al., 2006), but without offering explicit guidance on how to structure appropriate

incentive mechanisms that address these challenges. This is also highlighted in Lerner
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(2012, p. 170) who emphasizes that “one crucial, though often neglected, point is that

such tolerance for failure requires a rethinking not just of compensation schemes, but

also of how projects are selected and funded. [. . . ] A question that would reward both

further research by economic theorists and real-world exploration is how to induce ’truth-

telling’ when evaluating high-risk innovative projects”. The main contribution of this

essay is to offer a formal framework on the tradeoffs involved between incentivizing

information acquisition and truthful revelation among new product development teams.

More specifically, our study makes three contributions in the literature.

First, we show that by offering a combination of individual and shared incentives,

the firm can incentivize managers to undertake high evaluation efforts and at the same

time disclose truthfully their findings. In doing so, we disentangle the role of each

incentive type: individual incentives give the manager the potential to request more

resources for his project if he receives a good signal of high fidelity. On the other hand,

shared incentives induce the manager who receives a bad signal to “step aside” and let

his peer receive his resources as the latter might have better chances on the market.

We then show that a higher information fidelity or a lower information acquisition cost

lead to lower pay-performance sensitivity for both the individual and shared incentives.

Intuitively, both parameters make the acquisition and disclosure of information lead to

a better alignment between the managers’ and the firm’s interests, thereby reducing

the managers’ information rents. At the same time, our analysis highlights that in

environments with lower evaluation fidelity the firm should shift the balance towards

emphasizing shared rather than individual incentives. This is so because any change in

the fidelity of information is always more impactful ex-post (i.e., when a bad signal has

already been realized) rather than ex-ante (i.e., when either good or bad information is

likely to appear).

Second, our analysis reveals how decentralization impedes the implementation of an

optimal product evaluation strategy, specifically in environments where valuable infor-

mation is costly. In particular, decentralization might lead a firm to either under-invest

or over-invest in product evaluation. Importantly, this has implications for the firm’s

product portfolio scope: a decentralized firm spreads its resources into a portfolio at

least as broad, and for most parameters strictly broader, than that of an integrated

firm. What is noteworthy here is that both under- and over-investment in product

evaluation have the same effect on the firm’s product portfolio scope. This happens

because in the former case the high uncertainty forces the firm to spread its bets among
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multiple projects while in the latter case the firm develops more products as a response

to more information which nonetheless comes at an overly high cost. Lastly, our work

shows that distinguishing between the regions where decentralization leads to under-

investment versus over-investment in product evaluation has crucial implications for the

firm’s profit loss and the total welfare loss. In the over-investment region, the losses

decrease in the information fidelity while they increase in the information cost. Intu-

itively, over-spending in information becomes less detrimental when this information is

valuable, but becomes more detrimental when this information is expensive. The exact

opposite effects take place in the under-investment region.

In order to maintain tractability and develop a parsimonious model, we have made

some assumptions regarding the role of product managers, and correspondingly, the spe-

cific functional forms of the incentive structure. Specifically, our essay focuses on the

project selection stage of NPD, and as such, on the evaluation rather than the gener-

ation of different alternatives (e.g., higher effort in our setting improves the selection

process but not the quality of the different alternatives). Recent work has offered im-

portant insights on the structure of the opportunity spaces (Kornish and Ulrich, 2011)

as well as on the effect of decentralization on the search process itself (Mihm et al.,

2010). Moreover, our analysis considers ex-ante symmetric projects. In practice, firms

are often faced with projects that vary significantly with respect to their state of exe-

cution, uncertainty, and need for resources. While our model captures some first-order

effects regarding the interplay between information acquisition and resource allocation,

we believe that capturing tradeoffs among projects that evolve over time is a fruitful

avenue for future research.
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Chapter III

Seasonal Products: Scale and

Timing of Inventory Availability

with Moritz Fleischmann1

3.1 Introduction

In the last decades, the classical newsvendor model has received widespread attention

as the most prominent decision support tool in stochastic inventory theory. The cen-

tral question that it strives to answer is (Porteus, 2002): For a seasonal product, how

much inventory should a firm stock to best satisfy uncertain customer demand over

the product’s limited selling season? This problem is pertinent for many products in

diverse industries, and by applying the newsvendor model scholars provide manifold

recommendations on how to successfully manage these products (for a good overview,

see Cachon and Kök, 2007). Yet, despite its popularity as decision support tool, the

classical newsvendor model also possesses essential limitations that impede a wider ap-

plicability to more general market environments. Specifically, as a major drawback, the

model does not take into account how the specific properties of a product’s selling season

interact with a firm’s inventory strategy. Importantly, it is an open question how firms

should manage products with an uncertain demand timing. Such uncertain customer

demand patterns, however, are frequently observed in practice. Cawthorn (1998, p. 20)

vividly captures this phenomenon with the following quote about customer behavior in

the food industry: “It is not the threat of snow but the sight of snow that sends mothers

running to the market for hot chocolate.” Most importantly, external influences, such as

1The research presented in this chapter is based on a paper entitled “Selling over an Uncertain Season:
Scale and Timing of Inventory Availability”, coauthored with Moritz Fleischmann.
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weather conditions, trends, or the diffusion of diseases, do not only affect the magnitude

of customer demand, but also the timing of a product’s actual selling season. In fact,

this latter effect of shifting demand earlier or later is often considered the primary effect

(Chen and Yano, 2010). Thus, in markets with uncertain customer demand patterns,

a fundamental challenge for each firm is not only to determine how much inventory to

stock, but also to decide when to make the product available for sale. This is the primary

issue that we address in this paper.

This question is particularly relevant in industries where selling seasons are highly

erratic and mistiming costs are substantial. Consider, for example, the market for lawn

and garden items. Firms offering high-value garden items, such as lawn tractors, face

a two-fold challenge. On the one hand, these firms operate in a high cost, capital-

intensive environment because production is expensive and storage costs are significant.

On the other hand, customer demand for these products shows a strong seasonality and

a high dependence on temperature and weather patterns. One year a season breaks

late due to an extraordinary cold winter, while in the next year a heat wave in early

spring causes demand to take off early. In such an uncertain market environment,

vendors of lawn tractors have to take two crucial decisions: how many tractors to stock,

and equally importantly, when to make the tractors available for sale? Too early, and

high opportunity and storage costs substantially erode profits. Too late, and customer

demand has already gone.

Other examples for products with similar characteristics are sprinkled throughout

the academic literature. With a focus on retailing, Starr-McCluer (2000) and Chen

and Yano (2010) provide a nice overview on products that exhibit a seasonal pattern

that changes from one year to another. In retailing, shelf space is expensive and offering

products at the wrong time can dramatically devour revenues. Allen and Schuster (2004)

identify similar tradeoffs during the harvest of crops. While the crops’ maturation dates

are extremely sensitive to weather and soil conditions, decision-makers have to decide

upfront on the harvesting times and the required investment in equipment. Since this

simultaneous inventory scaling and timing problem has been detected in many industries,

specialized software and consulting firms such as Revionics already offer decision support

tools for products with volatile demand patterns (Moore, 2010). Surprisingly, however,

academic research provides only very limited guidance on how to effectively manage the

involved tradeoffs.

The purpose of this paper is to understand how a firm should design its inventory
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strategy to successfully manage the complex interplay between the two different sources

of uncertainty: uncertainty in demand scale, and uncertainty in demand timing. Specif-

ically, we answer the following question: For a seasonal product, when and how much

inventory should a firm stock to best satisfy uncertain customer demand over an uncer-

tain selling season? For a firm operating in such a volatile market environment, the key

to successful inventory management is understanding the involved tradeoffs and their

mutual interdependency. To explore these tradeoffs, we build a theoretical model that

accommodates both forms of demand uncertainty, while allowing the firm to decide on

its inventory scale and timing. This framework enables us to clearly elicit how a firm

should manage the different sources of uncertainty.

Our study makes three contributions to the existing literature. First, we show that

the introduction of stochasticity in the product’s selling season exposes the firm to a

novel tradeoff that has to be managed with a careful inventory timing. Specifically,

besides the classical newsvendor tradeoff, the firm also has to balance the product’s

market potential with the product’s time on the market. We find that this challenge

induces the firm to reduce its inventory scale and to shorten the product’s availability

period, respectively. Our results also shed light on the subtle interaction between the

firm’s scale and timing decision. Interestingly, we show that the firm may choose to build

higher inventories when the product’s market potential decreases. The reason behind

this counter-intuitive finding is that the firm can reduce inventory costs by shortening

the product’s selling period. A shorter season, in turn, is cheaper to serve, thereby

enticing the firm to increase inventories. We highlight that this non-monotonic relation

also influences how the firm reacts to changes in the cost structures. Intriguingly, in

contrast to the classical newsvendor literature, the firm may increase its inventories

when operational costs increase.

Second, we find that the uncertainty in demand timing has more severe repercussions

on the firm’s optimal inventory strategy than the uncertainty in demand scale. From

the classical newsvendor literature, we know that an adequately chosen inventory scale

enables the firm to effectively manage the risk stemming from the uncertainty in the

customer demand scale. Surprisingly, however, managing the timing risk is much more

complex. We find that when the timing uncertainty is too severe, the firm’s flexibility

to adjust the product’s availability period may not be sufficient to prevent the firm from

exiting the market. This result is driven by the firm’s inability to reduce the product’s

inventory costs without affecting the product’s market potential. By shortening the
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product’s availability period, the firm reduces the inventory costs, but also sacrifices

some of the product’s market potential. These countervailing forces, which are not

present in classical newsvendor contexts, are the reason why a firm needs to thoroughly

design its inventory strategy to successfully manage products with an uncertain selling

season.

Third, we provide a parsimonious and analytically tractable mechanism to explicitly

integrate inventory holding costs and mistiming costs into a general newsvendor frame-

work. This helps us to discover the links between the different cost components and the

firm’s inventory strategy. Importantly, we find that the presence of inventory holding

costs and earliness costs simultaneously affects the firm’s overage costs, underage costs,

and mistiming costs. This happens because all of these costs are directly influenced by

the firm’s inventory scaling and timing decisions. Moreover, this result questions the

common approach in the classical newsvendor literature to attribute inventory holding

costs only to the firm’s overage costs (e.g., Kouvelis and Gutierrez, 1997). Instead, we

show that it is important for the firm to have a more differentiated view on the effects

of inventory holding costs.

3.2 Literature Review

The goal of this paper is to understand the mutual interdependency between two central

questions that critically determine a product’s profitability: when to make a product

available for sale, and how much inventory to stock? By combining these two decisions

into an integrated framework, our work intersects with two rich streams of prior research:

(i) the literature on stochastic inventory management; and (ii) the literature on new

product introductions.

The extensive literature on stochastic inventory management centers around the

question of how much inventory to stock to best satisfy stochastic future customer de-

mand. Given the importance of this question for virtually every product, scholars provide

rich answers for many different products in many different market configurations. For

an overview of this literature see, e.g., Porteus (2002). Most closely related to our work

is the classical newsvendor literature on inventory management for seasonal products.

Stripped to its essence, the classical newsvendor model determines the optimal inventory

scale for a single product with probabilistic customer demand that is sold over a single
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deterministic selling season (Cachon and Kök, 2007). To further enhance its practical

applicability, the classical newsvendor model has received considerable extensions along

one or more dimensions. These extensions focus on investigating joint inventory and

pricing decisions (Petruzzi and Dada, 1999; Raz and Porteus, 2006; Salinger and Am-

pudia, 2011), the impact of different risk attitudes (Eeckhoudt et al., 1995; Chen et al.,

2009), the repercussions of limited demand information (Perakis and Roels, 2008; Ben-

Tal et al., 2013), the value of advanced demand information and quick response strategies

(Iyer and Bergen, 1997; Milner and Kouvelis, 2005; Cachon and Swinney, 2011), and the

consequences of different financing options (Gaur and Seshadri, 2005; Kouvelis and Zhao,

2012). All these papers, albeit examining diverse market environments, are silent about

the issues arising from a stochastic selling season. However, as highlighted earlier, in

practice many firms only have limited information about their products’ selling seasons.

We contribute to the newsvendor literature by addressing the challenges resulting from

this additional timing uncertainty. Moreover, we study how to actively manage this

uncertainty by allowing the firm to choose its inventory scale and inventory timing.

To our knowledge, the only other paper that investigates joint inventory scaling

and timing decisions in a newsvendor context is Ülkü et al. (2005). By analyzing a

firm’s optimal capacity investment timing when a delayed investment leads to a reduced

market potential, but also to a more accurate demand forecast, they show that the firm

may deliberately sacrifice some of its product’s market potential to elicit more precise

demand information. While we also emphasize the importance of the firm’s inventory

timing decision, our work differs from Ülkü et al. (2005) in multiple significant aspects.

Most notably, in our work the firm’s primary motivation to postpone its inventory timing

is the stochasticity in the properties of the selling season. We also examine how this

uncertainty affects a product’s effective cost structures.

So far, the newsvendor literature has largely disregarded the issue of when to make

a product available for sale. Instead, this question has been extensively discussed in the

new product development area. Our work therefore also touches upon previous research

on the optimal timing of new product introductions. This literature provides mixed

evidence of whether firms should prefer an early or a late market entry (Krishnan and

Ulrich, 2001). Advocates of an early product availability assert that being early enables

a firm to maximize the product’s market potential, to minimize product development

costs, to build a strong reputation, to achieve higher profit margins, and to create a

sustainable competitive advantage (Lieberman and Montgomery, 1988; Lilien and Yoon,
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1990; Hendricks and Singhal, 1997; Klastorin and Tsai, 2004). We follow these papers

by adopting the view that the firm’s primary motivation for early market entry is a high

market potential and that this potential decreases over time.

Previous work also identifies tradeoffs that may induce a firm to choose a late prod-

uct availability. McCardle (1985) argues that a firm should wait with its product intro-

duction in order to acquire more precise information about the product’s specific market

environment. Kalish and Lilien (1986) emphasize the tradeoff between introduction tim-

ing and product performance. By postponing the product’s availability timing, a firm

can invest more time in improving product performance. A better product, in turn, im-

proves customer value and therefore spurs customer demand (Bayus et al., 1997). Savin

and Terwiesch (2005) highlight the positive impact of a delayed product availability on

a product’s unit costs. Although deferring a product’s introduction timing offers many

potential benefits for a firm, actually realizing these benefits is extremely challenging,

especially for products with short selling seasons (Cohen et al., 1996). Specifically, a

firm may wait too long and lose the product’s entire market potential. We complement

previous research by formally analyzing how stochasticity in a product’s selling season

influences a firm’s inventory timing decision. As such, our work differs from previous

papers in multiple dimensions. Most importantly, in our setting the firm’s main con-

cern is a costly mismatch between the inventory scaling and timing decision, and the

stochastic customer demand pattern.

Recently, Ke et al. (2013) were the first to examine the effects of operational costs

on a firm’s decision of when to launch a new product generation. They identify inventory

holding costs as a major reason for postponing a product’s introduction. We support

this view, but with our model setup, we are able to identify another important factor

that influences a firm’s optimal timing strategy: mistiming costs that arise due to the

threat of a premature product availability.

3.3 The Model

Consider a firm that is faced with the challenge of determining its inventory strategy for

a seasonal product. For the firm, the inventory strategy consists of two key decisions:

the timing and scale of product availability, i.e., when to make the product available

on its target market, and how much inventory to stock? Typically, the firm has to
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take these decisions well before the product becomes available to customers as the firm

needs time, e.g., to initiate and ramp up the production, to build sufficient stocks,

and to advertise the product (see, e.g., Kurawarwala and Matsuo, 1996; Van Mieghem,

2003; Ülkü et al., 2005). As such, when choosing its inventory strategy the firm has

only limited information about the future market environment and cannot perfectly

predict the product’s market potential and the timing of customer demand. Due to this

inherent uncertainty, the firm’s inventory strategy may suffer from costly mistiming and

inadequate scaling decisions. Offering the product before customers actually demand the

product evokes earliness costs, while a late inventory availability results in lost customers.

Similarly, excess inventories reduce the firm’s profitability, whereas insufficient stocks

lead to unmet demand. Ultimately, the firm seeks to maximize expected profits by

making the product available at the right time and in the right quantity.

A central and novel aspect of our model is the discrimination between a product’s

selling season and its availability period. In line with the classical newsvendor literature,

we define the product’s selling season as the time span during which customers are

willing to buy the product. To be specific, the selling season starts with the first,

and ends with the last customer demanding the product. In contrast, we define the

product’s availability period as the time during which the firm actually tries to sell the

product on the market. The availability period starts when the product is first made

available on the market, and ends either when the firm stocks out or when the selling

season closes. In order to maximize profits, the firm needs to optimally synchronize the

product’s availability period with the actual selling season by choosing and executing

a specific inventory strategy. In practice, however, this is not a trivial task because

customer behavior is not perfectly predictable. To capture this synchronization issue in

our modeling framework, we follow Kalyanaram and Krishnan (1997) and Ülkü et al.

(2005) by assuming that customer demand occurs irrespective of whether or not the

product is available for sale. Thus, in contrast to the product’s availability period,

the selling season is exogenous and cannot be influenced by the firm. Importantly, we

depart from prior literature by assuming that the selling season is stochastic and that

the firm only learns about the product’s actual selling season after the firm has chosen

its inventory strategy. Due to this imperfect knowledge about the selling season, the

product’s availability period need not coincide with the selling season. We now explain

our modeling assumptions in greater detail.

The firm’s inventory strategy is represented by the pair (x, t), where x is the amount
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of inventory that the firm stocks, and t is the time when the product is first made avail-

able for sale. Throughout, we measure time τ continuously. The product’s (stochastic)

market environment, M = (Q,S), is characterized by the product’s market potential,

Q, and its selling season, S. In practice, Q and S are typically dependent on one an-

other; e.g., a short (long) selling season may come with a small (high) market potential.

We explicitly allow for such dependencies by only assuming that M follows a known

continuous multivariate distribution with strictly positive density. The product’s market

potential is the cumulative customer demand over the product’s entire selling season,

i.e., Q is the maximum number of products that the firm can sell to its customers. We

assume Q to be stochastic with support on R+. The product’s selling season determines

during which time span customers are willing to buy the product, and how customer de-

mand is distributed over this period. Mathematically, S is a collection of three stochastic

elements, S = (B,L,A(τ |Q,B,L)). The beginning of the product’s selling season is des-

ignated by the random variable B with support on [0, bu], and the season length is given

by the random variable L with support on (0, lu]. We assume that customer demand

occurs gradually over time and that each customer tries to buy the product only once at

a single point in time within the product’s selling season. This is in line with Hendricks

and Singhal (1997) who highlight that unserved customers may not be willing to wait

in case of product unavailability. To represent the customers’ dynamic buying behav-

ior, we follow Ülkü et al. (2005) by defining for each realization of (Q,B,L) a function

A(τ |Q,B,L) that designates the fraction of the product’s full market potential that will

realize between time τ and the end of the selling season.2 Mathematically, our assump-

tions on customer behavior imply that A(τ |Q,B,L) satisfies: (i) A(τ |Q,B,L) = 1 for

all τ ≤ B; (ii) A(τ |Q,B,L) = 0 for all τ ≥ B + L; and (iii) A(τ |Q,B,L) decreases for

all other τ . In other words, demand is concentrated within the product’s selling sea-

son, and unserved customers are lost. To simplify the mathematical exposition, we also

assume that A(τ |Q,B,L) is once continuously differentiable in τ for any realization of

(Q,B,L), and we label the first derivative of any function z with respect to τ by z′. For

brevity, we refer to the product’s market potential at time τ by Qτ ≡ A(τ |Q,B,L)Q.

With this definition, the stochastic customer demand rate at time τ is −Q′τ . Finally,

we define dτ (Z) ≡ E
[
−Q′τ1{Z}

]
, where 1{Z} is the indicator function of event Z. Figure

3.1 graphically visualizes the relationship between the product’s market potential, its

2All our results continue to hold for A(τ) being a random function as long as A(τ) is drawn from a
measurable set of functions.
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selling season, and its availability period.

Figure 3.1.: Market environment and inventory strategy.
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Notes. The evolution of the product’s market potential, Qτ , (solid line) and the firm’s inventory
level, It(τ), (dashed line) over time. In the left panel, the firm makes the product available
before the selling season starts, and sells out before the season ends. In the right panel, the
firm misses the beginning of the selling season and has unsold items at the end of the season.

Before the product is first made available, the firm orders the desired inventories at

unit costs, c, and during its availability period, the product is sold at unit price, p > c.

If the product is made available for sale before the selling season starts, i.e., t < B,

then the firm incurs earliness costs. We consider two different sources for such earliness

costs; opportunity costs, o, and idle time holding costs, w. When being too early, the

firm forgoes the opportunity to dedicate its resources into more profitable alternatives,

because offering the product at hand blocks financial resources and scarce capacities.

Ultimately, this leads to lost revenues. To capture this loss of revenue, we charge the

firm opportunity costs per time, o, until the product’s selling season starts. In addition,

before being able to sell the product, the firm has to stock its inventories until the

start of the product’s selling season. As such, the firm experiences idle time holding

costs, w, per unit inventory and time. During the product’s effective time on sale, i.e.,

for τ ∈ {max{t, B}, B + L}, the firm incurs holding costs, h, per unit inventory and

time.3 Given that the firm offers the product from time t on, the product’s inventory

3We differentiate between “pre-season” holding costs, w, and “in-season” holding costs, h, to clearly
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level at time τ ≥ t is It(τ) ≡ [x− (Qt −Qτ )]
+, which is non-increasing in τ , and

where z+ = max{z, 0}. Lastly, as the product’s selling season ends, the firm recaptures

a salvage value, s < c, for each unsold item. In summary, the firm seeks to choose

the inventory strategy that maximizes expected profits, comprising the product’s sales

revenues minus procurement, earliness, inventory holding, and salvage costs. Formally,

the firm solves the following optimization problem:

max
x,t

Π(x, t) = E
[
(p− c)x− (o+ wx)(B − t)+ − h

∫ B+L

max{t,B}
It(τ)dτ − (p− s)(x−Qt)

+

]
.

(3.1)

At this point, it is worthwhile to clarify how our model relates to the classical

newsvendor model. Recall that the primary focus of the classical newsvendor model

is to determine the optimal inventory scale, x, of a firm that faces an uncertain cus-

tomer demand, Q (Cachon and Kök, 2007). While this question is also present in our

framework, we depart from the classical newsvendor model in two dimensions. First,

we study the repercussions of a stochastic selling season on a firm’s optimal inventory

strategy. In contrast, classical newsvendor models provide only an aggregated view on

the selling season without considering how mistiming costs and specific properties of

the selling season affect a firm’s decision. Secondly, we extend the scope of a firm’s

inventory strategy to include not only the inventory scale, but also the inventory timing.

This latter decision enables a firm to actively manage the adverse effects of a stochastic

selling season, and is therefore a crucial element of a firm’s inventory strategy.

For future reference, we note that the classical newsvendor’s optimal inventory scale,

xNV , satisfies P(Q ≤ xNV ) = p−c
p−s .

3.4 The Effects of a Probabilistic Season

Start and Length

As highlighted before, our model setup structurally departs from the standard literature

on stochastic inventory theory by considering that the firm faces an uncertain selling

isolate how the firm’s inability to synchronize the product’s availability period with the selling season
influences the firm’s inventory strategy.
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season. Most notably, this uncertainty is reflected in the probabilistic beginning of the

selling season and the stochastic season length. Figure 3.2 positions our work relative

to the classical newsvendor model.

In this section, we disentangle how these different sources of uncertainty individu-

ally affect the firm’s optimal inventory strategy. We initiate our analysis by establishing

important properties of the firm’s expected profit, Π(x, t), and by discussing the implica-

tions of these properties on the firm’s optimal inventory strategy (§4.1). In a next step,

we investigate two instructive special cases. These scenarios help us to clearly elicit how

the introduction of a stochastic selling season, and the opportunity to choose a product’s

inventory timing influence the firm’s optimal strategy. In the first scenario, we restrict

attention to the effects of a stochastic season length (§4.2), while in the second scenario,

we examine the repercussions of a stochastic season beginning (§4.3). Studying these

different sources of uncertainty in isolation greatly facilitates the understanding of the

combined effects that appear in the fully stochastic model (3.1), which we examine in

Section 5. Additionally, we show that the illustrated special cases also reflect specific

market environments that are present in many industries.

Figure 3.2.: The role of uncertainty in different models.
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3.4.1. Structural Properties

For the classical newsvendor model, it is well known that the firm’s expected profits

are concave in the firm’s inventory scale, x (see, e.g., Perakis and Roels, 2008). This

fundamental property of the expected profit function is preserved when the firm faces a

stochastic selling season. All proofs are presented in Appendix B.

Lemma 3.1. For given t, Π(x, t) is strictly concave in x.
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Lemma 3.1 indicates that for any inventory timing that the firm chooses, a unique

profit-maximizing inventory scale exists. In general, however, expected profits are not

concave in the firm’s timing decision, t. This implies that the firm’s optimal inventory

strategy, (x?, t?) = argmaxx,t Π(x, t), is not necessarily an interior solution to the firm’s

optimization problem (3.1). In fact, the firm may find it optimal to make the product

available at the very first opportunity, or to never sell the product at all. To be precise,

the firm knows that the selling season never starts before τ = 0, and never terminates

after τ = bu + lu. Choosing an inventory timing outside this time interval results in

substantial mistiming costs without benefiting customer demand. It is therefore never

economically rational for the firm to offer the product before or after these theoretical

boundaries of the selling season. However, the firm may optimally choose to make the

product available at the very first opportunity, t = 0. In this case, the firm entirely

avoids the risk of losing customers due to a tardy inventory availability. We call this

strategy instant inventory availability. If the firm chooses an inventory timing that

satisfies 0 < t < bu + lu, then we say that the firm pursues a risk exploitation inventory

strategy. By definition, such a strategy is always an interior solution to the firm’s

optimization problem (3.1). The last potentially optimal strategy for the firm is a

market exit. With this strategy, the firm deliberately forgoes any sales by never making

the product available to customers. Obviously, when the firm exits the market, it earns

zero profits. Thus, a market exit is chosen only if any earlier inventory timing leads to

negative expected profits. We will show that this may happen if the firm’s mistiming

costs are severe, or if there is considerable uncertainty in the properties of the selling

season.

3.4.2. Managing a Stochastic Season Length

Given that the start of the selling season is known in advance, what is the optimal

inventory strategy for a product with a probabilistic season length? This question is

prevalent for many products in diverse industries. Consider, e.g., the market for seasonal

sporting goods, and in particular the market for ski equipment. Typically, the first

customers buy their equipment for the new season during late autumn, thereby marking

the well anticipated start of the selling season. The length of the season, however, is

not so easily predictable as it highly depends on the weather conditions during winter

and early spring. A lot of snow in early spring keeps demand high for a long time,
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whereas demand ceases early if the winter months are exceptionally mild. Obviously, at

the time the firm decides on its inventory strategy, these weather conditions are highly

unpredictable. Thus, firms in the market for ski equipment face a substantial uncertainty

regarding the length of their selling season. Besides the seasonal sporting goods industry,

similar issues also arise, e.g., for sun care products, and beach wear.

When the firm knows that the product’s selling season starts at time τ = b, then

the firm never makes the product available for sale prior to the beginning of the season.

This is true because a premature product availability has no upside potential for the

firm, but only results in earliness costs. Formally, the firm would not spur customer

demand with such a strategy since Qτ = Q for all τ ≤ b. It follows immediately that the

firm’s optimal inventory strategy satisfies t ≥ b, and solves the following optimization

problem:

max
x,t≥b

ΠL(x, t) = E
[
(p− c)x− h

∫ b+L

t

It(τ)dτ − (p− s)(x−Qt)
+

]
. (3.2)

The firm maximizes the expected product margin net of inventory holding and salvage

costs. Earliness costs are irrelevant for the firm’s decision problem, since the product

is never introduced before the season starts. Clearly, (3.2) is a special case of the fully

stochastic model described in (3.1). Following the discussion in Section 4.1, we notice

that in general, ΠL(x, t) is not jointly concave in x and t; i.e., the firm’s optimal inventory

strategy need not be an interior solution to (3.2). Nevertheless, we begin our analysis

with a discussion of the firm’s optimal risk exploitation inventory strategy. Afterwards,

we characterize the firm’s general optimal inventory strategy.

Lemma 3.2. Any optimal risk exploitation inventory strategy, (x?, t?), simultaneously

satisfies the following two first-order necessary optimality conditions:

P(Qt? ≤ x?) +
h

p− s

∫ b+lu

t?
P(Qt? −Qτ ≤ x?, L > τ − b)dτ =

p− c
p− s (3.3)

h

[
x?P(L > t? − b)−

∫ b+lu

t?
dt?(Qt? −Qτ ≤ x?, L > τ − b)dτ

]
= (p− s)dt?(Qt? ≤ x?).

(3.4)

Lemma 3.2 shows that with its optimal risk exploitation inventory strategy, the firm

manages a two-fold tradeoff originating from the two different uncertainties in customer
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demand scale and timing. To be concrete, to offer the right amount of inventories at

the right time, the firm balances the two interdependent tradeoffs between stocking too

much and too little, and between making the product available too early and too late.

For a given inventory timing, the optimal amount of inventories, x?, is determined by

(3.3). This condition has strong similarities with the optimality condition in the classical

newsvendor model. In fact, without the second term on the left-hand side, (3.3) is a

common critical fractile solution which trades off the firm’s underage costs, cu = p− c,
with the overage costs, co = c− s. However, there are two major structural differences

compared to the classical newsvendor solution. Firstly and intuitively, the firm does not

take into account the entire market potential, Q, but only the market potential that

will realize after the product is made available for sale, Qt? . Secondly, the inclusion of

inventory holding costs reduces the firm’s effective underage costs, while simultaneously

increasing the effective overage costs. As a result, the firm’s optimal inventory scale is

adjusted down.

For a given inventory scale, the optimal time to make the product available for

sale is also determined by a marginal analysis (3.4). Postponing the product’s market

availability reduces expected inventory holding costs because the product has to be kept

on stock for a shorter time period. However, such a postponement comes at the cost

of more expected lost sales since more customers that try to buy the product prior to

market availability cannot be served. This leads the firm to choose its optimal inventory

timing, t?, by equating the expected marginal inventory holding cost savings with the

expected marginal lost sales costs.

Lemma 3.2 illustrates two key characteristics that are innate to the firm’s decision

problem. Firstly, there is a high degree of interdependence between the uncertainties in

demand scale and timing, and the firm’s inventory strategy. As a result, x? and t? are

closely interlinked in manifold ways. The optimal inventory scale, x?, is chosen to best

satisfy the market potential at the time of product availability, Qt? , which is obviously a

function of the inventory timing, t?. Inventory holding costs influence both the optimal

inventory scale and timing because the size of these costs depends on both decisions.

Similarly, lost sales costs are also nourished by two different sources: the risk of stocking

too little inventory to satisfy the market potential; and the risk of losing customers

due to a tardy availability of the product. While the first source is well established and

studied in the classical newsvendor literature, the latter source has received considerably

less attention.
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Secondly, as we would expect, higher inventory holding costs force a firm to lower

the product’s inventory scale. While this finding is intuitive, (3.3) shows that the dy-

namics behind this result are more complex than previously postulated in the academic

literature. Specifically, a large part of the classical newsvendor literature proposes that

inventory holding costs increase a firm’s overage costs, while leaving the underage costs

unaffected (see, e.g., Kouvelis and Gutierrez, 1997; Van Mieghem and Rudi, 2002). In

contrast to this perception, however, our analysis reveals that inventory holding costs not

only increase a firm’s overage costs, but also reduce the firm’s underage costs, thereby

keeping the sum of overage and underage costs invariant. This difference has consider-

able implications for the firm’s optimal inventory strategy. To see these repercussions

note how inventory holding costs affect the firm’s critical fractile under the different

approaches. Prior academic literature suggests to augment the firm’s overage costs, co,

with some inventory holding costs, H, to receive the adjusted critical fractile cu
cu+co+H

. In

contrast, (3.3) shows that the correct structure of the critical fractile adjusted for inven-

tory holding costs is cu−H
cu+co

. Three important managerial implications abound from our

finding. First, Lemma 3.2 provides an exact characterization of the inventory hold-

ing cost term that is required for a correct adjustment of the critical fractile, i.e.,

H(x, t) = h
∫ b+lu
t

P(Qt − Qτ ≤ x, L > τ − b)dτ . Second, since cu−H
cu+co

< cu
cu+co+H

, the

classical approach underestimates the negative effect of inventory holding costs on a

product’s profitability. Most notably, our approach always leads to a smaller optimal

inventory scale. Third, as can be seen in (3.3), the firm endogenously determines the

relevant inventory holding costs by choosing the product’s inventory timing. Thus, the

additional timing flexibility enables the firm to actively manage the product’s optimal

target service level and to increase the product’s profitability. We are now ready to

establish the firm’s optimal inventory strategy.

Proposition 3.1. The firm’s optimal inventory strategy is as follows:

(a) In the absence of inventory holding costs, h = 0, the firm makes the product

instantly available at the start of the selling season, t? = b, with the optimal inventory

scale satisfying P(Q ≤ x?) = p−c
p−s .

(b) Suppose the firm incurs inventory holding costs, h > 0. Then, there exists a

decreasing and continuously differentiable function h(c) such that the firm (i) pursues

the risk exploitation inventory strategy defined in Lemma 3.2 if h ≤ h(c); or (ii) exits

the market otherwise.
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Proposition 3.1 establishes how inventory holding costs and the different sources of

uncertainty affect the firm’s optimal inventory strategy. As we would intuitively expect,

if the firm is not charged any inventory holding costs, then it is optimal to pursue an

instant product availability strategy. This is true because postponing the product’s

availability leads to a reduced market potential without resulting in any cost savings.

Thus, deferring the product’s inventory timing is never beneficial for the firm.

Remarkably, in the absence of inventory holding costs, the firm’s optimal inventory

scale resolves the classical newsvendor tradeoff. In such a situation, the uncertainty

in the selling season, S, does not generate any additional costs for the firm, but only

complicates the derivation of the appropriate market potential distribution. In fact, the

firm needs to use the marginal distribution of Q by averaging over all possible realizations

of the stochastic selling season, S. In practice, this result implies that firms that do not

suffer from inventory holding costs and that have a good understanding of how the

properties of their selling season affect the product’s market potential can determine

their optimal inventory strategy by simply applying the classical newsvendor model.

Yet, as Proposition 3.1(b) indicates, this is no longer true when a firm incurs inven-

tory holding costs because these costs fundamentally change the firm’s optimal inventory

strategy. With h > 0, it is never optimal to make the product instantly available. As a

result, the product’s selling season and its availability period no longer coincide. Instead,

the firm either follows a risk exploitation strategy, or it decides to exit the market. Two

levers critically determine which strategy the firm chooses in optimum: the magnitude

of the inventory holding costs, and the amount of uncertainty involved. If there is only

low uncertainty regarding the season length and holding costs are moderate, then the

firm pursues a risk exploitation strategy. In contrast, if the involved uncertainty is severe

and holding costs are high, then being on the market is too costly for the firm. In such

a situation, the product generates negative expected profits and therefore, the firm has

to abandon the product.

Previously, Ülkü et al. (2005) have shown that a firm may sacrifice some of its

product’s market potential in order to receive more advanced demand information. We

provide another explanation why firms may deliberately reduce their market potential

by delaying their inventory availability: the existence of inventory holding costs. In

practice, most firms incur inventory holding costs for their products. Our results re-

veal that firms that ignore these costs suffer from a premature product availability and

excessive stocks. Obviously, this problem is most severe for products with substantial in-
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ventory holding costs and long selling seasons because for these products, an ill-designed

inventory strategy can fully erode the firm’s profits. For instance, based on the classical

newsvendor literature, a naive decision-maker could be misled to follow a simple “now

or never” timing strategy, i.e., make the product instantly available or exit the market.

However, in the presence of inventory holding costs, Proposition 3.1(b) clearly shows

that such a strategy cannot be optimal. Instead, the main question for the firm is: how

long to postpone product availability? This result is consistent with recent findings of Ke

et al. (2013) who show that operational costs induce a firm to postpone the introduction

timing of successive product generations.

3.4.3. Managing a Stochastic Season Start

External factors such as general weather conditions, the spread of diseases, or the occur-

rence of fashion trends may not only influence the length of a product’s selling season,

but also the season’s beginning. Consider for instance the market for pollen allergy

drugs. The selling season for these drugs typically coincides with the blooming period

of allergy-causing trees and plants. While over the years blooming periods are relatively

stable in their length, their beginning can heavily change from one year to another.

Unfortunately, predicting the start of a blooming period is a tough challenge as seasons

highly depend on climatic conditions such as precipitation and temperature. Therefore,

manufacturers of pollen allergy drugs oftentimes face a selling season with a probabilis-

tic beginning and an almost deterministic length. Such a market environment is not

exclusive for allergy drugs, but is also prevalent, e.g., in the agrochemical industry.

In this section, we study a firm’s optimal inventory strategy for a product that

is sold over a selling season with a probabilistic beginning and a deterministic length.

We are particularly interested in how the stochasticity of the season beginning and the

occurrence of earliness costs affect the firm’s inventory scale and timing. For now, to

better isolate these two effects, we disregard any inventory holding costs by setting

h = 0. The omission of inventory holding costs helps us to clearly elicit the role that

opportunity and idle time holding costs play in determining the firm’s optimal inventory

strategy. (We reintroduce inventory holding costs in Section 5 when we discuss our

full model.) In a market environment as described above, the firm maximizes expected
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product margins minus the expected earliness and salvage costs:

max
x,t

ΠB(x, t) = E
[
(p− c)x− (o+ wx)(B − t)+ − (p− s)(x−Qt)

+
]
. (3.5)

Similar to the preceding section, we first establish the firm’s optimal risk exploitation

strategy, and then characterize the firm’s general optimal inventory strategy.

Lemma 3.3. Any optimal risk exploitation inventory strategy, (x?, t?), simultaneously

satisfies the following two first-order necessary optimality conditions:

P(Qt? ≤ x?) +
w

p− s

∫ bu

t?
P(B ≥ b)db =

p− c
p− s (3.6)

(o+ wx?)P(B ≥ t?) = (p− s)dt?(Qt? ≤ x?). (3.7)

The firm’s optimal risk exploitation strategy is again aimed at resolving two in-

tertwined tradeoffs: for a given inventory timing, the inventory scale, x?, is chosen to

balance the risk of having insufficient inventories with the costs of having excess stocks

(3.6); for a given inventory scale, the inventory timing, t?, is chosen to balance potential

earliness cost savings with the risk of losing customers (3.7). There are strong analogies

between Lemma 3.3 and the results discussed in Lemma 3.2. Recall that (3.3) indicates

that “in-season” holding costs, h, reduce the firm’s optimal inventory scale. Intutitively,

(3.6) reveals that “pre-season” holding costs, w, have a similar influence on the firm’s in-

ventory scale. Importantly, however, both effects are not identical because their size is in

general substantially different. It is also noteworthy that opportunity costs, o, influence

the firm’s optimal inventory scale, x?, only indirectly through the firm’s choice of the

product’s inventory timing, t?. This is true because opportunity costs are independent

of the chosen inventory scale, but only depend on the firm’s inventory timing decision.

Conversely, procurement costs, c, have no direct impact on the firm’s optimal inventory

timing, as c does not affect the firm’s mistiming costs.

Despite the above analogies, Lemma 3.3 also reveals that an uncertain season start

has fundamentally different implications for the firm’s risk exploitation inventory strat-

egy than an uncertain season length. To be specific, the main difference is that the

firm may now introduce the product before customers actually demand the product.

This is in contrast to an implicit assumption shared in the newsvendor and new product

introduction literature that the firm can always sell a product to customers once it is
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introduced on the market. In the absence of explicit mistiming costs, this assumption

may be rather unproblematic. Yet, once a firm incurs earliness costs, the stochasticity

in the beginning of the selling season seriously changes the firm’s inventory scale and its

inventory timing, because earliness costs alter the firm’s per unit underage and overage

costs, and equally importantly, the firm’s mistiming costs. Without earliness costs, a

postponement of the product availability only has a negative impact on firm profits due

to a reduced market potential. With the inclusion of earliness costs, however, a counter-

vailing trend is introduced that creates an incentive to postpone the inventory timing.

This result becomes even more explicit when we analyze the firm’s optimal inventory

strategy.

Proposition 3.2. The firm’s optimal inventory strategy is as follows:

(a) In the absence of earliness costs, o = w = 0, the firm makes the product instantly

available, t? = 0, and the optimal inventory scale solves P(Q ≤ x?) = p−c
p−s .

(b) Suppose the firm incurs earliness costs, o+w > 0. Then, there exists a decreas-

ing and continuously differentiable function o(c) such that the firm (i) pursues the risk

exploitation strategy defined in Lemma 3.3 if o ≤ o(c); or (ii) exits the market otherwise.

Without earliness costs, a delay in the product’s inventory availability has no upside,

but only a downside effect because the firm may lose customers and experience lower

sales and higher salvage costs. This imbalance forces the firm to make the product

instantly available at the very first opportunity, t? = 0. Intriguingly, this timing strategy

illustrates the firm’s inability to synchronize the product’s availability period with the

selling season when the season start is stochastic. Note that this problem is not present

when the firm only faces a probabilistic season length. As highlighted in Proposition

3.1(a), if the firm knows the beginning of the selling season, then the firm makes the

product available right at the start of the selling season, thereby achieving an ideal

synchronization between the product’s selling season and its availability period.

Similar to the findings of Proposition 3.1(b), the introduction of mistiming costs

attenuates the trend towards an instant product availability. In fact, the presence of

earliness costs entices the firm to refrain from an instant product availability, and to

delay its inventory timing. The higher the earliness costs, the more the firm strives to

reduce these costs by delaying the time when inventory is made available to customers.

In this endeavor to save costs, however, the firm more and more sacrifices its customer

service as more and more customers are left unserved. This tendency, in turn, has
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detrimental effects on the firm’s sales revenues and therefore may ultimately induce the

firm to remove its product from the market.

Proposition 3.2(a) vividly shows that to tackle the uncertainty in the season start,

the firm tries to execute a “safe” inventory strategy by avoiding any market potential

loss due to an early demand occurrence. Thus, without earliness costs, the firm can com-

pletely offset the adverse effects of an uncertain season start on the product’s market

potential. With increasing earliness costs, however, this “safe” inventory timing becomes

prohibitively expensive. As a result, the firm has to postpone its inventory timing which

increases the risk of losing valuable market potential. Surprisingly, the literature on new

product introductions has so far entirely ignored earliness costs as a determinant of a

firm’s product introduction strategy. Admittedly, due to significant modeling differences

our results are not directly transferable to a new product introduction setting. Never-

theless, we believe that our analysis offers a substantial argument why earliness costs

may also be important for new product introductions.

3.5 Selling over an Uncertain Season

In Section 4, we disentangled the direct effects that a stochastic season start and season

length, respectively, have on the firm’s optimal inventory strategy. We now proceed to

study the interaction between these individual effects. In particular, by solving (3.1),

we establish and analyze the firm’s optimal inventory strategy when the firm faces an

entirely stochastic selling season. Similar to the preceding analysis, we will first discuss

the firm’s optimal risk exploitation strategy. In a second step, we then determine the

firm’s optimal inventory strategy. Lastly, we elaborate on specific properties of this

optimal strategy.

Lemma 3.4. Any optimal risk exploitation inventory strategy, (x?, t?), simultaneously
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satisfies the following two first-order necessary optimality conditions:

P(Qt? ≤ x?) +
w

p− s

∫ bu

t?
P(B ≥ b)db

+
h

p− s

∫ bu+lu

0

P(Qt? −Qτ ≤ x?,max{t?, B} ≤ τ ≤ B + L)dτ =
p− c
p− s

(3.8)

h

[
x?P(B ≤ t? ≤ B + L)−

∫ bu+lu

t?
dt?(Qt? −Qτ ≤ x?, τ ≤ B + L,B ≤ t?)dτ

]
+ (o+ wx?)P(B ≥ t?) = (p− s)dt?(Qt? ≤ x?).

(3.9)

Lemma 3.4 illustrates three important insights into the dependence structures be-

tween the different sources of uncertainty and the firm’s inventory strategy. Firstly, we

observe that the optimality conditions (3.8) and (3.9) collect the marginal effects that

are already present in the optimality conditions given in Lemmas 3.2 and 3.3. Thus,

the tradeoffs that a firm experiences when selling a product over a stochastic selling

season are structurally equivalent to the tradeoffs identified in Section 4. Specifically,

the firm balances the costs of having excessive inventories and the costs of offering the

product too early with the opportunity costs of losing customers because of product un-

availability. Secondly, while earliness and salvage costs are not influenced by the mutual

interplay between the uncertainty in the start and the length of the selling season, in-

ventory holding costs are simultaneously affected by both types of uncertainty. This can

be clearly seen by comparing Lemmas 3.2 and 3.3 with Lemma 3.4. There is an intuitive

explanation for this finding. Earliness costs depend solely on the relation between the

firm’s inventory timing and the start of the selling season, but not on the season length.

Similarly, irrespective of the specific structure of the selling season, salvage costs are

determined by the chosen inventory scale and the realized market potential. In contrast,

inventory holding costs are determined by the complex interaction between the firm’s

inventory scale and timing, the selling season’s beginning and length, and the market

potential.

Lastly, the firm’s ability to decide on the product’s inventory timing is vital to

actively manage the multiple sources of uncertainty. Without this flexibility, as in the

classical newsvendor setup, the firm could only influence the different cost components by

adjusting the product’s inventory scale. Such an approach, however, impedes an effective

inventory management for products with an uncertain selling season. Most importantly,

to maximize profits, the firm has to be proactive in influencing the product’s inventory
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holding, earliness, and salvage costs by choosing and executing an adequate inventory

strategy. This finding receives further support from the following proposition.

Proposition 3.3. The firm’s optimal inventory strategy is as follows:

(a) In the absence of earliness and inventory holding costs, w = o = h = 0, the

firm makes the product instantly available, t? = 0, and the optimal inventory scale solves

P(Q ≤ x?) = p−c
p−s .

(b) Suppose w + o + h > 0. Then, there exists a decreasing and continuously

differentiable function ô(c) such that the firm (i) pursues the risk exploitation strategy

defined in Lemma 3.3 if o ≤ ô(c); or (ii) exits the market otherwise.

Figure 3.3.: The firm’s optimal inventory strategy.

p c

o

Market exit

Risk exploitation

ô(c)

Instant availability

Notes. The firm’s optimal inventory strategy with respect to the opportunity costs, o, and the
procurement costs, c, given that w = h = 0. The firm chooses an instant product availability
if o = 0, a risk exploitation strategy in the gray region, and a market exit elsewise.

Figure 3.3 visualizes the results of Proposition 3.3. Not surprisingly, the firm makes

the product instantly available whenever there are no earliness and inventory holding

costs. This is no longer true once the firm also incurs costs for making the product

available to customers. Then, the firm defers its inventory timing to reduce the charged

54



III. Seasonal Products: Scale and Timing of Inventory Availability

earliness and inventory holding costs. Such a risk exploitation inventory strategy is opti-

mal as long as opportunity and procurement costs remain moderate. Once opportunity

costs surpass a critical level, ô(c), the firm refrains from offering the product on the

market because the product becomes more and more unprofitable.

Proposition 3.3 also reveals an intriguing difference between the firm’s reaction

towards uncertainty in customer demand scale, and towards uncertainty in customer

demand timing. Notably, the latter uncertainty has much more severe repercussions on

the firm’s inventory strategy. Specifically, even the joint flexibility to adjust the product’s

inventory scale and timing is not sufficient to always prevent the firm from exiting the

market when the product faces a stochastic selling season. This happens because of the

firm’s inability to reduce the product’s unit costs without sacrificing market potential.

As a consequence, the firm may not be able to compensate all costs that arise from the

uncertain selling season, leaving the product with a negative effective unit margin. This

finding highlights the need for a carefully chosen inventory strategy. We next present

two important results that follow from Proposition 3.3.

Corollary 3.1. If the product’s market potential, Q, and the properties of the selling

season, S, are stochastically independent, then the firm’s optimal inventory scale is

smaller than that of a classical newsvendor, x? ≤ xNV , with equality if and only if

w = o = h = 0.

Corollary 3.1 summarizes the effects of a stochastic selling season on the firm’s

optimal inventory scale. If the product’s market potential is not affected by the specific

structure of the selling season, then both, the firm and a classical newsvendor face

the same inventory scaling problem: how much inventory to stock to best satisfy the

uncertain market potential, Q? Although this initial question is identical for both firms,

their answer is different. A classical newsvendor always stocks more than a firm that

also experiences stochasticity in the selling season because this additional uncertainty

makes it more expensive for the firm to have excess stocks. As a result, the firm becomes

more conservative in its inventory scaling decision.

Intriguingly, this argument no longer holds if Q and S are stochastically dependent.

Consider, e.g., a market where a late (early) season start is associated with a high (low)

market potential. In such a situation, a firm could bet on a late season start. The firm

would postpone product availability, save on earliness costs, and try to exploit the large

market potential. Ultimately, this additional timing flexibility may induce the firm to

55



III. Seasonal Products: Scale and Timing of Inventory Availability

stock more than a classical newsvendor who is not able to actively manage the product’s

market potential by shifting the inventory timing.

Corollary 3.2. The firm’s expected profit, Π(x, t), increases in p and s, and decreases

in c, o, w, and h, if the firm’s inventory strategy is either held fixed or adjusted optimally

as the parameters change.

The firm’s expected profits change monotonically in all revenue and cost parameters.

As we would intuitively expect, the firm always benefits from a higher sales price, p,

and a higher salvage value, s. In contrast, the firm suffers from eroding profits when

procurement costs, c, opportunity costs, o, and holding costs, w and h, increase.

While the firm’s expected profits are monotonic, we now show that the optimal

inventory strategy does not exhibit such a monotonic behavior. We establish this im-

portant result through a series of Lemmas. In a first step, we analyze whether the firm’s

optimal inventory scale, x?, changes monotonically with the firm’s inventory timing,

t. One might expect that x? decreases in t because a later inventory timing implies a

stochastically smaller market potential for the product, which in turn should entice the

firm to stock less inventories. However, Lemma 3.5 indicates that this intuitive reasoning

is not necessarily true.

Lemma 3.5. (a) If the firm incurs neither earliness nor inventory holding costs, then

the firm’s optimal inventory scale, x?(t), decreases in the inventory timing, t.

(b) There exist situations when the firm’s optimal inventory scale, x?(t), increases

in t.

The interplay between the firm’s optimal inventory scale and timing is determined

by two countervailing effects. On the one hand, with a late inventory timing, the firm

sacrifices sales because the expected number of customers that try to buy the product

prior to the product’s availability period increases in t. Thus, the product’s market

potential decreases and the firm is induced to reduce the product’s inventory scale. On

the other hand, a delayed inventory timing reduces the expected earliness and inventory

holding costs that the firm has to pay. Less earliness and holding costs, in turn, increase

(decrease) the firm’s effective underage (overage) costs. Ultimately, this gives the firm

a reason to choose a higher inventory scale.

Whether the firm’s inventory scale decreases in the inventory timing decision, or not,

crucially depends on the relation between these two effects. Obviously, if the firm does
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not incur any earliness or inventory holding costs at all, then a delayed inventory timing

does not result in any cost savings. In such a situation, the firm’s inventory scale always

decreases in t to account for the product’s reduced market potential. Yet, if earliness

costs are high and delaying the inventory timing has only a small effect on the product’s

market potential, then the firm may actually increase the product’s inventory scale as

t increases. In this case, the expected cost savings outweigh the negative influence of a

smaller customer base.

This finding is remarkable. Lemma 3.5(b) implies that a firm may actually build

larger inventories although it serves stochastically less customers. As such, this result is

fundamentally different from any common logic in the classical newsvendor model where

a stochastically smaller market potential always leads to lower inventories (see, e.g., Li,

1992). The reason for this difference is the explicit consideration of the product’s selling

season together with the associated mistiming costs. These mistiming costs introduce a

novel tradeoff that is not present in the classical newsvendor literature: the tradeoff be-

tween the length of the product’s availability period and the size of the product’s market

potential. Although a short availability period only offers a small market potential, it is

cheap to serve. In contrast, a long availability period promises a large market potential,

but serving a long period may be overly costly.

Lemma 3.6. (a) For fixed t, x? increases in p and s; decreases in c, h, and w; and is

invariant in o.

(b) For fixed x, t? increases in w, o, h, and s; decreases in p; and is invariant in c.

The direct influence of the different revenue and cost parameters on the firm’s

optimal inventory scale and timing, respectively, is summarized in Lemma 3.6. As in

the classical newsvendor model, the firm’s inventory scale increases in the sales price,

p, and salvage value, s, and decreases in the procurement costs, c. This is true because

p and s have a positive impact on the product’s unit margin, whereas c has a negative

impact. Similarly, the optimal inventory scale also decreases in w and h since idle time

and inventory holding costs exert a negative influence on the product’s profit margin.

Interestingly, however, opportunity costs do not have any effect on the firm’s inventory

scale for given t, because o does not influence a product’s unit profit margin.

Clearly, the firm postpones its inventory timing if earliness and holding costs in-

crease. Less intuitive, however, is the effect of p, c, and s on the firm’s optimal inventory

timing. As can be verified in (3.9), the product’s sales price and salvage value deter-
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mine the firm’s effective tardiness costs. For the firm, tardiness evokes additional lost

sales and thus, more items need to be salvaged at the end of the season. This downside

of a delayed inventory timing is most severe when the sales price, p, is high and the

the salvage value, s, is low. Consequently, the optimal inventory timing decreases in p

and increases in s. Finally, the firm’s timing decision is not affected by the product’s

procurement costs because c has no impact on the firm’s mistiming costs.

Lemma 3.6 shows that, in isolation, the different revenue and cost parameters have

a monotonic influence on the firm’s optimal inventory scale and timing, respectively. As

the next Proposition indicates this monotonicity of the optimal inventory strategy is not

preserved for all parameters when including all indirect effects. Specifically, opportunity

costs and procurement costs have an ambiguous effect on the firm’s optimal inventory

strategy.

Proposition 3.4. (a) While the firm’s optimal inventory timing, t?, increases in the

opportunity costs, o, the optimal inventory scale, x?, may increase or decrease in o.

(b) While the firm’s optimal inventory scale, x?, decreases in the procurement costs,

c, the optimal inventory timing, t?, may increase or decrease in c.

Proposition 3.4 offers two surprising results that highlight the substitution effects

between the firm’s inventory scale and timing. Firstly, the firm may respond to a higher

operational cost burden by increasing the product’s inventory scale while at the same

time shortening the product’s availability period. Clearly, with higher opportunity costs,

the firm always postpones the product’s inventory availability in order to dampen the

burden of increasing earliness costs. At the same time, the firm reduces the costs of

having left-over inventories at the end of the selling season, thereby creating an incentive

to increase the product’s inventory scale. Thus, when mistiming costs increase, the firm

sacrifices some of the product’s market potential, but tries to serve a larger portion of

the remaining customer demand.

Secondly, when confronted with higher procurement costs, the firm may find it op-

timal to extend the product’s availability period, while limiting the product’s inventory

scale. Intuitively, since higher procurement costs erode the product’s unit margin, the

firm always reduces the available inventories. Having less inventories, however, makes

it cheaper for the firm to offer the product on the market. This explains why the firm

may optimally choose to make the product available earlier. Intriguingly, as a result,

the firm serves a higher market potential with less inventories.
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3.6 Conclusions

A key concern of many firms is to determine an appropriate inventory strategy for a

seasonal product that possesses a demand pattern “with an uncertain start date, an

uncertain end date, and whose size cannot be known in advance with certainty” (Allen

and Schuster, 2004, p. 227). Prior academic literature has provided manifold examples

of products that suffer from such uncertainties in demand scale and timing (e.g., Chen

and Yano, 2010, and references therein), but without offering explicit guidance on how

to optimally manage inventories under these adverse market conditions. Our main con-

tribution is to provide a formal framework on the tradeoffs arising from the different

sources of demand uncertainty, and to give recommendations on how to successfully

manage products in such volatile market environments.

Our results have important implications for managers in charge of products with

uncertain customer demand patterns. Managers need to be aware of the tradeoff between

the length of a product’s availability period and the product’s market potential. While

at first glance, it may seem a promising strategy to serve as high a market potential as

possible, our results reveal that an uncertain selling season paired with mistiming costs

impedes such a naive strategy. Moreover, managers should exploit the substitution

effects between a product’s inventory scale and its inventory timing. This involves

making counter-intuitive decisions: when mistiming costs are relatively high, managers

should choose relatively short availability periods, but offer relatively high inventories.

Our analysis also highlights that managers do well not to underestimate the negative

impact of an uncertain timing of customer demand. Simply shortening a product’s

availability period may not always be a prudent response. Albeit such a strategy enables

the reduction of the inventory and mistiming costs, it also sacrifices valuable market

potential. When this latter effect dominates, products are suffering from devouring

revenues. To combat this detrimental tendency, managers have to carefully rebalance

their inventory scaling and timing decisions. At the very extreme, when the timing

uncertainty is too severe, managers may also be left with a product accruing no profits.

Ultimately, we stress the importance for managers to have a clear understanding of

how their operational costs affect a product’s optimal inventory strategy. As our results

suggest, disregarding some of these effects leads to inadequate decisions. Inventory

holding costs are a notable example for this phenomenon. They simultaneously exert
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a subtle influence on a product’s mistiming costs as well as on the firm’s effective lost

sales costs. When ignoring the interaction between these two effects, a manager is likely

to overestimate both, the product’s optimal inventory level and the optimal time on the

market.

Our analytical framework offers a strong foundation on which future studies can

build. By restricting our attention to a single firm, we have made a first step towards

the understanding of how a stochastic selling season affects a firm’s inventory decisions.

Yet, in practice, many firms sell their products not only in an uncertain market environ-

ment, but also under intense competition. Investigating how firms adapt their inventory

strategy under competition is an exciting alley for further research. The occurrence of

rival firms would force a firm to simultaneously engage in quantity and time competition.

Whether such competition induces firms to strive for an early market entry, or to prefer

a late market release, is an open question.
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Chapter IV

Substitution Effects in a Supply

Chain with Upstream Competition

with Moritz Fleischmann1

4.1 Introduction

In recent years, a diverse body of research has focused on how firms should optimally

react to customer substitution. For firms that directly serve customers, investigations

range from strategic assortment planning (Kök and Fisher, 2007; Honhon et al., 2010)

over promotion strategies (Walters, 1991) to optimal stocking decisions (Netessine and

Rudi, 2003; Jiang et al., 2011). In a supply chain setting, only the most downstream stage

directly experiences the impact of customer substitution; however, indirect substitution

effects also diffuse across the entire supply chain. This essay therefore investigates how

different stages of a supply chain are affected by customer substitution. In particular,

we examine the optimal production and stocking decisions of different supply chain

members under upstream competition and vertical information asymmetries.

We are interested in markets where competition and substitution arise simultane-

ously within the supply chain. While competition occurs due to the non-cooperative

behavior of independent firms, substitution emerges from the competitive structures

within the set of available products. Note that competition and substitution are neither

inclusive nor exclusive concepts: Competition without substitution arises if multiple in-

dependent firms offer an identical product (in a supply chain setting, e.g., Cachon, 2001;

Adida and DeMiguel, 2011), while substitution without competition occurs if a monop-

1The research presented in this chapter is based on a paper entitled “Substitution Effects in a Supply
Chain with Upstream Competition”, coauthored with Moritz Fleischmann.
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olistic firm offers non-identical, yet similar products that serve a common customer base

(e.g., Nagarajan and Rajagopalan, 2008).

Initially, our work is motivated by the agrochemical market. Agrochemical manu-

facturers sell their products through locally monopolistic wholesalers to their customers,

mostly farmers or farmer unions. Substitution in this market arises from customers’

focus on active ingredients, resulting in low brand loyalty. In consequence, stock-outs at

the wholesaler lead to high substitution rates among products. This effect is even fur-

ther enhanced by the inherent finiteness of the selling season for agrochemicals and the

non-durability of some chemical components. Information asymmetries in this market

stem from the wholesaler’s bargaining power and the substantial production lead-times

at the manufacturers which can amount to two years (Shah, 2004). While production

needs to be initiated well in advance of the desired selling season, the wholesaler cannot

be forced to commit to order quantities at this early stage. Final orders are typically

released close to the selling season when (weather-dependent) demand can be predicted

sufficiently well. In essence, production and ordering decisions are based on potentially

different information sets, and thus, vertical information asymmetries arise.

To analyze the manufacturer’s (wholesaler’s) optimal production quantities (stock-

ing levels), we consider a supply chain in which potentially multiple manufacturers sell

partially substitutable products for a single season through a monopolistic wholesaler.

We focus on a single period setting because (i) it yields a very good approximation of the

agrochemical market where the selling season is finite and some chemical components

cannot be stored until the next season; and (ii) it is a necessary first step in the analysis

of substitution effects within supply chains which is in line with the existing literature

and thus makes our results comparable. To capture the influence of upstream competi-

tion, we compare two distinct supply chain scenarios: a horizontally integrated (hereafter

’non-competitive’) supply chain with a single manufacturer producing all available prod-

ucts; and a horizontally competitive (hereafter ’competitive’) supply chain with multiple

manufacturers, each producing only one product. While inspired by the agrochemical

market, our framework generally suits industries in which (1) products are partial sub-

stitutes, (2) products and market structures exhibit typical newsvendor characteristics,

and (3) customers are served by a monopolistic wholesaler.

Our work contributes to the literature on (i) vertical information asymmetries in

supply chains; and, most importantly, (ii) optimal stocking levels under customer sub-

stitution. Information sharing within supply chains has been a prevalent research area
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in the last decades (Li, 2002; Özer and Wei, 2006). Apart from the issue of truthful

information sharing, literature also investigates how asymmetric information affect op-

erational problems. In the presence of short capacity at the manufacturer, Cachon and

Lariviere (1999) show that wholesalers exploit their informational advantage by ma-

nipulating the manufacturer’s allocation mechanism. Under asymmetric information,

Corbett (2001) depicts that the introduction of consignment stocks at the wholesaler

leads to reduced cycle stocks at the expense of increased safety stocks. If wholesalers

are allowed to share inventories, Yan and Zhao (2011) conclude that wholesalers share

demand information with each other, but not with the manufacturer. We extend this

research stream by characterizing how the interaction between information asymmetries

and customer substitution impacts supply chain decision making.

There has been an extensive literature on the repercussions of customer substitution

on the wholesaler’s optimal stocking levels. As common building block, the single-stage

newsvendor inventory (competition) model with stock-out-based substitution as pio-

neered by McGillivray and Silver (1978), Parlar (1988), Lippman and McCardle (1997),

Bassok et al. (1999), Smith and Agrawal (2000), and Netessine and Rudi (2003) has

evolved. In a seminal paper, Netessine and Rudi (2003) extend the preceding work

by characterizing the structure of the optimal stocking levels for an arbitrary number

of products under centralization and competition. Based on these results, recent work

has investigated various competitive environments under customer substitution. Mishra

and Raghunathan (2004), Kraiselburd et al. (2004), and Kim (2008) explore the conse-

quences of introducing Vendor Managed Inventory for the wholesaler’s stocking levels

and advertisement efforts. Nagarajan and Rajagopalan (2008) embed the substitution

framework into a multi-period setting, and Jiang et al. (2011) provide a robust optimiza-

tion approach that determines stocking levels by minimizing absolute regret. Recently,

Vulcano et al. (2012) have developed an efficient procedure to empirically estimate re-

quired substitution parameters.

As common in the newsvendor framework, existing models assume that the whole-

saler is unconstrained in his stocking decision, i.e., any arbitrary amount of products

can be stocked. Being true in a single-stage setting, this assumption is problematic in a

supply chain setting. Here, a manufacturer’s production or capacity decision constitutes

a natural upper bound on the wholesaler’s decision space (compare this to the litera-

ture on capacity choice, e.g., Cachon and Lariviere, 1999; Montez, 2007). By explicitly

integrating these dependencies into our model, we make a two-fold contribution to the
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existing literature: first, we investigate a constrained wholesaler’s optimal stocking de-

cision; second, to the best of our knowledge, we are the first to examine how customer

substitution affects the production decision of upstream stages. To be specific, the main

contributions of this essay are as follows: (1) We derive the optimal stocking levels of

a constrained wholesaler and characterize the non-monotonic effects that a change in

a manufacturer’s production quantity exerts on these stocking levels. (2) We formally

analyze the influence of changing substitution rates on the wholesaler’s stocking levels.

In contrast to an intuitive conjecture of Netessine and Rudi (2003), we show that stock-

ing levels for certain products may increase even if customer substitution away from

these products increases. (3) We characterize the optimal production quantities of an

incompletely informed manufacturer with and without upstream competition by apply-

ing a Bayesian (Nash-) Stackelberg game. (4) We explicitly compare monopolistic and

competitive optimal production quantities and find that competition may lead to re-

duced production. (5) We show that for some products, end-of-season inventories at the

manufacturer may decrease under competition, even when initial production quantities

increase.

The remainder of this essay is organized as follows. The structure of the supply

chain under consideration and the distribution of information are described in §4.2.

Furthermore, we elaborate on the properties of the resulting supply chain game. In §4.3,

we present our model of a constrained wholesaler and derive the optimal stocking levels.

We proceed by analyzing the effects of changing substitution rates on these optimal

stocking levels. The manufacturer’s production quantities are the focus of §4.4. We first

characterize the equilibrium production quantities of a manufacturer under competition,

before determining a monopolistic manufacturer’s optimal production quantities. We

then compare monopolistic and competitive production quantities, and examine the

manufacturer’s end-of-season inventories under both scenarios. Section 4.5 provides a

discussion of our results and concluding remarks.
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4.2 Supply Chain Structure and Informa-

tion Distribution

We consider a two-stage supply chain with possibly multiple manufacturers (she) and

a single wholesaler (he) selling n ≥ 2 partially substitutable products for one period.

While competition among manufacturers at the upstream stage may arise, we restrict

attention to a monopolistic downstream wholesaler. In the non-competitive situation, a

single manufacturer provides all n products (bilateral monopoly), whereas in the com-

petitive scenario, n independent manufacturers each produce a different product (uni-

lateral monopoly with upstream competition). Figure 4.1 illustrates both supply chain

structures. In the agrochemical market, a monopolistic manufacturer occurs whenever

a family of patents that allows for the provision of different, yet substitutable products

is exclusively held by a single firm. In contrast, upstream competition is introduced if

different manufacturers hold different patents for similar, but not identical products, or

if patents run out.

Figure 4.1.: Bilateral monopoly (left) and unilateral monopoly with up-
stream competition (right).
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We assume that information is asymmetrically distributed between manufacturers

and the wholesaler. As mentioned earlier, this vertical information asymmetry between

supply chain stages arises naturally in the agrochemical market due to the wholesaler’s

bargaining power and manufacturers’ production lead-times. Besides such market-driven

causes for differing information sets, scholars have also identified many other reasons,

including technological issues (Lee and Whang, 2000) and the fear of information leakage
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(Anand and Goyal, 2009). To be precise, in line with the literature on vertical informa-

tion asymmetries, e.g., Li (2002), Özer and Wei (2006) and Yan and Zhao (2011), we

assume that manufacturers are incompletely informed about the wholesaler’s optimal

stocking levels. In contrast, upstream information are common knowledge across man-

ufacturers, i.e., no horizontal information asymmetry arises, and production quantities

are commonly verifiable. These assumptions are reasonable in the agrochemical mar-

ket since manufacturers produce substitutable, hence comparable products and thus,

they are able to credibly estimate their competitors’ cost structures. Furthermore, for a

“fair” comparison of production quantities, we need to ensure that decisions are based

on identical information sets under both supply chain structures. Following the argu-

ment of Harsanyi (1968) and Myerson (2004), we assume that manufacturers hold a

common prior belief about the wholesaler’s optimal stocking levels. Hence, manufac-

turers’ beliefs are consistent. This prior belief represents the manufacturers’ perception

about the collection of information that are not common knowledge. In summary, sup-

ply chain structure and information distribution imply a Bayesian (Nash-) Stackelberg

Game as first introduced by Gal-Or (1987). The relevant case of multiple-leader Stack-

elberg games has first been studied by Sherali (1984) and recently by DeMiguel and Xu

(2009), but only for complete, non-Bayesian information structures.

The sequence of events is as follows: In the first stage, manufacturers maximize ex-

pected profits and determine their optimal production quantities, based on their beliefs

about the wholesaler’s subsequent stocking levels. In the second stage, before the start

of the selling season, the wholesaler learns these production quantities and, given his

private information, derives his optimal stocking levels by maximizing expected profits.

Afterwards, orders are submitted and shipped before the selling season starts. Through-

out the selling season the wholesaler experiences customer demand and realizes profits.

We refer to the subgame with given production quantities as the Ordering Game, while

the entire game is denoted as the Supply Game. As such, production quantities are

exogenously given in the Ordering Game, while they are decision variables in the Supply

Game. Figure 4.2 summarizes the chronology.

We assume that stochastic customer demand appears exclusively at the wholesaler

and no manufacturer can pursue a direct selling strategy. Prices are exogenously given

by the market and neither player can negotiate on the price to pay. Furthermore, we

restrict attention to pure-strategy equilibria.
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Figure 4.2.: Sequence of events.
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4.3 The Ordering Game

Focusing on the Stackelberg follower in this section, we derive the wholesaler’s optimal

stocking levels given the manufacturers’ production quantities and characterize its sen-

sitivity with respect to (i) changes in a manufacturer’s production quantity, and (ii)

substitution effects.

4.3.1. Optimal Stocking Levels

For each product i ∈ {1, . . . , n}, the wholesaler pays a unit wholesale price wi to the

manufacturer and sells the product at a unit retail price ri, satisfying ri > wi > 0.

Additionally, the wholesaler incurs a unit holding or disposal cost of hi ≥ 0 for each

unsold item. Total demand occurrence follows the standard model of stock-out-based

substitution processes as defined by Netessine and Rudi (2003), Kök et al. (2009), and

Jiang et al. (2011). Customers arrive at the wholesaler with an initial product preference.

Thus, the wholesaler faces random initial demand for product i given by Di, which is

assumed to have a continuous demand distribution with positive support. Second choice

(substitution) demand stems from customers whose initially preferred product is out of

stock. If a stock-out of product i occurs, an exogenously given fraction αij of unserved

customers is willing to substitute from product i to j; naturally
∑

j 6=i αij ≤ 1 for all

i. Each initially unserved customer makes at most one substitution attempt, which, if

again unserved, results in a lost sale. Total demand for product i after substitution is

denoted by Ds
i = Di +

∑
j 6=i αji max{0, Dj − xj}, where xj is the wholesaler’s stocking

level for product j. For future reference, denote by x−j the (n − 1)-dimensional vector
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of stocking levels for all products i 6= j.

Let x be the vector of stocking levels and ΠW (x) be the wholesaler’s expected profit

when choosing x. Since the vector of production quantities y is common knowledge and

verifiable, the wholesaler faces an optimization problem under complete information.

Thus, he determines his optimal stocking levels by solving the following maximization

problem Py:

max
0≤x≤y

ΠW (x) = E

[∑
i

ri min{xi, Ds
i } − wixi − hi max{xi −Ds

i , 0}
]

= E

[∑
i

uixi − (ui + oi) max{xi −Ds
i , 0}

]
, (4.1)

where ui = ri − wi and oi = hi + wi are the wholesaler’s underage and overage costs,

respectively. The wholesaler’s objective is to maximize his expected profit under the

quantity restrictions imposed by the manufacturers’ production y. If there are no such

restrictions, we let y =∞ and refer to this case as the unconstrained problem P∞. We

start our analysis of the optimal stocking levels with a brief discussion on the properties

of ΠW (x). All proofs are given in Appendix C.

Lemma 4.1. For arbitrary i and given x−i, ΠW (x) is not concave in xi, in general.

Lemma 4.1 formalizes the numerical results in Netessine and Rudi (2003) that

ΠW (x) is not always concave in each individual stocking level xi. This also implies that

ΠW (x) is not necessarily jointly concave in x, either. Thus, there may exist multiple local

optima. For the unconstrained problem P∞, we know from Proposition 1 in Netessine

and Rudi (2003) that the optimal stocking levels x̂ must simultaneously satisfy the

following first-order necessary optimality conditions for all i ∈ {1, . . . , n}:

P(Di < x̂i)− P(Di < x̂i < Ds
i ) +

∑
j 6=i

αij
uj + oj
ui + oi

P(Ds
j < x̂j, Di > x̂i) =

ui
ui + oi

. (4.2)

In the remainder, denote by x̂i(x−i) the solution to product i’s optimality condition

(4.2) for given fixed values of x−i. Analogously, let x̂−i(xi) be the solution vector of the

remaining (n − 1) optimality conditions in (4.2) for products j 6= i if xi is fixed. We

further refer to product j’s entry in x̂−i(xi) as x̂j(xi). By Lemma 4.1, it is not ensured

that x̂i(x−i) is unique. Therefore, for a given problem instance Py, we define x̂i(x−i)
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to be the largest solution that is feasible in Py and for simplicity, we let x̂i(x−i) ≡ ∞
if there exists no feasible solution. The introduction of this tie-breaking rule ensures

uniqueness of x̂i(x−i) and helps us to avoid ambiguities when comparing two scenarios

with multiple optima.

The interpretation of (4.2) is appealing. It is a standard newsvendor fractile solu-

tion, adjusted by substitution effects. The second term on the left hand side increases

the optimal stocking level to account for additional second choice demand, whereas the

third term reduces the optimal stocking level by considering that a stock-out need not

result in a lost sale. The optimal solution of the constrained problem Py follows a similar

pattern. Whenever feasible, the wholesaler tries to stock the quantity that solves (4.2),

given the other products’ optimal stocking levels. If this is not possible, he procures the

entire available production quantity yi. Proposition 4.1 formalizes this intuition.

Proposition 4.1. Denote the vector of the wholesaler’s optimal stocking levels for the

constrained problem Py by x?(y). Further, refer to x?(y) as a directionally largest optimal

solution if there exists no other optimal solution x′?(y) with x?−i(y) = x′?−i(y) and x?i (y) <

x′?i (y) for any i. Then, any directionally largest optimal solution simultaneously satisfies

x?i (y) = min{x̂i(x?−i(y)), yi}, (4.3)

for all i = 1, . . . , n.

From hereon, we explicitly restrict our analysis to directionally largest optimal

solutions. Obviously, each optimization problem Py has at least one directionally largest

optimal solution, and our numerical experiments indicate that non-directionally largest

optimal solutions occur very rarely. Moreover, our subsequent key results highlight some

counter-intuitive effects. We emphasize that if these counter-intuitive findings apply to

directionally largest optimal solutions, then they also apply to the full set of optimal

solutions, but not necessarily vice versa. Thus, the restriction to directionally largest

optimal solutions does not drive our main results, but helps us to avoid ambiguities.

Note that x?(∞) = x̂. Therefore, the optimal stocking levels given in (4.3) are con-

sistent with the solution to the unconstrained problem P∞ given in Netessine and Rudi

(2003). Furthermore, in any Bayesian (Nash-) Stackelberg equilibrium, the wholesaler

plays his best-response against the manufacturers’ initial decision y, which is given by

x?(y).
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We now investigate the sensitivity of the wholesaler’s optimal stocking levels with

respect to changes in a manufacturer’s production quantity. In particular, we are inter-

ested in the question if the wholesaler’s optimal reaction to changes in y is monotonic.

From a manufacturer’s perspective, when altering yi, monotonicity of the wholesaler’s

best-response function at least guarantees predictability of the direction of change of

x?(y), even in the asymmetric information case. In contrast, under information asym-

metries, a non-monotonic best-response function is much harder to predict. We start

our analysis by exogenously forcing one stocking level to increase in the unconstrained

problem P∞.

Lemma 4.2. Let ε > 0 and denote by ei the unit vector for product i.

(i) For given x−i and x′−i = x−i + εej with j 6= i, x̂i(x−i) ≥ x̂i(x
′
−i).

(ii) For given xj and x′j = xj+ε, there are instances of P∞ for which x̂i(xj) < x̂i(x
′
j)

for some i 6= j.

Using the results of Lemma 4.2, we can now endogenize the increasing stocking level

by explicitly considering changes in a manufacturer’s production quantity yj. This is

done in the first part of Proposition 4.2. Building on this result, the second and third

part transfer the findings of Lemma 4.2 to the solution of the constrained problem Py.

Proposition 4.2. Let y′ = y + εej, ε > 0, for arbitrary j. Then:

(i) x?j(y
′) ≥ x?j(y).

(ii) For arbitrary i and j, fix x?k for all k 6= i, j and solve (4.3) for i and j. Then,

there always exist optimal solutions for which x?i (y
′) ≤ x?i (y).

(iii) Solve (4.3) for k = 1, . . . , n. There are instances of Py for which x?i (y
′) > x?i (y)

for some i 6= j.

In essence, Proposition 4.2 highlights that the wholesaler’s best-response is not

necessarily monotonic in a manufacturer’s production decision. The reason for this lies

in the multidimensionality of substitution which comprises direct and indirect effects. If

the available production quantity for one product j is increased, (i) and (ii) indicate that

the wholesaler increases his stocks for product j and, all else equal, reduces any other

stock i 6= j. This is the direct effect which is in line with our common understanding of

economic substitutes. However, each increase or decrease in any one product’s stocking

level has immediate effects on all other products’ optimal stocking levels. Hence, if the

wholesaler optimizes his stocking levels across all products, a cascade of indirect effects
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arises due to the mutual interdependency of all products. We find that in some situations

these indirect effects dominate the direct effects so that, in optimum, the wholesaler may

increase stocking levels for more than one product (iii). Indirect effects are dominant

if, e.g., the market’s substitution structure is heterogeneous in the sense that there is

little direct substitution between products j and i, but frequent substitution between

products j and k, and k and i.

4.3.2. Substitution Effects

We now investigate the sensitivity of the wholesaler’s optimal stocking levels and ex-

pected profit with respect to changing substitution rates. A change in the customers’

reaction to product stock-outs implies changing substitution rates. Naturally, this also

affects the total demand for the wholesaler’s products. To be specific, increasing sub-

stitution rates imply a stochastically larger total demand at the wholesaler, or math-

ematically, Ds
i is stochastically increasing in αji for all j 6= i. Intuition suggests that

this increased demand is always beneficial for the wholesaler since the probability of in-

curring lost sales decreases. Moreover, Netessine and Rudi (2003) conjecture intuitively

that optimal stocking levels for a product increase (decrease) if substitution rates to

(from) this product increase. We now test this intuition.

We start our analysis with the sensitivity of the wholesaler’s expected profit. As

already argued, demand is stochastically increasing in any substitution rate. Further-

more, it is well known that, on expectation, a wholesaler benefits from increased demand

if trade is profitable (Li, 1992). Accordingly, the wholesaler’s expected profit increases

in any substitution rate. The following proposition formally states this argument.

Proposition 4.3. Suppose
∑

i 6=j αji < 1. The wholesaler’s expected profit ΠW (x) is in-

creasing in any substitution rate αji if stocking levels x are adjusted optimally to changes

in substitution rates.

Proposition 4.3 is true for the constrained and unconstrained problems Py and P∞,

respectively. Note that, if
∑

i 6=j αji = 1, then αji can only increase if at least one other

substitution rate αjk, k 6= i, simultaneously decreases. In this case, ΠW may actually

decrease in αji.

While the sensitivity of the wholesaler’s expected profit has a monotonic behavior,

we now show that, in contrast to common intuition, his optimal stocking levels might be
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non-monotonic in the substitution rates. As a starting point we analyze how x̂ changes

in αji.

Lemma 4.3. (i) For arbitrary i, ∂x̂i(x−i)/∂αji ≥ 0 for all j 6= i.

(ii) There are instances of P∞ for which ∂x̂j(x−j)/∂αji > 0 for some i and j.

As we would intuitively expect, the wholesaler stocks more of product i if sub-

stitution rates to product i increase. This is happening because the total demand for

product i, Ds
i , is stochastically increasing in αji. Contrary to intuition, however, the

optimal stocking level for product j may also increase in αji. This surprising effect is

explained by the increasing stock-out risk for product i. Increasing αji stochastically

increases Ds
i , thereby increasing the risk of running out of stock for product i. For given

stocking levels, this decreases the expected quantity of product i that is available for

covering an additional unit of excess demand for product j. Thus, the effective marginal

underage cost for product j increases, which in return justifies a higher stocking level.

Proposition 4.4. There are instances of Py for which dx?j/dαji > 0 for some i and j.

Proposition 4.4 highlights that after the inclusion of all direct and indirect substi-

tution dynamics, the total effect of αji on x?j can still be positive. Importantly, there are

two independent drivers for this counter-intuitive result. Firstly, and not surprisingly,

this result can be a direct consequence of Lemma 4.3(ii). Secondly, it may also stem from

the substitution cascades identified in Proposition 4.2. In this latter case, Proposition

4.4 can hold even when x̂j(x−j) decreases in αji. The wholesaler increases his stocks for

product j, although there is a higher substitution away from this product, if indirect

substitution dynamics dominate the direct effects. To conclude, Lemma 4.3 together

with Proposition 4.4 indicate that the wholesaler’s optimal stocking levels are in general

non-monotonic in the substitution rates.

4.4 The Supply Game

In this section, we analyze the manufacturer’s optimal production quantities under in-

complete information about the wholesaler’s stocking decision. We first focus on the

competitive scenario with multiple Stackelberg leaders and then investigate the situa-

tion with a single Stackelberg leader. Subsequently, we compare the optimal production

quantities for both scenarios and illustrate our findings with a numerical example.
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The Ordering Game which takes production quantities y as given is the second

stage of the Supply Game. In the first stage, manufacturers choose y to maximize their

expected profits given their beliefs about the wholesaler’s subsequent behavior. The

manufacturers’ unit production costs and selling prices for product i are ci and wi,

respectively, with wi > ci > 0, i ∈ {1, . . . , n}. We assume that manufacturers credibly

and simultaneously announce their production quantities yi. Further, yi ∈ [0, K], with K

sufficiently large so that it never constrains any manufacturer. Since the wholesaler has

private information on his optimal stocking levels, manufacturers can only hold a belief

about the wholesaler’s equilibrium stocking levels. We explicitly model this uncertainty

about the wholesaler’s orders for product i as a random variable with support on Xi(y)

that depends on the chosen production quantities y. To be specific, let χi ∈ Xi(y) with

cumulative distribution Φi(χi, y) and density φi(χi, y) > 0. We assume Φi(χi, y) to be

twice continuously differentiable in all arguments y and define µi(y) ≡
∫
Xi(y)

χidΦi(χi, y).

We restrict attention to rational beliefs.

Definition 4.1. We say that a manufacturer’s belief about the wholesaler’s stocking

levels is rational if it satisfies the following conditions for all products i:

1. Xi(y) = [0, yi];

2. ∂2Φi(χi, y)/∂yi∂yj ≥ 0, j 6= i;

3. ∂Φi(χi, y)/∂yi ≤ 0 and ∂2Φi(χi, y)/∂y2
i ≥ 0.

Definition 4.1 ensures three structural properties of a manufacturer’s belief. First,

manufacturers assign a positive probability mass only to non-negative stocking levels

which are naturally bounded from above by the chosen production quantity yi. Second,

ceteris paribus, manufacturers consider all products to be economic substitutes. Third,

production quantities exert a stimulating effect on the wholesaler’s stocking decision,

i.e., stocking levels stochastically increase with the available production quantities, but

at a decreasing rate (for a thorough discussion on stimulating effects of inventories, see

Balakrishnan et al., 2008).

We emphasize that Definition 4.1 imposes very mild restrictions on a manufacturer’s

belief. The wholesaler, by construction, never orders more than y. Therefore, the first

property is in line with the results of Proposition 4.1. The second property ensures that

manufacturers correctly believe that they compete in a substitution market. Finally,
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the third property follows immediately from Proposition 4.2(i) which states that x?i (y)

increases in yi. Irrespective of the kind of information asymmetries, any rational man-

ufacturer can always predict these properties, only the magnitude of these effects may

be unknown to her. Note that we neither require beliefs to be correct on expectation,

nor do we make any assumption on how the belief for product i changes with yj, since

Propositions 4.2(ii) and (iii) indicate that x?i (y) can increase or decrease in yj.

The manufacturer’s decision problem structurally differs in two ways from the one

of the wholesaler. First, the wholesaler’s reaction to limited production quantities is

fundamentally different from the customers’ reaction to stock-outs. While customers

only try to substitute once with a given probability, the wholesaler’s reaction to short

production capacities is based on a non-monotonic optimization strategy across all prod-

ucts. Second, the manufacturer can influence the wholesaler’s stocking level for product

i by changing yi, whereas the wholesaler cannot influence customer demand for product

i by varying xi.

4.4.1. Competing Manufacturers

We now establish the equilibrium of the first stage of the Supply Game when there are

n competing manufacturers, each selling a different, yet partially substitutable product

through a monopolistic wholesaler. Before the wholesaler communicates his stocking

levels, manufacturers simultaneously choose their production quantities. Accordingly,

manufacturers act as Bayesian Stackelberg leaders with respect to the wholesaler, but

as Nash competitors with respect to the other manufacturers. Thus, each manufacturer

maximizes her expected profit, given the other manufacturers’ production quantities

and given her rational beliefs about the wholesaler’s subsequent reaction. Her decision

problem for given y−i is

max
yi≥0

ΠMi
(yi|y−i) = wiµi(y)− ciyi, (4.4)

where ΠMi
(yi|y−i) is the ith manufacturer’s expected profit. For brevity, let ΠMi

≡
ΠMi

(yi|y−i) and denote by yci = arg maxyi≥0 ΠMi
the ith manufacturer’s best-response

to her competitors’ production quantities y−i.

We start our equilibrium analysis by noting that rational beliefs are sufficient to

guarantee concavity of each manufacturer’s expected profit.
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Lemma 4.4. Assume rational beliefs. Given y−i, ΠMi
is a concave function of the

production quantity yi for all i.

Due to the concavity of ΠMi
, we can derive each manufacturer’s best-response yci by

examining the first-order conditions which are necessary and sufficient for optimality.

Proposition 4.5. Assume rational beliefs. The following system of first-order necessary

optimality conditions characterizes any manufacturer Nash equilibrium:

∂µi(y)

∂yi

∣∣∣∣
y=yc

=
ci
wi
, (4.5)

i = 1, . . . , n.

A simple trade-off argument explains the optimality conditions (4.5). On expecta-

tion, increasing the production quantity yi raises the wholesaler’s subsequent stocking

level for product i (see Proposition 4.2). This generates a marginal increase in revenue

given by wi∂µi(y)/∂yi, while simultaneously inducing marginal costs of ci. Equating

marginal revenue and marginal costs provides the desired result. Note that yci con-

stitutes an upper bound on the wholesaler’s decision space. Hence, in any case, the

wholesaler’s stocking level is smaller than yci . Naturally, (4.5) not only determines each

manufacturer’s best-response in the manufacturer Nash game, i.e., in the competition

among leaders, but also persists in the entire Bayesian Nash-Stackelberg game. Here,

any Bayesian Nash-Stackelberg equilibrium is given by the wholesaler’s optimal stock-

ing levels x?(yc) and the manufacturers’ production quantities yc which form a Nash

equilibrium in the manufacturer Nash game. In a next step, we establish existence and

uniqueness of the manufacturer Nash equilibrium.

Proposition 4.6. Assume rational beliefs. For the competitive scenario, a pure-strategy

manufacturer Nash equilibrium exists and is found by solving (4.5). If ΠMi
is strictly

concave in yi and

2 +
∑
j 6=i

∂yci
∂yj
−
∑
j 6=i

∂2µj(y)/∂yi∂yj
∂2µi(y)/∂y2

i

> 0, (4.6)

i = 1, . . . , n, for all y, then the manufacturer Nash equilibrium is unique.

Proposition 4.6 states two sufficient conditions for uniqueness of the manufacturer

Nash equilibrium. Each manufacturer’s expected profit ΠMi
is strictly concave in yi
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if and only if her belief satisfies ∂2Φi(χi, y)/∂y2
i > 0. Further note that a necessary

condition for (4.6) to hold is given by
∑

j 6=i |∂yci/∂yj| < 2. Intuitively, the sensitivity of

each manufacturer’s best-response with respect to the other manufacturers’ production

decisions has to be bounded. A special case where (4.6) is automatically satisfied occurs

if the effects of yi and y−i on µi(y) are additive separable, i.e., µi(y) = gi(yi) + hi(y−i)

for arbitrary differentiable functions gi and hi. If gi is furthermore strictly concave, then

the manufacturer Nash equilibrium is unique.

While Proposition 4.6 ensures uniqueness of the manufacturer Nash equilibrium,

the stated conditions are not sufficient to generally guarantee a unique Bayesian Nash-

Stackelberg equilibrium in the Supply Game. As discussed in §3, the wholesaler’s optimal

stocking levels given the manufacturers’ production quantities are not necessarily unique.

Consequently, the wholesaler might have multiple best-responses. Accordingly, for a

unique equilibrium of the Supply Game, the wholesaler’s optimal stocking levels must

also be unique. Corollary 4.1 states a simple condition that guarantees uniqueness.

Corollary 4.1. Let the conditions of Proposition 4.6 hold. Suppose ΠW (x) is jointly

concave in x. Then, the Supply Game has a unique Bayesian Nash-Stackelberg equilib-

rium in the competitive scenario.

4.4.2. Monopolistic Manufacturer

As a benchmark, we now derive the Bayesian Stackelberg equilibrium of the Supply

Game without manufacturer competition. To be specific, a monopolistic manufacturer

simultaneously produces all n substitutable products and sells them through a monop-

olistic wholesaler. Therefore, the manufacturer serves as Bayesian Stackelberg leader

with respect to the wholesaler. Thus, she maximizes her expected profit ΠM across all

products given her belief about the wholesaler’s subsequent stocking levels. Her decision

problem is

max
y≥0

ΠM(y) =
∑
i

(wiµi(y)− ciyi) . (4.7)

For given rational beliefs, denote by ync = arg maxy≥0 ΠM(y) a vector of optimal pro-

duction quantities. In contrast to the competitive scenario, the manufacturer’s expected

profit ΠM is not generally concave in y. Thus, first-order optimality conditions provide
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only necessary, but not sufficient conditions for the manufacturer’s optimal production

quantities.

Proposition 4.7. Assume rational beliefs. In any Bayesian Stackelberg equilibrium of

the non-competitive scenario, the manufacturer’s production quantities satisfy the system

of first-order necessary optimality conditions

∂µi(y)

∂yi
+
∑
j 6=i

wj
wi

∂µj(y)

∂yi

∣∣∣∣∣
y=ync

=
ci
wi
, (4.8)

i = 1, . . . , n.

Analogously to the optimality conditions of the competitive scenario, the monop-

olistic manufacturer’s optimal decision also follows a trade-off argument. Again, the

manufacturer equates marginal costs and marginal revenues. This time, however, the

shift in revenue accounts not only for the increased revenue for product i, but also for

the altered revenue for all other products j 6= i. Intuitively, the monopolistic manufac-

turer considers the influence of her production quantities on the revenue for all products,

whereas each competitive manufacturer only cares about her own product. Neither the

manufacturer’s optimal production quantities ync nor the wholesaler’s optimal stocking

levels x?(ync) are necessarily unique. In consequence, the Bayesian Stackelberg equi-

librium of the Supply Game is not guaranteed to be unique. A sufficient condition for

uniqueness is given in Corollary 4.2.

Corollary 4.2. Suppose ΠW (x) and ΠM(y) are jointly concave in x and y, respec-

tively. Then, the Supply Game has a unique Bayesian Stackelberg equilibrium in the

non-competitive scenario.

4.4.3. The Consequences of Manufacturer Competition

Competing manufacturers adopt production quantities, yc, that differ substantially from

a monopolistic manufacturer’s production quantities, ync, even though they hold identi-

cal beliefs about the wholesaler’s subsequent stocking levels. In this context, the natural

question arises whether competition causes manufacturers to increase production quan-

tities, i.e., yc > ync? Furthermore, vertical information asymmetries induce supply chain

inefficiencies that manifest in end-of-season inventories at the manufacturer. However,
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are these effects smaller or larger under upstream competition? We now explore these

questions.

Intuition suggests that the wholesaler prefers competing manufacturers to a monop-

olistic manufacturer because we expect production quantities to increase under competi-

tion. Hence, the wholesaler’s decision space would be less restricted under manufacturer

competition and so, he could provide a more profitable service to his customers. Propo-

sition 4.8 shows that this intuition is not always true.

Proposition 4.8. For given rational beliefs, the relationship between yc and ync is as

follows:

(i) If

∑
j 6=i

wj
∂µj(y)

∂yi
≤ 0 (4.9)

for all products i, then yci ≥ ynci for at least one product i.

(ii) There are rational beliefs such that yci < ynci for some product i.

It can never happen that all production quantities decrease under competition, if

(4.9) holds. This condition ensures that each product has in total a negative effect on the

other products, which is the very nature of substitute products. A sufficient condition

for (4.9) are rational beliefs that additionally satisfy ∂Φi(χi, y)/∂yj ≥ 0 for all j 6= i, or

intuitively, each product j should exert a negative influence on every other product i.

Yet, note that Proposition 4.2(iii) indicates that this need not be true for all products.

There exist situations where two products have a positive effect on each other, which

would be reflected by ∂Φi(χi, y)/∂yj < 0 for some i and j, and does not contradict our

definition of rational beliefs. Condition (4.9) also captures these contingencies because

we only require the weighted sum over all individual effects, i.e., the aggregated effect, to

be negative, not each single effect. Thus, (4.9) imposes a very mild condition, and any

product that violates it, is eventually an economic complement for the other products.

An availability trade-off explains why a monopolistic manufacturer sometimes stocks

more than a competitive manufacturer (ii). A monopolistic manufacturer can coordinate

the availability of all products, i.e., she can optimally increase stocks of a product i,

while simultaneously decreasing the availability of products j 6= i. Under competition,

a manufacturer cannot accomplish this availability trade-off since she cannot force her

competitors to reduce production quantities. This contingency occurs for a product i
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if, e.g., manufacturers believe that yi exerts only a limited influence on the wholesaler’s

stocking decision for the other products x?−i, or if product i offers a very high profit

margin to the manufacturer. Markets with such heterogeneous product margins and

substitution structures typically include no-name and brand products (Ailawadi and

Keller, 2004), or functionally heterogeneous products. If the effects of yi and y−i on

µi(y) are additive separable for all i, or if (4.9) holds and all products are homogeneous

and symmetric, then production increases under competition for all products, yc ≥ ync.

Note that the results of Proposition 4.8 are similar to the findings of Netessine

and Rudi (2003) for competition among wholesalers. However, these two results are

based on different problem characteristics because the wholesaler’s and manufacturer’s

problem differ structurally in numerous ways. In particular, substitution dynamics and

demand characteristics are completely different. Therefore, Proposition 4.8 establishes

the transferability of the previous results to the manufacturer stage.

Naturally, as manufacturers’ production quantities change under competition, the

wholesaler also adjusts his stocking levels. This implies that end-of-season invento-

ries at the manufacturer, i.e., excess inventories after trading, change if competition is

introduced. These residual inventories are a direct consequence of the vertical infor-

mation asymmetry within the supply chain. If manufacturers could perfectly predict

the wholesaler’s best-response stocking levels, they would never produce more than this

quantity, and they would never incur end-of-season inventories. We now examine how

the manufacturers’ end-of-season inventories change under competition. We denote the

end-of-season inventory level of product i at the manufacturer by Ii(y) = yi − x?i (y).

Proposition 4.9. Let y′ ≥ y. Then, the following relations between I(y′) and I(y) hold:

(i) Ii(y
′) ≥ Ii(y) for at least one product i.

(ii) There are instances of the Supply Game where Ii(y
′) < Ii(y) for some product

i.

Proposition 4.9 sheds light on the influence of competition on end-of-season invento-

ries. As an illustration, consider the extreme case of Proposition 4.8 that all production

quantities increase under competition, yc ≥ ync. Interestingly, despite the monotonic

influence on production quantities, competition does not necessarily increase each prod-

uct’s end-of-season inventories. In fact, for some products, end-of-season inventories may

decrease. In such a case, the wholesaler increases his stocking level for product i more

than the manufacturer increases yi. Again, this result is explained by both, the mutual
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interdependency of all products and the occurrence of indirect substitution cascades as

described in Proposition 4.2. In summary, even when competition exerts a monotonic

effect on the manufacturer’s production quantities, supply chain inefficiencies due to

asymmetric information need not change monotonically.

4.4.4. Numerical Illustration

We now provide a small numerical example to illustrate our theoretical findings. Con-

sider a market with three substitutable products. For the sake of analytical tractability,

suppose that each manufacturer believes that the wholesaler’s stocking levels follow a

truncated exponential distribution with support on [0, yi] and rate parameter λi(y), i.e.,

Φi(χi, y) = [1−exp(−λi(y)χi)]/[1−exp(−λi(y)yi)]. Note that our framework also works

for any other common distribution such as truncated Normal, Gamma, or Weibull dis-

tributions, but at the cost of analytical tractability.

Following Definition 4.1, beliefs about the wholesaler’s stocking level for product i

should be stochastically increasing in yi. Thus, each rate parameter λi(y) is a function

of the manufacturers’ production quantities which decreases in yi. To be specific, we

employ the following simple structural form: λi(y) = y−1
i +

∑
j 6=i kjiyj + 1. By setting

kji ≥ 0, we ensure that products are economic substitutes. We work with the inverse of yi

and not with −yi to ensure non-negativity of λi(y). Intuitively, each scale parameter kji

captures the magnitude of the effect that yj exerts on the wholesaler’s stocking decision

for product i.

The truncated exponential distribution together with the specification of λi(y) en-

sures that each manufacturer holds rational beliefs as described in Definition 1. It is

readily shown that µi(y) = [1/λi(y)]− [yiexp(−λi(y)yi)/(1− exp(−λi(y)yi))]. Thus, the

influence of yi and y−i on µi(y) is not additive separable. For all investigated scenarios,

we assume ci = 2 for all i. All other parameter values wi and kji are given in Table

4.1. Parameters include high and low margin cases, and high and low substitution rates.

Note that for all displayed parameter values, a unique Bayesian (Nash-) Stackelberg

equilibrium exists. For each scenario, we display the optimal production decisions for

both supply chain configurations.

Obviously, in a market with symmetric price and substitution structure, production

quantities increase if manufacturer competition is introduced (A). In our example, this

result remains valid if there is no substitution to one product in the assortment (B). If
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Table 4.1.: Optimal production decisions.

Parameters Optimal decision

Scenario w1 w2 w3 k21 k31 k12 k32 k13 k23 yc1 yc2 yc3 ync1 ync2 ync3

A 8 8 8 0.5 0.5 0.5 0.5 0.5 0.5 0.70 0.70 0.70 0.61 0.61 0.61
B 8 8 8 0 0 0.5 0.5 0.5 0.5 1.20 0.63 0.63 1.00 0.60 0.60
C 8 8 8 0.5 0.5 0 0.5 0 0.5 0.65 0.84 0.84 0.71 0.69 0.69
D 8 8 8 0 0 0.5 0 0.5 0 1.20 0.75 0.75 0.81 0.85 0.85
E 10 8 8 0.5 0.5 0.5 0.5 0.5 0.5 1.00 0.66 0.66 1.07 0.45 0.45
F 11.9 8 8 0.5 0.5 0.5 0.5 0.5 0.5 1.24 0.62 0.62 1.89 0.06 0.06
G 11.9 10 7 0.5 0.5 0.5 0.5 0.5 0.5 1.20 0.91 0.44 1.44 0.59 0.05

instead one product does not influence the other products, i.e., there is no substitution

away from the product, then production quantities decrease for this product under

competition (C,D). In such a scenario, a monopolistic manufacturer optimally increases

the availability of the product at the cost of decreasing the other products’ availability.

In a competitive environment, a manufacturer cannot coordinate product availability

across multiple products because her competitors are reluctant to lose market shares. In

the agrochemical market, these heterogeneous substitution structures arise due to the

coexistence of single- and multi-purpose products. While single-purpose products are

specialized to fight a single plant disease such as mildew, multi-purpose products are

effective against a wider class of diseases. Naturally, substitution from the specialized to

the more general product is likely to occur, because the specialized product lies within

the application range of the general product. In contrast, the specialized product need

not be useful for a customer initially desiring the more general product.

In our example, production quantities for high margin products decrease under

competition, while production increases for low and medium margin products (E,F,G).

We observe this behavior because a monopolistic manufacturer shifts as much demand

as possible to the high margin products, thereby reducing the other products’ availabil-

ity to a minimum. In contrast, a similar demand shift cannot be accomplished under

competition. Note that under a monopolistic manufacturer, low margin products almost

disappear from the market, while competition ensures product diversity (F,G). Concur-

rent with intuition, overall production increases with the introduction of manufacturer

competition.
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4.5 Discussion

In this essay, we analyzed the optimal production and stocking decisions of a manu-

facturer and a wholesaler in a two-stage supply chain with upstream competition and

vertical information asymmetries. We characterize the wholesaler’s equilibrium stocking

levels and show that these quantities are non-monotonic in both, available production

quantities and customer substitution rates. For the upstream stage of the supply chain,

we derive the equilibrium production quantities of a monopolistic and a competitive man-

ufacturer, respectively. We find that production quantities for some products decrease

if upstream competition is introduced. Furthermore, we highlight the counter-intuitive

situation that some end-of-season inventories at the manufacturer decrease although

initial production quantities increase.

We can identify two key drivers for these non-monotonic and partially counter-

intuitive results: (i) customer substitution; and (ii) the products’ heterogeneity. If there

exists no substitution among products (αij = 0 for all i, j), then our n-product problem

can be decomposed into n single-product problems. As such, there is no interaction

between products and therefore, direct and indirect substitution dynamics disappear.

Similarly, if products are completely homogeneous, then products affect one another

only in monotonic and intuitive ways. Thus, our counter-intuitive results only occur in

markets which exhibit a minimum level of substitution and product heterogeneity. The

agrochemical market, e.g., is shaped by these heterogeneities. Brand manufacturers and

(former) patent holders compete with generic products, which oftentimes differ in price

and profit margins. Furthermore, the market’s substitution structure is skewed due to

the coexistence of single- and multi-purpose products.

4.5.1. Robustness

We now discuss the robustness of our results with respect to changes in the information

and supply chain structure. Additionally, we delineate opportunities for future research.

Concerning the information structure, we assume that (i) manufacturers’ production

quantities y are verifiable, and (ii) Φi(χi, y) is differentiable in y. Verifiability of y ensures

that the wholesaler determines his stocking levels under complete information about the

manufacturer’s strategy. Consequently, we can ignore communication issues between

manufacturer and wholesaler. This is not true if y is unverifiable and thus privately
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observed by the manufacturer. In this case, the manufacturer’s equilibrium behavior

consists of her production and communication strategy, which introduces an additional

inference problem for the wholesaler. Under strategic communication, the manufacturer

need not pursue a truth-telling strategy or she may not communicate any information at

all, which inherently changes the timing of the game to simultaneous moves. Whether

the structure of our results remains valid under such a scenario, or not, is an interesting

question for future research.

The differentiability of a manufacturer’s belief, Φi(χi, y), about the wholesaler’s

subsequent stocking level is a common assumption in the literature (Cachon and Lar-

iviere, 1999; Özer and Wei, 2006), but clearly, it is not ensured that, in equilibrium,

x?i (y) is actually differentiable. Nevertheless, it is guaranteed that x?i (y) is continuous

in y. In a similar framework, Cachon and Lariviere (1999) show numerically that the

differentiability assumption provides an excellent approximation. We therefore expect

our results to be robust with respect to the differentiability of beliefs.

Concerning the supply chain structure, we assume that competition occurs only

among manufacturers. This assumption is inspired by our observations in the agro-

chemical market, but obviously, a general extension of our framework is to allow for

downstream competition as well. Such an extension introduces two additional issues

that need to be incorporated into the model. First, manufacturers need to decide on al-

location mechanisms for their production quantities in case that total orders exceed the

available production quantities. Second, these allocation schemes induce the wholesalers

to place strategic orders. The influence of such allocation problems on supply chains in

substitution markets should be a focal point of future work.

Additionally, under downstream competition, the assumption that Φi(χi, y) is dif-

ferentiable in y becomes much more problematic. At some point, competition among

heterogeneous wholesalers can induce competitors to leave the market. Generally, such

a market exit induces discontinuities in the stocking levels of the remaining competitors.

Therefore, the differentiability assumption provides a less reliable approximation. Nev-

ertheless, we expect that such an approximation will still yield structurally valid results,

even under downstream competition.

To deepen our understanding of the repercussions that substitution exerts on the

individual supply chain members, more fundamental extensions should also be examined.

In particular, we believe that future models should incorporate pricing decisions, but

this might come at the expense of analytical tractability. Another aspect that deserves
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future research is the introduction of multiple time periods. In such a setting, initial

product demand changes dynamically over time because a substituting customer may

change his product preferences due to product unavailability.
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Appendix A

Proofs of Chapter II

Proof of Lemma 2.1. The firm’s optimal resource allocation for each realization of e

and m maximizes the expected market value of both products, Eθ[νi + νj|m, e], where

the expectation is taken over the products’ market potential. The proof now proceeds

by comparing the expected market value, Eθ[νi + νj|m, e] = Pr(θi = G|mi, ei)νi(θi =

G) + Pr(θj = G|mj, ej)νj(θi = G), of different resource allocation schemes for all e and

m, given that managers truthfully reveal their signals, m = s.

Suppose that both managers evaluate their products with only low effort, e = (l, l).

Then, the firm’s posterior belief about the products’ market potential is identical to its

prior belief for all possible recommendations m, i.e., Pr(θi = G|mi, ei = l) = 1/2. If

the firm now invests all its resources in a single product, then the product’s expected

market value is v2/2. If, in contrast, the firm splits resources evenly, then each product’s

expected market value is v1/2, yielding a total expected market value of v1. Since by

assumption v2 < 2v1, the firm’s optimal resource allocation for e = (l, l) and any m is

to split resources evenly.

Now, consider the case where both managers exert a high-effort product evaluation,

e = (h, h). In this setting, the firm revises its prior beliefs according to the received

recommendations. In particular, if the firm receives a good recommendation for product

i, then its posterior belief about product i having a good market potential is q, while

a bad signal implies a posterior belief of 1− q. Assume that the firm receives identical

recommendations for both products, mi = mj, which implies that posterior beliefs for

both products are also identical. Hence, the firm maximizes the expected market value

of both products by simply optimizing νi(θi = G) + νj(θj = G), which is largest if the

firm splits resources evenly. Now, assume to the contrary that recommendations are

different, e.g., m = (g, b). Allocating all resources to product i gives an expected market

value of qv2, while after an even split of resources both products have a total expected

market value of qv1 + (1 − q)v1 = v1. It follows that the firm optimally allocates all

resources to product i if q > v1/v2, and splits resources evenly otherwise.
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Lastly, we analyze the asymmetric evaluation effort strategy, e = (h, l). As the

recommendation for product j is uninformative, the firm allocates resources only based

on the recommendation for product i. If the firm receives a good recommendation for

product i, then allocating all resources to this product has an expected market value

of qv2. Splitting resources evenly, however, results in a total expected market value of

qv1 + v1/2. Thus, it is optimal for the firm to split resources evenly only if q < qa,

and allocate all resources to product i otherwise. Now, suppose the recommendation for

product i is bad. Then, it is never optimal to allocate both resources to product i. An

even split of resources yields an expected market value of (1− q)v1 + v1/2, whereas the

expected market value is v2/2 if all resources are allocated to product j. Hence, the firm

optimally splits resources evenly only if q < qb and allocates all resources to product j

otherwise.

Proof of Proposition 2.1. We prove this proposition in three steps: First, we derive the

integrated firm’s expected profit for any possible product evaluation strategy, which is

a necessary requirement for our subsequent discussion. Second, we establish that the

integrated firm never chooses an asymmetric evaluation strategy if q < qa, which helps

us to simplify the exposition. Lastly, we discuss the threshold functions ζ1, ζ2, and ζ3

to conclude the proof.

Profit derivation: As a preliminary, note that the integrated firm’s optimal resource

allocation is identical to the decentralized firm’s allocation strategy, and thus given by

Lemma 2.1. This is true because if managers truthfully reveal their private signals, m =

s, then the decentralized firm can perfectly infer the received signals. Accordingly, the

integrated and decentralized firm are endowed with the same information upon making

their resource allocation decisions, and therefore, these decisions must be equivalent.

If the firm exerts only low evaluation efforts for both products, then it eventu-

ally splits its resources evenly across the two products. Therefore, product i’s ex-ante

expected market value is

Eθ[νi|e = (l, l)] = Pr(θi = G|si = g)Pr(si = g)v1 + Pr(θi = G|si = b)Pr(si = b)v1 =
v1

2
.

Due to the symmetry of products and since no evaluation costs are incurred, the firm’s
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ex-ante expected profit becomes

Πfb(e = (l, l)) = v1. (A.1)

In contrast, if the firm decides to exert high-effort evaluation for both products,

then it incurs evaluation costs for both of them. However, the firm now uses the addi-

tional information to revise its initial beliefs about the true market potential of the two

products. If q ≤ v1/v2, then the firm always splits resources evenly, and following (A.1),

expected profits are v1 − 2c, which can never be optimal. In contrast, if q > v1/v2, the

firm may either split resources evenly if products are equally promising, or it may fund

only one of the products. The ex-ante expected market value of product i is then

Eθ[νi|e = (h, h)] =
1

4
qv1 +

1

4
(1− q)v1 +

1

4
qv2 =

1

4
(qv2 + v1),

and consequently,

Πfb(e = (h, h)) =
1

2
(qv2 + v1)− 2c. (A.2)

Lastly, the firm also has the option to pursue an asymmetric product evaluation

strategy by exerting high effort for only one product. Again, the derivation of the firm’s

ex-ante expected profit is similar to the above cases, and we need to consider that the

optimal resource allocation changes with q (see Lemma 2.1). Thus, the firm’s ex-ante

expected profit is a piecewise function of q:

Πfb(e = (h, l)) =


v1 − c if q < qb

1
4
(v2 + (2q + 1)v1)− c if qb ≤ q < qa

1
4
(2q + 1)v2 − c if q ≥ qa.

(A.3)

Asymmetric evaluation: We now show that, in optimum, the firm never chooses an

asymmetric product evaluation strategy if q < qa. First, for q < qb, Πfb(e = (h, l)) =

v1 − c < v1 = Πfb(e = (l, l)) because c > 0 by assumption. Thus, if q < qb, the

firm always prefers low-effort product evaluation over an asymmetric product evaluation

strategy. Second, high-effort product evaluation for only one product is also a dominated

strategy if qb ≤ q < qa, i.e., Πfb(e = (h, l)) > max{Πfb(e = (l, l)),Πfb(e = (h, h))} is a
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contradiction. In fact, Πfb(e = (h, l)) > Πfb(e = (h, h)) if and only if c > (2q − 1)(v2 −
v1)/4 ≡ c; and Πfb(e = (h, l)) > Πfb(e = (l, l)) if and only if c < [(2q− 3)v1 + v2]/4 ≡ c.

However, c < c, which yields the desired contradiction.

Optimal product evaluation: The threshold functions ζ1, ζ2, and ζ3 are derived by

pairwise comparing (A.1) with (A.2), (A.2) with (A.3), and (A.1) with (A.3), respec-

tively. Accordingly, the firm exerts high-effort product evaluation for both products if

c ≤ min{ζ1, ζ2}, high effort for only one product if ζ2 < c ≤ ζ3, and low effort for both

products if c > max{ζ1, ζ3}. Additionally, we note that qc ≥ qa if and only if qc ≤ 1.

(i) If q < qc, then ζ3 < ζ1 < ζ2. It follows that the firm chooses e∗fb = (h, h) for

c ≤ ζ1, and e∗fb = (l, l) otherwise.

(ii) If q ≥ qc, then ζ2 < ζ1 < ζ3. Now, the firm chooses e∗fb = (h, h) for c ≤ ζ2,

e∗fb = (h, l) for ζ2 < c ≤ ζ3, and e∗fb = (l, l) otherwise.

Proof of Lemma 2.2. The proof proceeds in two steps. First, we revisit the decentralized

firm’s optimal resource allocation. Second, we show that a compensation scheme that

induces asymmetric effort levels is never incentive compatible in effort.

Resource allocation: If both managers are truth-telling, but pursue different evalu-

ation effort levels under decentralization, then the firm is not able to observe the man-

agers’ product evaluation strategy. In fact, the firm does not know whether e = (h, l)

or e = (l, h). This ambiguity has to be taken into account when allocating resources to

products (Lemma 2.1 is not straightforward applicable because now, e is not known).

Suppose both managers send the same recommendation, mi = mj. If recommen-

dations are good, then both products have a total expected market value of qv1 + v1/2,

if the firm splits resources evenly, while the expected market value of a product that

receives all resources is (qv2 +v2/2)/2. Similarly, if both recommendations are bad, then

an even split of resources yields an expected market value of (1− q)v1 + v1/2, while the

expected market value of a product that received all resources is ((1 − q)v2 + v2/2)/2.

Thus, it is optimal to split resources evenly across products if recommendations are

identical, because v2 < 2v1 by assumption.

Now, assume managers give different recommendations, e.g., m = (g, b). Dedicating

all resources to the well recommended product i gives an expected market value of

(qv2 +v2/2)/2, whereas splitting resources evenly generates an expected market value of

v1. Therefore, the firm invests all resources in product i if q ≥ (4v1 − v2)/2v2 and splits

resources evenly otherwise.
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Incentive compatibility: By using the firm’s optimal resource allocation, we can now

conclude this proof by showing that any truth-inducing contract with ei 6= ej is never

incentive compatible in effort. This implies that one manager always wants to deviate

from his current effort level, such that ei 6= ej cannot be part of any equilibrium.

If q < (4v1 − v2)/2v2, then the firm always allocates resources equally to both

products. Hence, exerting high-effort product evaluation is costly for a manager, but

does not affect the firm’s allocation decision. Therefore, each manager’s expected utility

is always largest under low-effort product evaluation.

If q ≥ (4v1 − v2)/2v2, then the firm allocates all resources to a single product if

recommendations are unequal, and splits resources evenly elsewise. Without loss of

generality, assume that manager i and j exert high and low effort, respectively, and

suppose that a truth-inducing contract exists in this setting. Then, this contract must

be incentive compatible in effort, i.e.,

Ui(ei = h|ej = l,m = s) ≥ Ui(ei = l|ej = l,m = s)

Uj(ej = h|ei = h,m = s) < Uj(ej = l|ei = h,m = s).

Manager i’s effort incentive compatibility condition is satisfied if 2ksqv2 − 8c ≥ ksv2,

while manager j’s constraint is true if 2ksqv2 − 8c < ksv2. Obviously, both constraints

contradict each other, and thus, there exists no contract that induces asymmetric effort

levels in equilibrium.

Proof of Proposition 2.2. This proof consists of three steps. In a first step, for clarity, we

derive the decentralized firm’s optimization problem (2.1) - (LL). Step two determines

the optimal wage contract that induces high-effort product evaluation and truth-telling

by both managers. Finally, the third step provides the sensitivity analysis which com-

pletes the proof.

Optimization problem: The expected profit of the decentralized firm (2.1) is similar

to the integrated firm’s expected profit (A.2). However, under decentralization the

firm does not directly incur the effort costs c, but it has to incentivize its managers

to exert high effort by paying a bonus scheme k = (ks, kp). Thus, the firm maximizes

its expected profits, which comprise of the products’ expected market value net the
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managers’ compensation, i.e.,

Π(k) = (1− ks − kp)Eθ[νi + νj|k]

= (1− ks − kp)
1

2
(qv2 + v1).

We now turn to the truth-telling constraints (IC-g) and (IC-b). Manager i truthfully

reveals a good signal if and only if

Ui(mi = g|si = g, ei = ej = h,mj = sj) ≥ Ui(mi = b|si = g, ei = ej = h,mj = sj),

where the manager assumes that the firm will optimally allocate resources according

to the managers’ recommendations. Similarly, truthful revelation of a bad evaluation

outcome is guaranteed if and only if

Ui(mi = b|si = b, ei = ej = h,mj = sj) ≥ Ui(mi = g|si = b, ei = ej = h,mj = sj).

The required utilities are derived as follows:

Ui(mi = g|si = g, ei = ej = h,mj = sj) = P(sj = g)
(
ksEθi [νi|k,m, e] + kpEθj [νj|k,m, e]

)
+ P(sj = b)ksEθi [νi|k,m, e]

=
1

2
(ksqv1 + kpqv1) +

1

2
(ksqv2) .

By a structurally identical argument, we can develop the three remaining utility func-

tions:

Ui(mi = b|si = g, ei = ej = h,mj = sj) =
1

2
(kpqv2) +

1

2
(ksqv1 + kp(1− q)v1) ,

Ui(mi = g|si = b, ei = ej = h,mj = sj) =
1

2
(ks(1− q)v1 + kpqv1) +

1

2
(ks(1− q)v2) ,

Ui(mi = b|si = b, ei = ej = h,mj = sj) =
1

2
(kpqv2) +

1

2
(ks(1− q)v1 + kp(1− q)v1) .

Canceling out identical terms gives the desired truth-telling conditions (IC-g) and (IC-

b). In a next step, we analyze the firm’s effort incentive condition (IC-e). Manager i
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exerts high-effort product evaluation if and only if

Ui(ei = h|ej = h,m = s) ≥ Ui(ei = l|ej = h,m = s),

where the manager assumes that the firm will optimally allocate resources according to

the managers’ recommendations, and that recommendations are truthful. These utilities

are given by

Ui(ei = h|ej = h,m = s) = P(si = g, sj = g)
(
ksEθi [νi|k,m, e] + kpEθj [νj|k,m, e]

)
+ P(si = g, sj = b)ksEθi [νi|k,m, e]
+ P(si = b, sj = g)kpEθj [νj|k,m, e]
+ P(si = b, sj = b)

(
ksEθi [νi|k,m, e] + kpEθj [νj|k,m, e]

)
− c

=
1

4
(ksqv1 + kpqv1) +

1

4
ksqv2 +

1

4
kpqv2

+
1

4
(ks(1− q)v1 + kp(1− q)v1)− c,

Ui(ei = l|ej = h,m = s) =
1

4

(
ks

1

2
v1 + kpqv1

)
+

1

4
ks

1

2
v2 +

1

4
kpqv2

+
1

4

(
ks

1

2
v1 + kp(1− q)v1

)
.

Collecting terms yields the firm’s effort incentive constraint (IC-e). Lastly, the firm

needs to ensure that ks, kp ≥ 0, since managers are protected by limited liability. If

bonuses were negative, then there would exist situations that result in negative wages,

which is strictly forbidden by assumption.

Optimal wages: Maximizing the firm’s expected profit (2.1) is equivalent to mini-

mizing ks+kp. Now, for the contract to be incentive compatible in effort, (IC-e) requires

that ks ≥ 8c
(2q−1)v2

. Additionally, the contract is truth-inducing if and only if ks and kp

simultaneously satisfy (IC-g) and (IC-b). Rewriting these constraints gives

(1− q)v2

q(v2 − v1) + (1− q)v1

· ks ≤ kp ≤
qv2

q(v2 − v1) + (1− q)v1

· ks. (A.4)

Thus, to minimize ks + kp, we choose ks as small as possible and then determine kp by

transforming the left inequality in (A.4) into an equality. Therefore, the firm’s optimal
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contract is

k?s =
8c

(2q − 1)v2

, k?p =
8(1− q)c

(2q − 1)(q(v2 − v1) + (1− q)v1)
,

which also satisfies the limited liability constraint (LL).

Sensitivity: By (A.4), k?p = (1−q)v2
q(v2−v1)+(1−q)v1 · k

?
s . Now, to show that k?s > k?p, it is

sufficient to verify that (1−q)v2
q(v2−v1)+(1−q)v1 < 1. Rearranging this inequality and solving for

q assures that the condition holds for any q > 1/2. Thus, k?s > k?p.

To show that k?p/k
?
s is concave decreasing in q, convex decreasing in v2, and constant

in c, we explicitly investigate the first- and second-order partial derivatives of

k?p
k?s

=
(1− q)v2

q(v2 − v1) + (1− q)v1

with respect to q, v2, and c, respectively. It is easy to see that k?p/k
?
s is independent of

c. In addition, straightforward differentiation yields

∂

∂q

k?p
k?s

= − v2(v2 − v1)

(q(v2 − v1) + (1− q)v1)2
< 0,

∂2

∂q2

k?p
k?s

= − 2v2(2v1 − v2)(v2 − v1)

(q(v2 − v1) + (1− q)v1)3
< 0,

and

∂

∂v2

k?p
k?s

= − (1− q)(2q − 1)v1

(q(v2 − v1) + (1− q)v1)2
< 0,

∂2

∂v2
2

k?p
k?s

=
2q(2q − 1)(1− q)v1

(q(v2 − v1) + (1− q)v1)3
> 0,

which proves the claim.

Proof of Proposition 2.3. The manager: The contract scheme k? incentivizes each man-

ager to exert high-effort product evaluation. Thus, each manager’s expected utility is

given by Ui(k
?) = E[wi(k

?)]− c. Since, ex-ante, both products have the same expected

market value, Eθ(νi|k?) = (qv2 + v1)/4, manager i’s expected wage is

E[wi(k
?)] = (k?s + k?p)Eθ(νi|k?) = cφ1φ2,

where φ1 = 2qv2+2v1
(2q−1)v2

> 1 and φ2 = v2−(2q−1)v1
qv2−(2q−1)v1

≥ 1. Therefore,

∂

∂c
Ui(k

?) = φ1φ2 − 1 > 0,
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which implies that Ui(k
?) is linear increasing in c.

Note that Ui(k
?) is decreasing in q and v2, respectively, if and only if the manager’s

expected wage is decreasing in q and v2. Now, by standard differentiation rules,

∂

∂q
E[wi(k

?)] = c

(
∂φ1

∂q
φ2 + φ1

∂φ2

∂q

)
and

∂

∂v2

E[wi(k
?)] = c

(
∂φ1

∂v2

φ2 + φ1
∂φ2

∂v2

)
.

Thus, a sufficient condition for decreasing expected wages is that both, φ1 and φ2 de-

crease in q and v2, respectively. Evaluating first-order derivatives concludes this proof:

∂

∂q
φ1 = − 2v2 + 4v1

(2q − 1)2v2

< 0,
∂

∂q
φ2 = − v2(v2 − v1)

(qv2 − (2q − 1)v1)2
< 0,

∂

∂v2

φ1 = − 2v1

(2q − 1)v2
2

< 0,
∂

∂v2

φ2 = − (1− q)(2q − 1)v1

(qv2 − (2q − 1)v1)2
< 0.

The firm: The firm’s expected profit is given by (2.1) and can be rewritten as

Π(k?) = 2 · (1− k?s − k?p)Eθ(νi|k?).

A simple algebraic argument shows that both, k?s and k?p are decreasing in q and v2, and

increasing in c, whereas Eθ(νi|k?) is increasing in q and v2, and constant in c. Thus, it

follows immediately that Π(k?) is increasing in q and v2, and decreasing in c.

Proof of Proposition 2.4. Substituting k?s and k?p into (2.1) and comparing expected prof-

its with Π(k = (0, 0)) = v1 immediately gives ζ4. Using previous notation, we can rewrite

ζ4 = ζ1(φ1φ2)−1, and we know that φ1φ2 > 1. Thus, ζ4 < ζ1. Next, by example, we

prove the claim that there exist parameter values such that ζ4 > ζ2. Assume q = 1 and

v2 = 1.8v1. Then, ζ4 = 9
140
v1 >

1
20
v1 = ζ2, which establishes the result.

Moreover, ζ4 is convex increasing in q. To see why note that first- and second-order

partial derivatives of ζ1, φ−1
1 , and φ−1

2 , respectively, are given by:

∂ζ1

∂q
=
v2

4
> 0,

∂φ−1
1

∂q
=
v2(2v1 + v2)

2(qv2 + v1)2
> 0,

∂φ−1
2

∂q
=

v2(v2 − v1)

(v2 − (2q − 1)v1)2
> 0,

and

∂2ζ1

∂q2
= 0,

∂2φ−1
1

∂q2
= −v

2
2(2v1 + v2)

(qv2 + v1)3
< 0,

∂2φ−1
2

∂q2
=

4v1v2(v2 − v1)

(v2 − (2q − 1)v1)3
> 0.
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Since all first-order partial derivatives are strictly positive, we conclude that ζ4 is strictly

increasing in q. Convexity is now established through evaluation of the second-order

partial derivative of ζ4:

∂2ζ4

∂q2
= 2

∂ζ1

∂q

[
∂φ−1

1

∂q
φ−1

2 + φ−1
1

∂φ−1
2

∂q

]
+ ζ1φ

−1
1

∂2φ−1
2

∂q2
+ ζ1

[
2
∂φ−1

1

∂q

∂φ−1
2

∂q
+
∂2φ−1

1

∂q2
φ−1

2

]
.

The first two terms are strictly positive, so it remains to verify that the third term is

also positive. Setting the third term equal to zero shows that it is positive if

q >
v1 −

√
v1(v2 − v1)

2v1 − v2

.

Furthermore, ζ4 ≥ 0 if and only if q ≥ v1
v2

, and we find that

v1

v2

>
v1 −

√
v1(v2 − v1)

2v1 − v2

.

Thus, ζ4 is convex increasing in q.

Proof of Proposition 2.5. To prove the claim, we first note that the firm’s expected prod-

uct development scope depends on the chosen product evaluation strategy as follows: (i)

If e = (l, l), then n = nfb = 2; (ii) if e = (h, l), then n = 1; and (iii) if e = (h, h), then

n = nfb = 1.5. Combining this observation with Propositions 2.1 and 2.4 concludes the

proof. For q < qc,

n− nfb =


0 if c < ζ4

0.5 if ζ4 ≤ c ≤ ζ1

0 if ζ1 < c,

and for q ≥ qc,

n− nfb =



0 if c < min{ζ2, ζ4}
0.5 if min{ζ2, ζ4} ≤ c < max{ζ2, ζ4}
1 if max{ζ2, ζ4} ≤ c ≤ ζ3

0 if ζ3 < c.
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Proof of Proposition 2.6. We prove this proposition by investigating the firm’s percent-

age profit loss, ηp, for all five regions indicated in Figure 2.4.

(i) efb = e? = (h, h): If both products are evaluated with high effort under integra-

tion as well as decentralization, then

ηp = 1− Π(e?)

Π(e?) + Ui(e?) + Uj(e?)
· Π(e?) + Ui(e

?) + Uj(e
?)

Πfb(efb)
> 0. (A.5)

It can be readily verified that the second fraction in (A.5) is equal to one, and by applying

Proposition 2.3, the first fraction increases in q and v2, and decreases in c. It follows

immediately that ηp decreases in q and v2, and increases in c.

(ii) efb = e? = (l, l): Since neither evaluation costs nor wages are paid in this

scenario, the firm’s percentage profit loss is zero, i.e., ηp = 1− v1
v1

= 0.

(iii) efb = (h, h), e? = (l, l): In this case,

ηp = 1− v1

1
2
(qv2 + v1)− 2c

> 0,

which obviously increases in q and v2, and decreases in c.

(iv) efb = (h, l), e? = (l, l): In this case,

ηp = 1− v1

1
4
(2q + 1)v2 − c

> 0,

which obviously increases in q and v2, and decreases in c.

(v) efb = (h, l), e? = (h, h): If the decentralized firm over-invests in product evalu-

ation, then we can express the firm’s percentage profit loss as

ηp = 1− Π(e?)

Π(e?) + Ui(e?) + Uj(e?)
· Π(e?) + Ui(e

?) + Uj(e
?)

Πfb(efb)
> 0.

As already argued in case (i), the first fraction increases in q and v2, and decreases in c.

Now, by noting that over-investment can only occur if c > ζ2, we can readily verify that

the same results also hold for the second fraction. Thus, ηp decreases in q and v2, and

increases in c.

To conclude the proof, it is sufficient to note that the decentralized firm under-
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invests in product evaluation in cases (iii) and (iv), while an over-investment occurs

solely in case (v).

Proof of Proposition 2.7. Recall from the previous proof that if the integrated and de-

centralized firm choose the same product evaluation strategy, i.e., efb = e?, then Π(e?)+

Ui(e
?) + Uj(e

?) = Πfb(efb). Now, applying Propositions 2.1 and 2.4 immediately shows

that the percentage welfare loss, ηw, is zero if and only if the decentralized and integrated

firm choose the same product evaluation strategy.

If the decentralized firm over-invests in product evaluation, e? = (h, h), compared

to the integrated firm, efb = (h, l), then, by the argument in case (v) of the Proof of

Proposition 2.6, the percentage welfare loss,

ηw = 1− Π(e?) + Ui(e
?) + Uj(e

?)

Πfb(efb)
> 0,

decreases in q and v2, and increases in c.

If the decentralized firm under-invests in product evaluation, e? = (l, l), compared

to the integrated firm, efb = (h, h) or efb = (h, l), then the percentage welfare loss,

ηw = 1− v1

1
2
(qv2 + v1)− 2c

> 0 or ηw = 1− v1

1
4
(2q + 1)v2 − c

> 0,

increases in q and v2, and decreases in c.
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Proofs of Chapter III

Proof of Lemma 3.1. It can readily be verified that the first, second, and last term in

(3.1) are concave in x for given t. Therefore, to establish the Lemma, it remains to show

that the third term is also concave in x. Since this term is integrable and has a bounded

derivative, we can interchange the expectation and derivative operators, and the result

follows from twice applying Leibniz’s formula; i.e.,

∂Π(x, t)

∂x
= E

[
(p− c)− w(B − t)+ − h

∫ B+L

max {t,B}
1{Qt−Qτ≤x}dτ − (p− s)1{Qt≤x}

]
= (p− c)− w

∫ bu

t

P(B ≥ b)db− (p− s)P(Qt ≤ x)

− h
∫ bu+lu

0

P(Qt −Qτ ≤ x,max {t, B} ≤ τ ≤ B + L)dτ ;

∂2Π(x, t)

∂x2
= −(p− s)fQt(x)

− h
∫ bu+lu

0

fQt−Qτ |max {t,B}≤τ≤B+L(x) · P(max {t, B} ≤ τ ≤ B + L)dτ

< 0,

where fZ is the density function of the random variable Z. The strict inequality follows

from p > s, and the assumption that density functions are strictly positive.

Proof of Lemma 3.2. For t ≥ b, the first-order partial derivatives of ΠL(x, t) with respect
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to x and t are given by:

∂ΠL(x, t)

∂x
= E

[
(p− c)− h

∫ b+L

t

1{Qt−Qτ≤x}dτ − (p− s)1{Qt≤x}
]

= (p− c)− h
∫ b+lu

t

P(Qt −Qτ ≤ x, L > τ − b)dτ − (p− s)P(Qt ≤ x);

(B.1)

∂ΠL(x, t)

∂t
= E

[
−h
(∫ b+L

t

−Q′t1{Qt−Qτ≤x}dτ − x1{L>t−b}

)
− (p− s)

(
−Q′t1{Qt≤x}

)]
= h

[
xP(L > t− b)−

∫ b+lu

t

dt(Qt −Qτ ≤ x, L > τ − b)dτ
]
− (p− s)dt(Qt ≤ x).

(B.2)

Equating both derivatives to zero and rearranging terms concludes the proof.

Proof of Proposition 3.1. (a) Suppose h = 0. In this case, by (B.2), we have ∂ΠL(x,t)
∂t

=

−(p − s)dt(Qt ≤ x) ≤ 0 for all x and t. Since expected profits decrease in the firm’s

inventory timing, the firm introduces the product immediately at the start of the selling

season, t? = b. By definition of Qτ , t
? = b implies that Qt? = Q. Inserting the optimal

inventory timing t? in (B.1) and equating to zero determines the firm’s optimal inventory

scale, x?, through P(Q ≤ x?) = p−c
p−s . In addition, since p > c, it is easy to verify that

ΠL(x?, t?) > 0. Thus, market exit is always a suboptimal strategy.

(b) Suppose h > 0. In a first step, we show that instant product availability is

never the firm’s optimal inventory strategy. Assume to the contrary that t? = b is

optimal for some x > 0. Then, necessarily, ∂ΠL(x,t)
∂t

∣∣∣
t=b
≤ 0. However, since A(τ) is

continuously differentiable, we know that A′(b) = 0. Thus, by the definition of dt(·), we

have db(·) = 0 and it follows that ∂ΠL(x,t)
∂t

∣∣∣
t=b

= hx > 0 for all x > 0, which yields the

desired contradiction. Finally, we establish that for x = 0, instant product availability

is never better than a market exit. This is obvious because with x = 0 the firm cannot

generate positive profits which makes market exit the (weakly) preferred strategy.

Now, since instant product availability is never the firm’s optimal inventory strategy,

the firm either chooses a risk exploitation inventory strategy or market exit. Compar-

ing the firm’s expected profits under both inventory strategies determines the optimal

strategy. Note that market exit leads to zero profits. Thus, the firm prefers the risk

exploitation strategy defined in Lemma 3.2 if and only if ΠL(x?, t?) ≥ 0. To estab-

98



B. Proofs of Chapter III

lish the existence of the threshold function h(c), we make use of the Implicit Function

Theorem. Specifically, the Implicit Function Theorem asserts the following for a con-

tinuously differentiable function ΠL with coordinates (c, h), and a point (c′, h′) with

ΠL(c′, h′) = 0: If ∂ΠL(c′,h′)
∂h

is invertible, then there exists an open set U containing c′, an

open set V containing h′, and a unique continuously differentiable function h : U → V ,

such that {(c, h(c))|c ∈ U} = {(c, h) ∈ U × V |ΠL(c, h) = 0}. Since ΠL is continuously

differentiable, and ∂ΠL(x?(c,h),t?(c,h),c,h)
∂h

< 0, we can conclude that there exists a unique

continuously differentiable function h(c) such that the optimal inventory strategy is risk

exploitation if h ≤ h(c), and market exit otherwise. Moreover, h(c) decreases in c:

∂h(c)

∂c
= −

∂ΠL(x?,t?)
∂c

∂ΠL(x?,t?)
∂h

= − x?∫ b+L
t?

It?(τ)dτ
< 0.

Proof of Lemma 3.3. First-order partial derivatives of ΠB(x, t) with respect to x and t

are as follows:

∂ΠB(x, t)

∂x
= E

[
(p− c)− w(B − t)+ − (p− s)1{Qt≤x}

]
= (p− c)− w

∫ bu

t

P(B ≥ b)db− (p− s)P(Qt ≤ x); (B.3)

∂ΠB(x, t)

∂t
= E

[
(o+ wx)1{B≥t} − (p− s)

(
−Q′t1{Qt≤x}

)]
= (o+ wx)P(B ≥ t)− (p− s)dt(Qt ≤ x). (B.4)

Equating to zero and rearranging terms concludes the proof.

Proof of Proposition 3.2. (a) Suppose o = w = 0. By (B.4), we have ∂ΠB(x,t)
∂t

= −(p −
s)dt(Qt ≤ x) ≤ 0 for all x and t. Now, we can conclude the proof with a structurally

identical argument to the proof of Proposition 3.1(a), which we omit for conciseness.

(b) Suppose o + w > 0. In a first step, we show that instant product availability

is never the firm’s optimal inventory strategy. Assume to the contrary that t? = 0

is optimal for some x > 0. Then, necessarily, ∂ΠB(x,t)
∂t

∣∣∣
t=0
≤ 0. However, from the

definition of A(τ) it follows readily that A′(0) = 0 almost surely, implying that d0(·) = 0

almost surely. Thus, ∂ΠB(x,t)
∂t

∣∣∣
t=0

= o + wx > 0 for all x > 0, which yields the desired
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contradiction. Finally, we establish that for x = 0, instant product availability is never

better than a market exit. This is obvious because with x = 0 the firm generates negative

profits which makes market exit the preferred strategy.

Now, since instant product availability is never the firm’s optimal inventory strategy,

the firm either chooses a risk exploitation inventory strategy or market exit. Comparing

the firm’s expected profits under both inventory strategies determines the optimal strat-

egy. Again, market exit leads to zero profits. Thus, the firm prefers the risk exploitation

strategy defined in Lemma 3.3 if and only if ΠB(x?, t?) ≥ 0. Similar to Proposition

3.1(b), because ΠB(x, t) is continuously differentiable and ∂ΠB(x?(c,o),t?(c,o),c,o)
∂o

< 0, the

Implicit Function Theorem ensures that there exists a unique continuously differentiable

function o(c) such that the optimal inventory strategy is risk exploitation if o ≤ o(c),

and market exit otherwise. Moreover, o(c) decreases in c:

∂o(c)

∂c
= −

∂ΠB(x?,t?)
∂c

∂ΠB(x?,t?)
∂o

= − x?

E [(B − t?)+]
< 0.

Proof of Lemma 3.4. The proof is equivalent to the proofs of Lemmas 3.2 and 3.3; i.e.,

we need to take first-order partial derivatives of Π(x, t) with respect to x and t, and

equate them to zero. In fact, the derivatives of the revenue, earliness cost, and salvage

cost terms can be derived as before. However, differentiating the holding cost term with

respect to t is now much more involved. We will therefore demonstrate how to obtain

this important derivative. First, we rewrite the holding cost term (while suppressing h)

by using the law of iterated expectations:

E
[∫ B+L

max{t,B}
It(τ)dτ

]
= E

[∫ B+L

B

It(τ)dτ · 1{B>t} +

∫ B+L

t

It(τ)dτ · 1{B≤t}
]

=

∫ bu

t

E
[∫ bu+lu

0

It(τ)1{b≤τ≤b+L}dτ |B = b

]
fB(b)db

+

∫ t

0

E
[∫ bu+lu

t

It(τ)1{τ≤b+L}dτ |B = b

]
fB(b)db.

Next, we derive the first-order partial derivative with respect to t by applying Leibniz’s

formula, by interchanging the expectation and derivative operators, and by noting that

100



B. Proofs of Chapter III

∂It(τ)
∂t

= 0 for t < B:

∂

∂t
E
[∫ B+L

max{t,B}
It(τ)dτ

]
= E

[∫ bu+lu

t

−Q′t1{Qt−Qτ≤x,τ≤B+L,B≤t}dτ − x1{B≤t≤B+L}

]
=

∫ bu+lu

t

dt (Qt −Qτ ≤ x, τ ≤ B + L,B ≤ t) dτ − xP (B ≤ t ≤ B + L) .

Based on this analysis, we can now state the first-order partial derivatives of Π(x, t) with

respect to x and t:

∂Π(x, t)

∂x
= E

[
(p− c)− w(B − t)+ − h

∫ B+L

max {t,B}
1{Qt−Qτ≤x}dτ − (p− s)1{Qt≤x}

]
= (p− c)− w

∫ bu

t

P(B ≥ b)db

− h
∫ bu+lu

0

P (Qt −Qτ ≤ x,max {t, B} ≤ τ ≤ B + L) dτ − (p− s)P(Qt ≤ x);

(B.5)

∂Π(x, t)

∂t
= −(o+ wx)E

[
−1{B≥t}

]
− (p− s)E

[(
−Q′t1{Qt≤x}

)]
− h ∂

∂t
E
[∫ B+L

max{t,B}
It(τ)dτ

]
= (o+ wx)P(B ≥ t)− (p− s)dt(Qt ≤ x)

+ h

[
xP (B ≤ t ≤ B + L)−

∫ bu+lu

t

dt (Qt −Qτ ≤ x, τ ≤ B + L,B ≤ t) dτ

]
.

(B.6)

Proof of Proposition 3.3. The proof follows exactly the same steps as in Propositions

3.1 and 3.2.

(a) Suppose o = w = h = 0. By (B.6), we have ∂Π(x,t)
∂t

= −(p − s)dt(Qt ≤ x) ≤ 0

for all x and t. From hereon, the proof follows exactly the same steps as in Proposition

3.1(a).

(b) Suppose that o + w + h > 0. In a first step, we show that instant product

availability is never the firm’s optimal inventory strategy. Assume to the contrary that
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t? = 0 is optimal for some x > 0. Then, necessarily, ∂Π(x,t)
∂t

∣∣∣
t=0
≤ 0. However, from

the definition of A(τ) it follows readily that A′(0) = 0 almost surely, implying that

d0(·) = 0 almost surely. Thus, ∂ΠB(x,t)
∂t

∣∣∣
t=0

= o + wx > 0 for all x > 0, which yields the

desired contradiction. Finally, we establish that for x = 0, instant product availability is

never better than a market exit. This is obvious because with x = 0 the firm generates

negative profits which makes market exit the preferred strategy.

Now, since instant product availability is never the firm’s optimal inventory strategy,

the firm either chooses a risk exploitation inventory strategy or market exit. Comparing

the firm’s expected profits under both inventory strategies determines the optimal strat-

egy. Again, market exit leads to zero profits. Thus, the firm prefers the risk exploitation

strategy defined in Lemma 3.4 if and only if Π(x?, t?) ≥ 0. Similar to Proposition

3.1(b), because Π(x, t) is continuously differentiable and ∂Π(x?(c,o),t?(c,o),c,o)
∂o

< 0, the Im-

plicit Function Theorem ensures that there exists a unique continuously differentiable

function o(c) such that the optimal inventory strategy is risk exploitation if o ≤ o(c),

and market exit otherwise. Moreover, o(c) decreases in c:

∂o(c)

∂c
= −

∂Π(x?,t?)
∂c

∂Π(x?,t?)
∂o

= − x?

E [(B − t?)+]
< 0.

Proof of Corollary 3.1. The proof proceeds by comparing the results of Proposition 3.3

with a classical newsvendor’s optimal inventory scale. Due to the independence of Q and

S, a classical newsvendor’s optimal inventory scale, xNV , satisfies P(Q ≤ xNV ) = p−c
p−s .

By Proposition 3.3(a), if the firm chooses an instant product availability, t? = 0,

then the optimal inventory scale is given by P(Q ≤ x?) = p−c
p−s . This optimality condition

is identical to the classical newsvendor’s condition, and therefore x? = xNV .

By Proposition 3.3(b), if the firm chooses a risk exploitation inventory strategy,

then the optimal inventory scale is determined by (3.8). Since the second and third

term on the left-hand side of (3.8) are strictly positive, it follows immediately that

P(Qt? ≤ x?) < p−c
p−s , or equivalently, P(Qt? ≤ x?) < P(Q ≤ xNV ). Since, by construction,

Qt? is stochastically smaller than Q, we know that in optimum, P(Q ≤ x?) ≤ P(Qt? ≤
x?) < P(Q ≤ xNV ). These inequalities, however, can only hold if x? < xNV .

Finally, if the firm exits the market, then x? = 0 < xNV , which concludes the

proof.
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Proof of Corollary 3.2. We are interested in the full differential of the expected profit,

Π(x, t), with respect to any revenue and cost parameter α ∈ {p, s, c, o, w, h}; i.e.,

dΠ(x, t)

dα
=
∂Π(x, t)

∂α
+
∂Π(x, t)

∂x

∂x

∂α
+
∂Π(x, t)

∂t

∂t

∂α
.

If we hold the inventory strategy (x, t) fixed, then ∂x
∂α

= ∂t
∂α

= 0. Similarly, if the

inventory strategy is adjusted optimally, then (i) ∂Π(x,t)
∂x

= ∂t
∂α

= 0 under instant product

availability; (ii) ∂Π(x,t)
∂x

= ∂Π(x,t)
∂t

= 0 under risk exploitation; and (iii) ∂x
∂α

= ∂t
∂α

= 0

under market exit. Therefore, dΠ(x,t)
dα

= ∂Π(x,t)
∂α

. Finally, it is straightforward to show

that ∂Π(x,t)
∂α

is positive for α ∈ {p, s}, and negative for α ∈ {c, o, w, h}.

Proof of Lemma 3.5. (a) Suppose w = o = h = 0. Then, Lemmas 3.1 and 3.4 imply

that for any t, the firm’s optimal inventory scale solves P(Qt ≤ x?) = p−c
p−s . Noting that

Qt stochastically decreases in t establishes the desired result.

(b) We prove this result by constructing a situation where x?(t) increases in t. The

first-order partial derivative of x?(t) with respect to t is ∂x?(t)
∂t

= −∂2Π(x?,t)
∂x∂t

/∂
2Π(x?,t)
∂x2

. By

Lemma 3.1 and the optimality of x?(t), we know that ∂2Π(x?,t)
∂x2

< 0. Thus, to establish

our result, we need to find a situation where ∂2Π(x?,t̂)
∂x∂t

> 0 for some t̂. Assume h = 0,

w > 0, t̂ < bu, and A′(t̂) = 0 for any realization of (Q,B,L). Intuitively, this corresponds

to a situation where no customer demands the product at time t̂, i.e., dt̂(·) = 0. In this

case, ∂2Π(x?,t̂)
∂x∂t

= wP(B ≥ t̂) > 0, which concludes the proof.

Proof of Lemma 3.6. (a) For fixed t, we are interested in the differential of the optimal

inventory scale, x?, with respect to any revenue and cost parameter α ∈ {p, s, c, o, w, h};
i.e., ∂x?

∂α
= −∂2Π(x?,t)

∂x∂α
/∂

2Π(x?,t)
∂x2

. Again, by Lemma 3.1 and the optimality of x?, ∂2Π(x?,t)
∂x2

<

0. By differentiating (B.5) with respect to α, it is easy to verify that the resulting

cross-partial is positive for α ∈ {p, s}, negative for α ∈ {c, w, h}, and zero for α = o.

(b) Structurally equivalent to part (a).

Proof of Proposition 3.4. Suppose the firm’s optimal inventory strategy is risk exploita-

tion. Then, according to the Implicit Function Theorem, we can derive the relevant

derivatives as follows:(
dx?/dα

dt?/dα

)
= −H−1 ·

(
∂2Π(x?, t?)/∂x∂α

∂2Π(x?, t?)/∂t∂α

)
, (B.7)
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where H−1 is the inverse of the Hessian of Π(x, t) evaluated at (x?, t?); i.e.,

H−1 =
1

det(H)

(
∂2Π(x?, t?)/∂t2 −∂2Π(x?, t?)/∂x∂t

−∂2Π(x?, t?)/∂x∂t ∂2Π(x?, t?)/∂x2

)
.

Since (x?, t?) maximizes Π(x, t), the Hessian, H, evaluated at this point must be negative

definite, and therefore, det(H) > 0. Additionally, by optimality, ∂2Π(x?, t?)/∂x2 ≤ 0

and ∂2Π(x?, t?)/∂t2 ≤ 0. By Lemma 3.6, we also know that ∂2Π(x?, t?)/∂x∂α is

negative (zero) for α = c (α = o), and ∂2Π(x?, t?)/∂t∂α is zero (positive) for α =

c (α = o). Incorporating this information in (B.7) shows that ∂x?/∂c ≤ 0, and

∂t?/∂c ≥ (<)0 if ∂2Π(x?, t?)/∂x∂t ≤ (>)0. Similarly, ∂t?/∂o ≥ 0, and ∂x?/∂o ≤ (>)0

if ∂2Π(x?, t?)/∂x∂t ≤ (>)0. In Lemma 3.5, we have already established that there exist

situations where ∂2Π(x?, t?)/∂x∂t is either positive or negative. Thus, in general, x? is

not monotonic in o, and t? is not monotonic in c.

Finally, it remains to verify that x? (t?) also decreases in c (increases in o) if the firm’s

optimal inventory strategy is either instant product availability or market exit. However,

this follows immediately from Proposition 3.3. Hence, ∂x?/∂c ≤ 0 and ∂t?/∂o ≥ 0.
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Appendix C

Proofs of Chapter IV

Proof of Lemma 4.1. For given x−i, the first-order and second-order derivatives of ΠW (x)

with respect to xi are

∂ΠW (x)

∂xi
=ui − (ui + oi)P(Ds

i < xi)−
∑
j 6=i

(uj + oj)αijP(Ds
j < xj, Di > xi)

=ui − (ui + oi)P(Ds
i < xi)−

∑
j 6=i

(uj + oj)αijP(Ds
j < xj|Di > xi)P(Di > xi)

∂2ΠW (x)

∂x2
i

=− (ui + oi)fDsi (xi)

+
∑
j 6=i

(uj + oj)αij

[
fDi(xi)P(Ds

j < xj|Di > xi)− αijfDsj |Di>xi(xj)P(Di > xi)
]
,

i = 1, . . . , n, with fY being the density function of random variable Y . By rearranging

terms, ΠW (x) is concave in xi if and only if

(ui + oi)fDsi (xi) +
∑
j 6=i

(uj + oj)α
2
ijfDsj |Di>xi(xj)P(Di > xi)

≥
∑
j 6=i

(uj + oj)αijfDi(xi)P(Ds
j < xj|Di > xi)

(C.1)

for all x. To prove the lemma, we construct a scenario for which (C.1) is violated for

some x.

Let η > 0, and for given xi, let Xη(xi) be the set of stocking levels x−i such

that P(Ds
j < xj|Di > xi) ≥ 1/(n − 1) and fDsj |Di>xi(xj) < η. Note that for any xi,

Xη(xi) is non-empty because P(Ds
j < xj|Di > xi) → 1 and fDsj |Di>xi(xj) → 0 for

xj → ∞. For all j 6= i, let (i) αji = 0, i.e., Ds
i =st Di; (ii) αij = 1/(n − 1); and (iii)

(uj + oj) = (1 + ν)(ui + oi)(n − 1), ν > 0. Further assume that Di ∼ Normal(µi, σi)

with σi < ν/
[
(1 + ν)η

√
2π
]
.
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Given these assumptions,

(ui + oi) [fDi(xi) + (1 + ν)η]

> (ui + oi)fDsi (xi) +
∑
j 6=i

(uj + oj)α
2
ijfDsj |Di>xi(xj)P(Di > xi)

(C.2)

and ∑
j 6=i

(uj + oj)αijfDi(xi)P(Ds
j < xj|Di > xi) ≥ (ui + oi)(1 + ν)fDi(xi). (C.3)

By (C.1)-(C.3), it follows that ΠW (x) is not concave in xi, if for some xi,

(1 + ν)fDi(xi) > [fDi(xi) + (1 + ν)η] , (C.4)

or equivalently,

fDi(xi) >
1 + ν

ν
η. (C.5)

Since Di is normally distributed, we can choose xi such that fDi(xi) = 1/(σi
√

2π) and

hence, (C.5) holds for any σi < ν/
[
(1 + ν)η

√
2π
]
.

Proof of Proposition 4.1. Consider the maximization problem Py. Since ΠW (x) and all

constraints are continuously differentiable in x, and all constraints are linear in x, there

exists a unique vector λ such that (x?, λ) satisfies the Karush-Kuhn-Tucker (KKT)

conditions:

∂ΠW (x?)

∂xi
− λi = 0 (C.6)

λi(x
?
i − yi) = 0 (C.7)

x?i − yi ≤ 0 (C.8)

x?, λ ≥ 0, (C.9)

i = 1, . . . , n. Now, suppose x? is a directionally largest optimal solution.

Case 1: x?i < yi. For (C.7) to hold, we need λi = 0, which implies by (C.6) and

(4.2) that x?i = x̂i(x
?
−i).

Case 2: x?i = yi. We need to show that yi ≤ x̂i(x
?
−i). Suppose to the contrary
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that there exist situations where x?i = yi > x̂i(x
?
−i). By (4.2), x̂i(x

?
−i) is the wholesaler’s

optimal stocking level if he is unrestricted in his stocking decision for product i. Now,

if this stocking level is also feasible for the bounded problem Py, then it must also be

optimal in Py. Thus, x?i = x̂i(x
?
−i) < yi = x?i which is a contradiction.

Combining Cases 1 and 2 for all i yields x?i (y) = min{x̂i(x?−i(y)), yi}.

Proof of Lemma 4.2. Given x−i, the wholesaler’s optimization problem is now single-

dimensional in xi. Thus, to analyze how x̂i(x−i) changes in xj, j 6= i, we apply the

Implicit Function Theorem to gain the required differential

∂x̂i(x−i)

∂xj
= −∂

2ΠW (x̂i, x−i)/∂xi∂xj
∂2ΠW (x̂i, x−i)/∂x2

i

.

Due to the optimality of x̂i(x−i), we know that ∂2ΠW (x̂i, x−i)/∂x
2
i ≤ 0. Furthermore,

analysis of the cross-partial yields

∂2ΠW (x̂i, x−i)

∂xi∂xj
=− (ui + oi)

∂

∂xj
P(Ds

i < x̂i)

−
∑
k 6=i

(uk + ok)αik
∂

∂xj
P(Ds

k < xk|Di > x̂i)P(Di > xi).

By construction, Ds
k, k 6= j, is stochastically decreasing in xj and so, ∂P(Ds

i < x̂i)/∂xj ≥
0 and ∂P(Ds

k < xk|Di > x̂i)/∂xj ≥ 0 for all k 6= i, j. Additionally, Ds
j does not dependent

on xj and therefore ∂P(Ds
j < xj|Di > x̂i)/∂xj ≥ 0. Combining these arguments gives

∂2ΠW (x̂i, x−i)/∂xi∂xj ≤ 0 and finally

∂x̂i(x−i)

∂xj
≤ 0.

Thus, it follows that x̂i(x−i) ≥ x̂i(x
′
−i).

(ii) Consider a three-product scenario with products denoted by i, j, and k, respec-

tively, and suppose that the density functions of Di, Dj, and Dk are strictly positive on

R+. This implies that the inequality in Part (i) is strict because ∂2ΠW (x̂i, x−i)/∂xi∂xj <

0. Assume αjk > 0, αki > 0, and any other substitution rate to be zero. Note that x̂i(xj)

depends on xj only indirectly through x̂k(xj). We now prove the lemma by a sequential

argument.

First, we analyze the direct effects between the three products. By Part (i), x′j > xj
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implies x̂k(x
′
j) < x̂k(xj), and thus x̂i(x

′
j) > x̂i(xj). Second, to complete the proof, we

need to show that an increased stocking level for product i also leads to a decreased

stocking level for k, but this is again just an application of Part (i).

Accordingly, since direct and indirect substitution effects point in the same direc-

tion, we can conclude that x̂i(xj) < x̂i(x
′
j).

Proof of Proposition 4.2. (i) Suppose x?j(y
′) < x?j(y). This can never happen because

x?j(y
′) is feasible in Py, but by assumption, it is dominated in Py by x?j(y). This must

also be true in Py′ because any feasible solution of Py is feasible in Py′ . Thus, x?j(y
′)

cannot be optimal in Py′ . This is a contradiction and therefore x?j(y
′) ≥ x?j(y).

(ii) By Part (i) and Lemma 4.2(i), it is always true that x̂i(x
?
j(y), x?−j) ≥ x̂i(x

?
j(y
′), x?−j).

It follows immediately that x?i (y) = min{x̂i(x?j(y), x?−j), yi} ≥ min{x̂i(x?j(y′), x?−j), yi} =

x?i (y
′).

(iii) Assume yi large enough so that it never constrains the wholesaler. This as-

sumption ensures the applicability of Lemma 4.2 because we are guaranteed to find

an interior solution to the wholesaler’s optimization problem. Hence, by Part (i) and

Lemma 4.2(ii), there exist situations where x̂i(x
?
−i(y)) < x̂i(x

?
−i(y

′)) for some i 6= j.

Thus,

x?i (y) = min{x̂i(x?−i(y)), yi} = x̂i(x
?
−i(y)) < x̂i(x

?
−i(y

′)) = min{x̂i(x?−i(y′)), yi} = x?i (y
′)

for some i 6= j.

Proof of Proposition 4.3. The total differential of ΠW (x) with respect to substitution

rates is

dΠW (x?(αji), αji)

dαji
=
∂ΠW

∂αji
+
∑
k

∂ΠW

∂x?k

∂x?k
∂αji

.

In a first step, we show that ∂ΠW/∂αji ≥ 0 for all i and j, i 6= j, i.e.,

∂ΠW

∂αji
= (ui + oi)E

[
(Dj − xj)1{Dsi<xi,Dj>xj}

]
≥ 0. (C.10)

This is true, since the term under the expectation in (C.10) is non-negative.

In a second step, we investigate the indirect effects of αji on ΠW . If x is optimally

adjusted, then, for all k, ∂ΠW/∂xk = 0 if x?k < yk and ∂x?k/∂αji = 0 if x?k = yk. Thus,
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dΠW/dαji = ∂ΠW/∂αji ≥ 0 for all i and j, if x is adjusted optimally.

Proof of Lemma 4.3. (i) Choose an arbitrary product i. Application of the Implicit

Function Theorem yields

∂x̂i(x−i)

∂αji
= −∂

2ΠW (x̂i(α), α)/∂xi∂αji
∂2ΠW (x̂i(α), α)/∂x2

i

. (C.11)

Due to the optimality of x̂i(x−i), we know that ∂2ΠW (x̂i(α), α)/∂x2
i ≤ 0. In addition,

the cross-partial ∂2ΠW/∂xi∂αji is explicitly given by

∂2ΠW

∂xi∂αji
= −(ui + oi)

∂

∂αji
P(Ds

i < x̂i), (C.12)

for all j 6= i. By construction, Ds
i = Di+

∑
k 6=i αki(Dk−xk)+. Thus, Ds

i is stochastically

increasing in αji. It follows that ∂P(Ds
i < xi)/∂αji ≤ 0, and hence, ∂2ΠW/∂xi∂αji ≥ 0.

Now, by (C.11), (C.12), and the optimality of x̂i(x−i), ∂x̂i(x−i)/∂αji ≥ 0 for all j 6= i.

(ii) Similar to part (i), the proof proceeds by evaluating

∂x̂j(x−j)

∂αji
= −∂

2ΠW (x̂j(α), α)/∂xj∂αji
∂2ΠW (x̂j(α), α)/∂x2

j

. (C.13)

In contrast to the proof of part (i), however, the cross-partial can now be positive or

negative, since

∂2ΠW

∂xj∂αji
= −(ui + oi)

[
P(Ds

i < xi, Dj > x̂j) + αji
∂

∂αji
P(Ds

i < xi, Dj > x̂j)

]
, (C.14)

where ∂P(Ds
i < xi, Dj > x̂j)/∂αji ≤ 0.

We therefore prove the lemma by providing an example. Consider a two-product

portfolio with heterogeneous initial demands Di ∼ Uniform(0, 1) and Dj ∼ Beta(2, 1),

i.e., Fj(xj) = x2
j . Assume all other parameters to be symmetric across products. To

be concrete: ui = uj = 2, oi = oj = 8, and αij = αji = 0.8. In this setting, we

obtain ∂2ΠW/∂x
2
j = −10

[
(xi + xj)

2 + x2
j/4
]
≤ 0, and ∂2ΠW/∂xj∂αji = 125x3

i /24 ≥ 0.

Consequently, ∂x̂j(x−j)/∂αji = 25x3
i /48

[
(xi + x̂j)

2 + x̂2
j/4
]
> 0 for xi > 0.

Proof of Proposition 4.4. The total differential of the optimal stocking level for product
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j with respect to substitution rates is

dx?j(x
?
−j(αji), αji)

dαji
=

∂x?j
∂αji

+
∑
k 6=j

∂x?j
∂x?k

∂x?k
∂αji

.

To prove the claim, we make use of the following two properties: For all k, (a) if x?k = yk,

then ∂x?k/∂αji = 0; and (b) if x?k < yk, then ∂x?k/∂αji = ∂x̂k/∂αji. From Lemma 4.3(ii),

for some i and j, i 6= j, there are instances of Py where ∂x̂j/∂αji > 0. Combining this

result with property (b), we find that there are instances of Py with ∂x?j/∂αji > 0. Now

assume that x?k = x̂k = yk for all k 6= j, yielding dx?j/dαji = ∂x?j/∂αji > 0 and the

proposition follows.

Proof of Lemma 4.4. To prove the desired result, we make use of the inverse distribution

function Φ−1
i (ρi, y), ρi ∈ [0, 1]. In particular, Φi(χi, y) = ρi and Φ−1

i (ρi, y) = χi. Note

that the assumptions on rational beliefs imply ∂2Φ−1
i (ρi, y)/∂y2

i ≤ 0. Further, Φi(0, y) =

0 and Φi(yi, y) = 1.

Assuming rational beliefs and given y−i, each manufacturer’s expected profit can

be written as

ΠMi
(yi|y−i) = wi

∫ yi

0

χidΦi(χi, y)− ciyi = wi

∫ yi

0

(1− Φi(χi, y))dχi − ciyi. (C.15)

Using the inverse distribution function, we can rewrite (C.15) as

ΠMi
(yi|y−i) = wi

∫ 1

0

(1− ρi)dΦ−1
i (ρi, y)− ciyi = wi

∫ 1

0

Φ−1
i (ρi, y)dρi − ciyi.

Therefore,

∂2ΠMi
(yi|y−i)
∂y2

i

= wi

∫ 1

0

∂2Φ−1
i (ρi, y)

∂y2
i

dρi ≤ 0.

Proof of Proposition 4.5. Assuming rational beliefs, each manufacturer’s expected profit

given her competitors’ production quantities is

ΠMi
(yi|y−i) = wiµi(y)− ciyi.
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Taking the first-order derivative and satisfying the optimality condition yields

∂ΠMi
(yi|y−i)
∂yi

= wi
∂µi(y)

∂yi
− ci = 0,

and the result follows immediately.

Proof of Proposition 4.6. A pure-strategy manufacturer Nash equilibrium exists if (i)

each manufacturer’s strategy space is a non-empty, compact and convex set, and (ii) each

manufacturer’s profit function ΠMi
is continuous in y and quasi-concave in yi (Debreu,

1952). Lemma 4.4 together with our assumptions ensures that these conditions are

satisfied. Thus, there exists at least one pure-strategy manufacturer Nash equilibrium.

To derive our uniqueness conditions, we rely on the fundamental results of Rosen

(1965). In particular, Theorem 2 in Rosen (1965) asserts that the manufacturer Nash

equilibrium defined by (4.5) is unique if (i) ΠMi
is twice continuously differentiable in

y for all i, and (ii) σ(y, δ) =
∑n

i=1 δiΠMi
(yi|y−i) is diagonally strictly concave for some

fixed δ > 0. While condition (i) is guaranteed by our assumptions, we need some more

definitions to verify condition (ii).

Let g(y, δ) be the pseudogradient of σ(y, δ) for fixed δ, i.e.,

g(y, δ) =


δ1∂ΠM1/∂y1

...

δn∂ΠMn/∂yn

 ,

and denote by G(y, δ) the Jacobian of g(y, δ) with respect to y, i.e.,

G(y, δ) = ∇yg(y, δ) =
(
δi∂

2ΠMi
/∂yi∂yj

)
ij
.

Now, Theorem 6 in Rosen (1965) states that σ(y, δ) is diagonally strictly concave if

G(y, δ) is negative definite for all y ∈ ×i[0, yi] ⊆ [0, K]n and some fixed δ > 0. Thus, the

manufacturer Nash equilibrium is unique if, for some δ > 0, G(y, δ) is negative definite

for all y.

Negative definiteness of G(y, δ): Denote by GT (y, δ) the transposed of G(y, δ). A

basic result in fundamental algebra states that G(y, δ) is negative definite if its sym-

metric part Gsym(y, δ) =
[
G(y, δ) +GT (y, δ)

]
/2 is negative definite. This is true if all

eigenvalues of Gsym(y, δ) are negative. Note that, due to Definition 4.1, all elements
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of Gsym(y, δ) are non-positive. Hence, by the Gershgorin Circle Theorem (see Varga,

2004), an upper bound for the ith eigenvalue of Gsym(y, δ) is given by

ubi = δi
∂2ΠMi

∂y2
i

− 1

2

∑
j 6=i

[
δi
∂2ΠMi

∂yi∂yj
+ δj

∂2ΠMj

∂yi∂yj

]
,

i = 1, . . . , n. Therefore, Gsym(y, δ) is negative definite if, for all i, ubi < 0. This is true

if ΠMi
is strictly concave in yi, and

2 +
∑
j 6=i

∂yCi
∂yj
−
∑
j 6=i

δj
δi

∂2ΠMj
/∂yi∂yj

∂2ΠMi
/∂y2

i

> 0 (C.16)

for all y, where we make use of the Implicit Function Theorem

∂yCi
∂yj

= −∂
2ΠMi

/∂yi∂yj
∂2ΠMi

/∂y2
i

.

By choosing δi = 1/wi > 0 for all i, (C.16) reduces to (4.6), which proves the proposition.

Proof of Corollary 4.1. If ΠW (x) is jointly concave in x, then the wholesaler’s optimal

stocking level x?(y) is unique for any given y. In addition, under the conditions of

Proposition 4.6, the manufacturer Nash equilibrium yc is also unique. It follows that

(x?(yc), yc) defines the unique Bayesian Nash-Stackelberg equilibrium in the competitive

scenario of the Supply Game.

Proof of Proposition 4.7. Assuming rational beliefs, the manufacturer’s expected profit

is

ΠM(y) =
∑
i

(wiµi(y)− ciyi) .

Taking first-order derivatives yields

∂ΠM(y)

∂yi
= wi

∂µi(y)

∂yi
+
∑
j 6=i

wj
∂µj(y)

∂yi
− ci,

i = 1, . . . , n. Rearranging terms and satisfying the optimality conditions gives (4.8).

112



C. Proofs of Chapter IV

Proof of Corollary 4.2. If ΠW (x) and ΠM(y) are jointly concave in x and y, respectively,

then the wholesaler’s optimal stocking level given y, x?(y), and the manufacturer’s opti-

mal production quantity ync are both unique. Thus, in the non-competitive scenario of

the Supply Game, (x?(ync), ync) defines the unique Bayesian Stackelberg equilibrium.

Proof of Proposition 4.8. We start this proof with a preliminary result that is useful in

the remainder. Let y′−i ≥ y−i and note that

∂2µi(y)

∂yi∂yj
= −

∫ yi

0

∂2Φi(χi, y)

∂yi∂yj
dχi ≤ 0

by the definition of rational beliefs. It follows that for arbitrarily fixed ỹi

∂µi(yi, y
′
−i)

∂yi

∣∣∣∣
yi=ỹi

≤ ∂µi(yi, y−i)

∂yi

∣∣∣∣
yi=ỹi

. (C.17)

(i) The proof proceeds by contradiction. Assume yc < ync. Now, by comparing and

equating the optimality conditions (4.5) and (4.8), we require

∂µi(yi, y
c
−i)

∂yi

∣∣∣∣
yi=yci

=
ci
wi

=
∂µi(yi, y

nc
−i)

∂yi
+
∑
j 6=i

wj
wi

∂µj(yi, y
nc
−i)

∂yi

∣∣∣∣∣
yi=ynci

(C.18)

to be true. By assumption (4.9), the second term on the right-hand side of (C.18) is

always non-positive. So, for (C.18) to hold, we need

∂µi(yi, y
c
−i)

∂yi

∣∣∣∣
yi=yci

≤ ∂µi(yi, y
nc
−i)

∂yi

∣∣∣∣
yi=ynci

.

By (C.17) and concavity of µi with respect to yi, this can only be true if yci ≥ ynci , a

contradiction to our initial assumption.

(ii) An example provides the proof. Assume manufacturers’ beliefs about the whole-

saler’s stocking levels for products j 6= i are independent of the production quantity of

product i, i.e., µj(yi, y−i) = µj(y−i) for all j 6= i. Hence, ∂µj/∂yi = 0 for all j 6= i.

Assume further that ∂2Φi(χi, y)/∂yi∂yj > 0 for all j 6= i. Then, the inequality in (C.17)

becomes strict.
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Comparing the optimality conditions (4.5) and (4.8) for product i gives

∂µi(yi, y
c
−i)

∂yi

∣∣∣∣
yi=yci

=
ci
wi

=
∂µi(yi, y

nc
−i)

∂yi

∣∣∣∣
yi=ynci

. (C.19)

Now, assume yc−i ≥ ync−i; otherwise the proof would already be complete. By (C.17) and

concavity of µi with respect to yi, (C.19) can only be true if yci < ynci .

Proof of Proposition 4.9. (i) The proof proceeds by contradiction. Let y′ ≥ y and sup-

pose I(y′) < I(y). Then, for arbitrary i,

y′−i − x?−i(y′) < y−i − x?−i(y). (C.20)

As an immediate consequence of (C.20), we know that x?−i(y
′) > x?−i(y). Now, by

repeatedly applying Lemma 4.2(i),

x̂i(x
?
−i(y

′)) ≤ x̂i(x
?
−i(y)), (C.21)

and recall that x?i (y) = min{x̂i(x?−i(y)), yi}.
If x̂i(x

?
−i(y)) ≥ yi, then Ii(y) = yi − yi = 0, and thus Ii(y

′) ≥ Ii(y). If, to the

contrary, x̂i(x
?
−i(y)) < yi, then applying (C.21) yields

Ii(y) = yi − x̂i(x?−i(y)) ≤ y′i − x̂i(x?−i(y′)) = Ii(y
′).

Accordingly, Ii(y
′) ≥ Ii(y); a contradiction to our initial assumption that I(y′) < I(y).

(ii) The proof is an application of Proposition 4.2. Suppose y′ = y + εej, ε > 0, for

arbitrary j. Then, by Proposition 4.2(iii), there exist situations where x?i (y
′) > x?i (y)

for some i 6= j. Thus,

Ii(y
′) = y′i − x?i (y′) < y′i − x?i (y) = yi − x?i (y) = Ii(y).
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