
Temporal Reasoning for RDF(S):
A Markov Logic based Approach

Jakob Huber
jakob@informatik.uni-mannheim.de

Chair of Artificial Intelligence
Prof. Dr. Heiner Stuckenschmidt

University of Mannheim

August 2014

Abstract

In this work, we propose a formalism that is suitable to carry out temporal rea-
soning for probabilistic knowledge bases. In particular, we focus on detecting
erroneous statements by exploiting temporal relations of facts. Therefore, we rely
on RDF(S) [Hayes, 2004; Brickley and Guha, 2004] and its associating entailment
rules which provide a data representation model as well as a basic logical expres-
siveness. Moreover, we use Allen’s interval algebra [Allen, 1983] to express the
relations of facts based on their associated temporal information. We carry out rea-
soning by transforming the statements and constraints to Markov Logic [Domingos
and Lowd, 2009] and compute the most probable consistent state (MAP inference)
with respect to the defined constraints. Moreover, we evaluate the proposed ap-
proach in order to demonstrate its practicality and flexibility.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Research Questions . 4
1.4 Outline and Contributions . 5

2 Preliminaries 7
2.1 Time Algebra . 7
2.2 RDF and RDFS . 9
2.3 Reasoning using Markov Logic 13

3 Approach 19
3.1 Basic Idea . 19
3.2 Statements . 22
3.3 Constraints & Rules . 25

3.3.1 RDF(S) Reasoning . 26
3.3.2 Temporal Constraints . 29

3.4 Optimizations . 31
3.5 Discussion . 33

4 Implementation 35
4.1 Statements . 36
4.2 Constraints & Rules . 39
4.3 Interval Relations . 41

5 Evaluation and Applications 53
5.1 Standard RDF(S) Reasoning . 57

5.1.1 Data & Constraints . 57
5.1.2 Results & Discussion . 59

5.2 Linked Open Data - DBPedia Extract 62

i

ii CONTENTS

5.2.1 Data . 62
5.2.2 Constraints . 63
5.2.3 Experiments . 67
5.2.4 Discussion . 79

5.3 Sensor Data . 81
5.3.1 Dataset & Constraints 81
5.3.2 Data Model . 85
5.3.3 Experiments . 93
5.3.4 Discussion . 101

6 Related Work 105

7 Conclusion 115
7.1 Summary . 115
7.2 Future Work . 117

Bibliography iii

A Markov Logic Model ix
A.1 Basic Model . ix
A.2 RDF(S) Entailment Rules . x
A.3 RDF and RDFS Vocabulary . xi

Chapter 1

Introduction

This work is concerned with developing a formalism that is suitable to carry out
temporal reasoning for probabilistic knowledge bases. In particular, we focus on
detecting erroneous statements by exploiting temporal relations of facts. There-
fore, we rely on RDF(S) [Hayes, 2004; Brickley and Guha, 2004] and its associat-
ing entailment rules which provide a data representation model as well as a basic
logical expressiveness. Moreover, we use Allen’s interval algebra [Allen, 1983]
to express the relations of facts based on their associated temporal information.
We carry out reasoning by transforming the statements and constraints to Markov
Logic [Domingos and Lowd, 2009] and compute the most probable consistent state
(MAP inference) with respect to the defined constraints.

This chapter gives an introduction to this work and is structured as follows:
First, we explain why the topic of this work is relevant (see Section 1.1). In Sec-
tion 1.2, we present an example in order to illustrate the basic problems that we
address with our approach. In the following section, we state the research ques-
tions of this work. Finally, we outline the structure of this work in Section 1.4.

1.1 Motivation

The Semantic Web [Berners-Lee et al., 2001] provides a framework that allows
publishing data in a structured form on the Web. Linked Data [Bizer et al., 2009a]
builds on techniques that are associated with the Semantic Web in order to cre-
ate and to link structured datasets that are accessible by humans and machines.
The Linked Open Data cloud1 comprises a large amount of datasets covering var-
ious domains that adhere to the Linked Data principles [Bizer et al., 2009a]. The

1http://lod-cloud.net/

1

http://lod-cloud.net/

2 CHAPTER 1. INTRODUCTION

published datasets use the Resource Description Framework (RDF) [Hayes, 2004]
which is a graph-based data model that expresses facts as triples. Moreover, the
datasets rely on the semantics of RDF that are provided by the standard vocabulary
RDF(S) [Brickley and Guha, 2004]. It allows to structure data in an ontological
form. However, many datasets are automatically generated by extracting content
from unstructured sources. The datasets are not always consistent and contain er-
roneous statements [Mendes et al., 2012] as the information extraction algorithms
are not perfect. Moreover, it is possible that linked datasets provide contradictory
information. Hence, there is a need to detect erroneous statements and to resolve
conflicts in order to improve the data quality.

However, the data quality of the most notable datasets of the Linked Open Data
cloud is already good as the statements are derived from trustworthy and semi-
structured sources (e.g., DBPedia [Auer et al., 2007; Bizer et al., 2009b; Lehmann
et al., 2014], YAGO [Hoffart et al., 2011, 2013]). Other approaches collect the data
on the Web by extracting information from unstructured web pages (e.g., NELL
[Carlson et al., 2010], TextRunner [Yates et al., 2007], ReVerb [Etzioni et al.,
2011]). Those open information extraction systems [Etzioni et al., 2008] collect
millions of facts, i.e., relations between entities, which are annotated with confi-
dence values that reflect the trust in the correctness of the statement. Moreover,
some systems do also extract temporal information that indicates when a specific
statement holds [Ling and Weld, 2010; Talukdar et al., 2012a]. Extracting temporal
information is necessary as information changes over time (e.g., status, member-
ship). The derived datasets contain a large amount of wrong statements due to
limitations of the information extraction systems and the fact that some websites
provide erroneous information. Thus, it is necessary to remove the respective state-
ments in order to obtain a high quality knowledge base.

In summary, various approaches provide facts as triples (e.g., relations between
entities) that are partially annotated with validity times and confidence scores.
Hence, in order to detect inconsistencies it is possible to define (temporal) con-
sistency constraints. Some researchers proposed methods to learn the temporal
ordering of facts that are associated with an entity [Talukdar et al., 2012b]. The or-
dering of facts can be expressed in constraints and rules that are suitable to identify
wrong statements. Moreover, the terminological part of the underlying ontology
of a knowledge base enables to infer new facts as well as to detect inconsistencies.
Thus, probabilistic and non-probabilistic statements and constraints respectively
rules are associated with a knowledge base. Hence, a reasoning framework that
considers all of these aspects is required to obtain high quality knowledge bases

1.2. PROBLEM STATEMENT 3

that contain facts extracted from the Web. Moreover, other application areas, e.g.,
event recognition [Artikis et al., 2012], have comparable requirements.

1.2 Problem Statement

In this section, we provide an example that illustrates the problems that we want to
address within this work. We mentioned in the previous section (see Section 1.1)
that we target temporal probabilistic knowledge bases containing erroneous facts.
Basic facts are modeled as triples that express relations between entities. More-
over, a fact can be annotated with a confidence value and temporal information.
A confidence value states the probability that the statement is true while temporal
information indicates when the statement holds. In order to detect inconsistencies,
we define constraints and rules. In the following, we list facts which might be con-
tained in a knowledge base and outline why constraints and rules are suitable to
detect erroneous statements. The first set of facts states that Jack is the father of
John and lists birth dates for both persons:

(F1) 0.7 (Jack, fatherOf, John)
(F2) 0.9 (Jack, birthYear, 1961) [1961]
(F3) 0.6 (Jack, birthYear, 1981) [1981]
(F4) 0.9 (John, birthYear, 1981) [1981]

Confidence values are attached to all facts as they are not retrieved from very trust-
worthy sources. In fact, based on general knowledge one can judge that at least
one statement has to be wrong:

(C1) Persons have only one birthday.
(C2) Parents are born before their children are born.

These are both hard constraints that should never be violated in a consistent knowl-
edge base. In order to define the respective constraints, it might be beneficial to rely
on the underlying ontology of the knowledge base:

(T1) (fatherOf, domain, Person)
(T2) (fatherOf, range, Person)

These statements have neither confidence value nor temporal information assigned
as they hold independently from a specific point in time. However, we can infer the
type of Jack and John if we rely on terminological knowledge and the associated
entailment rules. We extend the knowledge base with additional facts that state that
John attended universities:

4 CHAPTER 1. INTRODUCTION

(F5) 0.9 (John, attended, University_1) [2002, 2004]
(F6) 0.4 (John, attended, University_2) [2003, 2006]

Both facts are temporal probabilistic statements. For the following reason, one
could argue that at least one fact is wrong:

(C3) Usually, someone attends only one university
at a time.

This is a soft constraint that might be violated if the conflicting statements have
a high confidence. Therefore, it is also necessary to annotate the respective con-
straint with a confidence value.

In this work, we present an approach that resolves those conflicts by consider-
ing the confidence values of the respective statements and constraints. Therefore,
we propose a formalism that is suitable to express temporal and non-temporal as
well as probabilistic and non-probabilistic facts and constraints. In order to carry
out the reasoning process and to resolve inconsistencies, we use a Markov Logic
solver.

1.3 Research Questions

This work is concerned with temporal reasoning in probabilistic knowledge bases
using Markov Logic. Thus, we want to answer the following questions:

RQ1 Is Markov Logic suitable for temporal probabilistic RDF(S) reasoning?

RQ1-1 Can we propose a Markov Logic based formalism that allows to
define the required types of statements (non-temporal and temporal,
weighted and unweighted) and constraints?

RQ1-2 Is the expressiveness of the proposed formalism sufficient, i.e., can
we consider the RDF(S) entailment rules and incorporate temporal rea-
soning?

RQ2 Implementation: Is it possible to express the required statements and con-
straints in a RDF document?

RQ3 Evaluation: How well does the introduced approach scale?

RQ4 Evaluation: Can the introduced approach be used to detect and to resolve
conflicts? Are the results good?

1.4. OUTLINE AND CONTRIBUTIONS 5

The answers to Question RQ1, which comprises RQ1-1 and RQ1-2, are crucial
as they affect all of the listed research questions. We need to develop a formalism
that is suitable to express temporal and non-temporal as well as probabilistic and
non-probabilistic facts and constraints (RQ1-1). Using this formalism it must be
possible to resolve conflicts. Question RQ1-2 deals with possible limitations of the
expressiveness of the selected framework and introduced formalism. For instance,
we want to carry out RDF(S) reasoning and incorporate temporal facts. Hence, the
formalism has to support the respective statements and rules. If the answers to RQ1
and the respective sub-questions are positive, we successfully developed a concept
for temporal probabilistic RDF(S) reasoning.

The next question (RQ2) aims at the problem of annotating temporal infor-
mation and probabilities to RDF statements. This is necessary as RDF does not
explicitly support the required features. However, we want to express all facts of a
dataset in a RDF document as RDF(S) provides the basic logical expressiveness for
our approach. Moreover, we also want to define the required rules and constraints
in RDF.

The remaining questions (RQ3, RQ4) are concerned with the analysis of our
approach with respect to its practicality. It is important that the developed appli-
cation is able to process knowledge bases that contain a large number of facts and
conflicts. Thus, we investigate the scalability of the application (RQ3). Moreover,
the application must also be able to detect and to resolve conflicts correctly in order
to improve the data quality of the respective knowledge bases (RQ4). We achieved
the primary goal of this work if the answers to these questions are positive.

1.4 Outline and Contributions

This document is structured in seven chapters. The first chapter (this chapter) gives
an introduction to the topic and motivates the approach presented in this work. In
Chapter 2, we introduce the frameworks and methods that provide the basis of our
approach. We describe methods that are suitable to express temporal relations be-
tween facts (see Section 2.1). We also give a brief introduction to the RDF data
model and the associated entailment rules (see Section 2.2). Moreover, we outline
the characteristics of Markov Logic (see Section 2.3). In particular, we explain
how we use it in the context of this work and also justify why we use the Markov
Logic solver rockIt [Noessner et al., 2013] in order to implement our approach.

6 CHAPTER 1. INTRODUCTION

We present our approach and answer Question RQ1 in Chapter 3. The chap-
ter starts with an outline of the basic concept that illustrates how we incorporate
the different requirements (see Section 3.1). Subsequently, we introduce the types
of the statements and constraints that are support by our approach in Section 3.2
and Section 3.3. Moreover, we describe extensions of the proposed formalism that
enable efficient reasoning and are required by some use cases in Section 3.4. We
conclude Chapter 3 with a brief discussion of the presented approach in Section 3.5.
In Chapter 4, we present and discuss details of the implementation of the proposed
approach. In particular, we describe how we annotate statements with weights and
temporal information in RDF (see Section 4.1). We introduce an approach that
relies on the RDF(S) vocabulary in order to define constraints (see Section 4.2).
Hence, these sections are concerned with Question RQ2. However, the most im-
portant section of this chapter is Section 4.3 in which we explore different models
for calculating interval relations and justify why only the selected model is appli-
cable. Thereby, we will partially answer Question RQ3.

In Chapter 5, we present and discuss the results of the evaluation. Hence, we
give the answers to the questions RQ3 and RQ4 in this chapter. The chapter is
split into three parts as we applied our approach to three different use cases. In
Section 5.1, we test the basic functionality of our application by applying it to a
benchmark (Lehigh University Benchmark [Guo et al., 2005]) for non-probabilistic
and non-temporal knowledge base systems. This test case is relevant as it provides
a possibility to investigate the scalability of our approach and serves as a baseline
for more complex use cases. In Section 5.2, we derive facts from DBPedia in order
to create datasets containing temporal and weighted statements. We use our appli-
cation to detect and to remove erroneous statements from these datasets. Hence,
this use case represents the primary application area of our system. The last part of
the experiments (see Section 5.3) is used to demonstrate the flexibility of our ap-
proach by applying it to a different domain. So, we transform a sensor data dataset
that is used to evaluate activity recognition algorithms to a RDF data model. More-
over, this use case is valuable as it requires a large amount of interacting weighted
constraints and rules which increases the difficulty to resolve conflicts.

In Chapter 6, we give an overview on related work. Thereby, we focus on
existing approaches for executing temporal reasoning in probabilistic knowledge
bases. Additionally, we summarize the state of the research with respect to an-
notating RDF statements with temporal information and probabilities. Moreover,
we outline how Markov Logic is used in related areas. Finally, we summarize this
work and briefly answer the research question in Section 7.1. Moreover, we present
options for future work (see Section 7.2).

Chapter 2

Preliminaries

In this chapter, we outline the foundations that are required to describe the problem
and solutions presented in this work. Section 2.1 summarizes existing concepts to
express relations between time points and time intervals. In Section 2.2, we present
the characteristics of the standards RDF and RDFS. In Section 2.3, we explain the
concept of Markov Logic and outline how it can be used for reasoning.

2.1 Time Algebra

In this section, we present a set of relations that can be used to express relations
between temporal information. This is required as we want to define constraints
that rely on such relations. The relations have to be jointly exhaustive and pair-
wise disjoint which gives us at least and at most one relation between two temporal
annotated statements. Jointly exhaustive means that at least one of the relations
holds between two time intervals while pairwise disjoint indicates that only one
of the relations holds between two time intervals [Ligozat and Renz, 2004]. Thus,
it is ensured that the relations allow to define precise constrains – depending on
the granularity of the chosen constraint set. It also leads to an upper limit for the
number of relations in a knowledge base. We can distinguish between time points
and time intervals. A time interval is limited by two time points so that we have to
rely implicitly on relations between time points even if our dataset contains only
time intervals.

A time algebra does not only provide a set of relations but also a composition
table. It allows us to check if the existing relations are correct and to infer missing
information, i.e., which relations hold between intervals, given information about
related statements. The composition tables in this section have to be read from left

7

8 CHAPTER 2. PRELIMINARIES

< = >

< < < <,=,>
= < = >

> <,=,> > >

Table 2.1: Basic Point Algebra: Composition Table.

to right. Hence, given t1 r1 t2 r2 t3 (r1, r2 being temporal relations and t1, t2, t3
being time points), we need to select r1 in the first column and r2 in the first row
of the table in order to identify the cell that lists the relation r3 such that t1 r3 t3
holds. However, it is possible that a combination of two relations leads to more
than one relation. As only one of them can be correct, we have to take related
statements into account to determine the correct relation.

The basic point algebra [Vilain and Kautz, 1986] provides the relations before
(<), equal (=), and after (>) that can be used to express the relation among time
points. It would be possible to leave out the relation before or the relation after
as they are inverse to each other but we think it is more convenient to use both of
them. This is especially true when we calculate the relation between two intervals.
Table 2.1 provides the respective composition table.

Allen [1983] defines a set of relations that hold between intervals. They are de-
signed for situations in which the time course of events is critical. Moreover, they
are also applicable when the known temporal relation is relative and not absolute
which fulfills the need of many applications. The relations are before (<), equal
(<), meets (m), overlaps (o), during (d), starts (s), finishes (f). The characteristics
of these relations are outlined in Table 2.2. In total, there are thirteen relations as
all but the relation equal have an inverse relation. However, these are not required
in this work as the non-inverse relations are sufficient to formulate the constraints.
The non-inverse relations are still jointly exhaustive when we apply them to an un-
ordered pair of intervals. The relations during, starts and finishes can be collapsed
to one containment relation con. This can be convenient in situations where the
initial model is to fine-grained. Table 2.3 shows the composition rules of Allen’s
interval algebra. Based on the composition rules and the fact that the relations are
pairwise disjoint, we are able to identify temporal conflicts (see Example 1).

Example 1 We consider a knowledge base that contains the intervals a, b, c and
the statements “a before b” and “b before c” and “c before a”. Based on these
statements, we can infer “a before c” (Table 2.3). This leads to a conflict as the
knowledge base also contains the statement “c before a”. Hence, two different

2.2. RDF AND RDFS 9

Relation Illustration Interpretation

X before Y
X

Y X ends before Y starts.

X equal Y
X
Y

X and Y have the same start and
end point.

X meets Y
X

Y
X starts before Y and ends just
before Y starts.

X overlaps Y
X

Y
X starts before Y and ends after
Y starts and before Y ends.

X during Y
X
Y

X starts after Y starts and ends
before Y ends.

X starts Y
X
Y

X starts when Y starts but ends
before Y ends.

X finishes Y
X
Y

X starts after Y starts and ends
when Y ends.

Table 2.2: Allen Interval’s Algebra: Overview on the Relations.

relations are stated between a and c. In order to resolve the conflict, it is necessary
to remove one statement (e.g., c before a).

2.2 RDF and RDFS

In this section, we present the concepts of RDF 1.0 (Resource Descriptions Frame-
work) [Hayes, 2004]1 and RDFS 1.0 (RDF Schema) [Brickley and Guha, 2004]2

which define the data model that we want to use in this work. Additionally, we
explain an approach to annotate RDF statements as those statements do neither
contain a weight nor a temporal interval.

RDF is a standard that is used in the Semantic Web [Berners-Lee et al., 2001]
to model knowledge bases in an ontological form. The data is maintained in a data
structure that corresponds to a labeled directed graph that expresses the relations
among the resources represented in the knowledge base. A RDF database consists
of statements having a subject, a predicate, and an object. Thus, a statement is

1http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
2http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

10 CHAPTER 2. PRELIMINARIES

< m o s f d e

< < < < < <, o,m, d, s <, o,m, d, s <

m < < < m d, s, o o, d, s m

o < < <, o,m o d, s, o o, d, s o

s < < <, o,m s d d s

f < m s, o, d d f d f

d < < <, o,m, d, s d d d d

e < m o s f d e

Table 2.3: Allen’s Interval Algebra: Composition Table.

also called triple. The predicate describes the relation between the subject and the
object of the triple. Hence, in a graphical representation the predicate corresponds
to a labeled directed edge from the node of the subject to the node of the object.
In general, all elements of a RDF database are identified by an URI (Uniform Re-
source Identifier). However, this is not true for blank nodes and literals. Blank
nodes are anonymous nodes that are implicitly created and thus, do not have an
explicit URI. The object of an RDF triple can be a literal, i.e., a data value (e.g.,
dates) which does also not have an URI. A RDF knowledge base can be accessed
using the query language SPARQL [Harris and Seaborne, 2013]3. It is similar to
query languages of relation databases (e.g., SQL) and allows creating, modifying
and deleting statements.

RDF(S) provides a vocabulary that allows to model additional vocabularies.
Hence, it contains various classes and properties that are required to introduce a
proprietary vocabulary. The most important classes and properties are listed in Ta-
ble 2.4.

Moreover, the vocabulary supports the data structures collection and container.
A collection is of type rdf:List and can be assembled using the properties
rdf:first (first element), rdf:rest (next element) and rdf:nil (end of
the list). A container can be ordered (rdf:Seq), unordered (rdf:Bag), or pro-
vide alternatives (rdf:Alt). Elements are added using the property rdf: n (n
being the number of the element). Another feature, which will be explained in the
next section, is reification. It allows to annotate statements (RDF triples). There-
fore, it uses the class rdf:Statement to create a node that identifies a statement
and the properties rdf:subject, rdf:predicate and rdf:object to de-

3http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

2.2. RDF AND RDFS 11

rdf:Resource The class resource, everything is type of this class.
rdf:Class The class of classes.
rdf:Property The class of (RDF) properties.
rdf:type The subject is an instance of a class.
rdfs:subClassOf The subject is a subclass of a class.
rdfs:subPropertyOfThe subject is a sub-property of a property.
rdfs:domain The domain of a property, i.e., type of the subject.
rdfs:range The range of a property, i.e., type of the object.

Table 2.4: RDF(S) Vocabulary: Most relevant Classes & Properties.

scribe the respective statement.

The standard vocabulary is used to define the RDF(S) entailment rules4 (see
Table 2.5) that a RDF(S) reasoner has to support. The rules rdf1, rdf2, rdfs1,
rdfs4a and rdfs4b assign the respective RDF classes to the entities. The charac-
teristics of these classes are partially expressed in the rules rdfs6, rdfs8, rdfs9,
rdfs10 and rdfs13. The rules rdfs2/rdfs3 assign a type to the subject/object of a
triple based on the domain/range of the property. The transitivity of the proper-
ties rdfs:subPropertyOf and rdfs:subClassOf is modeled in the rules
rdfs5 and rdfs11. Moreover, the consequences of the introduced hierarchy on the
assertions are expressed in the rules rdfs7 and rdfs9. The rule rdfs12 is related to
the container data structure in RDF.

Annotating RDF Statements

The standard RDF model misses two features with respect to our approach. First,
in order to carry out temporal reasoning we need statements that are annotated
with temporal information. Second, it would be beneficial if a weight is attached
to each statement that expresses the confidence. RDF allows adding information to
statements via reification5. Reification in RDF was introduced to add provenance
to statements [Hayes, 2004], e.g., when was it created or who created it. The ba-
sic idea is to create a node of type rdf:Statement and to attach all parts of
the respective triple using the properties rdf:subject, rdf:predicate and
rdf:object to it. Hence, four triples are necessary to reify a statement. They are
sometimes referred to as “refication quad”. In contrast to the intuitive assumption,
the reification quad refers to a particular instance of a triple in the knowledge base

4http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rules
5http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rules
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification

12 CHAPTER 2. PRELIMINARIES

Rule
Name

If the data contains: then add:

rdf1 uuu aaa yyy . aaa rdf:type rdf:Property.
rdf2 uuu aaa lll .

where lll is a well-typed XML literal.
:nnn rdf:type rdf:XMLLiteral.

where :nnn identifies a blank node allocated to
lll.

rdfs1 uuu aaa lll.
where lll is a plain literal (with or without a lan-
guage tag).

:nnn rdf:type rdfs:Literal.
where :nnn identifies a blank node allocated to
lll.

rdfs2 aaa rdfs:domain xxx.
uuu aaa yyy.

uuu rdf:type xxx.

rdfs3 aaa rdfs:range xxx.
uuu aaa vvv.

vvv rdf:type xxx.

rdfs4a uuu aaa xxx. uuu rdf:type rdfs:Resource.
rdfs4b uuu aaa vvv. vvv rdf:type rdfs:Resource.
rdfs5 uuu rdfs:subPropertyOf vvv.

vvv rdfs:subPropertyOf xxx.
uuu rdfs:subPropertyOf xxx.

rdfs6 uuu rdf:type rdf:Property. uuu rdfs:subPropertyOf uuu.
rdfs7 aaa rdfs:subPropertyOf bbb.

uuu aaa yyy .
uuu bbb yyy.

rdfs8 uuu rdf:type rdfs:Class. uuu rdfs:subClassOf
rdfs:Resource.

rdfs9 uuu rdfs:subClassOf xxx.
vvv rdf:type uuu.

vvv rdf:type xxx.

rdfs10 uuu rdf:type rdfs:Class. uuu rdfs:subClassOf uuu.
rdfs11 uuu rdfs:subClassOf vvv.

vvv rdfs:subClassOf xxx .
uuu rdfs:subClassOf xxx .

rdfs12 uuu rdf:type
rdfs:ContainerMembershipProperty.

uuu rdfs:subPropertyOf
rdfs:member.

rdfs13 uuu rdf:type rdfs:Datatype. uuu rdfs:subClassOf
rdfs:Literal.

Table 2.5: RDF(S) Entailment rules. “aaa”, “bbb”, stand for a URI reference
of predicates; “uuu”, “vvv” stand for a URI reference or a blank node identifier;
“xxx”, “yyy” stand for a URI reference, a blank node identifier or a literal; “III”
stands for a literal; and “ :nnn” stands for a blank node identifier.

2.3. REASONING USING MARKOV LOGIC 13

b

a

c

1

2

3

temporal

temporal

temporal

instant

instant

instant

b

a

c

1

3

temporal

Initial

Final

Figure 2.1: Point-based labeling (left) and interval-based labeling (right) [Gutier-
rez et al., 2005].

and not an arbitrary triple with the same subject, predicate and object. However,
this cannot be expressed in RDF which makes application-depending interpretation
necessary in order to interpret the reification appropriately.

Gutierrez et al. [2005, 2007] developed an approach, called Temporal RDF,
which is similar to the reification concept of RDF and allows assigning temporal
information to RDF statements (see Figure 2.1). A statement is identified by a
node that is connected to the triple (a b c). In order to create this node, they
could have used the standard RDF reification vocabulary but they decided not to
choose this vocabulary as they wanted to stress the fact that their concept is inde-
pendent of any view about the concept of reification in RDF. However, they assign
the temporal information to the node that identifies the statement using the prop-
erty temporal. In particular, they support to add a time point, via the property
instant, or to assign a time interval, via the properties initial and final.

In our work, we will use a concept that is similar to this approach as we also
assign one or multiple intervals to a triple using reification (see Chapter 4). The
examples in this work use the RDF syntax Turtle6 [Carothers and Prud’hommeaux,
2014].

2.3 Reasoning using Markov Logic

In this section, we introduce the reasoning method that we use in this work as well
as a concrete implementation. Thus, this section falls into two parts: First, we
explain Markov Logic which is the framework of the selected reasoning approach.
Second, we outline the key characteristics of the Markov Logic solver rockIt and
justify why we choose this implementation.

6http://www.w3.org/TR/turtle/

http://www.w3.org/TR/turtle/

14 CHAPTER 2. PRELIMINARIES

Markov Logic

Markov Logic (ML) [Richardson and Domingos, 2006; Domingos and Lowd, 2009]
combines probability and relational logic. This is required by many applications
that have to deal with uncertainty, which is modeled by probability, and complexity,
which is expressed in first-order logic. Hence, ML is the theoretic foundation of
statistic relational learners that handle both aspects. The basic concept of ML is to
attach weights to first-order formulas and to treat them as templates for features of
a Markov Network (also known as Markov Random Field) that is used to compute
the probability distribution of a set of random variables. In fact, a Markov Logic
Network relies on Markov Networks having binary features (random variables).

In the following, we summarize the features of first-order logic, outline how a
Markov Network is used to compute the probability distribution, and describe how
Markov Logic combines these frameworks.

First-order Logic. First-order logic [Genesereth and Nilsson, 1987] allows con-
structing knowledge bases based on formulas that use constants, variables, func-
tions, and predicates. Constants represent objects of the domain of interest, vari-
ables range over the objects of the domain, functions map tuple of objects to (other)
objects, and predicates model the relations between the objects. The range of the
variables can be limited by introducing types for constants and variables. Based on
this, the following building blocks are defined:

• A term is an expression representing an object in the domain, i.e., a constant,
a variable, or a function.

• An atom (atomic formula) is defined as a predicate symbol applied to a tuple
of terms.

• A positive literal is a non-negated atom, a negative literal is a negated atom.

• A formula is recursively constructed from atomic formulas using logical
connectors (conjunction (F1∧F2), disjunction (F1∨F2), implication (F1 ⇒
F2), equivalence (F1 ⇔ F2)) and quantifiers (universal quantification (∀x
F(x)) , existential quantification (∃xF(x))).

Moreover, a ground term is a term that does not contain variables, i.e., all variables
are replaced by constants (grounding), and a ground atom is an atomic formula
that has only ground terms. All formulas of a first-order logic knowledge base are
implicitly conjoined, which leads to the requirement that a possible world must
assign a positive truth value to each ground term. A possible world represents a

2.3. REASONING USING MARKOV LOGIC 15

Weight First-Order Logic Weight Clausal Form
1.0 ∀xF1(x)⇒ F2(x) 1.0 ¬F1(x) ∨ F2(x)

1.0 ∀xF1(x) ∧ F2(x)⇒ F3(x) 1.0 ¬F1(x) ∨ ¬F2(x) ∨ F3(x)

1.0 ∀xF1(x)⇔ F2(x)
0.5 ¬F1(x) ∨ F2(x)
0.5 F1(x) ∨ ¬F2(x)

1.0 ∀xF1(x)⇒ F2(x) ∧ F3(x)
0.5 ¬F1(x) ∨ F2(x)
0.5 ¬F1(x) ∨ F3(x)

Table 2.6: Converting First-Order Logic Formulas to the Clausal Form.

truth assignment to each possible ground atom. Hence, a formula F is satisfiable
if there is at least one world in which it is true. A knowledge base KB entails a
formula F (KB |= F) if F is true in all worlds whereKB is true. In order to apply
automated inference, e.g., to determine if a knowledge base entails a formula, it is
convenient to convert the formulas to the clausal form (conjunctive normal form).
In this form is each clause a disjunction of literals. Table 2.6 shows how to convert
universally quantified variables to clausal form. We skip the rules of existential
quantified formulas as they are not required in the context of this work. We do also
not include functions as we focus on function free first-order logic.

Markov Network. A Markov Network [Pearl, 1988] models the joint distribu-
tion for a set of variables X = (X1, X2, ..., Xn). It consists of an undirected graph
G and a set of potential functions φk for each clique k. Each variable is assigned to
a node so that the joint distribution, which depends on the state of its cliques x{k},
is given by

P (X = x) =
1

Z

∏
k

φk(x{k}) (2.1)

with the partition function Z =
∑

x∈X
∏

k φk(x{k}). In log-linear models [Koller
and Friedman, 2009], the clique potential is replaced by an exponentiated weighted
sum of the features of the state. A feature may be a real-valued function but it is
also possible to define binary features, i.e, fj ∈ {0, 1}:

P (X = x) =
1

Z
exp

∑
j

wjfj(x)

 (2.2)

One key feature of the Markov Network is that each node is independent from
all others given its neighbors (i.e., its Markov blanket). This enables efficient in-
ference algorithms. A Markov Logic Network relies only on binary features.

16 CHAPTER 2. PRELIMINARIES

Markov Logic Network. Markov Logic [Richardson and Domingos, 2006] ex-
tends first-order logic by assigning weights to formulas. Thus, a world which vio-
lates a few formulas has still a probability greater than zero. A Markov Logic Net-
work (MLN) is defined as a set L of pairs (Fi, wi), i.e., first-order formulas Fi with
weightswi that are real numbers, and a finite set of constantsC = {c1, c2, ..., c|C|}.
These two sets are used to create the Markov network ML,C in the following way:

• ML,C contains one binary node for each possible ground atom appearing in
L which has the value 1 if the ground atom is positive, and 0 otherwise.

• ML,C contains one feature (i.e., an edge) for each possible grounding of each
formula Fi in L with its weight corresponding to the weight of the respective
formula. The value of the feature is 1 if the ground formula is positive, 0
otherwise.

Ground atoms that appear together in a positive formula are connected by an edge
whose weight is associated with the weight of the formula. Thus, a MLN is a
template for constructing Markov Networks. Based on its definition and Equation
2.1 and 2.2 the probability distribution over possible worlds x, specified by the
Markov Network ML,C , is defined by:

P (X = x) =
1

Z
exp

(
F∑
i=1

wini(x)

)
(2.3)

where F represents the number of formulas in the MLN and ni(x) is the num-
ber of true groundings of Fi in x. So, a world which violates some constraints
can still have a high weight. Contradictory formulas can be resolved by consider-
ing their weights. Moreover, increasing the weights to infinite makes the MLN a
purely logic knowledge base.

Maximum A-Posterior (MAP) Inference. One basic inference task in Markov
Logic is to determine the world which is most probable given some evidence. This
task is called MAP inference and is equivalent to determine the world that maxi-
mizes the sum of weights in Equation 2.3:

arg max
x

f(X = x|E = e) (2.4)

The evidence variables (E) are often called observed variables while the remaining
variables (X) are called hidden variables. Thus, the task of a Markov Logic query
engine is to infer the variable assignment x that leads to the maximal probability.
The respective assignment of x is called MAP state. Computing the MAP state

2.3. REASONING USING MARKOV LOGIC 17

is a difficult inference task (inference in Markov Networks is #P-complete [Roth,
1996]) as local maxima in the Markov Network do not necessarily lead to the global
maximum [Domingos and Lowd, 2009].

rockIt – A fast Markov Logic Solver

Noessner et al. [2013] developed the Markov Logic solver rockIt that computes the
MAP state of a Markov Logic Network in an efficient way. The system transforms a
MAP query to an integer linear program (ILP) and makes use of different optimiza-
tion techniques. In particular, they parallelize most parts of the process and apply
cutting plane inference (CPI) [Riedel, 2008] and cutting plane aggregation (CPA).
The idea is to add the violated constraints to the ILP until no violated grounded
formulas exist. An ILP solver resolves the conflicts and returns additional ground
formulas. Hence, this step is repeated several times as the intermediate solution can
change after each iteration. It is proven that CPI always returns the optimal MAP
state. rockIt is the first system that uses CPA which means that several ground
clauses are aggregated to one ILP constraint. This leads to fewer variables in the
ILP and more explicit symmetries that are easier to detect by the heuristics of ILP
solvers. So, rockIt determines the MAP state by formulating compact ILPs that can
be solved by a state of the art ILP solver. Another key feature is that the system
leverages relational database management systems to perform the grounding of the
formulas. Using a reliable and proven technology does not only lead to a good per-
formance but it also makes it possible to only compute the groundings that match a
formula. We decided to use rockIt in this works as experiments show that this sys-
tem is more efficient and faster than other Markov Logic solvers [Noessner et al.,
2013].

rockIt supports all features of Markov Logic that we will use in this work. This
includes weighted formulas (soft constraints) and non-weighted formulas (hard
constraints). The same holds for ground predicates. However, the predicates are
grouped into observed predicates (evidence variables) and hidden predicates (non-
evidence / query variables). Many Markov Logic solvers provide the possibility to
define observed predicates as this allows evaluating the constraints more efficiently.
This is caused by the fact that the closed word assumption holds for this type of
predicates, i.e., ground atoms that are not listed in the evidence are considered as
false. Hence, a ground formula containing a positive observed ground predicate
can be directly evaluated. In contrast to this, negative observed predicates can be
directly dropped from a ground formula.

18 CHAPTER 2. PRELIMINARIES

However, all types of constraints can be used to define formulas. The formulas
need to be expressed in the clausal form. It is possible but not required to assign
a real-valued weight to a formula. Formulas without a weight are hard constraints
that cannot be violated in the MAP state. All formulas are implicitly universally
quantified but it is also possible to express existential formulas and cardinality for-
mulas. However, the latter two are not required in the context of this work. We
only use universally quantified formulas.

We give an overview on the syntax of the building blocks as we use the syntax
of rockIt in this work. The formulas can only use the defined predicates. It is
possible to define hidden predicates and observed predicates. Observed predicates
are preceded by a star (“*”):

*observedPredicate(x,x)
hiddenPredicate(x,x)

The variables of the formulas are typed which enables efficient grounding. In or-
der to use weighted statements, it is necessary to define a helper predicate and a
constraint that maps the helper predicate to a hidden predicate:

*weightedHelper(x,x, float_)
w: !weightedHelper(a,b, w) v hiddenPredicate(a,b)

Hence, the ground formula has the same weight as the respective ground axiom
which leads to the same result as directly assigning it to the ground axiom. Soft
constraints are preceded by a weight while hard constraints are terminated by a
point (“.”). However, we only use the weighted helper predicates in Chapter 4 (Im-
plementation), Chapter 5 (Evaluation) and Appendix A. In Chapter 3 (Approach),
we directly attach the weights to the hidden predicates, i.e., w hiddenPredi-
cate(a,b), as this notation is more intuitive and general (not rockIt specific).
An exclamation mark indicates a negated literal:

// hard constraint:
!observedPredicate(a,b) v hiddenPredicate(a,b).

// soft constraint:
0.5 !hiddenPredicate(a,b) v hiddenPredicate(b,a)

Those are the features of rockIt that we use in this work. The ground axioms can
be passed to the system by providing them in an evidence file. rockIt computes the
MAP state and returns all ground axioms having a hidden predicate that are part of
the MAP state.

Chapter 3

Approach

In this chapter, we introduce an approach to carry out reasoning for probabilistic
temporal knowledge bases. Our approach bases on RDF(S) and Markov Logic.
Hence, we give an overview on the chosen frameworks and justify why they fit to
our approach in Section 3.1. In Section 3.2, we show how we express the RDF
data model in Markov Logic and how we extend it with probabilities and temporal
information. In order to enable reasoning, we need do define constraints and rules
(see Section 3.3). In Section 3.4, we propose some optimizations that are useful in
some cases. Finally, we discuss the introduced approach in Section 3.5.

3.1 Basic Idea

Knowledge bases that contain data which is extracted from the Web [Carlson et al.,
2010; Etzioni et al., 2011; Bizer et al., 2009b] provide their content as tuples that
have at least three elements. Hence, a relation connects two entities or assigns in-
formation to an entity. The Resource Description Framework (RDF) [Hayes, 2004]
provides a structured and semantically enhanced data model that allows maintain-
ing knowledge bases. It is widely used in the Semantic Web [Berners-Lee et al.,
2001] and in particular in the Linked Open Data cloud [Bizer et al., 2009a]. Hence,
it is reasonable to use this framework as it is a proven approach to maintain knowl-
edge bases. However, the fact that the statements are only represented as triples
introduces two problems with respect to our approach: First, it is not possible to
directly assign a weight to a statement. Second, the statements are not temporal
annotated. Those are only minor obstacles that can be circumvented and do not
outweigh the advantages of the data model and its semantics.

19

20 CHAPTER 3. APPROACH

The primary goal of our approach is to improve the data quality of a probabilis-
tic knowledge base in terms of the correctness by removing erroneous statements.
In order to detect inconsistent parts of a dataset, we need to define constraints and
rules that have to be respected by the statements. In general, there are constraints
that must always hold while others may be violated in some cases. Similar, some
statements of a knowledge base are definitely true (non-probabilistic statements)
while other statements are only true with a certain probability. Hence, we need
a reasoner that handles both aspects. All of these required features can be mod-
eled in Markov Logic. A common reasoning task in Markov Logic is to infer the
consistent state that has the highest weight (MAP state) considering the weights
(probabilities) of the statements and the defined constraints. Hence, the MAP state
represents a consistent set of statements. This means that a Markov Logic solver
removes statements from the dataset that are in conflict with other statements due
to the defined constraints. Thereby, the reasoner resolves conflicts by removing the
statements that are more likely erroneous. Thus, Markov Logic enables reasoning
in probabilistic knowledge bases. However, the focus of this work is on temporal
reasoning. Hence, we also use the relations of Allen’s interval algebra in order
define temporal constraints.

In the following, we take up the example from Section 1.2 in order to explain
how the MAP state conforms to a consistent dataset. We introduced a knowledge
base containing the following statements:

(F1) 0.7 (Jack, fatherOf, John)
(F2) 0.9 (Jack, birthYear, 1961) [1961]
(F3) 0.6 (Jack, birthYear, 1981) [1981]
(F4) 0.9 (John, birthYear, 1981) [1981]
(F5) 0.9 (John, attended, University_1) [2002,2004]
(F6) 0.4 (John, attended, University_2) [2003,2006]
(T1) (fatherOf, domain, Person)
(T2) (fatherOf, range, Person)

Moreover, we proposed the following constraints that allow detecting erroneous
statements:

(C1) Persons have only one birthday.
(C2) Parents are born before their children are born.
(C3) Usually, someone attends only one university

at a time.

Markov Logic’s MAP inference task identifies the subset of statements that are
consistent with respect to the defined constraints. In the introduced example, we

3.1. BASIC IDEA 21

see that all constraints rely on the temporal component of the statements. We
want to use Allen’s interval algebra (see Section 2.1) that provides predicates that
express temporal relations of intervals respectively facts. For instance, we can use
the temporal relation before to define Constraint C2 or the relation overlaps
to define Constraint C3. Moreover, we might want to make sure that Constraint
C1 only applies for entities of the class Person. The initial dataset contains
statements that express the birth year of entities (F2, F3, F4) but it is not explicitly
stated that these entities are contained in the class Person. However, by applying
the RDF(S) entailment rules we can infer Jack and John are persons due to
Fact F1 and the terminological knowledge expressed in the statements T1 and T2.
Hence, the following facts are in conflict due to the defined constraints:

• V1: F2 and F3 violate C1 as both statements express the birthday of Jack.

• V2: F3 and F4 violate C2 as both statements are annotated with the same
temporal information and the fact that Jack is the father of John (F1).

• V3: F5 and F6 violate C3 as the annotated intervals overlap which means
that John attended more than one university at a time.

In order to resolve the conflicting situations, it is necessary to remove statements
from the dataset. For the conflicts V1 and V2, it is sufficient to remove Fact F3.
This fact has a lower weight than the facts F1, F2 and F4. Even though V1 and
V2 are caused by different constraints, it is important to consider all related con-
flicting facts (F3 occurs in both sets) as local maxima do not necessarily lead to
the global maximum. The violation V3 can only be resolved if we assign a weight
to Constraint C3. Only if the weight of the constraint is higher than 0.4, i.e., the
weight of the fact with the lower weight (F6), it is necessary to remove Fact F6.
We set the weight of the constraint to 0.6 what means that the statement F6 has
to be removed. A Markov Logic solver handles such and more complex scenarios
by computing the MAP state. Hence, the MAP state corresponds to the consistent
subset of statements having the highest weight. So, we end up with the following
consistent set of statements:

(F1) (Jack, fatherOf, John)
(F2) (Jack, birthYear, 1961) [1961]
(F4) (John, birthYear, 1981) [1981]
(F5) (John, attended, University_1) [2002,2004]
(T1) (fatherOf, domain, Person)
(T2) (fatherOf, range, Person)
(N1) (John, type, Person)
(N2) (Jack, type, Person)

22 CHAPTER 3. APPROACH

The output of the Markov Logic solver contains not only all consistent statements
that were contained in the initial dataset but also inferred statements (N1, N2). The
statements N1 and, N2 got inferred due to the domain and range restriction of the
property fatherOf. However, it is not necessary to take these statements into
account when creating the cleansed RDF document.

3.2 Statements

We want to use Markov Logic to carry out reasoning. Hence, we need to define a
Markov Logic model that is suitable to express all types of statements that might
occur in a probabilistic temporal knowledge base. In general, such a knowledge
base contains four different types of statements as there are two major distinction
criteria that provide two possibilities:

Standard vs. Temporal: Not all statements of a temporal knowledge are tempo-
ral statements as some independently hold from a certain point in time. For
instance, the terminological part of the underlying ontology of the knowl-
edge base can be expressed with non-temporal (standard) statements.

Weighted vs. Unweighted: All statements that may be wrong should have a weight
that expresses the probability that it is true. This allows the reasoner to re-
move them from the dataset. Contrary, statements that are definitely true
have no weight. Hence, they cannot be removed from the dataset.

So, the type depends on the characteristic of the statement. The following Exam-
ple 2 provides one statements per type.

Example 2 Standard: The terminological part of the dataset is represented as
standard triples which always hold.

Scientist subClassOf Person.

Standard (weighted): Relations between entities can be expressed as a weighted
triple.

0.95 John type Person.

Temporal: Temporal statements that are not weighted are rare in our use case.
They cannot be removed from the dataset.

John attended University_1. [2002, 2004]

3.2. STATEMENTS 23

Temporal (weighted): We primarily target these types of statements with our ap-
proach as they are temporal annotated and can be removed from the dataset.

0.05 John attended University_1. [1980,1984]

We see that all types of statements rely on a triple consisting of a subject, a
predicate and an object. The triple gets extended with temporal information (i.e.,
an interval) or a weight which can be interpreted as the likelihood that it is correct.
So, we need first-order logic predicates that cover all types of statements. The
weights are not problematic as they can be assigned to any ground predicate in
Markov Logic. Thus, we only need to define predicates covering the following
elements:

Subject Predicate Object
Subject Predicate Object Interval

The predicate of a statement expresses the relation between the subject and the
object. In first-order logic it is common to define predicate symbols to express
such relations. Thus, an intuitive model would be the following:

Predicate(Subject, Object)
Predicate(Subject, Object, Interval)

However, this model does not fulfill our requirements as our approach relies on the
RDF data model and must be able to carry out RDF(S) reasoning. The proposed
model cannot express all statements that are valid in RDF without defining a huge
number of predicates. The most noticeable limitation is that a predicate of a triple
can also be the subject or object of another triple (see Example 3). Hence, predi-
cates of RDF triples would occur as predicate symbols as well as ground values of
predicates. So, they are represented in two unrelated sets which hinder to extend
the model with reasoning capabilities. Thus, the proposed model is impractical
with respect to our approach.

Example 3 An element of a RDF triple can occur at any position.

parentOf rdf:type rdf:Property.
Jack parentOf John.
fatherOf rdfs:subPropertyOf parentOf.

Hence, the property parentOf occurs at any position of a triple.

Hence, we need to define predicates that are more convenient for our use case.
The previous observations indicate that the predicate of a RDF triple has to be part
of the elements that are connected by a first-order logic predicate. So, the first-
order logic predicate symbol does not indicate the relation. It can only express the
type of the statement which leads to the following predicates:

24 CHAPTER 3. APPROACH

triple(Subject, Predicate, Object)
quad(Subject, Predicate, Object, Interval)

This model allows us to express any RDF triples as they can be directly transformed
to ground axioms having one these predicates. The same holds for temporal an-
notated statements which have an interval as fourth element (see Example 4). We
map all intervals (and time points) that occur in a dataset to a unique identifier (see
Section 4.3). However, this procedure can lead to a situation in which the object
of a statement expresses the same fact as the annotated interval (see Example 5).
We accept this as a generic model provides more flexibility which outweighs the
drawbacks of redundant information.

Example 4 We transform the statements of Example 2 to the introduced model:
Standard:

Scientist subClassOf Person
=>
triple(Scientist, subClassOf, Person)

Standard (weighted):

0.95 John type Person
=>
0.95 triple(John, type, Person)

Temporal:

John attended University_1 [2002,2004]
=>
quad(John, attended, University_1, interval1)
interval1 := [2002,2004]

Temporal (weighted):

0.05 John attended University_1 [1980,1984]
=>
0.05 quad(John, attended, University_1, interval2)
interval2 := [1980,1984]

Example 5 Instantiating the introduced model may lead to redundant information
in a statement. The statement: “John is born in the year 1981” can be expressed
as the following triple:

John birthYear 1981

3.3. CONSTRAINTS & RULES 25

However, in order to interpret it as a temporal statement, we need to annotate it:

John birthYear 1981 [1981,1981]

This leads to following ground predicate:

quad(John, birthYear, 1981, interval1)
interval1 := [1981,1981]

So, the object and the interval express the same information.

We introduced predicate symbols that can be used to express any type of state-
ment that we target with our approach. However, the characteristics of Markov
Logic allow us to extend the model in order to enable more efficient reasoning.
It is possible to restrict the elements of a first-order logic predicate to a specific
type in order to limit the possible groundings. We have to deal with resources of
a RDF dataset (nodes in the data graph) and with intervals. Hence, the subject,
predicate and object need to have the same type. This is perfect for all types of
RDF resources but the literals. It is necessary to highlight literals (e.g., objects of
statements having a datatype property) because some RDF(S) entailment rules ap-
ply only for them. Hence, we need to add another observed predicates that allows
us to declare which resources are in fact literals. We can use an observed predicate
as it is known which resources are literals before we execute the Markov Logic
solver. So, we rely on the following predicate symbols:

triple(r, r, r)
quad(r, r, r, Interval)

*literal(r)

In the next section, we use these predicates to define constraints and rules.

3.3 Constraints & Rules

In this section, we outline which constraints and rules are supported by our ap-
proach. We decided to rely on RDF as it provides not only a data model but also
gives a lower bound in terms of the logical expressiveness due to the vocabulary
and entailment rules provided by the RDF(S) standard (see Section 3.3.1). More-
over, we include the temporal relations of Allen’s interval algebra in order to enable
temporal reasoning (see Section 3.3.2).

We use a Markov Logic solver as reasoner as it supports all required types of
constraints and rules. We can define constraints that always hold (hard constraints)

26 CHAPTER 3. APPROACH

or constraints which have a weight and can be violated (soft constraints) if this
leads to a MAP state with a higher weight. The constraints can be defined using
the introduced predicate symbols. Constraints and rules need to be written as impli-
cations (A⇒ B) and it must also be possible to transform them to the conjunctive
normal form. Hence, the consequence (right-hand site) of an implication cannot
be a conjunction of literals that are connected by a variable that does not occur on
the left-hand side of the implication. Moreover, all variables of the constraints are
implicitly universally quantified.

Hence, the supported constraints are disjunctions of literals having the pred-
icate triple or quad (see Section 3.2). Moreover, the constraints can contain
predicates that are associated to the relations of Allen’s interval algebra (see Sec-
tion 3.3.2). We use those building blocks to define constraints and rules. However,
we usually refer to them as constraints because we convert them to formulas that
are used to detect inconsistent statements. We express the RDF(S) entailment rules
as well as domain-specific constraints with the same formalism.

3.3.1 RDF(S) Reasoning

In order to be able to carry out RDF(S) reasoning, we need to include the respec-
tive entailment rules (see Table 2.5 in Chapter 2) as well as the RDF1 and RDFS2

vocabularies. It is necessary to consider the vocabularies as the entailment rules
rely on them. We can directly transform them to the introduced first-order logic
predicate symbol triple as both vocabularies are defined in RDF documents
(see Appendix A.3).

The documentation groups the entailment rules in the categories “simple en-
tailment rules”, “RDF entailment rules”, “RDFS entailment rules” and “datatype
entailment rules”. We focus on the RDF(S) entailment rules as the others rule sets
are not required by our approach. The “simple entailment rules” create generaliza-
tions of the RDF graph by allocating blank nodes to the subjects and objects of all
triples. Hence, the original graph is an instance of the inferred graph. Those rules
also ensure that every sub-graph of the original graph is an instance of the entailed
graph. However, we implicitly apply those rules by mapping every resource of
the graph to a constant in the Markov Logic Network. We disregard the “datatype
entailment rules” as they are not relevant for our approach. We treat all entities
occurring in a RDF graph as resources and do only highlight which of them are

1http://www.w3.org/1999/02/22-rdf-syntax-ns
2http://www.w3.org/2000/01/rdf-schema

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema

3.3. CONSTRAINTS & RULES 27

literals. Thereby, we do not distinguish between the types of the literals. In con-
sequence of that, we leave out the rule rdf2 and apply the rule rdfs1 to any literal
that occurs in the graph. Nevertheless, we consider all “RDF entailment rules”
and “RDFS entailment rules” but the extensional RDFS entailment rules. The ex-
tensional rules are only valid for the stronger semantic conditions of the RDFS
vocabulary and require more complex inference rules. We do not include those
rules as there is no complete set of the required rules available. Moreover, the rules
are not valid with respect to the standard semantic conditions of RDFS.

The entailment rules are defined as implications that require adding another
triple to the knowledge base if the conditions are fulfilled. The implications have
either only one condition (A⇒ B) or two linked conditions (A ∧ B ⇒ C) which
allow inferring another statement. The rules are all hard constraints and must be
respected in a valid RDF(S) dataset. Hence, we can transform them to the proposed
Markov Logic model. We give one example for each rule type. So, rule rdfs8 adds
the assertion that each instance of the class rdfs:Class is a subclass of the class
rdfs:Resource:

triple(c, “rdf : type”, “rdfs : Class”) ⇒ triple(c, “rdfs : subClassOf”, “rdfs : Resource”)

Another example is rule rdfs5 that exploits the transitivity of the property
rdfs:subPropertyOf:

triple(a, “rdfs : subPropertyOf”, b) ∧ triple(b, “rdfs : subPropertyOf”, c)

⇒ triple(a, “rdfs : subPropertyOf”, c)

We define the other rules in the same way (see Appendix A.2). The variables
that occur in the rules are partially restricted to specific types of entities, e.g., a
variable can only be grounded with a property. We are not required to check this
explicitly as the properties used in the rules already ensure that the restrictions are
not violated, e.g., by their domain and range restrictions. However, the rules do not
recognize if the original dataset is not valid.

So far, the defined entailment rules apply only to ground values using the pred-
icate symbol triple. However, some knowledge that is encoded in temporal
annotated statements (quad) needs also to be taken into account. Therefore, we
define a rule that converts the respective statements:

quad(s,p, o, i) ⇒ triple(s, p, o)

28 CHAPTER 3. APPROACH

This rule ensures that the non-temporal part of statements can be used for non-
temporal reasoning. We argue that this rule is not problematic as long as constraints
that do only apply for temporal statements are only defined for such statements. For
instance, we should not define that two classes are in general disjoint if an entity
was part of both classes at different points in time (see Example 6). Moreover, there
might be scenarios in which it is necessary to define a constraint that applies to all
instances that were part of a class at any point in time. If the dataset is incomplete,
e.g., not all facts have a temporal annotation, it is necessary to use the non-temporal
predicate. Thus, statements that are temporal annotated must be transformed to the
non-temporal form.

Example 6 An entity is assigned to different classes at different points in time.

quad(John, rdf:type, Child, t1)
quad(John, rdf:type, GrownUp, t2)

We defined a rule that infers the following non-temporal statements:

triple(John, rdf:type, Child)
triple(John, rdf:type, GrownUp)

This is not an issue as long as we do not define a constraint that states that the
classes Child and GrownUp are disjoint when we ignore the temporal informa-
tion. However, it is possible to define a constraint that states an entity cannot be a
Child and a GrownUp at the same time.

Moreover, we add additional rules which are required to benefit from the RDFS
entailment rules when carrying out temporal reasoning. The rules rdfs2, rdfs3,
rdfs7 and rdfs9 are the only rules that infer statements that should be temporal
annotated if the initial statement is also temporal annotated. Hence, we define the
following rules:

triple(p, “rdfs : domain”, c) ∧ quad(s,p, o, i) ⇒ quad(s, “rdfs : type”, c, i)

triple(p, “rdfs : range”, c) ∧ quad(s,p, o, i) ⇒ quad(o, “rdfs : type”, c, i)

triple(a, “rdfs : subPropertyOf”, b) ∧ quad(u, a, y, i) ⇒ quad(u, b, y, i)

triple(a, “rdfs : subClassOf”, b) ∧ quad(u, “rdfs : type”, a, i) ⇒ quad(u, “rdfs : type”, b, i)

The other entailment rules infer statements having the predicate rdfs:sub-
PropertyOf (rdfs5, rdfs6, rdfs12) or rdfs:subClassOf (rdfs8, rdfs10, rdfs11,
rdfs13). We do not add adjusted rules for these entailment rules as we do not anno-
tate statements having these predicates with temporal information. We do also not

3.3. CONSTRAINTS & RULES 29

add a temporal component to the rules rdf1, rdfs1, rdfs4a and rdfs4b as they infer
statements that assign resources to standard classes contained in the RDF(S) vocab-
ulary (e.g., rdfs:Resource). It is shown that the RDF(S) entailment rules are
complete [Hayes, 2004]. Thus, the rule set that we consider for our approach is also
complete as we add all constraints but the rule that considers if a literal is a well
typed XML literal. We could have added another predicate XMLLiteral(r)
to implement the respective rule but that would not lead to any advantages with
respect to the goal of our approach. So, we introduced a Markov Logic based for-
malism that enables RDF(S) reasoning by applying the defined entailment rules
using a Markov Logic solver.

3.3.2 Temporal Constraints

We extend our approach with predicates representing the relations of Allen’s inter-
val algebra (see Section 2.1). The predicates can be used to define temporal con-
straints and rely on ground values that express the relations between the intervals
occurring in the dataset. The relations need to be calculated before instantiating
the Markov Logic Network because comparison operators are not part of Markov
Logic. We decided to transform time points to intervals with the same lower bound
and upper bound as the relations of Allen’s interval algebra are sufficient to ex-
press the constraints that rely on time points. We justify this design choice and
elaborate other possibilities in Section 4.3. However, the defined predicates are the
following:

*tBefore(Interval, Interval)

*tMeets(Interval, Interval)

*tOverlaps(Interval, Interval)

*tStarts(Interval, Interval)

*tDuring(Interval, Interval)

*tFinishes(Interval, Interval)

*tEqual(Interval, Interval)

We define the predicates as observed predicates as we instantiate the Markov Logic
Network with all relations that hold between the intervals occurring in the dataset.
Hence, we can assume that the ground values of the interval relations are correct
and complete. This enables a fast evaluation of the temporal constraints by the
Markov Logic solver. Moreover, we benefit from exploiting the characteristics of
observed predicates which allow us to assume that only the temporal relation that
is initially passed to the Markov Logic solver holds between two intervals. Hence,
we are not required to define constraints that assure the pairwise disjointness of the
temporal relations. It is also noteworthy that we decouple the intervals and their

30 CHAPTER 3. APPROACH

relations from the statements. Thus, the identifier of an interval represents a spe-
cific combination of a lower bound and an upper bound and is not dependent on
a specific statement. The defined predicates can be used to define constraints and
to carry out temporal reasoning as shown in Example 7. Temporal constraints are
always domain-specific constraints and need to be defined for every use case. The
general idea is to define constraints that express which temporal relation holds or
does not hold between related statements. If statements do not match the restric-
tion of the rule it is necessary to resolve the conflict by removing a statement. Due
to the pairwise disjointness of the temporal predicates it is ensured that only one
relation holds.

Example 7 The temporal predicates can be used to define temporal constraints.
We define a constraint that ensures that someone is only born in one specific year:

!quad(p,"birthYear",l1,i1) v !quad(p,"birthYear",l2,i2) v tEqual(i1,i2)

The constraint uses the predicate tEqual to express that two statements declaring
the birth year of an entity must be annotated with the same interval. Consider the
following ground values:

0.15 quad(John, birthYear, 1951, interval1)
0.95 quad(John, birthYear, 1981, interval2)
tBefore(interval1, interval2)

They lead to a conflict as the birth years assigned to John are not equal. In
this case, the reasoner will remove the statement with lower weight as only one
statement can remain in the dataset. The higher weight can be interpreted as a
higher confidence that a statement is true.

Grouping of interval relations. The relations of Allen’s interval algebra are
pairwise disjoint and jointly exhaustive. Hence, there is exactly one relation that
holds between two intervals. However, the relations might be too fine-grained for
some use cases. Therefore, we provide a possibility to introduce new temporal rela-
tions that group the existing relations. We introduce a property temporalProp-
erty whose sub-properties will be converted to predicates having two elements of
type Interval. The original interval relations can be mapped to this predicate
by defining the respective constraints (see Example 8).

Example 8 In order to define a more general interval relation, we introduce a new
temporal property ends:

3.4. OPTIMIZATIONS 31

ends rdfs:subPropertyOf temportalProperty.

Based on this axiom, we create the following predicate:

ends(Interval, Interval)

Moreover, we need to map some of initial interval relations to this predicate by
defining constraints. For instance, the following formulas ensure that ends groups
tEqual and tFinishes:

tEqual(i1, i2) => ends(i1, i2)
tFinishes(i1, i2) => ends(i1, i2)

Finally, ends can be used to define temporal constraints.

3.4 Optimizations

We introduced a basic model that can be used to carry out temporal reasoning in
Section 3.2 and Section 3.3. In this section, we extend and adjust the Markov Logic
model in order to optimize it for specific use cases.

Observed predicates. We introduced predicate symbols that can be used to ex-
press any type of statement that we target with our approach. However, the char-
acteristics of Markov Logic allow us to extend the model in order to enable more
efficient reasoning. So far, the introduced predicates (i.e., triple and quad)
are hidden predicates. Markov Logic solvers allow also defining observed predi-
cates. The advantage of using such predicates is that only the ground axioms that
are passed to the solver are considered as true while all other possible groundings
are considered as false statements (closed world assumption). In consequence of
that, the reasoner can disregard the ground formula if the ground predicate is true
or reduce the number of literals in the formula if the literal is false. Hence, the
solver can faster decide if a formula is true or reduce its complexity (i.e., number
of literals). We add the observed predicates tripleO and quadO to the model:

*tripleO(r,r,r)

*quadO(r,r,r,Interval)

Moreover, we define formulas that infer the respective hidden predicates:

!quadO(s,p,o,i) v quad(s,p,o,i).
!tripleO(s,p,o) v triple(s,p,o).

32 CHAPTER 3. APPROACH

So, we added two observed predicates as well as two constraints in order to in-
fer the unobserved counterparts (see Appendix A.1). Adding observed predicates
for the statements enhances our approach as there are scenarios in which it makes
sense to define constraints that have literals which only rely on the statements pro-
vided to the reasoner. For instance, it is possible to have a knowledge base in
which the types of the entities are correct and complete. Thus, it would be bene-
ficial to express the respective statements using observed predicates. Furthermore,
the observed predicate must be used in the definition of the constraints in order to
exploit the advantage of defining observed statements. So, the reasoner is not only
able to evaluate the respective ground formulas faster but it is also ensured that the
reasoner does not infer additional type assertions. The introduced rules that infer
the respective hidden predicates (quadO => quad) ensure that the RDF(S) entail-
ment rules also apply for the observed statements. Also note that this extension has
no influence on the performance if it is not used as all possible groundings of an
observed predicate are considered as false if they are not passed to the solver.

Types. While our goal is to develop a temporal RDF(S) reasoner there might
also be use cases that do not require the RDF(S) reasoning feature. Hence, we sug-
gest excluding the RDF(S) entailment rules in order to improve the performance.
Moreover, it is possible to drop the requirement that every element of a statement
(i.e., subject, predicate and object) has the same type which leads to the following
predicates:

triple(r1,r2,r3)
quad(r1,r2,r3,Interval)

*tripleO(r1,r2,r3)

*quadO(r1,r2,r3,Interval)

This reduces the number of possible groundings which also leads to a better perfor-
mance as the number of possible worlds that are considered during the computation
of the MAP state is reduced. However, this model can only be applied when the
subjects, predicates and objects of the statements contained in the dataset are dis-
joint sets. Hence, the underlying graph must only contain graphs that are stars.

In this section, we defined observed predicates and outlined that the RDF(S)
entailment rules are not always required which allows defining the predicates using
differently typed elements. Overall, we have three different configurations that
allow more efficient reasoning by disabling features in certain use cases:

• The most extensive model supports all features including RDF(S) reasoning.

3.5. DISCUSSION 33

• The next possibility is to exclude the RDF(S) entailment rules.

• The last model excludes the RDF(S) entailment rules and relies on predicates
whose elements are not of the same type (e.g., triple(r1, r2, r3)
instead of triple(r,r,r)).

3.5 Discussion

We proposed a formalism to carry out temporal reasoning for RDF(S) knowledge
bases in this chapter. While the focus of this work is to develop an approach that
solves (temporal) conflicts in a knowledge base, it is also possible to infer new
statements. So far, we restricted the approach to RDF(S) but it is also possible to
enhance it with some features of OWL2 [Motik et al., 2012] in order to extend the
expressiveness. We discuss those aspects in the following. We also elaborate on
the applications of weighted (soft) constraints as they are not as intuitive as hard
constraints.

Data cleansing vs. inferring new statements. The primary goal of our approach
is to detect and to resolve inconsistencies in a knowledge base. However, the de-
fined rules do also infer new statements. Hence, the output of the reasoner (MAP
state) contains some or all (if the dataset was already consistent) statements of the
original dataset as well as inferred statements. If we focus on data cleansing we
remove the statements from the dataset that are not part of the MAP state and do
not add new statements to the dataset. In contrast to this, it is also possible to en-
hance the original dataset with the inferred statements. However, when following
the latter approach it might be necessary to extend the constraints by adding for-
mulas that assign a small negative weight to any ground predicate in order to limit
the output to the statements that can be inferred by applying the rules:

-0.001 triple(s, p, o)
-0.001 quad(s, p, o, i)

Otherwise it is possible that MAP state contains any ground predicates that do not
violate any constraints. However, this does not apply to rockIt as it uses a more
efficient grounding technique that already fulfills this requirement.

Weighted constraints. Our approach supports two types of constraints. Hard
constraints must always hold while soft constraints can be violated. However, using
soft constraints makes only sense when this leads to a conflict that can be solved
considering the involved statements and other constraints. Constraints with weights

34 CHAPTER 3. APPROACH

might act like hard constraints if they do not lead to inconsistencies in the dataset.
This can be problematic when one considers adding the inferred statements to the
knowledge base (see Example 9).

Example 9 One might express the assumption that 10% of the persons that at-
tended a university have the degree Ph.D. with the following constraint:

0.1 !triple(p, "attended", u) v triple(p, "hasDegree", "Ph.D.")

This rule is problematic as it assigns the degree Ph.D. to all persons who attended
a university as this does not violate any constraint. Hence, it might be better to
define a constraint that states that 90% have not received the degree:

0.9 !triple(p, "attended", u) v !triple(p, "hasDegree", "Ph.D.")

Thus, statements that express that a person has the degree only remain in the
dataset if it is justified by other evidence. However, all statements that match
the pattern triple(p,"hasDegree","Ph.D.") must have a higher weight
than 0.9 (barring other statements) in order to be retained in the dataset. As this
weight is relatively high, it is worth to consider reducing the weight of the con-
straint.

Possible extensions. Currently, we only include the RDF(S) entailment rules in
order to give our approach a basic logical expressiveness. However, RDF(S) lacks
some features that may be required in some situations. The most noticeable limi-
tation is that it does not support to express disjointness among entities or classes.
Thus, we cannot express all constraints that might be required to detect all incon-
sistencies in a knowledge base if we only rely on the RDF(S) entailment rules.
However, the Web Ontology Language [Motik et al., 2012] defines a vocabulary
that can partially be used for RDF datasets. For instance, it allows expressing
disjointness and equality between the entities. These and additional features are
required in some use cases. We do not include them but the rule set of our ap-
proach can be extended on demand. Hence, we only provide the least common
rule set that is sufficient for many use cases.

Chapter 4

Implementation

In this chapter, we present some details of the implementation of the approach in-
troduced in Chapter 3. We start with a brief description of the whole process in
order to give an overview on the topics which we will treat in the following. We
describe how we model the different types of statements (see Section 4.1) and the
different types of constraints (see Section 4.2) in the first two sections. In the last
section (Section 4.3), we discuss different models to carry out temporal reasoning
in Markov Logic and justify which model fits best to our approach.

We developed an application that implements the formalism presented in the
previous chapter. The workflow of this application is illustrated in Figure 4.1. The
input of the application is a RDF document containing statements and domain-
specific constraints (and rules). Moreover, it is possible to enable or to disable the
RDF(S) reasoning feature and to decide if the inferred statements should be added
to the cleansed dataset. In general, the application has two different parts: In the
first part, it converts the RDF input to Markov Logic. In second part, it transforms

Markov Logic solver
(rockIt)

data

constraints

RDF document

RDF(S) entailment rules

Allen's interval algebra

consistent
dataset

MAP state

RDF(S) vocabulary

Figure 4.1: Overview on the workflow of our application.

35

36 CHAPTER 4. IMPLEMENTATION

the output of the solver back to a RDF document. So, we extract all statements con-
tained in the RDF document and convert them to ground predicates for the Markov
Logic Network. We also extract domain-specific constraints and transform them
to formulas that will be considered by the Markov Logic solver. Depending on the
selected reasoning method, we include the RDF(S) entailment rules as well as the
predicates of Allen’s interval algebra and the RDF(S) vocabulary. This gives us a
set of ground predicates, i.e., the statements, and a set of formulas, i.e., constraints,
which can be processed by a Markov Logic solver. We use rockIt to compute the
MAP state in order to resolve the inconsistencies in the dataset. Hence, its output
is a set of ground predicates that can be transformed to a consistent dataset. De-
pending on the setting, we add or do not add the inferred statements to the final
RDF document.

4.1 Statements

In this section, we explain how we annotate RDF statements in order to transform
them to ground predicates in Markov Logic. We support standard statements (RDF
triples) and temporal annotated statements. Each type of statement can also be
weighted or observed (see Appendix A.1). Thus, the used annotation concept has
to provide a possibility to distinguish between the following characteristics of a
statement:

Triple or Quad: The most obvious distinguishing feature is if the statement is
temporal annotated (quad) or not (triple). A temporal statement needs
to be annotated with an interval, i.e., a lower bound and an upper bound,
which indicates when the statement holds.

Standard, Weighted or Observed: The second level of features targets the influ-
ence of the statements on the result. While the standard statements (triple,
quad) and the observed statements (tripleO, quadO) are part of the
MAP state (if one consistent dataset exists) the weighted statements (trip-
leW, quadW)1 can be discarded if they violate the defined constraints. Ob-
served statements have the same characteristics as standard statements but
allow defining constraints that can be processed more efficiently. So, we
need a feature that indicates if a statement is observed. We also need a fea-
ture that expresses the weight of a statement.

1We need to define helper predicates for the weighted statements as rockIt does not allow anno-
tating statements with a weight. It is necessary to define constraints that implicitly assign the
weights to the respective standard form of the predicates.

4.1. STATEMENTS 37

ex:Statement1

ex:John ex:attended ex:University_1

rdf:subject rdf:object
rdf:Statement

rdf:type

Figure 4.2: Statements: Reification.

Our approach relies on the RDF data model. Hence, the basis of all types of
statements is a standard RDF triple. In order to annotate it with additional infor-
mation, e.g., a weight or an interval, we use the concept of reification. Hence,
we create an additional node in the graph that is dedicated to a RDF triple. This
node can be used to annotate the statement. We use the standard RDF reifica-
tion vocabulary despite the fact that it was introduced to annotate a statement with
provenance information. We could have introduced a new vocabulary for this pur-
pose but we decided against it because we use the API Apache Jena2 that already
provides methods to process reified statements using the RDF vocabulary.

However, we transform all statements that are not reified to Markov Logic us-
ing the predicate triple. For all other types of statements, it is necessary to an-
notate additional information to a node representing the statement (see Figure 4.2).
We use the following properties for this purpose (see Figure 4.3 and Example 10):

start / end These two properties allow specifying the upper bound and lower
bound of a temporal interval that expresses when the statement is true. Only
if these properties are set, we transform the statement to a quad, quadW or
quadO.

weight This property assigns a weight to the statement. We transform all weighted
statements to Markov Logic using the predicate tripleW or quadW.

isObserved This property can be used to indicate that a statement is observed.
We transform the respective statements to Markov Logic using the predicate
tripleO or quadO.

All of those properties are optional. However, some combinations are not al-
lowed. For instance, a statement cannot be observed (isObserved = true) and
have a weight at the same time. We support only integer values to define the border

2https://jena.apache.org/

https://jena.apache.org/

38 CHAPTER 4. IMPLEMENTATION

ex:Statement1

weight end isObserved

1.0 (double) 2002 (integer) 2006 (integer) false (boolean)

Figure 4.3: Statements: Direct Annotation.

ex:Statement1
weight

endisObserved

1.0N(double)

2002N(integer)

2004N(integer)

falseN(boolean)_:node

hasNode _:n1

_:n2

rdf:Bag

rdf:type weight

end

0.5N(double)

2005N(integer)

2006N(integer)

rdf:_1

rdf:_2

Figure 4.4: Statements: A statement that is annotated with multiple intervals.

points of an interval. Those values can be years but it is also possible to map a
date or a timestamp to an integer value. Hence, there is no limitation as long as
a document contains only intervals using the same unit (e.g., no mixture of years
and timestamps). Moreover, it is possible that a reified triple holds during different
periods of time. Therefore, it is possible to introduce an intermediate node of type
rdf:Bag to which one can add information about different intervals (see Fig-
ure 4.4 and Example 11). The bag is added to the node identifying the statement
via the property hasNode. The information about the different intervals needs to
be assigned to disjoint (blank) nodes using the introduced vocabulary. The (blank)
nodes need to be added to the bag which is connected to the node representing the
respective statement.

Example 10 We express a weighted temporal statement in RDF.

John attended University_1.

[rdf:type rdf:Statement ;
rdf:subject John ;
rdf:predicate attended ;
rdf:object University_1 ;
weight "1.0"ˆˆxsd:decimal ;
start "2002";

4.2. CONSTRAINTS & RULES 39

end "2006"
].

These RDF triples will be converted to the following ground predicate:

quadW("John", "attended", "Universtity_1", [2002, 2006], 1.0)

Example 11 We annotate a single RDF triple with multiple intervals in order to
define multiple temporal annotated statements.

John attended University_1.

[rdf:type rdf:Statement ;
rdf:subject John ;
rdf:predicate attended ;
rdf:object University_1 ;
hasNode [a rdf:Bag;

rdf:_1 [weight "1.0"ˆˆxsd:decimal ;
start "2002";
end "2004"];

rdf:_2 [weight "0.5"ˆˆxsd:decimal ;
start "2005";
end "2006"]

]
].

These RDF triples will be converted to the following ground predicates:

quadW("John", "attended", "Universtity_1", [2002, 2004], 1.0)
quadW("John", "attended", "Universtity_1", [2005, 2006], 0.5)

4.2 Constraints & Rules

We also decided to model the domain-specific constraints (and rules) in RDF.
Hence, it is possible to provide one document that contains the statements as well
as the constraints. In general, Markov Logic supports soft constraints and hard
constraints. Soft constraints are weighted and it is possible that they are violated in
the MAP state. Contrary, hard constraints cannot be violated in the MAP state. The
chosen model is aligned to the input of the Markov Logic solver. Thus, this model
is suitable to express constraints and rules. A constraint is modeled as a disjunction
of literals. Each literal has a property (i.e., the predicate of a RDF triple), a list of
variables and can be negated as well as observed.

We illustrate how we construct a constraint in Figure 4.5. A constraint is iden-
tified by a node of type Constraint. It has a label (rdfs:label), a weight
(weight) as well as the information if it is a hard constraints or a soft con-
straint (isHard). However, the main part of the constraints is a bag of literals

40 CHAPTER 4. IMPLEMENTATION

ex:Constraint_1

ex:C1_Literals

hasLiterals

_:n1

rdf:Bag

rdf:type
rdf:_1

Constraint
rdf:type

1.0H2double3

OConstraintH1O

falseH2boolean3

rdf:labelweight
isHard

ex:property

falseH2boolean3

falseH2boolean3

pr
op

er
ty

isN
egated

isObserved

rdf:Seq

_:variables1

OsubjectO OobjectO OintervalO

rdf:type

variables

rdf:_2 rdf:_3rdf:_1

Figure 4.5: Constraints: RDF Model

(hasLiterals). We convert a constraint to a formula based on the listed basic
features and the disjunction of the defined literals.

Each literal of a constraint is identified by a separate node that aggregates
the information. So, it describes if the literal is negated (isNegated) or ob-
served (isObserved). The latter feature indicates if the literal needs to get trans-
formed to a triple (quad) or tripleO (quadO). Moreover, each literal has a
property (predicate of a statement) and a sequence of variables. The literal
gets transformed to a quad(O) if three variables are listed (see Figure 4.6(c)). If
a literal has two variables we only transform it to a triple(O) if the property
of the literal is not temporal (see Figure 4.6(a)). If the property is temporal we
transform it to the respective Markov Logic predicate that expresses the temporal
relation as both variables need to be mapped to intervals (see Figure 4.6(b)). We
maintain a list of temporal properties for this purpose. Example 12 illustrates how
combine the introduced features in order to define a constraint.

Example 12 The following constraint expresses that the birthDate of an entity
cannot be annotated with the same interval as the deathDate.

C1 rdf:type Constraint;
rdfs:label "birthdate and deathdate cannot be annotated

with the same interval";
isHard "true"ˆˆxsd:boolean;
hasLiterals [

a rdf:Bag;
rdf:_1 [isNegated "true"ˆˆxsd:boolean;

isObserved "true"ˆˆxsd:boolean;
property birthDate ;
variables [a rdf:Seq;

rdf:_1 "x"; rdf:_2 "y"; rdf:_3 "i"]

4.3. INTERVAL RELATIONS 41

rdf:type

false (boolean)

false (boolean)

_:variables1

"x"

rdf:_2rdf:_1

_:literal_triple

property

isNegated

isObserved

variables

"y"

(a) triple(x, “rdf:type”, y)

t:before

false (boolean)

false (boolean)

_:variables2

"i1"

rdf:_2rdf:_1

_:literal_before

property

isNegated

isObserved

variables

"i2"

(b) tBefore(i1, i2)

birthDate

true2(boolean)

true2(boolean)

_:variables3

"x"

rdf:_3rdf:_1

_:literal_quadO

property

isNegated

isObserved

variables

"i""y"

rdf:_2

(c) !quadO(x, “birthDate”, y, i)

Figure 4.6: Constraints: Declaration of the different types of literals.

];
rdf:_2 [isNegated "true"ˆˆxsd:boolean;

property deathDate;
variables [a rdf:Seq;

rdf:_1 "x"; rdf:_2 "z"; rdf:_3 "i"]
]

].

We convert this constraint to the following formula:

!quadO(x,"birthDate",y,i) v !quad(x,"deathDate",z,i).

It is a hard constraint that cannot be violated in the cleansed dataset.

4.3 Interval Relations

In this section, we explain how we process the intervals that are annotated to state-
ments and give reasons for the chosen implementation. We express the temporal
relation that holds between two statements using a interval relation of Allen’s in-
terval algebra (see Section 2.1). In general, a temporal statement is annotated with
a start point and an end point which set the border points of an interval. Currently,
we support only values of type integer but the following observations hold for any
comparable data type. We considered three models to process the intervals and to
compute the relations:

M1 We directly assign to each disjoint interval that occurs in the dataset an iden-
tifier and compute all interval relations in JAVA. The input of the Markov
Logic Network are ground predicates expressing the interval relations.

42 CHAPTER 4. IMPLEMENTATION

M2 We create all possible intervals, i.e., all possible combinations of the border
points (start point ≤ end point) of the given intervals and compute the inter-
val relations in JAVA. The input of the Markov Logic Network are ground
predicates expressing the interval relations.

M3 We compute the relations between all border points of the intervals in JAVA
using the point algebra and compute the interval relations in Markov Logic.

The major difference between the Model M1 and the other options is that Model
M1 is restricted to the given intervals, i.e., intervals that are annotated to statements
in the input document. Hence, our application is not able to infer additional inter-
vals (see Example 13) using this option. However, we will see that only Model M1
is suitable for our approach.

Example 13 If we consider a knowledge base that contains the following state-
ments:

John attended University {[2009, 2012]}
John attended University {[2012, 2014]}

We can compute the overarching interval [2009, 2014] that comprises (over-
arches) the other intervals. Using this interval, we can infer the following state-
ment:

John attended University {[2009, 2014]}

This is only possible if our application computes additional intervals and does not
only rely on the intervals that are provided in the input dataset.

However, computing additional intervals increases the problem size (see Exam-
ple 14). As we are not able to define constraints that limit the number of inferred
intervals, e.g., compute only intervals that will be used to annotate statements, our
application would compute all possible combination.

Example 14 We can compute 10 intervals if the input dataset contains two in-
tervals with four different border points. The intervals [1, 2] and [3, 4] have the
following border points: 1, 2, 3, 4. Hence, there exist 10 intervals having these
border points: [1, 1], [2, 2], [3, 3], [4, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4] and [3, 4].

We illustrate the effect on the problem size depending on the number of dis-
joint intervals (n) for the proposed models in Table 4.1. Model M1 computes the
relations between all given intervals. This leads to

(
n
2

)
+ n = 1

2n · (n− 1) + n in-
terval relations as the relations are jointly exhaustive and pairwise disjoint. In this

4.3. INTERVAL RELATIONS 43

in
te

rv
al

s
bo

rd
er

po
ss

ib
le

M
od

el
M

1
M

od
el

M
2

M
od

el
M

3
(s

ta
te

m
en

ts
)

po
in

ts
in

te
rv

al
s

in
te

rv
al

re
la

tio
ns

in
te

rv
al

re
la

tio
ns

nu
m

be
r

re
la

tio
ns

2
4

10
3

55
16

3
6

21
6

23
1

36
4

8
36

10
66

6
64

5
10

55
15

1,
54

0
10

0
10

20
21

0
55

22
,1

55
40

0
25

50
1,

27
5

32
5

81
3,

45
0

2,
50

0
50

10
0

5,
05

0
1,

27
5

12
,7

53
,7

75
10

,0
00

10
0

20
0

20
,1

00
5,

05
0

20
2,

01
5,

05
0

40
,0

00
50

0
1,

00
0

50
0,

50
0

12
5,

25
0

12
5,

25
0,

37
5,

25
0

1,
00

0,
00

0
1,

00
0

2,
00

0
2,

00
1,

00
0

50
0,

50
0

2,
00

2,
00

1,
50

0,
50

0
4,

00
0,

00
0

5,
00

0
10

,0
00

50
,0

05
,0

00
12

,5
02

,5
00

1,
25

0,
25

0,
03

7,
50

2,
50

0
10

0,
00

0,
00

0
10

,0
00

20
,0

00
20

0,
01

0,
00

0
50

,0
05

,0
00

20
,0

02
,0

00
,1

50
,0

05
,0

00
40

0,
00

0,
00

0
25

,0
00

50
,0

00
1,

25
0,

02
5,

00
0

31
2,

51
2,

50
0

78
1,

28
1,

25
0,

93
7,

51
2,

00
0

2,
50

0,
00

0,
00

0
50

,0
00

10
0,

00
0

5,
00

0,
05

0,
00

0
1,

25
0,

02
5,

00
0

12
,5

00
,2

50
,0

03
,7

50
,0

00
,0

00
10

,0
00

,0
00

,0
00

10
0,

00
0

20
0,

00
0

20
,0

00
,1

00
,0

00
5,

00
0,

05
0,

00
0

20
0,

00
2,

00
0,

01
5,

00
0,

00
0,

00
0

40
,0

00
,0

00
,0

00
25

0,
00

0
50

0,
00

0
12

5,
00

0,
25

0,
00

0
31

,2
50

,1
25

,0
00

7,
81

2,
53

1,
25

0,
09

3,
75

0,
00

0,
00

0
25

0,
00

0,
00

0,
00

0
50

0,
00

0
1,

00
0,

00
0

50
0,

00
0,

50
0,

00
0

12
5,

00
0,

25
0,

00
0

12
5,

00
0,

25
0,

00
0,

37
5,

00
0,

00
0,

00
0

1,
00

0,
00

0,
00

0,
00

0
1,

00
0,

00
0

2,
00

0,
00

0
2,

00
0,

00
1,

00
0,

00
0

50
0,

00
0,

50
0,

00
0

2,
00

0,
00

2,
00

0,
00

1,
50

0,
00

0,
00

0,
00

0
4,

00
0,

00
0,

00
0,

00
0

Table 4.1: Number of interval relations depending on the different models. Having
n different intervals leads to 1

2n · (n− 1) + n interval relations.

44 CHAPTER 4. IMPLEMENTATION

case, we interpret n as the number of statements of the dataset and use the big O
notation to express the upper bounds. This is possible as the number of statements
is an upper limit for the number of (disjoint) intervals. However, there can be fewer
intervals as it happens that some statements are not annotated with an interval or
that different statements are annotated with the same interval. Model M2 works
like the first model but computes all intervals that exist for the given border points.
There are x = O(2n) different numbers as one interval has up to 2 different bor-
der points and all intervals may have different border points. The extracted border
points can be used to compute y =

(
x
2

)
+ x intervals and thus z =

(
y
2

)
+ y interval

relations (see Example 15).

Example 15 If the initial dataset contains 1, 000 intervals then there are up to
2, 000 different numbers. Hence, we can compute 2,001,000 intervals. This leads
to 2, 002, 001, 500, 500 ≈ 2.0E + 12 interval relations.

Example 15 illustrates that the Model M2 is not feasible as the interval relations
have a huge influence on the problem size. Nevertheless, we continue with Model
M3 as this model allows us to infer the interval relations in Markov Logic. The
number of the resulting intervals and interval relations is equal to Model M2. How-
ever, the input of the Markov Logic Network are the relations among the border
points using the point algebra and. In total, we need to define O(4n2) ground
predicates expressing the relations of the border points (see Table 4.1). So, the
input of the Markov Logic Network is smaller, i.e., less initial ground predicates,
while it is also much more complex as we will see in the following.

Model M1 + M2. The models M1 and M2 and rely on the same concept. We
extract the intervals from all temporal annotated statements and map each interval
to a unique identifier. However, for model M2 we extract the border points and
create all possible intervals (see Example 14). In the next step step, we calculate
all interval relations (see Algorithm 1) according to their characteristics which are
illustrated in Table 2.2 in Chapter 2.

The implemented algorithm returns the name of the interval relation that holds
between two specific intervals. The respective Markov Logic Network (see List-
ing 4.1) contains one observed predicate for each interval relation. We do not need
any additional constraint as we can directly use the observed predicates in the con-
straints. In order to initialize the model, we use the identifier of the intervals that
we generated in first step. Example 16 gives a brief overview on all steps taken by
Model M1.

4.3. INTERVAL RELATIONS 45

Algorithm 1 Calculates the relation between two intervals.
Require: i1.lowerBound ≤ i1.upperBound
Require: i2.lowerBound ≤ i2.upperBound

1: function CALCULATEINTERVARELATION(i1, i2)
2: if i1.lowerBound = i2.lowerBound ∧ i1.upperBound = i2.upperBound then
3: return tEqual
4: end if
5: if i1.lowerBound < i2.lowerBound then
6: if i1.upperBound < i2.lowerBound then
7: return tBefore
8: end if
9: if i1.upperBound = i2.lowerBound then

10: return tMeets
11: end if
12: if i1.upperBound > i2.lowerBound ∧ i1.upperBound < i2.upperBound then
13: return tOverlaps
14: end if
15: else if i1.lowerBound >i2.lowerBound then
16: if i1.upperBound < i2.upperBound then
17: return tDuring
18: end if
19: if i1.upperBound = i2.upperBound then
20: return tFinishes
21: end if
22: end if
23: if i1.lowerBound = i2.lowerBound ∧ i1.upperBound < i2.upperBound then
24: return tStarts
25: end if
26: end function

46 CHAPTER 4. IMPLEMENTATION

// interval relations

*tBefore(Interval,Interval)

*tMeets(Interval,Interval)

*tOverlaps(Interval,Interval)

*tStarts(Interval,Interval)

*tDuring(Interval,Interval)

*tFinishes(Interval,Interval)

*tEqual(Interval,Interval)

Listing 4.1: Markov Logic Network for M1 & M2.

Example 16 Given the following statements:

John attended University {[2009, 2012]}
John attended University {[2012, 2014]}

We extract the intervals [2009, 2012], [2012, 2014] and map them to identifiers:

Interval1 := [2009, 2012]
Interval2 := [2012, 2014]

Using Algorithm 1, we get the interval relation tMeets and initialize the Markov
Logic Network with the following ground predicate:

tMeets(Interval1,Interval2)

After the reasoner terminated, we are able to retrieve the actual intervals as we
keep the map during the calculation of the MAP state.

Model M3. The last model (M3) uses the Markov Logic reasoner to infer all pos-
sible interval relations. However, we need to compute the relations of the border
points that can be expressed with the point algebra in JAVA. Hence, the Markov
Logic Network contains three observed predicates to model the point algebra re-
lations and seven hidden predicates to model the interval relations (see Listing 4.2).

The first step is to collect all border points of the given intervals and to calculate
the relations. This step is illustrated in Example 17:

Example 17 Given the following statements:

John attended University {[2009, 2012]}
John attended University {[2012, 2014]}

We extract the border points 2009, 2012, 2014 and map them to identifiers:

4.3. INTERVAL RELATIONS 47

// point algebra relations

*tpLarger(n,n)

*tpEquals(n,n)

*tpSmaller(n,n)

// interval relations
tBefore(n,n,n,n)
tMeets(n,n,n,n)
tOverlaps(n,n,n,n)
tStarts(n,n,n,n)
tDuring(n,n,n,n)
tFinishes(n,n,n,n)
tEqual(n,n,n,n)

Listing 4.2: Markov Logic Network for M3: Predicates

// constraints to infer intervals
X v !tpEquals(s1,s2) v !tpEquals(e1,e2) v tEqual(s1,e1,s2,e2).

X v !tpSmaller(e1,s2) v tBefore(s1,e1,s2,e2).

X v !tpSmaller(s1,s2) v !tpEquals(e1,s2) v !tpSmaller(e1,e2) v
tMeets(s1,e1,s2,e2).

X v !tpSmaller(s1,s2) v !tpLarger(e1,s2) v !tpSmaller(e1,e2) v
tOverlaps(s1,e1,s2,e2).

X v !tpLarger(s1,s2) v !tpLarger(e1,s2) v !tpSmaller(e1,e2) v
tDuring(s1,e1,s2,e2).

X v !tpLarger(s1,s2) v !tpEquals(e1,e2) v tFinishes(s1,e1,s2,e2).
X v !tpEquals(s1,s2) v !tpSmaller(e1,e2) v tStarts(s1,e1,s2,e2).

// restrictions: pairwise disjointness (48 constraints)
!tBefore(s1,e1,s2,e2) v !tBefore(s2,e2,s1,e1).
!tBefore(s1,e1,s2,e2) v !tMeets(s1,e1,s2,e2).
!tBefore(s1,e1,s2,e2) v !tMeets(s2,e2,s1,e1).
...
!tFinishes(s1,e1,s2,e2) v !tEqual(s1,e1,s2,e2).
!tFinishes(s1,e1,s2,e2) v !tEqual(s2,e2,s1,e1).

Listing 4.3: Markov Logic Network for M3: Constraints. (X = tpLarger(s1,e1) v
tpLarger(s2,e2))

48 CHAPTER 4. IMPLEMENTATION

n1 := 2009, n2 := 2012, n3 := 2014

We compute the point algebra relations and initialize the Markov Logic Network
with the following ground predicates:

tpEquals(n1,n1) tpEquals(n2,n2) tpEquals(n3,n3)
tpSmaller(n1,n2) tpSmaller(n1,n3) tpSmaller(n2,n3)
tpLarger(n2,n1) tpLarger(n3,n1) tpLarger(n3,n2)

Based on the calculated point algebra relations, we define rules that infer all pos-
sible interval relations (see Listing 4.3). The constraints are comparable to the
algorithm that we use for the other models (see Algorithm 1). However, we need
to add the restriction that for an interval [s, e] holds that s ≤ e which is equiva-
lent to !tpLarger(s,e). Moreover, we need constraints that ensure that only
one relation holds between two intervals (pairwise disjointness). This is necessary
as the respective predicates are hidden. Hence, we need to define constraints that
prevent the reasoner from returning arbitrary groundings for the predicates that do
violate the characteristics of the relations. We continue Example 17 in order to
illustrate the output of the Markov Logic solver (see Example 18).

Example 18 We showed in Example 17 how we compute the input of the Markov
Logic Network for Model M3. The example ended with the following ground pred-
icates that express the relations of the border points:

tpEquals(n1,n1) tpEquals(n2,n2) tpEquals(n3,n3)
tpSmaller(n1,n2) tpSmaller(n1,n3) tpSmaller(n2,n3)
tpLarger(n2,n1) tpLarger(n3,n1) tpLarger(n3,n2)

By applying the constraints listed in Listing 4.3, we get these ground predicates:

tEqual(n1, n1, n1, n1) tEqual(n1, n2, n1, n2) tEqual(n1, n3, n1, n3)
tEqual(n2, n2, n2, n2) tEqual(n2, n3, n2, n3) tEqual(n3, n3, n3, n3)
tBefore(n1, n1, n2, n2) tBefore(n1, n1, n2, n3) tBefore(n1, n1, n3, n3)
tBefore(n1, n2, n3, n3) tBefore(n2, n2, n3, n3) tDuring(n2, n2, n1, n3)
tFinishes(n2,n2,n1,n2) tFinishes(n2,n3,n1,n3) tFinishes(n3,n3,n1,n3)
tFinishes(n3,n3,n2,n3) tMeets(n1, n2, n2, n3) tStarts(n1, n1, n1, n2)
tStarts(n1, n1, n1, n3) tStarts(n1, n2, n1, n3) tStarts(n2, n2, n2, n3)

These predicates implicitly contain the following intervals:

[n1, n1], [n2, n2], [n3, n3],
[n1, n2], [n1, n3], [n2, n3]

which can be mapped to:

4.3. INTERVAL RELATIONS 49

// observed predicates

*tBefore(Interval,Interval)

*tMeets(Interval,Interval)
...

// hidden predicates
xBefore(Interval,Interval)
xMeets(Interval,Interval)
...

// constraints
!tBefore(x,y) v xBefore(x,y).
!tMeets(x,y) v xMeets(x,y).
...

Listing 4.4: Markov Logic Network used to test Model M1 & M2.

[2009, 2009], [2012, 2012], [2014, 2014],
[2009, 2012], [2009, 2014], [2012, 2014]

It is possible to define 6 intervals given 3 border points (
(

3
2

)
+ 3 = 6). Hence,

Model M3 infers all valid intervals.

We see that all three models rely on computations outside of Markov Logic as
number comparison is not supported by Markov Logic. We do also not need to
consider the composition table of Allen’s interval algebra (see Table 2.3 in Chap-
ter 2) as the relations between all intervals can be directly computed. However,
the constraints given in this table are implicitly considered and not violated. More-
over, the intervals and their relations can be modeled as observed predicates as we
decouple them from the statements. This means that the relations of an interval
to the other intervals are independent from the correctness of the statements from
which the interval was extracted. We benefit from this observation as it allowed us
to define a compact Markov Logic Network.

Experiments. We evaluated the feasibility of the models M1 and M2 as both de-
pend on the same Markov Logic Network. The only difference between the models
is that the input of the Markov Logic Network contains more interval relations if
we apply Model M2 (see Table 4.1). However, we focus on the efficiency of the
model which depends on the problem size which is related to the number of inter-
val relations. We created a Markov Logic Network to carry out the experiments
(see Listing 4.4) that returns the interval relations using hidden predicates that are
connected to the observed predicates.

The observed and hidden predicates model the seven Allen algebra interval re-
lations (see Table 2.2 in Chapter 2). We create an increasing number of intervals

50 CHAPTER 4. IMPLEMENTATION

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

2

3

4

5

6

7

8

9

n
uu

m
b

er
 o

f
in

te
rv

al
 r

el
at

io
n

s

ru
n

ti
m

e
[m

in
]

0.00E+00

1.00E+06

2.00E+06

-

1

2

0 500 1000 1500 2000 2500 3000 3500 4000

n
uu

m
b

er
 o

f
in

te
rv

al
 r

el
at

io
n

s

number of intervals
runtime interval relations

Figure 4.7: Interval Relations: Runtime. We created a fixed number of intervals
and computed the interval relations. The charts shows the effect of an increasing
number of interval relations on the runtime.

and compute the interval relations that serve as the input for the Markov Logic Net-
work. The constraints induce that the output of the Markov Logic solver conforms
to its input. Hence, it gives us a baseline as temporal RDF(S) reasoning relies on
more constraints and may additionally contain weighted statements and weighted
constraints. The experiments show that the limit is already reached at ≈ 4, 000
intervals which require more than 8 million interval relations (see Figure 4.7). We
let the reasoner (Markov Logic solver) allocate up to 16 GB RAM (see Chapter 5
for a complete description of the test system) and run always out of memory when
further increasing the problem size. So, even though we defined a simple model,
we reach the limit at a relatively small number of intervals (statements). This in-
dicates that fine-grained temporal reasoning is hardly possible as maintaining the
interval relations requires too many resources. However, the actual limit might be
higher as we do not need the hidden predicates and constraints that infer already
known information. This frees up memory which was the biggest issues in this test
case. But we also need to consider that the complexity of the modeled problem
increases due to additional predicates and constraints (see Chapter 3).

The results also show that Model M2 are not feasible as 8.0E + 06 interval
relations correspond to ≈ 50 intervals in the initial dataset (see Table 4.1). We
recognize that we need to compute as much as possible before we execute the
Markov Logic solver as it needs more resources and is also slower than a com-
parable JAVA method. We measured that generating the intervals and calculating
the relations took only a few seconds in JAVA compared to nearly 10 minutes that
were required to solve the Markov Logic Network for 4, 000 intervals. Hence, we
conclude that the limit of model M3 is well below 50 intervals.

4.3. INTERVAL RELATIONS 51

So, we decided to select Model M1 as the other options are not practicable as
most of the resources would be used to process the interval relations instead of de-
tecting inconsistencies within the data or inferring new statements. Even the most
efficient approach (M1) adds O(n2) additional ground predicates to the Markov
Logic Network. However, we mitigate these effects by defining observed predi-
cates for the interval relations that cause that the reasoner directly knows which
relation holds between two intervals.

Chapter 5

Evaluation and Applications

In this chapter, we complement the theory by evaluating the practicality of our ap-
proach. Therefore, we apply our application to different datasets and use cases. We
focus on the quality of the output of our application in terms of precision, recall
and F-measure and also investigate the runtime efficiency. We selected the follow-
ing use cases:

The first use case (see Section 5.1) is a benchmark that was developed to evalu-
ate the reasoning capabilities of a knowledge base system. It does only require
inferring new statements and does not contain weighted statements or constraints.
We selected this use case in order to evaluate the basic features of our application.
Moreover, it gives us a baseline for more complex use cases.

The second use case (see Section 5.2) bases on facts extracted from DBPedia [Auer
et al., 2007; Bizer et al., 2009b; Lehmann et al., 2014]. Based on the derived state-
ments, we create datasets that contain many weighted statements which violate the
defined constraints. These datasets simulate datasets created by an open informa-
tion extraction system [Etzioni et al., 2008, 2011] that have similar characteristics.
Using such a dataset was not feasible in the context of this work because it requires
developing a framework that makes the data processable by our application. Nev-
ertheless, the focus of this use case is to remove inconsistent statements from a
dataset.

The third use case (see Section 5.3) is unrelated to the other use cases. It con-
tains temporal annotated statements that are used to evaluate activity recognition
algorithms. We transform the dataset to the RDF data model in order to apply our
application. The purpose of this use case is to infer activities based on observa-

53

54 CHAPTER 5. EVALUATION AND APPLICATIONS

DBP extract Sensor Data
goal data cleansing activity recognition
statements > 150, 000 < 20, 000

constraints 10 + RDF(S) ≈ 800 (partially complex)
RDF(S) reasoning required disabled

Table 5.1: Characteristics of the datasets (DBP = DBPedia).

tions which are temporal annotated. Therefore, it requires many complex weighted
constraints that interact with each other. This makes it valuable as the other use
cases only rely on a comparable small number of hard constraints (see Table 5.1).
Moreover, we show that our approach is not limited to a specific domain.

All sections in this chapter follow the same pattern: They start with a brief
introduction to the use case and an explanation why the respective use case is rele-
vant for the evaluation. After that, we outline the characteristics of the dataset and
explain the applicable constraints. The next part comprises the description of the
experiments and the report of the results. Each section concludes with a discussion
of the results.

In the remainder of the introduction to this chapter, we summarize different key
figures and measures which we use in following sections.

Parameters and Key Figures

We keep track of different parameters and key figures for each test case. This in-
cludes general information as well as information about the input and output. The
attributes, which are described in the following, will be recorded when evaluation
mode of our application is enabled.

General Information
In order to identify a test case we save the input parameters:

sDate the date and time of the start of the test
sNote a short note specified by the user
sFile name of the input file
sRDFReasoning selected RDF reasoning approach (true, basic (no entail-

ment rules), none (differently typed variables))

55

Problem Size
We want to investigate the influence of the problem size on the runtime of the ap-
plication. Thus, we record the number of statements, constraints and intervals:

nIT, nIQ, nI number of input triples (nIT), input quads (nIQ) and the
total number (triple + quad) of statements (nI)

nConstraints number of domain specific constraints
nIntervals number of intervals

Runtimes
We measure the runtime of the different parts of the application:

tLoadModel loading the input RDF document
tMLN extracting the constraints from the RDF document and converting

them to the Markov Logic syntax
tDB extracting the data and converting it to the Markov Logic syntax
tOut writing the model file (definition of predicates and constraints)

and the evidence file (ground values) for the Markov Logic solver
to the disk

tMAP time taken by the Markov Logic solver to compute the MAP state
tRDF converting the output of the Markov Logic solver (ground predi-

cates) to a RDF document
tEval computing and storing the information that is part of the evalua-

tion (i.e., all variables described in this section)
tTotal total runtime (excluding tEval)

Output
We do not only convert the output of the Markov Logic solver to RDF but also an-
alyze the statements and categorize them. A statement that is part of the MAP state
is assumed to be correct as it does not violate any constraints. Statements that were
contained in the initial dataset and are not part of the MAP state are considered
as wrong statements as they needed to be removed in order to resolve inconsisten-
cies. The statements that got inferred by the reasoner are the new statements. A
standard statement (i.e., triple or tripleO) that was inferred from a temporal
annotated statement (i.e., quad or quadO) will not be considered. Hence, we can
determine the following numbers:

56 CHAPTER 5. EVALUATION AND APPLICATIONS

nCT, nCQ, nC number of correct statements (triple, quad, total)
nWT, nWQ, nW number of wrong statements (triple, quad, total)
nNT, nNQ, nN number of new statements (triple, quad, total)

Assessing the Quality of the Output

In order to determine the quality of the output, we compute the precision, the recall
and the F-measure. These measures depend on the number of true positives (TP),
false positives (FP) and false negatives (FN) [Olson and Delen, 2008]:

precision =
TP

TP + FP
(5.1)

recall =
TP

TP + FN
(5.2)

F −measure =
2 · precision · recall
precision+ recall

(5.3)

System

We executed all tests on a virtual machine running Ubuntu 12.04 LTS (64-bit) that
has access to two threads of the CPU (2.4 GHz) and 16 GB RAM. Moreover, we
use JAVA1 1.7.0 51, Apache Jena2 2.11.1, rockIt3 0.4.257, MySQL4 5.5.37 and
Gurobi5 5.6.1.

1http://java.com/
2https://jena.apache.org/
3https://code.google.com/p/rockit/
4http://www.mysql.com/
5http://www.gurobi.com/

http://java.com/
https://jena.apache.org/
https://code.google.com/p/rockit/
http://www.mysql.com/
http://www.gurobi.com/

5.1. STANDARD RDF(S) REASONING 57

5.1 Standard RDF(S) Reasoning

We independently validate the RDF(S) reasoning capability of our application as it
is a core component that also works without temporal annotated statements. There-
fore, we use the “Lehigh University Benchmark” (LUBM) [Guo et al., 2005]6 that
was developed for benchmarking Semantic Web knowledge base systems. This
dataset does not contain inconsistencies but it requires the application to infer new
statements. Moreover, it allows us to test the flexibility of our approach as it forces
us to extend the inference rules.

5.1.1 Data & Constraints

The benchmark contains an ontology7 that describes the university domain. It uses
the OWL lite standard [Welty and McGuinness, 2004]8 which requires us not only
to map some classes and properties to their comparable counterparts of RDF(S) but
also to add additional rules. This is necessary as OWL lite provides more properties
as well as the possibility to define classes using complex class expressions. In
particular, we define the following statements and constraints to connect the OWL
vocabulary to the RDF(S) vocabulary:

• triple(owl : Class, rdfs : subClassOf, rdfs : Class)

• triple(owl : DatatypeProperty, rdfs : subClassOf, rdf : Property)

• triple(owl : ObjectProperty, rdfs : subClassOf, rdf : Property)

• triple(owl : TransitiveProperty, rdf : subClassOf, rdf : Property)

• triple(owl : inverseOf, rdf : type, rdf : Property)

• triple(a,p, b) ∧ triple(b, p, c) ∧ triple(p, rdf : type, owl : TransitiveProperty)⇒ triple(a,p, c)

• triple(a,p1, b) ∧ triple(p1, owl : inverseOf, p2)⇒ triple(b, p2, a)

• triple(p1, owl : inverseOf, p2)⇒ triple(p2, owl : inverseOf, p1)

The ontology also uses more complex concepts, e.g., owl:Restriction or
owl:intersectionOf, to define axioms like:

GraduateStudent v Person u ∃takesCourse.GraduateCourse

We can neither extract those types of statements from the ontology using generic
constraints as there are too many scenarios and combinations nor formulate them

6http://swat.cse.lehigh.edu/projects/lubm/
7http://swat.cse.lehigh.edu/onto/univ-bench.owl
8http://www.w3.org/TR/2004/REC-owl-guide-20040210/

http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

58 CHAPTER 5. EVALUATION AND APPLICATIONS

correctly with our approach. First, we need to split the class expression into two
constraints that are implicitly conjoined:

GraduateStudent v Person

GraduateStudent v ∃takesCourse.GraduateCourse

While the first statement can be expressed with our formalism the second cannot.
The direct transformation of it is:

triple(s, “rdf : type”, “GraduateStudent”)

⇒ triple(s, “takesCourse”, c) ∧ triple(c, “rdf : type”, “GraduateCourse”)

This constraint has a conjunction of literals on the right-hand side of the implica-
tion. As they are connected by a variable that does not occur on the left-hand site of
the implication, we cannot split this constraint. This forces us to move one literal
to the left-hand side of the implication. Moving triple(c,rdf:type,Gra-
duateCourse) would cause a student to take all graduate courses. By moving
triple(s, takesCourse,c), we lose the requirement that a student has to
take a course at all. As both approaches are not correct, we decided to assume
equivalence between the original class expressions and model only the inverse di-
rection:

triple(s, “takesCourse”, c) ∧ triple(c, “rdf : type”, “GraduateCourse”)

⇒ triple(s, “rdf : type”, “GraduateStudent”)

The difference to the original axiom is that it assigns the type GraduateStudent
to every entity that takes a graduate course while it does not force a graduate stu-
dent to take a graduate course. The reason for this choice is that we model other
axioms that define equivalence instead of subsumption in the same way. Moreover,
the benchmark does not check if this particular axiom is correctly handled by the
reasoner as the data only contains graduate students that visit graduate courses.
Nevertheless, we showed that it is possible to extend the constraint set with addi-
tional inference rules that do not exceed the expressiveness of our approach.

The authors provide a data generator that creates datasets of arbitrary size using
the classes and properties of the ontology. This allows evaluating the scalability of
a reasoner. However, only slightly more than 100, 000 statements are required to
evaluate the correctness of a reasoner. The benchmark contains fourteen SPARQL
queries9 as well as their answers10. The queries test a variety of properties of a

9http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
10http://swat.cse.lehigh.edu/projects/lubm/answers.zip

http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
http://swat.cse.lehigh.edu/projects/lubm/answers.zip

5.1. STANDARD RDF(S) REASONING 59

knowledge base system including their reasoning capabilities. Hence, this bench-
mark is valuable for our evaluation as we can test the correctness and scalability of
our RDF(S) reasoner. This is a prerequisite to carry out temporal reasoning.

5.1.2 Results & Discussion

The data generator creates a series of documents that need to be assembled to one
document. Hence, we can not only test if the reasoner works correctly but it also
gives us the opportunity to investigate how our well our application scales with
an increasing problem size. However, the data required for testing the correctness
of the reasoner consists of 15 documents (≈ 100, 000 statements). For this docu-
ment corpus, we observe that the runtime is linearly related to the number of input
statements (see Figure 5.1). The number of inferred statements (i.e., new triples)
increases as well because all instances get assigned to additional classes. The ma-
jority of the runtime (≈ 94.5%(60.2s)) is required to compute the MAP state while
it takes ≈ 3.2s (4.8%) of the time to create the final document (see Figure 5.1(b)).
While we expect that converting the output of the Markov Logic solver to a RDF
document only depends on the number of statements, the runtime of the Markov
Logic solver can severely increase for other problems, e.g., another constraint set.
This problem (RDF(S) reasoning) is not very complex as we only need hard con-
straints and do not have to consider weighted statements that cause inconsistencies.
Furthermore, we see that the other modules of our application have no impact on
the total runtime.

We continuously extended the document corpus (see Figure 5.2) in order to
reach the maximum number of statements that can be processed by our applica-
tion. The limit was reached at nearly 1.75 million input statements that could be
processed in 220 minutes and led to 1.25 million new statements. While there is
a linear relation between the problem size and the runtime for small problems, the
runtime increases much faster for bigger problems. Moreover, we see that the run-
time varies strongly, i.e., it decreases for larger problems in some cases. This might
be caused by optimization techniques (e.g., parallelization) of the Markov Logic
solver. We compared those results to a reasoner of a state of the art knowledge base
software. Therefore, we selected the system OWLIM lite11 that provides a build-in
in-memory reasoner and created a workflow that is comparable to our application.
The workflow includes loading all documents, computing the materialization and
exporting the result. Using the OWLIM lite reasoner, we measured that process-
ing the smallest input (≈ 10, 000 statements) is 3 times faster and processing the

11OWLIM lite 5.3 http://owlim.ontotext.com/display/OWLIMv53

http://owlim.ontotext.com/display/OWLIMv53

60 CHAPTER 5. EVALUATION AND APPLICATIONS

40,000

60,000

80,000

100,000

n
um

b
er

 o
f

tr
ip

le
s

0

20,000

5 25 45 65

nu
m

be
r

of
 tr

ip
le

s

tTotal [s]input triple(nIT)
new triple(nNT)

(a) input size

40%

60%

80%

100%

tRDF

tMAP

tOut

0%

20%

40%

runtime

tDB

tMLN

(b) modules

Figure 5.1: Reasoning: Runtime: Chart (a) shows that the runtime increases with
the number of input statements (i.e., triples). It also shows that the number of
inferred statements increases. Diagram (b) shows that computing the MAP state
takes 94.5% and creating the final RDF document (i.e., a document containing
nearly 180, 000 statements) takes 4.8% of the runtime. The basis for this chart is
the data which is required to evaluate the results of the SPARQL queries.

largest input, that can be processed by our application (≈ 1.75 million statements),
is 84 times faster. The factor increases as the OWLIM lite reasoner scales much
better as the relation between the runtime and the number of input statements re-
mains linear. Hence, a state of the art reasoner is not only much faster but is also
able to process much more data. However, our approach is more general as it is
also applicable to a probabilistic knowledge base.

In order to validate the correctness of our reasoner, we set up a OpenRDF
Sesame12 triplestore that allows creating and querying repositories containing RDF
data. We created one repository for the original dataset and another one for the
document created by our application that contains the facts of the initial dataset
and all inferred statements. We executed all 14 queries against both repositories
and can report that the original dataset answers only 4 of the 14 queries correct
while the other repository answers all queries complete and correct. Hence, the
RDF(S) reasoning part of our application works as intended.

12Sesame 2.7.11 http://www.openrdf.org/

http://www.openrdf.org/

5.1. STANDARD RDF(S) REASONING 61

1.50

2.25

3.00

120

180

240

O
W

L
IM

 r
un

ti
m

e
[m

in
]

to
ta

l r
un

ti
m

e
[m

in
]

0.00

0.75

0

60

0 500,000 1,000,000 1,500,000

O
W

L
IM

 r
un

ti
m

e
[m

in
]

to
ta

l r
un

ti
m

e
[m

in
]

number of input statements (nIT)
tTotal runtime OWLIM tTotal (trendline)

Figure 5.2: RDF(S) Reasoning: We compared our application to the reasoner of
OWLIM lite. Our system is much slower and does not scale with an increasing
problem size. The limit is reached at ≈ 1.75 million input statements.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
O 4/4 0/0 6/6 0/34 0/719 0/7790 0/67
I 4/4 0/0 6/6 34/34 719/719 7790/7790 67/67

Q8 Q9 Q10 Q11 Q12 Q13 Q14
O 0/7790 0/208 0/4 0/224 0/15 0/1 5916/5916
I 7790/7790 208/208 4/4 224/224 15/15 1/1 5916/5916

Table 5.2: Number of correct answers when querying the original dataset (O) and
the dataset containing all inferred statements (I). Both datasets return none wrong
answer but only the latter answers all queries completely.

62 CHAPTER 5. EVALUATION AND APPLICATIONS

5.2 Linked Open Data - DBPedia Extract

DBPedia is the center of the Linked Open Data cloud. It covers many domains as its
content is extracted from Wikipedia’s info boxes and categories [Auer et al., 2007;
Bizer et al., 2009b; Lehmann et al., 2014]. In order to apply our approach, we need
to define domain specific constraints. Hence, we need to focus on a small section as
we are not able to define constraints that cover all domains contained in DBPedia.
We decided to build the dataset around a certain group of persons and their relations
among each other. Unfortunately, DBPedia does not provide temporal annotated
statements. So, we need to extract the temporal information from dates which are
given for most persons as birth date and death date. In particular, we focus on
scientists as there are a few properties that connect many instances of this class.
This domain also contains many universities for which a founding date is available
that can be used to create temporal annotated statements.

5.2.1 Data

In order to create the dataset, we need to collect statements from DBPedia (version:
3.9). Therefore, we execute the following steps:

1. We select all statements having one of the properties listed in Table 5.3.
Those properties primarily connect instances of type Person. However,
the domain of the properties academicAdvisor, doctoralAdvisor,
doctoralStudent and notableStudent is further restricted to in-
stances of the class Scientist which is a subclass of the class Person.
The properties influenced and influencedBy do not have any do-
main or range restrictions. They connect not only persons but also entities of
other classes like programming languages. Despite the fact that we want fo-
cus on persons, we did not apply a filter to exclude the unrelated statements
as we want to increase the chance that our application detects erroneous
statements.

2. We take the available birth dates and death dates of all persons into account
in order to create temporal annotated statements. For this purpose, we use
the properties which are listed in Table 5.4. The provided information must
at least contain a sequence of four digits that represents the year as we only
use the year in the annotation. If more information is provided (e.g., day
and month) we do not use it in the annotation but give the statement a higher
weight (i.e., we decrease the weight if this information is not available).

3. For each person, we derive the attended universities (property: almaMater)
from DBPedia if this information is available. So, we get 7, 793 statements

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 63

property/class count
dbpedia-owl:academicAdvisor 825
dbpedia-owl:doctoralAdvisor 4, 618
dbpedia-owl:doctoralStudent 5, 838
dbpedia-owl:notableStudent 865
dbpedia-owl:influenced 11, 463
dbpedia-owl:influencedBy 23, 827

dbpedia-owl:Person 26, 074
dbpedia-owl:Scientist 7, 699

Table 5.3: DBPedia: Number of selected statements and relevant instances.

property/class count
dbpedia-owl:birthDate 14, 710
dbpprop:birthDate 12, 166
dbpprop:dateOfBirth 12, 303
dbpedia-owl:deathDate 9, 720
dbpprop:deathDate 7, 266
dbpprop:dateOfDeath 6, 925

dbpedia-owl:almaMater 7, 793
dbpedia-owl:University 988

dbpprop:established 920
dbpedia-owl:foundingDate 49

Table 5.4: DBPedia: Additional properties and instances.

having the property almaMater (see Table 5.4) pointing to 988 universities
(see Table 5.4).

4. For each university, we consider the available founding dates (property: es-
tablished or foundingDate) and annotate the statements with the re-
spective year.

We assign to statements having a property described in the DBPedia ontology
(namespace prefix: dbpedia-owl) the weight 1.0 and to statements having a
property with the namespace prefix dbpprop the weight 0.75. Moreover, tempo-
ral annotated statements that are not based on a complete date (e.g., only the year)
get their weight decreased by 0.05.

5.2.2 Constraints

The next step is to define a set of constraints that allows us to detect erroneous
statements in the dataset. First, we introduce constraints that exploit the disjoint-
ness between certain classes. Second, we define constraints that must hold in the
selected dataset, i.e., domain-specific constraints.

64 CHAPTER 5. EVALUATION AND APPLICATIONS

We use the property owl:disjointWith to express disjointness between
the classes Person and University. Moreover, statements having properties
without domain or range restrictions (e.g., influenced or influencedBy)
introduced additional classes (e.g., Language). Most of those classes are disjoint
with the class Scientist (at least in our dataset) which allows us to add the
respective disjointness assertions. Therefore, we need the following constraints
that ensure the characteristics of the property owl:disjointWith:

triple(c1, “owl : disjointWith”, c2) ⇒ triple(c2, “owl : disjointWith”, c1)

triple(c1, “owl : disjointWith”, c2) ∧ triple(x, “rdf : type”, c1) ⇒ !triple(x, “rdf : type”, c2)

triple(c1, “owl : disjointWith”, c2) ∧ triple(cs1, “rdfs : subClassOf”, c1)

⇒ triple(cs1, “owl : disjointWith”, c2)

These constraints should cover all scenarios but we do not show that they are
complete. Nevertheless, the created dataset allows defining the following domain-
specific constraints:

• Our dataset contains statements having a property that connects persons, e.g.,
academicAdvisor, doctoralStudent, etc. (see Table 5.3). These
statements can only be true if the respective entities have lived during an
overlapping period. The exception are the properties influenced and
influencedBy that do also allow that the influencer has died before the
other person was born. Hence, it is sufficient that the influencer was born
before the influenced person died.

• A person can only have visited a university (alma mater) that was established
before her/his death.

• A person has at most one birth date and at most one death date.

• A university has at most one founding date.

In order to define the constraints, we need to combine different properties that
describe the same aspect of an entity (e.g., the birth date). Hence, we create the
three properties birthDateN, deathDateN and foundingDateN that serve
as super-properties (see Table 5.5).

So, instead of using every single property we can just use the respective super-
property which reduces the number of required constraints. For instance, if we

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 65

birthDateN deathDateN foundingDateN

dbpedia-owl:birthDate
dbpprop:birthDate
dbpprop:dateOfBirth

dbpedia-owl:deathDate
dbpprop:deathDate
dbpprop:dateOfDeath

dbpprop:established
dbpedia-owl:foundingDate

Table 5.5: DBPedia: New super-properties and their sub-properties.

want to combine the birth date and the death date of a person in a constraint, we
can just define one constraint instead of nine constraints covering all combinations.
Hence, we benefit from the reasoning capabilities of our approach. In particular,
it is enough to extend the underlying ontology with the respective axioms. Re-
placing the properties of each statement is not necessary as this is done by the
reasoner. Moreover, we create the two property classes TimeFunctionalP and
OverlappingLifeP that comprise properties having certain characteristics (see
Table 5.6).

TimeFunctionalP OverlappingLifeP

birthDateN
deathDateN
foundingDateN

dbpedia-owl:academicAdvisor
dbpedia-owl:doctoralAdvisor
dbpedia-owl:doctoralStudent
dbpedia-owl:notableStudent

Table 5.6: DBPedia: New property classes and their instances.

Using the introduced classes and properties, we define domain-specific constraints
which we will introduce in the remainder of this section.

Instances of the class TimeFunctionalP are properties that connect an en-
tity to a date. The restriction is that one property (e.g., birthDateN) can only
be part of statements, describing a single entity, that are annotated with the same
interval (e.g., a person has only one birth date). Assigning a super-property (i.e.,
birthDateN, deathDateN, foundingDateN) to this class (TimeFunc-
tionalP) ensures that the condition holds for all of its sub-properties. Hence, it
is not required to modify the statements in the dataset.

triple(p, “rdf : type”, “TimeFunctionalP”) ∧ quad(x, p, t1, i1) ∧ quad(x, p, t2, i2)

⇒ tEqual(i1, i2)

Persons that are connected by a property that is an instance of the class Overlap-
pingLifeP must live/have lived during an overlapping time period. We ensure
this by checking in both directions if a person was born before the other person
died:

66 CHAPTER 5. EVALUATION AND APPLICATIONS

triple(x, p, y) ∧ triple(p, “rdf : type”, “OverlappingLifeP”) ∧
quad(x, “birthDateN”, t1, i1) ∧ quad(y, “deathDateN”, t2, i2)

⇒ tBefore(i1, i2)

triple(x, p, y) ∧ triple(p, “rdf : type”, “OverlappingLifeP”) ∧
quad(y, “birthDateN”, t1, i1) ∧ quad(x, “deathDateN”, t2, i2)

⇒ tBefore(i1, i2)

We use the introduced super-property foundingDateN to check if a university
was established before the death of the persons who visited the respective univer-
sity:

triple(x, “dbpedia-owl : almaMater”,u) ∧
quad(u, “foundingDateN”, e, i1) ∧ quad(x, “deathDateN”, dd, i2) ⇒ tBefore(i1, i2)

A person has to be born before she/he dies:

quad(x, “t : birthDate”, t1, i1) ∧ quad(x, “t : deathDate”, t2, i2) ⇒ tBefore(i1, i2)

Additionally, we add constraints that ensure the characteristics of the properties
influenced or influencedBy:

quad(x, “t : birthDate”, t1, i1) ∧ quad(y, “t : deathDate”, t2, i2) ∧
triple(x, “dbpedia-owl : influenced”, y) ⇒ tBefore(i1, i2)

quad(x, “t : birthDate”, t1, i1) ∧ quad(y, “t : deathDate”, t2, i2) ∧
triple(y, “dbpedia-owl : influencedBy”, x) ⇒ tBefore(i1, i2)

So, we defined seven constraints that must hold in this dataset. While we do
not need weighted constraints, we profit from the flexibility and reasoning capa-
bility of our approach. That is, we are able to create new classes and properties
that reduce the number of required constraints which makes it more comfortable to
maintain them.

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 67

5.2.3 Experiments

The created dataset is suitable to carry out two types of experiments. In the first
part of the experiments, we evaluate how well our approach detects wrong state-
ments in the original dataset. We apply our application directly on the derived data
and manually evaluate the output with a focus on the removed statements. Hence,
we investigate if the removed statements are actual wrong. The second part of
the experiments builds on the first part as we remove all statements that caused
inconsistencies in the original dataset. This results in a consistent dataset (with
respect to the defined constraints) to which we add wrong statements. This part
of the experiments is necessary as the initial dataset contains only a small number
of wrong statements. Hence, we investigate the influence of an increasing per-
centage of wrong statements in the dataset on the results in the second part of the
experiments. We conclude this section with a brief report on the runtime of our
application. However, we will not investigate if the inferred statements are correct
as the constraints are designed to detect inconsistencies in the dataset.

Part 1: Original Dataset

Our application detects 359 (48 triples and 311 quads) wrong statements in the
dataset. This means that less than 0.5% of the statements cause inconsistencies.
In the following, we separately report on the results of both groups of statements
(triples and quads) as they are marked as wrong for different reasons. Moreover,
we classify the statements of both groups into additional categories and report the
number of statements (count) and the precision of each category. The results re-
ported in this section exclusively refer to the statements that got identified as wrong
statements by our application.

Triples. The application declared 48 triples as wrong statements for the follow-
ing reasons (grouped by the respective property / property class)):

OverlappingLifeP (count: 33 / precision: 1.0): The most common problem
was that statements violate the range restrictions of properties that are part of
this class (count: 29) (see Table 5.6). For example, a University instead
of a Person was listed as an academicAdvisor of a Scientist. In
the other cases, an entity that has lived at a different time was assigned as
doctoralStudent or doctoralAdvisor (4). Those cases can be fur-
ther classified as follows: The assigned entity has the same name as the cor-
rect person (2), is unrelated (1), had a connection (e.g., same research area)
but died before the subject of the statement was born (1).

68 CHAPTER 5. EVALUATION AND APPLICATIONS

rdf:type (count: 6 / precision: 0.44): The violation of domain and range re-
strictions of properties can cause that our application drops the type as-
signment instead of the property assertion if this leads to a state with a
higher weight (MAP state). We observed that some universities are part
of multiple statements having a property that only connects persons (e.g.,
doctoralAdvisor, doctoralStudent). Moreover, our application
drops the type assignment of a university if it has less properties that indi-
cate via their domain or range restriction that it is of type University
(e.g., almaMater).

influenced / influencedBy (count: 9 / precision: 1.0): Our application
detected statements in which the subject and object were interchanged (6), a
wrong entity having the same name was assigned (1) and unrelated persons
were connected.

So, we achieve a precision of 91.67%(44/48) for triples. The most frequent prob-
lem was that statements violate domain and range restriction of properties (35/48).
Other frequent issues are interchanged subject and object (6/48) and wrong entity
resolution (3/48), i.e., assignment of a different entity having the same name.

Quads. Our application identified 311 temporal annotated statements that cause
inconsistencies according to the defined constraints. Of these statements express 9
statements the founding date of a university and 302 statements provide the birth
date or death date of a person. The statements declaring the founding date are all
correct which means that the precision of our application is 0%. The statements got
detected as some alumni died before the university was established. However, it is
often the case that the respective persons studied at the university but the resource
refers to a reestablished university having the same name or one that resulted from
the union of other universities. Hence, it is necessary to check if there is an entity
describing the original university in order to solve the problem. The second group
contains all statements stating the birth date or date death of a person. Our con-
straints ensure that an entity can have at most one of each. However, the statements
got removed from the dataset for the following reasons:

properties: influenced / influencedBy (count: 8 / precision: 0.0): As
already mentioned, it happens that the subject and object of these properties
are interchanged. This causes a violation of the constraints if the respective
entities lived at distanced times. The introduced inconsistency cannot be cor-
rectly resolved if this happens multiple times for a single entity. In such a
scenario, our application removes the birth date or death date instead of the
wrong statement.

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 69

In the remaining cases (294), the statements got removed as the dataset contained
multiple different birth dates or death dates for a person. This violates the con-
straint that a person has at most one birth date and at most one death date. As the
provided dates are mostly close to each other, i.e., less than 5 years difference, our
application makes the decision only based on the other dates (i.e., birth dates and
death dates) that are given for the respective person. The decision can be reasoned
or random:

reasoned (count: 136 / precision: 0.86): We derived the dates using various prop-
erties having different weights (see Table 5.4). If some of those properties
agree on a date, our application makes a founded decision as the weights of
those statements sum up and are then higher than the weight of the wrong
statement. In other cases, the correct death date is also given as birth date
(or vice versa). Even if the birth dates would have the same weight, our ap-
plication makes the correct decision as it also considers that a person must
be born before she/he can die. Hence, it makes a decision that keeps a birth
date and a death date for the person as this leads to a state with a higher total
weight.

random (count: 158 / precision: 0.59): In some cases, there is no evidence that
makes one date superior to another date. In those scenarios, the application
selects randomly one statement. As the alternatives are mostly very close and
often before the 20th century it is even for a domain expert hard to make the
correct decision.

Overall, the precision is 67.88% (205/302) for the detected birth dates and death
dates. The reason for the low precision is that the decision was often made between
two close dates. As this dataset does not allow fine-grained temporal reasoning, it
is not possible to improve the results. However, we can report that our application
acted as intended in all situations. It highlights parts of the dataset that contain
erroneous statements in 100% of cases. So, the system indicates with a very high
precision which areas of the dataset need to be inspected by a domain expert.

Part 2: Adding additional wrong Statements

We reported in the first part of the experiments (previous section) that the data
derived from DBPedia does not contain many wrong statements. This forces us to
generate additional statements, which are supposedly wrong, in order to evaluate
how well our application handles a higher percentage of wrong statements. The
goal is to simulate a dataset containing many incorrect statements like a dataset
collected by an open information extraction system that crawls data on the Web.
Therefore, we carry out the following steps (see Figure 5.3):

70 CHAPTER 5. EVALUATION AND APPLICATIONS

1. We remove all statements that cause inconsistencies from the initially de-
rived DBPedia extract. This leads to a dataset, called initial dataset, which
is consistent with respect to the defined constraints. Hence, we assume that
the F-measure of this dataset is 1.0 as it contains all statements (recall = 1.0)
and because it is free from inconsistencies (precision = 1.0).

2. We generate wrong statements (WS) and add them to the initial dataset. This
leads to the extended dataset (ED) which has a recall of 1.0. The precision
depends on the number of added wrong statements (WS) as we vary the share
of WS.

3. We apply our application to the extended dataset (ED). The output of the
application comprises the removed statements (RS) as well as the cleansed
dataset (CD). In the first part of the experiments, we exclusively focused on
the removed statements (RS) as we do not know the precision of the DBPedia
extract. Additionally, the improvement could not be noticeable as only a very
small number of statements got removed, i.e., less than 0.5%. However, in
this part of the experiments we can also evaluate the cleansed dataset (CD)
as we know the measures of the extended dataset (ED).

cleansed
dataset (CD)

DBPedia exctractDBPedia exctract initial datasetinitial dataset
remove as wrong

declared statements
add wrong

statements (WS) (W
S

)extended
dataset (ES) (W

S
)extended

dataset (ED)

apply our
application

cleansed
dataset (CD)

removed
statements (RS)

Figure 5.3: DBPedia: Overview on the process of the second part.

Before we start to explain the experiments and report the results of this part, we
outline how we generate the additional statements in order to obtain the extended
dataset (ED) based on the initial dataset.

Generating wrong statements. We extend the initial dataset with temporal state-
ments as well as with connections between resources (e.g., persons, universities).
All temporal statements in our dataset are annotated with a year which can be a
birth year or death year of a person or a founding year of a university. This gives
us various options to create wrong statements based on the correct statements. In
particular, we use the following techniques, having different probabilities to be
selected, to compute a wrong year:

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 71

mixed digits (20%): We randomly mix the digits of the original year while we
ensure that the resulting year is not smaller than 1, 000. So, a small as well
as a big difference to the original year is possible (e.g., 1954 → 1945 or
1954→ 1549).

swapped digits (60%): We swap only two digits while considering two indepen-
dent criteria. In 50% of the cases, we ensure that the first digit remains in its
place in order to minimize the error. In 70% of the cases, we ensure that the
swapped digits are neighboring in order to simulate typos.

small error (20%): We add (or subtract) a small number (1 − 20) to the original
value in order to simulate a minor error.

Beside this, we randomly select persons and assign them a birth year or death year
in the range from 1, 500 to 2, 100 as most of the correct data falls in this interval.
This ensures that persons that do not have such information in the original dataset
can get one in the extended dataset (ED). So, we are covering a wide range of
errors, i.e., from minor typos to completely wrong information. Moreover, we add
additional links between resources. Therefore, we randomly select two entities
without considering their types. Based on the property distribution in the original
dataset, we use either a property that forces that the entities have lived during an
overlapping time period or we set the second entity as alma mater of the first entity.
We restrict the procedure to these two types of properties as the other properties do
not interact with many constraints. Overall, we introduce various errors:

• The created statements can be wrong as we do not check if the selected
entities match the domain and range restrictions of the selected property.

• If we connect two persons it is also possible that they have lived at distanced
time periods. This violates the overlapping life property.

• If we set the alma mater of a person it is possible that she/he died before the
university was established.

The effect of the latter two points gets amplified by the generated temporal state-
ments. Hence, we created a realistic use case that allows us to investigate if the
application is able to detect those errors based on the defined constraints.

In order to evaluate how well our approach handles erroneous data, we add
presumably wrong statements (WS) to the initial dataset as explained. We vary the
share of wrong statements as well as the weight of the added wrong statements in
the dataset. In general, we do not assign weights to statements that are contained

72 CHAPTER 5. EVALUATION AND APPLICATIONS

in the terminological part of the ontology as we assume that they are correct. In
the remainder of this section, we report the results of the following aspects of the
experiments:

Baseline. We assign to all statement that are contained in the initial dataset (ID)
the weight 1.0 while the generated statements get a random weight between
0.0 (exclusive) and 0.1. Hence, the generated wrong statements (WS) should
be removed from the dataset.

Increasing share of wrong statements. We assign to all statements a weight be-
tween 0.0 (exclusive) and 1.0 and report the effects of an increasing percent-
age of wrong statements.

Decreasing weights of the wrong statements. We assign to all statement that are
contained in the initial dataset (ID) a random weight between 0.0 (exclu-
sive) and 1.0 and to the generated statements a random weight between 0.0
(exclusive) and a varying upper bound.

Temporal statements vs. relations among entities. We report if there are differ-
ences between these two types of added statements as they interact with dif-
ferent rules.

We focus on the precision, recall and F-measure of the removed statements
(RS) but also state the effect on the complete dataset by reporting ∆ F-measure.
We define ∆ F-measure as the F-measure of cleansed dataset (CD) minus the F-
measure of the extended dataset (ED). In order to complement these values, we
report the precision and the recall of the extended dataset (ED) and the cleansed
dataset (CD) in tables. This is necessary as it helps to understand ∆ F-measure.
The reported measures (precision, recall and F-measure) of the extended dataset
(ED) and the cleansed dataset (CD) exclude statements that were not considered
when generating the additional statements, e.g., the terminological part of the
dataset. However, we consider all statements when assessing the quality of the
removed statements (RS).

In order to compute the precision and the recall of a dataset (e.g., the cleansed
dataset), we define the true positives (TP) as the statements that were also part
of the initial dataset, the false positives (FP) as the (wrong) statements which we
added to the dataset and got not removed from the dataset and the false negatives
(FN) as the statements that were part of the initial dataset and got removed by our
application.

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 73

In order to compute the precision and the recall of the removed statements (RS),
we define the true positives (TP) as the statements which we added to the ini-
tial dataset, the false positives (FP) as the statements that were part of the initial
dataset and got removed by our application and the false negatives (FN) as state-
ments which we added to the initial dataset and got not removed by our application.

The goal of our approach is to improve the precision while retaining a high
recall of the complete dataset. Therefore, it is important that the precision of the
removed statements is also high, i.e., we remove actual wrong statements. In gen-
eral, it makes sense to apply our approach when ∆ F-measure has a positive value.
However, this value can be low when we add a small number of wrong statements
because the data quality of the extended dataset (ED) is already high. We repeated
the experiments multiple times as we create the additional statements randomly.

Baseline. First, we determine the best possible results that can be achieved for
the created dataset (ED). Therefore, we give all wrong statements a much lower
weight (weight between 0.0 and 0.1) than the correct statements (weight = 1.0).
This setting should allow our application not only to detect all statements that vi-
olate the constraints but to remove the added (wrong) statements (WS) from the
dataset in conflicting situations. The experiments show that the precision is close
to 100% while the recall is above 75% for the removed statements (RS) (see Ta-
ble 5.7). Hence, the recall of the cleansed dataset (CD) remains close to 100%
and its precision increases. This leads to a better F-Measure (absolute improve-
ment 0.4 − 23.1 percentage points). The degree of the improvement depends on
the amount of wrong statements in the extended dataset as the correctness of the
removed statements seems to be independent from the share of wrong statements
(WS). This underlines the fact that the distribution of the added statements corre-
sponds to the original dataset and that the introduced inconsistencies are equally
distributed.

However, the recall is well below 100% which means that many added state-
ments do not violate any constraints. There are several explanations for this obser-
vation:

• When we add a connection between two entities it is not unlikely that they
have lived at the same time.

• Assigning an additional university as alma mater to a person does not lead
to a conflict if the university was founded before the death of that person.

74 CHAPTER 5. EVALUATION AND APPLICATIONS

0.01 WS 0.10 WS 0.25 WS
P R F P R F P R F

ED 0.99 1.0 0.995 0.909 1.0 0.952 0.800 1.0 0.889
CD 0.998 1.0 0.999 0.976 1.0 0.988 0.942 1.0 0.970
∆ 0.008 0.0 0.004 0.067 0.0 0.035 0.142 0.0 0.081
RS 1.0 0.753 0.859 1.0 0.752 0.858 1.0 0.755 0.860

0.50 WS 0.75 WS 1.00 WS
P R F P R F P R F

ED 0.667 1.0 0.8 0.572 1.0 0.727 0.5 1.0 0.667
CD 0.894 1.0 0.944 0.852 1.0 0.920 0.814 1.0 0.898
∆ 0.227 0.0 0.144 0.280 0.0 0.193 0.314 0.0 0.231
RS 1.0 0.764 0.866 1.0 0.768 0.869 1.0 0.772 0.871

Table 5.7: DBPedia: Additional Statements: Baseline for varying percentages of
wrong statements (abbreviations: p = precision, r = recall, F = F-measure, ED =
extended dataset, CD = cleansed dataset, RS = removed statements, WS = wrong
statements).

• While the constraints respect the domain and range of the properties, it is still
possible that the reasoner assigns an entity to an additional class if that does
not violate the class disjointness axioms. Many instances are only assigned
to the class Person and to none of its subclasses. Hence, further specifying
the type of the instance does not lead to inconsistencies.

• Moreover, when we assign a death date to a person that is still alive or does
not have a death date in the initial dataset it is possible that this error cannot
be detected.

These points primarily indicate limitations of the used dataset and not of our appli-
cation. Most of those issues would not be as significant in a more connected and
fine-grained dataset that relies on a series of interacting constraints.

Increasing share of wrong statements. The next part of the experiments is more
realistic as we randomly assign to all statements a weight in the range from 0.0 to
1.0. This leads to many situations in which the reasoner does not necessarily keep
the correct statement when it is involved in a conflict. For instance, we added
temporal annotated statements that differ only by a smart margin from the correct
value. The reasoner takes the statement with the higher weight as our dataset is
not very fine-grained in such scenarios. However, this effect is weakened for the
birth dates and death dates as those dates are often provided by multiple proper-
ties. This allows the reasoner to select a statement using a weighted majority vote.
Overall, we expect a lower precision and in consequence of that also a lower recall
compared to the baseline.

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 75

WS removed statements (RS) ED cleansed dataset (CD)
∆ F-m.precision recall F-measure precision precision recall F-measure

0.01 0.799 0.629 0.704 0.990 0.996 0.998 0.997 0.002
0.1 0.801 0.643 0.713 0.909 0.965 0.984 0.974 0.022
0.25 0.812 0.648 0.720 0.800 0.916 0.962 0.939 0.050
0.5 0.824 0.654 0.729 0.667 0.843 0.930 0.884 0.084
0.75 0.829 0.653 0.731 0.572 0.776 0.899 0.833 0.106
1.0 0.836 0.654 0.734 0.500 0.716 0.872 0.786 0.119

Table 5.8: DBPedia: Varying fraction of added wrong statements (WS). Precision,
recall and F-measure is given for the removed statements (RS) and for the cleansed
dataset (CD). The precision of the extended dataset (ED) is also given while its
recall is always 1.0. ∆ F-measure indicates the improvement of the F-measure of
the complete dataset.

We increase the fraction of wrong statements to verify our assumptions (see
Table 5.8). The results are worse than the baseline as the precision dropped sig-
nificantly from 100% to ≈ 80%. With respect to an increasing fraction of wrong
statements (WS), we observe that the precision improves slightly from 79.9% to
83.6%. This indicates that the dataset contains many very small connected sub-
graphs. Hence, it is possible that the additional statements are placed in indepen-
dent areas. The introduced inconsistencies are then resolved with a comparable
precision. If more than one wrong statement is placed in a connected subgraph it
is possible (but not always the case) that the conflict can be resolved with a higher
precision as shown in the following examples (see Example 19 & 20).

Example 19 Considering the following set of statements that contains one wrong
statement that is involved in a conflict (c = correct, w = wrong statement):

c: tripleW(Lucia_Caporaso, rdf:type, Person, 0.24)
c: tripleW(Joe_Harris, doctoralStudent, Lucia_Caporaso, 0.61)
w: tripleW(Dolf_Sternberger, randomAlmaMater, Lucia_Caporaso, 0.97)

The range of the property of the wrong statement does not match the type of
Lucia Caporaso. In consequence of that, the application drops both correct
statements as the wrong statement has a higher weight. Thus, the type of the entity
Lucia Caporaso changes to University which is disjoint with Person.
Only the following statement remains in the dataset:

w: triple(Dolf_Sternberger, randomAlmaMater, Lucia_Caporaso)

Another wrong statement is added to this conflict:

c: tripleW(Lucia_Caporaso, rdf:type, Person, 0.24)
c: tripleW(Joe_Harris, doctoralStudent, Lucia_Caporaso, 0.61)
w: tripleW(Dolf_Sternberger, randomAlmaMater, Lucia_Caporaso, 0.97)
w: tripleW(Joe_Cutler, randomOverlap, Lucia_Caporaso, 0.49)

76 CHAPTER 5. EVALUATION AND APPLICATIONS

Now, it is better not to change the type of the entity Lucia Caporaso. Hence,
none correct statement but one wrong statement gets removed from the dataset:

c: triple(Lucia_Caporaso, rdf:type, Person)
c: triple(Joe_Harris, doctoralStudent, Lucia_Caporaso)
w: triple(Joe_Cutler, randomOverlap, Lucia_Caporaso)

In summary, the application removed two correct statements from the dataset
in the first case. By adding an additional statement to the dataset, the application
removes one wrong statement and keeps all correct statements. Hence, precision
and recall of the removed statements (RS) improve.

Example 19 also indicates that it is more likely to detect added statements hav-
ing the property almaMater and violating the range restriction of this prop-
erty when the dataset contains a higher share of wrong statements. It is proba-
ble that the object of the added statement is of type Person as the initial dataset
contains much more instances of the class Person than instances of the class
University. Hence, the chance that the type of the entity gets changed to the
class University decrease when more statements are added. This is caused by
the fact that most of the statements contained in the initial dataset use properties
which have the domain and/or range restriction Person and that we keep this ratio
in the extended dataset (ED).

Example 20 Considering the following set of statements that contains one wrong
statement (c = correct, w = wrong statement):

c: quadW(Ferdinand_Cohn, birthDate, 1828-01-24, [1828,1828], 0.42)
c: quadW(Ferdinand_Cohn, deathDate, 1898-06-25, [1898,1898], 0.05)
c: tripleW(Georg_Lunge, doctoralAdvisor, Ferdinand_Cohn, 0.02)
w: quadW(Ferdinand_Cohn, birthDate, generated, [1952,1952], 0.56)

The application keeps only the generated birth year of Ferdinand Cohn as this
leads to the consistent dataset with the highest weight. The sum of the weights of
the correct statements is smaller than the weight of the wrong statement. Thus,
the wrong statement will not be removed from the dataset. The correct birth date
gets removed as a person has at most one birth date. The correct death date gets
removed as it has to be after the birth date. Georg Lunge lived from 1828 to
1898. Hence, Ferdinand Cohn, whose birth year got changed to 1952, cannot
be his doctoral advisor. So, only the wrong statement remains:

w: quad(Ferdinand_Cohn, birthDate, generated, [1952,1952])

Another wrong statement is added to this conflict:

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 77

c: quadW(Ferdinand_Cohn, birthDate, 1828-01-24, [1828,1828], 0.42)
c: quadW(Ferdinand_Cohn, deathDate, 1898-06-25, [1898,1898], 0.05)
c: tripleW(Georg_Lunge, doctoralAdvisor, Ferdinand_Cohn, 0.02)
w: quadW(Ferdinand_Cohn, birthDate, generated, [1952,1952], 0.56)
w: quadW(Ferdinand_Cohn, birthDate, generated, [1540,1540], 0.58)

In consequence of that, it is enough to change the birth year of Ferdinand Cohn.
So, he can be the doctoral advisor of Georg Lunge and also his correct death
date causes no inconsistencies:

c: triple(Georg_Lunge, doctoralAdvisor, Ferdinand_Cohn)
w: quad(Ferdinand_Cohn, birthDate, generated, [1540,1540])
c: quad(Ferdinand_Cohn, deathDate, 1898-06-25, [1898,1898])

In summary, the application removed three correct statements from the dataset
in the first case. By adding an additional statement to the dataset, the applica-
tion removes only one correct statement and also one wrong statement. Hence,
precision and recall of the removed statements (RS) improve.

Example 20 also shows that adding many statements to an entity via a func-
tional property (e.g., birthDate) has a positive effect on the precision and recall
of the removed statements (RS). The cleansed dataset contains only one fact using
a functional property per entity. Thus, the wrong statements get removed with a
high precision and also with a high recall.

Independently from the share of wrong statements, the recall remains around
65% (see Table 5.8) which is just 10 percentage points lower than the baseline. The
reason for this reduction is the lower precision. It causes that correct statements
instead of the added statements (WS) got removed from the dataset in conflicting
situations. Overall, the F-measure of the cleansed datasets (∆ F-measure) improves
in all test cases. Independently from the share of wrong statements in the dataset,
the improvements of ∆ F-measure for the different test cases are roughly half as
large as the reported baseline of ∆ F-measure.

Decreasing weights of the wrong statements. In the previous experiment, we
assigned to all statements a weight within the same range. Now, we make the
wrong statements more explicit to the reasoner by limiting their weights. Hence,
the correct statements have a higher average weight. This simulates a scenario in
which the correct statements are provided by more trustworthy sources or that mul-
tiple sources agree on a fact. The precision as well as the recall increase by further
limiting the weight of the wrong statements (see Table 5.9). The absolute num-
ber of removed statements is constant as the same amount of inconsistencies gets
detected. Those inconsistencies can be resolved with a higher precision when the

78 CHAPTER 5. EVALUATION AND APPLICATIONS

limit removed statements (RS) cleansed dataset (CD)
∆ F-measureprecision recall F-measure precision recall F-measure

1.0 0.824 0.654 0.729 0.843 0.930 0.884 0.084
0.7 0.898 0.693 0.782 0.862 0.961 0.909 0.109
0.5 0.939 0.718 0.814 0.874 0.977 0.922 0.122
0.3 0.970 0.740 0.840 0.884 0.989 0.933 0.133
0.1 0.992 0.756 0.858 0.891 0.997 0.941 0.141

baseline 1.0 0.764 0.866 0.894 1.0 0.944 0.144

Table 5.9: DBPedia: Limiting the weights of the added wrong statements (WS).
The basis for these results is a dataset with 50% additional wrong statements (see
Tables 5.7 & 5.8). Hence, the precision of the extended dataset is 0.667, the recall
is 1.0 and the F-measure is 0.800. The F-measure of the dataset improves (∆
F-measure) by decreasing the weight of the wrong statements.

WS removed statements (RS)
p(r) p(t) r(r) r(t) F(r) F(t)

0.01 0.832 0.781 0.515 0.731 0.636 0.755
0.1 0.818 0.790 0.532 0.739 0.644 0.764
0.25 0.835 0.798 0.530 0.750 0.648 0.773
0.5 0.848 0.810 0.528 0.763 0.651 0.786
0.75 0.853 0.816 0.518 0.771 0.644 0.793
1.0 0.858 0.824 0.510 0.778 0.640 0.800

Table 5.10: DBPedia: Measures (p = precision, r = recall, F = F-measure) for the
temporal statements (t) and the relations among entities (r) for a varying fractions
of added wrong statements (WS).

weight of the added (wrong) statements (WS) is lower. Hence, the recall increases
as more wrong statements get removed. The precision and the recall is very close
to the baseline if the wrong statements (WS) have a weight between 0.0 and 0.1.
The results do not match the baseline because 10% of the correct statements have
a weight in the same range as the wrong statements.

Temporal statements vs. relations among entities. Finally, we investigate how
well the different types of statements get handled in our dataset. Therefore, we
distinguish between temporal statements and relations among entities. The recall
is much higher for temporal annotated statements (see Table 5.10). The reason for
this is that most dates are reported by multiple properties and that the temporal
properties are functional, e.g., a person hast at most one birth date and a university
has at most one founding date. Hence, it is very likely that a conflict gets detected
and it is also reasonable the respective measure improve when we increase the
share of wrong statements. Contrary, the recall of the statements describing rela-
tions among entities is much lower as not all wrong statements violate the defined

5.2. LINKED OPEN DATA - DBPEDIA EXTRACT 79

DBP ID 0.1 WS 0.25 WS 0.5 WS 0.75 WS 1.0 WS
nI 195, 055 194, 692 207, 177 225, 358 255, 148 283, 891 313, 667
tTotal [min] 6.80 6.64 7.54 8.46 10.14 12.98 18.34

nIntervals 818 809 1, 559 1, 936 2, 234 2, 397 2, 508

Table 5.11: DBPedia: Runtime of the different datasets (DBP = DBPedia extract,
ID = initial dataset, WS = wrong statements).

constraints. We listed reasons for this observation on page 73. The precision is sim-
ilar for both types of statements. Thus, the F-measure of the temporal annotated
statements is more than 10 percentage points higher.

Runtime

The total time required to process the DBPedia extract is just below 7 minutes
(see Table 5.11). However, the runtime decreased slightly (≈ 10 seconds) after
we removed the 359 statements causing inconsistencies and applied the applica-
tion to the initial dataset. This indicates that solving the conflicts takes additional
time. The difference would be bigger if the DBPedia extract would have contained
a higher degree of wrong statements. However, the runtime increases as we add
wrong statements that cause a bigger and more complex problem. Moreover, we
can report that this use case is more difficult than standard RDF(S) reasoning (see
Section 5.1.2) as it requires not only to apply the rules to infer statements but also
to resolve conflicts. Additionally, the occurrence of temporal annotated statements
and weighted statements makes this use case more complex. It takes ≈ 7 minutes
(compared to ≈ 3.75) when the dataset contains 200k statements and ≈ 18.3 min-
utes (compared to ≈ 9.5) when it contains 313k statements to compute the MAP
state. However, the results show that our application is able to process a dataset
containing at least 2, 500 intervals as well as over 300k weighted statements that
cause many conflicts in a reasonable amount of time.

5.2.4 Discussion

We used a dataset derived from DBPedia in order to evaluate if our approach cor-
rectly resolves inconsistencies in a temporal probabilistic knowledge base. We
applied our application to the original dataset in the first part of the experiments.
Despite the fact that not all removed statements are erroneous statements, we can
report that our application acts as intended in all situations. This leads to the con-
clusion that it is necessary that a domain expert checks areas of the dataset in which
our applications detects inconsistencies. However, even an unsupervised approach
leads to reasonable results. The DBPedia extract contains only a very small share

80 CHAPTER 5. EVALUATION AND APPLICATIONS

(< 0.5%) of statements that violate the defined constraints. Thus, we extended the
dataset with generated statements in order to investigate how well our application
handles a higher degree of wrong statements. Moreover, we varied the weight of
the added statements in order to make them more explicit to the reasoner. The re-
sults of the experiments indicate that our application detects erroneous statements
with a very high precision if their weight is lower than that of the correct state-
ments. The precision drops if all statements have a similar weight as this leads to
situations in which the reasoner cannot make a founded decision. This is caused by
the fact that neither the dataset nor the defined constraints allow fine-grained rea-
soning. However, the F-measure of the dataset also improves when all statements
have a similar weight. Furthermore, the experiments show that our application is
still able to achieve good results when the dataset contains a high percentage of
wrong statements. In fact, the results are to a certain degree independent from the
share of wrong statements in the dataset. This shows that the application is scalable
with respect to an increasing amount of inconsistencies in the dataset. Moreover,
it is necessary that the interaction of erroneous statements with other statements
leads to inconsistencies according to the defined constraints. This is not always
given in the used dataset as the connectivity is relatively low and the data is not
very fine-grained. In consequence of that, the recall of the removed statements is
well below 100% for all test cases. We were only able to define a few hard con-
straints. However, the number of required constraints would be much higher if we
do not exploit the RDF(S) reasoning capability of our approach. The observed run-
times indicate that our application can handle more complex use cases (e.g., higher
connectivity and also soft constraints) of at least comparable size. So, we showed
that our approach improves the precision while hardly decreasing the recall of a
probabilistic knowledge base containing many temporal facts.

5.3. SENSOR DATA 81

5.3 Sensor Data

Another use case provides a sensor data dataset that is used to evaluate activity
recognition algorithms. At first view, this use case seems to be unrelated to our
approach but its characteristics make it valuable for our evaluation. It contains
temporal annotated statements that can be validated using temporal constraints.
Moreover, an ontology that describes the relations between the statements by defin-
ing weighted axioms was proposed by Helaoui et al. [2013]. The axioms contained
in this ontology can be transformed to temporal constraints. Beside the data and
the rules, there is also a gold standard that can be used for objective assessment.
So, this dataset does not only fulfill all requirements to apply our application but
also allows us to show that our approach is domain independent.

5.3.1 Dataset & Constraints

The chosen dataset was collected in a real-life scenario in the context of the EU re-
search project “Activity and Context Recognition with Opportunistic Sensor Con-
figurations”13. The data was collected in a smart room simulating a studio flat that
was equipped with multiple sensors that recorded the activities of users carrying out
morning routines with the focus on maximizing the activity primitives [Lukowicz
et al., 2010]. The sensors are able to detect the locomotion (e.g., stand, lie) and
the body gesture (e.g., move, release) of the user as well as the interaction with
certain objects (e.g., a knife, a bottle). The combination of body gestures and ob-
jects leads to atomic gestures like “move knife”. A timestamp and the duration got
stored for each detected atomic gesture and locomotion. Moreover, several atomic
gestures got aggregated to a complex activity. However, we are using the annotated
dataset14 introduced by Helaoui et al. [2013] that contains two additional interme-
diate levels. This dataset comprises the sensor data of three users (S10, S11 and
S12) that execute three different routines (ADL1 – 3).

The dataset comprises four different levels to which the gestures and activi-
ties are assigned according to their duration and dependencies on other activities.
Higher level activities have a longer duration because they are composed of mul-
tiple lower level activities. The different levels of the dataset have the following
characteristics:

13http://www.opportunity-project.eu
14http://webmind.dico.unimi.it/care/annotations.zip

http://www.opportunity-project.eu
http://webmind.dico.unimi.it/care/annotations.zip

82 CHAPTER 5. EVALUATION AND APPLICATIONS

Atomic gestures (AG, Level 4) have a very short duration and cannot be decom-
posed in simpler ones (e.g., reach knife). However, it is possible that a sub-
ject executes different gestures in parallel as her/his hands can independently
interact with objects.

Manipulative gestures (MG; Level 3) last only very few seconds and depend on
atomic gestures (e.g., fetch knife). Multiple Level 3 gestures can be executed
in parallel.

Simple activities (SA, Level 2) are temporal sequences of manipulative gestures
(e.g., prepare salami includes reach knife, cut salami and release knife).
However, a specific simple activity can depend on different manipulative
gestures. The typical duration is a few seconds.

Complex activities (CA, Level 1) are concurrent executions of simple activities
and can last from a few minutes to hours (e.g., sandwich time can depend on
prepare salami and other activities).

Hence, the activities are modeled in a hierarchical structure which includes
temporal dependencies. An overview on the activities existing in the dataset is
presented in Table 5.12. The relations between the activities are modeled in a mul-
tilevel activity recognition ontology 15 based on the idea that more complex activi-
ties are based on simpler one. Atomic gestures (Level 4) got directly inferred from
the data of the sensors based on interactions with certain objects. Hence, these
activities are observed which means that statements using Level 4 activities are
explicitly true or false. Manipulative gestures depend on atomic gestures and the
semantic context of the activities (e.g., an object can be moved to put it down or to
fetch it). Therefore, they [Helaoui et al., 2013] model the gestures in a probabilis-
tic ontology and resolve possible inconsistencies by computing the most probable
consistent ontology using the reasoner ELOG [Noessner and Niepert, 2011]. This
ontology is then used to infer the manipulative gestures by standard subsumption
and equivalence reasoning. Similarly, they computed the axioms for the simple
activities, which depend on a sequence of manipulative gestures, and complex ac-
tivities, which depend on simple activities. Finally, they assign manually weights
(i.e., confidence scores) to the axioms based on common sense knowledge and ob-
servation of the data. The confidence scores are in the range from 0.15 to 1.00
which makes it possible to interpret them as a probability or weight of a constraint.

The resulting axioms can be used to extract rules that allow inferring activi-
ties on higher levels. Thus, we will provide an example for each level and explain

15http://webmind.dico.unimi.it/care/multilevel_activities.owl

http://webmind.dico.unimi.it/care/multilevel_activities.owl

5.3. SENSOR DATA 83

Locomotion, Gesture, Activity
Locomotion Lie, Sit, Stand, Walk
Level 4 Open, Close, Reach, Release: Dishwasher, Door(1,2),

Drawer(1,2,3), Fridge
Move, Reach, Release: Bottle, Bread, Cheese, Milk,
Salami, Sugar, Chair, LazyChair, WashableObject(Cup,
Glass, Knife(Cheese, Salami), Plate, Spoon)
BiteBread, CutBread, CutSalami, SipCup, SipGlass, Spread-
Cheese, StirSpoon, UnlockDoor(1,2), LockDoor(1,2),
ReleaseSwitch, ReachSwitch, CleanTable, ReachTable,
ReleaseTable

Level 3 Putdown, Fetch: Bottle, Bread, Cheese, Milk, Salami,
Sugar, Chair, LazyChair, WashableObject (Cup, Glass,
Knife(Cheese, Salami), Plate, Spoon)
Open, Close: Dishwasher, Door(1,2), Drawer(1,2,3), Fridge
InteractwithChair, InteractwithLazychair, SwitchSwitch,
CleanTable

Level 2 Get, Putaway: Bottle, Milk, Cheese, Salami, Bread
PrepareSalami, PrepareCheeseSandwich, PutSugar,
GetKnifeSalami, GetKnifeCheese, GetPlate, EatBread,
DrinkfromCup, DrinkfromGlass, LieonLazychair

Level 1 Cleanup, CoffeeTime, SandwithTime

Table 5.12: Sensor Data: Overview on the activities.

84 CHAPTER 5. EVALUATION AND APPLICATIONS

how we interpret it. An activity recognition system can only rely on the locomo-
tion and the atomic gestures as its purpose is to infer the activities of the levels 1–3.

Level 3: Manipulative gestures can be directly inferred from atomic gestures. The
following example expresses that FetchKnifeSalami can be inferred from the
atomic gesture ReachKnifeSalami.

MGFetchKnifeSalami wManipulativeGesture

u ∃hasMGActor.(Person

u ∃hasAtomicGesture.ReachKnifeSalami)

[confidence : 0.9]

(5.4)

Level 2: Simple activities are defined as a sequence of lower level activities,
mostly Level 3 activities. For example, the sequence of the manipulative gesture
FetchKnifeSalami, the atomic gesture CutSalami and the manipulative gesture
PutdownKnifeSalami identifies the simple activity PrepareSalami. Note that
the order of the activities is important in order to match the axiom. They use the
property hasOrder in order to express the sequence in the class description. An
activity related to a higher order has to occur directly before the activity having the
next lower order as the property models the memory of a subject.

PrepareSalami wSimpleActvitiy

u ∃hasMemory.(Memory u ∃hasOrder = 1

u ∃hasMG.PutdownKnifeSalami)

u ∃hasMemory.(Memory u ∃hasOrder = 2

u ∃hasAG.CutSalami)

u ∃hasMemory.(Memory u ∃hasOrder = 3

u ∃hasMG.FetchKnifeSalami)

[confidence : 1.0]

(5.5)

Level 1: Complex activities follow from simple activities. For instance, the simple
activity PrepareSalami happens during the complex activity SandwichTime.

SandwichTime wComplexActivity

u ∃hasCAActor.(Person

u ∃hasSimpleActivity.PrepareSalami)

[confidence : 0.9]

(5.6)

5.3. SENSOR DATA 85

Hence, the ontology provides two different types of constraints. The activities of
Level 3 and Level 1 can be directly inferred by applying a simple rule, e.g.:

PrepareSalami⇒ SandwichTime (5.7)

The rules related to simple activities (Level 2) are more complex as they rely on a
specific sequence of activities, e.g.:

(FetchKnifeSalami, CutSalami, PutdownKnifeSalami)⇒ PrepareSalami (5.8)

Additionally, the ontology provides class disjointness axioms that define which
activities cannot happen at the same time. In general, this comprises different ac-
tivities on the same level that describe contrary interactions with the same object
(e.g., fetch/putdown (Level 3) or get/put away (Level 2)). Moreover, only one com-
plex activity can hold at a time. So, this dataset provides a large set of constraints
which makes it a valuable use case for our application. We will describe how we
express this use case with our formalism in the next section.

5.3.2 Data Model

In the previous section, we outlined the characteristics of the dataset. The next step
is it to transform it to a model that fits our application. This includes two parts:
First, we introduce a RDF model for the data. Second, we explain how we trans-
form the constraints. However, in order to provide a better understanding of the
chosen constraint design, we need to explain some preprocessing steps beforehand.

RDF Model

We follow the approach of Helaoui et al. [2013] and introduce five object proper-
ties to connect a person (i.e., a subject) to a locomotion, a gesture or an activity
(see Table 5.1316). Additionally, we annotate each statement with an interval, i.e.,
the points in time when the statement holds. Thus, each statement describing an
activity of a user is annotated with at least one interval.

The following RDF statements express that the subject S10 executes the simple
activity “prepare salami” twice during the complex activity “sandwich time” (t1
< t2 < t3 < t6 < t7 < t10):

sdOnt:S10 sdOnt:hasLevel1Actvity sdOnt:CASandwichTime. {[t1,t10]}
sdOnt:S10 sdOnt:hasLevel2Actvity sdOnt:SAPrepareSalami. {[t2,t3], [t6,t7]}

16“sdOnt” is an arbitrary namespace.

86 CHAPTER 5. EVALUATION AND APPLICATIONS

Property Domain Range
sdOnt:hasLocomotion

Person

locomotion
sdOnt:hasGesture atomic gesture
sdOnt:hasLevel3Activity manipulative gesture
sdOnt:hasLevel2Activity simple activity
sdOnt:hasLevel1Activity complex activity

Table 5.13: Sensor Data: Properties used to model the activities.

This representation is sufficient for all Level 1–3 activities. Contrary, we need
to explicitly model statements describing the atomic gestures (sdOnt:hasGes-
ture) or the state of locomotion (sdOnt:hasLocomotion) as observed state-
ments. This is necessary as those statements represent the input information of
the activity recognition and we do not want to infer statements using these proper-
ties. The following example expresses that the user S10 “reaches the salami knife”
twice while standing:

sdOnt:S10 sdOnt:hasLocomotion sdOnt:Stand. {[t1,t10,true]}
sdOnt:S10 sdOnt:hasGesture sdOnt:MGReachKnifeSalami. {[t2,t3,true],

[t6,t7,true]}

Hence, this use case relies on different possibilities to express temporal anno-
tated statements supported by our formalism. It shows that all of the respective
features are useful and enable a wide range of possible applications.

Data Preprocessing

The used dataset splits up the recorded data into four files. Each file describes the
recorded activities at a different level. The three files describing the activities of
Level 3, Level 2 and Level 1 provide the gold standard. These files contain the start
and end time of an executed activity in milliseconds:

1213421 1258153 CACleanup
1280587 1307487 CARelaxing

The fourth file contains the atomic gestures and the states of locomotion of
a user and serves as input of the activity recognition. The format of this file is
different from the gold standard. It provides the start time of a gesture/locomotion
in milliseconds, the duration of the gesture/locomotion in seconds, the locomotion,
the gesture of the left hand as well as the gesture of the right hand:

5.3. SENSOR DATA 87

1247921 10.131 Stand null CleanTable
1258154 0.759 Stand null null
1258921 1.782 Walk null null
1260721 1.089 Stand null null
1261821 3.729 Walk null null
1265587 0.231 Walk ReachDoor2 null
1265821 0.330 Stand ReachDoor2 null

This small excerpt does already show some problems which make preprocess-
ing necessary. First, the duration of the gestures varies considerably and is very
precise. This is problematic as we would end up with too many different intervals.
Moreover, it can falsify the evaluation as gestures that last longer have a stronger
influence on the result despite the fact that the constraints do not consider the length
of a gesture. Another problem is that gestures are split into multiple intervals when
the state of locomotion changes. This is inconvenient as the locomotion is not
used in the respective constraints. In order to circumvent those difficulties, we de-
cided to group all gestures that start within one second. Moreover, we group all
sequences that do not contain a gesture. This step reduces the number of inter-
vals without the loss of meaningful information. The result of these preprocessing
steps is an ordered sequence of n intervals that contain multiple activities which
we can enumerate from 1 to n. The previous example can be transformed to this
representation:

1 1 Stand null CleanTable
1 1 Stand null null
2 2 Walk null null
2 2 Stand null null
2 2 Walk null null
3 3 Walk ReachDoor2 null
3 3 Stand ReachDoor2 null

The second column contains the end of the interval instead of the duration. We
use intervals with the same start value and end value as we follow an event-based
approach in which the duration of an interval does not matter. It is also not prob-
lematic that there are blocks with no gestures and different states of locomotion. In
fact, we ignore those blocks when we assess the quality of our approach as they do
not provide relevant information. The aggregation can cause that multiple gestures
are assigned to the same interval. This is not problematic as long as the gestures are
not mutual exclusive but it needs to be considered while designing the constraints.
However, even the original data describes up to two activities at the same time as
gestures are recorded for both hands. Thus, the aggregation does not introduce a

88 CHAPTER 5. EVALUATION AND APPLICATIONS

new difficulty but it increases the likelihood of such a scenario. Finally, we trans-
form the data to temporal annotated RDF triples (true associated to an interval
indicates that the respective statement is observed):

sdOnt:S10 sdOnt:hasLocomotion sdOnt:Stand.
{[1,1,true], [2,2,true],[3,3,true]}

sdOnt:S10 sdOnt:hasLocomotion sdOnt:Walk. {[2,2,true]}
sdOnt:S10 sdOnt:hasGesture sdOnt:MGCleanTable. {[1,1,true]}
sdOnt:S10 sdOnt:hasGesture sdOnt:MGCleanTable. {[3,3,true]}

Please note that preprocessing the data also enables that we can compare our
results to the results of Helaoui et al. [2013] as their application processes the data
in a similar way.

Constraints

In order to detect activities based on the sensor data, i.e., locomotion and atomic
gestures, we need to model rules that describe the relations between the activities
on the different levels. Therefore, we primarily rely on the constraints detected by
Helaoui et al. [2013] but also add additional rules. Moreover, we add constraints
that are required by our approach like the aggregation of interval relations.

Aggregation of interval relations. The interval relations introduced by Allen
[1983] are too specific in this context. Thus, we need to introduce two new rela-
tions that aggregate some of those. The first relation is called sdOntDuring
and is used to compare the interval of a lower level activity to the interval of
a higher level activity. The higher level interval should contain the intervals of
all related lower level activities. Hence, it aggregates the relations tDuring,
tStarts, tFinishes and tEqual (see Section 4.3). The second relation is
called sdOntBefore and is used to model a sequence of activities which is re-
quired to infer Level 2 activities. It aggregates the relations tBefore, tMeets,
tOverlaps and tEqual. So, we need eight constraints of the following form:

tBefore(i1, i2)⇒ sdOntBefore(i1, i2)

One could argue that a few aggregations are not required and cause an unrea-
sonable overhead. We can weaken this argument as we only have to deal with
a small number of disjoint intervals (< 500) which makes it completely unprob-
lematic to ground all of those constraints. Moreover, it shows the benefits of the
possibility to aggregate intervals. For instance, without this feature we would end
up with a higher number of complex constraints. For example, a rule that models

5.3. SENSOR DATA 89

the sequence of four activities needs to describe three interval relations (i.e., i1−i2,
i2−i3, i3−i4). If we were not able to introduce the new relation sdOntBefore,
we would end up with 34 = 81 constraints instead of one constraint using the new
interval relation. This causes not only much more overhead than computing the
new relations but it may even lead to a model that that is too big to be processed by
a Markov Logic solver. It also is more convenient to maintain a smaller number of
constraints. Hence, we need to rely on the interval relations sdOntBefore and
sdOntDuring.

Simple constraints. The first type of activity recognition rules models the de-
pendencies between Level 4 and Level 3 as well as between Level 2 and Level 1
(see Equation 5.7). The correct model of those would be:

quad(s, “hasL2A”17, “PrepareSalami”, i1) ∧ sdOntDuring(i1, i2)

⇒ quad(s, “hasL1A”, “SandwichTime”, i2) [weight : 90]

However, we can simplify this formula as we only rely on the intervals pro-
vided by the sensor data because we are not able to infer overarching intervals (see
Section 4.3). In consequence of that, we can directly assign the interval of the
lower level activity to the higher level activity.

quad(s, “hasL2A”, “PrepareSalami”, i1)

⇒ quad(s, “hasL1A”, “SandwichTime”, i1) [weight : 90]

It is noteworthy that we use the predicate quadO for statements having the
property sdOnt:hasGesture or sdOnt:hasLocomotion to prevent infer-
ring statements that use these properties.

17We abbreviate the properties listed in Table 5.13 in order to keep the formulas shorter.

90 CHAPTER 5. EVALUATION AND APPLICATIONS

Complex constraints. The rules that are required to infer activities on Level 2
are more complex (see Equation 5.8). We model them in the following way:

quad(s, “hasL3A”, “FetchKnifeSalami”, i1) ∧
quadO(s, “hasAG”, “CutSalami”, i2) ∧

quad(s, “hasL3A”, “PutdownKnifeSalami”, i3) ∧
sdOntBefore(i1, i2) ∧ sdOntBefore(i2, i3)

⇒
quad(s, “hasL2A”, “PrepareSalami”, i1) ∧
quad(s, “hasL2A”, “PrepareSalami”, i2) ∧
quad(s, “hasL2A”, “PrepareSalami”, i3)

[weight : 100]

This rule does not exactly correspond to the intention of the initial axiom. One
problem is that activities on the left-hand side of the rule must not only be in a
specific sequence but also must directly follow each other, i.e., the sequence has to
be cohesive. In theory, we could use the interval relation tMeets to model this
but this would not work very well in practice. This has several reasons:

1. It is possible that multiple activities of a sequence are assigned to the same
interval.

2. One of the activities partially overlaps within another activity of the respec-
tive sequence.

3. The sequence can be interrupted by short phase for which no gesture or an
unrelated gesture is registered.

Hence, we cannot use the relation tMeets which is the only relation that consid-
ers the temporal distance between two intervals. The chosen rule design addresses
these problems by using an aggregated interval relation. However, it has the disad-
vantage that it also matches activities that are unrelated as the rules do not consider
their distance of time. We address this issue by applying our application only to
statements covering a small time frame (see Section 5.3.3). As already mentioned
in the context of the simple constraints, we cannot infer overarching intervals. So,
we cannot formulate a constraint that introduces an interval i4 that overarches
the other intervals (i.e., i1,i2,i3 sdOntDuring i4) and infer the axiom

5.3. SENSOR DATA 91

timet1 t2 t3 t4 t5 t6t0

CleanupCoffe-
Time

CleanupCleanupCleanup

Cleanup

Figure 5.4: Sensor Data: Continuous complex activities. This figure illustrates
that a sequence of complex activities can be interrupted by another activity for a
short period of time. The constraints counteract such scenarios.

quad(s,hasL2A,PrepareSalami,i4).

In order to transform the previous constraint to the conjunctive normal form,
we need to split it up into three rules as we cannot have a conjunction of literals on
the right-hand side of implication. Each of the resulting constraints has the same
left-hand side but has only one literal from the right-hand side. The weight of each
constraint is one-third of the weight of the original formula (100/3 = 33.33).

Continuous complex activities. Complex activities represent the highest level
to describe the activity of a subject. They are characterized by the execution of
multiple simple activities which causes durations in the range from a few minutes
to a few hours. The previously introduced rules do not consider the context in
which a simple activity is carried out. Hence, it is possible that only one simple
activity leads to a different complex activity than the previous and following one
(see Figure 5.4). In order to block the respective rule, we introduce constraints that
ensure a continuous assignment of a complex activity:

quad(s, “hasL1A”, “SandwichTime”, i2) ∧ sdBefore(i1, i2)

⇒ quad(s, “hasL1A”, “SandwichTime”, i1) [weight : 30]

quad(s, “hasL1A”, “SandwichTime”, i1) ∧ sdBefore(i1, i2)

⇒ quad(s, “hasL1A”, “SandwichTime”, i2) [weight : 30]

92 CHAPTER 5. EVALUATION AND APPLICATIONS

These constraints express that all upcoming respectively all previous intervals
should have the same complex activity. We decided against using the interval rela-
tion tMeets as the relation sdOntBeforemakes the intention of the constraints
more obvious and would also work for the original (not preprocessed) dataset. In
order restrict the influence of the relation sdOntBefore, we will use a window
within we predict the activities (see Section 5.3.3). Moreover, we could have re-
placed the complex activity by a variable but decided to define two rules for each
complex activity as there are only four of them.

Disjoint activities. The next set of constraints ensures that certain activities can-
not happen at the same time. This comprises certain pairs of activities, e.g., “open
door” and ”close door”, but also all complex activities are mutually exclusive. The
respective rules have the following form:

quad(s, “hasL1A”, “SandwichTime”, i1) ∧ sdOntDuring(i1, i2)

⇒ !quad(s, “hasL1A”, “Cleanup”, i2)

In fact, we express that the property sdOnt:hasLevel1 activity is func-
tional with respect to a specific point in time by introducing constraints that make
all complex activities mutually exclusive. We considered adding similar soft con-
straints between all activities on each level as it is unlikely that a subject executes
multiple activities of the same level at the same time. However, this would lead
to more than 2.000 additional constraints. Instead, we introduce another set of
constraints which we explain in the following.

No activity. The final set of constraints is tailored to our approach. In order to
detect wrongly recognized activities, we need violated constraints. The previously
introduced constraints (beside the disjointness constraints) can only infer activi-
ties but do not directly express which activities cannot follow from certain lower
level observations. Even the rules that ensure disjointness are not able to remove
all activities in an interval. Hence, we introduce for each activity a rule that is al-
ways violated. The union of all constraints of this type express that a subject does
nothing if there is no evidence for a specific activity. So, we are able to detect all
statements that do not follow from an activity recognition rule:

!quad(s, “hasL1A”, “SandwichTime”, i1) [weight : 1.1]

5.3. SENSOR DATA 93

Level Activities Disjoint Pairs Constraints
3 42 19 38

2 21 5 10

1 4 6 12∑
67 30 60

Table 5.14: Sensor Data: Number of activities per level and number of disjoint
activities. Hence, we need 67 “no activity” constraints and 60 hard constraints to
model mutual exclusive activities.

Number of constraints and weights. As previously mentioned, we define for
each possible activity a constraint having a weight of 1.1 that contradicts the ac-
tivity. This leads to 67 “no activity” soft constraints (see Table 5.14). In order to
detect inconsistent statements, we give all statements a weight of 1.0. Hence, each
statements has a weight of −0.1 excluding the other constraints. This gives most
of the power to the 637 activity recognition constraints (i.e., simple and complex
constraints). Table 5.15 shows how the constraints are distributed in terms of their
length. Actually, the most rules are simple (length = 1) but when we transform all
rules to the conjunctive normal form rules relying on a sequence of activities re-
quire a similar number of constraints. The weights of the activity recognition rules
range from 10 to 100 with an average of 68.62 and a standard deviation of 27.28
which make them more relevant than the “no activity” rules. Moreover, we define
8 constraints that ensure that complex activities are not interrupted by single activ-
ities that do not correspond to the overarching complex activity. Each rule of these
rules has a weight of 30 which ensures that one complex activity, surrounded by
two different identical complex activities, gets their weight reduced by 60 which
is just below the average weight of the activity recognition rules. However, the
weights of all constraints depend only on common knowledge and observation of
the data. Hence, learning them could lead to better results. We also create 60 hard
constraints to model mutual exclusive activities (see Table 5.14) and 8 hard con-
straints that define the used temporal relations. So, we model this use case with a
total of 780 constraints of various complexity and type. We deactivate the RDF(S)
reasoning for this use case as none of the constraints relies on it.

5.3.3 Experiments

We introduced a RDF model for a sensor data dataset that can be used for activ-
ity recognition in the previous section. Due to the design of the constraints, we
can either follow an approach that infers all the activities based on the input data,

94 CHAPTER 5. EVALUATION AND APPLICATIONS

Length Count Constraints
1 175 175

2 135 270

3 44 132

4 15 60∑
– 637

Table 5.15: Sensor Data: Number of the activity recognition rules grouped by the
length of the sequence of the lower level activities. The weights of those rules
range from 10 to 100 with an average of 68.62 and a standard deviation of 27.28.

S10 S11 S12
ADL1 366 464 465

ADL2 321 347 386

ADL3 271 404 379

Table 5.16: Sensor Data: Number of intervals per test case.

i.e., statements describing the atomic gesture and the locomotion of the subject, or
detect statements that violate the constraints in a document that already contains
activities of the higher levels. In the first scenario, the input of our application
contains no statements describing activities of Level 3 and higher. In the second
scenario, the input of our application contains the observed atomic gestures and
the different states of locomotion as well as all possible high level activities (Level
3 – 1) for each interval. Both approaches should lead to same results but possi-
bly different runtimes. Hence, we follow the latter approach as this corresponds
to the intention of our application which is to remove erroneous statements from
a dataset. In particular, we create for each interval of the respective test case all
possible activities (67 per interval (see Table 5.14)). The different test cases av-
erage 378 intervals (see Table 5.16). This leads to over 25, 000 potentially wrong
statements per test case. In combination with the 780 constraints, the problem is
too big to be solved at once. Thus, we apply a domain-specific segmentation into
subproblems.

Segmentation

We rely on a domain-specific approach to split a test case into smaller subproblems
as it is not feasible to compute the complete solution at once due to the high number
of conflicting constraints. In order to determine the activities, we only need to

5.3. SENSOR DATA 95

activity X activity Y

time5 10 15 20 25 300

step size:15 step 1 step 2

step size: 10 step 1 step 2 step 3

sliding
window

step 1
step 2

step 3
step 4

approach:

Figure 5.5: Sensor Data: A lower step size leads to a higher fragmentation which
hinders the activity recognition. Increasing the step size decreases the chance of
fragmentation but may lead to worse results. Hence, we also apply a sliding win-
dow approach in order to use a small step size and decrease the chance of fragmen-
tation. This figure does only illustrate the idea as all pictured step sizes are rather
small.

consider the time frame in which the activity is actually carried out (see Figure 5.5).
Hence, there is no benefit to compute all activities of a test case at once. We also
expect better results by computing the activities for smaller time frames as this fits
better to the design of our rules. Therefore, we validate the activities step by step
in disjunctive subproblems(e.g., 1 − 10, 11 − 20, . . .). This approach introduces
the problem that activities get fragmented into different subproblems. For instance,
if we choose a step size of five and the average length of a simple activity is three
then there is a 40% chance that the activity does not fall in a single step. Thus, the
steps cause borders that hinder the correct detection of simple activities. We can
circumvent this problem by determining the activities in a sliding window (e.g.,
1 − 10, 2 − 11, . . .). However, this approach is not very efficient as we compute
the activities for each interval multiple times. Moreover, it takes too much time to
compute the optimal step size, which we need to do first, using the sliding window
approach. Selecting the best step size is not trivial:

small step size: A smaller step size fits better to the design of our constraints
as we cannot model cohesive sequences of activities. Hence, a small step
size decreases the probability that a constraint matches unrelated activities.
However, fragmentation of activities is probable and can cause that some
activities cannot be recognized. Moreover, a too small step size leads to a
longer total runtime as the application executes identical parts more often
(e.g., loading the constraints).

96 CHAPTER 5. EVALUATION AND APPLICATIONS

large step size: A larger step size has the advantage that it is less probable that
activities get fragmented. It might be a problem that a step contains multiple
simple activities as the respective rules could match unrelated lower level
activities. However, this is not necessarily a problem if the section comprises
simple activities that rely on different lower level activities. A large step size
ensures that the time range of a complex activity is not interrupted by a
different complex activity. It also causes that phases in which no complex
activity hold get an activity assigned which might reduce the precision.

Hence, we need to test different step sizes in order to see which leads to the best re-
sults. Once we have determined a good step size, we will apply the sliding window
approach. In particular, we want to answer the following questions:

• SD-Q1: Which step size leads to the best result in terms of precision, recall
and F-measure?

• SD-Q2: What is the effect of the step size on the total runtime? How fast
get the subproblems solved?

• SD-Q3: How differentiates the runtime between the “remove wrong” and
the “infer new” statements approach?

• SD-Q4: Can the sliding window approach improve the results?

Results

SD-Q1: Precision and Recall. We removed the inconsistent statements (activi-
ties) from a document using different step sizes (5, 10, 15, 20, 25, 50, 75, 100, 150,
200) and computed the respective precision, recall and F-measure for each level
(see Figure 5.6). In general, we observe that all measures decrease for high step
sizes (> 75). This corresponds to our assumption that the constraints work best for
smaller step sizes. We also notice that small step sizes (< 10) lead to worse results
than medium step sizes. Even though we get the best results for the lowest level
(Level 4) using a small step size, higher levels do not profit from it due to a high
degree of fragmentation. The precision and recall decreases continuously for Level
3. This is surprising as the respective statements directly depend on the observed
Level 4 activities. Hence, the higher level activities implicitly affect the activity
detection on Level 3 due to the equivalence (A ⇒ B) ⇔ (¬B ⇒ ¬A). Thus, we
get the best results for step sizes in the range from 10 to 30 for which fragmentation
of activities is less probable but the F-measure of Level 3 is still high. However, we
achieve the best results for Level 1 for relatively large intervals. This shows that
the “continuous complex activities” constraints have a positive effect and work as

5.3. SENSOR DATA 97

intended as a phase where a complex activity holds does not get interrupted by
another complex activity. However, those constraints have a negative effect on the
results of the lower levels as the observed atomic gestures and directly inferable
activities do not correspond to the set Level 1 activity. Hence, the predictions for
Level 3 and Level 2 are not as accurate anymore.

SD-Q2: Runtime. We recorded the time that is required to solve one step as
well as the total runtime (see Figure 5.7(a)18,19). For step sizes smaller than 100
we observed that the time that is required to solve one step is nearly constant (≈ 55
seconds). This is contrary to the expectation as the number of input statements
increases linearly (see Figure 5.7(b)). The reason for this is that rockIt needs most
of the time for processing the constraints and computing the groundings. In partic-
ular, rockIt creates one database table for each constraint and each predicate which
sums up to round about 800 database tables in our use case. The actual computa-
tion of the MAP state, i.e., solving of integer linear programs, takes only a fraction
of the runtime. Hence, the total runtime decreases while we increase the step size
for step sizes smaller than 100 because processing a test case using a larger step
size requires less steps. However, the computation of the MAP state for larger step
sizes takes much more time than initializing the Markov Logic solver. This causes
that the total runtime as well as the time to solve one step increases for higher step
sizes. We see that the runtime rapidly increases for high step sizes. This indicates
that it is not feasible to determine all activities of a test case at once. The reason for
this observation are the limitations of the Markov Logic solver, which are caused
by the complexity of the problem, as all other parts of the application take together
approximately 0.5% of the runtime of the Markov Logic solver (see Figure 5.7(c)).
The diagram shows it only for the step size 5 but we measured similar results for
small and medium step sizes while the ratio drops to 0.1% for the step size 200.
However, this is not an issue as we measure the shortest overall runtime for step
sizes that lead to the best activity recognition results.

SD-Q3: Create vs. Remove. The design of the constraints allows to detect in-
consistent statements as well as to infer new statements. Both approaches should
lead to the same results but different runtimes. We conducted the previous experi-
ments providing all possible activities for each interval. Thus, the application could
only detect inconsistent (wrong) statements (see Figure 5.7(b)) which is basically a

18We excluded the test case S10-ADL2 as it had a much higher runtime for higher step sizes than
all other test cases.

19We considered only complete/full steps when computing the average runtime per step size.
Hence, we ignored the last step for most test cases. However, we relied on all steps to com-
pute the runtime totals.

98 CHAPTER 5. EVALUATION AND APPLICATIONS

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0 20 40 60 80 100 120 140 160 180 200

L3 precision L2 precision L1 precision total precision
step size

(a) precision

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0 20 40 60 80 100 120 140 160 180 200

L3 recall L2 recall L1 recall total recall
step size

(b) recall

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0 20 40 60 80 100 120 140 160 180 200

L3 fmeasure L2 fmeasure L1 fmeasure total fmeasure
step size

(c) F-measure

Figure 5.6: Sensor Data: Precision, Recall & F-measure depending on different
step sizes. All three measures decrease for higher step sizes. Overall, the best
result can be achieved for step sizes in the range from 10 to 30. Abbreviations:
L3 = Level3, L2 = Level2, L1 = Level1.

5.3. SENSOR DATA 99

100

200

300

400

500

600

2

4

6

8

10

12

14

ru
nt

im
e

(t
ot

al
)

[m
in

]

ru
nt

im
e

(s
te

p)
 [

m
in

]

0

100

0

2

0 50 100 150 200

ru
nt

im
e

(t
ot

al
)

[m
in

]

ru
nt

im
e

(s
te

p)
 [

m
in

]

step size
per step total

(a) runtime per step & total runtime

4,000

6,000

8,000

10,000

12,000

14,000

0

2,000

4,000

0 50 100 150 200

nIQ nCQ nWQ

step size

(b) problem size

0.2%

0.3%

0.4%

0.5%

tEval

tRDF

tOut

tDB

0.0%

0.1%

0.2%

step size: 5

tDB

tMLN

tLoadModel

(c) modules

Figure 5.7: Sensor Data: The diagram (a) shows the time that is required to solve
a single subproblem (left y-axis) as well as the total runtime (right y-axis) for dif-
ferent step sizes (x-axis). The effect of higher step sizes on the total runtime is
undervalued in the diagram as the last step can be much smaller than the selected
step size (see Table 5.16). The diagram (b) illustrates the problem size for different
step sizes. Diagram (c) shows how much time the modules of our application need
in relation to the computation of the MAP state (tMAP).

100 CHAPTER 5. EVALUATION AND APPLICATIONS

pure data cleansing approach. In order to determine the runtime differences and to
validate our assumption that both approaches lead to the same results, we executed
all test cases for the different step sizes only providing the states of locomotion and
atomic gestures (Level 4). We can confirm that both approaches lead to the same
results due to the “no activity” constraints that negate all activities. With respect
to the runtime, we cannot measure noticeable differences. For small and medium
step sizes (<= 100) we record that the “create statements” approach is on aver-
age 1% faster (standard deviation = 3%) than the “remove statements” approach.
This supports our previous observation that most of the time is required to initialize
the Markov Logic solver. For large step sizes, the “create statements” approach is
5% slower (standard deviation = 30%). However, at least the results for large step
sizes are not representative as the sample size is too small. For small step sizes,
which lead to the better activity recognition results, we can report that there is no
noticeable difference between both approaches.

SD-Q4: Sliding Window. Finally, we apply the sliding window approach with
the goal to improve the activity recognition. Based on the previous results, we de-
cided to select the step size 15 and slide it 5 steps each time (e.g., 1 − 15, 6 − 20,
11 − 25, . . .). This ensures that we consider each activity sequence that is dis-
tributed over 11 time points. So, we are in a range where we achieve a higher
precision compared to other step sizes and expect to increase the recall by decreas-
ing the chance of fragmentation. Moreover, the step size is long enough to detect
Level 1 activities accordingly. Compared to the standard approach, we expect at
least to retain the precision of step size 10 and to achieve the recall of step size
30. The chosen approach requires us to combine multiple predictions for each
interval as the windows are overlapping. Therefore, we can basically follow an
approach that leads to a high recall or one that improves the precision. As we com-
bine only up to three predictions (i.e., overlap of three windows) there is no room
to balance between both possibilities. So, we get the highest recall when we take
all predictions (see Figure 5.8). The recall for Level 1 raises to over 90% but we
do not check if mutual exclusive activities are assigned to the same interval. In
order to improve the precision, we consider only activities that occur in the ma-
jority of the predictions, e.g., an activity has to occur in at least two of the three
overlapping windows. We also take into account that it is possible that none ac-
tivity is detectable for some intervals. Besides, the majority vote approach ensures
that the constraints that enforce mutual exclusive activities are not violated in the
final prediction. The resulting precision is very similar to the standard approach
for comparable step sizes which indicates that the borders introduced by the steps
only affect the recall. Thus, it is reasonable that the recall increases and that the

5.3. SENSOR DATA 101

0.6

0.7

0.8

0.9

1.0

0.6
L1yprecision totalyprecision L1yrecall totalyrecall L1yfmeasure totalyfmeasure

stepysizey10 stepysizey15 stepysizey25 slidingywindowy(all) slidingywindowy(majorityyvote)

Figure 5.8: Sensor Data: The sliding window approach with a window length of
15 that is slid by 5 compared to the closest step sizes (10, 15 and 25) for Level
1 (L1) and all levels (total). The highest recall is achieved when considering all
recognized activities while selecting the activities by majority vote leads to a higher
precision.

step size 10 step size 15 sliding window
total runtime [min] 277 183 535

runtime / step [s] 53.2 52.6 53.1

Table 5.17: Sensor Data: The runtime of the sliding window approach compared
to the standard approach. The total runtime is higher as more steps are required.

F-measure improves. However, the sliding windows approach takes much more
time as more steps are required (see Table 5.17).

5.3.4 Discussion

We showed that the formalism developed in this work is not limited to a specific
domain (e.g., Linked Data). In particular, we modeled sensor data in order to detect
activities based on temporal relations to other activities. Therefore, we needed to
rely on different features supported by our application. This includes the aggrega-
tion of interval relations as the standard ones are too specific for this use case or
the possibility to make certain statements observed (e.g., Level 4 activities). This
does not only fit to the characteristics of those statements but improves the activ-
ity recognition and reduces the runtime. We defined close to 800 domain-specific
constraints of various types (i.e., different complexity and weights). In particular,
constraints that describe direct consequences (A ⇒ B), temporal sequences of
events ((A,B) ⇒ C) and properties that are functional with respect to a certain
point in time. We also needed to apply a domain-specific subproblem generation

102 CHAPTER 5. EVALUATION AND APPLICATIONS

Level 3 Level 2 Level 1
precision −0.02 −0.12 −0.13

recall −0.08 0.25 0.16

F-measure −0.07 0.13 0.05

Table 5.18: Sensor Data: Comparison to the results of Helaoui et al. [2013]. We
subtracted their results from our sliding window approach (majority vote) results.
Hence, a positive value indicates that our approach achieved better results.

due the high number and the characteristics of the constraints. The large number
of constraints makes the model too big to solve a test case at once. Additionally,
smaller time frames (i.e., subproblems) fit better to the design of the constraints
as we are not able to model a cohesive sequence of events and the lack of the
possibility to infer overarching intervals. We observed that generating too small
subproblems has a negative effect on the runtime as long as initializing the Markov
Logic solver takes much more time than computing the MAP state. We can report
that the limitations with respect to the input size are only caused by the Markov
Logic solver. Hence, improvements in this research area make our approach more
viable.

We compared our results to the work of Helaoui et al. [2013], as the used
constraints are based on their ontology, in order to assess the practicality of our
approach. First of all, we need to admit that Helaoui et al. [2013] introduced an ap-
plication that predicts the activities in real-time while the forecast of our approach
is at least delayed by the step size of the sliding window. Their approach is also
faster as they take only a small number of facts into account (at most the last 5
seconds) and predict the activities for the different levels one after another (Level 4
→ Level 3, Level 3→ Level 2 , . . .). Due to the comparable rule set, we expected
to achieve similar results. Overall, we get a worse precision on all levels while the
recall is noticeable higher for the upper two levels (see Table 5.18). In consequence
of that, the F-measure is worse for Level 3 and better for Level 2 and Level 1. The
primary reason for this is that we added additional constraints. In order to improve
the precision of the predictions for Level 3, we defined constraints that infer Level 3
activities based on sequences of Level 4 activities (comparable to the constraints
that are used to infer simple activities (Level 2)). Another or additional way to
improve the recall as well as the precision would be the tracking of the status of
different objects (e.g., is an object still in the fridge). A higher precision would
automatically lead to a higher recall as the decision is often made between two
mutual exclusive activities. However, this is not supported by our formalism. For

5.3. SENSOR DATA 103

Level 2, we added constraints that led to a higher recall but worse precision. For
instance, if the ontology of Helaoui et al. [2013] contains the constraint (A,B,C)
⇒ D we would additionally add constraints that cover parts of the initial constraint
like (A,C)⇒ D in some cases. To improve the results of Level 1, we added rules
that connect Level 4 directly to Level 1 which reduces the precision but also causes
a better recall. These additional rules might violate the concept of the levels as they
skip intermediate levels but also the gold standard contains intervals for which no
activities for the intermediate levels are named. Hence, we needed to add those
constraints to be able to predict the respective activities without inferring activities
for the intermediate levels. So, all changes made to the constraint set of Helaoui
et al. [2013] are reasonable and allow us to compare the results. We achieved con-
siderable results that underline that our formalism and application does not only
allow modeling various domains but can actually improve the data quality of the
respective datasets. However, it should be possible to improve the results if we
learn the weights of the used constraints. Currently, the weights of the constraints
depend only on common knowledge and manual observation of the dataset which
makes this idea promising.

Chapter 6

Related Work

In this chapter, we summarize approaches that are related to our work. In the first
part of this chapter, we give a brief overview on existing approaches to model tem-
poral and probabilistic statements using frameworks associated with the Semantic
Web. In the second part of this chapter, we present existing approaches to carry out
reasoning for such datasets. Moreover, we outline related areas that use Markov
Logic in order to deal with temporal data and uncertainty.

Part 1: Models for temporal & probabilistic Data

The standard RDF data model does neither support probabilistic nor temporal facts.
We circumvent this limitation by associating the respective information, i.e., valid-
ity time and confidence, with facts using reification. A similar approach was pro-
posed by Gutierrez et al. [2005, 2007] who incorporated temporal reasoning into
RDF. Therefore, they annotate standard RDF triples with time points or intervals
using reificiation with their own vocabulary.

Lopes et al. [2010] and Zimmermann et al. [2012] developed a RDF based an-
notation framework for representing, reasoning and querying data on the Semantic
Web. In particular, they support statements annotated with probabilities and tem-
poral information. They also introduce operators which consider the probabilities
as well as the validity times in order to infer additional statements. Moreover, they
extend the RDFS entailment rules with these operators and present an extension of
SPARQL for querying RDF with annotations. So, in contrast to our approach, they
infer statements that are annotated with probabilities and arbitrary intervals. This is
not supported by our application as we are neither able to perform calculations on
intervals nor able to compute the probabilities of the inferred statements. However,
the data representation model fits our requirements.

105

106 CHAPTER 6. RELATED WORK

Udrea et al. [2006] proposed an approach that integrates probabilities into RDF
(pRDF) as well as a more comprehensive approach that focuses on a broader range
of annotations, i.e., uncertainty, temporal aspects and provenance, in RDF (aRDF)
[Udrea et al., 2010]. Their approach bases on RDF but they extend the syntax and
semantics of RDF in order to define a framework that can be used to reason about
combinations of time, uncertainty and provenance. Motik [2012] presented a logic-
based approach to extend RDF and OWL with temporal reasoning that builds on
first-order theories. The approach also includes an extension of SPARQL and opti-
mized entailment algorithms. Moreover, Analyti and Pachoulakis [2012] published
a survey on models and query languages of temporal annotated RDF statements.
Thereby, they distinguish between works that introduce a new model theory and
works that extend RDF simple entailment and RDFS entailment.

The focus of our work was not on developing a data model for temporal and
probabilistic facts. However, this topic is relevant for other researchers which
makes it possible that a standard for publishing such datasets on the Semantic Web
will be defined and implemented in the future. This makes it possible that many
datasets that use such a framework will be published. Despite the fact that we use a
model that will not adhere to a new standard in order to express the statements, our
approach can be applied to datasets using another format after minor adjustments
in order to improve the data quality. However, many approaches require computa-
tions on intervals (e.g., overlap of two intervals) and determining the probabilities
of the inferred statements. These features are not part of our approach.

Part 2: Related Reasoning Approaches

We give an overview on related reasoning concepts in the following. Therefore, we
focus on approaches that can process comparable datasets and approaches that use
Markov Logic.

Part 2.1: Reasoning for temporal Knowledge Bases

Batsakis et al. [2011] and Anagnostopoulos et al. [2013] extend OWL 2.0 in or-
der to enable temporal reasoning for supporting temporal queries. Therefore, they
also explore possibilities to annotate statements with validity times. Moreover, they
consider the point algebra as well as Allen’s interval algebra which also allow them
to infer new facts as well as to detect inconsistencies. The approach of Batsakis
et al. [2011] realizes reasoning, i.e., consistency checking and inference over tem-
poral relations, by defining a set of SWRL1 rules that are compatible to reasoner

1http://www.w3.org/Submission/SWRL/

107

that support DL-safe rules (e.g., Pellet2). They also implemented the reasoning
system CHRONOS [Anagnostopoulos et al., 2013] that achieves a better perfor-
mance than the first implementation as it is tailored to their approach. In particular,
they separate temporal reasoning from semantic reasoning in order to propose an
optimized algorithm. Semantic reasoning is still carried out by Pellet. Tempo-
ral reasoning is realized with a path consistency algorithm [Christodoulou et al.,
2012] that computes all compositions of existing relations until an inconsistency is
detected or a fixed point is reached. Their approach also includes a SPARQL-like
temporal query language that incorporates Allen’s interval algebra. So, in contrast
to our approach they rely on OWL instead of RDF(S). Moreover, their system is
only suited to detect if a knowledge base is inconsistent but it cannot resolve the
existing conflicts.

Researcher of the Max-Planck Institute for Informatics (Saarbrücken, Ger-
many) published several papers that are closely related to the content of this work.
Their publications cover all steps from extracting facts from the Web to the defini-
tion of a temporal-probabilistic knowledge. In particular, they also propose differ-
ent methods to carry out reasoning in such databases considering first-order logic
formulas. All approaches that we describe in the following address the issue that
knowledge bases containing temporal statements extracted from the Web are erro-
neous as the temporal extraction algorithms do not achieve 100% precision. Hence,
the precision of a database can be increased by taking temporal constraints into ac-
count [Wang et al., 2010a; Dylla et al., 2011, 2013].

Histogram-based probabilistic knowledge base. Wang et al. [2010a] present a
histogram-based model for time-aware reasoning in probabilistic knowledge bases.
The introduced knowledge base consists of facts and first-order logic inference
rules. The facts can be encoded in a directed labeled graph (like RDF) and are as-
sociated with histograms that capture the validity of a fact at different time points,
i.e., their probability distributions. In order to create the histograms, they collect
all time points occurring in the dataset and transform them to a discrete series of
ordered time points. Therefore, it is necessary that the temporal information is
given at a fixed granularity (e.g., years). Hence, based on the ordered time points
it is possible to state the weight or probability of a validity interval of a statement
in the histogram. They also consider that the initial dataset contains statements to
which different validity times and probabilities are assigned. Hence, it is necessary
to combine histograms of statements that express the same fact, i.e., facts having

2http://clarkparsia.com/pellet/

108 CHAPTER 6. RELATED WORK

the same none-temporal part. Therefore, they distinguish between event relations
and state relations. Facts of an event relation are only true at a specific point in
time while facts having a state relation can be valid at different points in time. This
distinction affects the weight distribution in the histogram of a fact as well as coa-
lescing and slicing of intervals when aggregating histograms. For instance, slicing
of intervals associated with facts having a state relation is not allowed. However,
by merging the histograms they obtain for each statement a probability distribution
that indicates when then statement is valid.

In order to apply reasoning, they support first-order logic inference rules. In
particular, they focus on first-order formulas that are disjunctions of literals hav-
ing at most one positive literal (Horn clause [Horn, 1951]). Hence, the rules are
comparable to Datalog inference rules. Rules without a positive literal are used to
define integrity constraints. Rules with a positive literal can be rewritten as im-
plications and allow to infer new knowledge or to answer queries. They use the
temporal relations of Allen’s interval algebra to express the logical dependencies
of statements. Their system answers queries by considering all possible worlds that
do not violate the constraints. Therefore, they use the histograms of the statements
to calculate the world with the highest probability.

The implemented their approach as an extension of the RDF reasoning frame-
work URDF [Theobald et al., 2010]. Moreover, they used the temporal knowledge
base T-YAGO [Wang et al., 2010b] in order to evaluate their approach. In partic-
ular, they investigated the overhead of time-aware query processing compared to
a time-oblivious setting. The experiments indicate that the time-histograms cause
only a light overhead to a comparable probabilistic setting that does not consider
time.

Resolving conflicts using scheduling. Dylla et al. [2011] proposed a declara-
tive reasoning framework to resolve temporal conflicts in RDF knowledge bases.
Therefore, they define a knowledge base that contains (weighted and temporal)
facts and (temporal) consistency constraints. The facts can be annotated with an
interval that indicates when it is valid. In order to express the temporal relations
of the intervals, they use the relations before, overlap and disjoint. The constraints
are expressed in first-order logic. Thus, they define first-order predicates for the
temporal relations as well as for all properties occurring in the RDF database (ex-
tensional relations). Moreover, they introduce predicates for arithmetic relations,
e.g., equal or not equal. In particular, they support only formulas that can be writ-
ten as a disjunction of literals with at most one positive literal. Hence, the formulas

109

can be written as implications. The left-hand site of the implication must contain
two extensional relations and at most a (non-temporal) arithmetic relation while
the right-hand site of the implications is either false or a temporal relations. More-
over, they classify the supported constraints as follows: Disjointness constraints
ensure that an entity does not occur in two statements having the same extensional
relation (predicate) that are annotated with overlapping intervals. Precedence con-
straints restrict that a specific facts has to be invalid before another fact can be
valid. Mutual exclusion constraints express which statements are always (regard-
less of time) in conflict with each other.

They propose an approach to resolve the conflicts at query time as they con-
sider a knowledge base containing a huge number of facts as well as changing
constraints. Thus, they argue that only a dynamic approach is feasible in such
a scenario. Hence, the reasoner has to infer the consistent world with the maxi-
mum weight at query time. They [Dylla et al., 2011] show that finding a subset
of consistent facts contains the Maximum Weight Independent Set problem which
is NP-hard [Godsil et al., 2001]. For this reason they propose an approximation
heuristic which resolves the conflicts using a scheduling algorithm. Therefore,
they map the facts to scheduling jobs and the consistency constraints to schedul-
ing machines. Computing the maximum-weight feasible schedule corresponds to
a consistent subset of facts. In particular, they create a constraints graph covering
the logical dependencies of the extensional relations. These graphs are covered by
machine graphs which represent scheduling machines. At query time they compute
a set of facts comprising the matches of the query as well as their closure of con-
flicting facts. Based on this set, they separately resolve the conflicts by applying
the scheduling algorithm for each entity. This is possible as the extensional predi-
cates (representing relations) in a constraint share a variable representing the entity.
Hence, they can determine the set of statements that is associated with an entity and
relevant to the query. Their experiments only show that their approach performs
superior to other heuristics that are related to the Maximum Weight Independent
Set problem in terms of runtime and approximation quality.

A temporal-probabilistic database model. Dylla et al. [2013] present a temporal-
probabilistic database model that allows building high-precision knowledge bases
containing facts obtained from information extraction methods. The database con-
tains facts that can be associated with weights as well as with temporal intervals.
It supports temporal deduction rules and temporal consistency constraints which
are both given as first-order formulas. Deduction rules help to reduce the incom-
pleteness while consistency constraints are required to detect and to resolve incon-

110 CHAPTER 6. RELATED WORK

sistencies in the database. Moreover, they extend their model with a query engine
that supports queries that are written as a conjunction of literals.

However, the core of their model contains the temporal rules and temporal con-
straints. Temporal deduction rules are represented as logical implications that are
comparable to Datalog rules. The left-hand site of the implication contains a con-
junction of at least one positive and optional negative literals that can be grounded
with temporal annotated facts. Moreover, it contains a conjunction of arithmetic
predicates (=, 6= and temporal relations (Allen’ interval algebra)) having argu-
ments that occur in the non-arithmetic predicates of the rule. The right-hand site
of the implication contains a single literal that represents the inferred fact. This
fact is annotated with an interval whose bounds depend on arbitrary bounds of the
intervals occurring on the left-hand site of the implication. Hence, they infer new
knowledge and are also able to compute new intervals on demand. By applying
the rule it is possible that parts of a validity interval of a fact can be deduced by
different rules which lead to duplicated facts in the database. Therefore, they group
all intervals of facts which have the same non-temporal arguments.

Temporal consistency constraints are required to detect inconsistencies and are
used to condition the marginal probabilities of facts contained in the database. In
general, the constraints can be written as a negated conjunction of literals. It has to
contain arithmetic relations as well as predicates that can be grounded with tempo-
ral facts. In order to calculate the confidence of a fact, they apply an approach that
is comparable to the work of Koch and Olteanu [2008] which also relies on consis-
tency constraints and is executed during the query processing. The confidence of a
fact depends on the confidence of its lineage (e.g., the facts that are used to deduce
it) as well as the confidence of the grounded constraints.

They evaluate their approach using a small dataset (272 entities and 1, 827
temporal facts) as well as YAGO2 [Hoffart et al., 2011, 2013] which contains a
large amount of temporal annotated statements. However, YAGO2 is primarily
used to investigate runtimes of different parts of their application for different query
types. The results obtained from the experiments with the smaller dataset are more
relevant as it also contains a high degree of facts (≈ 700) that violate at least one
constraint. Hence, they use this dataset in order to show that their approach is able
to extract the correct statements from the dataset. The results indicate that their
approach outperforms other systems relying on Markov Logic solvers or integer
linear program solvers in terms of quality and runtime. Moreover, they apply their
system with and without temporal constraints. Adding constraints causes a slightly
higher runtime but also better results as the focus shifts from recall to precision.

111

Discussion. The presented approaches [Wang et al., 2010a; Dylla et al., 2011,
2013] have much in common with our work but there are also some differences.
They rely on datasets containing weighted temporal annotated statements that con-
tain a certain degree of errors. Hence, the processable data is comparable to the
datasets which we considered in this work. In order to detect inconsistencies, they
also define constraints using first-order logic formulas and the temporal relations of
Allen’s interval algebra. They follow different approaches to resolve the inconsis-
tencies but all rely on determining the consistent world (subset of facts) that has the
highest probability. This is comparable to computing the MAP state in a Markov
Logic Network. Moreover, Wang et al. [2010a] and Dylla et al. [2013] also con-
sider inferring new facts by combining histograms or by applying first-order logic
deduction rules. Thereby, they infer any interval based on the bounds of the inter-
vals occurring in the original dataset. Our approach does not support this feature
as we are not able to infer new intervals on demand. Hence, there approaches are
better suited to reduce the incompleteness of a knowledge base. Another differ-
ence is that their approaches contain a query engine which is important as at least
some parts of their algorithms resolve conflicts dynamically at query time. They
argue that this is necessary in order to be able to handle large knowledge bases that
contain changing constraints. Therefore, they consider only a subset of the data in
order to compute the set of consistent facts that is relevant to the query. In order
to achieve reasonable response times, Dylla et al. [2011] proposes an approxima-
tion algorithm. In contrast, our approach considers all statements in the knowledge
bases and determines the world with the highest weight (MAP state). Moreover,
they do not support weighted constraints and do also not exploit the benefits of
relying on RDF(S) reasoning.

Part 2.2: Reasoning using Markov Logic

Temporal reasoning. In the context of temporal reasoning, Markov logic is used
in the field of event recognition. The focus of this area is inferring higher level
events based on lower level events. Artikis et al. [2012] provide an overview on
logic-based event recognition algorithms. In particular, they review approaches
that rely on Markov Logic in order to process incomplete, inconsistent and erro-
neous data. Markov Logic handles these issues as it combines standard first-order
logic and uncertainty. Skarlatidis et al. [2011] extend the Event Calculus [Kowal-
ski and Sergot, 1989] with probabilistic reasoning using Markov Logic. The Event
Calculus is a descriptive framework that allows expressing the effects of events.
The ontology of the Event Calculus consists of time points, events and fluents.
Events can occur at specific time points in order to initiate or to terminate fluents
which are properties that change over time. Hence, domain-specific constraints

112 CHAPTER 6. RELATED WORK

define when a fluent holds or does not hold. The constraints rely on the predicates
of the calculus (e.g., happens, holdsAt, initiates, terminates). However, they face
the problem that the state of a fluent does not change if it no event occurs (law of
inertia). Due to the open world semantics of first-order logic, they must explicitly
define constraints that ensure when a fluent is not instantiated and when it is not
terminated. Moreover, they need restrict their approach to the discrete version of
the Event Calculus [Mueller, 2008], which is equivalent for discrete time domains,
because the original versions leads to too large Markov Logic Networks. Their
experiments underline that relying on soft constraints improves the event recogni-
tion [Skarlatidis et al., 2011]. So, their approach also uses Markov Logic in order
to carry out temporal reasoning. They rely on the Event Calculus while we use
Allen’s interval algebra. Moreover, it is notable that they faced the same issues as
we did.

MAP Inference in Log-Linear Description Logics. Niepert et al. [2011] de-
fine log-linear description logics as a family of probabilistic logics that combines
log-linear models [Koller and Friedman, 2009] and description logics [Baader and
Nutt, 2003]. In particular, they focus on characteristics of the description logic
EL++ [Baader et al., 2005, 2008] that is also the basis of the Web Ontology Lan-
guage OWL2+EL [Grau et al., 2012]3 which is used in various domains of the
Semantic Web. It is designed for ontologies that contain a very large number of
classes and/or properties. OWL2 [Welty and McGuinness, 2004]4 is linked to RDF
as many OWL 2 documents are available in RDF or can be mapped to it5. More-
over, log-linear models are the basis of Markov Logic which makes their approach
similar to our approach.

The semantics of log-linear description logics are defined by a log-linear prob-
ability distribution over coherent ontologies. Based on a deterministic CBox CD,
that is assumed to be coherent, and an uncertain CBox CU , that contains real-
valued weighted axioms, they compute the probability of another CBox C′ which
is greater than zero if it is coherent and entails the deterministic CBox CD. A CBox
is the constraint box that contains a finite set of general concept inclusion axioms
(class axioms) and role inclusion axioms (property axioms). A typical inference
task is to determine the most probable CBox C′ (MAP state). In order to do this,
they convert EL++ axioms to first-order logic as follows (r, s, ri(1 ≤ i ≤ 3)

3http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
4http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
5http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/

http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/

113

denote properties/roles, C1, C2 denote basic concept descriptions, D denotes basic
concept descriptions or the bottom concept):

C1 v D 7→ sub(C1, D)

C1 u C2 v D 7→ int(C1, C2, D)

C1 v ∃r.C2 7→ rsub(C1, r, C2)

∃r.C1 v D 7→ rsub(C1, r,D)

r v s 7→ psub(r, s)

r1 ◦ r2 v r3 7→ pcom(r1, r2, r3)

They implemented this theory in the reasoning system ELOG [Noessner and Niepert,
2011]. It transforms the problem to a Markov Logic Network and computes the
MAP using rockIt. So, their system has much in common with the approach pre-
sented in this work as both focus on optimizing elements of the Semantic Web
using Markov Logic. However, there are notable differences: ELOG is restricted
apply to the terminological part of an ontology while our approach focuses on the
assertional knowledge. Moreover, they only use the EL++ logic while we rely on
RDF(S) and temporal relations.

Chapter 7

Conclusion

The conclusion of this work is split in two parts. In Section 7.1, we summarize our
approach and give the answers to the research questions. In Section 7.2, we are
concerned with future work with respect to possible extensions and improvements.

7.1 Summary

In this section, we summarize this work and present the answers to the research
questions stated in Section 1.3.

RQ1 We proposed a Markov Logic based approach which is suitable to carry out
temporal RDF(S) reasoning (see Chapter 3). In particular, we developed a flexible
formalism to express temporal and non-temporal statements. Statements can be
weighted, unweighted or observed which allows to state the confidence of a fact
and to control whether certain facts are part of the output of the reasoning process.
The supported types of statements are not only sufficient to express all kinds of
facts that we target with our application but are also required to define entailment
rules and constraints. It is possible to define any rule or constraint that can be writ-
ten as a disjunction of literals having universally quantified variables. Our appli-
cation contains the RDF(S) entailment rules which are required to infer statements
based on the terminological knowledge associated with a dataset. We also incorpo-
rated Allen’s interval algebra which allows expressing relations between temporal
statements. Markov Logic is suitable for our approach as it supports weighted and
hard (unweighted) constraints. Thus, it fulfills all requirements with respect to the
essential types of statements and constraints. In order to detect and to resolve con-
flicts in datasets, we rely on Markov Logics’ MAP inference. The MAP state is the
most probable consistent set of statements with respect to the defined constraints

115

116 CHAPTER 7. CONCLUSION

and rules. Hence, it allows removing erroneous statements from the dataset. We
integrated the Markov Logic solver rockIt in our application but it is mentionable
that our formalism does not rely on this specific system. Hence, it is possible to
use our formalism with other Markov Logic solvers that support MAP inference.

RQ2 We do not only incorporate the RDF(S) entailment rules but do also use the
RDF data model in order to express the statements and constraints of a knowledge
base. Therefore, we use reification to annotate statements with temporal informa-
tion or confidence values as standard RDF statements are only triples. Moreover,
we introduced a concept which is suitable to maintain domain-specific rules and
constraints that relies on the RDF(S) vocabulary. Hence, all building blocks of our
approach can be modeled with RDF (see Chapter 4).

RQ3 The scalability of our approach primarily depends on the scalability of the
used Markov Logic solver. One issue is that a high number of soft constraints in
combination with weighted statements have a negative effect on the runtime. It is
even possible that the Markov Logic solver does not terminate if the problem is
too complex. Another issue is the representation of the relations of the temporal
intervals that are annotated to the statements. We decided to introduce observed
predicates for the relations of Allen’s interval algebra and to initialize the Markov
Logic Network with all ground predicates covering the relations of all intervals
occurring in the dataset. This requires many system resources as the number of the
required ground predicates is quadratic with respect to the existing intervals. For
instance, 5, 000 intervals do already lead to over 10, 000, 000 ground predicates.
Nevertheless, this model does not affect the scalability if a dataset contains less
than 2, 500 intervals. For example, this is satisfactory if only years are annotated to
the statements. However, the scalability of rockIt is sufficient to apply our approach
to various use cases. In particular, we applied our application to datasets having
more than 10, 000 weighted statements and close to 800 weighted constraints as
well as to datasets having more than 1, 500, 000 unweighted statements and over
20 hard constraints. The computation time was approximately 12 minutes in the
first scenario and 3 hours in the second scenario.

RQ4 In order to demonstrate the practicality of our approach, we presented an
extensive evaluation of all features of our approach. We used a benchmark for
Semantic Web knowledge base systems (Lehigh University Benchmark (LUBM))
in order to evaluate the RDF(S) reasoning capability of our approach (see Sec-

7.2. FUTURE WORK 117

tion 5.1). The results indicate that our approach correctly infers new statements
based on the RDF(S) entailment rules and some additional rules. However, state of
the art reasoners that are dedicated to this task are faster and scale much better. For
instance, in contrast to our approach such reasoners do not support a probabilistic
setting. In the second part of the experiments (see Section 5.2), we investigated the
capability of our application to detect erroneous statements in a dataset contain-
ing many weighted and temporal statements which we derived from facts that we
got from DBPedia. The application improves the data quality by removing wrong
statements but we recommend that a domain expert reviews those statements in
order to increase the precision. Our application always acts as intended but it is
possible that a dataset contains inconsistencies that cannot be correctly resolved
given the evidence. We extended the dataset with generated (wrong) statements
as we wanted to apply our approach to a dataset that contains a high degree of
wrong statements. Our application also achieves reasonable results if the dataset
contains many inconsistencies while the runtime increases only slightly. It is also
observable that the precision increases if we decrease the weights of the generated
statements as this enables that the conflicts can be resolved with a higher precision.
Thus, the results underline that our application is suitable to remove erroneous
statements from datasets with a high precision. We also applied our application to
a dataset that is used to recognize activities (see Section 5.3) in order to demon-
strate that our approach is compatible with any use case that provides temporal
annotated facts and constraints. Moreover, this dataset is useful as it requires a
large number of weighted constraints. We needed to split the input of our appli-
cation as the complete dataset was not processable at once as it required too many
system resources. However, generating smaller subproblems had a positive effect
on the results as some activities could be detected with a higher precision. Overall,
we achieved a worse precision but a better recall and F-measure than an application
that is dedicated to this task. However, the respective application is more special-
ized and infers the activities faster. Nevertheless, the experiments underline that
our approach can be applied to many domains.

7.2 Future Work

In the following, we outline ideas for possible improvements of our approach.

Extension of the rule set. Currently, we include only the RDF(S) entailment
rules in order to give our approach a basic logical expressiveness. However, it
might be worth to consider extending this rule set. Some features of the Web

118 CHAPTER 7. CONCLUSION

Ontology Language (OWL), e.g., equality and inequality, might be beneficial in
some use cases and can be expressed with our formalism.

Inferring intervals. Our approach is not able to infer new intervals as this would
require solving too big Markov Logic Networks (see Section 4.3). Neverthe-
less, we think that this feature is helpful in order to close gaps in a knowledge
base. In particular, we suggest to coalesce adjacent intervals annotated to the same
non-temporal fact ([1, 3], [3, 5] ⇒ [1, 5]), to compute the intersection of intervals
([1, 3], [2, 4]⇒ [2, 3]) and to infer new intervals based on the border points of other
intervals ([1, 2], [8, 9]⇒ [1, 9]). Those features will extend the possibilities to infer
new knowledge based on existing statements. However, our application computes
all intervals relations before the execution of the Markov Logic solver which makes
it not possible to infer new intervals on demand.

Detection of subproblems. The current representation of the interval relations
in the Markov Logic Network is quadratic. Thus, the application requires much
memory to maintain them. The experiments indicate that the limit is reached at less
than 5, 000 different intervals (i.e., ≈ 10 million interval relations) if the process
can use up to 16 GB memory. However, this number might be too small in order
to carry out fine-grained temporal reasoning. Given the proposed approach, the
best solution is to detect independent subproblems that contain a smaller number
of intervals and statements.

User interface. The experiments indicate that it is advisable that a domain ex-
pert checks if the removed statements are actual wrong statements. Our application
works as intended but yet it is possible that wrong statements have a higher weight
than correct statements. Hence, we suggest developing a user interface that facili-
tates the revision of removed statements by domain experts.

Additional experiments. The primary application area of our approach is to im-
prove the data quality of datasets derived from open information extraction sys-
tems. However, in the context of this work it was not feasible to carry out experi-
ments with such a dataset. Hence, the next step is to create a dataset that contains
weighted and temporal statements derived from the Web and to extend the experi-
ments.

Bibliography

J. F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843, 1983.

E. Anagnostopoulos, S. Batsakis, and E. G. Petrakis. Chronos: A reasoning engine
for qualitative temporal information in owl. Procedia Computer Science, 22:
70–77, 2013.

A. Analyti and I. Pachoulakis. A survey on models and query languages for tem-
porally annotated rdf. International Journal of Advanced Computer Science &
Applications, 3(9):28–35, 2012.

A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras. Logic-based event recogni-
tion. The Knowledge Engineering Review, 27:469–506, 12 2012.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In The Semantic Web, pages 722–735. Springer,
2007.

F. Baader and W. Nutt. Basic description logics. In The Description Logic Hand-
book: Theory, Implementation, and Applications, pages 43–95. Cambridge Uni-
versity Press, 2003.

F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05,
volume 5, pages 364–369, 2005.

F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope further. In In Proceed-
ings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions.
Citeseer, 2008.

S. Batsakis, K. Stravoskoufos, and E. G. Petrakis. Temporal reasoning for support-
ing temporal queries in owl 2.0. In Knowledge-Based and Intelligent Informa-
tion and Engineering Systems, pages 558–567. Springer, 2011.

iii

iv BIBLIOGRAPHY

T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific Ameri-
can, 284(5):28–37, 2001.

C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. International
Journal on Semantic Web and Information Systems, 5(3):1–22, 2009a.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. Dbpedia-a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web, 7(3):154–165, 2009b.

D. Brickley and R. Guha. RDF vocabulary description language 1.0: RDF schema.
W3C recommendation, W3C, Feb. 2004. http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell.
Toward an architecture for never-ending language learning. In Proceedings of
the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010), 2010.

G. Carothers and E. Prud’hommeaux. RDF 1.1 turtle. W3C recommendation,
W3C, Feb. 2014. http://www.w3.org/TR/2014/REC-turtle-20140225/.

G. Christodoulou, E. G. Petrakis, and S. Batsakis. Qualitative spatial reasoning
using topological and directional information in owl. In IEEE 24th International
Conference on Tools with Artificial Intelligence (ICTAI), volume 1, pages 596–
602, Nov 2012.

P. Domingos and D. Lowd. Markov logic: An interface layer for artificial intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning, 3(1):
1–155, 2009.

M. Dylla, M. Sozio, and M. Theobald. Resolving temporal conflicts in inconsistent
rdf knowledge bases. In 14. GI-Fachtagung Datenbanksysteme für Business,
Technologie und Web (BTW), pages 474–493, 2011.

M. Dylla, I. Miliaraki, and M. Theobald. A temporal-probabilistic database model
for information extraction. Proceedings of the VLDB Endowment, 6(14):1810–
1821, 2013.

O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information extraction
from the web. Communications of the ACM, 51(12):68–74, 2008.

O. Etzioni, A. Fader, J. Christensen, S. Soderland, and M. Mausam. Open infor-
mation extraction: The second generation. In IJCAI, volume 11, pages 3–10,
2011.

BIBLIOGRAPHY v

M. R. Genesereth and N. J. Nilsson. Logical foundations of artificial intelligence,
volume 9. Morgan Kaufmann Los Altos, CA, 1987.

C. D. Godsil, G. Royle, and C. Godsil. Algebraic graph theory, volume 207.
Springer New York, 2001.

B. C. Grau, A. Fokoue, I. Horrocks, B. Motik, and Z. Wu. OWL 2 web ontology
language profiles (second edition). W3C recommendation, W3C, Dec. 2012.
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web, 3
(2):158–182, 2005.

C. Gutierrez, C. Hurtado, and A. Vaisman. Temporal rdf. In The Semantic Web:
Research and Applications, pages 93–107. Springer, 2005.

C. Gutierrez, C. A. Hurtado, and A. Vaisman. Introducing time into rdf. IEEE
Transactions on Knowledge and Data Engineering, 19(2):207–218, 2007.

S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C recommen-
dation, W3C, Mar. 2013. http://www.w3.org/TR/2013/REC-sparql11-query-
20130321/.

P. Hayes. RDF semantics. W3C recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

R. Helaoui, D. Riboni, and H. Stuckenschmidt. A probabilistic ontological frame-
work for the recognition of multilevel human activities. In Proceedings of the
2013 ACM international joint conference on Pervasive and ubiquitous comput-
ing, pages 345–354. ACM, 2013.

J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. De Melo, and
G. Weikum. Yago2: exploring and querying world knowledge in time, space,
context, and many languages. In Proceedings of the 20th international confer-
ence companion on World wide web, pages 229–232. ACM, 2011.

J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spatially and
temporally enhanced knowledge base from wikipedia. Artificial Intelligence,
194:28–61, 2013.

A. Horn. On sentences which are true of direct unions of algebras. The Journal of
Symbolic Logic, 16(01):14–21, 1951.

vi BIBLIOGRAPHY

C. Koch and D. Olteanu. Conditioning probabilistic databases. Proceedings of the
VLDB Endowment, 1(1):313–325, 2008.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. MIT Press, 2009.

R. Kowalski and M. Sergot. A logic-based calculus of events. In Foundations of
Knowledge Base Management, pages 23–55. Springer, 1989.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web Journal,
2014.

G. Ligozat and J. Renz. What is a qualitative calculus? a general framework. In
PRICAI 2004: Trends in Artificial Intelligence, volume 3157 of Lecture Notes
in Computer Science, pages 53–64. Springer, 2004.

X. Ling and D. S. Weld. Temporal information extraction. In AAAI, 2010.

N. Lopes, G. Lukácsy, A. Polleres, U. Straccia, and A. Zimmermann. A general
framework for representing, reasoning and querying with annotated semantic
web data. Technical report, DERI, 2010.

P. Lukowicz, G. Pirkl, D. Bannach, F. Wagner, A. Calatroni, K. Förster, T. Hol-
leczek, M. Rossi, D. Roggen, G. Tröster, et al. Recording a complex, multi
modal activity data set for context recognition. In Proceedings of ARCS ’10
- 23th International Conference on Architecture of Computing Systems, pages
161–166. VDE VERLAG GmbH, 2010.

P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve: linked data quality assessment
and fusion. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, pages
116–123. ACM, 2012.

B. Motik. Representing and querying validity time in rdf and owl: A logic-based
approach. Web Semantics: Science, Services and Agents on the World Wide Web,
12:3–21, 2012.

B. Motik, P. Patel-Schneider, and B. Parsia. OWL 2 web ontology language struc-
tural specification and functional-style syntax (second edition). W3C recom-
mendation, W3C, Dec. 2012. http://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/.

BIBLIOGRAPHY vii

E. T. Mueller. Event calculus. Handbook of knowledge representation, 3:671–708,
2008.

M. Niepert, J. Noessner, and H. Stuckenschmidt. Log-linear description logics.
In Proceedings of the Twenty-Second international joint conference on Artificial
Intelligence-Volume Volume Three, pages 2153–2158. AAAI Press, 2011.

J. Noessner and M. Niepert. Elog: a probabilistic reasoner for owl el. In Web
Reasoning and Rule Systems, pages 281–286. Springer, 2011.

J. Noessner, M. Niepert, and H. Stuckenschmidt. Rockit: Exploiting parallelism
and symmetry for map inference in statistical relational models. In Proceedings
of the Conference on Artificial Intelligence (AAAI), 2013.

D. L. Olson and D. Delen. Advanced data mining techniques. Springer, 2008.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann, 1988.

M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62
(1-2):107–136, 2006.

S. Riedel. Improving the accuracy and efficiency of map inference for markov
logic. In Proceedings of the 24th Annual Conference on Uncertainty in AI (UAI
’08), pages 468–475, 2008.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):
273–302, 1996.

A. Skarlatidis, G. Paliouras, G. A. Vouros, and A. Artikis. Probabilistic event cal-
culus based on markov logic networks. In Rule-Based Modeling and Computing
on the Semantic Web, pages 155–170. Springer, 2011.

P. P. Talukdar, D. Wijaya, and T. Mitchell. Coupled temporal scoping of relational
facts. In Proceedings of the fifth ACM international conference on Web search
and data mining, pages 73–82. ACM, 2012a.

P. P. Talukdar, D. Wijaya, and T. Mitchell. Acquiring temporal constraints between
relations. In Proceedings of the 21st ACM international conference on Informa-
tion and knowledge management, pages 992–1001. ACM, 2012b.

M. Theobald, M. Sozio, F. Suchanek, and N. Nakashole. Urdf: Efficient reasoning
in uncertain rdf knowledge bases with soft and hard rules. Technical report, Max
Planck Institute Informatics (MPI-INF), 2010.

viii BIBLIOGRAPHY

O. Udrea, V. Subrahmanian, and Z. Majkic. Probabilistic rdf. In Information Reuse
and Integration, 2006 IEEE International Conference on, pages 172–177. IEEE,
2006.

O. Udrea, D. R. Recupero, and V. Subrahmanian. Annotated rdf. ACM Transac-
tions on Computational Logic (TOCL), 11(2):10, 2010.

M. B. Vilain and H. A. Kautz. Constraint propagation algorithms for temporal
reasoning. In AAAI, volume 86, pages 377–382, 1986.

Y. Wang, M. Yahya, and M. Theobald. Time-aware reasoning in uncertain knowl-
edge bases. In Proceedings of the Fourth International VLDB workshop on Man-
agement of Uncertain Data (MUD 2010), pages 51–65, 2010a.

Y. Wang, M. Zhu, L. Qu, M. Spaniol, and G. Weikum. Timely yago: harvesting,
querying, and visualizing temporal knowledge from wikipedia. In Proceedings
of the 13th International Conference on Extending Database Technology, pages
697–700. ACM, 2010b.

C. Welty and D. McGuinness. OWL web ontology language guide. W3C rec-
ommendation, W3C, Feb. 2004. http://www.w3.org/TR/2004/REC-owl-guide-
20040210/.

A. Yates, M. Cafarella, M. Banko, O. Etzioni, M. Broadhead, and S. Soderland.
Textrunner: open information extraction on the web. In Proceedings of Human
Language Technologies: The Annual Conference of the North American Chapter
of the Association for Computational Linguistics: Demonstrations, pages 25–26.
Association for Computational Linguistics, 2007.

A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A general framework for
representing, reasoning and querying with annotated semantic web data. Web
Semantics: Science, Services and Agents on the World Wide Web, 11:72–95,
2012.

Appendix A

Markov Logic Model

A.1 Basic Model

// observed predicates

*tripleW(r,r,r,float_)

*quadW(r,r,r,Interval,float_)

*tripleO(r,r,r)

*quadO(r,r,r,Interval)

*literal(r)

// hidden predicates
triple(r,r,r)
quad(r,r,r,Interval)

// soft constraints with individual weights
weight: !tripleW(s,p,o,weight) v triple(s,p,o)
weight: !quadW(s,p,o,i,weight) v quad(s,p,o,i)

// hard constraints
!quadO(s,p,o,i) v quad(s,p,o,i).
!quad(s,p,o,i) v triple(s,p,o).
!tripleO(s,p,o) v triple(s,p,o).

Listing A.1: Basic RDF Model

*tBefore(Interval,Interval)

*tMeets(Interval,Interval)

*tOverlaps(Interval,Interval)

*tStarts(Interval,Interval)

*tDuring(Interval,Interval)

*tFinishes(Interval,Interval)

*tEqual(Interval,Interval)

Listing A.2: Predicates of Allen’s Interval Algebra

ix

x APPENDIX A. MARKOV LOGIC MODEL

A.2 RDF(S) Entailment Rules

// rdf1 + rdf2
!triple(s,p,o) v triple(p,"rdf:type","rdf:Property").
// rdf2 - not added - rdfs1 is sufficient

// rdfs1
!triple(s,p,o) v !literal(o) v triple(o,"rdf:type","rdfs:Literal").

// rdfs 2+3 domain + range
!triple(s,p,o) v !triple(p,"rdfs:domain",x) v triple(s,"rdf:type",x).
!triple(s,p,o) v !triple(p,"rdfs:range",x) v triple(o,"rdf:type",x).
!quad(s,p,o,i) v !triple(p,"rdfs:domain",x) v quad(s,"rdf:type",x,i).
!quad(s,p,o,i) v !triple(p,"rdfs:range",x) v quad(o,"rdf:type",x,i).

// rdfs 4 resource
!triple(s,p,o) v triple(s,"rdf:type","rdfs:Resource").
!triple(s,p,o) v triple(o,"rdf:type","rdfs:Resource").

// rdfs 5-7 subProperty
!triple(a,"rdfs:subPropertyOf",b) v !triple(b,"rdfs:subPropertyOf",c)
v triple(a,"rdfs:subPropertyOf",c).

!triple(p,"rdf:type","rdf:Property") v triple(p,"rdfs:subPropertyOf",p).

!triple(a,"rdfs:subPropertyOf",b) v !triple(s,a,o) v triple(s,b,o).
!triple(a,"rdfs:subPropertyOf",b) v !quad(s,a,o,i) v quad(s,b,o,i).

// rdfs 8-11 subClass
!triple(c,"rdf:type","rdfs:Class")
v triple(c,"rdfs:subClassOf","rdfs:Resource").

!triple(a,"rdfs:subClassOf",b) v !triple(x,"rdf:type",a)
v triple(x,"rdf:type",b).

!triple(a,"rdfs:subClassOf",b) v !quad(x,"rdf:type",a,i)
v quad(x,"rdf:type",b,i).

!triple(c,"rdf:type","rdfs:Class") v triple(c,"rdfs:subClassOf",c).

!triple(a,"rdfs:subClassOf",b) v !triple(b,"rdfs:subClassOf",c)
v triple(a,"rdfs:subClassOf",c).

// rdfs 12+13
!triple(p,"rdf:type","rdfs:ContainerMembershipProperty")
v triple(p,"rdfs:subPropertyOf","rdfs:member").

!triple(u,"rdf:type","rdfs:Datatype")
v triple(u,"rdfs:subClassOf","rdfs:Literal").

Listing A.3: RDF(S) Entailment Rules

A.3. RDF AND RDFS VOCABULARY xi

A.3 RDF and RDFS Vocabulary

// rdf
triple(rdf:nil,rdf:type,rdf:List)
triple("rdf:nil","rdf:type","rdf:List")
triple("rdf:rest","rdfs:range","rdf:List")
triple("rdf:rest","rdfs:domain","rdf:List")
triple("rdf:rest","rdf:type","rdf:Property")
triple("rdf:Alt","rdfs:subClassOf","rdfs:Container")
triple("rdf:Alt","rdf:type","rdfs:Class")
triple("rdf:object","rdfs:range","rdfs:Resource")
triple("rdf:object","rdfs:domain","rdf:Statement")
triple("rdf:object","rdf:type","rdf:Property")
triple("rdf:first","rdfs:range","rdfs:Resource")
triple("rdf:first","rdfs:domain","rdf:List")
triple("rdf:first","rdf:type","rdf:Property")
triple("rdf:Bag","rdfs:subClassOf","rdfs:Container")
triple("rdf:Bag","rdf:type","rdfs:Class")
triple("rdf:type","rdfs:domain","rdfs:Resource")
triple("rdf:type","rdfs:range","rdfs:Class")
triple("rdf:type","rdf:type","rdf:Property")
triple("rdf:Property","rdfs:subClassOf","rdfs:Resource")
triple("rdf:Property","rdf:type","rdfs:Class")
triple("rdf:value","rdfs:range","rdfs:Resource")
triple("rdf:value","rdfs:domain","rdfs:Resource")
triple("rdf:value","rdf:type","rdf:Property")
triple("rdf:PlainLiteral","rdfs:subClassOf","rdfs:Literal")
triple("rdf:PlainLiteral","rdf:type","rdfs:Datatype")
triple("rdf:List","rdfs:subClassOf","rdfs:Resource")
triple("rdf:List","rdf:type","rdfs:Class")
triple("rdf:XMLLiteral","rdfs:subClassOf","rdfs:Literal")
triple("rdf:XMLLiteral","rdf:type","rdfs:Datatype")
triple("rdf:subject","rdfs:range","rdfs:Resource")
triple("rdf:subject","rdfs:domain","rdf:Statement")
triple("rdf:subject","rdf:type","rdf:Property")
triple("rdf:Seq","rdfs:subClassOf","rdfs:Container")
triple("rdf:Seq","rdf:type","rdfs:Class")
triple("rdf:Statement","rdfs:subClassOf","rdfs:Resource")
triple("rdf:Statement","rdf:type","rdfs:Class")
triple("rdf:predicate","rdfs:range","rdfs:Resource")
triple("rdf:predicate","rdfs:domain","rdf:Statement")
triple("rdf:predicate","rdf:type","rdf:Property")

Listing A.4: RDF Vocabulary

xii APPENDIX A. MARKOV LOGIC MODEL

// rdfs
triple("rdfs:Container","rdfs:subClassOf","rdfs:Resource")
triple("rdfs:Container","rdf:type","rdfs:Class")
triple("rdfs:seeAlso","rdfs:domain","rdfs:Resource")
triple("rdfs:seeAlso","rdfs:range","rdfs:Resource")
triple("rdfs:seeAlso","rdf:type","rdf:Property")
triple("rdfs:Resource","rdf:type","rdfs:Class")
triple("rdfs:subPropertyOf","rdfs:domain","rdf:Property")
triple("rdfs:subPropertyOf","rdfs:range","rdf:Property")
triple("rdfs:subPropertyOf","rdf:type","rdf:Property")
triple("rdfs:ContainerMembershipProperty","rdfs:subClassOf","rdf:Property")
triple("rdfs:ContainerMembershipProperty","rdf:type","rdfs:Class")
triple("rdfs:Class","rdfs:subClassOf","rdfs:Resource")
triple("rdfs:Class","rdf:type","rdfs:Class")
triple("rdfs:subClassOf","rdfs:domain","rdfs:Class")
triple("rdfs:subClassOf","rdfs:range","rdfs:Class")
triple("rdfs:subClassOf","rdf:type","rdf:Property")
triple("rdfs:comment","rdfs:range","rdfs:Literal")
triple("rdfs:comment","rdfs:domain","rdfs:Resource")
triple("rdfs:comment","rdf:type","rdf:Property")
triple("rdfs:Literal","rdfs:subClassOf","rdfs:Resource")
triple("rdfs:Literal","rdf:type","rdfs:Class")
triple("rdfs:member","rdfs:range","rdfs:Resource")
triple("rdfs:member","rdfs:domain","rdfs:Resource")
triple("rdfs:member","rdf:type","rdf:Property")
triple("rdfs:Datatype","rdfs:subClassOf","rdfs:Class")
triple("rdfs:Datatype","rdf:type","rdfs:Class")
triple("rdfs:range","rdfs:domain","rdf:Property")
triple("rdfs:range","rdfs:range","rdfs:Class")
triple("rdfs:range","rdf:type","rdf:Property")
triple("rdfs:isDefinedBy","rdfs:domain","rdfs:Resource")
triple("rdfs:isDefinedBy","rdfs:range","rdfs:Resource")
triple("rdfs:isDefinedBy","rdfs:subPropertyOf","rdfs:seeAlso")
triple("rdfs:isDefinedBy","rdf:type","rdf:Property")
triple("rdfs:domain","rdfs:domain","rdf:Property")
triple("rdfs:domain","rdfs:range","rdfs:Class")
triple("rdfs:domain","rdf:type","rdf:Property")
triple("rdfs:label","rdfs:range","rdfs:Literal")
triple("rdfs:label","rdfs:domain","rdfs:Resource")
triple("rdfs:label","rdf:type","rdf:Property")

Listing A.5: RDFS Vocabulary

	Introduction
	Motivation
	Problem Statement
	Research Questions
	Outline and Contributions

	Preliminaries
	Time Algebra
	RDF and RDFS
	Reasoning using Markov Logic

	Approach
	Basic Idea
	Statements
	Constraints & Rules
	RDF(S) Reasoning
	Temporal Constraints

	Optimizations
	Discussion

	Implementation
	Statements
	Constraints & Rules
	Interval Relations

	Evaluation and Applications
	Standard RDF(S) Reasoning
	Data & Constraints
	Results & Discussion

	Linked Open Data - DBPedia Extract
	Data
	Constraints
	Experiments
	Discussion

	Sensor Data
	Dataset & Constraints
	Data Model
	Experiments
	Discussion

	Related Work
	Conclusion
	Summary
	Future Work

	Bibliography
	Markov Logic Model
	Basic Model
	RDF(S) Entailment Rules
	RDF and RDFS Vocabulary

