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Abstract We present approaches to the generation of

synthetic workloads for benchmarking multiplayer online

gaming infrastructures. Existing techniques, such as

mobility or traffic models, are often either too simple to be

representative for this purpose or too specific for a partic-

ular network structure. Desirable properties of a workload

are reproducibility, representativeness, and scalability to

any number of players. We analyze different mobility

models and AI-based workload generators. Real gaming

sessions with human players using the prototype game

Planet PI4 serve as a reference workload. Novel metrics are

used to measure the similarity between real and synthetic

traces with respect to neighborhood characteristics. We

found that, although more complicated to handle, AI

players reproduce real workload characteristics more

accurately than mobility models.

1 Introduction

In the past decade, several researchers have focused their

work on using peer-to-peer (P2P) technologies for net-

worked multi-player games [2, 3, 9, 14, 19]. When taking a

closer look at these approaches, it becomes apparent that

each research group employs their individual evaluation

technique. Specific test setups are used, different workloads

are generated, and numerous metrics are defined for the

evaluation of the proposed overlays. This variety impedes a

comparative performance study of the different architec-

tures. To perform an objective evaluation that spans a mul-

titude of gaming infrastructures, it is necessary to implement

a common benchmark applicable for these systems.

In this article, we present and discuss methods for the

generation of synthetic workloads to be used in benchmarks

for online gaming infrastructures. The proposed workload

generation is network-agnostic and can thus be used inde-

pendently from a particular network infrastructure. We

achieve this using only game logic inputs (e.g., steering,

throttling, shooting), instead of a direct communication with

the network engine or the underlying network.

A good workload needs to fulfill the requirements of

being reproducible, scalable and representative for real

applications. While the first two requirements can be ful-

filled with synthetic workloads, the third is particularly

challenging for online games. We tackle this challenge

using application-level workload similarity metrics that
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allows us to tune artificial gaming workloads based on

reference traces from real games. We present and compare

four workload generation methods: two mobility models

and two AI-based workloads. With these methods, any

number of players can be employed to generate reproduc-

ible and scalable workload. First, results have been pub-

lished in previous work [7].

The rest of the article is structured as follows. In the next

section, we make considerations on the implementation of

multiplayer game network engines and discuss what is

needed for benchmarking. Section 3 discusses the proper-

ties of gaming workloads and approaches to the generation

of artificial workloads for benchmarking. In Sect. 4, we

present metrics that can be used to measure the similarity

of generated workloads with reference workloads. Our

evaluation framework and the AI player we implemented

are outlined in Sect. 5. Experimental results are provided in

Sects. 6 and 7 concludes the paper.

2 Benchmarking considerations

Besides graphics, sound, and game mechanics, the network

infrastructure of a multiplayer game plays a major role in

its perceived quality of experience. The network is

responsible for synchronizing the game state among the

players. Flaws in the communication process can lead to

additional delays, loss of events, or general inconsistencies

in the game state.

An unbiased performance evaluation of such a multi-

player network infrastructure is not a trivial task. Compa-

rable to hardware benchmarks, it is necessary to create a

test procedure that is able to stress the network infra-

structure with a realistic workload, to get evidence of its

performance. The first step of the creation of such a

benchmark is the definition of the relevant aspects that

need to be evaluated. In the case of online games this

includes two major aspects. First, as Claypool and Clay-

pool [6] have shown, the required performance of a net-

work infrastructure strongly varies with the type of game

under consideration and the tasks in the game world. We

have chosen to create a benchmark for shooter games,

since they have been identified as the most demanding type

[5]. They require a high game state accuracy and low

latency for all game events. Although shooter games are

technically similar to role-play games (RPG), there are

only a few that support a ‘massive’ amount of players. We

believe one reason for this is the lower performance

demand of a massively multiplayer online RPG

(MMORPG) that can be fulfilled more easily with today’s

client/server architectures.

Second, to specify the tasks in the game world, it is

necessary to take a closer look at the structure of a network

game. The tasks that a network infrastructure has to deal

with can be divided into: Interest Management, Game

Event Dissemination, NPC Computation, Game State

Persistence and Cheating Mitigation.1 In this paper we will

focus on:

Interest management (IM) IM is the process of distin-

guishing between information that is essential for a player to

build her personal view of the world and information that is

not. The area of interest (AOI), typically centered at the

player’s position and bounded by the vision range, defines

the region in which the player needs to receive game event

information. All other players that are inside the AOI are

considered to be her neighbors. In a P2P gaming overlay,

these are the peers that communicate with each other mostly

directly. Maintaining an accurate and up-to-date neighbor

list is the main objective of interest management.

Game event dissemination (GED) GED ensures that

each player receives all relevant game events within their

AOI. Real-time games require low latencies for event

dissemination to keep the players’ views up-to-date. Since

the AOI is bound to positions in the game world, the dis-

semination systems are typically based on game world

proximity. The task can therefore also be formulated as a

spatial publish/subscribe model. The way data are dis-

seminated in a client/server game differs from the way it is

done in a P2P game. Data aggregation and filtering can be

done centrally in client/server systems, whereas in P2P

systems, it has to be done cooperatively by the peers.

We picked these issues, because

• they are mandatory for every shooter game,

• they have the highest timing demands on the network,

and

• most of the traffic is created by these two tasks.

Our benchmarking concept for shooter game infra-

structures objectively measures the neighbor list accuracy

and responsiveness of game events, which serve as an

indicator for the game’s quality of experience.2

Following our methodology [11], four main components

are required for a P2P gaming benchmark. The first is the

definition of the common functionality each candidate

system must provide. Next, it is necessary to identify

quality metrics to be measured for each overlay. Typical

examples are the precision and recall of the list of neigh-

bors in the game world or the accuracy of the game state

each player perceives. To actually perform a benchmark, a

1 This categorization is inspired by Fan et al. [7], who divide the

tasks of a P2P game into six issues, of which five also apply to client/

server infrastructures.
2 The relation between quality of service and quality of experience is

far from trivial and a field of research on its own. Specifically for

games, there has been research on player performance depending on

network properties [1].
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test environment must be implemented. In our work, the

test environment is the game prototype Planet PI4 running

in a simulation mode with computer-controlled players.

Both the environment and the metrics have already been

published in previous work [8, 12].

The fourth component of a benchmark is a representa-

tive workload for the gaming overlays to be evaluated.

Workload generation is the focus of this paper.

3 Gaming workloads

The goal of the generation of synthetic workloads is to

reproduce the activity that has to be processed by the

networking component. Such a workload needs to fulfill

three fundamental requirements to be useful for bench-

marking: the workload must be reproducible so that the test

scenario is equivalent for all tested systems, and the test

can be repeated any number of times. It must be scalable,

so that it allows simulating an arbitrary number of players.

And lastly, the workload used for benchmarking must be

representative to real workloads to make meaningful

statements about the performance of an infrastructure.

There have been several studies on traffic patterns and

models for client-/server-based (massively) multiplayer

online gaming [10, 15]. The most common approach is to

collect data from real gaming sessions and to fit a traffic

model to the measured data. Such models are able to

reproduce characteristics like the data rate distributions

over time. They are widely used to estimate the network

load for a game server or an ISP network. They have,

however, two major limitations that make them inappro-

priate for our purpose. First, they are specific to a certain

architecture. While for client/server architectures there are

only a few possible topologies, there is a plethora of

architectures for P2P-based MMOGs [18]. Creating an

empirical model for each topology is not only laborious,

but also also hinders research on new architectures such as

hybrid P2P with cloud support. Second, a simulation on the

network or transport layer is not sufficient for bench-

marking P2P- or cloud-based gaming overlays, since many

overlays are using application-specific information to cre-

ate connections. For example, to maintain the players’ AOI

and to decide which peers to connect to, player positions

are required. A synthetic workload for benchmarking a

gaming overlay thus needs to include player positions and

interactions.

3.1 Workload generation models

Figure 1 shows a schematic overview of the layers of a

network game and the different options for the generation

of workload. There are three basic approaches to the

creation of workloads that employ the network engine:

static traces, context-insensitive mobility models, and

context-sensitive AI players.

Traces are complete records of all actions, e.g., move-

ment and interaction, performed by all players in a real

gaming session. Such traces can be used to replay the

respective games. Scaling the number of players in the

traces, however, is hardly possible. Although a reduction

could be achieved by omitting a subset of the players from

the trace and an increase by duplicating players, this will

likely break interaction schemes. Interaction partners with

will be missing, and player duplication requires breaking

up the original interactions. On the positive side, traces

provide a reproducible workload which is realistic per se.

Mobility models on the other hand coarsely approximate

player behavior. Beside their use for testing of extreme

cases (e.g., massive crashes, extreme high player density),

their biggest advantages are their simplicity and scalability.

A random walk model only requires a few lines of code and

already models a large portion of the static constraints of a

game. Such a model can be gradually extended to include

interactions like random shooting or random respawning at

different locations. Mobility models are deterministic and

thus reproducible, and it is easy to simulate even large

numbers of players. However, their degree of realism is

questionable and difficult to substantiate. This is due to

their insensitivity to the gaming context, i.e., they enable

players to act, but not to react and interact. They may be

capable of modeling characteristics of moving, shooting

and dying/respawning individually, but fail to emulate the

interrelation between them. Consider the following: a

player may be more likely to shoot, the more hostile

players are within the AOI. The more a player shoots, the

more likely it may be for other players to die and respawn

somewhere else. This relationship may often lead to situ-

ations where many messages (one for each shot) need to be

Fig. 1 Layers of a network game with different workload generation

methods. Traffic models do not incorporate the game’s network

engine. Only AI players allow simulating game logic-dependent

network traffic
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exchanged with a large number of participants (crowded

AOI), while neighbor lists constantly change (dying and

respawning in a different location).

AI players have a context-aware approach to workload

generation. They are sensitive to situations as they occur in

the game and are programmed to react to them. Player

behavior can potentially be recreated much more accu-

rately than by mobility models. In particular, AI players

allow modeling the natural attributes of the players. The

goal of an AI player is to simulate the human gaming

behavior, which is composed of two basic aspects. The first

aspect is the static constraints dictated by the game itself.

For example, they limit how fast players can move, where

they can go and how they can interact. These constraints

are mostly invariant. The second aspect is the natural

attributes of the players. Some players may be playing

more aggressively or defensively, or they can be highly

skilled or play the game for the first time. It is obvious that

the former aspect is much easier to reproduce, but both

need to be taken into account to create a sufficiently real-

istic workload. If implemented well, adjusting the param-

eters of the AI allows imitating even high-level patterns

like aggressiveness or skill level.

Looking at multiplayer games like Planet PI4 (see Sect.

5), we find that the following messages are sent for IM and

GED. Updates of the player’s position are sent periodically

to the player’s in-world neighbors. The frequency of these

messages is assumed to be constant. Game events like

shooting, hitting somebody, or capturing a base all trigger

messages as well. Their rate can be indirectly adjusted by

the AI parameters. All situations where messages are dis-

seminated have in common that the set of receivers

strongly depends on the neighbors in the current AOI of the

player. We thus need to configure the AI in a way so that

the characteristics of the AI player’s neighbors over time

approximate the real situation. Our neighborhood metrics

defined in Sect. 4 allow us to measure the similarity of

neighbor list characteristics between AI and real players.

3.2 Related P2P gaming evaluations

This section gives a brief overview of the workload gen-

eration methods used in selected publications on P2P

gaming overlays (see Table 1). The authors of VON [9] use

a simulation of discrete time steps and two mobility

models. The first is a random walk where each node moves

in a certain direction which changes with a certain proba-

bility. The second is a hotspot mode: each node performs a

random walk in the proximity of one of several hotspots

and switches to another hotspot after a random interval.

Similarly, the pSense’s [14] evaluation employs a (not

further specified) random movement mode as well as a

hotspot mode. MOPAR [19] is also evaluated in a simple

simulator using a random mobility model which is not

further specified.

For the evaluation of Colyseus [2], its authors use an

Emulab testbed with up to 50 hosts running modified

Quake III instances. The game is then played by Quake III

bots that are using an obstacle-sensitive mobility model

based on Voronoi diagrams. The authors of Donnybrook

[3] apply a larger scale simulation using a behavior gen-

erator based on the same Quake III bots that where already

used for Colyseus. In addition, they use a 32-player game

played by humans for validation.

An earlier approach to benchmarking of P2P overlays

for interest management and spatial event dissemination

has been proposed by [8]. In their work, the authors focus

on evaluation metrics and user churn modeling, but only

use a simple mobility model (random waypoint and single

hotspot) to generate the workload.

4 Workload similarity metrics

To gain evidence of the quality of synthetically generated

workload, it is necessary to compare it with real reference

workloads. This can be achieved using a metric that reflects

the similarity between different workloads. Such a metric

should be as simple as possible but at the same time cover

the aspects that have a significant effect on the tested

systems’ load. In this section, we discuss several options

for workload comparison metrics, from very simple to

more sophisticated approaches.

The messages transmitted among participants of an

online game can be coarsely classified into two categories:

regular status update messages, especially position updates,

and irregular messages instantly arising from certain player

actions, such as firing a missile.3 Since these two categories

Table 1 P2P gaming workloads used in previous work

Mobility models AI

players

Human

players
Random

walk

Random

waypoint

Hot

spot

MOPAR [19] 9

Colyseus [2] 9

VON [9] 9 9

Donnybrook [3] 9 9

pSense [14] 9 9

Gross et al. [8] 9 9

3 Using dead reckoning techniques [13], position updates might not

be sent in a precisely fixed frequency, but instead to a certain degree

depend on the players’ activities. Still, there is usually a minimum and

maximum rate at which these updates are transmitted. On average,

they are thus expected to show a more regular behavior.
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show very different characteristics, we will discuss them

separately.

4.1 Regular events

Regular events usually contain status updates that are of

interest to the surrounding players in the virtual world.

Accordingly, these events need to be disseminated to all

interested neighbors.

Game session model For the definition and discussion of

possible metrics, we define a simple formal model for

game sessions created using a given workload model.

G ¼ ðP; T ;NÞ

denotes a game session trace. It consists of a set of players

P ¼ fp1; p2; p3; . . .g;

which, for the following discussion, is assumed to be

constant over the whole game session.

T ¼ fs1; s2; s3; . . .g

is the set of sampling timestamps used for the trace. The

sampling intervals should have fixed lengths; we will use

intervals of 1 s. The selection of appropriate values

depends on the type of game and has an influence on the

results.

Finally, the neighbor sets of all players p at each sample

s are defined as

N ¼ Np;s
� �

; p ¼ 1; . . .; jPj; s ¼ 1; . . .; jT j;

where

Np;s ¼ fq 2 P j q is interested in p’s events at time sg

First approach: average size of neighbor sets Assuming

that the frequency of regular updates is a parameter of the

system under test, and thus not a workload parameter, the

most significant workload factor is the size of the interest

neighbor set |Np,s| defined above. AOI neighbors represent

the receivers of most of the sent messages and thus strongly

influence how many messages are sent over the network.

We argue that closely approximating the characteristics of

the number of neighbors in a player’s AOI is the most

important feature for synthetically generated workloads.

The easiest approach would be to use the mean neighbor

set size

N ¼ 1

jPjjTj
X

p2P

X

s2T

jNp;sj:

For two given game sessions G ¼ ðP; T ;NÞ and G0 ¼
ðP0; T 0;N 0Þ; we can then define the metric

MmeanðG;G0Þ ¼ jN � N
0j:

This metric is very simple and intuitive, but it neglects

the variance in the neighbor set size distribution. Therefore,

one could also consider the sample variance

s2 ¼ 1

jPjjT j � 1

X

p2P

X

s2T

ðjNp;sj � NÞ2:

This, however, results in two separate values for the metric,

making a comparison difficult. We thus follow a different

approach.

Second approach: neighbor set size distribution To

reflect the distribution of the neighbor set size even further,

we can compare histograms of their distributions.

hxðGÞ ¼ ðp; sÞ 2 P� T j jNp;sj ¼ x
� ��� ��; x 2 N

0

counts the occurrences of a certain number x of neighbors.

To be able to compare different session lengths and

numbers of players, the histogram should be normalized,

resulting in an empirical probability function:

ehxðGÞ ¼
hxðGÞP

z2N0 hzðGÞ

The metric based on such a histogram is then defined as

MhistðG;G0Þ ¼
X

x2N0

ehxðGÞ � ehxðG0Þ
���

���:

Third approach: transitions Another factor that has not

been considered yet is the dynamism of the neighbor sets.

Adding neighbors or removing them from the neighbor list is

the main task of an overlay’s interest management. Overlays

that build their topology based on the players’ proximity

generally need to perform restructuring operations when

neighbor sets change, which are associated with costs and

thus should be reflected in the workload.

To express the characteristics of a player’s neighbors

over time, we use a simple Markov chain. We assume that

the number of neighbors at one point in time only depends

on the number of neighbors in the previous time step.

Higher-order dependencies are ignored. We thus count how

often the number of neighbors changed from i to j over the

entire duration of the gaming session. We define the tran-

sition matrix

AðGÞ ¼
a0;0 � � � a1;jPj

..

. . .
. ..

.

ajPj;1 � � � ajPj;jPj

0

B@

1

CA;

where each coefficient ai,j counts the number of transitions

from i neighbors to j neighbors from one time step to the

next:

ai;j ¼ ðp; tÞ 2 P� bT j jNp;st
j ¼ i ^ jNp;stþ1

j ¼ j
n o���

���;

bT ¼ f1; ; jTj � 1g:
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To be able to compare sessions with a different duration,

the matrix is normalized:

eAðGÞ ¼ eai;j

� �
; with eai;j ¼

ai;j
PjPj

k¼0 ai;k

so that
P

j eai;j ¼ 1 for all i 2 f0; . . .; jPjg: eai;j is thus the

empiric probability of a transition from i to j neighbors.

We can now measure the difference d1ðeAðGÞ; eAðG0ÞÞ
between the neighborhood characteristics of two sessions

by simply computing the L1 norm between the respective

averaged neighborhood transition matrices eAðGÞ and

eAðG0Þ :

Mtrans1ðG;G0Þ ¼ d1ðeAðGÞ; eAðG0ÞÞ

¼
XjPj

i¼0

XjPj

j¼0

jeai;j � ea0i;jj:

This metric, however, has two problems: first, there might

be rows in the matrix A, where all coefficients are zero. In

such a case, normalization does not work. A solution would

be to set all entries of these rows of eA to |P|-1, which cor-

responds to a uniform probability distribution. Second,

matrices of different size, i.e., from traces with a different

number of total players, cannot be effectively compared.

Weighted transition matrix To deal with the latter two

problems, we combine the histogram-based approach with

the Markov transition model. By weighting the rows of eA
with the empirical probability eh of being in the corre-

sponding state, we eliminate both problems at once. All-

zero rows remain zero, because the probability of being in

that state is zero. Matrices of different size can then be

compared by just extending the smaller one with zeros.

We therefore define bAðGÞ ¼ bai;j

� �
; with

bai;j ¼ eai;j
ehi ¼

ai;j
PjPj

k¼0

PjPj
l¼0 ak;l

:

Finally, the metric is defined accordingly:

MtransðG;G0Þ ¼ d1ðbAðGÞ; bAðG0ÞÞ

¼
XjPj

i¼0

XjPj

j¼0

jbai;j � ba0i;jj;

with d1 being extended so that it fills the smaller one of the

two matrices with zeros to fit.

4.2 Irregular events: interactions

Now, we will have a look at the irregular events which are

induced by player (inter)actions.

Game session model The game session model is exten-

ded with the irregular events E of type classes C.

G ¼ ðP; T ;N ; C; EÞ

with

Ec ¼ fðt; eÞ j event e of type c 2 C was fired at time tg

Type classes can be, for instance, shooting, hitting another

ship, being hit, and dying. We assume that the events of

one type show the same characteristics and that their

messages have about the same sizes.

As an alternative representation, the events can be sorted

into buckets according the sampling intervals T from the

regular events:

Ec;si
¼ fe j ðt; eÞ 2 Ec ^ si� t\siþ1g; i ¼ 1; . . .; jTj

First approach: averages Again, we start with the

simplest approach, which is to take the average event rate

per player for each event type:

Ec ¼
1

jPjjT j
X

s2T

jEc;sj;

Memean;cðG;G0Þ ¼ jEc � E
0
cj

Second approach: correlation with neighbor sets Since

the event messages have to be disseminated among all

neighbors, it is of relevance how the occurrence of events

correlates with the neighbor set size at the same time. We

can use the correlation coefficient to quantify this

correlation.

rc ¼
P

s2TðNs � NÞðEc;s � EcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s2TðNs � NÞ2 �

P
s2TðEc;s � EcÞ2

q ;

Mecorr;cðG;G0Þ ¼ jrc � r0cj

The presented set of metrics serves as a basis for the

comparison of new artificial workloads with reference

traces from real game sessions.

5 Implementation

To obtain a complete benchmark for different network

infrastructures, we have implemented a comprehensive

evaluation framework [12]. It allows to conduct real multi-

player gaming sessions with humans and to create detailed

trace files. In a simulator mode, synthetically created ses-

sions can be carried out in a controlled environment.

Special care was taken to ensure that all processes in the

simulation are reproducible. This was mainly achieved by

explicitly setting the seed values wherever random num-

bers are generated.

The evaluation framework is composed of three major

components: the game Planet PI4, an integrated simulation

environment, and an implementation of a monitoring

server.
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Planet PI4 Planet PI4 (Fig. 2) is a third-person 3D space

shooter for multiple players connected via an exchangeable

P2P overlay network. The players can fly space ships

through a virtual asteroid field and shoot each other. The

game world contains several points of interest like bases or

repair points as incentives for players to gather at certain

locations. Players can either compete in a free-for-all

fashion or as opposing teams. The game software has a

modular architecture so that the implementation of the

gaming overlay can be exchanged with little effort. It

currently runs with one of two implemented overlay net-

works, pSense [14] and BubbleStorm [16], or with a simple

client/server implementation.

Discrete event game simulator This mode provides a

reproducible environment that is able to simulate peers

playing the game as well as the underlying network. Real-

time game events are mapped to a discrete-event queue and

the rendering of the graphics can be disabled. In addition,

the simulation environment maintains a global view of all

peers [12].

Monitoring server This server is used to monitor and

trace all the game data from the human players as the game

progresses. The server’s clock is used as a global time

reference in the created traces.

The workload can be generated by human players in a

real gaming session or synthetically, either by simple

mobility models or by AI players.

5.1 Mobility models

Mobility models (MM) are often used because they are

easy to implement and mostly independent of a particular

game type. An MM simulates agents moving within a

simple, usually void, virtual world. Agents can also gen-

erate events according to statistical models, but they do not

interact with each other. For this paper, we use two com-

mon mobility models: random waypoint (RWP): an agent

picks a random point in the virtual world and moves

towards it. When it reaches the point, it repeats the pro-

cedure. Random point of interest (RPOI): first, the points of

interest (POI) set is determined by randomly choosing

n coordinates within the virtual world. Then, each agent

draws a random number m 2 f1. . .ng and moves towards

the m-th POI. When it reaches the POI, it repeats the

procedure. For our experiments we used a world with 64

POIs.

5.2 AI players

The main goal of implementing a game AI is to enable a

purposeful behavior of the computer-controlled players.

There exist many actions in a game that trigger network

messages. The progression of these actions reflects the

characteristic of the player’s gaming behavior. This

includes simple reactions to game events as well as

behaviors with a more high-level motivation like strategies

and team play. Both can be modeled by different types of

game AIs such as finite-state machines (FSM), planning-

based AIs like hierarchical task networks (HTN), or goal-

oriented AIs like behavior trees (BT). We decided to use a

goal-oriented AI because they are flexible and scalable, and

they provide an intuitive way to model different gaming

behaviors [4]. For the concrete implementation we use a

behavior tree AI. Its goals can be simple or complex.

Complex goals are composed of a sequence of simple sub-

goals where each sub-goal is mandatory for the success of

the goal. The leaf goals of the tree form the interface to the

game world. They can gather information about the current

game state and interact with the world using concrete

actions. Combining goals in such a way allows an intuitive

modeling of simple and complex behaviors. The desir-

ability of each goal is periodically evaluated based on the

current game state. The goal with the highest desirability

score gets executed. The desirability functions are shown in

Table 2. In our implementation, we created four complex

goals that are based on six sub-goals. During the execution

of every goal, the AI permanently runs obstacle avoidance

to prevent collisions with other players or objects.

The goals are as follows:

Go to position (sub-goal) This goal sets the current

speed of the ship to the maximum and steers towards the

destination.

Find highest threat (sub-goal) This goal analyzes the

enemies that are inside the area of interest. It determines

the opponent that poses the highest threat based on dis-

tance, angle, and shooting frequency.

Attack opponent (sub-goal) Follows the enemy target to

take it down. Since an appropriate strategy depends on the

Fig. 2 Screenshot of the game Planet PI4
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distance to the target, we implemented the following

strategies. If the target is out of firing range, approach the

target at full speed. If the target is in range, decrease speed,

keep following the target and start shooting. If the target is

too close, try to flank it by applying lateral thrust to fly

around the enemy ship and keep shooting.

Combat (complex) This goal is a sequence of the goals

‘‘Find Highest Threat’’ and ‘‘Attack Opponent’’.

Find repair point (sub-goal) Selects the closest repair

point among all repair points inside the AOI.

Repair ship (complex) This goal is a sequence of the

goals ‘‘Find Repair Point’’ and ‘‘Go To Position’’.

Find base (sub-goal) The goal checks all bases in the

AOI and determines the one that is most desirable to

capture. The decision depends on the distance to the base

and its current state. Bases that are controlled by the enemy

are more preferable than neutral ones.

Capture base (complex) This goal is a sequence of the

goals ‘‘Find Base’’ and ‘‘Go To Position’’.

Find waypoint (sub-goal) Determines an interesting area

for exploration. This is done by selecting either a uniformly

distributed random waypoint or a random point of interest

(e.g., bases and repair points). Both versions are imple-

mented and evaluated in Sect. 6.

Exploration (complex) This goal acts as the default

behavior. It explores the map until a goal with a higher

desirability arises. It is a sequence of the goals ‘‘Find

Waypoint’’ and ‘‘Go To Position’’.

6 Evaluation

In this section, we evaluate the synthetic workloads based

on the presented metrics.

6.1 Experimental setup

As the reference workload, we use traces from two real

gaming sessions of the game Planet PI4 with 16 and 8

players, respectively. The players, ranging from novices to

experienced shooter game players, were divided into two

teams and played the game for about 30 min. The trace files

contain a timestamp, a unique player ID, the number of

neighbors of each player, the number of shots fired, number

of hits, and the number of deaths. All values are sampled

once per second for each player.

The same experimental setup was then repeated for

different numbers players using the different artificial

workload generation techniques as described in Sect. 5:

• RWP Random waypoint

• RPOI Random point of interest

• AI-RWP AI player with RWP exploration

• AI-RPOI AI player with RPOI exploration

• REAL the session of real players.

6.2 Comparing workload generation models

First, we briefly illustrate the different measures for regular

events defined in Sect. 4.1. Figure 3 shows exemplary

histograms (eh; used to calculate Mhist) of the neighbor

count distributions of two games. Figure 4 shows a plot of

the neighbor count transition matrix bA (with all coefficients

normalized to 1, used to calculate Mtrans) of the real

gaming session.

The synthetic workload models were tuned to fit the

average number of neighbors of the real game with 16

players, i.e., to a low value of the metric Mmean: For the

mobility models, this can be easily achieved by adjusting

the effective world size. The AI players show a less linear

behavior, making it more difficult to adjust their behavior

to a given target.

Figure 5 shows the differences of the games generated

by the four workload generators according to the metrics

Mmean;Mhist; and Mtrans: The mobility models RWP and

RPOI are very similar to the real game withMmean; but the

more sophisticated metrics Mhist and Mtrans show a

Table 2 Desirability functions for the complex goals

Goal Desirability function

Combat CSV
MSV

� �
� VR

DTE

� �
� TCombat

Repair ship ðMSV�CSV
MSV

Þ � ð VR
DTR
Þ � TRepair

Capture base ðBVR
CB
Þ � ð VR

DTB
Þ � TCapture

Exploration TExplore

The T* are adjustable parameters to tweak the AI

CSV current shield value, MSV maximum shield value, DTE distance

to next enemy, DTB distance to next base, DTR distance to next repair

point, VR vision range, CB captured bases, BVR bases in vision range
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Fig. 3 Visualization of two normalized neighborhood size histo-

grams (eh) of a 16-player game
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significant difference. In contrast, the AI models have a

higher difference in Mmean because their tuning is less

efficient, but Mhist and Mtrans show a much higher simi-

larity to the human game.

Figure 6 provides more detail on the behavior of the

three metrics. It shows the cross-comparison among

human, mobility model, and AI gaming sessions, with three

repetitions each.Mmean; visualized in Fig. 6a, shows rather

homogeneous differences, except for one outlier with AI-

RPOI (workload #3). Mhist and Mtrans; however, show a

clear separation between AI and real game on the one hand

and mobility models on the other. Within the two groups

(bottom left and top right block), the difference is low.

With Mtrans; the outlier workload #3 is less significant.

This metric thus appears to be the best suited for distin-

guishing the workload classes.

To test the sensitivity of the metrics to changes in the

total number of players, Fig. 7 cross-compares gaming

sessions with 8–128 players. Obviously, with a change in

the total number of players, the average density and the

potential neighborhood sizes change as well. But as the

figures show, Mmean is much more sensitive to this than

Mhist andMtrans: The latter two can—to a certain extent—

be used to compare traces with varying numbers of players.

Finally, we analyze the scaling of the workload gener-

ation techniques. Figure 8 shows the average neighbor set

size depending on the total number of players in the game.

Interestingly, with AI players, the neighbor sets grow much

slower with the total number of players than with the

mobility models. The AI players show the same slope as

the human games between 8 and 16 players. For a vali-

dation with more players, however, we lack data from a

gaming session with a large number of human players.

6.3 Interactions

The second goal of creating representative gaming work-

loads is to accurately mimic the interactions of the real

players. The (inter)actions shooting, hitting, and dying

produce messages that are sent over the network. We

counted the number of shots fired, the number of hits, and

the number of kills for the real session and the two AI

players, and compare them to each other in Table 3. All

values are given per minute and per player. Note that the

mobility models are omitted from the table, because they

are insensitive to the game context and thus unable to

generate any interaction events. The table reveals that our

AI players are more aggressive than real players and shoot

more frequently. Together with their increased accuracy,

they yield a higher kill rate per minute. Unfortunately, it is

not possible to adjust shooting rate and accuracy directly.

They are implicit effects of adjusting the desirability of the

combat goal, because an AI player always shoots when it is

in combat mode and the opponent is in range. However,

adjusting the desirability of combat also negatively affects

the neighborhood characteristic, which is our main focus.

Making the AI less aggressive while maintaining a good

neighborhood characteristic is left for future work.

6.4 Network load correlation

Finally, we evaluate how well the workload metrics reflect

the actual load induced on the systems. To do so, we

measure the network traffic of both a simple client/server

and a pSense (P2P) implementation in Planet PI4. We use

the network traffic, since this is often the bottleneck in

multiplayer online games. Other load factors such as CPU

and memory consumption are harder to compare across

different types of systems (e.g., client/server vs. P2P). We

Fig. 4 Visualization of the transition matrix (fully normalized, bA)

between the number of neighbors in two subsequent time steps of a

16-player game (REAL)
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Fig. 5 Differences of the artificial workloads in 16-player games to

the real 16-player game, measured using the tree metrics

Mmean;Mhist; and Mtrans
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measure the total traffic at all nodes in the system,

including the server in the client/server scenario. Using

traces from various workload configurations as described

above as well as real games, we correlate the difference

according to the metrics with the difference in network

traffic for each pair of configurations.

Figure 9 shows the correlations for the client/server

network. The plots’ X axes represent the results of the

metrics for each pair of traces; the Y axes are the differ-

ences in total network traffic. The separation in two clus-

ters in the client/server traces originates from the traffic

differences between interactive (i.e., including shooting;

human and AI) and non-interactive games (mobility mod-

els). Despite these differences, Mhist (correlation coeffi-

cient: 0.81) and even more Mtrans (0.91) show a much

better correlation to the generated network traffic than

Mmean ð0:39Þ, indicating a better approximation of the

actual load. A similar picture is shown for the P2P network

measurements (Fig. 10), only with a less apparent clus-

tering. Again, Mtrans and Mhist (both close to 0.94) are

Fig. 6 Cross-comparison between different workload generation techniques for 16-player games with three repetitions each.Mmean a does not

show a clear separation between the different techniques.Mhist b andMtrans c separate the mobility models clearly from human and AI workload

Fig. 7 Cross-comparison between different workload generation

techniques and different numbers of players. Mmean a shows a high

sensitivity to the number of players. Mhist b and Mtrans c are less

sensitive and therefore better suited for comparing workloads with

different numbers of players
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Table 3 Comparison of the shots/hits/kills per minute and per player

as well as the accuracy for the real gaming session and the two AI

player workloads for 16 players

Session Shots Hits Kills Accuracy (%)

REAL 148.09 41.76 0.41 28.2

AI-RWP 161.19 71.49 0.74 44.3

AI-RPOI 199.48 70.86 0.74 35.5
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clearly better than Mmean with a correlation coefficient of

0.39. Concluding, Mtrans is slightly better than Mhist; and

both are far above the simple Mmean:

7 Conclusions and future work

In this paper, we have discussed and evaluated approaches

for generating representative workloads for the bench-

marking of multiplayer online gaming infrastructures. For

the purpose of assessing the similarity of two given

workloads, we developed and evaluated a set of metrics.

These allow estimating the similarity to real gaming

workloads as well as tuning synthetic workloads according

to real workloads. Four workload generators, two mobility

models and two AI configurations, were implemented and

evaluated in the 3D shooter game Planet PI4.

The tests have shown that mobility models can be tuned

well to fit basic properties such as the average neighbor

count of a real game session. A realistic density distribu-

tion, however, is much harder to achieve with these simple

models. In contrast, the AI implementations are less tun-

able to a certain target value, because they do not have a

linear behavior. They are distinctively better in mimicking

the density distributions of the human gameplay. This also

affects the scaling behavior with the total numbers of

players in the game. To validate this scaling behavior

further, it will be necessary to perform larger scale games

with human players. Finally, interaction between players

can only be reproduced by AI workloads.

In our future work, we want to investigate the parame-

ters of our AI more thoroughly to find a setting that meets

both requirements simultaneously. The impact of the AI

complexity to the generated workload also needs to be

investigated. Furthermore, we want to compare the results

with other real gaming sessions with more participants.
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