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ABSTRACT

In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalizatiocrisp (or classic) sets to address
the incapability of crisp sets to model uncertainty and eg@ss inherent in the real world. Initially,

fuzzy sets did not receive a very warm welcome as many acadestood skeptical towards a theory of
“imprecise” mathematics. In the middle to late 1980’s thecass of fuzzy controllers brought fuzzy
sets into the limelight, and many applications using fuzg started appearing.

In the early 1970’s the first machine learning algorithmststhappearing. The AQ (fat?) family of
algorithms pioneered by Ryszard S. Michalski is a good exarapthe family of set covering algo-
rithms. This class of learning algorithm induces concegtdptions by a greedy construction of rules
that describe (or cover) positive training examples butmegative training examples. The learning
process is iterative, and in each iteration one rule is indwEnd the positive examples covered by the
rule removed from the set of positive training examples.dBse positive instances are separated from
negative instances, the term separate-and-conquer hasibegto contrast the learning strategy against
decision tree induction that use a divide-and-conqueniegrstrategy.

This dissertation proposes fuzzy set covering as a powerfelinduction strategy. We survey existing
fuzzy learning algorithms, and conclude that very few fulegrning algorithms follow a greedy rule
construction strategy and no publications to date madeitikebetween fuzzy sets and set covering
explicit. We first develop the theoretical aspects of fuzztycavering, and then apply these in proposing
the first fuzzy learning algorithm that apply set covering arake explicit use of a partial order for fuzzy
classification rule induction. We also investigate sevstrategies to improve upon the basic algorithm,
such as better search heuristics and different rule ewatuatetrics. We then continue by proposing
a general unifying framework for fuzzy set covering aldaris. We demonstrate the benefits of the
framework and propose several further fuzzy set coveriggriahms that fit within the framework.

We compare fuzzy and crisp rule induction, and provide anusnin favour of fuzzy set covering as a
rule induction strategy. We also show that our learning iétlgms outperform other fuzzy rule learners
on real world data. We further explore the idea of simultarseconcept learning in the fuzzy case, and
continue to propose the first fuzzy decision list inductitgodathm. Finally, we propose a first strategy
for encoding the rule sets generated by our fuzzy set cayetligorithms inside an equivalent neural
network.






ABSTRACT

Im Jahre 1965 wurden unsharfe Mengen (auch Fuzzy-Mengd)aftinA. Zadeh als Generalisierung zu

scharfen (oder klassischen) Mengen eingefuhrt um diéggkéiten von scharfen Mengen zu erweitern
in Richtung der Modellierung von Unsicherheit und Ungeghkeit der Welt. Zu Anfangs waren Fuzzy-

Mengen nicht besonders popular, da Akademiker einer Tégon “unpraziser” Mathematik skeptisch

gegeniuberstanden. Mitte der 80er Jahre riickten Fuzegr@ler in die allgemeine Aufmerksamekeit,

gefolgt von vielen Anwendungen der Fuzzy-Mengen.

In den frihen 70er Jahren enstanden die ersten Masclsiriagdimen Algorithmen. Die AQ (vom?)
Familie von Algorithmen von Ryszard S. Michalski stellt @eispiel der Familie von Set-Covering
Algorithmen dar. Diese Klasse von Lernalgorithmen induzi®nzeptbeschreibungen her mit Hilfe
einer gierigen Regelkonstruktion, welche nur positiveifirg-Beispiele beschreibt. Der iterativ Lern-
proze leitet in jeder Iteration eine Regel her und loscHtolge dessen die positiven Beispiele, welche
mit der Regel erfasst wurden aus der Menge von positivenifigeBeispielen. Der Term Separate-
and-Conquer wurde gewahlt um den Kontrast der Lernsimggegen Entscheidungsbaum Induktion
hevorzuheben, bei welcher eine Divide-and-Conquer Lextegjie Anwendung findet. Hierbei bezieht
sich Separate-and-Conquer auf die Tatsache, dass pagitiveegativen Instanzen separiert werden.

Diese Dissertation stellt Fuzzy-Set-Covering vor als d@istungsfahige Regel-Herleitungs Regelin-
duktions Strategie. Wir verschaffen eibéersicht tiber Fuzzy-Lernalgorithmen. Infolge dessedein
wir, dass nur wenige Fuzzy-Lernalgorithmen einer gierigRagelkonstruktion verfolgen. Weiterhin
verschaffen soweit keine Publikationen explizit den Linkistchen Fuzzy-Mengen und Set-Covering.
Zuerst entwickeln wir theoretische Aspekte von FuzzySetering. Diese werden im folgenden an-
gewendet auf den ersten Fuzzy Lernen Algorithmus, welcletr&ich macht von Set-Covering sowie
explizit die partielle Ordnung fur Fuzzy Klassifikation ggdinduktion beriicksichtigt. Weiterhin recher-
chieren wir verschiedene Strategien um den zu Grunde liggreAlgorithmus zu verbessern, wie bessere
Such-Heuristik und verschiedene Bewertungsfunktion werRetigeln zu evaluieren. Weiterhin schlagen
wir ein allgemeines Rahmenwerk vor flr die Fuzzy-Set-CiogeAlgorithmen. Wir zeigen die Vorteile
fur dieses Rahmenwerk auf zusammen mit weiteren Fuzz2E8etring Algorithmen, welche auch in
dieses Rahmenwerk eingepasst werden knnen.

Ein Vergleich zwischen Fuzzy und sharfen Regelinduktiordwhiergestellt sowie Argumente fur un-

scharfe entgegen scharfe Set Covering als RegelindukBtasegie vorgestellt. Wir zeigen auch die
besseren Leistungen unseres Lernalgorithmus auf im \elngtel anderen Fuzzy-Regellerner sowie zu
realen Daten. Weiterhin erforschen wir die Idee eines hgisitigen Konzept-Erlernens im Fall Fuzzy.

Wir stellen den ersten Fuzzy Entscheidungsliste Induktiélgorithmus weiterhin vor. Abschlieend er-

stellen wir eine erste Strategie um die Regelmengen, di@imearem Fuzzy-Set-Covering Algorithmus
generiert werden mit einem aquivalenten neuronalen Nextzau kodieren.
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CHAPTER1

Introduction

In the modern world we are collecting huge amounts of datd&adty mankind is collecting much more
data than can be processed by humans. Several areas in eorsgence try to address this issue. In
the data base field efforts are underway to process largbatss in better ways, whereas computer
vision, for example, focuses on the visualization and aat@yprocessing of potentially vast amounts
of image data. Machine learning methods pose one solutianttumatic data analysis and processing.
Machine learning is a field within computer science prinyacbncerned with the design of computer
algorithms that improve their performance with experiefidéchell, 1997. Experience can be in the
form of training examples, as in the case of artificial nenedivorks, for example, or may even be self-
generated as in the case of reinforcement learning. Cleestsifin rules represent an important method
of knowledge representation. Humans typically preferoaam by logical rules to decisions obtained
from black box systems, since rule-based reasoning is ampsible and can be validated, thereby
improving confidence in the systerich et al, 2000 Andrews et al.1995.

Many different methods have been proposed in the machimeimhggliterature to induce classification
rules for a concept from a set of positive and negative ingsifClark and Niblett1989 Michalski et al,
1986a Theron and Cloetel 996 Cendrowskal987 Quinlan 1986. This type of learning has com-
monly been called rule induction or concept learning. Thduation methods induce different types
of descriptions, for example decision tre€dujnlan 1984 or propositional rulesTheron and Cloete
1994. The induction of fuzzy rules was proposed as an improveroeer crisp rule induction.

Set covering is a successful rule induction methodology uséhe crisp case. However, to date almost
no algorithms employeset coveringor the induction ofuzzyrules. In particular, we found no fuzzy set

covering alogrithm using the properties of a partial ordiethis dissertation we establishe set covering
as a fuzzy classification rule induction methodology andhstiat set covering using a partial order can
be used to create powerful fuzzy rule induction alogrithive. propose several novel fuzzy set covering
algorithms, and show that they are capable of inducing fiigbimprehensible rule sets with similar or

better classification accuracy compared to previous fulessdiers. We motivate the importance of this
contribution in the next section.



1.1 Motivation

There are many reasons for wishing to extend crisp propasiticlassification rules to the fuzzy case.
Fuzzy classification rules are more expressive and allovasgoally more natural conditions to be de-
scribed. They are also more comprehensible, because tbhayssimbolic knowledge to be formulated
in a natural way using linguistic terms. The linguistic termcorporated by fuzzy rules are defined by
fuzzy sets. Members of a universe of discourse belong to z/feet to certain membership degrees,
which may be defined by an associated membership functions filzzy sets are commonly used to
address the limitations associated with (over-) exacestations by providing support for vagueness,
ambiguity and uncertainty in human understanding. A fustyatso addresses the problem of discretiza-
tion of continuous (real valued) data. Most machine leayrlgorithms need to discretize continuous
variables into a set of nominal attribute values definingyesnon the continuous domain which together
cover a range, or all of the continuous domain. For examphsider an integer variable age (in years)
with domain[0, 120], for which we wish to induce a condition that distinguishgeung” from “old” cit-
izens. In the crisp case a condition must select a definititoff point, e.g. age< 25. We can now ask
the question, what about a persehyears of age, and how do we decide where to draw the line? Dis-
cretization does not cater to the gradual progression imghleworld understanding of age from young
to old, a characteristic which can be represented by a $yitdlosen linguistic variable and linguistic
terms for “young” and “old.” The fuzzy set representatioscaincreases the representational power of
the description language. This extension also includegtisp case (i.e. when there is no ambiguity
in the source data) as a special case. Furthermore, théficktssn of an instance by a fuzzy rule is
associated with a degree of certainty or confidence. Thare sich degree of certainty for crisp rules,
and an estimation of the confidence in the classification tdmest be obtained from the performance
of the rule on a labeled training set. Finally, contrary te thisp case, in the fuzzy case the decision
boundary of a rule need not be axis-parallel, and may everobdimear. Because of the interpolation
effect of fuzzy inference between overlapping, non-regtéar fuzzy sets, the classification boundary
can be smooth, non-axis parallel.

For the reasons above, much work has already been devoteel study of fuzzy rule learning systems
[Guillaume 200]. The construction of a fuzzy system can be divided into tte@ss, parameter iden-
tification and structure identificatiolPpmares et al2007, also called knowledge base (or data base)
and rule base induction, respectiveGdsillas et al.200J. The knowledge base refers to the knowledge
contained in the membership functions, whereas rule basgifitation concerns the issue of inducing
good rules. The two stages may happen simultaneo®giid-Reyes and Sipp@001; Kasabov et a.
1997 or sequentially Hong and Chen200(J. However, much more attention is being paid to the pa-
rameter adjustment phase, as structure identification ésyacomplex task for which it is very difficult

to obtain reliable procedurePgmares et gl2003. There is also a definite difference between a tuning
method and a learning method. Tuning methods optimise pEeamin a predefined rule set, whereas
learning methods perform a more elaborate search of the sgossible rule bases and/or knowledge
bases, and do not depend on a predefined ruleCsetpn et al.2004. One successful structure identi-
fication approach is decision trees. The induction of fuzzgislon trees, as a generalization of “crisp”



decision trees, have been addressed in a number of p&iessgnd Sztanderd992 Yuan and Shaw
1995 Guetova et a).2003.

There are several aspects which make separate-and-candgiégarners attractive-irnkranz 1999.
Decision trees are often hard to understand, @oohlan[19933 noted that even pruned decision trees
may be too cumbersome and complex to provide insight intaltmeain. Rivest[1987 also showed
that decision lists with at mogt conditions per rule are strictly more expressive than dacisees of
depthk. Decision trees encode all the information contained in alevhule set. Thus, to humans they
are less comprehensible than rule sets as the whole treebmusnsidered at once, while only a single
rule from a rule set need to be considered at a time. Anotipecass that there are certain concepts that
cannot be represented by a concise t@erldrowskal987—the restriction of decision trees to non-
overlapping rules imposes a strong constraint on learnaids [Flirnkranz 1999. This results in the
replicated subtree problem—due to the fragmentation oeianple space imposed by the restriction
to non-overlapping rules, it often happens that the sami&emibas to be learned at various places in a
decision treePagallo and Hasslet99(0. Consider, for example, the following two rules,

ay Nbz — 6
cs Ndp — 6

If these two rules cover all instances belonging to ctasshen a single decision tree cannot represent
the concept in this precise form. The root node of the treetsplg on a single attribute, and there is
no attribute common to both rules. Thus, if an extra attelzan be used to form a smaller decision tree
that covers the training set, this tree will be preferredr@ibers due to decision tree learners’ bias of
preferring shorter trees. This may not be significant ovadfer a computer, however this unnecessary
attribute may be costly to obtain, e.g. if the knowledge ohtigmt’s temperature and blood pressure is
enough to make a decision, then requiring an additionalcbtest is a serious consideration. If no such
extra attribute exists, then the rule set obtained by fifstagenting the concept as a decision tree and
then extracting rules will be much more complex. If eachifaite in the rule set above had five different
values, the equivalent decision tree contains 73 leaf nade®0 edges. Thus the extracted rule set must
be radically simplified to obtain the original concept (sg@pAndixF for a simplified example).

Set covering is a very successful methodology in the crise ¢hat applies the separate-and-conquer
strategy to crisp inductive learningriirnkranz 1999. Set covering algorithms construct concept de-
scriptions by the induction of a conjunctive expressionchitiovers (or matches) a subset of the pos-
itive examples, removing the covered positive exampled,than repeating this process until all the
positive examples are covered. Examples of set coveringegriearners are the AGRamily of al-
gorithms first introduced by Michalski, CR2PRISM, and the Basic EXclusion Algorithm E&A)

by Theron and CloeteMichalski et al, 1986k Michalski, 1969 Clark and Niblett 1989 Cendrowska
1987 Theron and Cloetel 9964.

The success of crisp set covering algorithms make set cayam attractive proposition for concept
learning. Many other methods have been proposed for thectimtuof fuzzy rules, including fuzzy

1AQ stands ford? algorithm.
2The C and N are the first letters of the algorithm’s author§l&k and T. Niblett
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neural networks, fuzzy clustering algorithms, and fuzzgisien trees. However, there are very few
fuzzy rule induction algorithms that apply greedy incremaémule construction. We found only two
methods that use a separate-and-conquer strategy by mgnmwered instances from the training set,
and the relation to the set covering methodology is not magkcit. This dissertation establishes set
covering as an important fuzzy rule induction methodologyates fuzzy to crisp set covering, and
proposes fuzzy set covering using a partial order as a palwetv fuzzy rule induction strategy. Fuzzy
sets are an intermediary between the symbolic and sub-dig;mimwledge representations—we can
reason with fuzzy sets symbolically as linguistic termg] @@ can also relate instances to fuzzy sets by a
numerical value (membership degree). Thus, the introdnaf fuzzy set covering for classification rule
induction is an important contribution to machine learrsintce it narrows the gap between the symbolic
and sub-symbolic knowledge representations, therebgibgrtogether the fuzzy and symbolic machine
learning communities. Since the proof of the pudding is méhating, we provide several experiments
with fuzzy set covering algorithms to demonstrate that {heform extremely well with respect to rule
set comprehensibility and classification accuracy, alsopared to other state of the art algorithms. This
dissertation also introduces the first ever use of simuttaseoncept learning for fuzzy rules, thereby
allowing the induction of fuzzy decision lists. We show thatler the right conditions, decision lists can
provide extremely compact but still accurate concept digions. In the next section we summarize the
complete problem statement, and then we provide our obgector achieving this goal.

1.2 Problem Statement

Rule induction is a very important subclass of machine iegrmethods since it provides insight into
the model learned from data. Humans often reason using &séés, and thus a rule based classifier is
intuitive and often more readily accepted than black bossifeers. A limitation of classic rule learners
is their inability to deal with uncertainty and ambiguityul@s based on fuzzy sets can address this issue.
However, there are very few rule learners using fuzzy setsapply an incremental rule induction strat-
egy such as set covering (a very successful crisp rule imustrategy). In a study of several different
fuzzy inference systems obtained from da&ayillaume[200]] concluded that the blind improvement
of performance (e.g. by generating meaningless domaiitipast purely for performance reasons) may
degrade the interpretability of the induced fuzzy rules] #rereby invalidate the explicit assumption
that fuzzy rules are by nature easy to interpret. Guillauimesgthree conditions for interpretable rules,
(a) fuzzy sets should be interpreted as linguistic lablsthe rule sets should be as small as possible,
and (c) the rules should be incomplete rules. This meansfahat high level of interpretability, the
rules should be as general as possible, allowing each rglevier a high number of instances, therefore
resulting in a small rule set. In this dissertation we inigzge fuzzy rule induction strategies capable
of inducing accurate and, very importantly, comprehemsdancept descriptions in the form of fuzzy
classification rules. We are specifically not concerned waitiorithms for function approximation or
fuzzy control.



1.3 Objectives

We approach the probem stated above by persuing severatiobgeduring the course of this disserta-

tion,

review and characterise other fuzzy concept learners aly stxamples of successful crisp rule
learners,

adapt the crisp learning strategy for the fuzzy case, arateBefuzzy learner using this strategy,
summarize the characteristics of other fuzzy rule learaedscompare with that of the new learner,
investigate pruning and stop growth measures in the fuzzg,ca

develop a fuzzification method for continuous data,

examine the influence of different rule evaluation mechanjs

analyse the learner’s training parameters,

investigate different description languages,

measure the performance of the learner and compare to ott®yr fearners,

investigate the induction of ordered rule sets (decisists )

investigate the possibility to develop a framework withihigh the learner and its various exten-
sions can be understood and characterised.

1.4 Accomplishments

During the course of this dissertation we will demonstraia @ll the objectives set out in the previ-
ous section are met. We will show that our proposed fuzzy ledening methodology adheres to all
three conditions for high interpretability as stated in pineblem statement. We will also show that the
proposed algorithms are at the same time capable of indindgidy accurate fuzzy rule sets. We list
several contributions made by the dissertation.

1.

We prove the feasibility of fuzzy set coveringlpete and van Zy20044 as a new methodology
for the induction of fuzzy classification rule€lpete and van Zy20044.

. We introduce BzzyBEXA [Cloete and van Zyl2004, the fuzzy generalization and improve-

ment of BEXA, and provide various efficiency measures and stop growtérieriapplicable in the
fuzzy case.

. We introduce various rule evaluation functionsrj Zyl and Cloete2004q, and show that the

heuristics they employ play an important role in the indutiprocess and the overall performance
of the algorithm Cloete and van Zyl20044.

. We provide preliminary results for a method for encodihg &xtracted fuzzy rules in an ar-

tificial neural network, and show that there is a one to onepimgpfrom rule set to network
[van Zyl and Cloetg20044.

. We also provide a method for the induction of ordered furdy setsyan Zyl and Cloetg20044].



6. We propose FCF (Fuzzy Covering Framework), a new uniffiagnework based on fuzzy set
covering for the induction of classification rules, whersgiset covering is included as a special
case of fuzzy set covering4gn Zyl and Cloetg2004.

7. We provide four different specialization models for tfiamework: specialization by exclu-
sion [Cloete and van ZyR006, Fuzzy SEEDSEARCH [van Zyl and Cloete2006, FuzzCoNRI
[van Zyl and Cloetg2004da], and Fuzzy PRISMyan Zyl and Cloetg20044.

8. We present theoretical arguments for fuzzy set coversngpposed to crisp concept learning, and
provide experiments comparing FCF to state of the art cdrieamers.

9. We provide a comparison between fuzzy set covering aret étlazy learners on a set of bench-
mark data sets to demonstrate FCF's superior performa@loete and van Zy200§.

10. Finally, we provide results on two real world applicagpthe detection of SPAM and the predic-
tion of mortality in septic shock patients. FCF was able ttpetform previously used methods
convincingly, both with respect to classification perforoa and especially with respect to rule
set comprehensibility.

1.5 Dissertation Outline

Since the goal of the dissertation is to develop a new fuzleyinduction methodology, in Chapt2mwe
provide a survey of fuzzy concept learners in general. Wevshat there are indeed very few algorithms
that apply a greedy incremental rule construction strategy that none apply the set covering rule
induction strategy using a partial order for the inductidnfuzzy classification rules. In Chapt&
we study the details of the succesful crisp rule learnex& In the following chapter we develop
fuzzy set covering for classification rule induction, anttdduce FJzzYBEXA as an instantiation of
such algorithms. 6zzyBEXA makes explicit use of partial ordering and lattice theoryabyanging
the concepts in its description language in a lattice, aagvithg conclusions for induction strategies,
efficiency, and pre-pruning.

FuzzyBEXA can be adjusted to the specific problem by a set of learningnpeters, for example, the
beam width. We provide an empirical evaluation of the infeeenf these parameters on the algorithm
in Chapters. The following chapter discusses the importance of theeudduation function, introduces
several new evaluation functions, and provides an empicmaparison. To establishuzzyBEXA’s
uniqueness, Chaptémprovides a comparison betweenZyBEXA and other fuzzy concept learners at
the hand of BzzYBEXA’s various characteristics. In the following chapter wegmse FyzzCoONRI,

a fuzzy set covering algorithm that induces conjunctiveeyuaules. Chapte® introduces FCF (Fuzzy
Covering Framework), a general fuzzy set covering framé&wwat allows the use of arbitrary specializa-
tion models employing different description languages.alge propose several different specialization
models for the framework. In Chaptéd we provide arguments for fuzzy set covering as opposed to
crisp concept learning, and we present empirical proofFiGa outperforms comparable fuzzy learners
on real world data. We present concluding remarks and ddrector further research in Chapt&?.



CHAPTER?Z2

Fuzzy Concept Learners

2.1 Introduction

A typical empirical learning algorithm receives a set ofrax¢es, where each example is described by
a vector of attributes, and each attribute consists ofbatti values. In the case of a neural network,
for example, all attributes have attribute values from tbmdin of real numbers. The task of a concept
learner is to build a mapping from attribute values to coteépr classes). 1D'3 for example, builds a
decision tree to classify examples based on their attribaliges, where attributes are tested at the node,
and different branches represents different attributaesQuinlan 1986. A concept learner is said
to induce a concept description from a set of positive ané@itnegyinstances (examples) of the concept.
Covering algorithms are a class of concept learning algmst that produce concept descriptions by
iteratively generating concept descriptions, and at eaghremoving the positive instances covered (or
classified) while retaining all negative instances, utitipasitive instances are covered. AQ15 and CN2,
for example, induce a set of IF-THEN propositional ruleseventhe antecedent is built by a boolean
expression of the attribute values, and the THEN part reptesa conceptMichalski et al, 1986k
Clark and Niblett 1989. The expressiveness of the learner is determined by itsrigdsn language.
Learners with a more expressive description language qanregent more complex concepts, and are
therefore more powerful. The description language 8&kB [Theron and Cloetel 996, for example,
can be represented using Michalski’s Variable Valued L&yistem 1 (VL) [Michalski, 1972, and may
contain internal disjunction.

Based on their method of learning, fuzzy concept learnensbeadivided into roughly seven major
classes: (1) those employing greedy incremental rule naetgin, (2) those following a divide-and-
conquer strategy, such as fuzzy decision trees, (3) thaseigle similarity search, (4) those that employ
stochastic search, (5) those that derive a fuzzy partif@nthose that build hierarchical systems, and
(7) those based on gradient descent. There are also a feptiexsethat cannot be put into any of these
major classes, for example fuzzy Bayesian learning.

To date, no algorithms have been proposed that use the sairapapproach to fuzzy rule induction
in the way presented in this dissertation. This chapterigesva survey of existing fuzzy classification
methodologies, and we review several algorithms of eackasjgles. The reviewed algorithms are rep-

1ID3 is an acronym for Iterative Dichotomiser 3.



resentative of their groups, and other similar algorithoifv the same strategy with only incremental
differences. Since concept learners induce rules witlewifft description languages, we first discuss
different possible description languages in Secf8dh We then continue to discuss greedy incremental
rule learners, divide-and-conquer search, similarity@deastochastic search, fuzzy partitioning meth-
ods, hierarchical fuzzy systems, and gradient descentlseaaspectively in Sectiord3to 2.9. The
discussion is thus ordered from most related to more distank. Within each section, the survey of
literature on the respective rule induction method is preskin chronological order (except where not
appropriate), and more emphasis is placed on work introduoéw concepts. Some significant methods
that do not fall into any of the major categories are disadisseSection2.10 Section2.11concludes
the chapter.

2.2 Description Languages

Propositional rules are of the form
IF antecedent THEN consequent (2.1)

In Mamdani-type fuzzy controllers the antecedent take$dim

m is M1 AND ... AND NMn—1 is HMn—1 (22)
wheren, ..., n,—1 are input variables. The consequent takes the form
N 1S fin, (2.3)

wheren,, is the output variable. The antecedent of Takagi-Sugenzyfuzles have the same form as
that of Mamdani rules, but the consequent is a linear funaifdhe input variableslfakagi and Sugeno
19845,

IF xis A; THEN y; = alx + b;, i=1,2,....M (2.4)

wherei is the rule indexx € R™ the antecedent, ang € R the consequent. The antecedent fuzzy set
of the ' rule is 4;,

A;(x) : R™ — [0,1] (2.5)
and is typically defined as an AND-operation by means of thelyet operator $etnes 2000. A

completerule contains linguistic terms from all input domains, wéesincompleterules do not.

A possibility rule involving fuzzy setsA and B is a special kind of fuzzy rule corresponding to the
statement “the mor& is A, the more possibility3 is a range fo”,” where X andY” are two variables
[Dubois et al. 2003. The possibility rule guarantees a certain lower boutid, y) that (z,y) is an
admissible instantiation qfX,Y"),

w(z,y) > min{A(x), B(y)} (2.6)



Typically X andY are input and output variables, respectively, and we aeedated in the values &f
given X. Assumingr (y|x) = m(x,y), Eq 2.6) is a lower bound to a conditional possibility distributjon
i.e. given the valueX = x the possibility that” = y is lower bounded byt (z, y).

FuzzyBEXA, to be introduced in Chaptet, will express its rule antecedents in FuzzyAL, a fuzzy
attributional logic that contains disjunction, conjunctj and internal disjunction. The rule consequent
may either be a single variable, or a conjunction of outpuiatdes (see Sectiod.3.1for a detailed
treatment of FuzzyAL). Most rule learners uses either MamdaTakagi-Sugeno type rules, and with
the exception of fuzzy decision trees, few induce inconeptates.

2.3 Greedy Incremental Rule Construction

Inductive rule learners induce IF-THEN classification sufeom data by identifying features that em-
pirically distinguish positive from negative training exples Mitchell, 1997. The class of fuzzy rule
learners most related to our work induce rules by a greedginental rule construction process. These
rule learners construct rules by expanding one or more io@ementally at each step. The search
process employs a greedy search by choosing the expansidindeto the (local) best improvement.
There exist very few such rule learning algorithms (we hawenél only four to date) compared to the
large number of fuzzy decision tree learners, fuzzy newetarks, and fuzzy genetic algorithms. In
this section we review all the algorithms following this apgch in relative detail. In Chapt& we
will propose several specialization models for fuzzy rulduction, and we will provide a comparative
discussion of the relevant algorithms surveyed in thisigect

Wanget al proposed a learning strategy for incomplete rules usingyfirzformation gain YVang et al.
1999. Inductive learning is generalized to learn a concept digson R,

Vée, P=éCoR andVé €, N = éZ R (2.7)

whereR is a fuzzy concept descriptiol,is a linguistic quantifier such as “almost all” or “mos#/is a
soft instance P and N are sets of soft positive and negative instances resplctamd C, andZ,, are
fuzzy relationship descriptors that denetecoveredand a-not coveredrespectively. A soft (or fuzzy)
instance is an instance that has class membership to Itiegtésms in the rangé), 1]. Mamdani-type
rules of the form of EqZ.1) are learned, and an instance is said taxbeoveredby a descriptionR if
the rule strength is above a predefined threshglide. non-zero after applying ancut. This inductive
strategy is borrowed from the crisp inductive algorithm 8RI[Cendrowskal987. The algorithm
receives a training sdf, and learn descriptions for concepise C, kK = 1,..., K, whereC'is a set
of concepts. The rule learning begins by consideripg: C, and initialises the concept descriptidh
to null. It then measures the fuzzy information gain for elieguistic term for the current class and
chooses the terrhthat results in the highest gain. It then adds the term to éiseription,R = R A L.
The rule is then evaluated according to the fuzzy Bayes med¥uan and Shayw1995,

Yecr 6, (€)Tig(e) 08

B(CK|R) = Z 7 e (6)
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Table 2.1: The Fuzzy Beam Search algorithm.

PROCEDURE FuzzyBeamSearehzdepth, w)

1 depth =0

2 ruleset = a single rule with no conditions

3 REPEAT

4 FOR EACHr; € ruleset

5 FOR EACH attributer; not used in;

6 FOR EACH attribute value;,

7 letr;jx = r; with [a; = v;;] added to the condition
8 specializations = specializations U {r;x }
9 Compute a rule quality measure oy

10 END FOR

11 END FOR

12 END FOR

13 ruleset = bestw rules among current rules

14 depth = depth + 1
15 UNTIL no rule created in this iteration outperforms rules
of previous iterations ORepth = maxdepth
16 RETURNruleset
END PROCEDURE

wherer is a t-norm such as minimum. If the rule strength is above adsfined levels then the rule
is added to the rule set, all thecoveredinstances removed from the training set, and the procedure
repeated. When all the instances areovered the procedure is repeated for the next class.

Fertig et al developed a fuzzy beam search induction algorittiarfig et al, 1999. The algorithm

is given in Table2.1. It receives two parametersazdepth is the maximal search depth, andis
the number of simultaneous paths explored, or beam widthopAdbwn induction is performed by
adding conditionga; = vy to existing rule antecedents, whergis an attribute that was not present
in the rule antecedent before, angl is an attribute value frona;. Thus, the description language
allows the conjunction of different attribute-value paiesxd an attribute may only occur once, thus
similar to the description language of CN2lark and Nibletf1989. The procedure creates all possible
specializations of the current rules, and evaluates thewording to the evaluation functiof,

_AAC] -3

E
|A]

(2.9)

whereA is the rule antecedent; is the class attribute, and| is the summation of membership degrees
over all examples with membership higher than a predefinkgeva Once all the specializations are
created, the best rules are picked from both the specializations and previales. The search termi-
nates when exactly the previous rule set is selected againsgfecialization, or whemazdepth terms
were added to the rule antecedent. The fuzzy sets may e#lerttapezoidal membership functions or
assume crisp 0 or 1 membership degrees. The choice of trepiadicted by rules are not specified
in Table2.1. The authors suggest to run the algoritkrtimes for ak-class problem, and let rules have
each class as consequent in turn. In a two class problemtlmaiyinority class is predicted, since such
rules are more interesting. The majority class is then stteadefault class.

10



Inreference\Wang et al.2003 Wanget alpropose a fuzzy learning strategy based on the AQR inductive
learner by Michalskiichalski, 1969 Michalski et al, 19864 called fuzzy AQR (FAQR). Wangt al
state that their method focuses on learning fuzzy rules ofntraining examples, and do not consider
the acquisition of membership functions, which could beaote#td by any of a number of methods.
FAQR induces rules in disjunctive normal fordh, vV Cs V.. . .V C, where eaclt; is a purely conjunctive
expression. The fuzzy measurement funcjiatefines the degree to which a set of soft positive instances
P are included by the concept descriptiin

>ce,p(r(e) T ur(e))
ZeeﬂP :U'P(e)

wherer is a t-norm, antt €g P means that instance 5-belongsto P, i.e. pp(e) > 5. The fuzzy
measurement function....;.q4.(R) defines the degree to whidh excludes soft negative instances,

e n(an(e) 7 (1= ur(e))
e, FN(E)

Hinclude (R) = (2 10)

,Ufexclude(R) = (211)

A concept descriptiorR is evaluated by

M9+§’7 (R) - Minclude(R) P ,U'e:vclude(R) (212)

wherep is a union or an addition operator, and the subs&tipt/ represents soft include positives and
soft exclude negatives. If the minimum and maximum functiare used for the intersection and union
operators, the costs fQr;,cude @aNd perciude @re proportional to the numbers of positive and negative
instances. The fuzzy measurement function for a compléxdefined similarly to that foR by simply
replacingR with C in the equations above.

The FAQR learning strategy consist of two phases: generaia testing. The algorithm is shown
in Table2.2 In step 5 of the procedur&enComplexa description is specialized as follows. L&t
be the set of all single term expressions (single attrivatae pairs) thatv-coverthe SEED but not
the negative instance then the newC,; is the set{C; A S;|C; € old Cs.; andSy, € S}. Finally,
remove all the complexes i@, that are subsumed by other complexes, i.eCjifsubsume<”; and
y+y-(cy) = Hy+y—(c;)» removeC; from Coee.

FS-FOIL is a fuzzy extension of FOIL (for First Order Indweti Learner) Quinlan 199Q
Quinlan and Cameron-Jonek993, and thus uses first-order logic to induce a set of fuzzy ipegels
describing a goal predicat®fobics et al.2003. The final induced predicaté is the disjunction of the
set of predicate$,

t(Ax) = \/ t(A(x)) = Si(z, y)t(A(x)) (2.13)
Aes
whereSy, is the Lukasiwich t-conorm. The objective of the algoritrsrta find a set of predicates with

high significance and accuracy, where significance is defaseithe common support of a predicate
and the goal predicat€,

[(ANC)(X

K
supr(,€) = A0 - 23 (a0, o) (2.14)
=1
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Table 2.2: The Fuzzy AQR algorithm.

PROCEDURE Fuzzy AQRY, N)
1 LetR be an empty set
2 While the rule set R does natcoverall positive instances i3, do the following steps.
Otherwise, returrik.
3 Select the positive instance SEED that is matoveredby R, and has the
highestup(e) among the positive instances.
4 Call the procedure GenComplex to geneKdig, a set of complexes thatcover
SEED and no negative instancesNn
5 Select the comple&,.; that has the highest,+- value inCe;.
6 AddCj., as an extrarule to the rule sit(i.e. R = RV Cpes), and go to step 2.
END PROCEDURE

PROCEDURE GenComplex (SEED)
1 LetCy. be a set of single-selector complexes thatover SEED
2 While at least one complex ifis.; a-coversa negative instances iN, do the
following steps. Otherwise, retui,;.
Select”; from C,.; such thaic,cuq.(C;) has the smallest value
Select a negative instaneavith the highest valug,y (e) among those-coveredby C;.
Specialize all complexes ifi,.; to hota-coverthe instance.
Remove the worst complexes frath,, until |Cs.| < 0, whered is a
user-defined parameter.
END PROCEDURE

o0k W

andT7y, is the Lukasiwich t-norm. Accuracy is defined as the confidesfopredicated with respect to

C, where confA, C) = S‘;ﬁ‘;‘fg), supA) = £ 3K #(A(x)), and thus

conf(A, ¢y = (ANOX] _ X H((AN (X)) (2.15)
()] S (AX)
The FS-FOIL algorithm is shown in TabR3. It starts with the predicaté that always gives truth value
1. In each iteration an intermediate set of predicdteis expanded by forming conjunctions between
members of”” and members from the set, the set of atomic predicates that may be used for expansion.
The bestt predicates according to the information géirare kept, where

G(A) = |(AAC)(X)| <log2 % ~log, |C‘()‘§)|> (2.16)

Pruning proceeds by removing all predicates P for which supgA, C') < supnin, and all predicates

in B € E for which supgA A B,C) < suppnin. If a predicate4 has at least a minimum significance
and accuracy, it is added % The open nodes fro® covered byA are then removed by replacirig
with the intersection of the fuzzy sét and the fuzzy set of elements i that have not been described
by the predicated. The induction process terminates wHél /K falls below a certain threshold, or
when no new significant and accurate predicates can be fopmddansion anymore. Although FS-
FOIL is said to use first-order logic, only a single variatdeallowed, and thus no variable binding is
necessary. FS-FOIL does not perform substitutioff-esubsumption, and thus cannot learn relations
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Table 2.3: The FS-FOIL algorithm.

PROCEDURE FS-FOIL{, X, A)
S=0,P={T},E= A, opennode® = C(A)
REPEAT
P’ = bestk predicates of” according ta&
P = expansion of”’ using &
PruneP andE
IF predicatey € P is accurate and significant THEN
addpto S
remove nodes covered byfrom open node®
P={T}HE=A
END IF
UNTIL stopping condition
END PROCEDURE

PP OOO~NOUTEAWNPE

= O

between attributes or recursive functions like FOQuijnlan 199Q Quinlan and Cameron-Jon&<993
Mitchell, 1997.

2.4 Divide-and-Conquer Strategies

The divide-and-conquer strategy is primarily implementgdiecision tree learning, as exemplified by
ID3 [Quinlan 1984 and C4.5 Duinlan 19934. Decision trees, like most other symbolic machine
learning methods, cannot handle continuous values in aalattay, and can at most suggest threshold
values (boundaries) for decision making. The first fuzzyislen tree induction method was proposed
by Chang and Pavlidisdhang and PavlidjsL977. Their method builds a binary fuzzy decision tree
using a branch-bound-backtrack algorithm. Recently, yfulerision trees received much attention from
several authors. F-ID3, for example, is a fuzzy counterphitie ID3 algorithm, where a fuzzy version
of the entropy function based on the cardinality of fuzzysdetused instead of the classical entropy
function [Cios and Sztandera997.

Instead of using fuzzy entropy, Yuan and Shaw assume thatoemsinip functions are known a-priori,
and induction proceeds based on the classification amipigAliteach node in the tree the attribute that
reduces the classification ambiguity most is chosen forresipa [Yuan and Shawl995. Zeidler and
Schlosser suggested to compute membership functions ftinaous domainsZeidler and Schlosser
1994. First the domain is partitioned, and then trapezoidal imership functions are placed on each
partition, where the corner points of two adjacent trapgz@ire chosen to be the first instance values
left and right of the patrtition division. In referencHeru and Hong1994 an algorithm is proposed to
fuzzify the rules deduced from a decision tree induced byI3ealgorithm. Crisp ranges are fuzzified
by placing trapezoidal membership functions over the raiage choosing the end points to extend
a user defined amount over the range. The attributes are ¢ipdarced by linguistic variables, and a
two-layer perceptron is used as a defuzzification method.

Janikow suggests that fuzzy decision trees are usually wéesh the objective of learning is high
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comprehensibility, rather than “best” fuzzy partitioniraf the description spacelgnikow 1996
Janikow and Fajfer1999. His fuzzy decision tree is induced using the ID3 method, the infor-
mation utility of individual attributes is evaluated usifigzy sets. During classification, the inference
routine must determine to what degree the example satisdids & the leaves, and several inference
methods have been suggestddrikow 1998. In reference Janikow 1996 exemplar learning is used
in the inference method. Exemplars are special examplested|from the training data, and used as a
proximity measure, i.e. the decision procedure returnsldees assigned to the "closest” exemplar. This
relates the fuzzy decision tree induction method by Janitathe class of similarity search methods
discussed in SectioR.5.

Marsala used the star entropy to induce fuzzy decision @mpetied to data miningNlarsala 199§,
where the star entropy is an extension of the Shannon enfBmychon-Meunier et g311994:

mj
H5(ClA;y) ZP* P*(Ck|Vji) log(P*(Ck|Viir)) (2.17)

||MN

whereV/; is the set of instances from the training set that hag'thtribute value for attributet;, Cj,

is the set of instances from the training set belonging taeptr;,, and P* is the Zadeh probability
measure of fuzzy eventZideh 19694. If v = {z1,...,z,} is a fuzzy set and with each elementthe
classical probability of occurrend®(z;) is associatedy is called a fuzzy event. The probability of the
fuzzy event is then defined by,

v) = (@) P(w;) (2.18)
=1

Membership functions are obtained beforehand by using haddiased on the utilization of mathemat-
ical morphology theoryMarsala and Bouchon-Meuniet994. In reference [Marsala 2000 Marsala
showed that classification by fuzzy decision trees is edgmtdo generalized modus ponens. General-
ized modus ponens is an extension of the classical moduspa@apable of handling fuzzy data,

Rule: P=C
Observation: P’
Deduction: c’

Observing a valug”’ close to the antecedelft of a rule allows the construction of a consequént
close toC'. It was shown that given a measure of satisfiability, e.gzyusubsethood, and a process
of inference by means of a fuzzy decision tree, a continuityhe value of the decision is obtained
relative to the values of the description. This continuityuzzy decision trees results in stability when
classifying evolving observations.

In reference Boyen and Wehenkel 999 a fuzzy decision tree was used with application to the sgcur
assessment of a power system. The induction method isctestitio binary trees, and consists of three
steps. In the first step the tree is grown, and in the secomsdpib$t-pruned using cross-validation. In
the third step a non-linear optimisation method is usedfibtiee parameters (the transition regions of
tests, and the labels attached to leaf nodes). The derizeg ftee represents the functipn(o) which
associates any objeotof known attribute values to the output clasby a certain membership. The
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valuey..(o) is the average of the labels attached to the leaves, weiblyttte degree of membership of
the object to the corresponding fuzzy subsets.

In reference Tsang et a].2000 Tsanget al states that fuzzy decision trees have the advantage tlyat the
produce comprehensible knowledge, but that they are offéinized for poor learning accuracy. A
hybrid neural network is proposed to refine a fuzzy decisiea.tThe fuzzy decision tree is augmented
with several parameters, resulting in a weighted fuzzydiecitree. A weighted fuzzy decision tree
contains three sets of parameters in each leaf node, theadetjiruth of the classification corresponding
to the leaf node (usually called the certainty factor), tegrde of importance of each segment on the
path from root to leaf node (called local weights), and thgrede of importance of the leaf node’s
contribution to the consequent or classification (callezldlobal weight). A weighted fuzzy decision
tree is equivalent to a set of fuzzy production rules witlal@and global weights, as introduced by Yeung
and TsangYeung and Tsand 997. An artificial neural network trained by an adapted backggation
algorithm was used to adapt the tree weights. The weightet/fdecision tree significantly improved
its accuracy compared to a normal fuzzy decision tree, whdetaining high comprehensibility.

In reference [Pong and Kothari200]] the fuzzy ID3 algorithm as proposed i€ios and Sztandera
1992 was extended to include a multi-step look-ahead methoddas the smoothness of the class
label surface. The smoothness is measured by calculagngptbccurance matrix. The algorithm jointly
optimises the node splitting criterion, i.e. the informatigain or gain ratio, and the classifiability of
instances along each branch of the node. The look-aheadliginrequires finding instances within
a distancer from a given instance. These values, however, can be cochutee beforehand. In
reference itra et al, 2003 different types of decision trees are evaluated using atgtise measure
called the T-Measure. This measure incorporates both tigactness and performance of the decision
tree. Various methods were also proposed for incorporatifugzy 1D3 algorithm into a neural network
[Singal et al. 2001, Mitra et al, 2003.

Guetovaet al proposed a method for the incremental training of fuzzy slenitrees Guetova et a.
2007. In reference pbonyi et al, 2003 a binary decision-tree-based initialisation of fuzzyssifiers
was proposed and used to select the relevant features aaid abteffective initial partitioning of the
input domains for a fuzzy system. The decision tree ing@lifuzzy classifier is reduced in an iterative
scheme by means of similarity-driven rule-reduction. Aejenalgorithm is used to remove redundancy
while maintaining high accuracy. Olaru and Whenkel propasaft decision trees which combine tree
growing and pruning to determine the structure of the trad, applied refitting and backfitting to im-
prove its generalization performanc&léru and Wehenkel2003. In reference Chiang and jen Hsu
2007 fuzzy classification trees are proposed. Fuzzy classificdtees integrate fuzzy classifiers with
decision trees. In referenceSdfavian and Landgreb&991 Murthy, 1998 an overview of decision
trees in general is given.
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2.5 Similarity Search

We group all fuzzy concept learners that employ some kindstédce or closeness measure under the
term "similarity search.” These include clustering methouhstance-based methods, and some SVM
(Support Vector Machine) methods. We discuss each of thdsg®mups separately.

There exist many different clustering techniques, and alaay different fuzzy clustering techniques,
of which the fuzzy c-means algorithm is probably the bestvkmdBezdek 1981 Bezdek and Pal
1997. Fuzzy clustering has been employed for supervised ridenieg in many different forms.
Fuzzy clustering algorithms for pattern recognition swgge in the literature include Self-Organizing
Maps, Fuzzy Learning Vector QuantizatioKdrayiannis and Bezdekl997, Fuzzy Adaptive Reso-
nance TheoryQarpenter et al1991], Growing Neural GasHeinke and Hamked 99§, and Fully Self-
Organizing Simplified Adaptive Resonance ThedBajaldi and Alpaydin 2002 Baraldi and Blonda
1999.

The aim of fuzzy clustering algorithms is to find a good prppet for each fuzzy cluster and suitable
membership degrees for the data to each cluster. The sinegl@siple is fuzzy c-means, first introduced
in referenceDunn, 1974. Fuzzy c-means searches for spherical clusters of appeigly the same size
and uses Euclidean distance as a similarity measurd.elsk, 2001] an e-insensitive fuzzy clustering
method based on Vapnikisinsensitive loss function is introduced. This algorittsmabust with respect
to noise and outliers, and the fuzzy c-means clusteringigthgo is obtained as special case.

In reference Klawonn and Kelley 1997 a typical method for extracting Mamdani-type rules is de-
scribed. The output space, which may be scalar or multidsoeal, is partitioned using a clustering
technique. Each data point is then assigned to a class basth@ gartitioning. Using the data from
each class, prototype features are extracted for each cldss prototype features are then projected
on the different dimensions of the input space. Using thgeption, membership functions are ex-
tracted. These are then used to form the antecedent for @klEN rule, where the consequent is the
output space projection of the feature vector. Unsupedvisestering can also be employed to derive
IF-THEN rules by projecting each cluster to the correspogdioordinate spaces. The projection to the
i domain is obtained by taking th& toordinate of each data point in the cluster and assigniitghe
membership degree of the original data point to the clubtehis way a piece-wise linear membership
function on the domain is defined{lawonn and Keller1997, and a Mamdani-type fuzzy controller
[Sugeno and Yasukawh993 is obtained. If triangular membership functions are usedh feature can
be seen as a point in the instance space, where increastagatisrom the feature implies increasing
vagueness and is “less typical.”

Takagi-Sugeno (TS) type rules can also be inferred diréaiiy data Betnes200d. The model identifi-
cation process consists of two steps. In the first step theyfaatecedents of the rules are determined. In
the second step the antecedents are kept fixed, and a leases@stimation from data is applied to de-
termine the consequent parameters of the rdésaqdb; in Eq (2.2)). The Gustafson-Kessel clustering
method Gustafson and Kessel979 is often used in the identification of TS type rules, and aypl

an adaptive distance norm to detect clusters of differeatrgtric shapes in the data s8efnes et al.
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1998. It defines the linear functions in EQ.Q) on the basis of the eigenvalues and eigenvectors of the
matrix C; of clusteri, whereC; is a symmetric positive definite matrix obtained from theartance of
the clusters. In referenc&¢tnes200( it is proposed to use the orthogonal least squares (OLS)adet
and to remove redundant or less important clusters duriagchistering process, thereby extracting
fuzzy rules that capture the data set features in a compactransparent way. The clustering meth-
ods by Gustafson and Kess@stafson and Kessel979 and Gath and Gevadath and Geval989
search for hyper-ellipsoidal clusters of varying size. Thesstafson Kessel method was modified by Kla-
wonn and Kruse to obtain clusters whose axes are parallaktodordinate axe¥awonn and Krusg
1994. This technique is more flexible than fuzzy c-means andltegua smaller loss of information
as compared to the standard methodsdngtafson and Kessel979 Gath and Geval989. It is also
more computationally efficient since matrix inversion igiged. In referenceRoubos et al.200qJ an
initial rule base is derived using a modified Gustafson Kassthod, and then refined using a genetic
algorithm. Hong and Lee’s fuzzy expert system also emplogisistering method to extract rules from
training data Hong and Leg199¢. Berthold et al.[2009 proposed an interactive method based on
neighborgrams to generate a set of clusters from data. Goethim first computes neighborgrams for
all patterns for a given class, and then computes the optiaepth, i.e. the depth for which a certain
minimum purity is guaranteed. The algorithm then iterdgiaglds new clusters to the set of clusters by
selecting the cluster with the highest coverage, where dlierage of a cluster with a given deptlis
determined by how many positive patterns fall within itsivad All patterns that belong to the cluster
are then removed from the training data, and the procesgatkbuntil the sum of all covered patterns
exceeds a specified threshold. The authors state that thetlahg can be fuzzified by using fuzzy mem-
bership functions to model a degree of membership of a pdatipattern to a cluster. In some domains
it may also be preferable to fuzzify the class membershiptaratiapt the purity measurement to the
fuzzy case.

Model-based approaches make assumptions about the stro€tine system under consideration, and
instance-based methods such as nearest neighbour chgsificely on some kind of “closeness” or
“representativeness” assumptiddubois et al. 2004. Dubois et al formulate a similarity based rea-
soning (SBR) hypothesis stating “similar problems havélainsolutions.” They use possibility rules in
order to formalize the SBR hypothesis, “the more similar Bitaations are, the more possibly the cor-
responding outcomes are similar,” and build a fuzzy casedaeasoning systerd{ibois et al. 199§.

The approach is based on similarity guided extrapolationbserved cases, where already encountered
cases are taken as evidence for the existence of similas.ca$gs evidence is expressed in terms of
degrees of possibility assigned to the hypothetical cases.

In reference Yin, 2004 a fuzzy inference system based on characteristic poinBs)@ proposed.
Characteristic points are points in the input-output spdmEsen such that all outputs in the data set can
be well approximated by the interpolation of some chosepugstof the CPs, and are closely related to
fuzzy rules. The main difficulty lies in finding suitable CRs & given system. The method starts by
mapping each data point to a fuzzy rule. The number of rulesrean minimized using three separate
procedures, gradient projection, a Gauss-Jordan bagathation method, and back-propagation fine
tuning.
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Fuzzy relational rules are learned in referenGaWweda and Zurad2003. First, the fuzzy c-means
algorithm is used to cluster the output space into classmsedch class, an arbitranycut is applied to
the corresponding subset of instances, and then initiahpaters for membership functions are extracted
by calculating the class centre and spread in each dimensitiereafter the Levenberg-Marquardt
method [evenberg1944 Marquardt 1963 Moré, 1979 is used to optimise the membership functions,
and the membership function parameters are then translaiedhe corresponding linguistic terms.
This rule extraction method serves to initialise a relaidnzzy reasoning system that can be applied
to function approximation.

Recently, support vector machines (SVMs) have been usddZny modeling. SVMs use a hypothesis
space of linear functions in a high dimensional feature spabey are trained with the statistical learn-
ing strategy introduced by Vapnik and co-workers in theye&f90's [Cristianini and Shawe-Taylor
2000. Recently, afuzzy SVM for solving two-class classificatjaroblems was introduced$ang et al.
2003. Fuzzy membership degrees are assigned to each traingtgnoe according to its member-
ship degree to different classes. The fuzzy SVM generatizedraditional SVM to a fuzzy one, and
when all degrees of membership are equal for all trainingpsesrit degenerates to the traditional non-
fuzzy SVM. The SVM by Chiang and Hoa uses a modified fuzzy bfasistion as it kernel function
[Chiang and Haa2004. The extracted support vectors are then used to build theyflF-THEN rules.

In [Chen and Wang2003 fuzzy rules are extracted from the SVM hyperplanes. Fuztyg bave also
been used to build Fuzzy SVMs to reduce the effect of outi@@rgshe SVM [noue and Abg200%,
Abe and Inoue2002 Huang and Liy2003. The clustering method of rule extraction was shown to
be effective by its use in various application fields and Elbestawl 1996 Stutz and Runkler2002
Gedeon et a].2007.

2.6 Stochastic Search

Simulated annealingKirkpatrick et al, 1983 and genetic algorithmsJoldberg 1989 are examples
of stochastic search methods. Simulated annealing wastaseerive a fuzzy rule set by optimis-
ing Takagi-Sugeno rules with constant outpuEaigly et al, 1999. Symmetric triangular membership
functions were used and the midpoint and base length of idmegte adapted by using a simulated an-
nealing technique. The adaptation of the triangle base weermmed by perturbing the base width by
a percentage of its initial width. This reduced the effectrafmbership functions either being very
wide or very thin. The number of membership functions is seam initial parameter, and the authors
note that using too many or too few membership functionsaedhe generalization performance. In
some respects this method is similar to the clustering naefiiorule induction—both induce rules that
contain all input variables in the antecedent and the fdomaif membership functions is tightly cou-
pled with the method, i.e. it is not suited for problems whttre membership functions are known
a-priori. Simulated annealing was used to optimise aniagigxpert system that was fuzzified by hand
[Garibaldi and Ifeachqr1999.

Genetic algorithms (GAs) is a methodology loosely based @iodical evolution {Goldberg
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1989, and have been widely used to evolve fuzzy rule setSorflonetal. 2004
Cordon, Herrera, Hoffmann and Magdalena001 Herrera and Lozano 1998 Hoffmann 2004.
Much work has been done to combine the use of GAs and fuzzg [@dander, 1997. GAs were
used to optimise various aspects of fuzzy rule base systieiciading evolving rule sets, optimising
parameters in inference systems, and to obtain memberghifidns Castro et al.1993 Herrera et al.
1994 Kang et al, 2000 Wang and Bridges200Q Surmann 200Q Cordoén, Herrera and Villa2001].
Fuzzy logic techniques have also been used to model difféé&ncomponents or adapt GA control
parameters. The resulting GAs are termed Fuzzy GAerfera and Lozanol99§. In reference
[Castro et a].1993 GAs are used to obtain fuzzy rules from examples. Rules ssemaed to be of the
form:

IF X;iSLyA...AX,isL, THEN YisT

whereT and L; are linguistic labels. The membership functions were assuto be triangular and the
GA was used to adapt the size of the conjunction and the wtatiembership functions. Real coded
GAs were used to encode rules of the form

IF X1isLiAN...ANXyiSL, THEN Y1 isTy A...AY,isTy,

where in this case trapezoidal membership functions wesenasd Herrera et al.1994].

In reference Ighibuchi et al, 1997 the input space is divided int&™ fuzzy subsets, where it is as-
sumed that each of th&/ axes is divided intd< partitions. Each subset describes one fuzzy IF-THEN
rule, and the consequent is chosen such that the rule hasnmaxcompatibility with the data set. In
[Ishibuchi et al. 1995 a genetic algorithm is used to optimise the resulting refely minimizing the
size of the rule set while still maintaining high classifioataccuracy. A similar approach, but with a
different candidate rule generation scheme, was followadfierencelghibuchi and Yamamot@004.
Here rule antecedents include a “don’t care” term, and ralescreened by calculating their confidence
and support before the evolution process. Only a certainbenrof “best” rules for each class are used
to initialise the genetic algorithm. In referendédzaki et al, 1994 rules were given greater certainty
when they classified data patterns correctly and less ngrtahen they classified them incorrectly. The
certainty adjustment is controlled by the learning cortstanand, for correct and incorrect classifi-
cations, respectively.

In reference [Luukka et al, 200]] the maximal fuzzy similarity in the generalized tukasiewstructure
was used to build a classifier. This method requires a weigtitnisation which is implemented using
a genetic algorithm. Fuzzy CoCo (Cooperative Coevolutemploys a cooperative coevolutionary ap-
proach to fuzzy modelingHefa-Reyes and Sipp@001, 200J. Two cooperating species are defined—
a database of membership functions and a conjunctive ride. b&he two species are then evolved
simultaneously. During fitness evaluation an individuabblshes cooperation with one or more rep-
resentatives of the other species. The fithess value dement®e performance of the fuzzy system
obtained by the combination of the cooperating genes. Areimental version of the algorithm was also
proposed Pefia-Reye2003. In references Gomez et al.2002 Dasgupta and Gonzale2001 GAs
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have been used to evolve complete expression trees applieetwork intrusion detection. The trees
can represent arbitrary AND/OR rules.

In reference $urmann2000 membership function shapes were assumed to be approiynzdessian
and used to evolve a fuzzy rule based knowledge represemf&urmann 200J. Genetic algorithms
were also used to reduce and optimise a Takagi-Sugeno typdage obtained by a fuzzy c-means
clustering methodRoubos and Setng®00(d. Here rule based simplification is used together with a real
coded GA to optimise a Takagi-Sugeno type rule base. Bothstalicture and membership functions
were obtained by the method published in referedaggglov, 2003. Genes contain both membership
functions, in the form of the centre and spread of Gaussipe fynctions, as well as rule sets, where
each possible rule is encoded by a positive integer numbeeférence Hoffmann 2004 a boosting
algorithm was used together with an iterative approachlémsification rule learning. In this approach,
one classification rule at a time is evolved, and the boostieghanism reduces the weight of the cor-
rectly classified training examples, resulting in more ®oun uncovered examples during the induction
of the next rule.

2.7 Partitioning Methods

One of the earlier rule learning methods capable of indufizgy rules directly from data was intro-
duced by Wang and MendélMang and Mendell992. The rule antecedent is a conjunction of input
variables, and a output variable forms the consequent. Tdtbad requires that the input and output
dimensions are partitioned into a set of fuzzy regions, whiee partitions need not be of equal length.
Triangular membership functions are then placed on théipag such that the membership at the centre
of a partition is unity, zero at the centre of the adjacentifiam centres, and non-zero in between. Thus,
the state space is effectively divided into a set of fuzzyanggrtangles, where each hyperrectangle rep-
resents a possible rule. A fuzzy rule for each data pointas titreated such that the rule has maximum
membership in all regions. This may result in conflictingesyli.e. rules with the same antecedent but
conflicting consequents. To resolve such conflicts the hderhaximizesD; is chosen, wher®); is the
product of all antecedent membership degrees,

D; = [T mit) (2.19)

wherez; is thei!" dimension of data point that generated the rule. The authors also suggest that an
expert can assign a degree of usefulness to each data paintat this degree can be multiplied with
D; in the presence of noise. Linguistic rules obtained fromeetspmay then be merged into the rule
base and if conflicts occur the rule with the highest dedpges chosen. In the last step, the centroid
defuzzification formula is used to defuzzify the output abley,
Y= Zfil mioiﬂi
T K i
Zi:1 mZO'L
wherey’ is the centre of regio®’ and K is the number of fuzzy rules in the rule base. The Cooperative
Rules (COR) approach was suggested as an improvement terleeafy method(asillas et al.200d.

(2.20)
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Instead of selecting the consequent with the highest immpoe degree, this method considers the pos-
sibility of using a rule that did not have the highest degteg,resulted in the best overall performance
of the rule set. COR performs a combinatorial search amoagandidate rules to obtain the set of
conseguents with best accuracy. This search may be bre dousing simulated annealing. In refer-
ence Ma et al, 200Q the authors note that using the Wang Mendel method, at mastules can be
activated for any data point in a given dimension. Using tai$ they simplify the defuzzification to a
linear expansion of fuzzy rules, and then continue to usalinegression to construct a piecewise linear
fuzzy system. The parameters obtained from the regrestpnisused to partition the domains, and
triangular membership functions are used. This methodceithe number of fuzzy rules generated.

Hong and Chen improve on their earlier wotkdng and Lee1996 by first identifying relevant at-
tributes and building initial membership functions befdegiving decision rulesHong and Cherl999.
Rule derivation is done by using a multidimensional decisable, and conflicts are resolved by choos-
ing the rule with the highest degree. The method also allawdife simplification of the decision
table by merging of adjacent table cells. In referenderjg and Chen200q the method was further
developed by simplifying the intervals before the decidale is formed.

In reference [ghibuchi and Nakashim&00]] the authors assume that the antecedent linguistic values
are given by domain experts for eachroflomains. Thus, they assume that a fuzzy partition was made
before rule induction, and that changing the membershiptioms would deteriorate the comprehensi-
bility of the fuzzy IF-THEN rules. Their system forms fuzayles of the form

N

)

IF z1is A;1 AND ... AND z, is A;, THEN classC; with CF;, j = 1,2, ...

where the certainty grad€F; of rule j is computed and is usually a number on the unit intejval].
Similar to the method in referencéshibuchi et al. 1992 1999, all possible rules are considered, but
here rule conflicts are resolved by selecting the rule withrttaximal product of compatibility grade
and confidence factor,

mjax{uj(x)-CFj 1j=1,2,...,N} (2.21)

wherey;(x) is the compatibility grade of the rule with patternThe authors then continue to show how
to estimateC'I';. The certainty grade assumes its maximal value when all atibig instances belong
to the same class, and if no class is clearly dominant thaiogrtgrade is small.

In reference Pomares et al2007 a two-stage process is used for Takagi-Sugeno type rulectiah.

In the first stage parameter identification is performed t@miobgood membership functions. The pa-
rameter identification method presented in referefmjares et 12007 functions by optimising the
rule consequent using the Cholesky algorithm, and optigigile antecedents using a steepest descent
method. In the second stage structure identification isopmed to obtain a good system topology. The
process requires (1) the selection of input variables fraataof input candidates that are truly signif-
icant for the problem, and (2) an optimum partitioning of thput space, and therefore the minimum
number of rules necessary for high accuracy. The authoesthat this problem is certainly very com-
plex, and that the only method in the literature to reallyradd point (1) is combinatorial trees. They
solve the structure identification problem by finding thagaui dimensions that with an increased num-
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ber of membership functions reduce the error most rapidtyraEmembership functions are then placed
in these domains such that the accuracy is maximally ineckas

2.8 Hierarchical Fuzzy Systems

Yager proposed a hierarchical-type fuzzy model called eldhical prioritised structure (HPSYdger,
1999. The structure allows exceptions to more general rulesdiiced at a higher level in the hierarchy,
which themselves may be either terminal points or agairsrwligh further exceptions. In an HPS, the
output from theith level is obtained by combining the output from the presitavel with F; by using
an aggregation operator, whefgis the result of applying théth level rule base to input to the system.
Yager first demonstrates how to build an HPS from rules obthfrom experts, and then continues to
induce a three layer HPS directly from data. The automatisizaction of an HPS starts by initialising
the model with some prior expectation of the system modeichvbould simply be a default rule such
as output isX for all input. An observation is then presented and the duftpm the model calculated.
If the output and expected output are close to each othemwatthresholdy, the data pair is considered
to add no new information and is disregarded. If the dataipaiot sufficiently explained by the bottom
layer, an exception in the form of a point rule is formed andeatito the middle layer, where a point
rule is of the form

IF input is x THEN output is y

With each rule a valué/ is associated, which is initialized as the strength of theeption P. The
strength of the exception is computed as the inverse of teenkess of the calculated and expected
outputy™ andy respectively,P = 1 — Close(y, y*). Next, theM values of all the other rules in the
middle layer are updated. Lét, y) be the data pair from which a new point rule was formed, thén ru
1 is updated as follows,

Mz/ = M, + PefDistance{(m,y)f(mi,yi)) (2.22)

Thus, the current model is modified by adding to the strengfth other exceptions a value proportional
to the strength of the current exception, modulated by #tadce to the current exceptions. Next it is
checked if the addition of the new rule caused an accumulati@xceptions that can be gathered into
a new exception rule. Le¥/ be the strength of the exception with the highgstvalue occurring at a
point (z,g). If M > 3, a new rule of the following form is added to the top layer af thierarchy,

IF input isabout & THEN output isabout

In the final step, rules in the middle layer that are now actalifor by the formulation of the new rule
in the top layer are removed. The rule strength of each gaing) in the middle layer is adapted as
follows,

Mz/ _ Mi _{_PefDistancc{(x,y)f(:i,g)) (2.23)
and all point rules with/’ < 1 — « are removed. Lefl and B be the fuzzy subsetsouti andabouty,

A~

respectively, then exceptiarin the middle layer is removed ifiin(A(z;), B(z;)) > .
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Gabriel and Berthold proposed a hierarchical rule systenairanges rules into different levels of pre-
cision [Gabriel and Berthold®2003. Rules in each level depend on only a few important features/er
levels describe regions in input space with low evidencéédata, whereas higher levels describe rules
with more support from the data. Each layer is built autonashousing the method proposed in ref-
erence Berthold 2003 and described in Secticd10 A hierarchy of fuzzy rule sets are built by first
inducing rules on a set of training data, and then extractlhgules with low relevance using an outlier-
thresholddouier. Next instances from the rule set are extracted using tlee fiirametefyier. The pro-
cedure is iterated until all rules are above the outlieeshold and the outlier model remains empty. The
outlier models and the rule model of the last iteration fonetnodel hierarchy. To make a classification
the outputs of the rule systems at different levels are coethiEach rule model provides an output for
a given input. Two inferencing approaches are possiblefuley membership degrees of the different
levels are summed, or the first rule that fires when travetsi@dpierarchy in a bottom-up manner is used.
Further approaches to hierarchical fuzzy systems are pegpio Holve, 1997, 1998 Shieh et al.1999
Cordon et al.2002 Moon G. J09200Z% Joo and Leg2002 Lee and Kim 2002 Lee et al, 2003.

2.9 Gradient Descent

A variety of neural networks that work with fuzzy rules wetedied in the literatureNlitra and Hayashi
2000. Fuzzy rules obtained by other means can be encoded inificiatt neural networks
[Nauck and Krusgl993 Kasabov et a).1997 Frayman et a).1999. Typically fuzzy neural networks
have an input layer, a conditional or functional membershypr, a rule layer and an output layer. Fuzzy
neural networks have also been used as an oracle for quémyfinzzy inference system#fitra and Pal
1995. Fuzzy neural networks can be trained with an adapted fdrback propagation, or by using an
evolutionary approachKlasaboy 20013. The methodology of extracting rules from a trained neural
network for crisp rulesCloete 2000 Craven and ShavlikLl994 has also been generalized to the fuzzy
case Matthews and Jagielskd995 Duch et al, 200Q Faifer et al, 1999. This allows one to encode,
refine, and extract fuzzy knowledge from artificial neuraiwaeks.

2.10 Other Methods

There are of course some fuzzy rule induction methods thatadalearly fall in any of the seven
classes defined above. In this section we review a selecfiontesesting examples. Jain and Abra-
ham compared four methods for the induction of fuzzy classifon rules for a breast cancer data set
[Jain and Abrahan003. The first method generates a single fuzzy rule for eactsdigscomputing

the mean and standard deviation in each dimension to buildyfmembership functions. The second
method partitions each input domain into twenty triangut@mbership functions, and then calculates a
histogram using@.5 as a threshold level. The histogram is used to build a ruledch class. The third
method partitions the input domains into a grid, and geesratfuzzy rule for each partition. A method
similar to that in referencdghibuchi et al. 1997 is used to calculate the consequents. The last method
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is similar to the grid method, except that the membershigtfans are partitioned only on overlapping
areas. For the Wisconsin Breast Cancer DBtakKe and Merz1999 the authors found the simple grid
method to perform best, and the first method second best. ddneywte, however, that on real-world
classification problems a single rule per class may not Hecwut.

In reference [ghibuchi et al. 1997 Ishibuchi et al published a fuzzy Q-Learning algorithm, and
used it in referencelghibuchi et al. 2003 to generate training examples for a market game example
[Ishibuchi et al. 1997. The learning process makes use of the methods in refesdlstdébuchi et al.
1992 Nozaki et al, 1996 (also described above) and learns by iterative executigames.

In [Carmona et a).2004 a method is proposed to obtain compact rule sets by inauditeptions in
rules. The proposed method extends on thaCiastro et al.1999 which learns rules of the form,

R :IF X;is A AND ... AND X,, is AY, THENY is LY"

where each4§ is a set of labels, associated disjunctively with ke input variable, and taken from
the respective fuzzy domaib X; = {L X 1,..., LX} ;. }, and similarlyLY" is the label of the output
variable taken from its fuzzy domain. Such rules are catl@thpound rulesThe method proceeds by
initially creating a rule for each instance. The input damsaare partitioned and triangular membership
functions are used. The label of the fuzzy set that has mdximambership to the rule is then assigned
to each domain,

Aj = max{piq(w;)} (2.24)

For each initial rule, if the rule is subsumed by any rule efsht of definitive rules, the method continues
with the next rule. A ruleR’ is subsumedy the rule R¥ if for each A;i C A;? andLY'! = LY*.

If the rule is not subsumed by any other rule, then for eackllabeach input variable, while the
amplification of the rule is possible, it is amplified. Firyalhe new rule is stored in the set of definitive
rules. Amplification consists of adding a label to one of theut domains where the label is not yet
present. The amplification of rul®’ is possible if there exists no rulB* such that eachﬁl;i - Af
andLY’ # LY*. Classification proceeds by converting an instance to afsabels, where each input
domain is represented by label of maximal membership. Ihatance is subsumed by one or more rules
with the same output, the example is classified as an eleméme cule consequent class. If an instance
is subsumed by more than one rule with different outputstratton is done by choosing the rule with
maximum degree of convenience,

degree of convenience min{¢;(z;)} (2.25)

where eachyp; is a membership function associated with the input variate and computed as a
function of the labels present in the rule for tfedomain. In Carmona et a].2004 the algorithm is
extended by removing redundant rules during the initia¢ formation, and then ordering the remain-
ing rules in descending order according to their certaimgrees. Thus, arbitration during ambiguous
classification is replaced by using the rule with the higllesfree of certainty. Le‘R{ be the rule

IF X;isLX;and...andX,, is LX, THENY is LY;
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where eaclL X is a fuzzy set, then the degree of certaim()R{ ) is calculated as,

B(R]) — B(R))

w(R)) = . (2.26)

k=1 B(B%)

whereq is the number of labels in the output fuzzy domain, and
BRD) = prx, (x1) X . X purx, (¥n) X piry; (y) (2.27)
ecT

and . .

3 i B(Ry)

7y k
BRH= > o (2.28)

k=1,k#i

wheree is a training instance from the training $éwith « in the input space anglin the output space.
The algorithm described thus far may yield rules that alloffecent consequents to coexist in some
fuzzy regions of the input space. I€frmona et al.2004 the authors note that a compound rule is
equivalent to a set of “single” rules, i.e. rules with jusedabel associated with each input variable. For
example, the compound rule

R':IF X;is{S,L} AND X, is {M} THENY is M
is equivalent to the single rules
R?:IF X, is S AND X, is {M} THENY is M

and
R3:IF X, is L AND X, is {M}THENY is M

The Fuzzy Rule Induction with Exceptions (FRIWE) algoritiuses this fact to form exceptions to rules
in regions of the input space where two or more different eqonents coexist. The method selects the
best single rule in a compound rule, and adds the remaininficting single rules as exceptions to
the rule. The new rule set with exceptions can then be furbduced by removing parts of the rule
antecedent that are totally excluded due to the subseteéraeptions. After rule reduction, some rules
may now subsume and should be deleted. Thus another chesildsumption is performed. Finally,
the rule antecedents and rule exceptions can be merged againrule antecedents can be merged if
they differ in only one domain and the rules have the sameetprent. Similarly, two rule exceptions
can be merged if the rule antecedent and consequents a@ntiee @nd the exceptions differ in only one
domain. Merging consists of forming the union of the labé$ $@ each domain.

Berthold proposed an algorithm for the formation of mixedzy rules Berthold 2003. If D; is a
dimension in feature spade, mixed fuzzy rules can handle continuous, granulated amcimal do-
mains, i.e.D; C R, D; = {p;]1 < j < m;} andD; = {val;|1 < j < m;}, respectively. With each
mixed rule R two vectors are associated?“*P describes the most general constraint (support region)
andc <°"¢ describes the most specific constraint (core region). Caing$ can also be true, i.e. they do
not constrain the domain. An optimistic classification, gibly resulting in a heavy portion of overlap,
can thus be made using the support constraint,

=
o
I

(z; € ;") (2.29)



and a pessimistic classification, possibly resulting inrgdarea of the feature space not being covered,
can be made using the core constraint,

n

R(@) = (i € ) (2.30)
=1
The fuzzy classification solves this problem by computingegrde of match for each rule and input
pattern,

u(R, %) = r}lii{l{m{cpr, 57 it} (2.31)
where the minimum was used as the t-norm, and the particotar 6f ;,; depends on the type of the
domain D;. With each rule there is also associated a weighwhich counts how many patterns are
explained by the rule, and an anchowhich stores the original pattern that triggered the foromabf
the rule. Rule induction proceeds by performing a numberaihing epochs. During an epoch each
pattern in the training set is considered. If there existsla that covers patterd correctly, i.e.r lies
within the support region of the rule, the core region of thle is increased to covetif it does not cover
it yet, and the rule weight is also increased. On the other hand if no rule correctly Io¥ea new rule
is created with its support region covering the entire featijpace and the core region covering anly
The rule weight is set to one, and= 7. In the next step the support regions of all rules that iremity
coverZ are reduced. For such a rule,flies outside the core region, the support region is dectease
just enough not to cover, resulting in zero membership farwhile still covering the remainder of its
patterns. This is done by finding the component tfiat does not lie in the rule’s core region and results
in a minimal loss of volume. Iff lies inside the core region it is not possible to remove theflm
without influencing the covering of previous patterns. Tame procedure as above is used to resolve
the conflict. The volume of a rule is calculated as follows,

vol(R) = (vol(& *“PP),vol (¢ ")) (2.32)
where the volume of a constraint is calculated as
vol(¢) = 1T} vol(¢;) (2.33)

and volc¢;) = 1if ¢; =true, vol(¢;) = % if D; is numeric, and va@t;) = |‘gi|| if D;is
granulated or nominal. At the end of each epoch, all ruleseset by setting the core region xaand

the weight value to zero. The training is complete if afterepoch no more changes are made to the
rule set. Berthold proposes to address the problem of caith generating two models, one describing
the overall behaviour and one describing patterns that e@msidered irrelevant or uninformative. The

normalized rule weight parameter can be taken as a meastine ofile’s relevance. Rules with low

relevance are then extracted from the general model andassedfilter for a second training phase,
thereby generating a new rule base that has less rules wttlethsignificance. Thus only data from the
training set that are not covered by the outlier model ard tseonstruct the general model.

In [Botta and Giordanal993 Botta et al, 1993 Botta et al describes an improved version of ML-
SMART [Bergadano et 311989 called SMART+, which makes use of fuzzy sets. SMART+ learns
concept descriptions in First Order Logic using a combinedudtive and/or abductive strategy. The
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knowledge learned defines a structured classification yhediich can be described as a discrimination
graph. As output, SMART+ generates a classification theescidbed in a Horn clause languagie
extended with functions, negation and numerical quarsifidret H; and F; be a set of concepts and
instances, respectively, and it C H; C H,, then a well formed formula i, has the form,

Hi AN(ty, ... ty) ﬂ)HJ (2.34)

where(ty,...,t,) is a logical formula stating a condition over terms. .., t,, andw is a weight
value. Eq R.349 states that if an instancg, f € F;, is an instance of a concept h € H;, and
P(ti,. .., ty)is true of f, thenh € H;. The value of the weight is evaluated as the ratio between the
number of correct instances matched and the number of tattdrices matched iRy, and represents
an estimation of the probability that the classificationybis correct. A formula) (¢4, ..., t,) contains
predicates from a seP consisting of connectives. and -, and quantifiers “atmost”, “atleast”, and
“exactly”. Each predicate € P defines a fuzzy set with a triangular membership functiorfindd

by a set of parameters. The user specifies a range for eacmetarain which to search for good
values, as well as the granularity of the search process. BMAIses thenore-specific-tharoncept

of FOIL [Quinlan 1990, but employs more specialization operators and more stipaied strategies.
The basic search strategy is combined with a reduction tprebkems technique, producing a structured
classification theory. A subproblem consists of the p&ir F'), whereH denotes a set of concepts and
F aset of instances. The initial problem is given by the p&is, F;)). The learned rules are organized
into asubproblem grapltz, where nodes are subproblems and edges, and labeled bgl ltgimulas
;. This structure is well suited to be applied to, for exampldjagnostic process based on multi-stage
refinement. Within each subproble§P;, = (H;, F;), a specialization treés built applying a similar
strategy to that of FOIL. Different kinds of search stragsgtan be applied, including greedy, best-first,
and beam-search. Within a specialization tree, nodessgmng to logical formulas and are specialized
by appending new literals, resulting in specializationthwion-negative information gain. The formulas
are then evaluated using an evaluation function that cestaoth deductive and abductive components,
with the user defining the importance of each,

s() = ab(y) + brr(¥) (2.39)

wherea andb is given by the userf(y)) measures the quality of the hypothesisand vy (v) is a
measure that tries to capture how wellis “explained” by a given domain theof§. The functiond
consists of two weighted components, the first part beingrtf@mation gain obtained with respect
to the immediate predecessor in the tree, and the secondmpanaluation of the completeness and
consistency ofy. The bestV nodes are then chosen as branches in the specializatiowtreeeN = 1

for a greedy search. If a formutais found such that) — H;, with H; C H;, the instances belonging
to the extension of), denoted byF’, F’ C F;, are declared as “solved.” The focus of the search is then
moved on to those formulas on the frontier of the speciatinatree that still contain instances that are
not yet solved, and the search stops when all instances lasglsé\t this point all instances belonging
to the same concept séf; are grouped in a new sét;, and a new subproblerf¥d;, F;) is defined.
The logical formulas with the same consequent/ethus form the disjunctive rule that connects the
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subproblems H;, F;) and (H;, F;) on the subproblem grapi. The whole process terminates when
a subproblem contains only one concept in the concept set.clBissification of an unknown instance
will proceed along the grap&'. Initially it is placed in(Hy, Fy). Then, depending on which logical
formula connectind Hy, Fj) to child nodes the instance satisfies, the instance is a&sbignone of the
subproblems. This process is iterated until a leaf subpmbiode is reached.

In reference $torr, 2007 a fuzzy generalization of the Naive Bayesian classificatitgorithm is intro-
duced and applied to the classification of web layout prefars. Bayesian methods are based on the
knowledge about the prior probabilities of alternative dijyeses and the probability of observing vari-
ous data given the hypotheses. Naive Bayesian classifisusnasthat attribute values are conditionally
independent of the classification of the instandét¢hell, 1997. The requirements for the application
described in$torr, 2007 is that the classifier should support fast, incrementahieg, learn from few
examples, have a compact representation of the internaélmaxd allow the use of fuzzy attributes.
The fuzzy case is described by letting the attributes beyfuzz an example does not have exactly one
value for each attribute, but has each value to a certairededihe attribute names a linguistic variable,
and each value corresponds to a linguistic term. Exampkeslao allowed to belong to each class to
a certain degree. The learner defaults to the crisp casesiaxtnreme with membership degrees either
1 or 0. In referenceastro and Zurital997 a fuzzy rule learner based on an assumption-based truth
maintenance system (ATMS{i¢ Kleer 1986 McAllester, 1997 is proposed. The algorithm induces
fuzzy rules by finding the minimal node in the ATMS.

2.11 Summary

In this chapter we reviewed several fuzzy rule learning @dtlgms. We showed that the set of all fuzzy
learning algorithms can be divided into seven major classesluding the class that contains all al-
gorithms that do not fit in any of the seven other classes. Wedmnly four greedy incremental rule
construction algorithms, making this class the smalleatlofn the remainder of the dissertation we will
introduce a new group of fuzzy rule learning algorithms. Sehalgorithms will all follow a set covering

approach to learning, and can be seen as a subclass of th@teedy incremental rule construction
algorithms.
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CHAPTERS3

The BExA Covering Framework

3.1 Introduction

The BexA Covering framework was introduced by Theron and Clo€tefon and Cloeted 996 Theron
1993. It provides a framework for relating different set coverialgorithms. The framework consists of
three layers, a top layer implementing the set coving giyagemiddle layer implementing search heuris-
tics, and a bottom layer implementing the specific evol@rgrbehaviour of the algorithm. Theron and
Cloete showed that by adapting the evolutionary behaviaur,by changing the bottom layer, several
set covering algorithms, e.g. CNeIark and Niblett 1989, the AQR family of algorithms (specifically
AQ15 [Michalski et al, 19864), PRISM [Cendrowskal987, GREEDY3 [Pagallo and Hasslet99(
and Gray's algorithmray, 1990, fit into the framework.

TheronTheron and Cloet§199§ also introduced the idea that the search starts with a merstrgl
description, which is then continuously specialized tarfdretter descriptions. BxA introduced a new
method of specialization based on excluding attribute asltather than appending them to concept
descriptions, and it was shown that this method performscpdarly well [Theron and Cloetel994.
BEXA can, for example, find concept descriptions that other nustltannot, and is guaranteed to find
the most general consistent concept descriptiorsxABuses VL (Variable Valued Logic System 1) as
description language to express its concept descriptidichplski, 1972. VL is a very rich language,
and allows internal disjunction, for example. The compkgarch space for any but the most trivial
problems is therefore very large, an@®a contains several search restrictions that prevent unsaces
search in uninteresting regions of the search space.

In the next chapter we will propose fuzzy set covering fouicttve rule learning. We will also develop a
fuzzy set covering algorithm,Fzzy BEXA, applying this methodology. zzY BEXA, as indicated by
its name, is related toBXA. It has the same hierarchical structure, and also makesfiise exclusion
principle. However, we will show thatdzzyBEXA is far more than simply a “fuzzy version” ofA.
To establish the background for the developmentwfFr BEXA, this chapter provides an overview of
BEXxA, and the layout of the remainder of the chapter is as follo8sction3.2 reviews set covering
concepts and Sectidh3 BEXA's description language. The set covering framework isudised in Sec-
tion 3.4, while BEXA's exclusion specialization model is treated in more déta$ection3.5. Finally,
Section3.6 concludes the chapter.
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3.2 Set Covering

This section introduces the terminology used for concepnieg in the classical case. Ldt, ..., A,
denote attributes (referred to as variables in classifioatiles) with domaind;, ..., D,. Attributes
are either nominal and take a finite set of unordered valugs (attributeoutlook takes the values
sunny cloudy; rainy), or real valued taking values from a linearly ordered rafege. temperaturg The
attributes define the instance spdce (D, ..., D,).

The goal of concept learning, which is a supervised learnieghod, is to find a description for each
concepic € concepts, whereconcepts denotes the set of all concepts for which descriptions asieatk

A concept is defined by a subset of instances (examples), raimstance is denoted b, c¢) where

x € I andc € Concepts. A subsetP, P C T of the training sefl’, T" C I contains the set of positive
instances, i.e. all instances of the concept (or class) tedr@ed, while the subséf, N = T — P,
holds the negative instances. Since we are using an inéygtacess to “infer” rules, we assume that
the rules obtained fror’ generalize to unseen instances from T'.

Set covering algorithms induce classification rules of tvenf IF X THEN Y, where X is called the
antecedent antl” the consequent. Thus for a set covering algorithm, rulecadtnts are concept de-
scriptions and rule consequents the concept. The set aisdile forms that the antecedent may assume
is called thedescription languagef the learner. The antecedent is often formed by the cotipmof
several expressions, in which case it is also called a cotipm We say that an instanéamatches a
conjunctionc when the conjunction is true for this instance; we also saydloversi. The connection
from a description to the instances matched by it is madeugiritsextension Given a descriptiof,
the set of all instances from the set of instanSesovered byc is called the extension afin S, and
is denoted byXg(c). Letc = ¢1 Vea V... V ¢, be a concept description given by the disjunction of
several conjunctions. The concept descriptiondssistentif it covers no negative instances, i.e. if the
following holds true,

Xn(e1) UXN(e)U...UXN(cn) =10 (3.1)

The concept description mpletef it covers all positive instances, i.e. if the followingIds true,

Xp(cl)UXp(Cg)U...UXp(Cn) =P (3.2

The objective of a set covering algorithm is: given a tragnget?” of instances, iteratively induce rules
that cover the subsdt, P C T, of positive instances, but not the disjoint sub8etN = T — P, of
negative instancedMitchell [1997, p. 275, 280] defines set covering (sequential covering)ralgns

as follows. A set covering algorithm contains a subroutretfie induction of a single rule that distin-
guishes between the input sets of positive and negativarioss by covering a large subset of positive
instances while covering few or no negatives. After the atidun of a single rule, the positive instances
covered by the rule are removed from the training set, thatheginstances retained, and the process
iterated. The set covering approach followed by algoritlsoth as CN2 differ from divide-and-conquer
type search followed by decision tree learners such as IO3e ‘key difference occurs in the most
primitive step in the search. At each step ID3 chooses amtemative attributesby comparing the
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partitions of the data they generate. In contrast, CN2 chooses amorsgtloéattribute-valuepairs, by
comparing thesubsetof data they cover”fitchell, 1997 p. 280]. Thus, we can define a set covering
algorithm as follows.

Definition 3.2.1 A rule induction algorithm employing the set covering amio to concept learning
has the following key characterstics:

1. a single rule is induced at each step, and only the positigeances covered by the rule are
removed from the training set, and

2. the induction of a single rule proceeds by iterativelyasing among alternative attribute-value
pairs, and comparing the subsets of data they cover.

Ideally, a concept description should be maximally aceyrataximally general, and minimally com-
plex. Accuracy refers to the performance of the descripisrmeasured by its ability to classify in-
stances correctly, whereas the generality refers to tHiyatn correctly classify instances not in the
training set, i.e. from the sdt— T'. In the case of a covering algorithm, complexity refers tthizbe
complexity of the individual rules as well as to the numberwés in the rule set. In the remainder of
this chapter we present a description &8\, which applies set covering in the crisp case. For a review
of other crisp set covering algorithms we refer the readépendixA.

3.3 BeXxA’s Description Language

BEXA's description language allows antecedents to be expr@s&édd, [Michalski, 1977, and induces
concept classification rules of the form,

IF antecedent THEN consequent

The antecedent is a disjunction of conjunctions, and falgwthe VL; convention, each conjunction
can benternally disjunctive For example, given the data set in TaBl& consider the antecedent of the
classification rule at the bottom the table, where “THEN'hidicated by the symbek. This expression
is a disjunction of twaonjunctions

[outlook = sunny V cloudy][temp = 13]

and
[humidity = normal][temp = 28]

Every disjunctive expression can be written as a set of atgriv production rules, e.g.
IF [outlook = sunny V cloudy|[temp = 13] THEN weights
IF [humidity = normal][temp = 28] THEN weights
The conjunctionfoutlook = sunny V cloudy|[temp = 13] implicitly assumegoutlook = sunny V

cloudy] A [temp = 13], but omits theA symbol for brevity. The conjunctiofputiook = sunny V
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Table 3.1: A crisp learning problem and an example of aMtoncept description.

@el ati on sport

@ttribute outl ook {sunny, cloudy, rainy}

@ttribute tenp rea

@ttribute humdity {hum d, nornal }
@ttribute wnd real

@ttribute activity {volleyball, sw nm ng, weights}
@lat a

sunny, 30, humd, 26, sw mm ng 71
sunny, 26, normal, 5, volleyball ;2
cl oudy, 28, nornal, 12, sw mm ng 0 3
cl oudy, 23, nornal, 14, volleyball ;4
rainy, 28, normal, 20, weights 75
cloudy, 13, humid, 24, weights ; 6
rainy, 10, normal, 10, weights 0 7
cl oudy, 12, nornal, 14, volleyball ;8
sunny, 33, humid, 22, swi mmng ;0 9
sunny, 13, normal, 33, weights ; 10
sunny, 31, humd, 0, sw nmming ;11
cl oudy, 20, nornmal, 16, volleyball ;12
sunny, 18, normal, 28, weights ;13
cl oudy, 21, nornal, 28, weights ;14
rainy, 9, humd, 31, weights ;15
sunny, 15, normal, 7, volleyball ;16

An example of a VL, concept description:
[outlook = sunny V cloudy][temp = 13] V
[humidity = normal][temp = 28] — weights

cloudyl[temp = 13] consists of twoconjuncts of which [outlook = sunny V cloudy] is internally
disjunctive. This internally disjunctive expression igeirpreted as follows: the value of an instance for
attributeoutlookis an element of the sdtsunny, cloudy}, i.e. outlook € {sunny,cloudy}. When
the sets of nominal values of attributes are disjoint, we aait the attribute name and write, for ex-
ample,[sunny, cloudy|[temp = 13]. BEXA’s syntax also allows the negation of nominal values, e.qg.
[not rainy], or equivalently{—rainyl, for [sunny, cloudy]. The consequent of a rule simply nhames the
concept, and has the syntabass attribute= nominal value Like most other crisp machine learning
algorithms, BexA caters for linearly ordered attributes by learning ranges,21 < temp < 26.

BEXA requires the creation of thmost general conjunctiofmgg. This conjunction should cover all
instances in the instance space. In;Ythis requirement translates to the conjunction that iséat by
the conjunction of the disjunction of all attribute values &€ach attribute. For the learning problem in
Table 3.1 the mgcis the conjunction ofsunny, cloudy, rainy|[humid, normal] with the disjunction

of all temperature ranges and the disjunction of all winérggth ranges that can be formed from the
instances in the training set.
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Table 3.2: BExA's set cover procedure.

PROCEDURE Cover-H(, beamwidth, concepts)

1 ruleset = (;

2 FOR EACH concept; € concepts DO

3 P = instances irf¥" belonging to concept;; N =T — P;

4 REPEAT

5 bestconj =FindBestConjunctior?, N, beamwidth);

6 IF bestconj #= NULL THEN

7 Add the rule “IF bestconj THEMoncept = ¢;” to ruleset;
8 P = P — Xp(bestconj);

6 END IF

9 UNTIL (P = 0) OR (bestconj = NULL);

10 END FOR
11 RETURNruleset;
END PROCEDURE

3.4 The Set Cover Framework and EXxA

BEXA is a unifying framework that can be used to relate differeispcset covering algorithms. BXA
consists of three layers. The top layer implementexB's set covering behaviour, the middle layer
implements EXxA’s search heuristics, and the bottom layer implements tleeifp conjunction spe-
cialization behaviour of the algorithm under considerati®his section describes the three layers of the
framework.

3.4.1 The Set Covering Layer

Table3.2shows BxA's set cover procedure. The proced@ever-Preceives a training set of instances
as input, and iteratively learns classification rules fotheaonceptc;. The training set is split into
two disjoint sets, one containing the positives instareeand the other the negative instancéés The
procedurd-indBestConjunctioiis then called repeatedly to learn a description for a suifgbe positive
instances. If a description is found, a rule with the cur@rtcept as consequent and the description as
antecedent is formed. The instances covered by the rulersr@ved from the sd?, but the negative set

N remains unchanged. The procedure continues until allipegikamples are covered® (s empty) or

a good description could not be fourté{tconj= NULL).

The extension of the conjunctidrstconj in the setP, X p(bestconj), denotes the subset of instances
of P which are covered (matched) by the descriptlentcon;j. Note that the sefV for learning a
particular concept (or class) remains unchanged and Brigysplit up further, hence the term separate-
and-conquer. In decision tree learning, in contrast, thieestmaining set is split based on the examples
matched by the conjunction.
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Table 3.3: BExA’s FindBestConjunction procedure.

PROCEDURE FindBestConjunctiaR(V, beamwidth)
bestconj =NULL,;

2 specializations = {themgcfor BEXA, or the constantrue

with Xp = PandXy = N};

3 WHILE specializations # () DO

4 specializations =GenerateSpecialization3(N,

specializations, beamwidth);

FOR each conjunction € specializations DO
IF ¢ is significant according to the significance test

7 AND c is better tharbestconj according to the evaluation

function THEN

=

o 01

8 bestconj = c;

9 Remove fromspecializations all the conjunctions that cover
no negative instances or

10 that satisfy the additional stop-growth test;

11 Retain inspecializations only thebeamwidth best conjunctions

12 END WHILE
13 IF the evaluation function value féestconj is the same or worse
than that of the complete training set THEN
14 RETURN NULL;
15 ELSE
16 RETURNbestcony;
END PROCEDURE

3.4.2 The Search Heuristics Layer

The procedur&indBestConjunctiolis shown in Table3.3. Its purpose is to induce a concept description
that covers as many instances frdfrand as little instances frodV as possible. The best description
found during the search process is maintained in the vartaiskconj. It starts by creating thengg
which covers all instances in the instance space, and tBodted setd” and V. The representation of
this conjunction can be either the constaRUE, or a concept description in the description language of
the relevant algorithm that covers all possible instandd® mgcis added to the sefpecializations,
which maintains the set of candidate specializations di stap of the induction process.

The bottom layer routiné&enerateSpecializationis then invoked to obtain the set of specializations
of the concept descriptions ispecializations. Each description in the resultant set is considered in
turn. If a description is significant according to a significa test, and its evaluation according to an
evaluation method is better than that of the previous baguaation, then it replaces the current best
conjunction. The evaluation method used iBX3 was the Laplace estimate,

_ [ Xp(c)| +1
Loy = | Xp(c)| + | Xn(c)| + #concepts (3-3)

where#concepts is fixed to two classes, positive and negative. Descriptearsbe tested for signifi-
cance by comparing their distribution to the distributidrttee complete training set. This can be done
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by, for example, using the log-likelihood ratio test witlspect to the distribution of the concept in the

data setKalbfleisch 1979,

S(0) = 2(fplog 22 + 10 ) (3.4)

where fp and f are the observed frequency distributions of the positive egative instances that
matche, respectively, andp andey are the expected frequency distributions of the positiveresgative
instances, respectively. The statistic is distributedraximately asy? with one degree of freedom
[Clark and Niblett 1989, and provides a measure of significance—the lower the sttoeemore likely
that the apparent regularity is due to chance.

In the next step, conjunctions that cover no negative ics®iare removed, since specializing them fur-
ther conflicts with the objective of finding maximally genecancept descriptions. Other pre-pruning
steps can be inserted here. One possibility is to stop djz@agaconjunctions whose distribution is not
significantly different from their immediate predecessbhis test can again be implemented by using
the log-likelihood ratio test as in E@.d), where nowfp and f are the observed frequency distribu-
tions of the positive and negative instances that matchspectively, andp andey are the frequency
distributions of the positive and negative instances thatcht’, the predecessor of respectively.

BexA performs a beam search by retaining only dhemwidth best conjunctions available for subse-
guent specialization at each step. Thus, the amount oftsesacontrolled by the parametetamwidth.

If the best concept description found BindBestConjunctiors no better than simply using thmegcas
concept description, the resitU L L is returned, indicating that no good concept descriptiandbe
found. Otherwise, the best description found during theckeia returned.

3.4.3 The Specialization Model Layer

BEXA’s specialization model is implemented by the proced@enerateSpecializations This rou-
tine implements the specific method of evolving concept detons, i.e. refining a parent descrip-
tion to form one or more descendent descriptions. CNZ2'sialieation model, for example, forms
descendants by adding further conjunctions to a parenunotipn. Theron and Cloete showed that
many machine learning algorithms, for example CN2, AQ1®ddy3, PRISM, and Gray's Algorithm
[Clark and Niblett 1989 Michalski et al, 19863 Pagallo and Hasslet99Q Cendrowskal987 Gray,
199q, can fit into the framework by implementing the specific reédéinement technique in the spe-
cialization model Theron and Cloetel99€. In addition they proposed a specialization method, dalle
specialization by exclusion (hence the namexB: Basic EXclusion Algorithm) that forms descen-
dants by removing (excluding) conditions in the descriptisVe discuss this specialization model and
its distinguishing characteristics in the next section.

3.5 Specialization by Exclusion

AssumeC denotes the set of all VLconjunctions for a learning problem, arg, c; € C are two
conjunctions in this description language. Then define c,, ¢; is more specific than or equal 1,
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Table 3.4: BExA’s specialization model.

PROCEDURE GenerateSpecializatiaRs{V, conjunctions,
beamwidth)
specializations = ()
FOR each conjunction € conjunctions DO
3 Il First remove frone.usable all the values that will lead
to unnecessary specializations

N B

4 FOR each value or interval € c.usable DO
5 IF Xp(c) € Xp(a;) Il Prevents conjunctions for
which Xp =0

6 ORXy(¢) N Xn(a;) = 0/l Ensure more negative
instances will be uncovered

7 OR{Xn(b;)|b; € c.excluded U {a;}}is a
redundant partial cover af THEN

8 c.usable = c.usable — {a;}

9 /I Next generate all useful specializations of the corjonc

10 FOR each value; € c.usable DO

11 ¢ = c specialized by removing; from it;

12 XP(C/) :XP(C) —XP(CLZ‘);

13 XN(C/) :XN(C) —XN(ai);

14 d .usable = c.usable — {a;};

15 d.excluded = c.excluded U {a;};

16 specializations = specializations U {c'};

17 END FOR
18 END FOR
19 IFbeamwidth > 1 THEN
20 Remove fromspecializations all duplicate conjunctions;
21 RETURNSspecializations
END PROCEDURE

if and only if X7(c1) € Xp(c2). We consider; = co wheneverXp(c;) = Xp(c2). Conjunctione,

is more specific tham,, denoted by; < ¢y, Whene; < ¢ ande; # ¢o. Thus, the se€ is partially
ordered under thes relation, and the conjunctions i@ and their corresponding extensions form the
lattice (C, =<).

BexA and AQR have the same description language. It is also dleaML_; is more descriptive than
the description language employed by CN24rk and Niblett 1989 and PRISM Cendrowskal987,

i.e. the set of legal descriptions in Ylis a superset of the set of legal descriptions in CN2 or PRISM.
Thus, all of the algorithms that fit in the framework use thexsalescription language, where different
algorithms simply apply different search restrictions euhistics. The algorithms can thus be related to
each other by their specialization behaviour within thédatof VL, concept descriptions.

The proceduré&enerateSpecializatiorshown in Table3.4implements BXA’s exclusion specialization
model. Specialization by exclusion performs a generalpieeific search for the best conjunction. The
model consists of two phases. In the first phase a set of stopty criteria is tested both to prevent
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search in regions of the hypothesis space that can have niosghdgions, and to prevent overspecialisa-
tion. With each conjunction two sets are associated. Thessdtlecontains all atoms (attribute values)
that may be used to specialize the conjunction further, badgsetexcludedcontains all the atoms that
were removed from thengcto form the conjunction. An atom here refers to the smallesicdption
possible, e.gloutlook = sunny].

The first test (Line 5) prevents the creation of conjunctitived cover no positive instances, thus pre-
venting unnecessary search. The second test (Line 6) psetlencreation of conjunctions that cover
the same number of negative instances as their predecébsahird test (Line 7) prevents conjunctions
from being over-specialized. Let be a set of instances atifla set of sets such thate B andb C A.
The setB is called a set cover ofl if | J,b; = A, and a partial set cover of if | J,0; C A. If Bis

a set cover of4, thenB is an irredundant set cover df if the deletion of any element I8 results in

B forming a partial set cover ofl. Theron and Cloete proved that members of the(sgt the set of
most general consistent conjunctions, all have the prppkat their associated sekcludedforms an
irredundant partial set cover @f, the set of negative instanceBheron and Cloetel 994.

In the second phase GfenerateSpecializationsach conjunction in the setnjunctions is specialized.

A conjunction is specialized by excluding (removing) amatfoom its description, thereby generating a
specialization (“new” conjunction). Only atoms from theé geableare excluded from the conjunction.
After the creation of a new conjunction, its positive andateg extension is computed. These exten-
sions can be efficiently computed by subtracting the extensf the atom from the extension of the
parent conjunction. The extensions of the atoms need ontplmputed once prior to the concept learn-
ing. Theron and Cloete used the irredundancy requiremembtce that contrary to other specialization
models, the specialization by exclusion model is guarahte&nd members of’;; [Theron and Cloete
1994.

Table 3.5 contains a small artificial learning problem as illustratiaVe follow the convention that in-
stances are numbered, and that these numbers are used&tendhich instances belong to a particular
set. Specializing thengg [A = a V bV ¢|[B = x V y], by removing the attribute value (excluding

[A = a]) produces the specializatiddl = bV ¢|[B = z V y|. Denote this specialization by then its
extension is the set'r(s) = Xp(s) UXn(s) = {3,4,6} U{5}, whereX p and Xy denote theositive
extensiorandnegative extensioaf s respectively.

If the beam width is greater than one, all duplicate conjonstare removed from the set of specializa-
tions before it is returned. Duplicate specializationsunaghen the same two atoms are excluded from
the mgcin different order. For example, the conjuncti@n b][x] can be formed either by excluding
from [a, b][z, y] or by excludingc from [a, b, ][z].

3.6 Summary

In this chapter we reviewed theeRA set covering framework. The framework consists of threersy
a set covering layer, a heuristics layer, and a speciaizatiodel layer. Many machine learning algo-
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Table 3.5: A small artificial learning problem.

@el ati on snmal | probl em

@ttribute A {a, b, c}
@ttribute B {x, y}
@ttribute concept {yes, no}
@lat a

a, X, yes ;1 |b, vy, yes ;4
a, y, no ;2|c, X, no ;5
b, x, yes ;3 |c, vy, yes ;6

rithms fit into this framework, i.e. they make use of the sam&cdption language, and are characterized
by their search method within the lattice of Yiconcept descriptions as implemented by their specific
specialization model. Thus, the framework provides a Hasitie comparison of different crisp set cov-
ering algorithms. We also introduced the specializatiorekglusion model which starts with the most
general concept description and specializes it by exctudioms, as opposed to the method of adding
more and more atoms to the constaiRUE employed by most other set covering algorithms. Con-
trary to other specialization models, the specializatiprekxclusion model is guaranteed (under certain
conditions) to find elements of the set of most general ctargigonjunctions.
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CHAPTER4

Fuzzy Set Covering anduzzy BEXA

4.1 Introduction

We have shown in the previous chapters that set coveringeasyasuccessful and well established con-
cept learning methodology. We have also established thaiwah fuzzy sets as the generalization of
crisp sets are much more powerful, set covering has not bgea for the induction of fuzzy classi-
fication rules. In this chapter we propofezzy set coverings a new methodology for fuzzy concept
learning. We identify and address all the problems thatasiken applying set covering in the fuzzy
case, and we propose a novel algorithrozEy BEXA, as the first algorithm that uses set covering and
a partial ordering of its description language for the irtducof fuzzy classification rules.

There are multiple reasons for generalizing classificatides based on crisp sets to classification rules
based on fuzzy sets. Fuzzy sets have increased expressigs. pbhey allow the explicit expression
of imprecision, vagueness and ambiguity, whereas crispisgtly rigid boundaries, and only allow for
the concepts true and false. This is not to say that crispasetsnore precise than fuzzy sets. The
term fuzzy should not be taken to mean that results obtair@d fuzzy rules are imprecise, rough
estimations. In fact, it was shown that a fuzzy system carskd to model any real continuous function
on a given domain with arbitrary precision, i.e. fuzzy setsaniversal approximator&psko, 1994.
FuzzyBEXA makes use of linguistic terms as described by fuzzy setéf@oncept descriptions, thus
it unifies the symbolic and sub-symbolic knowledge repreg@ms, bringing the fuzzy and symbolic
machine learning community closer together. Fuzzy systamsable to model highly complex systems
with poorly understood or non-linear behaviour, and fuzaletbased systems usually execute faster
than conventional rule-based systems, since fuzzy rulesbasually have fewer rule€px, 1999.

A smaller rule base is easier to understand and maintaidinigdo fuzzy systems often being more
comprehensible. Of course, when a fuzzy rule base beconmgsige these benefits will not be as
pronounced, or may disappear entirely.

Instances can belong to a fuzzy concept to any degree of mshipen the rangd0, 1]. Fuzzy-
BEXA uses this information during rule induction, and we will shthat FuzzyBEXA is capable of
inducing very accurate rule sets. However, we will also shiost FuzzyBEXA fulfills the three re-
qguirements for inducing highly comprehensible rule s&sillaume 2001: FuzzyBEXA’s rule sets
are very small, its rules are incomplete, and its rules usguistic terms. The potential search space
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Figure 4.1: An example of a membership function for the fuzzy seeed.high

defined by FozzYBEXA's description language grows exponentially in the numbdinguistic terms
defined by the problem domain. Thus, we develop severalaifigiand prepruning criteria applicable
in the fuzzy case, and we demonstrate thazEy BEXA is a practical tool for knowledge discovery,
capable of completing in reasonable time even for very ldayaains.

FuzzyBEXA's structure is based on the crisp set covering algorithex & discussed in the previous
chapter. As pointed out in Sectidh3, BEXA deals differently with numerical and nominal attributes.
BExA’s method of handling numerical attributes requires thedlgm to creat N new attribute val-
ues, whereV is the number of unique measurements. Fuzzy sets providéueahaay to deal with
numerical attributes for reasoning, providing a framewforka non-rigid interface between classes rep-
resented by symbolic labels and numerical valistois and Prade2003. Consider for example the
attribute speed, as measured for an aircraft. Crisp algorithms learn sHagsholds for ranges, and
outside of these ranges the condition % false. If there is a conditiofspeed > 850], this condition
will be false for the observatiog49. A fuzzy set describing high speed may have the membershi fu
tion shown in Figurel.1 An instance with a speed measuremen84sf will still highly belong to the
fuzzy setspeed.high, whereas a measurement@i will belong only somewhat, and a measurement
of 700 will definitely not belong to the fuzzy set anymore. Fuzzysdbus provide a more natural way
to deal with numerical attributes, allowing the definitiohomncepts such as high speed, rather than
employing sharp thresholds. The fuzzy set describing spar@lso be adapted for different situations,
as depicted in Figure 4.2. UzzyBEXA thus unifies the treatment of linearly ordered and unordered
(nominal) attributes—BzzYBEXA makes no distinction between different kinds of attribptesthey
can all be described by the general case of a fuzzy set.

The layout of the rest of the chapter is as follows. Sectidpresents the theoretical background for
developing the basic fuzzy set covering approach, and@etBintroduces our fuzzy generalization of
BEXA. In Sectiord.4we prove that Bzzy BEXA's description language induces a lattice of concept de-
scriptions. The following two sections describeZzy BEXA's top and bottom layers in detail, and their
functionality is demonstrated on a small data set in Seeti@n Section4.8 discusses BzzYBEXA's
inductive bias, and Sectioh9 describes the fuzzy inference system used for classifyiatances. In
Section4.10we investigate more theoretical aspects of the algorithoh sis the size of the hypothesis
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Figure 4.2: An example of two different membership functions for theziyizettemp.higtin different scenarios.

In figure (a) there is a slow linear increase in membershimfs0 degrees until 90 degrees, where after there is a
sharp increase in membership. Such a membership functigrbmapplicable in a scenario where temperatures
above 50 degrees are undesirable but tolerable, and syailemne fmay occur above 95 degrees. In figure (b) the

idea of high temperature is formed slowly. This may be ajgplie in a scenario where temperatures above 100
degrees are definitely unwanted, and temperatures betvdeemdb100 degrees are increasingly undesirable, with
more emphases on higher temperatures.

space and the kind of learning problems thazEy BEXA is most suitable for. Sectiof11concludes
the chapter.

4.2 Basic Fuzzy Set Theory

We repeat some elements of fuzzy set theory to be used dimingdvelopment of theuzzy BEXA
algorithm. LetU be a given universal set, or universe of discourse. Traditip, a setd, A C U,
is defined using one of three methods: listing each elemetitarset, e.g. A = {a,b,c}, using a
proposition to describe a property that must be satisfiedlltgeamembers of the set, e.d. = {z|x €
7,0 < x < 10}, or using a function, usually called the characteristiccfion, that declares which
elements are members of the set,

1, forue A

palu) = { 0, forudA -

whereu € U.
Fuzzy sets are a generalization of crisp sets, and are dafsied the functional method, where the
characteristic function is now defined as

pa(u) : U —[0,1] 4.2)

Note, the universe of discourggéis still a crisp set of elements, andis a fuzzy subset df’. The degree
to which an element, . € U, belongs to the fuzzy set is now described in terms of thmembership
function 4 (u). This degree of membership expresses the certainty or aipityat« belongs toA,
with p4(u) = 1 meaning absolute certainty thate A, andu4(u) = 0 absolute certainty that ¢ A.
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Crisp sets are special cases of fuzzy sets, since for a @ispSu) : U — {0,1}, i.e. the membership
function is eitherl or 0, and elements can either belong to a set or not with absadutaicty. The fuzzy
set operations corresponding to the crisp set operatioog untersection, and negation are defined by
the membership functions of the respective operations,

o () = max(ua(u), 3 (u)), VueU (4.3)
ptanp(u) = min(pa(u), pp(u)), YueU (4.4)
alu) =1 pa(u), VueU (4.5)

whereA and B are both fuzzy sets. Contrary to Boolean logic, in fuzzyisebty thdaw of the excluded
middleand thelaw of contradictionare broken, and therefore the following may be true:

AUA#U (4.6)
ANA#£ (4.7)

The fuzzy instance spadeis described by the product of one or more linguistic vagabl;,
I=(A; x Ay x ... x Ap) (4.8)
Each linguistic variable is described by a product of one orerfuzzy setd. ;, called linguistic terms,
A;j = (L1 X Ly X ... X Ly,) 4.9

Together the linguistic terms form therm setof the linguistic variable. Each linguistic term is a fuzzy
set, and a linguistic variable is thus a family of fuzzy seisd a fuzzy set itself. A fuzzy instarice
i, 1 € I, is thus defined by its membership degrees to the linguistimg (fuzzy sets) of the various
linguistic variables in the problem space,

i = ((pAy,L0 X oo X Ay Ly) X oo X (A Ly X o X [MA L)) (4.10)

Note that the instance spadencludes the crisp instance space described in Se&tipas a special
case. Contrary to the case for crisp instances, in the cdsezf instances a fuzzy instance can belong
to the entire term set of a linguistic variable to a certaigrde, or even with degree one. Thus, in the
fuzzy case the conditiofheight = tall] A [height = short] can be true.

Table4.1 shows a learning problem akin to that of TaBld. We call this data format Fuzzy Attribute
Relation File Format, or FARFF. A more detailed descriptidrFARFF is given in AppendipB. The
learning problem defines five linguistic variablesutlook temp humidity wind and activity. Each
linguistic variable declaration is followed by its respeetterm set declaration. For examptajtiook
has the term settsunny, cloudy, rainy}.

The membership degrees shown in Tadlé represent the degrees of truth (or equivalently certainty,
ambiguity or vagueness) to which instances belong to Istguierms, and should not be confused with
probabilities. The probability of an event describes theaiety or likelihood of the outcome of the

1The term soft instance has also been ustfdrg et al. 2003
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Table 4.1: A fuzzy learning problem analogous to the learning problerfiable3. 1

@el ati on sport

@ttribute outlook {sunny, cloudy, rainy}

@ttribute tenmp {hot, mld, cold}
@ttribute humdity {hum d, nornal}
@ttribute wind {wi ndy, cal m}

@ttribute activity {volleyball, sw nm ng, weights}

@lat a
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event, whereas fuzzy membership describes the ambigudgrtainty to which the event occurs. Both
kinds of uncertainty are measured on the s@@lé]. However, a zero probability implies an event cannot
occur, and probability one implies an event is certain tauac& zero or one membership degree means
a complete lack of ambiguity in the description of an everglement—a zero membership implies an
element is definitely not part of a fuzzy set, whereas merhigee implies an element is definitely
part of a fuzzy set. Furthermore, the sum of membership dedog a specific term set does not need to
be one. For example, the membership degrees for the vadatigty of instanced 1 and16 sum tol.1
and1.4, respectively.

Many real world processes have linearly ordered attribuieth continuous and discrete. For linearly
ordered attributes, the fuzzy membership function mapditiear domain to membership degrees on
the scald0, 1]. Figure4.3shows how temperature values are mapped onto membershigeddgr the
term set otemp defining the membership functions,;q, ftmiia and gper.

Linguistic variables with an unordered input domain, foampleoutlookin Table4.1, have no asso-
ciated mapping from a linear domain to membership degreeghis case the membership function
just describes the ambiguity that an instance belongs tataicderm. The semantic interpretation of
the term set fooutlookof instancel of Table4.1, for example, would be that the day was almost cer-
tainly sunny and cloudless, and that there was definitelyaira Note, after the membership degrees
for linearly ordered variables have been inferred fromrtrespective membership functions, there is no
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Figure 4.3: The term set and membership functions of the fuzzy attritertgpcontaining the termsold, mild,
andhot

difference between membership degrees for linearly oddanel nominal attributes. For example, given
only Table4.1, it is not possible to say which variables stem from originhhearly ordered attributes.

4.3 FuzzyBEXA

We now introduce BzzyBEXA, which extends the definitions used iERaA to the fuzzy realm. BXA
served as a framework for comparing different crisp set Gogealgorithms. While BzzYBEXA can
also serve this purpose for a set of fuzzy set covering dlgog, some fuzzy set covering algorithms are
not accommodated. We discuss this issue in Chaptend introduce the General Fuzzy Set Covering
Framework, FCF (for Fuzzy Covering Framework). However,FR@Il borrow extensively from the
concepts introduced fordzzy BEXA.

There were several premises that held true fakB in the crisp case. We will refer to these premises
by their numbers in the subsequent discussion.

1. Itis possible to construct descriptions that cover thelezinstance space, and thus will match all
possible instances, whether they have been observedré.a te training set) or not.

2. A conjunct such aputlook = sunny], will match all instances that has attribute valsenny
for attributeoutlook.

3. Aninstance contains exactly one value for each attribdissing values in the data can be catered
for, as is typically done, by substituting the most commoluedor nominal attributes or by the
average for numerical values.

4. If an attribute value is excluded (removed) from an inddiyndisjunctive condition that contains all
possible values for that attribute, then the descriptiohamly match those instances that match
the remaining attribute values. This is equivalent to thgatien of the excluded values in the
condition, and thus exclusion performs the set differenmeration with respect to the extension
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of the excluded values. This was illustrated in Sec8dhusing the example of Tab&5, where
the attribute value was excluded from the conditidal = a \VV bV ¢].

5. This process of exclusion can be continued until only diméate value remains (see Sectidm).
Removing all attribute values and thus leaving only the gnsgt, is semantically equivalent to
stating that the condition will always be false. In practiobcourse, such rules are useless.

6. If an attribute value is excluded from an internally digjtive condition, all the instances covered
(matched) by the attribute value are no longer matched bgahdition, i.e. they are “uncovered.”

7. If a rule antecedent contains an attribute that takegsafidssible values, i.e. no value was ex-
cluded, the condition matches all instances and can be mnftem a description since it is
irrelevant.

A fuzzy algorithm will have to reevaluate these premisesy@sall of them carry over directly to the
fuzzy case. For example, each fuzzy instance is a membeedtiflzy instance space as defined by
Eq @.8) and @.9), and thus the premise stated in pogabove for the crisp case does not hold in
the fuzzy case—a fuzzy instance can belon@lioterms to a non-zero degree. This has important
implications for a fuzzy set covering algorithm.

As discussed in Chapt@ much work has already been done on the development of tdgwithat can
extract fuzzy rules from data. The implementation of a furdg based system consists of two stages,
parameter and structure identification. Parameter ideatifin entails the acquisition of various param-
eters used during the induction process, for example abtamembership functions. Much less work
has been devoted to the second stage, structure identificéitiely since it is a very complex process
[Pomares et al200d. Structure identification entails the development of mati rule structures. Some
algorithms perform no or very limited structure identifioat inducing huge rule sets consisting of com-
plete rules, and at most delete irrelevant rul&ifig and Mendell992 Ishibuchi et al. 1995. One of
the primary reasons for developing fuzzy rule based systboveever, is the high comprehensibility of
fuzzy rules.

After surveying the design of fuzzy learners from an intetability point of view,Guillaume[200]]
stipulated three main requirements for the high comprahiditys of rule sets,

a. The fuzzy sets must be interpretable as linguistic tetaisels). The linguistic terms must be
meaningful within the problem domain such that they are tsidadable to domain experts. This
allows the rules to be comparable with one another, leadihamowledge discovery.

b. The set of rules must be as small as possible. Smalleretdgoerform worse on training sets, but
often obtain better generalization performance and aiierdasread and thus comprehend.

c. The rules must be incomplete. If a rule premise involvés$irgjuistic variables, there is a loss
of interpretability without an increase in performance wiige rule context could be restricted to
the relevant subset of variables only. The systematic poesef all variables in the antecedent
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can be seen as a drawback of most automatic rule inductidensgs This is due to the induction
technique, and an intrinsic characteristic of the problemalin.

Guillaume’s first requirement for rule set comprehendipik that the rules must make use of linguistic
terms, and that the rule induction method should not blirgi{imise membership functions purely in
pursuit of better classification accuracy performance. &sa notes that the discovery of suitable mem-
bership functions in non-control type problems is often enstraightforward than one might think—
often their specification is already fixed by external preeeqdCox, 1998 p. 512]. Fuzzy systems are
also not as brittle as crisp rule based system, allow for taiceamount of noise in the membership
functions, and can be refined quickly to bring the model pgyg® into alignment with realityQox,
1998 p. 22]. To satisfy the first requirement we assume that meshiefunctions were obtained ei-
ther from the experts themselves, or during an automatgrext parameter identification phase. Thus,
the process is not an intricate part of the induction pracés$ss is also done for fuzzy decision tree
induction [Yuan and Shaw1995 and algorithms such FRIwEJarmona et al2004.

The second requirement is that rule sets should be as snyadisaible. Therefore, the development of
our fuzzy algorithms will, for now, focus solely on struatuidentification. The methods described in
the remainder of this work are able to use any membershigiumspecification (regardless of how it
was obtained) to find as small a structure as possible th#iegghe given data set by inducing rules
for it. FuzzyBEXA performs a general-to-specific search and also prefers gemeral rules over more
specific rules. Thus, BzzYBEXA's rules are biased to cover as many instances as possillgsaa
direct consequence the rule sets are very small comparedgbather induction methodologies. We
demonstrate this empirically in the next chapters.

Fuzzy set covering also satisfies the last requirement—rthection of incomplete rules. In fact, the

whole fuzzy set covering methodology is perfectly posiidrio fully satisfy all three requirements.

It will become clear in this and the next chapters that athors implementing the fuzzy set covering

methodology are capable of inducing highly comprehengildke sets. However, we will also show that

the methodology allows the induction of not only interpbd¢arule sets, but also very accurate rules.
The rest of this section describes the various aspectspf FBEXA.

4.3.1 FuzzvyBEXA’s Description Language

Instead of using crisp attributes and attribute values 2 BEXA’s concept descriptions use linguistic
variables and terms.Uzzy BEXA allows the formation of conjunctions ebnjuncts where a conjunct
is a disjunctive expression of linguistic terms from a sinlgfhguistic variable. Thus, BxA and Fuzzy-
BEXA’s description languages are of similar form, and both alioigrnal disjunction (see Sectidh3
for BExA’s description language). We calluEzyBEXA's description language FuzzyAL, for fuzzy
attributional logic.

In the case of BXA, an instance matches a conjunct if the instance has one aftthmite values present
in the conjunct. However, in the fuzzy case instances do migtrmatch or not match a description, and
we have to specify what it means for an instance to match atedént, and thus also, a rule with this
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antecedent. We also have to specify how the membership elefithe instance to the antecedent is
computed. The standard fuzzy set operators are definedias$pl

standard fuzzy complement A(i) =1— A(®3) (4.12)
standard fuzzy intersectian A7) N B(7) = min(A(2), B(7)) (4.12)
standard fuzzy union A(i) U B(i) = max(A(7), B(7)) (4.13)

whereA(i) and B(i) are fuzzy setsRuspini et al. pp. B2.7:8-9, 1998].

The truth value of a descriptiod (i.e. the antecedent in a classification rule) for an insanzan be
computed from the membership functions for the fuzzy setsrdened by the expression as follows.
Let A and B be any two linguistic terms, and, (i) and (i) the membership degree of instaride
the respective linguistic terms, then

pavs(i) = paus(i) (4.14)
panB(i) = panp (i) (4.15)
(i) = p (i) (4.16)

where on the right hand side the subscript.@fidicates the expression used for evaluation. The conven-
tional precedence rules apply for more than two terms. Whemtembership degree of an instance to
the antecedent is not zero, the condition is considered tabeand the instance matches the antecedent.
Our implementation uses the standard fuzzy operators. HHawihis can effortlessly be replaced by any
appropriate t-norm, t-conorm and fuzzy complement opandilir and Yuan 1995. We also add the
additional operatot. The meaning of this operator is related but not equivalenmtat Let V' be a
linguistic variable with term sefa, b, ¢, d, e}. Then the conjunctiofla] is equivalent tdb, ¢, d, e, thus

the disjunction of all the remaining terms in the term set. dAe also writd! d, ], which is equivalent

to [a, b, ¢]. It should be easy to see that the operator describes exalu$ithe terma is excluded from

[a, b, c,d, e], we obtain[!a] (i.e. [b, ¢, d, e]). Thus, FuzzyAL contains the following language conssuct

1. linguistic terms (labels) defined by the problem domainuged by linguistic variables,
2. the grouping symbolsand],
3. the operatorg,, Vv, and!,

4. and the constanfBRUE andFALSE.

We can make the relationship between linguistic variabtbaamassociated term explicit by the notation
variable.term e.g.temperature.hotWe can write an expression in explicit notation suckt@sperature

is hot v mild], or in short hand form agemperature.hgtemperture.milfl or when there is no confusion
between terms simply dsotmild].

4.3.2 The Extension of a Conjunction

In the crisp cas&s(c), the extension of the conjunctiarnin the set of instancesS, is defined as the set
of instances inS that match the conjunction. We say thatoversthe setXg(c) in .S, and there is no
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Figure 4.4: The term set for the linguistic tertemp and an instance with obervatieamperature = 28. The
alpha cut atv, = 0.25 is shown by a dashed line.

ambiguity of whether an instance matches a conjunction trIncthe fuzzy case, however, instances
match a conjunction to a degree in the ran@el]. Thus, an instance can match a conjunction to a
degree.001, for example. This may be undesirable, and to prevent siathnines from being covered,
an a-cut can be applied to the instance memberships (also calidth leveling Cox, 1999), i.e. all
instance memberships to linguistic terms that lie belowrtagethresholdy, is set to zero. Instances
can therefore either match a given conjunction to a degreer above, or not match the conjunction.
Thus, in the fuzzy case we define the extension of a conjumetio the set of instanceS, S C I, as
follows,

Xs(c) = {s € Sluc(s) > ag} (4.17)

where we callo, the antecedent threshald Note, Xg(c) is a subset of the universe of discourse,
Xs(e) C U, and is a crisp set of instances. For example, consider thgiretion [cold][humid]

for the learning problem in Tablé.1, and leta, = 0.7. The extension in the training s&t will be,
Xr([cold][humid]) = {6,15}, where we have enumerated the instances by their numbersf@ae b
For the standard fuzzy operators, we can also see the alpbiinteas an-cut being applied to the
antecedent membership after the matching process, thrisdgae membership degrees intact, i.e. for
both methods the same instances will be covered by a givgaraiion ¢ and antecedent threshald .

If no a-cut is applied, we defin& s as follows,

Xs(c) = {s € S|uc(s) >0} (4.18)

In reference \Wang et al. 1999 the terma-cover is used for the concept of applying arcut to the
antecedent membership. We will simply use the term covetesive do not necessarily apply arcut.

As in reference\Vang et al. 1999, the value ofx, is user-defined, but in our case it is used to prevent
instances from matching rules with small memberships. Tpteadeveling should not be confused with
defining a threshold where membership above implies trudalmlv false - as should be clear from the
fact that the alpha leveling is not a necessary requirencerhé algorithm.

The premise that if a description contains an attribute ejathen it will match all instances that has
this attribute value, as stated in polin the list of premises above, does not hold in the fuzzy case.
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Instances that belong to a term (with non-zero membershig)with membership below,, will not
necessarilybe covered by a conjunction that contains this term. They stiljbe covered, however,
since premise8 and 6 also do not hold in the fuzzy case—an instance may still liekonanother
linguistic term from the same term set that is still presarthe conjunction with membership abavg,
and therefore may still be covered. Consider for exampletimgunct|[hot, mild] and instance 3 from
Table4d.l, i.e. pupo(is) = .8 and pmaq(iz) = 0.2. Let o, = 0.25, then although instance 3 belongs
to mild with ;4 > 0, the conjuncimild] does not cover it. However, the instance also belongs to
other fuzzy sets from the same term set, and since its mehiperg,; > 0.25 the conjuncthot, mild]
indeed covers the instance. This concept is illustratedgarE 4.4. Note, instance 16 has membership
0.5 to bothhot andmild. The instance matches both termg andmild with membership greater than
aq. The exclusion ofot or mild from [hot, mild, cold] results in the conjunctionghot| or [lmild],
respectively. However, botstill covers the instance, which was not the case for crisp set8ard.
We address this point again in Secti®®when we discuss specialization by exclusion in the fuzzg.cas

4.3.3 The Most General Conjunction

The mgc (most general conjunction) of BXA contains all the attribute values from all the attributes,
and its extension covers the whole instance spaaes stated in point in the list of premises. Let
L; ;) denote a term from thé" variable 4;, and suppose there are variables. Now consider the
interpretation of thengcwhen its elements no longer denote nominal values in prapoal logic, but
linguistic terms from linguistic variables, i.e. appliedlthe fuzzy case. Then thmgcis the following
description,

mgcerisp = [L1,1)s - Lap] - [Lamiys - s Lim,g)] (4.19)

where we use the subscriptisp to be able to refer back to this first version of the fumgc The
same notation is used as in Sect®B, i.e., square brackets delimit internally disjunctive eegsions
(conjuncts), each of which form a part of the conjunction.

The fundamental premise of our set covering approach isttisgbossible to construct descriptions that
determine a family of sets, the union of which covers the whoktance space, and thus will match
all possible instances, whether they have been obsenedafe in the training set) or not (premike
This premise does not carry over directly to the fuzzy caseesit can happen that an instance does
not belong to any term of a variable to a sufficient degree (dube antecedent alpha-cut), and thus
cannot be matched bytgc.,isp as defined in Eg4.19. When applying Eq4.19 and @.17) to a fuzzy
data set, it may then happen that some instances are noedpwerd therefore not used in the search
process, and they cannot be excluded (see premites). These instances will be exactly those that
belong to all terms of a particular term set with memberslagrdes less tham,. If we seta, = 0.7

for the data set in Tablé.1thenmgc..;s, Will, for example, not cover instance 1, because in this case
Hmgeeris, (INStance 1 = 0.6 due to the membership degrees to terms ofuived variable.

We address this issue by adding a new term to each variablesdet, thealpha complemenfor that
variable, and denote it with. The alpha complement has the property that if the memhedsdgrees of
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instance to all the terms in a particular variable’s term set are lbasd,, 115 (7) will have membership
degree of at least,, i.e. exactly in the case when an instance does not belongetdisjunction of
the term sets of that variable. We define the degree to whidhstance belongs td.a belongs to a
variable A as follows.

Definition 4.3.1 Leti € I be an instanceA be a variable with the term sét_;,..., L,}, andm =
o(pr, (4),...,unr, (i), whereo is any s-norm (i.e. a t-conorm), then,

(0) 1, form < aq
Aall) =
fiaa 0, form > a,

We could also use another function with similar behaviowy, @ sigmoid function. However, inverse
step function is used here since it is also easy to implenfertzy BEXA’s mgcis thus defined as:

mgc = [L(1,1)7 o 7L(17P)’ dl] R [L(m,1)7 R 7L(m,q)7 dm] (4.20)
and the membership of an instand® themgcis given by

,U,mgc(i) = min(maX(MLu,l) (7’)7 SRRRY 20 e, (1)7 Hay (Z))7
cooymax(pr,, (0, B, (9, Hay, (6))

(4.21)

assuming the standard fuzzy operations. The extensioreghtftin the instance spack X;(mgc),
now includes the whole instance space, since for any insteorovhich the membership degrees to all
terms from the same term set are less thgnthe membership ta is aboveq,. For example, if we
seta, = 0.7 for the data set in Tablé.1, theny,, .(instance ] = 0.8; the alpha complement of the
windvariable has membership degree 1, and the lowest membésghip to the membership degree of
humidity—therefore instance 1 is now a member’f(mgc). Note, without the addition of the alpha
complement, premisgalso does not carry over to the fuzzy domain. Singg,;s, does not cover the
whole instance space, none of its variables can be seerebevamnt, even though they all contain their
complete term sets, and thus none of the variables couldnoedd as in the crisp case.

4.3.4 The Positive and Negative Extension

Set covering algorithms require that for a given conceptithi@ing set of instanceg, T' C I, can be
split into two sets, a set of positive instandesP C T, that contains the desired concept, and a set of
instancesV, N C T, that does not contain the desired concept. In the fuzzy, edlsastances contain

all concepts (that can be described) to a certain degrems 8ie concept is how specified as a fuzzy set.
We therefore define a threshold, @fcut valuea,. that defines which instances belong to the concept
and which not.

Definition 4.3.2 An instancei is positive Whefuconcept(i) > ., and negative Wheponcept (1) < o,
whereconcept denotes the desired concept, amdis called the concept threshold.
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Now we can form the set of positive instandes
P = {Z € T|ﬂconcept(i) > Olc} (422)

If, for example, we want to learn the concegptivity.volleyball, and we sety. = 0.8, then the sef’
will contain instanceg, 4, and16 in Table4.1 Similarly we form the set of negative instancsas
follows,

N = {i € Tlttconcept(i) < ac} (4.23)

According to the definitions o and N, it is clear that the set® and N are disjoint. Thus, the sé¥
can also be obtained by,
N=T-P (4.24)

The set difference operation is performed on crisp setsthargiwe do not need to be concerned with the
implications of Eq 4.6) and @.7). The positive extension of the conjunctionX p(c), is the extension

of the conjunction inP, and dually the negative extensiokiy (c) is the extension of the conjunction in
N. Consider for example the concepttivity.volleyball and the conjunctiom = [sunny]|[normal.
Leta. = a, = 0.8, thenX7(c) = {2,10,13,16}, P = {2,4,16}, Xp(c) = {2,16}, N =T — P,
andXy(c) = Xr(c) — Xp(c) = {10, 13}, where we list the instances by their instance numbers in the
table.

Note that we are still working with fuzzy classes. Just adyapg an alpha leveling to the antecedent
does not revert fuzzy instances to crisp instances, agpgiralpha leveling to the concept also does not
make the consequent crisp. We simply require that class mestips must lie above a certain level. If
one does not want to specify this, one can also defiraes,

P = {i € T|ptconcept(t) > 0} (4.25)

and the definition ofV remains as before.

4.3.5 FRuzzy BeEXA's Rule Semantics

FuzzyBEXA induces rules of the form “IlantecedenfTHEN consequentwhere the antecedent is a
conjunction in FuzzyAL, and the concept is a linguistic tdrom the term set of the class variables.
Xr(c), the extension of the conjunctianin the setT’, ' C I, defines the set of instances frdhm
for which a rule withe as its antecedent will fire. According to E4.17), a rule will only fire if the
antecedent membership is at leagt For example, consider the rule

IF [sunny, cloudy][mild)@0.7 THEN weights@0.8

The number following the antecedent is the valuengf the antecedent threshold, and the number
following the consequent is the value @f, the concept threshold. Thus, this rule will only fire for
instances with antecedent membershi afor above. The explicit indication af, and a. may be
omitted when their values are specified for the whole trgirgat. The semantic interpretation of this
rule is: if the membership of the anteceden®.is or above, then the membership of the concept8s
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or above. A value 00.7 for «, is relatively high, and may result in little or no overlap Wween terms
from the same term set for a linear attribu@ok, 1998 p. 95]. This is often undesirable in fuzzy logic,
and thusy, is usually a smaller value. As already stated before, itse pbssible not to apply any alpha
leveling to either the antecedent or the consequent. Tharg&s associated with a fuzzy rule in this
case will be that if an instance belongs to the rule antededigmnon-zero membership, it also belongs
to the consequent with non-zero membership. One may of eatils apply an alpha-leveling to the
antecedent after rule induction. Note however, at thistgmirstatement about the actual membership to
the consequent is made, except that it will be abevé the membership to the antecedent is abaye
Future research can address methods to predict the coneembenship for rules that fire.

The aforementioned rule will fire for instances 4, 13, andriZable4.1 Instances 13 and 14 have
Hactivity.weights > 0.8, that is, the positive extension contains instances 13 dncidd the negative

extension contains instance 4. Thus the classificationracgwf this rule is(%)loo% = 66%.

4.4 The Lattice of Fuzzy Concept Descriptions

In Section3.5we showed that BxA’s concept descriptions can be arranged in a lattice usimmpre
specific tharrelation. If the extension of a descriptienis a subset of the extension of a descriptibn

i.e. Xg(c) € Xg(c'), thencis more specific thad. The question arises, what happens to the description
lattice under fuzzy conditions—does the partial orderitig®ld? In BEXA the partial order is defined
under set inclusion of description extensions. Howevemnises3 and6 do not hold in the fuzzy case
any more (see Sectich3.2. By defining the partial order for the fuzzy case in a difféarmanner, we
show that the description language (FuzzyAL) forms a latéitso in the fuzzy case.

The term set of a linguistic variable defines a number of fuzztg for this variable. The description
language uses these terms as “labels” in its conjunctiocriggien. LetC denote the set of all FuzzyAL
conjunctions for a learning problem, ait{c) the set of linguistic terms used in a conjunctigr € C.
The setD(c) is called thedescription sebf the conjunction, and(c) C D(mgc). Each linguistic term

in a description set is assumed to be unique, e.g. the liigtésmhigh of a linguistic variable “cost” is
different from the linguistic termivigh of a linguistic variable “inflation.” We can relabel theseduistic
terms aseost.high andin flation.high to maintain uniqueness of names if necessary. Thus, there is
one to one mapping between descriptions and descriptisn\&&t now define the following relations,

Definition 4.4.1 Let C' denote the set of all possible FuzzyAL conjunctions in tiserg#ion language
for a specific learning problem, and, c; € C, thenc; =< ¢s, ¢1 is more specific than or equal te, if

and only if D(c1) € D(cz). We consider; = c2 wheneverD(c;) = D(cz). Conjunctione; is more
specific thane,, denoted by < co, whene; < c; ande; # cs.

Thus, the se€ is partially ordered under the relation.

The set of description sef3 is formed from the power set of all linguistic terms, ile.= P (L), where
L is the set of all linguistic terms in the problem domain. Thiksis closed under arbitrary unions
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and intersections, and forms themplete lattice (D; U; N) [Davey and Priestly2002 p. 36]. For each
conjunctionc there is a unique associated description/3gt). Next we show that the conjunctions in
C form a lattice.

Theorem 4.4.1 For a given problem domain, the set of FuzzyAL conjunct@risrms the lattice
(C;V; A; ), where the meet and join operations are respectivend V.

Proof of Theorem4.4.1

For each descriptiod € D there is an associated conjuncti®!(d) = ¢ formed by
the conjunction of conjuncts, where each conjunct is a dejan of all linguistic terms
in d that are from the same term set. An empty conjunct is equivabeFALSE, as is a
conjunction that contains an empty conjunct. Group all engjionsc € D~'(d) that are
semantically equivalent tBALSE in one node, calle6ALSE. Thus, except foFALSE, all
conjunctionsc € C have a unique corresponding description Bét). Letz = D~!(d;)
andy = D~!(dy) be conjunctions such thak andd, contain an empty conjunct, then
rAy = FALSEandxVy = FALSEexistinC. Now letz = D~!(d;) andy = D~!(ds) be
conjunctions such that; contains an empty conjunct adg does not, them Ay = FALSE
andz Vy =y existinC. Sincex V y andz A y exist for allz,y € C, (C;V; A) is a lattice
[Davey and Priestly2002 p. 34].

The operatorD(c) maps each conjunction € C' to a unique description set, and the operabor' (d)
maps each descriptiah € D that does not contain an empty conjunct to a unique conjumcénd all
descriptions that contain an empty conjuncEF#LSE. Thus, sincg D; C) is a complete lattice(C’; <)
is also a complete lattice.

For each element € (, it follows thatec < mgg andmgcis called atop. Also, for each element
¢ € C, itis the case thaFALSE < ¢, andFALSE is called abottom [Davey and Priestly2002 p.
15]. For all elements € C, if follows thatc = ¢ A mgg andmgcis called aone, and for all elements
c € C, itis the case that = ¢ vV FALSE, andFALSE is called azero [Davey and Priestly2002 p.
41]. Since(C;V;A) has both a one and a zero, it ibaunded lattice [Davey and Priestly2002 p.
41]. Letx be a description set and be the following operatof = (D(mgc — x). Then, for each
elementr € D,z Nz =xzN(D(mgg —z) = Pandz Uz = z U (D(mgg — =) = D(mgg. Thus,
(D;U;N; 0; D(mge);~ ) is acomplemented lattice For each element € (D;U;N) its complement
z exists, and thereforéD; U; N) is a lattice with complements. Due to the mapping frénto C, the
lattice (C'; <) has similar characteristics.

4.5 FuzzyBEXA's Top Layers

With all the definitions in place, we can now describezEy BEXA's two top layers. BzzYBEXA's
top layer routineCoverConceptamplements the fuzzy set covering approach to rule indac¢tand is
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Table 4.2: FuzzyBEXxA's fuzzy set covering layer.

PROCEDURE CoverConcepfs(concepts)
ruleset = ()

FOR EACH concept; € concepts DO
P = {Z € T’Mconcept(i) > ac}
N=T-P
REPEAT

bestconj = FindBestConjunctiorf?, V)
IF bestconj #= NULL THEN
Add the rule “IFbestconjQa, THEN concept = C;Qa.” to ruleset
P = P — Xp(bestconj)
10 END IF
11 UNTIL (P = () OR (bestconj = NULL)
12 ENDFOR
13 RETURNruleset
END PROCEDURE

O© O ~NO O WN P

shown in Table4.2 It receives a training séf of fuzzy instances and a list of concepts for which to
induce classification rules. For each cona@pthe training set is split into a set of positive instanées
and a set of negative instanch’s To obtainP, we make use of either E4.@2) or Eq @.25. The setV

is formed by subtracting® from T, N = T — P. Next, Fuzzy BEXA invokes its middle layer routine to
obtain the conjunction that best describes the currenteguindt then adds the rule with this conjunction
as antecedent and the current concept as consequent tteitetu All the positive instances covered
by this rule are then removed from the set of positive ingtanavhile the sefV remains unchanged.
FuzzyBEXA iteratively induces more rules until either all the postimstances are covered, or no
“useful” conjunction could be found, indicated by a NULL walfor bestconj. It then continues with
the next concept until classification rules for all the cgisare induced. Sindé”| is reduced during
each iteration, the algorithm is guaranteed to terminate.

FuzzyBEXA’s middle layer is calledrindBestConjunctionand is shown in Tabld.3. It implements a
set of search heuristics to guide the search. The routinetaias a set of conjunctions, callsdecial-
izations that are iteratively specialized by invoking the bottoryelaroutine. This set is initialized by
the mgg which is formed as in Eg4(20. FindBestConjunctioralso keeps track of the best conjunc-
tion found during the search by storing this conjunctionhia variablebestconj, which is initialized to
NULL.

The set of specializations obtained from specializing thigjunctions inspecializationsreplacesspe-
cializations Each specialization is then evaluated according to amatiah function. BzzyBEXA can
use any evaluation function that assigns better scoresnjoroctions that cover the positive set better
than the negative set, where the exact definition of bettigfised by the evaluation function itself. One
example of such an evaluation function is the Laplace estimihe evaluation function plays a pivotal
role during rule induction. It is thus very important to ussuitable evaluation function for the problem
to solve. The effect of the evaluation function will be théjgat of Chapteb. If a conjunction is found
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Table 4.3: FuzzyBExA'’s FindBestConjunction procedure.

PROCEDURE FindBestConjunctiaR(iV)

1 bestconj =NULL,;
2 specializations = {mgc}
3 WHILE specializations # () DO
4 specializations =generateSpecialization3(V, specializations);
5 FOR each conjunction € specializations DO
6 IF c is better tharbestconj according to the evaluation THEN
7 bestconj = c;
8 ELSEIFc andbestconj have the same evaluation
9 AND |Xp(c)| > | Xp(bestconj)| THEN
10 bestconj = c;
11 ELSEIFc andbestconj have the same evaluation
12 AND c is less complex thabestconj THEN
13 bestconj = c;
14 ENDIF
15 ENDIF
16 ENDFOR
17 Remove fromspecializations all the conjunctions that cover
no negative instances
18 Remove fromspecializations all the conjunctions whose optimistic
evaluation is worse thabestconj’s evaluation
19 Retain inspecializations only thebeamwidth best conjunctions

20 END WHILE
21  IF the evaluation function value féestconj is the same or worse

than that of thengcTHEN
22 RETURN NULL;
23 ELSE

24 RETURNbestcony;
END PROCEDURE

with a better evaluation it replaces the current best caijon. Lines 8 to 18 implement further search
heuristics discussed in the next sections.

After searching the current set of specializations for aprowement on the current best conjunction,
a set of stop-growth criteria is used to prune the searcbzzFBEXA prunes conjunctions that are
consistent (conjunctions that cover no negative instgrfoas the search process since these cannot be
improved by further specialization. Then only the remagra@amwidthbest conjunctions are retained
in specializationsfor further specialization. &zzyBEXA performs a type of best-first search if its
beam width is set to one. Best first search is a hill-climbitrgtegy that expands the current state and
evaluates its children. The best child is selected and thenpand siblings are ignored. The search
halts when it reaches a state that is better than any of igrehiLuger and Stubblefieldl998 p. 127].
FuzzyBEXA searches top-down, and keeps track of the best conjunctioxdfduring the whole search.
Therefore thdirst (and most general) “best conjunction” found will be retutneot the last. By setting
the beam width parameter to a value greater than ongz¥BEXA performs a local beam search of
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the hypothesis space. That is, in each layer of the lattia®ojfunctions, up to aeamwidtinumber of
conjunctions may be specialized further. If the best cartjon found during a search performs no better
than themgg the result “no useful conjunction found” (i.e. NULL) is tebed, otherwisehestconijis
returned. The middle layer also employs other search hmgri® improve efficiency and performance.
These are discussed next.

4.5.1 Choosing Bigger Positive Extensions

Lines 8 to 10 in Tablet.3 are used to compensate for some evaluation functions thyatassgn the
same evaluation to two conjunctions, but one conjunctioremore positive instances. Consider for
example the Laplace evaluation,

) Xple)] + 1
| Xp(c)| + | Xn(c)| + #concepts

L(e) (4.26)

Assume|Xp(c1)| = |Xn(c1)| = 10, and|Xp(c2)| = |Xn(c2)] = 100. Then evaluations of; and
cyareL(c;) = 11/22 = 0.5 and L(c2) = 101/202 = 0.5. In this case we prefer, overc;, ascy is
more general (i.e. cover more instances) and also has tkat@dtto become better than by further
specialization. Note, this test is not neccesany; if< co, sincecy would have been evaluated first, and
thus kept as best conjunction&{c; ) was notbetterthan L(c2). However, it may be that; andc, are
found in the same layer of the lattice and thats evaluated after; —in this case we wish; to replace
c1, even though they obtained equal evaluations.

4.5.2 Preferring Less Complex Conjunctions

If two conjunctions are equivalent according to the evatuafunction, and the size of their positive
extensions are the same, we prefer the least complex cdigun€omplexity can be measured either
in terms of the number of conjuncts in a conjunction, or imteof the number of linguistic terms in the
description set of the conjunction. We chose to used thediigtoach, since this approach favours rules
with more conditions on one linguistic variable to rulesngsmore linguistic variables. The reasoning
is that if one linguistic variable can be used instead of this, identifies the variable as significant and
justifies its use in the rule. The cost of measuring one vhristalso less than measuring two variables,
assuming equal cost for all variables. The complexity shplemented by Lines 11 to 13 in Talles.

If a conjunction obtains the same evluation as the best ootippn, we retain the best conjunction only
if it is less complex, otherwise it is replaced.

4.5.3 Optimistic Evaluation

Line 17 cause all conjunctions with empty negative extersim be removed from the search. Once
the negative extension of a conjunction becomes empty, nlogiuamount of specialization will cause
the conjunction to improve, as it already covers the maxinmumber of positive instances (assuming
a general-to-specific search). However, it may happen thahpnction can still be improved, i.e. its
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negative extension is not empty, but no amount of spectaizawill make it better than the current
best conjunction. We test for this condition by evaluatihg tonjunction optimistically. This means,
we assume that the conjunction can be specialized suchtshabsitive extension remains intact, but
its negative extension becomes empty. If such an optiméstiduation is still worse than the normal
evaluation of the current best conjunction, we remove tmgucaction from the search process. Consider
for example the conjunction; with | Xp(c;)| = 10 and | Xy(c1)| = 10, thenL(c;) = 0.5. The
optimistic evaluation of this conjunction Boptimistic(c1) = % = 91.166. If the best conjunction had
an evaluation greater th&i.166, we remove the conjunction from the search, since no sjizgian
can receive a better evaluation and thus replace the bgsnotion. The test is implemented by Line 18

in Table4.3.

4.6 FuzzyBEXA's Bottom Layer

FuzzyBEXA's specialization model, shown in Tabded, follows the same specialization by exclusion
principle as BExA and functions as follows. With each conjunctietwo sets are associated, the sets
c.usable andc.excluded. The setc.usuable contains all the terms that may still be used to specialize
a conjunction. The setexcluded contains all the terms that were used to specialize the notigun.
Accordingly, themgcwill have mgc.exzcluded = () andmge.usable = D(mgc), the set of all pos-
sible terms. When a conjunctianis specialized, one term fromusable is excluded frome to form
cnew. Theusableandexcludedsets for each conjunction provides for efficient speciéiiraby pre-
venting blind repetition of specialization effort. LikeeBA, FuzzyBEXA employs several criteria to
improve efficiency and prevent the generation of uselessalpstions (referred to as stop-growth of a
conjunction) and pre-prune conjunctions. These are disclisext.

4.6.1 Recalculating the Positive and Negative Extensions

In the crisp case BxA computedX p(cnew) and Xy (cnew) efficiently as follows. LetXp(A; ;) and
Xn(A(,j)) be the positive and negative extensions of the conjunctaitaining only the attribute value
Ay wherei andj are the attribute and attribute value indices respectiviegn

Xp(cnew) = Xp(c) — Xp(Ag ) (4.27)
Xn(cnew) = Xn(c) — XN(A(Z-J-)) (4.28)

The extensions(p(A; ;) and Xy (A(; ;) need only be computed once prior to rule induction. How-
ever, this computation is invalid in the fuzzy case; it defeeopon premisé (see Sectiot.3). Let
L; ;) denote the/ linguistic term from thel™ linguistic variable. In the fuzzy case, the exclusion of
L; 5 from an internally disjunctive conjunct does not necessaincover all the instances covered by
the term—an instance may still be a membeXaf(cnew), even though this instance is an element of
X7(L; ;) )- This will happen when an instance belongs to more than aneitethe remainder of the
same term set with membership greater than or equa} tand these terms are still imnusable. Thus,
unlike in the crisp case, in the fuzzy case it is not true inegahthatX+([!L; ;)]) N X1 (L(; ;) = 0.

57



Table 4.4: FuzzyBEXA's specialization model.

PROCEDURE GenerateSpecializatiaRs{V, conjunctions,
beamwidth)
specializations = ()
I First remove frone.usable all the values that will lead
to unnecessary specializations
3 FOR each terni,; € c.usable DO
4 IF Xn(c) N Xn(L;) = 0 THEN // Ensure more negative
instances will be uncovered
5 c.usable = c.usable — {L;}
6 /I Next generate all useful specializations of the corjonc
7 FOR each conjunction € conjunctions DO
8
9

N

FOR each valué; € c.usable DO
cnew = c¢ specialized by removing,; from it;
10 IF cnew € specializations THEN CONTINUE;
11 XP(CTLGU)) = (XP(C)—XP(LZ')) UXP(Ll)U...
UXp(Lj)U...UXp(Ly), Lj¢& cexcluded,
Lj is in the same term set ds, andL; # L;
12 IF Xp(cnew) = ) THEN CONTINUE
13 XN(cnew) = (XN(C) _XN(Lz)) UXN(Ll)U...
UXnN(Lj)U...UXN(Ly), L;¢ cexcluded,
L; isin the same term set ds, andL; # L;

14 cnew.usable = c.usable — {L;};
15 cnew.excludedvalues = c.excludedvalues U {L;};
16 specializations = specializations U {cnew};

17 END FOR

18 ENDFOR

19 RETURNspecializations
END PROCEDURE

We can, of course, simply recalculafép (cnew) and Xy (cnew) by computing the membership of
each instance with the new conjunction and determine if dt,ior above. HoweverX p(cnew) and
Xn(cnew) can be calculated more efficiently in the following way. Db (L; jy) and X (L ;) be
the positive and negative extensions of the conjunct coimigionly the termZ; ;). Let cnew be the
conjunction formed by excluding the terfy; ;) from c, then,

Xp(cnew) = (Xp(c) = Xp(Liz)) U | Xp(Lix) (4.29)
k,k#j

Xn(enew) = (Xn(e) = Xn(Laj) U | Xn(Lix) (4.30)
k.k#j

whereL; iy € c.excluded. The extensions(p(L; ;) and Xy (L ; ;) are only computed once prior
to rule induction. The above equations require only seedifice and union, and can be efficiently
implemented by a set data structure backed by a hash table.

Consider the complexity of calculating the extension of ajaoaction without this efficiency measure.
Here we assume an efficient approach where the calculatibaltisd as soon as it can be determined
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that an instance either matches a conjunction or not, i.e.devaot follow the simple approach of
computing the membership of an instance to the conjunctightlaen testing whether this is belaw

or not. Assuming the standard fuzzy operations, matchiqgires testing instance membership degrees
to the terms inD(c¢) until the expression can be declared true or false. As sotreasembership of the
instance to @onjunctis «,, or above, it is known that the instances matches the conjiinalecide that

an instance does not match a conjunct all the terms must tesl tasd their membership degrees must
all be belowa,,. The complexity of the matching operation of course growthaswumber of terms per
term set increases, although not in a linear mannerplbet the probability that the membership of an
instance to a term is,, or above, then the probability that the membership ofti¢erm isa,, or above
and the membership of the first— 1 terms are below, follows a geometric distribution, given by

Pgeometric: (1 - P)n_lp (4.31)

The mean of the geometric distribution for an infinite sedégerms isp—!, i.e. on average—! terms
must be examined before it can be decided that an instancghesaa given conjunct. For example, if
p = 0.2 then on averagg terms will be tested per conjunct for instanceskin(c). Thus, forg variables,
the number of tests to perform for termsii-(c) on average is given by,

ap”! (4.32)

Let » be the probability that an instance membership to any caehjare is «,, or above. Assuming an
infinite number of conjuncts in, for instances if" — Xr(c) on average—! conjuncts must be tested
until one is found that is not matched. Thus, for instanceB in X1 (c) the number of tests performed
on average is given by,

kr—t (4.33)

wherek is the average number of linguistic terms per conjunet i6@onsider the sport data in Talel
with ¢ = 4 variables andy, = 0.5. Of the 160 membership degrees, 67 @¥eor greater. Thus for the
mgg p = % = 0.419, and the average number of term membership tests per iesiape ' = 9.55.
We can estimate as,

#conj i '
C%”Cts# matched instances for conjunct

#instances

1
#conjuncts

(4.34)

P =
i=1

For the conjuncilsunny][!hot| [ humid][lwindy), r = 1(Z + 1% + 18 4 11y = 0,625, k = ¢, and thus
on averagéir—! = 2.4 membership tests must performed for instance® in Xr(c). Of course, in
reality the number of linguistic terms per conjunct and thenber of conjuncts are far from infinite, and
the calculations in EgA(32 and Eq 4.33 are only approximations. However, the efficiency measofes
Eq (4.29 and @.30 removes the need for matching altogether, and instancEs {i.;) can be removed
Xr(cnew), provided they are not i) X7 (L;), whereL; ¢ cnew.excluded.
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4.6.2 Empty Positive Extension

BEXA used a subset test to prevent the generation of new corgusatiith X » = (). These are shown
in Lines 5 and 8 of Tabl8.4,

5 IF Xp(c) g Xp(ai)

8  c.usable = c.usable — {a;}

If the positive extension of a conjunction is solely due tcegain attribute value, then excluding this
attribute value is senseless.

This test, however, depends upon prentisevhich does not hold in the fuzzy case, as fuzzy instances
may have more than one term membership from the same term sef it leastw,. Therefore, even
though the positive extension of one term may subsume tle grtsitive extension of the conjunction,
this does not mean that if it is excluded the positive extangiill become empty — another term’s mem-
bership may be at least, with a non-empty positive extension. However, it is stileless to generate
conjunctions with an empty positive extension, as furtipecglization cannot find better conjunctions.
Thus, we remove the subset test as in Line 5 of T&e and add an alternative test in Line 12 of
Table4.4, after the new positive extension is computed.

12 IF Xp(cnew) = () THEN CONTINUE

If Xp(cnew) = (), we do not addnew to specializations because it does not cover any positive
instances. Note, premigeis still valid in the fuzzy case—excluding all terms from th&@&me term set
means that no term remains to be matched, and is equivalehé toonditionFAL SE that covers no
instances.

4.6.3 Uncover New Negatives

FuzzyBEXA does not specialize conjunctions by excluding terms if fierilization covers as many
negative instances as its parent (Line 4 of Tag. When the negative extension of a term has no mem-
bers in common with the negative extension of a conjuncspecializing the conjunction by excluding
this term will not uncover any new negatives. However, thecggdization may now not cover some
members from the positive extension of the conjunction, intak less general. For this reason, and
since we want the most general consistent rule, we do notadizecthe conjunctior: by excluding the
term L if the negative extensions efand L have no common members, i.e. WhER (¢)N X (a;) = 0.

4.6.4 Irredundant Set Cover

As discussed in Sectidd.5, Theron and Cloetgl994 showed that using the irredundant set cover test
leads to the discovery of members of the 6g, the set of most general consistent conjunctions. We
implemented the irredundancy test as an optional extragtmpth measure in the fuzzy case, and we
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Table 4.5: A small fuzzy learning problem.

@el ation smal | probl em
@ttribute A {a, b}
@ttribute B {x, y}
@ttribute concept {yes, no}

@lat a

(0.7 0.3), (0.8 0.2), (0.3 0.7) ;1
(0.8 0.2), (0.2 0.8), (0.4 0.6) ;2
(0.7 0.3), (0.1 0.4), (0.7 0.3) ;3
(0.2 0.8), (0.1 0.4), (0.3 0.7) ;4
(0.3 0.7), (0.3 0.7), (0.8 0.2) ;5
(0.5 0.5), (0.30.7), (0.6 0.4) ;6

examine its use empirically in the next chapter. Since fumsyances belong to more than one fuzzy
set at the same time, we expect the irredundancy test to hewaléer impact in the fuzzy case, i.e. we
expect that the test will not be satisfied often enough to naadignificant difference.

4.6.5 Remove Duplicate Specializations

To prevent unnecessary work in the rest of the algorithexB8removed duplicate specializations from
the set of specializations after the specialization pre¢8ge Table.4, Lines 19 and 20). Duplicate
specializations are created if two conjunctions differingnly one term are specialized such that the
remaining terms are the same, e.g. by excludingfrom [hot, mild][windy] and excluding:old from
[mild, cold][windy], the specializations of two different conjunctions areshee, i.e. the conjunction
[mild][windy]. The number of duplicate conjunctions will increase wita eam width and the sizes
of the term sets. Since the calculation of the positive arghtiee extensions of the specializations is
one of the operations with high computational cost (esfigdar large training sets), 6zzyBEXA
optimises this test by moving the duplication test to Lindri@able4.4. This removes the calculation
of Xp(cnew) and Xy (cnew) for duplications, which results in a substantial reductiospecialization
cost.

4.7 A Small Practical Example

In this section we consider the data set shown in TalieWe induce classification rules fesncept.yes
using the concept threshotgd. = 0.4 and the antecedent threshalgd = 0.4, and we do not consider
any stop growth tests. Figu#e5 shows the complete lattice of conjunctions defined by F BEXA’s
description language, subject to the usual constraintttigae remains at least one term per variable,
i.e. we do not consider the antecedBAL SE that covers no instances. Each node contains a conjunc-
tion description, and indicates the sizes of the positive m@gative extensionsX(p(c) and Xy (c)) of

the conjunction in parentheses. In the figure, the alpha tmment of a linguistic variable is denoted
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Figure 4.5: The lattice of the learning problem of Tables. The symbolA is used to denote the alpha comple-
ment.

by the symbolA. Dotted nodes indicate inconsistent conjunctions aniti swdes indicate consistent
conjunctions.

The procedur€overConceptsomputes the set8 and N according to Eq4.22) and @.23. The value
a. = 0.4 defines the set® = {2,3,5,6} and N = {1,4}. Thereafter the proceduféndBestCon-
junction constructs thengcand adds it to the seipecializations. Themgcis shown as the top node
of Figure4.5. By design, the most general conjunction covers the comptatning set, and therefore
Xp(mge) = P and Xy (mge) = N. The proceduré&enerateSpecializationis now called. It con-
structs all the specializations of the conjunctionsacializations, which initially contains only the
mgc The six nodes shown in the second layer will be generatedunz ¥FBEXA during the first iter-
ation, and are all the specializations possible by exclydine term from thengc Since there are six
terms altogether in thengg the second layer contains six conjunctions. The positigkreegative ex-
tensions of each specialization is then computed accotdifg @.29 and @.30). The first invocation
of GenerateSpecializatiorannot create any duplicate conjunctions.

The set of specializations generated®gnerateSpecializatioris then returned téindBestConjunc-
tion, and each specialization is then evaluated according tevileation function. For this example we
use the Laplace function in E4.6). FindBestConjunctiorkeeps track of the best conjunction found
thus far using the variabliestconj. After the evaluation process, only theamwidth best specializa-
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tions are retained iRpecializations, implementing Bzzy BEXA's beam search behaviour. The best
conjunction in the second layer|is b, &|[y, @], i.e. themgcwith = excluded. By excluding;, a negative
instance (instance 1) is uncovered. The membership defjiestance 1 to the term is 0.2, and0 to
the alpha complement of variable. The membership to the remaining term sets are all ab®/end
thus the membership to the whole conjunctio.i that is, below,, and the instance is uncovered.
The dashed bold edges in Figu¥é show the paths thatuzzy BEXA will examine with a beam width
of one, while the solid bold edges indicate the path that# BExA actually follows using the Laplace
estimate to rank conjunctions.

There are six nodes in the second layer, one node for eactthatrwas excluded from the term sets of
themgc In the next layer, however, there are 86t(5 * 6) nodes, since some conjunctions are created
by excluding the same two terms in different order frommigc FuzzyBEXA tests for this condition

in Line 10 in Table4.4. FuzzyBEXxA will search in an ordered top-down general-to-specific neann
through the lattice, until it finds a member of the 6}, the set of most general consistent conjunctions.
In the third layer the conjunctiofu, @][y, @] has an empty negative extension. It is therefore consjstent
and since no conjunction more general is also consisteistaitmember of”;;, and is indicated as a
filled node in the figure. Specializing this conjunction heat can lead tda, @][y], [a][y, @], and]a][y],
which all have the same value for the evaluation functiort,vtich are not members @,,. Nodes
with the same Laplace evaluation as that of the filled nodenalieated with bold outlines. However,
they occur lower down the lattice, and are therefore lesermgérthan the filled node. WzzyBEXA

will not specialize further thafu, a][y, @] due to the stop growth rule in Line 17 of Talles (i.e. this
conjunction does not cover any negative examples).

The first rule has 400% classification accuracy, since it covers no negative itg®nand uncovered
three positive instances. These instances are removedtherraining set. Sincé # (), further
iterations of the REPEAT loop i6overConceptare required until all the positive instances are covered,
or no more useful rules can be found. In this particular legriproblem and data set, the extensions of
the alpha complements of bothand B are empty, and thus one could argue that they can be ignored
because they can actually not be used to exclude any instahlis yields less general descriptions, but
with the same classification performance over the obsengdrices, i.e.

IF [a][y]@0.4 THEN concept.yes@0.4

would also be a valid description—and is exactly one of tlss Beneral, but equally good descriptions
discussed above.

One could argue that any conjunction in the lattice betpwe C), with the same extension is as good
asc. However, if we stand by the principle of preferring more g@eh descriptions, then it must be kept
in mind that since membership degrees are real numbers frmontauous domain, any training sBt

is a proper subset of the whole instance spacg C 1, and it is true in general that if conjunctien is
more specific that conjunctiom, ¢; < co, all instances fronT that matche; will also matches, but a
subset of instanceB, B C I, can always be found such that an instabdee B, matches:, but does
not matche;. That is, even though, andc; can have the same extensiorilinthere always exists a set
of unobserved instancés such thatXz(c¢1) C Xp(c2).
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4.8 FuzzyBEXA's Inductive Bias

We first prove the following theorems and then use them to feonzy BEXA’s inductive bias when we
assume the use of the standard fuzzy operators. The induaiti¢ will of course change for different
fuzzy operators.

Theorem 4.8.1 Let ¢ be a conjunction, and’ < ¢. The membership of an instance I to ¢’ will be
less than or equal to its membershipddhat is,Vi € I : p (i) < pe(i).

Proof of Theorem4.8.1

The membership of an instanéec I to ¢ will be the minimum membership value oto
any conjunct ire. According to Def4.4.1, the description set af is a proper subset of the
description set of, D(c¢) C D(c'). Thus,c contains all linguistic terms of', but for at
least one conjunat; in ¢, there is a linguistic term that is not in the correspodingjeoct
¢,. Let L € D(c) be a linguistic term such thdd(¢') = D(c) — {L}. If pur(z) was not
the maximum of the membership degrees to the linguisticigemaining in the conjunct
of L’s term set, thenu.(i) = po(i). If it was the maximum, then the membershipiof
to the conjunct will decrease since the maximum membershipeadises. If the decreased
membership is lower than the smallest membership to anyunotjthe membership to
the conjunction will decrease. Since the membership to repeeific conjunctions can
decrease, but never increase, the theorem is proven.

Corollary 4.8.1 Letc be a conjunction, and < c. The extension af will be a subset of the extension
ofe: X1(d) C Xy(c).

Proof of Corollary 4.8.1

Let ¢ < ¢. Only instances inX;(c) need to be considered, since all other instances do
not matche, they are known to have membership degrees lessdharccording to The-
orem4.8.1, the membership of an instan¢ec [ to a conjunction will either decrease or
remain the same as it is specialized. Thtise I(u (i) < p(i)), and therefore only the
same or fewer instances thanin (¢) will have membership degrees greater or equal,to
and according to Eg¥(17) only the same or a subset of instances can be includ&d (d).

Starting with thengcdefined in Eq4.20), Fuzzy BEXA performs a greedy, general-to-specific, separate-
and-conquer beam search of the space afaijunctionsn its description language to induce a concept
description. BzzYBEXA’s specialization model specializes a conjunction by reimmv.e. excluding,
one term from one of the term sets in the conjunction. Next kavsthat Fuzzy BEXA also searches
theinstance set the instance space in a general-to-specific order.
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Let ¢c; andcy be elements of the sét of all FuzzyAL conjunctions in the description language of a
learning problemg;,co € C, and assume; is a specialization of,. Thus, D(c;), the description
set of specializatior;, was formed by removing one or more terms fréh, ), the description set of
conjunctioncs, i.e. D(c1) C D(c2). The extension operator maps conjunction§’ito instance sets in
P(S), whereP(S) is the power set of a set of instanc&sThus, X is the map,

Xg:C — P(S) (4.35)

The setP(.9) is partially ordered under the set inclusion operati@rjDavey and Priestly2002 p. 4].

The conjunctior:; is more restrictive than, because less terms are present in the internal disjunction
of at least one variable. Thus; cannot cover instances that are not covereadybut ¢; may not
coversome of the instances covered &y According to Corollary.8.], the set of instances covered
by ¢; is a subset of those covered by, Xs(c1) € Xg(c2), whene; < . The mapX is said to be
order-preserving or monotonB@vey and Priestly2002 p. 26].

FuzzyBEXA only replaces the current best conjunction when a competimgunction has a better
evaluation. The lattice of descriptions is searched in &gdfio-specific manner, and thus more specific
conjunctions are generated later during the search, aiydreplace more general conjunctions if they
have a higher evaluation. Since the extension operatoder-q@reserving, the instance sets covered by
the conjunctions are also searched in a general-to-spectfar. Furthermore, whenever a conjunction
becomes consistent, it is removed and not specializedefurifhus, we can formulateuzzy BEXA's
inductive biasas follows:

Conjunctions with good evaluations are preferred overwustjons with bad evaluations,
and conjunctions that cover more instances are preferredoawjunctions that cover fewer
instances.

Less formally we can say thatugzyBEXA prefers good descriptions higher up in the lattice.

4.9 The Inference System

FuzzyBEXA is only concerned with the induction of a good rule set. Fr plurpose it makes use of a
training set of instances.UzzYBEXA is thus not used to classify instances—it is the task of theyfu
inference system to use the induced rule set for classiitati a set of arbitrary instances (but still from
the problem domain). Although each rule is induced in isoatFuzzyY BEXA returns a set of rules. The
performance of the inference system is dependent on bottetti@mance of single rules, as well as the
degree to which they cooperate. The method of rule cooperadr in the case of conflicts, the method
of rule arbitration, is an important task of the inferenceteyn. The inference system is a component
largely independent from the specific induction method,unaase lBzzyBEXA. However, since all
results (i.e. both for the training and test sets) are diréctluenced by the specific implementation of
the inference system, we discuss its characteristics i ohatail. We first pay attention to the difference
between the truth (or membership) of an instance to a rukcadent and the concept predicted by the
rule. Then we discuss instance classification and the defdal
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4.9.1 Conjunction Truth And Concept Truth

Rules that from part of a fuzzy control system are often nexguto predict a numerical value. Thus,
often the final step in an inference system is to convert argést (or predicted) fuzzy set to a single
(crisp) value Klir and Yuan 1995 p. 332]. This process is callet:fuzzification The two most popular
methods for defuzzification in such systems are the centgeavity (or centroid) method and the max-
imum of the output membership function methdzbk, 1998 p. 31]. The centroid method calculates
the weighted mean of the fuzzy region,

R— > o dipa(ds)

> imo Haldi)

whered; is the:'th domain value, ang.4(d;) is the truth membership value of rukefor that domain
point. Other methods include the average of maximum vathesaverage of the support set, the far and
near edges of the support set, and the centre of maximum dsefbox, 1998 p. 314].

(4.36)

FuzzyBEXA’ rules, however, are not designed to predict numericaleglbut a concept. In this case
the membership degree of an instance to the antecedentifction truth) indicates theertainty or
confidencedhat the rule fires. The certainty or degree to which a rule fil@es not predict the member-
ship of the instance to the rule consequent (concept trothspecifies that the instance membership to
the rule consequent lies within a certain range, i.e. thgeém., 1]. If a, was not set, then the instance
membership to the concept is simply predicted to be grehssr zero. For example, let. = 0.8 and

let there be arule “IEX = x1 V 2o THEN Y.” If an instancei matches the antecedent to degies,

we can say that we are rather certain that the rule fires—weeatain to degreé.75 that the instance
belongs to the concept with membership in the raige 1]. Future research can address the possibility
to predict a membership degree to a class as well.

4.9.2 Instance Classification and the Default Rule

The process of rule induction does not necessarily prodse¢ @f rules that can classify (i.e. match) all

instances in the training set, nor can one guarantee thandieed rule set will assign a classification

to each instance in the instance space. In fact, onlyrigecovers all instances in the instance space.
This problem is handled by adding a default rule to the rute Bke default rule matches all instances

that are not matched by any rule of the induced rule set. Ttexadent of the default rule is therefore

the mgcor the constanTRUE that matches all instances. Although the default rule igsamatched,

it is only used for classification when no other rules fired.

The consequent of the default rule depends on whether th@ndggproblem requires single class learn-
ing or multi-class learning. Single class learning is theecahere one class must be distinguished from
all other classes, and is dealt with by learning only a setlgfsrfor the instances denoted as positive
by the user (i.e. the s&onceptsn Table4.2 has only one member). The other instances (negative)
are classified aBALSE, or NOT CONCEPT by the default rule. The user can choose to designate the
majority class as the consequent (the class of the negastamnices) of the default rule, and only induce
rules for the class with the least number of instances (therity class). This is not automatically

66



done, since the purpose of rule induction may be knowledgeodery, and not only best classification
performance, and it may be the case that the user wants aanexiph for the majority class and not
the minority class. The consequent of the default rule foltirslass learning (i.e|Concepts| > 1 in
Table4.2) is the majority class, since this rule has the highest fitibato be correct.

Another issue to consider when classifying unseen dataisribre than one rule may match an instance.
In this situation many different approaches can be takeal thatched rules have the same consequent,
the classification is unambiguous. If the matched rules ddferent consequents, an arbitration method
can decide what classification to assign to the instance. rgthbod is to assign the most frequent
consequent among the matched rules. Other possibilitietarse the first rule that matched, to assign
the classification of the rule that covered the most positigeances, to assign the classification of the
rule with the highest evaluation, to assign the classificatf that consequent among the consequents
of the matched rules that occur most frequently in the tngjrsiet, or simply to use the default rule.

In the fuzzy case a further possibility exists. Fuzzy ins&ancan belong to more than one consequent
with membership above.. Thus, an approach only possible in the fuzzy case is torassaye than
one classification to an instance when it matches multigkessrwith different consequents. However,
we did not follow this approach. Although we implementedeas different strategies, for the purposes
of this dissertation our inferencing system resolves rolaflacts by selecting the rule with the highest
set coverage.

4.10 Further Theoretical Aspects

4.10.1 Subsequent Versus Previously Found Rules

One interesting question is, can a subsequently found eutadre general than a previously found rule?
That is, can we specialize a rute found subsequently to form a rute found previously? If this is the
case, we could removg from the rule set, since, fires for instances that matchesg, butr, is less
complex. The answer, however, is typically this does nopkap To subsume a previous rutg,must

be higher in the lattice on a chain from to themgc However, the extension of is a subset of the
extension of any conjunction aboxgein the lattice. Since the positive extension-pfvas removed after
the rule was added to the rule set, the evaluation of all catijons more general than will decrease.
Thus, although itis not impossible for a subsequent rulelb@ssme a previous rule, it is more likely that
conjunctions that are not in the principal filteraf [Davey and Priestly2002 p. 45] will be preferred
during the induction of subsequent rules.

A second question is, can subsequent rules be better thaoyseules, as measured by the evaluation
function? During the induction of earlier rules, more im&tas are available for the estimation of rule
quality by the evaluation function. This estimate shouldrmee accurate, and good evaluation functions
should lead to better rules during the early stages of theslseaith subsequent rules performing in-
creasingly worse. Furthermore, since there are more pesitstances earlier in the search, earlier rules
are also more likely to obtain higher evaluationg?-goes to zero during the induction process while
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|N'| remains constant. If a finite beam search is performed itadmmguaranteed that the best rules are
found first. In general, however, in our experience even witlery small beam width subsequent rules
are always worse with respect to their coverag® of hus, the order of rule induction can in most cases
be used as an arbitration method to resolve rule conflicisglimference.

4.10.2 Size of the Hypothesis Space

In this section we address the question, how does the sihe tttice of conjunctions grow as a function
of the number of linguistic terms. It is to be expected thatitiduction of a rule within a very large
lattice will take longer. The size of the lattic€’; <) can be calculated as,

(Ci=) =1+ ] —1) (4.37)

wherei indexes linguistic variables ang; is the number of linguistic terms in th# term set. For
the i linguistic variable2™: disjunctive expressions can be formed. However, the egjmesvith no
linguistic terms is equivalent to false for all conjunctsidas thus subtracted inside the product and
added once outside. The number of linguistic terms per Mariss increased by one to include the
alpha complement. Since the lattice is searched for thectraiuof each rule, the size of the complete
hypothesis space (i.e. the number of possible rule sets) is,

Ihypothesis spage= 2/(C=) = o1 HILE2" 1 -1) (4.38)

A small problem may have 5 linguistic variables, each witle¢hlinguistic terms, resulting in a lattice
of conjunctions of sizel + (23! — 1)> = 1 + (15)> = 759376. This space can still be searched
exhaustively. However, since the size of the hypothesisesgaows exponentially in the number of
linguistic terms, larger problems cannot be explored estiely. Due to Fuzzy BEXA'’s efficient search
heuristics, however, only a very small subset of the entymothesis space is examined in reality, and
larger problems are still tractable. We will provide emgatiexperiments substantiating this statement
in Chapters.

4.10.3 The Importance of Alpha Leveling

Alpha leveling (applying an-cut) is an important part of a fuzzy inference syst&n, 1999. Fuzzy-
BEXA applies alpha leveling at two stages, during training amthdunference. Since the need for alpha
leveling in a fuzzy learner may be questioned, and we brigflguss this aspect first for inference and
then for training.

During rule matching, the inference engine applies alphalileg. Thus, instances must match rules at
least with a minimum membership degree before they fire. lpba leveling is applied during infer-
ence, conjunctions would have to be very specific not to alsercmany negative instances (although to
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small degrees). This would influence the classification mayuand especially the rule set comprehen-
sibility negatively. Alternatively, the rule conflict relstion method could use the rule that was matched
to the largest degree, which can be seen as an implicit foratpbf leveling.

Alpha leveling is also applied during the search processesthe evaluation functions are fuzzy, alpha
leveling is again not mandatory. In some cases exactly thee sasults are obtained with and without
applying ana-cut. Here, applying alpha leveling during inference antdwring search gives the same
results, but the search is less efficient—instances thaotonatch rules during inference are kept in
the training set longer, and are thus included in calculatiduring search more often. Not applying
alpha leveling during search can influence the search negiatirhe cumulative effect of many weakly
covered instances can easily obscure the contributiona@rfdout more strongly covered instances, thus
leading to the induction of worse rules.

Unfortunately, there is no algorithm for choosiag during search or for inference. In the next chapter
we present experimental results on the influence ofor both search and inference. We will show that
althoughq,, can influence the performance of the algorithm in some casasy data sets are not very
sensitive to it.

4.10.4 For What Kind of Learning Problems is Fuzzy BEXA Suitable?

FuzzyBEXA's description language, FuzzyAL, is very powerful and aoldorm a large variety of
concept descriptions—just look at the size of the hypothepace. Thus, lzzYBEXA is a general
learning algorithm, applicable in most cases. Howevergtiaee some problems thavEzy BEXA was
not designed to solve, and for which it will not induce nakicamprehensible) rule setsuEzy BEXA
(as well as EExA and most other covering algorithms) cannot count conditidhat is, it cannot de-
scribe a concept such as “any four of the nine conditions fbegtue.” A typical type of description
that solves this problem is M of N rulesuEzYBEXA’s behaviour for such problems will be awkward.
It will induce many rules with antecedents made of diffefenir-conjunct combinations. The classifi-
cation performance may still be high, but the rule set willbverly complex, and probably not lead to
knowledge discovery.

FuzzyBEXA also cannot describe (in a natural way) problems that redbi& description of relations
between different attributes. ThuspEzyBEXA cannot describe a concept such as “inflation rate is
larger than growth rate” or “green vote is more than red Vdeth situations may be addressed by the
addition of extra linguistic variables, making these fielag explicit. In the first problem we can add a
new variable that describes the number of true conditionthd second problem we can add the variable
describing (inflation rate - growth rate) or (red vote - greete). However, in most cases this does
not provide a satisfactory solution, since we assume thatpampose of rule induction is knowledge
discovery, and the addition of these new variables wouldireqdcoo much prior knowledge. Future
research can address the extension of the descriptiondgego enable fuzzy covering algorithms to
also deal with these types of problem domains.
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4.11 Summary

In this chapter we proposed set covering as a new method@oglye induction of fuzzy classification
rules. We first developed the basic theory for fuzzy set dogeand showed that crisp covering algo-
rithms are based on a set of premises which do not all holditrtlee fuzzy case. We then proposed a
novel algorithm, lozzy BEXA, which makes use of the fuzzy set covering approacizzi¥ BEXA uses
the same hierarchical structure as the crisp covering ithgor BEXA. FuzzyBEXA clearly complies
with the basic criteria for set covering as stated in B&f1, it induces a single rule at a time by choosing
among several attribute-value pairs, and it removes thig\ymsstances covered after the induction of
arule. We proposed the description language FuzzyAL focritgag Fuzzy BEXA'’s rule antecedents,
and proved that the descriptions in FuzzyAL form a latticertfrermore, we also proved that the fuzzy
extension operator is an order-preserving mapping fronjuoation space to instance space. Thus,
FuzzyBEXA performs a top-down, general-to-specific beam search dffihee of instance sets, using
a fuzzy evaluation measure to guide its search.

FuzzyBEXA employs a host of efficiency measures and prepruning @jteriproving the speed of
rule induction as well as the quality of the induced rule Setme of the efficiency criteria were adapted
from the crisp case, but several novel measures are ontyivaine fuzzy case. To demonstratezzy-
BExA’s search behaviour we traced its search through the latticenjunctions of a small toy problem.
We also discussed the importance of rule arbitration ancttieet of the default rule in a fuzzy infer-
ence system. Finally we discussed theoretical aspectedlgorithm, such as the likelihood of rule
subsumption, the size of the hypothesis space, and the Kkileéuming problems that GzzyBEXA is
suited for. The next chapter provides an empirical evadmadf Fuzzy BEXA’S various parameters.
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CHAPTERDS

Empirical Evaluation

5.1 Introduction

The previous chapter introducedJEzyBEXA, a novel rule induction algorithm employing our pro-
posed fuzzy set covering methodology. In this chapter westigate BzzYBEXA's performance

on benchmark data sets from the UCI (University of Califarrirvine) machine learning repository
[Blake and Merz1998. FuzzyBEXA has several learning parameters, for example the beam width
and antecedent threshold. A second purpose of this chapterdietermine empirically the effect that
each of these parameters have on the performance of thatlgorFuzzyBEXA also incorporates
various efficiency and stop-growth criteria, and we ingggt the effect of each of these criteria.

The layout of the chapter is as follows. Sect®2 discusses the experimental methodology followed
during the experiments. The following section provides aawation of FuzzyBEXA on benchmark
data sets. Sectiob.4 investigates the influence of the beam width, followed by rarestigation of
FuzzyBEXA's sensitivity to noise in Sectioh.5, and an investigation of lzzy BEXA’s sensitivity to
the antecedent threshold in Secti®®. In Section5.7 we evaluate the effect of various stop-growth
criteria, and we conclude the chapter with a summary of thie nesults in Sectio®.8.

5.2 Experimental Methodology

There are different ways to evaluate the performance ofingdection algorithms. The classification
accuracy, rule set complexity, and computational compfexd algorithm can be computed in several
ways. The classification accuracy is a measure of the valgerdidence we place in the class predic-
tions made by the rule set. In the absence of a domain expdgtset complexity often serves as an
estimation of rule set comprehensibility. An algorithmtthan obtain good classification accuracy as
well as rule set comprehensibility in theory, but does nobglete in reasonable time is not of practical
use, and as such computational complexity is also an impagteneasurement.

The classification accuracy is perhaps the most importatisst of a classifier. We measure the clas-
sification accuracy of our classifiers by counting the nundi@orrect classifications. This calculation
follows the procedure as detailed in Taldel. In Tableb5.1, the positive coveragés the number of

positive instances in the training set covered by the rulbe different interpretations of the default
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numcorrect = 0
FOR each instance
Find the set of ruleg: that matches
Letr, r € R, be the rule with the highest positive coverage
IF R # () AND r classifies correctly THEN
numcorrect = numecorrect + 1
END IF
IF R = () AND the default rule classifiescorrectly THEN
numecorrect = numcorrect + 1
END IF
END FOR

Table 5.1: The procedure for calculating the number of correct clasgifins on a data set.

Table 5.2: Values for computing ROC ratios.
number of correct positive classifications

number of positive instances

number of correct negative classifications
number of negative instances

number of incorrect positive classifications
number of positive classifications
number of incorrect negative classifications

>oKQ —Hh o o O T 9

number of negative classifications

rule as used in Tablb.1were discussed in Sectigh9.2 FuzzyBEXA allows the user to specify the
consequent of the default rule, and in our case we alwayssehtie class with the highest frequency
(majority class). In some experiments we report the Recémerator Curve (ROC) measurements,
true positives, false positives, true negatives, and fasmtives. These ratios are defined as follows,

Definition 5.2.1 Leta to h be as in Tablé.2, then we define the following ratios, True Positives /4,
True Negatives =/d, False Positives =/ f, and False Negatives g/h.

When we compute the ratios as defined in Bef.1the default classification rule is not used. If no
rule fires, we count the classification as negative. All expents are performed using-fold cross
validation. For a single experiment with a given parameteribput data is kept the same, i.e. we do
not use different random folds for th@-fold cross validation for different values of the investigd
parameter, but perform the folding only once, prior to theeziment. Where appropriate, we report the
mean and standard deviation of each performance measuremen

We measure the complexity of a rule by counting the numbeppfunicts in the rule antecedent. If no
linguistic terms from a given linguistic variable were exaé¢d from a conjunction, we do not count the
conjunct associated with the linguistic variable (the ooej is considered as equivalentfRUE). The
complexity of the rule set is the sum of the complexities sfitles. Since the default rule contains no
conjuncts in its antecedent (its antecedent is equivaberiRUE), it does not contribute to the complexity
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Table 5.3: The databases used for experimeritSThe FuzzSport data was obtained froMufn and Shaw

1999. A The Generated data were randomly generated and labeleglarsirpriori rule set.

Database [ Short Description # Instances  # Linear Att. #Nominal Att. #Classgs
Anneal Annealing data 798 6 32 6
Autos Car import data 205 15 11 4
BreastCr Reoccurence of breast cancer 286 4 5 2
Colic Horse colic database 368 7 15 2
Credit-A Credit approval 690 6 9 2
Digit LED digits 500 0 8 2
FuzzSport | Sport selection based on wedther 16 5 0 10
Generated | Generated fuzzy data 300 0 4 2
Hepatitis Hepatitis domain 155 6 13 2
Iris Iris plants database 300 4 0 3
Labor Final settlements in labor negotitions 57 8 0 2
Lymph Lymphography doma 14¢ 3 15 4

of a rule set.

We measure the complexity of the search by the total numbeomfinctions examined (generated) to
induce a rule set. As discussed in Chapfeithe same conjunction may be reached via different paths
through the lattice, which allows duplicate conjunctionsbe formed. However, since our algorithm
detects this and does not perform any unnecessary work, wetdmunt a specialization twice during
the induction of a single rule.

An instance is matched by a rule if its membership to the rote@edent is abowe,. For each data set
we use a fixed value fax, throughout the chapter, except where explicitly stateémtise. During the
investigation of a single parameter, all other parameter&ept constant as to not bias the experiment.
The data sets were obtained from the UCI Machine Learningp8lepy [Blake and Merz199§, and
their characteristics are shown in Tabl&. Since none of the data sets were originally fuzzy, a fuzzific
tion preprocessing step was performed. The fuzzified désanssre stored and used for all experiments.
The fuzzification process is described in Appen@ix

5.3 Evaluation on Bench Mark Data Sets

Table5.4 shows FuzzyBEXA’s performance on the different data sets listed in TabB The bench-
mark results serve as reference point for experimentaltsasith different parameters later in the chap-
ter. Table5.5shows the ROC breakdown of the classification performanceach data set. We make
some observations. The percentage false positives islysuath larger than the percentage false nega-
tives. FuzzYBEXA is biased to induce more general rules, and thus in the absémegative instances,
FuzzyBEXA's rule sets rather cover more than fewer instances, raguhia relatively larger percent-
age false positives.

For some data sets the percentage false positives andvssgate very small (e.g. Anneal, Iris), and
the classification accuracy is mainly the result of the paiage true positives and negatives. However,
as a result of the false positives and negatives, for most skt the classification accuracy is slightly
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Table 5.4: FuzzyBEXxA's performance on the benchmark data sets in Talde

Accuracy # Conjuncts Search Effort
Databast¢ Mear StdDe\ Mear StdDe\ Mear StdDe\
Anneal 99.00 1.23 102.3 4.6 5003.3 260.¢
Autos 74.13 9.80 171.0 14.1 15311.8 12808
BreastCr 73.02 4.77 135.0 19.5 4428.0 482
Colic 85.60 4.30 169.6 17.7 11208.3 882.1
Credit-A 85.80 6.22 279.7 16.5 14198.1 856.
Digit 72.72 2.75 194.7 20.6 2429.7 132.5
FuzzSport 62.50 58.93 11.0 1.4 121.0 14 4
Generated 95.30 1.83 49.0 4.5 2412.7 200p
Hepatitis 81.29 8.71 71.7 55 2648.2 148.
Iris 97.14 4.99 7.0 1.6 283.6 34.3
Labor 91.23 13.84 16.3 1.7 516.3 60.0]
Lymph 83.7¢ 12.42 89.¢ 7.1 2973.¢ 254.¢

Table 5.5: ROC measurement breakdown on the benchmark data sets &5Tabl

TP TN FP FN
Databast Mear StdDe\ Mear StdDe\ Mear StdDe\ Mear StdDe\
Anneal 99.11 0.88 99.67 0.26 1.66 1.27 0.18 0.13
Autos 78.57 9.30 83.72 4.62 39.13 8.60 7.62 3.34
BreastCr 87.67 5.35 40.70 7.35 40.35 3.5( 23.25 9.00
Colic 89.67 5.51 65.49 6.88 27.79 4.16 13.62 6.14
Credit-A 93.33 3.29 64.35 10.52 27.64 6.53 9.39 4.4
Digit 75.43 2.58 96.47 0.33 29.65 2.49 2.75 0.29
FuzzSport 75.00 41.76 68.75 33.41 45.45 35.06 15.38 2049
Generated 92.90 2.47 92.50 2.99 7.47 2.66 7.13 2.4
Hepatitis 82.58 9.54 74.19 7.23 23.81 5.63 19.01 9.1p
Iris 94.29 5.63 96.79 3.13 6.38 5.67 2.87 2.79
Labor 92.98 9.54 80.70 16.54 17.19 12.64 8.00 10.43
Lymph 84.4¢ 10.41 88.51 7.4 28.9¢ 12.2¢ 5.5¢ 3.8

worse than the percentage true positives. It may seem stithiag) for some data sets (e.g. Generated,
Labor) the classification accuracy bgtterthan both the percentage true positives and the percentage
true negatives. This is a result of the method of measuriadrtBC values—the measurement does not
take into account the default rule. Furthermore, one may ekpect the relatively high false positive

and negative percentages to impair the classification pedioce more than it does, e.g. for Hepatitis
the percentage true positives and true negatives are teghe®2.6% and74.2%, and the percentage
false positives and false negatives are respect@B% and19.0%—how can the overall classification

accuracy then bel1.3%? The answer is again in the measurement process. The RO& ateistrictly
measured, with no default rule and no rule arbitration. F@hanstance and each class, if one or more

rules fire and a single rule predicts the class it is countea @esitive (true if the instance belongs to

the class), and if no rule fires it is counted as a negative (frthe instance does not belong to the

class). However, the inference system makes use of a defdelland a rule arbitration method (see

Section4.9and Tables.1). FuzzyBEXA's good overall performance compared to the individual ROC

measurements demonstrates the effectiveness i VFBEXA's inference system.
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Figure 5.1: The classification accuracy on different data sets as the bédth is increased.
5.4 The Effect of the Beam Width

The beam width is an important factor for selecting the arhofisearch desired. During each iteration
of the middle layer, théeamwidth best conjunctions are retained in the set of conjunctiospéaialize
further. For an infinite beam width an exhaustive searchrifopaed. However, parts of the search space
may be pruned (also for an infinite beam width) due to the stoprtip criteria. We evaluate the effect
of the beam width for six data sets, and for each value of tlenbeidth a 10-fold cross validation is
performed. We discuss the effect of the beam width on thesifiestion accuracy, rule set complexity,
and search effort next.

5.4.1 Classification Accuracy

Figures5.1shows the classification accuracy as the beam width wasaiseddrom 1 to 25. Although, at
first, one may expect an increase in beam width to almost alwaye a beneficial effect, increasing the
beam width often do not benefit the accuracy of the rule seinl@uand Cameron-Jones obtained sim-
ilar results when increasing the beam width for a crisp itidadearner Quinlan and Cameron-Jones
1995H. They often found good behaviour for a small beam width, treteafter only slight improve-
ments or deteriorating performance. They ascribe this\neb&ato the learner encountering “fluke”
descriptions that overfit the training data when big parthefsearch space are searched. The Iris, Auto
and Fuzzy Sport data exhibited this kind of behaviour, wtlibeebest classification accuracy was ob-
tained using no beam search. Increasing the beam width hesireatic effect on the Fuzzy Sport data.
This data set has onli6 instances, bud classes. Further increases alloweazEy BEXA to discover
so-called flukes, and degraded its accuracy.
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Figure 5.2: The rule set complexity on different data sets as the bearthugdncreased.

The Hepatitis and Labor data benefited from a small increadseam width, with the classification
accuracy on the Labor data increasing almost eight perdamther increases degraded performance
again. Best classification accuracy is obtained at beamhwititee and five for the Hepatitis and Labor
data, respectively. Beam widths larger than three degrpdddrmance below that of no beam search
for the Hepatitis data, while larger beam widths were alwagtseficial for the Labor data. The Lymph
data demonstrated a high sensitivity to the beam widthiallyit an increase in the beam width degrades
performance. Even further increases then improve perfacmagain, after which the performance stays
relatively constant.

5.4.2 Rule Set Complexity

Figure 5.2 shows the rule set complexity for different beam widths. Theve for the Auto data set
is shown at half scale. For all of the data sets, with the di@memf the Iris data set, an increase in
beam width resulted in a decrease in rule set complexity. ldifger search increases the probability
that the heuristics implemented ivEzy BEXA’s middle layer are activated. Thus, conjunctions with
higher positive coverage and with less conjuncts are peder If conjunctions with higher positive
coverage are found, fewer rules need be induced to coveetld# positive training instances, resulting
in decreased complexity. However, as discussed above,igherhpositive coverage did not always
benefit the classification accuracy.

For the Iris data set, the rule set complexity strangelygased with increasing beam width, while
the accuracy stayed relatively constant. This behavioanig observed for the Iris data—the rule set
complexity decreased with increasing beam width for aléotlata sets. One explanation for this strange
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Figure 5.3: The number of conjunctions generated during the searctepsas a function of the beam width for
the Fuzzy Sport, Labor, and Iris data sets.

behaviour may be thatizzyBEXA may follow different paths through the lattice for diffetdmeam
widths, and (only) in the case of the Iris data set did thedyemarch (i.e. beam width one) based on
classification accuracy not favour the rule set complexity.

5.4.3 Search Effort

Figuresb.3 shows the search effort for the Labor, Fuzzy Sport and Iria @& beam width up to 700.
Figure5.4the search effort for the Hepatitis and Lymph data for beadttwiip to 50. As expected, the
size of the explored search space increased with an inngesiam width. However, the search effort
does not increase exponentially, but may rather be modejlexth equation such as,

y=7(1-e?") (5.1)

This function initially increases almost linearly and tHeaitens off, eventually reaching a plateau. As
the number of linguistic terms increase, bgtand\ increase.

The input domain of the fuzzy sport data set is described lnylitvguistic variables with two linguistic
terms, and two linguistic variables with three linguistizrhs. The size of the FuzzyAL search space
is computed according to E¢.37), i.e. 1 + (2271 — 1)2 x (23*! — 1)2 = 11026 conjunctions in the
lattice. The lattice will be searched for each rule to beamtrd, and the size of the complete hypothesis
space is thug!''?6, However, the size of the space actually examined for theyF&port data, for
example, is only a very small fraction of the size of the tattiand insignificant compared to the size of
the hypothesis space. This is due t0zZY BEXA's various stop growth restrictions.

e


./figures/beamwidth-conj1.eps

x 10°

— Hepatitis
--- Lymph -

Search Effort
w SN

N

1 1

5 10 15 20 25 30 35 40 45 50
Beam Width

Figure 5.4: The number of conjunctions generated during the searctepsaxs a function of the beam width for
the Hepatitis and Lymph data sets.

The Iris data exhibited a similar trend to that of the Fuzzpr$pata. The Iris data set also has three
concepts, but hass linguistic terms compared td0 of the sport data. Its minimal potential search
space is roughly 48 times more than for the Fuzzy Sport dadas Avident from Figuré.3, the search
effort for Iris is far less than 48 times more than the seaffdrtdfor Fuzzy Sport, again demonstrating
FuzzyBEXA’s ability to find good rules with comparatively little searcThe Hepatitis data set is the
second most complex data set used in this experiment. Thparatively small number of conjunctions
examined for beam widtho is further proof of the effectiveness of the stop growthriebns. The
complexity of the Auto data set increased so fast that we dsmaw it here, and it suffices to say that
the increase in search complexity was linear for the exadnimam widths.

5.4.4 Discussion

The best accuracy for the Iris and Fuzzy Sport data sets viagned without using beam search, and
the associated rule sets were also the least complex. &iegetine beam width resulted in both lower
classification accuracy and higher rule set complexity.ré@lseem to be a general relationship between
accuracy and complexity. In most cases a sharp increasecimaay resulted in a sharp decrease in
rule set complexity. Decreasing accuracy was typicallg atsrelated either with an increase in rule set
complexity or with a slower decrease than before (smalladignt).

The Hepatitis and Labor data sets benefited both in termdesai complexity and classification accu-
racy for small increases in the beam width, and the Lymphalati@ined best classification accuracy and
also much decreased rule set complexity for a relativegyeldweam width. This demonstrates that bigger
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beam widths are not always a bad choice and may yield imprem&syin some cases. However, care
should be taken when using beam search, and it is definit¢liruein general that larger beam widths
always increase (or even maintain) classification accurially, the search complexity experiments
showed that although the size of the search space grows exjally in the number of linguistic terms,
the search effort grows at most linearly with the beam widtid in the limit follows a trend more like
Eq (6.1). We can ascribe this largely tauEzyBEXA's effective stop-growth criteria (we will discuss
these in detail in Sectiob.7).

5.5 Sensitivity to Noise

An important feature of a concept learner is its generatingperformance. Another important aspect
is its ability (or lack thereof) to maintain good generdiiaa performance in the presence of noise.
If a data set contains noise, the learner runs the dangereasfittng on the noise. Some learners,
like the Candidate Elimination Algorithm for exampl®itchell, 1997, may completely fail if noise

is present. To investigate this issue we generated a sinttea set and labeled it using a predefined
rule set. The data contained five linguistic variables latbel to £ with term set sizes 2, 5, 4, 2, and
3, respectively. The generated data set consisted of 1G@8nices with fuzzy membership degrees
to the linguistic terms uniformly distributed in the ranffe1]. The predefined rule set was randomly
generated, and when those conjuncts that were equivalgnetdi.e. a disjunction of the entire term set)
were removed, 40 conjuncts remained in the rule set. We tidadanoise to the membership degrees
from a zero mean Gaussian random variable, and increasestiatiéard deviation in steps 0fl from
zero (no noise) to one (extreme noise). For each noise leY@iald cross validation was performed
and the results graphed.

The accuracy in the presence of increasing noise is showeitop graph of Figur.5. FuzzyBEXA
was able to classif94% of the instances correct with no noise added. With the amditif noise,
FuzzyBEXA exhibited graceful degradation until noise with standagdiation of0.5 was added. At
this point the classification performance became as goodessing. At this noise level perturbations of
the observed data of size upd occur with probability0.6. For noise levels above@5 Fuzzy BEXA
started to fit the noise distribution, as is demonstratechbyetratic classification accuracy behaviour.

The rule set complexity measured in number of conjuncts pler set is shown in the middle graph
of Figure5.5. The rule set induced under noiseless conditions was mueliesnthan the predefined
rule set. zzyBEXA was designed to induce general rules, covering more inssaather than fewer.
FuzzyBEXA was thus able to find a substantially smaller rule set thapitbdefined randomly gener-
ated rule set, while still obtaining high classification @exy. In accordance with the general decrease
in classification accuracy with increasing noise, the relecomplexity showed a general increasing
trend, which seems almost linear. As the noise level wagasmd, more rules and also more complex
rules were induced to fit the increasingly unpredictableakigtur, thus increasing the overall rule set
complexity.

The bottom graph in Figur&.5 shows the increasing search effort associated with inicrgasise
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Figure 5.5: FuzzyBEXA'’s rule set accuracy, complexity and search effort for insiieg noise levels.
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levels. The size of the lattice of conjunctions for this penb is (see Eg4.37)),

(O =) =1+ (28 —1)(25 — 1)(2° — 1)(2% — 1)(2* — 1) = 1435456 (5.2)

and the size of the hypothesis search space is2Ht%!6. However, for no noise, only00 conjunc-
tions were examined to induce the rule set, demonstratieg ¥BEXA’s high search efficiency. The
number of conjunctions examined to compute the rule setsriglated with the rule set complexity
because the search space is examined again for each egtiaduted. bBzzYBEXA's search effort
initially increased almost linearly and leveled off at stard deviatior0.5. The experiment thus shows
that FuzzyBEXA copes well with noise and demonstrates graceful degradb&baviour with increas-
ing noise levels. With additive normal noise with standaedidtion(0.1 FuzzyBEXA'’s classification
performance decreased with onl{o, while its search effort and rule set complexity even impbv
slightly.

5.6 Sensitivity toa,

One of FUzzYBEXA's user-determined input parameters is the antecedershibicn,,. It is certainly
not uncommon to apply alpha leveling in fuzzy decision systand the specific threshold values are
highly system dependentpx, 1998. It is therefore interesting to measure£zy BEXA'’s sensitivity to
the antecedent threshold. In this section we consider twestgns (a) how sensitive are&/Ezy BEXA's
induced rule sets to a changesipnduring inference (i.e. after training) and (b) what influemnloes the
training value ofx, have.

5.6.1 Post-Training Sensitivity toc,,

It is of course possible to obtain a set of rules using oneevédu o, during training, and then use a
different value fora, during inference on unseen instances. To distinguish letvilee training and
inference values foty, we denote the training value agr and the inference value as;. The exper-
imental method for this experiment was as follows. We digiéach data set into ten distinct train-test
data set pairs as for normal 10-fold cross validation. Wa thduced ten classifiers using a fixed (spec-
ified) value fora, . For each classifier and test set we obtained classificat®uits asy,; was varied
from 0.01 to 0.99 in steps 0f0.01. The test set results were then averaged across the diffietds.
Contrary to all other experiments, the membership funstimn this experiment had triangular shapes
with adjacent functions crossing at= 0.5. Triangular membership functions with this crossing point
were chosen since we are interested in the behaviour farlargd smaller overlap between membership
functions—wheny,; > 0.5 there is no overlap and the most overlap occurat= 0. As an example
of the general form of triangular membership functions,uégh.8 shows the membership functions
extracted for the linguistic variable “Pulse” of the Coliatd. Only classification accuracy is reported
since the rule set complexity and search effort are of cotmastant for each individual value of, ;.
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0.25 (top figure) andy,7 = 0.5 (bottom figure).
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Figure 5.6: Classification accuracies with,
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The experiment was performed using;y = 0.25, a,r = 0.5 anda,r = 0.75, and the results are
shown in Figure®.6 and5.7. Our first observation is that the value @fr influenced the shape of the
resultant curves dramatically for some data sets (e.g.Grisdit-A), while having very little influence on
others (e.g. Lymph, Colic). The sensitivity of the rule sgerformance te,r will be the subject of the
next section. Here we just note that different valuesdgr result in different performance curves for
the different values ofy,;. The influence ofy,; on the classification performance for different values
of o,y Will be weakened as the number of linguistic variables withzly linguistic terms (used in the
rule set) decrease. Linguistic variables originating flmmp nominal attributes have (a) no overlapping
membership, and (b) membership of either 0 or 1. Thus, varyin has no influence on these variables.
Fora,; = 0the most instances in neighbouring (overlapping) termsavered. Asy,; is raised, fewer
and fewer instances also covered by neighbouring termsoaered, and fory,;~o.5 NO instances are
covered by more than one term. The number of linguistic etand their type for the different data
sets are shown in Tab®3

The next important observation is that best test set resrdtaot necessarily obtained using whep =
aqr, I.e. using the same value for rule induction and infereta®.the Iris classifier withv, = 0.25,
optimal performance is obtained(f4 < «,; < 0.6. This range is slightly wider for induction with
aer = 0.5 and much wider for induction witlx, = 0.75. The Credit-A and Hepatitis classifiers,
on the other hand, exhibited almost complete insensitiaitgost-induction variation of.,; for all the
training valuesa,r. Both these data sets had six linguistic variables with fuzets obtained from
numerical data, and thus the potential existed for sentgitio «,;. In fact, the classification accuracy
of these data setwassensitive to the training value,r. The relative insensitivity to post-induction
variation in«, could be due to few fuzzy sets used in the induced rule setaurtAdr explanation is
that the induced rules made use of fuzzy sets that requiselittb® membership to be valid for use in
the rule—their mere presence (non-zero membership) iadlra clear indication that the rule can fire

given that the remainder of the conjuncts are matched.
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The Colic and Lymph data sets showed little post-inductiensgivity to «,; for a,» = 0.25, while
showing higher sensitivity far, = 0.75. The BreastCr data had the inverse behaviour. Using diftere
induction valuesy, can result in different rule sets that make use of differamzy sets. The different
fuzzy sets may be more or less sensitive to variationgfin serving as class predictors, resulting in
different sensitivities tey,; of the rule sets employing these fuzzy sets.

The Auto data set demonstrated widely varying results digrgtron the induction value fer, 7. A very
high sensitivity is obtained fat,; = 0.5, with even slight post-induction changesap; leading to a
large decrease in classification accuracy. The inversevimhids demonstrated fat, = 0.25. The
rule set obtained fotv,; = 0.75 demonstrated still different behaviour. Settingy < 0.75 resulted in
very bad performance, while the performance was influenessifora,,; > 0.75. This behaviour may
be explained by considering the effect that overlapping bemship functions have on the induction
process. Forn,r = 0.25 instances can belong to more than one fuzzy set with non+merabership.
For a,r = 0.75 no instance belongs to more than one fuzzy set. The indudedsets for the Auto
data vary widely depending on the choicewfr. Fora,r = 0.75 the rule set is specialized to use
fuzzy sets whose domain cover only a certain region, whitduekng all others. A decrease in,; then
increases the domain of such fuzzy sets, allowing them teramere negatives, and results in a decrease
in performance. Foty, = 0.25 there is much overlap between fuzzy sets during rule indactuzzy
sets covering negative instances are excluded until tieggens of the domain are not covered anymore.
If a7 is raised, no extra negative instances (from neighbouengg) are covered, while most positive
instances are still covered, resulting in relative ind@risi to «,. The results fory, = 0.5 is a mixture

of both behaviours, resulting in sensitivity to either aorégase or decrease in the post-induction value
of a,. The Labor data also showed some sensitivity to post-imalueariation ofa,;, with best results
obtained for training withy,; = 0.75 and inference withy,; < 0.2.

The main conclusion from this experiment is that there is mwarsal behaviour exhibited by all data
sets. For some data sets best results are obtained,for= «,7, while for other data sets either a
bigger or smaller value o, results in better classification performance. Since rulerémce is not
very expensive (in contrast to rule induction), some experitation with different values at,; is
recommendable, as at least in some cases improved perfoemaay be obtained. The experiment was
performed with high frequency variation in,; (steps 0f0.01). However, for most data sets there is not
a very fast variation in the classification performance, fimdnost data sets ten experiments (varying
aqr in steps 0f0.1) are sufficient to discover the best value or range of valfies, o

5.6.2 Training Sensitivity to o,

In the previous section we examined the sensitivity of the set toa,;. In this section we investigate
the influence of the choice af,; on the induction process with respect to classificationgoarance,
rule set complexity, and search effort. As in the rest of thiésertation except where explicitly stated
otherwise, we set,; = a,7. Figure5.9 shows the classification accuracy, rule set complexity,thad
search effort for ten different data setscag- is varied from0.05 to 0.95 in steps 010.05.
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The Digit data set has no linguistic variables with fuzzysgee. obtained from numerical data), and is
thus completely independent of the choicengf-. The Fuzzy Sport data set contains only fuzzy data,
and the membership degrees were not obtained from mempdustutions. This data set accordingly
showed the largest classification accuracy sensitivityttp. This sensitivity is also partly due to the
very small size of the data set (16 instances), since theraggeof a single instance has a relatively
large influence on overall performance. Contrasting withtitgh sensitivity in classification accuracy,
the rule set complexity and search effort sensitivity of fuezy Sport data were much less sensitive to
the choice ofy,r.

Except for the Generated data, the remaining data sets tighow large variation in classification accu-
racy asa, was varied. However, even small increases in classificg@wformance can be significant
(and difficult to achieve), and the absolute variation issthot the only consideration—a good choice
for a7 can benefit the classification performance. Another obsiervs that for no value ofy, did
the classification performance complete deteriorate.

The rule set complexity for some data sets increased witmamase in,r, for some data sets it
remained relatively constant, while for yet others it dasesl. An increase in rule set complexity was
often correlated with a decrease in classification accurasythe learner finds it harder to find good
rules (rules with high positive coverage and low negativwecage), more rules are induced, increasing
both rule set complexity and search effort. In general theks are also less accurate—typically, less
complex rule sets perform better. However, this is not reardy true in general. The Credit-A data set
for example maintained the same classification accuraey, lewile showing a lineaincreasewith o,

in rule set complexity. Furthermore, even though the irsgaa complexity was linear, large parts of
the search effort curve were flat. Increasingly more compléxsets were induced for increasiagr,
requiring generally the same search effort and obtainiegsétme accuracy over the whole spectrum.

The Generated data set demonstrated interesting behakaiuwan be traced to the method of creating
the data (see Sectidnb). The classification rules used to label the synthetic dse¢alal, = 0.6. Thus,
the best results are obtained for rule sets induced wjth = 0.6, with a dramatic increase observed
in both rule set complexity and search effort gy > 0.6. The important result here is that there is
no easy procedure for choosing an optimal valuedfgr, as there was also not a clear indication of a
generally good value faty,;. A domain expert may well be in the position to choose thesgega and
further research on the issue may provide more automateegueces.

From the experiment we can make the following general cammhs. The classification performance of
the induced rule sets are not as sensitive,jp as one might expect. However, a good choicevgf
may in some cases provide a small but significant benefithEurtore, lozzy BEXA does not perform
extremely bad (compared to best classification performaioceany choice ofy,;. FUzZzYBEXA was
thus able to use the given information to induce good ruleeetn under sub-optimal conditions. Thus,
if g happens to be a very bad value for one linguistic terozZ BEXA does not use this term but
rather use other terms to induce as good a rule set as is |goksilthe given ofo, . However, this has
an influence on the rule complexity and search effort—goaaloels fora, typically reduce rule set
complexity as well as search effort.
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5.6.3 aqr — o, Sensitivity Surface

Sections.6.2and5.6.linvestigated BzzY BEXA's sensitivity toa, during induction and post-induction,
respectively. This section shows the result of varying heth for rule induction andv,; for post-
induction inference in the form of a surface plot. We perfedhihe experiment on the Iris, Lymph,
Fuzzy Sport and Generated data sets. As expected, thesraseilvery dependent on the data set, and
we only provide brief remarks for each data set.

Iris

Figure5.10shows the relative insensitivity of the classifiertgr andc,; for large parts of the surface.
However, ifa,r is set higher thaf.8, the accuracy drastically decreases for all post-indoctalues

of QgJ -

Lymph

The surface plot for the Lymph data set is similar to that efltis data, and shows relative insensitivity
to botha,; and o, for large parts of the surface. Induction valuesogf- larger than0.8 again de-
grades performance. Raising the post-induction value,pfabove0.8 resulted in a strong decrease in
performance of all induction values of,.

Fuzzy Sport

The Fuzzy Sport data set is very sparse; it has @filynstances, bud classes. As already observed
in the previous sections, the choice tay; is important for good performance, and the data set is also
very sensitive for post-induction varying af,;. The best choice af, for induction lies a.6, with
graceful degradation as,; is lowered.

Generated

This data set was obtained by generating random data andabeling it using a given set of rules.
The value ofn,, was taken a8.6. The surface plot shows that best performance is obtairred, fe =
aqr = 0.6. Varying a,; or a,p in any direction decreased performanceizEy BExXA demonstrated a
graceful degradation in performancecas or o, was varied above and beldw6, as may be expected
for a truly fuzzy data set with adequate training instances.

5.7 The Effect of Stop Growth Measures

The purpose of the experiment described in this section evesytiore the impact of Gzzy BEXA'’s var-
ious prepruning and efficiency criteria. The experiment paras the base performance to performance
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obtained when adding the different search improvementsp&ermed the experiment on seven data
sets using a beam search of width two, thus allowing dugicanjunctions to be formed (see Sec-
tion 4.6.5. The base result for each data set is obtained by applyingrmaing or efficiency tests,
except to stop the search process when either the positimegative extension of a conjunction be-
comes empty. To obtain each result we only apply a single@erasure. Finally, we show the result
when all measures are combined.

Table 5.6 shows the result of the experiment. The gray column showgedbelts of 10-fold cross
validation for the classification accuracy, rule set comipfeand search effort on the different data sets
if no tests are applied. The columns to the right of the baseltrehow the percentage increase of the
respective test on the base result. This is computed as,

Atest= 100 Ttest — T'base (5_3)

Tbase

whererpasels the base result anglg;is the result for the respective test and data set.

The second column contains the result when using the opittnggaluation efficiency measure. This
test prunes conjunctions from the search when the conpmctinnot be improved to such a degree that
its evaluation will be higher than that of the current bestjgoction (see Sectioh.5.3. Thus, we expect

in most cases that there will be no change to the rule setlf@th accuracy and complexity). The test
significantly influenced the search effort for four of thealaéts, while having a moderate effect on the
remaining three. The search effort for the Fuzzy Sport detiafer example, was reduced b9%, and

for the Lymph data set the reduction wes7%. It may seem strange at first glance that there are any
changes in the rule set at all. The small changes in the rtdeo§éwo data sets are due to the specific
implementation of BzzYBEXA. The exclusion of certain parts from the search can chargertter in
which specializations are generated within a single exacwf the bottom layer, and this order can play
a role in determining the rule set (especially in the absefitke “improve rule” test discussed below).
If two conjunctions have the same evaluation, the conjonctjenerated first is chosen, and when this
happens with the best conjunction, the search processugindtd.

The third column shows the effect of the “improve rule” testd Sectiong.5.1and4.5.2. This test

is activated when two antecedents are equivalent basedea@vé#huation function. In this case, the test
prefers the antecedent that covers more positive instaritesth cover the same number of positive
instances, the antecedent that is least complex is prdfeftes test positively influenced the classifica-
tion accuracy of three data sets, while having a slight megjatfluence on only one data set. The test
resulted in a reduction in rule set complexity of all datas&he rule set complexity of the Fuzzy Sport,
Hepatitis, and Iris data sets were significantly improvedductions ofl3.4%, 10.2%, and12.4%, re-
spectively, were obtained. In most cases the test did noieinfle the search effort. Slight reductions in
the search effort for the BreastCr and Digit data were obtiin

We implemented BxA'’s irredundancy test to examine its effect in the fuzzy case (Sectiort.6.4
Except for Iris data set, the irredundancy test had no inleem any data set. For the Iris data it resulted
in a reduction 0%61.4% in rule set complexity and reduction 61% in search effort. It seems that the
rule sets induced for the Iris data without any tests waslpwemplex. The Iris data can be classified
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Table 5.6: Comparison of different prepruning and efficiency criteriehe gray column shows the absolute
performances without any stop-growth criteria, while thigeo columns shows percentage change relative to the
absolute performance. Increased classification accuratylacreased rule set complexity and search effort are
desirable.

Without Any | Optimistic Uncover
Tests Evaluation | Improve Rul(lz Irredundang¢y Negatives All Tests
Classification Accuracy
breastcr 69.53 0.0 0.7 0.0 -0.2 0.0
digit 73.31 0.0 -0.2 0.0 0.0 -0.2
fuzzy sport 50.00 0.0 0.0 0.0 0.0 0.0
hepatitis 83.87 0.0 2.3 0.0 0.0 2.3
iris 93.57 0.0 0.0 0.8 0.0 0.8
labor 91.23 0.0 0.0 0.0 0.0 0.0
lymph 79.73 -0.8 0.8 0.0 0.0 0.0
Rule Set Complexity
breastcr 260.6 0.0 -8.1 0.0 -0.6 -8.4
digit 232.8 0.0 -2.6 0.0 0.0 -2.6
fuzzy sport 11.9 0.0 -13.4 0.0 0.0 -13.4
hepatitis 68.5 0.4 -10.2 0.0 -0.9 -11.2
iris 23.3 0.0 -12.4 -61.4 -0.9 -63.9
labor 13.0 0.0 -0.8 0.0 0.0 -0.8
lymph 85.9 -0.3 -6.3 0.0 0.5 -6.1
Search Effort

breastcr 125873 -1.6 -3.1 0.0 -89.6 -90.1
digit 18277 -0.1 -1.5 0.0 -73.6 -74.1
fuzzy sport 569 -20.0 0.0 0.0 -68.7 -68.8
hepatitis 65998 -14.3 0.0 0.0 -94.3 -94.2
iris 3159 -2.6 0.0 -51.0 -70.4 -83.1
labor 13365 -15.7 0.0 0.0 -95.3 -95.4
lymph 6816¢ -7.5 0.C 0.C -93.5 -93.t

with a fairly simple rule set compared to the other rule s&thout the irredundancy test too much
specialization occurred, resulting in worse overall perfance. The improve rule test, for example,
reduced the rule set complexity of the Iris data more thariferother rule sets, except for the sparse
FuzzySport data. For most data sets the irredundancy tksiotichange the search effort, and we can
deduce that the test is not easily satisfied in the fuzzy cébas, in some cases the irredundancy test
does improve performance, but its usefulness is limitedpared to the crisp case.

The uncover new negatives test prevents overspecialishtiiaequiring that specializations cover less
negatives than their ancestors. This test had a very sngtine influence on the BreastCr classification
accuracy, and also in general had very little impact on the sat complexity. However, the test had a
huge impact on the search effort. Reduction in search effod0% and more were obtained for four
data sets, while the smallest reduction was obtained fdfFtizgy Sport data se6§.7%). While the test
resulted in great improvement in search efficiency, its astafnal cost is relatively inexpensive.

The last column shows the result when all the tests are apfgether. Large improvements in search
efficiency is obtained for all the data sets, while the ruleceenplexity for most data sets were also
significantly improved. Only the rule set complexity of thador and Digit data sets were only slightly
improved. The overall impact on the classification accunaag not as pronounced, with the best re-
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sult obtained for the Hepatitis and Iris data sets. The ifleason accuracy of the Digit data was
slightly reduced. In general, the empirical results spaaddly in favour of £Izzy BEXA’s stop growth
criteria—classification accuracy is either maintainednmréased, rule set complexity is often signifi-
cantly improved, and the search effort is dramatically oedi

5.8 Summary

In this chapter we provided an experimental evaluation @& BEXA. We investigated its different
parameters and stop growth criteria. The experiments ghoat the specific characteristics of each
data set have more influence than any given parameter. Sameeta are sensitive to the value of the
antecedent threshold used during induction (we denotesladta), while others show little sensitivity.
However, it was more often than not the case that a wide rahgea induction values ofv,; ex-
ist, and that BzzYBEXA is thus not overly sensitive ta,r. Similarly, some data sets are sensitive
to post-induction variation ofy, (we denoted it asy,;), while others demonstrated relative insensi-
tivity. The experiments also showed thatZyBEXA’s search complexity increase at worst linearly
with increasing beam width. However, a small beam width gdsily sufficient or even indicated for
good performance. We also showed thazEy BEXA is capable of dealing with noise, demonstrating
graceful degradation with increased additive noise. Kin#he results of experiments withuzzy-
BEXA'’s various stop growth criteria confirmed their usefulnesise-use of the criteria resulted in either
increased or maintained classification performance, wiile set complexity and search effort were
always improved.
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CHAPTER®G

The Influence of the Evaluation Function

6.1 Introduction

Machine learning algorithms typically use an evaluatianction to score the performance of hypotheses
on a training set during the learning process, and to sdtecsét of best candidates for further explo-
ration. Thus, the performance and characteristics of takiation function as a search heuristic are very
important, because they have a large impact on the perfaenafrthe learning algorithm on a particular
data set. The evaluation function is an important deternmtiofrule quality because it selects the next
best specialization at each step, and thus guides the dbavcigh the space of all possible conjunctions.
It is therefore important to investigate its influence andampare the behaviour of different evaluation
functions. In this chapter we present three results: (1effext of novel evaluation functions adapted
to the fuzzy set domain, (2) the search paths followed inrifggmn lattice, and (3) benchmark results
for each evaluation function on different data sets. Theuapf the chapter is as follows. Secti6ér2
introduces several fuzzy rule evaluation functions, ancti®e 6.3 contrasts their behaviour by investi-
gating the subset of the hypothesis space explored for dmitecof specialization function. Sectié
provides an empirical comparison of the different measumed Sectior6.5 concludes the chapter.

6.2 Evaluation Functions

FuzzyBEXA’s FindBestConjunctiorprocedure was discussed in detail in ChapterFuzzyBEXA
searches for conjunctions by starting with thgcand specializing it by excluding one term at a time in
all possible ways. The new candidate conjunctions (speatans) generated in this way (specialization
by exclusion) are ranked according to@raluation functionand the besteamwidth conjunctions are
selected for further specialization. Thus, a generabesic search through a description lattice is
performed. The evaluation function is clearly a very impottfactor in determining the success of the
algorithm-conjunctions are either pruned or retained engtbarch based on their score by the evaluation
function. Different evaluation functions are based onaléht heuristic ideas. Many different functions
for evaluating and assigning a score to crisp rules have pp@gosed in the literaturé-[irnkranz 1999.

For some of these, fuzzy variations were designed and usedote fuzzy rulesHertig et al, 1999
Yuan and Shawl1995. We review these and propose three additional fuzzy etialuéunctions. In the
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Table 6.1: Notation for evaluation function definitions, wherés the rule IFA THEN B.

1P N p n
# Positive | # Negative # Positive # Negative In-
Instances| Instances | Instances Covered stances Covered
r A B c
Candidate| Fuzzy Fuzzy Conjunction
Rule Antecedent Consequent DescribingA

Table 6.2: Summary of evaluation functions.

Name Function Range
Laplace Estimate L(r) = sntms 0,1)
Fuzzy Laplace F(r)= ZiEXTﬁ\?(ﬁgBmi% [0,1)
Fuzzyls-Content LSC(r) = ﬁ o 2l [0, 00)
Fuzzy Accuracy Function | A(r) = M(]]ijz) — M(N,c) (—00, 00)
Fuzzy Purity P(r) = Z“GUXI:HZ(::‘LE‘“(ZKB(”)) [0,1]
Fuzzy Information Content IC(r) = log %gg = log M(P,c) —log M(N,c) | (—oc,0]
Fuzzy Entropy E(r)=12 ( %EITDQ log %E;g + %((];5)) log %(éfi))) (—00,0]

following sections we will use the notation shown in Tablé Here,p, n, P, andN are integer numbers,
where an instance is either covered with membershipr above, or not covered (membership

Recall thatX s (c) denotes the extension of the conjunctioim the set of instances, i.e. all instances
in the setS that match: with membershipy, or above (see E@17)). In the fuzzy case we describe the
“number” of instances matched by the rule using the caritjnaperator (also called the&igma count
as follows,

M(S, )= > pe(i) (6.1)
1€Xs(c)

We will use the sigma count to use the heuristic ideas alreadyloyed by some well-known “crisp”
evaluation functions and derive rule evaluation functithra can be used to score fuzzy rules. Tdb
provides an overview of the functions.

6.2.1 The Entropy Function

The Entropy function stems from the physics domain of thelynamics, where it is a measure of the
order in a system. It is also used in Shannon’s informati@oy as the measure of information in a
random variable. It was originally used by the ID3 decisimetinduction algorithmQuinlan 198€ to
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choose the decision attribute at each node. In the crispticagentropy function for a rule is given by,

p p n n
= log log
p+n p+n n+p n+p
wherep andn denote the numbers of positive and negative instances exbysrthe rule, respectively.
For the induction of fuzzy decision trees many fuzzy versiofthe entropy are proposed in the literature
[Dong and Kothari2001, Guetova et a).2002 Marsalg 1998 Boyen and Wehenkel 999 Mitra et al,

2002 Yuan and Shaw1995.

E(r)

(6.2)

The Entropy function assigns higher scores to conjunctratishigh class separation—a valid heuristic
for choosing a linguistic variable for a decision node in aisien tree. However, the Entropy function
alone is not appropriate for use witluEzy BEXA since it does not take into account whether the major-
ity of instances are positive or not. To assign higher sctaresnjunctions with higher class separability
and also higher positive coverage, we adapt the crisp vefidhe entropy to the fuzzy domain as
follows,

E(r):ﬁ<M(P’C) OgM(P,c) M(N,c¢) logM(N’C)> 6.3)
p \M(T,c) M(T,c)  M(T,c) M(T,c)

This equation gives evaluations in the rarfgex, 0], with higher evaluations to better conjunctions. A
conjunction that covers only positive instances will getars of0 and a conjunction that covers only
negative instances will get a score-efo.

6.2.2 The Information Content Function

The Information Content function measures the amount afrimétion contained in the classification
of the covered instance$-{irnkranz 1999. Information Content was also introduced in Shannon’s
information theory and is closely related to the Entropyction—the entropy is a weighted average of
the information content of the classes. The Informationt€aincan also be thought of as a measure of
the purity of a partition. It was originally used in the PRIShductive learnerCendrowskal987, and

is given by

IC(r) = log (6.4)

p+n
in the crisp case. Ed(4) is in fact the negative of the Information Content, so thettdr evaluations
obtain larger scores.

The fuzzy version of the Information Content is expresseff=agtova et aJ.2002

M(P,c)
M(T,c)

IC(r) =log =log M (P,c) —log M(N,c) (6.5)

The range of the Information Content function is the samehas ¢f the Entropy function above,
(—o0, 0], with conjunctions covering only positives obtaining a mnaxm score of) and conjunctions
covering only negatives obtaining a score-afo.

97



6.2.3 The Accuracy Function

In the crisp case the accuracy of a rule is evaluatedaskranz 1999

_p+(N—n)

Alr) =g = (6.6)

We fuzzify the Accuracy function by using the sigma countrapar as follows,
A(r) = M(P,c) — M(N,c) (6.7)

This function favours high coverage by using the differeimcpositive and negative instances covered,
regardless of the absolute magnitude of the positive andtivegsets. It scores rules in the range
(—o0, 00), with higher scores given to better evaluations. The appration made in the crisp case
remains valid in the fuzzy case, since the sigma counts opdséive and the negative instances are
constant for any given training set.

6.2.4 The Laplace Estimate

The Laplace estimaté-[irnkranz 1999 is given by,

- p+1
~ p+n+ #classes

L(r) (6.8)

In its current form, BzzyBEXA learns multi-class concepts by learning one class at a tiftis,
#classes is always2. The Laplace estimate assigns higher scores to conjusatidh higher coverage
of the positive instances. Conjunctions with low coverage @enalized—if the ratio of positive to
negative instances covered is the same, conjunctions witbrlabsolute coverage will have a lower
score.

6.2.5 Thels-Content Function

Thels-Content evaluation function was used in its general forthémalgorithm HYDRA Ali and Pazzani
1993. Itis given by

p+1
~ P+l
LSC(r) = 242 = ) (6.9)
N+2

The function divides the Laplace estimate of the conjumctigth the Laplace estimate of the training
set. The denominator® + 2 and NV + 2 stay constant in each iteration of tRendBestConjunction
procedure, and can thus be ignored without altering thevieaof the algorithm. We fuzzify the
[s-Content function by using the sigma count operator,

M(P,c)+1
M(N,c)+1

I

LSC(r) (6.10)

The function scores rules in the ran@ecc), giving higher scores to better rules.
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6.2.6 The Purity Function

The purity of a rule is the percentage of positive instancesray the instances covereBirnkranz

1999,
p

The function assigns a value ofto rules that cover no negative instances. However, low reges

P(r)

(6.11)

is not penalized. A fuzzy variant of this function was intnodd for fuzzy decision tree induction
[Yuan and Shaw1995. The fuzzy rules induced byudzzyBEXA are propositions of the ford — B.
Although fuzzy implication can be implemented in differevdys, the subsethood operat$fA, B) is
often used. Thus, the implicatioft — B holds true with degre§(A, B) [Yuan and Shan1995,

S(A,B) _ M(A N B) _ ZueU min(ﬂA(u)vﬂB(u)) (612)

M(A) > ueu Ha(u)
whereM (A) is the cardinality of the fuzzy set, andu 4 (u) is the membership to the fuzzy sétof v,
an element of the universe of discoutseu € U. For ruler with A the rule antecedent a8l the rule
consequent) (A N B) is the fuzzification of the number of positive instances ceslg, and M (A)
is the fuzzification of the number of instances covered byrtien + p, and we can define the Purity
function P(r) in the fuzzy case simply aB(r) = S(A, B).

6.2.7 The Fuzzy Laplace Estimate

A fuzzy evaluation function related to the Laplace estinveds used in referenc&¢rtig et al, 1999,

Yiexy(e) HAnB(1) — 5
M(T,c)

This function favours rules with higher coverage. Consfdeexample the two caséd/(A) = M (AN

B) =100 andM(A) = M(AN B) = 1. In the former case a score @095 will be assigned, and in

the latter a score df.5. The Purity function on the other hand would assign a scoieiboth cases.

F(r)= (6.13)

6.3 Paths Through the Lattice

Table6.3contains a small toy problem with linguistic variablésand B with linguistic term setq f, g}
and{z, y}, respectively. The membership values of instances for egiohare listed in the two columns
in the table. For clarity sake, the membership to the confmghis problem is crisp. The data were
obtained by randomly generating membership values, andabksigning only instances for which the
following two rules fire forclass.yes

[f][z]@0.5 — yes

[9][y]@0.5 — yes

where we used,, = 0.5.
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Table 6.3: A fuzzy learning problem.

@el ation smal | probl em

@ttribute A {f, 9}

@ttribute B {x, y}

@ttribute class {pos, neg}

@ATA
(.37 .49), (.84 .99), (0 1) | (.39 .46), (.49 .11), (0 1)
(.19 .82), (.41 .31), (0 1) | (.12 .82), (.73 .03), (0 1)
(.75 .63), (.86 .70), (1 0) | (.61 .45), (.37 .98), (0 1)
(.09 .67), (.88 .97), (1 0) | (.30 .25), (.34 .16), (0 1)
(.19 .26), (.83 .07), (0 1) | (.36 .73), (.58 .64), (1 0)
(.71 .85), (.69 .75), (1 0) | (.48 .17), (.83 .83), (0 1)
(.69 .06), (.70 .85), (1 0) | (.13 .30), (.08 .90), (0 1)
(.61 .70), (.77 .26), (1 0) | (.46 .26), (.49 .48), (0 1)
(.10 .49), (.77 .32), (0 1) | (.64 .54), (.10 .08), (0 1)
(.10 .21), (.23 .45), (0 1) | (.19 .53), (.79 .87), (1 0)

The search process, using the seven different evaluatioctifms, is illustrated in Figuré.1L The
part of FuzzyBEXA'’s lattice of conjunctions generated for an infinite beamtiwig shown. Some
conjunctions were pruned from the search lwzEYBEXA's efficiency measures, e.g. no conjunctions
with empty positive extensions are shown. We have also edhttie most specific element for brevity.
Each node in the graph shows the two conjuncts of a conjunatidhe first two lines. The third line
and fourth lines contain the scores assigned to a conjumbtiahe evaluation functions Fuzzy Laplace
F(r), Purity P(r), AccuracyA(r), Information Contenf C(r), ls-ContentLSC(r), EntropyE(r), and
Laplace Estimaté.(r), in this order. The last line contains the number of postind negative instances
covered by the conjunction. For the purposes of the disongsére we will denote conjuncts by listing
their linguistic terms, e.gl[f, g] is meant to meafAtextisf V g|. Since all the linguistic terms have
unique names there can be no confusion which linguistiatéiis implied.

From the figure we observe that during the first few iteratioh&indBestConjunctiorthe different
evaluation functions all have the same behaviour. Theyrafep conjunctions that cover many positive
instances and few negative instances. At the bottom lagarerfinstances are covered and the different
heuristics of the evaluation functions play a bigger rolee Tircled nodes and bold edges in Figare
show the path followed by zzy BEXA for the different evaluation functions and beam width one W
discuss the behaviour by individual evaluation functioagtn

6.3.1 The Laplace Estimate

The exclusion ofd.a in the first iteration gave the highest score, and since tisare beam search, only
this conjunction is specialized further. Two more spez#lons are made to obtain the conjunction
[f,9]lx]. The Laplace evaluation is shown as the last number in thehfowde line, andf, g[x]
obtains a score df.8. It will be specialized further sinc& y (c) # . By excludingg from [f, ¢][z] the
final conjunction]f][x], which has an empty negative extension, is obtained. Thadést rule returned

100



TOT

gogle] Jo wajqoid Buiures) sy jo some| ay] :T'9 ainbi4

[fgAl
[xyA]
(:3)(:33)(-5.54)(-1.1)
(:54)(-1.2)(:36)
(7) (13)

oA ol gl ol ol 1A
xy Al [y Al [xyA] [xyl [x Al [xyAl
(.25)(:28)(~6.3)(-1.26) (:3)(.34)(-4.33)(-1.09) (44)(49)(-27)(~.T2) (:32)(:36)(~4.19)(-1.03).18)(.22 )( 6.81)(-1.5)
(.45)(-1.27)(.35) (.56)(-1.1)(.39) (.96)(-.69)(.5) (.6)(-1.05)(.4) (.36)(-1.59)(.29)
(6) (12) (6) (20) "o (7) (11 (4)(11)
‘< \ \
Al ol Al ffoAl ] Al Al ifgl i oAl A S A
[y Al [xyA] [xy] ] x A] y] A [xA] [xyA] X] [xy] [xA]
(:24)(:28)(-4.86)(~1.26) (58)(. 66)(2 02)(-.41) (.38)(.44)(~1.13)(~.83) 51)(.57)(1.13)(~.56)(.58)(. 66)(1 91)(-.42) (:25)(.29)(-5.56)(-1.24 )(-.25) | (.16)(.21)(-5.87)(~1.57)(.6)(.68)(2.42)(~.39) (.56)(.69)(1.51)(~.37)(:51)(.57)(L.27)(~.56)(:29)(:36)(~2.17)(~1.02).21)(.26)(-5.17)(-1.3¢
(46)-117)(38)  (L65)(-.32)(64)  (8L)(-69)(5)  (L26)(-45 (162)(-32)(64)  (46)(-1.19)(37) )(.73) (35)-1.69)(29)  (L.76)-.26)(67)  (L67)(-32)(62)  (L25)(-49)(57)  (63)(-1.01)(42) (42)(-1.39)(.33)
(59 (6)(3) (6) (6) (6) (4) (OI6)] (6) (11) 39 e 4@ 76 (4)(6) 49
LN < N <N\ <
5 ‘v‘ ( N v
0] g Al ol A af 0] i} A il Al
[y Al [v] [xyl A [xA] [xy] vl [x Al [x]
(-59)(.7)(1.86)(~.35) (.46)(.54)(.5)(-.61)  (.74)(.84)(3.19)(-.17) (.48)(.63)(.85)(-.47) (.56)(.65)(1.71)(-. (.77)(.86)(3.88)(-.15) J (.67)(.82)(2.15)(-.2) (.29)(.39)(-1.23)(-.95)(.66)(.81)(2.1)(~.21) (.37)(.46)(-.53)(-.79)
(L79)(-24)(67)  (1.13)(-4)(6) (2.84)(-.07)(.78) (L38)(-45)(57)  (L55)(-32)(. (3.24)(-.05)(8) (@34)13)(71)  (72)(-91)(44)  (2.28)-13)(71)  (88)(-69)(5)
(5) (2 (5)(3) (6) (1) ) (6) (3) (7 (1) 4) (1) (3) (4) 4 (1) 4)4)
[g] [a] [fl [fl
[v] X ( [x] 1]
(:84)(1.0)(3.22)(.0) (:73)(:84)(3.07)(-.18) [ ce20)27410 (.59)(77)(1 49)(-.26)
(4.22)(.0)(.86) (2.77)(-.07)(.78) \ (3.74)(.0)(.83) (1.93)(-.19)(.67)
(5)(0) 6) () (4)(0) (3)(@)



figures/evalcompare_phdGraph0.ps

when using the Laplace estimate will be
[f][z]@0.5 — pos

Solution nodes (i.e. the node of the conjunction returneBibgBestConjunctionare indicated by bold
circles on the figure. It is interesting to note that with arbesidth of 2, the conjunctiorig][y] would
have been returned, since it has a higher score. This cdiganbowever, was excluded from the search
(with beam width 1) by the exclusion of the linguistic tegnigher up in the lattice.

6.3.2 The Purity Function

The score of the Purity function is given by the second nurbtre third line of each node. The Purity
function dictates the same path as the Laplace functiorh&fitst three layers. If only the positive and
negative coverage coungsandn are considered, the conjunctiofy ¢g][y] in the fourth layer chosen by
the Purity function is worse thaly, ¢g][x], chosen by the Laplace estimate—one less positive instance
and the same number of negative instances are coverededtibgly enough then, in the bottom layer
the solution conjunction covers more positive instancekadso zero negative instances, which is better
than that obtained by the Laplace estimate. Thus, the Hunition returns the rule,

[9][y]@0.5 — pos

6.3.3 The Fuzzy Laplace Estimate

The score of the Fuzzy Laplace functiétir) is shown as the first number of the third line of each node.
The exact same path as that of the normal Laplace functianl@ved. The subtraction of the half in
Eqg (6.13 resulted in a score df.77 and0.76 for the conjunctiongf, ¢][z] and[f, g][y], respectively.
Just the opposite behaviour was observed for the Puritytihmevhere0.86 and 0.87 were observed.
Note that the evaluation assigned by the Fuzzy Laplaceibimotay be negative for some conjunctions.
This happens whef/ (P, ¢) < % A negative value cannot occur for crisp sets.

6.3.4 The Information Content Function

The Information Content evaluation is shown as the last rerritbthe third line of each node. Like the
other functions, it follows the same path for the top threeta of the lattice. In the fourth layer it prefers
[f,9]ly]. The fuzzy behaviour of the evaluation functions becomeaegt when one observes that the
fuzzy evaluation functions assign different scores to tigunctionsig| [z, y], [f, 9][y], and[g][x] (in the
bottom two layers) even though they all cover one negatidesanpositive instances. A crisp evaluation
function cannot distinguish between these conjunctiofe-taplace function for example assigned the
same score to all of them. The Information Content functiesigns a higher score {¢, ¢|[y] than

to [f, g][x], even though both cover one negative instance, huf|[x] covers one more positive than
[f,gl[y]. Finally, the Information Content function findig[y], and since it covers no negative instances,
the Information Content gave it the highest score (zero).
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6.3.5 Thels-Content Function

The [s-Content evaluation function is shown as the first value effurth line of each node. In the
fourth layer of the graph this-Content function prefergf, g|[z], and then in the bottom layer it prefers
[f][z]. Thus, the same behaviour as for the Laplace estimate isvaoseSimilarly also, the conjunction
[9][y] would be returned if a beam width of two was used, since itguer$ better thafnf][z].

6.3.6 The Entropy Function

The Entropy function (shown as the second number in thetidumé of each node) preferrdd, g][x]
in the fourth layer of the lattice, and also foufyd[z|. Note that if there was another conjunction in the
bottom layer that covered one positive and no negativenoss the entropy and Information Content
functions would assign zero scores to both, and could tberafot intelligently choose between its
current choice and this conjunction. TheContent function on the other hand would still prefféyx].

6.3.7 The Accuracy Function

The Accuracy functiomd(r) (shown in the third position of the third line of each nodejfprs the same
conjunctions as the other evaluation functions in the firstd layers. In fact, all the methods followed
the same path in the first three layers of the lattice. Thisdgative thereof that the different evaluation
functions prefers the same macro features, but specidffeeently as the number of instances become
small—as happens lower down in the lattice.

Of the four conjunctions formed by specializiff g][x, y|, the conjunctiorif, g][x] obtains the highest
score 0f3.88. From this conjunction, eithef or g can be excluded to forrrf][x] and|g|[x] with scores

2.74 and 3.07, respectively. Neither of these conjunctions score highen [f, g][x], and since they
cannot be specialized further, the best rule found by usiagiccuracy function is

[f, g][x]@0.5 — pos

This rule still covers one negative instance, but it alsoece\all the positive instances, whereas the
rules returned by the other functions do not. This happenaus® the Accuracy function places equal
importance on the positive and negative instances, wheheasther functions emphasizes positive
coverage. The Accuracy function ket g][x] since[g][x] covered the same negative instances, but
one less positive instance, apfl[z] uncovered one negative instance at the cost of uncoverneg th
positive instances. In this sense one can say that the Agctuaction has some form of stop growth
functionality built in.

Whether this type of stop growth functionality is benefidapends on the data. The Accuracy function
could not make a perfect cover of the positive sets. Usingdther functions, further iterations of the
algorithm will induce rules that cover the remaining pesitinstances, possibly without covering any
negative instances. The behaviour of the Accuracy funatiinbe beneficial when a data set contains
noise, since the Accuracy function has a built in preferdocenore general but still good conjunctions
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Table 6.4: Accuracy results for different evaluation methods on readlsvdomains.

Annea Autos | BrCance| Colic | Credit-A | Hepatitic Iris Laboli Lymph | Average
L(r) Mean 99.27 74.1% 70.00 84.51 83.91 82.58 97.1¢ 89.47 81.7¢ 84.75
StdDev| 1.23 11.60 6.69 6.20 4.71 9.02 4.99 12.94 11.24 7.42
Fr) Mean 98.89 70.15 70.58 84.24 85.22 83.8i 96.43 89.47 81.7¢ 84.51
StdDev| 1.37 8.28 3.88 6.28 5.54 9.62 5.05 12.94 14.40 7.4
Lsc() Mean 98.?9 70.65 69.19 84.5] 85.22 83.23 96.43 91.p381.7¢ 84.57
StdDey 1.37 10.9¢ 5.4% 5.2C 4.62 10.2¢ 5.0f 13.8¢ 12.52 7.7C
A(T) Mean 94.32 73.63( 73.14 85.60 85.65( 80.65 95.71 92.98 81.08 84.75
StdDey 3.0€ 10.7( 4.92 4.3C 6.2¢ 12.2¢ 6.0Z 14.4¢ 11.4¢ 8.1€
P() Mean 98.11 67.16 59.77 79.89 82.1Y 78.06 96.43 91.p3 7973 81.39
StdDev| 1.53 11.06 4.18 7.81 6.77 10.73 5.05 13.8¢ 15.31 8.46
Ic(r) Mean 98.11 67.66 59.53 79.89 82.1Y 78.06 96.43 91.p3 7973 81.42
StdDev| 1.53 10.28 3.95 7.81 6.77 10.73 5.05 13.8¢4 15.31 8.95
E() Mean 98.00 65.17 60.81 81.79 82.90 79.35 96.43 913 75(00 81.19
StdDe\ 1.9€ 10.3¢ 5.2¢ 7.6% 4.52 8.62 5.0f 13.8¢ 16.6¢ 8.22

over more specific conjunctions that cover far less positiugt also a small percentage negatives. The
[s-Content function may be better suited for domains thataiartoncepts that can only be described by
many small but significant disjunctsiplte et al, 1989. A final observation is that it is of course very
possible thatA(r) < 0, as is, for example, the case for the most general conjunclio summarize, the
Fuzzy Laplace/s-Content, Laplace and Entropy functions returiéflz], the Purity and Information
Content functions returnéd][y], and the Accuracy returndd, ¢g][x| as the best conjunction. However,
in the top layers of the lattice all functions returned theedest conjunction.

6.4 Empirical evaluation

In this section we compare the different evaluation funttibased on three different criteria, rule set
classification accuracy, rule set complexity, and the nurobeonjunctions examined to obtain the rule
set. We show results obtained on nine data sets obtainedtfredC| Machine Learning Repository
[Blake and Merz1999. All results are averages on test set results of 10-foldsr@lidation.

6.4.1 Classification Accuracy

Table6.4 shows the classification accuracy of the different evabuafiinctions. Bold numbers indicate
the best performance for a specific data set among the metandstalic numbers show the standard
deviation. The last column contains the average performamner all data sets.

From the discussion in Secti@3we may expect that the Laplade;Content, and Fuzzy Laplace func-
tions would perform similarly and that the Information Cemt and Purity functions would be similar.
Although the Entropy function found the same conjunctionmesnbers of the Laplace group in Sec-
tion 6.3, mathematically speaking it is more closely related to tifermation Content group, and we
may expect them to perform similarly. The Accuracy functsg®med to be in a group of its own.

The classification accuracy results shown in Tdb#econfirm some of our expectations. The “Informa-
tion Content Group” obtained very similar results, and ogrestation that the Entropy function actually
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belongs to this group is also validated. The members of tlaptdce Group” also obtained similar re-

sults. The mean of the Accuracy function was closer to thennoédahe Laplace group, although its

standard deviation shows that it does not fit in this group eltas the other members. This suspicion is
confirmed by inspecting the individual data set results—eviiie other members perform very similarly

for all data sets, the Accuracy function had significantlffedent performance on the Anneal, Autos,
BrCancer, and Hepatitis data sets.

It is also interesting to note that the simple Accuracy fiorcbften performed very well. For four of
the nine data sets it had the best performance, and had otallglpevorse performance on the Anneal
data. This indicates that its preference for general detsanis is often an effective heuristic. For the
Annealing data the Accuracy function obtain@tl32% classification accuracy, while all of the other
methods obtained very high classification accuracy—clod®d%. This means that the rules induced
by the other methods to classify the training data also ifledshe test data very accurately. The Accu-
racy function’s preference for more general conjunctiams@d detrimental in this case, as conjunctions
were often not specialized until they became consistenitstt covered some negative instances in the
training set and thus also in the test set.

The Laplace function had the best performance for four dat and the Fuzzy Laplace only for one.
The average performance of the Laplace and Accuracy furcti@re the same, but the Laplace function
had a slightly better standard deviation. The mean perfocemaf thels-Content and Fuzzy Laplace
lies within 0.2% of the mean performance of the Accuracy and Laplace furgtiand it is difficult
to say which one is the best on average. No member of the laftsm Content group obtained the
best classification accuracy for any data set, and theiopeence is on averag¥s worse than that
of the Laplace group. However, the Information Content groutperformed the Laplace and Fuzzy
Laplace functions for the Labor data, and the Accuracy foncperformed considerably worse than
the Information Content group on the Anneal data. This shinasthere is not a one-fit all solution to
concept learning. The best result is obtained by using thkiation function employing heuristics best
suited for the kind of input data and concept to learn. In gartbe heuristics employed by the Laplace
group seem to give better classification accuracy resudrs tite Information Content group.

6.4.2 Rule Set Complexity

Complex rules are more difficult to understand and are fretlpie@an indication of overfitting. We
measure rule set complexity as the numbearafjunctsin the rule set. The complexities for the different
evaluation functions are shown in Tallés. Bold nhumbers indicate the smallest number of conjuncts
per rule set for a particular data set. As may be expected fhenpreceding discussions, the Accuracy
evaluation function produced the smallest rule sets onagee(115 conjuncts versus 125 of the next
best, the Fuzzy Laplace function). It also led to the shortds sets for five of the nine data sets.

It is interesting to note that although the Accuracy and aeglfunctions obtained very similar classi-
fication accuracy results, it is clear from their respectivle set complexities that the rule sets differed
considerably. Furthermore, the Laplace and Fuzzy Laplawetibns also had very similar average clas-

105



Table 6.5: Complexity of the rule set for different evaluation methotsreal world domains.

Annea Autos | BrCance| Colic | Credit-A | Hepatitic Iris Laboli Lymph | Average
L(r) Mean 102.8 182.7 252.7 213.6 447.4 74.2 7. 138 9110 15B.9
StdDev 5.5 8.4 20.8 15.3 35.9 5.1 1.6 2.0 7.6 11.4
) Mean 87.7 138.¢ 198.2 175.4 369.2 63.1 7.0 14.7 76.5 125.6
StdDev 5.9 8.2 11.6 14.3 13.7 4.0 1.6 1.8 5.3 7.4
Lsc() Mean 100.3 182.1 257.6 212.9 436.1 74. 7.0 13 89.4 152.6
StdDey 8.2 11.2 17.t 14.5 23.4 7.4 1.6 2.1 8.4 10.E
A(T) Mean 123.7 1716 136.8 169.2 280.6 63.6 6.0 16.3 67.9 115.1
StdDey 10.C 11.€ 17.: 17.< 16.C 4.C 0.C 1.7 7.2 9.8
P() Mean 104.5 262.5 292.3 236.7 512.4 76.2 7. 16/5 9612 17B.3
StdDev 7.6 17.0 23.8 21.1 22.8 7.0 1.6 3.1 7.3 12.4
Ic(r) Mean 104.5 199.9 291.9 236.7 508.5 76.2 7. 165 9612 17p.8
StdDev 7.6 11.2 23.8 21.1 26.3 7.0 1.6 3.1 7.3 12.1
E() Mean 103.0 197.6 287.8 233.6 507.2 77.1 7.1 159 9218 16p.1
StdDe\ 8.4 13.F 19.C 29.7 25.2 8.€ 1.6 2.5 5.1 12.7
Table 6.6: The number of conjunctions searched.
Annea Autos | BrCance| Colic | Credit-A | Hepatitic Iris Labol Lymph | Average
L(r) Mean 4993 17432 8039 14045 22174 273p 410 417 3008 8340
StdDev| 284 1494 793 820 1560 145 58 53 266 608
Fr) Mean 444: 1490( 7603 12094 20073| 242¢ 369 433 2719 7229
StdDev 261 1379 603 1126 1045 199 48 59 168 543
Lsc() Mean 4959 16827 7774 13944 2142p 271p 289 41c 2946 7921
StdDey 38¢ 1412 56€ 81¢ 136: 25¢ 48 61 27C 57€
A(T) Mean 6132 15381| 4499 11176 14185 2498 196 542 2243 6317
StdDey 384 105€ 457 87: 78€ 184 13 64 22z 44¢
P() Mean 5152 26002 9931 16584 2685B 288p 421 490 32B6 10179
StdDev| 348 1753 880 1421 1143 248 87 88 285 694
Ic(r) Mean 5152 19653 9510 16584 2611P 288p 286 490 32B6 9330
StdDev| 348 1514 817 1421 1216 248 48 88 285 664
E() Mean 5062 19376 9285 16204 2556p 297p 301 a7 32p5 9161
StdDe\ 38C 173: 71€ 201« 1461 28: 37 73 20C 76€

sification accuracy, but significantly different rule setquexities. The Fuzzy Laplace function resulted
in an average reduction in rule set complexityl 8f3% compared to the (crisp) Laplace function. Thus,
the fuzzification of the evaluation method had a beneficialctbn rule set complexity. Finally we note
that the Laplace anik-Content had similar rule set complexities.

The members of the Information Content group again obtasimdar performances, with the Entropy
method obtaining the best result. Another observationasftir the Anneal data, the accuracy method
obtained the most complex rule set, and also had the worstamcperformance. For this data set the
Fuzzy Laplace obtained both the best classification acgwad rule set complexity, while the remain-
ing evaluation methods all had very similar rule set comipjepesults. We have shown emprically in
Chapter5 that rule set complexity is often correlated with rule setusacy (cf. Sectiorb.5and Sec-
tion5.6.2. This is further emphasized here by the results for the Aaufunction on the BreastCancer,
Colic and Credit-A data sets.

6.4.3 Search Space Explored

The amount of search effort is quantified by counting the nrema) candidate conjunctions that were
investigated during rule induction. The evaluation fumcteffectively prunes unpromising conjunctions
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from the search, and ranks the conjunctions according foeitseived classification performance. Ta-
ble 6.6 shows the size of the search space explored to obtain the rlikee bold numbers indicate the
smallest search effort per data set.

Again the Accuracy evaluation function was the most effegtgenerating on average approximately
6300 conjunctions, versus approximately 7200 for the Flaplace, 7900 for thés-Content, and over
8100 for Laplace evaluation function. It also caused thstlsaarch for five of the nine data sets. The
reason is that the induction of each rule requires a new Isedithe lattice of rule descriptions, and the
Accuracy function induced far fewer rules. Thus, it also esmas no surprise that the Fuzzy Laplace
required the second least search.

In the Information Content group, Entropy and Informatioon@nt had similar results<( 9200 con-
junctions), while the Purity function required significimnore search (over0100 conjunctions). Thus,
the Entropy and Information Content functions obtained/ &milar results for classification accuracy,
rule set complexity, and also search requirement, indigatiat they basically employ the same heuris-
tic. When this heuristic is required, the Information Cantshould be used since it less complex and
therefore faster to compute. If we compare the averagetsdsulthe Laplace ants-Content functions
we may come to a similar conclusion. However, comparing tasstfication accuracy results for the
Autos data and the search requirement for the Iris dataxonele, we see that the average results may
sometimes hide some information, and that while the two ouslare related, they employ different
heuristics.

6.5 Summary

In this chapter we investigated the effect of the evaluatiorction on the induction process. We also
provided an empirical evaluation of the different functdsy comparing their performance with respect
to classification accuracy, rule set complexity, and seseghirements on nine real world data sets. Of
the several evaluation functions discussed in this chafater were obtained from the literature, while
we proposed the remaining functionsp Zyl and Cloetg2004¢ Cloete and van Zyl20044.

By using a small example we demonstrated that the differesiuation methods all follow the same
path through the lattice in the first few layers. This meaias thacro features are equally well distin-
guished by the different methods. Lower down in the lattiogjenctions cover fewer instances, and
the individual characteristics of the different methodd haigger influence. Of the different methods,
only the Accuracy function often prefers conjunctions leighp in the description lattice. This happens
because higher up in the lattice more instances are covandd/ (Xp(c)) — M(Xn(c)) is more likely

to be big than lower down in the lattice where fewer instararescovered. The other methods all pre-
fer more consistent conjunctions. This property of the Aacy function often helps the algorithm to
prevent overfitting, but in a few cases, e.g. for the Anne#d dat, this property may also deteriorate
performance.

The different evaluation functions could be divided intagbly three groups, with the Accuracy func-
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tion in its own group. The Information Content group’s oVeparformance seemed worse than that of
the other groups. Thus, functions from this group shoulg bel used in special circumstances when it
is clear that such a function should perform well. As a ruléhafmb, the Accuracy function seems to be
a good choice for an evaluation function. It had the bestalvperformance, and resulted in the least
complex rule sets while also requiring the least searchteffm average). The similar classification
performance of members within a group could to some exteratthbuted to kvzzyBEXA’s search
heuristics other than the evaluation function. Withousthkeuristics, the evaluation function will have
a greater impact, and the results are likely to be more divers
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CHAPTERY

Comparison Betweenuzzy BEXA and
Other Fuzzy Rule Learners

7.1 Introduction

In the previous chapters we introducedZzy BEXA, an algorithm for the induction of fuzzy classifica-
tion rules. We provided an empirical evaluation of the alfpon with respect to various parameters and
characteristics. We also introduced several fuzzy ruléuatian functions, and showed the importance
of the evaluation function. In Chapt@rwe reviewed several fuzzy concept learners and categorised
them in seven classes of algorithms. We now ask the questitet, are the differences and similarities
of these algorithms tolzzy BEXA. We make this comparison with respect to the different diares-

tics of FuzzyBEXA. Since space prohibits us from comparingzZy BEXA to all possible algorithms,

we compare BzzyBEXA with those main classes of fuzzy rule learners that are sdvaerelated: (a)
inductive learners (b) decision trees (c) similarity shaic) partitioning methods, and (e) stochastic
search.

We do not pay much attention to gradient descent (neuralarkjwnethods, since these do not directly

induce a fuzzy rule set, but a fuzzy rule set must be extragsaaty one of a variety of methods. The

number of possible combinations of neural architectuegniing methods, and rule extraction algorithms
makes it very difficult to derive general characteristics doadient descent methods. It suffices to say
that they induce subsymbolic (connectionist) results, @ very little in common with 6zzy BEXA

or even the other classes of rule induction methods. No&gligmt descent here refers to the direct in-
duction of rules using a gradient descent method, and natdtimisation of certain parameters using an
artificial neural network within a scheme that employs aaothethod, e.g. the optimisation of defuzzi-

fication parameters via an artificial neural network withiiuzzy decision tree induction algorithm.

The layout of the chapter is as follows. In Sectib@ we discuss the inductive bias of each of the dif-
ferent groups of concept learners. In the following sediam® discuss the differences and similarities
between lBzzyBEXA and other concept learners with respect to the descriptioguage, parameters
and structure identification, evaluation function, beaara, lattice and partial ordering, rule set order-
ing, and stop growth measures. Sectioficoncludes the chapter with a discussion.
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7.2 Inductive Principle Comparison

We grouped the different fuzzy rule induction algorithmeoiclasses based on the induction method
employed. The basic search strategy is the first and mostriengadistinguishing characteristic of a
learning algorithm, and in this section we summarize thegpies or heuristics on which the induction
process of each class is based.

7.2.1 Fuzzy Inductive Learners

Inductive learners induce rules by identifying features #gmpirically distinguish positive from negative
training examplesNlitchell, 1997. We already formulated 5zzy BEXA'’s inductive bias in Section.8,

and we restate it here briefly.UEzY BEXA performs a separate-and-conquer search of the hypothesis
space. It prefers conjunctions with good evaluations oesjunctions with bad evaluations, where
“good” and “bad” are defined by an evaluation functiomzZy BEXA'’s description language, FuzzyAL
allows internal disjunction, and forms a lattice of antemm@ddescriptions, and a top-down, general-to-
specific beam search of this description lattice is perfoknidnus, Fuzzy BEXA employs both &earch

bias (characterized as greedy, general-to-specific with pueipg) and danguage biagits description
language).

7.2.2 Divide-and-Conquer Strategies

Fuzzy decision trees are the fuzzy generalization of daksdiecision trees, and employ linguistic vari-
ables at decision nodes and linguistic terms at branchepicdlly a fuzzy form of the information
theoretic measure entropy is used to obtain the fuzzy irdition gain. The inductive bias of fuzzy deci-
sion tree induction is therefore strongly related to theuaibe bias of the classical algorithm. Mitchell
describe this inductive bias aMlitchell, 1997, “Shorter trees are preferred over longer trees. Trees
that place high information gain attributes close to the eve preferred over those that do not.” If we
exchange attribute with linguistic variable and inforroatgain with fuzzy information gain, we obtain
the inductive bias for the fuzzy ID3 algorithriTjos and Sztanderd992 Dong and Kothati200]]. Al-
though this definition was primarily derived for ID3, with nair alteration it is also applicable to many
other fuzzy decision tree induction algorithms.

7.2.3 Similarity Search

Similarity search relies on some kind olibosenes®r representativenesassumption, and the concept
of distanceor similarity plays an important rolefjubois et al. 2003. After clustering the input or
sometimes the output domains, the cluster centres areatlypicsed to represent a rule, and the different
individual instances are discarded. Since a cluster cen&rsingle point in the input-output space, these
methods typically only induceurely conjunctiverules, and the description language is not specified
beforehand, but induced from the clustering process. Tisame evaluation function employed during
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the search (other than the distance measure), and no gémarscific ordering. We can thus say that
similarity search methods are biased towards solutiongevimstances are grouped such that they lie
close to other instances of the same group. From these grolgssand/or membership functions are
deduced.

7.2.4 Stochastic Search

The inductive principle on which evolutionary fuzzy rul@teers are based is a combination of the rule
encoding method as well as in the general inductive biasmétialgorithms. In some systems the rule
encoding method restricts the description language (lggbias) to allow only certain representations,
e.g. the conjunction of all input domains where each inpmaio is divided into three evolving fuzzy
sets. Other methods place no restriction on the repregamianguage and allow arbitrary rules. The
population evolution over time within a genetic algorithmshbeen described using Holland’s schema
theorem Holland, 1974, which roughly interpreted states that better schemase(gections) tend to
grow in importance over timeMitchell, 1997. Genetic algorithms in general may employ a language
bias as well as a learning bia#&/higham 1995.

7.2.5 Partitioning Methods

Most partitioning methods make very few assumptions oljeaald as a result usually produce very
large rule sets. They typically proceed by dividing eactutrimension into partitions, resulting in the
division of the input space into fuzzy hyperrectangles, nghbe centre of the hyperrectangle is most
characteristic of the hyperrectangle. Each hyperrectaftgms the antecedent ofpairely conjunctive
rule. The available instances are assigned to their ragpduotperrectangles, and the rule consequent
of the respective hyperrectangles are then determinedebgutput domain of the instances. The main
task of the algorithm is to resolve conflicting rules. Thesloéthe algorithm is then determined by the
method of resolving the conflicts. A typical example is tofereéhe rule that matches the instances to
the highest degreddong and Chenl999 Wang and Mendetl997.

7.3 Characteristic Comparison

FuzzyBEXA is characterized by a variety of features. In this sectioncampare lBzzYBEXA to
algorithms with respect to these features. Some featueesraque to l©zzyBEXA, while others are
also found in other learners.

7.3.1 Description Language

FuzzyBEXA employs FuzzyAL as its description language. DescriptiofidizzyAL are formed by the
conjunction of several conjunct§;; A Cs ... A C,. Each conjunct uses linguistic terms from the same
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linguistic variable, and may baternally disjunctive C; = ¢; V ¢2 ... ¢, Except for the method by
Castroet al[Castro et al.1999 (extended by Carmonet al[Carmona et al.2004), all other methods
surveyeddo notallow internal disjunction, and form purely conjunctiveest

7.3.2 Parameter and Structure Identification

Parameter identification refers to the identification ofteys parameters like membership functions.
Structure identification refers to the identification of steucture of the classifier, i.e. the rule struc-
ture. FUzzyBEXA does not perform parameter identification, since many nustladready deal with
that. FuzzyBEXA is purely concerned with structure identification, and ashds capable of inducing
incompleterules , i.e. rules that do not use all variables in the antwedescription.

Similarity search techniques typically do not implemeny atructure identification, and is only con-
cerned with parameter identification. They induce comptetes, i.e. rules that contain all linguis-
tic variables in the antecedent. Most partitioning techagjare also solely concerned with parame-
ter identification, inducing complete rules. There are saxeeptions, where optimisation methods
such as genetic algorithms are used to identify importadtuaiimportant fuzzy sets in the rule base
[Ishibuchi et al. 1995. Genetic algorithms have in some cases been used to evarwership func-
tions only, assuming purely conjunctive complete rul&ig and Bridges200Q, and in other cases
to evolve both the rule set and rule baBefia-Reyes and Sipp@001]. Fuzzy decision trees may be
converted into an equivalent set of fuzzy rules. Similart@Fr BEXA, the main task of fuzzy decision
trees is to perform structure identification, and thus thayiaduce incomplete rules.

7.3.3 Evaluation Function

In Chapter6 we introduced several fuzzy evaluation functions that canded to rank fuzzy rules. The
rule (antecedent) evaluation function is an integral parffozzyBEXA, and FuzzyBEXA's perfor-
mance can in some cases be greatly influenced by the choibe e¥aluation function.

In genetic algorithm optimisation of the fuzzy rule base, tijective function may be seen as a kind of
evaluation function. This objective function, howevepitally operates on the whole rule set, and does
not have the same function as ivEzy BEXA. Decision tree induction usually employs an information
theoretic method to decide which linguistic term to use ahadecision node. This function also does
not operate on a single rule. Similarity search technigpasttioning methods, and gradient descent
methods do not use an evaluation function. In fact, only rilgms in the class of fuzzy inductive
learning employ an evaluation function for guiding searcthe sense thatdzzyBEXA does.

7.3.4 Beam Search

FuzzyBEXA can perform a beam search of the hypothesis space. One msigl@othe population
size used in genetic algorithms as a kind of beam width. Otfeen referencesHertig et al, 1999

112



Wang et al. 2003 we did not find any methods employing a beam search.

7.3.5 Lattice and Partial Order

The descriptions in BzzYBEXA's description language FuzzyAL is partially ordered andrfe a lat-
tice. This is exploited by BzzyBEXA to perform a general-to-specific search, and to employ atyari
of efficiency and pruning methods. We are not aware of anyratioek on fuzzy rule learning where
this partial order is explicitly exploited.

7.3.6 Rule Ordering: Iterated and Simultaneous Concept Leaing

We will introduce FuzzyBEXAIl in Chapterl0, but for completeness of the comparison we mention it
here. kuzzyBeXxAll allows the induction of ordered rule sets through the uUssmultaneous concept
learning van Zyl and Cloete20041. Simultaneous concept learning does not iterate throbghist

of concepts for which descriptions are desired, but asdigasoncept during the induction process.
This kind of induction process has not been used for fuzay induction before. Although most of the
other fuzzy learning techniques induce rules for the diffiéiconcepts at the same time, these rules are
unordered, and in many cases it would make no differenceetoetsultant rule set if the rules had been
induced by iterating through the concepts.

7.3.7 Stop Growth and Efficiency Measures

FuzzyBEXA employs many different efficiency measures. These measpieslly exploit the partial
ordering of descriptions. For example, if the positive asten of a description is empty, it is clear that
no further specialization will result in descriptions tlistve a non-empty positive extension. Another
example is early stopping based on an optimistic evaluati@mme we assume that the negative extension
of a description can be made empty, and the positive extermsdept unchanged through specializa-
tion. If this optimistic evaluation is still worse than thatthe current best description, we remove the
description (and thus all it's descendants) from the seafhave not encountered any fuzzy learning
methods that employ this kind of stop growth and efficiencyasuees—i.e. making use of the partial
ordering. In the literature several (early) stopping cidtevere suggested for neural network training
[Hayken 1999. However, these techniques cannot be seen as efficiencgunesa but rather an attempt
to prevent overfitting.

7.4 Discussion
Table 7.1 provides a comparative overview of representative exasnpiiehe different groups of fuzzy

concept learning algorithms discussed in this chapter. ditferent comparison criteria only include
those aspects where some other method also had this chistactee. we do not show “stop growth,”

113



Table 7.1: A table of comparison betweenuEzyBEXA and a selection of other classification rule learning
techniques.

Purely General Use
Structure Incomplete  Conjunctive Internal to Evaluation Partial Beam
Identification rules Rules Disjunction  Specific ~ Function Order Search
FuzzYBEXA v v v v v v v v
Greedy Incremental Rule Construction
Wanget al[1999 v v v X v v X X
Fertiget al[1999 v v v X v v X v
Wanget al [2003 v v v X v v X v
Fuzzy Decision Trees
Yuanet al[1995 v v v X v X X X
Chi et al[199¢ v v v X v X X X
Donget al[200]] v v v X v X X *2
Similarity Search
Klawonnet al[1997 X X v X X X X X
Sugencet al[1993 v v v X X X X X
Setnes200q v X v X X X X X
Duboiset al[2002 X X v X X X X X
Yin [2004 X X v X X X X X
Honget al[1996 X X v X X X X X
Partitioning Methods
Wanget al[1997 X X v X X X X X
Pomarest al[2002 v X v X X X X X
Berthold 003 X v v X X X X X
Nozakiet al[1996 X X v X X X X X
Carmoneet al[2004 v v X v X X X X
Casillaset al[2000 X X v X X X X X
Genetic Algorithms
Reyeset al [2001] v v v X X X X X
Herreraet al[1994 v v v X X X X X
Ishibuchiet al[1995 v X v X X X X X
Ishibuchiet al[2004 v v v X X X1 X X

! The authors apply a prescreening method that examine simlidate antecedents scored using the
subsethood function. An evaluation function, howevergasused to pick candidates for specialization.
2 The authors employ a look-ahead strategy, which may bepireterd to some extent as a beam search.

for example, since no other method employs it in the mannezzkBEXA does. From the table it
is clear that no other method implements all afzZzyBexA's features. Methods within the same
group tend to have similar characteristics. The methodg olosely related to 6zzyBEXA are those
published in reference&grtig et al, 1999 and [Wang et al,2003. We discussed both these methods in
detail in Chaptel. In Chapte© we propose a general fuzzy set covering framework, as wekasral
specialization models, some which are based in part on thesalgorithms.
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CHAPTERS

Inducing Fuzzy Conjunctive Rules:
FuzzCoONRI

8.1 Introduction

Up to now we have introduced one example of a fuzzy set cayedigorithm, FuzzyBeEXA. We have
also proposed various additions and improvements to thie bagering algorithm, and have also in-
vestigated the influence of different rule evaluation mdghdNe now present another algorithm imple-
menting the fuzzy set covering approach. This algorithne'scdiption language is different compared
to that of Fuzzy BExA—it induces conjunctive rules, and thus we call the algariffuzzConNRI, for
Fuzzy Conjuctive Rule Inducer. Since 8zzCoNRl is a fuzzy set covering algorithm, it implements
most of the ideas presented in ChapterThe inspiration for BzzCoNRI comes from the crisp rule
induction CN2 byClark and Boswel[199]], and FuzzCoNRI behaves exactly like CN2 in the special
case when crisp data are used. ThuszEZCONRI can be seen as the fuzzy generalization and extension
of CN2.

The layout of the remainder of the chapter is as follows. Iatia 8.2 we propose a new descrip-
tion language, FuzzyCAL. Then we presentzZzCoNRI, a fuzzy rule induction algorithm employing
FuzzyCAL, in SectiorB.3. Section8.4 demonstrates BzzCoNRI’s rule induction behaviour on a toy
data set, and Sectid5 concludes the chapter.

8.2 FuzzyCAL

FuzzyCAL (Fuzzy Conjunctive Attributional Logic) is a nevegtription language that has no counter-
part in the crisp case. Valid descriptions in FuzzyCAL mayfdrened by the conjunction cdny set

of linguistic terms in the problem space. Consider againfiezy Sport problem in Tablké.1, exam-
ples of valid expressions afeutlook.cloudy N outlook.rainy] and[outlook.sunny] A [temp.mild A
temp.cold]. Thus, FuzzyCAL does not have internal disjunction, buteiad allows the conjunction of
arbitrary linguistic terms. To make the descriptions easy to read, mapexpressions of linguistic
terms from the same linguistic variable together, and ggi¢his with square brackets. We also write
a description in FuzzyCAL in short hand, for example the jies two expressions can be written as
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[cloudy, rainy| and[sunny|[mild, cold]. Although the shorthand form of these expression look simil
to shorthand expressions in FuzzyAL, their semantic im&tgtion in FuzzyCAL is different from that
in FuzzyAL. The descriptions in FuzzyCAL form a lattice adws.

Definition 8.2.1 Let ¢; andey be two conjunctions i, thene; > ¢, ¢1 is more general than or equal
to co if D(c1) € D(c2), 1 andce, are considered equal whédc;) = D(cz), andey > ¢, ¢q is strictly
more general tham, if ¢; > ¢y andey # co.

Thus, setC' is partially ordered under the relation and forms the lattic&”; ). The top element of
the lattice contains no elements in its description set/)@ngg = (), and is defined to be semantically
equivalent toTRUE. Note, the conjunct| is thus also equivalent fBRUE.

The alpha complement was added to each linguistic variabkégscriptions in FuzzyAL. The reason for
adding the alpha complement was that without its additi@nbcwould not cover the entire instance
space. However, since timgcin FuzzyCAL is the conjunctiomRUE, the alpha complement is not
required for FuzzyCAL. It may still be added to describe is&rst of the domain of a linguistic variable
where all membership functions are belayy, but its addition is not a necessary requirement to form a
valid mgc

As is clear from Defd.4.1and Def8.2.1, FuzzyAL and FuzzyCAL are syntactically related. Except
for the alpha complement, the FuzzyAL and FuzzyCAL wouldrfanirror lattices of each other for
the same learning problem. That is, the description setseiidp layers of the FuzzyAL lattice would
be the same as the description sets of the mirror bottomdayfahe FuzzyCAL lattice. However, the
expressions associated with the description sets diffevdsn the description languages. We delay
a more in depth comparison of FuzzyAL and FuzzyCAL to Secfioh after the introduction of the
general fuzzy set covering framework.

8.3 FuzzCoNRI

FuzzCoNRI consists of two layers, an upper layer implementing thiecegering approach to fuzzy
rule induction, and a lower layer for inducing a single rulde algorithm is shown in Tablg.1 The
upper layer has the same functionality aszFy BEXA's top layer (for a discussion of the top layer refer
to Sectiord.5).

As discussed above, the FuzzyCAL rules induced by#CoNRI are of the form:
IF [temp is hot A mild] A [wind is calm] THEN plan is swimming

wheretemp, wind andplan are linguistic variables, anaild, hot, calm andswimming are linguistic
terms representing fuzzy sets. Here the difference betfuzeyn and crisp rule induction becomes clear.
The above rule wilhot cover any instances the crisp case, since no instance can be beth! and
hot at the same time. This, however, is perfectly possible irfubey case.
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Table 8.1: The FuzzCoNRI algorithm.

FuzzConRI
Input: Set of training instanceg,
Set of concepts to leationcepts
Output: A rule set describing the concepts
Set the rule set to empty
FOR EACHconcept € Concepts
P = {Z € T|,Ulconcept(i) > ac}
N=T-P
WHILE P is not empty, and more rules can be found DO
antecedent=FindBestAntecedenk{, N)
If a suitable antecedent is found, augment the rule
set with "IF antecedent THEN concept”
Remove the positive instances covered by the added rule
Return the rule set

FindBestAntecedent
Input: Set of positive instances, Set of negative instances
Output: Antecedent that covers the positive instances best
Let ST AR contain the antecedefitRU E
Let BESTANT be nil
Let TERM S contain all possible terms
While ST AR is not empty
NEWSTAR ={z Ny|lx € STAR,y € TERMS'}
NEWSTAR = NEWSTAR — STAR
For each antecedentin NEW STAR
If Ais better thalBEST ANT according to an evaluation function, then
Replace the current best conjunction with the new one
Remove all antecedents that cover only positive instances
Retain a user defined number of best elemenf§ KV ST AR
STAR = NEWSTAR
ReturnBESTANT

FuzzCoNRI's bottom layer receives a set of positive and a set of megatstances, and returns the
antecedent that best covers the positive instances wielmpting not to cover any negative instances.
It starts by initialising the se$T AR with the (FuzzyCAL)mgg i.e. the conjunctiomRUE. The best
conjunction found during the search is stored in the vagid ST ANT. The setl’ ERM S contains

all linguistic terms of the given problem. A ne$iI" AR is obtained by forming the conjunction of single
linguistic term descriptions if"ERM S with each conjunction it T"AR. In the next stepSTAR

is subtracted fromVEW ST AR. The conjunction of a description ifT AR with a description in
TERMS that was already present in the original description wiltofirse bring no change, e.g. the
conjunction of[hot|[calm| with the descriptiorhot] does not change the conjunction. By subtracting
ST AR from N EW ST AR, conjunctions that were not changed are removed BRIV ST AR.

After the new conjunctions are formed, they are evaluatedraing to the evaluation function and com-
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pared to the best conjunction found thus far. If a conjumctibtains a higher score than the current
best conjunction, it replaces the current best conjuncamally, the conjunctions that cover only posi-
tive instances are removed from the search since furtherajzation cannot improve the performance.
ST AR is then replaced bV EW ST AR and the process iterated unsil” A R becomes emptyST AR

will be empty when no new descriptions different from thosehe original ST AR can be formed.
FuzzConNRI implements a beam search by retaining more than one odtigarfor further specializa-
tion in the newST AR. Finally, the best conjunction found during the search @ssds returned. There
is scope for improving this version ofuzzCoNRI, but since we will show in the next chapter that
FuzzCoNRl fits within a more general framework, we postpone thatwdison until then.

8.4 Small Example

Consider the sport data set, as shown in Tdble Let the concept to learn h@an.swimmingand let
a. = 0.6 anda, = 0.5. The concept threshold. = 0.6 defines the set of positive instances tolbhe,
3,9, 11 and16, using the instance indices in the table.

Figure8.1demonstrates FuzzConRI's specialization process fotahiging problem, and shows (only)
the conjunctions generated in the lattice of FuzzyCAL dpsions. Each node represents an antecedent,
where the conjuncts of the antecedent are shown below eheh and the most general conjuncts are
not shown. The two numbers in parentheses are the numbesiti’p@nd negative instances covered by
the antecedent, respectively. The specialization progtests with the antecedefitRU E, and appends

all possible terms to it, forming all one-term antecedentthée second layer. Since there are ten terms,
the second layer contains ten nodes. For this example we altidy the best antecedent to remain in
ST AR for each iteration ifFindBestAntecedengnd we use the Laplace estiméted) as an antecedent
evaluation function,

L(A):pi+1
p+n+2

wherep andn are the number of positive and negative instances coverdldebgntecedentl, respec-
tively. The evaluation of a conjunction is shown as the thiatlie in parentheses of each node. In the
second layer, the antecedent with the highest scofei$, and[sunny] is the second best. If a beam
search with width two was selected, both antecedents waelldxpanded. Since no beam search is
specified, onlyhot] is expanded by appending all possible terms to the conpmctihe third layer
contains nine conjunctions, sinfeinny, sunny| is removed.

(8.1)

The best conjunction in the third layer sunny|[hot], which covers five positive instances and no
negative instances. This is also the best conjunction falumthg the whole search process. Since it is
consistent, it is removed frolfT AR and not expanded further. For a beam search of width two this
antecedent could be generated both by appendingny| to [hot] or vice versa. Note the conjunction
[hot, mild] (i.e. temp.hot Atemp.mild) covers one positive and no negative instances, and tiekithe
best score. For more complicated problem domains it mayhesthat such conjunctions can be useful
concept descriptions.
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Figure 8.1: The specialization paths followed using £ CoNRI.

Since [sunny][hot] is removed from the search, the next best conjunctjant|[calm| is expanded
further, forming the fourth layer with eight conjunctionBhe best conjunction in this layer is the con-
junction [sunny|[hot][calm]. This conjunction is also consistent and thus not expandetier. No
conjunction in the fourth layer covers five positive insesi¢like [sunny|[hot] does). Thus, further
search cannot find a conjunction that outperfofmsiny][hot], and this conjunction is returned as the
best conjunction found. This lattice property was expltbiy Fuzzy BEXA to improve its search, and
we show in the next chapter that it can also benefit FCONRI.

The five instances covered by the rule
IF outlook.sunnny A temp.hot THEN plan.swimming

are instanceg, 2, 9, 11 and16. These are removed from the s@t and sinceP # () the process is
repeated and another rule is induced.

8.5 Summary

In this chapter we introduceduzzCoNRI, the fuzzy generalization of the CN2 rule induction algo-
rithm. FuzzCoNRI's description language is FuzzyCAL, which can form camjiions containing any

set of terms in the problem space. This description langhageno equivalent in the crisp case. We
showed that like for FuzzyAL, FuzzyCAL descriptions alsonfioa lattice. We demonstrated the be-
haviour of the algorithm by tracing its specialization pFss for the Fuzzy Sport problem. Although
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they use different description languages, there are gleaainy similarities betweenuzzyBEXA and
FuzzConNRI—they are both fuzzy set covering algorithms. In the nésepter we introduce a general
fuzzy set covering framework, and show thatZzyBexA and FuzzCoNRI, among others, fit within
this framework.
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CHAPTERY9

Fuzzy Specialization Models for a General
Fuzzy Set Covering Framework

9.1 Introduction

Thus far we have introduced two algorithms that apply fuzztycevering, lBzzyBEXA and Fuzz-
CoNRI. We now propose a general fuzzy set covering frameworlkchwve call FCF (for Fuzzy Cov-
ering Framework). The framework is general in the senseitliites not dictate the use of a specific
description language, or how the hypothesis (descriptipace should be searched. The framework
consists of three layers - a top layer implementing fuzzycesering, a middle layer implementing
several learning heuristics, and a bottom layer, calledspeeialization modelA specialization model
receives a set of concept descriptions, and returns a sefioéd concept descriptions to be evaluated
by the higher layers of the framework. Thus, the speciatinatnodel implements the specific search
strategy within the defined description space.

The separation and modularization of the different fundiof the framework has several benefits. It
presents a unifying model for fuzzy set covering algorithro$ which crisp set covering algorithms are
special cases. It allows the characterization of diffeedgrithms based on their description languages,
specialization operators, and search strategies. Thelaratksign allows the incremental development
of new learning algorithms that follow the fuzzy set covgrapproach to rule learning. Furthermore,
the hierarchical architecture of the framework means tharovements to the top layers automatically
benefit all algorithms that fit into the framework.

We also propose four different specialization models foFFF-Each algorithm applies a different search

strategy, encompassing a mixture of different descriplémguages and search heuristics. The frame-
work allows for the fair comparison of these algorithms—thp layers are kept constant and only the

specialization model is exchanged. The performance offbeialization models on data sets can be
compared, as well as the individual characteristics of pleeislization models, such as search heuristics,
specialization operators, or search paths in the hypatlspsice.

The layout of the chapter is as follows. In the following $mttwe describe FCF, particularly the
top two layers of the framework. We then continue in the nexi fsections to describe several spe-
cialization models that fit within the general frameworkspectively the specialization models FEM
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Table 9.1: FCF's top layer.

PROCEDURE CoverConcepis(Concepts)
ruleset = (;
FOR each concept € Concepts DO
P=Xr(¢), N=T - P,
REPEAT
bestconj =FindBestConjunctior, N);
IF | X p(bestconj)| > 6, AND isBetterpestconj, getMGC({OL)) THEN
Add rule “IF bestconj@Qa, THEN concept is ¢;Qa,” to ruleset;
END IF
P = P — Xp(bestconj);
10 UNTIL (|P] < 6,);
11 ENDFOR
12 RETURNruleset;
END PROCEDURE

O© O ~NO O WNPE

(Fuzzy Exclusion Model), Bzzy SEEDSEARCH, FuzzCoONRI, and FuzzyPRISM. We introduce the
different characteristics of each specialization mod&@#troduce the specialization model itself, and
then provide an overview and comparison of their differdmracteristics in Sectio8.7. Section9.8
presents an empirical comparison of the specializationetsaah data sets retrieved from the UCI Ma-
chine Learning Repository. In Secti@mBwe discuss partial covering, where we look at the implicetio
of fuzzifying the set of positive instancds We present final remarks and conclusions in Se@idQ

9.2 FCF, A General Fuzzy Set Covering Framework

Thus far we introduced fuzzy set covering as a methodologyhi® induction of fuzzy rules, and we

proposed two algorithms,zzy BEXA and FuzzCoNRI as examples of fuzzy set covering algorithms.
In this section we propose a general framework for algortfoiiowing the fuzzy set covering approach,
which we call FCF. The framework will make the relationshigteeen different covering algorithms

(both fuzzy and crisp) explicit, and will allow differentwering algorithms to be characterized in terms
of their differences and similarities within this frameworFCF provides the functionality common

to all fuzzy set covering algorithms, and leaves the spedé#iails, such as conjunction specialization
and related search heuristics, to the lowest layer. Thisvalleach algorithm to only implement this

bottom layer, relying on the remainder of the framework tovile an implementation of the common
components.

Table 9.1 shows the top layer of the framework. It implements the ganegt covering approach, as
detailed in Chapted. It starts by initialising the rule set to empty. Then, foclkeaoncept, it divides
the training set into the sets of positive and negative imt&s. For each pair, rules are induced until the
number of positive instances remaininginis equal to or less than the positive coverage thresiold
The parametefi,, may be zero, and is user-defined. The induction loop makesfube second layer
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Table 9.2: FCF's middle layer.

PROCEDURE FindBestConjunctiaR(NV, beamwidth)

1 bestconj =NULL,;

2 specializations = {getMGC({DL)};

3 WHILE specializations # () DO

4 specializations = GenerateSpecialization3(V, specializations);
5 FOR each conjunction € specializations DO

6 IF isBetter¢,bestconj) THEN

7 bestconj = c;

8 FOR each conjunction € specializations DO

9 IF stopGrowthf) THEN

10 specializations = specializations — c;

11 Retain inspecializations only thebeamwidth best conjunctions

12 END WHILE
13 RETURNbestcony;
END PROCEDURE

routine, FindBestConjunctionto induce a single good rule antecedent. If the induceccadtnt passes

a set of criteria, a rule with this antecedent and the cugentept as consequent is formed. Rules with
too low positive coverage (i.e|Xp(c)| < 6,) are not considered to be significant, thus the induced
antecedent must cover more thigypositive instances before it can be used to form a rule. Thetifon
isBettefcy, ¢2) is a user-defined conjunction evaluation function that garas the two conjunctions
andcy, and returns true only if; is better tharc,. The evaluation function plays an important role in
guiding the search process—conjunctions are retaineduoiegrfrom the search based on their ranking
by the evaluation function. Since different domains may biged to different evaluation functions,
FCF does not dictate the implementation of this functior @arious possible conjunction evaluation
functions were discussed in Chapéer

The functiongetMGQ D L) returns the most general conjunctiondq in the description language used
by the current induction algorithm. In both the descriptlanguages FuzzyAL and FuzzyCAL (see
Sections4.3.1 and 8.2) this conjunction is equivalent tdRUE, and thus covers the whole instance
space. If the evaluation of the candidate antecedent isett#rithan that of thengg it is not used to
form a rule. After the induction of each rule antecedent pibsitive instances covered by it are removed
from the set of positive training instancés SinceP always gets smaller, the algorithm is guaranteed
to terminate.

Table 9.2 shows FCF’s middle layer. This layer employs several hécsigso improve performance.

It implements a local beam search by maintaining the curbestbeamwidth conjunctions in the
setspecializations, as well as the current best overall conjunction in the Wdgidestconj. The set
specializations is initialized with themgcof the current description language. Then, while the set of
specializations is not empty, it is refined using the bottaget routineGenerateSpecializationsThe
bottom layer routine implements the specialization moget#ic to the induction algorithm using the
framework. Each specialization obtained by the refinemeotgss is then compared to the current best
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Table 9.3: One implementation of the compare function.

PROCEDURE isBettet(, ¢5)
IF evalg; )>eval(,) THEN RETURN TRUE;
IF evalg;)<eval) THEN RETURN FALSE;
IF | Xp(c1)| > |Xp(c2)| THEN RETURN TRUE;
IF complexity¢;)<complexity¢.) THEN RETURN TRUE;
RETURN FALSE;
END PROCEDURE

a b wN PR

conjunction, and replaces it only if it performs better. ditihus clear that the conjunction evaluation
and comparison process is an important factor in the seamtegs. One example of such a compar-
ison routine is given in Tabl®.3 whereevalc) andcomplexityc) are two user-defined functions for
evaluating the classification performance and the compgl@fithe conjunctionc, respectively. After
the best conjunction was selected from the current set diapmtions, conjunctions satisfying the
stop growth prepruning criteria are removed. One impleat@nt of the prepruning criteria is shown in
Table9.4. It prunes conjunctions with empty negative extensionalsid prunes conjunctions that even
when evaluated optimistically still do not perform bettean the current best conjunction. Optimistic
evaluation was described in Secti®.3 Note, both functionssBetterandstopGrowthcan be changed
and expanded by the user. The exact functionality of thasetitns can be controlled by a selection of
control parameters, and any additions or improvementsetgetfunctions will benefit all algorithms that
fitin the framework. When no more conjunctions remain to lec&gized, the function returns the best
conjunction found during the search.

In the following section we present four different speaation models for the FCF framework. In or-
der to relate the different specialization models to onefaeToit is useful to compare them keeping the
following points in mind. Different specialization modgls) employ different description languages,
(2) specializes conjunctions in different ways (we will @sate aspecialization operatowith each
method to formalize its specialization method), (3) apgifedent search heuristics, (4) select differ-
ent specialization paths through their description lagjand (5) search this lattice to different degrees
of thoroughness. The functionality of the specializatioodels need not be limited to specialization,
and one may also use the term “refinement model” instead efciafization model,” where refinement
would also include in the general case a bottom-up searategyr. However, since all the algorithms
introduced in this chapter perform a top-down search, we'sygecialization model” instead of “refine-
ment model.”

For the purpose of comparing the specialization models Vlleugg the toy fuzzy learning problem in
Table9.5. Three linguistic variabled, B andclass are defined, and their respective term setaré},
{z,y, 2z}, and{pos, neg}. Six fuzzy instances are given, with the instances’ lingeiterm memberships
sorted into term sets, and given in the order of declaration.
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Table 9.4: One implementation of the stop growth function.

PROCEDURE stopGrowth(bestcony)
1 IF Xn(c) = ) THEN RETURN TRUE;
2 IF evalOptimistict) < evalpestconj) THEN RETURN TRUE;
3 RETURN FALSE;

END PROCEDURE

Table 9.5: A small fuzzy learning problem.

@el ation snmal | fuzzyprobl em

@ttribute A {a, b}

@ttribute B {x, y, z}

@ttribute class {pos, neg}

@lat a

(0.7 0.3), (0.6 0.2 0.4), (0.30.7) ;1
(0.8 0.2), (0.6 0.4 0.1), (0.4 0.6) ;2
(0.7 0.5), (0.1 0.40.6), (0.90.1) ;3
(0.2 0.7), (0.1 0.1 0.9), (0.1 0.9) ;4
(0.3 0.7), (0.3 0.7 0.6), (0.80.2) ;5
(0.6 0.5), (0.3 0.7 0.2), (0.6 0.4) ;6

9.3 Fuzzy Exclusion Model

The Fuzzy Exclusion Model (FEM) is the specialization modsghployed by BzzyBEXA
[Cloete and van Zyl200§. It uses FuzzyAL as description language, and thus allotermally dis-
junctive expressions. Conjunction specialization esttik exclusion of a single linguistic term from
the conjunction. Thus, the specialization operator for FiEMxclude Table 9.6 shows the FEM
algorithm. Fuzzy BEXA's specialization model was discussed in detail in Sectiénincluding the im-
plementation of “remove uninteresting terms” and the edffiticomputation of the positive and negative
extensions of specializations.

For the sake of comparison with the other specializationetspdve demonstrate FEM'’s specialization
behaviour by considering the specializations generatethéotoy problem in Tabl8.5. We set the beam
width to two,«. = 0.7, anda, = 0.5. The set of positive instances is thBs= {3, 5,6}, and the set of
negative instances I§ = T'— P = {1, 2,4}, where we denote instances by their indices. The maximum
memberships of all instanceén the training sef” to both linguistic variables! and B are greater than
0.5, and thus the alpha complement can be ignored for this examsipiceV(i € T)(u4.5(i) = 0 and
up.a(i) = 0). Figure9.1 shows the lattice of FuzzyAL conjunctions. The sizes of tbeitive and
negative extensions of a conjunction is shown as the firssandnd value in parentheses in each node
in the figure, respectively. The third value in parenthesethé evaluation obtained by the respective
conjunction. The conjunctions were evaluated accordirtheé@ccuracy evaluation function in Eg 7).
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Table 9.6: The Fuzzy Exclusion Model.

INPUT: sets of positive instancd3, negative instancey,
and conjunctions to specialize
OUTPUT: set of specializationS
S=0
FOR each conjunction € C DO
remove uninteresting terms frormusable
FOR each ternl, € c.usable DO
cnew = specialize ¢)
IF cnew € S THEN CONTINUE
cnew. X p = computeX p(cnew)
IF cnew.Xp = () THEN CONTINUE
cnew. Xy = computeX y (cnew)
S = SU{cnew}
END FOR
END FOR
RETURNS

During the first iterationGenerateSpecialization®ceives only thangg i.e. the top element in the
lattice, to specialize. The circled nodes indicate the wactjons generated by FEM, whereas the bold
nodes show théeamwidth best conjunctions in each layer, i.e. those chosen forduhecialization.
The paths followed during the search are indicated by bajgedDuring the first iteration, it is possible
to exclude any of the five linguistic terms, and thus five spegitions are formed, as shown in the
second layer of the graph. The best two conjunctions in tbergklayer aréb|[x, y, z] and|a, b][z, y].

By either excludingz from the first conjunction, or from the latter conjunction, the specialization
[b][x, y] is obtained. This conjunction covers all positive instan@nd none of the negative instances,
and is the best conjunction found by FEM. It is a membe€gf, the set of most-general consistent
conjunctions. The middle layer will halt the search at thisgt, since no other candidate conjunction or
their specializations can obtain a better evaluation thanconjunction.

The search process is initialized with thegc of the respective description languages, in this case
FuzzyAL. Starting with thengg FEM specializes by excluding single linguistic terms ainaet gen-
eratingall (useful) specializations. Thus, FEM performs a systemg#aeral-to-specific search of the
lattice of FuzzyAL descriptions. Besides the search efiicjemeasures which can only speed up the
search but not influence its outcome, FEM employs no hecsidtr selecting a set of terms to use
for specialization while ignoring the remainder of usedblens. Thus it performs the widest possible
search for the given description language and beam width.
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Figure 9.1: The lattice of FuzzyAL descriptions for the toy problem irbl9.5.

9.4 FuUzzYy SEEDSEARCH

The next specialization model borrows its creative inggirafrom the AQ family of algorithms
[Michalski, 1969 Michalski et al, 19864. Like FEM, Fuzzy SEEDSEARCH also uses FuzzyAL as
description language, and therefore its specializaticeratpr is als@xclude If the description set for
a particular learning problem is very large, creating eymgsible specialization of a conjunction may
have large computational overhead. Thus, instead of djaagaconjunctions by excluding all possible
linguistic terms, like FEM does, zzY SEEDSEARCH only excludes terms ifi' 7, the set of terms to
exclude. This set is computed by a subroutine callzFr SEEDSEARCH'S specialization procedure is
shown in Table.7.

The subroutineSelectTermsToExcludenctions as follows. First, a positive seed instargeand a
negative seed instaneg covered by a parent conjunctienc Conjuncts are selected, that is,, €
Xp(c)ands,, € Xn(c). Note, if the seeds were not covered by any conjunction, tiespecialization
process will not generate any new conjunctions due to thaedifty criteria. The seed selection process
is implemented by the routineSelectPositiveSeeand SelectNegativeSeednd can be user-defined.
We will discuss different seed selection strategies in diiewing section. Each linguistic term in the
description set of thengcis tested to determine if its positive extensidoes notcontain the positive
seed and its negative extensidoescontain the negative seed. If this is the case the linguistim is
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Table 9.7: The Fuzzy SEEDSEARCH specialization model.

INPUT: sets of positive instancd®, negative instancey,
and conjunctions to specialize
OUTPUT: set of specializationS
S=0
TE = SelectTermsToExclude{on junctions, P, N)
FOR each conjunction € C DO
remove uninteresting terms frotmusable
FOR each terni. € TE DO
cnew = specialize €)
IF cnew € S THEN CONTINUE
cnew. X p = computeX p(cnew)
IF cnew.Xp = () THEN CONTINUE
cnew. Xy = computeX y (cnew)
S = SU{cnew}
END FOR
END FOR
RETURNS

SelectTermsToExclud€njunctions, P, N):
TE =10
sp = SelectPositiveSe¢d) Xp(c;)); Il ¢; € Conjunctions
sp, = SelectNegativeSeéd X (c;)); Il ¢; € Conjunctions
FOR each ternl € D(mgg DO

IF (s, € Xn(L)) AND (s, ¢ Xp(L)) THEN

TE=TEU{L}

RETURNTE

added to the seéf’'E of linguistic terms to exclude from the search. The reagpidrthat if this term

is excluded from a concept description, the negative setd&removed from its negative extension,
while the positive seed will remain in its positive extemsid hus, all terms that cover the negative seed
but not the positive seed are found.

The terms fromil’ ' are now used to specialize the conjunctiong’inEach conjunctior is specialized

to form all descendantsnew; such thatD(cnew;) = D(c) — a, wherea € TE. Thus, we exclude

a term frome that before only contributed to the covering of the negasiged. This allows the new
conjunction to possibly obtain a better evaluation. If theifive and negative seeds were representative
of distributions within the training set, many other negasi may now be uncovered. The remainder of
the algorithm is exactly the same as FEM, including all efficly measures.

Figure 9.1 shows an example run for a beam width of two for the toy probieriable 9.5. In the
first iteration, the conjunction to specialize is tigg which contains all linguistic terms. Let, be
instance 5 and,, be instance 1 during this iteration. Then the set of linguirms differentiating the
two instances iIFE= {a,b,z,y,z}. Only the positive extensions of the termmsndx do not contain
sp and contains,,. Thus, only two specializations of tmegcare possible. The two specializations and
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the paths from thengcto them are indicated by dashed nodes and edges in Fglr&ince the beam
width is two, both conjunctions are specialized furtherhia hext iteration. Suppose next that instances
6 and 4 were selected as the positive and negative seedsctigsfy. The terms that differentiate the
seeds arda,b,y, z}. Of these, the positive extensions {gf, z} do not contains,, and their negative
extensions do contai,. Thus, the conjunction®][z, y, z] and|a, b][y, z] are specialized by excluding

b andz. Note, the dotted node][y, z] is generated by &zzy SEEDSEARCH, but not by FEM. Finally,
Fuzzy SEEDSEARCH finds the same conjunction as FEM.

9.4.1 Seed Selection Methods

The positive and negative seeds clearly play an importadatmauiding Fuzzy SEEDSEARCH'S refine-
ment process. Bzzy SEEDSEARCH is designed in such a way that the seed selection method siy ea
be altered. The method of selecting the positive and negateds can be changed by changing the
implementation ofSelectPositiveSeeaahd SelectNegativeSegetespectively. One implementation is to
simply select a random instance from the set.

Instead of selecting a random instancezEy SEEDSEARCH can also select the instance with the high-
est membership to any conjunctionGfonjunctions. However, it is often the case that a data set also
contains linguistic variables that have linguistic termighverisp membership values, e.g. the sex of
a patient. Thus, if the instance with the highest membershigways picked, the seed selection will
be biased towards selecting instances from which no crispstevere excluded since the crisp terms
contribute most to the membership degree. Another coradidaris that the positive and negative seeds
with the highest confidence may not differ much, and theestbe seffermsToExcludeould be empty
(i.e. no term is such that it covers the negative seed ancheqgbdsitive seed). This may be solved by
reverting to the random seed selectioTérmsToExclude () for the current iteration oGenerateSpe-
cializations

The algorithm can also be adapted not to use a positive saddpasimply exclude those terms that
contain the negative seed in their negative extensions.afghenent for using the positive seed is that
we want to cover as many positive instances as possible., fitwe can uncover the negative instance
in some other way (i.e. by excluding another term) and stiller the positive instance, this route is
preferred. Another approach is to select those seed iregahat differ in most terms. However, this
approach may have too much computational overhead, anddimegoal of Fuzzy SEEDSEARCH is to
reduce this overhead.

9.4.2 Fuzzy SEEDSEARCH and FAQR

Wang et al[2003 proposed a fuzzy learning algorithm, FAQR, which is alssdzhon the AQR crisp
inductive learning strategy. SinceuEzYy SEEDSEARCH and FAQR both take ideas from AQR, we
briefly review the FAQR algorithm (for a detailed review of @R refer to Sectio2.3) and then discuss
the similarities and differences between FAQR and Fr SEEDSEARCH.
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FAQR consists of two layers. The top layer starts with an gmple R, and a set of positive and
negative fuzzy instanced; and N respectively. The following steps are then iterated uhid tule
covers all positive instances. The instance that has thebkigoncept membership and is netovered

by R is selected as positive seed. An instantex-covered ifug (i) > «. The functionGenComplexs
used to generate a set of candidate conjunctionsititalver the positive seed and no negative instances.
The best conjunctiod’,.; is then added to the rule by forming = R V Ci.s. The best conjunction
has the highest evaluatidti(c),

E(C) :Minclude(c) P ,U'e:vclude(c) (91)
pintu ) =L T LelD) ©2)
Memclude(c) - ZZEN(MZN(EZ])V;](\}('B anl (Z)) (93)

where p is an addition or a union operator, such as maximum, &gl a t-norm operator, such as
minimum. WhenR covers all positive instances it is returned as result.

The proceduré&senComplexgenerates a set of candidate conjunctions. It initialisesté&,.; of candi-
date solutions with the set of all single term descriptiagh a§Temperature = hot] that a-cover

the positive seed. It then repeats the following procedurevany description ir.; a-covers a neg-
ative instance. The conjunctione Cj.; with the smallest valug:...;.q4(c) is selected and then the
negative instance itX y (c) that has the highest membership/ois chosen as the negative seed. All
conjunctions inCy.; are then refined not ta-cover the negative seed. This refinement process is per-
formed as follows. LelS be the set of terms that-cover the positive seed and not the negative seed.
Then the newC.; is obtained by forming conjunctions of descriptions in tie ©,.; with terms inS.

All descriptions in the news.; that are subsumed by other descriptions are removed, andhbeset
Cet is pruned by removing the worst complexes until its sizegs than a specified threshold. Once all
complexes irC,.; cover no negative instances;,; is returned as result.

Clearly Fuzzy SEEDSEARCH and FAQR have many similarities. Both are inductive leagrstrategies,
and both induce incomplete fuzzy rules. An incomplete fuzig is a rule of which the antecedent does
not necessarily contain all linguistic terms. FAQR anazFy SEEDSEARCH share the heuristic to use
positive and negative seeds to guide the search for rulgigésos. Both methods employ a generate-
and-test strategy of generating a set of candidate rulerigdsns and then selecting the best based
on an evaluation function. Both methods also employ a beartise However, there are also many
fundamental differences between the two algorithms’ $est@tegies, which we enumerate shortly.

(1) FAQRdoes notimplement the fuzzy set covering methodology. Set covesiggrithms iteratively
induce rules that cover the set of positive instances, butheoset of negative instances, and after the
induction of each individual rule, the positive instancegared by the rule are removed from the training
set while the negative instances are retained (see Se&&fand Def.3.2.1 Pointl). FAQR does not
remove covered instances from the training set, but keegisg@adnore rules until all positive instances
are covered. However, at each step FAQR will cover at leastpasitive instance that was not covered
before. Rizzy SEEDSEARCH, on the other hand, fits with in the FCF framework, and thudéments
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the fuzzy set covering methodology. At each rule inductitap ¢he positive instances covered by the
induced rule are removed. ThusyEzy SEEDSEARCH follows a separate-and-conquer strategy, and
each rule is biased to cover as many positive instances wethaf “still not covered” positive instances.
FAQR does not have this bias. FAQR will thus prefer rule oneraule two if rule one covers more
positive instances than rule two, regardless of whethelptsitive instances are already covered by
other rules. For example, if rule one covers 20 positiveaimsts of which one is the positive seed and
the others are already covered, and rule two covers 15 ymwsitstances of which one is the positive
seed and the others were not covered before, FAQR will praferone. This can result in much more
complex rule sets, containing many rules that differ in calfigw terms and covers overlapping sets of
instances.

(2) FAQR’s description language only allows conjunctioridimguistic terms, i.e. it does not allow
internal disjunction. In contrast,Uzzy SEEDSEARCH induces a rule set where the antecedent of each
rule is a description in FuzzyAL.

(3) Fuzzy SEEDSEARCH usesexclusionas specialization operator whereas FAQR wg@gendas spe-
cialization operator. This has important implicationsuzEy SEEDSEARCH performs a systematic
search from top to bottom in its description lattice. The taper contains thengcthat coversall
instances. By excluding terms from descriptionszEy SEEDSEARCH restricts the descriptions more
and more such that they cover fewer and fewer instances. ddretsis then guided to cover progres-
sively fewer negative instances while still covering as ynpositive instances as possible. FAQR starts
its search with a set of conjunctions, each consisting of onk term, such that the conjunctions cover
at least one positive instance. The conjunctions are thariated to cover fewer and fewer instances
by adding more and more terms to them. The search is guidesstdtiin a set of conjunctions that
cover none of the negative instances while still coverirggpbsitive seeds. Thus, during the search pro-
cess lzzy SEEDSEARCH is biased toward high positive coverage and low negativerame, whereas
FAQR is guided only toward low negative coverage.

(4) Due to the difference in Bzzy SEEDSEARCH and FAQR'’s specialization operators they choose
seeds in different ways. The terms chosen for exclusion byzFSEEDSEARCH should cover the
negative seed and not the positive seed. After the exclusdiarterm, the specialization will still cover
the positive seed and may now not cover the negative seeaggr It will (not) cover the negative
seed if (no more) terms that have the negative seed in thigingons remain in the internal disjunction.
The terms chosen by FAQR to add to the current conjunctionsldttover the positive seed and not
the negative seed. Thus, the specializations still coveptsitive seed, but will definitely not cover the
negative seed.

(5) Fuzzy SEEDSEARCH as specialization model fits in the FCF framework. As suabz v SEED-

SEARCH inherits all the beneficial characteristics of FCF’s topelay Some of the more important
inherited characteristics are search efficiency measeady stopping and rule pre-pruning criteria,
beam search, and an easily interchangeable descriptituraéea function. We showed that the evalua-
tion function is very important for the learning procesg] éns also very important to note that different
evaluation functions are suited to different learning feots. The Accuracy evaluation function, for ex-
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ample, is well suited to deal with noisy data and incompletsain knowledge, but is not the optimal
choice when dealing with the problem of small disjuncts. Fhezy Laplace anés-Content evaluation
functions, on the other hand, are better positioned to dihlthe problem of small disjuncts. However,
they do not perform as well as the Accuracy function in thespnee of noise or incomplete domain
knowledge, especially with respect to the size of the rule iseluced.

(6) FAQR and kizzy SEEDSEARCH both perform a beam search. HoweverjzEY SEEDSEARCH
performs a systematic top-to-bottom general-to-specfarch of the description lattice, moving down
one layer at a time. During each step the next layer of therigiéisn lattice is considered, and up to
a user adjustable number of conjunctions in this layer aneigeéed and tested. The best conjunction
found during the whole search is stored in the parameteiconj. FAQR maintains a set of current
conjunctions which may be specialized. This set may growoug tiser adjustable size—if it grows
bigger than this size, the worst conjunctions are removethote specialized conjunctions are worse
than more general conjunctions these are removed from thargkare in fact again specialized during
the next iteration of the search process. Thus, FAQR does igeineral perform a systematic top-down
search, and may again jump back up to more general conjmsctiche beam search is also not done in
a systematic way, and may include conjunctions at diffelergls of generality.

(7) FAQR has two pruning steps. Conjunctions that are subduny other conjunctions and all con-
junctions worse than the user defined number of best corjunscare pruned from the searchuzzy-
SEEDSEARCH also employs a fixed beam width, but also has further pruniitgria. Since a general-
to-specific search is performedyEzy BEXA can determine whether further specialization can improve
a conjunction to such a degree that it can replace the cupesitconjunction. If this is not the case,
the conjunction is removed from the search. For exampléeitiest conjunction found thus far covers
20 positive and no negative instances, all conjunctionsdbner less than 20 positive instances can be
removed from the search process. Conjunctions are alsoveospecialised. During specialization a
conjunction is not simply specialized by excluding fromlittae terms that cover the negative seed and
not the positive seed. If excluding a term has no benefit, ribisexcluded, resulting in Fzzy SEED-
SEARCH's bias towards maximal generality and maximal classificaticcuracy. Duplicate specializa-
tions are removed from the search for efficiency reasons.

(8) The final difference we discuss here is not about the beasthod but about the semantic interpre-
tation of a rule. The interpretation of Waegjal states that the membership degree of an instance to the
rule consequent can be set equal to the membership degtee ioktance to the rule antecedent. Thus,
the degree to which an instance matches the antecedent cesed¢o predict the class membership of
the instance. Our interpretation differs in that we takertteambership degree of an instance to a rule
as thecertainty or confidencethat the rule fires. The certainty or degree to which a rules fitlges not
predict the membership of the instance to the rule conségmairspecifies that the instance membership
to the rule consequent lies within a certain range—the ramge |. If «. was not set, then the instance
membership to the concept is simply greater than zero. Fample, ifa. = 0.8 and we have the rule
IF X =21 Vxy THENY, and an instancematches the antecedent to degdes, our interpretation is
that we are rather certain that the rule fires—we are cenaiegred.75 that the instance belongs to the
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Table 9.8: The FuzzCoNRI specialization model.

INPUT: sets of positive instancd3, negative instancey,
and conjunctions to specialize
OUTPUT: set of specializationS
S=0
FOR each conjunction € C DO
remove uninteresting terms frormusable
FOR each ternl, € c.usable DO
cnew = specialize ¢)
IF cnew € S THEN CONTINUE
cnew. X p = computeX p(cnew)
IF cnew.Xp = () THEN CONTINUE
cnew. Xy = computeX y (cnew)
S = SU{cnew}
END FOR
END FOR
RETURNS

concept with membership in the ranfes, 1]. We do not believe that the membership of an instance to
the antecedent can be used to predict the membership ofstamae to the concept with an acceptable
degree of accuracy without any form of (likely non-lineagrisformation of the input domain to the
output domain, e.g. like that performed by a neural network.

9.5 FuzzCoNRI as Specialization Model

FuzzConNRI is an acronym for Fuzzy Conjunctive Rule Inducer, and Wastain subject of Chapt&r
Two basic factors distinguish the algorithmeZzCoNRI and FuzzyBEXA, their respective descrip-
tion languages and specialization operatongszECONRI employs FuzzyCAL as description language
and performs a general-to-specific search by uappendas it specialization operator. In the remainder
of this section the term #zzCoNRI is used to refer to the specialization model implementigz-
CoNRI’s conjunction specialization strategy.

FuzzConRI follows the same strategy as FEM, and thus the same dlgo&s in Tabl®.6can be used,
but with different operations associated with the différsmbroutines. BzzCoNRI also associates a
setusable with each conjunction. This set contains the set of usabigulstic terms, i.e. the set of terms
that may still be used by the specialization operator. Tele set of themgccontains all terms—the
same as for FEM. Note however, for FuzzyAl(mgc) contains all terms anchgc.usable = D(mgc),
while D(mgc) = 0 in FuzzyCAL.

The measure removing “uninteresting” terms from each cwtjan’s usable set differs between FEM
and FuzzCoNRI. FuzzCoNRI’'s measure consists of two tests, an efficiency measura pretpruning
step. The efficiency measure tests whether the interseafithre positive extension of the conjunction
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with the extension of a usable linguistic tedims empty, thus itX p(c) N Xp(L) = 0. If the intersection

is empty, appending this linguistic term will create a newjoaction with an empty positive extension,
which creates unnecessary work. By removing these linguestms from the conjunction’s usable set,
such conjunctions are never created. The second test psewesr-specialisation. If the union of the
negative extensions of the conjunctiomnd the term to appenfl is equal to the negative extension of
the term, i.e. itXx(c) U Xn (L) = Xn(L), then appending the term will not improve the performance
of the conjunction. Since the append operator specialiaefgioctions, no new (previously not covered)
instances can be covered, i.e. positive instances can enlynfie uncovered. However, all the negative
instances covered by the conjunction are also covered bindngstic term, and therefore no negatives
will become uncovered. Since this overspecialisation gesirable, we do not create such conjunctions.

Specialization proceeds via the specialization opergipendi.e. cnew = ¢ A L whereL € c.usable.
The computation of the positive and negative extension pgaialization can of course be implemented
by considering the training set and matching each instaiittetie new conjunction. The instances that
contain the concept belong to the positive extension of pieeialization and those that do not belong
to its negative extension. The calculation of the positive aegative extension can be done much more
efficiently by making use of the information of the parentgemsions. The positive extension of the
specialization can be efficiently computed by intersectibthe positive extensions df and the parent
conjunction, i.e. Xp(cnew) = Xp(c) N Xp(L). This computation does not require any matching,
which is the computationally expensive part of this sintisnethod. The negative extension follows
dually. The test for an empty positive extensioncabw as in FEM is not required in BzzCoNRl,
since the efficiency test prevents the creation of such oatipns.

Figure 9.2 shows the FuzzyCAL description lattice for the problem ibl€0.5 where we have set
a. = 0.6 anda, = 0.5. The nodes contain the same information as the nodes iné=gylir The
top element is thengg and can be expanded into five second layer nodes. The cémdidizzcedents
generated by zzCoNRI for beam search with beam width two are marked by circledespand the
bold circled nodes are the best candidate antecedentshtesgecialization step. In the second layer, the
conjunctions|y] and[b] obtained the highest (and equal) evaluation scores. Apthiig any one of the
two conjunctions could be picked at random if no beam seaih performed. The solid bold edges
below [y] and[b] show the paths that are picked fetamwidth = 2. The best conjunction returned is
[y, 2], i.e. the expressioB = y A z. This conjunction covers all positive instances and no tieggm The
middle layer halts the search upon finding this conjunctsinge it is certain that there exists no other
conjunction that can outperform it. For example, the codijiam [b][y, =], which is a specialization of
[y, z] and has the same evaluation|gs:], is never generated.

9.6 FuzzyPRISM

PRISM, a classical set covering algorithm for learning madtules, was first introduced by Cendrowska
[Cendrowskal987. Wang et al[1999 proposed a fuzzy version of this algorithm based on theyfuzz
information gain, and the algorithm is shown in TaBl®. It proceeds by forming an initially empty
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Figure 9.2: The lattice of FuzzyCAL descriptions for the toy problem wble9.5.

conjunction, which is semantically equivalent TRUE. It then computes the fuzzy information gain
I(dy|s;) for the concepby, and each linguistic terms;. The fuzzy information gain is calculated as,
H ()

where H (§;) and H (d|s;) are the antecedent and consequent fuzzy information, ctaglg, and are

I(0k[si) = logs( (9.4)

defined as, s ) )
H(5]s;) = j=1 M6, \€5)T Hs;\Ej 95
ko) = s ) ©9
and .
H() = 5 s () (9.6)
j=1

wherer is a t-norm operator (like minimumy, the size of the training set, and, (e;) the membership
degree to the concepy, of e, the ;! instance in the training set. After calculating the infotima
gain for all linguistic terms, the term leading to maximunfoimation gain is appended to the current
conjunctionC'. The fuzzy strength of the rule is then computed using theyf@ayes function,
> iy te(e)Ths, (e5)

Z;‘L:1 e (e;)
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Table 9.9: The fuzzy inductive algorithm for learning modular rules.
Initiate a null complexC
2  Measure the fuzzy information gaif(J|s;), of the classificatior;, for each
possible linguistic terns;
Choose the linguistic tersy for which I(d|s;) is maximum
Adds; to C, C = C A s;, and calculate3 (x| C')
5 If B(6x|C) > B, go to step 6, otherwise create a new training set in which eac
instance is covered to degradyy the terms;, and go to step 2.
Form the rule “IFC' THEN 6"
Remove the instances covered to degrdxy the rule from the original training set.
8  Repeat steps 1 to 7 until all instances belonging to the éjais the original
training set have been removed.

=

BN V]

~N O

If the rule evaluation is larger than a predefined threstilé new rule is formed, and all instances
covered by the rule are removed from the original trainirtg If&ncovered instances of clagsremain

in the training set, the procedure is repeated to induceeierale. If the rule evaluation is below the
thresholds, the instances in the current training set covered by thyiistic term is used to form a new
training set, and the algorithm continues to add more listiiterms to the conjunction.

We now propose a novel specialization model for FCF, calledZy PRISM. FuzzyPRISM makes
use of the same information theoretic heuristic as the glgorby Wanget al (Table 9.9). However,

FuzzyPRISM is a specialization model within FCF, and thus emplitysfuzzy set covering rule
induction methodology. BzzyPRISM’s description language is FuzzyCAL, its special@abperator
is thusappend Contrary to Wang’s algorithm, FCF decouples conjunctigfinement from conjunction
evaluation and other learning heuristics.

Table9.10shows the BzzyPRISM specialization model. ClearlyuEzyPRISM and lozzCoNRI
are strongly related. However, instead of generating asiide (useful) specializationspgzy PRISM
uses the fuzzy information as a heuristic to select thd'¢etf linguistic terms to append. The term
selection routine SelectTermsToExcludéunctions as follows. For each remaining linguistic tefm
in the setc.usable the fuzzy information gain is computed. To allow a beam deafcthe hypothesis
space, BzzYPRISM allows up to deamwidth number of specializations ii'E. The remainder of
the algorithm is the same awEzCONRI.

The early stopping criterion proposed by Wasigal amounts to search until the evaluation function
reaches a predefined threshold. It may be difficult to judgatwitreshold to use in general, and the
authors gave no method to determine its value. FCF can engglogral stopping criteria, of which
search until reaching some threshold may serve as one exgmeldiscussed several others). More
importantly, Wang's algorithndoes notapply the fuzzy set covering methodology, sirakinstances
covered by a rule are removed after its addition to the rulevdle the set covering approach dictates
that after the induction of each individual rule, the pesitinstances covered by the rule are removed
from the training set, but the negative instances retaisee $ectiol.2and Def3.2.1). In contrast, FCF
benefits from the separate-and-conquer search of the fexzpgering methodology, since the retention
of all negative instances in the training set means that nmstances are available as counter examples
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Table 9.10: The FuzzyPRISM specialization model.
INPUT: sets of positive instance3, negative instancey’,
and conjunctions to specialize
OUTPUT: set of specializationS
S=10
FOR each conjunction e C DO
remove uninteresting terms frommusable
TE = SelectTermsToExclude)
FOR each ternl, € TE DO
cnew = specialize ¢)
IF cnew € S THEN CONTINUE
cnew. X p = computeX p(cnew)
cnew. Xy = computeX i (cnew)
S = SU{cnew}
END FOR
END FOR
RETURNS

SelectTermsToExclude(c):
FOR each ternl € c.usable DO

Compute the information gaif(concept|L)
RETURN set containingeamwidth best terms

during the induction of subsequent rules, thereby impmptive accuracy of these rules. However, of all
the algorithms surveyed, Wang's algorithm is the most eelad our work.

In Figure9.2, the path followed by Bzzy PRISM for greedy search is indicated by dashed lines. In the
first iteration the linguistic terng had the highest andthe second highest information gain. For greedy
search, BzzYPRISM pickedy to specialize further, which was a good choice. For the cuarijan

[y], the linguistic termb had the highest and the second highest information gain. The evaluation of
conjunction(][y, z] is worse than that db|[y], and thus with greedy searcluEzy PRISM only selects
the second best conjunction in the third layer of the lattibe the next step the heuristic seemed to
have failed. BzzYPRISM selected to appendto [b][y] as opposed to appending Since[b][y] has

a higher evaluation thafu, b|[y] the best conjunction returned for greedy search wil[#g/]. This
conjunction covers all positive instances, but also a regatstance. However, if a beam search of
width two is performed, BzzyPRISM follows the same paths asECoNRI, i.e. it generates all
the bold nodes. It therefore also finfls z], the best conjunction in the entire lattice. For this search
(beamwidth = 2) FuzzYPRISM thus only generated five conjunctions as opposed tdhilteen
conjunctions that 6zzCoNRI generated. Since at mosthaamwidth number of conjunctions are
specialized in at mosieamwidth number of ways, BzzyPRISM generates at mostamwidth?
specializations per layer of the lattice.
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9.7 Discussion

In the previous sections we presented four specializatiodets. Each specialization model has its
own strengths and weaknesses, and the problem domain etditeliwhich specialization model is best
suited. The first and most important distinguishing chaméstic of the specialization models is their re-
spective description languagesuZzy SEEDSEARCH and FEM use FuzzyAL as description language,
and FuzzyPRISM and kvzzCoNRI use FuzzyCAL. The intersection of semantically equintige-
scriptions in FuzzyAL and FuzzyCAL is not empty, but at thensaime relatively small compared to
the size of the lattice. There are many antecedents (andules that can be formed in FuzzyAL but
cannot be formed in FuzzyCAL, and vice versa. FuzzyAL desoms can contain conjuncts such as
temp = mild V hot, whereas FuzzyCAL can contain conjuncts suchieasp = mild A hot. For
example, for the toy problem with,. = 0.6 there does not exist a conjunction in FuzzyAL that covers
all positive and no negative instances, but the inversesis @bie fora. = 0.7. Thus, there are some
problems that are better described by FuzzyCAL than Fuzzg@d. vice versa.

A most generatonjunctin FuzzyAL is a conjunct from which no linguistic terms wereckided, and

a most general conjunct in FuzzyCAL is a conjunct to whicherons were appended (i.¢]). Most
general conjuncts in both FuzzyCAL and FuzzyAL cover tharernhstance space. A most specific
conjunct in FuzzyAL is a conjunct from which the completaneset was excluded, and is equivalent
to FALSE. A most specific conjunction in FuzzyCAL is a conjunct to whibe complete term set was
appended, and isot necessarilyequivalent ta~ALSE. Consider for example instance five in TaBl&
and the conjunciB = x A B = y A B = z|. If a, < 0.3 the conjunct, although being most specific,
covers the instance. Such conjunctions may thereforeostgjenerated. If a general to specific search is
desired, the specialization operator is dependent on therigéon language, e.g. FuzzyCAL descrip-
tions can only be specialized usiagpend while FuzzyAL descriptions can only be specialized using
exclude The specialization model may, however, use the speci@mizaperator in different ways, e.g.
a specialization model may choose to exclude all but one fiemm a conjunct in a single specialization
step.

FuzzyAL describes inherently more general conditions thaazyCAL. The second layer of the Fuzzy-
CAL description lattice contains all descriptions with agle term appended. The semantically equiv-
alent descriptions in FuzzyAL is located in the layer just\abthe most specific conjunctidfAL SE.
Some conjunctions in the third and lower layers in FuzzyCA&kdibe conditions that are more specific
than any conjunction in FuzzyAL (except fBALSE), since these conjunctions require that the mem-
bership functions overlap. The rate at which instances xcki@ed during search is also much higher
for FuzzyCAL than for FuzzyAL. By moving from theagcto the next layer, FuzzyCAL requires that
an instance belongs to a specific linguistic term, while iAtzallows the instance to belong to any
linguistic term remaining in the conjunct. Clearly, in gesdanany more instances will be matched by
conjunctions in the second layer of the FuzzyAL lattice thretihe FuzzyCAL lattice. The exclusion rate
is accelerated even more as more than one term from the saiakleas appended to FuzzyCAL con-
junctions. In this case, only instances that fall in the@agif overlapping membership functions remain
covered. Thus, although more descriptions from the Fuzzy@&ice could potentially be generated,
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Table 9.11: Specialization model properties.

Complete Search Heuristic Search
FuzzyAL FEM Fuzzy SEEDSEARCH
FuzzyCAL FuzzConNRI FuzzyPRISM

in practice less descriptions in FuzzyCAL are generatece ddnjunctive expressions quickly restrict

the extensions such that only a few linguistic terms fronrmglsiterm set are typically appended. This
of course will depend entirely on the membership functidhihere is no overlap between membership
functions, only a single linguistic term per term set will fygpended to conjunctions. Thus, one indi-
cation of which description language to use is the amountveflap between membership functions.
If there is no overlap (or very little) between membershipdiions, conjunctions with non-empty ex-

tensions will have semantically equivalent expressionsunzyAL, and FuzzyAL should be preferred

to enlarge the hypothesis space. In some cases howeveassiitigrregions may be exactly those where
membership functions overlap. These conditions @aly be described with FuzzyCAL, and an algo-

rithm using FuzzyCAL should thus be used in such cases.

The description lattice provides a visual method of congmaribetween different specialization models.
By marking the specialization paths followed through theatiption lattice the specific behaviour of
the specialization model becomes clear. FEM, for exampéarly performs the most comprehensive
search of the lattice of FuzzyAL conjunction descriptiobgpending on the size of the beam width, it
expands all conjunctions for which the possibility to impgeexists. It is therefore more likely to find
good descriptions than an algorithm which expands onlyecteh of conjunctions. FEM is also guar-
anteed to find the most general consistent FuzzyAL conjonsti Fuzzy SEEDSEARCH and FEM are
clearly related. However, whereas FEM specializes usihg@ahs inc.usable, FUzzY SEEDSEARCH
specializes using only a subset of the terms, employing adtieuto guide its search. The heuristic
entails comparing seed positive and negative instanceseladting terms that differentiate them. The
quality of the outcome is dependent on the validity of theristic. While FEM may seem to require
much search, FCF makes use of the partial order to identifjucations that cannot be refined to form
specializations that can outperform the best conjunctod,therefore performs no unnecessary search.
Even with a moderate beam width FEM’s search requirememd®an prohibitive.

FuzzCoNRI and FuzzyPRISM both use FuzzyCAL as description languagezECONRI performs

a comprehensive search of the hypothesis space, and genaltatseful specializations.ugzy PRISM

on the other hand use a heuristic to decide which specializato generate. Using the fuzzy information
gain, it ranks linguistic terms and uses the beam width legtiistic terms to specialize a conjunction.
FuzzCoNRI appends a single linguistic term per specialization giegll conjunctions, and is therefore
guaranteed to find most general consistent conjunctiongz¥PRISM only appends linguistic terms
to selected conjunctions, and is therefore not guarantefid most general consistent solutions. In the
example it was shown that with a beam width of onezECONRI generated many more conjunctions,
but found the best result, whileuzzy PRISM did not find an optimum result. With a beam width of
two FuzzyPRISM still generated very few conjunctions, and also fotlvedoptimum result.
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It is clear that FEM and 6zzCoNRI are counterparts of each other, performing a comprebesyis-
tematic search of the hypothesis space, whileF SEEDSEARCH and Fuzzy PRISM both use heuris-
tics to guide their search. U=zzCoNRI and FuzzyPRISM employ the same language bias, while
FuzzConNRI and FEM employ the same search bias, and FEM aviziF SEEDSEARCH employ the
same language bias, whileJEzy SEEDSEARCH and FuzzYPRISM both perform a heuristic search. If
search time is not a limitation, and an infinite beam searébasible, FEM and 6zzCoNRI are both
guaranteed to find the optimum solution (according to thdéueti@n function) at each rule induction
step, while kuzzy SEEDSEARCH and Fuzzy PRISM are not. In practice, a large beam search, for ex-
ample beam width fifty, is a good approximation of an infiniéaim width. While &zzy SEEDSEARCH

and FuzzyPRISM are not guaranteed to find most general consistentiectipns, they are more likely

to do so with a larger beam width.UEzY SEEDSEARCH uses a heuristic that may involve a random el-
ement, the picking of seed instances, depending on the imgpitation of the seed picking mechanism.
Thus, while the other specialization models will alwaysiretthe same result for the same parameters,
Fuzzy SEEDSEARCH will not—even with an infinite beam width. For the same beardthi Fuzzy-
PRISM performs far less search than the other specializatiodels, since it will only append a limited
number peamwidth?) of terms. Thus, a larger beam width should be used withZv PRISM to
ensure a reasonable number of hypotheses are explored tidrespecialization models perform more
search as the size of the lattice increases (i.e. with mogeiltic terms in the problem domain).

Depending on the ability of the conjunction evaluation fime to indicate good paths in the lattice,
FEM and FuzzConNRI will always find the most accurate and most general corijons. The price
paid for this ability is that a larger part of the search spacavestigated. Both BzzyPRISM and
Fuzzy SEEDSEARCH try to limit this search by restricting the search in some neanin fact, any other
specialization model using FuzzyAL or FuzzyCAL will haveréstrict the search in some way to differ-
entiate them from FEM andUzzCoNRI, respectively. The inductive bias of all specializatimodels
described here include a general-to-specific beam seaoieat. zzyPRISM adds the assumption
that good conjunctions will contain linguistic terms witlgh information gain. BzzYy SEEDSEARCH
adds the assumption that good conjunctions contain mayai$tic terms that match positive instances
but not negative instances. Although the specializatiodetsodiffer with respect to search and language
bias they all fit within the general set covering frameworkHthus provides a unifying framework for
fuzzy set covering algorithms, regardless of their desioridanguage or specific conjunction refinement
mechanism.

9.8 Empirical Comparison

Table9.12shows the classification accuracy obtained by the diffespatialization models on six data
sets retrieved from the UCI repositorBlake and Merz1998. The data sets were fuzzified by using
a clustering technique to obtain centres for bell-shapenhineeship functions. The same membership
functions were used for all experiments. The results wetaiodd from 10-fold cross validation runs.
FCF using FEM obtained the best classification accuracy enage, with zzCoNRI being sec-

140



Table 9.12: The classification accuracy obtained using different sizeition models.

FuzzyBexa FuzzySeedSearch FuzzConRI FuzzyPRISM
Databast Mear StdDe\ Mear StdDe\ Mear StdDe\ Mear StdDe\
BreastCancer 73.02 4.77 64.88 5.74 72.33 4.8B 70.58 5p0
Colic 85.60 4.30 84.78 5.25 85.87 5.31 75.82 6.8B
Credit-A 85.80 6.22 85.22 6.44 85.65 6.35 85.51 6.0
Hepatitis 81.29 8.71 81.94 7.48 84.52 7.1d 78.71 8.49
Iris 97.14 4.99 92.14 5.27 93.57 6.25 95.71 4.9
Lymph 83.78 12.42 80.41 13.31 76.35 12.7 76.35 13.15
Average 84.4¢ 6.9C 81.5¢ 7.28 83.0¢ 7.1C [r 80.4¢ 7.4¢€

Table 9.13: The search effort required by different specialization eled

FuzzyBexa FuzzySeedSearch FuzzConRI FuzzyPRISM
Databast Mear StdDe\ Mear StdDe\ Mear StdDe\ Mear StdDey
BreastCancer 4428.0 482.3 565.6 85.4 1324.4 244.6 25.6 9.2
Colic 11208.3 882.3 2353.8 248. 10365.5 52717 263.1 127
Credit-A 14198.1 856.5 2582.1 381. 9070.1 6411 1128.9 73.0
Hepatitis 2648.2 148.3 700.7 65.8 6411.3 308)p 108.7 146
Iris 283.6 34.3 119.9 30.0 283.9 26.2 47.4 8.9
Lymph 2973.6 254.4 790.3 73.0 6580.7 377.p 2441 38|8
Average 5956.6.  443.0: 1185.4( 147.3) 5672.6' 354.6: 302.97 26.3¢

ond best. In a few domains, for example for the hepatitis dataFuzzCoNRI outperformed FEM.
Fuzzy SEEDSEARCH and FuzzYPRISM both obtained slightly worse classification accurasults
than FuzzyBEXA and FuzzCONRI, respectively.

Table9.13shows the search effort measured by the number of candigiptebieses generated for the
different specialization models. The good classificationusacy obtained by FEM clearly comes at
the cost of increased search effortu#zy SEEDSEARCH, for example, required roughly six times less
search. BzzCoNRI required slightly less search than FEM. The respectiaecbeeffort results are
another confirmation that some domains are more suited oyl than to FuzzyAL, and vice versa.
For the BreastCancer domain, for examplezECoNRI required roughly four times less search than
FEM, while for the Lymph Data FEM required roughly half thesgh effort compared todzzCoNRI.
Finally, Fuzzy PRISM required extremely little search—on average aboehtwtimes fewer hypothe-
ses were generated by EzyPRISM than by FEM. This castsuzzy PRISM’s relatively bad classi-
fication accuracy in a new light. In very high dimensional @éoms FuzzyPRISM may be a sensible
choice as specialization model.

9.9 Partial Covering
One may ask why are the setsand V kept crisp—should a fuzzy set covering not use fuzzy sets for

everything, including its internal representations sushPaand N? (We could call such a covering
process “partial covering” or “weighted covering”.) Thesarer is not simply yes or no, and it is also
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not obvious how to fuzzifyP and N. First, we only need to investigate as a fuzzy set, since the
set covering approach does not remove elements ffor®ne approach is to assign to each instance a
membership (or weight) and that is initialize to one. Aftauée antecedent was found, the instances
covered by it is not removed from the training set entirely, their memberships t& are decreased.
The question is, by how much? We briefly investigate threeagmhes. The first approach is to decrease
the membership by the degree with which the instance matitieeaintecedent, that is,

pp (i)' = pp(D) = i) (9.8)

wherepp (i)t is the membership ofto P at timet, andup(i)? = 1. Itis interesting to look at alpha
leveling in this case—should alpha-leveling also be appier, i.e. should instance memberships to
P be set to zero if they fall below,? If we do apply alpha leveling, a®, value abové).5 would mean
that covered instances will always be removed fiBrantirely, and similarly, the larger, is, the higher

the probability to remove instances entirely. The nextasarising is how much credit the evaluation
function should assign to a subsequent antecedent if itteatostances that were matched before. One
option is to use the instance membershipPtoup(i), as a weight, and multiply the evaluation with
the instance membership. The second partial covering appris to remove from P by a fraction
determined by.. (i), that is,

pp (i) = (1= pe(i))pp (i) (9.9)

The third approach is simply to decreasg(i) by a constant factor each tiniés covered. In this case,

pp (i) = yup(i) ! (9.10)

wherey € (0,1). This approach has the complication that instances are fidlyeremoved fromP,
since their membership B never reaches zero. Thus, in this case we are forced to apply kveling.

It is clear that fuzzifyingP is not a simple extension. Thus, it is important to ask “whatie expect

to gain from partial covering?” The two goals of a rule leaghalgorithm are to induce accurate rule
sets, and to keep these simple and comprehensible. Pani&iing leaves positive instances that were
already covered in the training set, while giving them lespleasis by reducing their contribution to
the evaluation of a conjunction. Thus, partial covering reagily lead to the induction of many, largely
overlapping rules. If the positive instances were all reatbfrom the training set, the learning algorithm
would be more likely to explore other disjoint sections of thypothesis space. Thus, partial covering
may yield slightly higher accuracy in some cases, but vetgrolead to the induction of slightly more
accurate, but much larger rule sets.

We implemented the different strategies described abowe. third strategy of decreasing-(i) by a
constant factor led to the induction of unacceptably large sets, where the same rule was often in-
duced multiple times. The second strategy of redugipgi) by 1..(7) led to smaller rule sets than the
first method. However, the induced rule sets were still latgan using a crisg?. The first method
described by Eq9.10 yielded very similar results than the second method. Bhitb4and9.15com-

pare respectively classification accuracy and rule setrsizelts on different data sets for the normal
(crisp P) implementation of BzzyBEXA and the second and third approaches to partial covering de-
scribed above. In this experiment we used the Accuracy atiatufunction,«, = 0.2, beamwidth= 1,
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Table 9.14: The classification accuracy for normal and partial covesinategies.

Method 2 Method 1 Normal
Databast¢ Mear StdDey Mear StdDe\ Mear StdDe
anneal 93.99 3.07 93.99 3.07 93.99 3.0]
colic 85.05 5.13 85.05 5.13 84.51 4.33
credit-a 85.22 6.58 85.22 6.58 84.64 6.34
diabetes 72.92 3.41 72.79 3.43 72.14 4.02
hepatitis 83.87 12.17 83.87 12.17 84.52 9.8
iris 95.00 5.88 95.00 5.88 95.00 5.88
labor 87.72 16.54 87.72 16.54 87.72 16.5§
lymph 82.43 12.25 82.43 12.25 78.38 12.8p
85.71 8.1% 85.7¢ 8.1% 85.11 7.8¢€

Table 9.15: The size of the rule sets for normal and partial coveringetyias.

Method 2 Method 1 Normal

Database¢ Mear StdDey Mear StdDe\ Mear StdDe

anneal 31.70 1.89 31.70 1.89 19.20 0.74
colic 13.50 1.51 13.50 1.51 5.10 0.99
credit-a 8.90 1.10 8.90 1.10 5.70 1.34
diabetes 7.80 3.03 11.00 5.96 4.80 1.44
hepatitis 8.50 1.18 8.60 0.97 4.70 0.67
iris 5.00 0.00 5.00 0.00 4.00 0.00
labor 6.80 1.32 6.80 1.32 3.90 0.57
lymph 13.30 1.34 13.30 1.34 5.90 1.20

11.9¢ 1.42 12.3¢ 1.7¢ 6.6¢€ 0.8¢

ando, = 2 for all data sets. As expected, partial covering obtaingghsy higher classification accu-
racy compared to the normal method, with the two partial cogeapproaches performing on average
very similarly with respect to classification accuracy. Hwer, the normal method induced substantially
smaller rule sets, with the partial methods obtaining omaye twice as many rules. Method 2 induced
on average slightly smaller rule sets than method 1.

It is also important to take into account the impact on thecfeaffort of partial covering. Tabl8.16
compares the search effort in terms of the number of cornpmetexplored. Method 2 required on
average in double the search effort of the normal method,nagithod 1 resulted in a tripling of the
normal search effort. In addition the computation of eaep $or partial covering is more expensive,
since it requires more floating point operations compar¢ddmormal method which removes instances
without extra computation.

Our primary goal in this work is to investigate the inductmicomprehensibléuzzy rule sets. For this
goal, partial covering is not an attractive proposition.wéger, when high accuracy is more important
than comprehensibility (and rule sets as a descriptionuageg is desired), partial covering should be
considered.
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Table 9.16: The search effort for normal and partial covering strategie

Method 2 Method 1 Normal
Databast Mear StdDey Mear StdDe\ Mear StdDe
anneal 26520 1436 28700 2193 14471 744
colic 23617 1399 25903 1528 12501 845
credit-a 31771 3051 49658 6882 18317 9771
diabetes 36426 1838 79972 4739 8582 57]
hepatitis 5530 570 5899 743 3164 184
iris 353 21 498 64 234 19
labor 1174 200 1174 200 707 100
lymph 6214 685 6214 685 2970 275
16451 115(C 2475; 212¢ 761¢ 46E

9.10 Conclusion

FuzzyBEXA is the first algorithm that made use of the set covering metlogy for the induction of
fuzzy classification rules. Set covering has proven to béepty suitable for the induction of highly
accurate and interpretable fuzzy rule sets. In this chapéeproposed the general fuzzy set covering
framework, FCF. FCF consists of two top layers and a bottoyarlamplementing a specialization
model. The top layers implement the fuzzy set covering nuitogy, and also apply various search
heuristics for improving the performance of the framewdfliCF is designed to allow the implementa-
tion of various specialization models with different déistion languages and specialization behaviour.
Since different covering algorithms (both fuzzy and criap)fit within the same framework, they can
easily be characterized and compared. In the remaindeedafisisertation we use the term FCF to refer
to the collection of fuzzy set covering algorithms that fithim the framework.

We also proposed four specializations models for the fraonlkevithereby bringing the total number of
fuzzy set covering algorithms proposed in this dissenatiiofour. Fuzzy SEEDSEARCH and FEM both
use FuzzyAL as description language, and we have shown Efdtif a more general algorithm per-
forming a more thorough search of its description spacelewhizzy SEEDSEARCH incorporates seed
instances to guide its searchuZYPRISM and krzzCoNRI’'s description language is FuzzyCDL.
FuzzCoNRI performs a more thorough search whileZzzy PRISM employs the fuzzy information
gain to decide how to specialize. We compared the diffengetialization models by tracing the con-
junctions generated during specialization in the latticeomcept descriptions of the respective descrip-
tion languages. Finally, we presented a comparison of fferelnt specialization models with respect to
classification accuracy and search effort which substaatithe expectation that the more general and
thorough algorithms would obtain better classificationuaacy, require more search.
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CHAPTER10

Simultaneous Concept Learning

10.1 Introduction

Learning multiple concepts generally follows one of twatdgies. (1) For a concept (or class) in the
data set, a set of disjunctive rules are induced by repeé#tmdparning procedure for each concept in
turn. (2) Multiple concepts are learned by finding a goodsifastion rule for any one of the concepts,
and assigning this class as consequent of the rule. Thatlite; e.g. Mitchell, 1997, offers no prefer-
ence for one strategy over the other. We call the two stragefgir this procesiterated concept learning
(learning one class at a time, iterated over all classes3iamaltaneous concept learnifgimultaneously
considering all classes by learning one rule at a time forcass, repeated until all data are covered),
and abbreviate them as ICL and SCL, respectively. Examfilakgorithms following the ICL strategy
are FuzzyBEXA, BEXA, and Webb's rule learner, whereas C4.5, CN2, and Neural dtksnall follow
the SCL strategy (loete and van Zyl2006 Webh 1993 Quinlan 1996k Clark and Niblett 1989.
Fuzzy classification rules can be extracted from fuzzy dacirees and fuzzy neural networks, and
although learning is done using SCL, unordered rule setst@gned Yuan and Shaw1995 Kasaboy
20014.

FuzzyBEXA is the first algorithm to use set covering for the inductiofuaizy classification rules. The
rule sets induced by@zzYBEXA are unordered, and rules can be evaluated in any order. Tegt®f
our knowledge, no work has been done on the induction of eddrzzy rule sets (also called decision
lists), using any induction method. Here we mean that thadtidn method explicitly uses the order
of rule induction, and not the ordering or prioritising of anordered rule set after rule induction. The
semantics of an ordered rule set is thus different from thanhainordered rule set. In an ordered rule
set, as opposed to an unordered rule set, an instance is atthed against a rule (and the rule can thus
only fire) if all previous rules did not fire. Thus, a singleeulile cannot be seen in isolation, and the
antecedents of previous rules must also be considered.

In this chapter we introduceUdzzy BEXAII, the first fuzzy rule induction algorithm that inductszy
decision lists FuzzyBEXAIl makes use of SCL for its induction process. This inductprocess
produces an ordered rule set, and we show that in many casesdthodology produces superior results
compared to ICL, i.e. on average better classification perdnce, radically smaller rule sets, and also
significantly less search effort. We also introduce the yu&zcuracy function for rule evaluation in

145



Table 10.1: FuzzyBEXxAll's CoverConcepts procedure.

CoverConcepts
Input: Set of training instanc€es, Set of concepts to leard
Output: A rule set describing the concepts
Set the current rule set to empty
While T contains instances
best = FindBestRule(, C)
Add best to the rule set
Remove the instances coverediayt
Return the rule set

SCL, and demonstrate that this function is much better héw SCL learning than, for example, the
fuzzy Entropy function used during SCL in fuzzy decisioretre

The layout of the chapter is as follows. In Sectibb.2we show how to extend Fzzy BEXA to use
the SCL strategy. In the next section we show that the ruluatian function plays a pivotal role in
finding good classification rules, and we introduction theudsacy function for SCL. In Sectioh0.4we
provide the results of five different experiments on nineadadts for bzzyBEXA with ICL and SCL
using several different evaluation functions, as well asrapirical comparison betweemEzyBEXAII

and other concept learners. The following section contaidgscussion of the experimental data, and
Sectionl10.5concludes the chapter.

10.2 Fuzzy BEXAIl: Induction of Ordered Fuzzy Rules

In this section we introduce UzzYBEXAIIl, a novel SCL approach that induces ordered fuzzy rules
from a fuzzy data set. TablH.1shows FuzzyBeExAll's CoverConceptsoutine. Compared to that of
FuzzyBEXA, the SCL top layer routine of lzzy BEXAII is less complex. It starts by initialising the
rule set to empty. Then, it iteratively finds the bagke for the current set of training examples using
the middle layer routin€indBestRulein ICL the middle layer returned trentecedenthat best covered
the concept it was forced to use. For SCL the training set tisplit into positive and negative parts,
but passed as a whole to the middle layer. The rule found bynitidle layer is then added to the rule
set, and all instances covered by the rule are removed frertrdiming set. This also differs from ICL,
where only the positive instances covered by the rule areveth We will discuss the implications of
this decision later.

FuzzyBEexAll's middle layer, see Tabl&0.2, implements several heuristics for guiding the search in
the hypothesis space. It uses thesgeic to maintain the set of current conjunctions to consider &s ru
antecedents. This set is initialized with thrggc The routine functions as follows. A set of specializa-
tions of the conjunctions igpec is obtained by invoking BzzyBEXAII's bottom layer routine. Then,
for each specializationnt in spec, the concept best described by the conjunction is seledibis is
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Table 10.2: FuzzyBEXxAll's FindBestRule procedure.

FindBestRule
Input: Set of instances, Set of concepts
Output: The best rule found during this search
Set the current best rule to empty
Add themgcto the set of current conjunctiongyec
While spec contains conjunctions
spec = GenerateSpecializatiors( spec)
For each conjunctionnt in spec
Let consequent be the concept fromd' best covered by the conjunctiamt
If eval(ant, consequent) is better than that of the best rule,
Replace the current best rule with “tt THEN consequent”
If ant can never be better than the best rule, remove it fspaz
Retain only théeamwidth best conjunctions inpec
Return the best rule found

done by dividing the instances covered by the conjunctitm gnoupsG; according to their class,
Gi(ant) = {d € X7 (ant)| piconcept;(d) > ac} (10.1)
The sigma count or scalar cardinality of each group is thenpeded,

M(G;(ant),ant) = Z Hant (d) (10.2)
deG,(ant)
and the concept of the group with the highest cardinalityhissen as the best rule consequent. The
potential rule is then evaluated according to an evaludtimation. This function is fundamental in
guiding the search through the hypothesis space, and wenwdktigate its influence on the search
process and overall performance in more detail later. lfpiiential rule outperforms the current best
rule, it replaces the current best rule.

The next step implements an efficiency measure. This me@sueey important to prevent unnecessary
exploration of parts of the hypothesis space that canndd yides better than the current best rule.
Let j be the index of the concept chosen as rule consequent. Asthanhe the idealistic case all
groupsG,, i # j, are empty. If even in this case the performance of the patenie is worse than
the best rule, it is futile to continue further exploratiohtbis part of the hypothesis space. This is
true since we are specializing antecedents, moving frontadyttom in the lattice of antecedents, and
thus subsequent rules can never cover more instances, emdotie cannot increase their cardinality
and performance above that of the best rule. Note, this esides the consistency test as a special
case—when an antecedent is consistent no subsequentdertecan perform better than it. This test is
an adaptation of an approach by Quinlan and Cameron-Joné&sefarisp iterated concept rule learner
by Webb Ruinlan and Cameron-Jone995h Webh 1993. After all conjunctions were considered, a
beam search is implemented by retaining only ibemwidth best conjunctions in the sepec. The
process is iterated untipec becomes empty and the best rule is returned.
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Table 10.3: FuzzyBEXAll's specialization model.

GenerateSpecializations
Input: Set of instance§’, set of conjunctiong”
Output: Set of specializations of the conjunctions(in
spec =)
For each conjunction and associated usable teidm
If X7(L)andXz(c) have no instances in common,
Mark this term as unusable in this conjunction
For each conjunction and associated usable teifim
Create a specialization by excludidgfrom ¢
Add the specialization tepec
Remove all duplicate conjunctions frospec
Returnspec

10.2.1 The Fuzzy Exclusion Model Using SCL

Table10.3shows FizzyBEXAII's bottom layer routine GenerateSpecializationdHere the fuzzy ex-
clusion model is implemented. The function of this routieesimilar to that of BzzYBEXA, i.e. to
obtain a set of specializations of the input set of conjumsi The routine starts by initialising the set of
specializationsspec to be empty. Then two loops follow . The first implements arcedfficy measure,
and the second performs the specialization. With each notipn we associate a set of “usable” terms
that may be used to specialize the conjunction, and welis@ighemgcto contain all terms in its usable
set. The first loop compares the extension of the conjuneti@hthe extension of terms from its usable
set. Any term where the two extensions have no members in comine. any terni, and conjunction
c where

Xr(L)N Xr(c) =0 (10.3)

is removed from the set of usable terms for this conjunctigxcluding such a term will not change the
extension of the conjunction, and therefore make it ovasceic. The next loop generates specializa-
tions by excluding from each conjunction the terms from #sogiated usable set in turn. Duplicates
may occur if two conjunctions were specialized by excludimg same terms in different order, and are
removed. The resulting specializations are returned.

10.2.2 Other Specialization Models Using SCL

FuzzyBEXAII's specialization behaviour can easily be adjusted byarging the specialization model
implementation. Tabl&0.4shows the Bzzy BEXxAIl using FUzzCONRI as specialization model. Each
conjunctionc is specialized by appending one of the remaining usablestésrit. The new extension in
the training set can be efficiently computed usiig(cnew) = Xr(c) N X7 (L), since the conjunction
with L restricts the extension to only allow instances that matct the extension becomes empty the
conjunction is not useful and is discarded. Finally, if tle@janction was not already presentsipec it
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Table 10.4: FuzzyBEXxAll using FuzzCoNRI as specialization model.

GenerateSpecializations
Input: Set of instance$’, set of conjunctiong”
Output: Set of specializations of the conjunctions(in
spec = )
FOR each conjunctionand associated usable tefnDO
cnew =cA L
cnew.usable = cnew.usable — L
Xr(cnew) = Xp(c) N Xp(L)
IF X7 (cnew) = ) THEN
CONTINUE
IF cnew ¢ spec THEN
spec = spec U {cnew}
Remove all duplicate conjunctions frospec
Returnspec

is added to it. BzzY SEEDSEARCH may be adapted to implement the SCL strategy in a similar may.
this case care must be taken that the seeds are from diffdasses.

10.3 The Rule Evaluation Function

The entropy evaluation function is often used for SCL leagnincluding decision tree and fuzzy de-
cision tree learning(ios and Sztanderd 992 Dong and Kothari2001. Let r be a rule witha as
antecedent anfk, ..., ¢y } the possible consequentsrofthen the normalized fuzzy entropy is given by

1 NMT,a,/\cZ- M(T,a N c;

E(r) = log N ; Z(W(T7 a) )log Z(W(T7 a) ) (104)
where M (T, z) is the sigma count of the expressienn the set of instance¥. Since we want an
evaluation function that assigns higher scores to bettejunctions, we use the evaluation function
1— E(r). This function has a maximum value of one for rules that covdy one class, and a minimum
value of zero for rules that cover each class in the same pgiopoHowever, the Entropy function does
not favour high coverage, e.g. a rule that covers five ingtsio€ one class and none of other classes and
a second rule that covers a thousand instances from onearldssone of other classes will both have
a score of one. The Laplace estimate was suggested as arvammot to the CN2 algorithm that also
used the Entropy functiorClark and Boswe|l1991]. In Chapter6 we suggested the fuzzy Accuracy
function for ICL,

Ac(r)= > ma)— D pali) (10.5)
i€eXp(a) 1€X N (a)

where P is a subset ofl” containing all instances that belong to the concept, &ne- 7' — P. We
adapt the Accuracy function for use in SCL by consideringhe@ancept in turn, and regard instances
belonging to other concepts as member&/ofWe assign the rule consequent as the concept that results
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Figure 10.1: Results for ICL and SCL with different evaluation functiamsthe Zoo data.

in the highest evaluation, and also assign this evaluattunevto the rule, that is,
Asci(r) = M(Gj(a),a) — M(Xr(a) — Gj(a),a) (10.6)

and
j = argmaxM(Gi(a),a)) (10.7)

whereG;(a) is defined by Eq10.1). This evaluation function will prefer rules that cover egenumber
of instances from one concept and few instances from the otmeepts.

10.4 Experiments

In this section we show experimental results on six real dvddmains obtained from the UCI machine
learning repository. We fuzzified data by assigning menibprglues from{0, 1} to nominal attributes,
and by using a clustering method to place bell shaped mehipdtsctions on the continuous domains
of linearly ordered attributes. We will discuss resultsaiiied for Fuzzy BExA (ICL) with the accuracy
and Laplace evaluation functions, and also fazEyBexall (SCL) with the entropy and accuracy
evaluation functions. We denoteuEzyBEXAIIl with the entropy and accuracy evaluation functions
as SCL-Ent and SCL-Acc respectively, andZzyBEXA with the accuracy and Laplace evaluation
functions as ICL-Acc and ICL-Lap, respectively.

10.4.1 Fuzzy Rule Induction With ICL and SCL

Figure 10.1 shows results obtained by SCL and ICL on theitrgiset of the Zoo data, where we
ignored the variable “animal,” and learned the conceptétgp animal,” e.g. mammal, bird, fish, etc.
The different methodologies of SCL and ICL are clearly diseble from Figure 10.1(a). For most
of the rules, ICL considered all the instances during thaiétidn process. This happens since ICL
removes only the positive instances covered from the trgiset for each class, anginsertsthese into
the training set when the next concept is considered. SGhkeber,never reinsert€overed instances.
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The SCL graph of remaining uncovered instances is thus rooebt decreasing. From Figure 10.1(a)
one can also see the number of instances covered by eacttetviseule. This is indicated by the
difference on the y-axis of two consecutive points. Whemeh no difference for ICL, it implies that
the rule covered all the positive instances. The last sewi@s induced by SCL-Ent covered very few
instances each. Figure 10.1(b) shows the number of cardigabtheses generated for each rule during
the search. SCL-Ent started out with a very high number, had,tas there were successively fewer
instances available, generated successively fewer catedidules. For the first six rules SCL-Acc and
ICL-Acc had similar behaviour. However, for the last twoeasilof SCL-Acc there were less than 10
instances, and consequently it searched only a few hypesthesfore covering them. The use of the
Accuracy function also resulted in a much smaller rule seSGL. SCL-Acc had 9 rules and SCL-Ent
14 rules.

Table 10.5shows results for five experiments. All results quoted ar¢eshset results from a 10-fold
cross validation. For each data set the mean and standaatidewere computed, and the average of
the means of all data sets are shown in the last column. The@edermance on each data set is set in
bold face. The first experiment investigated the accuratigeinduced rule sets. SCL-Ent had the worst
overall performance, and did significantly worse on the €dfiepatitis and Lymph data sets. It had the
best performance on the Zoo data set. SCL-Acc, in contrasfipimed very well, and obtained better
overall results than any of the other methods. ICL-Acc and-1@p had very similar results, and was
overall abouR% worse than SCL-Acc, bk 5% better than SCL-Ent. The second experiment compared
the size of the rule set induced by each method. Here, SClwasdhe clear winner. On average its rule
sets contained about three times fewer rules than ICL-Add@h-Ent. It also became clear that SCL-
Ent is not a good method to use, as it induced 12 times morse thd SCL-Acc, and also had worse
classification accuracy performance. This result is mishlidue to the entropy evaluation function not
favouring conjunctions with higher coverage. Thus, a langember of consistent conjunctions covering
only small sets of instances are induced.

One obvious observation is that SCL-Acc is able to inducesextly compact rule sets. This behaviour
cannot be attributed only to the Accuracy function, as |ICtcAlid not perform as well. One big dif-
ference between SCL and ICL is that the rules induced by S€loatered and that by ICL unordered.
Table 10.6 shows the rule set induced by SCL for the Zoo data. The first catrectly classifies all
mammals. Thus, after the first iteration, all mammals areoxesd from the data set. Similarly, the
second rule removes all birds from the data set. Now condlidethird rule, it states that animals with
fins are fish. On its own, this rule would incorrectly classifiyales and dolphins as fish. However, since
the rules are evaluated in order, the first rule would fire fahale, correctly classifying it as a mammal,
and further rules would not be considered.

We believe the aforementioned characteristic is presentany data sets, and is the reason why SCL
outperforms ICL on many data sets. After the first few rulektoare of macro features that are easily

identified, rules found later need not concern themselvisthvese features, and can distinguish between
the special cases. An ordered rule set is a representatemmofe complex unordered rule set, and also
does not require the arbitration process of unordered mitevghen multiple rules fire. When ICL has
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Table 10.5: Various test results for SCL with the Entropy and Accuracgleation functions and ICL with the
Accuracy and Laplace Evaluation functions.

Colic Diabetes Hepatitis Iris Lymph Z00 Ave
Mean StdDeyMean StdDey Mean StdDev Mean StdDkElean StdDey Mean StdDeMear

Accuracy of the Rule Set
SCL,Ent] 78.0 6.0 682 2.7 76.8 1112 936 63 73.6 1296.C 8.2 | 81.0
SCL,Acq 845 33| 74C 4€ | 8t 6C¢ ] 964 51| 811 123 96.C 10.E| 86.4
ICL, Acc| 85.2 4. 71.2 41 839 10.1 957 6.( 811 115 911 1.2 847
ICL, Lagp ] 83.£ 5. 711 2¢& | 8. 7€ ] 964 51| 81.& 14.<| 931 13.Z]| 84.

Number of Rules in the Rule Set
SCL,Ent] 88.0 7.8 1832 165 340 2[1 9.9 03 418 B85 127 [0.7 Pple
SCL, Ac 5.1 0.2 4.4 1.7 3.1 0.2 3.¢ 0.2 6.5 0.7 7.C 0.2 5.2
ICL, Acc| 34.4 27 24 0.t 19.3 1.2 4.0 0.0 19.6 1.5 12.3 1.1 1943
ICL,Lap | 345 1€ | 8¢ 11| 19.C 11| 43 0f& | 216 12| 10€ 0.7 | 16.5

Complexity of the Rule Set Measured in Terms
SCL,Ent] 1844 204 759.2 79]1 560 43 135 10 700 B6 125 (1.1 |[826
SCL, Acq 14.z 2. 5.€ 2.6 4.5 14 3.5 0.t 127 1.7 10.2 1.2 8.5
ICL, Acc| 128.0 9.6 6.2 1.9 62.9 5.( 6.0 op 679 172 354 89 {11
ICL, Lag | 166.7 12.1| 36.€ 6.C | 68.2 5.8 7.C 1€ | 76.5 52 | 27.¢ 2.2 | 63.€

Number of Conjunctions Generated During Rule Setittion
SCL, Ent| 53800 563% 24420 2349 11300 7#4 334 p4 8008 [722 955 [134 [16470
SCL, Acqf 240¢ 19z | 35t 11C| 632 74 | 122 15 | 907 55 | 315 23 | 79C
ICL, Acc | 10137 637| 6780 43¢ 2360 122 196 13 2243 2422 601 |61 $719
ICL, Lap | 1237: 106¢| 5851 30€ | 259 251 | 263 27 | 271¢ 16€ | 495 38 | 404¢

Average Number of Hypotheses Generated per Rule
SCL, Ent] 6109 324 1326 2% 3320 139 334 31 1913 150 745 74 P29.1
SCL, Acq 4721 28} 834 11p 203.7 140 31.3 4.0 1399 114 395 361.7

ICL, Acc | 294.6 11.4] 2924.8 579{9 121.8 45 486 34 1138 Pp.2 483 |21 Pp92.0
ICL, Lag | 357.¢ 19.5] 689.6 101.t( 135.¢ 10.t| 61.1 7.4 | 1245 8. | 46.C 0. | 235.¢

7
7

to induce a rule for fish, it will have to find a more complex aei@ent, e.g. [milk.false][fins.true], i.e.
the rule must not fire on any of the macro features, but sfi¢dintiate the special cases. Consequently,
ordered rule sets can be much smaller than unordered rslendate still obtaining high accuracy. ICL
often induces many more rules to prevent the covering of onfgetures while still covering some of the
micro features. The small number of instances availablathrction of the last rules in SCL implies that
less search is necessary for these rules. This is diffeoe€CL and clearly visible in Figure 10.1(b)—
the number of hypotheses examined per rule remains réjatiwastant for ICL but is very small for the
last few rules for SCL. The overall result is that SCL-Accuiegs less search for rule set induction. The
rule sets induced by SCL are also not unnatural, as humamsegdsesent concepts such as animal type
using an ordered rule set, i.e. reasoning by working witlepkons. The last rule induced by SCL often
has the antecedeMRUE. This happens when after the exclusion of instances cousredevious rules,
only instances of one class remain. This must not be confwsidhe default rule used in unordered
rule sets. In unordered sets, the default rule fires when mer otile fires, and usually has the majority
class as consequent. SCL could also employ such a defaeiivhén the last rule does not haiBUE

as antecedent.

SCL in combination with the Entropy function did not perfomell. This is because entropy does not
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Table 10.6: SCL-Acc induced rule set for the Zoo data.

[milk.true] — type.mammal [eggs.true][backbone.false][legsy] — type.insect
[feathers.true}- type.bird [backbone.true][tail.true}- type.reptile
[fins.true]— type.fish [aquatic.false} type.invertebrate

[eggs.true][breathes.false} type.invertebrate TRUE — type.amphibia

guide the search in the direction of high coverage. The filstinduced by SCL-Ent, for example, had
“bird” as consequent. However, there are 20 bird and 41 mdnmstances. Thus, SCL-Acc induced a
rule for the class with the most instances since this ruléhebighest coverage. On the Colic data SCL-
Acc alternated between the classes such that the mostdestane covered by each consecutive rule.
Subsequent rules should in general cover fewer instanesspitevious rules, thus rules with stronger
support are placed higher up in the rule hierarchy. This eacldarly seen in the shape of the graph for
SCL-ACC in Figure 10.1(a). SCL-Ent in the same figure, howevad subsequent slopes higher than
previous slopes, demonstrating its unbiasedness towaydsbverage.

The third experiment in Tabl&0.5measured the complexity of rules as the number of terms irulee
set. Here, the good performance of the Accuracy functiothédin SCL and ICL is evident. Again SCL-
Acc had the best performance, requiring six times fewerseahan ICL-Acc and seven times fewer than
ICL-Lap. The rule sets found by ICL-Acc were about/dfess complex than that found by ICL-Lap.
The rule set complexity found by SCL-Acc was on average ab@ubf that of SCL-Ent. The fourth
experiment shows that, interestingly, SCL-Acc neededvestigate only a very small part of the search
space to obtain its results. ICL-Acc was second, but gee@rhb times more candidate rules, whereas
ICL-Lap generated 5.2 times more candidates. SCL-Entigygte to obtain good rule sets becomes
clear; it generated 16470 hypotheses versus ICL-Acc’s To@.last experiment compares the number
of hypotheses generated per induced rule. SCL-Acc agaidedethe least number of hypotheses.
Interestingly though, SCL-Ent generated the second lddstvever, since the induced rules cover so
few instances, many rules were needed making the totallsgarg large. ICL-Acc generated the most
hypotheses. However, if we remove the outlier of the Diabelta, the ICL-Acc would have 125.4,
ICL-Lap 145.1, and SCL-Acc 177.3, resulting in ICL-Acc witte smallest search per rule. ICL-Acc
induced the smallest and second most accurate rule setdfaliabetes data. However, it required 20
times more search than SCL-Acc, and therefore a very largéauof hypotheses were generated per
induced rule.

10.4.2 Comparison With Other Concept Learners

We also compared ourdzzyBEXAII algorithm (using the Accuracy function) with three ottoemcept
learners. The results quoted for C4.5, Layered Search ahduskve Search were obtained from the
literature Ruinlan and Cameron-JonekD95h Quinlan 1996ab]. The first column shows the average
error on the test sets. UZzyBEXAIl had similar classification results as the other methodsttie
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Table 10.7: Results of BzzYBEXAII, C4.5, Layered Search and Exhaustive Search on threesdtgaTheory
size for C4.5 is measured in tree nodes, in number of testitonsl for layered and exhaustive search, and in
number of terms for Bzzy BEXAII.

Error Theory Size
Diabete. Hepatitic Lymph | Diabete Hepatitic Lymph
C45 25.4 20.4 21.7 44.0 17.8 N/A
Layered Search 26.9 19.1 18.9 207.4 27.0 30|1
Exhaustive Search 27.2 20.0 19.4 208.7 27.9 3q1
FuzzyBexal 23.C 13.€ 18.¢ 5.€ 4.5 127

Lymph data, better results on the Diabetes data, and significbetter results on the Hepatitis data. It's
theory size (complexity) is also significantly smaller ihcses.

10.5 Summary

This chapter presenteduEzy BEXAII, an algorithm for learning ordered fuzzy rule sets forssifica-
tion. We also enhanced the method with early stopping effigieneasures, without which the search
would be prohibitively large. We further presented five etigpl experiments on six data sets, and
demonstrated that if the correct kind of evaluation functieere used, i.e. functions that give preference
to rules with high coverage, ordered rule sets are much msplex than unordered rule sets, while at
the same time being very accurate. As an example of an apgt@pvaluation function we showed how
to adapt the fuzzy Accuracy function for SCL. We discussedvidrious reasons for SCL's good per-
formance, and also showed with further experiments thatzir BEXAIl can outperform other learning
systems with respect to rule set size and accuracy.
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CHAPTER11

Arguments in Favour of Fuzzy Set Covering

11.1 Introduction

In the previous chapters we developed fuzzy set coveringhas/anethodology for fuzzy rule induction.

In this chapter we address the validity of this approach amaept learner. We assume a rule represen-
tation is desired, and thus we do not focus on the more gecasal of symbolic versus numeric concept
learning. We proceed to demonstrate two main points, (&yfuzles, as a generalization of crisp rules,
are more powerful than crisp rules for several reasons, la)nskt covering as a methodology for fuzzy
rule induction performs very well compared to other fuzzieriearners with respect to classification
accuracy, and especially with respect to comprehensibilit

The layout of the chapter is as follows. Sectith2addresses point (a) by presenting a set of theoret-
ical arguments in favour of fuzzy set covering. Sectidn3demonstrates BzzyBEXxA's performance
compared to the well-known decision tree learner C4.5 aedbthe most powerful rule induction algo-
rithms, RIPPER. In Sectionl1.4we provide empirical results in support of point (b), andt®ecl1.5
further emphasizes this point by providing results wherd-Fgnificantly outperforms previous meth-
ods on two real world applications (the classification of $Pand the prediction of mortality in septic
shock patients). We conclude the chapter with a summarydhdel 1.6

11.2 Fuzzy Versus Crisp Rule Learning

An element; belongs to a fuzzy set to a certain degree, typically in the ranffe1], as defined by
the membership functiop 4 (i) associated with the fuzzy set. A crisp set is a special catieeahore
general fuzzy set, where in the crisp case the membershigidan(characteristic function) assigns
membership degrees from thet{0, 1}. Thus, it is not surprising that rules based on fuzzy setdavou
be more powerful with respect to representation power andefting capability. In fact, it has been
proven that fuzzy sets can be used as universal approxisn#osko, 1994.

In addition to their improved modelling capability, fuzzgts provide a natural mechanism for dealing
with linearly ordered domains. Crisp rule learners eithendt allow such attributes, or resort to defin-

IRIPPER is an acronym of Repeated Incremental Pruning todeirror Reduction
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Figure 11.1: Membership functions and ancut plane af.5 for the linguistic termsY andY'.

ing ranges on the domain. These ranges, however, cannesegprthe real world concept of gradual
transition from membership to non-membership, as encoehi@ most natural domains. For example,
the transition from the concepbtto the conceptold is not sharp, and cannot be pinpointed at a certain
temperature. Fuzzy rules model numeric domains with listiiterms. Each linguistic term is defined
by a fuzzy set, which deals with such transitions in a natanal comprehensible manner. Furthermore,
fuzzy rules do not make the unnatural distinction betweeninal and numerical domains, but treat all
the same.

A crisp instance can only have a single attribute value fawvargattribute. Thus, there is no scope for
uncertainty, ambiguity, or vagueness. The use of fuzzy, betsever, allow these real world concepts
to be modelled in a mathematically sound way. A fuzzy instaren belong to several linguistic terms
from the same variable simultaneously, e.g. an instancebmhytto degred).7 andcold to degree).4.

A fuzzy instance matches fuzzy conditions (i.e. the antesedf a fuzzy rule) to a certain degree,
whereas a crisp instance can either match a rule or not. rhtie fuzzy case additional information is
available to the inference system during classificationrdéloeled instances. For example, the degree
to which unseen instances match a conjunction can be cothpatbose observed for instances from
the training set. This information can be used, for exanfplerule conflict resolution. Large deviations
from the observed mean may indicate that the rule shouldeaskd, or that the instance is a novelty,
i.e. it lies outside of the observed distribution for thiteru
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Figure 11.2: Crisp rules used to classify points inside and outside ofcttie. Each blue region is correctly
covered by a rule, while the red regions should have beerredybut are not.

Another fundamental difference between crisp and fuzzgsrig that in the fuzzy case decision bound-
aries need not be axis-parallel. Thisis illustrated in Fédii.1for the rule conditionX AY’, and product
as the t-norm operator. Both linguistic terdisandY” have the same domain, the rarigel], and their
respective membership functions to an instahaee 1 x (i) = sin(mx) anduy (i) = sin(ny). For the
classification task of identifying points inside and ougstte circle with origin at0.5,0.5) and radius
%, the single rule,

IF [X][Y]@0.5 THEN inside (11.1)

provides a perfect classification. Crisp learners are tbtoeapproximate the decision boundary, and
use more and more rules to increase their accuracy. Figugéshows the crisp approximation where

five rules were used. A perfect classification in the crisgaa only be achieved with infinitely many

rules.

11.3 Empirical Comparison with State of the Art Concept Leamers

The previous section provided theoretical arguments whyyfuule learners are more powerful than
crisp rule learning algorithms. In this section we providep&ical evidence that fuzzy set covering is
a powerful rule induction methodology, and capable of campgewith state of the art concept learners.
As stated before, we do not compare ourselves to numeridhlonie such as support vector machines or
neural networks, but to methods that provide an explandtiotiheir prediction. The two major concept
representations that explain their classification aresifatitrees and rule sets. C4.5, the successor of
ID3, is probably the best-known decision tree learner, asddnoven very successful over tingJinlan
19933. RIPPER [ohen 1995 is arguably the most powerful rule induction algorithm itadale today
[FUrnkranz and Flagi2004. Both C4.5 and RIPPER employ a post-pruning phase, and ERPdso
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Table 11.1: Classification accuracy results for state of the art conlegphers.

FCF RIPPER C4.5 OneR
ICL, Acc, SCL, Acc, SCL, Acc, SCL, Acc

Database ICL Op=2 6p=0 Op=2 Op=5 || Unpruned Pruned| Unpruned Prundd
Anneal 99.00 93.76 93.65 93.43 93.3} 98.44 98.33 98.44 98{44 83.63
BreastCancey 73.02 73.14 71.16 71.74 71.46 70.98 7727 68.2 70).28 49.93
Colic 85.60 85.33 85.33 85.33 85.871 78.80 85.0p 82.34 841 81152
Credit-A 85.80 85.07 85.94 85.94 85.94 85.07 86.413 81.88 83(B3 8451
Digit 72.72 69.47 73.91 72.58 71.72 72.40 74.6] 74.20 72.560 2140
Hepatitis 81.29 82.58 81.94 82.58 82.5 81.29 78.016 80.65 83|87 81.29
Iris 97.14 95.00 96.43 96.43 96.43 92.00 94. 96.00 96 .Jp0 9400
Labor 91.23 87.72 89.47 89.47 89.41] 84.21 7. 78.95 73|68 79.44
Lymph 83.78 79.05 81.08 79.05 78.34 79.73 79. 75.68 771p3 7432
Averagge 85.5] 83.4¢ 84.32 84.0¢ 83.9¢ 82.5¢ 83.3¢ 81.81 82.1¢ 74.17

includes incremental pruning and multiple rule set optaties phases (for a description of RIPPER see
AppendixA).

We compare FCF in several configurations with three conegphérs, C4.5, RIPPER, and 1R, which
builds a single rule per claskiplte, 1993, on several benchmark data sets. Tdllel shows the accu-
racy of the various learners on the data using 10-fold cvatidation. The results for C4.5, RIPPER,
and 1R were obtained using the WER package \Vitten and Frank200(. RIPPER and C4.5 were
configured first not to use post-pruning, and then to incluo pruning, in which case RIPPER was
allowed to optimise the rule set twice (thus leading to RIRRE We configured FCF in several ways.
The first column used ICL and evaluation functions suitechéeodomain. In the remaining columns we
used the Accuracy evaluation function for all data setscivitiearly had a detrimental effect on the
Anneal data, for example. We also #gtto different values ranging fror to 5, and we applied SCL
where indicated.

The bottom row of the table shows the average classificatisfopnance over all data sets. On aver-
age 1R is outperformed by all methods, although on some étdal® obtained similar performance.
Elomaa[1994 discusses the results of 1R versus other concept leamedsprovides arguments why
the small improvement in accuracy obtained by C4.5 is sghificant. FCF with ICL (first column of
the table) obtains almost% higher classification accuracy than RIPPER unpruned, athawtr 2%
higher than RIPPER2. FCF compares even better with C4.5¢atperform the unpruned and pruned
versions with3.7% and 3.2%, respectively. It is also clear that the post-pruning peaseRIPPER
and C4.5 improved their performance—something FCF doefaat the benefit of. We already did
preliminary work on the post-pruning of fuzzy rules, butuig research can improve upon this further
[Robbel, van Zyl and Cloet2004.

Table11.2shows the average number of rules per rule set for the difféearners and data sets. We
do not show the number of rules for 1R, since this is constidete the beneficial effect of pruning on
the rule set size is clearly demonstrated for RIPPER and.(RIBPER is able to reduce the average
number of rules fromi3.33 to 5.22, while C4.5 was able to reduce the rule set, as measured by the
number of leaf nodes in the tree, froth.33 to 17.78. The high accuracy obtained by FCF configured
with ICL and suitable evaluation functions resulted in a panatively large rule set, although still

2WEKA is an acronym of Waikato Environment for Knowledge Aysié
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Table 11.2: Average number of rules per rule set for state of the art quriearners.

FCF RIPPER C4.5

ICL, Acc, SCL, Acc, SCL, Acc,
Database ICL Bp=2 SCL,Acc 6p=2 O8p=5 |[Unpruned Pruned| Unpruned Prundd
Anneal 37.7 23.0 9.0 9.0 7.0 12.0 7.0 53.0 354
BreastCancey 32.9 10.0 5.0 2.0 2.0 12.0 2.( 59.0 240
Colic 44.8 3.0 5.0 4.0 4.0 14.0 3.0 95.0 17.(
Credit-A 55.1 6.0 4.0 3.0 2.0 18.0 4.0 101.0 30.
Digit 42.5 29.0 23.0 15.0 11.0 34.0 13.0 32.0 16.1
Hepatitis 22.6 5.0 3.0 3.0 2.0 9.0 4.0 16.0 11.
Iris 5.3 3.0 4.0 3.0 3.0 5.0 4.0 5.0 5.0
Labor 8.0 3.0 3.0 2.0 2.0 4.0 4.0 13.0 3.0
Lymph 27.5 4.0 6.0 5.0 4.0 12.0 6.0 34.0 19.4
Average 30.71 9.5¢€ 6.8¢ 5.11 4.11 13.3¢ 5.2z 45.3: 17.7¢

much smaller than the unpruned decision trees. The Accuealyation function clearly results in a
reduction of the rule set size, while classification perfance is not severely influenced. For example,
a run of FCF with SCL, the Accuracy evaluation function, ad= 5 obtained onlyl.56% worse
classification accuracy than the best classification acguranfiguration (first column), but the average
rule set size was reduced fra30.71 to 4.11 rules. This is radically smaller than the pruned decision
tree, and also smaller than RIPPER2. At the same time thiigemation obtained..76% and0.56%
better classification accuracy than C4.5 pruned and RIPPERRectively. Thus, we can conclude that
FCF compares well with RIPPER and outperforms C4.5 on thetbeark data sets with respect to both
classification accuracy and rule set interpretability @sraximated by rule set complexity).

11.4 FCF versus Other Fuzzy Rule Learners

Set covering is one of the most successful machine learngthadologies in the crisp case, and many
different algorithms were proposed for this methodoloBirpkranz 1999. The fuzzy set covering
methodology proposed in this dissertation extends theseiples to the fuzzy realm, keeping the crisp
case as a special case of the more general fuzzy case. Ihuslinot be very surprising that the fuzzy
set covering methodology is also capable of competing Withftizzy generalization of other crisp
symbolic methodologies, such as decision trees or sim@etmearch. In this section we will seek to
provide some empirical proof of this expectation. Note,tdren FCF is used to describe any fuzzy set
covering algorithm that fits with the general fuzzy set congframework, as discussed in Chap@er

We will be interested primarily in the quality of the rule sétduced, as measured by the rule set size
and accuracy. The fuzzy systems investigated in this seeficsatisfy two of the three conditions for
interpretable fuzzy rule sets, they all produce incomptetes, and they all make use of defined fuzzy
sets as linguistic term&Guillaume 2007). Guillaume’s third requirement is that the rule set shdugd

as small as possible. When the size of the rule set becomg$arge, the inherit assumption that fuzzy
rules are more comprehensible disappears. In this casei@stian arises, what is gained by fuzzy rules
as opposed to powerful numeric methods such as supportrveetthines or neural networks?
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temp

hot mild cold
@ @nd weights
sunny cloudy rainy windy calm
swimming swimming weights weights volleyball

Figure 11.3: Fuzzy Decision tree induced by Yuanal for the Fuzzy Sport data.

11.4.1 The Sport Problem

The results of Yuamet al's fuzzy decision tree induction algorithnyjian and Shanw1995 on their sport

data set (see Tabdel), are reproduced here. Their algorithm requires two par@msehe truth level and
the evidence level thresholds. The reported values foetpsriment wer@.7 and0.5, respectively. The
decision tree shown in FigutEl.3was induced, and from the tree the following rule set wasaekd:

1 IF [sunny|[hot] THEN swimming
2 IF [cloudy][hot] THEN swimming
3 IF [rainy][hot] THEN weights
4 IF [mild][windy] THEN weights
5 IF [mild][calm] THEN volleyball
6 IF [cool] THEN weights
This rule set classifie$1% of the data set correctly. Setting FCF’s correspondingrpatarsa, andar,.

to 0.5 and0.7 respectively, withd,, = 0 andbeamwidth = 1, and using FEM (Fuzzy Exclusion Model,
see Sectio®.3), the following rules were induced:

F [sunny, cloudy|[mild, cold] THEN volleyball
F [sunny][humid] THEN swimming

F [mild, cold][windy] THEN weights

F [rainy] THEN weights

e

where for brevity we do not show, anda,. for each rule. The classification accuracy of these rules for
the data set i94%. FCF found four rules, compared to six, with higher clasatfan accuracy.

11.4.2 Comparison with Fuzzy Classifiers on Real World Data

For the final experimental evaluation, we compared FCF to ftiezy classier learners FID
[Janikow and Fajferl999 and FBS (Fuzzy Beam Searchjdrtig et al, 1999. FID uses the divide-
and-conquer strategy to induce fuzzy decision trees (@sisied in Sectiof.4), and FBS performs a
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Table 11.3: Accuracy and complexity results for different fuzzy cldisss on seven real world domains.
DataSet] credita | labor | lymph | iris | diabetes | hepatitis | colic | average
classification accuracy
FB 851 52][912 138[ 804 112| 9.4 51[755 24[826 113][856 55[853 7.8
FID |82 73|85 093|730 104|929 34721 47(835 115|859 44|87 73
FBS 694 6.2]91.2 138|601 151(91.2 138|699 35|839 86]|742 779|771 98
number of rules

FB 71 10| 49 07| 80 13] 50 0.0 88 13| 50 07| 56 14| 63 09
FID 69.0 516119 38| 86 18| 70 25|204 216|127 6.4|243 75| 220 136
FBS 50.0 - 10.0 - 50.0 - 10.0 - 50.0 - 50.0 - 50.0 - 38.6 =

beam search of its hypothesis space (see Se2i&for a detailed discussion of FBS). Tallg.3shows

the comparative results for seven data sets from the UCkitepyp. We report the classification accuracy
and the size of the induced rule sets. The table shows the arehetandard deviation of the test set
results of a 10-fold cross validation, except for Diabetéeme a 5-fold cross validation was performed.

The results for FID were obtained using a freely availablelementatiod. We used the default pa-
rameters as supplied with the software, with the exceptiahwhere possible we allowed the software
to define its own membership functions for numerical atteBu The reported number of rules was
calculated by counting the number of leaf nodes in the tram.tle data sets Credit-A and Hepatitis
the software failed to return an answer for three of the téasfaand for each the results are the mean
and standard deviation of the remaining seven folds. Thdtsefor FBS were obtained from our own
implementation of the algorithm as specified in refererfeéertig et al, 1999, where we set the max-
imum search depth to 15. We performed experiments with beatthsv10, 20, and 50 for each data
set, and report the results for the beam width that resuitatie best test set classification accuracy.
By definition, the algorithm returns a rule set that contaiteamwidthnumber of rules, and thus the
standard deviation of the number of rules is not reported=®%. FCF’s results were obtained using
FEM with a beam width of one for all data sets. We@&gt= 1 for Lymph and Labor, and,, = 2 for the
remaining data sets. The accuracy evaluation function wed tor all data sets, except for Iris, where
the Laplace function was used. The value dgrwas set td).5 for all data sets, and the value fay,
was set to 0.5, except for Iris (0.2), and for Hepatitis antiddboth 0.8). The sama values were used
for FCF and FBS. The experiments were also performed usagdime instances for the different folds
between methods.

Table 11.3 shows that in general FCF outperforms the other fuzzy lagrmethods with respect to
classification accuracy. FID outperforms FCF®$% and0.9% on the colic and Hepatitis data sets,
respectively, but FCF outperforms FID on all the remainiragadsets, for example by.4% on the
Lymph data an@.9% on the Credit-A data. FBS often failed to return good rules,sahd FCF out-
performs FBS by15.7% and20.3% on the Credit-A and Lymph data sets, respectively. FBS pbthi
the best classification accuracy for the Hepatitis datgertdrming FID by0.4%, and tied for the best
performance with FCF on the Labor data. Overall, FCF obththe best classification accuracy results
for five of the seven data sets. Averaged over all the datals€ts, FID, and FBS obtained classification
accuracies 085.3%, 82.7%, and77.1%, respectively.

*We used FID3.3 obtainable at http://www.cs.umsl.edjanikow/fid/fid32/
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Table 11.4: Rule set induced by FCF for a single fold of Diabetes. The aiper means the disjunction of all
terms in the respective term set, except for the indicated {(see Sectiod.3.1). The default rule fires only if no
other rule fires, and classifies instances as negative.

IF ['plas.low][!mass.low][!age.young] THEN positive
IF [plas.high, plagy][!linsu.med][pedi.high, pedi] THEN positive
IF ['preg.many][plas.high, plag][!insu.high][!pedi.low][!age.middleage] THEN positv

negative positive negative

negative negative

Figure 11.4: Fuzzy decision tree induced by FID. The lower part of the (d&emore nodes) is not shown.

Overfitting occurs when classification performance on ingirdata improves while deteriorating on
an independent test séilitchell, 1997. FCF’s inductive bias prefers more general over more $geci
hypotheses, as explained in Secttb@ The intention of its pre-pruning criteria is to prevent smecific
rules and overfitting in general, while its user-defined paters (especiallg,) can be further adjusted
to cater to the characteristics of a particular data setmttus way inhibit overfitting (or fitting of noise)
and the corresponding inferior performance on an indepenest set. Tabld1.4 shows the rule set
induced by FCF for a single fold of the Diabetes data set, péttametersy, = 0.5, a. = 0.5, 6, = 5,
beamwidth = 1, and using the accuracy evaluation function (E)). Figurell.4shows the decision
tree induced by FID for the same fold. We used the same pagasnferr FID as were used to obtain
the results in Tablé1.3 For this single fold the classification accuracies for F@# RID on the same
test set werd0.4% and76.4%, respectively. (Recall that the classifiers used the idahihdependent
training set too.) The size of the induced trees on all fivdddmeasured by the number of leaf nodes)
varied considerably between folds, and very small or vengeldrees performed much worse than trees
closer to the average size. The first rule in Takdle4was induced in each fold, and for one of the folds
this rule comprisedhe entirerule set. FCF prevents the learning of rules with too low cage of
positive instances, as controlled by teparameter. Rules that cover very few positive instanceshoft
cover some or even comparatively many negatives, and ceufitting noise in the data. For the given
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fold’s training set, 68 rules, covering 90 positive and 34Qative instances in total, were not added to
the rule set. Most classifiers benefit from post-pruning efrtblassification rules, but this was not done
for the classifiers and rule sets induced here. With thesenséats we do not say that FCF’s rules do
not need post-pruning at all, but simply that its unprunéedsavoid overfitting to a large extent already.

A comparison of the rule set sizes obtained by the differegthiods demonstrates that FCF’s induction
strategy produces shorter and more comprehensible rglelSeF obtained the smallest rule setsatin
data sets. For the Credit-A data FCF induced 7.1 rules vé&%asid 50 rules by FID and FBS, respec-
tively, and for the colic data, FCF, FID, and FBS induced 243, and 50 rules on average. Averaged
over all the data sets, FCF, FID, and FBS induced rule setze$ §.3, 22.0, and 38.6, respectively.
Thus, the combination of FCF's fuzzy set covering methoghgléuzzy evaluation function, and pruning
criteria performed better than the other related fuzzy ledeners with respect to classification accuracy,
and performed much better with respect to rule set size. iinéisantly smaller sizes of the fuzzy rule
sets induced by FCF enhance their comprehensibility, arfd &des this while even increasing classifi-
cation accuracy. The results empirically demonstrate #hidity of set covering as a new methodology
for learning fuzzy classification rules.

11.5 Application of FCF to Two Relevant Real World Problems

11.5.1 SPAM Classification
The Ling-Spam Corpus

With the increase use of email above regular mail, the oppiyt of advertisement via email have
increased dramatically. When such mail advertisement s®ligited, it is commonly referred to as
SPAM. Since the cost of advertisement through media sucklegdion, newspaper or magazines is
much more expensive, the popularity of SPAM increased diiaally in recent times. In fact, the
number of SPAM emails is starting to overwhelm the numberegitimate emails—to such a degree
that it is feared that SPAM may cause the demise of the use all,ems users find it too cumbersome
to sort out legitimate messages from SPAM. Most users findMBBAleast annoying, if not blatantly
offensive, especially since a large proportion SPAM cargdgraphic) advertisement for pornographic
sites.

Different strategies to combat this threat exist. On thelaral there is legislature, e.g. the “Controlling

the Assault of Non-Solicited Pornography and Marketing 8£R003,” as passed on December 16,
2003, by the United States Congress. In some cases the labecgpplied effectively, e.g. an Internet

service provider, CIS Internet Servers, won a lawsuit age&AM senders who were sending up to 10
million SPAM messages per day to their server. The law distétat SPAM senders be fined $10 per
message, and the total damages amounted to one billiomg@NET News.com20 December 2004].

However, with the email protocols in use today the enforagnudé such laws is often undermined,
as it is difficult or often impossible to identify where the AW was sent from. Thus, another ap-
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Table 11.5: Performance comparison of different classifiers on the Sjyam corpus.

Classification | Classification SPAM SPAM

Method Accuracy Recall Precision
FCF 98.17 92.95 95.42
Naive Bayesian 96.93 82.35 99.02
TiMBL(2) 96.89 85.27 95.92
TiIMBL(2) 96.75 83.19 97.10
Outlook Patterns| 90.98 53.01 87.93
TiMBL(10) 89.08 34.54 99.64
No Filtet 83.31 0 o0

proach is the proposal of new email standards that remoeeartbnymity of email. A third approach

is identifying SPAM and automatically deleting it. One commmapproach to distinguish between dif-
ferent classes of text documents is the use of Bayesianifdassuch as Naive BayesiaMitchell,
1997. This method also proved relatively successful to sepa®AM from HAM (a term for legiti-
mate email) ahami et a).1998 Schneider2003, outperforming advanced rule learners such RIPPER
[Pantel and Lin199§.

The Ling-Spam corpus is a publicly available corpus of SPAM &egitimate messagesThe corpus
contains 2893 messages sent via the mailing list Linguigtguist is a moderated mailing about the
science of linguistics Approximately 16% of the messages in the corpus is SPAM thadabelling
was done by hand to minimize noise. Although the corpus corwinly the domain of linguistics,
legitimate messages also include, for example, job pastimgl software announcements.

Experiments

To induce a fuzzy rule set capable of distinguishing betw®eAM and HAM, the different text docu-
ments are first preprocessed into feature vectors. We usdiktiy available software FeatureFirktfer
feature extraction. FeatureFinder uses mutual informatioselect a user-defined number of features.
The feature types that can be created include TF (term fregyieand TF-IDF (Term Frequency / In-
verse Document Frequency). Let tH feature have the" greatest mutual information, |&tF; be
the number of occurrences of th€ feature in a given document, and |é2| be the total number of
documents, therf;, the TF-IDF of thei" feature for a given document is calculated as,

|D|
=1 11.2
fi =log TF, (11.2)

To create a fuzzy training set for our experiments we firstaetéd 500 TF-IDF type features for each
document. We then extracted membership functions from fthre using the approach described in
AppendixC, where we allowed up to four linguistic terms per linguistariable. However, in general
the extraction process suggested the use of three menbéursbtions.

Sakkis et al compared the performance of an adapkedearest neighbour classifier called TiMBL

“The Ling-Spam corpus can be downloaded at http://www.sescaik/corpora/
®An archive of the Linguist mailing list is available at httfistserv.linguistlist.org/archives/linguist.html
®Retrieved from http://www.cs.iastate.edwndymenz/573Project.html on 1 December 2004
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[Daelemans et g1200( for values ofk = 1,2, 10 with that of Naive Bayesian and MicroSoft Outlook
patterns on the Ling-Spam corpusdkkis et al. 2003 Androutsopoulos et gl200J. We repeat their
results along with that obtained using FCF in Table5 FCF was configured as follows,. = 0.5,

a, = 0.2, beamwidth = 1, 6, = 0, simultaneous concept learning, Laplace evaluation, avez
CoNRI as specialization model. SPAM recall is a measuremertepercentage of SPAM documents
correctly identified with respect to all SPAM documents, athus equivalent to the True Positive mea-
surement. SPAM precision is a measurement of the accuraaypaddiction, and is computed by the
percentage of correctly identified SPAM documents with eespo all documents identified as SPAM,
and is thus equivalent td — False Postive Ratjo< 100%. Classification accuracy measures the number
of correctly classified documents, where the classificasaither SPAM or HAM. The No-Filter clas-
sifier classifies all documents as legitimate, and accolgimas zero recall. It's classification accuracy
is 83.19%.

FCF outperformed all the other methods with respect to ifleaon accuracy. It obtained a classifi-
cation accuracy 098.17%, while the second best classifier, Naive Bayesian, obtaineldssification
accuracy 006.93%. FCF also significantly outperformed all other classifiensSiPAM recall. It ob-
tained92.95% recall, while the three next best classifiers, TIMBL(1), BM?2), and Naive Bayesian,
obtained recall percentag85.27%, 83.19, and82.35%, respectively. FCF was thus much more suc-
cessful atidentifying SPAM messages than any of the otlaenégs. FCF’'s SPAM precision was slightly
worse, but still comparable to that of the other classifiénsthe order of best recall, the precision of
FCF, TiMBL(1), TIMBL(2), and Naive Bayesian, we.42%, 95.92%, 97.10%, and99.02%. We
provide the rule set induced by FCF during one fold of thedl@-€ross validation in Appendik.

11.5.2 Septic Shock

Septic Shock is defined as.a serious, abnormal condition that occurs when an ovelming infection
leads to low blood pressure and low blood flow. Vital organshsas the brain, heart, kidneys, and liver
may not function properly or may fail. Decreased urine otifpam kidney failure may be one symptétm.
[MedlinePlus Medical Encyclopedi2004]. Septic shock is associated with a mortality raterotiad
50%, and is still an important research subject for medical gspand data analyst$@etz 2003.
During the Deutsche Forschungsgemeinschaft (DFG) spedswoject MEDAN, medical experts and
data analysts cooperated to gather data of septic shodntmtiThe H16 data set contains the sixteen
most measured physiological parameters of 138 septic ghatddnts. Of the 138 patients, 68 patients
survived.

Paetz[200 used a Fuzzy Rectangular Basis Function Dynamic Decay shdjent Neural Network
(Fuzzy-RecBF-DDA-NN) Berthold and Huberl995 Huber and Bertholdl 999 to learn rules for pre-
dicting whether a patient will survive or not. The resultpaoded were obtained from 5-fold cross
validation. The rule sets attained classification accuveily mean and standard deviatien.02% and
4.44%, respectively. The average rule set size was 16 rules. \énglot the same test and training sets

"See http://www.medan.de/
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Table 11.6: Performance of different configurations of FCF on the MEDAdad

Config Accuracy Rule Set Size
Mean Std De\ Mean Std De\
RecBF 84.02 4.44 16.0 N/A
HI 87.93 3.70 40.8 7.00
GO 87.00 3.49 26.2 3.03
SR 84.4¢ 1.6€ 3.2 0.84

Table 11.7: Different configurations of FCF on use with the MEDAN data.

Config] Beam Width Spec. Mod  Inf. Thres. Weighted SCL Eval. Meth.
HI 1 FuzzConRI 0.1 T F Iscontent
GO 4 FuzzConRI 0.1 F F Iscontent
SR 3 FuzzyBexi 0.4 F T accurac

as used in the experiments from the author of refereReetg 2007 for direct comparison with FCF.
Tablel1.6reports the results for the three different configurationB©F shown in Tabld 1.7, as well
as the results from referencedetz 2007.

The goal of configurations HI and GO was high classificatiazueacy. The best classification accuracy
obtained by FCF wa87.93%, which is3.91% better than the previous result obtained by the NN (neural
network). The weighted cover resulted in the induction ohynaverlapping rules, and the resulting rule
set has relatively many rules (40.8). If no weighted coveisisd, as in configuration GO, a good overall
result is obtained, witl7.0% classification accuracy and 26.2 rules on average. For apafign SR

we used the simultaneous concept learning induction giratEhe rule set classification accuracy for
these rules were only slightly better than that of the NN, &aav, the rule set sizes were dramatically
smaller—on average 3.2 rules per rule set. An example of ocie sile set is the following:

IF [!BlutdruckSystolisch.mJd Temperatur.mfl Thrombozyten.mfp Urinmenge.mfp
THEN class.ueberlebt

ELSE IF [BlutdruckDiastolisch.mdTHEN class.verstorben

ELSEclass.ueberlebt

FCF was thus able to improve significantly on the previousltgsboth with respect to rule set com-
prehensibility and rule set classification accufacy

11.6 Summary

In this chapter we provided arguments why set covering isa goethodology for the induction of
fuzzy rules. Crisp covering algorithms are a special casezaly covering algorithms, and as such fuzzy
covering algorithms are at least as powerful as crisp cogealgorithms. We also provided theoretical

8In English, “BlutdruckSystolisch” means systolic bloocegsure, “Temperature” means temperature, “Thrombozyten”
means platelets, “Urinmenge” means urine quantity, “Ueb& means survived, “BlutdruckDiastolisch” means didist
blood pressure, and “verstorben” means deceased.
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arguments why fuzzy covering algorithms are more poweffulexample that, unlike for crisp rules, the
decision boundary in the fuzzy case need not be axis-phrdllealso proposed a series of experiments
to demonstrate cases where crisp rule induction fail, kegyfuules provide good results. We provided
an empirical evaluation of different fuzzy methods on benatk data sets to substantiate our claim that
fuzzy set covering often perform better than other fuzzyres methods, such as fuzzy decision trees
or beam search, for example. FCF was able to convincinglyesfdrm the other fuzzy classifiers with
respect to classification performance. In addition, FCRiokd significantly less complex rule sets.
Finally, we provided two applications where FCF improvedmphe performance of previously used
methods.
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CHAPTER12

Conclusions and Directions
for Future Research

The objective of this dissertation was to prove that set kdogecan be applied successfully for the
induction of fuzzy classification rules from training daget covering has proven to be a very successful
concept learning methodology in the crisp case, and mafgreift algorithms applying this approach
have been proposed. Fuzzy sets are a generalization ofsgispand a crisp set is a special case of
a fuzzy set. As such, many different methods for the indactib fuzzy rules have been proposed.
Some of the more successful induction methodologies awy fdecision trees, genetic algorithms, and
partitioning methods. One drawback of most of these metiwdzat the induced rule sets are often
not very comprehensible due to their rather large numbeulesr There are also comparatively few
methods that allow both the induction of incomplete rulesrtftfermore, most methods concentrate on
extracting fuzzy set membership functions, and thus fongause of fuzzy sets as linguistic labels with
meaning to domain experts. However, accordin@Gtollaume[2001], the use of linguistic terms, small
rule sets, and the induction of incomplete rules are exdhtycriteria for obtaining comprehensible
fuzzy rule sets.

By developing the fuzzy set covering rule induction methHody, this dissertation addressed the prob-
lem of inducing accurate, but also comprehensible fuzzgsifi@ation rules. Thus, we have extended
the different classes of rule induction methods, and adderyfset covering to it. We have also devel-
oped four new fuzzy rule induction algorithms implementihiz new methodology. The first algorithm,
FuzzyBEXA, inherits its structure from its crisp ancestoeX\. FuzzyBEXA induces a single rule
through a conjunction specialization process based om@éixg linguistic terms. It starts with the most
general conjunction in its description language, and egjhis allowing a local beam search until cer-
tain stopping criteria are met. We have also proved varibtasacteristics of the algorithm, for example
that its description language induces a lattice, and tlegfutitzy extension operator is an order-preserving
mapping from descriptions to associated instance sets.

We also presented several experiments witlzE BEXA. An experimental evaluation with benchmark
data sets investigated its different learning paramet&vs. measured the effect of the beam width,
FuzzyBEXA’s sensitivity to noise, it's pre- and post-training seiriif to the value of then-cut, and
the effect of its various stop growth tests. The principlsuits are that BzzyBEXA’s search effort
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grows at most linearly with increasing beam width, that hidnees well in the presence of noise, that itis
not overly sensitive to the antecedent threshold, and ligatise of the stop growth criteria significantly
improves the search in terms of rule set complexity and begffort. The experiments also show that
although RizzyBEXA’s hypothesis space for most problems can be very large, Itfugithm easily
copes with normal size data sets, and that even very largesdtg can be successfully searched.

The conjunction evaluation measure plays an importanttoajelide the search for single rules. As such,
we proposed a range of conjunction evaluation functionsiafhg adapted to the fuzzy case. We also
conducted experiments to investigate their performancedifterent data sets. The results showed that
the evaluation function should be matched to the data dedisacteristics, and that no single evaluation
function always performs best. However, our proposed Aamuevaluation function performed very
well in most circumstances, especially as measured by tleeo§ithe rule set.

We also presented a survey of different algorithms for tdedtion of fuzzy rules. These algorithms can

be grouped into seven classes, depending on their industtiategy: greedy incremental rule learners,
divide-and-conquer, similarity, stochastic, partitiogyi hierarchical, and gradient descent. Of course
there also some algorithms that do not fit neatly into one e$¢hclasses. We provided a comparison
between the different classes andZZyBEXA, as an example of a fuzzy set covering algorithm. None
of the algorithms have all of BzzyBEXA's characteristics, in fact, most have very little in common
with Fuzzy BEXA.

Since one new algorithm is not enough to establish a paradiggrdeveloped more fuzzy algorithms
applying the set covering approachy)#y SEEDSEARCH, FUzzCoNRI, and FuzzyPRISM. Fuzz-
CoNRI and FuzzYPRISM use FuzzyCAL as description language, and empfigendas special-
ization operator. BzzYBEXA and Fuzzy SEEDSEARCH use FuzzyAL as description language, and
employexcludeas specialization operator.

FCF was introduced as a general framework for set covermguyigthms, both crisp and fuzzy. The top
layers of the framework encapsulate everything that islairbetween different set covering algorithms.
This include the fuzzy set covering approach, and searchidties such as conjunction evaluation,
beam search, prepruning, and efficiency improvements. Amyravement to the top layers, or the
addition of new or more advanced heuristics, will autonadlijcbenefit all algorithms that fit in the
framework. FCF allows different covering algorithms to teacterized and compared. Thus, FCF
allows the rapid development of new covering algorithmseeithe designer need to concentrate only
on what differentiates his algorithm from the rest. To destiate the applicability of the framework we
showed that all four proposed covering algorithms fit witthie framework. We also characterised each
algorithm and described its various properties.

To the best of our knowledge, there existed no algorithm Heribductionorderedfuzzy rule sets, or
fuzzy decision lists. Bzzy BEXAIl is a novel fuzzy rule induction algorithm following thasultaneous
concept learning approach, and is capable of inducing idedists (ordered rule sets). We showed that
decision lists can compare favourably to unordered rukeweder the right conditions. If an appropriate
conjunction evaluation function is used, the induced ratecan be very descriptive and highly accurate,
while being extremely compact.
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To motivate the use of fuzzy set covering we have providedraamts for the use of fuzzy set covering as
opposed to crisp set covering of other fuzzy rule learninthods. Fuzzy set covering as a generalization
of crisp set covering is far more powerful, and includesyrsst covering as a special case. We have also
compared fuzzy set covering to other algorithms that a® @pable of inducing incomplete rules and
use fuzzy sets as linguistic labels. On average, FCF outpeasf methods such as decision trees (e.g.
FID) or beam search (e.g. FBS) in terms of classification magu However, at the same time FCF
significantly outperforms these methods in terms of ruleceetprehensibility. Finally, we provided
results on two real world applications where FCF improvedruihe state of the art. In the next section
we list the major scientific contributions made by this ditg@n. We then provide some directions for
future research in Sectidi®.2 and Sectiori2.3concludes the dissertation.

12.1 Scientific Contributions

We list the major scientific contributions made by this ditsén:

1. Establishing a new paradigm for the induction of fuzz\ssification rules
(“Fuzzy rule induction in a set covering frameworkClpete and van ZyR008§);

2. Narrowing the gap between the symbolic and sub-symbddichime learning communities
(“A machine learning framework for fuzzy set covering aitfums”, [Cloete and van ZyR0044);

3. The first ever algorithm for the induction of fuzzy decisists
(“Simultaneous concept learning of fuzzy rules/ah Zyl and Cloetg20044);

4. A general fuzzy set covering framework
(“Specialization models for a general fuzzy set coveriagrfework”, ban Zyl and Cloetg2008);

5. Novel fuzzy rule evaluation functions, and their impada during rule induction
(“Heuristic functions for learning fuzzy conjunctive rsle [van Zyl and Cloete20044, “Evalu-
ation function guided search for fuzzy set coverin@ldete and van Zy20043);

6. The algorithm BzzYBEXA based on exclusion
(“Fuzzy set covering with FuzzyBexa'CJoete and van ZyR004R);

7. The algorithm lBzzCoONRI that induce rules in FuzzyCAL
(“An inductive algorithm for learning conjunctive fuzzyles”, [van Zyl and Cloetg2004d, “Fuzz-
ConRI - a fuzzy conjunctive rule inducerydn Zyl and Cloetg20043);

8. The algorithm BzzYPRISM that uses fuzzy information gain
(“FuzzyPRISM: a specialization model for the FuzzyBexarfeavork”, [van Zyl and Cloetg20041);

9. Encoding FuzzyAL rules as prior knowledge in a neural oetw
(“Prior knowledge for fuzzy knowledge-based artificial redunetworks from fuzzy set covering”,
[van Zyl and Cloetg20044).
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12.2 Directions for Future Research

We have proposed fuzzy set covering as a new paradigm foy filagsification rule learning. However,
the field is still wide open for further research. Some ideakide further extensions and improvements
to FCF, the development of more algorithms, and the extarsfiduzzy set covering in general. In the
remainder of the chapter we give a brief overview of some efgpen problems and also propose some
possible strategies.

12.2.1 Neural Network Encoding of Fuzzy Rules

The encoding of an extracted fuzzy rule set in a neural nétwdli provide a link between the sym-
bolic and sub-symbolic connectionist approaches to carieaming. In this area we have already taken
preliminary steps, and developed a method for encodingyAlzzules [van Zyl and Cloete20044.
The network can represent a fuzzy rule set with internaudidjon accurately under the right condi-
tions. The knowledge encoding strength (bias) should leglenough, and the slope parameter of the
sigmoidal activation functions should also be sufficielfdlge. We also showed empirically that the net-
work is capable of correcting incorrectly encoded knowksdand of improving given further training
data. However, the final step of taking the trained neuraloet and again extracting FuzzyAL rules
has still not been taken. Rule extraction would allow therdeas migration between both knowledge
representations. Since the encoding method is relatedhdbudentral to the theme of this dissertation,
we provide a summary of the method in AppenBix

12.2.2 Extending the Description Language

FuzzyAL and FuzzyCAL are both powerful description langemgas can be seen from the good perfor-
mance of algorithms using them. However, as discussed itioBet10.4 these description languages
do not allow for the description of relations between défarattributes. One possible way for extending
the description language is to add more operators, sucha®nal operators. A further extension is
the addition of fuzzy hedges, such as “very,” “little,” “atost,” etc.

12.2.3 Predicting Concept Membership

We discussed the semantic interpretation of the rules gdlby FCF in Sectiod.3.5 The membership

of an instance to a rule antecedent is no prediction of the lmeeship of the instance to the rule conse-
guent. In some cases it may be desirable to know the mempeustiie concept. One approach may be
to learn a non-linear mapping between instances’ memigetsta rule’s antecedent and its consequent
for all instances matched by the rule. Another approach madapt the induction process to learn a
hierarchy of rules, such that rules on higher levels havedrignembership strengths.
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12.2.4 Rule Post-Pruning

FCF includes many efficiency criteria, and also includes gtepruning of rules. However, in this
dissertation we did not address the question of rule pastipg—i.e. pruning after the induction of the
complete rule set. In the crisp case, rule post-pruningnadftereases the generalization performance of
the rule setMitchell, 1997, p. 71]. We have already undertaken some preliminary stepddress rule
post-pruning Robbel, van Zyl and Cloet@004], but much more remains to be done.

12.2.5 Computing the Complete Most General Consistent Rul8et

FuzzyBEXA searches the lattice of conjunctions from top to bottom immststent manner, and it is
guaranteed to find members @f;, the set of most general consistent conjunctions, duric @ara-
tion when using an infinite beam width. In fact, using an inérheam width, BzzyBexa will find

all members of”; during thefirst iteration ofFindBestConjunctionHowever, presentlffindBestCon-
junctionreturns only a single conjunction. A further possible egiten to FCF is to keep track of the set
of “best conjunctions.” This can be implemented by maintejrthe sebestconjunctionsin FindBest-
Conjunction This set is cleared each time the best conjunction is reglay a conjunction that has a
better evaluation. Each time a conjunction is found withsime evaluation as the best conjunction, this
conjunction is added tbestconjunctions The set of best conjunctions is then returned. To prevent th
addition of many similar rule€CoverConceptsould only add rules frorbestconjunctionghat have no
instances in common with other rules frdrastconjunctions Using this method, the set of all disjoint
but equally good rules is found during each iteratiorrimidBestConjunctionwhich could be renamed
to FindBestConjunctionsA larger beam width may prove helpful in this case.

12.2.6 Automatic Selection ofy,

FCF requires the antecedent thresheldto be specified by the user. Often the user (domain expert)
may have a good feeling for a suitable valuexgf but this may also not be the case. Another extension
to the framework is thus to allow the framework to selegtautomatically, and even select different
values ofx,, for different rules. One concern, however, is that too mawidually tuned values fat,,

may reduce the comprehensibility of the rule set.

12.2.7 Evaluation Function Sensitivity toa,

We have not investigated the sensitivity of each rule evamlnanethod tay,. This may be an interesting
experiment, and we expect different evaluation functiarisave different levels of sensitivity tg,. We
expect the Laplace function to be very sensitive, but theufaxy function to be relatively insensitive to
a,. Depending on the problem domain, one may opt to use a magasiise function ifo,, cannot be
determined externally.
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12.2.8 Using Genetic Algorithms for Adapting Membership Functions

We have spent very little time exploring the influence ofeti&nt membership functions on the induction
process. The rationale was that the membership functiansletermined externally to the induction

process, and the induction algorithm should make do withtvtheas. However, the induction process
is certainly influenced by the membership functions, andebehembership functions should allow

the induction of more accurate and also more comprehensitdesets. FCF would allow the genetic

optimisation of membership functions, by providing an chje function in the form of a rule set. The

process may functions roughly as follows. FCF is used todiagi the process by the induction of
a rule set. The rule set is then used as objective functiomfambership function optimisation. After

optimisation, the rule set is discarded, but the membefsinigtions are kept for the next iteration of rule

induction. The process can then be iterated until the dleason performance of successive iterations
do not improve anymore.

12.2.9 Incremental Learning and Prior Knowledge

It may be desirable to keep an old tried-and-tested rulevast when new information (training data)
becomes available. In this case an incremental learningpbapp exploiting the prior information may
be used. Prior information may also be presented in the fdrkmowledge extracted from domain
experts. A first approach is to add the prior knowledge in trenfof rules to the rule set prior to rule
induction, and to continue rule induction as usual. Ruleeedents may also be pruned using the extra
training data. Another approach may be to adapt rules thasify the new data incorrectly either by
specializing or generalizing them.

12.2.10 Information from Knowledge Discovery

The last aspect which we address is the application of FCleabworld domains. FCF presents a
new methodology for knowledge discovery which may proveyweseful in many different domains.
We have showed some preliminary results for two such agjgits, and FCF performed very well.
However, we did not customize or adapt the data in any way. Xgea a custom solution involving
FCF and data adapted to fit the algorithm to yield very satiefg results.

12.3 Conclusion

This dissertation advanced the state of the art in fuzzysiflaation rule induction by establishing fuzzy
set covering as a new fuzzy rule induction paradigm. Fuzzyceeering algorithms are capable of
inducing very comprehensible but also highly accurate saks. Thus, we hope the work presented in
this dissertation make the use of fuzzy classification roiese acceptable to both the crisp rule set and
numerical concept learning communities.
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APPENDIXA

Classical Set Covering Algorithms

In this dissertation we established set covering as a metbgy for rule induction in the fuzzy case.
Thus, it is appropriate to provide a brief review of claski@isp) set covering algorithms. For a
definition of set covering please see SectBB SectionA.1 reviews the AQR family of algorithms,

SectionA.2 reviews PRISM, SectioA.3 reviews CN2, and Sectio.4 reviews RIPPER.

Al AQR

The AQR family of inductive learning algorithms, of which A® is an example, generates rules from
training instances by following the principles first intcembd by Michalski in 1969Nlichalski et al,
1986k Michalski, 1969. AQR builds decision rules that accounts for all positiveelano negative in-
stances by following a heuristic search of the a space of legial expressions. AQR rules are repre-
sented in VL, which is a multiple-valued logic propositional calculughwtyped variablesNMlichalski,
19743.

As an example of AQR, TablA.1 shows the basic AQ15 algorithnMjchalski et al, 1986ab]. The
algorithm is initialized with a partial cover of the pos#ivexamples. This initial partial cover may
simply have the value true, or be a user defined hypothesigidimg AQ15 with an incremental learning
facility. The procedurgyetStar obtains all maximally general complexes, or hypotheses, dbver a
positive seed and not a negative seed. These are obtainemesating all maximally general complexes
covering the positive seed, and removing those that alserdbe negative seed. The maximally general
complexes are then intersected with the current partiadrcavhis results in a new partial cover that still
covers the positive seed, while not covering the negatigd.se

This process is iterated and the results combined until matie examples are covered. The best
complex from the result gfet Star is then added to the current rule set. AQ15 iterates the wiroleess
until all positive examples are covered. The most recerdrimation of the AQ algorithm is AQ20
[Cervone et @.200]. Important new features include an object oriented im@etation, handling
continuous variables without prior discretization, anigstng multiple rules fronstar.
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Table A.1: The AQ15 algorithm.

PROCEDURE AQ15fartialcover)
WHILE partialcover does not cover all positive examples
seed = any uncovered positive example
star = getStargeed)
best = best complex fromstar according to evaluation function
partialcover = patialcover V best
RETURNDpartialcover
END PROCEDURE

OO WN P

PROCEDURE getStappsitiveseed)
partialstar = TRUFE
WHILE partialstar covers some negative examples
negativeseed = any negative example covered fyrtialstar
negativestar = {c|c is maximally generak; coverspositiveseed,
andc does not covenegativeseed}
partialstar = patialstar N negativestar
retainmaaxstar best disjoint complexes ipartial star
7 RETURNpartialstar
END PROCEDURE

A WOWNPRE

o O1

A.2 PRISM

PRISM is an induction algorithm that borrows some ideas ftB8 to implement an inductive rule
learner Cendrowskal987. Rules are iteratively induced for each class following &tgorithm shown

in TableA.2. In the first step the probability of occurrenpé&, |a,) of the classificatiory,, for each
attribute value paiw, is calculated. In the second step the pair for whigh,|a,) is maximum is
selected, and a subset of the training set comprising alihftances which contain the selectedis
created. This subset is then considered as the new traiatngred the previous two steps are repeated
until all instances in the training set belong to clags An IF-THEN rule is then formed by taking
the conjunction of alk, chosen as antecedent afidas consequent. The original training set is then
restored, but all instances covered by the new rule are rechohis procedure is iterated until all
instances of clas§, are covered. At this point the initial training set is restbrand the induction of
rules covering the next class begins. The induced rule s#¢asly unordered. If two attribute values
have the same class probability, PRISM selects the attribalue that has the highest probability that
the class occurs within the subset considered, therebggmiinduce the most general rule first.

A3 CN2

The CN2 induction algorithm is based partially on IB3Uinlan 1984 and partially on the AQR family
described in SectioM.1. CN2 removes the need for seed examples during the searchsgroand
employs a beam search and stop growth teStark and Niblett 1989. The CN2 algorithm learns an
ordered list of rules, with a default rule predicting the timsquently occurring class as the last rule.
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Table A.2: The PRISM algorithm.

PROCEDURE PRISM)
1 Calculate the probability of occurrengg,, |a,) of classification,, for
each attribute-value pair,.
2 Select theu, such thap(d,|a,) is @ maximum, and create a subsét
of the training sef” such thatF’ = {¢|e containsu,, ande belongs ta),, }.
3 Repeatsteps 1 and 2 untit € F'(e belongs ta,,). Form the rule- with §,,
as consequent and as antecedgnt as A ... A a,,, where thez; was chosen in step 2.
4 Remove all instances covered by the rule from the traingtg s
5 Repeat steps 1 to 4 until all instances of clashave been removed.
END PROCEDURE

To classify an unlabeled instance, rules are consideredder aintil the first one fires. This rule is then
used to predict the class. Ordered rule learning uses gna®@n example evaluation function. The
relationship between ID3, CN2 and the AQ family is well sadlin the literature ¢lark and Niblett
1989 Theron and Cloetel994.

The CN2 algorithm is given in Tabl&.3. The algorithm receives a training s&tof instances. It then
iteratively searches for a complex (description) coverrigrge number of instances from classand
while covering few instances of other classes. If a rule ismth the examples covered by it are removed
from the training set and the rule is added to the rule listis inocess repeats until the training set
becomes empty, or no new suitable rules are found.

New complexes are generated in a pruned general to spedifichseA size-limited set of the best
complexes found thus far is maintained. Complexes fromgbisare specialized by adding new con-
junctive terms. Specializations that cover no instancethat was generated in the previous iteration,
are removed. For its rule evaluation function CN2 uses th®py measure

H=- Zpi logs (p;) (A1)

wherep; is the probability that an instance covered by the rule lgdaio class. CN2 prunes rules
by testing whether they are significant. The likelihoodaatatistic is used to compare the observed
distribution to the expected distribution of the trainirej.sOnly significant rules are added to the rule
set. In an improved version of CN2, the induction of an unaedeule set was proposed by using the
Laplace estimate to evaluate conjunctio@$afk and Boswe|l1991].

A.4 RIPPER

RIPPER (Repeated Incremental Pruning to Produce Error ¢died) [Cohen 1997 is an improved
version of the algorithm IREP (Incremental Reduced Erromirg) byFirnkranz and Widmerl994,
and is arguably the most powerful rule learning algorithrdatp [Firnkranz and Flagi2004. The
basic algorithm is given in TablA.4. GrowRulestarts with an empty conjunction of conditions,
and iteratively appends conditions that maximizes FOIlhfeimation gain criterionQuinlan 199Q

177



Table A.3: The CN2 algorithm.

PROCEDURE CN2E)
rulelist = ()
REPEAT
bestcomplex = findBestComplext)
IF bestcomplex # NULL
E’ = examples covered thestcomplex
E=FE-F
C' = most common class iR’
rulelist = rulelist U ‘IF bestcomplex THEN C”
UNTIL bestcomplexr = NULL ORE = )
0 RETURNrulelist
END PROCEDURE

P OooO~NOULh,WNPE

PROCEDURE findBestComplek])
star = TRUE, bestcomplex = NULL, selectors = all possible selectors
WHILE star #
newstar = {x A\ ylx € star,y € selectors}
newstar = newstar — star U {c|c € star,c = NULL}
FORc¢; € newstar
IF ¢; is statistically significant when tested éhAND
¢; is better tharbestcomplex according to the evaluation function THEN
bestcomplex = ¢;
retainbeamwidth best complexes inewstar
star = newstar
RETURNbestcomplex
END PROCEDURE

PP OO~NOOULEAWNPE

= O

Quinlan and Cameron-Jonek993 until no negatives are coveredPruneRuleconsiders deleting any
final sequence of conditions from the rule, choosing thetidel¢hat maximizes the function

v(rule, pruneP, pruneN) = p—n (A.2)
p+n

where P and N are the numbers of positive and negative instances in tisesete P and prunelN,
respectively, angh andn are the number of positive and negative instances covered.lay respec-
tively. The deletion process continues until no deletioprioves the value. For multi-class problems,
RIPPER orders classes in sequence of increasing prevaldtaies are then induced using the first
class as positive and the remaining classes as negatiendest The instances of the first class are
then removed from the training set, and the process itetatgidonly the majority class remains, which
is classified by the default rule. RIPPER'’s stopping criterivorks as follows. The total description
length of rule set and instances are computed. Inductioninetes when this description length is more
thand bits larger than the smallest description length obtaimed far, or when no positive instances
remain. For a discussion on computing the description lenfja rule please see referenc&ohen
1994 and [Quinlan and Cameron-Jondd954. The rule set obtained from IREP* is further optimised
by a post-pruning phase. The whole process can be iterataddyg additional rules induced by IREP*
and optimising again. This algorithm is called RIPRERr k optimisation steps. By design RIPPER
induces extremely compact rule sets. An accuracy basedarsop on 37 data sets between RIPPER2
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Table A.4: The RIPPER algorithm.

PROCEDURE RIPPERI(, Concepts)
orderConcepts in order of increasing prevalence
ruleset = )

REPEATE TIMES
FOR EACH concept € C'oncepts DO
Let (P, N) be the positive and negative instance'in
ruleset = ruleset U IREP*(P, N)
remove instances belonging to concepom T
END FOR
PostPrunefuleset)
END REPEAT
RETURNruleset
END PROCEDURE

PP OOO~NOOOULE,WNPRE

= O

PROCEDURE IREP* P, N)
ruleset = (), minmdl = co
WHILE P # ()
split (P, N) into (GrowP, GrowN) and (PruneP, PruneN)
rule = GrowRule GrowP, GrowN)
rule = PruneRulexule, PruneP, PruneN)
IF minmdl > MDL(rule) THEN
minmdl =MDL(rule)
IF MDL(rule)> minmdl + d THEN
RETURN7ruleset
10 ruleset = ruleset U rule
11 remove instances coveredhyie from training data
12 END WHILE
END PROCEDURE

O©CoO~NOULEA WN P

and C4.5 Quinlan 19934 resulted in one draw, 21 wins and 15 losses for RIPPER®ER 1995.
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APPENDIXB

Fuzzy Attribute Relation File Format

The Fuzzy Attribute Relation File Format (FARFF) is an esien of the Attribute Relation File Format
(ARFF) used by the WEKA data mining packag#iften and Frank200d. ARFF was designed for
crisp data sets, and does not allow the definition of memigfshctions. An example of an FARFF data
file is shown in Tabld3.1. The first line defines the name of the relation using the kegh@el at i on.
The definition of the linguistic variables is followed by tlefinition of the fuzzy instances and are
separated by the keywo@lat a.

FARFF allows the definition of three different fuzzy attrieuypes for dealing with linguistic variables.
The simplest type allows the definition of a linguistic vaiewith a single linguistic term. Such at-
tributes are indicated by the keywo@ht t r i but e, followed by the name of the linguistic variable
and then the keywor@nf val ue. The linguistic variableskill is an example of such a definition. The
membership degree to the fuzzy set for each instance is givére data section of the file. Each at-
tribute definition is delimited by parentheses and sepdragecommas. The membership for instances
1, 2 and 3 teskill is 0.4, 0.6, and 0.9, respectively. Linguistic variablethwiuzzy sets for which the
instance membership degrees are known, but not the menibérshtions, are defined by the keyword
@t tribut e, followed by the name of the linguistic variable, followey the definition of its term
set. The term set is delimited by curly braces, and the iddadi linguistic terms are comma separated.
The instance membership degrees to the individual liniguistms are given in the same order as the
definition of the linguistic terms. For example the membgrsif instance 1 to the linguistic terms
Surrealism AbstractExpressionispandPopArtare 0.4, 0.7, and 0.0, respectively. Note, crisp nominal
observations are a special case of this type of attriblte fdir example the linguistic variabsillAlive.

In this case the membership degree to a single linguistio terone while the membership degrees to
remaining terms are zero.

FARFF also allows the definition of the membership functiohghe individual linguistic terms. Such
attributes are indicated by the keywog@if , followed by the name of the linguistic variable and the
definition of the membership functions of its term set, dékah by curly braces. Each linguistic term is
defined by specifying its name, followed by a colon and theifipation of the membership function.
The membership function can be any piece-wise linear fanctspecified by giving the coordinates
of the function. The membership degree specification of daest and highest points on the domain
defines the membership degrees for points lower and highertttese, respectively. For example, the
linguistic variableage has four linguistic termsghild, young midlife, andold. Instances contain the
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Table B.1: An example of a FARFF data file.

@ el ati on FARFFExanpl e

@ttribute skill nf val ue
@ttribute stillAlive {yes, no}
@f age {
child: (15, 1.0) - (20, 0.0)
young: (10, 0.0) - (20, 1.0) - (30, 1.0) - (35, 0.0
mdlife: (30, 0.0) - (35, 1.0) - (50, 1.0) - (65, 0.0)
ol d: (60, 0.0) - (70, 1.0)
}
@ttribute style {Surrealism Abstract Expressioni sm PopArt}
@lat a
(0.4), (1 0), (72.0), (0.4, 0.7, 0.0)
(0.6), (1 0), (55.0), (0.0, 0.2, 0.8)
(0.9), (0 1), (57.0), (0.9, 0.4, 0.0)
1—chid young midlite
0.9
0.8
0.7r
0.6
0.5+
0.4
0.3
0.2
0.1r
% 10 20 30 40 50 60 70 80
Age

Figure B.1: Membership functions of the linguistic terms for the lingfic variableage

observation on the domain of the linguistic variable, foamyple instances 1, 2, and 3 spediye as

71, 55, and 57, respectively. The membership of an instaritteage 15 or less to the linguistic term
child will be one, and similarly the membership of an instance \aigle 20 or more will be zero. The
membership degree of an instance to all the specified litigu&yms can thus be computed from their

respective definitions.
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APPENDIXC

Membership Function Extraction

The fuzzy set covering algorithms introduced by this woduase that a fuzzy training set is available for
the induction of fuzzy classification rules. Some approaat@not make this assumption, and assume
numerical observations as inpd/gng and Mendell992 Kasaboy2001H. One of their main functions

is thus also to induce a mapping from numerical observattomémbership degrees. Other methods,
most notable fuzzy decision tree induction methodsh and Shawl995 Cios and Sztandera 997,
assume instances are defined by their membership degrelegucstic terms. FCF allows both ap-
proaches, either the membership degrees, or the membdéusiaipon and numerical observations can
be specified. Different methods for automatically deteingrmembership functions have been pro-
posed in the literature. These include using self-orgagimnaps, clustering methods, neural networks,
and genetic algorithms (for an overview refer to Cha@)erin the following discussion we will intro-
duce the method used to extract membership functions adarsaliithe experiments in this work.

C.1 Fuzzifying Training Data

If the training data is specified by the membership degreesstdnces to linguistic terms, no further
fuzzification is required. However, it is more common tha tfata contain numerical observations of
system variables. In this case a membership function mgph@mnumerical domain to fuzzy member-
ship degrees is used. The definition of such membershipifursctnay be clear from the application, or
given by an expert. If this is not the case, an automatic @®can be used to extract suitable member-
ship functions directly from the data.

C.1.1 Membership Function Shapes

Several membership function shapes have been proposedsaddruliterature. The most common
functions used are the triangular, trapezoidal, and Gangsnctions. Except where stated otherwise,
we utilized rough piecewise-linear bell shaped functiom$is kind of function fits many real world
problems Surmann 2004. The bell shape is approximated using five lines, as showkigore C.1

A six line approximation of the Gaussian function was useadef@mlutionary optimisation of a fuzzy
rule based systenSprmann 2000J. Using an approximation instead of the real Gaussian fonct
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Figure C.1: A piecewise-linear bell shape function approximation.

speeds up computation, and allows for easier tuning of thalmeship functions. It further allows the
membership function to be adapted later to any other shapehich case the bell shape only serves as
an initial starting point.

Let i1, (u) be any piecewise linear membership function, and)dte an ordered set of points in the
Cartesian plain,

Q ={aql ¢ < gjfori<j} (C.1)

whereg; is a point in the Cartesian plain. We define the less-thanatiperin terms of the x-coordinates,
that is,q; is less thany;, ¢; < gj, if the z-coordinate ofy;, g;.z, is less than the-coordinate ofy;.

Definition C.1.1 ¢; < ¢; <> ¢;.x < gj.«

We then defingiz (u) = f(Q,u), wheref(Q,u) is defined as follows,

q1 foru < q.x
Definition C.1.2 f(Q,u) = ¢ qn foru > g,.x
%-u—%-qi.x+qi.y forg;.o <u < qi1.x

Thus, f(Q, u) defines the membership degree of any instant®the linguistic termL for the ordered
set of points().

C.1.2 Membership Function Extraction

Using definitionC.1.2we extract membership functions from a data set for all thgicoous attributes
using the algorithm shown in Tablé.1 The algorithm computes the elements(@fas defined in
Eq (C.2). The algorithm functions roughly as follows. A continuaitribute is picked, and a clustering
is performed on the instances of the data set. Each poinkicdhtinuous domain can be assigned to
a closest cluster centre, and the section of the continuomsauh belonging to a given cluster defines
the cluster interval. Along each interval a membership fioncof the shape depicted in Figug&1lis
placed. If an interval is completely subsumed by anothex digleted.
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Table C.1: An algorithm for extracting bell shape membership funcifmom a data set, where the constants
0.25, 0.8 and 0.125 can be changed by the user.

FOR a continuous attributé;
Cluster the instance data fdr, into a list of clusters”
FOR each clustef’; € C' DO
Setmin; = min(C}), maz; = max(C};), andrange; = max; — min;
END FOR
SortC such thatC; < Cj;1 whenmin; < min;;q
FOR each clustef’; € C' DO
IF max,;,1 exists ANDmaz ;1 < max; THEN
DeleteCj ;1
END IF
END FOR
FOR each clustet’; DO
IF min;,q exists ANDmin;; < max; THEN
intersect = 0.5 - (minj1 — max;);
Setmax; = max; — intersect, Setmin; 1 = minjy1 + intersect
END IF
SetQ = (min; — 0.25 - range;, 0);
SetQ); = (mmj,O.S);
SetQs = (min; 4+ 0.125 - range;, 1);
SetQy = (max; — 0.125 - range;, 1)
SetQs = (max;,0.8);
SetQ¢ = (max; + 0.25 - range;, 0)
SetM Fj(u) = f(Q,u);
END FOR
END FOR

A variation of this algorithm would be to use the completeuihndomain when computing the cluster
centres, i.e. to use all the continuous attributes togethen clustering. This will mean that the cluster
centres in one dimension are not independent from the othesrdions. This may have the effect that
a classification algorithm will need less attributes to sifgscorrectly. However, it may also be seen
as smoothing of the training data, and may degrade the pesfoze of a good classifier when smaller
clusters in one dimension are grouped as a result of datpiggin other dimensions.

C.2 Influence of the Number of Clusters

We also conducted experiments to determine the influenceeohtimber of membership functions
(linguistic terms) extracted on the classification accyiatd the rule set comprehensibility of our algo-
rithm. For this experiment we induced ordered rule setsgusmbeam search, the Accuracy evaluation
function andd,, = 2. The value ofy, depended on the data set, and was kept constant for eacls-respe
tive data set for all experiments. For eight data sets weebtdd fuzzy data sets with three, five, and
seven membership functions per variable. We then perfort@eftbld cross validation experiments for
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Table C.2: Classification accuracy results for different configunasio

# clusters 3 5 7 Ripper2
anneal 99.3 97.8 93.1 98.3
breastcance 70.8 71.6 70.1 77.3
colic 82.9 82.6 83.4 85.1
credit-a 84.9 85.2 85.4 86.2
hepatitis 81.3 81.9 81.3 78.1
iris 96.4 92.9 95.7 94.7
labor 89.5 89.5 87.7 77.2
lymph 78.4 77.7 78.4 79.1
averag 85.4¢ 84.9( 84.3¢ 84.4¢

Table C.3: Number of rules per extracted rule set for different configions.

# clusters 3 5 7 Ripper2
anneal 7.0 9.0 7.0 7.0
breastcance 5.0 5.0 5.0 2.0
colic 5.0 5.0 5.0 3.0
credit-a 4.0 3.0 2.0 4.0
hepatitis 4.0 3.0 3.0 4.0
iris 3.0 3.0 3.0 4.0
labor 2.0 2.0 2.0 4.0
lymph 5.0 5.0 5.0 6.0
averag 4.3¢ 4.3¢ 4.0C 4.2¢

the different fuzzy data sets and report the averages @utain

TableC.2shows the classification accuracies obtained by#¥ BExA for the different data sets, and a

base line performance of RIPPER2. On average,4¥ BEXA'’s classification performance was compa-

rable or better than RIPPER2’s for all configurationsizEy BExA's average of the best result for each

dataset amounts to 85.75%, compared to its average of 85a¥ree terms, and RIPPER’s 84.48%.

On average, the classification accuracy declined for ar@sing number of terms. However, this is

not necessarily true for each individual data set (e.g.ieed The anneal data set is the only one that
exhibited a clear decline in classification accuracy.

Table C.3shows the corresponding information for the number of rpksrule set. Although Gzzy-
BEXA does not post-prune it's rule sets whereas RIPPER2 dagYBEXA's rule set complexity is
very similar to that of RIPPER2.UzzyYBEXA’s smallest rule set had fewer rules than RIPPER on five
data sets, on one they had the same, and on two data sets RHaEE®Rver rules. The number of rules
per data set also decreased on average.

The main observation from the current experiment is thantimaber of clusters, and thus the number
of membership functions (linguistic terms) extracted pafiable, does not have a dramatic influence
on either the classification accuracy performance or treeset comprehensibility, as measured by rule
set complexity, for these data sets. In general, howevereasing the number of terms of a linguistic
variable, will require that more terms are needed to cowestime region as before since the domain is
divided into smaller fuzzy sets. This in turn will increasgercomplexity and undermine rule compre-
hensibility, in line with the arguments &uillaume[2001].
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Increasing the number of terms per variable will also neghtiaffect the search for the best rule. The
search effort as measured by the average number of comguaatxamined per rule set for 3, 5 and 7
terms were 987, 1125 and 1402, respectively. This is a densi;icrease with increasing number of
membership functions. This should clearly be the caseeshe size of the hypothesis space increases.
However, the increase in hypothesis space is exponentfa@ress we only observe an almost linear
increase in search effort. This is further testimony to tfiecéiveness of BzzyBEXA's search and
over-fitting avoidance biases. We conjecture, howevet,wih&n a large number of terms per variable
is extracted, that it will adversely affect classificatiamtaracy as well. Due to the top-down search and
bias toward generality of rules, the search will be led gdtsasmall incremental improvements dictated
by the many terms to choose from.
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APPENDIXD

Neural Network Encoding of FuzzyAL Rules

Knowledge Based Neurocomputing (KBN) concerns the encpdixtraction, and refinement of knowl-
edge in a neurocomputing paradig@I¢ete and Zurad&200q. Prior knowledge in a symbolic form,
i.e. a domain theory, can serve to initialise an artificialnaé network (ANN) so that this knowledge
can be refined using all the techniques available for new&arks [Cloete 1996 Cloete and Zurada

200d. These include further learning, analysis (such as gSeitgiainalysis) and rule refinement.

We provide preliminary results on addressing the problenerafoding prior knowledge in the form
of FuzzyAL classification rules in ANN. A neural network exary method provides a bridge from
the symbolic to the connectionist knowledge represemtatilthough there exist methods for encod-
ing purely conjunctive rulesqasaboy 2001H, these methods cannot encode the internally disjunctive
FuzzyAL rules extracted bydzzyYBEXA, do not contain the alpha complementand typically do not
function directly with membership degree data.

The layout of the appendix is as follows. Sectioril gives an overview of knowledge-based neural
networks, Sectiol.2 introduces our rule encoding method, and Sedildhidemonstrates the encoding
method by encoding rules extracted from the Fuzzy Sport dd¢ationD.4 demonstrates empirically
that the encoding method provides a one-to-one mappingeeetthe symbolic and the connectionist
knowledge representations, and Secfinb provides a summery.

D.1 Knowledge-Based Neural Networks

There exist several methods for encoding classificatioesrut neural networks. VIANN [Cloete
2000 encodes propositional rules in Ylsyntax Michalski, 1974, and a knowledge based artificial
neural network (KBANN) encodes Horn clausd®yvell and Shavlik 1994. Abraham provides an
overview of Mamdani and Takagi Sugeno neuro-fuzzy systernere neural networks are used to infer
the membership functions and parameters for fuzzy inferegstemsAbraham 200]. In our case we
assume that the inputs to the neural network are memberahips/for each of the possible terms of a
linguistic variable.

In our encoding method we use KBANN conjunctive and disjiwecheurons Towell and Shavlik
1994. All the weights of a KBANN disjunctive neuron are programdito a predefined valuél,
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and the bias input is set te0.5. Thus, the weighted sum of inputs for a disjunctive neuron is
g(x) =Y x;H—05H = H(> x;—0.5) (D.1)
7 %

The input applied to KBANN neurons is binary, i.e. eitlteor 1 values. Thusg(z) will be at least
0.5H if any input is on, and if no input is oy(z) = —0.5H. A big enough value fofd will drive a
sigmoidal neuron into saturation, causing it's output toeliber on or off (i.e. approximately zero or
one), depending on its input. KBANN conjunctive neuronsaastructed similarly, but the bias is set
to P — 0.5, whereP is the number of programmed input weights (with weight = H) to the neuron.
Thus, if all the inputs are on(z) = 0.5H, and if at least one input is not @rix) < —0.5H, effectively
implementing the desired conjunctive property.

D.2 Encoding Extracted Rules

In this section we present the mapping from the symbolic éccttnnectionist domain. We will assume
FuzzyCAL descriptions imply the standard fuzzy operatiofise neural network we propose consists
of six layers, the input, alpha complement, amplificaticarjable, rule, and class layersuEzy BEXA
induces rules from fuzzy data where each instance potlgritias a non-zero membership degree to each
linguistic term. The neural network must function with tleerse input data, and therefore the input data
determines the number of input neurons—one input neurofinggristic term.

D.2.1 Amplifying Neurons

We encode the fuzzy rule set using KBANN conjunctive andudisfive neuronsTowell and Shavlik

1994. KBANNs were originally designed for crisp rules. Fuzzyalanay cause the KBANN neurons to
malfunction under certain circumstances. To remedy tloblpm and provide the KBANN layers with
suitable input, we add an amplification layer between thetiamd KBANN layers. The amplification
layer is simply a layer of neurons with standard sigmoidaivation functions, where the activation

function has a slope greater than
1

9=
whereg is the weighted input to the neuron, and the slajeset greater thah As the slope approaches
infinity, this function approximates the step function. Eaeuron in the input layer is connected to a
corresponding neuron in the amplification layer with fixedghé of 1.

(D.2)

The bias weight of the amplifying neuron shifts the functiothe left or right. We simulate the matching
procedure by setting the bias weight tand the bias input te-«o,, or equivalently, setting the bias
input to —1 and the weight tay,. This will have the effect that fuzzy input values with menghép
degrees less than, will activate the neuron only weakly, whereas input valughwiembership degrees
more thana, will strongly activate the neuron. Thus, the functigfx) for the amplifying neurons is
calculated as,

gx)y=z+b=x—q, (D.3)
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D.2.2 Alpha Complement Neurons

The input data do not contain the linguistic teénfor linguistic variables. We simulate thieterm by
adding a new type of neuron, tiadpha complement neurdidenoted as-neuron), to the network. An
a-neuron is constructed for each linguistic variable. Thasnon is connected to input neurons of the
term set of its linguistic variable with weight valde It does not receive input from any other neurons.
The output is connected to one amplifying neuron. Like theepamplifying neurons, its bias weight is
set tol and the bias input te-a,,. Each input neuron is therefore connected to two other mesui@n
amplifying neuron and a&-neuron.

The activation function of theé-neuron implements the functionality of tle linguistic term. The
activation function adds the bias to the maximum input vatughe neuron,

g(X) =max(X) +b (D.4)

whereX =< x1, x4, ..., x, > iS an input vectorp is the bias, and we set all weightsitolt then inverts
the result and applies it to the sigmoid function,

1

f(g):e)\g+1

where is the slope of the activation function. The maximum memtiprsill be equal or greater than

(D.5)

o, if the membership to any linguistic term is equal to or gre#tanc,. If the biasa, is subtracted
from this value, the result will be positive, and the neurah mot fire. The maximum membership will
be less thamy, only if the memberships to all linguistic terms are less thanSince—g(X) is applied
to the sigmoid in this case the neuron will fire. This effeglyvimplements the functionality of the
linguistic term defined in Def4.3.1).

D.2.3 The Variable, Rule and Class Layers

The rule section of the neural network can represent anyuootipn in FuzzyAL, and is implemented
using KBANN conjunctive and disjunctive neurons. The netwoas the following structure. A con-
junctive rule neuronis created for each rule in the rule set. The activation & tlguron is analogous
to the firing of its corresponding rule. For each class a digjue class neurons created. The class
neuron is connected to all the rule neurons with rules the tiais class as the consequent. Thus, if
any rule neuron of the corresponding class fires, the clas®nealso fires. The rule neurons receive
input from a group of disjunctiveariable neurons Each rule has its own set of variable neurons—one
variable neuron for each linguistic variable for each ruléhe variable neuron is connected to those
amplification layer neurons which represent the linguigtions in the term set of the corresponding
linguistic variable.

The weights of a class neuron are all programmef tand its bias set te-0.5. The rule neuron weights
connected to variable neurons of linguistic variables gmes the rule are programmed 6, and the
remainder are set to small random values. The bias of thenrueon is set t§0.5 — P), whereP is
the number of linguistic variables occurring in the rule.ushthe rule neuron requires all its variable
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neurons to fire before it will fire. The variable neurons ai@ypammed according to the linguistic terms
required in the corresponding rule. Only the weights cotingca variable neuron with amplifying
neurons representing the linguistic terms present in tiguistic variable of the rule will be set i,
and the remainder will be set to small random values. Thedfiaariable neurons are all set@d, and
the bias weight of any KBANN neuron that contains programmvegyhts is set ta7. All weights not
set toH are initialized with small random values.

The “all except one” representation (e.fdz]) can also be programmed by setting the corresponding
linguistic term weight to— H, and the bias input of the variable neurorHt6.5 instead of—0.5. This
representation is only used when a single term is excludéé. ifiput to the activation function of the
variable neuron is now

g(x) =—Hx+bH = H(0.5 — x) (D.6)

Thus, when the linguistic term neuron fires, the variableoewdoes not fire, and vice versa.

D.2.4 Training the Network

Many fuzzy neural networks are trained with a genetic athoribecause the neuron activation functions
are not differentiable Abraham 2001. This methodology can find good results, but is often time
consuming and slow in convergence. Our network can be taiiseng normal back propagation, or
any other typical training method, as the activation fumdi of all neurons are differentiable. The
weights of the amplifying andi-neurons should be kept fixed, since the only implicationtaErging
these weights is a linear scaling of the input data. Thiséscthse because each input neuron is only
connected to an-neuron and an amplifying neuron.

D.3 A Practical Example

We demonstrate the process of creating a neural networldamgof an extracted rule set by a prac-
tical example using the sport data set. The sport data setpsated in Tabld.1l, and has four
linguistic variables: temperature, wind, outlook, and humidity. The term set of temperature is
{hot, mild, cold}. For wind it is {windy, calm}, for outlook {sunny, cloudy, rainy}, and for hu-
midity {humid, normal}.

For each of the linguistic terms above an input neuron istedeaFigureD.1 shows this structure and
enumerates the input neurons franto 9. For each of the four linguistic variables anneuron is
created. These are numberdtito 13. The a-neuron for temperature, neurdn, is connected to the
input neurons fohot, mild,andcold. The bias values for the amplifying amadneurons are all set to
—0.6, since0.6 was thea, value used during rule induction. All weights between nesrenumerated
1to 27 are set td, and are not updated during training.

We induced rules for the concepthiss.volleyball andclass.swimming. Accordingly, there are two
class neurons, one representing the volleyball class anotlier the swimming class. For the volleyball
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Figure D.1: The network generated for the FuzzySport data set for thesetolleyballandswimming The
alpha complement is indicated by the symBol
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Table D.1: A fuzzy learning problem.

@ttribute outlook {sunny, cloudy, rainy}

@ttribute tenp {hot, mild, cold}

@ttribute humidity {humid, normal}

@ttribute wind {wi ndy, calm}

@ttribute activity {volleyball, sw mming, weights}

@lat a

.9.1.0), (1. .0.0), (.8.2), (.4 .6), (.0.8.2) ;1
.8.2.0), (.6 .4.0), (.01.), (.4.6), (1. .7.2) ;2
.0.7.3), (.8.2.0), (.1.9), (.2.8), (.3.6.1) ;3
2.7 .1), (.3.7.0), (.2.8), (.3.7), (.9.1.0) ;4
.0.1.9), (.7.3.0), (.5.5), (.5.5), (.0.01.) ;5
.0.7.3), (.0.3.7), (.7.3), (.4.6), (.2.0.8) ;6
.0.3.7), (.0.01.), (.01.), (.1.9, (.0.01) ;7
01. .0), (.0.2.8), (.2.8), (.01.), (.7.0.3) :8

1. .0.0), (1. .0.0), (.6 .4), (.7 .3), (.2.8.0) ;9

.9.1.0), (.0.3.7), (.01.), (.9.1), (.0.3.7) ;10

.7.3.0), (1. .0.0), (1. .0), (.2.8), (.4.7.0) ;11
.2.6.2), (.01. .0), (.3.7), (.3.7), (.7.2.1) ;12
.9.1.0), (.2.8.0), (.1.9), (1. .0), (.0.01.) ;13
.0.9.1), (.0.9.1), (.1.9), (.7.3), (.0.01.) ;14
.0.01.), (.0.01.), (1. .0), (.8.2), (.0.01.) ;15

(
(
(
(
(
(
(
(.
(
(
(
(
(
(
(
(

1. .0.0), (.5.5.0), (.01.), (.01.), (.8.6.0) ;16

class, two rules were found, and for the swimming class ofeewas induced that perfectly covered
the training data. Class neurons are disjunctive, and fiver¢heir biases are set t60.5 and the bias
weight programmed té7. All programmed weights are indicated with solid lines igtieD. 1.

Neuronsl8 to 21 represent the input to the rule section of the network follitigriistic variable temper-
ature. There wer8 rules extracted, and therefore there are three variablongdor the temperature
linguistic variable—neuron83, 29 and37. Each of these three variable neurons are connected to the
linguistic term amplifying neurons for the temperaturgliistic variable, that is, neurons to 21.

Neuron41 represents the rule

[outlook is{sunny V a}|[humidity is {!humid}|[wind is {lwindy}]
— volleyball

The linguistic variable temperature does not occur in this,rand therefore the connection between
the rule neuron and the temperature variable neuron assdaidth this rule, neurod3, is not pro-
grammed. All unprogrammed weights are set to small randdoesaand are indicated by dotted lines
in FigureD.1. The connections between the variable new®@and its linguistic term neuronss to 21
are also not programmed. Neuréhhas three programmed variable neuron connections, arefoher
its bias is set to-2.5 (P — 0.5). All bias weights (except for the ‘excluded one’ variabkunons) for
programmed neurons are setdq indicated by a thin solid line on the figure.

Neuron40 represents the rule

[outlook is{!rainy}|[temperature i§!hot }|[humidity is{!humid}][wind is {lwindy}]
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— volleyball
This rule requires thatemperature i$hot]. Neuronl8 represents thiot linguistic term. Neuror29
is the temperature variable neuron for this rule. Therefloeeconnection between them is programmed
to —H, indicated by a thick line between them. The bias of nel@®is programmed te-0.5. Since
the remaining linguistic terms are not present in the rdie,weights from neurof9 to the remainder
of the linguistic term neurons, neuroih$ to 21, are left unprogrammed. Neurdf has all4 linguistic
variables in its rule, and accordingly the bias is set 5.

Neuron42 represents the rule

[outlook is{!rainy}|[temperature i§hot VV a}]
— swimming

This rule requires the temperature linguistic variable ¢oefiherhot or have no term membershipg,
or above. Neuror7 is the temperature variable neuron for this rule. NeufrBrrepresents théot
linguistic term, and neurof1 the temperatur&-neuron. Thus, the weights connecting neus@no
neuronsl8 and21 are programmed té/, indicated by a medium thick line on the figure. The bias is
programmed te-0.5, and as stated above, its weight is also programmédl. tdhe rule represented by
neuron42 makes use of two linguistic variables, and accordingly i#s lis set to-1.5.

D.4 Experimental Results

D.4.1 Sensitivity to the Threshold Slope and ta{

The network structure discussed in the above paragrapims farone to one mapping with the extracted
rules under the right conditions. The strength of the mappiill depend on the value off used to
program the network, and the value olused to program the slope of the amplifying neurons Iis
too small, the information from the rules will not be encogdéwngly enough, and the cumulative effect
of the small random weights will in some cases dominate ttevieur of the network. If a too small
value of \ is used, the input to the KBANN section of the network will lo® twveak to ensure a one to
one mapping without any training.

The best values of these two parameters will of course depeige data set. For example, if a boolean
data set is used, the value oWill be less important. When most of the weights between thpldying
and variable neurons are programmed, the valuH ofill be less dominating. We tested our network
by encoding rules induced by ouuEzyBEXA algorithm, and then plotting the error surface agafst
and\ for untrainednetworks.

FigureD.2 shows the classification error for different values\aind 4 for an untrained network that
encodes fuzzy rules induced for the data set in TBble As expected, the error is large for small values
of either\ or H. If one of the two parameters is programmed too weakly, tiaard does not properly
encode the prior knowledge, e.g. for any value< 3 or H < 3 the error is greater tha26%. For

A =5.0andH = 6.0, no training is necessary to obtain zero error. Of courds,i¢tthe error on the
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Figure D.2: The classification error as a function Bfand\ for the FuzzySport data set.

training data, because for the purposes here we are onhgétéel in how well the network encodes the
prior knowledge.

Figure D.3 shows the results for the Iris data set. For the Iris datasoagtknowledge encoding using
a largeH value, e.g.H = 10, can force the error down even for small values\ofSince the purpose
of encoding the rules in the network is to allow it to be traiferther, huge values off may have a
detrimental effect if the rules they encode are not exadiyect, as the strong encoding of rules will not
be changed easily. Setting the slope even to a moderate afidues H to be much smaller while still
maintaining acceptable error. Note that the inverse of tharaent is not true—big values fornever
give good performance for small valuesi@f This is reasonable since very smAllvalues correspond
to little prior information.

The best values for further training lie at smaller valugsHowith moderate values of. Unfortunately

it is not easy to say which values @& and A will give good training performance. Snydees al
suggested a method for determining good valuesfan KBANNSs [Snyders and Omlir200d. This
method requires the calculation éﬁ with E the error. Using a similar methodology, it may also be
possible to determine good values)oby calculating‘fl—’f.

D.4.2 Incremental Training

We have shown empirically in Secti@n4.1that the encoding method proposed in SecbBoprovides
a one to one mapping between a rule set and neural network threleéght conditions. The question
remains whether this network can be trained to further réfinencoded knowledge.

To test this methodology we first generated a synthetic fulzzg set, and then used thiepriori rules
to classify the data into two classes. We then usedz¥ BEXA to extract rules from this data, and
encoded them into a neural network. Then an additional ddtaas created by synthesising more data
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Figure D.3: The classification error as a function Bfand\ for the Iris data set.

and classifying this data using the original rules plus adfitamhal rule. This new data set was split into
a training and test set, and used to train and evaluate tlmledmeural network. The additional rule
has the effect that some of the original instances were vyarigssified. The result is that some of
the information encoded in the neural network will be good aame bad. The network will have to
“unlearn” some information while keeping the correct imf@tion.

We encoded the rule information usiifj = 4.0, A = 10.0, and trained the network using backpropa-
gation with a learning rate df.1 and momentum of.1. To count a pattern as correctly classified, all
output neurons must be correct within a specified range. rEti@rg classification error range was set
to 0.25 and the test classification range(®. Note that this method of error evaluation is not exactly
the same as that used by the rule extractors. It is more, stiete only the rule neurons of the correct
class may fire if the pattern is to be counted as correctlysifiad. Rule inference systems typically use
a rule conflict resolution scheme, as discussed in Sedti@n

FigureD.4 shows the root mean squared error on the training and testBe¢ network starts with an
initial error 0f 0.07, and is able to reduce the error on the test sét@69 after a thousand epochs. The
training error decreased even more, but started to oveditéta after aboud00 epochs. Figurd.5
shows the classification accuracy for the test and traingtgy During the first00 epochs the classifi-
cation error was rapidly reduced after which overfittingrsed to set in. The neural network is clearly
able to refine and change the encoded information.

We also used BzzyBEXA [Cloete and van Zyl200§ to extract rules for the training set with a 10-
fold cross validation. BzzyBEXA obtained96.7% accuracy on the training set afd.7% on the test
set. After training the neural network fdH0 epochs a maximum accuracy @.0% on the test set is
obtained. A maximum accuracy on the training seb®8% is obtained afteP00 epochs. With no
training the network contained only partial knowledge, alaésifieds5% of the patterns correctly.

197


./figures/IrisNET.eps

0.07 T T T

T
Training

Test — -

0.06

0.05

0.04

MSE

0.03

0.02

0.01

0 200 400 600 800 1000
Epoch

Figure D.4: The root mean squared error at each epoch of training ondhmértg and test sets.
D.5 Summary

In this appendix we presented an encoding method for engguliar knowledge in the form of FuzzyAL
rules (e.g. like those induced byEzyBEXA) into a neural network. Two parameters, the slapnd
the weight encoding strengiti, are used to specify how strongly the prior information isated. For
suitably big values of and H the encoding method provides a one-to-one mapping betvieesym-
bolic and connectionist knowledge representations. Sienly make use of differentiable activation
functions, the neural network can be trained using gradiestent. We investigated the behaviour of the
error for different values ok and H by plotting the error surface for different data sets. Matiervalues

of \ allow the knowledge encoding strengkhto be sufficiently small to allow further knowledge re-
finement. We also showed empirically that the network is &blorrect wrongly encoded information,
retain correct information, and further refine its knowledghen provided with new training data.
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Figure D.5: The classification accuracy of the training and test setactt epoch of training.
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APPENDIXE

Ling-Spam Rule Set

IF linguistic.medTHEN class.ham

ELSE IFlinguistics.medlr'HEN class.ham
ELSE IFlanguages.me@HEN class.ham
ELSE IF!.medTHEN class.spam

ELSE IFlanguage.medHEN class.ham
ELSE IFenglish.med'HEN class.ham
ELSE IFdeadline.medHEN class.ham
ELSE IFsummary.lowrHEN class.ham
ELSE IFclick.medTHEN class.spam
ELSE IFlinguist.low THEN class.ham
ELSE IFremove.lowrHEN class.spam
ELSE IFedu.highTHEN class.ham
ELSE IFspeech.med@HEN class.ham
ELSE IFyour.medTHEN class.spam
ELSE IFbetween.med@HEN class.ham
ELSE IFprogramme.lowl HEN class.ham
ELSE IFclick.low THEN class.spam
ELSE IFin.medTHEN class.ham

ELSE IFreferences.loWrHEN class.ham
ELSE IF1995.medl'HEN class.ham
ELSE IFtoday.lowTHEN class.spam
ELSE IFjohn.lowTHEN class.ham

ELSE IF).medTHEN class.ham

ELSE IFever.lowTHEN class.spam
ELSE IFwords.lowTHEN class.ham
ELSE IFgrammar.lowTHEN class.ham
ELSE IF100.lowTHEN class.spam
ELSE IFknow.lowTHEN class.ham
ELSE IFour.medTHEN class.spam
ELSE IFout.medTHEN class.ham
ELSE IFconference.me@HEN class.ham
ELSE IFde.highTHEN class.ham
ELSE IFj.low THEN class.ham

ELSE IFgo.lowTHEN class.spam
ELSE IFlist.low THEN class.ham
ELSE IFfrench.medlHEN class.ham
ELSE IFalways.lowTHEN class.spam
ELSE IFcoma THEN class.ham
ELSE IFoverlowTHEN class.ham
ELSE IFfree.lowTHEN class.spam
ELSE IFhave.med'HEN class.ham
ELSE IFbig.low THEN class.spam
ELSE IFprograms.lowTHEN class.ham
ELSE IFmoderna THEN class.spam
ELSEclass.ham
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APPENDIXF

Decision Tree for Non-Overlapping Rule Set

C Yes No D

Yes No

Figure F.1: The decision tree equivalent to the propositional logie sgtA A B — Yes andC A D — No,
where the replicated subtree at n@gdés clearly visible.
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ANN
BEXA
CN2
ICL
KBANN
mgc
FARFF

Glossary

more specific than
more specific than or equal to
more general than
more general than or equal to

antecedent threshold

consequent threshold

antecedent alpha-cut value used during rule induction
antecedent alpha-cut value used during inference
alpha complement

instance space

set of negative instances

set of positive instances

set of training instances

positive coverage threshold

sigma count of descriptionin the set of instanceS
extension of the descriptiathin the set of instance$§

A7 family of algorithms

Artificial Neural Network

Basic Exclusion Algorithm

Clark and Niblett's algorithm 2

Iterated Concept Learning
knowledge-based artificial neural network
most general conjunction

Fuzzy Attribute Ralation File Format
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FBS
FCF
FEM
FOIL
FRIWE
FuzzyAL
FuzzyBEXA
FuzzConRi
FuzzyCAL
ID3
RIPPER
SCL

Fuzzy Beam Search algorithm

Fuzzy Covering Framework

Fuzzy Exclusion Model
First-Order Inductive Learner

Fuzzy Rule Identification with Exceptions
Fuzzy Attributional Logic

Fuzzy Basic Exclusion Algorithm

Fuzzy Conjunctive Rule Inducer

Fuzzy Conjunctive Attributional Logic
Iterative Dichotomiser 3

Repeated Incremental Pruning to Produce Error Rieduc
Simultaneous Concept Learning
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INDEX

a-cut, 48, 50, 68, 81 Entropy, 96
alpha complement, 50 Fuzzy Laplace, 99
alpha leveling, 68 Information Content, 97
antecedent threshold, 48 Laplace, 34, 98
sensitivity to, 81 LS-Content, 98
AQR, 3,11, 29, 36, 175 Purity, 99
attribute, 30, 46 simultaneous concept learning, 149
attribute value, 30, 46 exclude, 37, 57, 125

exemplar learning, 14

beam search, 55, 75, 112 .
extension, 30, 47

best-first search, 55

extension operator
BEXA, 3, 29, 33

crisp, 33
characteristic function, 41 fuzzy, 48, 65
classification accuracy computation, 72

FAQR, 11, 129, 177
CN2, 3, 10, 30, 36, 115, 145, 149, 176

FARFF, 181
complete, 30 )
o ) FBS (Fuzzy Beam Search algorithm), 10, 161
comprehensibility (Guillaume), 4, 39, 45
FCF, 121, 122

concept learner, 7
concept threshold, 50
conjunct, 46
consistent, 30

applications, 163

comparison with other learners, 159
FEM, 125, 127, 133, 139
FID (Janikow), 14, 161

crisp set, 42
FOIL, 11
decision list, 145, 146 FS-FOIL, 11
decision trees, 13 FuzzConRl, 115, 133
default rule, 66 algorithm, 116
defuzzification, 20, 66 fuzzy
description language, 8, 30, 123 basic set theory, 41
BEXxA, 31 Bayes measure, 9
FuzzyBEXA, 46 clustering, 16
description set, 52 decision list, 145, 146

event probability, 14

evaluation functions, 95, 112, 123 .
inference system, 65

Accuracy, 98
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information gain, 9, 135
instance space, 42
membership degree, 42
operators, 42

positive and negative extension, 50, 57

set, 41
standard operators, 47
fuzzy concept learners
classes, 7
comparison to BzzyBEXA, 109
divide-and-conquer, 13, 110
genetic algorithms, 18
gradient descent, 23
hierarchical systems, 22
inductive, 9, 110
other methods, 23
partitioning methods, 20, 111
similarity search, 16, 110
stochastic search, 111
fuzzy set covering, 39
fuzzy vs. crisp rule learning, 155
decision boundaries, 156
FuzzyAL, 46, 64, 69, 77, 111, 138
FuzzyBEXA, 44
bottom layer, 57
description language, 46
inductive bias, 64
middle layer, 54
most general conjunction, 49
rule semantics, 51
theoretical comparison, 109
top layer, 53
FuzzyBEXAll, 146
FuzzyCAL, 115, 116, 133, 138
FuzzyPRISM, 134
Fuzzy SEEDSEARCH, 127
comparison to FAQR, 129
seed selection, 127, 129

Genetic Algorithm (GA), 18

ID3, 7, 13, 30, 97, 110

incomplete rules, 8

incremental training, 196

internal disjunction, 7, 29, 31, 46, 112
IREP, 177

iterated concept learning (ICL), 145

Knowledge Based Neurocomputing, 189
Knowledge-Based Neural Networks, 189

lattice, 52, 113
bottom, 53
bounded, 53
complete, 53
FuzzyAL, 52
FuzzyCAL, 116
top, 53
learning modular fuzzy rules, 9, 134
linguistic term, 42
linguistic variable, 42

membership and probability, 42
membership degree, 41
membership function, 41

mgG 34, 49, 123

more general than, 116

more specific than, 36, 52

neural network encoding of rules, 190
alpha complement neuron, 191
amplifying neuron, 190
class neuron, 191
rule neuron, 191
sensitivity toA and H, 195
variable neuron, 191

optimistic evaluation, 56

parameter identification, 45, 112
partial covering, 141

positive coverage threshold, 122
premises, 44

PRISM, 3, 36, 176

210



refinement model, 124
RIPPER, 155, 157, 177
ROC, 72, 74
rule set complexity computation, 72
rules
BEXxA, 31
compound, 24
FuzzyBEXA, 51
incomplete, 112
Mamdani, 8, 16
mixed fuzzy rules, 25
neural network encoding, 190
ordered, 146
propositional, 8
Takagi-Sugeno, 8, 16, 21

search effort, 77, 81

search effort computation, 73

sensitivity to noise, 79

set covering, 30
definition, 31

Shannon entropy, 14

sigma count, 96, 147

simultaneous concept learning, 113

simultaneous concept learning (SCL), 145

size of the hypothesis space, 68, 77, 81

SMART+, 26

specialization model, 35, 57, 121
characteristics, 124
comparison, 138

specialization operator, 124
append, 133
exclude, 125

specializations, 54

stop growth measures, 56, 60, 113
effect of, 88

structure identification, 45, 112

subsume, 24, 67

SVM (Support Vector Machine), 18

universe of discourse, 41

VL, 7,29, 31

weighted covering, 141
weighted fuzzy decision tree, 15
WEKA, 158, 181
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