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|. Introduction

Chapter |

Introduction

1.1 Research Topic and Motivation

After three decadesf development, revenue managemeRM) has become an
active area of researchlhis concepis not only applied in the traditional service
industries such as airlisehotel and car rentabut also in manufacturing industries

In thisthesis | considerrevenue managemerdapproaches for demand fulfilment in a
maketo-stock (MTS) production system with known exogenous replenishments and
stochastic demand from multiple customer classes.

In an MTSsystem, production is forecasliriven and cannoeasilybe adjusted to
short-term demand fluctuation.Therefore, when demand is higher than supply, it
may not be possible to satisfy all incoming customer ordéng manufacturer then
has to decide he to allocate the limited supply, i.e. the finished goods inventory, to
the customers as different customers may show different profitability or hold
different strategic importance. This situation is similar to the traditional airline
revenue management pblem,in whicha fixed number of seatare sold to multiple
customerclassesThus,it is reasonable to expect thatemand fulfilment inan MTS
system can also benefit from revenue management ideas. The difference is #@mat in
MTS system, the scarce resoe to be allocatad is the finished goods inventory
rather than seats. Unlike flight seats, inventory is storable and can be replenished at
certain times. Therefore, inventory holding cestnd backlogging costmight be
incurred, which makes profit maximization a more appropriate criterion than pure
revenue maximization.

Nowadays, n advanced planning systenfAPS), the available finished goods
inventory is represented by stalled availabldéo-promise (ATP) quwities, which
are derived from migderm master planning. For demarfdlfiiment, APS use a two
level planning process to answer rdghe customer requests. In the first allocation
planning level, customers are segmented based on their profitability arsdfategic
importance andthe APS then allocate ATP quantities to different delivery periods



|. Introduction

and customerclasse according to certain predetermined allocation rules. In the
second order promss level, the allocated ATP (aATP) is consumed by incoming
orders based on simple consumption rules such as-¢oshe first-served (FCFS)

The key connection between the two planning levels is #irmincoming order can
directly consume the aATP quantities that are allocated to its corresponding class.
However, ifthe aATP is not available for the corresponding ¢lt#ss order promising
processhas to searclior other options to satisfy the order, e.g. by consuming aATP
guantities from lower classes if nesting is applied (Kiégkteyr, 2008).

Clearly the quality é the allocation ruleadopted has a great impact on the
performance of demandulfiiment. For example, when supply is scarce, if two
customerclasss with the same expected demand show very different profitability, it
is beneficial to allocate more supply to the more profitablassthan giving both
classs the same share. In current APS practice, the ATP quantities are normally
allocated accordingotthe priority rankngs of the customers, the committed forecast,
or predetermined split factors, all of which are merely simple heuristic rules and
none ofwhichis profit maximizing.

To achieve systemtic optimization, researchers have developed differen
allocation planning approaches. One stream uses deterministic linear programming
(DLP) modslto maximize the expected profit (Meyr, 2009). The other stream takes
a stochastic perspective and models the problaming stochastic dynamic
programming (SDPYQuante Fleischmann, & MeyR009). Both of these approaches
have limitations:the DLP model considers only expected demand and neglects
demand uncertainty therefore, not all information included in the demand
distribution is taken into account, whiaksually makes the solution suboptimakDPR
however, is computationally expensive and therefore hardly scalable.

The objective of this thesis ighus to develop weHperforming and
computationally efficient methodsot overcome the limitations of the previous
approachesHere,| considerthe same problem setting as Quante et al. (2009) and
Meyr (2009):an MTSmanufacturer is facing stochastic demand from heterogeneous
customers with different unit revenues. Inventory replenishments are scheduled
exogenously amh are deterministic. For each order, He manufacturer decides
whether to satisfy it from stock, baekder it at a penalty cost, or reject it in
anticipation of more profitable future orders. The objective is to maximize the
expected profit over a finite lanning horizon, taking into account sales revenues,
inventory holding costs and backder penalties.
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| first consider a finite planning horizon in order to make the proposed models
comparable toQuante et aQ @009)SDPRmodel.Later,| extend all propsed models
to rollinghorizon planning tdringthem closer to real manufacturing practice.

1.2 Chapter Layout and Contributions

In this section | provide the chapter layout for the remainder of this thesis. In
Chapter 21 first explain the problem setting in detail and set up a common demand
fulfilment model for all approaches. Thethe two existingmethods, namelya S @ NI &
(2009) DLnodel andQuante et akQ 009) SDPmodel arereviewedand | discuss
briefly their advantages ahshortcomings.

In Chapter 3basedona S & NI & DL imodeldborrow the safety stock idea
from inventory management to account for demand uneamty. | develop two
versions ofa safety margin modelhich adds safety margins to the relatively more
profitable customers. By doing sé,link the traditional inventory/supply chain
management world to the emerging revenue management woild. test the
performance ofthe safety margin modelsystematicallyl set up a numerical study
test bed using full factorial desigfihenumericalresult shows that by incorporating
demand uncertaintythe safety margin models improve the performance of the pure
DLP model and perform very close to the SDP model with resshcomputational
effort.

In Chapter 4,d deal with the computational intractability of the SDP model,
consider several approaches to approximate it using #pgroximate dynamic
programming(ADP) algorithm, the basic idea of which is to approximate the value
function of the DRusing acertain efficient mathematical programming formulatidn.
consider a deterministic linear programmingapproximation (Meyr, 2009),a
randomized linear programmig approximation (Quante, 2008) and an affine
functional approximation (Adelman, 2007). As resuttevelop three corresponding
bid-price control models, namely the DbBsed bidprice control model, the REP
based bidprice control model and the dynamicdsprice control model Following
the same numerical study framework as in Chapter &aly® the performance of
the three proposed bigbrice control models. The numerical result shows ttied
dynamic bidprice control modelasthe bestperforming methal, achieves a close
approximation to the optimal SDP model with much lower computational effort.
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Without resolving, it provides a better estimation of bid prices and performs
substantially better han the other two static modelswith frequent resolving, I

three modelsexhibit similar performance. However, due to the fact that frequent
resolving is not always realistic in practi¢esonclude that the dynamic bidrice
control mode| which generates clos®-optimal results with tractable computation
time, strikes a reasonable balance between performance and computational expense.

In reality, the produwction process works continuouslfunlike in the airline
industry) and there isno erd to the planning horizonthus revenue management
models for manufacturing should deal with infirdb@rizon problemsTherefore, m
Chapter 5,1 extend allthe models to a rolling planning horizon. Based on the
numerical study resultd,find that the SIP model, although theoretically no longer
the optimal exante policy,still outperforms all the other methods proposed. Among
all the heuristis, one ofthe safety margin models provides the closest performance
to the SDP model witlthe least computational effort, which makes it a promising
approximation to the SDP and implies d@snsiderable potential fompplication in
real practice.

The thesioncludes in Chapter 6 with a discussion of the results and issues for
future research.
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Chapter Il

The Demand Fulfilment Model and Previous
Research

In this chapter| first set up a common mathematical model for thMTSdemand
fulfilment problem consideed throughout this thesisThen, | summarizethe two
existing approaches from Mey2009) and Quante et al. (2009), which serve as a
starting point forthe work.

2.1 The MTS Demand Fulfilment Problem

As denoted by the followingupply chain planningmatrix, the compomnt cdemand
fulflment & ATR comprises shorterm sales planning, which mearfsifilling
customer ordersbased on fixed ATRuantities This process is similar to the order
acceptance problenm traditional airline revenue managemertiowever, m current
APS, demantllfiiment solutions are generated based on only simple heuristic rules
and no optimization approaches are usethus in this thesis,| use revenue
management ideas to optimizée process.

Figurel Supplychain planningmatrix (Source: Meyy Wagner, & Rohde2008

long-term Strategic Network Planning
mid-term Master Planning
Demand
hasi Planning
Purc&asmg Production Distribution
Planning Planning
short-term i
I\/Ia'lterlal Demand
Requirements Schedulin Transport Fulfilment &
Planning 8 Planning ATP
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| addressthe same demandulfiiment problemasMeyr (2009) and Quante et al.
(2009): | consider a MTS manufacturing system with exogenously determined
replenishments and stochastic demand from heterogeneous custoriersaximiz
the expected profit, the manufacturer has to decide for each arriving order whether
to satisfy it from stock, bae@rder it at a penalty cost, or reject it in anticipation of
more profitable future orders. The manufacturer needs to take into accounbniyt
sales revenues, but also inventory holding costs and-bad&r penalties.

| follow the two-level frameworkof Kilger and Meyr (2008), which comprises an
allocation planning ledeand an order promising level, and summarize the underlying
problem desription as follows

(1) There isa finite planning horizon of, which is subdivided into discrete time
periods® pMB RY

(2) The nventory replenishment schedule is known aid gfenotes the ATP
quantities arriving at the beginning of perid@Q ph8 R'Y

(3) Customers are differentiated int6 different classs, & pM8 B, with

corresponding unit revenues of i i E i . Orders from different
classes arrive inan arbitrary sequenceand ask for a random quantity of the
products.

(4) 1t is assumel that the order due dates equal therder arrival date. This
assumption is legitimate for the MTS environment as customers normally
expect immediate delivery.

(5) 'O denotes the total random demand fronClassowith arrival periodo.'O
can follow any possible distribution, e.g. Poissarmal or negativebinomial

(6) At the beginning of the planning horizon, allocation planning is conducted
once for the whole planning horizon, with the following informattorhand

A availableinventory hat arrives in periodQwhich is denoted by 6 ;)
A demandforecast:the distributionof O is known.

(7) After the allocation planning, incoming orders are processed in real time.
Delaying an order causesbackorder cost ofb per unit per period and the
unit holding cost i&)per period.

(8) Patrtial delivery is allowed.
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(9) The objective is to maximize the expected profit, taking into account sales
revenues, inventory holding costs and backlogging costs.

Tablel summarizes the above notatisnwhichare used throughout the thesis.

Tablel Notationsfor the demandfulfilment model

Indices

o pMBRY Periods othe planning horizon

Q pB RY Periods of inventory replenishment

w0 phB M Customerclasss

Data.

i Unit revenue from customeElasso

) Unit backorder cost per period

Q Unit holding cost per period

WO N Available ATP supply that arrives at the beginning of pefiod

Random variables:

(@) Total demand fronClassowith arrival dated, whichfollows a
knowndistribution withmean‘ and standard deviation

2.2 Previous Research

2.2.1 The Stochastic Dynamic Programming (SDP) Model

Quante et al. (2009) model the above demafdfilment problem using SDPwith
two additional assumptiong1)thereis at most one order arrival in each period; (2)
the demandof a given customeclassfollows a compound Poisson process and is
independent of the demand from othelasse and ofthe available supply.

Usingd B ho as the state variables denoting the available supply
quantities and® 6 B ho  as decision variables with denoting the amount of
ATP quantities arriving in periddised to satisfy a given order, the additional
notations of the SDP model can be summariasth Table 2
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Table2 Additional notations for the SDPmodel

State variables:

® B ho Vector of available supply quantities

Decision

variables:

® oM Vector of supply quantities used to fulfil a given order

Random variables

® Customerclass
Q Order quantity
"o Jointcdfof customerClass and order quantityd

(Source: Quante et aR009)

Usingw @ to denote the maximum expected profib-go from periodoto the
end of the planning horizon, Quante et al. (2009) develop the following Bellman
equation

Oe Of [ Ag 60 " O @ o
K (1)

where0 "@ is defined as the incremental profit per unit &fO &sed to satisfy one
unit of an order ofClasshin periodoand] is defined as 1 if2 0and 0 otherwise.

After analysng the structural properties, Quante et al. (2009) prove that the
optimal policy of the propose®DP modetesembles a bookintimit policy, which
sets nested protection levels for each class and supply arrival. Supplies are consumed
in a first-in-first-out (FIFO) order, i.e. for each incoming order, either the earliest
available supply is used to satisfy it or the order is rejected.

In the numerical study, Quante et al. (2009) show that their model outperforms
current commonfulfilment policies, sah as FCFS and the deterministic optimization
model provided by Meyr (2009). However, as mentioned in the introduction,
because of its higdimensional state space, this model has very limited scalability.
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2.2.2 The Deterministic Linear Programming (DLP) Model

Using the partitioned allocation of eacho tp Classowith arrival dated, denoted
byw , as the decision variable, Meyr (2009) madéke allocation planning as a DLP
problemas follows

a 0w n w
(2)
subject ta
©w 00 I o (3)
W N 1Q 4)
w mEl OACAO | '& (5)

Hergn represents the profit of using one unit of supfo satisfy the order
from customerClassowith arrival datedand can be calculated as follows

n i Qo6 p | Qo0 10 (6)

Note that the above formulation charges inventory holding cost only when
supply is allocatedthe inventory holding cost for unallocated supplg not
considered.Although it would be easy to include the inventory holding cost for
unallocated supply in the modael, is omitted hereto stay in line with the original
model (Meyr, 2009). Whether or not the inventory holding cost for unallocated
supplyis includeddoes not have any impact on the numerical resutighis case
because the inventory holding costssfficientlylow that it is beneficial to allocate
the supply tosomecustomers whenever possible.

Based on the optimal partitioned allocatioquantities w , a rulebased
consumption process used for the order promising
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The DLP model is efficient to solve, but as only the expected demand is taken
into account, the performance is not sasstory if demand uncertainty is high.
Quante & al. (2009) show in the numerical study that for low demand variability, the
DLP model is competitivavith the SDP model, but when demand variability
increases, the performance of the DLP model deteriorates drastically.

10
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Chapter Il

The Safety Margin Model

3.1 Introduction

Toovercome the limitation of the DLP modéfropose a safety margin model which

incorporates the impact of demand uncertainty into the deterministicdel.| follow

a two-level planning process. In the allocation planning levelllocate the ATP

quantities not only according to the expected demand as Meyr (2009) does, but also
02NNRBgAYy3I GKS aalFSGe aGd201¢ ARSI FTNRY Ay(
Y NBAY&dé F2NJ KAIKSNI Odzad2YSNJ Of  3aSa IyR a
lower classes. Byloing so, demand uncertaintgan successfully be takeimto

account. For the order promising level, the ordene quotedaccording to the

predetermined booking limits. In a series of numerical simulaidrtompare the

performance othe safety margin radelto other commonfulfilment policies.

In summary, this chapter makes the following contributions to the field:

A It presens a new demandulfilment model which takes customer demand
uncertainty into consideration.

A By consideringsafety marginsanalogos to safety stocks] provide insight
into the relationship between the traditional inventory/supply chain
management world and the relatively new and emergimgvenue
managementvorld.

A | compare the relative performance dhe safety margin model and otér
fulfilment policies numerically and show that the safetgargin model
improves the performance of the DLP model with even lower computational
expense.

11
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3.2 Literature review

In general, manufacturing systems can be divided into mekarder (MTO) systes)
assembleto-order (ATO) systeaand maketo-stock (MTS) systesninthe literature,

most studiesregardingrevenue managemenin manufacturing focus on the MTO
system. This is due to the direct analogy between the perishable production capacity
in MTO ad the perishable flight seats in traditional airlinevenue management
which makes most of the airlineevenue managementapproaches directly
applicableto this environment. Van Slyke and Young (2000), Defregger and Kuhn
(2004, 2007), Spengland Rehkpf (2005), Barut and Sridharan (2005) and Spengler
Rehkopf, and Vollin(R007) proposeevenue managemerdapproaches for the order
acceptance problem irthe MTO environment. Harris and Pinder (1995) apply
revenue managemento an ATO environment. Literai® onrevenue management
inthe MTS environment is very limited ahghallfocus onit in what follows.

Revenue management and manufacturing have significant methodological
differences. Whereas revenue management isusually based on stochastic
optimization and uses probability distributions to assess opportunity costs,
manufacturing companies rely on APShich take deterministic mathematical
programming as the major tool for different planning tasks (Quante e2@09). Due
to this methodologral divide between revenue management and manufacturing, in
the literature there are two main streams of research for applyireyenue
managementto demandfulfilment in MTS manufacturing. The first streaadopts
the traditional APS perspective and seéksncorporaterevenue managemeritieas
into deterministic optimization. The second stream takes a full stochastic view and
models the problemusing SDPIn what follows) briefly reviewthe literature from
both research streams.

For the deterministic seam, Kilger and Meyr (2008) set up a tatep
framework, in which demanéulfilment is accomplished through ATP allocation and
ATP consumptiorBall et al. (2004) propose a similar pyslil framework for ATP
models: pushbased ATP models padlocate avdable resources to different
customer classes and pidased ATP models promise the allocated resources in
direct response to incoming ordergollowing this framework] first consider the
allocation models.

12
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Ball Chen, and Zha(2004) develop a determisiic optimizationbased model
that allocates production capacity and raw materials to demand classes in order to
maximize profit. They claim that the model is designed for an MTS environment, but
actually it is more appropriate for an ATO environment ashboapacity and
materials are taken into account.

With the same problem setting as this study Meyr (2009) proposes BLP
model for ATP allocation. The DLP model maximizes the overall profit and its optimal
solution is used as partitioned quantity reserved for each customer class and each
arrival period, based othe different consumption rules used for order promising. A
numerical study shows that compared to the rddased allocation methods, this
model can significantly improve the performance of APS if demand forecasting is
reliable. This DLP model is computationally efficient and can therefore easily be
adapted to theAPS However, the major drawback is that it utilizes only expected
demand information but ignores demand uncertainfyo overcome this drawback,
the safety margin approach extends the DLP model by adding safety margins to
expected demand to account for deménincertainty.

Quante (2008) incorporates demand uncertainty into the DLP model in another
way. He adapts the randomized linear programming (RioRtept derived from
Talluri and van Ryzin (1999) to the MTS setting. The idegdditively to solve the
DLP, not with the expected demand, but with a realization of the random demand
with known distribution. The optimal allocation quantity is estimated by a weighted
average of the results over all repetitions. The RLP approach is appealing as it is only
slighlty more complicated than the DLP method but incorporates distributional
information on demand.Furthermore it also has the flexibility to model various
possible demand distributions. However, accordingvtalzl y G S Q &umeérisah ny 0
study, the RLP model dsenot show promising results and is often dominated by the
DLP model.

After allocation planning, aATP quantities could be consumed idirealmode
or batch mode. Kilger and Meyr (2008) proposigsearch rules for regime order
promising and suggesearching available aATP quantities along three dimensions:
customer class, time and product. In order to improve the shdsed consumption
methods which represent current practice, Meyr (2009) formulates the-tiead
order promising problem as a linegarogranming (LP) model with the objectivaf
maximiZng overall profits.Tomake it easy for practical implementation, he proposes
several consumption rules to mimic the LP search process. For batch mode order

13
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promising, Fleischmann and Meyr (2003), Pilderf2005, 2006) and Jung (2010)
proposeoptimizationbased models.

For the stochastic stream, Quante et al. (2009) model the denfahiliment
process in MTS production as a network revenue management problem and
formulate an SDP modelUnlike the traditimal airline network revenue management
problem, in the MTS settinggs products are identical, theoretically any of the
available supplies can be used to satisfy any incoming order. Therefore, one has to
decide not only whether or not to satisfy an ordemtbalso which supply and how
muchof each supply to use as each supply alternative generates a different profit. It
transpiresthat the optimal policy ofDP is the famous bookirgnit policy, which is
easy to implement. Quante et al. (2009) also show that it outperforms current
commonfulfilment policies, such as FCFS and the deterministic optimization model
developed bya SENJ 0 Hnnpv®d® | 2SOSNE 06SOFdzaS 27
computationally expensive and therefore not really applieabfor reatsized
problens. In this chapter| consider the same problem setting as Quante et al. (2009)
and comparethe performanceof their model tothe proposed safetynargin model
in the numericaktudy.

Toaddresscomputational intractability, Bertsimas and Popescu (2003) propose a
genericapproximatedynamicprogramming(ADP) algorithm, the basic idea of which
is to approximate the value function of thdynamic programusing a simpler
algorithm,such ad_P(Erdelyi& Topalogly 2010 Spengler et al.2007 Talluri& van
Ryzin 1999, affine functional approximation (Adelman, 2007) and Lagrangian
relaxation approximationKunnumkal& Topalogly 2010 Topalogly 2009). Most of
thesestudiesare within the traditional airline revenue management contektdeed
to my knowledge, there is nADP study for the MTS environment.

In addition to theabovementioned two main streams, there is a papey
Pibernik and Yadav (2009) that is closely linkethtosetting of this researchthey
also consider an MTS system with stochastic demand. However, rather than pursuing
the main target of revenue managemeaqprofit maximizationg the authors still use
the traditional servicelevel maximization as the objaceé. In addition tothis main
distinction, other differences include that the authors limit their analysis to two
classes and do not allow backlogging.

14
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3.3 Safety Margins

The basic idea & safety margin is analogous to tluse ofsafety stock in inventory
management, i.e. to reserve more stock than expected demaral'safety margin”
for more profitable customerd.first consider a simple singlgeriod, two-class case
in which safety margins can be calculatesing[ A (0 G f Sute2ThdR g@nerhlize
the calculation taca multi-period, multiclass case.

3.3.1 Single period, two-class case

| first consider the problem withY p,0 ¢ and assume that within this single
period, the lower class (Class 2) arrives before the highes ¢@ass 1). The problem
then becomes the famous Littlewood problem and can be solved directly using
[ A GGt S g 20adwalastraikbzdbwshe solution can be interpreted in terms of
safety margins.

As the planning horizon consists of only one period, agssume that there is a
single inventory replenishment at the beginning of the period, namefy Eand use
U andU to denote the allocated ATP quantities for Class 1 and Class 2 respectively.
Assume the demand of Class 1 is normally distributed withmheand standard
deviation,, . Then, according to Littlewo6ndle:

o B p - ° q 3 (7)

i.e. the optimal protection level for Class ldisand the terma Q, can be
consideredhe safety margin for Class 1. For Class 2, the corresponding booking limit

Q 3

is then WO N

Similar to the safety stock idea, we add a safety margin for the Class 1 customers
in the allocation planning stage &dford thembetter protedion.

Incorporating the safety margin of Class 1 iat& & NX2 & DL madel dwvbich is
discussed in the previous chapter, the allocation planning problem can then be
modeled as follows

dowi 0 i w (8)
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subject ta
w °odq 9 9)
W W ®Oon (10)
woho tET OACAO (11)

Constraint(9) modifies the DLP model by adding the safety maégin ~ Q, in

addition to the mean demand for Class 1. This simple LP forms a continuous
knapsack problenihe solutionto whichA & SljdzA @1t Sy (4 ;6@ by[ AGGt S
incorporating the safety margiterm, we make the DLP model equivalent to the

Littlewood mode] which is optimal forthe singleperiod, twoclass case. This idea

canfurther be extended to the multperiod, multiclass case.

3.3.2 Multi-period, multi-class case

In the demandfulfilment model set outin Chapter 2the customersare dividedinto
0 different classes. In the rest of this chapténe customers arerenamed asoO
different segments, with 0, asit is necessaryo redefine the classes for the
multi-period, multiclass case.

Unlike the previousingleperiod, twoOf | a4 Ol 4S> AU A& RATFTTAOM
rule directly to calculate the safety margins for the ATP allocation problethein
MTS setting due to three characteristi¢srst, it involves multiple customer classes
instead of only two. Inthe MTS settingthere aremultiple customer segments and in
addition, orders from the same segment with different arrival dates incur different
inventory holding or backlogging costs and thus provide different grofiherefore,
these orders cannot be treated as a single class. This cost impact is a major
difference between our MTS setting and traditional airlmenue management
where ordersfrom the same customer segment always generate the same profit.
Secondthed f da&foreK A IKé | AadzYLWiA2y 2F [TRelMTS§ S22 RQ3
setting involves multiple planning periods and within each period orders from any
customer segment may arrivelherefore, orderghat arrive earlier may generate
higher profits than ordersthat arrive later. Third, it considers multiple

16
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NBLI SYAAKYSYy(az APSod dzyt A1 S (KSPeraitheseIt S NB &

are multiple resources to allocate.

In order to deal with the first difficulty mentioned above, i.e. multiple customer
classes,| adopt the idea ofthe expected marginal seat revenue (EMSR) heuyistic
G KAOK SEGSyR& [the iiticliss 2ageRBebbabal08Bhugiedch
customersegment with a different arrival datis consideredas a different class. For
a planning horizon o# periods with+ customer segmentsthere are in total

+ 34 customer classes.

According to standard EMSRhich also assumethat low-revenue demand
arrives before highrevenue demand, the profit ranking of theclasses should
correspond to their arrival date, i.¢hat with the lowest profit arrives earliest and

that g A G K G(GKS KAIKSAa(d LINR T AheforeNINRKES al & & dpSLIGTI Ad2

EMSR enges that the future higher classes are protected against the current lower
class. Howevethis assumptions notsoundin the MTS setting as the inherent time
structure ofthe arrival processdoesnot follow the & f deforeK A A K ¢ : kdehii G S NJ/
of the 0 classes has its specified arrival daiderefore, the second difficulty still
remains. In order taddress thisas the exact arrival period of each clas&nown

they arefirst ranked in descending order of their arrival date. For classes with the
sane arrival period, their exact arrival sequenisenot knownand thus weassume

that the lower classes arrive before the higher ones, i.e. they are ranked in
descending order of their unit reveny®. Then, the first class is the one from
Segment 1 that aives in the last period and the last class is the one from Segient
that arrives in the first periodThis ensures that by using EMSRve are indeed
protecting thefuture classes against the current one. Furthermore, at each stage of
the EMSR heuristioyhen calculating the protection level, onllgose future classes
with a higher profit than the currentlass are consideredhus we also achieve the
goal of the standard EMSR, i.e. proiagtthe future higherclasses against the
current lowerclass

To addressthe third difficulty, namely, the multiple resources, two variaate
considered First, we simply consider the multiple ATP supplies separately, i.e. we
calculate the protection levels with respect to each ATP supply awdréthe only
resaurce to allocate without considering the impact of other supplies. The problem
with this approach is thait involvesd R2 degdXddy G Ay 3¢ GKS RSYIF YR
classes when calculating protection leveldhis method assumes that the future
demand caronly be fulfilled by a single ATP supply (the one under consideration)

17
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whereasin factA &t KIF & | 0O0Saa G2 it !¢t adzdl)X ASaod
O2dzy Ay 3¢ LINRBO6fSY YI | Sa -piptkcdthedhigfeSdasgsesY | NHA Y
Therefore we congler another variant, implicitlyallocaing the demand to

individual supply:for each ATP supply, when determining the corresponding
protection levels, we only take the future demand thaill arrive before the next

supply into accountin contrastto the first case, the potential drawback of this

approach is thait may notafford sufficientprotection for the higher classes as

consides only a fraction of the demand when calculating the protection levEtse

safety margin modeladopting the first apprach is termed Safety Margin
Model_Version I(SM_1) andhat adoptingthe second approacis Safety Margin
Model_Version ZSM_2).

3.3.2.1 Safety Margin Model_Version 1 (SM_1)

Following the twelevel planning procedure of APS, SMs first articulatedn more
detail usingthe following steps.

Allocation Planning

1. Define classes

Rank thed 0 JYclasses in descending order of their due date. Classes with
the same due date are ranked in descending order of their unit revenudse a
new indexQ pfB h) to denote customer classes aff@an be considered the
customer segment/due date combination index. There is a -toRene
correspondence between ead@®nd a combination oto.

2. Calculate safety margins
For each ATP suppldo the following calulation:

a. AtstageQ p, leto denote the set of future classes which havkigher
unit profit than class’Q p if GO rjs used, i.e.o av "aa
B & N

b. Define the aggregated demand of st :

Y O (12)

No
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c. Define the weighteeaverage profit of sed

 B., 100
" &, 00

(13)

d. Calculate the safety margins

Il OO2NRAY3I (G2 [AGGf So2@RoDsetoNdzt ST G KS LIN

Y (14)

where‘'[ B., ‘' andY stands for the safety margin for set .

If the demand for each Cla¥¥s normally distributed with meah and
variance, , we have

Yy a9 (15)
where
" m" (16)
Nh
: 17
a B p nr (17)

3. Incorporate safety margins the DLP model
Adding the safety margins into the DLP model, the resuliifmcation planning
model is adollows:

i Ag § (18)

subject ta
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© ‘v 570) (19)
©w  ®OoOn 10 (20)
w wwET OACAO 1dQ (21)

Constraint(19) shows that this modetloesindeed incorporate safety margins in
addition to expected demand for the higher classes.

We can use the solution of the above LP as the allocation result. Note that the
above LP can actually be decomposed into singgeurce problems, i.e¢here can
be an individual LP for each supfyThis is because in the safety margin calculation
(Step 2), we explicitly consider each supply separately and determine the set of
future higher classeso( ) with respect to the specific supp® Therefore, the
obtained safety marginsin Constraint (19) are for each individual suppl®
Furthermore in the above LP, there is no constraint specifying the relation between
different supplies.

However, a more convenient way is to write down the corresponding booking
limits directly without solving the LP. We are able to do so because Congtaint
already mplies a booking limit for Clags p, namely

W don ‘r ¥ (22)

Another advantage of using the booking limits directly is thatitags not
necessaryto know the exact allocation to each class and the protection level term
‘I Y in (22) is independent of the real ATP consumption, in the later order
processing stage we only need to update the currénd guantities before
procesing each incoming order. It is not necessary to repeat the allocation planning
steps all over again. If we use the solution of the above LP as the allocation result, we
need frequent resolving to adapthe allocation to real consumption.
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Order Processing

In the order promise stage, we process the incoming orders in real time. The
following procedure is used for processing an order from Gig&s pH8 hj) with an
order quantity ofd:

1. Update the currentd 0 fjuantities for each suppfR pH RY

2. Determinethe corresponding booking limits A "Qusing(22).Note thatthis way
of calculating thesafety margin sets nested booking limits for classes with the
same arrival period, i.e. within the same period higher claatgayshave access
to unitsallocated to the lower classes.

3. Search for ATP supplies to fulfil the orsleuccessively in the order of their
arrival. Letd denote the amount of ATP quantities from supfi}ysed to satisfy
the given ordeandwe have the following steps:

Start with'Q p;
Set6 | AGEWR B 6 N
Repeat forQ p.

It should be notedhat the safety margins and the protection levels fr¢i4) are
independent ofdd 6 .fiTherefore, before each order processiitgs only necessarip
update the currento 0 fuantities to determine the current booking limits. It is not
necessary to repeat the allocation planning steps.

In the order processing, we start our search for available ATP quantities from the
earliest available ATP supply. This is because we know from Quante et al. (2009) that
under certain assumptions, the optimal policy for this MTS demaufiiment
situationis also a bookingimit policy and the optimal solution is obtained through a
line search, starting with the earliest available supply. Here, we are mimicking the
optimal behaviar inthe order-processing level.

3.3.2.2 Safety Margin Model_Version 2 (SM_2)

The only difference betweeSM_2and SM_1 is that when calculating the protection
level with respect to each ATP supp8M_2only considers future demand that
arrives before the next ATP supply. Thereforefotlows the same procedure as
SM_1 and wenly need to modify sev (Step 2a of the allocation planning level) as
follows.
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For each ATP supplpassume the next nemero ATP replenishment arrives at
the beginning of periodQ ahx ¥ pMB Y TBAt stageQ p, o an
MQ pBipd) Ny Ma "Q & 8Asthere is a oneo-one correspondence
between each class index af¥combination,0 & here denotes the arrival datef
Classx

As mentioned above, before each order processing, it is not necessary for the
safety margin models to repeat the allocation planning stagghey adopt the
bookinglimit policy and the safety margins calculdtare independent of real
consumption.However in the allocation plannindgor the DLP modelhe available
ATP quantitiesre explicitly allocatedo different classes and therefore frequent-re
planning is required to adjust the allocation according to real consumption
otherwise performance mightsuffer. Because of th@bovementioned difference,
the safety margin model propodehereis computationally more efficient than the
DLP model illustrate this further inthe next chapter using rutime analysis.

3.4 Numerical Study

To evaluate the performance of different demaridifilment models, Quante et al.
(2009) set up a numerical study framework, comparing ti&Pmodel to aFCFS
strategy as well as thBLPmodel (Meyr, 2009). Following the same assumptions as
Quante et al. (209), both versions ofhe safety margin modelare addedto the
numerical study framework.

As inQuante et al. (2009), consider a finite planning horizon here in order to
make the models comparable to the SDP model. However, the safety margin models
proposal andthe DLP model are also applicable in roHimagizon planningWithin
the finite planning horizon, it is not necessary for the safety margin models or the
SDP model to do any+@anning because both methods calculate the booking limits
up front and the booking limit®btainedare independent of real ATP consumption.
The DLP model, on the other hand, allocates the current ATP quantities in the
allocation planning stage; thereforérequent replanningis necessary tenable the
allocationto be ajustedaccording to real consumption.
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In what follows | compare the performance of the safety margin models with the
followingfulfilment strategies:

A FCFS:a comparison with this strategy shows the benefit of customer
segmentation in the demanéulfilment process. To ensure fairnedsjmit this
policy to fulfiling customer orders only from stock to avoid excessive back
ordering.

A TheDLP mode{Meyr, 2009):as explained in the previous sections, this strategy
allocates the ATP quantities usireg DLP model, followed by a rdbased
consumption processThe 8 S NOK adl Nia Ay SIFEOK AyO2YAy
class. It first looks for aATP quantities that arrive at the required due date. If the
order is not fully satisfied, it searches further faATP quantities that arrive
before the due date and then after the due date. Finally, it repeats the search in
lower classes. In the numerical stydiie DLP modeis recalculatecafter each
order processing to ensure its performante sound A comparisorwith this
strategy provides an indication of the benefit of incorporating demand
uncertainty in thefulfilment process.

A TheSDP modelQuante et al.2009):in this strategy,the optimal policy is also a
bookinglimit control. This strategy maximizes tle&pected profit and therefore
generates the optimal eante policy.

A Global optimum (GOP):this strategy optimally allocates ATP quantities to
demand expost and therefore provides the highest achievable profits. In the
numerical studyl use it to normalkze the results for comparison.

| follow the same assumptions as Quante et al. (2009) for the demand pattern:
the orders of a given customer segment follow a compound Poisson process and the
order processes of different segments are mutually independeéwliscretize the
planning horizon in such a way that one or@émostcould arrive in a single period
and the probability of no order arrival is. This singk®rder-arrival assumption is
made for the SDP model as it is required by the Bellman equatramutation, butit
not necessary for the safety margin model. For each given arrival, the order size
follows a negative binomial distribution (NBD). This choiakes it possibldo
analye the effects of large demand variations. In order to make the ogiee
strictly positivejt ismodeledasp 0 6 ph, , where' is the mean and is the
standard deviation. Modéhg the ordering process as a compound Poisson process
results twofold variability for the customer demand, i.e. the customer demand
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variability depends on both the variability of the order siznd the arrival
probabilities.

Based on the above assumptiohggefine a numerical experiment with a test bed
containing a wide range of problem instances and use simulation to evaluate the
performance of the above mentioned models. In subsectBohl, | define the test
beds and in subsectia®4.2, | analy® the results of the numerical study.

3.4.1 Test bed

Thetest bedis designedased on a full factorial design with five design factors and
six fixed parametersTheplanning horizons fixedto 14 periods with two inventory
replenishments in period 1 and period Bhe replenishmenguantity is fixed to 50
units each time, i.edd @O | v mThreecustomer segmentare considered
with different revenuesThe nventory holding cost is fixeat $1 per unit per period.

It isassumel that the mean demand of each incoming order is constant and equal to
12 units.| summarizethe choices for the design factors and fixed parameters in
Table3. This setup is similar that of Quante et al. (2009 however,they consider
only the first three design facto@nd assume equal order arrival probabilities and a
fixed backlogging cost &L0 per unit per period for all customer segments.

The total number of all possible combinations for these design factors is
0 1 0O ¢,t.e.there are324 scenarios. For each scenatigenerate 30 different
demand profiles and run the corresponding siatidns for every policyin total, this
giveso ¢ T o T wX cimstancesfor each policy inthe numerical study. This
scenario size ensures that both type | and type Il ermorthe factorial desigrare
limited to 5%.

| now explain the design factors in detailhe first factor in the factorial design is
the coefficient of variation of order sizé (b We fix the mean of the order size to
“  p ¢ but the actual order size can vary from order to order and the variation is
represented by the coefficient of variation of the order sizeb » ¢, where, is
the standard deviation of the order size. We choose the same rangeuas Quante
et al. 009) to ensure a reasonable range of variability.

The second factom the factorial design is customer heterogeneity, which is
represented by the revenue vector 1 A A of the customer segments. The
revenue vector p Tt fp 1T represents low custoer heterogeneity whereas
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p Tt ft Trepresents high customer heterogeneity. These choices are also
identical tothose ofQuante et al. (2009).

Table3 Design factors and fixed parameters for the numerical study

Name Value

Fixedparameters

Planning horizon 14
Arrival periods of replenishments Period 1, Period 8
Replenishment quantity 50
Number of customer segments ) 3
Inventory holding costQ 1
Mean demand per order | 12

Design factors

Coefficient ofvariation of order sized( ¢ g%%hv%p

Customer heterogeneitys p mha fy mh p nihxfp h p Tyt ft =
Supply shortage raté () Tk TthP

Customer arrival ratio) pdcdo h pdpdp h odgdp
Backlogging cost proportion) T8t Brphreg,

The third factorin the factorial design is the supply shortage rate)( which
reflects the degree of supply scargitdefined as follows:
B won
P Y
As,in this case the supply quantity and the mean demand of each order are both
fixed, the supply shortage raté () depends solely on the no arrival probability. A
larger) corresponds to a low shortage ragsd a smally indicatesa high shortage
rate. Inthe factorial design, we vary ibetween 1% and 40% by varyingfrom 0.4
to 0. We choose these levels becaasave only consider situations whichsupply
is scarcethe 1% shortage rate is almost the lowest shortage rate we can use and 40%

iip
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correspondgo ano-arrival probability of O and is therefore the highest shortage rate
we can use. Quante et al. (2009) use the same levels for the shortage situation, but
also consider two more levels for oversupply, i.ebeing negative.

The fourth factorin the factorial design ishe customer arrival ratio (). This
factor reflects the fraction of demand from each customer segment. For instance,
when the no-arrival probabilityr) 1, a customer arrival rati® pog do
correspondsto an arrival probability op¥efor Segment 1p¥o for Segment 2 and
pf¢ for Segment 3.

The fifth factorin the factorial design is the backlogging cost proporticy. (
Quante et al. (2009) assume a fixed backlogging cost for all customer seginents.
generalize this assumption to allow different backlogging cost for different customer
segments, as customers from different segments pay different prices. In the
numerical study,it is assumel that the backlogging cost for different customer
segment is prportional to the corresponding revenue. When this proportion is small,
e.g.> T®I ythe backlogging penalty is low and when this proportion is large, e.g.
® T, the backlogging cost takes 20% of the revenue, which makes the penalty
high. Considering theolding costQ p, the chosen levels dhe backlogging cost
ratio ensure that the resulting service level is within a reasonable range, e.g. if we fix

the other parametersat their middle values (i.éd & —h» p T fp i |

¢cT h pdpdp ), the replenishment schedule achieves an average cycle service
level between 56% and 82% for all segments ingryfrom 0.05 to 0.2.

3.4.2 Analysis of Results

Using the test bed, we obtain the simulated profits of all the2® instances for each

of the fulfilment strategies mentioned in the previous section. The averagetime

for one simulation instance is 1774.56 seconds for the SDP model, 26.45 seconds for
the DLP model, 3.63 seconds for SM_1 and 3.47 seconds for SM_2, using a standard
PC with a 2.GHz Intel Core 2 Duo CPU and 2.00GB menibey/runtime data show

that the safety margin models are indeed much more efficient than the SDP model
and even faster than the DLP model.

By comparing the simulated profits of other strategies to the simulatedits of
the GOP model, we obtain the optimality gaps. We then calculate the average
optimality gap for the FCFS strateghe DLP modelthe SDP model and both
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versions of the SM model over (i) aJf 20 test instances and (ii) all subsatsvhich

one d the design factors is fixed to one of its admissible values. The results are
shown inTable4. As well aghe average optimality gap (shown in bol@gble 4also

shows the average backlog percentage (first value in parenthesis), the average lost
sales percentage (second value in parenthesis) and the ratio between the average
service levels of Segment 1 and Segment 3 (third value in parenthesis) of each
strategy. Ascomplementary data, the second and third rewf Table4 show the
average backlogging percentage and average lost sale percentage of each customer
segment over all stances for eacfulfilment model.

From the first row inTable4, as expectedye see that the SDP model performs
best with an average optimality gap of 3.96%, followed by SM_2 and SM_1 with an
average optimality gap of 4.57% and 5.45% respectively. On average, the FCFS
strategy (with an optimality gap of 7.55%) performs better tiiae DLP model (with
an optimality gap of 8.84%).

Regarding the safety margin model, apparently both versions are considerably
better than the DLP/FCFS maslahd perform much closer to the SDP mode.the
safety margin models are developed to overcorhe timitations of the DLP model
and the SDP model, in what followfocus on comparing the safety margin models
to these two models toillustrate the difference. By comparing the difference
between the optimality gaps, we can see that SM_1 coapoximately 70% of the
discrepancy between the DLP model and the optimal SDP model and SM_2 covers 87%
of the discrepancy. As the SDP model provides the optimal solution to our problem,
we compare the decisions (i.e. the backlogging, lost sale and servicddé&haaliar
reflected in the bracketed value dfable4) madein the two safety margin models
and the DLP model tinose of the SDP mod# understand the profit diffeences.

Regarding lost sales, the SDP model has an avévatgeales rateof 24.39%In
terms of the different customer segments, it has the highdest-sales ratefor
Segment 3 and the lowest rate for Segment 1. If we further consider backlogging
behaviair, we can see that it backlogs much more for Segrménand 2 than for
Segment 3. Based on this observatia®e may conclude that compared to the other
methods, the SDP model achieves a relatively high service level for the more
profitable customers by greasing backlogging.

27



lll. The Safety Margin Model

Table4 Simulation results

Test bed subset N

FCFS

Average optimality gap (%)

DLP

SDP

SM_1

SM_2

All instances 9720
Avg. backlogging
(Seg.1, Seqg.2, Seq.3)
Avg. lost salg

(Seqg.1, Seqg.2, Seq.3)

7.550.00, 25.39, 1.01)
(0.00, 0.00, 0.00)

(0.23, 0.24, 0.24)

8.84(3.49,28.11, 1.60)
(3.09, 3.38, 2.23)

(0.09, 0.23, 0.43)

3.964.34, 24.39, 1.45
(6.07, 4.19, 1.52)

(0.12, 0.19, 0.39)

' 5.454.50, 26.61, 1.65
(4.76, 4.43, 2.52)

(0.12, 0.19, 0.47)

" 4.57(5.37, 24.33, 1.32
(7.52, 5.48, 1.66)

(0.15, 0.19, 0.36)

Cv=1/3 2430

CV =5/6 2430
Cv =4/3 2430
Cv =11/6 2430

r = (100,90,80)
r = (100,80,60)
r = (100,70,40)

3240
3240
3240

sr=1% 3240
sr=24% 3240
sr = 40% 3240
w = (1:2:3) 3240
w=(1:1:1) 3240
w = (3:2:1) 3240
b =0.05 3240
b=0.1 3240
b=0.2 3240

6.490.00, 24.73, 1.02)
7.32(0.00, 25.30, 1.02)
7.580.00, 25.18, 1.03)
9.04(0.00, 26.37, 0.98)

4.480.00, 25.09, 1.02)
7.350.00, 25.58, 1.02)
11.440.00, 25.52, 1.00)

6.26(0.00, 13.98, 1.00)
7.330.00, 24.61, 1.01)
8.750.00, 37.59, 1.04)

7.77(0.00, 25.74, 1.06)
7.680.00, 25.00, 1.00)
7.250.00, 25.46, 0.97)

8.11(0.00, 25.39, 1.01)
7.62(0.00, 25.39, 1.01)
6.92(0.00, 25.39, 1.01)

4.334.48, 25.59, 1.96)
6.733.58, 27.05, 1.74)

10.642.61, 28.85, 1.51)
14.70(3.29, 30.93, 1.31)

7.70(3.36,27.54, 1.60)
8.86(3.52, 28.34, 1.59)
10.193.60, 28.44, 1.61)

8.033.16, 15.58, 1.17)
9.983.91, 28.27, 1.61)
8.42(3.40, 40.46, 2.36)

8.69(3.85, 27.51, 1.46)
8.833.37, 27.74, 1.61)
8.993.25, 29.08, 1.78)

8.583.71, 27.93, 1.60)
8.933.55, 28.10, 1.60)
9.033.21,28.29, 1.60)

2.57(3.18, 24.58, 1.82
3.58(4.22, 24.66, 1.57
4.60(4.36, 24.201.33)
5.34(5.59, 24.12, 1.19

2.324.43, 23,53, 1.28
4.224.37, 24.54, 1.44
5.634.21, 25.10, 1.66

3.354.73, 11.84, 1.09
4.245.13, 23.61, 1.41
4.163.15, 37.72, 2.31

4.21(4.36, 24.53, 1.38
4.12(3.94, 24.32, 1.47
3.60(4.70, 24.32, 1.50

3.625.84, 23.98, 1.47
4.0004.47, 24.31, 1.45
4.252.70, 24.87, 1.42

" 4.494.01,26.18, 1.89)
' 4.894.44, 26.54, 1.79

6.154.41, 26.79, 1.55
' 6.48(5.13, 26.94, 1.44

' 2.81(5.58, 23.59, 1.21
' 5.834.30, 26.60, 1.73
' 8.20(3.62, 29.65, 2.34

' 5.06(4.43, 14.83, 1.28
' 5.82(4.87, 26.26, 1.67
' 5.40(4.20, 38.76, 2.39

' 5.8%(4.37, 26.93, 1.49
' 5.87(4.08,26.82, 1.70)
' 4.76(5.04, 26.10, 1.79

' 5.14(6.45, 26.08, 1.67
' 5.50(4.57, 26.55, 1.66
' 5.71(2.47,27.22, 1.63

3.82(5.43, 24.22, 1.43
' 4.16(5.60, 24.31, 1.38
' 4.954.98, 24.23, 1.28
' 5.535.47, 24.57, 1.19

© 2.86(6.00, 23.38, 1.11
© 4.995.56, 24.31, 1.29.
' 6.16(4.55, 25.31, 1.63

- 3.454.50, 12.13, 1.10
- 4.535.96, 23.48, 1.31
- 5.47(5.64, 3738, 1.74)

| 4.795.35, 24.41, 1.26,
4.834.92,24.31, 1.31
. 4.155.83, 24.29, 1.38

© 4.237.39, 23.95, 1.35
' 4.625.53, 24.25, 1.33
' 4.86(3.19, 24.80, 1.28
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Compared to the SDP model, the DLP model has a higher aViesigales rate
(28.11%). However, for Segment 1,ldst-sales rates even lower thanthe SDPmodel,
but it losesmany more customers from Segmen? and 3. Regarding backlogging, the
DLP model backlogs less average and does not show a clear differentiation between
segments. The backlogging rate for both Segrednard 2 are lower thann the SDP
model, i.e. the DLP model achieves a higher service level for Segment 1 with even less
backlogging, but at the cost of losintanymore customers from Segmes and 3. This
provides clear evidence that the DLP model tendsodbwer-protecte high profit
customers. This ovesrotection problemin DLP has also been identified by previous
studies(De Boer, Freling, & Piersma, 2002)

SM_1 results in a lowdost-sales ratg26.61%) than the DLP modelrRegmerd 1
and 2, its performance is very close to the SDP model, but for Segment 3, it has the
highestlost-sales rateamong allthe methods. This means that SMalsohas the over
protection problem, presumably due to the doubdeunting effectdiscussed in the
previous chapter. Regarding backlogging behayi®M_1 has a higher backlogging
percentage thanthe DLP model, especially for Segmentl and 2. Based on the
behaviair pattern ofthe SDRnodel,we know that this backlogging behauras adually
favourable and might be the reason that SM_1 lsabwerlost-sales ratecompared to
the DLPmodel, which ultimately results in a higher average profit.

Turning toSM_2 which is proposed to deal with the doubb®unting effect, from
Table4, we can see that has the lowestost-sales ratg24.33%), even lower than the
SDP model. This might be because it loses more Segment 1 orders than the other
strategies butfar fewer Segment 3 orders and therefod®esindeedrelievethe over
protection problem.Concerninghe backlogging behawmw, we can identify that it has
the same pattern as the SDP modeglincreasing backlogging for more profitable
customers to achieve better service level. FronTable 4, we @an see that SM_2
backlogs even more than the SDP model and this might explain why the average profit
of SM_2 is still lower tham the SDAModelalthough it has the lowedbst-sales rate

The following part ofTable 4 provides valuable information on the impact of
different design factors on the performance of eafthifilment model. The customer
arrival ratio () and the backlogging cost proportiony(have little impact on the
performance of the models as for different levels of these two design factors the
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resulting optimality gaps of eackulflment model are nearly the same. For the
coefficient of variation of order sized (¢ customer heterogeneity(® and supply
shortage rate i( ), we seethat they havea greater impact on the resulting optimality
gap of each model anidturn to the analysis of thisnpact in what follows.

Coefficient of variation of order sizé

FromTable4 and the followingFigure2, we can see the clear dependency between the
optimality gaps and the CV values.

Figure2 Average optimality gap for different CV values
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Two observations can be made he(&) In general, as the CV value increases, all
strategies show an increasing trend in their averagermoality gaps. (2) For small CV
values (i.e. low demand variability), the performancetted DLPmodel and the safety
margin models are close to each other. However, as the demand variability incgreases
the performance of the DLP model drops drastically. the other hand, the
performance of the two safety margin modedsalways very close to the SDi®deland
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evidently better than the DLP model for larger CV values. As the CV value increases, the
gap between SM_2 artthe SDAModel becomegven closer.

In terms of the first observation, the potential explanation is that the increasing
demand variability leads to an increasing forecast error, whigimsthe performance
of every strategy.To explain the other observations regarding the individual
performanceof each model,| first summarize the response dhe SDPmodel as it
LINE A RSE& (GKS aNRARIKUGE NBhancEmpareshe detisidnd miteY S G S NJ C
by the other strategies tthis response

As the CV value increases, SDP is able to keep the aVestgales ratealmost
constant. The backlogging percentage increases and the ratio between the average
service levels of Segmenl and 3 decreases. Based on these observatiaes may
conclude that as demand uncertainty increasedbe SDP model reduces the
differentiation between segments and backlogs more to retain the average service level.

Regarding backlogginthe response irSM_1lis the same asn the SDPmodel ¢ it
increases the backlogging percentage to cope with the increasing demand uncertiainty
also reduces the differentiation between segments. However, theéent of the
reduction is not sufficient athe ratios between the average service levels of Segment
1 and 3 are always higher than that of the SDP model. The above reactions enaftle SM_
to keep thelost-sales rateat an almost constant but higher level.

SM_2 does not changthe backlogging behavios too greatly as the CV value
increases and the backlogging percentage is kept at a relatively high level. Sirthiar
SDPmodel, it also decreases the segment differentiatiofhe ratios between the
average service levels of Segmehtand 3 are even lower than the SDPmodel The
high backlogging percentagend the low segment differentiatiorenableSM_2 to keep
the lost-salesrate as low asn the SDP model, whicis ultimately reflected in the very
close average profits.

The DLPmodel fails to retain a constantost-sales rate As the CV value increases,
the lost-sales ratealso increases. Regarding segment differentiationespords in the
right direction ¢ to reduce the differentiation. But agn SM_1, the extent ofthe
reduction is not sufficient, i.e. it keeps owerotecting the more profitable customers.
The DLP model also makes mistakesn the backlogging behavim: instead of
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backlogging more to compensate for thacrease inuncertainty, it reduces the
backlogging percentage as CV increases from 1/3 to 4/3. These mistakes can be
attributed to the failure to considedemand uncertaintyn the DLPmodel, resulting in

its performancealroppingdrastically as demand variability increases.

Based on the above analysige can conclude thatvhereasthe DLP model fails to
provide a satisfactory solution tthe problem when demand uncertainty is high, the
performance of thesafety margin models propodes promising.

Customer Heterogeneityw

There is also a clear dependency between the resulting average optimality gap and
customer heterogeneity. Fromable4 and Figure3, two keyobsenations can be made.

(1) In general, as the scale of customer heterogeneity increases, the performance of all
strategies decreases. (2) Although all strategies show the sameasigg pattern as the
scale of customer heterogeneity increases, the performance difference between
strategies is still evident. FCF$hismost affected by increasing heterogeneity, followed

by SM_1. On the other hand, the differences betwdka DLPmodel, SM_2 andhe
SDRnodelare rather constant as heterogeneity increases.

The potential explanation for the first observation might thet whenthe scale of
customer heterogeneity is small, there is rgreat difference between customer
segments. ThereB > (KS O2ad 2F aYlF{Ay3a YAaidl{1Sag A
heterogeneity increases, the cost of making mistakes also increases, wesicls in
larger optimality gaps.

Themain reactionin the SDP modédb the increasan customer heterogeneity is to
increase the segment differentiation, which is reflected in the increasing value of the
ratio between the average service levels of Segment 1 and Segment 3 (third value in
parenthesis). This reaction is reasonable becausenitoie beneficial toensurebetter
senice for the more profitable customers when heterogeneity is high. As segment
differentiation increasesghe SDPRmodelbacklogs less. This is intuitifeom the average
backlogging percentage of each segmentable4 we know thatthe SDPmodel does
most of the backlogging for Segmeritand 2 because it is only cesfective to backlog
the more profitable customers. As gegnt differentiation increases, the more
profitable customers are better protected. Therefore, theeed for backlogging
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decreases. The increasing segment differentiation and the decreasing backlogging
percentage lead tanincreasen the lost-salesrate.

Both safety margin models react in the same pattern as the SDP model. However,
SM_1 tends to overreact to the heterogeneity incregsghen heterogeneity is lovthe
ratio between the average service levels of Segment 1 and Segment 3 is actually small,
but the increasen the ratio is much higher tham the SDRAnodel This might explain
why its performance deteriorates when heterogeneity is higfh.contrast,the DLP
model has a constant average service level ratio, which means it does not react to
different heterogeneity levels at all.

Figure3 Average optimality gap for different customer heterogeneity
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Finally,I turn to the impact of the degree of supply scarcity. Froable4 and Figured,

two obsenations can be madgl) The performance ahe DLPmodel, SM_1 andhe
SDPmodelshows the same pattern and it is not monotonic in the shortage ratg All
strategies perform worst for an intermediate shortage rate of 24%. (2) The performance
of SM_2 shows a decreasing pattern as the shortage increases.
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In response to increasing shortagéhe SDP model increases its segment
differentiation. This makes sse as it is beneficial tprovide betterprotection to the
more profitable customers when supply is getting scartek S Y ZbBcKldg§ing
behaviar is in line with the average optimality gap, which is not monotonic in the
shortage rate, andhe SDPmodd backlogs most when the shortage rate is 24%. One
reasonable explanation is that for an intermediate shortage regeolvingthe trade-off
between selling a unit of supply for current low revenues versus reserving it for future
higher revenues is the most difficult.tife level ofshortage is very low, the solution is
clear and simple: to satisfy all the demand from all segmelfithe shortage rate is very
high, the solution is also obvious: to reserve enough for the more profitable customers.

The other strategies react in the same waytlas SDPmodel However, for SM_2,
although it also increases segment differentiationthe shortage rate increases, the
extentof the increases not sufficient. Whem i p B SM_2 has nearly the same ratio
between the average service levels of Segment 1 and Segnmetif&SDPmodel But
as the shortage increases, the difference betwees thtiosbecomedarger and larger.
Wheni i 1 T pthe averageservicelevel ratio of SM_2 is much lower thamthe SDP
model. This might explain why the performance of SMahtinues todecreag when
the level ofshortage increases.
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Figure4 Average optimality gap for different supply scarcity
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3.5 Summary

In this chapter, the twolevel planning process dhe APShas been tracke&nd two
versions ofa safety margin modethave been developetb allocate the predetermined
ATPguantities to different customer segments with different due date requirensent
explicitly taking the demand uncertainty into account by adding safety margins to the
relatively more profitable customers.

Based on the DLP mod@leyr, 2009),l borrow the safety stock idea from inventory
management to account for demand uncertainty and utilize EMS&ppdy it to a multi-
class case. By doing sdt is demonstrably possible tdink the traditional
inventory/supply chain management worlduccessfly to the emerging revenue
management world.

The numerical study shows that by incorporating demand uncertathty safety
margin models do improve the performance of the pure DLP model and provide a close
and efficient approximation to the SDP mogdehich is the optimal exante policy butis
computationaly very expensive. Thereford, is possible toconclude thatthe results

35



lll. The Safety Margin Model

highlight the substantial opportunities for improving the demaifilment process in
MTS manufacturing andthat this processcould easily be adapted to current APS
practice.

The main limitation of the safety margin models is that in the allocation sthge
different suppliesare consideredseparately, which results in the owprotection
problem for SM_1 and excessive backloggior SM_2.Alsq there could be other
methodsfor calculaing safety margins which might improve performance even further.
For the numerical study, a comparison using empirical data instead of theoretical
distributions could provide further insight inthé relative performance of the different
policies.
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Chapter IV

Bid -Price Control Models

4.1 Introduction

The main task irthe demand fulfilment problem is the same as in the traditional
revenue management problem, namely to allocate limited resources to customers with
different willingness to pay to maximize revenue or profit. Becatige problem
considers multiple resources (different replemsénts) it is closely linkedto the
network revenue management problem. Howevamlike the traditional network
revenue management problenm whicheach incoming order requests a specific set of
resourceshere there isthe flexibility to choose betweeniffierent supply options. This
flexibility linksthe problem in this studyto another emerging research topic the
literature, the secalled revenue management problem with flexible products, which can
be considered an extension of the traditional netwogikkenue management problem.

Network revenue management is a very important research streathamevenue
management literature as it reflectsiumerous problems experiencedin reality.
Generally it refers to the decisiommaking problem of selling productthat are
composed of a bundle of resources under various terms and conditionsthveiidim of
maximiang revenue (Tallur& van Ryzin, 20@&}. In the airline industry, where this class
of problem originates, this is mirrored by a network of differergHt legs, consisting of
Il YAE 2F 20t FyR O02yySO0iiAydstinalionlitifefayO® | LIN
FINB OfFaa O2Yo0Ayl (A2 y-gightislageparsfteSesdauredi \Btien O 4 S =
customers stay multiple nights, they are consumingltiple resources and the muiti
night stays are analogous to mdlig itineraries in an airline case.

Unlike the singleresource revenue management problem, in the network case, if
one of the resources in the bundle faces limitasam its availabilitysales of the whole
bundle will be constrained. This implies that there are interdependencies between
resources and therefore total revenue maximization requitesjoint management of
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all capacity controls across the network (Tal&rvan Ryzin, 20G. Inthe literature,
the interdependencies between resources are sometimes referred tedgork effects

In an MTSproduction system, the resourde be soldis the finished goods inventory.
Nowadays in APS, the available finished goods inventory gresented by theATP
quantities. To satisfy a given order, using ATP quantities from different replenishment
batches entails different costs (e.g. inventory holding or backlogging). Therefore, order
acceptance in an MTS system also resembles a networkueve@anagement problem,
with ATP quantities from different replenishments as different resources. However,
unlike a traditional network revenue management problemwhichdifferent resources
are complementary to each other due to the network effect, ie MiTS case, different
ATP supplies are substitutive. This is because all finished go@ds MTS settingure
physically identicaind thus,theoretically, any of the available supplies can be used to
satisfy any incoming order and the lack of any spe&ifiP does not constrain the sale of
the others. This flexibility linkshe problem in this studyto the research stream
concerningeevenue management with flexible products.

The incorporation of flexible products into capacity control is relatively new in
revenue management research. A flexible product is defined as a set of alternative
products serving the same market (Galle§oPhilips, 2004). Purchasers of flexible
products are assigned to one of the alternatives at a later time, normally when most of
the demand has been realized and uncertainty is lower. Therefore, in revenue
management, flexible products are usually provided as supplementary to the more
traditional specific productsat a lower price to hedge against demand uncertainty, and
they are vieved as inferior to specific products by most customers.

Inthe MTS setting, ATP quantities from different replenishments can also be treated
as different product alternatives, in other words, flexible products. However, there are
several differences betweetne demandfulfilment problem and revenue management
with flexible products. First, in an MTS setting, customers do teatl to ask for
products from a specific batch. Thereforthere is always the flexibility to choose
between different supply alternatives, i.there are nospecific products. All products in
this problem setting are flexible products. Second, the choice of resourassto be
made in real time the order promisecannot be postponed untiéfter most of the
demandhas been collectedTherefore, theisk-pooling effect of flexible products does
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not exist. Third, the decision to be made is more complex. In the traditional network
revenue management problenm whichonly specific products are offered, the decision

to be made is a simpléye< or cnog: whether or not to accept an incoming request. If
flexible products are included, one has to go a step further to decide which alternative
to assign to an accepted flexible requestihrs case,it is necessaryo decide not only
which alternative to assign, but also how many of each alternative to uskeeasrder

size is normally larger than one in an MTS setting. This process carevioed as
repeating the alternative selecting decision multiple timesurffg in this problem
setting, time plays a particular role in defining the multiple resources. Ruéhé
inventory holding cost and backlogging cost, the margin of choosing a certain resource
changes over time. This mak#ége system more dynamic than the traditionaétwork
revenue managemertase (either with or without flexible products).

From a modding perspective, theoretically, all network revenue management
problems can be modkd usingdynamic programing (DP) to determine the optimal
policy. Thdifficulty with DP is that due to the higlimensional state space, solving the
problem analyticaly usually yields models of intractable complexian issuewhich is
Oo2YY2yté NBFSNNBR G2 Fa a.StftYlyQa Odz2NAS
Consequently, approximations have been developldt neglect certain factors or
estimate certain inputs to geerate tractable and implementable solutignahich ¢
despite occasional neaptimality cA Y ONB I &S O2 Y LI y A&SvantRyzZMB @ S vy dzS
1998).

Of all the methods, bidorice control is becoing the dominant one (Klein &
Steinhardt, 2008 Talluri & van Rzin, 2004). For network revenue management
problems, bidprice control sets a threshold price (bid price) for each resource in the
network and an order for a certain product is only accepted if its revenue exceeds the
sum of the bid prices of all requileresources. From BPperspective, bieprice control
does notin factalways generate the optimal policy for network revenue management
problems due to the nonlinearity of the value function. Howeveis gainng popularity
because of its intuitive nature artle simplicity oimplementation.

As discussed in ChapterQuante et al. (2009) also formulatee demandfulfilment
problem as a SDP modelthe optimal policyof whichis a generalization of the booking
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expensive andstherefore not really applicable for realizal problens.

The purpose of thishapteris then to develop bigbrice control methodto solve the
demandfulfilment problem inthe MTS systemAsbid-price controlshaveproved to be
successful in traditional revenue management settings, it is reasonable to expect a
similar performance in the MTS environment. However, due to the differences igehtif
betweenthe problemin this studyand those inthe two research streams mentioned
above,it is not justa case ofapplying the existing methods in a different setting, but
alsodevelopng bid-price control methods to solve a neamddifferent problem.

In summarythis chaptemakesthe following contributions to the field:

A It identifies the similarities and differences between the demandfilment
problem in an MTS system and network revenue management problems.

A Using insights from traditional revenue managemeattiags, | develop three
bid-price control models to solvéhe demand fulfilment problem in an MTS
production system.

A | evaluate the performance of the three bjatice control models numerically
and compare them to other existing benchmarking methods.

4.2 Literature Review

In the literature, there are different research streamelated to solving network
revenue management problesnin this sectionl only review bidprice control methods.
Most of the work on bigorice control in network revenue management problehmas
taken placewithin the airline industry and considers only specific products. As an
emerging topic, a few papers discuss the situation with flexible products.
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4.2.1 Bid-Price Control Model for Network Revenue
Management with Specific Products

In general, bigprice control models can be classified as generating a static or dynamic
estimate of the marginal value of remaining capacities. While a static model yields bid
prices onlyon basis of the remaining time and capacity at the time of computation, the
ultimate goal of dynamic models is to generate bid prices for every possible time
capacity combination until departure (Tall&ivan Ryzin, 20G}. Despite the different
properties of the bid pricegienerated the key ideas behind all of the models are the
same:to approximate theDPformulation of the original problenusingcertain efficient
mathematical programming formulati@ne.g.LP, and calculate the bid prices by solving
the dual problem (Bertsima$ Popescu, 2003).

Static models

Of the models proposed irthe literature to compute bid prices, static models are
distinguished by the essential characteristic that the resulting bid prices do not change
as a function of time or capacity, but stay constant until recomputed.

Williamson (1992) was one of the first ppopose DLP to compute bid prices as the
optimal dual prices. Assuming demaisdequal to its meanshe uses the partitioned
allocation of capacity for different products as the decision variable with the objeative
maximiangthe total revenue. Talluand van Ryzin (1998) carefudlgaly® the resulting
policy and point out that DLP is actually a linear functional approximatfaine DP
value function of the network revenue management problem. The main advantage of
the DLP model is that it is intuitivend efficient to solve. The weakness is that it treats
demand as deterministic and considers only expected demand while neglecting all
further distributional information Kunnumkal& Topaloglu, 2010Talluri & van Ryzin,
2004a). Despite this shortcomingseveral numerical studies have shown that with
frequent recalculation, the DLP bptice control model generage promising
performance and outperforms the probabilistic nonlinear programming model
(Belobaba, 2001Belobaba& Lee, 2000Wiliamson, 1992).

With slight additional complexity, Talluri and van Ryzin (1999) refine thariaodel
and incorporate more distributional information in their randomized linear
progranming (RLP)model by substituting the expected demand with independent
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samples of the randondemand. Talluri and van Bp (1999)claim that RLP allows
closer to optimal revenue although their computational results do not confirm an
absolute dominance over the Dibfkbdelin a random network setting. Topaloglu (2009)
reinvestigates the relative p@armance of the DLP and RLP madehder different
scenarios with different problem parameters and numbef samples. The results show
that on a majority of the test problems, the RLP model is a robust solution method and
performs better than the DLP model.

In another attempt to capture the randomness in demand, the probabilistic
nonlinear programming (PNLRhethod has beendeveloped. Its main difference
compared to the DLP model is that PNLP calculates the total revenue based on expected
sales instead of the partitioned allocation of capacity, i.e. it considers the possibility that
real demand might be lowethan the allocated quantity. However, simulations have
foundthat usuallyit is outperformed by the DLRodel(Talluri& van Ryzin, 20G.

Bertsimas and Popescu (2003) propose an alternative application of a linear
approximation to estimate the marginable of capacities. Instead of computing-eg
based bid prices via dual solutions, their certainty equivalent control (@E@jod
estimates the opportunity cost for each itinerary by computing the marginal value of
capacity. As with typical bidrice contols, a request is accepted if and only if the
proposed fare exceeds the estimategpportunity cost The authors report a revenue
increase of §10% over the DLMbased bidprice controls. The main disadvantage of the
CEC method is that is necessaryo solve a separate LPBroblem for each product,
which is computationally much more expensive than the -Ba$td bidprice control
method.

Dynamic models

As mentioned above, the static models do not incorporate the dynamics of the
underlying system and generateeasonable bid prices only under frequent-re
optimization. In practice, however, frequent-ggtimization might not be feasible due

to the limitations of computatioral capacity. Thus, a dynamic model, which generates
bid prices that vary with time and cagiy and therefore can be solved less frequently,
is appealing.
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To develop sucha dynamic model, Adelman (2007) proposes imgkan affine
functional approximation to the value function of the Dfddeland plugyingthem into
the LPformulation of the DAnodel Solving its dugbroblemwith column generation,
he obtains a time trajectory of bid prices all at once.his numerical study, Adelman
(2007) shows that the dynamic model outperforms the staticfride controls by up to
21.4%.

With the same olgctive of capturing the temporal dynamics of demand, Kunnumkal
and Topaloglu (2010) relax the capacity constraints of therBel usingLagrangian
relaxation.Consequently, their method decomposes the optimality equation by periods
remaining until departte and yields bid prices that vary with time. The two dynamic
models (Adelman, 2007; Kunnumk&l Topaloglu, 2010) generate very similar time
trajectories and performance in the proposed settings.

Topaloglu (2009)goes a step further and approaches theetwork revenue
managementproblem with the goal of computing bid prices that not only encompass
the temporal dynamics within the system, but are also contingent on the remaining
capacitiesfor the different flight legsSimilar to Kunnumkal and Topaloglu (2plhe
uses Lagrangian relaxation to decompose tigdwork revenue managemeryroblem
into a sequence of singleg revenue management problems. Concentrating on one
flight leg at a time,he generates both capacityand timedependent bid prices.
Computational experiments indicate that the model outperforms the benchmark
strategies such as DlaAd RLP and the model proposed by Adelman (2007) within the
suggested experimental setup, but withone computational expense.

4.2.2 Network Revenue Management with Flexible Products

As the first publicationto introduce the concept of flexible products for revenue
management, Gallego and Phillips (2004) consider a simplepéniod, twoflight
problem Pr an airline offering a flexible product at a discount in addition to specific
products. They provide EM@$Rsed algorithms for calculating booking limits on both
specific and flexible products. The numerical study shows that under reasonable
assumptionseffering flexible products generates considerable benefits.
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Gallego lyengar, Phillips, and Dubé3004) extend the work of Gallego and Phillips
(2004) to a more general network setting with an arbitrary number of productsy The
consider a continuous timenodel and approximate the DRodel of the resulting
network revenue management probleasinga DLP methodvhich can be considered a
generalization of the LP approximation of the usual network revenue management
problem without flexible productsasstudied by Williamson (1992) and Talluri and van
Ryzin (1998). Using numerical experiments, they verify how the benefits of offering
flexible products vary as a function of various parametexsch astime horizon,
discount etc.

With a very similar problem seitig to Gallego et al. (2004), Petrickteinhadt,
Gonsch, and Klei(2012) discretize the planning horizon into individual time periods
such that there is at most one order arrival in each periddlike Gallego et al. (2004)
who assume that the assignmieto different alternatives for flexible products can only
occur at the end of the planning horizon, Petrick et al. (2012) allow an arbitrary
notification date within the planning horizon, during which all flexible requastepted
have to be assigned tan available alternative and after which no more flexible
products may be soldlheythen provide theDPformulation of the problem and extend
three popular static approximation models, namely the DLP, RLP and CEC snaihod
the case offlexible products.Theyreport an increase in revenue of up to 4% due to
incorporating flexible products and the DbBsed bidprice control modebestexploits
the additional flexibility.

For the network revenue management problem with or without flexilgeoducts,
the order acceptance rule is the sanmen incoming order is only accepted if there is
enough capacity available and its revenue exceeds the sum of the bid prices of all
required resourcesHowever,if flexible products are incorporated, thisne longer the
end of the story as one still needs to decide which alternative to assign to each accepted
flexible request. If this decision is made at the end of the planning horizon, it is possible
to achieve an optimal assignment as one has observedealemands, like Gallego et al.
(2004) whodevelopthe assignment problem asyd_Pmodel If an arbitrary notification
date is allowed, the problem is more complex as the current assignment can limit the
flexibility within the remaining planning horizomn Petrick et al. (2012), a flexible
product is assigned to the alternative with the highest difference between revenue and
the corresponding bid price®etrick Gonsch, Steinhardt, and KIg@010) investigate
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different assignment mechanisms that diffar the extent to which they exploit the
flexibility.

4.2.3 Network Revenue Management in Manufacturing

Literature on bidprice control for the network revenue management problem in
manufacturing is very rare. Due to the direct analogy between the perishab
production capacity in @ MTO system and the perishable flight seatsthe airline
industry, it is possible to use most of the aforementioned models for the order
acceptance problem in an MTO environmeht. my knowledge, there is no extant work
applyng bidprice control in an MTS manufacturing system.

Spengler et al. (200 implement a static bigbrice control to manage the order
promising in a MTO system inthe iron and steel industryAsthe orders obtained in
their problem setting are unique and cannot be classified into classes, the staDd&d
approximation, which is restricted to multiple fare classes, is not applicable hbtes,
the authors employ a mulidimensional knapsack pradh formulation. According to
the computational analysis using real world production data, the proposeepiice
controls perform significantly better thamd&CFS strategy.

In terms ofthe demandfulfilment problem described in Section anlike Quante et
al. (2009) whoconstruct it as an SDP model Meyr (2009) proposes a twaiep
procedure to solve it: in the first allocation planning ste@laPmodel, which is similar
to that of Williamson (1992)is developed with the objectivef maximiing the overal
profit. Its optimal solution is used as partitioned quantity reserved for each customer
class and each arrival period. In the second order promising step, allocated quantities
are consumed by incoming orders in real time based on certain consumptios. rule
Following the same framework, Quante (2008) adapts the dineept derivedfirom
Talluri and van Ryzin (1999) and solves e§2009) DLP model repetitively with
realizations of the random demand with known distribution. The optimal allocation
quantity is estimated by a weightealverage of the results over all repetitions.

Of all the static models, the DLF&]luri& van Ryzin, 1998Villiamson, 1992) and
the RLP (Tallu& van Ryzin, 1999) ashownto be efficient and perform wellThus,n
this chapter, | use the two modelsleveloped byMeyr (2009) and Quante (2008) as the
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primal problem to calculate the corresponding static bid prices. To capture the temporal
dynamics of demand,adapt Adelmaf @007) affine functional approximation method
to calculate the dynamic bid prices.
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4.3 Bid-Price Control Models for Demand Fulfilment

As mentioned in the introductionthere are several differences betwedhe order
acceptance proces® the demandfulfilment problem and that of traditional network
revenue management problems. For the traditional case, if only specific products are
considered, an incoming order is accepted if and only if its revenue exceeds the sum of
the bid prices of the resourcesquired Forthe situationin whichflexible prodicts are
offered, one needs to go a step further to assign an alternative to each flexible request
accepted Forthe problemin this study one has to go even further as one still needs to
decide how many of each resource to use. Therefore, each of trmnialy bidprice
control models proposgcontains two steps, namelylad-price calculation step and an
additionalorder promising stegdo decice the final consumption scheme.

4.3.1 Bid-price control based on DLP

In the DLP moddkquations(2)¢(5)), the optimal value of the objective function can be
considered an approximatioof the value function of the original DRodel Meyr (2009)
uses the primal solution directly as the partitioned quantity reserved for each customer
class and arrival date, basem which some ruldased order processing methods are
used to complete the demanéulfilment problem. Following Williamson (1992) and
Talluri and van Ryzin (1998)ere wedo not use the primal solution of the DLP but
calculate the optimal set of dual vables associated with constraint (4) as the bid prices
for each corresponding ATP supply.

To process the incoming order, for each sup@lwe first calculate the difference
between the net profit of using one unit of this supply to satisfy the incoronaigr and
the bid price of this supply

(23

Then we choose the supply with the highest positive difference to satisfy the order.
If there is an insufficienguantity in thechosen supply to fulfil the order, we move to
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the supply withthe second highest positive difference and so on, until it is not beneficial
to use any supply to satisfy the order, i.e. equati@B) (generates only negative results,
or there is no more supply available. We then stop tnder promising procedure for
this order and move to the next one.

To choose supply, we should compare the difference between the pimfite
derived fromusing a certain supply and its corresponding bid price. Here, the sunk
inventory holding cost is included in the calculation of tet profitry . Asf is used
as the coefficient in the objective function, the resulting bid pfice also considers the
sunkinventory holding cost. To be consistent with the bid price, we have toruse
here to calculate the diffence as it also includes the sunk inventory holding cost.

4.3.2 Bid-price control based on RLP

Similar to the DLP model the airline setting, MeyR @009) model is efficient to solve,
but has been criticized as it neglects demand uncertainty and okstéhe expected
demand into consideration. To overcome this limitation, Quante (2008) borrows the
idea of RLP(Talluri& van Ryzin, 1999) and modifies M&@f£009) model by replacing
the expected demand in constraint (3) with random demands drawn froenkifown
demand distribution. The resulting IgPoblemis then solved repetitively, each with an
independent sample of the random demand.

In his PhD thesis, Quante (2008) uses the weighted average primal solution as the
partitioned allocation quantityln contrast here we discard the primal solutions and
calculate the RL-Pased bid prices based on the associated dual pricesus assume
that the model is solved times; it then provides) dual prices for each resource.
Following Talluri and van Ryzit©09), we calculate the final bid price for supiihy
takingthe average of tha) dual prices of suppliR2

0 (24)
where60 denotes the final bid price of suppliand60 is the shadow price of supply

"‘On samplet ¢ phB R .
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The order promising procedure is then the same as theliased bidprice control
processn 43.1.

4.3.3 Dynamic bid-price control

The above two models generate only static bid prices which do not capture the
temporal dynamics of the system. To obtain thakependent dynamic bid prices,
Adelman (2007) derives a model which computes a time trajectory of bid prices all at
once. The mairsteps of this model are as follows: (fjake an affine functional
approximation to the value function of the DRodel (2) input the affine functional
approximations in the.Pformulation of the DRnodel (3)solve the dual problem using
column generatiorand obtain the corresponding bid pricdsollowing thee steps, we
derive our dynamic bighrice control model in what follows.

We start withthe original DP formuldéion (1). Similar to Adelman (2007), we use the
available supply quantities of replenishmé@h periodoas the bast functions and
approximate the value of the state vectamusing:

W o — WF I | o (25)

where the parametety, is the estimation of the marginal value of a unit of suggly
periodd, or in otherwords, the bid price of ATP supplyn periodd p, and—is a
constant offset. We assunthat w ; Tmand— 8

The state vectomsatisfies

@' Nk @Yy goN TipB hog | 'Q

In period 1, we haved & ® §o for the further analysisye define
woén EGE p

n . .
n E¢E ¢B Y
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Let us asume the maximal possible order size isve can thenusedY 6 0 -
vector@k Oy to denote the supply quantity used to satisfy an order from a certain
class with a certain order size. When the system is in sbatieis vector has to satisfy

OYY ok Opp NY Prr OB OoR; H @ e

Compared to Adelma(007) who usesa onedimensional binary vector to denote
the acceptance decision, here we need a thddmensional integer vectab. This is
becausein the traditional airline setting with only specific productbe resources
required for a specific ordeare known normally defined by an incidence matrix, e.g.
matrix ® kK @y , where®; pif resource’Gs used by produciQand &y Tt
otherwise Adelman, 2007Talluri& van Ryzin, 2004; Topaloglu, 2009). Thermeriod o,
the decision variablé is a binary variable wher@  p if the request is accepted and
0 Tmotherwise. Inthe MTS system, however, the order size is a random variable
which is normally larger than one and we do not héive incidence matri 6. Thus,for
an incoming order, we have to decide which resource to use and how many of each
resource to use as all finished products are physically identical. Therefore, in period
our decisionvariable is an integer vectd Then, theLPformulation of the DRmodel
from §2.2.1can be written agollows:

r | Elg®d Qd®n
© ® OGO 050 WO QY O ® Of I oh
@' n h (26
o aby @ ,
P ® oN D,

Note that asthe initial DPformula is different fromthat of Ademan (2007), the
resulting LP formulation is also different here. Substituting the affine functional
approximation into the_P formulationit becomes

T [EL op 2y 27)
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— — WFIL ® [ © "O(IﬁQO')ﬁﬁ | oh
@ nh (29
0 D 6fr0 B QY on 5
b

Note that by using equatior2b) to approximate the value function, we reduce the
number of decision variables from

P Y p B o p,

which is exponential ilY to"Y"Y p . However, still has an exponential number of
constraints. Therefore, we use column generation to séesdual problem|} :

NG 4

o | AQ "o 0 Opp0 M QY
(3 Forn Fonh (29)
AT
(bd)FDﬁD
o'n havd
oY) EUE ph (30)
. , oo \ e W 1
0 08iQ ;Wi 0 CBHY 1D
BN havd
p EGED
i b i 10 CBRY o @D
BN hav) on ho'b

6 ; are then the dual prices on constrair@(d) and we can interpret the decision
variable9 j;;, as stateaction probabilitiesasconstraint 81) can be rewritten as

Oy P 1 8

o'n hab
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To use column generation, we first need an initial feasible solutiop tw start the
recursion. Then, we solvg with the initial feasible solution to obtain the
corresponding dual prices. Using the obtained dual prices as input, we solve the sub
problem to decide whether to add any additional columns to the existing solution set.
Finally, we add the chosen columns to the existing solution set and repeat the
procedure until the stopping criterion is met.

{AYAT N G2 ' RStEYlLYy Ounnt0X GKS G2FFSNAy3
solution to |} , i.e:
pEE Ony;, &

T I OEABXEO/| gpn n v 5, (32)

(V)

Let us asumethe resulting dual prices are denoted tp—then, the subproblem
can be written as follows

- - - P o~ NG S

lené«bga Felo len'r'?éwbga OuQ O OprL @ "
WREA W 5 W oW I g —_ —

which maximizes the reduced profit fror@g). Whend p, we havewy & QR "Gnd
for any fixed> phthe subproblem can be rewritten as the following integerogram
specifying the conditions on the solution set explicitly as constraints

I Ag oW D C')F,F,lT)"fﬂ) W j N

pho (33)
Wp W W — —

Orr | "@HQ (34)

Orn  Q I o (35)
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N T8 o0 IQ (36)
6rp TET OACAO | "0 (37

If the objective value of3Q) is positive, we add the corresponding column to the
existing set of columns fdf , i.e. for each iteration, we do not add only one column
(the one with the maximdy reduced profit) as the standard column generation
algorithm does, but we add a batch of columns, one for each time period, as long as the
associated reduced profit is positive.

Asa stopping criterion, we specify a percentage such that as soon as tlsaim of
the optimal objective values of the syivoblems B “ ) is smaller tham per cent of
the optimal objective value OM- with the current set of columns, we stop the column
generation iteration.

Usingo to denote the current set of columns ang to denote the corresponding
optimal objective value dd , the column generation algorithm is summarizedliableb.

Table5 Column generation algorithm

Algorithm Column generation

Seto o 8R! O, solve the restricted problen®( o ), and set' > Hbfor allo.

whileB “* « ¢y do

forallovn pMB HY
compute* * idvé‘@maa
selectan@ho ) A OCA @ o
updateo N o  oh@ o

solve0 o)

The order promising procedure is almost the samehad proposel for the DLP
based bidprice control model. The only difference is that for choosing supply, we use
the following equation 8) instead of equation23) to calculate the difference between
the profit from usinga certain supply and its corresponding bidqga: In period, we

53



IV. BidPrice Control Models

compare the incremental profii "€t of the incoming order to theurrentbid price of
the corresponding supply and calculate the difference

RGN (38

Here the incremental profith “fto is used because the corresponding bid price
W s calculated based on the profid-go, i.e. the sunk inventory holding cost is not
included.

4.4 Numerical Study

Following the same numerical study framework a#¥4.] this sectionanaly®s the
performance of the three proposed bjgrice control models.

4.4.1 Performance Comparison of Different Bid-Price Control
Models

The iterature shows that for traditionahetwork revenue managemenroblens, if the
static bidprice control models are reptimized frequently, they perform quite well
(Talluri& van Ryzin, 20@&). According to Adelman (2007), resolving the dynamie bid
price control model also leads to a better result. This motivates us to consider the
proposed bidprice control models bothwith and without resolving. The policies
consideredare summarized as follows

A DLPBPC solve the DLP model in §3.1 once. Given a fixed set of Dhised static
bid prices, use the order promising procedure in3g4.

A DLRBPC Resolvedesolvethe DLPmodel in §43.1 everyfour periods over the time
horizon™Y Between solution epochs, use the order promising procedure B.B4.

A RLPBPCsolvethe RLP model in 832 once with) o mGiven a fixed set of RLP
based static bid prices, use the order prsing procedure in 83.1.

A RLPBPC Resolvedesolvethe RLP model in 832 withO) o Teveryfour periods
over the time horizorY Between solution epochs, use the order promising
procedure in 843.1.
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A DBPC solve the dynamic model in §3.3 once. Given aet of fixed dynamic bid
prices, use the order promising procedure in343.

A DBPC Resolvedesolve the dynamic model in 843 everyfour periods over the
time horizon”Y Between solution epochs, use the order promising procedure in
84.3.3.

A SDPmodel (SDP):this strategy applies the optimal policy of the B&mula from
Quante et al. (2009) that we are approximating. It provides the optimedre
policy and therefore serves as a benchmark to calculate the optimality gdpein
numerical comparison.

Fa the dynamic bid price control models, we choose the optimality tolerance of
* p b i.e. we stop the column generation iteration as soon as the sum of the optimal
objective value of the suproblem is smaller thap Pof the optimal objective value of
||- . This optimality tolerance is smaller than Adelaf007) 5% and thugrovidesa
more accurate estimation.

Using the test bed, we obtain the simulated profits of all th&29 instances for each
of the fulfilment strategies. Using a standard PC with a 3.2GHz Intel Core CPU and
32.00GB memory, the average rtime for one simulation instance is summarized in
Table6. The runtime data show that all the bigrice control models proposkare
much more efficient than the SDP mod@he dynamic model takes longer than the
static models, but is still tractable.

Table6 Runtime data

DLR _ RLP DLPBPC RLPBPC DBPC

SbP BPC BPC LA™ Resolved Resolved Resolved
Runtime .. 56 254 357 1235 3.16 3.99 17.82
(seconds)

By comparing the simulated profits of other strategies to the simulated profits of the
SDPmodel, we obtain the optimality gaps. We then calculate the average optimality gap
for all theabovementioned models over (i) all 220 test instances and (ii) all subsets
which one of the design factors is fixed to one of its admissible values. édudts are
shown inTable7. In addition tothe average optimality gap (shown in bold@gble 7also
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showsthe average backlog percentage (first valngoarenthesis), the average lost sales
percentage (second value in parenthesis) and the ratio between the average service
levels of Class 1 and Class 3 (third value in parenthesis) of each strategy. As
complementary data, the second and third rewf Table7 differentiate the average
backlogging percentage and average lost spkrcentage bycustomer for eachmodel.
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Table7 Simulationresults

Test bed subset N

Average optimality gap (%hacklogs lost sals % differentiation ratio)

SDP

DLRBPC

RLPBPC

DBPC

All instances 9720

Avg. backlogging (%)

0.00(4.34, 24.39, 1.45) 7.96(5.55, 30.55, 1.95) 6.725.66, 29.59, 1.87) 3.17(4.45, 26.90, 1.70)

(6.07, 4.19, 1.52)

(0.12, 0.19, 0.39)

(6.92, 4.92, 3.11)

(0.12, 0.22, 0.55)

(6.39, 5.43, 3.25)

(0.12, 0.22, 0.53)

(5.33, 4.16, 1.93)

(0.12,0.19, 0.49)

(Cl.1, Cl.2, CL.3)

Avg. lost sale(%)
(Cl.1, Cl.2, CL.3)
Cv=1/3 2430
CV =5/6 2430
CVv =4/3 2430
Cv =11/6 2430
r=(2100,90,80) 3240
r=(100,80,60) 3240
r=(100,70,40) 3240
sr=1% 3240
sr = 24% 3240
sr = 40% 3240
w = (1:2:3) 3240
w=(1:1:1) 3240
w = (3:2:1) 3240
b =0.05 3240
b=0.1 3240
b=0.2 3240

0.00(3.18, 24.58, 1.82)
0.00(4.22, 24.66, 1.57)
0.00(4.36, 24.20, 1.33)
0.00(5.59, 24.12, 1.19)

0.00(4.43, 23.531.28)
0.00(4.37, 24.54, 1.44)
0.00(4.21, 25.10, 1.66)

0.004.73, 11.84, 1.09)
0.00(5.13, 23.61, 1.41)
0.00(3.15, 37.72, 2.31)

0.00(4.36, 24.53, 1.38)
0.00(3.94, 24.32, 1.47)
0.00(4.70, 24.32, 1.50)

0.00(5.84, 23.98, 1.47)
0.00(4.47, 24.31, 1.45)
0.00(2.70, 24.871.42)

4.594.99, 27.42, 1.93)
7.51(5.94, 29.92, 1.97)
9.68(5.35, 31.97, 2.00)

5.91(4.06, 28.70, 2.10)
8.035.24, 30.72, 2.13)
8.29(5.68, 30.88, 1.83)

10.76(5.90, 32.90, 1.91) 4.50(7.66, 28.07, 1.51)

10.464.11, 31.55, 1.98) 6.994.91, 28.32, 1.63)

7.08(5.91, 30.48, 1.97)
5.856.62,29.62, 1.91)

2.038.63, 10.83, 1.00)
8.594.65, 32.75, 2.61)

11.983.36, 48.07, 7.03) 12.993.08, 49.30, 9.24)

8.70(5.78, 30.82, 1.64)
7.84(5.44, 30.27, 2.02)
7.455.42, 30.57, 2.32)

7.897.84, 30.57, 1.99)
7.635.18, 30.33, 1.95)
8.37(3.62, 30.76, 1.91)

6.88(5.77, 29.89, 1.91)
6.21(6.31, 30.58, 2.12)

1.06(7.62, 11.06, 1.01)
4.68(6.28,28.42, 2.01)

7.496.00, 29.91, 1.61)
5.42(5.24, 28.97, 2.00)
7.27(5.74, 29.90, 2.06)

6.87(7.67, 29.47, 1.89)
6.735.81, 29.43, 1.88)
6.54(3.50, 29.88, 1.83)

4.682.71, 28.09, 2.23)
3.253.99, 27.40, 1.95)
3.034.61, 26.96, 1.57)
1.40(6.50, 25.15, 1.30)

3.57(4.13, 25.93, 1.52)
2.90(4.60, 26.84, 1.69)
2.99(4.63, 27.93, 1.95)

0.80(6.25, 11.32, 1.03)
2.84(4.68, 26.77, 1.85)
5.322.43, 42.61, 4.25)

3.934.29, 27.36, 1.53)
3.20(4.10, 27.06, 1.78)
2.51(4.96, 26.28, 1.84)

3.395.68, 26.74, 1.73)
3.024.74, 26.59, 1.70)
3.132.94, 27.37, 1.68)
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Table7 Simulationresults(continued)

Test bed subset N

Average optimality gap (%hacklog¥ lost sals % differentiation ratio)

DLPBPC Resolved

RLPBPC Resolved

DBP@Resolved

All instances 9720

Avg. backlogging (%)

2.80(4.75, 25.99, 1.61) 2.80(4.63, 26.29, 1.60) 2.47(4.97, 26.11, 1.65)

(6.56, 4.17, 1.95)

(0.13, 0.21, 0.46)

(5.99, 4.14, 1.95)

(0.12, 0.22, 0.45)

(5.95, 4.33, 2.70)

(0.12, 0.19, 0.46)

(Cl.1, Cl.2, CL.3)
Avg. lost sale(%)
(Cl.1, Cl.2, CL.3)
Cv=1/3 2430
CV =5/6 2430
CVv =4/3 2430
Cv =11/6 2430

r=(100,90,80) 3240
r=(100,80,60) 3240
r=(100,70,40) 3240
sr=1% 3240
Sr = 24% 3240
sr =40% 3240
w = (1:2:3) 3240
w=(1:1:1) 3240
w = (3:2:1) 3240
b =0.05 3240
b=0.1 3240
b=0.2 3240

1.84(4.23, 25.36, 1.80)
2.77(5.00, 26.20, 1.70)
3.20(4.43, 26.04, 1.53)
3.555.35, 26.35, 1.42)

3.323.42, 26.00, 1.58)
2.56(5.10, 26.23, 1.63)
2.41(5.74, 25.73, 1.62)

1.97(6.53, 11.69, 1.07)
2.60(4.66, 25.73, 1.64)
3.61(3.07, 40.54, 3.32)

2.895.12, 25.71, 1.39)
2.81(4.65, 25.71, 1.58)
2.70(4.48, 26.54, 1.96)

2.596.22, 25.741.63)
2.75(4.68, 26.00, 1.63)
3.05(3.36, 26.22, 1.56)

2.20(3.39, 25.99, 1.92)
2.89(4.49, 26.70, 1.77)
3.28(4.51, 26.42, 1.47)
2.926.12, 26.07, 1.34)

3.08(3.78, 25.81, 1.49)
2.694.74, 26.52, 1.62)
2.595.37, 26.55, 1.71)

1.18(5.58, 12.04, 1.09)
2.92(5.23, 25.94, 1.63)
3.95(3.07, 40.90, 3.10)

2.85(5.09,26.10, 1.44)
2.80(4.18, 26.30, 1.66)
2.76(4.60, 26.49, 1.76)

2.71(6.05, 25.92, 1.63)
2.934.75, 26.26, 1.61)
2.76(3.08, 26.70, 1.57)

2.57(2.04, 26.81, 2.22)
2.07(3.42, 26.71, 1.91)
2.394.94, 25.96, 1.47)
2.899.48, 24.96, 1.25)

2.74(4.98, 25.08, 1.46)
2.39(4.98, 26.26, 1.65)
2.234.96, 26.99, 1.88)

1.025.85, 12.03, 1.09)
2.555.36, 26.02, 1.78)
3.51(3.71, 40.27, 3.10)

2.61(4.64, 26.38, 1.53)
2.61(4.64, 26.18, 1.71)
2.225.63, 25.77, 1.72)

2.64(6.59, 25.75, 1.66)
2.41(4.99, 26.06, 1.66)
2.353.34, 26.52, 1.61)
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From the first row inTable7, we see that without resolving, the performances of the
two static bidprice control models are close to each other (with an average optimality
of 7.96% for DLLBPC and 6.72% for RBPC) butare substantially worse than the
dynamic model (with an average optimality gap of 3.17%). For all the optimality gaps in
Table7, the 95% confidencentervals are within 1@ v

As expected, resolving the bpdice control models improwsthe performance. The
DLPbased bidprice model benefits most from reptimization with an average
optimality gap decrease from 7.96% to 2.808hile the dynamic bigbrice control
model benefits least with an average optimality gap decrease from 3.17% to 2.47%. This
is intuitive as the Dl-Pased model takes neither demand uncertainty nor system
dynamics into considation and thushas the highest potential for improvemer®n the
other hand, the dynamic bigrice model incorporates both factors the first instance
andtherefore resolving only leads to marginal improvement.

In fact with the relatively high resolving frequency of evdour periods, the
performances of b three bidprice control models are quite similar and are also very
close to the dynamic model without resolving. Considering the computational time, the
static models with resolving are even more efficient than the dynamic model without
resolving. Ther®re, one may conclude that for practical purpesemight be better to
adopt the static models and resolve them frequently than to use the dynamic model, as
the static models generate similar results and are more efficient to solve. However,
must benoted that in practice, very frequent reptimization is usually not feasible. For
instance, in the airline industry fealculation is normally executed overnight and during
the day there is n@pportunity for re-optimization. The situation ian MTS prodation
system is similar. In this case, the dynamic model which incorporates system dynamics
and generates a bigrice trajectory is much more appealing than the static models
which have constant bid prices. This is also the motivatoreveloping dynana bid
price control models (Adelman, 200Runnumkal& Topaloglu, 2010Topaloglu, 2009).

The simulation results also show that without frequent resolving, the DBPC model
performs much better than the DEBPC and REBPC modsl

As the SDP model providdset optimal solution tathe problem, the decisions (i.e.
the backlogging, lost sa@nd servicelevel behaviourreflected in the bracketed value
of Table7) made by the bigbrice control modelsare comparedto understand their
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differences inperformance. From the first three rows dfable7, we can see that the
three bidprice control models tend to behave quite simijawith frequent resolving
they not only generatea very close average optimality gap, but also have very similar
backlogging and lost sadehaviour Therefore, the resolvedersionsare treatedas
one model and the DEBPC Resolved mod& chosenas representative for the
following performance analysis.

Regarding lost sales, the SDP model has an avdomfjsales rate of 24.39%.
Considering different customer classeshdts the higheslost-sales ratefor Class 3 and
the lowest rate for Class 1, which shows clear class differentiation. If we further consider
its backloggindehaviour we can see that it backlogs much more for Gladgsand 2
than for Class 3. Thisehaviarr is reasonable because it is usually more profitable to
backlog an order from Classdie to its high revenu¢han to lose it, which leads to a
high backlogging rate for Class 1. For Class 3, it is the other way round: it is usually
better to keep the spply for future more profitable orders than to backlog it for Class 3.

Compared to the SDP model, the EBIPC model has a much higher averégst-
sales rate(30.55%). For Class 1, libst-sales rateis the same ashe SDPmodel, but it
losesmany more customers from the lower classes.g. for Class 3, it loses more than
half its customers. Due tthe very highlost-sales rateof Class 3, the DHBPC model has
the highest ratio between the average service levels of Class 1 and Class 3. This shows
that the DLFBPC model tends to owprotect Class 1 customers. Regarding backlogging,
the DLPBPC model backlogs more for each cldsss excessive backloggioghaviour
suggests that the DEBPC model might underestimate the value of the second supply
during the demandfulfilment process.| discuss this issue further in the sensitivity
analysis.

The RLIBPC model has a very simitehaviourpattern to the DLPBPC model but
performs slightly better. The averadest-sales rateis 29.55% and it has the saroest-
sales rateas the DLIBPC modefior Class 1 and Classtfut it losesather fewerClass 3
customers. Regarding backloggimgpacklogs a little more than the DIBPC model.
Compared to the SDP modele can see that the REFPC modeblso has the over
protection problem, buit isless severe thaim the DLPBPC model.

The DBPC model performs closesttiie SDPmodel of all three bidprice control
models without resolving. With an averadest-sales rateof 26.90%, it achieves the
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same service level for Class 1 and Class 2 as them&@¥ For Class 3, itsst-sales rate

is higher thann the SDPmodel but lower than boththe DLPBPC and REBPOmodels
Regarding backloggirtzehaviour its backlogging rate for each class is also lower than
both static models, i.e. the DPBC model achieves a higher service level with even less
backlogging, which suggests that by incorporatingnperal dynamics, the DBPC
provides a better estimation of bid prices than the static models.

The DLMBPC Resolved model perforingjuite a similarmanneras the DBPC model.
It achieves an even lowdost-sales rateof 25.99%. Compared to the static ipdce
models without resolving, the DIBPC Resolved modeksesmore Class 1 and Class 2
customers bufewer Class 3 customers, which leads to a lower differentiation ratio. This
means that this resolved versiorelievesthe overprotection problem to a certain
extent, which contributes to its better performance.

Figure5 shows the bieprice trajectories of the three models for different shortage

rates when the other parameters arfixed to their medium values (i.#.6 -hO
p mhxfp i pdpdp PA ).

The dynamic bigbrice trajectory shows a decreasing pattern in time and its shape is
the same as the optimal bookidgnit trajectory in Quante et al. (2009). The two curves,
represanting the bid price of ATP1 and ATP8, converge in period 7, because from period
8 on, the two supplies are the same, i.e. they are batkhand inventory and generate
the same profit for incoming orders. Towards the end of the planning horizon, the bid
price drops drastically. This is intuitive iiscan beassumel that after the planning
horizon, unsold inventory has no value at all.

For the two static models the bid prices abg definition constant and do not
change over time. FrorRigure5, we can see that whethe supply shortage rate is high
(sr = 40%), both bid prices generated by the static models are higher than 60, which
means Class 3 customers are always rejected. Comparduistothe dynamic model
performs more reasonably. Towards the end of the planning horizon, the bid price drops
below 60, i.e. Class 3 customers are acedm the last few periods. This makes sense
because at the end of the planning horizon, the chance to sell becomskgibthat
one should not miss any incoming orders if one stik mwventory on hand. From the
above analysisve can see that to improve performance, updating is necessary for the
static models.
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Compared to the R:EBPC and the DBPC malelhe DLFBPC model tends to
overestimate the bid prices whethe shortage rate is high and underestimate them
when the shortage rate is low. For example, whtre supply shortage rate is low (sr =
1%), the bid prices generated by the ERPPC model are 0, which makes the BEC
modelreduce to @ FCFS policy. This might explain its poor performandalie7. We
also note that inFigure5(a), the bid price of ATP1 coincides with the bid price of ATPS8.
This is because ithis example backlogging is relatively expensife (T@). The DLP
BPC model tends to avoid any backloggiwbich makes the problem in the second
supply interval geriods 8¢14) a copy of the problem in the first supply intervaeériods
1¢7). Therefore, the bigricesof the two supplies become the same.

Figure5 Bid-price trajectories (a) DLPBPC, (b) REBPC, (c) DBPC
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In summary, the following findingse derivedrom the performance comparison:

A

The bestperforming method, theDBPOnodel, achieves a close approximation
to the optimal SDP model (with an optimality gap of only 3.17% for the no
resolving version and 2.47% for the resolved version) with much lower
computational effort.

Without resolving,the DBPQOmodel provides a betterestimation of bid prices
and performs substantially better than the static models

TheDLPBPC and REBPQOnodels demonstratexcessive backloggitgghaviour
which suggests that they underestimate the value of second supply

All bid-price control model$end to overprotect the more profitable customers
Resolving improveshe performance of the models and theDLRBPCmodel
benefitsthe most

With resolvingthe performance o#ll three modelssvery close

4.4.2 Sensitivity Analysis

The secondpart of Table7 provides informationconcerningthe impact of different
design factors on the performance of eaftlfilment model. The customer arrival ratio
(w) and the backlogging cost proportion (b) turn out to have little impact on the
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performance of the modelandthusthey are omitted fromthe sensitivity analysis. The
coefficient of variation of the order size (CV), customer heterogeneity (r) and supply
shortage rate (sr) have a greater impact on the resulting optimality gap of each model
andtheir impactis discusseth what follows.

Coefficient of variation of order size (CV)

FromTable7 and Figure6, we can see a clear dependency between the optimality gaps
and the CV values.

Figure6 Average optimality gap for different CV values
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Coefficient of Variation

From Figure 6, we cawbserve the following: (13sthe CV value increases, the BLP
BPQOmodelshows a clear increasing trend in its average optimality ;g@pthe RLPBPC
model showshe same trend as CV increases from 0.33 to 1.33, but the optimality gap
drops surprisingly as CV increases to 1&} the DBPC model shows a decreasing
pattern in its average optimality gap as demand uncertainty increases. (4) When
demand dstribution is very lowd w 1@ @, the performance of all three bigrice
control models (without resolving) are close to each other. As demand variability
increases, the dynamic model performs substantially better than the two static models.
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(5) The DLBPC Resolved model shows same performance patterthe@®LPBPC
model, but performs much better.

The rapidly increasing optimality gap of the DIBPC model can potentially be
attributed to the fact that this model considers only the expected demand. As the CV
value increases, the bid pricgenerateddo not change because the expected demand
is constant. Therefag, this model ignores demand uncertainty totally, which makes its
lost sales percentage increase and its performance drop drastically as demand variability
increases. With resolving, the BBPCResolvedmodel performs much better because
actual demand igncorporated.

For the RLIBPC model, when demand uncertainty is low, its performance is close to
that of the DLPBPC model. This is intuitive as when CV is low, the randomly generated
demand is close to the mean, which makes the resulting average bidgiome tothat
of the DLPbased version. As CV increases, the-BR€ model performs better than the
DLPBPC model and when CV increases to 1.83, its optimality gap even decreases. This
might be because when demand uncertainty is high, the randomly gesetdgmand is
no longer close to the mean, but represents the real demand distributioa greater
extent Therefore, the R:BPC model generates a better estimation of the bid prices, i.e.
the randomization becomes more effective when demand uncertasmteally high.

As CV increases, the DBPC model increases backlogging and reduces class
differentiation. By doing so, it reduces the averdgst-sales rateas demand uncertainty
increases. Therefore, it®st-sales ratebecomesincreasinglyclose tothat of the SDP
model, which might explain the decreasing performance discrepancy between the two
models.

Customereterogeneity(r)

From Table7 and Figure7, we can observe that customer heterogeneity shows great
impact only on the DI-BPC modek-or the other models, there is no clear dependency
between the resulting average optimality gap and customer heterogeneitytheddL P
PBCmodel, the optimality gap decreases as the scale of customer heterogeneity
increases.
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Figure7 Average optimality gap for different customer heterogeneity
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Customer Heterogeneity

The SDPmodeQa Y I Ay Nibihcteédski? gustoing heterogeneity is to
increase the class differentiation, which is reflected in the increasing value of the ratio
between the average service levels of Class 1 and Class 3 (third value in parenthesis).
This reaction is reasonable because it is mioeaeficial to serve the more profitable
customers when heterogeneity is high. This increased class differentiation leads to an
increasen the lost-sales rate

However, the DLIBPC model keeps its differentiation ratio constant, which means it
does not reat to different heterogeneity levels at all and keeps opestecting the
more profitable customers. Frothe reaction in theSDPmodel,we know that this over
protectingbehaviouronly makes sense when customer heterogeneity is high. Therefore,
the optimdity gapin the DLPBPC model decreases as customer heterogeneity increases.

Supply shortage rate (sr)

Finally, we consider the impact of the degree of supply scarcity. Fabte7 and Figure
8, the following is apparent(1) supply scarcity has a huge impact on the performance of
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the bidprice control models, especially the two static modé® the performance of all

three bid-price control models shows a decreasing pattern as the shortage increases.

Figure8 Average optimality gap for different supplgcarcity
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The three proposed bigrice control models without resolving and the BBPC
Resolved model increase class differentiation as supply becomes scarcer. This is intuitive:
asthe modelsaimto keep the same service level for the higher classas, $epplys left
for the lower classes when shortage increases.

However, compared tdhe SDPmodel, 8 KA OK LINR GARS& (KS
parameter changes, the bigrice control models seem to overreact #® shortage
increase¢ when the shortage rate idow (i i
service level of Class1 and 3 is actually smaller thamthe SDRmodel, i.e. they do not
differentiate enough, but the increasm their ratios is much higher tham the SDP
model. For the bidprice contol models,when the shortagerate is middling or high

(i1 ¢t I P the higher the average service level ratio, the higher the

p B, the ratios between the average

correspondindost-sales rateand optimality gap, which shows that the kidice models

do indeed overreact toan increase irshortage and therefore their performance is

damaged
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Regarding backlogging, all four ipdce models decrease their backlogging
behaviourasa shortage increases. This is in line with their differentiatb@maviour as
class differentiation increaseshdé more profitable customers are better served.
Therefore, the necessity for backlogging decreases. For thd8BCHAmodel, we find that
its excessive backlogging mainly happens witlow shortage ratei(i p B. From
Figure5, we have already seen that withlow shortage ratei(i p B, the DLFBBPC
model underestimate the bid price of ATP8 as it is much lower than the estimation of
the other two models. But acally fromFigure8 we see that wherthe shortage rate is
low ( i p B, the performance othe DLPBPQOmodelis close tahat of the other bid
price control methodsThis shows that the excessive backlogdiegaviouris not the
main reason fothe DLRBPOmodelQ & LJ2 2 NJ LIS NF 2pxdettighOchavios K S
which leads to higlhost-sales rateis the main problem.

4.5 Summary

In this chapter] haveconsideed the demandfulfilment problem inMTSmanufacturing
where customers are differentiated into different segments based on their profitability.
After discussing the similarities and differences betw#endemandfulfiiment problem

and traditional network regnue management problems, three blice control models
have been developetb solve the problem, based on the idea of approximating the DP
formulausingsimpler mathematical programming.

The numerical study shows th#te DBPC modegsthe bestperforming method,
achieves a close approximation to the optimal SDP mdmlgl with much lower
computational effort. Vithout frequent resolving, theDBPOmodel provides a better
estimation of bid prices and performs substantially better than the static models.

With resolving, all bigbrice control model®xhibit similar performance. Howevett,
must be recognizethat frequent resolving is usually né¢asible in reality Therefore,
the DBPC modeglvhich generates clost-optimal results with tractable computational
time, seems to strike a reasonable balance between performance and computational
expense.
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Chapter V

Demand Fulfilment Models with a Rolling
Planning Horizon

5.1 Introduction

In the previous chaptershe demandfulfilment modelshave been considered in terms
of a finite planning horizon. This is mainly to make proposed models comparable to
the optimal exante SDP modgeWhich assuras a finite planning horizon. However, in
practice, unlike the airline industrin which one has a natural entb the planning
horizon ¢ the takeoff time ¢ production processes are usually -gning without a
specific termination time. Therefore, it is reasonable to extéimel demandfulfilment
models toencompass amfinite planning horizon.

However, modding and solving infinite horizon planning problens rather
complicated Hrst, forecasts foithe distant future tend to be less precise than for the
near future. Therefore, using a very long planning horizon might be of limited use or
even counterproductive. Second, the longer the planning horizon, thesnmformation
needs to be included, which increases the complexity of the model (Baker, 1977). Thus,
for reasons of efficiency and practicality, it is highly desirable to use models that simplify
infinite horizon problems and enable decision makers tovesaduch problems. One
common business practice is to solve infinite horizon problems on a rblhingon basis,
creating sequential overlapping finite horizon problemsvhichonly decisionselating
to the most immediate periods are implemented beforBet model is reaun. This
process limits dependerecon information concerningfuture events and provides a
natural solution to a business environment that entails thegming nature of activities
(Lian Liu, and Zhu2010).
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In the literature, rolling horizon planning is usegredominantly in production
planning. Figure 9 introduces the definition and basic concepts of rolling horizon
planning processes.

Figure9 lllustration of the rolling horizon planning environment
(Source:adopted from Narayanar& Robinson, 2010)
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In rolling horizon planning systems, a problem of a given temporal length (a finite
horizon problem) is solved using informatioagardinga certain number of future
periods (the planning horizon), but only the most immediate decisions are executed.
After apre-specified replanning period, the system roltsserto the next planning cycle
and the latest demand information is applied to update part of the previous schedule
which overlaps with the new plan. However, in each subsequent planning cycle,
decisions for the frozen interval are not subject to change, but decisions for the free
interval may be modified.

To summarize, the planning horizon length (PH) is the number of periods for which
the production schedule is developed in eachptanning cycle. The frozen interval (F)
covers the scheduled periods within the planning horizon forigvh decisions are
implemented in accordance with the original plan. Thel@nning periodicity (RP) is the
number of periods between successivepianning cycles. In a manufacturing resources
planning (MRP)system together with the lotsizing method us# these three
parameters are considered the main policy decision variables that determine the
effectiveness of rolling horizon planning systems (Salaryanan, and Robinsp2013).
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In the productionplanning context, the initial managerial objectiverofiing horizon
planning is to satisfy demand at a minimal cost by making the correct production
decisions (Seth& Sorger, 1991). Cost consists of fixed-getcosts andhe inventory
holding cost (Sahin et al., 2013). Baker (1977) develops a meastr&éal ¢ O2 & i S NNEP
which describes the percentage increase in total schedule cost when scheduling takes
place on a rolling basis in comparison with an optimal cost that would be achieved if all
data were available and known a priori. The second objectite minimize schedule
instability, which is measured by the average changeshe production schedule. A
stable schedule is one that does not change with time as new ai@added to the
planning horizon. General issues related to schedule instability aar®ng others, its
YyS3AtGAGS STFSOUL 2y 62N]JSNBQ gAffAy3aySaa G2
system costs associated with revising productioniget and excess inventory (Fil&o
Fernandes, 2009; Sahin et al., 2013).

In the demandfulfilment problemexamined hereschedule instability is not an issue
asno scheduleis maintained Therefore, in the next sectiohreviewthe literature that
examinethe impact of the policy decision variables on rolling horizon planning systems,
focusing on tle cost aspect. Athe lot-sizing rule is not of interestonly concentrate on
the other three variables, namely, the planning horizon length (PH), the frozen interval
(F) and the replanning periodicity (RP).

5.2 Literature Review

As mentioned in the pngous section, most literature on rolling horizon plannietates

to the production planning contextindeed, | amnot aware of any literature that
considers rolling horizon planning in a similar problem settinthaslemandfulfilment
problem examined m this study In what follows, | carry out a review ofa body of
literature which is categorized by the three policy decision variables that define the
implementation strategies for rolling horizon planning, focusing on their impact on the
cost performancef the resulting production schedule.
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5.2.1 The impact of planning horizon length

Panning horizon length is also often referred toths planning window (Quante, 2008).
The choice of planning horizon length is very importandesigning rolling horizon
strategies. Previoustudies(Baker, 1977; Bookbinde& | Qy 3 2 havelloanithat
cost error can be limited to 1% whehe planning horizon length is chosen propetiily.
should be notedhat the effectiveness of the planning hpon lengthalsodepends on
the type of demand governing the problehao& Lam, 1997Zhao& Lee, 1995

Assuming deterministic demand, Baker (19¢0nduckd the first experimental
study investigating the effect of planning horizon length on the effectess of rolling
schedulesThis determinedhat the planning horizon should be at leastlasg as the
natural time between orders (TBQhat is, the order cycle length that would be found
using an economic order quantity (EOQdrmula. As the natural aer cycle length
largely depends on the cost structure of a given problem, the cost structure is identified
as a major influence on the optimal planning horizon length (Cl8uKgajewski, 1984;
Simpson, 1999). Baker (1977) afand that the demand patten has a significant
impact on the effectiveness ad rolling schedule. Foa demand pattern without
seasonality, the best planning horizon is the natural order cycle (i.e. PH = TBO), while for
ademand pattern witha seasonal effect, the optimal plannimgngth is not the natural
order cycle, but dependleavilyon the seasonal cycle. His finding implies that more
information is not always better than less information, which is contradictory to what
people usually believe.

Carlson Beckman, and Krop{982) and Blackburn and Millen (1982) elaborate
Bakef §1977) experiment and study the effects of extending the planning horizon
under different demand patterns. The ressithow that an efficient planning horizon is
an integer multiple of the natuteorder cycle, i.e. PH = mTBO (m is a natural number),
and extending the planning horizon may increase total cost when the lengtheof
planning horizons not equalto an integer multiple othe natural order cycleln their
recent numerical study, Narapan and Robinson (2010) adegtthe conclusiorof the
previous studiegBaker 1977 Blackburn& Millen, 1982 Carlson et a.1982) and set
the planning horizon length to an integer multipletbé natural order cycle.
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There has been little studwf the impact of rolling horizon lengtlon stochastic
demand Sridharan and Berry (1990a) condectian ANOVA analysis aridund that
increasing the planning horizon under demand uncertainty increasesthetichedule
cost and instability. Using simulation technique, Zhao and Lee (1993) show that a
planning horizon of PH = 4TBO provides a better solution than PH = 8 TBO for stochastic
problems under almost any conditions. A potential explanation might be that under
stochastic demand, the decision maker forecabts demand and uses this forecast to
plan. The forecasting accuracy diminishes rapidly the furtimerthe future the
information liesas it is less reliable due tiemand uncertainty. Another disadvantage of
extendingthe planning horizon is that forecasyy informationwhich is further in the
future becomes increasingly expensivehe longer the horizonand involves a
significantly increased computational effort (Bardh&awande, Gavirneni, Mu, & Sethi
2013).

In summary, previous studies show that under deterministic demand, the planning
horizon length should be an integer multipletbe natural order cycle. Ithe stochastic
demand environment, extending the planning horizon may increase total cost.

5.2.2 The impact of a frozen interval

In general, a frozen interval is an interval at the beginning of a planning horizon during
which schedules are considered fixed to avoid the negative effects related to mxcess
schedule changes. By limiting the number ofestiie changes, freezing decisions in
certain periods can increase schedule stability and limit costs associated with
rescheduling. However, freezing tocany periods can result in an overall cost increase
due to higher changeover and inventory holding so@ridharanBerry, & Udayabhanu
1987). These costs occur because new informatmmcerningrozen periods is ignored.

In the literature, the frozen interval is normally expressed as a proportion of the
planning horizon, i.e. the freezing proportioni(Braran Berry, & Udayabhanul988). In
practice, decision makers have two ways to determine the freezing proportiorthee.
period-based and ordebased method. When the perioebased method is applied, the
freezing proportion is calculated as the numbef frozen periods divided by the
planning horizon length.In the orderbased method, the freezing proportion is
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calculated as the number of orders frozen divided by the number of order cycles in the
planning horizon (Zha& Lam, 1997). Thus, the freezipgoportion has a value ranging
from 0.00 to 1.00.

In a deterministic demand environment, earlier studies (Sridharan et al.,, 198BB
Sridharan& Laferge, 1990) have foundthat in a singldevel system, the cost error
ranges from 0.026% when the frozeamoportion equals 0.50 to 143.3% when the
proportion equals 1.00. That is to say, a small frozen proportion of up to 0.50 has a
relatively small effect on costahereasa frozen proportion of more than 0.50 results in
a substantial cost penalty. This inghaon cost is observed to increase rapidly beyond a
freezing proportion of 0.80 (Sridharan et al., 1987).

Zhao and Lee (1993, 1996) and Zhao and Lam (1997) consider the imphaet of
frozen proportion in multievel systems and come to the congllon that not all findings
derived fromthe singlelevel environment can be transferred directly to muével
problems. Unlike singlelevel systems, it is more advantageous to freezdarger
proportion in multtlevel systems. Here higher freezing prportion not only resulsin
lower schedule instability but also in lower schedule costs. Zhao and Lam (1997)
recommend a freezing proportion of 0.75 due to its better performance compared to
the other freezing proportiostested, i.e. 0.00, 0.25, 0.50 addd0. Zhao and Lee (1993)
even conclude that freezing the whole planning horizon is often the optimal strategy.

In the stochastic demand environmenstudies have reacheda consensus that a
longer frozen interval results in lower instability aadarger ost error (Sridharar&
Berry, 1990a; Sridhara& LaFroge, 1990, 1994; Xighag and Lee,2003). Xie et al.
(2003) simulatd the impact of freezing proportion under stochastic demand and
conclude that if a company wants to reduce total cost, the frozen proportion should be
set at 0.00.

5.2.3 The impact of re-planning periodicity (RP)

RPis also often referred to as fglanning frequencynddenotes the number of periods
between successive #i@lanning cycles. Thgreaterthe re-planning periodicity, the less
frequently replanning occurs anthe computational requirement is then reduce@n

the other hand, frequent rglanning increasethe computational burden but allows the
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decision maker to consider more reliable,-tqpdate data as they become availablieo
makethe best use of the newly available demand information, it is intuitivenetke the
frozen interval equal to the rplanning interval, i.eto adopt the new plan immediately
once it is made and therefore benefit from the updated demand information. However,
due to the stability consideration, the frozen interval production panningis usually
longer than the replanning interval.

In a deterministic demand environment, Chung and Krajewski4(19@died the
impact of replanning frequency antbund that the product cost structure is important
in deciding the appropriate Hplaming frequency. If the product cost structure is not
extreme, very frequent rgplanning is not necessary. Nathan and Venkataraman (1998)
foundthat the length of the planning horizon also haksrge impact on the choice of re
planning frequency. A higher q@anning frequency is found to increase total cost
exponentially for long planning horizons. Zhao and Lam (1997) observe that as re
planning frequency decreases, both schedule instabilitytardotal cost decrease. This
means that less frequent fplanning results in a better overall performance of the
production planning system. Moreover, Sridharan and Berry (1990b), Zhao and Lee
OMPppc 0T %KI2 FYR [Y O0mMdpdT 0)cdnolrfthatth8 pestl G I NI Y I
overall performance is achieved by choosing-plenning frequency equal to the frozen
interval, i.e. replanning takes place once the frozen interval has passed.

Assuming stochastic demand, LKrajewski, Leong, and Bent(994)cariied out a
comprehensive study on fglanning frequency. The resakhow that the choice of re
planning frequency is complex, depengon factors such as cost structure, the length
of the planning horizon and the frozen interyatc. In a singléeved system, Sridharan
and Berry (1990a) show that the positive impact of a lowplemning frequency
increases as the level of demand uncertainty increases. However, irlewdlisystems,
Sahin et al. (2013) indicate that low-péanning frequency signitimtly increases costs
and instability, making more frequent4m@anning preferableln a case study of a paint
company, Nathan and Venkataraman (1998) conclude that more frequent revisions
result in higher production and inventory co§arlson and Yano 486) and Yano and
Carlson (1985, 1987lso note that frequent rgolanning is undesirable under most
conditions. They find that it may be more economical to reschedule infrequently and
use safety stock to protect against demand uncertaihtypractice, Sain et al. (2013)
observe a tendencfor industry planners to rglan on a weekly basis.
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In a nutshell, previous research generally agrees tl@nh a cost perspectivan a
deterministic environment, too frequent rplanning may harm performance anbdat
the re-planning interval should equdhe frozen interval. Under stochastic demand, in
most conditions, the above conclusion still holds.

5.3 Numerical Study using a Rolling Planning Horizon

Thus far, in Chapters 3 and the performance of the different demanéulfilment
modelshas been tested under the assumption dfirgite planning horizon. However, an
algorithm that performs wellising dfinite planning horizon does not necessarily provide
similar performance in a raflg horizon environment. Therefore, in this section, the
performance of the following demanfiilfiment modelsis examined in the case of a
rolling planning horizon

>~

Firstcomefirst served (FCFS)

Deterministic linear programming (DLP) mo(eyr, 2009)
Sochastic dynamic programming (SDP) md@riante et al.2009)
Safety margin model_version 1 (SM_1)

Safety margin model_version 2 (SM_2)

DLPbased bidprice control (DLIBPC)

RLPbased bidprice control (RLIBPC)

Dynamic bieprice control (DBPC)

Globaloptimum (GOP)

> > > > > > D> D>

Similar to the rolling planning horizon systenthe production planning contexthe
rolling horizon approacheare definedas follows:

A There areoverlapping planning windowsf fixed length, within which all the
above models (except GOReat the demandfulfilment problem as a finite
planning horizon problem and do not do anypianning.

A During the frozen intervals, for the bjgtice control models, the bid prices are
fixed; for the two safety margin models, the safety margins (or thetgetion
levels) are fixed; for the DLP and SDP n®diEe allocated ATP quantities are
fixed.
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A In the free intervals, after rplanning, it is only necessaryto update the
corresponding bid prices, safety margins or allocated ATP quantities, which are
simply numbers in theAPS No real physical changes are involved. Therefore, as
mentioned before, instability is not an issuetive demandfulfilment problem.

A At the end of the total planning horizon, the lastpinning cycle might have a
shorter plannig window than the previous onex fixed length as it reaches the
end of the total planning horizon. Howeveas the total planning horizon is
rather long compared to a single planning window, this-efitiorizon problem
should have little impact on the evall results.

With a finite planning horizon, the SDP model generates timal exante
solution, but thiss not necessarily the case in a rolling horizon environment. Here again,
the resultderivedfrom GORs usedto normalize the results focomparison.Following
the same demand pattern as in Chapter I3define a test bed for the numerical
experiment in subsection 5.3.1 aataly® the simulation results in subsection 5.3.2.

5.3.1 Test bed

First,it is necessaryo define the policy design variables for the rolling horizon planning
strategy. According to the literature review, the best planning horizon length is an
integer multiple of the natural order cycle for a production planning problem (Baker,
1977; Blackbun & Millen, 1982;Carlson et al., 1982; Narayan& Robinson, 2010).
However, inthe demandfulfiiment problem considered hergthere is no such natural
order cycle. Therefore, we first fix the planning horizon length equal to the
replenishment cyclewhich inthis caseis the shortest reasonable horizon length. Later
the planning horizon lengthis extended to a larger integer multiple of the
replenishment cycle.

Regarding the frozen interval and-ptganning frequency, athe literature indicates
(Sridharan& Berry, 1990b; Venkatarama5 Q L (i NXHao&H.amp 1997Zhao& Lee,
1996), the best overall performance is achieved by choosing-plarening frequency
equal to the frozen interval. Therefore, the numerical studyre-planningis always
implementedat the end of the frozen interval. We set the freezing proportion at 0.50 to

77



V. Demand Fulfilment Models with a Rolling Planning Horizon

limit its impact on the overall performaec(Sridharan et al., 1987, 1988ridharan&
LaFroge, 1990).

Similar tothe numerical study for the filbe planning horizon case, we desite test
bed based on a full factorial design. Regarding the design factors, in the previous
numerical study we find that the customer arrival ratio and the backlogging cost
proportion have little influence on the penfmance of the models. Therefore, only the
other three factorsare considered herenamely the coefficient of variation of order size,
customer heterogeneity and supply shortage rafeable 8 summarizes the design
factors and fixed parameters for the numerical study.

Table8 Design factors and fixed parameters for the numerical stugligh arolling
planninghorizon

Name Value
Fixed parameters

Totalsimulationhorizon (Y 90
Planning horizon lengttplanning 14
window)

Replanningfrequency 7
Replenishment intearrival periods 14
Replenishment quantity™§f 100
Number of customer segments ) 3
Inventory holding cost@ 1
Backlogging cost proportion) 0.1
Customer arrival ratioX) pdpdp
Mean demand per order () 12

Design factors

Coefficient of variation of order sizé P ﬁ)_ hT— hvp_p

RO ()
Customer heterogeneitys} p mihw fp Th p Tthix tp nh p iyt ft
Supply shortage raté () Tk thP

As Table 8 indicates, we first fixthe planning horizon length equal to the
replenishment cyclewhich is 14 periods ithis setup. Later,this isextended to 28
periods to test its impact on the overall performance.
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The total number of all possible combinations for these design factars ist
o @ i.e. there are 36 scenarios. For each scenario, we again generate 30 different
demand profiles and run the casponding simulations for every polidy. total, this
giveso ¢ o 1t p Tt yinstances for each policy the numerical study.

5.3.2 Analysis of Results

5.3.2.1 Performance Comparison of Different Demand Fulfilment Models

Using the test bed, we obtain tr@mulated profits of all the ,080 instances for each of

the fulfilment strategies. Using a standard PC with a 3.2GHz Intel Core CPU and 32.00GB
memory, the average rutime for one simulation instance is summarized able9. The
run-time data show thatn terms ofefficiency, the DLP model, the safety margin models
and the two static bieprice control models are almost on the same level. The
computatonal effort required by the dynamic bjokice control model iiigher by a

factor of 40 than the other five models, bthis is still much less than the SDP mqdel

the run time of whichis higher than the efficienodelsby a factor of 3000

Table9 Runtime data

DLP SDP SM_1 SM_2 DLP_BPC RLPBPC DBPC

Run time

2.56 13581.25 4.98 4.74 3.26 491 149.18
(seconds)

By comparing the simulated profits of other strategies to the simulated profits of the
GOP model, we obtain the optimality gaps. We then calculate the average optimality
gap for all theabovementioned models over (i) all,d80 test instances and (ii) all
subsetsin whichone of the design factors is fixed to one of its admissible values. The
results are shown iffablel0. In addition tothe average optimality gap (shown in bold),
Table 10also shows the average backlog percentage (first value in parenthesis), the
average lost sales percentage (second value in parenthesis) and the ratio between the
average service levels of Class 1 and@<CBa(third value in parenthesis) of each strategy.
As complementary data, the second and third smt Table10 differentiate the average
backloggingpercentage and average lost saf@ercentage bycustomer for eachmodel.
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Tablel1l0 Simulation results

Test bed subset N

GOP

Average optimality gap (%hacklog?s lost sals % differentiation ratio)

FCFS

DLP

SDP

SM_1

Allinstances

1080

Avg. backlogging (%)
(Seg.1, Seg.2, Seq.3)

Avg. lost salg(%)

(Segq.1, Seg.2, Seg.3)

0.00(9.54, 17.72, 1.68)
(8.01, 9.66, 10.98)

(1.20, 10.36, 41.31)

9.81(0.00, 23.13, 1.00)
(0.00, 0.00, 0.00)

(22.94, 22.53, 22.95)

15.998.13, 24.57, 1.42)
(4.56, 7.73, 11.69)

(11.49, 22.06, 37.67)

4.18(12.77, 1965, 157)
(15.55, 13.2, 10.37)

(4.56, 1294, 39.13)

6.07(13.42, 21.04, 1.52)
(13.58, 13.90, 12.49)

(8.81, 13.30, 40.05)

Cv=1/3
CV =5/6
CV =4/3
CvVv =11/6

r = (100,90,80)
r = (100,80,60)
r = (100,70,40)

sr=1%
sr=24%
sr=40%

270
270
270
270

360
360
360

360
360
360

0.00(9.07, 17.76, 1.85)
0.00(9.38, 17.67, 1.75)
0.00(8.93, 17.21, 1.63)
0.00(10.79, 18.22, 1.53)

0.00(9.08, 18.25, 1.61)
0.00(9.49, 17.29, 1.67)
0.00(10.05, 17.60, 1.78)

0.00(10.27, 2.36, 1.06)
0.00(11.40, 16.18, 1.68)
0.00(6.96, 34.62, 4.25)

9.27(0.00, 22.26, 0.99)
9.36(0.00, 22.68, 1.01)
9.76(0.00, 22.40, 1.01)
10.940.00, 25.16, 0.99)

6.50(0.00, 23.88, 1.01)
9.650.00, 22.68, 0.99)
13.990.00, 22.82, 1.00)

7.76(0.00, 8.86, 0.99)
9.76(0.00, 22.55, 1.00)
11.360.00, 37.981.02)

11.81(10.20, 22.64, 1.61 3.24(15.36, 19.14, 1.77)

14.429.01, 23.65, 1.47)
17.266.88, 24.32, 1.36)
21.046.42, 27.67, 1.27)

14.708.21, 25.31, 1.42)
15.787.96, 24.16, 1.40)
17.768.21, 24.24, 1.44)

12.866.96,9.90, 1.08)

3.64(13.71, 19.65, 1.58)
4.631062, 1896, 1.39)
5.34(11.40, 20.85 1.90)

3.12(13.39 20.07, 1.33)
3.97(13.18 18.9Q 1.49)
5.6811.76 19.98 169)

2.759.07,5.00, 1.08)

17.80(11.27, 24.14, 1.37) 4.64(15.72,18.7Q 149)

16.636.15, 39.68, 2.32)

4.80(13.52 35.25, 2.60)

5.01(16.41, 19.74, 1.69)
5.76(14.38, 20.55, 1.58)
6.31(11.80, 20.59, 1.44)
7.36(11.08, 23.28, 1.40)

5.26(16.45, 20.66, 1.17)
5.86(13.44, 20.36, 1.54)
7.2910.37, 22.10, 2.02)

5.05(9.45, 6,52, 1.12)
6.44(15.82, 20.22, 1.54)
6.4915.00, 36.38, 2.55)
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Table 10 Simulatiomesults(continued)

Test bed subset N

Average optimality gap (%hacklogs lost sals % differentiation ratio)
SM_2 DLRBPC RLPBPC DBPC

All instances 1080

Avg. backlogging (%)

5.46(13.83, 20.47, 1.45) 6.80(16.76, 20.04, 1.42) 6.90(16.51, 20.20, 1.45) 6.4411.64, 20.95, 1.56)
(16.70, 14.57, 10.09)  (18.38,17.93,13.68)  (18.14, 17.62, 13.52)  (13.32, 12.07, 9.25)

(9.47,13.17,37.38)  (9.61,13.35,36.57)  (9.11,13.61,37.30)  (6.88, 14.82, 40.50)

(Cl.1, Cl.2, CL.3)

Avg. lost sale(%)
(CL1, Cl.2, CL.3)
Cv=1/3 270
CV =5/6 270
CVv=4/3 270
Cv =11/6 270

r=(100,90,80) 360
r=(100,80,60) 360
r = (100,70,40) 360

sr=1% 360
sr=24% 360
sr=40% 360

4.20(16.90, 19.11, 1.63) 5.16(19.77, 18.68, 1.62) 4.7517.93,19.11, 1.70) 5.12(10.98, 20.43, 1.82)
5.0914.97, 19.94, 1.51) 6.56(18.09, 19.59, 1.47) 6.44(17.01, 19.95, 1.53) 5.50(9.75, 20.75, 1.61)

5.7512.03, 20.07, 1.38) 6.9914.67, 19.65, 1.36) 7.50(15.40, 19.72, 1.36) 6.8212.09,20.26, 1.51)
6.97(11.41, 22.76, 1.32) 8.7214.49, 22.23, 1.27) 9.1915.72, 22.03, 1.25) 8.56(13.72, 22.35, 1.36)

5.26(16.78, 20.58, 1.15) 5.5216.56, 20.58, 1.26) 5.64(17.00, 20.61, 1.28) 5.17(11.71, 21.34, 1.43)
5.37(14.16, 19.84, 1.47) 6.71(16.34, 19.70, 1.46) 6.8816.24, 19.83, 1.47) 6.47(12.15, 20.41, 1.56)
5.7910.55, 20.99, 1.87) 8.4517.38, 19.83, 1.58) 8.44(16.31, 20.17, 1.62) 7.9511.05, 21.09, 1.73)

3.859.07,5.82, 1.09)  4.87(13.47, 4.70, 1.02) 5.07(12.83, 5.14, 1.05) 4.959.26, 6.04, 1.09)
5.80(16.48, 19.56, 1.46) 8.6322.40, 19.05, 1.35) 8.0920.92, 19.24, 1.40) 7.2513.82, 20.23, 1.57)
6.3315.93, 36.02, 2.39) 6.56(14.40, 36.36, 2.83) 7.16(15.80, 36.22, 2.75) 6.81(11.83, 36.57, 2.97)
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From the first row ofTable10, we see that the SDP model, although theoretically no
longer the optimal exante policy, still performs best with an average optimality gap of
4.18%,followed by SM_2 and SM_1 with an averagimality gap of 5.46% and 6.07%
respectively. The three bidrice control modelshow very close performance and the
dynamic version performs slightly better than the two static versions. The DLP model
performs much worse than the othemwith an optimality gap of 15.98 it is much
worse thaneventhe FCFS policyn summary,the main observations regarding the
overall performance are: (Ihe SDP model still performs bessinga rolling planning
horizon; (2)all the heuristicgproposedperform close to each other, with SM_2 standing
out a little.

Table 11compares the optimality gaps of all the modeisth a finite planning
horizon anda rolling planning horizon. For the three Bmlice control models, we use
the data of the resolved veion (with a replanning frequency offour periods) fromthe
finite planning case.

Table11 Comparison of optimality gap (%)

FCFS DLP SDP SM_1 SM_2 DLPBPC RLPBPC DBPC

Finite planning 755 884 396 5.45 457 6.64 6.65 6.33
horizon
Rolling planning 9.81 1598 4.18 6.07 5.46 6.80 6.90 6.44
horizon

Compared to the finite horizoncake FANR G 6S FAYR (KI G GKS
gap increases from 7.55% in the finite horizon case to 9.81% in the rolling horizon case.
As FCFS executes the same pdicyboth the finite and rolling planning horizan it
should generate the samabsdute performance. Its increased optimality gap in the
rolling haizon case then indicates thdhe GOP model works hetr with a rolling
planning horizon because it makes its decisions based on full informiatiche total
planning horizon.

From Table 11 we see that the DLP model performs much worgigh a rolling
planning horizonthe optimality gapbeing nearly double that ahe finite horizon case
The potential explanation is that as the DLP model needs frequeptarening to adjust
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its ATP allocation according to real consumption, a relatively leplaiening frequency

of sevenperiods results in poorperformance.To test this hypothesisan additional
simulaion is runfor the DLP model witla re-planning frequency obne period; this
results in a drop in theptimality gap to 8.65%, which is quite close to the finite horizon
case.However, the average rutime increases from 2.56 seconds €Seable9) to 7.37
seconds.

For theremainingmodels,the average performancevith arolling planning horizon
isonly a little worse thanwith the finite horizon. This might be due partto the fact
that the GOP itself is smarter now, whiatcreasesthe optimality gapsOverall, the
comparisonshows that the DLP is very sensitive tegptanning frequencywhereasfor
the other models it seemthat the impact of replanning frequency is limited.

| turn now to thelost sales percentage and backloggirgehaviourof the models
under different planning horizan Comparingrablel0, Table4 and Table7, we can see
that with a rolling planning horizorthe safety margin modeland the three bieprice
control modelshave a much higher backlogging percentdgg approximatelya factor
of 3) compared to the finite horizon casAt the same timethe corresponding lost sade
percentages decreas®ecause of these two opposimdfects the overall performance
of these modelsremains close to their performance in the finite horizon case. The DLP
model shows the same pattern, i.e. the backlogging percentage increases while the lost
sales rate decreases. However, compared to thehet models, the increase in
backloggingehaviouris not enough which leads to a higher lost salpercentage and
ultimately a bigger optimality gap.

Regardinghe clear increasen backloggindehaviourin all the modelsthe possible
reasors are twofold. First, in the finite horizon case, it is not possible to backlog in the
second half of the planning horizon, after the second replenishment is delivered.
However, in the rolling horizon case, backlogging is possible in almost any time period,
i.e. there is agreaterchance for the models to backlogor examplethe backlogging
percentage of the GOP model increases from 3.42% in the finite horizon case to 9.54%
in the rolling horizon case. Second, within each-planing cycle with two
replenishmats, e.g. period 8 to 21, with available supply in pesi8and 15, the model
osees only half of the demandor the second supplgycle(demand from period 15 to
21) and ignores the other half (demand from period 22 to 28) as the next supply arrives
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only in period 29. Therefore, the modeéthinkst that there is enough to backlodf. we
extend the planning horizon length to enable the mottefseet the full demandfor the
second supplgycle in principlethis problem disappearsThis hypothesiss testedin an
additional simulation which extends the planning horizon length to 28 peritus
results arediscused later in this section

From the second row ofablel0 we see that all models, except ftive DLPmodel,
backlog moreof the higher classes than the lower classes. This is reasonable as it is only
costeffective to backlog the more profitable di® YSNE ® | 26 SOSNE (1 KS
backloggingoehaviouris strange as it backlogs even more for the lower classes. The
possible explanation is that again, within each-ptanning cycle with two
replenishments, the modaiseeg only half of the demandor the second supplgycle
resulting insome of the ATP quantities from the second suppiy beingallocated.
According to the consumption rule of the DLP model, the unallocated ATP quantities can
be consumed by orders from any customer class. As thbama supply allocated to
Class 3 is very limited (especially whbe shortage rate is highthe DLPmodel uses
the unallocated ATP, which leads #ohigh backlogging percentage. Similar to the
excessive backloggingige, this problem might also disappeafwe extend the planning
horizon. Again, this hypothesisis tesed using the additionalsimulation with an
extended planningdporizonlength, the results of which are discussed later

To summarize, compared to the finite horizon casdes rolling planning horizon
seems to have naignificantimpact on the performance afhe models. For the DLP
model, the huge performance difference is mainly due to the differentplanning
frequency.

In the above analysid argue thata longer planning horizon can haa® impact on
the performance of demandulfilment models. In order to testhis hypothess, an
additional simulationis conducted irwhich the planning horizon lengtis extendecdto
28 periodswhile keegng all other parameters unchanged for the computationally
efficient models (namely, DLP, the safety margin models and the two statjribel
control models) In what follows | provide a detailedanalyss of the corresponding
results summarized imablel2.
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Tablel2 Simulationresults(planning window = 28)

Test bed subset N

Average optimality gap (%hacklogs lost sals % differentiation ratio)

DLP_ 28 SM_1 28

SM_2 28

DLRBPC_28 RLPBPC_28

All instances 1080
Avg. backlogging (%)
(Seg.1, Seg.2, Seq.3)
Avg.lost sales (%)

(Segq.1, Seg.2, Seg.3)

16.953.36, 25.15, 1.45) 9.224.00, 24.65, 2.07)
(1.77, 3.19, 4.86) (4.91, 451, 2.35)

(11.56, 22.20, 38.94)  (5.99, 12.54, 54.62)

4.34(8.36, 21.02, 1.46)
(12.49, 8.97, 3.55)

(9.66, 14.20, 38.21)

5.98(13.21, 19.75, 1.39) 5.11(11.52, 20.23, 1.44)
(16.23,14.03,9.22)  (14.48, 12.32, 7.61)

(9.91, 13.44,35.36)  (9.44, 13.54, 37.08)

Cv=1/3 270
CV =5/6 270
CV =4/3 270
Cv =11/6 270
r=(100,90,80) 360
r=(100,80,60) 360
r=(100,70,40) 360
sr=1% 360
sr=24% 360
sr = 40% 360

11.344.90, 22.53, 1.64) 9.04(3.62, 24.15, 2.47)
14.653.76, 23.98, 1.49) 9.383.84, 24.50, 2.19)
18.752.54, 25.15, 1.39) 9.21(3.77, 23.95, 1.93)
23.872.23, 28.94, 1.28) 9.254.76, 26.01, 1.79)

15.323.38, 25.87, 1.44) 3.496.56, 21.821.36)
16.783.41, 24.71, 1.43) 9.493.37, 24.20, 2.32)
19.10(3.28,24.87, 1.47) 15.862.07, 27.94, 3.21)

12.706.64, 9.21, 1.08) 11.732.72, 11.86, 1.37)
19.271.86, 25.87, 1.45) 9.81(4.40, 24.00, 2.18)
17.961.57, 40.37, 2.40) 6.824.87, 38.10, 4.15)

2.539.80, 19.54, 1.63)
3.86(8.52, 20.58, 1.50)
4.88(7.55, 20.57, 1.40)
6.357.60, 23.38, 1.34)

3.41(9.42, 21.20, 1.15)
4.549.01, 20.45, 1.48)
5.256.66, 21.40, 1.87)

4.11(5.70, 6.80, 1.10)

3.81(15.13, 18.40, 1.53) 3.2912.94, 18.84, 1.61)
5.1213.68, 19.36, 1.44) 4.3811.54, 19.84, 1.51)
6.17(11.24, 19.48, 1.34) 5.5510.22, 19.85, 1.37)
9.1312.79, 21.77, 1.27) 7.50(11.39, 22.39, 1.28)

4.8912.55, 20.35, 1.21) 3.9511.08, 20.75, 1.22)
5.88(12.72, 19.50, 1.45) 5.24(11.38, 19.92, 1.49)
7.40(14.37, 19.41, 1.56) 6.37(12.10, 20.02, 1.66)

6.94(15.85, 3.62, 1.01) 4.5511.85, 4.94, 1.04)

4.46(10.13, 20.08, 1.47) 6.40(15.37, 19.25, 1.33) 5.8214.13, 19.42, 1.39)
4.40(9.27, 36.18, 2.36) 4.888.41, 36.39, 2.69) 4.898.58,36.34, 2.75)
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From Table 12 we see thatin extending the planning horizon to 28 periods the
performance of SM_1 dropemarkably while SM_2evenperforms slightly betteand
thus the difference between them is greaterThe performance of the two static bid
price control modelss betweenthe two safety margin models and the DLP mastél
performs worst with an optimality gap of 16.95%.

As expected by extending the planning horizonn general, the backlogging
percertage of all models decreassharply as now the modetseet the full demandfor
the second supplgycle One might argue that although now the modéteet the full
demandfor the second supplgycle the same problem still exists for the third supply
cyde aswhen planning for periosl8 to 35,there arethree available supplies in perisd
8, 15 and29. For the third supply arrivirig period 29, the modelalsodse€ only half of
the demandfor this supply cycleHowever, ashe re-planning frequency is 7 periods,
is not usually necessartp use the thirdsupply for the first 7 periods, i.e. the allocation
decisions regarding the third supply are rodzen (not implemented. Therefore, the
problem regardingthe third supply des not affect the backlogginigehaviourof the
models.

When the planning horizon length is 14 periotlee two safety margin modelshow
nearly the same backlogging percentadéowever, &tending the planning horizon
length to 28 periods, SM_1 backlogs rhudess than SM_2, which leads haher lost
sales. The potentialexplanation for their differenbehaviouris that when the planning
horizon length is 14 periods, as the modase only half of the demandor the second
& dzLJLJ @ T {OrR Rizy deRedtdtSMSI is not severe. When the planning horizon
length is 28 periodsSM_1 has not onlgd R 2 dgb d2y (prbbfed but evenad i NA LI S
O2dzy G Ay 3¢ | fadedmrape @hedcodsilering the orders that arrive before the
second supply, comparea tSM_2, SM_1 allocates more second supply to the future
customers, which significantly limits the backlogging possibility for the current order. In
ISYSNI > RdzSO20d2y (i K ¢ & & NRpSXeds The futare highe2 @S NJ
classes, which can als@ Iseenin the third row of Table12, and therefore performs
much worse than SM_2. The above analysis shows that SM_1 is sensitive to the choice
of parameters of the rolling planning schemehich determine how much future
demand is seen or not seen by the models.
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Based on the above analysis, we can draw a general conclosimerningSM_1:
the longer the planning horizon, the worse SM_1 perforfisee reason for this is that
RdzS G2 002 dzf R 2 yzate Sosgér Folriings horizorinduces SM_1 to
reserve moresupplyfor the higher classes until it reaches a patwhichthe holding
cost prevents it reserving furtheThus in order to make se of this method, the
planning horizorshould be kepshort.

Regarding the strange backiypggbehaviourof the DLP modebn the one handwe
see thatby extending the planning horizon to 28 periods, the magl@wsmuch less
backlogging for the lowerlasses. On the other hand, thcklogging percentage is still
greater for thelower classes thaffor the higherclasses This is because, although for
the second supplgyclethe modeldseeg the full demand, for the thirctycleit csees
only half of the demand. As a deterministic model, the DhBdel allocatesover the
whole planning window for this window when expected demand is less than the
available supply, there may still be unallocated ATP quantities in the second supply,
which leads tdacklogjing for the lower classeslhus,based on the above analysise
can see that similar to SM_1, the DLP model is also sensitive to the choice of parameters
in the rolling planning scheme.

5.3.2.2 Sensitivity Analysis

The second part offable 10 provides information on the impact of different design
factors on the performance of eadulfilment model. In what follows| discuss the
impact of the coefficient of variation of the ordsize (CV), customer heterogeneity (r)
and supply shortage rate (sr).

FromTablel0andFigures 10 to 1,2we can see that the impact of the design tast
with arolling planning horizon is quite consistent with the impacthe finite horizon
case.As the CV value increases, all strategies show an increasing trend in their average
optimality gapsDemand uncertainty has greatest impact on the DLP maatethe CV
value increasesthe optimality gap increases sharphAs the scale of customer
heterogeneity increases, the performance of all strategies decreases and FCFS is most
affected by increasing heterogeneitfzor most of the models, the impact dhe
shortage rate is not monotonic. They perform worst for an intermediate shortage rate
of 24%. The performance of SM_2 shows a decreasing pattern as the shortage increases.
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From the overall picture, with the smallest optimality gap, the SDP model still
performs best among all the other methodbut it is also computationallthe most
expensive. ie DLP model performs worst. The performance of all the proposed models
is close and SM_2 delivers the closest approximation to the SDP model.

Figurel0 Average optimality gap for different CV values
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Figurell Average optimality gap for different customer heterogeneity
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Figurel2 Average optimality gap for different supply scarcity
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5.4 Summary

So far, rolling horizon planning has not gained much attention in the revenue
management reseah community, largely becausein the current majorarea of
application, i.e. servicendusties there tends to bea natural endto the planning
horizon, e.g. the takeff time in the case ofairlines. However, as explained in the
introduction to this chaper, rolling horizon planning is common practice
manufacturing industriesand therefore it is necessary to extend the revenue
management models to adapt to rolling horizon planning.

In this chapter each replanning cyclenas simply been treateds a finite planning
horizon problem and the corresponding moddiave been implementeds if they
related to a finite planning horizonThe numerical results show thatith a rolling
planning horizon, revenue management approaches still make sensal axf the
proposedmodelssignificantlyoutperform the simple FCFS polid9f all these the SDP
model is still the besperforming modelwith a rolling planning horizon, although
theoretically it is no longer the optimal ente policy. As expected, scalabilitysisl the
main problemwith the SDP model. All the other demahdfilment modelsconsidered
are much more efficient than the SDP model, especially the DLP model, the safety
margin models and the two static btice control models.

However, SM_1 is semise to the choice of parameters the rolling planning
scheme determining how much future demand is seen or not seen by the models. The
DLP model has the same problem and is also sensitive to the choiceptEnreng
frequency. For the other modelthere is no indicatiothat the choice of parametenas
a significant impact on performanceOf these models SM_2 provides the closest
approximation to the SDP model and therefore ltamsiderablepotential for practical
application.

In general, for manufaaring industries, rolling horizon planning resembles reality
better than finite horizon planningnd this study shows that themodels proposd
generatesimilar resultsusingrolling horizon plannings for finite horizon planning. In
other words, the conlasions drawa in the finite case are still valid in the rolling horizon
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case. Therefore, wean conclude thatthe models proposeé can be usedn rolling
horizon planning.
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Chapter VI

Conclusion

In this thesis revenue management approachdsave keen appliedto demand
fulfilment problems ina maketo-stock manufacturing(MTS) system. The topic is
motivated by the demandulfilment task pertinent to the advancedplanning systems
(APS) used todayn whichthe decision maker has to decide how to alite the limited
availableto-promise(ATP)juantities to different cumer classes to maximizeggits.

In APS the ATPquantities are derived from miterm master planning and cannot be
changed in the short term. This resembles the traditional reveanaeagement problem,
in which a fixed amount of perishable assat sold to multiple customer classes to
maximiz revenue. However, the difference is that tAd Pquantities are not perishable
and can be replenished at certain timeeherefore the objective here is no longer to
maximize revenue, but the overall profit, taking into accoth# inventory holding cost
and backlogging cost.

In Chapter 2the exact problem settings defined an MTS manufacturer is facing
stochastic demand from heterogeneouastomers.To maximize the expected profit,
the manufacturer has to decide whether to satisfach arriving orderfrom stock,
backorder it at a penalty cost, or reject it in anticipation of more profitable future orders.
The replenishments are exogenousktermined and the manufacturer needs to take
into account not only sales revenues, but also inventory holding costs andobdek
penalties.Acommon mathematical modés$ then set up to studthis demandulfilment
problem. Two existing modelsire revisied, namely a stochastic dynamic programming
(SDP)model (Quante et al.2009) and a deterministic linear programmi(@LP)model
(Meyr, 2009). TheSDPmodel provides the optimal eante policy for the demand
fulfilment model, but due to its high computatnal effort, it is scarcelyapplicable in
reaklife practice. ThddLPmodel, on the other hand, is efficient to solve. However, as it
ignores demand uncertainty, the solution is usually suboptinia.overcome the
limitations of the two existing models, e approachesare developedn the following
chapters of the thesis.
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To incorporate demand uncertainty into tHeLPmodel, | borrow the safety stock

idea from inventory management. In Chapter I3develop two versions o safety
margin model which reservecertain stock ad safiety margia for more profitable
customers. Following the twievel planning procedure of APS, in the allocation planning
level,l use the idea othe expected marginal seat revenue (EMSR) heuristic to calculate
safety marginsHowewer, EMSR deals with only one single resource and asstiraes
low-revenue demand arrives before higavenue demand. These assumptions are not
valid inthe MTS setting. Therefore, to make use of the EMS#®nsider the multiple
ATP supplies separately amank customers according to thearrival date and unit
revenue. h the calculation] ensurethat only the future higher classes are protected.
Finally, the safety margingbtained are used to calculate the corresponding booking
limits, which are used ithe order promising level. The difference between the two
versions othe safety margin model is that when calculating safety margins using EMSR,
SM_1 takes all future demand into consideratiorhereasSM_2 only considers future
demand that arrive before the next ATPupply. Due to the fact that theafety margin
calculation is independent of the real consumption of the ATP quantities, it is not
necessary for the safety margin models to repeat the allocation planning steps before
each order processingd numerical study shows that the safety margin models are
computationally efficient andmprovesubstantially orthe performance of thgoure DLP
model. Theyeven performvery close tolevel ofthe SDPmodel. The safety margin
models contribute to linkag the traditional inventory/supply chain management world
to the emerging revenue management world. The main limitation of the safety margin
models is thaasthe different supplies are considered separatiglythe allocation stage,
0§ KSNBE A& d R»fdhe deésnand afdiayg Highef SlassesIM_1, which makes
the model overprotect the more valuable customerdn contrasf there may be
insufficient protection for the higher classes3$M_2 as only a fraction of the demaisd
considered Therefore,in future researchit would be worth considering different
approaches to calculate the safety margins.

To overcome the computational intractability of tf&DPmodel, in Chapter 4 bid
price controlis usedto appraximate it. The basic ide& to approximate dynami
programming (DP)usingan efficient mathematical programming formulation, e.g. linear
programming(LP) and solve the dual problem to obtain the shadow psieehich are
then consideredid prices (Bertsima& Popescu, 2003). In the literature review seat
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of Chapter 4, first the similarities and differences betwettie demand fulfilment
problem and traditional netwrk revenue management problemare compared
Building on the insigstfrom this comparisonthree bidprice control modelsre then
developal. For the DLibased bidprice control model and the Rifased bidprice
control model, the ideasre the sameto discard the primal solutionsf the original
model (Meyr, 2009; Quante, 2008) and calculate the corresponding bid prices based on
the associted dual prices. For the dynamic kpdice control model, follomg Adelman
(2007) an affine functional approximatiors madeto the value function of theSDP
model. What makeghe dynamic model differenfrom AdelmarQ @007)modelis that
unlike in theairline casejt is necessaryo decide not only whether to satisfy a given
order or not, but also which supply to use and hawch of each supply to useAs
reflected inthe modeling, the decision variable is no longer a binary variable indicating
whether or not to accept a certain order, but an integer vector denoting different ATP
guantities used to satisfy the incoming orde3olving the dual problem of theP
formulation of the approximated DRodel using column generation, we obtain a time
trajectory of bid prices all at once. Following the same numerical study framewark as
Chapter 3, the performance of the three proposed-piite control modelss compared

As the bes{performing bidprice control model, the dynamic model provides a close
approxmation to the SDP model with much lower computational effort. Without
frequent resolving, it performs substantially better than theot static models with
resolving, all three models generate similar performan€ne limitation of the
proposed dynamic maal is that it captures onlthe temporal dynamics oflemand but
ignores the impact of remaining capacity. Therefore, for future research, it is worth
considering dynamic models that generate both thwiependent and capacity
dependent bid prices.

Finally, m Chapter 5Sthe analysisis extendedto rolling horizon planning athis is
common practice in manufacturingpdustries Asthis study isthe first step towards
applying revenue management in rolling horizon planning, eagsiaeening cycle of the
rolling horizon systenis simply treatedas a finite planning horizon problem aagpled
to the variousdemandfulfiiment models. Based on literature that studies the impact of
different policy decision variableghich define the implementation strategies for tiwig
horizon planning,the rolling planning schemeare fixedand a series of numerical
studiesare conductedto analy® the performance othe demand fulfilment models
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with arolling planning horizon. The results show theting arolling planning horizon

the revenue management idea still makes sense abhalnodels, except the DLP model,
generatemuch better performance than the FCFS policy. The SDP model still provides
the best solutionwith a rolling planning horizon, although theoretically it is lomger

the optimal exante policy. However, as in the finite case, it is too expensive
computationallyto apply SDP in practice. The choice of the policy decision variables
(planning horizon length, frozen interval and-pkanning frequency) does havan
impact on the performance of models. Amotige demandfulfilment models, we find

that the DLANodeland SM_1 ar¢he mostsensitive Of all the efficient methods, SM_2
provides the closest performance to the SDP model apdears to be robust with
respect b the parameter choice of the rolling horizon system. Therefore, cam
conclude that it has high potential for practical applicatidhe main limitatios of the
numerical studyare that the re-planning frequencys not changedor all models and
only two levels of planning horizon lengtire consideredin future research,tiwould

be worth conducting a more comprehensive numerical stufty examplebased ona

full factorial design, tanaly® the detailed impact of the policy decision variables on
the performance of different models.

Based on revenue management &de this thesiexamines thedevelopment of new
models thatovercome the limitations of twe@xistingoptimization models for demand
fulfilment in an MTS manufacturing system. Age common matlematical model is
basal on the planning framework &AP$the models proposed cagasilybe adapted to
current APS practiceThe main limitation of this thesis is that in the common
mathematical modelit is assumel that the order due datas equal to theorder arrival
date. Forfuture research, itwould beinteresting to extend the proposed models to
include different customer dudates and se¢he impact on the overall performance of
the models.

Another interesting future research directionvould be to apply revenue
management approaches t@an assemblgo-order (ATO)manufacturing system.
Nowadays, as mass customizatisnbeconing increasinglypopular, many companies
are shifting from an MTS system to an ATO system. Thereforgyoitld be worth
extendingthesemodels toan ATO system. Unlike anMTS system, in an ATO system,
one has to allocate both components and assembly capaslhereascomponents are
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storable and can be replenished, assembly capacity is perishable. This hybrid feature
makes revenuenanagement application ian ATO systeneven morechallenging.
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