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1. Introduction

My dissertation investigates commonly used testing and estimation procedures and extends
these by taking into account more heterogeneity. In chapter 2, me and my co-author Andreas
Dzemski provide a new overidenti�cation test that allows for essential heterogeneity. In chapter
3, I prove weak consistency up to a measure preserving transformation for maximum-likelihood
estimation of unobserved latent positions in a Euclidean space just based on observable in-
formation of the agent's linking behavior. In chapter 4, I propose a new measure of centrality
which exploits the latent space structure and identi�es agents who connect clusters.

Chapter 2 is mainly focusing on introducing a novel testing procedure which examines the
validity of an instrument. In particular, our test allows the agent's outcome to vary with an
unobserved variable which also in�uences the agent's choice of selecting into treatment. This
is sometimes referred to as selection on gains in the literature. Taking an example where the
outcome is achieving a high school diploma, one might be interested in the direct e�ect of a
female teenager having a baby during high school on the completion probability. In contrast
to the Sargent or Hansen test, we can tolerate teenagers who are less likely to �nish school to
be more likely to become pregnant. Furthermore, we do not have to assume that this e�ect is
equal across all individuals (or follows a pre-speci�ed parametric form). In chapter 2, we will
explicitly discuss this example and use our testing procedure with two instruments which are
commonly used in the Economics of health literature.

Chapters 3 and 4 are concerned with networks analysis. In this work, networks are going to be
an environment where actors link to each other. A typical data set contains information about
which actor is linked to whom. To have an example in mind, one can think of friendships as
links between individuals. I assume that actors are more likely to link if they share similar
unobserved characteristics which can be summarized by a position in a latent Euclidean space.
In chapter 3, I show that maximum likelihood Estimation of these positions has the desira-
ble asymptotic property of weak consistency up to a distance preserving transformation. A
similar asymptotic feature has been shown for stochastic block models. In block models, the
probability of the formation of a link between two nodes depends on their a�liation to blocks.
One either needs very restrictive conditions about pre-knowledge of the estimator or a �nite
number of blocks for the asymptotic results to hold. Assuming a small number of blocks means
that many agents have the same linking behavior. The latent space model allows for much
more heterogeneity among the agents. The approach of estimating positions in a latent space
is further exploited to provide a new measure of centrality in chapter 4. A cluster is a group
of actors who share similar unobserved characteristics which makes them very likely to link.
Many other measures of centrality have been introduced. Their aim is to understand how fast
information �ows through a network depending on which actor got a message �rst or which
actor is informed relatively fast independent of who spreads a rumor. Due to their de�nition
of centrality, these measures usually fail to identify agents that are between clusters. They are
likely to denote an agent that is within a cluster to be �central�. The new measure is novel
in the sense that it introduces a way to identify agents who connect clusters. Identifying an
agent who is located between clusters is interesting in various settings. For example one might
be interested in �nding a mediator between opposing groups or detecting an intermediary
between markets. This issue is further discussed in simulations in chapter 4. The new measure
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uses a preliminary estimation step that makes it possible to identify which agents belong to
which cluster. One can then easily identify the node which is closest to the midpoint between
these clusters. In chapter 4, I show that my measure also has an asymptotic justi�cation.

In the following two sub-chapters, I will give a short review of the literature on testing in
a framework with essential heterogeneity and of recent developments in the literature about
networks.

1.1. Testing in a framework with essential heterogeneity

In their seminal papers, Imbens and Angrist 1994 and Angrist, Imbens, and Rubin 1996 stress
that it is possible to identify a treatment e�ect for individuals whose binary treatment status
is shifted by a change of a binary instrument. In their model, individuals are allowed to select
into treatment based on unobserved di�ering gains. Therefore, a rejection of the Hansen test
can not necessarily be interpreted as an indicator of an invalid instrument. Under the assump-
tion of a constant direct e�ect of the treatment on the outcome, the Hansen test is equivalent
to a test that compares the direct e�ects estimated by two di�erent instruments. Accordin-
gly, a rejection of the Hansen test can also be interpreted as a denial of the assumption of a
constant direct e�ect (see Heckman, Schmierer, and Urzua 2010). There are only a few instru-
ment tests that can be used in a framework as in Imbens and Angrist 1994. Balke and Pearl
1997 identify bounds on the outcome distribution of always-takers and never-takers. Kitagawa
2013 extends their assumptions to a setting with continuous outcomes and uses the bounds
to develop a speci�cation test for instrument validity. Under the assumption of no de�ers, the
bounds indicate that for each level of outcome, there are more individuals which do not select
into treatment when the instrument is switched o� than there are when the instrument is
switched on. This is intuitive, because the �rst subpopulation should contain always-takers as
well as compliers, whereas the latter only contains always-takers. A corresponding bound is
provided for the never-takers. He uses a variance-weighted Kolmogorov-Smirnov test statistic.
To calculate critical values, he relies on a bootstrap algorithm. A similar path is taken by
Huber and Mellace 2014, who look at the corresponding moment inequalities. Therefore, they
take into account a subset of the testable implications Kitagawa 2013 investigates. They pro-
pose additional bootstrap algorithms to take into account that they look at multiple moment
conditions and do not want to get too conservative critical values. A further similar test was
introduced by Mouri�é and Wan 2014 who use an inference strategy based on Chernozhu-
kov, Lee, and Rosen 2013. A di�erent approach was suggested by Fernandez-Val and Angrist
2013. They assume that the heterogeneity of the direct treatment e�ect can be fully described
by observables. To test instruments across di�erent complier populations, they reweight the
corresponding LATEs by a factor which depends on observable characteristics. In contrast to
this assumption, we will explicitly model an unobservable variable which may directly in�u-
ence outcome and the selection into treatment. We augment a standard model by assuming
that both a binary and a continuous instrument are available. Under treatment monotonicity
a parameter which is closely related to the marginal treatment e�ect is overidenti�ed. We
suggest a test statistic and characterize its asymptotic distribution and behavior under local
alternatives. In simulations, we investigate the validity and a �nite sample performance of a
wild bootstrap procedure.
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1.2. Networks

There is a rapidly growing branch of literature on networks in various �elds of economics.
This section will mostly relate to econometric questions and point out some of the answers
which were given in the past. There is a huge amount of literature which investigates the issue
of estimating e�ects of an exogenously given network. The literature on peer e�ects identi�es
the e�ects of the membership to a particular peer-group. Papers on social e�ects take a more
complex view into the networks and try to relate the outcomes of the direct neighbors to the
outcomes of an individual. Contrarily to that, my focus in this paragraph is on the formation
of one particular network. For overviews of the above literatures see Blume et al. 2010 and
Advani and Malde 2014. The econometric literature on network formation can be roughly
divided into two strings: papers which are concerned with strategic network formation and
papers which do not assume that link formation has a strategic motivation, but is rather
mostly driven by homophily.

In the former, authors emphasize the game theoretic structure agents are confronted with.
They assume that the observed network is an equilibrium outcome of a game, where agents
form links to increase their utility. Therefore, the observed links allow the econometrican
to identify factors which drive the particular outcome. The approaches used substantially
di�er in the games and the equilibrium concepts which are assumed to be in the background.
Despite the economically desirable strategic idea of this literature, it is di�cult to capture
all possible strategies. Thus, all current models rely on meeting processes or �nite preference-
types assumptions which are unrealistic in reality. Christakis et al. 2010 and Mele 2013 made
�rst approaches to introduce estimateable models. They use a meeting process which forms the
network. An assumption that agents only care about the current state when they meet makes
it possible to characterize the network formation process as a Markov process. By assuming
some symmetries in preferences, Mele 2013 is able to summarize the incentives for any player
at any state by a potential function which simpli�es the analysis. At the local maxima of the
potential function the network is in a Nash-equilibrium. By further assumptions on the meeting
process and the idiosyncratic shocks, he can pin down a unique stationary distribution. This
distribution serves as a likelihood function and helps to estimate the structural parameters
by an approximate version of the exchange algorithm. Paula, Richards-Shubik, and Tamer
2014 set identify structural parameters which drive the network preferences of an agent. They
assume that in a pairwise stable network, each agent only cares about a �nite number of agents
(bounded number of friends and bounded length of indirect links) who are only characterized
by a particular network type. This allows them to derive restrictions for the share of these
agent types in each preference class (i.e. the set of agents who other agents would bene�t from
having a link to). Based on these restrictions on allocation parameters, they conclude which
structural parameters are feasible.

The second string of literature does not assume the complex game-theoretic background. Neit-
her does it try to identify structural preference parameters.Yet, authors want to explain which
actors are more likely to form a link without immediately bene�ting from it. An early model
is the so called Erdös-Rényi-Gilbert model which either assumes a �xed number of actors who
all have the same probability of forming a link or a �xed number of edges where the edge
positions are unknown. This literature goes back to the 1950s and was mostly concerned with
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the number and size of components that result from a particular �xed probability for each link.
A substantial step was made by the introduction of the p1-Model by Holland and Leinhardt
1977. This model examines directed networks (edges between nodes have a direction) and con-
tains several parameters which in�uence the probability of a particular link. These are a base
edge probability, an individual speci�c e�ect for incoming and outgoing edges and a mutuality
e�ect for each speci�c link. Without further assumptions, this model can not be identi�ed.
Therefore, several approaches have been made to make maximum-likelihood estimates iden-
ti�able. Nevertheless, most of these models lack of consistency results. A more global view
on networks was proposed by Frank and Strauss 1986. Instead of modeling the probability
of each edge between two actors, their approach deals with the likelihood that a particular
network as a whole exists. They try to estimate parameters for particular forms like edges,
k-stars or triangles which show up in a network. This model is named Exponential Random
Graph Model (ERGM), because of an exponential family assumption for the underlying pro-
bability model. A generalization which does not explicitly rely on the above forms, but which
allows for arbitrary statistics was introduced by Wasserman and Pattison 1996. This model
is also referred to as the p∗-model. It was recently pointed out that many ERGMs become
asymptotically equivalent to Erdös-Renyi graphs (see Chatterjee, Diaconis, et al. 2013 and
Shalizi, Rinaldo, et al. 2013). Furthermore, Shalizi, Rinaldo, et al. 2013 reveal that ERGMs
su�er from the fact that the estimated parameters from a subnetwork do not coincide with
those of the whole network if the model contains more complex forms than dyads(edges).

A current standard model for asymptotic results is the stochastic block model (Lorrain and
White 1971, Fienberg and Wasserman 1981). The idea of the model is that several actors can
be sorted into blocks. The probability of a link does not depend on the involved individuals, but
solely on their a�liation to the particular blocks. In recent years, starting with a paper of Bickel
and Chen 2009, more and more authors have started investigating the asymptotic behavior of
these models. Besides a discussion about identi�ability, Bickel and Chen 2009 prove consistency
results for maximum likelihood estimation of the block a�liation as well as other methods
(Girvan modularity methods). Amini et al. 2013 introduce a pseudo-likelihood algorithm which
ignores the dependency structure of an undirected network. Consistency results rely on the
assumption that the network is su�ciently sparse. The degree of an agent is the expected
number his outgoing edges. Zhao, Levina, and Zhu 2012 add additional parameters which
account for di�erent degrees. This is referred to as the degree-corrected stochastic block model.
By using the same prove method as Bickel and Chen 2009, they are able to prove consistency
as well. Another path to enrich block models with more heterogeneity was taken by Airoldi
et al. 2009. In their model, the authors let actors take on di�erent block a�liations in each
interaction. These memberships are drawn from a Dirichlet distribution. All of the above
papers on block models rely on the assumption that there are �nitely many blocks. A �rst
asymptotic result for a growing number of blocks was proven by Choi, Wolfe, and Airoldi 2012.
Yet, their result is only informative if a majority of actors is known to be sorted correctly. In
block models, parameters besides the community labels of the agents are unknown. Bickel et
al. 2013 show consistency and asymptotic normality of maximum likelihood estimation of the
parameters which identify the probabilities of the formation of a link depending on the block
a�liation and the expected share of members from each block in the whole population.

Besides maximum likelihood estimation, other natural ways to detect block-memberships are
clustering methods. A �rst consistency result in a quite restrictive framework was proven by
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Snijders and Nowicki 1997. They assume two blocks and that nodes in one of the two blocks
have a higher expected degree. Therefore, they introduce a method which sorts the blocks
based on their realized degree and prove its consistency. Nowicki and Snijders 2001 discuss
less restrictive conditions without giving consistency results. Rohe, Chatterjee, Yu, et al. 2011
show consistency for spectral clustering and allow for an increasing number of blocks. Spectral
clustering uses the eigenvectors of the largest eigenvalues of the normalized graph Laplacian
and then sorts the nodes by k-means. To approximate the normalized Laplacian, Rohe, Chat-
terjee, Yu, et al. 2011 need to make very restrictive assumptions on the expected degree of
each node. Therefore, their results are only valid in a setting with very dense graphs. A more
�exible generalization of the block model was provided by Ho�, Raftery, and Handcock 2002.
They present a model which assumes agents to have a latent position in a Euclidean space.
Depending on how close these unobserved positions are to each other, actors have a certain
probability of forming a link. The positions can only be identi�ed up to a distance preser-
ving transformation. In their estimates, Ho�, Raftery, and Handcock 2002 rely on Bayesian
methods and are therefore not interested in consistency. Building on this model, Handcock,
Raftery, and Tantrum 2007 explicitly assume that there is a clustering based on normal distri-
butions in the background. Therefore, the positions are distributed via a multivariate normal
distribution. The authors estimate mean and variance of these distributions. Instead of this
approach, Ho� 2005 adds random sender and receiver e�ects. As a consequence of the di�erent
extensions, Krivitsky et al. 2009 introduce a model which contains all developments.

A few papers start to make use of the additional structure added by the latent space model.
Most importantly, Sussman et al. 2012 derive consistency for a clustering method with a
random dot product graph (RDPG) in the background. The used method is similar to spectral
clustering, but uses a singular value decomposition of the adjacency matrix, the matrix which
summarizes which actors are linked, instead of the Laplacian. Nevertheless, they get the same
asymptotic rates as Rohe, Chatterjee, Yu, et al. 2011. Therefore, they also have to rely on the
restrictive condition of dense graphs.

Recently, more and more literature is concerned with graphon estimation. A graphon is a sym-
metric function which explains the probability of forming a link depending on an unknown
parameter for each involved actor. This function represents the discrete set of link-probabilities
between two actors in an in�nite dimensional object. A major di�culty is that there is no
natural ordering of the unobserved parameters. Wolfe and Olhede 2013 show that graphon
estimation based on block models has a mean square error which goes to zero for some or-
dering. In some sense, assuming a latent space model postulates a graphon which helps to
estimate positions in a meaningful way. Chan and Airoldi 2014 propose a sorting and smoo-
thing algorithm. They �rst sort nodes on their empirical degree to deal with identi�ability
problems. Airoldi, Costa, and Chan 2013 assume that they observe several graphs. Thus, it
is convenient to sort the nodes in such a way that the corresponding blocks have a similar
linking behavior through all graphs.

In economics, it is often bene�cial to identify agents who are central and therefore more
interesting than other agents. Many approaches which are motivated by di�erent ways of
looking at the problem have been made in the past. A simple way to characterize a node as
central is to count its outgoing edges. This concept is called degree centrality. A logical next
step is to declare agents as central who have very well connected neighbors. This idea was
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further developed by Katz 1953 who introduced a weighted sum of the neighbor's degree as
Katz prestige. A generalization named eigenvector centrality was proposed by Yu and Sompel
1965. It weights the centralities of the neighbors. A related approach is used by Banerjee et al.
2013. They count the degree of an actor along more than one stage. Thus, the authors also
look at indirect neighbors. Another path was taken by Freeman 1977 and Anthonisse 1971
who count the number of shortest paths an actor is on. Further other de�nitions of centrality
were introduced by di�erent authors. Jackson 2010 o�ers a short review.

I impose a latent space structure on a block model with an increasing number of classes in a
network and give consistency results for a maximum likelihood estimator. In addition, I provide
a new centrality measure which exploits the latent space structure and can identify agents
who connect clusters. I prove that the new measure has desirable asymptotic features. Using
simulations, I investigate the �nite sample performance of the estimator and the centrality
measure. Finally, I illustrate the usefulness of the new centrality measure in an application
concerning political blogs.
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2. Overidenti�cation Test in a Nonparametric Treatment Model

with Unobserved Heterogeneity

2.1. Introduction

The canonical treatment e�ect evaluation problem in Economics can be phrased as the problem
of recovering the coe�cient β from the outcome equation

Y = α + βD, (1)

where D is a binary indicator of treatment status, and α and β are random coe�cients. In
latent outcome notation1, the treatment e�ect β is commonly written as β = Y 1 − Y 0. If β is
known to be constant then it can be identi�ed by classical instrumental variables methods.
In this framework it is straightforward to test the validity of the instruments by classical
GMM overidenti�cation tests (Hansen 1982, Sargan 1958). In many applications the more
natural assumption is to assume that the treatment e�ect β is non-constant and correlated
with D. Economically this means that individuals di�er in their gains from participating in
the treatment and that when deciding whether to participate or not individuals take into
account possible gains from participation. This setting is often referred to as one of essenti-
al heterogeneity (Heckman, Urzua, and Vytlacil 2006). It was �rst considered in the seminal
papers by Imbens and Angrist 1994 and Angrist, Imbens, and Rubin 1996. These authors
give assumptions under which a binary instrument identi�es the average treatment e�ect for
the subpopulation of compliers which they dub the Local Average Treatment E�ect (LATE).
The compliers are the individuals that respond to a change in the realizations of the binary
instrument by changing their participation decision. Di�erent instruments may induce di�e-
rent subpopulations to change their treatment status and therefore estimate di�erent LATEs.
Hence, if a GMM overidenti�cation test rejects, this no longer constitutes compelling evi-
dence that one instrument is invalid. Rather, it might as well be interpreted as evidence for a
non-constant treatment e�ect (Heckman, Schmierer, and Urzua 2010).

In this paper we present an instrument test that is valid under essential heterogeneity. A key
assumption of Imbens and Angrist 1994, which we maintain as well, is treatment monotonicity.
Intuitively, this assumption says that individuals can be ordered by their willingness to par-
ticipate in the treatment. As we show below, an immediate consequence of the monotonicity
assumption is that the propensity score, i.e., the proportion of individuals who participate
in the treatment, serves as an index that subsumes all information about observed outco-
mes that is included in a vector of instruments. We test the null hypothesis that this kind
of index su�ciency holds as this is a necessary and testable prerequisite for the intractable
hypothesis of instrument validity. More concretely, we assume that a binary and a continuous
instrument are available. The purpose of the binary instrument is to split the population into
two subpopulations. We test whether observed outcomes conditional on the propensity score
are identical in the two subpopulations. The reason why we assume continuity of the second
instrument is that this o�ers a plausible way to argue that the supports of the propensity
scores in the two subpopulations overlap.
1Latent outcomes are de�ned in Section 2.2. In general, latent outcomes will be functions of observed cova-
riates. As is common in the literature we keep this dependence implicit.
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Our test is related to the test of the validity of the matching approach suggested in Heckman
et al. 1996 and Heckman et al. 1998. Their test also exploits index su�ciency under the
null hypothesis. Moreover, the role that random assignment to a control group serves in their
testing approach is similar to the part that the binary instrument plays in our overidenti�cation
result. The testing theory that we develop in this paper translates with slight modi�cations
to the testing problem of Heckman et al. 1996 and Heckman et al. 1998. We hope that it will
prove useful in other settings where the null hypothesis imposes some kind of index su�ciency
as well.

Our testable restriction in terms of a conditional mean function is closely related to a similar
restriction in terms of the Marginal Treatment E�ect (MTE, see Heckman and Vytlacil 2005
for a discussion of the MTE). The characterization of the restriction in terms of the MTE,
while certainly the less practical one for testing, has a lot of theoretical appeal as it illustrates
that our test is based on the overidenti�cation of a structural parameter of the model.

We are not the �rst to consider the problem of testing instruments in a model with essential
heterogeneity. Following previous work by Balke and Pearl 1997, Kitagawa 2013 and Huber
and Mellace 2014 consider testing the validity of a discrete instrument in a LATE model. They
test inequalities for the densities and the mean of the outcomes for always takers and never
takers, i.e. two subpopulations for which treatment status is not a�ected by the instrument.
In stark contrast, our test focuses on the subpopulation which responds to the instrument.
Fernandez-Val and Angrist 2013 develop a LATE overidenti�cation test under the additional
assumption that the heterogeneity is captured by observed covariates. We do not require
such an assumption. Our test lends itself naturally to testing continuous instruments, whereas
previous tests can handle continuous instruments only via a discretization.

Our method works if both a binary and a continuous instrument are available. This is the
case in many relevant applications. In this paper we apply our method to test the validity of
instruments that have been used to investigate the e�ect of teenage child bearing on high school
completion. For another example of an evaluation problem where our method would come to
bear consider Carneiro, Heckman, and Vytlacil 2011. They estimate returns to schooling using
as instruments a binary indicator of distance to college, tuition fees, as well as continuous
measures of local labor market conditions.

Our test reduces to the problem of testing the equality of two nonparametric regression curves.
This is a problem with a rich history in the statistical literature (cf., e.g., Hall and Hart 1990;
King, Hart, and Wehrly 1991; Delgado 1993; Dette and Neumeyer 2001; Neumeyer and Dette
2003). Our testing problem, however, does not �t directly into any of the frameworks analyzed
in the previous literature as it comes with the added complication of generated regressors.
We propose a test statistic and quantify the e�ect of the �rst stage estimation error on the
asymptotic distribution of the test statistic. We �nd that in order to have good power against
local alternatives we have to reduce the nonparametric bias from the �rst stage estimation.
With our particular choice of second stage estimator no further bias reduction is necessary.

We propose a bootstrap procedure to compute critical values. In the context of a treatment
model with nonparametrically generated regressors Lee 2013 establishes the validity of a mul-
tiplier bootstrap that is based on the �rst order terms in an asymptotic expansion of the
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underlying process. We suggest a wild bootstrap procedure that does not rely on �rst order
asymptotics and that is easy to implement in standard software. In exploratory simulations
our procedure is faithful to its nominal size in small and medium sized samples.

The paper is structured as follows. Section 2.2 de�nes our heterogeneous treatment model. In
Section 2.3 we give an intuitive overview of our method, state our central overidenti�cation
result, discuss nonparametric parameter estimation, and de�ne the test statistic. The asym-
ptotic behavior of our test statistic is discussed in Section 2.4. Our simulations are presented
in Section 2.5. In Section 2.6 we apply our approach to real data and study the validity of
instruments in the context of teenage child bearing and high school graduation. Section 2.7
concludes.

2.2. Model de�nition

Our version of a treatment model with unobserved heterogeneity in the spirit of Imbens and
Angrist 1994 is owed in large part to Vytlacil 2002. As in Abadie 2003 and Frölich 2007 we
assume that our assumptions hold conditional on a set of covariates. We restrict ourselves to
covariates that take values in a �nite set. Our main overidenti�cation result carries over to
more general covariate spaces in a straightforward manner. The purpose of the restriction is
exclusively to facilitate estimation by keeping the estimation of in�nite dimensional nuisance
parameters free of the curse of dimensionality. Without loss of generality assume that we can
enumerate all possible covariate con�gurations by {1, . . . , Jmax} and let J denote the covariate
con�guration of an individual. Treatment status is binary and is denoted by D. The latent
outcomes are denoted by Y 0 and Y 1 and Y = (1−D)Y 0+DY 1 denotes the observed outcome.
Note that by setting α = Y 0 and β = Y 1 − Y 0 we recover the correlated random e�ects model
from equation (1). Let S denote a continuous random variable and let Z denote a binary
random variable. Below, S and Z are required to ful�ll certain conditional independence
assumptions that render them valid instruments in a heterogeneous treatment model. We
observe a sample (Yi,Di, Si, Zi, Ji)i≤n from (Y,D,S,Z, J). Treatment status is determined by
the threshold crossing decision rule

D = 1{rZ,J(S)≥V },

with rz,j a function that is bounded between zero and one and V satisfying

V ∼ U[0,1] and V á (S,Z) ∣ J. (I-V)

Under this assumption the function rz,j is a propensity score and V can be interpreted as
an individual's type re�ecting her natural proclivity to select into the treatment group. As
pointed out in Vytlacil 2002 the threshold crossing model imposes treatment monotonicity.2

The assumption that V is uniformly distributed is merely a convenient normalization that
allows us to identify rz,j . The crucial part of this assumption is that the instruments are
jointly independent of the heterogeneity parameter V . This allows us to use the instruments

2Consider two types v1 ≤ v2. Under the threshold model v1 participates if v2 participates. This is independent
of the shape of the propensity score function. In particular, monotonicity of the propensity score function
in its parameters is not required.
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as a source of variation in treatment participation that is independent of the unobserved types.
Furthermore, we assume that for given V , Z and J the latent outcomes are independent of
S,

Y d á S ∣ V,Z, J d = 0,1. (CI-S)

Also, for given V and J the latent outcomes are independent of Z,

Y d á Z ∣ V, J d = 0,1. (CI-Z)

Intuitively, these assumptions state that once the unobserved type is controlled for, the instru-
ments are uninformative about latent outcomes. Note that we do not place any restrictions on
the joint distribution of potential outcomes and V . Economically this means that unobserved
characteristics such as personal taste that enter into the decision to participate in the treat-
ment are allowed to be correlated with the latent outcomes. The more commonly assumed
instrument condition is

(Y 0, Y 1, V ) á (S,Z) ∣ J

which implies the conditional independence assumptions stated above. To argue the validity
of an instrument it is helpful to split up the instrument condition in a way that allows us to
disentangle participation and outcome e�ects. In our application, for example, assumptions CI-
S and CI-Z seem quite plausible. The problematic assumption is to assume that the variation
in treatment participation induced by the instrument is independent of the variation that is
driven by the unobserved types.

Throughout, we let Ez and Ez,j denote the expectation operator conditional on Z = z, and
(J,Z) = (j, z), respectively.

2.3. Overidenti�cation test

2.3.1. Testing approach

Before we formally introduce the overidenti�cation test we give a heuristic description of our
testing approach. Our test is based on comparing observed outcomes in the Z = 0 and Z = 1
subpopulations. For a �xed covariate con�guration j, Figure 2.3.1 shows hypothetical plots for
the propensity scores in the two subpopulations. The ranges of the two functions overlap so that
there is an interval of participation probabilities that can be achieved in both subpopulations
by manipulating the continuous instrument. The lower and upper bound of this interval are
denoted by xL,j and xU,j , respectively. Consider the participation probability x⋆ lying in this
interval. Whenever the participation probability x⋆ is observed, all types V ≤ x⋆ will choose
to participate in the treatment and all types V > x⋆ will abstain from seeking treatment. In
other words, if we observe the same propensity score in two subpopulations, then all types
will arrive at identical participation decisions regardless of which subpopulation they are
selected into. The participation decision �xes which of the two latent outcomes we observe.
Therefore, by �xing the propensity score and comparing observed outcomes between the two
subpopulations we are in fact comparing latent outcomes. Under the null hypothesis, latent
outcomes behave identically in the two subpopulations since by assumption valid instruments
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Figure 1: Heuristic description of method.

do not a�ect latent outcomes. Consequently, for a given propensity score, observed outcomes
should behave identically in the Z = 0 and Z = 1 subpopulations if the model is correctly
speci�ed. In particular,

E[Y ∣ Z = 0, r0,j(S) = x⋆] = E[Y ∣ Z = 1, r1,j(S) = x⋆].

In our approach we test this equality for di�erent x⋆.

2.3.2. Overidenti�cation result

For z = 0,1 and j = 1, . . . , Jmax de�ne mz,j(x) = Ez,j[Y ∣ rz,j(S) = x]. The propensity score is
identi�ed from

rz,j(s) = Ez,j[D ∣ S = s].
and therefore mz,j is identi�ed on the interior of the support of rz,j(S) ∣ Z = z. Our test is
based on the following overidenti�cation result.

Proposition 1 (Overidenti�cation) Fix j ∈ {1, . . . , Jmax} and suppose that conditional on

J = j x lies in the interior of the support of both r0,j(S) ∣ Z = 0 and r1,j(S) ∣ Z = 1. Then mz,j

does not depend on z, i.e., m0,j(x) = m1,j(x). Let mj(x) denote the common value for all j
and x that satisfy the assumption.

Proof

mz,j(x) =E[Y ∣ rz,j(S) = x,Z = z, J = j]
=(1 − x)E[Y 0 ∣ rz,j(S) = x,V > x,Z = z, J = j]
+ xE[Y 1 ∣ rz,j(S) = x,V ≤ x,Z = z, J = j]

=(1 − x)E[Y 0 ∣ V > x,Z = z, J = j] + xE[Y 1 ∣ V ≤ x,Z = z, J = j]
=(1 − x)E[Y 0 ∣ V > x, J = j] + xE[Y 1 ∣ V ≤ x, J = j]

Now note that the right hand side does not depend on z.
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The result says that under the null hypothesis that the model is correctly speci�ed the para-
meter mj can be identi�ed from two di�erent subpopulations. Under alternatives the instru-
ments have a direct e�ect on outcomes that is not mediated through the propensity score.
The overidenti�cation restriction has some power to detect such alternatives because in the
two subpopulations distinct values of the instrument vector are used to identify the same
parameter.

Suppose that for j = 1, . . . , Jmax there are xj and x̄j , xj ≤ x̄j , and open sets Gj such that

supp r0,j(S) ∣ Z = 0, J = j ∩ supp r1,j(S) ∣ Z = 1, J = j ⊇ Gj ⊇ [xj x̄j].

Proposition 1 implies that on [xj x̄j] we have

m0,j(x) −m1,j(x) = 0. (2)

We are testing this equality. For the test to have some bite we need [xj x̄j] to be non-empty.
Intuitively, what is required is that for �xed Z the continuous instrument is strong enough to
induce as many individuals to change their treatment status as would be swayed to change
their participation decision by a change in Z while keeping S �xed. An important case where
this is not possible is if Z is a deterministic function of S.

The basic idea of the overidenti�cation result does not rely on the continuity of S. However,
continuity of S is crucial as it o�ers a way to ensure that the common support of the propensity
scores in the two subpopulations with Z = 0 and Z = 1 can plausibly have positive probability.
For a given j we refer to an interval [xj , x̄j] that satis�es the above condition as a testable
subpopulation. It consists of a set of unobserved types that can be induced to select in and
out of treatment by marginal changes in the continuous instrument regardless of the value of
the binary instrument. Therefore the types in this interval are part of the complier population
as de�ned in Angrist, Imbens, and Rubin 1996.

Proposition 1 is implied by the stronger result

Ej[Y ∣ S,Z] = Ej[Y ∣ rZ,j(S)] a.s.. (3)

This says that conditional on covariates, the propensity score aggregates all information that
the instruments provide about observed outcomes. In that sense, our approach can be inter-
preted as a test of index su�ciency that is similar in spirit to the test of the validity of the
matching approach suggested in Heckman et al. 1996; Heckman et al. 1998. The equivalence
(3) remains true if Y is replaced by a measurable function of Y . By considering di�erent functi-
ons of Y a whole host of testable restrictions can be generated. One implication, for example,
is that a conditional distribution function is overidenti�ed. In this paper we only consider
overidenti�ed conditional mean outcomes and leave the obvious extensions to future research.
Our testable restriction (2) is closely related to the marginal treatment e�ect (MTE)

βj(x) = Ej[Y 1 − Y 0 ∣ V = x]

which has been proposed as a natural way to parameterize a heterogeneous treatment model
(Heckman and Vytlacil 2005). In fact, βj(x) = ∂xmj(x). Since we are testing for overidenti�-
cation of a function, we are also testing for overidenti�cation of its derivative. If we were to
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base our test directly on the MTE instead of mean outcomes we would not be able to detect
alternatives where instruments are uncorrelated with the treatment e�ect β but have a direct
e�ect on the base outcome α. Another advantage of our mean outcome approach over a test
based on the MTE is that we avoid having to estimate a derivative. In our nonparametric
setting derivatives are much harder to estimate than conditional means. However, if the eco-
nometrician is not interested in a direct e�ect on the base outcome and if a large sample is
available it might be bene�cial to look at βj rather than at mj . The reason is that as mj

is a smoothed version of βj it might not provide good evidence for perturbations of βj that
oscillate around zero. Another maybe more compelling reason to consider overidenti�cation of
βj is that it allows us to investigate the source of a rejection of the null hypothesis. If a test
based on mj rejects while at the same time a test based on βj does not reject it seems likely
that instruments have a direct e�ect on the base outcome but not on the treatment e�ect. In
this paper we focus on the test based on conditional outcomes and leave a test considering
the MTE to future research.

It is helpful to think of alternatives as violations of the index su�ciency condition (3). Econo-
mically this means that instruments have a direct e�ect on outcomes, i.e., instruments have an
e�ect on observed outcomes that can not be squared with their role as providers of independent
variation in the participation stage. To formalize how our test detects such alternatives ignore
covariates for the moment and de�ne the prediction error from regressing on the propensity
score instead of on the instruments

ϕ(S,Z) = E[Y ∣ S,Z] −E[Y ∣ rZ(S)].

Now suppose that the model is correctly speci�ed up to possibly a violation of the index
su�ciency condition. The restricted null hypothesis is

H0 ∶ ϕ(S,Z) = 0 a.s..

Using this notation we can rewrite the testable restriction (2) as

E[ϕ(S,Z) ∣ r0(S) = x,Z = 0] −E[ϕ(S,Z) ∣ r1(S) = x,Z = 1] = 0

for all x ∈ [x, x̄]. This is a necessary condition for

E[ϕ(S,Z) ∣ rz(S) = x,Z = z] = 0 for z = 0,1 and x ∈ supp rz(S) ∣ Z = z

which in turn is necessary for the restricted null. Since we are only testing a necessary condition
not all alternatives can be detected. As an extreme case consider the case of identical propensity
scores, i.e., r0 = r1. In this particular case our testable restriction does not have the power to
detect a direct e�ect of S on outcomes.

2.3.3. Parameter estimation and test statistic

Let m̂z,j denote an estimator of mz,j and let x = (x1, . . . , xJmax) and x̄ = (x̄1, . . . , x̄Jmax).
Suppose that under the null hypothesis mj is overidenti�ed on [xj , x̄j] for j = 1, . . . , Jmax and
de�ne the test statistic

Tn = Tn(x, x̄) =
J

∑
j=1
∫

x̄j

xj

(m̂0,j(x) − m̂1,j(x))2πj(x)dx. (4)
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Here πj is a weight function that can be used to �ne-tune power against certain alternatives.
What constitutes a sensible choice for πj will depend on the speci�cs of the application.
For simplicity we assume that πj is unity from here on. In the following we will refer to
the subsample with Ji = j and Zi = z as the (j, z)-cell. We estimate m̂z,j by a two step
procedure. In the �rst step we estimate the function rz,j by local polynomial regression of D
on S within the (j, z)-cell. We will refer to this step as the participation regression. The �rst
step estimator is denoted by r̂z,j . In the second step we estimate mz,j by local linear regression
of Y on the predicted regressors r̂z,j(Si) within the (j, z)-cell. This step will be referred to
as outcome regression. We let L and K denote the kernel functions for the participation and
outcome regression, respectively. Also let g and h denote the respective bandwidth sequences.
To reduce notational clutter, we assume that the bandwidths do not depend on j and z. It
is straightforward to extend the model to allow cell dependent bandwidths. Let q denote the
degree of the local polynomial in the participation regression. It is necessary to choose q ≥ 2
to remove troublesome bias terms. If these bias terms are not removed the test will behave
asymptotically like a linear test, i.e., it will favor the rejection of alternatives that point into
a certain direction. A formal de�nition of the estimators is provided in Appendix A.

In many applications the bounds x and x̄ are not a priori known and have to be estima-
ted. Below we show that replacing the bounds by a consistent estimator does not a�ect
the asymptotic distribution of the test statistic under weak assumptions. Since we assu-
me rz,j to be continuous, the set on which mj is overidenti�ed will always be an interval
(xL,j , xU,j). To avoid boundary problems we �x some positive cδ and estimate the smaller
interval [xj , x̄j] = [xL,j + cδ, xU,j − cδ] by its sample equivalent.

2.3.4. Inference and bootstrap method

In Proposition 2 below we characterize the asymptotic distribution of the test statistic under
the null. However, as we explain below, we do not recommend to use this distributional result
as a basis for approximating critical values. In a related problem with nonparametrically
generated regressors Lee 2013 establishes the validity of a multiplier bootstrap procedure.
We conjecture that, building on the asymptotic in�uence function from Lemma 3 in the
appendix, a similar approach can be taken in our setting. However, simulating the distribution
by multiplier methods has some disadvantages. First, as the approach is based on asymptotic
in�uence functions no improvements beyond �rst order asymptotics can be expected. Secondly,
the method requires signi�cant coding e�ort which makes it unattractive in applied work. This
is why we propose a wild bootstrap procedure that is straightforward to implement instead.
We provide simulation evidence that illustrates that the procedure can have good properties
in small and medium sized samples. A theoretical proof of the validity of the method is beyond
the scope of the present paper and left to future research.

First, estimate the bounds x and x̄. In the bootstrap samples these bounds can be taken as
given. For all j and all z estimate r̂z,j from the (j, z)-cell and predict R0

i = r̂Zi,Ji(Si) and
ζ̂0
i =Di −R0

i . Next, pool all observations with J = j and estimate mj by local linear regression
of Yi on R0

i with kernel K and bandwidth h. Predict M0
i = m̂Ji(R0

i ) and ε̂0i = Yi −M0
i .

Now generate B bootstrap samples in the following way. Draw a sample of n independent
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Rademacher random variables (Wi)i≤n, let

(D
∗
i

Y ∗
i
) = (R

0
i

M0
i
) +Wi (

ζ̂0
i

ε̂0i
) ,

and de�ne the bootstrap sample (Y ∗
i ,D

∗
i , Si, Zi, Ji)i≤n.

While we use Rademacher variables as an auxiliary distribution, other choices such as the two-
point distribution from Mammen 1993 or a standard normal distribution are also possible.

2.4. Asymptotic analysis

In this section we derive the asymptotic distribution of our test statistic. This analysis gives
rise to a number of interesting insights. First, it allows us to consider local alternatives. A
lesson implicit in the existing literature on L2-type test statistics is that a naive construction
of such a statistic often leads to a test with the undesirable property of treating di�erent
local alternatives disparately. Loosely speaking, such a tests behaves like a linear test in that
it only looks for alternatives that point to the same direction as a certain bias term (cf.
Härdle and Mammen 1993). We �nd that in order to avoid such behavior it su�ces to employ
bias-reducing methods when estimating the propensity scores. We recommend to �t a local
polynomial of at least quadratic degree. The outcome estimation does not contribute to the
problematic bias term. Secondly, our analysis allows us to consider the case when the bounds
of integration x and x̄ are unknown and have to be estimated. We show that, provided that
the estimators satisfy a very weak assumption, the asymptotic distribution is una�ected by
the estimation. Thirdly, our results allow us to make recommendations about the choice of
the smoothing parameters. Our main asymptotic result implies that our test has good power
against a large class of local alternatives if the outcome stage estimator oversmoothes compared
to the participation stage estimator but not by too much. For convenience of notation, in the
following we focus on the case Jmax = 1 and omit the j subscript. Proofs for the results in this
section can be found in the appendix.

2.4.1. Assumptions

De�ne the sampling errors ε = Y − E[Y ∣ rZ(S)] and ζ = D − E[D ∣ S,Z]. Under the null
hypothesis the conditional variances σ2

ε (x) = E[ε2 ∣ rZ(S) = x], σ2
ζ(x) = E[ζ2 ∣ rZ(S) = x]

and σεζ(x) = E[εζ ∣ rZ(S) = x] remain unchanged if the unconditional expectation operator is
replaced by the conditional expectation operator Ez, z = 0,1. Also note that σ2

ζ(x) = x(1−x).
For our local estimation approach to work we have to impose some smoothness on the functions
mz and rz. We now give conditions in terms of the primitives of the model to ensure that the
functions that we are estimating are su�ciently smooth.

Assumption 1 Assume that m is overidenti�ed on an open interval (xL, xU) and

(i) there is a positive ρ such that

E[exp(ρ ∣Y d∣)] < ∞, d = 0,1.
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(ii) Conditional on Z = z, z = 0,1, S is continuously distributed with density fS∣Z=z and

rz(S) is continuously distributed with density fR∣Z=z. Moreover, fS∣Z=z is bounded away

from zero and has one bounded derivatives and fR∣Z=z is bounded away from zero and is

twice continuously di�erentiable.

(iii) E[Y 0 ∣ V > x] and E[Y 1 ∣ V ≤ x] are twice continuously di�erentiable on (xL, xU).

(iv) The functions E[(Y 0)2 ∣ V > x] and E[(Y 1)2 ∣ V ≤ x] are continuous on (xL, xU).

(v) rz, z = 0,1, is (q + 1)-times continuously di�erentiable on (xL, xU).

The assumption implies standard regularity conditions for m, σ2
ε and σεζ that are summarized

in Assumption 3 in the appendix. These conditions include that m is twice continuously
di�erentiable and that σ2

ε and σεζ are continuous. A consequence of Assumption 1(ii) is that
xL and xU are identi�ed by

xL = max{ infs r0(s), infs r1(s)} and

xU = min{ sups r0(s), sups r1(s)}.
(5)

Fix a small constant cδ > 0. We can choose x = xL + cδ and x̄ = xU − cδ. We also need some
assumptions about the kernel functions.

Assumption 2 K and L are symmetric probability density functions with bounded support.

K has two bounded and continuous derivatives. The bandwidth sequences are parametrized by

g ∼ n−η∗ and h ∼ n−η.

Implicit in this assumption is that the bandwidths are not allowed to depend on z. In particu-
lar, the bandwiths are tied to the overall sample size rather than the size of the two subsamples
corresponding to Z = z, z = 0,1. This is for expositional convenience only.

2.4.2. Local alternatives

To investigate the behavior of the test under local alternatives we now consider a sequence of
models that converges to a model in the null hypothesis.

De�nition 1 (Local alternative) A sequence of local alternatives is a sequence of models

Mn = (Y 0,n, Y 1,n, V n, S,Z, r0, r1)

in the alternative that converges to a model

Mnull = (Y 0,null, Y 1,null, V null, S,Z, r0, r1)

in the null hypothesis in the following sense:

sup
x

E [(1{V n≤x} − 1{V null≤x})
2 ∣ S,Z] = Oa.s (c2

n) (6a)

E [(Y d,n − Y d,null)2 ∣ S,Z] = Oa.s (c2
n) d = 0,1 (6b)
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for a vanishing sequence cn. For n large enough there are positive constants ρ and C such that

E[exp(ρ ∣Y d,n −E[Y d,n ∣ S,Z]∣) ∣ S,Z] ≤ C d = 0,1.

We let Y n and Y null denote the observed outcome under the modelMn andMnull, respectively.

Write ϕn for the index prediction error under the sequence of modelsMn and note that

ϕn(S,Z) = E[Y n ∣ S,Z] −E[Y n ∣ rZ(S)]
= E[Y n − Y null ∣ S,Z] −E[Y n − Y null ∣ rZ(S)] = Oa.s(cn)

so that index su�ciency holds approximately in large samples. Formally, we are testing the
sequence of local alternatives

H0,n ∶ ∆n(x) = 0 for x ∈ [x, x̄]

with
∆n(x) = E[ϕn(S,Z) ∣ rZ(S) = x,Z = 0] −E[ϕn(S,Z) ∣ rZ(S) = x,Z = 1].

To analyze the behavior of our test under local alternatives we suppose that we are observing
a sequence of samples where the n-th sample is drawn fromMn. For vanishing cn we interpret
Mnull as a hypothetical data generating process that satis�es the restriction of the null and
that is very close to the observed model Mn. Our objective is to show that our test can
distinguish Mn from Mnull. The fastest rate at which local alternatives can be detected is
cn = n−1/2h−

1/4. This is the standard rate for this type of problem (cf. Härdle and Mammen
1993). At this rate the smoothed and scaled version of the local alternative

∆K,h(x) = c−1
n ∫ ∆n(x + ht)K(t) dt

enters the asymptotic distribution of the test statistic.

2.4.3. Asymptotic behavior of the test statistic

For our main asymptotic result below we use the asymptotic framework introduced in the
previous subsection where Tn is the test statistic computed on a sample of size n drawn from
the modelMn. The result states that the asymptotic distribution of the test statistic can be
described by the asymptotic distribution of the statistic under the hypothetical modelMnull

shifted by a deterministic sequence that measures the distance of the observed model Mn

fromMnull. The behavior of the test statistic under the null is obtained as a special case by
choosing a trivial sequence of local alternatives.

Proposition 2 Let cn = n−1/2h−
1/4 and consider a model Mnull satisfying Assumption 1 for

xL < x < x̄ < xU and corresponding local alternativesMn satisfying De�nition 1. The functions

E[Y n ∣ rZ(S) = x] and E[Y n ∣ rZ(S) = x,Z = z], z = 0,1, are Riemann integrable on (xL, xU).
The bandwidth parameters η and η∗ satisfy
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3η + 2η∗ < 1 (7a)

2η > η∗ (7b)

η∗ + η < 1/2 (7c)

η > 1/6 (7d)

(q + 1)η∗ > 1/2 (7e)

η∗ > η . (7f)

Then

n
√
hTn −

1√
h
γn − ∫

x̄

x
∆2
K,h(x)dx

d→ N (0, V ) ,

where

V = 2K(4)(0)∫
x̄

x
[x(1 − x)m′(x)2 − 2σεζ(x)m′(x) + σ2

ε (x)]
2 ⎛
⎝ ∑z∈{0,1}

1

pzfR,z(x)
⎞
⎠

2

dx

and γn is a deterministic sequence such that γn → γ for

γ =K(2)(0)∫
x̄

x
[x(1 − x)m′(x)2 − 2σεζ(x)m′(x) + σ2

ε (x)] ∑
z∈{0,1}

1

pzfR,z(x)
dx.

Here m(x) = E[Y null ∣ rZ(S) = x] and the conditional covariances are computed underMnull.

K(v) denotes the v-fold convolution product of K. For q ≥ 2 the set of admissible bandwidths

is non-empty.

The result implies that the test can detect local alternatives that converge to a model in the
null hypothesis at the rate cn = n−1/2h−

1/4 and that satisfy

lim inf
n
∫

x̄

x
∆2
K,h(x)dx > 0.

Both the �rst and the second stage estimation contribute to the asymptotic variance. The
term x(1 − x)m′(x)2 − 2σεζ(x)m′(x) in the expression for the asymptotic variance is due to
the �rst stage estimation. Under our assumptions this term can not be signed, so that the
�rst stage estimation might increase or decrease the asymptotic variance. However, while it is
possible to construct models under which this term is negative, these models have some rather
unintuitive features and we do not consider them to be typical. If the estimated regression
function is rather �at, the in�uence of the �rst stage regression on the asymptotic variance
is small. To gain an intuition as to why this is so, note that if m′(x) is small then a large
interval of index values around x is informative about m(x). This helps to reduce the �rst
stage estimation error, because on average the index is estimated more reliably over large
intervals than over smaller intervals.

An essential ingredient in the proof of Proposition 2 is a result from Mammen, Rothe, and
Schienle 2012. They provide a stochastic expansion of a local linear smoother that regresses
on generated regressors around the oracle estimator. The oracle estimator is the infeasible
estimator that regresses on the true instead of the estimated regressors. This expansion allows
us to additively separate the respective contributions of the participation and the outcome
regression to the overall bias of our estimator of m0 −m1. Under the null the oracle estimator
is free of bias. This is intuitive. Under the null m =m0 =m1 so that m̂0 and m̂1 estimate the
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same function in two subpopulations with non-identical designs. A well-known property of the
local linear estimator is that its bias is design independent (Ruppert and Wand 1994) which
makes it attractive for testing problems that compare nonparametric �ts (Gørgens 2002).
Hence, only the bias of the participation regression has to be reduced.

We do not recommend using the distributional result in Proposition 2 to compute critical
values. The exact shape of the distribution is very sensitive to bandwidth choice. As explained
below, one does not know in practice if bandwidths satisfy the conditions in the theorem.
Even if bandwidths are chosen incorrectly, in many cases the statistic still converges to a
normal and most of the lessons we draw from the asymptotic analysis still hold up. However,
the expressions for the asymptotic bias and variance would look di�erent. Furthermore, to
estimate the asymptotic bias and variance we have to estimate derivatives and conditional
variances. These are quantities that are notoriously di�cult to estimate. Instead, our inference
is based on the wild bootstrap procedure introduced in Section 2.3. We investigate the validity
of our bootstrap procedure in simulations in Section 2.5 below.

Proposition 2 requires that the bandwidth parameters satisfy a system of inequalities. The
restrictions are satis�ed for example if q = 2, η∗ = 1/5 and 1/6 < η < 1/5. The inequalities (7a)-
(7c) ensure that our estimators satisfy the assumptions of Theorem 1 in Mammen, Rothe,
and Schienle 2012. Condition (7d) ensures that up to parametric order the bias of the oracle
estimator is design independent. When the inequality (7f) is satis�ed, the error terms from both
the participation and outcome regression contribute to the asymptotic distribution. Finally,
inequality (7e) says that the bias from the participation regression must vanish at a faster
than parametric rate. This is precisely the condition needed to get rid of the troublesome
bias terms discussed above. While the proposition o�ers conditions on the rates at which the
bandwidths should vanish it o�ers little guidance on how to choose the bandwidths in �nite
samples. There are no bandwidth selection procedures that produce deliberately under- or
oversmoothing bandwidths. This problem is by no means speci�c to our model but on the
contrary quite ubiquitous in the kernel smoothing literature (cf. Hall and Horowitz 2012). In
our application we circumvent the problem of bandwidth selection by reporting results for a
large range of bandwidth choices.

In practice, the bounds of integration x and x̄ are additional parameters that have to be
chosen. In most applications this means that they have to be estimated from the data. The
following result states that a rather slow rate of convergence of these estimated bounds su�ces
to ensure that bound estimation does not a�ect the asymptotic distribution.

Proposition 3 Suppose that the assumptions of Proposition 2 hold. Assume also that xn and

x̄n are sequences of random variables such that

(xn, x̄n) − (x, x̄) = op (h`)

for a constant ` > 1/2. Then

Tn(xn, x̄n) − Tn(x, x̄) = op (
1

n
√
h
) .
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alternative perturbation

1 ∆α = 0.2

2 ∆α = −1
2V

3 ∆α = 40(V − 0.3) exp (−80(V − 0.3)2)
4 ∆β = 0.2
5 ∆β = −V
6 ∆β = 40(V − 0.3) exp (−80(V − 0.3)2)

Tabelle 1: Speci�cation of simulated alternatives.

Let x̂L and x̂U denote the sample equivalents of the right hand side of the equation (5)
that identi�es xL and xU , respectively. Under the bandwidth restrictions of Proposition 2 the
assumptions in Proposition 3 are satis�ed if we set xn = x̂L + cδ and x̄n = x̂U − cδ.

2.5. Simulations

We simulate various versions of the random coe�cient model from equation (1) and compute
empirical rejection probabilities for our bootstrap test for two sample sizes and a large num-
ber of bandwidth choices. As in the previous section we assume Jmax = 1 and drop the j
subscript.

Our basic setup is a model in the null hypothesis. Simulating our test for this model allows us
to compare the nominal and empirical size of our test. We then generate several models in the
alternative by perturbing outcomes in the basic model for the Z = 1 subpopulation. For the
basic model we de�ne linear propensity scores r0(s) = 0.1 + 0.5s and r1(s) = 0.5s. The binary
instrument Z is a Bernoulli random variable with P (Z = 0) = P (Z = 1) = 0.5 and the conti-
nuous instrument S is distributed uniformly on the unit interval. The base outcome α follows
a mean-zero normal distribution with variance 0.5. The treatment e�ect is a deterministic
function of V , β = −2V . As alternatives we consider perturbations of the base outcome α as
well as perturbations of the treatment e�ect β. These perturbations are obtained by adding
∆α to α and ∆β to β in the Z = 1 subpopulation. The speci�cations for the alternatives are
summarized in Table 1. The �rst three alternatives consider perturbations of the base outcome,
whereas alternatives 4-6 are derived from perturbations of the treatment e�ect. Alternatives
1 and 4 consider the case that base outcome and treatment e�ect, respectively, are shifted
independently of the unobserved heterogeneity V . The perturbations generating alternatives
2 and 5 are linear functions of V . Finally, alternatives 3 and 6 are generated by perturbing
by functions of V that change sign. These alternatives are expected to be particularly hard
to detect because our test is based on the mz function which smoothes over the unobserved
heterogeneity as is apparent in the proof of Proposition 1. As bandwidths we choose g = Cgn−

1
5

and h = Chn−
1
6 . We report results for a number of choices for the constants Cg and Ch. We

set q = 2 and choose an Epanechnikov kernel for both K and L. The sample size is set to
n = 200,400. These should be considered rather small numbers considering the complexity of
the problem. We consider the nominal levels θ = 0.1,0.05 as these are the most commonly
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θ = 0.10 θ = 0.05

Ch 0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25 1.50 1.75

null
Cg = 0.50 9.3 8.9 8.4 7.7 8.6 9.6 4.2 3.4 4.7 4.2 4.1 4.1
Cg = 0.75 10.1 9.9 9.4 8.2 7.7 9.3 4.8 4.5 4.0 3.3 3.6 4.0
Cg = 1.00 8.9 8.7 7.4 9.0 8.9 8.1 4.2 4.1 3.2 4.0 3.6 3.3

alternative 1
Cg = 0.50 94.3 93.8 93.7 93.6 92.8 94.7 88.5 87.1 87.2 86.7 87.7 88.4
Cg = 0.75 94.8 91.9 93.0 92.6 94.0 93.8 88.6 86.9 87.2 85.8 87.3 87.2
Cg = 1.00 94.0 93.4 94.8 93.5 93.8 93.3 86.7 88.4 89.6 87.2 87.2 89.3

alternative 2
Cg = 0.50 96.9 97.5 97.5 98.1 98.6 98.0 93.3 94.4 95.4 96.0 96.4 95.4
Cg = 0.75 96.9 97.9 97.2 97.8 97.1 97.5 93.0 95.6 94.6 94.7 94.3 95.3
Cg = 1.00 97.7 97.2 97.4 97.8 97.4 97.8 94.5 95.3 94.1 94.1 95.3 94.4

alternative 3
Cg = 0.50 8.3 8.7 7.2 9.3 8.7 8.9 3.4 3.6 3.5 4.6 4.0 4.0
Cg = 0.75 6.9 9.1 8.9 8.6 8.9 9.3 3.5 4.4 3.6 3.6 4.0 3.9
Cg = 1.00 8.3 8.2 7.9 8.8 8.9 8.7 4.0 3.7 3.7 3.7 4.6 3.9

alternative 4
Cg = 0.50 25.5 23.8 22.9 24.2 22.6 22.7 15.1 13.9 13.5 13.8 12.3 13.3
Cg = 0.75 25.1 26.3 26.1 22.3 23.3 24.7 15.0 14.6 15.0 13.1 13.3 14.5
Cg = 1.00 25.4 23.5 24.5 23.7 23.7 23.6 15.2 13.0 15.6 13.8 14.1 13.8

alternative 5
Cg = 0.50 24.3 22.5 21.5 22.7 22.8 21.8 14.9 12.9 11.9 13.8 12.0 12.4
Cg = 0.75 21.1 22.0 21.3 20.9 22.7 22.3 10.4 10.8 12.1 11.5 12.7 12.5
Cg = 1.00 21.8 21.5 21.4 23.7 21.9 22.5 13.1 12.0 11.3 12.7 12.6 12.2

alternative 6
Cg = 0.50 45.1 44.3 42.3 45.2 46.6 47.7 30.9 30.7 29.3 31.2 35.0 31.2
Cg = 0.75 45.3 43.5 44.9 44.2 45.8 44.2 32.3 31.4 32.0 30.7 33.0 30.3
Cg = 1.00 44.2 45.5 47.6 44.3 44.6 46.6 32.6 33.7 34.0 30.6 30.9 33.9

Tabelle 2: Empirical rejection probabilities in percentage points under nominal level θ. Sample
size is n = 400.

used ones in econometric applications. As bound estimation has only a higher order e�ect
we take x = 0.15 and x̄ = 0.45 as given. To simulate the bootstrap distribution we are using
B = 999 bootstrap iterations. For each model we conduct 999 simulations. Empirical rejection
probabilities are reported in Table 2 for n = 400 and in Table 3 in the appendix for n = 200.

We discuss only the results for n = 400 in detail. Under the null hypothesis the empirical
rejection probabilities are very close to the nominal levels. While this is not conclusive evidence
that our bootstrap approach will always work, it is suggestive of the validity of the procedure.

Alternative 1 and Alternative 2 are detected with high probability. These alternatives are
particularly easy to detect for two reasons. First, the perturbation a�ects a large subpopu-
lation so that the alternative is easy to detect due to abundance of relevant data. Secondly,
the smoothing inherent in the quantities that our test considers does not smear out the per-
turbations in a way that makes the alternatives hard to detect. To understand the �rst e�ect
contrast Alternative 1 and Alternative 2 with Alternative 4 and Alternative 5. Both pairs of
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alternatives arise from similar perturbations. However, the whole subsample with Z = 1 can
be used to detect the �rst pair. In contrast, only treated individuals in the Z = 1 subsample
provide data that helps to detect the second pair. A back-of-the-envelope calculation reveals
that on average only about 400 × 1/2 × 1/4 = 25 observations fall into the subsample with Z = 1
and D = 1. As cell sizes are observed in applications, a lack of relevant data is a problem
that can readily be accounted for when interpreting test results. To shed light on the second
e�ect recall that mz is derived from smoothing outcomes over V ≤ x and V > x. Therefore, if
a perturbation changes sign, positive and negative deviations from the null will cancel each
other out. This e�ect is precisely what makes it so hard to detect perturbations such as those
underlying Alternative 3 and Alternative 6. Luckily, these kinds of alternatives are not what
should be expected in many applications. The problem that applied researchers have in mind
most of the time is that instruments might have a direct e�ect on outcomes that can readily be
signed by considering the economic context. In that respect, Alternative 1 and Alternative 2
are more typical of issues that applied economists worry about than Alternative 3.

It might seem puzzling that Alternative 6 is detected much more frequently than Alternative 3.
The reason is that in Alternative 3 negative deviations in the V ≤ x population are o�set by
positive deviations in the V > x population. This does not happen in Alternative 6 as only
the treated population is a�ected by the perturbation.

Accounting for the complexity of the problem the sample size n = 200, for which we report
results in the appendix, should be considered very small. Therefore, it is not surprising that
the deviations from the nominal size are slightly more pronounced than in the larger sample.
The deviations err on the conservative side, but that might be a particularity of our setup.
The pattern in the way alternatives are detected is similar to the n = 400 sample with an
overall lower detection rate.

Our simulations show that our approach has good empirical properties in �nite samples.
For the simulated model the test holds its size which indicates that the bootstrap procedure
works well. Very particular alternatives that perturb outcomes by a function of the unobserved
types that oscillates around zero are di�cult to detect by our procedure. Alternatives that we
consider to be rather typical are reliably detected provided that the subsample a�ected by the
alternative is large enough.

2.6. Application

To illustrate the applicability of our method we now consider the e�ect of teenage child-bearing
on the mother's probability of graduating from high-school. This topic has been discussed
extensively in the literature. An early survey can be found in Ho�man 1998. To deal with the
obvious endogeneity of motherhood, many authors (Ribar 1994; Hotz, McElroy, and Sanders
2005; Klepinger, Lundberg, and Plotnick 1995) have used instrumental variables methods.
It has been suggested that treatment e�ect heterogeneity is a reason why estimated e�ects
depend strongly on the choice of instrument (Reinhold 2007). In fact, it is very natural to
assume that the e�ect of motherhood on graduation is heterogeneous. For a simple economic
model that generates treatment e�ect heterogeneity suppose that the time cost of child care
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is the same for students of di�erent abilities whereas the time cost of studying to improve the
odds of graduating is decreasing in ability. To translate the problem into our heterogeneous
treatment model let D denote a binary indicator of teenage motherhood and let Y denote a
binary indicator of whether the woman has obtained a high school diploma3. We consider two
instruments from the literature. The �rst one, henceforth labelled S, is age at �rst menstrual
period which has been used in the studies by Ribar 1994 and Klepinger, Lundberg, and Plotnick
1995. This instrument acts as a random shifter of female fecundity and is continuous in nature.
Its validity is discussed brie�y in Klepinger, Lundberg, and Plotnick 1995 and Levine and
Painter 2003. The second instrument, denoted by Z, is an indicator of whether the individual
experienced a miscarriage as a teenager. Miscarriage has been used as an unexpected fertility
shock in the analysis of adult fertility choices (Miller 2011) and also to study teenage child
bearing in Hotz, Mullin, and Sanders 1997; Hotz, McElroy, and Sanders 2005. The population
studied in Hotz, McElroy, and Sanders 2005 consists of all women who become pregnant in
their teens, whereas we focus on the larger group of all women who are sexually active in
their teens. This turns out to be a crucial di�erence. It stands to investigate the plausibility
of the assumptions I-V, CI-S and CI-Z. Arguably, age at �rst menstrual period is drawn
independently of V and ful�lls the instrument speci�c conditional independence assumption
CI-S if one controls for race. Possible threats to a linear version of CI-Z are discussed in Hotz,
Mullin, and Sanders 1997. Hotz, McElroy, and Sanders 2005 conclude that the linear version
of CI-Z holds in good approximation in the population that they are considering. The most
problematic assumption to maintain is that Z is orthogonal to V . In a simpli�ed behavioral
model teenagers choose to become pregnant based on their unobserved type and then a random
draw from nature determines how that pregnancy is resolved. This implies a sort of maximal
dependence between Z and V , i.e., teenagers select into treatment and into Z = 1 in exactly
the same way. Our test substantiates this heuristic argument by rejecting the null hypothesis
that the assumptions I-V, CI-S and CI-Z hold simultaneously. Furthermore, it gives instructive
insights into the role that heterogeneity plays in the failure of the assumptions.

We use data from the National Longitudinal Survey of Youth 19974 (henceforth NLSY97)
from round 1 through round 15. We only include respondents who were at least 21 of age at
the last interview they participated in. This is to ensure that we capture our outcome variable.
A miscarriage is de�ned as a teenage miscarriage if the woman experiencing the miscarriage
was not older than 18 at the time the pregnancy ended. Similarly, a young woman is de�ned
as a teenage mother if she was not older than 18 when the child was born. We control for race
for two reasons. First, this is required to make the menarche instrument plausible. Secondly,
this takes care of the oversampling of minorities in the NLSY97 so that we are justi�ed in
using unweighed estimates. We remove respondents who report �mixed race� as race/ethnicity
because the cell size is too small to conduct inference. Table 4 in the appendix gives some
summary statistics for our sample. An unfortunate side e�ect of using the low probability

3We do not include equivalency degrees (GED's). There is a discussion in the literature as to what the
appropriate measure is (cf. Hotz, McElroy, and Sanders 2005).

4Most of the previous studies relied on data from the National Longitudinal Survey of Youth 1979 (NLSY79).
In that study the date of the �rst menstrual period was asked for for the �rst time in 1984 when the oldest
respondents were 27 years old. As is to be expected, a lot of respondents had trouble recalling the date such
a long time after the fact. The NLSY97 contained the relevant question starting from the very �rst survey
when the oldest respondents were still in their teens. Since our method relies on a good measurement of
the continuous variable the NLSY97 data is a better choice than the NLSY79 data.
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event of a teenage miscarriage as an instrument is that cell sizes can become rather small.
This makes it impossible to control for additional covariates while preserving reasonable power.
In Section 2.7 we brie�y discuss a model that permits a much larger number of covariates. The
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Figure 2: Probability of entering treatment conditional on age of �rst menstrual period (S)
plotted separately for the subpopulations with Z = 0 (no miscarriage as a teenager,
dashed line) and Z = 1 (miscarriage as a teenager, solid line). Plotted with q = 1 and
bandwidth g = 2.00.

estimated propensity scores r̂z,j are plotted in Figure 2. For each j the functions r̂0,j and r̂1,j

are not identical almost everywhere and their ranges exhibit considerable overlap. We require
the same properties from their population counterparts to have good power. It should be noted
at this point that the shape of the estimated propensity scores is already indicative of the way
that miscarriage fails as an instrument. In a naive telling of the story, the propensity score
for women who had a teenage miscarriage is shifted upward, contrary to what we observe in
Figure 2. Our test rejects if, keeping the probability of treatment �xed, the di�erence between
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Figure 3: Di�erence in expected outcomes conditional on probability of treatment between the
subpopulations with Z = 0 and Z = 1. Plotted with q = 1 and bandwidths h = 0.25
and g = 2.00.

the outcomes of the subpopulation with Z = 0 and the subpopulation with Z = 1 is large.
Figure 3 plots m̂0,j(x) − m̂1,j(x) for all values of j. The dashed lines indicate our estimates
of xL,j and xU,j . We observe that the estimated outcome di�erence is positive and decreasing

32



in the probability of treatment x. This means that for a low treatment probability x women
who have a miscarriage do much worse in terms of high school graduation than do women
who do not have a miscarriage. For larger x, however, this di�erence in outcomes becomes
smaller. This feature is in line with our story-based criticism of the instrument. Suppose that
the underlying heterogeneity selects women into pregnancy rather than into motherhood. For
concreteness think of the heterogeneity as the amount of unprotected sex that a woman has
and suppose that this variable is highly correlated with outcomes. In a Bayesian sense a woman
who has a miscarriage reveals herself to be of the type that is prone to have unprotected sex.
In that sense she is very similar to women with a high probability of becoming pregnant and
carrying the child to term and very di�erent from women who become pregnant only with
small probability. To turn this eye-balling of the plots in Figure 3 into a rigorous argument we
now take into account sampling error by applying our formal testing procedure. For both the
�rst and the second stage regression we choose an Epanechnikov kernel. To have good power
against local alternatives we choose q = 2. To keep the problem tractable and to reduce the
number of parameters we have to choose, we set gj = g and hj = h for all j. We then run the
test for a large number of bandwidth choices letting h vary between 0.1 and 0.5 and letting
g vary between 1 and 3. To determine the bounds of integration xj and x̄j we use the naive
sample equivalence approach suggested in Section 2.4 with di�erent values for cδ. Table 5 in
the appendix reports results for cδ = 0.05 and Table 6 reports results for cδ = 0.075. For these
two choices of cδ the test rejects at moderate to high signi�cance levels for a large range of
smoothing parameter choices.

Our approach can also be used to investigate other instruments that have been suggested in
the literature on teen pregnancies. For example, Z or S could be based on local variation in
abortion rates or in availability of fertility related health services (cf. Ribar 1994; Klepinger,
Lundberg, and Plotnick 1995).

2.7. Conclusion and Possible Extensions

So far, inference about heterogeneous treatment e�ect models mostly relies on theoretical
considerations about the relationship between instruments and unobserved individual charac-
teristics that are not investigated empirically. This paper shows that under the assumption
that a binary and a continuous instrument are available, a parameter is overidenti�ed. This
provides a way to test whether the model is correctly speci�ed. The overidenti�cation result
is not merely a theoretical curiosity, it has bite when applied to real data. We illustrate this
by applying our method to a dataset on teenage child bearing and high school graduation.

Apart from suggesting a new test, we also contribute to the statistical literature by developing
testing theory that with slight modi�cations can be applied to other settings where index
su�ciency holds under the null hypothesis. We accommodate an index that is not observed and
enters the test statistic as a nonparametrically generated regressor. This setting is encountered,
e.g., when testing the validity of the matching approach along the lines suggested in Heckman
et al. 1996 and Heckman et al. 1998. Heckman et al. 1998 employ a parametric �rst-stage
estimator. As a result, their second-stage estimator is, to �rst order, identical to the oracle
estimator. Our analysis suggests that replacing the parametric �rst-stage estimator by a non-
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or semiparametric estimator is not innocuous. In particular, it can a�ect the second-stage
bandwidth choice and the behavior of the test under local alternatives.

A theoretical analysis of our wild bootstrap procedure is beyond the scope of this paper.
Developing resampling methods for models with nonparametrically generated regressors is an
interesting direction for future research. We hope to corroborate the �ndings in our exploratory
simulations by theoretical results in the future.

To apply our method to a particular data set, additional considerations might be necessary.
In many applications the validity of an instrument is only plausible provided that a large set
of observed variables is controlled for. It is hard to accommodate a rich covariate space in
a completely nonparametric model. This is partly due to a curse of dimensionality. Another
complicating factor is that our testing approach has good power only if, for �xed covariate
values, the instruments provide considerable variation in participation. This is what allows
us to test the model for a wide range of unobserved types. Typically, however, instruments
become rather weak once the model is endowed with a rich covariate space. These issues can
be dealt with by imposing a semiparametric model. As an example, consider the following
simple variant of a model suggested in Carneiro and Lee 2009. We let X denote a vector of
covariates with possibly continuous components and assume that the unobserved type V is
independent of X. Treatment status is determined by D = 1{R≥V } with R = r1(X) + r2(S,Z).
The unobserved type a�ects the treatment e�ect and not the base outcome. The observed
outcome is

Y = µα(X) +D[µβ(X) + λ(V )].

The functions r1, µα and µβ are known up to a �nite dimensional parameter. A semipara-
metric version of our test would compare E[Dλ(V ) ∣ R = x,Z] in the Z = 0 and Z = 1
subpopulations. The fact that X is uninformative about V and the additive structure allow
for an overidenti�cation result that uses variation in X to extend the interval on which a
function is overidenti�ed. This contrasts sharply with Proposition 1 which relies on variation
in S keeping the value of covariates �xed. In terms of asymptotic rates this semiparametric
model with a large covariate space is not harder to estimate than our fully nonparametric
model with a small covariate space and there is no curse of dimensionality.

As seen in Section 2.6 plots of the quantities underlying the test statistic can be helpful in
interpreting test results and are a good starting point for discovering the source of a rejection.
In many applications it is plausible to assume that while instruments are not valid for extreme
types (types with a particularly low or high propensity to participate), they work well for the
more average types. The plots can be used to heuristically identify the subpopulation for
which instruments are valid. For a subpopulation that based on theoretical considerations is
hypothesized to satisfy instrument validity, our approach o�ers a rigorous way of testing the
correct speci�cation of the subpopulation.
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3. Consistency of Maximum Likelihood Estimation in a Latent

Space Model

3.1. Introduction

The purpose of this chapter is to prove weak consistency for maximum likelihood estimation
in a latent space model. In recent years, many authors have studied networks and have given
various very di�erent de�nitions of what they understand as networks. In my case, networks
are an environment where actors link to other actors. Data usually consist of nodes that form
links and an adjacency matrix that explains whether two nodes are connected or not. Possible
examples for networks are individuals who form friendships, �rms that collaborate or authors
who cite each other. In an application, I examine political internet blogs that hyperlink to each
other. A di�erent string of literature is concerned with actors who share a membership to a
particular community. Authors studied the e�ect of this membership (network e�ects or peer
e�ects). This work takes a step back and investigates whether and how clusters are formed
and which individuals end up between these clusters. In order to understand the e�ects in
networks, a fundamental step is to reveal which individuals are likely to form edges and which
are not. An other question is which nodes are likely to have a well-balanced linking behavior
that make them more interesting in some applications. This is further investigated in chapter
4. Observing more nodes and edges should improve the precision of the answers to the above
questions. Therefore, it is important to investigate whether the developed methods have this
consistency. I estimate unobserved characteristics of individuals that drive the probability of
a link. These characteristics are summarized in a Euclidean space which makes it possible to
evaluate which actors are close. I prove weak consistency of maximum likelihood estimation
up to a distance preserving transformation under the assumption that the number of possible
positions grows. In simulations and in an application about political blogs, I illustrate the
applicability of these �ndings.

Due to the uncommon structure of network data, analysis of asymptotic performance of esti-
mators in network models is a very recent �eld in statistics. Starting with Bickel and Chen
2009, more and more statistical papers are concerned with networks and their asymptotic be-
havior. One of the main �elds of research about networks relates to community detection. The
block model (cf.Wasserman 1994, Lorrain and White 1971, Fienberg and Wasserman 1981) is
the current standard model in statistics literature which deals with asymptotic results in net-
works. In block models, each node is assigned to usually �nitely many communities or blocks.
The probability of the presence of a link between two nodes solely depends on the community
the nodes are assigned to. Consistency of di�erent techniques that estimate this allocation
like maximum likelihood among others have recently been proven for di�erent setups with a
�nite number of blocks (Bickel and Chen 2009, Zhao, Levina, and Zhu 2012). Especially with
a small number of classes, block models do not seem to re�ect underlying heterogeneity of
actors very well. Zhao, Levina, and Zhu 2012 model heterogeneity of nodes within a block
through a degree correction. Another approach to allow for more heterogeneity is to model
mixed-memberships in a block-model. This path was taken by Airoldi et al. 2009. Nowicki and
Snijders 2001 estimate latent characteristics of blocks. They rely on Bayesian methods, have
to �x the number of blocks (number of blocks can be unknown in contrast to Bickel and Chen

35



2009, Zhao, Levina, and Zhu 2012) and do not prove asymptotic results.

In order to allow for more heterogeneity, a promising way is to use block models that admit a
growing number of classes. Yet, asymptotic results build on quite restrictive assumptions like
linear growing degrees or settings where some pre-knowledge of the estimators outcome has
to be assumed. Choi, Wolfe, and Airoldi 2012 allow for a growing number of classes. However,
they can only make statements about the number of incorrect class assignments for blocks
that already contain a majority of true nodes in their ML-estimate. Therefore, they show a
weak consistency result in the spirit of Zhao, Levina, and Zhu 2012 if the majority in each
class is known to be speci�ed correctly. To prove my �rst result, I use similar techniques. By
imposing a latent space structure on a block model, I will be able to show weak consistency
for a growing number of classes without these restrictive assumptions.
The string of literature concerned with latent space models goes back to Ho�, Raftery, and
Handcock 2002. In these models, nodes are assumed to have unobserved positions in a Eucli-
dean space and one aims to �nd them. Since actors are now allowed to have many di�erent
positions, heterogeneity can be modeled much better. The authors use Bayesian techniques to
estimate these positions. They form their prior according to maximum likelihood estimation,
but do not give further theoretical justi�cation for this step.
Handcock, Raftery, and Tantrum 2007 extend this model by estimating an underlying cluste-
ring structure. Among a Bayesian approach, they propose a 2-step ML-estimation procedure,
but do not prove asymptotic results. Ho� 2005 adds degree heterogeneity by introducing actor
speci�c random e�ects. Krivitsky et al. 2009 include all developments in one model. All of
these authors use Bayesian estimation.
The above latent space models su�er from the fact that positions in the Euclidean Space
can only be identi�ed up to a measure preserving transformation. Having an estimate of the
positions that re�ects their distances is nevertheless informative regarding which nodes have
similar characteristics (or are close in the Euclidean Space) and therefore form clusters and
which nodes are located between clusters.

Closely related to my work, Sussman et al. 2012 or Rohe, Chatterjee, Yu, et al. 2011 assume
an underlying latent space structure. They deal with clustering algorithms that consistently
estimate positions in a stochastic block-model with a number of blocks which increases. Suss-
man et al. 2012 use spectral clustering which is computationally more e�cient than maximum
likelihood estimation. Nevertheless, their results rely on settings with many links that seem
to be unrealistic in many applications. For example, assuming that the number of friends (or
connections) grows at the same rate as individuals in social networks becomes unrealistic for
a large number of individuals.
Tang, Sussman, Priebe, et al. 2013 discuss more sparse settings in a framework where they
observe a number of vertices tending to in�nity. This framework is called semi-supervised in
the literature.

This work merges block model literature with latent space literature in the sense that I use
methods from Choi, Wolfe, and Airoldi 2012 and Bickel and Chen 2009 to prove a type of
consistency of a maximum likelihood estimator concerned with the location in a latent space.
In contrast to other papers, I do not rely on semi-supervised settings, assumptions on the
realization of the estimator or dense networks. In addition, I use a data set on political blogs
that was collected by Adamic and Glance 2005 and check whether a previous sorting into two
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clusters made by Adamic and Glance 2005 and Zhao, Levina, and Zhu 2012 is reasonable.
Proofs to all results are deferred to the appendix.

3.2. Model and a Consistency Result for ML-Estimation in a Latent Space

My version of a latent space model is closely related to Ho�, Raftery, and Handcock 2002. As-
sume an unobserved characteristic of an agent i can be summarized by z0

i which is distributed
on K points {M1, . . . ,MK} ≡ M ⊂ Rd.M is bounded and called latent space. Concentrating
on mass points allows me to use proof methods from the block model literature. Relaxing this
assumption seems possible, but a direct adaption of the proofs would make a change of the
consistency notion necessary. Let N be the number of z0

i that are drawn. In my asymptotic
results I will let N tend to in�nity. I allow that the number of possible positions K (or KN )
grows with N while I will suppress the dependency on N . This should allow actors to be
more heterogeneous as the number of agents grows. Further, I assume ∣∣Mk1 −Mk2∣∣ > χN ,
where χN → 0. So the distance between all mass points is allowed to go to zero. Hence, the
mass points can also be interpreted as a grid that becomes �ner with growing N . Each actor
draws an Mk with probability P(z0

i =Mk) > c 1
K . Links between actors i and j are distributed

according to Bernoulli distributions with probabilities

PNij ≡ θz0i z0j ≡ ρN exp(−∣∣z0
i − z0

j ∣∣).

Since exp(−∣∣zi − zj ∣∣) > 0 ∀zi, zj ∈ M, the expected number of outgoing edges from one node
named degree is of order ρN N . Hence, ρN controls the degree of the graph. If ρN is constant,
the expected degree grows proportional to N . Thinking of nodes as individuals and edges as
friendships, it is unrealistic that the actual number of friends for one node grows at the same
rate as individuals in the network. This would mean that the circle of friends is a signi�cant
fraction of the whole network. Therefore, assuming a ρN that goes to zero at a reasonable
rate is appropriate in many real world applications. Many papers that are concerned with
consistency of spectral clustering and related clustering methods rely on the assumption of a
constant ρN or a ρN that goes to zero at a log(N)-rate. Thus, working with those methods
seems problematic in these settings, although clustering algorithms are computationally more
e�cient. A typical social network assumption is that ρN decreases at a rate of 1

N1−ε . The main
result will leave the choice of ρN open.
If ρN is constant, I will assume it to be smaller than one to ensure that links are not formed
with probability one or higher. The de�nition of PNij is based on the model of Ho�, Raftery,
and Handcock 2002. It creates a model where agents who are similar in the sense of a near
position in the latent space, are more likely to form links. Transitivity (if i and j and j and
k are linked, then it is likely that i and k are linked) is implicit, if we model links in that
manner.
The results in this chapter do not rely on the functional form of PNij . For P

N
ij = ρN f(∣∣z0

i −z0
j ∣∣)

and a strictly positive di�erentiable function f that has a strictly positive or strictly negative
derivative, the proofs work in exactly the same way. Only these attributes of the exponential
function are used.

Let z0 be the vector of true latent positions and the matrix (Aij)N×N denotes an adjacency
matrix according to z0. This matrix contains ones and zeros that indicate which actors are
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linked and which are not. I will not consider self-links, therefore Aii is set to zero. In addition,
the edges will be undirected in the sense that the adjacency matrix is symmetric (Aij = Aji).

The Log-likelihood function writes

L(A, z) ≡ ∑
i<j

Aij log(θzizj) + (1 −Aij) log(1 − θzizj)

and the likelihood estimate ẑ is the argmax z ∈ MN of this function. Since the presence of a
link from i to j (Aij = 1) leads to a zi-estimate which is closer to the zj-estimate and Ajk = 1 to
a zk-estimate which is closer to the zj-estimate, I automatically get a close zi and zk estimate.
Therefore, the estimated position of a node is not only in�uenced by its own links, but by all
connections in the network.
If I replace the Aij with their expected values, I write

L(P, z) ≡ ∑
i<j

PNij log(θzizj) + (1 − PNij ) log(1 − θzizj).

This oracle version of the likelihood will be helpful to put the estimated and the true distances
in relation. Furthermore, it illustrates an identi�cation problem. As mentioned in Ho�, Raf-
tery, and Handcock 2002, the latent positions zi are only identi�ed up to distance preserving
transformations. This is because the above maximization only depends on the distances of the
zi and not on their true location.
Yet, I am not interested in the exact location of the z0

i , but in their positions compared to
one another. Having a good estimate of an isometry of the z0

i is already very informative with
regard to clustering behavior of the network or centrality characteristics of a particular point.
Therefore, it is worthwhile to prove a result like the next Theorem.

Theorem 1

For bN = (K log(N)1+ζ) 1
2 ∣ log(ρN)∣ρ−1

N N and b
1
2
N/χN ≤ N , an isometry T exists such that

1

K b
1
2
N/χN

N

∑
i=1

1{z0i ≠T ẑi}
= op(1).

The above result shows that the frequency of misspeci�ed points in the ML-estimates tends
to zero. This is further discussed after the next corollary. Theorem 1 is high-level in the
sense that it does not specify the rates of K, χN and ρN . I consider this to be useful, since
for di�erent applications, contrasting sparsity assumptions are reasonable. For a more dense
graph, a higher rate of K is possible. If one believes the nodes to have very close positions, it
might be reasonable to let χN tend to zero faster. In the following, I will discuss three di�erent
setups, that were introduced in the literature in recent years.
The consistency concept coincides with the one of weak consistency in Zhao, Levina, and Zhu
2012. They use maximum likelihood estimation. I get the same results assuming a similar rate
for ρN and constant K (ρN = 1

N log(N)2, instead of the log they just need some cN →∞).

Corollary 2

For ρN = 1
N log(N)2 and constant K, an isometry T exists such that,

1

N

N

∑
i=1

1{z0i ≠T ẑi}
= op(1).
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The interpretation of this type of consistency is that the number of misspeci�ed ẑi up to an
isometry does not grow as fast as the number of nodes. The ratio of misspeci�ed agents goes
to zero.
This gap becomes greater as the degree of the graph, and therefore ρN increases.
Choi, Wolfe, and Airoldi 2012 also use maximum likelihood estimation and allow for a growing
number of blocks. If I assume the same rates for the degree of the graph and growth of the class
sizes as they do, I can derive the same consistency result for K growing at a

√
log(N)-rate.

Corollary 3

For ρN = 1
N log(N)4 and K =

√
log(N), an isometry T exists such that,

1

N

N

∑
i=1

1{z0i ≠T ẑi}
= op(1).

In comparison, they derive their result for a N
1
2 -rate for K. Yet, my result holds true for

the number of misspeci�ed points after a distance-preserving transformation, whereas their
statement only detects nodes whose true class under z0 is not in the majority within its
estimated class ẑ. Therefore, they show a weak consistency result in the spirit of Zhao, Levina,
and Zhu 2012 if the majority in each class is speci�ed correctly under ẑ. An estimator up to
a distance-preserving transformation is very appealing, because close points as well as central
points stay close and central.
Sussman et al. 2012 use a setting which is similar to mine, in the sense that they also augment
a block model with a latent space structure. The authors use a clustering method to detect
class memberships. They do not assume the space to be bounded and use a clustering method
to detect block a�liation. Furthermore, they leave the probability open with which a node
is assigned to a mass point. The authors do not derive their main theorem for an increasing
number of blocks, but explain in their possible extensions chapter how one can translate their
results to this setup. Assume they use exactly my setting so a compact latent space and each
mass point Mk arises with probability larger than c 1

K . Assuming further like the authors
do that ρN is constant and (to my understanding) the highest rate for K possible with their
methods and these assumptions. Then, I can translate their main result to maximum likelihood
estimation and conclude the following corollary.

Corollary 4

For a constant ρN and K = N 1
7 , an isometry T exists such that,

1

N

N

∑
i=1

1{z0i ≠T ẑi}
= op(

log(N)
N

1
4

).

In this setup, Sussman et al. 2012 can only derive this expression at a 1

N
1
8
-rate. Hence, I

am able to prove that the number of misspeci�ed ẑi decreases faster. Nevertheless, spectral
clustering like methods are computationally much more e�cient. However, a major drawback
of clustering methods is the assumption of a constant ρN which is equivalent to a linearly
growing degree of the graph. Hence, one has to decide whether a restrictive setting with a
constant ρN is reasonable in order to apply consistent clustering methods. In the next section,
I will examine the performance of maximum likelihood estimation in simulations.
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(a) True latent positions (b) Estimated latent positions

Figure 4: Figures of Latent Space True Positions and Estimates

3.3. Simulations

In this section, I want to further investigate �nite sample properties of the above introduced
estimation technique. Thus, I will simulate two 2-dimensional latent spaces and see how well
the maximum likelihood estimator can reveal their structure. Further examples are discussed
in chapter 4.

I draw 60 z0
i from three normal distributions N(a,(0.3 0

0 0.3
)), where a is ( 1

0.5
) or ( 3

2.5
),

each with probability 0.45 and ( 2
1.5

) with probability 0.1. I �x ρN = exp(−0.01) and use
the corresponding probabilities to simulate an adjacency matrix A. The average number of
links for one node is 14.8 and it ranges from 4 to 22. I can then set up the log-likelihood-
function and use generalized simulated annealing to �nd the maximum likelihood estimate.
Generalized simulated annealing is an optimization algorithm that uses jumps to detect a
global optimum. These jumps are drawn from wisting distribution that is Gaussian (classical
simulated annealing) or Cauchy-Lorentz (fast simulated annealing) for di�erent parameter
choices. I use the parameters recommended by Tsallis and Stariolo 1996. The corresponding
true latent space has three clusters which are closely spaced. In �gure 4, I indicated the
di�erent groups by colors. The points that were originally concentrated around ( 1

0.5
), ( 2

1.5
)

and ( 3
2.5

) are colored black, red and blue. The simulated positions create the true latent space
in �gure 4(a). In this framework, we know the true dimension of the unobserved space and
therefore set it to two. The estimates which are illustrated in �gure 4(b) suggest that even for
a small number of 60 nodes the estimates seem to resort the nodes quite well back into their
clusters. The fact that the clusters of the estimated positions are correctly ordered from left
to right happened by chance. As mentioned in the previous section, rotating the estimates by
180 degrees would have led to the same likelihood function value. In a further simulation, I
change the diagonal elements of the variance-covariance matrix to 0.05 and pick a = ( 1

0.5
) and

a = ( 3
2.5

) with probability 0.5. Thus, the true latent space has two large clusters. I draw 90
points. Here, the average number of links for a node is 32.9.

Figure 5 shows that with 90 points and a clear community structure the maximum likelihood
estimator recognizes the clusters even better than in the setup with sixty points and some
points between the two groups. Thus, if the number of groups is unknown, estimating latent
positions can be informative.
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(a) True latent positions (b) Estimated latent positions (c) Estimated latent positions den-
sity estimator

Figure 5: Figures of Latent Space True Positions and Estimates

3.4. Application

In this section, I illustrate the applicability of the methods introduced above using real-world
data. I estimate the locations of the zi as well as the central node between clusters for a data
set that describes the hyperlinks between political blogs in the US. The illustration and dis-
cussion of the central node will follow in the next chapter. This data set was �rst collected by
Adamic and Glance 2005 in order to measure the degree of interaction among political blogs
during the 2004 U.S. election. They retrieved front pages on February 8, 2005 and Februa-
ry 22, 2005 and counted blog-references. Their data set contains 1494 blogs in total. In this
application, I focus on the 80 most referenced blogs. The maximum number of edges for one
block is 41, the minimum number is 11. On average, the number of links to each block is 29.
This can be considered as a dense graph.
Adamic and Glance 2005 use self-reporting, automated categorization and manual labeling to
mark their data points as liberal or conservative. Zhao, Levina, and Zhu 2012 use the same
data set to illustrate ML-estimation for degree-corrected stochastic block models with a �xed
number of two blocks.
They try to consistently estimate the block a�liation of each blog. Hence, they also postu-
late that the data set can be divided into two groups. The latent space approach improves
these illustrations by giving further insights about the clustering intensity. Furthermore, it is
bene�cial to see which of the conservative blogs is the most liberal one and vice versa.

Following the literature on political spaces in Europe (Kriesi et al. 2006 and Bornschier 2010),
I assume that two is the appropriate dimension for a latent space of political a�liation. I �x
ρN = exp(−0.01) and restrict the latent space to be distributed on [−5,5]2 as in the simulations.
In �gure 6, I illustrate the estimates of the 80 blogs.

The estimated latent positions reinforce the classi�cation in two clusters made by Adamic and
Glance 2005 and Zhao, Levina, and Zhu 2012. I have colored the blogs that are reported to
be liberal by Adamic and Glance 2005 in red. Therefore, my estimates can be understood as
evidence that their labeling is also re�ected in the hyperlinking behavior. As mentioned by
Adamic and Glance 2005, the conservative blogs seem to have a stronger linking culture. This
is re�ected in the positions, because they form a cluster that is concentrated on a smaller
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Figure 6: Top 80 Blogs Estimated Positions (2-dim)

area. Hence, the estimated probability of forming a link between two conservative blogs is
higher. Since we can observe clustering into two groups, it is reasonable to look for a blog that
seems to provide a balanced discussion of opinions from the di�erent groups. This question is
investigated in the next chapter.
One of the tuning parameters is the dimension of the political space. Obviously, one wants to
avoid introducing unnecessary complexity. The arising question is whether a one dimensional
latent space would reveal the clustering behavior equally well. Hence, I used the same method
as above assuming a one dimensional space.

Inspecting the corresponding estimates in �gure 7, I conclude that in the one dimensional
space the grouping into conservative and liberal clusters is less obvious. Thus, if one believes
the sorting of Adamic and Glance 2005 to be correct, the estimation in a one dimensional space
does not seem to capture the whole picture. Furthermore, I report an illustration of estimated
positions in a three dimensional latent space in the appendix. It does not substantially di�er
from the two dimensional case.
As a validity check, I create an adjacency matrix for the blogs with link-ranking 101 to 180.
This illustration is likely to give a misleading picture, because the linking behavior to the top-
80-blogs cannot be modeled here. As a consequence, no clear clustering can be identi�ed.

3.5. Conclusion and Future Work

In this chapter, I proved a consistency result for ML-estimation in a latent space model. Fur-
thermore, I showed how this result generalizes similar results from the block-model literature.
In addition, I illustrated the usefulness of my results in an application concerned with political
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Figure 7: Top 80 Blogs Estimated Positions (1-dim)

blogs and simulations. My estimates indicate that the previous sorting into two clusters is also
re�ected in the blogs' linking behavior.
There are several natural extensions to the above model. Until now, I focused on undirected
networks, whereas, it would be interesting to investigate how the above results translate into
directed networks.
A huge weakness of maximum likelihood estimation is that its optimization is computationally
very expensive. Due to those problems, it is worthwhile to look deeper into pseudo-likelihood
methods (Amini et al. 2013) that improve e�ciency and exploit a latent space structure as
well. Deviating from Ho�, Raftery, and Handcock 2002, I do not model observed covariates
explicitly which is a useful extension of the model. Nevertheless, the asymptotic results dis-
cussed above do not use covariates either.
Recently, more and more literature is concerned with so called graphon estimation (Airoldi,
Costa, and Chan 2013, Wolfe and Olhede 2013, Chan and Airoldi 2014). Authors estimate
the probability of a link between two nodes and assume that nodes have a characteristic on a
unit interval that drives this probability. Chan and Airoldi 2014 propose a sorting algorithm
to deal with identi�cation problems.
Taking into account these non-parametric approaches, it seems reasonable to introduce a two
stage density estimator and prove consistency. This density estimate could also be revealing
for the overall clustering behavior.
I understand this paper as a �rst step to prove a consistency result in a framework where the
z0
i are not concentrated on mass points. Unfortunately, the proofs cannot be adjusted easily.
It seems possible to extend the setting to a model with weighted links by using a weighted
adjacency matrix instead of the conventional one.

43



Figure 8: Blogs with Linking Ranks 101 to 180 Estimated Positions

One of my aims is to specify which nodes are in clusters and which are in between. The
following chapter introduces methods to answer this question. Furthermore, I prove that the
solutions are theoretically well behaved and independent of the isometry T .
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4. A New Network Centrality Measure

4.1. Introduction

In this chapter, I introduce a new method to detect actors who connect clusters and therefore
play an important role in a network. The method de�nes a novel measure of centrality that
makes explicit use of a latent space structure. Furthermore, I provide theoretical evidence of
asymptotical correctness of a chosen central point. In many applications it is worthwhile to
identify which nodes are likely to have a well-balanced linking behavior. Examples where it
is bene�cial to �nd such an actor who has this balanced linking between groups include the
revealing of good intermediaries in a market or the identi�cation of individuals that transmit
a disease. In other situations, it is worthwhile to �nd actors who have a neutral position and
are therefore suited to resolve a con�ict between two opposing groups. Ward, Siverson, and
Cao 2007 stress the importance of unobserved latent positions when analyzing militarized
interstate disputes. Finding a central point in these latent spaces is of interest as well. In
section 4.4, I investigate internet blogs which are assumed to belong to two di�erent political
a�liations. Blogs that are located in between these camps might o�er a more di�erentiated
view.
Estimating consistently the unobserved positions with the methods of Chapter 3 allows me to
distinguish which nodes share similar characteristics and can therefore be sorted into di�erent
groups. I introduce a measure of centrality that aims to identify nodes that bridge the gap
between these clusters.

By augmenting a block model with a latent space, I gain structure that suggests a natural
approach to reveal which nodes are inside and which nodes are between clusters. Identifying
which nodes are central is not a new question in the economic networks literature. Resear-
chers have developed many di�erent concepts to �nd nodes that are central in di�erent senses.
Among many others, degree centrality, closeness, di�usion centrality (Banerjee et al. 2013),
betweenness (Freeman 1977, Anthonisse 1971), Katz prestige (Katz 1953) and eigenvector
centrality ( Yu and Sompel 1965) are measures that are commonly used (cf. Jackson 2010).
Furthermore, Bonacich 1987 and Ballester, Calvó-Armengol, and Zenou 2006 contributed algo-
rithms to �nd key players. These measures declare nodes to be central depending on di�erent
notions of centrality. The authors detect nodes which lie on many shortest paths (are import-
ant for many connections that do not share a direct link) or they try to understand which
nodes have many well-connected neighbors. The nature of these measures makes them likely
to stay within a particular cluster, because there they are connected to many other nodes. The
new measure exploits the latent space structure and intends to �nd nodes that are between
clusters or have a balanced linking behavior between them. The latent space model allows to
sort some agents into classes without forcing those nodes being in the middle to choose sides.
Even if there is a clear sorting, it will remain possible to identify the actors who are closest
to the other cluster. Therefore, this model is ideal to solve the above problem. In comparison
to the conventional measures, the new measure uses all information available in the adjacency
matrix to determine the position of a node.

In the next section, I will de�ne the new measure of centrality on latent spaces and prove
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a type of consistency for this measure. In a section concerned with simulations, I compare
this measure to other common centrality concepts, namely betweenness, di�usion centrality
and eigenvector centrality. The new measure is tailored to identify the node that is central
between distinct clusters. First simulations indicate that it is superior to the above measures
in settings where this clustering structure is present. For the application discussed in Chapter
3, I detect a political blog that has a well-balanced linking behavior to blogs with di�erent
unobserved characteristics. Proofs to all results are deferred to the appendix.

4.2. Midpoints between Clusters

In this section, I introduce a concept of centrality tailored to models that have an underlying
latent space structure and are estimated by maximum likelihood estimation. The measure is
especially useful if agents form more than one cluster. For quite some time, many authors
introduced concepts that tried to measure the centrality of nodes. Among other, they focus on
concepts concerned with the number of edges starting from a node (degree-centrality) or the
frequency with which nodes showed up on shortest paths (betweenness). In some applications,
positions of interest are believed to cluster (Handcock, Raftery, and Tantrum 2007). The
conventional measures of centrality favor points that have other points close by. The reason
is that this position results in many links and more appearances on shortest paths within a
particular cluster. Hence, these measures are likely to be located in a cluster. Furthermore,
these measures do not necessarily use all links in the adjacency matrix. For example, the
number of shortest paths for a particular actor does not necessarily change when some links
are added or deleted. This might be a loss of available information. In the estimation of the
latent positions, this information is implicitly used for every node.

I will use the model introduced in chapter 3. Thus, I assume that actors have positions on
an unobserved Euclidean space. This o�ers a natural way to specify which individuals are
close enough to form a cluster and which actors are halfway between these. I o�er a concept
that indicates which points have a well-balanced number of edges to several groups. First,
one identi�es clusters according to the estimated latent positions. The following de�nition
characterizes a cluster.

De�nition 2 (γ-Cluster) A set of points forms a cluster Cγ if

a.) for each zi ∈ Cγ, there exists a zj ∈ Cγ such that ∣∣zi − zj ∣∣ < γ

b.) there exists no zk ∉ Cγ and zi ∈ Cγ such that ∣∣zi − zk∣∣ < γ

A reasonable extension of this de�nition is to bound the number of minimal members from
below. This makes the de�nition controllable to the size of a cluster a practitioner cares about.
Especially in medium sized settings, it is reasonable not to speak of a cluster when just two
or three nodes are close. The minimal number of actors contained in a cluster depends on the
particular application.
I derive an obvious corollary from Theorem 1 which indicates that revealing clusters Cγ of
estimates is meaningful.
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Corollary 5

For a γ-cluster Cγ, bN = (K log(N)1+ζ) 1
2 ∣ log(ρN)∣ρ−1

N N , b
1
2
N/χN ≤ N and the same isometry

T as in Theorem 1, it holds that

1

K b
1
2
N/χN

∑
zi∶ẑi∈Cγ

1{T−1 z0i ∈Cγ}
= op(1).

Corollary 5 shows that the ratio of nodes which are not assigned to the correct cluster tends
to zero. Di�erent de�nitions of clusters would be possible, but lead to similar results. With
this in mind, we can now calculate the midpoint of a particular cluster which pins down the
location of the cluster.

De�nition 3 (Cluster Midpoint) For a cluster Caγ de�ne ca = 1
∣Caγ ∣
∑zi∈Caγ zi as the cluster mid-

point of Caγ .

The cluster midpoints of the maximum likelihood estimate ẑ can be related to the true z0 in
the sense of corollary 6. It shows that calculating the cluster midpoints of the ẑ informs us
about the z0 midpoints.
Corollary 6

Let T be the isometry from Theorem 1. Then, for each cluster midpoint ĉa of the ẑ-clusters

Caγ , there exists a z
0-cluster Ca,0γ such that

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
ĉa − 1

∣Ca,0γ ∣
∑

z0i ∈C
a,0
γ

T−1z0
i

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
= op(1),

where ∣Ca,0γ ∣ denotes the number of elements in Ca,0γ .

This corollary illustrates that the in�uence of the misspeci�ed points on the cluster midpoints
does not matter asymptotically. This is true for all clusters which leads to the next de�nition.
In the last step, I identify the node closest to the midpoint between clusters.

De�nition 4 (Midpoint between γ- Clusters) We say a node is a midpoint between clusters if

its position is the closest to the arithmetic mean of cluster midpoints.

�Closest position� means that it has the smallest Euclidean distance. Due to the concentration
on mass points, the position of the midpoint between clusters is unlikely to be located exactly
on the arithmetic mean between the cluster midpoints. Nevertheless, it is sensible to examine
how well the new measure performs asymptotically. The following Theorem suggests that
regardless of the isometry that was used in the above results, this choice is a good one.
Theorem 7

Let Ĉ be the set of indices for which ẑi = ẑmid, where ẑmid is the position of the midpoint

between clusters of the estimated positions. Under the assumptions of Theorem 1 and for all

ε > 0
1

∣Ĉ∣
∑
i∈Ĉ

1
{∣∣∣∣z0i − 1

A ∑
A
a=1 c

a,0∣∣−∣∣z0
mid

− 1
A ∑

A
a=1 c

a,0∣∣∣∣>ε}
= op(1),

where z0
mid is the position of the midpoint between clusters of the true locations.
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This statement can be understood in the following way: Take a node i that has a position
associated with the midpoint between clusters. The distance of the arithmetic mean of the
true clusters to the true location of i di�ers less than ε from the distance of the arithmetic
mean to the true midpoint between clusters. The share of nodes for which this statement is
not true tends to zero.
Thus, if the points ofM form a grid that becomes �ner, the share of nodes for which the true
location of the estimated midpoint between clusters are not close to the position of the true
midpoint between clusters becomes in�nitely small. In other words, if one randomly picks a
midpoint between clusters, the likelihood that it is far away from the true midpoint goes to
zero. The statement of Theorem 7 holds true independent of the way the estimated points
were transformed. Therefore, the new measure is meaningful despite the identi�cation problem
pointed out in chapter 3.

It is worthwhile to limit the number of clusters, such that one can �nd a node that bridges
the gap between particular point clouds. One can also form the following intuition: The above
procedure reweights the data according to the size of their cluster. Data points that have many
other points in their neighborhood are weighted down, because they can easily be substituted.
If I assume that the z0

i are distributed on mass points, each mass point forms a cluster.
Nevertheless, mass points that are close to each other will still form clusters with more than
one mass point and the above methods are reasonable.
A natural idea of a centrality measure on a latent space is to take the arithmetic mean over
all ẑi. Again, under mild conditions one can prove that a central node determined that way is
asymptotically a correct choice compared to the arithmetic mean of the true latent positions
z0
i . Nevertheless, my aim is to �nd a node that bridges the gap between clusters. With this
goal in mind, the arithmetic mean does not work well when the number of nodes that are
contained in the groups di�er substantially. In this situation, the arithmetic mean would have
been likely to declare a point in the bigger cluster as central. The application in this chapter
can be considered as an example where it is unlikely to �nd equally sized clusters. As Adamic
and Glance 2005 point out, the conservative blogs link more frequently. Thus, more than half
of the most cited eighty blogs are conservative.
In the next chapter, I investigate how well this measure works when the underlying model is
indeed a latent space model.

4.3. Simulations

In this section, I want to further examine �nite sample properties of the above introduced
centrality measure. It should also help to understand the di�erence between the new measure
and other measures which are commonly used in the literature. I am motivated by scenarios
where agents form two or more clusters which are connected by single actors between them.
Therefore, I simulated some of these scenarios which have di�erent location distributions of z0

i

in a latent space. First, I assume that the latent space can be represented by [−5,5]2. I draw

60 z0
i from three normal distributions N(a,(0.05 0

0 0.05
)), where a is ( 1

0.5
) or ( 3

2.5
), each with

probability 0.45 and ( 2
1.5

) with probability 0.1. This setup results in two distinct clusters and
a few points between these (see �gure 9(a)). I �x ρN = exp(−0.01) to simulate a corresponding
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adjacency matrix A. The probability of an edge between two nodes is usually above 0.5 if
the 2 nodes are in the same cluster. If they are in two distinct ones, the probability will be
around 0.1. Furthermore, the probability of a link from a point in the middle to a node in
one of the clusters is between 0.15 and 0.4. The average number of links for one node is 20.6
and it ranges from 11 to 28. I can then set up the log-likelihood-function and use Generalized
Simulated Annealing to �nd the maximum likelihood estimate. Again, I use the parameters
recommended by Tsallis and Stariolo 1996. Thereafter, I identify the midpoints between γ-
clusters. In this setting, I choose γ = 0.7 which is equivalent to assuming that the probability
of forming a link for two nodes that connect themselves as a cluster is larger than 0.5. This is
just an ad hoc criterion. A good choice of γ depends on the particular application in mind.
In �gure 9, I illustrate how well estimates work for this sample size.

(a) True latent positions (b) Estimated latent positions

(c) Estimated latent positions (true mid-cluster-points
(red))

(d) True latent positions with centrality points colou-
red

Figure 9: Figures of Latent Space True Positions and Estimates

The estimates create a picture (�gure 9(b)) that re�ects the overall structure with two larger
clusters (�gure 9(a)) quite well. Furthermore, the estimates reveal which points are located in
the middle. To illustrate this, I have colored the points that were drawn from the distribution
with expected value ( 2

1.5
), red (see �gure 9(c)).
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In 9 (d), I illustrate the performance of the di�erent measures of centrality. As expected,
betweenness, di�usion centrality and eigenvector centrality (purple, green, red) are located
within one of the two clusters, whereas the midpoint between clusters (orange) coincides with
a point in between. If a point in between the true groups is the point of interest, the new
measure works well.
To see whether the above observations hold true under more sparse networks, I simulate two
additional settings. In the �rst one, I choose the diagonal elements in the variance covariance
matrix to be 0.3 instead of 0.05 (example also discussed in chapter 3). This creates a situation
where nodes within a cluster are less likely to form links. In the second setting, I assume the
midpoints of the clusters to be located at ( 1

0.5
) and ( 5

4.5
) and that the midpoints are placed

around ( 3
2.5

). Hence, nodes are less likely to be connected between clusters. The average number
of links for one node in the second setting decreases to 11.6 and ranges between 19 and 4. The
framework that makes detection of clusters and true central points hardest is the �rst of the
sparse settings. The true latent positions and the corresponding estimates are illustrated in
�gure 10 and �gure 11.

Figure 10 shows that the ML-estimator still recognizes the structure of the two groups. It
also illustrates the weaknesses of the new centrality measure. For my choice of γ(= 0.7) and
bounding the minimal number to three, the estimator �nds three clusters. The consequential
midpoint between clusters does not look convincing in the true latent space. This stresses
the importance of a well chosen γ to make the concept applicable. Nevertheless, limiting the
focus on two classes leads to a convincing central node. Moreover, the arithmetic mean over
positions would do a good job here.
Figure 11 is in line with the results from �gure 9. The two points whose true positions are
located in the center of the latent space have the same estimated position. To estimate the
midpoint between clusters, I focused on groups that contain three or more nodes (I detected
two �clusters� with two points that were close by).

4.4. Application

In this section, I discuss how the new centrality measure can be exploited in the context of the
application from chapter 3. As reviewed above the data set collected by Adamic and Glance
2005 deals with political blogs in the U.S.. The political system as well as my estimates in
chapter 3 suggest that the blogs can be sorted into two clusters. In the interest of learning
a di�erentiated point of view, it is bene�cial to identify the blogs which pick up di�erent
opinions from various political blogs. The new measure of centrality seems to be tailored to
exactly this problem. As above, I will use the 80 most popular blogs. The γ which de�nes the
clusters will be set to 0.7. According to the discussion in chapter 3, the reasonable dimension
of the political space seems to be two. Adamic and Glance 2005 emphasize that conservative
blogs are more likely to hyperlink each others' pages. Hence, one can expect to �nd more
conservative blogs. As mentioned above, a centrality measure based on the arithmetic mean
of the estimated latent positions might be problematic to detect a neutral blog.

Since I do not know the true positions, I illustrate the position of the di�erent measures of
centrality in the latent space with estimated positions (see �gure 12).
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It is not surprising that measures which are based on the degree of the node or the neighbors
are in the conservative cluster where many links are formed. According to the picture created
by the estimated positions, betweeness and the midpoint between clusters seem to work well.

4.5. Conclusion and Possible Extensions

I exploited the latent space structure to introduce a new measure of centrality. I proved that
it asymptotically works well and showed that it has desirable features in many �nite sample
applications. I used my novel measure of centrality to detect a political blog whose links are
well-balanced. This blog discusses di�erent opinions and is therefore probably more interesting
than other blogs. It kind of uni�es the spectrum of possible opinions, and therefore shows what
is at the center of discussions.

Obviously, the measure mentioned above is not the only reasonable choice for a centrality
measure which exploits the latent space structure. One option would be to use the arithmetic
mean of the positions. Most of the asymptotic results will become easier to prove for this
measure. I did not focus on this approach because I was also interested in bridging the gap
between a huge and a small cluster.
Another possibility would be to de�ne clusters such that no two points within a cluster are
allowed to be too far away from each other. I decided against using this de�nition because it
is likely to lead to overlapping clusters which can cause problems.
In addition, one can bene�t from the estimated latent position by identifying other charac-
teristic nodes. For example it is helpful to detect the central point of a cluster or to �nd the
actors in a group who are farthest away from each other.
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(a) True latent positions (b) Estimated positions

(c) Estimated positions (densities) (d) True latent positions with centrality points colou-
red

Figure 10: Figures of Latent Space and Estimates (Sparse Setting 1)
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(a) True latent positions (b) Estimated latent positions

(c) Estimated positions (densities) (d) True latent positions with centrality points colou-
red

Figure 11: Figures of Latent Space True Positions and Estimates (Sparse Setting 2)

Figure 12: Top 80 Blogs Estimated Positions with Centrality Measures
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Appendix

A. De�nition of Estimators

Let Lg(⋅) = g−1L(⋅/g) and Kh(⋅) = h−1K(⋅/h). For the �rst-stage estimator set r̂z,j(s) = a0,
where a0 satis�es

(a0, . . . , aq) ∈ arg min(a0,...,aq)∈Rq+1 ∑
i∶Zi=z,Ji=j

(Di − a0 − a1(Si − s) −⋯

− aq(Si − s)q)
2
Lg(Si − s).

For the second-stage estimator set m̂z,j(x) = b0, where b0 satis�es

(b0, b1) ∈ arg min(b0,b1)∈R2 ∑
i∶Zi=z,Ji=j

(Yi − b0 − b1(r̂z,j(Si) − x))
2
Kh(r̂z,j(Si) − x).

B. Proofs of Treatment Chapter

Proof of Proposition 2

The proposition follows from a sequence of lemmas. We �rst prove that the second-stage
regression function and the error terms from the �rst- and second-stage regressions behave
nicely under our assumptions about the primitives of the model.

Assumption 3 For each z ∈ {0,1}

(i) mz is twice continuously di�erentiable on (xL, xU).

(ii) there is a positive ρ such that Ez[exp(ρ ∣ζ ∣) ∣ S] and Ez[exp(ρ ∣ε∣) ∣ S] are bounded,

(iii) σ2
ζ,z(x) = Ez[ζ2 ∣ rz(S) = x], σ2

ε,z(x) = Ez[ε2 ∣ rz(S) = x], and σεζ,z(x) = Ez[εζ ∣ rz(S) =
x] are continuous on (xL, xU).

Lemma 1

Assumption 1 is su�cient for Assumption 3.

Proof The lemma follows from plugging in the structural treatment model into the observed

quantities and arguing similarly to the proof of Proposition 1.

In the next lemma we give a complete description of the relevant properties of our �rst-stage
estimator. We provide an explicit expression of a smoothed version of the �rst-stage estima-
tor that completely characterizes the impact of estimating the regressors on the asymptotic
behavior of the test statistic.
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Lemma 2 (First stage estimator)

The �rst stage local polynomial estimator can be written as

r̂z(s) = ρn(s) +Rn,

where

sup
s

∣Rn∣ = Op
⎛
⎝
gq+1

√
logn

ng
+ logn

ng

⎞
⎠

and ρn is given explicitly in equation (8). Wpa1 ρn is contained in a function class R that for

some constant K, any ξ > 5
4η

∗ − 1
4 and all ε > 0 can be covered by K exp(nξε−1/2) ε-balls with

respect to the sup norm. The true propensity score is contained in R. Furthermore,

−m′(x)∫ Kh(rz(s) − x)(r̂z(s) − rz(s))fS∣Z=z(s)ds =
1

n
∑
i∶Zi=z

ψ
(2)
n,z,i(x) + op(n

−1/2),

with ψ
(2)
n,z,i as de�ned in Lemma 3. Moreover,

sup
s

∣r̂z(s) − rz(s)∣ = Op (n−
1
2
(1−η∗)) .

Proof Throughout, condition on the subsample with Z = z. Let e1 = (1,0, . . . ,0)⊺ and µ(t) =
(1, t, . . . , tq)⊺. Furthermore, de�ne

M̄n(s) = Eµ(Si − s
g

)µ⊺ (Si − s
g

)Lg(Si − s).

Since we de�ned g in terms of the total sample size it behaves like a random variable when we

work conditionally on the subsample Z = z. We have g = ann−η
∗

z +Op (n−
1
2
−η∗) for a bounded

deterministic sequence an. From a straightforward extension of standard arguments for the

case of a deterministic bandwidth (c.f. Masry 1996) it can be shown that r̂z can be written as

r̂z(s) = ρn(s) +Rn,

where

ρn(s) = rz(s) + gq+1bn(s) + e⊺1M̄−1
n (s) 1

n
∑
i

µ(Si − s
g

)Lg(Si − s)ζi, (8)

bn is a bounded function and Rn has the desired order. To show that the desired entropy

condition holds, note that M̄n is a deterministic sequence that is bounded away from zero so

that it su�ces to derive an entropy bound for the functions

1

n
∑
i

µ(Si − s
g

)Lg(Si − s)ζi.

Wpa1 these functions have a second derivative that is bounded by
√
n−1g5 logn. The desired

bound on the covering number then follows from a straightforward corollary to Theorem 2.7.1

in Vaart and Wellner 1996. To prove the statement about the smoothed �rst stage estimator

note that under our assumptions we only have to consider the smoothed error term

1

n
∑
i∶Zi=z

ψ∗n(x,Si)ζi,
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where

ψ∗n(x, s) = −m′(x)∫ Kh(rz(u) − x)e′1M̄−1
n (u)µ(s − u

g
)Lg(s − u)fS∣Z=z(u)du

= −m′(x)∫ Kh(rz(s − gu) − x)e′1M̄−1
n (s − gu)µ(u)L(u)fS∣Z=z(s − gu)du.

Since fS∣Z=z is bounded and has a bounded derivative there is a function Dn(s, u) bounded

uniformly in s, u and x satisfying

M̄−1
n (s − ug)f(s − ug) −M−1 = gDn(s, u).

By standard kernel smoothing arguments

1

nz
∑
i∶Zi=z

{∫ Kh(rz(Si − ug) − x)Dn(Si, u)µ(u)L(u)du} ζi = Op
⎛
⎝

√
logn

nh

⎞
⎠
.

Noting that L∗(u) = e⊺1M−1µ(u)L(u) we have

1

n
∑
i∶Zi=z

ψ∗n(x,Si)ζi =
1

n
∑
i∶Zi=z

ψ
(2)
n,z,i(x) + op(n

−1/2).

Next, we give an asymptotic expansion of the integrand in (4) up to parametric order. The
result states that the integrand can be characterized by a deterministic function that summa-
rizes the deviation from index su�ciency under the alternative and an asymptotic in�uence
function calculated under the hypothetical modelMnull.

Lemma 3 (Expansion)

Uniformly in x

m̂0(x) − m̂1(x) = ∆K,h(x) +
1

n
∑
i

ψn,i(x) + op(n−
1/2)

where ψn,i = ψ(1)
n,i + ψ

(2)
n,i and ψ

(j)
n,i = ∑z=0,1ψ

(j)
n,z,i, j = 1,2,

ψ
(1)
n,z,i(x) =

1{Zi=z}(−1)z

pzfR,z(x)
Kh(rz(Si) − x)εi,

ψ
(2)
n,z,i(x) = −m

′(x)
1{Zi=z}(−1)z

pzfR,z(x) ∫
Kh(rz(Si − gu) − x)L∗(u)du ζi.

Here εi = Y null − E[Y null ∣ rZ(S)], i.e, εi is the residual under the hypothetical model Mnull,

and L∗ denotes the equivalent kernel of the �rst step local polynomial regression.

Proof The statement follows from an expansion of m̂z. Work conditionally on the subsample

with Z = z and let nz denote the number of observations in the subsample. To avoid confusion,

we write hn for the second-stage bandwidth, as h will sometimes denote a generic element of

a set of bandwidths. Let hz = n−ηz . Note that for C large enough hn is contained in the set

Hnz = {h′ ∶ ∣h′ − hz ∣ ≤ Cn−1/2−η
z }
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wpa1. Let e1 = (1,0)⊺, µ(t) = (1, t)⊺ and

M r
h(x) =

1

n
∑
i∶Zi=z

µ((r(Si) − x)/h)µ⊺((r(Si) − x)/h)Kh(r(Si) − x).

For arbitrary Rn-valued random variables W de�ne the local linear smoothing operator

Krh,x,zW = e⊺1 (M r
h(x))

−1 1

nz
∑
i∶Zi=z

Wiµ(r(Si) − x
h

)Kh(r(Si) − x).

Decompose the estimator as

m̂z(x) =Kr̂hn,x,zY
n +Kr̂hn,x,z {(Y

n − Y null) −E[Y n − Y null ∣ S,Z]}
+ Kr̂hn,x,z E[Y n − Y null ∣ S,Z]

=J1 + J2 + J3.

We now proceed to show that

J1 =m(x) + b1,n(x) +
1

n
∑
i

{ψ(1)
n,z,i(x) + ψ

(2)
n,z,i(x)} + op(n

−1/2),

J2 = op(n−
1/2),

J3 = b2,n(x) + ∫ E[ϕn(S,Z) ∣ rZ(S) = x + hr,Z = z]K(r)dr + op(n−
1/2),

where bj,n, j = 1,2, are independent of z and all order symbols hold uniformly in x. For the J1

term we apply the approach from Mammen, Rothe, and Schienle 2012 (MRS) and expand J1

around the oracle estimator. Write

J1 = Kr̂hn,x,zεi +K
r̂
hn,x,zm(rz(Si)) = J1,a + J1,b.

For the J1,a term note that e⊺1 (M r
h(x))

−1
is stochastically bounded by a uniform over Hnz

version of Lemma 2 in MRS. For ρn as de�ned in Lemma 2 write

1

nz
∑
i∶Zi=z

Khn(r̂z(Si) − x)εi −
1

nz
∑
i∶Zi=z

Khn(rz(Si) − x)εi

= 1

nz
∑
i∶Zi=z

(Khn(r̂(Si) − x) −Khn(ρn(Si) − x)) εi

+ 1

nz
∑
i∶Zi=z

(Khn(ρn(Si) − x) −Khn(rz(Si) − x)) εi = I1 + I2.

By the mean-value theorem I1 = op(n−1/2). For I2 note that Ez[ε ∣ S] = 0 so that following the

arguments in the proof of Lemma 2 in MRS

sup
x;h∈Hnz

P
⎛
⎝

sup
r1,r2∈R

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

(Kh(r1(Si) − x) −Kh(r2(Si) − x)) εi
RRRRRRRRRRR
> C∗n−κ1

⎞
⎠
≤ exp(−cnc),

where κ1 is de�ned in MRS and C∗ is a large constant. To check that κ1 > 1/2 note that

Theorem 1 in MRS allows bandwidth exponents in an open set so that it su�ces to check the
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conditions for hz. It is now straightforward to show that a polynomial number of points in

[x, x̄] ×Hnz provide a good enough approximation to ensure that

sup
x,h∈Hnz ,ρ∈R

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

(Kh(ρ(Si) − x) −Kh(rz(Si) − x)) εi
RRRRRRRRRRR
= Op(n−κ1)

and hence I2 = op(n−1/2). Similar arguments apply to

1

nz
∑
i∶Zi=z

r̂z(Si) − x
hn

Khn(r̂z(Si) − x)εi.

Therefore, J1,a can be replaced by its oracle counterpart at the expense of a remainder term

that vanishes at the parametric rate:

J1,a =
1

n
∑
i

ψ
(1)
n,z,i(x) + op(n

−1/2).

Note that in the last step we also replaced nz by pzn. Decompose J1,b as in the proof of Theo-

rem 1 in MRS. It is straightforward to extend their results to hold uniformly over bandwidths

in Hnz . Deduce that

J1,b =m(x) + b1,n(x) −m′(x)∫ Khn(rz(s) − x)(r̂z(s) − rz(s))fS∣Z=z(s)ds + op(n−
1/2).

for a sequence of functions b1,n that does not depend on the design. The previous results use

standard results about the Bahadur representation of the oracle estimator (cf. Masry 1996;

Kong, Linton, and Xia 2010). The desired representation for J1 follows from Lemma 2. For

the J2 term apply Lemma 2 in MRS in a similar way as described above to argue that

J2 −Krzhn,x,z {(Y
n − Y null) −E[Y n − Y null ∣ S,Z]} = J2 − J∗2 = op(n−

1/2).

By standard kernel smoothing arguments J∗2 = op(n−1/2). For the J3 term let Ai = E[Y n
i −Y null

i ∣
Si, Zi] and consider the behavior of the terms

1

nz
∑
i∶Zi=z

Ai (
r̂z(Si) − x

hn
)
a

Khn(r̂z(Si) − x), a = 0,1.

We focus on a = 0. The argument for the other case is similar. Let K ′
h(⋅) = h−1K ′(⋅/h). For

any r̃ (pointwise) between r̂z and rz

sup
x

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

K ′
hn(r̃(Si) − x)

RRRRRRRRRRR
≤ C sup

x

1

nzhz
∑
i∶Zi=z

1{∣rz(Si)−x∣≤Chz} = Op(1)

for a positive constant C. Noting that maxi≤n ∣Ai∣ = Op(cn) it is now easy to see that

1

nz
∑
i∶Zi=z

AiKhn(r̂z(Si) − x)

= 1

nz
∑
i∶Zi=z

Ai [Khn(rz(Si) − x) +K ′
hn(r̃(Si) − x)

r̂z(Si) − rz(Si)
hn

]

= 1

nz
∑
i∶Zi=z

AiKhn(rz(Si) − x) + op(n−
1/2)
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uniformly in x. Let M = ∫ µ(t)µ⊺(t)K(t)dt, Mn = M rz
hn

and M̄n = EMn. By Lemma 2 in

Mammen, Rothe, and Schienle 2012 and standard arguments we have

M r̂z
hn

(x) − fR∣Z=zM =M r̂z
hn

(x) −Mn(x) +Mn(x) − M̄n(x) + M̄n(x) − fR∣Z=z(x)M

=Op
⎛
⎝
n−

1
2
(1−3η) +

√
logn

nhn
+ hn

⎞
⎠

uniformly in x. Therefore,

J3 − f−1
R∣Z=z(x)

1

nz
∑
i∶Zi=z

AiKhn(rz(Si) − x) = J3 + J∗3 = op(n−
1/2).

It is straightforward to show that under our assumptions J∗3 can be replaced by its expectation

at the expense of an uniform op(n−1/2) term. Since

E[Y n − Y null ∣ S,Z] = E[Y n − Y null ∣ rZ(S)] + ϕn(S,Z),

and since fR∣Z=z has a bounded derivative

Ez J
∗
3 =∫ E[Y n − Y null ∣ rZ(S) = x + hnr]K(r)dr

+∫ E[ϕn(S,Z) ∣ rZ(S) = x + hnr,Z = z]K(r)dr + o(n−1/2).

Here we keep implicit that we are treating hn as a constant in the above expectations, i.e.,

we are integrating with respect to the marginal measure of (Z,S). The conclusion follows by

noting that the �rst term on the right-hand side is independent of z.

Plugging in from Lemma 3 gives an asymptotic expansion of the test statistic.

Lemma 4

Tn =Tn,a + Tn,b + ∫ ∆2
K,h(x)dx + op(n

√
h),

where

Tn,a =
2

n2∑
i<j
∫ ψn,i(x)ψn,j(x)dx and Tn,b =

1

n2 ∫ ∑
i

ψ2
n,i(x)dx.

Proof Plug in from Lemma 3, expand the square and inspect each term separately.

Lemma 5 (Variance)

For Tn,a as de�ned in Lemma 4

var(Tn,a) = n−2h−1V + o (n−2h−1) and

n
√
hTn,a

d→N(0, V ).
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Proof For the �rst part of the lemma, note that

∫ Kh(rz(s − gu) − x)L∗(u)du = ∫ {Kh(rz(s) − x) +K ′(χ1/h)∂srz(χ2)u
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡a(s,u,x)

g

h2
}L∗(u)du,

where χ1 is an intermediate value between rz(s−hu)−x and rz(s)−x, and χ2 is an intermediate

value between s − hu and s. As K and rz have bounded derivatives

ã(r, x) = E [∫ a(S,u, x)L∗(u)du ∣ rz(S) = r]

is a bounded function. By standard U-statistic arguments

var
⎛
⎝

2∑
i<j
∫ ψn,i(x)ψn,j(x)dx

⎞
⎠
= 4∑

i<j

E [∫ ψn,i(x)ψn,j(x)dx]
2

= 4(n
2
)∫ h{E[ψn,1(x)ψn,1(x + hx′)]}

2
dx′ dx.

Note that

E[ψn,1(x)ψn,1(x + hx′)] = ∑
z∈{0,1}

E[ψn,z,1(x)ψn,z,1(x + hx′)].

We consider here only one of the terms composing E[ψn,z,1(x)ψn,z,1(x + hx′)]. For the other

terms similar arguments apply. Let

q(x) = −
m′(x)1{Z=z}

pzfR∣Z=z
∫ Kh(rz(S − gu) − x)L∗(u)du.

Using Ez[ζ2 ∣ rZ(S) = x] = x(1 − x) we have

h[E q(x)q(x + hx′)ζ2
1 ]

=hE [
1{Z=z}m

′
z(x)m′

z(x + hx′)
p2
zfR∣Z=z(x)fR∣Z=z(x + hx′)

(Kh(rz(S) − x) +
g

h2
ã(rz(S), x))⋯

⋯(Kh(rz(S) − x − hx′) +
g

h2
ã(rz(S), x − hx′)ζ2]

=x(1 − x)[m
′
z(x)]2

pzfR∣Z=z(x) ∫ K(y)K(x′ − y)dy + o(1) = x(1 − x)[m
′
z(x)]2

pzfR∣Z=z(x)
K(2)(x′) + o(1).

For the second part of the lemma it su�ces to check the two conditions of Theorem 2.1 in de

Jong 1987. Let Wij = 2n−1
√
h ∫ ψi(x)ψj(x) and show that

var−1 (∑
i<j

Wij) max
1≤i≤n

∑
1≤j≤n

var(Wij) → 0

var−2 (∑
i<j

Wij)E{∑
i<j

Wij}
4
→ 3.
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The �rst condition holds trivially. To show that the second condition is satis�ed note that

var(∑i<jWij) converges to a constant. It is easy to see that asymptotically only terms of the

form EW 2
ijW

2
kl with {i, j} ∩ {k, l} = ∅ will contribute to E [∑i<jWij]

4
. There are

(4

2
)
(n

2
) [(n

2
) − 1]

2!
≈ 3

4
n4

such terms when expanding E [∑i<jWij]
4
. The condition then follows by noting that

var (∑
i<j

Wij) = ∑
i<j

EW 2
ij

and that EW 2
ijW

2
kl factors as EW 2

ij EW 2
kl.

We now apply standard U-statistic theory. As the next two lemmas show, Tn,b contributes to
the asymptotic bias and Tn,b contributes to the asymptotic variance.

Lemma 6 (Bias)

For Tn,b as de�ned in Lemma 4

n
√
hTn,b =

1√
h
γn + op(1),

where γn is a deterministic sequence converging to γ.

Proof Write

n
√
hTn,b =

√
h

n
∑
i
∫ ψ2

n,i(x)dx = E{
√
h

n
∑
i
∫ ψ2

n,i(x)dx} + op(1) ≡ γn + op(1).

De�ne the function a as in the proof for Lemma 5. To compute γn write

ψ2
n,z,i(x) =

1{Z=z}

p2
zf

2
R,z(x)

{K2
h(rz(S) − x)ε2 + [m′(x)]2K2

h(rz(S) − x)ζ2

− 2m′(x)Kh(rz(S) − x)εζ}

+
1{Z=z}

p2
zf

2
R,z(x)

( g
h2 ∫ g(S,u, x)L∗(u)du)

2

ζ2+

1{Z=z}

p2
zf

2
R,z(x)

g

h2
(∫ g(S,u, x)L∗(u)du)Kh(rz(S) − x)εζ

=Γ1(S,x) + Γ2(S,x) + Γ3(S,x).

Note that

h ∑
z=0,1

E∫ Γ1(S,x)dx→ γ,

where we kept the dependence of Γ1 on z implicit. Now show that the other terms entering γn
vanish. To show that h∑z=0,1 E ∫ Γ3(S,x)dx→ 0 it su�ces to show that

Ez [(∫ g(S,u, x)L∗(u)du) εζ ∣ rz(S)]
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is bounded. This follows immediately from the fact that ∫ g(S,u, x)L∗(u)du is bounded and

hence

Ez [∫ g(S,u, x)L∗(u)du εζ ∣ rz(S)] ≾ Ez[∣εζ ∣ ∣ rz(S)] ≤
√
σ2
ε (rz(S)) ≤ C

for some constant C. For h∑z=0,1 E ∫ Γ2(S,x)dx argue similarly.

Proof of Proposition 3

Proof Using the expansion from Lemma 3 and applying standard smoothing arguments to the

stochastic term we get that for a small enough open set Gx ⊃ [x, x̄]

sup
x∈Gx

∣m̂0(x) − m̂1(x)∣2 = O ( 1

n
√
h
+ g2(q+1)) +Op (

logn

nh
) + op (

1

n
) .

Write

Tn(xn, x̄n) − Tn(x, x̄) = Tn(xn, x) − Tn(x̄, x̄n).
We can bound Tn(xn, x) by

∣xn − x∣ sup
x∈Gx

∣m̂0(x) − m̂1(x)∣ = op(n
√
h).

Similarly, we can �nd a bound for Tn(x̄, x̄n).

C. Proofs of Network Chapters

Proof (Proof of Theorem 1) I start by using similar lemmas and proofs as in Choi, Wolfe,

and Airoldi 2012.

Lemma 8

For aN = (K log(N)1+ζ ρNM) 1
2 ∣ log(ρN)∣ and ζ > 0,

max
z

∣L(A, z) −L(P, z)∣ = oP (aN).

Proof Under the above assumptions I conclude,

L(A, z) −L(P, z) =X −E[X]

where X = ∑i<j Aij log ( θzizj
1−θzizj

).

L(A, z) −L(P, z) = ∑
i<j

(Aij − PNij ) log(θzizj) − (Aij − PNij ) log(1 − θzizj)

= ∑
i<j

Aij log (
θzizj

1 − θzizj
) −∑

i<j

PNij log (
θzizj

1 − θzizj
)

=X −E[X].
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Since C1ρN ≤ PNij ≤ C2 ρN and therefore C1ρN ≤ θzizj ≤ C2ρN , Aij log ( θzizj
1−θzizj

) is bounded by

a factor C log(ρN). Using a Bernstein inequality due to Chung and Lu 2006, I deduce

P(∣X −E[X]∣ ≥ ε) ≤ 2 exp
⎛
⎝
− ε2

2 ∑i<j E[X2
ij] +

2
3 εC

⎞
⎠
.

Since ∑i<j E[X2
ij] ≤ ∑i<j(PNij )2C0 log(ρN)2 ≤ C0 log(ρN)2 ρ2

N ∑i<j exp(−∣∣zi−zj ∣∣) ≃ ρ2
N N

2 log(ρN)2,

P(max
z

∣X −E[X]∣ ≥ aN ε) ≤ NK 2 exp
⎛
⎝
− a2

N ε
2

2 ∑i<j E[X2
ij] +

2
3 ε aN C

⎞
⎠

≤ 2 exp
⎛
⎝
K log(N) − a2

N ε
2

2 ∑i<j E[X2
ij] +

2
3 ε aN C

⎞
⎠

→ 0.

Lemma 9

For aN = (K log(N)1+ζ ρNM) 1
2 ∣ log(ρN)∣ and ζ > 0,

L(P, z0) −L(P, ẑ) = oP (aN).

Proof ẑ is the maximum of the log-likelihood function L(A; ẑ) ≥ L(A; z0) , this implies

L(A, ẑ) = L(A, z0) + δ for δ ≥ 0. I deduce

L(P, z0) −L(P, ẑ) ≤ ∣L(P, z0) −L(P, ẑ) + δ∣
≤ ∣L(P, z0) −L(A, z0)∣ + ∣L(A, z0) + δ −L(P, ẑ)∣
= ∣L(P, z0) −L(A, z0)∣ + ∣L(A, ẑ) −L(P, ẑ)∣
= op(aN).

Lemma 10

For bN = aN
ρ2N

= (K log(N)1+ζ) 1
2 ∣ log(ρN)∣ρ−1

N N

∑
i<j

(∣∣ẑi − ẑj ∣∣ − ∣∣z0
i − z0

j ∣∣)2 = op(bN)

Proof I know from Lemma 9 that L(P, z0) −L(P, ẑ) = oP (aN). In addition, one can derive

L(P, z0) −L(P, ẑ) = ∑
i<j

KL(θz0i z0j ∣∣θẑiẑi)

≥ ∑
i<j

2 (θz0i z0j − θẑiẑi)
2

= ∑
i<j

2ρ2
N (exp(−∣∣z0

i − z0
j ∣∣) − exp(−∣∣ẑi − ẑj ∣∣))2

= ∑
i<j

2ρ2
N exp(2 z̃ij)(∣∣ẑi − ẑj ∣∣ − ∣∣z0

i − z0
j ∣∣)2,

where z̃ij is a value between −∣∣ẑi − ẑj ∣∣ and −∣∣z0
i − z0

j ∣∣. Since the latent space is bounded and

2 exp(2 z̃ij) ≥ 2 exp(−2diam(Latent Space)) ≥ C, I deduce ∑i<j(∣∣ẑi− ẑj ∣∣ − ∣∣z0
i −z0

j ∣∣)2 = op(bN)
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All points on the latent space arise with probability larger than c 1
K . Therefore with proba-

bility tending to one, for each point Mk (k = 1, . . . ,K) there exists a subsequence (z0
n)n∈Ik

(here I regard z0 = z0
n as sequence (z0

n)n∈{1,...,N}) such that z0
n = Mk for all n ∈ Ik and ele-

ments in Ik do not grow faster than (b
1
2
n /(Kχn))n∈{1,...,N} (let il ∈ Ik ∀l and i1 < i2 < . . . ,

then lim supl→∞
il

b
1
2
l
/(Kχl)

≤ C). Speaking more loosely the frequency with which Mk occurs in

(z0
n)n∈{1,...,N} is higher than b

1
2
n /(Kχn).

Since there are K possible realizations of one ẑi, there needs to be one point that occurs with

frequency b
1
2
n /χn or higher in the subsequence (ẑn)n∈Ik , where Ik is the same index set as above.

Furthermore, I will show there is at most one point.

Assume (ẑn)n∈Ik has two points, z1 and z2, that are realized on index sets Ik1 ⊂ Ik and Ik2 ⊂ Ik
with frequency b

1
2
n /χn such that ∣∣z1 − z2∣∣ > χn. But then

∑
i<j

(∣∣ẑi − ẑj ∣∣ − ∣∣z0
i − z0

j ∣∣)2 ≥ ∑
i∈Ik1 ,j∈Ik2

(∣∣ẑi − ẑj ∣∣ − ∣∣z0
i − z0

j ∣∣)2

= ∑
i∈Ik1 ,j∈Ik2

χ2
N

≳ bN ,

where ≳ denotes that the term on the left goes to in�nity faster than the term on the right.

Hence, there is only one zk that occurs with frequency b
1
2
n /χN or higher. This procedure can be

redone for all k. Set T zk ≡Mk for all k. If T is de�ned in that manner, it is bijective.

It remains to show T is an isometry and that T ẑ ful�lls the consistency concept.

T is an Isometry:

Assume there would be z1 and z2 inM such that

∣∣z1 − z2∣∣ ≠ ∣∣T z1 − T z2∣∣.

I know all points Mk have a unique T-preimage zk, hence, there exist sequences (ẑn)n∈I1 = z1

and (ẑn)n∈I2 = z2 each with frequency b
1
2
n or higher. Thus, I know

∣∣ẑn1 − ẑn2∣∣ − ∣∣T ẑn1 − T ẑn2∣∣ > β,

for β > 0. For each subsequence (ẑn)n∈I1 there exists Mk1 such that (z0
n)n∈Is1 is equal to Mk1

for each element and ful�lls the same frequency restrictions. This then needs to be the image
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of zk. I deduce

∑
i<j

(∣∣ẑi − ẑj ∣∣ − ∣∣z0
i − z0

j ∣∣)2 ≥ ∑
i∈Is1 ,j∈I

s
2

(∣∣ẑi − ẑj ∣∣ − ∣∣z0
i − z0

j ∣∣)2

= ∑
i∈Is1 ,j∈I

s
2

(∣∣ẑi − ẑj ∣∣ − ∣∣Mk1 −Mk2∣∣)2

= ∑
i∈Is1 ,j∈I

s
2

(∣∣ẑi − ẑj ∣∣ − ∣∣T ẑi − T ẑj ∣∣)2

= ∑
i∈Is1 ,j∈I

s
2

(∣∣z1 − z2∣∣ − ∣∣T z1 − T z2∣∣)2

≥ ∑
i∈Is1 ,j∈I

s
2

β2

≳ bN .

T ful�lls the consistency concept:

For the above T , it holds that

1

K b
1
2
N/χN

N

∑
i=1

1{z0i ≠T ẑi}
= 1

K b
1
2
N/χN

K

∑
k=1

∑
z0i ∶z

0
i =Mk

1{z0i ≠T ẑi}

= oP (1).

Proof (Proof of Corollary 6) For a cluster Caγ , let Za be the subset that contains all zk,
where there exists an a ẑi such that ẑi ∈ Caγ and ẑi = zk . To the set Za, there exists a T -

preimageMZa = {Mk ∶ zk ∈ Z, T −1zk =Mk}.
I can use the same arguments as in the proof of theorem 1 to show that MZa also form a

γ-cluster Ca,0γ .

For z0
i ∈ MZa, I can deduce

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
ĉa − 1

∣Ca,0γ ∣
∑

z0i ∈C
a,0
γ

T−1z0
i

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
=
RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

1

∣Caγ ∣
∑
ẑi∈Caγ

ẑi −
1

∣Ca,0γ ∣
∑

z0i ∈C
a,0
γ

T−1z0
i

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

≤
RRRRRRRRRRRR

RRRRRRRRRRRR

1

∣Caγ ∣
∑
ẑi∈Caγ

ẑi −
1

∣Ca,0γ ∣
∑
ẑi∈Caγ

ẑi

RRRRRRRRRRRR

RRRRRRRRRRRR
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1)

+
RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

1

∣Ca,0γ ∣
∑
ẑi∈Caγ

ẑi −
1

∣Ca,0γ ∣
∑

z0i ∈C
a,0
γ

T−1z0
i

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2)

Since all K points occur with the same frequency as seen in the proof of theorem 1, 1
∣Caγ ∣

and
1

∣Ca,0γ ∣
tend to zero with the same rate. Therefore, (1) is an op(1)-term.
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For (2), I can derive

RRRRRRRRRRR

RRRRRRRRRRR

1

∣Ca,0γ ∣
∑
ẑi∈Caγ

ẑi −
1

∣Ca,0γ ∣
∑

z0i ∈C
a,0
γ

T−1z0
i

RRRRRRRRRRR

RRRRRRRRRRR

=
RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

1

∣Ca,0γ ∣
∑
ẑi∈Caγ

ẑi 1{z0i ≠T ẑi}
− 1

∣Ca,0γ ∣
∑

z0i ∈C
a,0
γ

T−1z0
i 1{z0i ≠T ẑi}

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

≤
RRRRRRRRRRRR

RRRRRRRRRRRR

1

∣Ca,0γ ∣
∑
ẑi∈Caγ

C 1{z0i ≠T ẑi}

RRRRRRRRRRRR

RRRRRRRRRRRR
+
RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

1

∣Ca,0γ ∣
∑

z0i ∈C
a,0
γ

C 1{z0i ≠T ẑi}

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
= op(1),

where the last step immediately follows from Theorem 1.

Proof (Proof of Theorem 7) Since z0
mid is by de�nition minimizer over all points ofM of

∣∣z0
mid − 1

A ∑
A
a=1 c

a,0∣∣, I can rewrite the claimed statement as

1

∣Ĉ∣
∑
i∈Ĉ

1
{∣∣z0i −

1
A ∑

A
a=1 c

a,0∣∣−∣∣z0
mid

− 1
A ∑

A
a=1 c

a,0∣∣>ε} = oP (1).

Let T be the isometry from Theorem 1, I can write

1

∣Ĉ∣
∑
i∈Ĉ

1
{∣∣z0i −

1
A ∑

A
a=1 c

a,0∣∣−∣∣z0
mid

− 1
A ∑

A
a=1 c

a,0∣∣>ε}

≤ 1

∣Ĉ∣
∑
i∈Ĉ

1
{∣∣z0i −T ẑmid∣∣+∣∣T ẑmid−T [ 1

A ∑
A
a=1 ĉ

a]∣∣+∣∣T [ 1
A ∑

A
a=1 ĉ

a]− 1
A ∑

A
a=1 c

a,0∣∣−∣∣z0
mid

− 1
A ∑

A
a=1 c

a,0∣∣>ε}

≤ 1

∣Ĉ∣
∑
i∈Ĉ

1{∣∣z0i −T ẑmid∣∣>
ε
3
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1)

+ 1

∣Ĉ∣
∑
i∈Ĉ

1
{∣∣T ẑmid−T [ 1

A ∑
A
a=1 ĉ

a]∣∣−∣∣z0
mid

− 1
A ∑

A
a=1 c

a,0∣∣> ε
3
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2)

+ 1

∣Ĉ∣
∑
i∈Ĉ

1
{∣∣T [ 1

A ∑
A
a=1 ĉ

a]− 1
A ∑

A
a=1 c

a,0∣∣> ε
3
}
.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3)

I conclude from Theorem 1 that (1) is an oP (1) term. For (2) and (3), I exploit that after

using the isometry T−1 a distance stays the same. Hence, I can immediately conclude from

Corollary 6 that (3) is also an oP (1) term.

It remains to show that P[{∣∣∣∣ẑmid − 1
A ∑

A
a=1 ĉ

a∣∣ − ∣∣z0
mid − 1

A ∑
A
a=1 c

a,0∣∣∣∣ > ε
3}] → 0.
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I can derive

P[{∣∣∣∣ẑmid −
1

A

A

∑
a=1

ĉa∣∣ − ∣∣z0
mid −

1

A

A

∑
a=1

ca,0∣∣∣∣ > ε
3
}]

= P[{∣∣∣∣ẑmid −
1

A

A

∑
a=1

ĉa∣∣ − ∣∣z0
mid −

1

A

A

∑
a=1

ca,0∣∣∣∣ > ε
3
} ∩ {∣∣T−1( 1

A

A

∑
a=1

ca,0) − 1

A

A

∑
a=1

ĉa∣∣ ≥ ε
3
}]

+ P[{∣∣∣∣ẑmid −
1

A

A

∑
a=1

ĉa∣∣ − ∣∣z0
mid −

1

A

A

∑
a=1

ca,0∣∣∣∣ > ε
3
} ∩ {∣∣T−1( 1

A

A

∑
a=1

ca,0) − 1

A

A

∑
a=1

ĉa∣∣ < ε
3
}].

The �rst term goes to zero by Corollary 6. For the second term, I can make the following

arguments.

Assume (otherwise the same arguments hold)

∣∣z0
mid −

1

A

A

∑
a=1

ca,0∣∣ < ∣∣ẑmid −
1

A

A

∑
a=1

ĉa∣∣.

Therefore, there exists an α > ε
3 such that

∣∣z0
mid −

1

A

A

∑
a=1

ca,0∣∣ = ∣∣ẑmid −
1

A

A

∑
a=1

ĉa∣∣ − α.

If T −1z0
mid = ẑmid, the statement of Theorem 7 can be derived as an immediate consequence of

Corollary 6. Thus, I assume T−1z0
mid ≠ ẑmid. But then I can deduce

∣∣T−1 z0
mid −

1

A

A

∑
a=1

ĉa∣∣ = ∣∣T−1 z0
mid − T −1( 1

A

A

∑
a=1

ca,0) + T−1( 1

A

A

∑
a=1

ca,0) − 1

A

A

∑
a=1

ĉa∣∣

≤ ∣∣T−1 z0
mid − T −1( 1

A

A

∑
a=1

ca,0)∣∣ + ∣∣T−1( 1

A

A

∑
a=1

ca,0) − 1

A

A

∑
a=1

ĉa∣∣

≤ ∣∣z0
mid −

1

A

A

∑
a=1

ca,0∣∣ + ε
3

= ∣∣ẑmid −
1

A

A

∑
a=1

ĉa∣∣ − α + ε
3

< ∣∣ẑmid −
1

A

A

∑
a=1

ĉa∣∣.

This is in contradiction to ẑmid being the minimizer of the distance to the arithmetic mean of

the cluster midpoints. Hence, also term (2) goes to zero in probability.
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Figure 13: Illustration of the network discussed in Simulation 4.3

Figure 14: Illustration of estimation of the network discussed in Simulation 4.3
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Figure 15: Estimated Positions for Political Blogs (dim)

D. Tables
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θ = 0.10 θ = 0.05

Ch 0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25 1.50 1.75

null
Cg = 0.50 6.7 5.7 5.8 8.9 7.0 7.9 2.7 2.6 1.9 4.6 3.3 2.8
Cg = 0.75 9.2 6.4 8.2 6.5 6.4 7.0 4.6 2.0 3.2 2.8 3.2 2.8
Cg = 1.00 6.4 6.7 8.1 6.8 8.8 7.1 2.2 2.9 2.9 3.1 3.2 2.8

alternative 1
Cg = 0.50 65.8 65.8 67.7 63.8 65.3 65.7 50.5 49.9 53.2 47.5 50.6 50.8
Cg = 0.75 65.1 65.8 64.8 65.3 65.8 65.9 49.7 47.7 49.9 49.5 50.1 52.3
Cg = 1.00 66.3 65.0 66.4 67.9 64.8 66.5 50.4 51.2 50.3 51.1 50.9 49.2

alternative 2
Cg = 0.50 82.4 79.9 80.2 80.5 81.6 78.0 67.9 66.8 68.4 67.3 68.6 65.5
Cg = 0.75 79.2 81.0 79.9 80.6 80.4 79.8 66.1 68.3 68.0 68.2 66.5 65.8
Cg = 1.00 80.9 81.4 80.1 80.3 80.3 78.2 68.4 67.5 66.1 66.9 64.0 64.7

alternative 3
Cg = 0.50 6.9 8.1 8.8 7.7 5.0 6.7 2.3 3.9 3.3 4.2 1.8 3.2
Cg = 0.75 7.2 8.1 6.8 7.4 6.7 6.9 2.9 2.6 3.7 3.9 2.1 3.0
Cg = 1.00 7.7 8.0 6.2 6.7 7.8 7.1 2.6 3.3 3.1 2.3 3.5 2.6

alternative 4
Cg = 0.50 15.0 10.5 15.1 14.0 13.1 12.2 7.0 4.8 6.5 5.7 7.0 6.6
Cg = 0.75 12.5 13.9 13.8 12.9 13.6 13.3 5.2 6.2 7.0 7.0 6.3 5.9
Cg = 1.00 10.0 15.7 14.1 15.7 11.5 14.2 4.2 6.9 7.4 9.5 4.7 6.7

alternative 5
Cg = 0.50 12.0 12.4 15.5 13.5 14.2 13.2 5.7 4.6 7.4 4.9 5.8 6.0
Cg = 0.75 13.4 14.5 12.5 12.1 12.0 11.1 6.0 6.9 5.7 4.2 5.3 5.7
Cg = 1.00 12.2 14.3 13.1 12.6 12.9 12.2 5.3 5.8 5.7 5.9 6.4 6.2

alternative 6
Cg = 0.50 22.5 23.0 22.9 24.0 21.6 23.1 12.3 12.4 11.2 14.3 10.7 12.8
Cg = 0.75 23.3 20.6 25.3 23.5 23.3 20.0 12.5 11.4 13.2 12.0 13.5 12.1
Cg = 1.00 22.0 22.0 20.9 25.7 24.0 20.8 11.7 11.6 9.9 13.4 12.7 9.9

Tabelle 3: Simulation. Empirical rejection probabilities in percentage points under nominal
level θ. Sample size is n = 200.
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D Y

Race Z n mean sd mean sd

black 0 787 0.19949 0.3999 0.8183 0.3858
1 67 0.26866 0.4466 0.6269 0.4873

hispanic 0 549 0.18033 0.3848 0.7687 0.4221
1 36 0.27778 0.4543 0.5278 0.5063

white 0 1394 0.07389 0.2617 0.8479 0.3592
1 77 0.20779 0.4084 0.6234 0.4877

Tabelle 4: Teenage child bearing (D) and high-school graduation (Y ).

g h Tn x1 x̄1 x2 x̄2 x3 x̄3 P (> Tn) test result

1 1.00 0.15 0.086 0.03 0.32 0.01 0.21 0.05 0.46 0.225 no rejection
2 1.50 0.15 0.053 0.03 0.27 0.03 0.18 0.05 0.41 0.224 no rejection
3 2.00 0.15 0.084 0.03 0.21 0.02 0.15 0.05 0.36 0.059 *
4 2.50 0.15 0.054 0.04 0.19 0.02 0.13 0.11 0.27 0.012 **
5 3.00 0.15 0.022 0.02 0.18 0.05 0.11 0.13 0.19 0.092 *
6 1.00 0.20 0.064 0.03 0.32 0.01 0.21 0.05 0.46 0.060 *
7 1.50 0.20 0.042 0.03 0.27 0.03 0.18 0.05 0.41 0.084 *
8 2.00 0.20 0.067 0.03 0.21 0.02 0.15 0.05 0.36 0.010 **
9 2.50 0.20 0.043 0.04 0.19 0.02 0.13 0.11 0.27 0.010 **
10 3.00 0.20 0.019 0.02 0.18 0.05 0.11 0.13 0.19 0.083 *
11 1.00 0.25 0.045 0.03 0.32 0.01 0.21 0.05 0.46 0.012 **
12 1.50 0.25 0.037 0.03 0.27 0.03 0.18 0.05 0.41 0.036 **
13 2.00 0.25 0.051 0.03 0.21 0.02 0.15 0.05 0.36 0.008 ***
14 2.50 0.25 0.035 0.04 0.19 0.02 0.13 0.11 0.27 0.025 **
15 3.00 0.25 0.017 0.02 0.18 0.05 0.11 0.13 0.19 0.090 *
16 1.00 0.30 0.040 0.03 0.32 0.01 0.21 0.05 0.46 0.010 **
17 1.50 0.30 0.035 0.03 0.27 0.03 0.18 0.05 0.41 0.036 **
18 2.00 0.30 0.044 0.03 0.21 0.02 0.15 0.05 0.36 0.021 **
19 2.50 0.30 0.030 0.04 0.19 0.02 0.13 0.11 0.27 0.022 **
20 3.00 0.30 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.080 *
21 1.00 0.35 0.039 0.03 0.32 0.01 0.21 0.05 0.46 0.005 ***
22 1.50 0.35 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.024 **
23 2.00 0.35 0.041 0.03 0.21 0.02 0.15 0.05 0.36 0.014 **
24 2.50 0.35 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.018 **
25 3.00 0.35 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.064 *
26 1.00 0.40 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.003 ***
27 1.50 0.40 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.021 **
28 2.00 0.40 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.007 ***
29 2.50 0.40 0.028 0.04 0.19 0.02 0.13 0.11 0.27 0.011 **
30 3.00 0.40 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.064 *
31 1.00 0.50 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.003 ***
32 1.50 0.50 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.012 **
33 2.00 0.50 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.012 **
34 2.50 0.50 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.005 ***
35 3.00 0.50 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.065 *

Tabelle 5: Test results for varying bandwidths and cδ = 0.050. (*) reject at 0.10 level, (**) reject
at 0.05 level, (***) reject at 0.01 level.
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g h Tn x1 x̄1 x2 x̄2 x3 x̄3 P (> Tn) test result

1 1.00 0.15 0.057 0.06 0.29 0.03 0.18 0.07 0.44 0.170 no rejection
2 1.50 0.15 0.033 0.06 0.24 0.05 0.15 0.08 0.39 0.208 no rejection
3 2.00 0.15 0.066 0.06 0.19 0.04 0.13 0.07 0.33 0.042 **
4 2.50 0.15 0.037 0.06 0.16 0.04 0.10 0.13 0.25 0.011 **
5 3.00 0.15 0.009 0.04 0.16 0.07 0.09 0.16 0.16 0.114 no rejection
6 1.00 0.20 0.041 0.06 0.29 0.03 0.18 0.07 0.44 0.038 **
7 1.50 0.20 0.028 0.06 0.24 0.05 0.15 0.08 0.39 0.108 no rejection
8 2.00 0.20 0.048 0.06 0.19 0.04 0.13 0.07 0.33 0.009 ***
9 2.50 0.20 0.029 0.06 0.16 0.04 0.10 0.13 0.25 0.014 **
10 3.00 0.20 0.009 0.04 0.16 0.07 0.09 0.16 0.16 0.101 no rejection
11 1.00 0.25 0.033 0.06 0.29 0.03 0.18 0.07 0.44 0.011 **
12 1.50 0.25 0.025 0.06 0.24 0.05 0.15 0.08 0.39 0.044 **
13 2.00 0.25 0.034 0.06 0.19 0.04 0.13 0.07 0.33 0.012 **
14 2.50 0.25 0.023 0.06 0.16 0.04 0.10 0.13 0.25 0.020 **
15 3.00 0.25 0.008 0.04 0.16 0.07 0.09 0.16 0.16 0.113 no rejection
16 1.00 0.30 0.031 0.06 0.29 0.03 0.18 0.07 0.44 0.010 **
17 1.50 0.30 0.024 0.06 0.24 0.05 0.15 0.08 0.39 0.036 **
18 2.00 0.30 0.031 0.06 0.19 0.04 0.13 0.07 0.33 0.015 **
19 2.50 0.30 0.020 0.06 0.16 0.04 0.10 0.13 0.25 0.023 **
20 3.00 0.30 0.007 0.04 0.16 0.07 0.09 0.16 0.16 0.138 no rejection
21 1.00 0.35 0.030 0.06 0.29 0.03 0.18 0.07 0.44 0.005 ***
22 1.50 0.35 0.024 0.06 0.24 0.05 0.15 0.08 0.39 0.024 **
23 2.00 0.35 0.029 0.06 0.19 0.04 0.13 0.07 0.33 0.017 **
24 2.50 0.35 0.018 0.06 0.16 0.04 0.10 0.13 0.25 0.013 **
25 3.00 0.35 0.007 0.04 0.16 0.07 0.09 0.16 0.16 0.124 no rejection
26 1.00 0.40 0.030 0.06 0.29 0.03 0.18 0.07 0.44 0.008 ***
27 1.50 0.40 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.020 **
28 2.00 0.40 0.029 0.06 0.19 0.04 0.13 0.07 0.33 0.016 **
29 2.50 0.40 0.028 0.04 0.19 0.02 0.13 0.11 0.27 0.005 ***
30 3.00 0.40 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.076 *
31 1.00 0.50 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.001 ***
32 1.50 0.50 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.012 **
33 2.00 0.50 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.012 **
34 2.50 0.50 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.010 **
35 3.00 0.50 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.062 *

Tabelle 6: Test results for varying bandwidths and cδ = 0.075. (*) reject at 0.10 level, (**) reject
at 0.05 level, (***) reject at 0.01 level.
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