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General Introduction





3

“The macroeconomics of the future [...] will have to go beyond conventional late-twentieth-

century methodology [...], by making the formation and revision of expectations an object of

analysis in its own right [...]” - M. Woodford (2011).

The forward-looking behavior of economic agents is one of the salient features of modern

macroeconomics. Agents understand that the effects of most of their economic decisions

extend over several periods and, hence, that these effects can be improved by taking the

future state of the world into account. However, future economic conditions are uncertain

and need to be forecasted. And so, as agents’ forecasts stand as crucial determinants of

individual economic decisions and, consequently, of aggregate economic outcomes, the way

in which the agents’ expectations formation mechanism is modeled becomes a major factor

driving our understanding of economics.

Since the fundamental works of Robert Lucas Jr. and Thomas Sargent in the early 1970s,1

rational expectations has been the overwhelmingly predominant approach for imputing agents’

expectations in macroeconomics. This hypothesis is typically defined as the mathematical

conditional expectation of the relevant variables. It is an equilibrium concept that precludes

systematic errors in agents’ forecasts and assumes an efficient use of all of the information

available to the agent, providing valuable inner-consistency.

Notwithstanding its omnipresence and success, rational expectations is not without short-

comings and limitations. In particular, one of the most prized properties of the Rational

Expectations Hypothesis (REH) is, at the same time, one of its main drawbacks: the disci-

pline that it imposes on economic models. This discipline is obtained as a consequence of the

conformity that rational expectations imposes between agents beliefs about the future and

the predictions of the model. In this way, agent’s beliefs disappear as an extra component of

the theory, subject to the arbitrariness and convenience of the economist, and are uniquely

determined by the other components of the model. The cost of this discipline is, however,

steep as agents’ expectations cannot longer be an autonomous source of dynamics. A fact

that dramatically limits their role.

As Sargent (2008) reminds us, one should be aware of the risks of deviating from the REH,

1Particularly, Lucas (1972) and Sargent (1973). These works, in turn, resumed the seminal work of Muth
(1961).
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since doing so “sends us into a wilderness because there is such a bewildering variety of

ways to imagine discrepancies between objective and subjective distributions”.2 Nonetheless,

understanding that the ultimate justification for adopting a specific economic model, besides

its empirical performance, hinges on its ability to replicate our understanding and intuition of

the economy, we should feel comfortable with judiciously relaxing this strong and restrictive

assumption.

Moreover, as Milani (2012) points out, when bringing a model to the data one is, de facto,

testing the economic theory and the assumed expectations formation mechanism jointly.3

Therefore, when studying a particular economic problem, in order to avoid the risk of adopting

misspecified theories or rejecting potentially valid ones, it is essential to consider different

expectations formation mechanisms in the same way we consider alternative economic theories.

In this context, the study of adaptive learning has proven to bee one of the most extended

approaches proposed to deviate from the REH.4 A standard way of introducing adaptive

learning, is by first noticing that rational expectations is typically based on a very strong

informational assumption that presupposes agents to know the entire model including its pa-

rameters’ values and the distributions of its exogenous shocks; a degree of knowledge that

not even the theorist has.5 If this amount of knowledge is reduced, agents are no longer able

to derive the probability distributions that emerge in equilibrium and cannot use them to

forecast relevant economic outcomes. At this point, adaptive learning assumes that agents

form expectations using reduced-form models, which they estimate as new information be-

comes available. This is the usual starting point of the adaptive learning approach and, in

particular, the common ground for the present work.

This dissertation is organized as three self-contained chapters which contribute to the lit-

erature of expectations formation in macroeconomics and of adaptive learning in particular.

In the second chapter, co-authored with Elena Rancoita, we study the empirical estimation

of dynamic models under Adaptive Learning from a Bayesian perspective. We consider dif-

2Sargent is, in turn, paraphrasing Chris Sims. Subjective distributions refer, here, to the ones used by
economic agents, while objective distributions refer to the ones that emerge from the model in equilibrium.

3Here, I am abusing the term theory by circumscribing it to the parts of the model different from the
expectations formation mechanisms. Clearly, in a strict sense, the latter is also part of the theory.

4See, for example, Evans and Honkapohja (2001). An alternative important approach, though less extended,
is the analysis of “eductive stability” proposed by Roger Guesnerie, see Guesnerie (2005). See also Frydman
and Phelps (2013) for compilation of recent examples of non rational expectations’ works.

5Even considering Muth’s original ideas about rational expectations, in which in order to forecast economic
outcomes, agents take into consideration the causal processes behind them and that their understanding
of this casual processes is precisely the model itself, agents knowledge about the economy remains highly
demanding.
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ferent approaches to estimate macroeconomic models with adaptive learning and we examine

their relative performances in terms of bias, accuracy and computational cost. Existing work

estimating adaptive learning models use strong simplifying assumptions, such as determinis-

tic learning rules and certainty of non-observable states, so as to circumvent the problem of

dealing with large non-linear state space models. We compare the performance of the existing

approach with two other ones: first, we propose a new approach based on the linearization

of the learning rules, which allows for the use of linear-filters and can address a wider range

of models - we show the conditions under which the linearized system converges to the same

equilibrium as the original one- ; second, we consider a recently developed non-linear filter, the

Smolyak Kalman Filter, which considerably reduces the problem of the curse of dimension-

ality affecting likelihood based non-linear estimators. Using the Cobweb model as a testing

laboratory we find that the costs of linerization associated to our method are not significant,

while the ones associated to the approach found in the literature can be substantial in terms of

the estimates of agents’ beliefs. In addition, we find that the computational costs associated

with the newly devised approach are substantially lower than the ones associated with the

Smolyak Kalman Filter.

In Chapter 3, I model sentiment as exogenous shocks to the beliefs agents have about the

future and I study their role in the generation of business cycle fluctuations in the US econ-

omy. Considering a standard New Keynesian model of the business cycle, I introduce agents

that update beliefs about the parameters of their forecasting models using newly observed

data and exogenous sentiment shocks. The model is then estimated using the new estimation

methodology proposed in Chapter 2, as the other methods cannot estimate this model. After

accounting for the different degrees of freedom, I find that the resulting learning model fits

the data significantly better than its non-sentiment version and than its rational expectations

counterpart. Furthermore, I show how sentiment is an important driver of economic fluctua-

tions, accounting for a substantial fraction of the variability of aggregate variables at business

cycle frequencies, ranging from 20 to 50%. In particular, sentiment related to investment is

very important to explain the variability of real output, consumption and investment. Finally,

I explore the concrete role played by sentiment in the US over the last 50 years with a historic

shock decomposition. The exercise suggests that sentiment is the main responsible for the

slow recovery following a recession, as agents’ pessimistic views take time to dissipate. In ad-

dition, it is interesting to observe that while sentiment moved in line with other shocks in the
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eve and during the great recession - pushing inflation below its steady state value - around the

beginning of 2010 sentiment started to move in the opposite direction - creating inflationary

pressure that partially off-set what otherwise would have been an even lower inflation level.

In Chapter 4, I study the effect of Internal Rationality on the stability of monetary policy.

While maintaining the optimal behavior of economic agents, Internal Rationality relaxes the

strong informational assumption imposed by Rational Expectations and provides well-defined

microfoundations for models under Adaptive Learning. This concept, introduced in Adam

and Marcet (2011) in the context of an asset pricing model, allows to overcome the arbi-

trariness and potential inconsistencies that usually afflict standard learning models. I extend

this framework to a basic New Keynesian model, à la Clarida et al. (1999), and study its

implications for monetary policy. The resulting model requires agents to make forecasts only

of non-choice variables appearing in their maximization problems and for all infinite future

periods. In particular, agents need to form expectations about their future real wages and

profits. I find that Taylor-type rules that react on contemporaneous inflation are found to be

desirable if and only if the so-called Taylor principle is satisfied, while for Taylor-type rules

that react to current forecasts of one period ahead inflation the Taylor principle is found to be

necessary but not sufficient, weakening the standard desideratum for monetary policy rules.

Finally, let me remark that all chapters of this Ph.D. thesis are written as independent es-

says. Each chapter contains its own introduction and appendices that provide supplementary

materials such as additional graphs and tables as well as data sources. Hence, the essays can

be read in any order. References from all three chapters can be found in one bibliography at

the end of this dissertation.







Chapter 2

Estimating Dynamic Adaptive Learn-

ing Models: Comparing Existing and

New Approaches1

1Joint with Elena Rancoita.
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2.1 Introduction

While the theory of adaptive learning has made significant progress in the last 20 years, most

of its findings have not yet been tested against the data. One of the main reasons for this is

that dynamic models under learning constitute relatively large non-linear system of equations

which are complex and computationally costly to estimate. In this context, we compare

three different full information likelihood based methodologies to estimate macroeconomic

models under adaptive learning and study their relative performance in terms of bias, accuracy

and computational cost. First, we consider the prevailing approach in the literature, which

abstracts from all uncertainty in the learning dynamics - limiting the range of models it

can estimate. Second, we consider the Smolyak Kalman Filter, a non-linear filter which

considerably reduces the, generally prohibitive, effects of the curse of dimensionality.2 And,

finally, we consider a new strategy that we devise and that is based on the linearization of

the learning expectations formation mechanism, which, similarly to the strategy followed by

the first approach, allows to circumvent the problems arising in the estimation of non-linear

dynamic adaptive learning models but that is applicable to a wider range of models.

To better understand the problems related to the estimation of dynamic adaptive learning

models and explain the scarcity of empirical literature on learning, let us briefly describe what

the adaptive learning (AL) hypothesis entails. AL assumes that agents form expectations

using subjective probability distributions that do not coincide with the ones that emerge in

equilibrium. These subjective probability distributions are generally embodied in reduced

form models that agents are assumed to estimate in order to make forecasts. Then, agents

learn in the sense that they periodically update these estimates in an attempt to discover the

“true” value of the parameters of their forecasting models (equivalently, in their attempt to

learn the “true” probability distributions). The implied dynamics is self-referential, insofar as

agents’ subjective probability distributions affect, through agents’ expectations, the economic

outcomes that are later going to be used to update those same initial distributions. Moreover,

since these distributions are adjusted (or adapted) gradually, these dynamics can generate

significant amount of persistence in these models. In comparison, rational expectations can

be understood as imposing the additional requirement that agents’ subjective probability

distributions coincide with the objective ones that emerge in equilibrium; thus solving for a

2The curse of dimensionality refers to the phenomenon in which the computational costs associated to the
utilization or estimation of a model grow exponentially with the number of variables in the model.
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fixed point and removing agents’ incentives to revise their beliefs.3

The difficulties faced when estimating a learning model arise precisely from the non-

linearities of the agents’ reduced form forecasting models and of their evolution. Learning

models, like RE models, are usually solved upon a first order (log-) linearization conditional

on the expectations formation mechanism. Moreover, in line with the resulting form of the

equilibrium of their rational expectations counterparts, learning models assume that agents’

reduced form forecasting models are linear. However, as already mentioned, the coefficients

of these forecasting models are estimated by the agents and, thus, are functions of previous

estimates and other unobservable states in the model. Therefore, they become unobservable

state variables themselves. This creates two potential sources of non-linearities in learning

models. First, agents’ estimates of these coefficients might multiply other unobservable state

variables of the model.4 Second, estimates usually are updated by means of a non-linear func-

tion of other states in the model, e.g. using an ordinary least squares estimator. Therefore,

while under RE the whole model is linear and its likelihood can be easily computed with

the Kalman Filter, under learning the model becomes non-linear and for the computation of

the likelihood one generally has to resort to non-linear filters. The problem with non-linear

filters is that they suffer from the curse of dimensionality. A problem that quickly turns to be

computationally prohibitive and that is further exacerbated under learning as the state space

expands to accommodate agents’ beliefs.

We employ a simple learning version of the Cobweb model to evaluate the relative perfor-

mance, in terms of bias, accuracy and computational cost, of existing and new estimation

approaches.

The prevailing approach for the estimation of dynamic learning models can be found in

Milani (2005, 2007) and Slobodyan and Wouters (2012, 2012). All these papers feature

non-rational expectations formation mechanisms, which are modeled with non-linear learning

updating rules. Nonetheless, they all compute the likelihood with the Kalman Filter. This is

possible because of the strong implicit assumption that beliefs and their evolution is certain.

In other words, all uncertainty in beliefs formation is neglected. This has two implications:

first, it means that the modeler has a point prior on the postulated form of the beliefs updating

equations; and second, in the case where beliefs are conditioned on uncertain states, that these

3In the learning literature, the term beliefs is often used interchangeably with the term estimates, though,
to be precise, beliefs refer to agents’ probability distributions from which estimates are constructed.

4An example when this does not occur is when agents are only estimating a constant.
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can be approximated by their posterior mean. In this way, conditional on parameters, initial

beliefs and the expectations formation mechanism, the model is linear and its likelihood can be

computed with the Kalman Filter. Put in another way, by abstracting from all uncertainty in

the expectations formation mechanism, beliefs evolve as time-varying parameters. Henceforth,

we will refer to this approach as the Milani, Slobodyan and Wouters (MSW) method.

Neglecting the uncertainty of the expectation formation mechanism is a very strong assump-

tion and although it facilitates the estimation of the model, it can imply very poor estimates

and forecasts. Indeed, the estimation of unobservable states variables entails a large degree of

uncertainty that needs to be modeled and estimated. On the one hand, one should consider

the econometrician’s uncertainty about the initial beliefs and the other unobservable states.

On the other hand, one should also take into account the econometrician’s uncertainty about

the beliefs’ evolution, by allowing for measurement errors or shocks in the learning rules.

The two new estimation approaches that we consider are able to overcome the limitations

of the MSW method and are suitable to be applied to a wider range of models, though they

rely on approximations of their own. The first method, which we devise, is based upon the

linearization of the expectations formation mechanism. The justification for this approach is

twofold. First, it allows us to have a linear model whose likelihood can be easily computed

with the Kalman Filter, while still being able to accommodate uncertainty in the learning part

of the model. And second, learning models already neglect non-linearities as they are generally

solved upon a (log-) linearization. We argue that there is no clear criteria by which certain

non-linearities should be considered while others discarded. The linearization of the learning

dynamics affects agent beliefs’ evolution and this might affect the dynamic of the model and

eventually its convergence. We show that if the linearization is done around the associated

Rational Expectations Equilibrium (REE), the resulting model converges to it under similar

conditions as its original non-linear version.

The second method that we consider is the Smolyak Kalman Filter (Winschel and Krätzig

(2010)), a developed filter based on the Quadrature Kalman Filter that instead of the ten-

sor product builds upon the Smolyak operator (Smolyak (1963)). This approach is again

non-optimal, as it is based on the approximation of the integrals required in the predictive

and filtering steps of the filter and on the approximation of any non-Gaussian densities by

Gaussian-sums. Yet the approach allows us to consider uncertainty in the learning updating

equations while keeping non-linearities. The advantage of this filter with respect to other non-
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linear filters, such as Particle Filters and Quadrature Sum Filters, which are more frequently

found in the literature, is that it is considerably less affected by the curse of dimensionality.

This makes it an appealing non-linear filter for learning models.

We base our analysis on simulated data and on three main “exercises” aimed at understand-

ing the relative performance of the three estimation methods in terms of bias, accuracy and

computational cost. From our simulations, it turns out that the cost of linearizing the model

around the REE is very small and that both alternative methods perform better than the

MSW approach in terms of bias in most of the cases. Most importantly, when exogenous

unobservable state variables are included in the model the MSW produces estimates of the

beliefs which are negatively correlated with the true beliefs’ process. In this case, the largest

difference in the performance of the three methods can be observed and in particular be-

tween the MSW and the linearized approach. In addition, the linear approach is considerably

faster than the Smolyak Kalman Filter and, therefore, more promising for the estimation of

medium/large-scale DSGE models.

To fix ideas and present our estimation methods we will consider constant-gain learning, as

it is one of the most popular ways of modeling adaptive learning. Nevertheless, the methods

can also be applied to more general types of adaptive learning, such as Bayesian learning

or Least Squares learning. The paper is organized as follows. In section 2.2 we review the

most relevant theoretical and empirical results in the adaptive learning literature. In section

2.3, we introduce a simple version of the Cobweb model with constant gain learning that

we will use throughout the paper. In section 2.4 we provide the detailed description of the

three estimation methods that we want to compare. In section 2.5, we measure the relative

advantages and disadvantages of all three approaches by means of three estimation exercises.

In section 2.6 we conclude.

2.2 Literature Review

In this section, we review some of the most relevant results of the theoretical and empirical

literature on adaptive learning. The significant difference in the development of the theoretical

and empirical literature underlines the need of an efficient method to estimate these models.

Adaptive learning has been applied to many diverse problems including monetary policy

design, hyperinflation and deflation dynamics, the study of asset pricing stylized facts and

business cycle fluctuations. Orphanides and Williams (2005) find that the design of monetary
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policy should take into account its effect on agents’ expectations formation. In particular,

tight inflation control and the communication of the policy target might help prevent the costs

of imperfect knowledge. Bullard and Mitra (2002) show how the effectiveness of monetary

policy is sensitive to the manner in which agents form expectations, suggesting that monetary

policy authorities should focus only on policies which induce a ’learnable’ rational expectations

equilibria. Evans and Honkapohja (2003, 2003) study optimal monetary policy rules under

discretion and commitment in the context of adaptive learning and challenge the results found

under RE.

Williams (2004), Eusepi and Preston (2008) and Huang, Liu and Zha (2009), among others,

are examples of the implementation of adaptive learning in business cycle models. Williams

(2004) considers the quantitative importance of different types of learning on the equilibrium

volatility and persistence of economic variables in business cycle models, such as consumption,

GDP and inflation. He finds that when agents learn on the structure of the economy the

amplification and propagation of economic shocks become much larger than when they learn

on the parameters of the reduced form solution. Eusepi and Preston (2008) show that business

cycle fluctuations can become self-fulfilling in the presence of learning and that optimistic or

pessimistic beliefs have an impact on the marginal rate of substitution between different

variables, increasing the equilibrium volatility of macroeconomic variables. Huang, Liu and

Zha (2009) find that introducing learning in a real business cycle model reduces the wealth

effect of a neutral technology shock, and increases the substitution effect.

The introduction of learning in asset pricing models has also yielded promising results.

Timmermann (1996) showed that learning could generate excess volatility in asset prices.

While, Adam, Marcet and Nicolini (2008) showed how, in the context of a standard con-

sumption based asset pricing model, learning can generate realistic amounts of stock price

volatility and can quantitatively account for the observed volatility of returns, the volatility

and persistence of the price-dividend ratio and the predictability of lon-horizon returns.

Despite all this important theoretical evidence, there are still only few examples actually

estimating learning models. Among the most relevant there is Sargent, Williams and Zha

(2006), Milani (2004, 2007) and Slobodyan and Wouters (2012, 2012). In particular, Milani

(2004, 2007) estimates a small-scale monetary DSGE model under adaptive learning that

features habit formation in consumption and inflation indexation. He finds that, differently

than under rational expectations, the estimated degrees of habit formation and inflation
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indexation are reduce to almost zero, showing that learning might be an important factor

behind data persistence. Slobodyan and Wouters (2012, 2012) construct and estimate learning

versions of the Smets and Wouters (2007) model. They do not only find that these models

overcome some of the shortcomings of their rational expectations counterparts as indicated

by the DSGE-VAR methodology for identifying misspecifications (see Del Negro, Schorfheide,

Smets and Wouters (2007)), but that they also significantly improve the model’s fit to the

data.

2.3 Model: a Simple Case of the Cobweb Model

In this section, we introduce a simple version of the Cobweb model through which we illus-

trate the different sources of non-linearities in learning models and that we use throughout the

paper to study the different performance of the three estimation methods that we consider.5

As discussed in the introduction, learning models differ from RE ones in the way agents

form their expectations. For this reason and to better disentangle the different sources of non-

linearities, we first present the model using a generic expectations operator, that we indicate

with E⋆.

The Cobweb model describes the equilibrium on a competitive goods market as the inter-

section between a demand and a supply, which we define as follows:

dt = npt + vdt (2.1)

st = mE⋆
t−1 [pt] + rxt−1 + vst (2.2)

xt = µ+ ρxt−1 + ut (2.3)

where r, µ ∈ R, n < 0 and m > 0. The first equation defines the demand, dt, as a negative

function of current prices. Eq.(2.2), defines the supply, st, as a positive function of the

expected current price, conditional on information up to the previous period, and on xt−1 ∈ R,

an exogenous random variable (e.g. input costs or some economic slack indicator). One can

think of this set up as depicting a situation in which production materializes one period after

firms make their production decisions. We further assume, that agents can observe xt−1 but

the econometrician estimating the system may not. This assumption is quite reasonable in

that firms deciding how much to produce, have probably better information on the factors
5We borrow this example from Evans and Honkapohja (2001)
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affecting their production in their sector than an econometrician looking at the aggregate

market. Additionally, this allows us to construct simple exercises for studying the properties

of the estimation methods. The variable xt follows a simple stationary AR(1) process, | ρ |< 1,

with unconditional variance σ2u
1−ρ2 . And, finally, vdt and vst are unobserved random shocks with

means zero and variances σ2vd and σ2vs, respectively.

The equilibrium of the model is given by the intersection of the demand and the supply

and it summarizes the determinants of prices: firms’ previous period expectations of current

prices and the exogenous variable, xt−1, i.e.

pt = αE⋆
t−1 [pt] + βxt−1 + wp

t , (2.4)

where wp
t = vst−vdt

n , β = r
n and α = m

n < 0.

Note that equation (2.4) is linear conditional on expectations. As we will see, this model

is linear under rational expectations, but becomes non-linear under adaptive learning.Then,

before deriving the equilibrium of the model under AL, let us solve the model under RE.

The assumption of rational expectations implies that agents form expectations using the

equilibrium probability distributions. In this simple model, this entails that agents’ subjective

distributions, used in E⋆, coincide with the distribution defined by eq.(2.4). Applying the

expectations operator to both sides of equation (2.4), one can easily solve for agents’ price

expectations under rational expectations, yielding

ERE
t−1 [pt] =

β

1− α
xt−1. (2.5)

Then, by substituting (2.5) in (2.4) we obtain the rational expectations equilibrium of the

model as a function of the exogenous variable, xt−1, and the shock, wp
t :

pt = α
β

1− α
xt−1 + βxt−1 + wp

t =
β

1− α
xt−1 + wp

t (2.6)

From eq. (2.6) we can observe that the distribution of the equilibrium price is the same that

the agents used to form their expectations.

Under adaptive learning, agents are assumed to form expectations using reduced form

models and to periodically estimate these models as new information becomes available. Fur-

thermore, given that the learning literature is generally interested in small deviations from

RE, agents are usually assumed to know the correct functional form of the associated rational
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expectations equilibrium and to estimate some of its parameters or coefficients. Even though

this is not necessary, we will keep this assumption here.6 In the case of our Cobweb model, this

implies that agents do not know how prices are exactly formed in equilibrium, i.e. eq.(2.6),

but that they do know that prices depend linearly on the exogenous variable xt−1. In other

words, agents in our model are assumed to form expectation using the following simple model,

pt = at−1 + bt−1xt−1 + wp
t , (2.7)

where at−1 and bt−1 are estimated from historical data and, thus, might not coincide with

their REE values, i.e. 0 and β
1−α , respectively.7 In the adaptive learning literature, eq. (2.7)

is often referred to as the Perceived Law of Motion (PLM), as it depicts agents’ perception of

the law of motion of the variables that agents forecast.

Then, if agents form expectations using (2.7), these will be given by

EAL
t−1 [pt] = at−1 + bt−1xt−1 (2.8)

and the implied actual price realization will be given by

pt = αat−1 + (αbt−1 + β) xt−1 + wp
t . (2.9)

Equation (2.9) is known as the Actual Law of Motion (ALM). Only when

(at−1 = αat−1 ⇔ at−1 = 0) ∧
(
bt−1 = αbt−1 + β ⇔ bt−1 =

β

1− α

)
(2.10)

the perceived and the actual law of motions coincide, subjective and objective distributions

equate and the REE realizes.8

From the results in (2.10), we can observe that under the assumption of AL the coefficients

of the equilibrium price equation are unobservable time varying state variables, while under

RE they are constant.

6One can also depart from under or overparametrizations of the equilibrium law of motion or even from
non-nested forms. For a detail study of adaptive learning see Evans and Honkapohja 2001(22).

7Notice that we included a constant in the reduced form forecasting models of agents and that both param-
eters’ estimates, at−1 and bt−1, are indexed by time. These indices indicate that the estimates in period t
are condition on information up to period t− 1.

8For completeness, let us define the function that maps the parameters of the PLM into the parameters of
the ALM: T (a, b) = (αa,αb+β). This mapping is called the T-map. The study of the stability properties
of a learning model can, in many cases, be reduced to the study of the properties of its T-map.
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To complete the description of the model under adaptive learning, we still need to define

how agents periodically estimate the parameters of their forecasting models, at−1 and bt−1.

Following much of the literature, we will assume that agents do this by means of constant-gain

learning. This learning scheme is one of the most popular ways of modeling agents learning

behavior and, for our Cobweb example, can be written in a recursive manner as,

θt−1 = θt−2 + γR−1
t−1X

′

t−2 (pt−1−Xt−2θt−2) (2.11)

Rt−1 = Rt−2 + γ
(
X

′

t−2Xt−2 −Rt−2

)
(2.12)

where θt−1 = [at−1, bt−1]
T , Xt−2 = [1, xt−2], Rt−1 is an estimate of the second moments of

Xt−2, and γ is a small positive number. We will refer to θt, as well as to at−1, bt−1 and Rt−1,

as agents’ beliefs, and to equations (2.11) and (2.12) as the learning rules.

In each period, as new information becomes available, agents update their estimates of the

coefficients of their forecasting models, θt−1, according to (2.11) and (2.12). In particular,

current beliefs, θt−1, equal previous beliefs plus a correction term that depends on the last

forecast error. These learning rules can be thought of as a deviation from Ordinary Least

Squares. Equations (2.11) and (2.12) are nothing else than the recursive representation of the

Ordinary Least Squares estimator where the forecast errors no longer have an equal weight,

but an exponentially decreasing one as they become older.9

Then, the expectations formation mechanism under adaptive learning for the simple Cobweb

model discussed in this paper is given by equations (2.8), (2.11) and (2.12). The Cobweb

model, which now embeds also the learning rules, has now new unobservable states: at−1, bt−1

and Rt−1. Furthermore, as a consequence of these new states, the model has now become non-

linear: first, expectations are non-linear, as they entail the product of two states, bt−1xt−1;10

and second, these new states are non-linear functions of other states in the model.11

Finally, as mentioned before, we want to allow for a new source of uncertainty in the

expectations formation mechanism. This uncertainty could alternatively be understood as

modeling a measurement error, capturing the ignorance of the economist about how the

model fits the actual behavior of agents or as a shock to beliefs, capturing other information

used by agents to condition their beliefs, such as sentiment or other psychological factors.

9To retrieve the original Ordinary Least Squares estimator, one just needs to replace γ by t−1.
10To be more precise, expectations are non-linear from the economist perspective, though they continue to

be linear from the agent’s perspective. But, since we are addressing the estimation of the model we are
precisely interested in the economist’s point of view.

11See equations (2.8), (2.11) and (2.12); non-linearities are marked in red.
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The whole model including these latter uncertainty shocks, that we denote by wab
t , takes the

following form:

pt = αat−1 + (αbt−1 + β) xt−1 + wp
t (2.13)

xt−1 = µ+ ρxt−2 + ut−1 (2.14)

θt−1 = θt−2 + γR−1
t−1X

′

t−2 (pt−1 −Xt−2θt−2) + wab
t (2.15)

Rt−1 = Rt−2 + γ
(
X

′

t−2Xt−2 −Rt−2

)
(2.16)

a0, x0, R0 given (2.17)

where wab
t =

⎡

⎣ wa
t

wb
t

⎤

⎦ ∼ N

⎛

⎝

⎡

⎣ 0

0

⎤

⎦ ,

⎡

⎣ σwa 0

0 σwb

⎤

⎦

⎞

⎠.12 The model defined by (2.13)-(2.17)

constitutes a state space model, where, if we assume prices to be observable, eq.(2.13) is the so

called measurement or observable equation and equations (2.14)-(2.17) are the state equations.

2.4 Estimation Methods

As shown in the previous section, learning models constitute non-linear state space models

which means that their estimation with Bayesian methods is a complex task. The problem lies

in the computation of the likelihood, which requires to keep track of the states’ distributions

in the presence of non-linearities. The complication is precisely that the non-linearities of

the system make it virtually impossible to analytically derive the posterior distribution of

the unobserved states. Therefore, one needs to resort to techniques based on approximations

which are usually computationally costly.

In economics, one of the most popular of such methods is the Particle Filter (for a short

review of the most important methods, see Arulampalam, Maskell, Gordon and Clapp (2002),

Arasaratnam, Haykin and Elliot (2007), Gustafsson, Gunnarsson, Bergman, Forssell, Jansson

and Karlsson (2002)). However, as most non-linear filters, it suffers form the curse of dimen-

sionality, which means that its computational costs grow exponentially with the number of

states that need to be estimated. Moreover, these costs become prohibitive for most DSGE

12Clearly we could introduce a measurement error in the equation describing the law of motion of Rt. However,
we omit it for simplicity.
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learning models: for example, learning versions of the Smets and Wouters (2003, 2007) model

or the New-Area Wide Model of Christoffel, Coenen and Warne (2008).

In this section we present the three estimation approaches that we will examine in the rest

of the paper and that address this computational problem. First, we consider the prevailing

estimation approach in the literature, used by Milani (2004, 2007) and Slobodyan and Wouters

( 2012, 2012). Their approach circumvents the curse of dimensionality problem by neglecting

all uncertainty in the non-linear parts of the model, rendering it the facto linear and so,

circumventing the problem of having to resort to non-linear filters. Next, as a second method,

we consider the Smolyak Kalman Filter (Winschel and Krätzig (2010)), a non-linear filter that

significantly reduces the curse of dimensionality relative to the Particle Filter. Even though

it is the most apt non-linear filter, also the Smolyak Kalman Filter becomes computationally

too costly when dealing with medium and large size systems. Finally, we compare the above

mentioned estimation techniques with a new approach that we devise and that is suitable

for the estimation of medium and large scale DSGE models, without loosing in precision and

speed. Our approach is based on the linearization of the expectations formation mechanism

which transforms the model into a fully linear system.

In what follows, we briefly describe all three methods before discussing their empirical

performance when applying them to the Cobweb model in the remaining sections.

2.4.1 The Literature Approach (MSW Approach)

The method used by Milani and Smets and Wouters, and to which we will refer to as the

MSW approach, consists in abstracting from all uncertainty in the expectations formation

mechanism. Which, as we have shown in the previous section, is the only source of non-

linearities in the model. By doing so, the beliefs evolve deterministically and, in the estimation,

they can be thought of as time-varying parameters.

To see this more clearly, let us briefly consider our simple Cobweb Model defined by equa-

tions (2.13)-(2.17). Assuming that we observe xt and wab
t and that we know θ0 and R0 with

certainty, each period we can use equations (2.15-2.16) to recursively compute agents’ beliefs.

Then, at−1 and bt−1 are known variables, implying that the actual law of motion is linear.

And, the likelihood can be computed with the standard Kalman Filter. The advantage of this

method is that it is very fast and simple. Furthermore, under these demanding conditions,

this approach is an optimal way of computing the likelihood.
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However, in most interesting learning models these assumptions do not hold. Beliefs are

usually conditioned on unobservable states and initial beliefs, as well as on shocks which are

generally not known.13 Under these conditions, the approach relies on strong approximations.

First, unobservable state variables that enter the learning rules of the model are approximated

by their means. Second, there is no room for unobservable shocks to beliefs that might

capture important determinants of agents’ behavior. And third, the approach does not allow

the econometrician to use data in order to improve her inference about agents’ beliefs. In

particular, the last two points amount to having a mass one prior on the form of the learning

rules.

This strategy delivers a very simple and practical method at the cost of not estimating

agents’ beliefs and their distributions, an important part of model. As we will show, the

estimation method we devise, will also rely on the Kalman Filter to compute the likelihood.

However, instead of abstracting from uncertainty it abstracts form non-linearities.

2.4.2 Smolyak Kalman Filter (SKF Approach)

Ideally, one would like to have a Bayesian estimation method which is fast and able to opti-

mally estimate non-linear dynamic state space models. However, when it comes to these types

of models we are forced to resort to sub-optimal non-linear filters which usually suffer from

the curse of dimensionality. As mentioned above, the MSW approach circumvents the prob-

lem of depending on non-linear filters by abstracting from the uncertainty in the expectations

formation mechanism, while the method we devise circumvents the problem by abstracting

from non-linearities. Therefore, we would like to be able to compare both those methods with

a third one that can take into account the non-linearities of the model and its uncertainty

simultaneously. The most popular estimation method able to deal with non-linear state space

models is the Particle Filter (for an overview see Arulampalam, Maskell, Gordon and Clapp

(2002) and Gustafsson, Gunnarsson, Bergman, Forssell, Jansson and Karlsson (2002)). But

this filter suffers significantly from the course of dimensionality. Therefore we consider a

faster filter, the Smolyak Kalman Filter (SKF), which potentially could be also applied for

the estimation of medium-scale DSGE models with adaptive learning.

The idea behind the SKF is similar to the more popular Quadrature Kalman Filter as they

13For example, in the Smets and Wouters’ new Keynesian Model agents need to construct forecast of the
future value of capital and of its return, which are unobservable states to the economist.
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are both based on the evaluation of the joint (multidimensional) density of the state variables

only on some grid points at each iteration of the filter. The main difference between the

Smolyak and the Quadrature Kalman Filters is how they construct the multidimensional grid

needed for the computation of the joint density and that starts from the one-dimensional

sparse-grid defining the domain of each state variable. Instead of using the usual tensor

product, the SKF is based on the Smolyak operator (Smolyak (1963)) which provides as good

as an approximation with far fewer points. For a detail study of this filter see Winschel and

Krätzig (2010), Kotecha and Djuric (2003) and Arasaratnam, Haykin and Elliot (2007) and

the references therein.

A critical assumption of the SKF is that the states’ posterior distribution is approximated

with a Gaussian distribution. However, in most non-linear model, the states’ posterior is not

a Gaussian distribution. The Smolyak Sum Filter, which is based on the SKF, overcomes this

problem by approximating all non-Gaussian states’ posterior distributions with a Gaussian

mixture. For this reason, the Smolyak Sum Filter is well suited for the estimations of non-

linear state space models and we would like ideally to use this method. However, the Smolyak

Sum Filter is much more computationally costly than the Smolyak Kalman Filter to the point

that we decided not to use it.14 In addition, in two of the three exercises described below

we assume that the process xt is observable also to the econometrician, implying that the

state variables’ posterior distributions are Gaussian. For this reason using the SKF instead of

the Smolyak Sum Filter should not imply large estimation errors in the following simulation

exercises.

Another setback of the SKF is that at each step the filter needs to factorize an estimated co-

variance matrix which, due to computer accuracy, tends to loose its positive definite property.

For a discussion on the problem see Arasaratnam, Haykin and Elliot (2007).

In theory, using a non-linear filter, one can treat the deep parameters of the model as state

variables, without the need of a two steps estimation (i.e. a filter for the likelihood conditional

on parameters, and a Metropolis-Hastings algorithm on top to estimate the parameters). This

implies a fully Bayesian approach to the estimation of the whole model. Coming back to

our simple Cobweb model, the model including the state equations for the deep parameters

14As we will explain later, we conducted three Monte Carlo exercises to compare the three methods and the
Smolyak Sum Filter would have taken more than one day to do only one simulation of the Monte Carlo.
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estimation can be written as

pt = αat−1 + (αbt−1 + β)xt−1 + wp
t (2.18)

xt−1 = ρxt−2 + ut−1 (2.19)

θt−1 = θt−2 + γR−1
t−1X

′

t−2 (pt−1 −Xt−2θt−2) +wab
t (2.20)

Rt−1 = Rt−2 + γ
(
X

′

t−2Xt−2 −Rt−2

)
(2.21)

αt = αt−1 (2.22)

βt = βt−1 (2.23)

ρt = ρt−1 (2.24)

γt = γt−1 (2.25)

σp,t = σp,t−1 (2.26)

θ0,α0,β0, ρ0, γ0,σp,0 given (2.27)

where parameters are modeled as dynamic constants. However, in the exercises below, we

are interested in comparing the ability of the three different methods in dealing with non-

linearities and not interested in comparing the results from using the Metropolis Hastings

versus other Bayesian methods (like the SSF). Therefore, we will use the three approaches to

estimate only equations (2.18)-(2.21).

2.4.3 Linearization of the Learning Model (LKF Approach)

The last approach that we consider is a new approach that we devise and that consists

of a linearization of the whole learning model. There are at least two reasons why one may

want to do this. First, this method is particularly simple and fast. The linearized model

can be estimated by computing its likelihood with the Kalman Filter and then generating

the posterior distribution of the parameters with a Metropolis-Hastings algorithm.15 Second,

as we discussed before, most economic models used in the applied literature relay on (log-)

linearized structural equations. The beliefs updating rules and the way beliefs enter expecta-

tions are thus the only source of non-linearity in the model. Given that it is unclear why one

should keep certain non-linearities while neglecting others, we propose to use a fully linearized

15We want to remain circumscribed to Bayesian estimation approaches, otherwise one could, for example, use
Maximum Likelihood.
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system.

The estimation approach is then based on a first order linearization of the learning model

at hand. For the simple case of our Cobweb model (2.13)-(2.17) a first order linearization

around a generic point,
{
a, b̄, R, x, p, wp, wab

}
, yields the following system of equations,

pt = p+ α (at−1 − a) +
(
αb+ β

)
(xt−1 − x)

+αx
(
bt−1 − b

)
+ (wp

t − wp) (2.28)

xt−1 = ρxt−2 + ut−1 (2.29)

θt−1 = θ +
(
θt−2 − θ

)
+ γR

−1
X

′ [
pt−1 − p− at−2 + a− x

(
bt−2 − b

)

−b (xt−2 − x)
]
+ γ

(
R−1

t−1 −R
−1
)
X

′ [
p− a− bx

]

+γR
−1 (

Xt−2 −X
)′ [

p− a− bx
]
+
(
wab
t − wab

)
(2.30)

Rt−1 = R+ (1− γ)
(
Rt−2 −R

)
+ 2γX̄ ′

(
Xt−2 −X

)
(2.31)

Looking at equation (2.30), we can observe that R−1
t−1 only appears multiplying the forecast

error evaluated at the linearization point, i.e. p−a−bx. Therefore, by appropriately choosing

a point around which to linearize we can significantly simplify the model. We consider then,

the perfect foresight equilibrium associated to the model, i.e.
{
a, b̄, R, x, p, wp, wab

}

=

⎧
⎨

⎩0, β
1−α ,

⎛

⎝ 1 0

0 σ2x

⎞

⎠ , 0, 0, 0, 0

⎫
⎬

⎭.16 This implies that the forecast error evaluated at

the linearization point is zero in (2.30), which allows us to ignore the dynamics in (2.31).

This is extremely convenient as Rt−1 is generally a high-dimensional object that is hard to

estimate. Also, variables in Rt−1 have only second order effects on the economic outcomes.

The system can then be re-written as:

pt = αat−1 +
β

1− α
xt−1 + wp (2.32)

xt = ρxt−1 + ut (2.33)

θt−1 = θt−2 + γR
−1

X
′
(
pt−1 − at−2 −

β

1− α
xt−2

)
+ wab

t . (2.34)

The resulting model (2.32)-(2.34) is linear conditional on the deep parameters of the model

16Notice that Rt is linearized around the theoretical second moments of X. If we were to linearize it around
the perfect foresight equilibrium, it would not be invertible.
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and its likelihood can be computed with the Kalman Filter.17

One question that remains open is the effect that the linearization has on the dynamics

of the model. In particular, we would like to know whether this linearized version of the

Cobweb model under AL (eq. (2.32)-(2.34)) has similar asymptotic dynamics to the ones of

the non-linearized version (eq. (2.13)-(2.17)). More precisely, we would like to know what

happens to θt−1 and to the equilibrium price, pt, as t → ∞ in both versions of the model, and

how they relate.

Assume that any REE of a model can be described as a reduced form model with parameter

values θree. Then, following Evans and Honkapohja (2001), we know that under constant gain

learning θt−1 can at most be expected to converge to a distribution around θree. Moreover,

they show that this convergence is mainly govern by the Expectational stability (E-stability)

of the REE in question.18 Therefore, we would like to know two things: first, the relation

between the set of RE equilibria associated to each version of the model; and second, the

relation between the respective conditions that make them E-stable.

We say that a REE is associated to a given model under AL if and only if it is an equilibrium

of that model under RE. To determine the E-stability of a REE we need to determine the

stability of the following differential equation,

dθ

dτ
= T (θ)− θ (2.35)

in a neighborhood of the associated θree; where T (·) denotes the T-map of the model and τ

denotes “notional” time.19

As we have already shown in the previous section, for the model (2.13)-(2.17), the T-map

is defined by

T (at−1, bt−1) = (αat−1,αbt−1 + β) (2.36)

and its unique associated REE is parametrized by θree = (0, β
1−α ).

20 This REE is E-stable if

the eigenvalues of Dθ[T (θree)− θree] have real parts smaller than zero. This is satisfied if and

17Note that in this particular case, when linearizing x = 0. For this reason the linearized learning rule for bt−1

becomes bt−1 = bt−2 and therefore cannot be identified in the estimation. This will be mostly the case, as
models are generally solved upon a log-linearization around the steady state and variables are defined as
percentage deviations from it.

18Evans and Honkapohja (2001) find that the Expectational stability of a REE provides the main conditions
required for the asymptotic stability (or “learnability”) of that REE for a wide range of adaptive learning
schemes.

19The T-map maps the parameters of the PLM to the parameters of the ALM in the model.
20Notice that REEs correspond to resting points of the differential equation (2.35) and, consequently, to fix

points of the T-map.



27

only if α < 1.

In turn, for the model (2.32)-(2.34), the T-map is defined as

T (at−1, bt−1) = (αat−1,
β

1− α
) (2.37)

and its unique associated REE is parametrized by θree = (0, β
1−α). Furthermore, this REE is

E-stable if and only if α < 1.

In this particular case, we have shown that both versions of the model have the same

associated unique REE and that these equilibria are E-stable under the same condition (α <

1). In what follows we present two propositions that generalize this result.

Consider the ALM of a generic constant-gain learning model:

yt = T (θt−1)
′ · zt + et (2.38)

where yt ∈ Rm×1 is a vector of endogenous variables, zt ∈ Rn×1 is a vector of exogenous

variables and possibly the lags of some endogenous variables, T (·) ∈ Rn×m → Rn×m is the

T-map of the model, θt−1 ∈ Rn×m is the vector of parameters of agents’ PLM and et is white

noise. Furthermore, let

θt = θt−1 + γR−1
t zt

(
yt − z′tθt−1

)
(2.39)

Rt = Rt−1 + γ
(
ztz

′
t −Rt−1

)
(2.40)

denote the associated learning updating equations. In addition, let M denote the model

defined by equations (2.38)-(2.40) and let M̃ (θree) denote the linearization of M around the

perfect foresight equilibrium associated to θree.21 Without loss of generality let us assume

that m = 1.

Proposition 2.1. If θree is the vector of parameter values of a reduced form model describ-

ing a REE associated to M, then θree is the vector of parameter values of a reduced form

model describing a REE associated to M̃ (θree). Furthermore, if ∂T (θree)′·z̄
∂θ1,t−1

̸= 1 the inverse

implication is also true.22

21Again, Rt and Rt−1 are linarized around the theoretical second moments of X.
22θ1,t−1 denotes here the first entry of the parameter vector θt−1 and z̄ the perfect foresight linearization point

for zt.
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Proof. See the Appendix.

Proposition 2.2. Let T̃ (·) denote the T-map of M̃ (θree) and let θree be the vector of

parameter values of a reduced form model describing a REE associated to M̃ (θree). Then,

the REE associated to θree is Exceptionally stable if and only if the real part of ∂T (θree)z̄
∂θ1,t−1

is

smaller than one.

Proof. See the Appendix.

This result contrasts with the conditions required for a the E-stability of REE associated

to (2.38)-(2.40). Namely, that the real parts of the eigenvalues of DθT (θree) be smaller than

one. In particular, when agents learn only about a constant, both conditions coincide.

In order to complete the proof for the convergence of θt−1 to a distribution around a certain

θree see Theorem 7.9 in Evans and Honkapohja (2001). Given that the satisfaction of several

conditions in the latter Theorem depend on the particular model considered we don’t present

results here. However, because of the linearization most conditions of the latter Theorem

become significantly easier to check, and some can be proven to hold in general. We show

this in the appendix.

2.5 Estimation Results

In this section we present three estimation exercises aimed at gaining insight on the rela-

tive performance of the different methods considered in the paper. As we discussed in the

previous sections, all three methods are non-optimal, in the sense that they all rely on some

type of approximation to compute the likelihood of the data conditional on the model and

specific parameter values: the MSW estimation approach abstracts from all uncertainty in the

expectations formation mechanism, the linearized approach is based on a first order approxi-

mation of the expectations formation mechanism and the SKF approximates the distributions

of the states on some discrete “grid”. In the following simulations, that use the Cobweb model

(2.13)-(2.17) as a testing laboratory, we study the relative loss associated to each of the three

methods.
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Let us now describe how the exercises are constructed. In each exercise, a different specifi-

cation of the Cobweb model (2.13)-(2.17) is assumed to be the true data generating process.

Then, a Monte Carlo of 100 simulations is run to test the robustness of our results. The

Monte Carlo is run over different combinations of the ’true’ deep parameters used to generate

the data and are randomly extracted from independent uniform distributions.23 However,

due to the computational costs, we limit our analysis to only a subset of the deep parameters

(for example, in the first exercise α, β, and γ).24 For each draw of the parameters, we use

(2.13)-(2.17) to simulate data. Then, the likelihood of the generated data is computed using

the three different estimation methods previously explained. Therefore, for each exercise we

have three different estimations for each of the 100 initial Monte Carlo draws, corresponding

to the three different methods. To make the exercises comparable, after computing the likeli-

hood with the three different methods, we use in each case the Metropolis-Hastings algorithm

to estimate the posterior distribution of the deep parameters of the model (see Chibb and

Greenberg (1995)). The posterior distributions are then generated drawing at least 50000

times from a proposal density and until convergence is achieved.25 Every time, at least the

first 10% of the draws is discarded. The proposal density is set to a random walk with a

variance proportional to the inverse of the Hessian of the posterior at the mode as in Geweke

(1991, 1999). Furthermore, this variance is scaled to yield an acceptance ratio of about 0.34.

The prior distributions of the deep parameters of the model are set equal across methods and

Monte Carlo simulations. Even if a parameter is not included in the Monte Carlo simulation,

if it is not assumed to be known to the econometrician, it is estimated, e.g. the standard

deviation of the shock wp
t . Finally, we work with a restricted sample of 200 observations in

order to reproduce the estimates on a typical quarterly sample for US data of 50 years (e.g.

Smets and Wouters (2007) or Slobodyan and Wouters (2012)).26

We compute several metrics in order to compare the three estimation techniques. First,

we compare the methods on the basis of the Mean Squared Error (MSE) of both the deep

parameters and the states’ estimates and we decompose the MSE in bias and accuracy.27

23The supports of the uniform distribution cover a reasonable range of values for each parameter.
24The computations of the exercises as they are presented here took about one month using 4 computers.
25Convergence is checked using standard tests including the one proposed in Geweke (1999).
26We have further conducted the estimations using 4000 periods of simulated data, attempting to gain an

idea of the asymptotic behavior of the estimators. Given the time costs of using such long data time series,
we are not able to do the Monte Carlo exercise, and we restrict to a few parameter specifications for each
exercise. The results do not significantly vary from the ones presented here.

27For any deep parameter of the model Y , we define the MSE as 1
n

∑n
i=1

(
Y − Ŷi

)2
where n is the number

of Montecarlo repetitions and Ŷi is the corresponding estimated value of the parameter. The bias is given
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Then, we look at other measures like the Mean Absolute Percentage Error (MAPE) which

rescales the error computed by the magnitude of the estimated variable.28 We also look at

the correlation between the actual realization of the states and their respective estimates,

as in Geweke (1991, 1999), Fernandez-Villaverde and Rubio-Ramirez (2005), Milani (2004)

among others. Finally, following Geweke’s (1999), we compare the Marginal Likelihood of the

different models. This concept allows us to compare two different models, even non-nested

ones. In particular, we can use the marginal likelihood to compute the different models’

posterior odds ratio, i.e.

pM1,T

pM2,T
=

p
(
Y T | M1

)

p (Y T | M2)
· pM1,0

pM2,0

where M1 and M2 are two different models, pi,0 stands for the models prior and pi,1 for its

posterior (i = M1, M2). p
(
Y T | M1

)
/p
(
Y T | M2

)
is the Bayes factor. Ratios larger than 1

would provide different degrees of evidence against model M2. In all cases we assume that

the prior distributions of the different models are the same.

2.5.1 Exercise I

The first exercise is constructed to provide some insight on the cost associated to the

linearization of the LKF approach and to the approximations involved in the SKF. For this

reason, we assume that no uncertainty enters the learning updating equation. The true data

generating process is assumed to be given by,

pt = αat−1 + (αbt−1 + β) + wp
t (2.41)

xt−1 = ρxt−2 + ut−1 (2.42)

θt−1 = θt−2 + γR−1
t−1Xt−2 (pt−1 −Xt−2θt−2) (2.43)

Rt−1 = Rt−2 + γ
(
X2

t−2 −Rt−2
)

(2.44)

a0, x0, R0 given

by 1
n

∑n
i=1

(
Y − Ŷi

)
and the accuracy as V ar

(
Ŷ
)
. For the unobserved states θt we employ a similar

definition of MSE, bias and accuracy, with the only difference that n is given by the number of Monte
Carlo replications times the sample time length.

28The MAPE of any estimated deep parameter is computed as 1
n

∑n
i=1

∣∣∣Y −Ŷi
Y

∣∣∣
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where xt−1 is observable to the economist and to the agents and the true initial values of a0, b0

and R0 are assumed to be known and set to their REE values. Under these assumptions, as

mentioned before, the MSW approach is an optimal filter and a natural benchmark to study

the losses associated with the other two methods. In the simulations we always set σwp = 0.1

and we assume its prior distribution to have mean 0.1. Under these conditions, any difference

in the estimations delivered by the other methods can be attributed to the approximations

they respectively rest upon.

MSW LKF SKF

α

MSE 0.0813 0.0797 0.0988
Bias 0.1523 0.1490 0.2065

Accuracy 0.0581 0.0575 0.0562
MAPE 56.6% 55.4% 54.4%

β

MSE 0.0687 0.0680 0.0744
Bias -0.1349 -0.1341 -0.1605

Accuracy 0.0505 0.0500 0.0486
MAPE 18.3% 19.0% 18.0%

γ

MSE 0.0002 0.0002 0.0003
Bias -0.0041 -0.0046 -0.0104

Accuracy 0.0002 0.0002 0.0002
MAPE 40.5% 39.5% 48.6%

Table 2.1: Exercise I: Estimation of the deep parameters. MSE, bias, accuracy and MASE.
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MSW LKF SKF

MSE 0.0000 0.0000 0.0000
a Bias 0.0001 0.0001 0.0001

Accuracy 0.0000 0.0000 0.0000
Corr(a, â) 0.9698 0.9593 0.9610

MSE 0.0006 - 0.0008
b Bias 0.0016 - -0.0015

Accuracy 0.0005 - 0.0005

Corr(b, b̂) 0.9630 - 0.9401

Table 2.2: Exercise I: Estimation of agents’ beliefs. MSE, bias, accuracy and correlation with true
beliefs.

MSW LKF SKF

Average Time 1m 19s 3m 7s 26m 33s

Log-Marginal Likelihood 183.2034 182.9353 182.1206

Table 2.3: Exercise I: Average time and Log-Marginal Likelihood.

LKF vs. MSW SKF vs. MSW LKF vs. SKF

Posterior
Odds
Ratios

0.7648 0.3386 2.2584

Table 2.4: Exercise I: Posterior Odds Ratios.

Table 2.1, 2.2, 2.3, and 2.4 show the estimation results of the first exercise. As we can see

from Table 2.1, the MSE for all parameters and of all three methods are not very different

although the LKF approach performs best. The LKF approach also delivers a lower bias for

α and β, while the MSW does it for the gain parameters, though the differences are virtually

negligible. The SKF is the most accurate method, follow by the LKF approach. The MSE of

the estimates of the beliefs are very small (less than 10−4) for all three methods as well. For
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this reason, it is difficult to say that one of the method performs best in terms of this metric

(see Table 2.2). In Table 2.2, we can also observe the correlation between the true realization

of agent’s beliefs and the estimated ones. Both the estimated at and bt are mostly correlated

with the true beliefs when using the MSW method, even if the difference is very tiny between

all three methods. The bt coefficient cannot be estimated with the LKF as it cancels out

in the linearization of the learning rules and it constitutes its main drawback. This occurs

for the particular, though illustrative, setting we have chosen, as the mean of the process xt

equals zero.

The performance of all three methods does not give rise to large differences. In particular,

the LKF approach does also not loose much with respect to the optimal MSW. One point to

mention is the time required by each method. As expected, the SKF approach takes more

time than the LKF one and, in turn, this one more than the MSW approach. This is partially

explained by the fact that the SKF approach has to estimate three states, at, bt and Rt,

the LKF one, at, and the MSW none, as it computes them deterministically. Clearly, the

magnitude of the loss in performance depends on the severity of the approximations and,

for example, stronger non-linearities are to be expected to worsen the estimates of the LKF

approach.

Table 2.4 shows the models’ posterior odds ratios. According to the scale proposed by

Jeffreys (1961)29, even though the MSW approach dominates over the other ones, there is only

a significant better performance of the LKF approach with respect to the SKF method. We

conclude from this exercise that it does not seem to be a significant cost in the approximation

of the LKF nor in the ones incurred by the SKF.

29Comparing two models, M1 and M2, following the suggestion of Jeffreys (1961) the interpretations of the
Posterior odds are :

•
PM1

PM2

< 1 the null of M2 is supported.

• 1 <
PM1

PM2

< 3.16 some evidence against the null.

• 3.16 <
PM1

PM2

< 10 substantial evidence against the null.

• 10 <
PM1

PM2

< 33.3 strong evidence against the null.

• 33.3 <
PM1

PM2

< 100 very strong evidence against the null.

• 100 <
PM1

PM2

decisive evidence against the null.



34 CHAPTER 2. ESTIMATING DYNAMIC ADAPTIVE LEARNING MODELS

2.5.2 Exercise II

The second exercise is constructed to study the effect of ignoring the uncertainty in the

learning updating rules rising from the xt process when applying the MSW method. As

discussed previously, any unobservable state (from the economist’s perspective) entering the

reduced form models agents use to construct forecasts, implies uncertainty in the knowledge

that the economist has about the agents’ beliefs. In the MSW, the learning rules are as-

sumed to be deterministic functions and consequently these unobservable state variables are

approximated with the mean of its last available probability distribution. This exercise aims

at testing the cost of this assumption. For this reason, we consider the same model used in

Exercise I as the true data generating process but we assume that the exogenous state xt is

now no-longer observable to the economist, i.e.

pt = αat−1 + (αbt−1 + β) xt−1 +wp (2.45)

xt−1 = ρxt−2 + ut−1 (2.46)

θt−1 = θt−2 + γR−1
t−1Xt−2 (pt−1 −Xt−2θt−2) (2.47)

Rt−1 = Rt−2 + γ
(
X2

t−2 −Rt−2
)

(2.48)

a0, b0, x0, R0, gven

where the true initial values of a0, b0 and R0 are again assumed to be known and set to their

REE values. In the simulations we always set σwp = σu = 0.1 and we assume their prior

distributions to have means 0.1. Under these conditions, we test the method only through

the estimation of α, β, γ and ρ, as even though σwp and σu are also estimated they are not

included in the Montecarlo exercise. In this case we expect the MSW to perform relatively

worse than the other two methods, as it approximates xt−2 with its mean in the expectations

formation mechanism.
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MSW LKF SKF

α

MSE 0.1247 0.0965 0.1178
Bias 0.0892 0.0541 0.0763

Accuracy 0.1167 0.0936 0.1120
MAPE 61.7% 58.2% 60.2%

β

MSE 0.1005 0.0913 0.0973
Bias -0.259 -0.206 -0.247

Accuracy 0.0334 0.0489 0.0363
MAPE 22.1% 20.6% 21.4%

γ

MSE 0.0010 0.0002 0.0004
Bias -0.0064 -0.0055 -0.0073

Accuracy 0.0010 0.0002 0.0003
MAPE 41.5% 40.3% 40.7%

ρ

MSE 0.3571 0.1273 0.5255
Bias 0.1432 0.0878 0.2271

Accuracy 0.3366 0.1196 0.04739
MAPE 37.4% 21.7% 43.3%

Table 2.5: Exercise II: Estimation of the deep parameters. MSE, bias, accuracy and MASE.

MSW LKF SKF

MSE 0.0441 0.0002 0.0010
a Bias 0.0439 0.0001 0.0006

Accuracy 0.0000 0.0000 0.0000
Corr(a, â) -0.5692 0.9355 0.8902

MSE 0.0445 - 0.0012
b Bias 0.0402 - -0.0011

Accuracy 0.0012 - 0.0006

Corr(b, b̂) -0.4923 - 0.8801

Table 2.6: Exercise II: Estimation of agents’ beliefs. MSE, bias, accuracy and correlation with true
beliefs.
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MSW LKF SKF

Average Time 9m 2s 9m 43s 120m 34s

Log-Marginal Likelihood 266.3682 325.7631 255.7329

Table 2.7: Exercise II: Average time and Log-Marginal Likelihood.

LKF vs. MSW SKF vs. MSW LKF vs. SKF

Posterior
Odds

Ratios -log
points-

59.39 -10.64 70.03

Table 2.8: Exercise II: Posterior Odds Ratios.

The results of the second exercise are illustrated in Tables 2.5, 2.6, 2.7, and 2.8. We can

observe that the differences between the three estimation methods are larger than in Exercise I,

in particular, between the MSW and the other two other approaches. The LKF method again

delivers the smallest MSE when estimating the deep parameters of the model, particularly

for the gain parameter (see Table 2.5). The LKF approach also delivers the estimates with

smallest bias and and better accuracy (with the exception of β). With respect to the mean

absolute percentage errors, they remain in the same range as in the first exercise for α, β, and

γ, though it is significantly smaller for the estimate of ρ delivered by the LKF approach.

Looking at the estimation of the beliefs, Table 2.6, one can observe how the introduction of

uncertainty in the expectations formation mechanism creates a serious problem for the MSW

approach. Most importantly, the MSW approach is not able to capture the correct correlation

between its beliefs’ estimates and the true ones. In addition, and as expected, having an

unobservable state entering the learning dynamics reduces the estimation performance of

both the LKF and SKF approaches, though, they continue to present very good results.

In terms of computational cost, the MSW approach now requires about the same time as

the LKF one. This is mainly consequence of the need of the MSW approach to compute the

inverse of a matrix (i.e. of Rt−1) that the LKF approach avoids. In addition, we already start

to see the effects of the curse of dimensionality, as the SKF takes about two hours to estimate
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one Montecarlo simulation.

The posterior odds shown in table 2.8 indicate a decisive better performance of the LKF

with respect to the other two methods. Posterior odds ratios very large, indicating decisive

evidence against the null hypothesis that the two models are the same.

2.5.3 Exercise III

In the third and final exercise, we examine how the different approaches deal with a second

source of uncertainty in the learning updating rules, the one coming directly from a shock to

at−1.30 As previously discussed, such a shock would allow to model, for example, factors that

the agents use to condition their beliefs upon and that are orthogonal to the economic infor-

mation included by the economist in the expectations formation mechanism. For instance,

these factors may capture mood swings, psychological components of beliefs or other aspects

that affect agents views about the economy and are important to explain economic dynam-

ics. Alternatively, they could also be interpreted as a measurement error, that captures the

economist’s uncertainty about the unobserved beliefs.

For this exercise we assume the following model as the true data generating process :

pt = αat−1 + (αbt−1 + β) xt−1 + wp
t (2.49)

xt−1 = ρxt−2 + ut−1 (2.50)

θt−1 = θt−2 + γR−1
t−1Xt−2 (pt−1 −Xt−2θt−2) + wab

t (2.51)

Rt−1 = Rt−2 + γ
(
X2

t−2 −Rt−2
)

(2.52)

a0, b0, x0, R0 given

It is the same model used in Exercise I, except that now we assume that there is a shock,

wab
t , that hits at−1. This shock is modeled as a white noise process. To isolate this source

of uncertainty we assume, as in the first exercise, that xt−1 is observable to the economist

(remember that xt−1 is always assumed to be observable to the agents). Also as before, we

maintain the assumption that the true initial values of θ0 and R0 are known and set to their

REE values. In addition, we set σwp = σwa = 0.1 and σwb = 0 and we assume their prior

distributions to have means 0.1. Under these conditions, we test the method only through

the estimation of α, β and γ, as even though σwp and σwa are also estimated they are not
30We have omitted the case in which the slope of agents’ forecasting models are subject to a shock.
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included in the Montecarlo exercise. As it was the case in Exercise II, we expect the MSW

approach to perform worse than the other two methods, as it cannot take into account the

uncertainty surrounding the learning rules.

MSW LKF SKF

α

MSE 0.0604 0.0647 0.0658
Bias 0.1376 0.1864 0.1921

Accuracy 0.0415 0.0299 0.0109
MAPE 50.7% 46.3% 49.1%

β

MSE 0.0739 0.0789 0.0744
Bias -0.1785 -0.1837 -0.1911

Accuracy 0.0420 0.0452 0.0379
MAPE 22.0% 18.9% 19.1%

γ

MSE 0.0004 0.0001 0.0004
Bias -0.0165 0.0017 -0.0112

Accuracy 0.0001 0.0001 0.0002
MAPE 62.8% 43.1% 49%

Table 2.9: Exercise III: Estimation of the deep parameters. MSE, bias, accuracy and MASE.

MSW LKF SKF

MSE 0.0032 0.0024 0.0022
a Bias 0.0028 0.0023 0.0021

Accuracy 0.0000 0.0000 0.0000
Corr(a, â) -0.2757 0.9254 0.7122

MSE 0.0011 - 0.0009
b Bias 0.0014 - -0.0006

Accuracy 0.0008 - 0.0008

Corr(b, b̂) 0.9533 - 0.6542

Table 2.10: Exercise III: Estimation of agents’ beliefs. MSE, bias, accuracy and correlation with
true beliefs.
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MSW LKF SKF

Average Time 4m 4s 4m 54s 46m 33s

Log-Marginal Likelihood 273.6524 383.8036 301.1335

Table 2.11: Exercise III: Average time and Log-Marginal Likelihood.

LKF vs. MSW SKF vs. MSW LKF vs. SKF

Posterior
Odds

Ratios -log
points-

110 27 82

Table 2.12: Exercise III: Posterior Odds Ratios.

The results of the third exercise are summarized in Tables 2.9, 2.10, 2.11, and 2.12. As it

can be observed, all three approaches perform better in terms of the estimation of the deep

parameters in this case than in Exercise II. Notwithstanding the relatively equal performance

of all approaches in terms of the estimation of the deep parameters, the gain parameter is

better estimated by the LKF approach. And also, in terms of the mean average percentage

error, the LKF appears to perform better than the two other methods. In particular, for the

gain parameter, γ, the relative error of the LKF is 43% while the MAPE of the SKF and the

MSW are respectively 49% and 62%.

The mean squared errors computed for the beliefs, as well as their bias and accuracy, are

also similar among the three cases. As in the previous exercise, the correlation between

the true belief process for the constant in agents’ forecasting models, at, and its estimate is

very large for the LKF method. The SKF approach again delivers high correlations (also for

agents’ estimates of the forecasting model’s slope, bt), though smaller than in Exercise II.

However, the MSW method has problems matching the path of at as the correlation between

the estimated at and the true process is negative. On the contrary the correlation between

the estimated bt and the true process is close to one. In terms of average time needed, the

results show that the SKF approach is dominated by the other two methods. The time needed

from the SKF is on average 46 minutes while the other two methods take about 5 minutes.



40 CHAPTER 2. ESTIMATING DYNAMIC ADAPTIVE LEARNING MODELS

Finally, the posterior odds ratios shows a clear difference among the three methods. The LKF

approach delivers the best fit of the model to the data. While the SKF approach dominates

the MSW one.

2.6 Concluding Remarks

We have compared three different approaches suitable for the estimations of dynamic adap-

tive learning models with adaptive learning. These models are important as they present an

alternative way of modeling expectations that has shown considerable potential to explain

several economic puzzles and match economic data. We compare the method which is used in

the few existing empirical works on learning with the Smolyak Kalman Filter and with a new

approach we propose based on the the linearization of the expectations formation mechanism

under adaptive learning. These latter two methods have not yet been applied to learning

models and we find that they perform particularly well in our simulations.

We show in a series of exercises how the Bayesian estimation method prevailing in the

literature, and that also relies on the Kalman Filter, cannot address the uncertainty in the

learning updating equations properly. Furthermore, we find that our method provides as

good an estimation in the cases in which no uncertainty in the learning updating equations is

present. This suggests that there is no significant cost of approximating the non linear parts

introduced by learning in a DSGE model. To get an idea of how much these last two methods

loose or gain by not resorting to the more involved and time demanding non-linear filters, we

compare our approach to the Smolyak Kalman Filter, an exponent of the large set of filters

suited for the estimation of non-linear Dynamic State Space Models. We choose this filter

because it is the least affected by the curse of dimensionality, a problem that turns non-linear

filters prohibitive for most DSGE models under learning. We find that our method yields

better estimates than the SKF, especially in terms of bias, when uncertainty in the learning

updating equations is present. While the SKF approach, provides on average more accurate

estimates of the deep parameters of the model. Additionally, while the LKF approach appears

to dominate when it comes to the estimation of agents’ beliefs about the constant of their

forecasting models, by construction it cannot estimate the corresponding beliefs on the slope

of those models. To estimate agents’ beliefs about the slope of their forecasting models, the

SKF approach appears to be the better option. However, the computational costs associated
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to the SKF approach are significantly larger than of the other methods, standing as a serious

drawback of the method. Finally, using the marginal data of the density to compare the

different approaches, we find that our method delivers a better fit to the data than the other

two methods when uncertainty is present in the expectations formation mechanism. We argue

that this is the most common and interesting case in macro learning models.
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2.7 Appendix

In order to prove Proposition 2.1 and 2.2, we first need to linearize the generic learning

model given by,

yt = T (θt−1)
′ · zt + et (2.53)

θt = θt−1 + γR−1
t zt

(
yt − z′tθt−1

)
(2.54)

Rt = Rt−1 + γ
(
ztz

′
t −Rt−1

)
(2.55)

around the perfect foresight equilibrium,
{
ȳ, z̄, θ̄, R̄

}
;31 where yt ∈ Rm×1 is a vector of en-

dogenous variables, zt ∈ Rn×1 is a vector of exogenous variables and possibly the lags of some

endogenous ones. The operator T (·) ∈ Rn×m → Rn×m is the T-map, which is the function

that maps the parameters of the PLM to the parameters of the ALM. The vector θt−1 ∈ Rn×m

denotes agents’ estimates of the coefficients of their reduced form forecasting models, called

also beliefs.. The stochastic process et is a white noise.

Without loss of generality let us assume that m = 1. Then, (2.53) can be written as

yt = T1 (θ1,t−1, θ2,t−1, ..., θn,t−1) z1,t + ... (2.56)

+Tn (θ1,t−1, θ2,t−1, ..., θn,t−1) zn,t + et

where, Tj indicates the j − th row of the T-map vector and θt−1 =

(θ1,t−1, θ2,t−1, ..., θn,t−1)
t. We further assume that z1,t = 1, i.e. that yt has an intercept.

We allow the ALM, equation (2.53) to be non-linear as Tj might be a non linear function of

θt−1 and Tj (θt−1) pre-multiplies zj,t. The learning rules, equation (2.54) and (2.55), are also

non-linear equations of the states. We are interested in the Rational Expectations Equilibria

associated to the model, which, in turn,are parametrized by fixed points of the T-map and

that we denote by θree = (θree1 , θree2 , ..., θreen ). Then, the linearization of equation (2.53)

31Rt and Rt−1 are linarized around the theoretical second moments of X.
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around {ȳ, z̄, θree} yields,

yt ≈ T (θree) z +
n∑

i=1

∂T (θt−1) · zt
∂θi,t−1

|(θt,zt)=(θree,z) (θi,t−1 − θreei )

+
n∑

i=2

∂T (θt) · zt
∂zi,t

|(θt−1,zt)=(θree,z) (zi,t − zi) + et

= T (θree) z +
n∑

i=1

∂T (θt−1) · zt
∂θi,t−1

|(θt−1,zt)=(θree,z) (θi,t−1 − θreei )

+T (θree) · (zt − z) + et

=
n∑

i=1

∂T (θt−1) · zt
∂θi,t−1

|(θt−1,zt)=(θree,z) (θi,t−1 − θreei )

+T (θree) · zt + et

≡ T̃ (θt−1) · zt + et (2.57)

where we define T̃ (·) as the linear T-map associated with T (·) and to θree, which maps θt−1

into T̃ (θt−1) ∈ Rn×1 . T̃ (·) can be written as 32

T̃1 (θt−1) =
n∑

i=1

∂T (θt−1) · zt
∂θi,t−1

|(θt−1,zt)=(θree,z) (θi,t−1 − θreei ) + T1(θ
ree) (2.58)

and

T̃j (θt−1) = Tj(θ
ree), ∀j ∈ {2, .., n} (2.59)

Next, we need to linearize the learning equations (2.54) and (2.55). Since the forecast error

is zero at the point around which we linearize we do not need to keep track of Rt−1 and we

are only left we the linearized equation for θt, i.e.

θt = θt−1 + γR
−1

z
(
yt − y − z′(θt−1 − θree)− (θree)′ (zt − z)

)

which, after substituting yt for the linearized T-map T̃ (·), can be re-written as,

θt = θt−1 + γR
−1

z
(
z′t ·
(
T̃ (θt−1)− θt−1

)
+ et − (θ⋆)′ (zt − z)

)
(2.60)

We further re-write the previous equation in the following succinct form, which defines the

32If we take z to be the log-linearized variables around the s.s., then z = (1, 0, . . . , 0) and (2.58) is equal to

T̃1 (θt−1) =
∂T (θt−1)
∂θ1,t−1

|(θt−1 ,zt)=(θree,z) (θ1,t−1 − θreei ) + T1(θ
ree)

(2.59) remains clearly the same.
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function H̃(·), and that will be used later on,

θt = θt−1 + γH̃ (θt−1, zt) (2.61)

Let M denote the model defined by eq. (2.53)-(2.55) and let M̃ (θree) denote the linearization

of M around the perfect foresight equilibrium associated to θree, i.e. the model defined by

eq. (2.57) and (2.60).

Proposition 2.1. If θree is the vector of parameter values of a reduced form model describ-

ing a REE associated to M, then θree is the vector of parameter values of a reduced form

model describing a REE associated to M̃ (θree). Furthermore, if ∂T (θree)′·z̄
∂θ1,t−1

̸= 1 the inverse

implication is also true.33

Proof of Proposition 2.1. Given that in the previous derivation of M̃ (θree), θree denoted

an arbitrary rational expectations equilibrium associated to M, we just need to prove that

θree is also a rational expectations equilibrium associated to M̃ (θree). We will do this by

showing that θree is a fixed point of T̃ (·), i.e. that

T̃ (θree) = θree

Using the definition of the linearized T-map we have,

T̃1 (θ
ree) =

n∑

i=1

∂T (θt−1) · zt
∂θi,t−1

|(θt−1,zt)=(θree,z) (θ
ree
i − θreei ) + T1(θ

ree)

= T1(θ
ree) = θree1

where the second equation follows from the definition of θree fixed point of T (·).

And in addition, we have that for j = 2, . . . , n,

T̃j (θ
ree) = Tj(θ

ree) = θreej

where, again, the last equality holds by the fact that θree is a fixed point of T (·). Thus θree is

a fixed point of T̃ (·) and hence a REE of it, which was what we wanted to prove. The reverse

33θ1,t−1 denotes here the first entry of the parameter vector θt−1 and z̄ the perfect foresight linearization point
for zt.
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is not necessarily true.

Let θ⋆ be a fixed point of T̃ (·). Then

θ⋆j = T̃j (θ
⋆) = Tj(θ

ree) = θreej ∀j ≥ 2

thus θ⋆j = θree for all j ≥ 2. But for j = 1 we have that

θ⋆1 = T̃1 (θ
⋆) =

n∑

i=1

∂T (θt−1) · zt
∂θi,t−1

|(θt−1,zt)=(θree,z) (θ
⋆
i − θreei ) + T1(θ

ree)

=
∂T (θt−1) · zt
∂θ1,t−1

|(θt−1,zt)=(θree,z) (θ
⋆
1 − θree1 ) + θree1

or

0 =

(
∂T (θt−1) · zt
∂θ1,t−1

|(θt−1,zt)=(θree,z) −1

)
(θ⋆1 − θree1 )

then, if the first factor of the above equation is zero we have infinitely many fixed points of

T̃ (·) that are not of T (·).

Proposition 2.2. Let T̃ (·) denote the T-map of M̃ (θree) and let θree be the vector of

parameter values of a reduced form model describing a REE associated to M̃ (θree). Then,

the REE associated to θree is Exceptionally stable if and only if the real part of ∂T (θree)z̄
∂θ1,t−1

is

smaller than one.

Proof of Proposition 2.2. We will show that for the model M̃ (θree), the E-stability

conditions for a REE parametrized by θree, i.e. that the real part of the eigenvalues of

DθT̃ (θree) be smaller than one, are equivalent to having the real part of ∂T (θree)·z̄
∂θ1,t−1

be smaller

than one.

Then, let us first, write DθT̃ (θree). Looking at eq. (2.58) and (2.59) we have that,

DθT̃ (θ
ree) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂T (θree)z
∂θ1

∂T (θree)z
∂θ2

· · · ∂T (θree)z
∂θn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.62)

Then the only non-zero eigenvalue of this operator is precisely ∂T (θree)·z̄
∂θ1,t−1

, which to guarantee
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that the REE associated to θree is E-stable, needs to be smaller than one. Furthermore, if

agents are only estimating a constant, this condition coincides with the E-stability condition

of the REE associated to θree for M.

As already mentioned in the paper, the proof of convergence of θt−1 to a distribution around

θree requires to check additional conditions, that generally depend on the particular model

at hand and that are stated in Theorem 7.9 of Evans and Honkapohja (2001). However,

because of the linearization, checking these conditions becomes significantly easier. Next we

show how some of the conditions required for the convergence result in the latter Theorem

always hold for M̃ (θree). We keep the same numeration as in Evans and Honkapohja (2001).

Assumption (A.2). For any compact set Q ⊂ D, with D open set in Rn, there exist K and

q such that ∀θ ∈ Q

1.
∣∣∣H̃ (θ, z)

∣∣∣ ≤ K (1 + |z|q)

This holds since H̃ (θ, z) is it self a polynomial in a compact set, thus it is bounded.

Assumption (A.3’). For any compact set Q ⊂ D, with D open set in Rn,H̃ (θ, z) satisfies,

∀θ, θ′ ∈ Q and z1, z2∈ R
n,

1. | ∂H̃ (θ, z1) /∂z − H̃ (θ, z2) /∂z |≤ L1 | z1 − z2 | (1+ | z1 |p1 + | z2 |p1) for some p1 ≥ 0,

2. | H̃ (θ, 0)− H̃ (θ′, 0) |≤ L2 | θ − θ′ |,

3. | ∂H̃ (θ, z) /∂z − H̃ (θ′, z) /∂z |≤ L2 | θ − θ′ | (1+ | z |p2), for some p2 ≥ 0,

for some L1, L2.

For these assumption to hold it suffices for H̃ (θ, z) to be twice continuously differentiable

with bounded second derivatives on every Q.

Clearly, since H̃ (θ, z) is a polynomial, it is twice continuously differentiable, and, further-

more, its second derivatives are continuous and thus bounded on every compact set. . Then

H̃ (θ, z) ∈ C2(Q) for every Q.

Assumption (H.1). h(θ) has continuous first and second derivative on D open, where

h(θ) = lim
t→∞

EH̃ (θ, z)
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Then, we have that,

h(θ) = R
−1

zz′
(
T̃ (θ)− θ

)

and if we set R = zz′, we have that

h(θ) = T̃ (θ)− θ (2.63)

This is a polynomial in θ and thus has continuous first and second derivatives on D.

Assumption (H.3). Dθh(θ) is Lipschitz and all of the eigenvalues of F = Dθh(θree) have

strictly negative real parts.

Proposition 2.2 above, shows the conditions under which all of the eigenvalues of Dθh(θree)

have strictly negative real parts, and they depend on the model at hand. However, since

Dθh(θ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂T (θree)z
∂θ1

− 1 ∂T (θree)z
∂θ2

· · · ∂T (θree)z
∂θn

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

⎞

⎟⎟⎟⎟⎟⎟⎠

is clearly independent of θ , then it satisfies Lipschitz conditions trivially. For completeness

we write the Theorem 7.9 in Evans and Honkapohja (2001) below.

Theorem (see Theorem 7.9 Evans and Honkapohja (2001)): Assume that Assump-

tions (A.2), (A.3’), (M.1)-(M.5), (H.1)-(H.3) and (N.1) hold. Consider the normalized ran-

dom variable Uγk (t) = γ−1/2
k

[
θγk − θ⋆

]
. For any sequences τk → ∞, γk → 0, the sequence

of random variables
(
Uγk (τk)

)
k≥0

converges in distribution to a normal random variable with

zero mean and covariance matrix

C =

ˆ ∞

0
esDθh(θ⋆)R(θ⋆)esDθh(θ⋆)′ds (2.64)

Then for small γ and large t, the distribution of θt is approximately given by

θt ∼ N(θ⋆, γC) (2.65)
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’[...] a large proportion of our positive activities depend on spontaneous optimism rather

than on a mathematical expectation, whether moral or hedonistic or economic. Most [...] of

our decisions to do something positive [...] can only be taken as the result of animal spirits

- a spontaneous urge to action rather than inaction, and not as the outcome of a weighted

average of quantitative benefits multiplied by quantitative probabilities.

[...] often falling back [...] on whim or sentiment or chance.’ Keynes, 1936 1

3.1 Introduction

The rational expectations hypothesis (RE hypothesis) is the predominant approach for

imputing expectations in macroeconomic applications. A number of recent studies show,

however, that relatively small deviations from RE, such as the ones implied by adaptive

learning (AL), can significantly improve the fit of business cycle models with the data (e.g.

Slobodyan and Wouters (2012a, b), Milani (2007)). By endowing agents with subjective

beliefs about their forecasting models, these studies arrive at alternative explanations for

macroeconomic fluctuations, challenging the standard roles played by demand, technology

and mark-up shocks and open a promising new field of research.

The standard approach in the AL literature consists of assuming that beliefs move only

in response to economic outcomes or economic fundamentals, neglecting other important

determinants of agents’ expectations, such as purely subjective components of beliefs (see

Akerlof and Shiller (2009)). This paper models these subjective views about the future as

sentiment socks, defined as shocks to the beliefs agents entertain about their forecasting

models, and explores their empirical importance for business cycle fluctuations in the context

of an estimated New Keynesian model à la Smets and Wouters (see Smets and Wouters (2007))

with adaptive learning.

After accounting for the different degrees of freedom, I show that the model with senti-

ment shocks fits the data significantly better than the model without sentiment shocks. In

particular, the model with AL and sentiment shocks has an improved ability to match the

observed data covariances. Both results also hold when compared to the model under RE. A

forecast error variance decomposition exercise shows the large importance of sentiment shocks

as drivers of economic fluctuations in the United States: they account for up to 50% of all

1Keynes (1936), Chapter 12, The State of Long-term Expectation.
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variability in aggregate variables at business cycle frequencies. The concrete role played by

sentiment is explored in a simple shock decomposition exercise in which retrieved historical

shocks are fed back into the estimated model. This exercise suggests that sentiment shocks

display a common pattern for real variables, amplifying their fluctuation over the cycle, acting

as alternating waves of optimism and pessimism. In particular, this role appears to be stronger

during recessions when agents persistent pessimistic views take time to revert, thereby slowing

down the subsequent recovery. Furthermore, the decomposition exercise suggests that senti-

ment shocks also played an important role in the historic evolution of price inflation. While

these shocks accounted, on average, for about a third of inflation deviations from steady state

over the pre-Volcker period, they appear to have remained largely at bay during the ’Great

Moderation’, reinforcing the idea that inflation is largely expectations-driven.2 In addition,

sentiment shocks are found to generate inflationary preassure after the ’Great Recession’,

which partially off-set what otherwise would have been and even lower inflation level. This is

the only significant episode in the price inflation series in which sentiment shocks display an

opposite effect to the one of the other shocks in the model; possibly picking up the effects of

the Quantitive Eassing programs.

There is a vast universe of potential forces that may drive expectations away from what past

data or market fundamentals suggest. Keynes, for example, emphasised the role of speculation

and of what he famously termed as ’animal spirits’. More recently, Akerlof and Shiller (2009)

addressed the effects that emotional and psychological factors have on economic decision

making. They revisit Keynes’ idea of animal spirits and identify several different categories,

including the state of confidence, money illusion and the role of stories for shaping behaviour,

among others. Moreover, there are other factors that, perhaps today more than ever, reinforce

or exacerbate these sentiments, such as media and their ability to shape and coordinate public

opinion. As mentioned above, in this paper, and borrowing the term proposed by Milani

(2013), these emotional, psychological or social mood drivers are broadly defined as sentiment

and they are modelled as shocks shifting the beliefs agents entertain about the reduced form

models they use to form expectations; thus, affecting agents’ forecasts about future economic

variables.

The model is estimated using Bayesian techniques and U.S. canonical data. However,

given the nature of the model at hand standard Bayesian estimation approaches cannot be

2This result should, however, bee taken with caution since this may also respond to a policy change which
the monetary policy rule in the model does not allow for.
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employed directly and, therefore, the paper employs a new estimation strategy proposed in

Arias and Rancoita (2013). The standard approach to estimate models with learning consists

of abstracting from all uncertainty in the expectation formation mechanism model, including

sentiment shocks, thereby rendering the model de facto linear and, thus, allowing the likeli-

hood to be computed with the standard Kalman Filter.3 Arias and Rancoita (2013) propose

an alternative estimation approach that relies on linearizing the belief updating equations.4

This allows making use of the Kalman Filter and accommodating sentiment shocks at the

same time. This paper is the first to introduce such an approach in a medium-size learning

model. For completeness, I also compare the standard estimation approach with the new one

devised in Arias and Rancoita (2013).

This paper is closely related to Milani (2013) and Slobodyan and Wouters (2012). Milani

(2013) is concurrent work, attempting to answer a similar question as the one studied here. It

proposes a two step estimation procedure, which consists of first identifying sentiment shocks

in the U.S. business cycle, using the difference between survey data and what the model under

AL suggests expectations should have been. It then incorporates these shocks as exogenous

sentiment shocks into the estimation of the model. It finds evidence suggesting that these type

of shocks play a significant role in the U.S. economy, in particular sentiment shocks related

to investment decisions.

The present paper addresses the question in a different way. First, it relies on a single step

estimation approach that estimates sentiment shocks and other model parameters jointly.

In addition, the set of sentiment shocks considered here is significantly larger and includes

sentiment related to all forward-looking variables that need to be forecasted in the model

instead of restricting it to the ones related to investment, consumption and inflation.5 Another

important difference is that, the expectation formation mechanism follows Slobodyan and

Wouters (2012), where agents are assumed to use small forecasting models and update them

using Bayes rule, instead of the reduced form models of the same form as the minimum state

variable (MSV) solution and constant-gain learning algorithm adopted in Milani (2013). The

reason for this choice is twofold: first the more simple small forecasting models simplify the

3By approximating all uncertain states in the non linear parts of the model by ’certain’ estimates, beliefs
behave as time-varying parameters.

4The validity of such an approximation rest largely on the validity of the original log-linearization around
the model’s steady state and some stability conditions for the learning dynamics, analogous to the ones
found in the learning literature; see Arias and Rancoita (2013).

5The reason behind this restriction in Milani’s paper is that the estimation makes use of data on expectations
from the Survey of Professional Forecasters which is limited to those variables.
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estimation considerably; and second, they have a better empirical performance. As Slobodyan

and Wouters (2012) show, in the context of a standard new Keynesian model, this learning

scheme considerably improves the model’s fit to the data relative to other more elaborate

forms, including the MSV solution.

Another strand of related literature is represented by Cogley and Sargent (2008) and Suda

(2013). Cogley and Sargent (2008) studies the role of particularly pessimistic initial priors in

a Bayesian learning version of a simple asset pricing model. It suggests that an event like the

Great Depression may alter beliefs, generating pessimistic initial conditions, in a way that can

explain part of the equity premium puzzle in the postwar U.S. data. Suda (2013) builds on

the same idea and studies the effects of one time ’shattered’ beliefs, consequence of one time

events such as the Great Depression. He does this in the context of a standard equilibrium

business cycle model where agents learn about the probabilities characterizing productivity

in the economy, via Bayesian methods. He finds that sufficiently large shocks to beliefs of

agents can have a quantitatively important and persistent impact in the macroeconomy. Both

works provide evidence of the importance of non-rational beliefs as drivers of macroeconomic

dynamics and in particular of subjective interpretations of events as ’shifters’ of agents beliefs.

The paper at hand tries to build a framework where these shocks can be appropriately studied.

Beaudry et al. (2011) constitutes another recent effort that supports the importance of

sentiment or psychological reasons behind economic dynamics. Using sign-restriction based

identification schemes, it tries to isolate macroeconomic fluctuations that appear most likely

driven by mood swings. Its findings suggest that this may be the main force driving business

cycles.

From a more general perspective, this paper is part of an ample literature that attempts

to explain busines cycle fluctuation as the result of sources other than standard demand,

technology and mark-up shocks. This includes, in particular, the ’News Shocks’ literature

that explains economic fluctuations, partially, as a consequence of the anticipatory behavior

of agents to information about future shock realizations. Beaudry and Portier (2006) is here

the classic example, where agents recieve news about future technoloy shocks, while Schimitt-

Grohe and Uribe (2012) brings the idea further, allowing for news about diverse shocks and

incorporating them into a DSGE framework. In turn, Blanchard et al. (2013) assume news

to be noisy, adding a signal extraction problem to the standard set up. This noise and the

exisitng posibility that news about future shocks may not realize, could be associated to
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subjective views on future events which may be driven by sentiment, psychological factors or

mood swings, though their original interpretation is different. Similar considerations could

be extended to the literature on sunspots in RE and to the literature on noise shocks. See

Benhabib and Farmer (1994) and Angeletos (2008) for the former and Lorenzoni (2010) for

the latter.

The rest of the paper is structured as follows. Section 3.2 describes the core of the model

and the expectation formation mechanism. Section 3.3 discusses the estimation methodology

and the data. Section 3.4 presents and discusses the results. Section 3.5 concludes.

3.2 Model

The paper explores the role of shocks to beliefs in business cycle fluctuations in the context

of a standard New Keynesian model (see Christiano, Eichenbaum and Evans (2005), Smets

and Wouters (2007)), featuring both nominal and real rigidities. The version adopted here

follows Slobodyan and Wouters (2012), who replace the traditional rational expectations

hypothesis with adaptive learning. This not only makes the information assumption on agents

more realistic but, as they show, it improves the fit of the model to the data, as measured

by the marginal data density and the implied models’ posterior odds - indicators of the

relative likelihood of the models to generate the observed data and used to compare models

in a Bayesian framework. In addition, learning helps reducing the degree of dependency on

highly autocorrelated exogenous stochastic structures and mechanical sources of endogenous

persistence, which are generally accepted as drawbacks of the rational expectations literature

(Milani (2012)). This is consequence of the endogenous propagation introduced by learning

and that manifests in the gradual update of agents beliefs.

The model consists of three main sectors: Households, Firms and a Government. In the first

sector, representative households seek to maximize their lifetime utility subject to a budget

constraint, where the former may rise either from consumption (relative to a habit component)

or from leisure (agents choose how much to work). Each period, they also decide how much to

invest in capital, taking into account its adjustment costs, and bonds and choose the utilization

rate of capital, depending on its return. Households provide their labor to a union which,

then, sets wages subject to a Calvo pricing scheme with indexation. This is consequence of the

monopolistic power the union creates by differentiating the labor provided by the households.
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In the second sector, firms are further divided into two sub-sectors: an intermediate goods

sub-sector, where firms, choosing capital and labor, produce differentiated goods, creating a

monopolistic-competition market where prices are set subject, also, to a Calvo scheme with

indexation; and a final goods sub-sector, in which firms combine the intermediate goods into

a final good that, in a perfectly competitive market, sell to consumers, investors and the

government. Finally, the third sector is given by the monetary authority which, by means of

a Taylor type rule, determines the short-term nominal interest rate as a function of inflation

and output deviations from their respective targets.

The model is completed by the expectation formation mechanism, which will be introduced

next, and the stochastic structure of the model. In particular, the latter can be divided in

two to parts: first, the standard structural shocks used to match the data in these type of

models and which remains the same as in Smets and Wouters (2007) and Slobodyan and

Wouters (2012); and second, the shocks given by agents’ sentiment about the future. In the

paper the former are referred as standard shocks, while the latter as sentiment shocks. The

model, then, comprises 7 different standard shocks use to match the 7 U.S. data series used in

the estimation: a total factor productivity shock (TFP), a risk-premium shock, a government

expenditure shock, an investment-specific technical change shock (IST), a monetary policy

shock, a price mark-up shock and a wage mark-up shock. The first five shocks are modeled

as AR(1) processes while the last two as i.i.d. shocks.6 In addition, government expenditure

is further affected by the innovation of TFP, since in the estimation government expenditure

also includes net exports, which can be affected by productivity movements. The model is

briefly presented in its log-linearized form in Appendix I.

3.2.1 Expectations Formation

According to the model, agents need to forecast the future value of seven endogenous

variables to take decisions: consumption, investment, hours worked, inflation, the price and

the return of capital and real wages.7 To construct these expectations, they are assumed to

use small reduced-form AR(2)-forecasting models. However, the parameters of these processes

are unknown to them and need to be estimated. The assumption here is that agents entertain

beliefs about those parameters in the form of some distribution and, as new information

6Under RE both mark-up shocks are usually modeled as a persistent process, e.g. as ARMA(1,1). However,
adaptive learning generates sufficient endogenous persistence to abstract from such a structure.

7See Appendix I.
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becomes available, they update this distribution using Bayes rule. Beliefs, then, encompass

the parameters’ distribution, how this distribution is updated each period, and how it relates

to the data agents observe (i.e. through the specific AR(2) models. See equations (3.1) and

(3.2))

This type of adaptive learning deviates from the traditional rational expectations assump-

tion in three ways. First, the resulting probability measure used to forecast future variables

does not need to coincide with the one implied by the model. Second, this probability meas-

ure, reflected in the parameters of the forecasting models, evolves over time inducing further

dynamics. Third, the information set that agents use to form expectations is smaller than un-

der RE. In particular, it is also smaller than the standard way adaptive learning is modelled.

Under adaptive learning, agents are generally endowed with knowledge about the correct form

of the rational expectations equilibrium of interest. A common rationale for this is given by

the assumption that agents know the model in the same way as the researcher but do not

know the values the parameters take, which prevents them from deriving the RE equilib-

rium.8 The reason for using small reduced-form forecasting models is twofold. On the one

hand it considerably simplifies the estimation costs and on the other, it can be justified from

an empirical perspective. Slobodyan and Wouters (2012), show that these type of small fore-

casting models significantly improve the fit of the model to the data and help produce impulse

response functions in line with DSGE-VAR models.

The following state space model describes how agents perceive the law of motion of forward-

looking variables and the way parameters evolve,

yft = Xtβt + ut (3.1)

βt = (1− ρ)β̄ + ρβt−1 + vt , (3.2)

where yft , is the vector containing the seven forward variables agents need to forecast each

period and Xt ∈ R7×21 is a matrix that contains for each forward looking variable its first two

lags and a constant, i.e. the AR(2) process. Agents believe the parameters characterizing that

model, βt ∈ R21×1, follow an autoregressive process around β̄, where ρ ≤ 1. Then, departing

from Gaussian distributions for the initial states and assuming Gaussian errors, ut and vt,

agents use observations of yft to construct the distribution of βt. Since the model is linear,

8Following this logic, RE would further assume that agents also know the value of the parameters of the
model. Therefore, they would know more than the researcher.
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this can be optimally done by means of the familiar Kalman Filter and belief evolution is fully

characterized by the dynamics of their first two moments,

βt|t = βt|t−1 +

:=Kt︷ ︸︸ ︷
Pt|t−1X

T
t−1

[
Σ+Xt−1Pt|t−1X

T
t−1

]−1
(
yft −Xt−1βt|t−1

)
(3.3)

Pt|t = Pt|t−1 −KtXt−1Pt|t−1 (3.4)

where βt|t−1 = (1 − ρ)β̄ + ρβt−1|t−1 is the predicted mean and Pt|t−1 = ρ2Pt−1|t−1 + V the

predicted covariance matrix of the states. V is the covariance matrix of vt and Σ the covariance

matrix of ut. Furthermore,Kt is the Kalman gain, which optimally determines how much past

beliefs need to be adjusted in the direction of the forecast error, yft −Xt−1βt|t−1, by considering

the uncertainty of the latter relative to the uncertainty of the prior. Equations (3.3) and (3.4)

are then referred to as the beliefs updating equations.

Intuitively, each period t agents need to construct expectations about next periods forward

looking variables, i.e. Et

(
yft+1

)
. For this, and even though yft is assumed to be known at

time t,9 agents use information up to period t−1 to update their beliefs about the distribution

of the parameters of their forecasting models. Then, agents use the updated distributions,

summarized by βt|t−1, to generate the necessary expectations to take their economic decisions,

Et

(
yft+1

)
= Xtβt|t−1.

10 This closes the model. Plugged into equations (3.8)-(3.21) the model

becomes backward looking and it can be estimated.

The main innovative point of this paper is that agents may deviate from the way the re-

searcher models how beliefs are updated, i.e. deviate from (3.3) and (3.4). At any given period,

agents may condition their beliefs on subjective information that pushes them away from what

the data suggests. In the spirit of Milani (2013), these drivers are defined as sentiment and

encompass a wide range of factors, from psychological and social ones to plain speculation.

In the benchmark model these deviations take a simple form, identically and independently

distributed shocks to the constant of the respective reduced form models. Equation (3.3) is

then extended and written as,

βt|t = βt|t−1 + Pt|t−1X
T
t−1

[
Σ+Xt−1Pt|t−1X

T
t−1

]−1
(
yft −Xt−1βt|t−1

)
+ ξt+1 , (3.5)

where ξt+1 is vector of appropriate size containing the sentiment shocks of agents.

9This is the standard assumption of ’time-t’ dating, which avoids simultaneity between yf
t and βt|t. It is

done for technical simplicity, see Evans and Honkapohja (2001).
10Remember, Xt contains information up to t− 1.
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3.3 Estimation Methodology

Adaptive learning introduces non-linearities in an otherwise linear model. Not only the

beliefs updating equations are non-linear (see (3.4) and (3.5)), but the function used by agents

to form expectations becomes non-linear as well, Et

(
yft+1

)
= Xtβt|t−1. This is because the

parameters of the reduced-form models used to forecast forward variables, and that under

RE were constants, are now dynamic states, and the researcher needs to keep track of their

evolution. In principle, Bayesian estimation of such a model would have to relay on some

non-linear filter, such as Particle Filters or Quadrature Filters (Arulampalam et al. (2002)).

However, these types of filters suffer from the so-called curse of dimensionality. That means

that the computational costs increase exponentially with the dimension of the model. With

learning the computational problem is further exacerbated since the state space is augmented

to include agents’ beliefs. In the model at hand the computational cost of such an estimation

approach becomes prohibitive.

The literature proposes a simple way of circumventing the problem. By abstracting from

all uncertainty in the beliefs updating equations, the evolution of beliefs can be computed

deterministically such that beliefs behave as time-varying parameters. This makes the model

effectively linear in the states and its marginal likelihood can be computed with the simple

Kalman Filter.11 To do this, the method relies on approximating the distribution of the

unobserved forward looking variables that enter the beliefs updating equations, yft , Xt−1,

by a unit mass distribution at their last estimated mean (which in turn is affected by this

approximation).

Since the objective of this paper is to study sentiment shocks and these are a source of

uncertainty in beliefs, abstracting from uncertainty in the latter is not a feasible strategy

here. Hence, this paper adopts the method introduced in Arias and Raincoita (2013) for the

estimation of DSGE models under AL. The method is based on the linearization around the

steady state equilibrium under rational expectations of what, in any case, is a largely linear

model. Then, the marginal likelihood of the resulting linear model can be easily computed

by means of the Kalman Filter. The validity of such a linearization is a direct consequence

of the accuracy of the log linearization done on the optimality conditions of the model in the

first place (equations (3.8)-(3.21)).

11Examples of this approach can be found in Milani (2005, 2007, 2013) and Slobodyan and Wouters (2007,
2012).
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The particular linearization point has the advantage that it renders the forecast error,

yft −Xt−1βt|t−1, equal to zero. This implies that one can neglect the dynamics of the matrix

estimating the second moments of the beliefs, P . Then, after linearization, the beliefs updating

equation can be written as,

βt = (1− ρ)β̄ + ρ
{
βt−1 +M

(
yft−1 − X̄βt−1 −Xt−2β̄

)}
+ ξt , (3.6)

where M = P ∗XT∗
[
Σ+X∗P ∗XT∗

]−112. Equation (3.6) is now the single equation describing

the evolution of beliefs.

To estimate the model, seven US time series over a period ranging from the first quarter

of 1965 to the fourth quarter of 2013 are used: real GDP, short-term nominal interest rate

(Federal Funds rate), real consumption, real investment, hours worked, inflation and real

wages. This gives rise to the following measurement equation,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dlGDPt

FEDFUNDSt
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dlINVt

lHourst

dlPt

dlWaget

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ Ot =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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r

γ

γ
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π

γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
:=constant

+

⎛
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∆yt
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∆ct

∆it
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∆wt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which together with equations (3.8)-(3.21) and (3.6) complete the model.13

The whole model can be brought to state space form and succinctly written as,

⎧
⎪⎨

⎪⎩

Ot = Zobs
t

Zt = µ+ G · Zt−1 + V · ϵt ,
(3.7)

where Zt =
[
Y ′
t ,ω

′
t, Y

f ′

t−1, Y
f ′

t−2, dobs
′
t,β

′
t

]
is an appropriately stacked vector of Yt = [kt, yt, rt, ct,

it, lt,πt, qt, rkt , wt
]′

, ωt =
[
εat , ε

b
t , ε

g
t , ε

q
t , ε

r
t , ε

p
t , ε

w
t

]
, observables and beliefs14.

The likelihood of the model is computed with the Kalman Filter and the posterior distri-

12βt|t−1 = (1− ρ)β̄ + ρβt−1|t−1 has been used and the subindices have been simplified, t− 1 | t− 1 ≡ t− 1.
13γ denotes the period trend growth rate of real GDP, consumption, investment and wages; π denotes the

periods steady state inflation rate as l and r do the same for hours worked and the nominal interest rate
respectively. dl stands for log first difference and l for log.

14The state space form of the model is derived in the appendix.
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butions of the parameters are generated by means of a Metropolis-Hastings algorithm. The

priors for the parameters of the model are taken from Smets and Wouters (2007) and addi-

tionally include the priors for the standard deviations of the sentiment shocks ( see Tables

3.3, 3.4 and 3.5 in Appendix II). Following Slobodyan and Wouters (2012), σ0, the parameter

setting the proportion to
(
X Σ−1X

)−1
of the initial covariance matrix of the belief coeffi-

cients around which the linearization is done it is set to 0.03. The remaining parameters are

estimated. Initial beliefs for each parameter draw are set to the implied rational expectations

value. The estimation starts with the search for the mode of the log-posterior distribution of

the parameters, which combines the log-likelihood of the data conditional on the model and

the parameters with the log-prior knowledge about the parameters.

Four different expectation formation mechanisms are considered throughout the paper.

First, the model derived under rational expectations, RE, the predominant assumption in

macroeconomics and hence a natural benchmark. This specification corresponds to the model

in Smets and Wouters (2007) and is the only one that requires more persistent processes to

model the mark-up shocks. As shown in Slobodyan and Wouters (2012), models under adap-

tive learning generate enough endogenous persistence so that mark-up shocks are correctly

captured by i.i.d. processes. As previously discussed, the model with sentiment shocks is

based on the one with small-forecasting reduced form models introduced in Slobodyan and

Wouters (2012). To incorporate these type of shocks, the model’s expectation formation

mechanism is linearized. Therefore, to better understand the contribution and role of sen-

timent and disentangle them from the effects of the linearization relative to the non-linear

adaptive learning scheme, two other specifications are estimated: a model with non-linear

adaptive learning, AL, which coincides with the model in Slobodyan and Wouters (2012) and

the linearized version of it, without sentiment shocks, LAL. Finally, the core of this paper,

the model with sentiment shocks, which, is also linearized, LALwS. The only difference of

the model under RE and under AL from their respective original versions is that they are

estimated using larger and updated samples, extending until the last quarter of 2013.

3.4 Results

Sentiment shocks were introduced, in subsection 3.2.1, as i.i.d., however, after a first estima-

tion, the resulting historical innovations presented some significant correlations, both between
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sentiment shocks and also between sentiment shocks and some standard shocks. To cope with

this issue, and guided by the results in the first estimation, the stochastic structure is ad-

justed (see Appendix II). The new specification allows the sentiment shocks on consumption

and hours worked to depend on the risk premium innovation in the same way as the exogenous

spending process is allowed to depend on TFP. Similarly, sentiment on investment, price and

return on capital are allowed to depend on the innovation of the IST shock and sentiment

about wage inflation may depend on the innovation of the wage mark-up shock. Finally, the

sentiment shock for price inflation is allowed to depend on the innovations of both the price

and the wage mark-up shocks. Furthermore, to account for the correlation observed among

some sentiment shocks, a feature that is in fact desired, since optimism and pessimism are

likely to be contagious, a series of dependencies between the sentiment shocks are estimated.

For all of these parameters, their priors are set to be a beta distribution, adjusted to the

interval [−1, 1] with mean 0 and standard deviation 0.45; for the parameters accounting for

the dependency of price inflation sentiment on price mark-up and of wage inflation sentiment

on wage mark-up, these priors are further restricted to the interval [0, 1]. This final version

of the stochastic structure is set to be the baseline and the one used in the rest of the paper.

Tables 3.3, 3.4 and 3.5 in Appendix II report the posterior distributions statistics for all

model specifications. Standard test were used to determine the identification of the different

parameters estimates in the model, including Geweke (1992) convergence tests, the plotting

of the Metropolis-Hastings draws, the testing for different means in sub-samples of the draws

yielded by the MH algorithm, and the plotting of the likelihood as a function of each param-

eter. Results indicate that all parameters are identified using 400,000 draws and burning the

first 10%.

Structural parameters remain mostly unchanged and are robust to the expectations forma-

tion mechanism assumed. Although, the mean of the posterior distributions do change for

some parameters, there is a strong overlapping between their respective 5th - 95th quantiles

intervals.

There are, however, some noteworthy exceptions. First, the inverse of the intertemporal

elasticity of substitution (IES) for consumption, σc, when sentiment shocks are present, it

is estimated to be much lower (0.43). As the willingness to shift consumption across time

increases with the higher IES, so does the effect of the interest rate on consumption and in

turn on the whole economy. In addition, increases in the hours worked now lead to positive
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and larger increases in current consumption, opposite to the small and negative effect that it

has in the models without sentiment (see equation (3.9)).

Second, estimating the model with sentiment shocks delivers an IST shock which is less

volatile and persistent (see σq and ρq in Table 1). The smaller size of the IST shocks seem to

be compensated by two effects of the higher IES that help match the data: First, the overall

impact of the IST shock on investment becomes larger. Second, the lower σc, increases the

impact of the sentiment shock about investment on the economy (in particular on real output,

consumption and investment).

All together, sentiment shocks are estimated to be small relative to the other standard

shocks present. Notwithstanding, they enter through a quite persistent belief process with a

mean autoregression coefficient estimate of 0.97 (ρ in last row of Table 3). Their relevance

will become apparent once the forecast error variance decomposition is considered later on.

A last point to notice regards the posterior estimates of the non-linear and linear versions

of the adaptive learning model without sentiment shocks, they present two main differences.

First, under linear adaptive learning, the risk-premium shock is estimated to be less volatile

and considerably less persistent. This goes in line with the featured stronger habits in con-

sumption that make the latter more persistent and less responsive to changes in the interest

rate. In addition, the value of the capital stock becomes more sensitive to the risk-premium

shock, partially compensating for its smaller variability. Second, the elasticity of the capital

adjustment cost function, ϕ, returns to the levels of rational expectations when the adaptive

learning scheme is linearized, reducing the effect of the current value of the capital stock on

current investment and increasing the sensitivity of the capital accumulation dynamics to how

efficient investment is (captured by the IST shock).

3.4.1 Marginal Data Density

One important dimension to evaluate when comparing models is the degree in which they

are able to explain the data. Comparing the marginal data density of different models is the

most accepted way of comparing two different models as shown by the ample literature on the

matter (e.g. Fernandez-Villaverde and Rubio-Ramirez (2004), Milani (2007), Slobodyan and

Wouters (2012)). This indicator is an average over the parameter space of the value of the

likelihood of the data conditional on the model, and that accounts for the different degrees

of freedom of the different models. In particular, it can be used to compute two different
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models’ posterior odds, which indicate how more likely a model is to generate the observed

data, relative to another. Alternatively, the marginal data density can be interpreted as

reflecting the model’s out of sample prediction performance. Table 3.1 shows the marginal

data density, expressed in log-points, estimated for the four types of expectation formation

mechanisms that are considered in the paper.15

Table 3.1: Marginal Data Density

RE AL LAL LALwS
−1134.9 −1106.7 −1117.4 −1104.5

As the fourth column of the table shows, the model with adaptive learning and sentiments

shocks fits the data better than all other specifications. Furthermore, confirming the results

in Slobodyan and Wouters (2012) and Milani (2007), adaptive learning, both in its linear and

non-linear form, improves the model’s fit to the data with respect to its rational expectations

counterpart. In terms of the models’ posterior odds, the linearized adaptive learning model,

LAL, is 17.5 log-points more likely to produce the observed data than the RE model; which

in posterior probabilities terms means that the RE model is assigned zero probability relative

to any of the learning models (since the other learning specifications present even larger

marginal data densities).16 Moreover, the model with sentiment shocks, LALwS, presents

a significant improvement relative to the non-linear and linear adaptive learning versions

without sentiment shocks. The evidence is again substantial in favour of sentiment shocks,

as even when compared to the non-linear version of adaptive learning without sentiment,

AL, the model LALwS is about 9 times more likely to produce the observed data. This is

an important result as it provides strong evidence suggesting that sentiment shocks are an

important feature of economic expectations. Interestingly, comparing the AL and the LAL

models shows how the linearizing strategy seems to reduce the ability of the model to fit the

data - relative to the non linear adaptive learning strategy.
15The marginal likelihood of the data, for this and most of interesting models, is approximated by the weighted

harmonic mean of the posterior likelihoods generated with the Metropolis-Hastings algorithm. Weights
are given by a truncated multivariate normal evaluated at the corresponding de-meaned parameter draw
following Geweke (1998). The marginal data density is defined as

ˆ

Θ

L
(
yT |θ, M

)
π(θ) dθ

, where M denotes a particular model, θ ∈ Θ the parameters of the model, yT the data, π(θ) the prior of
the parameters and L

(
yT |θ, M

)
the likelihood of the data conditional on the parameters and the model.

16This is true if one departs, as it is done here, from an agnostic point of view in which both models are given
the same prior probabilities of being the true one, i.e. 0.5.
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In spite of the apparent cost of linearizing the expectation formation mechanism relative to

the costs of abstracting form uncertainty in beliefs when sentiment is not present, the lineariza-

tion strategy significantly outperforms the non-linear adaptive learning model in matching the

variance in the observed variables - it also outperforms the RE model in this respect.17 The

non-linear version tends to generate too much variance, in particular, for hours worked, real

investment growth and the interest rate. Furthermore, the fact that it is a linear model allows

for a correct (conditional on the linearization) variance decomposition, an exercise that is

presented next.

3.4.2 Forecast Error Variance Decomposition

To better understand the main drivers of economic fluctuations, Figures 3.1 and 3.2 present

the forecast error variance decomposition for real GDP and investment growth; and for the

price inflation and the Federal Funds rate respectively (the decomposition of the other ob-

served variables is not shown, but briefly described). Several horizons are considered, ranging

from 1 quarter to 25 years, which is taken as the unconditional forecast error and denoted

with ∞. It is worth mentioning, that this variance decomposition cannot be defined for the

non-linear adaptive learning model and is only possible because of the linerization strategy

used to estimate the learning models with sentiment. Again, results show the importance of

sentiment shocks.

In the shorter horizons, the three model specifications present a roughly similar role for

the different standard shocks; while, sentiment shocks, taken together, account for about

10 percent of the variability of all observables. In particular, risk premium, government

expenditure and TFP shocks still explain the major part of the variability behind real variables

in the short run. Adaptive learning does not seem to introduce important changes relative to

rational expectations in the short run either. The two main differences between the rational

expectations and the adaptive learning specifications, in their two variants, are given by the

change in the persistence’s perception of the mark-up shocks, that results in the price mark-up

shock becoming the only driver of inflation variations in the short run and a general relative

larger role of the price mark-up with respect to the wage mark-up shocks and the expanded

role of the risk-premium shock relative to the IST shock, that becomes even more important

for real GDP, consumption and investment. The latter, when sentiment shocks are added,

17Not reported.
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is further explained by the significant lower estimates for the persistence and variance of the

IST shock and by the larger estimated intertemporal elasticity of substitution that augments

the effect of risk premium shocks

Figure 3.1: Forecast Error Variance Decomposition : Output and Investment.

At business cycle frequencies, illustrated here with the 10 and 40 quarters decompositions,

the picture changes. The contribution of sentiment shocks considerably expands, showing

their importance as an explanation for economic dynamics. In the longer run, except for wage

inflation, where they account for about a fifth of its total variation (still a significant fraction)

the role of sentiment shocks becomes largest and accounts for about half of all variations. This
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responds, in particular, to the long-lived effect that sentiment shocks have through the beliefs

updating mechanism, which is a highly persistent process. In line with the findings of Milani

(2013), sentiment shocks associated to investment appear to be particularly important for real

variables. Specially, this shock stands as the main source of variation of real investment in the

medium and long run, explaining up to 40 percent of it. It also accounts for approximately a

quarter of the variation in GDP, where the risk-premium and TFP shocks still play a relevant

role. In addition, the existing result that wage mark-up shocks dramatically reduce their role

when adaptive learning is in place, is also found.

Figure 3.2: Forecast Error Variance Decomposition : Price Inflation and Federal Funds Rate.
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In turn, consumption, which in the long run under rational expectations was largely ex-

plained by wage mark-up shocks, under learning is mostly explained by the risk-premium and

monetary shocks. Once sentiment is introduced, this decomposition changes further, giving

room to the above mentioned investment sentiment shock and to hours sentiment shock, two

shocks that directly affect the intertemporal consumption Euler equation. Finally, the senti-

ment shock related to price inflation turns into the major source of variation of inflation in

the long run, followed by the standard price and wage mark-up shocks, which continue to play

an important role for this variable; wage inflation remains largely determined by the wage

mark-up shock, as in the rational expectations case, but under adaptive learning to a larger

extent; lastly, variations in the Federal Funds Rate at business cycle frequencies, are mainly

driven by the sentiment shock associated to inflation, while the role of TFP is significantly

decreased and the IST shock, as in the case of adaptive learning with no sentiment shocks,

plays virtually no role.

3.4.3 Historical Variance Decomposition

Table 3.2 presents the historical variance decomposition obtained from the model with

sentiment shocks (Tables 3.6 and 3.7 present the corresponding results for the RE and LAL

versions respectively - AL is a non-linear model and thus cannot be used to linearly decompose

the variance in a comparable fashion).

It shows that sentiment accounted for a substantial fraction of the overall observed variance

in GDP, Consumption and Investment growth, explaining from 13.5 to 24.3 percent, and in

the Fed Funds rate, hours worked and price inflation, where the contribution is even higher,

ranging from 38.5 up to 54.6 percent. Agents’ sentiment about investment and inflation seems

to play the larger roles. Specifically, agents’ sentiment about price inflation accounts for about

a third of the variance in inflation and about a quarter of the variance in the interest rate,

while sentiment about investment is responsible for approximately a fifth of the variance in

real investment growth and more than a quarter of the one in hours worked. On the other

hand, sentiment related to consumption and wage inflation play a smaller role, while sentiment

about the price and the return of capital are almost negligible. When sentiment is included in

the model, the contribution of the risk-premium shock becomes lower in line with its overall

estimated lower impact on the economy. A similar case is presented for the IST and monetary

shocks, which are estimated to have smaller innovations and persistence. Most of this lower
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variability is then taken over by sentiment shocks.

Table 3.2: LAL with Sent. Shocks - variance decomposition in %

∆y r ∆c ∆i l πp πw
Structural Shocks: 86.5 61.5 83.4 75.7 45.4 58.7 96.1

TFP 12.0 2.1 6.2 0.5 4.1 1.0 0.3
Risk Premium 40.8 8.1 66.6 27.4 24.2 1.2 1.7

Gov. Exp. 24.7 1.1 5.3 0.4 3.4 0.1 0.1
IST 4.3 0.3 1.4 38.1 1.1 0.1 0.0

Monetary 4.7 12.7 5.0 7.6 8.8 0.1 0.2
Price markup 0.9 15.4 1.0 1.7 2.4 33.8 6.6
Wage markup 0.6 18.2 0.3 0.7 4.5 20.4 89.2

Sentiment Shocks: 13.5 38.5 16.6 24.3 54.6 41.3 3.9
Consumption 0.7 0.2 3.0 0.2 5.4 0.4 0.2
Investment 9.7 9.4 7.4 19.3 28.5 0.6 0.6

Hours Worked 1.7 0.1 3.7 0.4 12.4 1.8 0.2
Inflation 0.9 28.1 0.9 2.1 7.3 37.2 0.1

Price of Capital 0.1 0.1 0.4 2.1 0.5 0.1 0.0
Return of Capital 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Wage 0.0 1.2 0.1 0.0 0.8 1.5 1.9

The remaining differences of the learning model with sentiment from its RE counterpart

are largely inherited from the learning dynamics. Therefore, they are studied in the context

of the learning model without sentiment.

First, a similar result as in Slobodyan and Wouters (2012) is found when comparing the

contributions of the price and wage markup shocks to inflation, between the RE and the

LAL versions. Under learning, both shocks are estimated as iid, consequently, agents do not

distinguish between their persistence, yielding a relatively larger role for the price mark-up

shock, which under RE was the least persistent one. The adaptive learning dynamics further

affect two other shocks and their contributions in terms of the variance generated. The

risk-premium shock and the IST shock are estimated to be less volatile and less persistent

respectively. However, a higher estimate for the habits component increases the effect of the

risk-premium shock on real investment and on the price of the capital stock compensating

for the smaller shocks, which explains why the risk-premium shock becomes more important

under learning. Finally, the smaller contribution of the monetary shock also reflects the larger

role played by habits under learning, as they make consumption less sensitive to changes in

the interest rate in the corresponding Euler equation.



70 CHAPTER 3. SENTIMENT SHOCKS AS DRIVERS OF BUSINESS CYCLES

3.4.4 Shock Decomposition Exercise

After having established the large importance that sentiment shocks play at business cycle

frequencies, this section presents a simple shock decomposition exercise aiming at studying

the concrete role of sentiment shocks over the cycle. Figures 3.3 and 3.4 plot the evolution of

real output, consumption and investment and of price inflation respectively, together with the

underlying contribution that can be attributed to standard and sentiment shocks respectively.

The red bars depict the evolution of the variables when sentiment shocks are turned off; the

blue bars show the sentiment shocks’ quarterly contribution, that is linearly added to yield

the black line, which depicts the actually observed path for the variables.

This exercise shows the important role that sentiment shocks play in the determination

of economic fluctuations, which, if not present, would have yielded quite different economic

dynamics. Moreover, sentiment shocks display a distinctive and common pattern for the three

observed real variables in the model that translates into a reinforcing behavior, amplifying the

economic cycles. The computed correlation between output growth and the contribution of

sentiment shocks to output growth is of about 0.71. The analogue correlation for consumption

and investment growth are also high, 0.63 and 0.65 respectively.

More interestingly, during recessions, this reinforcing effect of sentiment shocks, which acts

as a pessimistic wave, is not necessarily immediately reverted and can endure for several years

slowing down the recovery - even though economic fundamentals may have already recovered.

Except for the recessions experienced during the 80’s, this seems to have been the case for all

recessions since the seventies, where the pessimistic views of agents played an important part

in avoiding a quick exit.

This observation is in line with the persistent effect of sentiment on beliefs, suggesting

that it takes time before agents perceptions about the economy are reverted into a neutral or

optimistic state. During the last two recessions these pessimistic views have been particularly

strong. Sentiment remained pessimistic long after the recession was over, particularly for

consumption. This contrasts with the situation experienced during the 90’s and the 80’s,

when sentiment bounced back relatively quickly and became positive until the next recession.

The results are also worthwhile analyzing in the case of the evolution of price inflation. A

significantly large fraction of the high inflation experienced during the seventies and beginning

of the eighties appears to be due to agents’ sentiment. Pessimistic views, which this time
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translate into positive contributions, account on average for 37% of the quarterly price inflation

deviations from steady state over that period. A point that underscores the idea that inflation

is mainly driven by expectations.
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Figure 3.3: Shock decomposition. Real variables: Output, Consumption and Investment.
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Inflation Rate
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Figure 3.4: Shock decomposition: Inflation

This period, which commenced its decline with the appointment of Paul Volcker as chairman

of the Federal Reserve Board, was then followed by a period of relatively low and stable

inflation and a very much limited role of sentiment. However, this point should be taken with

caution, as sentiment may be picking up a change in the policy regime that the Taylor rule in

the model does not allow for. Perhaps more interesting, is the observation that after the ’Great

Recession’, around the beginning of 2010, sentiment started to display the opposite effect to

the one of produced by standard shocks.18 This inflationary pressure that sentiment generated

partially off-set what otherwise would have been an even lower inflation level. Possibly picking

up some of the effects of the Quantitative Easing programs.

18Correlations between price inflation and the contribution of sentiment shocks to price inflation show this
change, as while the correlation after the ’Great Inflation’ and til 2010 was of 0.6, it becomes 0.16 during
the subsequent years.
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3.5 Concluding Remarks

This paper studies the role of sentiment shocks as a source of business cycle fluctuations.

In the context of a standard New Keynesian Model with adaptive learning and applying a

novel estimation methodology it presents strong evidence suggesting that sentiment shocks

are important drivers of economic fluctuations and therefore, that they need to be considered.

The relevance of this result is strengthened by the ability of the learning model to fit the data

significantly better when sentiment is present than otherwise - and, in turn, better than when

rational expectations are assumed. Agents’ subjective views used to form beliefs challenge

the standard sources of macroeconomic dynamics. In particular, sentiment is responsible

for a substantial portion of the medium and long run variability in real GDP, investment

and consumption growth as well as in inflation, hours worked and the nominal interest rate,

accounting for up to about half of it. Coinciding with the results in Milani (2013), investment

is the most important sentiment shock driving the real variables in the model, which brings

to mind Keynes’ idea of animal spirits. In a straightforward shock decomposition exercise,

sentiment shocks are found to display a pro-cyclical reinforcing effect, while a particular role

over the cycle is identified for real GDP, investment and consumption growth. Evidence

suggests that agents tend to become pessimistic during and well after a recession, slowing the

subsequent recovery down. Also, sentiment shocks are found to play an important role in the

historic evolution of price inflation: a role that seems to have changed after the high inflation

period of the 70’s and beginning of the 80’s. Finally, sentiment shocks appears to be catching

some of the effects of the Quantitative Easing programs, as they are found responsible for

positive inflationary pressure that partially off-set what otherwise would have been an even

lower inflation level.
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3.6 Appendix I

3.6.1 Model

The model is briefly presented in its log-linearized form around the stationary steady state

and consists of 14 endogenous variables in the same number of equations and 7 exogenous

shocks.19

The economy’s aggregate resource constraint captures how output (yt) is allocated either

to consumption (ct), investment (it), the cost of adjusting the utilization level of capital (ut)

or to the exogenous government spending (εgt ):
2021

yt =
c∗
y∗

ct +
i∗
y∗

it +
rk∗k∗
y∗

ut + εgt , (3.8)

where c∗
y∗

, i∗
y∗

, rk∗k∗
y∗

denote the steady state shares of consumption, investment, and cost of

changing capital utilization relative to output, respectively.22

A typical consumption Euler equation,

ct = (1− c1)ct−1 + c1Etct+1 + c2(lt − Etlt+1)− c3(rt − Etπt+1) + εbt , (3.9)

describes current consumption’s (ct) dependence on past and expected future consumption,

on expected hours worked growth (lt), and on the real interest rate. εbt stands for the exo-

genous process followed by the risk premium. The parameters are given by c1 = 1
1+η/γ ,

c2 = c1(σc−1)w∗L∗/C∗

σc
, and c3 = 1−η/γ

σc
, where η is the habit formation parameter and σc

denotes the inverse of the intertemporal elasticity of substitution.

The investment Euler equation,

it = i1it−1 + (1− i1)Etit+1 + i2qt + εqt , (3.10)

with parameters i1 = (1 + βγ1−σc)−1 and i2 = i1
γ2ϕ characterizes the dependence of current

investment (it) on past and next periods expected investment and on the real value of the

19Later on, the exogenous stochastic structure will be augmented to include sentiment shocks.
20For a detailed step by step derivation see the appendix contained in Smets and Wouters (2007). The

description here largely follows Smets and Wouters (2007) and Milani (2013).
21Includes net exports.
22All lower case variables represent log-deviations from their respective steady state value unless stated oth-

erwise.
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capital stock, (qt). It also depends on an investment-specific technological (IST) change

shock, εq. As usual, β denotes the discount factor and ϕ represents the adjustment costs in

investment.

The evolution of the value of capital is given by,

qt = (1− q1)Etqt+1 + q1Etr
k
t+1 − (rt − Etπt+1) + q2ε

b
t , (3.11)

where q1 =
rk∗

rk∗+(1−δ)
, q2 =

σc(1+η/γ)
1−η/γ , δ is the depreciation rate, and rk∗ the steady-state rental

rate of capital. It is a function of its expected future value, of the expected rental rate of

capital, and of the return on assets held by households.

Aggregate supply is given by a Cobb-Douglas production function,

yt = φp(αk
s
t + (1− α)lt + εat ) . (3.12)

Output is produced using capital services kst and labour lt as inputs, with shares determined

by α. εa is total factor productivity (TFP), while φp reflects the existence of fixed costs in

production and corresponds to the price mark up in steady state.

Capital services, in turn, are a fraction of the capital stock in the previous period (capital

is assumed to need one quarter to become operational), determined by the degree of capital

utilization ut.

kst = kt−1 + ut . (3.13)

Moreover, the degree of capital utilization is a positive function of the rental rate of capital,

ut =
1− ψ

ψ
rkt , (3.14)

where ψ is the elasticity of the capital utilization cost function.

Capital accumulation dynamics are given by,

kt = k1kt−1 + (1− k1)it + k2ε
q
t , (3.15)

where k1 = 1−δ
γ and k2 = (1 − k1)(1 + βγ1−σc)γ2ϕ. The capital stock net of depreciation

increases with investment but depends on how efficient those investments are, εq.

Price mark up is defined as the difference between the marginal product of labour and

wages (w),
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µp
t = α(kst − lt) + εat − wt (3.16)

While inflation is determined by the following New Keynesian Phillips curve,

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + εpt , (3.17)

where π1 =
ιp

1+βγ1−σc ιp
, π2 =

βγ1−σc

1+βγ1−σc ιp
and π3 =

(1−βγ1−σcξp)(1−ξp)
ξp((φp−1)εp+1)

1
1+βγ1−σc ιp

, with ιp denot-

ing the indexation to past inflation of those prices that where not re-optimized, ξp the Calvo

parameter regulating the price stickiness and εp the curvature of the Kimball goods market

aggregator. Current inflation depends on both lagged and expected future inflation and also

on the price mark-up and a price mark-up disturbance, εp.

The rental rate of capital depends negatively on the capital to labor ratio and positively on

the real wage,

rkt = −(kst − lt) + wt . (3.18)

In the labor market the wage markup is characterized by,

µw
t = wt −

(
σllt +

1

1− η/γ

(
ct −

η

γ
ct−1

))
, (3.19)

i.e. the difference between the real wage and the marginal rate of substitution between

consuming and working. σl denotes the inverse of the Frisch elasticity of labor supply.

Wage dynamics are determined by,

wt = w1wt−1 + (1− w1)Et(wt+1 + πt+1)− w2πt + w3πt−1 − w4µ
w
t + εwt (3.20)

where w1 = (1 + βγ1−σc)−1, w2 =
1+βγ1−σc ιw
1+βγ1−σc , w3 =

ιw
1+βγ1−σc ιw

and w4 =
1

1+βγ1−σc ιp
(1−βγ1−σcξw)(1−ξw)
ξw((φw−1)εw+1) . As for prices, ιw is the degree of wage indexation to past inflation, ξw is

the Calvo parameter regulating wage stickiness and εw is the curvature of the Kimball labor

market aggregator. The current real wage depends on its past and expected future values; on

the past, current and expected future value of inflation; and on the wage mark-up and the

wage mark-up disturbance εw.
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Finally, monetary policy is assumed to follow a Taylor type rule,

rt = ρrrt−1 + (1− ρr) [χππt + χy(yt − y⋆t )] + χ∆y(∆yt −∆y⋆t ) + εrt , (3.21)

where the short-term nominal interest rate is gradually adjusted to changes in inflation, the

output gap and a monetary policy shock, εr.23

The stochastic sub-structure given by the seven shocks introduced above, TFP, risk-premium,

government expenditure, investment-specific technical change, monetary, price mark-up and

wage mark-up are set in the following way: the first five shocks are modeled as AR(1) processes

while the last two as i.i.d. shocks.24 In addition, government expenditure is further affected

by the innovation of TFP, since in the estimation government expenditure also includes net

exports, which can be affected by productivity movements.

23The output gap is defined as the difference between actual output and potential output, yt − y⋆
t . Where the

latter, y⋆
t , in turn, is defined as the output that would prevail in the economy under flexible prices.

24Under RE both mark-up shocks are usually modeled as a persistent process, e.g. as ARMA(1,1). However,
adaptive learning generates sufficient endogenous persistence to abstract from such a structure.
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3.7 Appendix II

3.7.1 Estimations

This section presents the posterior estimation of parameters.

Table 3.3: Posterior Estimates: stochastic structure.

- mean and 5%÷ 95% quantiles reported -

Prior(mean, std) RE AL LAL LALwS

σa Γ−1 (0.1, 2) 0.44
0.40÷0.48

0.44
0.41÷0.49

0.44
0.41÷0.49

0.47
0.42÷0.52

σb Γ−1 (0.1, 2) 0.22
0.17÷0.26

0.15
0.12÷0.17

0.10
0.07÷0.15

0.16
0.13÷0.21

σg Γ−1 (0.1, 2) 0.50
0.46÷0.55

0.48
0.44÷0.53

0.48
0.44÷0.52

0.50
0.46÷0.55

σq Γ−1 (0.1, 2) 0.36
0.31÷0.42

0.42
0.37÷0.47

0.35
0.28÷0.42

0.17
0.12÷0.24

σr Γ−1 (0.1, 2) 0.22
0.20÷0.25

0.21
0.20÷0.23

0.21
0.20÷0.23

0.20
0.19÷0.22

σp Γ−1 (0.1, 2) 0.13
0.10÷0.15

0.15
0.13÷0.16

0.12
0.10÷0.15

0.14
0.12÷0.16

σw Γ−1 (0.1, 2) 0.35
0.32÷0.39

0.34
0.31÷0.37

0.36
0.32÷0.40

0.34
0.30÷0.38

σsc Γ−1 (0.1, 2) − − − 0.05
0.03÷0.10

σsi Γ−1 (0.1, 2) − − − 0.14
0.05÷0.25

σsl Γ−1 (0.1, 2) − − − 0.06
0.03÷0.10

σsπ Γ−1 (0.1, 2) − − − 0.04
0.03÷0.06

σspk Γ−1 (0.1, 2) − − − 0.08
0.03÷0.16

σsrk Γ−1 (0.1, 2) − − − 0.07
0.03÷0.13

σswπ
Γ−1 (0.1, 2) − − − 0.05

0.03÷0.08

ρa Beta (0.5, 0.2) 0.96
0.94÷0.98

0.99
0.99÷0.99

0.97
0.96÷0.99

0.97
0.95÷0.99

ρb Beta (0.5, 0.2) 0.36
0.21÷0.55

0.64
0.48÷0.76

0.29
0.14÷0.49

0.13
0.04÷0.27

ρg Beta (0.5, 0.2) 0.98
0.96÷0.99

0.97
0.96÷0.99

0.97
0.96÷0.99

0.96
0.95÷0.98

ρq Beta (0.5, 0.2) 0.79
0.72÷0.86

0.38
0.28÷0.49

0.43
0.28÷0.58

0.15
0.05÷0.28

ρr Beta (0.5, 0.2) 0.13
0.05÷0.22

0.15
0.06÷0.25

0.14
0.06÷0.24

0.08
0.03÷0.15

ρp Beta (0.5, 0.2) 0.90
0.82÷0.96

− − −

ρw Beta (0.5, 0.2) 0.96
0.94÷0.98

− − −

θp Beta (0.5, 0.2) 0.77
0.63÷0.87

− − −

θw Beta (0.5, 0.2) 0.93
0.88÷0.97

− − −

agb N (0.5, 0.25) 0.51
0.37÷0.64

0.55
0.42÷0.67

0.55
0.42÷0.68

0.46
0.33÷0.59

The models under adaptive learning, following Slobodyan and Wouters (2012), feature a

simpler process for both mark-up shocks with respect to the model under RE. While under

RE these shocks followed an ARMA (1,1) process, under learning they are can be modeled as
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Table 3.4: Posterior Estimates: stochastic structure cross-correlations.

- mean and 5%÷ 95% quantiles reported -

Prior(mean, std) RE AL LAL LALwS

θb−c Beta (0.5, 0.2) − − − 0.15
−0.53÷0.74

θb−l Beta (0.5, 0.2) − − − 0.19
−0.51÷0.73

θq−i Beta (0.5, 0.2) − − − 0.10
−0.47÷0.65

θq−pk Beta (0.5, 0.2) − − − 0.03
−0.68÷0.73

θq−rk Beta (0.5, 0.2) − − − 0.00
−0.72÷0.73

θp−πp Beta (0.5, 0.2) − − − 0.11
0.02÷−0.25

θw−πw Beta (0.5, 0.2) − − − 0.19
0.03÷0.43

white noise (ρp, ρw, θp, θw are the persistence and moving average parameters respectively).25

Furthermore, when sentiment shocks are included a series of shocks cross effects are estimated,

namely:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sct = ect + θb−cebt

sit = eit + θq−ie
q
t

slt = elt + θb−lebt

s
πp
t = e

πp
t + θp−πpe

p
t

spkt = epkt + θq−pke
q
t

srkt = erkt + θq−rke
q
t

sπwt = eπwt + θw−lewt

(3.22)

The first column of the right hand side is given by the sentiment shocks, the second column

is given by the effect of the innovations of the standard shocks on the sentiment shocks.

25σ: standard deviation of shocks.ρ: AR(1) coefficient.θ: MA(1) coefficient.agb : the effect of TFP innovations
on exogenous demand.
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Table 3.5: Posterior Estimates: structural parameters.

- mean and 5% ÷ 95% quantiles reported -

Prior(mean, std) RE AL LAL LALwS

ϕ N (4, 1.5) 5.23
3.73÷6.89

2.92
2.09÷4.52

5.59
4.05÷7.30

6.77
5.11÷8.60

σc N (1.5, 0.37) 1.29
1.11÷1.51

1.65
1.40÷1.91

1.38
1.16÷1.61

0.43
0.28÷0.65

η Beta (0.7, 0.1) 0.74
0.65÷0.81

0.66
0.58÷0.75

0.84
0.78÷0.88

0.87
0.81÷0.91

σl N (2.0, 0.5) 1.40
0.56÷2.28

1.56
0.83÷2.36

1.77
0.94÷2.56

1.28
0.54÷2.03

ξp Beta (0.5, 0.1) 0.76
0.68÷0.83

0.74
0.69÷0.79

0.75
0.68÷0.81

0.75
0.61÷0.87

ξw Beta (0.5, 0.1) 0.78
0.68÷0.86

0.82
0.77÷0.87

0.79
0.74÷0.85

0.71
0.64÷0.78

ιp Beta (0.5, 0.15) 0.24
0.11÷0.38

0.32
0.18÷0.49

0.40
0.20÷0.64

0.26
0.12÷0.42

ιw Beta (0.5, 0.15) 0.64
0.42÷0.83

0.33
0.17÷0.53

0.41
0.22÷0.63

0.39
0.19÷0.61

ψ Beta (0.5, 0.15) 0.72
0.57÷0.86

0.70
0.51÷0.86

0.65
0.45÷0.82

0.66
0.47÷0.83

φp N (1.25, 0.12) 1.72
1.57÷1.90

1.63
1.47÷1.80

1.63
1.45÷1.83

1.59
1.39÷1.82

ρR Beta (0.75, 0.1) 0.82
0.78÷0.86

0.90
0.87÷0.93

0.91
0.88÷0.93

0.86
0.83÷0.89

rπ N (1.5, 0.25) 1.55
1.34÷1.80

1.63
1.33÷1.94

1.61
1.34÷1.92

1.67
1.44÷1.91

ry N (0.12, 0.05) 0.04
0.02÷0.07

0.11
0.06÷0.16

0.08
0.03÷0.13

0.07
0.03÷0.11

r∆y N (0.12, 0.05) 0.16
0.12÷0.19

0.12
0.09÷0.15

0.12
0.09÷0.15

0.13
0.10÷0.16

π̄ Γ (0.62, 0.1) 0.81
0.64÷0.97

0.62
0.51÷0.73

0.68
0.53÷0.84

0.69
0.53÷0.87

100(β−1 − 1) Γ (0.25, 0.1) 0.15
0.07÷0.24

0.14
0.06÷0.24

0.16
0.08÷0.29

0.25
0.13÷0.39

l̄ N (5.0, 2.0) 6.62
4.56÷8.63

7.58
6.19÷8.85

6.78
4.53÷8.96

6.91
5.20÷8.84

γ N (0.4, 0.1) 0.41
0.38÷0.43

0.43
0.39÷0.46

0.41
0.37÷0.44

0.42
0.38÷0.45

α N (0.3, 0.05) 0.20
0.18÷0.23

0.18
0.15÷0.21

0.18
0.15÷0.21

0.16
0.13÷0.19

ρ Beta (0.5, 0.29) − 0.97
0.96÷0.98

0.96
0.90÷0.98

0.97
0.94÷0.99

3.7.2 Historic Variance Decomposition

Table 3.6: LAL no shocks - variance decomposition in %

Structural Shocks: ∆y r ∆c ∆i l πp πw
TFP 8.4 13.4 0.8 0.3 9.0 11.1 0.0

Risk Premium 52.8 17.7 85.6 32.3 33.6 2.9 0.8
Gov. Exp. 24.1 4.0 0.8 0.2 11.3 0.7 0.0

IST 6.9 4.2 0.4 62.3 6.4 2.5 0.0
Monetary 5.3 26.9 8.7 3.4 27.9 3.4 0.4

Price markup 1.9 21.7 3.3 1.4 5.7 62.0 5.5
Wage markup 0.6 11.6 0.6 0.2 6.0 17.5 93.3
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Table 3.7: RE - var decomposition in %

Structural Shocks: ∆y r ∆c ∆i l πp πw
TFP 9.7 16.1 1.7 2.2 3.8 11.2 0.8

Risk Premium 32.0 8.5 66.9 6.6 7.4 1.0 0.8
Gov. Exp. 21.1 4.9 2.5 0.6 10.1 0.6 0.0

IST 16.8 24.9 3.3 76.4 16.7 2.7 2.1
Monetary 10.2 17.4 13.4 6.0 9.4 4.4 1.5

Price markup 6.4 6.7 4.8 6.7 14.7 38.5 17.0
Wage markup 3.8 21.5 7.4 1.6 37.2 41.7 77.7

3.8 Appendix III

3.8.1 State Space Form

This section briefly introduces the model in its state space form which is the basis for the

likelihood computation and, in turn, for the Bayesian estimation. It consists of an observation

and a process equation. The process equation describes the law of motion of the states, that

is the economic model, while the observation equation maps them into the data.

The structural model given by equations (3.8)-(3.21) constitutes the main building block

for our process equation. The model can first be written in its matrix form as

Yt = BYt−1 + CYt +DÊtYt+1 +Eωt + Fωt−1 (3.23)

ωt = ρωωt−1 + Sϵt (3.24)

where Yt =
[
kt, yt, rt, ct, it, lt,πt, qt, rkt , wt

]′
, is a vector of endogenous states,

ωt =
[
εat , ε

b
t , ε

g
t , ε

q
t , ε

r
t , ε

p
t , ε

w
t

]
the vector containing all seven standard shocks and ϵt is a

14 × 1 random vector of innovations to ω, that also includes the 7 innovations to sentiment

shocks. The matrices B, C, D, E, F , ρω and S are then functions of the parameters of

the model, θ, of the appropriate size. Notice that the model still includes the subjective

expectations operator Êt.

Expectations are formed by means of reduced-form models whose coefficients are updated

using Bayes rules. In particular, following Slobodyan and Wouters (2012) these models are

simple AR(2), i.e. linear on the first two lags of the relevant variable that needs to be
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forecasted and include a constant. From the perspective of the researcher the coefficients

estimated by the agents each period become states, rendering the model non-linear. After

linearizing, expectations are constructed as

ÊtYt+1 = β̄1 Yt + β̄2 Yt−1 + βt

and the model can be solved for the current states,

⎛

⎝ Yt

ωt

⎞

⎠ = Nβt + T

⎛

⎝ Yt−1

ωt−1

⎞

⎠+Rϵt (3.25)

where 26

N =

⎛

⎝
(
Id− C −Dβ̄1

)−1
D

0(7×21)

⎞

⎠

T =

⎛

⎝

[(
Id− C −Dβ̄1

)−1 (
B +Dβ̄2

)] [(
Id− C −Dβ̄1

)−1
(Eρω + F )

]

0(7×10) ρ

⎞

⎠

R =

⎛

⎝
(
Id−C −Dβ̄1

)−1
ES

S

⎞

⎠

The linearized version of the optimal Bayesian updating rules for beliefs can be written as

βt = ρβt−1 + ρM
{
Y f
t−1 − β̄1 Y f

t−2 − β̄2 Y f
t−3 − βt−1

}
+Ωϵt (3.26)

where the exponent f denotes that only the rows corresponding to the forward variables are

selected and the matrix M is a composite that includes the Kalman gain evaluated at the

REE. Variables appearing with a bar on top denote the corresponding point around which

the equation was linearized.

Considering that the mapping of the data to the model is given by,

26In our exercise µ = 0.
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dlGDPt

FEDFUNDSt

dlConst

dlINVt

lHourst

dlPt

dlWaget

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ Ot =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ

r

γ

γ

l

π

γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
:=constant

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆yt

rt

∆ct

∆it

lt

πt

∆wt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Finally, the state vector is defined as Zt ≡
[
Y ′
t ,ω

′
t, Y

f ′

t−1, Y
f ′

t−2, dobs
′
t,β

′
t

]′
and write the model

in its state space form

⎧
⎪⎨

⎪⎩

Ot = Zobs
t

Zt = µ+ G · Zt−1 + V · ϵt
(3.27)

where obs denotes that only dobst is selected from Zt, µ = (01×31, trend′, 01×7)
′ and

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T +NρMSelf −NρM β̄1

Self 0

0 Id7
(
T +NρMSelf

)obs − Selobs
(
−NρM β̄1

)obs

ρMSelf −ρM β̄1

−NρM β̄2 0 Nρ (Id7 −M)

0 0 0

0 0 0
(
−NρM β̄2

)obs
0 (Nρ (Id7 −M))obs

−ρM β̄2 0 ρ (Id−M)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.28)

V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R+NΩ

0

0

(R+NΩ)obs

Ω

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.29)
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where Self is a matrix selecting the forward variables in
(
Y ′
t−1,ω

′
t−1

)
and obs, again, denotes

that only the rows corresponding to the observable variables are selected. The model given

by (3.27) is used to compute the likelihood of the data for each parameter draw generated by

the MH algorithm.

3.8.2 Data

The model is estimated using data on seven US macroeconomic variables: real GDP, short

term interest rate (Federal Funds rate), real consumption, real investment, hours worked,

Inflation and real wages. The data is constructed as in Slobodyan and Wouters (2012) and

updated to include the latest releases. For example, real GDP is expressed in billions of

chained 2009 dollars. It covers the period ranging from the first quarter of 1966 till the fourth

of 2013 and includes a pre sample of 4 quarters starting in 1965. Aggregate real variables are

expressed in per capita terms and all series have been adjusted for seasonality. Furthermore,

all variables are expressed in percentage points.
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4.1 Introduction

The forward-looking behavior of economic agents is one of the salient features of modern

macroeconomics and brings about the critical issue of how expectations formation should

be modeled. Since the work of Muth (1961), and specially after the contributions of Lucas

(1972) and Sargent (1973), Rational Expectations (RE) has been the main paradigm under

which expectations are formed. Notwithstanding its success, the RE hypothesis suffers from

several shortcomings which led to the proposal of alternative approaches. Among them,

Adaptive Learning (AL) has become one of the most fruitful ones. However, the AL literature

rests upon a series of ad-hoc assumptions and degrees of freedom that render the modeling

scheme in part arbitrary. To cope with these issues Adam and Marcet (2011) formalize the

concept of Internal Rationality (IR), a decision theoretic framework that serves as well-defined

microfoundations for Adaptive Learning models. This paper applies the internal rationality

framework to a simple New Keynesian model and uses it to study the stability properties of

different monetary policy rules.

From a formal point of view, rational expectations can be defined as the mathematical

conditional expectation generated by the probability distributions that emerge from the model

in equilibrium. Thus, by construction, expectations are pinned down by the rest of the model.1

This disciplines them, as it does not leave any degrees of freedom for how expectations are to

be determined. Moreover, it strongly simplifies models, as one does not need to keep track of

the beliefs of agents anymore. However, the tight link between fundamentals and expectations

that RE impose prevents the latter from being an autonomous source of dynamics, creating

several drawbacks. For example, to match the data DSGE models under RE generally need to

resort to a series of mechanical sources of persistence (e.g. habit formation in consumption,

inflation indexation or adjustment costs of investment), as well as highly auto correlated

exogenous shocks that have been criticized as not sufficiently supported by actual evidence.2

Moreover, RE rest upon a strong informational assumption that requires agents to know the

entire model to a degree that not even the theorist has (e.g. agents are assumed to know the

value of all the parameters in the model).

Adaptive learning departs from a less demanding and, thus, more realistic informational

1Multiple equilibrium considerations are at this point omitted.
2For an overview of the shortcomings faced by Rational Expectations in Macroeconomics, see the survey of

Milani (2012) and the references therein.
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assumption, which, necessarily, prevents agents from deriving the objective probability dis-

tributions that would prevail under RE. Then, adaptive learning assumes that agents form

expectations using reduced fom models. However, the parameters of those models are un-

known to the agents and each period they need to estimate them using the latest available

information.3 This relaxes the relation between fundamentals and expectations creating fur-

ther dynamics and improving the model’s performance. Cogely and Sargent (2008) and Adam

et al. (2015), show how models under AL are able to explain several asset pricing puzzles that

remained elusive under RE. While Milani (2007) and Slobodyan and Wouters (2012) show

how AL creates further endogenous persistence in DSGE models reducing their dependency

on both mechanical sources of persistence and highly autocorrelated exogenous processes.

Moreover, recent empirical evidence as the one presented in Slobodyan and Wouters (2012)

among others, shows how adaptive learning can considerably improve a model’s fit to the data

relative to their RE counterparts.

In addition, there is an inherent value to having different expectations formation mecha-

nisms available, since most models actually represent a simultaneous test of both the under-

lying theory and the expectations formations mechanism itself. Consequently, as stressed by

MacCallum (1999), Taylor (1999) and Milani (2012) among others, a misspecification of the

latter may lead to the rejection of a possibly valid theory or to the adoption of models that

would be discarded under different expectations assumptions. Therefore, and given the degree

of uncertainty in economics, the wider the range of expectations formation mechanisms under

which a policy achieves its goals the more desirable it becomes.

Notwithstanding, as pointed out by Adam and Marcet (2011), adaptive learning fails to

provide a clear and consistent framework where deviations from RE can be properly studied.

In particular it is not clear whether agents remain rational under AL. There are two main

reasons for this. The first one, is due to the manner in which AL is introduced. Instead

of setting the subjective expectations operator already from the outset, in the definition of

agents’ problems, AL departs from the optimality conditions of the model under RE and only

then replaces the rational expectations operator by the subjective one assumed under AL. This

is an important source of arbitrariness as optimality conditions under RE can be expressed

in different equivalent ways, which under learning may lead to different results. For example,

Adam, Marcet and Nicolini (2015) and Timmermann (1996) both study a simple asset pricing

model under learning. However, while the first one departs form a one period ahead optimal

3See Evans & Honkapohja (2001) for a detail treatise of Adaptive Learning.



91

pricing condition and finds a significant effect of learning, the second one departs from the

classical equation that sets prices equal to the expected discounted sum of future dividends

and finds a rather modest effect. Something similar can be observed in the context of a

simple monetary model. While Bullard and Mitra (2002) depart form the usual consumption

Euler equation, Preston (2005) uses the inter-temporal budget constraint to derive decision

rules that involve agents expectations of the whole future, leading to different results. Both

approaches are known as the Euler Equation (EE) approach and the Infinite Horizon (IH)

approach respectively. In principle, all these different setups could be justified provided an

ad-hoc information set for agents (see for example, Evans, Honkapojha & Mitra (2012) for a

discussion on how the EE and IH approach can be reconciled). However, and even if those

ad-hoc assumptions were accepted, it is not clear whether agents behavior remain optimal

under those particular conditions. Moreover, a theory whose results depend on the manner

in which it is stated is not an appealing one.

The second reason is given by the manner in which agents are assumed to estimate the

parameters of the reduced form models they use to form expectations. For most stochastic

approximation algorithms assumed by the learning literature, such as ordinary least squares

learning or constant gain learning, it is not clear whether they arise form agents using infor-

mation in an optimal manner (optimal in a Bayesian sense).

Internal Rationality seeks to solve these issues by recognizing two complementary conditions

comprised within the REH. The first one, internal rationality, stipulates that agents make

fully optimal decisions given a well-defined system of beliefs about those variables they need

to learn about (non-choice variables) and the information they have about the economy. The

second one, external rationality, states that agents subjective probability beliefs coincide with

the objective ones as they emerge in equilibrium. The proposed approach consists of relaxing

the external rationality assumption while keeping the internal rationality one. Thus, creating

a more natural and sensible starting point for economic models.

This paper derives a basic New Keynesian model under Internal Rationality and uses it

to study the stability properties of different monetary policy rules. The resulting model

yields decision rules that, similar to the IH approach of Preston (2005), require agents to

forecast variables for the whole infinite future. However, differently form the IH and EE

approaches agents under IR do not form expectations about own choice variables, such as own

consumption or labor choices. Instead, agents under IR are required to forecast their future
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real wages and profits. Two Taylor-type rules are then considered. First a monetary policy

rule in which the nominal interest rate is set proportional to the current period’s inflation

level and a second one that reacts to expectations of inflation one period ahead. Both rules

are representative of an extended class of feedback rules suggested by various authors. The

two monetary rules are then studied in order to determined whether agents that at some point

and for some reason are away of a particular REE could coordinate on it and learn it.

The first rule is found to be learnable if the so-called Taylor principle holds. A principle

that states that relative aggressive responses to inflation generally lead to unique rational

expectations equilibria and that therefore are desirable. This result coincides with the one

found under RE and for AL under both IH and EE approaches. For the second rule, however,

the Taylor-principle is found to be necessary but not sufficient. A result that contrasts with

the conclusions reached under RE and AL in its EE approach, and coincides with the one

found under the IH approach. This is an important result, since it is generally argued that a

judicious monetary policy is one that satisfies the Taylor principle.

The rest of the paper is structured as follows. Section 4.2 derives the core of the model.

Section 4.3 describes the expectation formation mechanism. Section 4.4 briefly discusses the

theory used to analyse the stability of monetary policy. Section 4.5 presents and discusses

the results. Section 4.6 concludes.

4.2 Model

This section derives the model under Internal Rationality which is later used to study

monetary policy. It is based on the basic New Keynesian Model under Rational Expectations

found in Gali (2008) and belongs to the family of models in the literature which, under different

expectations formation mechanisms, analyze simple Taylor-type monetary policy rules.4

4.2.1 Households’ Problem

The economy is populated by a continuum of infinitely-lived households facing the same

utility maximization problem. Each household chooses consumption, Cj
T , hours worked, N j

T ,

4Clarida et al (1999) is a classical example for this framework under RE while Bullard and Mitra (2002) and
Preston (2005) are examples for when different Adaptive Learning expectation formation mechanisms are
assumed.
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and how much to invest in one period bonds, Bj
T , subject to a simple budget constraint

requiring the periods’ outgoings to be smaller than the periods’ total wealth, i.e.

max
{Cj

t ,B
j
t ,Ntj}

∞

T=t

ˆ
Ej

t

∞∑

T=t

βT−tU
(
Cj
T , N

j
T ; ξT

)
(4.1)

s.t. PTC
j
T +Bj

T ≤ WTN
j
T + (1 + iT−1)B

j
T−1 +DT (4.2)

where β stands for the one period discount factor, PT is the price of one consumption unit in

period T , WT is the nominal wage payed for one unit of labor and it−1 is the nominal interest

rate valid from period t − 1 to period t. Furthermore, households are payed dividends, DT ,

as they are assumed to own the firms in the economy. The period utility U
(
Cj
T , N

j
T ; ξT

)

is assumed to be continuous, twice differentiable, with Uc > 0, Ucc ≤ 0, Un ≤ 0, Unn ≤ 0

and Unc = 0 and to depend on a preference shock, ξT . Finally,
ˆ
Ej

t denotes the subjective

expectations operator used by each household to construct forecasts of future variables. It

is defined on an underlying subjective probability space,
(
Ω,F , P j

)
, and even though it is

assumed to be homogenous among agents, they do not know this to be true. A particularly

sensible departure point, since endowing agents with knowledge about the beliefs of all other

agents in the economy, and further imposing its common knowledge, is an extremely strong

assumption.5 Choice variables, as well as the subjective expectation operator corresponding

to each agent in the economy are indexed with the letter j and helps distinguish between

what agents know and what the aggregate economy ultimately yields.

Under internal rationality agents are required to entertain beliefs about all external vari-

ables (i.e. not depending on their own decisions) entering the problems they face. That,

together with the agents assumed optimizing behavior, defines functional relations between

the agents’ own choice variables and external variables. As a result, rational agents cannot

entertain beliefs about own choice variables that violate those optimal functional relations and

consequently, to arrive to their optimal decision rules we must substitute them out. For this

purpose the budget constraint (4.2) needs to be substituted forward which together with the

appropriate non-Ponzi constraint, limT→∞
∏T

s=0
1

1+it−1+s
Bt+T = 0, yields an inter temporal

5Introducing heterogeneous beliefs in this setup becomes straight forward.
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budget constraint of the following form,

Bj
t−1 =

∞∑

k=0

(
k∏

s=0

1

1 + it−1+s

)(
Pt+kC

j
t+k −Wt+kN

j
t+k −Dj

t+k

)
(4.3)

This equation has a clear intuitive interpretation. The agent’s life time expenditures net of

their life time income can only be financed by the agent’s initial wealth.

In order to arrive to a linear consumption decision rule, the inter temporal budget constraint,

(4.3), together with the first order conditions of the household’s maximization problem are,

as usual, log-linearized. The resulting optimal allocation relations are given by the following

system of equations, valid for all T ≥ t,

ˆ
Ej

t

∞∑

k=0

βk+1
{
PCĉjt+k −WN

(
ω̂t+k + n̂j

t+k

)
−Dδ̂jt+k

}
= 0 (4.4)

ˆ
Ej

t

{
ĉjT + σ−1

(
îT − π̂T+1 + gT

)}
=

ˆ
Ej

t

(
ĉjT+1

)
(4.5)

ˆ
Ej

t

{
ϕ−1

(
ω̂T − σĉjT

)}
=

ˆ
Ej

t

(
n̂j
T

)
(4.6)

Equation (4.4) is the log-linear counterpart of equation (4.3) where variables with a bar on

top denote steady state values and ’ˆ ’ denotes percentage deviations of a variable from its

corresponding steady state. In particular, ω̂t+k denotes real wages and δ̂t+k real dividends.6

Note that bond holdings are no longer present. This is because bonds are assumed to be

in zero net supply. Equation (4.5) describes the agents usual consumption Euler equation,

where σ−1 ≡ − Uc

UccC̄
denotes the inter temporal elasticity of substitution for consumption,

π̂T+1 is price inflation and gt ≡ Ucξ ξ̄
Uc

∆ξ̂t+1 a redefined preference shock. Finally, equation

(4.6) describes the optimal labor allocation for households, where ϕ−1 ≡ Un

UnnN̄
.

This system can then be easily solved for ĉjt : First, the labor supply equation can be

used to get rid of all future labor choices in the inter temporal budget constraint; Second,

the Euler equation can be solved backwards to express every future consumption choice, ĉjT ,

as a function of the previous periods real interest rates, preference shocks and the current

household’s consumption choice, ĉjt . The resulting condition can then be used to get rid of

future consumption choices in the inter temporal budget constraint. Thus, one is left with an

equation describing the household’s optimal behavior as a function of their subjective beliefs

6Except for the nominal interest rate which is defined as î = ln (1 + it).
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and their implied forecasts of external economic conditions for their whole future,

ĉjt = −σ−1
∞∑

k=0

βk+1 ˆ
Ej

t

(
ît+k − π̂t+1+k

)
+

(1− β)
(
1 + ϕ−1

)

β
(

PC
WN

+ σϕ−1
)

∞∑

k=0

βk+1 ˆ
Ej

t (ω̂t+k) (4.7)

+
(1− β)D

β
(
PC + σϕ−1WN

)
∞∑

k=0

βk+1 ˆ
Ej

t

(
δ̂t+k

)
− σ−1

∞∑

k=0

βk+1 ˆ
Ej

t (ĝt+k)

This contrasts with the one period ahead decision rule under rational expectations given by

ĉt = Et (ĉt+1) + σ−1
(
ît − Et (π̂t+1) + gt

)
(4.8)

and which is many times used as a departing point for AL models.7 The reason for this

difference is very simple. Consider equation (4.7) again. Shifted one period forward and

applying the subjective expectations operator,
ˆ
Ej

t , on both sides of the equality one gets that,

ˆ
Ej

t

(
ĉjt+1

)
= −σ−1

∞∑

k=0

βk+1 ˆ
Ej

t

(
ît+1+k − π̂t+2+k

)

+
(1− β)

(
1 + ϕ−1

)
WN

β
(
PC + σϕ−1WN

)
∞∑

k=0

βk+1 ˆ
Ej

t (ω̂t+1+k)

+
(1− β)D

β
(
PC + σϕ−1WN

)
∞∑

k=0

βk+1 ˆ
Ej

t

(
δ̂t+1+k

)

−σ−1
∞∑

k=0

βk+1 ˆ
Ej

t (ĝt+1+k)

Then, it can be easily observed that
ˆ
Ej

t

(
ĉjt+1

)
could be used to substitute for the infinite

sums on the RHS of equation (4.7) collapsing it to a one step ahead consumption decision

rule (as in (4.8)). However, while under rational expectations that step is valid8 under AL it

is clearly not. Forming expectations about own future consumption by means of an estimated

reduce form model that describes its law of motion is not only non rational (since agents

do not forecast their own decisions) but, moreover, it does not coincide with the right hand

side of the equation which depends on expectations of external variables - based on estimated

reduce form models themselves. Is in this way that equation (4.8) is not valid under internal

rationality and instead agents’ behavior is determined according to (4.7).

7Bullard & Mitra (2002), Evans & Honkapojha (2008) among others.
8Considering the steps made to derive equation (4.7), it is clear that the same equation holds under rational

expectations (i.e. when the subjective expectations operator, Êj
t , is substituted for the objective one, Et).
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4.2.2 Firms’ Problem

The production in the economy encompasses two sectors. An intermediate goods sector

formed by a continuum of firms producing differentiated goods and a final goods sector consist-

ing of a single firm using the intermediate goods as inputs to produce the unique consumption

good in the economy.

The intermediate goods are transformed into the final good by means of a standard CES

production technology

Yt =

(
ˆ 1

0
Y

i ϵ−1
ϵ

t di

) ϵ
ϵ−1

(4.9)

where ϵ > 1 stands for the elasticity of substitution between inputs, Yt denotes the final

good production level and Y i
t the intermediate good produced by firm i. Each period, the

final goods firm minimizes the cost of producing any given production level yielding a set of

demand schedules for each intermediate good Y i
t as a function of their price pi, the aggregate

price level in the economy, Pt, and the final good’s production level, Yt, and which is assumed

to be known by the intermediate firms,

Y i
t =

(
pi

Pt

)−ϵ

Yt (4.10)

where the price level is further defined as Pt ≡
(
´ 1
0 P i1−ϵ

t di
) 1

1−ϵ
. Finally, the final goods firm

sells its output in a competitive market.

As mentioned above, the intermediate goods sector is populated by a continuum of firms,

of mass one, each producing a differentiated intermediate good by means of a simple Cobb-

Douglas production technology, Y i
t = AtN i

t . The differentiated products provide firms with

monopolistic power which is used to set prices. However, they do so according to a standard

Calvo pricing scheme (see Calvo (1983)).9 Thus, every period only a fraction 1−α ∈ (0, 1) of

firms is allowed to re-set their prices, meaning that on average prices have a duration equal

to 1
1−α periods.

Therefore, each period, the firms allowed to set prices do it by maximizing the discounted

sum of expected future profits subject to the demand they face and taking into account the

9Equivalently a quadratic cost function for nominal price adjustments as proposed in Rotemberg (1982) could
be assumed.
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possibility that they will not be able to change their prices in the future, i.e.

max
pi

Êi
t

∞∑

k=0

αkQt+k

[
piY i

t+k −Wt+kN
i
t+k

]
(4.11)

s.t. Y i
t+k =

(
pi

Pt+k

)−ϵ

Yt+k (4.12)

where Qt+k ≡
∏k

s=1 (1 + it+s−1)
−1, Qt ≡ 1 and pi denotes the price set by firms. Again, as it

was the case for households, firms are homogenous, implying that each period the firms that

are allowed to change their prices choose the same price. Nevertheless, this is not know to

firms.

The first order condition for this problem can be written as,

Êi
t

∞∑

k=0

αkQt+kYt+kP
ϵ
t+k

[
pi − µ

Wt+k

At+k

]
= 0 (4.13)

and after an appropriate log-linearization the price setting decision can be expressed as,

p̂i = (1− αβ) Êi
t

∞∑

k=0

(αβ)k {ω̂t+k − ât+k + p̂t+k} (4.14)

Firms, then, set prices considering the probability they will not be able to do it again in the

future and thus, taking into account changes in their expected future real costs and on the

price level of the economy.

4.2.3 Aggregate Equilibrium

A series of steady state relations, complementary equations and equilibrium conditions pro-

vide the remaining structure to derive the economy’s aggregate equilibrium. Market clearing

in the goods and labor market together with the production technology yield the following

steady state identity,

C̄ = Ȳ = N̄ (4.15)

while the first order condition for firms sets the real wage in steady state equal to the inverse

of the mark-up,
W̄

P̄
=

1

µ
(4.16)
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The definition of households dividends implies that in steady state,

D̄ = Ȳ P̄ − W̄ N̄ = W̄ Ȳ (µ − 1) (4.17)

Also, since firms are homogenous and each period a fraction 1−α is able to re-set prices, the

economy’s price level evolves as follows

Pt =
(
αP 1−ϵ

t−1 + (1− α)
(
pi
)1−ϵ) 1

1−ϵ

which after linearization can be written as,

p̂i =
π̂t

1− α
+ p̂t−1 (4.18)

Finally, the following conditions implied by market clearing conditions, the labor optimality

condition, the production technology and the dividends definition hold,10

ĉjt = ĉt = ŷt = ŷit (4.19)

ω̂t = (ϕ+ σ) ŷt − ϕât (4.20)

δ̂t =
µ− 1− ϕ− σ

µ− 1
ŷt +

ϕ+ 1

µ− 1
ât (4.21)

Note that these conditions only hold in period t, stressing that they arise from market equi-

librium conditions and that they are not known to the agents.

Then, using equations (4.15)-(4.21) and integrating over all firms and households we can

write the economy’s Philips curve as,

π̂t = κŷt +
(1− α)

α
Êt

∞∑

k=1

(αβ)k {(1− αβ) ŵt+k − (1− αβ) ât+k + π̂t+k}− Ωât (4.22)

where κ = (1−α)(1−αβ)
α (ϕ+ σ) and Ω = (1−α)(1−αβ)

α (ϕ+ 1) and the economy’s IS curve as,

ŷt = −σ−1ît − σ−1
∞∑

k=1

βkÊt

(
ît+k − β−1π̂t+k

)
+

(1− β)
(
1 + ϕ−1

)

µ
1−γ + σϕ−1

∞∑

k=1

βk−1Êt (ω̂t+k)

+
(1− β) (µ− 1 + γ)

µ+ σϕ−1 (1− γ)

∞∑

k=1

βk−1Êt

(
δ̂t+k

)
− σ−1

∞∑

k=0

βkÊt (ĝt+k) (4.23)

10They are expressed in their log-linearized form.
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where Êt =
´

[0,1]
ˆ
Ej

t dj. Since agents where assume to be homogenous we also have that

Êt =
ˆ
Ej

t = Êi
t , but in general the operator Êt does not need to satisfy standard probability

properties and is only the average of expectations prevailing in the economy.

Equations (4.22)-(4.23) determine the evolution of inflation and output as a function of

agents expectations of economic conditions for the whole infinite future and constitute the

core of the New Keynesian model under Internal Rationality. This setup is similar to the one

proposed by Preston (2005), however, here agents do not entertain beliefs about future own

choice variables.

The exogenous processes for the technology shock and the preference shock are assumed to

follow simple AR(1) process, i.e.

ât = ρaât−1 + εat (4.24)

ĝt = ρgĝt−1 + εgt (4.25)

where ρa, ρg ∈ (0, 1). To close the model two more things remain. The way in which the

monetary authority conducts policy, i.e. sets the short term nominal interest rate, ît. And

the way in which agents form expectations.

4.3 Agents’ Beliefs

One particularly important building block of a learning model is the beliefs agents are

assumed to entertain each period and how they are assumed to evolve over time. Internal

rationality stresses the need of properly defining this system of beliefs and of making it

consistent with the optimal behavior of agents. In other words, internal rationality requires

a well defined probability space and an optimal and consistent updating of the distributions

there defined.

Agents beliefs encompass three components, a model that describes their perception about

the law of motion of the variables they are required to make forecast of; a prior distribution

of the parameters that characterize that reduced form model; and a strategy to update that

prior as new data becomes available in time.

Regarding their perceived law of motion, and following the literature, agents use a reduced

form model of the same form as the minimum state variable rational expectations equilibrium
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(MSV-REE). In the context of our simple New Keynesian model, and given the interest rate

policy rules later considered, the rational expectation equilibrium in question is always linear

on a constant and the two exogenous processes, ât and ĝt. That means that agents construct

expectations by means of the following model

yt = x′tθ + ηt (4.26)

where yt =
(
ît, π̂t, ω̂t, δ̂t

)′
, xt = (1, ât, ĝt)

′, θ ∈ R3×1 and ηt ∈ R4×1 is the standard error

term, ηt ∼ N (0,Σ). Learning is, then, nothing else than the search for the true value of θ by

using new information to update the beliefs agents have about it, i.e. its distribution. Bayes

rule provides the optimal way to do that. And in particular, by assuming the appropriate

prior and likelihood distribution forms, the Bayesian updating rule gives rise to the familiar

Least Squares Learning scheme and allows us to make use of the whole machinery of the

standard learning theory to study the model dynamics.

With that purpose in mind, the likelihood function is chosen to be of the multivariate-

normal form, which given (4.26) translates into

L (yt | xt, θ,Σ) = (2π)−
5
2 | Σ |−

1
2 e

1
2 (yt−x′

tθ)
′Σ−1(yt−x′

tθ) (4.27)

where Σ = σ2I5, σ2 = φ−1 is a random variable and I5 is the identity matrix of order 5.

Then, it needs to be further assumed that the prior agents have for θ and φ11 is given by a

Normal-Gamma distribution, a conjugate prior of the normal distribution, i.e.

π
(
θ,φ; θ0, N

−1
0 , a0, b0

)
∝ φa−1e−bφe−

φ
2 (θ−θ0)

′N0(θ−θ0) (4.28)

Under these conditions Bayes rule specifies how the posterior, i.e. the updated beliefs distri-

butions using the last data point, looks like,

π
(
θ,φ | yt; θ1, N−1

1 , a1, b1
)

∝ L (yt | xt, θ,φI5)π
(
θ,φ; θ0, N

−1
0 , a0, b0

)

∝ φ
1
2 e

φ
2 (yt−x′

tθ)
′(yt−x′

tθ)φa0−1e−b0φ

e−
φ
2 (θ−θ0)

′N0(θ−θ0)

11It is more convenient to work with the precision instead of the variance.
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After completing the square and some minor algebra the posterior can be re-written as

π
(
θ,φ | yt; θ1, N−1

1 , a1, b1
)

∝ φa0+
1
2−1e−φ[b0+

1
2(y

′
tyt+θ

′
0N0θ0−θ′1N1θ1)]

e−
φ
2 (θ−θ1)

′N1(θ−θ1)

which is nothing else than the kernel of a Normal-Gamma distribution with updated param-

eters given by,

θ1 =
(
xtx

′
t +N0

)
−1 (xtyt +N0θ0) (4.29)

N1 = xtx
′
t +N0 (4.30)

b1 = b0 +
1

2

(
y′tyt + θ′0N0θ0 − θ′1N1θ1

)

a1 = a0 +
1

2

Moreover, since agents use the mean of their distributions to take decisions, one only need to

keep track of θt and, consequently, of Nt. Using the matrix inversion lemmas one can further

re-write equations (4.29) and (4.30) as,

θt = θt−1 +
(
xtx

′
t +Nt−1

)
−1xt(yt − x′tθt−1)

Nt = xtx
′
t +Nt−1

And finally, by setting Rt = tNt one gets

θt = θt−1 +
1

t
Rt

−1xt(yt − x′tθt−1) (4.31)

Rt = Rt−1 +
1

t

(
xtx

′
t +Rt−1

)

which are non other than the recursive least square formulas describing Ordinary Least Square

Learning.

4.4 Learning Dynamics

In the previous section it has been shown how ordinary least squares learning can arise

from a well-defined and dynamically consistent beliefs structure. Thus, the whole machinery

of adaptive learning, as presented in Evans & Honkapohja (2001), can be put to work in order
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to study the dynamic properties of different monetary policies under internal rationality.

The interest is then to derive the conditions under which a particular rational expectations

equilibria is learnable; whether departing from an initial temporary equilibrium different form

the REE of interest, and given enough data, agents are able to coordinate and eventually

converge to it. For this purpose, Evans & Honkapohja (2001) introduced the concept of

expectational stability which shows how to derive conditions that guarantee that a rational

equilibrium is indeed learnable or stable. Here, the idea behind this concept is briefly depicted.

Learning is characterized by a sequence of temporary equilibrium. Each period agents use

their reduced form models together with their latest estimated parameters, βt ≡ (bt, ct, dt)
′,

to form the expectations needed to take decisions. In the model at hand, those forecasts

about future variables take a simple form

Êj
t yT = bt + ctρ

T−t
a ât + dtρ

T−t
g ĝt ∀T > t

To take their decisions agents substitute these expectations in (4.22) and (4.23)12, which

together with market clearing conditions the monetary policy rule and so forth, imply the

periods’ realized inflation and output. This temporary equilibrium can be succinctly written

as ⎛

⎝ π̂t

ŷt

⎞

⎠ = Abt + (B + Cct) ât + (D + Edt) ĝt

where A, B, C, D and E are real matrices collecting appropriate terms.13 Therefore, each

period there is an implicit function mapping the estimated parameters of the reduced form

models used by agents to form expectations into the parameters characterizing the law of

motion that actually determines the period’s equilibrium,

T (bt, ct, dt) = (Abt, B + Cct, D + Edt)

Evans & Honkapohja (2001) refer to this mapping as the T-map and by means of stochastic

approximation methods they show that the convergence under ordinary least square learning

to a rational expectations equilibrium, βree, is governed by the stability properties of the

12Actually, they substitute them in (4.7) and (4.14), which after aggregation deliver the equivalent result as
directly substituting in the aggregate equilibrium equations (4.22) and (4.23).

13Real wages, dividends and the nominal interest rate in equilibrium can be easely determined as a function
of the periods inflation, output and shock realizations.
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associated ordinary differential equation (o.d.e.)

d

dτ
(β) = T (β)− β

where τ represents ”notional” time (an infinitesimal change in time).

It can be easily seen that the resting points of this o.d.e. are fixed points of T. Which

in turn are nothing else than the REE of the model, i.e.T (βree) = βree. Therefore, a ra-

tional expectations equilibrium, βree, is expectationally stable, or learnable, if its associated

differential equation is stable in a neighborhood of βree.14 Furthermore, standard properties

for ordinary differential equations state that a fixed point of T (·) is stable if and only if the

eigenvalues of J [T (βree)] have real parts smaller than 1 (where J denotes the Jacobin opera-

tor). Therefore, when studying the stability properties of monetary policy rules it suffices to

look for the conditions that guarantee that the real part of the eigenvalues associated to the

corresponding T-map remain smaller than 1.

4.5 Monetary Stability

Here, the model under internal rationality, given by equations (4.22) - (4.25) together with

(4.26) and (4.31), is used to study the stability properties of two representative monetary

policy rules. Both rules set the short term nominal interest rate according to simple feedback

rules that respond to inflation alone. The first one, is a contemporaneous policy rule given by

ît = φππ̂t (4.32)

where φπ is assumed to be non-negative. This interest rate rule is generally used as a baseline

specification in the literature and also here. However, it has been criticized as unrealistic,

since the actual monetary authority does not have complete information on variables such as

inflation in the same quarter as they need to take the decision about the nominal interest rate

(see McCallum (1999) among others). Hence, a second interest rate rule is considered where

this shortcoming is overcomed by specifying the rule as a forward looking one, i.e.

ît = φπÊtπ̂t+1 (4.33)

14Alternatively, one can think that the rational expectations equilibrium of the model are given by the resting
points of the differential equation.
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Thus, the monetary authority is assumed to set the nominal interest rate in response to their

forecasts of future inflation, for which they need to learn in the same way as the rest of

the agents in the economy. It can be easily shown, that these expectations can be formed

conditional on information up to period t or t − 1 without affecting the stability conditions

of the policy rule.

Proof. Using the theory briefly depict in section (4) the following two propositions, summa-

rizing the learnability results for both interest rules, are proven.

Proposition 4.1 Consider the internal rationality model given by (4.22) - (4.25), (4.26),

(4.31), and the contemporaneous interest rate rule (4.32). Then, the Taylor principle,

φπ > 1 (4.34)

is necessary and sufficient for expectational stability.

Proof . See the Appendix.

This simple result coincides with the conclusions found under standard adaptive learning

approaches (see Bullard & Mitra (2002) and Preston (2005)) and stresses the relevance of

the Taylor principle. Namely, that relative aggressive responses to inflation generally lead

to learnable rational expectations equilibria and that therefore are desirable as they keep

the economy stable. However, as shown by the next proposition this is not always the case.

Proposition 4.2 Consider the internal rationality model given by (4.22) - (4.25), (4.26),

(4.31), and the forward looking interest rate rule (4.32). Then, the Taylor principle is nec-

essary but not sufficient for expectational stability. In particular, the monetary policy should

statisfy the following condition,

1

1− β
+
σ (β + βα− 2)

κ (1− αβ)
< φπ

Proof . See the Appendix.

That is, even though the strong reactions to variations in the inflation level are still required,

these reactions may not suffice to prevent the economy from drifting away. This is a very

important result, as it is commonly argued that a judicious monetary policy is one that satisfies
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the Taylor principle. It can be observed, that the more patient the agents in the economy

are, i.e. the higher the discount factor,β, is, the stronger the reaction of the monetary policy

to changes in inflation should be.

The result differs from the one found by Bullard & Mitra (2002) under adaptive learning and

the Euler Equation approach, where the Taylor principle continues a sufficient condition for

learnability, stressing the importance of studying monetary policy under different expectations

formation mechanisms. Preston (2005) studies a similar set of interest rules in a framework

where agents also form expectations long into the future and arrives to the same stability

conditions as under internal rationality. However, as it was already stressed, both setups

differ in a number of ways, including their implied dynamics, rendering this coincidence not

to be expected.

4.6 Concluding Remarks

This paper derives a basic New Keynesian model under Internal Rationality, a decision the-

oretic framework that serves as well-defined microfoundations for Adaptive Learning models.

The resulting model yields decision rules which require agents to forecast variables for the

whole infinite future including their future real wages and profits. The model is then used to

study the expectational stability properties of two standard Taylor type interest rate rules. In

the first one the monetary authority sets the nominal interest rate as a response to the current

period’s inflation and in the second one the interest rate reacts to expectations of inflation one

period ahead. The first rule is found to be expectationally stable under internal rationality,

i.e. learnable, if the so-called Taylor principle holds. A principle that states that relative

aggressive responses to inflation generally lead to unique rational expectations equilibria and

that therefore are desirable. For the second rule, however, the Taylor-principle is found to

be necessary but not sufficient. A finding that differs from standard results under more clas-

sical expectations formation mechanisms. This is an important result, since it is generally

argued that a judicious monetary policy is one that satisfies the Taylor principle. Moreover,

it underscores the importance of considering monetary policies under diverse expectations

formation mechanisms, as their performance hinge on the expectations specification in the

model. Furthermore, ultimately, these alternative expectations formation mechanisms need

to be empirically validated.
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4.7 Appendix

4.7.1 Proof of Proposition 4.1

In order to determine the conditions under which the contemporaneous interest rate rule

(4.32) renders the model at hand expectationally stable one needs to consider its associated T-

map. This function maps the estimated parameters of the reduced form models agents use to

form expectations into the actual parameters of the laws of motion that determine endogenous

variables in equilibrum. Let θt = (bt, ct, dt)=
(
bπt , b

i
t, b

ω
t , b

δ
t , c

π
t , c

i
t, c

ω
t , c

δ
t , d

π
t , d

i
t, d

ω
t , d

δ
t

)′
denote

the vector of estimated parameters in period t and let T : R12 → R12 denote the T-map. Let

us further express the T-map in the following way,

T (θt) = (Tbπ (θt) , Tbi (θt) , Tbω (θt) , Tbδ (θt) ,

Tcπ (θt) , Tci (θt) , Tcω (θt) , Tcδ (θt) ,

Tdπ (θt) , Tdi (θt) , Tdω (θt) , Tdδ (θt))

where Thk (θt) denotes the component function of T which in turn defines the coefficient h of

the law of motion for the endogenous variable k. Using the conditions (4.20) and (4.21) that

hold in period t, one can simplify the T map and re-write it as a function of the coefficients

of the law of motions for π̂t and ŷt alone, namely

T (θt) = (Tbπ (θt) ,φπTbπ (θt) + φyTby (θt) ,ΛTby (θt) + t.i.θ,ΓTby (θt) + t.i.θ,

Tcπ (θt) ,φπTcπ (θt) + φyTcy (θt) ,ΛTcy (θt) + t.i.θ,ΓTcy (θt) + t.i.θ,

Tdπ (θt) ,φπTdπ (θt) + φyTdy (θt) ,ΛTdy (θt) + t.i.θ,ΓTdy (θt) + t.i.θ, )

where Λ = ϕ+ σ, Γ = µ−1−ϕ−σ
µ−1 and t.i.θ stands for terms independent of θ (since we need to

take derivatives with respect to θ those terms can be neglected). Then, Evans & Honkapohja

(2001) show that in order to determine the learnability of a REE we only need to look at the

the Jacobian of T . This is a real matrix of order 12 and can be written as

JT (θree) =

⎛

⎜⎜⎜⎝

A (bree) 0 0

0 A (cree) 0

0 0 A (dree)

⎞

⎟⎟⎟⎠
(4.35)
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where A (·) ∈ R
4×4 and 0 are zero matrices of order 4, which result from the fact that the

constant terms of the actual law of motion of the economy are independent of the estimated

coefficients multiplying the exogenous shocks in the perceived law of motion entertained by

agents, and that the coefficients multiplying any shock in the actual law of motion are in-

dependent of the estimated coefficients multiplying the remaining shock and the estimated

constant terms in the reduced form models used by agents. Then, the eigenvalues of JT (θree)

are given by the eigenvalues of A (bree), A (cree) and A (dree) which in turn are given by the

roots of the following characteristic polynomial,

det (A (x)− Idλ) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂Txπ (θt)
∂xπ − λ ∂Txπ (θt)

∂xi
∂Txπ (θt)

∂xω
∂Txπ (θt)

∂xδ

φπ
∂Txπ (θt)

∂xπ + φy
∂Txy (θt)

∂xπ φπ
∂Txπ (θt)

∂xi + φy
∂Txy (θt)

∂xi − λ φπ
∂Txπ (θt)

∂xω + φy
∂Txy (θt)

∂xω φπ
∂Txπ (θt)

∂xδ + φy
∂Txy (θt)

∂xδ

Λ∂Txy (θt)
∂xπ Λ∂Txy (θt)

∂xi Λ∂Txy (θt)
∂xω − λ Λ∂Txy (θt)

∂xδ

Γ ∂Txy (θt)
∂xπ Γ ∂Txy (θt)

∂xi Γ ∂Txy (θt)
∂xω Γ ∂Txy (θt)

∂xδ − λ

∣∣∣∣∣∣∣∣∣∣∣∣

After a series of elementary operations, the above expression can be simplified and re-written

as

det (A (x)− Idλ) = λ2

∣∣∣∣∣∣

∂Txπ (θt)
∂xπ + φπ

∂Txπ (θt)
∂xi − λ ∂Txπ (θt)

∂xω + Γ
Λ
∂Txπ (θt)
∂xδ + φy

Λ
∂Txπ (θt)
∂xi

Λ∂Txy (θt)
∂xπ + φπΛ

∂Txy (θt)
∂xi Λ∂Txy (θt)

∂xω + Γ∂Txy (θt)
∂xδ + φy

∂Txy (θt)
∂xi − λ

∣∣∣∣∣∣
(4.36)

Thus, two eigenvalues are 0 and the other two are given by the roots of the following

polynomial,

λ2 − λ

(
∂Txπ (θt)

∂xπ
+ φπ

∂Txπ (θt)

∂xi
+ Λ

∂Txy (θt)

∂xω
+ Γ

∂Txy (θt)

∂xδ
+ φy

∂Txy (θt)

∂xi

)

+

(
∂Txπ (θt)

∂xπ
+ φπ

∂Txπ (θt)

∂xi

)(
Λ
∂Txy (θt)

∂xω
+ Γ

∂Txy (θt)

∂xδ
+ φy

∂Txy (θt)

∂xi

)

−
(
∂Txy (θt)

∂xπ
+ φπ

∂Txy (θt)

∂xi

)(
Λ
∂Txπ (θt)

∂xω
+ Γ

∂Txπ (θt)

∂xδ
+ φy

∂Txπ (θt)

∂xi

)
= 0
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where

∂Txπ (θt)

∂xπ
= χ

{
(1− α) βρx
1− αβρx

+ κσ−1 ρx
1− βρx

}

∂Txπ (θt)

∂xi
= −χκσ−1 βρx

1− βρx

∂Txπ (θt)

∂xω
= χ

{
(1− α) (1− αβ) βρx

1− αβρx
+ κ

(1− β)
(
1 + ϕ−1

)

µ+ σϕ−1

ρx
1− βρx

}

∂Txπ (θt)

∂xδ
= χκ

(1− β) (µ− 1)

µ+ σϕ−1

ρx
1− βρx

∂Txy (θt)

∂xπ
= χ

{
−σ−1φπ

(1− α) βρx
1− αβρx

+
σ−1ρx
1− βρx

}

∂Txy (θt)

∂xi
= −χσ−1 βρx

1− βρx

∂Txy (θt)

∂xω
= χ

{

−σ−1φπ
(1− α) (1− αβ) βρx

1− αβρx
+

(1− β)
(
1 + ϕ−1

)

µ+ σϕ−1

ρx
1− βρx

}

∂Txy (θt)

∂xδ
= χ

(1− β) (µ− 1)

µ+ σϕ−1

ρx
1− βρx

and χ = 1 + σ−1φπκ.

Given a real polynomial of degree two, λ2 − λB +C, the real parts of its roots are smaller

than one if and only if the following two conditions are satisfied

1) if B2 − 4C ≤ 0 ⇒ 0 < 2−B

2) if B2 − 4C > 0 ⇒ 0 < 2−B ∧ 0 < 1−B + C

Noticing that the discriminant can be written as a polynomial of order 2 in φπ, i.e. B2−4C =

Āφ2π + B̄φπ + C̄, we can look for the conditions on φπ that make the discriminant larger or

smaller than zero. After some simple algebra we observe that,

Ā = χ2β2 (1− αβ)2 (κ− (1− α) (1− β) (ϕ+ σ))2 > 0

thus we face a parabola that has a minimum. Letting r1 =
−B̄−

√
B̄2−4ĀC̄
2Ā

and r2 =
−B̄−

√
B̄2−4ĀC̄
2Ā

denote its roots, we have
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Furthermore, noticing that B̄2 − 4ĀC̄ > 0, conditions 1) and 2) can then be re-written as

1) if φπ ∈ [r1, r2] ∩ R+ ⇒ 0 < 2−B

2) if φπ ∈ (0,max {0, r1}) ∪ (max {0, r2} ,∞) ⇒ 0 < 2−B ∧ 0 < 1−B + C

Then, some algebra delivers the following equivalences

0 < 1−B + C ⇐⇒ φπ > Q

0 < 2−B ⇐⇒ φπ > R

with

Q =
ρx (σ + ϕ) + α2βρx (σ + ϕ)− α

(
σ + βρ2xσ + (1 + β) ρxϕ

)

(1− α) (1− αβ) (σ + ϕ)

R =
α
((
2− βρx (1− ρx) + β2ρ2x

)
σ + ρx (1 + β + βρx)ϕ

)

(1− α) (1− αβ) ((1 + α) βρx − 2) (σ + ϕ)

+

(
α3β2ρ2x − ρx

)
(σ + ϕ)− α2βρx ((2 + βρx) σ + (1 + ρx + βρx)ϕ)

(1− α) (1− αβ) ((1 + α) βρx − 2) (σ + ϕ)

Which after some more calculations deliver the following inequalities,

R < Q < r1 < r2

Finally, since these conditions have to hold for ρx ∈ (0, 1] and Q is increasing in ρx and

since ρb = 1 implies Q = 1 we only have to look to the case in which Q = 1. Then,

putting everything together we have the result we were looking for, namely, that a REE is

expectationally stable if and only if

φπ ∈ (1,∞)
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4.7.2 Proof of Proposition 4.2

Following the same strategy as in the previous proof one can arrive to a characteristic

polynomial of the form

λ3 + λ2b+ λc+ d = 0 (4.37)

where

b = −
(
∂Txπ (θt)

∂xπ
+ Λ

∂Txy (θt)

∂xω
+ Γ

∂Txy (θt)

∂xδ

)

c = −φπρx
∂Txπ (θt)

∂xi
+
∂Txπ (θt)

∂xπ

(
Λ
∂Txy (θt)

∂xω
+ Γ

∂Txy (θt)

∂xδ

)

−∂Txy (θt)

∂xπ

(
Λ
∂Txπ (θt)

∂xω
+ Γ

∂Txπ (θt)

∂xδ

)

d = φπρx

{
∂Txπ (θt)

∂xi

(
Λ
∂Txy (θt)

∂xω
+ Γ

∂Txy (θt)

∂xδ

)
− ∂Txy (θt)

∂xi

(
Λ
∂Txπ (θt)

∂xω
+ Γ

∂Txπ (θt)

∂xδ

)}

Using the Tartaglia formulas to derive conditions for the real parts of the polynomial to be

smaller than 1, one arrives to the following necessary and sufficient conditions

1) b > 0

2) d > 0

3) −d+ bc > 0

Given the complexity of the polynomial at hand, condition 3) does not provide a clear nor

useful condition. However, after some simple algebra, condition 1) and 2) deliver the following

restrictions,

1 < φπ (4.38)

1

1− β
+
σ (β + βα− 2)

κ (1− αβ)
< φπ (4.39)

The first condition is nothing else than the Taylor principle, which is then necessary for

achieving stability. However, the second condition implies that it is not sufficient. This can

be easily seen by noticing that as β → 1 the left hand side of inequality (4.39) tends to infinity.
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