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Introduction

Economists use sophisticated empirical models to learn about agent behavior in the real
world. Many such models are set up to account for unobserved agent characteristics that
may drive agent behavior. In the econometric literature, such unobserved characteristics
are referred to as unobserved heterogeneity. A crucial step in empirical research is model
testing. To this end, the researcher has to find a way to check the predictions of her
idealized model of agent behavior against the actions of agents observed in the real
world. Such an endeavor is particularly difficult for models that allow for unobserved
heterogeneity. To disprove such a model, the researcher has to make the case that the
model cannot reproduce the observed data, regardless of which value the unobserved
component takes.

This thesis tackles two concrete testing problems that carry substantial relevance in
modern empirical research. In both cases, the presence of a flexible unobserved component
invalidates popular testing procedures that have been developed for versions of the model
that do not allow for unobserved heterogeneity or that make very restrictive assumptions
on the nature of the unobserved heterogeneity. I suggest valid testing procedures and
illustrate their empirical bite by applying them to real data. Moreover, I analyze a general
framework for constructing model tests that is a applicable to a wide range of models
that satisfy a latent index restriction. In this introduction I provide a non-technical
overview of the research described in this thesis.

Chapter 1

In the first chapter (based on joint work with Florian Sarnetzki) I consider a testing
problem from the literature of treatment evaluation. I suggest a procedure that can
be used to test assumptions about so-called instruments. These are special observed
variables that provide variation that can be used to estimate the causal effect of policy
interventions.

The goal of treatment evaluation is to determine the benefit (or treatment effect) that
an individual derives from exposure to a particular regime or treatment. Economically
relevant treatments include a diverse set of conditions such as motherhood, obtaining
an educational degree or unemployment. Treatment effects are unobserved, since each
individual is observed in either its treated or its untreated state, but never in both states
at the same time. I am studying the LATE-framework (Joshua Angrist, Imbens, and
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Introduction

Rubin 1996; Heckman and Vytlacil 2005; Vytlacil 2002) and assume that the assignment
of individuals to the treatment and control groups is outside of the control of the
researcher. Rather, selection into the treatment is endogenous, i.e., it is a part of the
behavioral pattern that the model aims to predict. The model postulates that there is
an unobserved component that drives participation decisions. Due to this component,
two observationally equivalent agents may arrive at different participation decisions. The
model places no restrictions on the relationship between the unobserved component
in the participation decision and the treatment effect. For example, it permits for a
setting in which the individuals with the largest treatment effects are also the most
likely to be treated. Consequently, the treatment group and the control group need not
be representative of the population. This is referred to as the selection problem. In
particular, the observed difference in outcomes between the treatment and the control
group will typically not give a valid estimator of the benefit of the treatment to the
average individual.

To estimate treatment effects in this setting researchers use instruments. An instrument
is an observed variable that satisfies two key assumptions. First, it has no effect on the
treatment effect that the researcher is studying. Secondly, it changes agents’ incentives
to participate in the treatment in a way that is independent of unobserved heterogeneity.
To illustrate this concept, consider one of the instruments discussed in this thesis. In
Section 1.6, I consider the effect of motherhood on the probability of graduating from high-
school. It seems plausible that unobserved factors such as family background may affect
both the probability to enter motherhood (enter the treatment group) and the magnitude
of the effect that motherhood has on the probability of graduating (the magnitude of
the treatment effect). The variable indicating age at first menstrual period is a potential
instrument. It randomly shifts female fecundity and it is unlikely to affect the likelihood
of graduation (Ribar 1994). Clearly, by postulating that a variable is an instrument
we are making a claim about how it interacts with the two components of unobserved
heterogeneity, i.e., the unobserved treatment effects and the unobserved incentives to
participate in the treatment. Testing such a claim is non-trivial. In particular, standard
instrument tests, such as Hansen’s overidentification test (L. P. Hansen 1982), that were
developed for less convoluted selection problems do not apply (Heckman, Schmierer, and
Urzua 2010).

The testing approach suggested in Chapter 1 exploits the fact that valid instruments
affect the outcome only through the probability of participating in the treatment. This
probability is known as the propensity score. To derive a testable restriction, suppose that
two instruments are available. If both instruments are valid, then different instrument
configurations that yield the same propensity score will also yield the same outcome.
On the other hand, a variable that is falsely identified as an instrument may have an
effect on outcomes that is not mediated through the propensity score. Therefore, an
approach based on comparing observations with similar propensity scores and diverging
instrument configurations can detect invalid instruments. Based on this testing idea,
Chapter 1 presents a test statistic that is based on comparing predicted values between
two sub-populations for a range of propensity scores. Precursors of this testing idea can
be found in Heckman et al. 1998 and Vytlacil and Yildiz 2007.

2



Chapter 2

The primary difficulty in implementing the test is that the propensity score of a given
individual is not observed and has to be estimated. The additional estimation step affects
the behavior of the test statistic and restricts the possible set-ups that endow the test
with good theoretical properties. A substantial part of Chapter 1 is devoted to analyzing
these restrictions. As a measure of the power of the test, I consider the rate at which it
detects local alternatives. This measure is based on the notion that a good test should
be able to catch small deviations from the null hypothesis.

Chapter 2

In the second chapter I generalize the testing problem from Chapter 1. The null hypothesis
underlying the instrument test in Chapter 1 is that the propensity score aggregates all
information provided by the instruments about the outcome. In the econometric literature,
a function that maps a large vector into a lower dimensional space is often referred to
as an index. The notion that all relevant information contained in the larger vector is
accurately summarized by the index is known as index sufficiency. Thus, the instrument
test furnishes an example of a test for index sufficiency with the propensity score serving
as the index. As noted above, the main complication in implementing the instrument test
is that the propensity score has to be estimated. The additional estimation step has to
be accounted for when we judge the validity of the null hypothesis based on the observed
value of the test statistic. We face the same problem in other testing situations where
the null hypothesis postulates sufficiency of an index that is not observed but estimable.

In Chapter 2 I provide a test of index sufficiency with a predicted (estimated) index.
The test statistic that I am considering is based on a test idea first developed in Delgado
and Manteiga 2001. I adapt their test statistic to allow for a predicted index and I
quantify how the additional estimation step changes the behavior of the test statistic in
large samples.

The issue of accounting for estimation error from multiple stages is known as a generated
regressors problem. Recently, the literature has devoted a substantial effort to advance
the theory for estimation with generated regressors (Mammen, Rothe, and Schienle
2012; Mammen, Rothe, and Schienle 2015; Escanciano, Jacho-Chávez, and Lewbel 2014).
Following an approach pioneered in recent research I do not assume a specific estimator
with the ability to predict the index. Rather, my results apply to a varied class of
estimators that satisfy certain restrictions.

The test statistic is carefully chosen to be well-behaved under a predicted index. In
contrast to e.g. the test statistic considered in Chapter 2, it is based on unconditional
moments rather than conditional moments. The additional integration step makes it
easier to control the higher-order effects of estimating the index. In order to prove this
advantage of my test statistic, I make extensive use of empirical process theory to develop
new results for U -statistics with generated regressors.

As an illustration of possible gains from using the new framework, I investigate a
testing problem that is very similar to the instrument test discussed in Chapter 1. In the
new framework it is possible to quantify the impact of the additional estimation step
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without imposing strong assumptions about the bandwidth choices in two estimation
stages. In particular, it is possible to use bandwidths that are optimal with respect to
the mean integrated squared error (MISE). This is the bandwidth choice that is targeted
by many data-driven methods for bandwidth selection.

Chapter 3

In the final chapter I consider agents that decide whether to enter a certain type of bilateral
relationship with another agent. The bilateral relationship can be viewed as establishing
a directed link between two agents. The collection of all such links in a prescribed
community of agents is called the network. Agents are endowed with characteristics that
determine their attractiveness as linking partners (popularity) and their willingness to
link to other agents (productivity). These characteristics are observed by other agents
in the network, who will take them into account when making their linking decisions.
They are, however, typically not observed by the econometrician. In my linking model,
accounting for this kind of unobserved heterogeneity poses a methodological challenge.

My model is a variation of the popular linking model by Holland and Leinhardt 1981.
Unobserved agent heterogeneity is modeled by a fixed effects approach. This means that
I do not require any assumptions about how popularity and productivity are distributed
in the population and how they correlate with observed covariates. Agent popularity and
productivity enter the estimation problem as additional parameters.

By observing the network it is possible to identify the unobserved popularity and
productivity parameters. For example, a very popular agent will have more in-bound links
than a less popular agent with similar observed characteristics. This way of estimating
parameters deviates from standard estimation procedures. With every agent that is
added another pair of parameters has to be estimated. Consequently, the informational
value of adding another observation is different than it is in a standard set-up, where the
number of estimated parameters stays constant as more observations are added. For the
model that I am considering, the non-standard formulation of the estimation problem
expresses itself as a so-called incidental parameter problem (Neyman and Scott 1948;
Andersen 1970). This means that statistics calculated from the model are biased in a
way that is not predicted by standard estimation theory. In the face of this problem,
developing a test for the validity of the model is challenging.

The model test developed in Chapter 3 is based on the same idea as the test presented
in Holland and Leinhardt 1978. It exploits the fact that the linking model predicts the
likelihood of which link configurations occur within groups of several agents. Comparing
the observed links within a group to the configuration predicted by the linking model is
a way to refute the suggested model. In particular, my test considers the prevalence of
a certain link configuration between three agents that is known as a transitive triangle.
My specification test improves on previous tests (Holland and Leinhardt 1978; Karlberg
1997) in two ways. First, I allow for a substantial amount of unobserved heterogeneity
in agents’ linking decisions. Secondly, I explicitly account for the fact that the linking
model (often referred to as reference distribution in the testing literature) is unknown

4



Acknowledgements

and has to be estimated. In particular, I quantify the way in which the test statistic is
affected by the incidental parameter problem and suggest a procedure for computing
critical values. This procedure is based on a correction formula that can be applied to a
naive version of the test statistic that disregards the presence of incidental parameters.
The corrected test statistic follows a centered normal distribution.

In my model, agents make linking decisions based entirely on their own characteristics
and on the characteristics of a potential linking partner. Such models are known as
dyadic models. They have often been criticized due to their inability to account for the
prevalence of certain link configuration within groups of agents. As a possible explanation,
it has been suggested that agents act strategically in their linking decisions (Jackson and
Wolinsky 1996) and actively work towards achieving certain configurations. I provide a
stylized model that suggests that neglecting unobserved popularity effects in a dyadic
model will lead a researcher to underestimate the prevalence of transitive triangles in
a network. In studies that do not account for unobserved heterogeneity, the apparent
abundance of transitive triangles has often led researchers to speculate that agents act
strategically to satisfy a taste for transitive closure.

I apply my linking model and the corresponding specification test to network data from
Indian villages. As expected, a model that does not account for unobserved heterogeneity
does not predict a sufficient number of transitive triangles. However, once unobserved
heterogeneity is added to the model, the test can no longer clearly distinguish the observed
networks from the predicted networks. This suggests that unobserved heterogeneity
might drive the emergence of certain network features that other models (Mele 2013;
Leung 2014) attribute to strategic interaction.
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CHAPTER 1

Overidentification test in a nonparametric treatment
model with unobserved heterogeneity

with Florian Sarnetzki

1.1 Introduction

The canonical treatment effect evaluation problem in Economics can be phrased as the
problem of recovering the coefficient β from the outcome equation

Y = α + βD, (1.1)

where D is a binary indicator of treatment status, and α and β are random coefficients.
In latent outcome notation1, the treatment effect β is commonly written as β = Y 1 − Y 0.
If β is known to be constant, then it can be identified by classical instrumental variables
methods. In this framework it is straightforward to test the validity of the instruments
by classical GMM overidentification tests (L. P. Hansen 1982, Sargan 1958). In many
applications the more natural assumption is to assume that the treatment effect β is
non-constant and correlated with D. Economically this means that individuals differ
in their gains from participating in the treatment and that when deciding whether to
participate or not individuals take into account possible gains from participation. This
setting is often referred to as one of essential heterogeneity (Heckman, Urzua, and Vytlacil
2006). It was first considered in the seminal papers by Imbens and Joshua Angrist 1994
and Joshua Angrist, Imbens, and Rubin 1996. These authors give assumptions under
which a binary instrument identifies the average treatment effect for the subpopulation of
compliers, which they dub the Local Average Treatment Effect (LATE). The compliers
are the individuals that respond to a change in the realizations of the binary instrument
by changing their participation decision. Different instruments may induce different
subpopulations to change their treatment status and therefore estimate different LATEs.

1Latent outcomes are defined in Section 1.2. In general, latent outcomes will be functions of observed
covariates. As is common in the literature, we keep this dependence implicit.
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1 Overidentification test in a nonparametric treatment model

Hence, if a GMM overidentification test rejects, this no longer constitutes compelling
evidence that one instrument is invalid. Rather, it might as well be interpreted as
evidence for a non-constant treatment effect (Heckman, Schmierer, and Urzua 2010).

In this paper, we present an instrument test that is valid under essential heterogeneity.
A key assumption of Imbens and Joshua Angrist 1994, which we maintain as well,
is treatment monotonicity. Intuitively, this assumption says that individuals can be
ordered by their willingness to participate in the treatment. As we show below, an
immediate consequence of the monotonicity assumption is that the propensity score,
i.e., the proportion of individuals who participate in the treatment, serves as an index
that subsumes all information about observed outcomes that is included in a vector of
instruments. We test the null hypothesis that this kind of index sufficiency holds, as
this is a necessary and testable prerequisite for the intractable hypothesis of instrument
validity. More concretely, we assume that a binary and a continuous instrument are
available. The purpose of the binary instrument is to split the population into two
subpopulations. We test whether observed outcomes conditional on the propensity score
are identical in the two subpopulations. The reason why we assume continuity of the
second instrument is that this offers a plausible way to argue that the supports of the
propensity scores in the two subpopulations overlap.

Our test is related to the test of the validity of the matching approach suggested in
Heckman et al. 1996 and Heckman et al. 1998. Their test also exploits index sufficiency
under the null hypothesis. Moreover, the role that random assignment to a control
group serves in their testing approach is similar to that of the binary instrument in our
overidentification result. The testing theory that we develop in this paper translates
with slight modifications to the testing problem of Heckman et al. 1996 and Heckman
et al. 1998. We hope that it will prove useful in other settings where the null hypothesis
imposes some kind of index sufficiency as well.

Our testable restriction in terms of a conditional mean function is closely related to a
similar restriction in terms of the Marginal Treatment Effect (MTE, see Heckman and
Vytlacil 2005 for a discussion of the MTE). The characterization of the restriction in
terms of the MTE, while certainly the less practical one for testing, has a lot of theoretical
appeal as it illustrates that our test is based on the overidentification of a structural
parameter of the model.

We are not the first to consider the problem of testing instruments in a model with
essential heterogeneity. Following previous work by Balke and Pearl 1997, Kitagawa 2013
and Huber and Mellace 2014 consider testing the validity of a discrete instrument in a
LATE model. They test inequalities for the densities and the mean of the outcomes for
always takers and never takers, i.e. two subpopulations for which treatment status is
not affected by the instrument. In stark contrast, our test focuses on the subpopulation
which responds to the instrument. Fernández-Val and Josh Angrist 2013 develop a LATE
overidentification test under the additional assumption that the heterogeneity is captured
by observed covariates. We do not require such an assumption. Our test lends itself
naturally to testing continuous instruments, whereas previous tests can handle continuous
instruments only via a discretization.

Our method works if both a binary and a continuous instrument are available. This

8



1.2 Model definition

is the case in many relevant applications. In this paper, we apply our method to test
the validity of instruments that have been used to investigate the effect of teenage child
bearing on high school completion. For another example of an evaluation problem where
our method would come to bear, consider Carneiro, Heckman, and Vytlacil 2011. They
estimate returns to schooling, using a binary indicator of distance to college, tuition fees,
as well as a continuous measure of local labor market conditions as instruments.

Our test reduces to the problem of testing the equality of two nonparametric regression
curves. This is a problem with a rich history in the statistical literature (cf., e.g., Hall
and Hart 1990; King, Hart, and Wehrly 1991; Delgado 1993; Dette and Neumeyer 2001;
Neumeyer and Dette 2003). Our testing problem, however, does not fit directly into
any of the frameworks analyzed in the previous literature as it comes with the added
complication of generated regressors. We propose a test statistic and quantify the effect
of the first stage estimation error on the asymptotic distribution of the test statistic. We
find that, in order to have good power against local alternatives we have to reduce the
nonparametric bias from the first stage estimation. With our particular choice of second
stage estimator, no further bias reduction is necessary.

We propose a bootstrap procedure to compute critical values. In the context of a
treatment model with nonparametrically generated regressors, Y. Lee 2013 establishes the
validity of a multiplier bootstrap that is based on the first order terms in an asymptotic
expansion of the underlying process. We suggest a wild bootstrap procedure that does
not rely on first order asymptotics and that is easy to implement in standard software.
In exploratory simulations, our procedure is faithful to its nominal size in small and
medium sized samples.

The paper is structured as follows: Section 1.2 defines our heterogeneous treatment
model. In Section 1.3 we give an intuitive overview of our method, state our central
overidentification result, discuss nonparametric parameter estimation, and define the test
statistic. The asymptotic behavior of our test statistic is discussed in Section 1.4. Our
simulations are presented in Section 1.5. In Section 1.6 we apply our approach to real
data and study the validity of instruments in the context of teenage child bearing and
high school graduation. Section 1.7 concludes.

1.2 Model definition

Our version of a treatment model with unobserved heterogeneity in the spirit of Imbens
and Joshua Angrist 1994 is owed in large part to Vytlacil 2002. As in Abadie 2003 and
Frölich 2007, we assume that our assumptions hold conditional on a set of covariates. We
restrict ourselves to covariates that take values in a finite set. Our main overidentification
result carries over to more general covariate spaces in a straightforward manner. The
purpose of the restriction is exclusively to facilitate estimation by keeping the estimation
of infinite dimensional nuisance parameters free from the curse of dimensionality. Without
loss of generality, assume that we can enumerate all possible covariate configurations by
{1, . . . , Jmax} and let J denote the covariate configuration of an individual. Treatment
status is binary and is denoted by D. The latent outcomes are denoted by Y 0 and Y 1

9



1 Overidentification test in a nonparametric treatment model

and Y = (1 −D)Y 0 +DY 1 denotes the observed outcome. Note that by setting α = Y 0

and β = Y 1 − Y 0, we recover the correlated random effects model from equation (1.1).
Let S denote a continuous random variable and let Z denote a binary random variable.
Below, S and Z are required to fulfill certain conditional independence assumptions
that render them valid instruments in a heterogeneous treatment model. We observe a
sample (Yi,Di, Si, Zi, Ji)i≤n from (Y,D,S,Z, J). Treatment status is determined by the
threshold crossing decision rule

D = 1{rZ,J(S)≥V },

with rz,j a function that is bounded between zero and one and V satisfying

V ∼ U[0,1] and V á (S,Z) ∣ J. (I-V)

Under this assumption, the function rz,j is a propensity score and V can be interpreted
as an individual’s type reflecting her natural proclivity to select into the treatment
group. As pointed out in Vytlacil 2002, the threshold crossing model imposes treatment
monotonicity.2 The assumption that V is uniformly distributed is merely a convenient
normalization that allows us to identify rz,j . The crucial part of this assumption is that
the instruments are jointly independent of the heterogeneity parameter V . This allows
us to use the instruments as a source of variation in treatment participation that is
independent of the unobserved types. Furthermore, we assume that for given V , Z and
J the latent outcomes are independent of S,

Y d á S ∣ V,Z, J d = 0,1. (CI-S)

Also, for given V and J the latent outcomes are independent of Z,

Y d áZ ∣ V, J d = 0,1. (CI-Z)

Intuitively, these assumptions state that once the unobserved type is controlled for, the
instruments are uninformative about latent outcomes. Note that we do not place any
restrictions on the joint distribution of potential outcomes and V . Economically this
means that unobserved characteristics, such as personal taste, that enter into the decision
to participate in the treatment, are allowed to be correlated with the latent outcomes.
The more commonly assumed instrument condition is

(Y 0, Y 1, V )á (S,Z) ∣ J,
which implies the conditional independence assumptions stated above. To argue the
validity of an instrument it is helpful to split up the instrument condition in a way
that allows us to disentangle participation and outcome effects. In our application, for
example, assumptions CI-S and CI-Z seem quite plausible. The problematic assumption
is to assume that the variation in treatment participation induced by the instrument is
independent of the variation that is driven by the unobserved types.

Throughout, we let Ez and Ez,j denote the expectation operator conditional on Z = z,
and (J,Z) = (j, z), respectively.

2Consider two types v1 ≤ v2. Under the threshold model v1 participates if v2 participates. This is
independent of the shape of the propensity score function. In particular, monotonicity of the propensity
score function in its parameters is not required.

10



1.3 Overidentification test

Figure 1.1: Heuristic description of method.
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1.3 Overidentification test

1.3.1 Testing approach

Before we formally introduce the overidentification test, we give a heuristic description
of our testing approach. Our test is based on comparing observed outcomes in the
Z = 0 and Z = 1 subpopulations. For a fixed covariate configuration j, Figure 1.1 shows
hypothetical plots for the propensity scores in the two subpopulations. The ranges of the
two functions overlap so that there is an interval of participation probabilities that can be
achieved in both subpopulations by manipulating the continuous instrument. The lower
and upper bound of this interval are denoted by xL,j and xU,j , respectively. Consider the
participation probability x⋆ lying in this interval. Whenever the participation probability
x⋆ is observed, all types V ≤ x⋆ will choose to participate in the treatment and all types
V > x⋆ will abstain from seeking treatment. In other words, if we observe the same
propensity score in two subpopulations, then all types will arrive at identical participation
decisions regardless of which subpopulation they are selected into. The participation
decision fixes which of the two latent outcomes we observe. Therefore, by fixing the
propensity score and comparing observed outcomes between the two subpopulations,
we are in fact comparing latent outcomes. Under the null hypothesis, latent outcomes
behave identically in the two subpopulations since, by assumption, valid instruments do
not affect latent outcomes. Consequently, for a given propensity score, observed outcomes
should behave identically in the Z = 0 and Z = 1 subpopulations if the model is correctly
specified. In particular,

E[Y ∣ Z = 0, r0,j(S) = x⋆] = E[Y ∣ Z = 1, r1,j(S) = x⋆].

In our approach we test this equality for different x⋆.

11



1 Overidentification test in a nonparametric treatment model

1.3.2 Overidentification result

For z = 0,1 and j = 1, . . . , Jmax define mz,j(x) = Ez,j[Y ∣ rz,j(S) = x]. The propensity
score is identified from

rz,j(s) = Ez,j[D ∣ S = s]
and therefore mz,j is identified on the interior of the support of rz,j(S) ∣ Z = z. Our test
is based on the following overidentification result.

Theorem 1.1 (Overidentification) Fix j ∈ {1, . . . , Jmax} and suppose that conditional
on J = j x lies in the interior of the support of both r0,j(S) ∣ Z = 0 and r1,j(S) ∣ Z = 1.
Then mz,j does not depend on z, i.e., m0,j(x) =m1,j(x). Let mj(x) denote the common
value for all j and x that satisfy the assumption.

Proof

mz,j(x) =E[Y ∣ rz,j(S) = x,Z = z, J = j]
=(1 − x)E[Y 0 ∣ rz,j(S) = x,V > x,Z = z, J = j]
+ xE[Y 1 ∣ rz,j(S) = x,V ≤ x,Z = z, J = j]

=(1 − x)E[Y 0 ∣ V > x,Z = z, J = j] + xE[Y 1 ∣ V ≤ x,Z = z, J = j]
=(1 − x)E[Y 0 ∣ V > x, J = j] + xE[Y 1 ∣ V ≤ x, J = j]

Now note that the right hand side does not depend on z. ◻

The result says that under the null hypothesis that the model is correctly specified, the
parameter mj can be identified from two different subpopulations. Under alternatives, the
instruments have a direct effect on outcomes that is not mediated through the propensity
score. The overidentification restriction has some power to detect such alternatives
because in the two subpopulations, distinct values of the instrument vector are used to
identify the same parameter.

Suppose that for j = 1, . . . , Jmax there are xj and x̄j , xj ≤ x̄j , and open sets Gj such
that

supp r0,j(S) ∣ Z = 0, J = j ∩ supp r1,j(S) ∣ Z = 1, J = j ⊇ Gj ⊇ [xj x̄j].
Theorem 1.1 implies that on [xj x̄j] we have

m0,j(x) −m1,j(x) = 0. (1.2)

We are testing this equality. For the test to have some bite we need [xj x̄j] to be non-
empty. Intuitively, what is required is that for fixed Z the continuous instrument is
strong enough to induce as many individuals to change their treatment status as would
be swayed to change their participation decision by a change in Z while keeping S fixed.
An important case where this is not possible is if Z is a deterministic function of S.

The basic idea of the overidentification result does not rely on the continuity of S.
However, continuity of S is crucial as it offers a way to ensure that the common support
of the propensity scores in the two subpopulations with Z = 0 and Z = 1 can plausibly

12



1.3 Overidentification test

have positive probability. For a given j we refer to an interval [xj , x̄j] that satisfies the
above condition as a testable subpopulation. It consists of a set of unobserved types that
can be induced to select in and out of treatment by marginal changes in the continuous
instrument regardless of the value of the binary instrument. Therefore the types in this
interval are part of the complier population as defined in Joshua Angrist, Imbens, and
Rubin 1996.

Theorem 1.1 is implied by the stronger result

Ej[Y ∣ S,Z] = Ej[Y ∣ rZ,j(S)] a.s.. (1.3)

This says that conditional on covariates, the propensity score aggregates all information
that the instruments provide about observed outcomes. In that sense, our approach can
be interpreted as a test of index sufficiency that is similar in spirit to the test of the
validity of the matching approach suggested in Heckman et al. 1996; Heckman et al. 1998.
The equivalence (1.3) remains true if Y is replaced by a measurable function of Y . By
considering different functions of Y , a whole host of testable restrictions can be generated.
One implication, for example, is that a conditional distribution function is overidentified.
In this paper, we only consider overidentified conditional mean outcomes and leave the
obvious extensions to future research. Our testable restriction (1.2) is closely related to
the marginal treatment effect (MTE)

βj(x) = Ej[Y 1 − Y 0 ∣ V = x],

which has been proposed as a natural way to parameterize a heterogeneous treatment
model (Heckman and Vytlacil 2005). In fact, βj(x) = ∂xmj(x). Since we are testing for
overidentification of a function, we are also testing for overidentification of its derivative.
If we were to base our test directly on the MTE instead of mean outcomes, we would
not be able to detect alternatives where instruments are uncorrelated with the treatment
effect β but have a direct effect on the base outcome α. Another advantage of our mean
outcome approach over a test based on the MTE is that we avoid having to estimate a
derivative. In our nonparametric setting, derivatives are much harder to estimate than
conditional means. However, if the econometrician is not interested in a direct effect
on the base outcome and if a large sample is available, it might be beneficial to look at
βj rather than at mj . The reason is that as mj is a smoothed version of βj , it might
not provide good evidence for perturbations of βj that oscillate around zero. Another
maybe more compelling reason to consider overidentification of βj is that it allows us to
investigate the source of a rejection of the null hypothesis. If a test based on mj rejects
while at the same time a test based on βj does not reject, it seems likely that instruments
have a direct effect on the base outcome but not on the treatment effect. In this paper,
we focus on the test based on conditional outcomes and leave a test considering the MTE
to future research.

It is helpful to think of alternatives as violations of the index sufficiency condition (1.3).
Economically this means that instruments have a direct effect on outcomes, i.e., instru-
ments have an effect on observed outcomes that can not be squared with their role as
providers of independent variation in the participation stage. To formalize how our test
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1 Overidentification test in a nonparametric treatment model

detects such alternatives ignore covariates for the moment and define the prediction error
from regressing on the propensity score instead of on the instruments

ϕ(S,Z) = E[Y ∣ S,Z] −E[Y ∣ rZ(S)].

Now suppose that the model is correctly specified up to possibly a violation of the index
sufficiency condition. The restricted null hypothesis is

H0 ∶ ϕ(S,Z) = 0 a.s..

Using this notation we can rewrite the testable restriction (1.2) as

E[ϕ(S,Z) ∣ r0(S) = x,Z = 0] −E[ϕ(S,Z) ∣ r1(S) = x,Z = 1] = 0

for all x ∈ [x, x̄]. This is a necessary condition for

E[ϕ(S,Z) ∣ rz(S) = x,Z = z] = 0 for z = 0,1 and x ∈ supp rz(S) ∣ Z = z

which in turn is necessary for the restricted null. Since we are only testing a necessary
condition not all alternatives can be detected. As an extreme case consider the case of
identical propensity scores, i.e., r0 = r1. In this particular case our testable restriction
does not have the power to detect a direct effect of S on outcomes.

1.3.3 Parameter estimation and test statistic

Let m̂z,j denote an estimator of mz,j and let x = (x1, . . . , xJmax) and x̄ = (x̄1, . . . , x̄Jmax).
Suppose that under the null hypothesis mj is overidentified on [xj , x̄j] for j = 1, . . . , Jmax

and define the test statistic

Tn = Tn(x, x̄) =
J

∑
j=1
∫

x̄j

xj

(m̂0,j(x) − m̂1,j(x))2πj(x)dx. (1.4)

Here πj is a weight function that can be used to fine-tune power against certain alternatives.
What constitutes a sensible choice for πj will depend on the specifics of the application.
For simplicity we assume that πj is unity from here on. In the following we will refer to
the subsample with Ji = j and Zi = z as the (j, z)-cell. We estimate m̂z,j by a two step
procedure. In the first step we estimate the function rz,j by local polynomial regression
of S on D within the (j, z)-cell. We will refer to this step as the participation regression.
The first step estimator is denoted by r̂z,j . In the second step we estimate mz,j by
local linear regression of Y on the predicted regressors r̂z,j(Si) within the (j, z)-cell.
This step will be referred to as outcome regression. We let L and K denote the kernel
functions for the participation and outcome regression, respectively. Also let g and h
denote the respective bandwidth sequences. To reduce notational clutter, we assume that
the bandwidths do not depend on j and z. It is straightforward to extend the model to
allow cell dependent bandwidths. Let q denote the degree of the local polynomial in the
participation regression. It is necessary to choose q ≥ 2 to remove troublesome bias terms.

14



1.4 Asymptotic analysis

If these bias terms are not removed the test will behave asymptotically like a linear test,
i.e., it will favor the rejection of alternatives that point into a certain direction. A formal
definition of the estimators is provided in Appendix 1.A.

In many applications the bounds x and x̄ are not a priori known and have to be
estimated. Below we show that replacing the bounds by a consistent estimator does not
affect the asymptotic distribution of the test statistic under weak assumptions. Since
we assume rz,j to be continuous, the set on which mj is overidentified will always be an
interval (xL,j , xU,j). To avoid boundary problems we fix some positive cδ and estimate
the smaller interval [xj , x̄j] = [xL,j + cδ, xU,j − cδ] by its sample equivalent.

1.3.4 Inference and bootstrap method

In Theorem 1.2 below we characterize the asymptotic distribution of the test statistic
under the null. However, as we explain below, we do not recommend to use this
distributional result as a basis for approximating critical values. In a related problem
with nonparametrically generated regressors Y. Lee 2013 establishes the validity of a
multiplier bootstrap procedure. We conjecture that, building on the asymptotic influence
function from Lemma 1.3 in the appendix, a similar approach can be taken in our setting.
However, simulating the distribution by multiplier methods has some disadvantages.
First, as the approach is based on asymptotic influence functions no improvements
beyond first order asymptotics can be expected. Secondly, the method requires significant
coding effort which makes it unattractive in applied work. This is why we propose a
wild bootstrap procedure that is straightforward to implement instead. We provide
simulation evidence that illustrates that the procedure can have good properties in small
and medium sized samples. A theoretical proof of the validity of the method is beyond
the scope of the present paper and left to future research.

First, estimate the bounds x and x̄. In the bootstrap samples these bounds can be taken
as given. For all j and all z estimate r̂z,j from the (j, z)-cell and predict R0

i = r̂Zi,Ji(Si)
and ζ̂0

i =Di −R0
i . Next, pool all observations with J = j and estimate mj by local linear

regression of Yi on R0
i with kernel K and bandwidth h. Predict M0

i = m̂Ji(R0
i ) and

ε̂0i = Yi −M0
i . Now generate B bootstrap samples in the following way. Draw a sample of

n independent Rademacher random variables (Wi)i≤n, let

(D
∗
i

Y ∗
i
) = (R

0
i

M0
i
) +Wi (

ζ̂0
i

ε̂0i
) ,

and define the bootstrap sample (Y ∗
i ,D

∗
i , Si, Zi, Ji)i≤n.

While we use Rademacher variables as an auxiliary distribution, other choices such
as the two-point distribution from Mammen 1993 or a standard normal distribution are
also possible.

1.4 Asymptotic analysis

In this section we derive the asymptotic distribution of our test statistic. This analysis
gives rise to a number of interesting insights. First, it allows us to consider local
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1 Overidentification test in a nonparametric treatment model

alternatives. A lesson implicit in the existing literature on L2-type test statistics is
that a naive construction of such a statistic often leads to a test with the undesirable
property of treating different local alternatives disparately. Loosely speaking, such a
tests behaves like a linear test in that it only looks for alternatives that point to the same
direction as a certain bias term (cf. Härdle and Mammen 1993). We find that in order
to avoid such behavior it suffices to employ bias-reducing methods when estimating the
propensity scores. We recommend to fit a local polynomial of at least quadratic degree.
The outcome estimation does not contribute to the problematic bias term. Secondly,
our analysis allows us to consider the case when the bounds of integration x and x̄ are
unknown and have to be estimated. We show that, provided that the estimators satisfy
a very weak assumption, the asymptotic distribution is unaffected by the estimation.
Thirdly, our results allow us to make recommendations about the choice of the smoothing
parameters. Our main asymptotic result implies that our test has good power against a
large class of local alternatives if the outcome stage estimator oversmoothes compared
to the participation stage estimator but not by too much. For convenience of notation,
in the following we focus on the case Jmax = 1 and omit the j subscript. Proofs for the
results in this section can be found in the appendix.

1.4.1 Assumptions

Define the sampling errors ε = Y −E[Y ∣ rZ(S)] and ζ =D −E[D ∣ S,Z]. Under the null
hypothesis the conditional variances σ2

ε (x) = E[ε2 ∣ rZ(S) = x], σ2
ζ(x) = E[ζ2 ∣ rZ(S) = x]

and σεζ(x) = E[εζ ∣ rZ(S) = x] remain unchanged if the unconditional expectation
operator is replaced by the conditional expectation operator Ez, z = 0,1. Also note that
σ2
ζ(x) = x(1 − x). For our local estimation approach to work we have to impose some

smoothness on the functions mz and rz. We now give conditions in terms of the primitives
of the model to ensure that the functions that we are estimating are sufficiently smooth.

Assumption 1.1
Assume that m is overidentified on an open interval (xL, xU) and

(i) there is a positive ρ such that

E[exp(ρ ∣Y d∣)] <∞, d = 0,1.

(ii) Conditional on Z = z, z = 0, 1, S is continuously distributed with density fS∣Z=z and
rz(S) is continuously distributed with density fR∣Z=z. Moreover, fS∣Z=z is bounded
away from zero and has one bounded derivatives and fR∣Z=z is bounded away from
zero and is twice continuously differentiable.

(iii) E[Y 0 ∣ V > x] and E[Y 1 ∣ V ≤ x] are twice continuously differentiable on (xL, xU).

(iv) The functions E[(Y 0)2 ∣ V > x] and E[(Y 1)2 ∣ V ≤ x] are continuous on (xL, xU).

(v) rz, z = 0,1, is (q + 1)-times continuously differentiable on (xL, xU).
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1.4 Asymptotic analysis

The assumption implies standard regularity conditions for m, σ2
ε and σεζ that are

summarized in Assumption 1.3 in the appendix. These conditions include that m is
twice continuously differentiable and that σ2

ε and σεζ are continuous. A consequence of
Assumption 1.1(ii) is that xL and xU are identified by

xL = max{ infs r0(s), infs r1(s)} and

xU = min{ sups r0(s), sups r1(s)}.
(1.5)

Fix a small constant cδ > 0. We can choose x = xL + cδ and x̄ = xU − cδ. We also need
some assumptions about the kernel functions.

Assumption 1.2
K and L are symmetric probability density functions with bounded support. K has
two bounded and continuous derivatives. The bandwidth sequences are parametrized by
g ∼ n−η∗ and h ∼ n−η.

Implicit in this assumption is that the bandwidths are not allowed to depend on z. In
particular, the bandwiths are tied to the overall sample size rather than the size of the
two subsamples corresponding to Z = z, z = 0,1. This is for expositional convenience
only.

1.4.2 Local alternatives

To investigate the behavior of the test under local alternatives we now consider a sequence
of models that converges to a model in the null hypothesis.

Definition 1.1 (Local alternative) A sequence of local alternatives is a sequence of
models

Mn = (Y 0,n, Y 1,n, V n, S,Z, r0, r1)

in the alternative that converges to a model

Mnull = (Y 0,null, Y 1,null, V null, S,Z, r0, r1)

in the null hypothesis in the following sense:

sup
x

E [(1{V n≤x} − 1{V null≤x})
2 ∣ S,Z] = Oa.s (c2

n) (1.6a)

E [(Y d,n − Y d,null)2 ∣ S,Z] = Oa.s (c2
n) d = 0,1 (1.6b)

for a vanishing sequence cn. For n large enough there are positive constants ρ and C
such that

E[exp(ρ ∣Y d,n −E[Y d,n ∣ S,Z]∣) ∣ S,Z] ≤ C d = 0,1.

We let Y n and Y null denote the observed outcome under the model Mn and Mnull,
respectively.
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1 Overidentification test in a nonparametric treatment model

Write ϕn for the index prediction error under the sequence of models Mn and note that

ϕn(S,Z) = E[Y n ∣ S,Z] −E[Y n ∣ rZ(S)]
= E[Y n − Y null ∣ S,Z] −E[Y n − Y null ∣ rZ(S)] = Oa.s(cn)

so that index sufficiency holds approximately in large samples. Formally, we are testing
the sequence of local alternatives

H0,n ∶ ∆n(x) = 0 for x ∈ [x, x̄]

with

∆n(x) = E[ϕn(S,Z) ∣ rZ(S) = x,Z = 0] −E[ϕn(S,Z) ∣ rZ(S) = x,Z = 1].

To analyze the behavior of our test under local alternatives we suppose that we are
observing a sequence of samples where the n-th sample is drawn fromMn. For vanishing
cn we interpretMnull as a hypothetical data generating process that satisfies the restriction
of the null and that is very close to the observed model Mn. Our objective is to show
that our test can distinguishMn fromMnull. The fastest rate at which local alternatives
can be detected is cn = n−1/2h−

1/4. This is the standard rate for this type of problem (cf.
Härdle and Mammen 1993). At this rate the smoothed and scaled version of the local
alternative

∆K,h(x) = c−1
n ∫ ∆n(x + ht)K(t) dt

enters the asymptotic distribution of the test statistic.

1.4.3 Asymptotic behavior of the test statistic

For our main asymptotic result below we use the asymptotic framework introduced in
the previous subsection where Tn is the test statistic computed on a sample of size n
drawn from the model Mn. The result states that the asymptotic distribution of the
test statistic can be described by the asymptotic distribution of the statistic under the
hypothetical model Mnull shifted by a deterministic sequence that measures the distance
of the observed model Mn from Mnull. The behavior of the test statistic under the null
is obtained as a special case by choosing a trivial sequence of local alternatives.

Theorem 1.2 Let cn = n−1/2h−
1/4 and consider a model Mnull satisfying Assumption 1.1

for xL < x < x̄ < xU and corresponding local alternatives Mn satisfying Definition 1.1.
The functions E[Y n ∣ rZ(S) = x] and E[Y n ∣ rZ(S) = x,Z = z], z = 0,1, are Riemann
integrable on (xL, xU). The bandwidth parameters η and η∗ satisfy

3η + 2η∗ < 1 (1.7a)

2η > η∗ (1.7b)

η∗ + η < 1/2 (1.7c)

η > 1/6 (1.7d)

(q + 1)η∗ > 1/2 (1.7e)

η∗ > η . (1.7f)
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Then

n
√
hTn −

1√
h
γn − ∫

x̄

x
∆2
K,h(x)dx

d→ N (0, V ) ,

where

V = 2K(4)(0)∫
x̄

x
[x(1 − x)m′(x)2 − 2σεζ(x)m′(x) + σ2

ε (x)]
2 ⎛
⎝ ∑z∈{0,1}

1

pzfR,z(x)
⎞
⎠

2

dx

and γn is a deterministic sequence such that γn → γ for

γ =K(2)(0)∫
x̄

x
[x(1 − x)m′(x)2 − 2σεζ(x)m′(x) + σ2

ε (x)] ∑
z∈{0,1}

1

pzfR,z(x)
dx.

Here m(x) = E[Y null ∣ rZ(S) = x] and the conditional covariances are computed under
Mnull. K(v) denotes the v-fold convolution product of K. For q ≥ 2 the set of admissible
bandwidths is non-empty.

The result implies that the test can detect local alternatives that converge to a model in
the null hypothesis at the rate cn = n−1/2h−

1/4 and that satisfy

lim inf
n
∫

x̄

x
∆2
K,h(x)dx > 0.

Both the first and the second stage estimation contribute to the asymptotic variance.
The term x(1−x)m′(x)2 − 2σεζ(x)m′(x) in the expression for the asymptotic variance is
due to the first stage estimation. Under our assumptions this term can not be signed,
so that the first stage estimation might increase or decrease the asymptotic variance.
However, while it is possible to construct models under which this term is negative, these
models have some rather unintuitive features and we do not consider them to be typical.
If the estimated regression function is rather flat, the influence of the first stage regression
on the asymptotic variance is small. To gain an intuition as to why this is so, note that if
m′(x) is small then a large interval of index values around x is informative about m(x).
This helps to reduce the first stage estimation error, because on average the index is
estimated more reliably over large intervals than over smaller intervals.

An essential ingredient in the proof of Theorem 1.2 is a result from Mammen, Rothe,
and Schienle 2012. They provide a stochastic expansion of a local linear smoother that
regresses on generated regressors around the oracle estimator. The oracle estimator is the
infeasible estimator that regresses on the true instead of the estimated regressors. This
expansion allows us to additively separate the respective contributions of the participation
and the outcome regression to the overall bias of our estimator of m0−m1. Under the null
the oracle estimator is free of bias. This is intuitive. Under the null, m =m0 =m1 so that
m̂0 and m̂1 estimate the same function in two subpopulations with non-identical designs.
A well-known property of the local linear estimator is that its bias is design independent
(Ruppert and Wand 1994) which makes it attractive for testing problems that compare
nonparametric fits (Gørgens 2002). Hence, only the bias of the participation regression
has to be reduced.
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1 Overidentification test in a nonparametric treatment model

We do not recommend using the distributional result in Theorem 1.2 to compute
critical values. The exact shape of the distribution is very sensitive to bandwidth choice.
As explained below, one does not know in practice if bandwidths satisfy the conditions
in the theorem. Even if bandwidths are chosen incorrectly, in many cases the statistic
still converges to a normal and most of the lessons we draw from the asymptotic analysis
still hold up. However, the expressions for the asymptotic bias and variance would look
different. Furthermore, to estimate the asymptotic bias and variance we have to estimate
derivatives and conditional variances. These are quantities that are notoriously difficult
to estimate. Instead, our inference is based on the wild bootstrap procedure introduced
in Section 1.3. We investigate the validity of our bootstrap procedure in simulations in
Section 1.5 below.

Theorem 1.2 requires that the bandwidth parameters satisfy a system of inequalities.
The restrictions are satisfied for example if q = 2, η∗ = 1/5 and 1/6 < η < 1/5. The
inequalities (1.7a)-(1.7c) ensure that our estimators satisfy the assumptions of Theorem 1
in Mammen, Rothe, and Schienle 2012. Condition (1.7d) ensures that up to parametric
order the bias of the oracle estimator is design independent. When the inequality (1.7f) is
satisfied, the error terms from both the participation and outcome regression contribute
to the asymptotic distribution. Finally, inequality (1.7e) says that the bias from the
participation regression must vanish at a faster than parametric rate. This is precisely
the condition needed to get rid of the troublesome bias terms discussed above. While
the proposition offers conditions on the rates at which the bandwidths should vanish
it offers little guidance on how to choose the bandwidths in finite samples. There are
no bandwidth selection procedures that produce deliberately under- or oversmoothing
bandwidths. This problem is by no means specific to our model but on the contrary
quite ubiquitous in the kernel smoothing literature (cf. Hall and Horowitz 2012). In our
application we circumvent the problem of bandwidth selection by reporting results for a
large range of bandwidth choices.

In practice, the bounds of integration x and x̄ are additional parameters that have
to be chosen. In most applications, this means that they have to be estimated from
the data. The following result states that a rather slow rate of convergence of these
estimated bounds suffices to ensure that bound estimation does not affect the asymptotic
distribution.

Theorem 1.3 Suppose that the assumptions of Theorem 1.2 hold. Assume also that xn
and x̄n are sequences of random variables such that

(xn, x̄n) − (x, x̄) = op (h`)

for a constant ` > 1/2. Then

Tn(xn, x̄n) − Tn(x, x̄) = op (
1

n
√
h
) .

Let x̂L and x̂U denote the sample equivalents of the right hand side of the equation (1.5)
that identifies xL and xU , respectively. Under the bandwidth restrictions of Theorem 1.2
the assumptions in Theorem 1.3 are satisfied if we set xn = x̂L + cδ and x̄n = x̂U − cδ.
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1.5 Simulations

alternative perturbation

1 ∆α = 0.2

2 ∆α = −1
2V

3 ∆α = 40(V − 0.3) exp (−80(V − 0.3)2)
4 ∆β = 0.2
5 ∆β = −V
6 ∆β = 40(V − 0.3) exp (−80(V − 0.3)2)

Table 1.1: Specification of simulated alternatives.

1.5 Simulations

We simulate various versions of the random coefficient model from equation (1.1) and
compute empirical rejection probabilities for our bootstrap test for two sample sizes and
a large number of bandwidth choices. As in the previous section we assume Jmax = 1 and
drop the j subscript.

Our basic setup is a model in the null hypothesis. Simulating our test for this
model allows us to compare the nominal and empirical size of our test. We then
generate several models in the alternative by perturbing outcomes in the basic model
for the Z = 1 subpopulation. For the basic model we define linear propensity scores
r0(s) = 0.1+0.5s and r1(s) = 0.5s. The binary instrument Z is a Bernoulli random variable
with P (Z = 0) = P (Z = 1) = 0.5 and the continuous instrument S is distributed uniformly
on the unit interval. The base outcome α follows a mean-zero normal distribution
with variance 0.5. The treatment effect is a deterministic function of V , β = −2V . As
alternatives we consider perturbations of the base outcome α as well as perturbations of
the treatment effect β. These perturbations are obtained by adding ∆α to α and ∆β to
β in the Z = 1 subpopulation. The specifications for the alternatives are summarized in
Table 1.1. The first three alternatives consider perturbations of the base outcome, whereas
alternatives 4-6 are derived from perturbations of the treatment effect. Alternatives
1 and 4 consider the case that base outcome and treatment effect, respectively, are
shifted independently of the unobserved heterogeneity V . The perturbations generating
alternatives 2 and 5 are linear functions of V . Finally, alternatives 3 and 6 are generated
by perturbing by functions of V that change sign. These alternatives are expected to be
particularly hard to detect because our test is based on the mz function which smoothes
over the unobserved heterogeneity as is apparent in the proof of Proposition 1.1. As

bandwidths we choose g = Cgn−
1
5 and h = Chn−

1
6 . We report results for a number of

choices for the constants Cg and Ch. We set q = 2 and choose an Epanechnikov kernel for
both K and L. The sample size is set to n = 200, 400. These should be considered rather
small numbers considering the complexity of the problem. We consider the nominal levels
θ = 0.1,0.05 as these are the most commonly used ones in econometric applications. As
bound estimation has only a higher-order effect we take x = 0.15 and x̄ = 0.45 as given.
To simulate the bootstrap distribution we are using B = 999 bootstrap iterations. For
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1 Overidentification test in a nonparametric treatment model

θ = 0.10 θ = 0.05

Ch 0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25 1.50 1.75

null
Cg = 0.50 9.3 8.9 8.4 7.7 8.6 9.6 4.2 3.4 4.7 4.2 4.1 4.1
Cg = 0.75 10.1 9.9 9.4 8.2 7.7 9.3 4.8 4.5 4.0 3.3 3.6 4.0
Cg = 1.00 8.9 8.7 7.4 9.0 8.9 8.1 4.2 4.1 3.2 4.0 3.6 3.3

alternative 1
Cg = 0.50 94.3 93.8 93.7 93.6 92.8 94.7 88.5 87.1 87.2 86.7 87.7 88.4
Cg = 0.75 94.8 91.9 93.0 92.6 94.0 93.8 88.6 86.9 87.2 85.8 87.3 87.2
Cg = 1.00 94.0 93.4 94.8 93.5 93.8 93.3 86.7 88.4 89.6 87.2 87.2 89.3

alternative 2
Cg = 0.50 96.9 97.5 97.5 98.1 98.6 98.0 93.3 94.4 95.4 96.0 96.4 95.4
Cg = 0.75 96.9 97.9 97.2 97.8 97.1 97.5 93.0 95.6 94.6 94.7 94.3 95.3
Cg = 1.00 97.7 97.2 97.4 97.8 97.4 97.8 94.5 95.3 94.1 94.1 95.3 94.4

alternative 3
Cg = 0.50 8.3 8.7 7.2 9.3 8.7 8.9 3.4 3.6 3.5 4.6 4.0 4.0
Cg = 0.75 6.9 9.1 8.9 8.6 8.9 9.3 3.5 4.4 3.6 3.6 4.0 3.9
Cg = 1.00 8.3 8.2 7.9 8.8 8.9 8.7 4.0 3.7 3.7 3.7 4.6 3.9

alternative 4
Cg = 0.50 25.5 23.8 22.9 24.2 22.6 22.7 15.1 13.9 13.5 13.8 12.3 13.3
Cg = 0.75 25.1 26.3 26.1 22.3 23.3 24.7 15.0 14.6 15.0 13.1 13.3 14.5
Cg = 1.00 25.4 23.5 24.5 23.7 23.7 23.6 15.2 13.0 15.6 13.8 14.1 13.8

alternative 5
Cg = 0.50 24.3 22.5 21.5 22.7 22.8 21.8 14.9 12.9 11.9 13.8 12.0 12.4
Cg = 0.75 21.1 22.0 21.3 20.9 22.7 22.3 10.4 10.8 12.1 11.5 12.7 12.5
Cg = 1.00 21.8 21.5 21.4 23.7 21.9 22.5 13.1 12.0 11.3 12.7 12.6 12.2

alternative 6
Cg = 0.50 45.1 44.3 42.3 45.2 46.6 47.7 30.9 30.7 29.3 31.2 35.0 31.2
Cg = 0.75 45.3 43.5 44.9 44.2 45.8 44.2 32.3 31.4 32.0 30.7 33.0 30.3
Cg = 1.00 44.2 45.5 47.6 44.3 44.6 46.6 32.6 33.7 34.0 30.6 30.9 33.9

Table 1.2: Empirical rejection probabilities in percentage points under nominal level θ.
Sample size is n = 400.

each model we conduct 999 simulations. Empirical rejection probabilities are reported in
Table 1.2 for n = 400 and in Table 1.3 in the appendix for n = 200.

We discuss only the results for n = 400 in detail. Under the null hypothesis the
empirical rejection probabilities are very close to the nominal levels. While this is not
conclusive evidence that our bootstrap approach will always work, it is suggestive of the
validity of the procedure.

Alternative 1 and Alternative 2 are detected with high probability. These alternatives
are particularly easy to detect for two reasons. First, the perturbation affects a large
subpopulation so that the alternative is easy to detect due to abundance of relevant
data. Secondly, the smoothing inherent in the quantities that our test considers does
not smear out the perturbations in a way that makes the alternatives hard to detect. To
understand the first effect contrast Alternative 1 and Alternative 2 with Alternative 4 and
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Alternative 5. Both pairs of alternatives arise from similar perturbations. However, the
whole subsample with Z = 1 can be used to detect the first pair. In contrast, only treated
individuals in the Z = 1 subsample provide data that helps to detect the second pair. A
back-of-the-envelope calculation reveals that on average only about 400 × 1/2 × 1/4 = 25
observations fall into the subsample with Z = 1 and D = 1. As cell sizes are observed
in applications, a lack of relevant data is a problem that can readily be accounted for
when interpreting test results. To shed light on the second effect recall that mz is derived
from smoothing outcomes over V ≤ x and V > x. Therefore, if a perturbation changes
sign, positive and negative deviations from the null will cancel each other out. This
effect is precisely what makes it so hard to detect perturbations such as those underlying
Alternative 3 and Alternative 6. Luckily, these kinds of alternatives are not what should
be expected in many applications. The problem that applied researchers have in mind
most of the time is that instruments might have a direct effect on outcomes that can
readily be signed by considering the economic context. In that respect, Alternative 1
and Alternative 2 are more typical of issues that applied economists worry about than
Alternative 3.

It might seem puzzling that Alternative 6 is detected much more frequently than
Alternative 3. The reason is that in Alternative 3 negative deviations in the V ≤ x
population are offset by positive deviations in the V > x population. This does not
happen in Alternative 6 as only the treated population is affected by the perturbation.

Accounting for the complexity of the problem the sample size n = 200, for which we
report results in the appendix, should be considered very small. Therefore, it is not
surprising that the deviations from the nominal size are slightly more pronounced than
in the larger sample. The deviations err on the conservative side, but that might be a
particularity of our setup. The pattern in the way alternatives are detected is similar to
the n = 400 sample with an overall lower detection rate.

Our simulations show that our approach has good empirical properties in finite samples.
For the simulated model the test holds its size which indicates that the bootstrap
procedure works well. Very particular alternatives that perturb outcomes by a function of
the unobserved types that oscillates around zero are difficult to detect by our procedure.
Alternatives that we consider to be rather typical are reliably detected provided that the
subsample affected by the alternative is large enough.

1.6 Application

To illustrate the applicability of our method we now consider the effect of teenage
child-bearing on the mother’s probability of graduating from high-school. This topic has
been discussed extensively in the literature. An early survey can be found in Hoffman
1998. To deal with the obvious endogeneity of motherhood, many authors (Ribar 1994;
Hotz, McElroy, and Sanders 2005; Klepinger, Lundberg, and Plotnick 1995) have used
instrumental variables methods. It has been suggested that treatment effect heterogeneity
is a reason why estimated effects depend strongly on the choice of instrument (Reinhold
2007). In fact, it is very natural to assume that the effect of motherhood on graduation is
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1 Overidentification test in a nonparametric treatment model

heterogeneous. For a simple economic model that generates treatment effect heterogeneity
suppose that the time cost of child care is the same for students of different abilities
whereas the time cost of studying to improve the odds of graduating is decreasing in
ability. To translate the problem into our heterogeneous treatment model let D denote a
binary indicator of teenage motherhood and let Y denote a binary indicator of whether
the woman has obtained a high school diploma3. We consider two instruments from the
literature. The first one, henceforth labelled S, is age at first menstrual period which
has been used in the studies by Ribar 1994 and Klepinger, Lundberg, and Plotnick 1995.
This instrument acts as a random shifter of female fecundity and is continuous in nature.
Its validity is discussed briefly in Klepinger, Lundberg, and Plotnick 1995 and Levine
and Painter 2003. The second instrument, denoted by Z, is an indicator of whether the
individual experienced a miscarriage as a teenager. Miscarriage has been used as an
unexpected fertility shock in the analysis of adult fertility choices (Miller 2011) and also
to study teenage child bearing in Hotz, Mullin, and Sanders 1997; Hotz, McElroy, and
Sanders 2005. The population studied in Hotz, McElroy, and Sanders 2005 consists of all
women who become pregnant in their teens, whereas we focus on the larger group of all
women who are sexually active in their teens. This turns out to be a crucial difference. It
stands to investigate the plausibility of the assumptions I-V, CI-S and CI-Z. Arguably, age
at first menstrual period is drawn independently of V and fulfills the instrument specific
conditional independence assumption CI-S if one controls for race. Possible threats to a
linear version of CI-Z are discussed in Hotz, Mullin, and Sanders 1997. Hotz, McElroy,
and Sanders 2005 conclude that the linear version of CI-Z holds in good approximation in
the population that they are considering. The most problematic assumption to maintain
is that Z is orthogonal to V . In a simplified behavioral model teenagers choose to become
pregnant based on their unobserved type and then a random draw from nature determines
how that pregnancy is resolved. This implies a sort of maximal dependence between
Z and V , i.e., teenagers select into treatment and into Z = 1 in exactly the same way.
Our test substantiates this heuristic argument by rejecting the null hypothesis that the
assumptions I-V, CI-S and CI-Z hold simultaneously. Furthermore, it gives instructive
insights into the role that heterogeneity plays in the failure of the assumptions.

We use data from the National Longitudinal Survey of Youth 19974 (henceforth
NLSY97) from round 1 through round 15. We only include respondents who were at least
21 of age at the last interview they participated in. This is to ensure that we capture
our outcome variable. A miscarriage is defined as a teenage miscarriage if the woman
experiencing the miscarriage was not older than 18 at the time the pregnancy ended.
Similarly, a young woman is defined as a teenage mother if she was not older than 18

3We do not include equivalency degrees (GED’s). There is a discussion in the literature as to what the
appropriate measure is (cf. Hotz, McElroy, and Sanders 2005).

4Most of the previous studies relied on data from the National Longitudinal Survey of Youth 1979
(NLSY79). In that study the date of the first menstrual period was asked for for the first time in
1984 when the oldest respondents were 27 years old. As is to be expected, a lot of respondents had
trouble recalling the date such a long time after the fact. The NLSY97 contained the relevant question
starting from the very first survey when the oldest respondents were still in their teens. Since our
method relies on a good measurement of the continuous variable the NLSY97 data is a better choice
than the NLSY79 data.
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1.6 Application

when the child was born. We control for race for two reasons. First, this is required to
make the menarche instrument plausible. Secondly, this takes care of the oversampling
of minorities in the NLSY97 so that we are justified in using unweighed estimates. We
remove respondents who report “mixed race” as race/ethnicity because the cell size is
too small to conduct inference. Table 1.4 in the appendix gives some summary statistics
for our sample. An unfortunate side effect of using the low probability event of a teenage
miscarriage as an instrument is that cell sizes can become rather small. This makes it
impossible to control for additional covariates while preserving reasonable power. In
Section 1.7 we briefly discuss a model that permits a much larger number of covariates.
The estimated propensity scores r̂z,j are plotted in Figure 1.2. For each j the functions
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Figure 1.2: Probability of entering treatment conditional on age of first menstrual period
(S) plotted separately for the subpopulations with Z = 0 (no miscarriage as
a teenager, dashed line) and Z = 1 (miscarriage as a teenager, solid line).
Plotted with q = 1 and bandwidth g = 2.00.

r̂0,j and r̂1,j are not identical almost everywhere and their ranges exhibit considerable
overlap. We require the same properties from their population counterparts to have good
power. It should be noted at this point that the shape of the estimated propensity scores
is already indicative of the way that miscarriage fails as an instrument. In a naive telling
of the story, the propensity score for women who had a teenage miscarriage is shifted
upward, contrary to what we observe in Figure 1.2. Our test rejects if, keeping the
probability of treatment fixed, the difference between the outcomes of the subpopulation
with Z = 0 and the subpopulation with Z = 1 is large. Figure 1.3 plots m̂0,j(x) − m̂1,j(x)
for all values of j. The dashed lines indicate our estimates of xL,j and xU,j . We observe
that the estimated outcome difference is positive and decreasing in the probability of
treatment x. This means that for a low treatment probability x women who have a
miscarriage do much worse in terms of high school graduation than do women who do not
have a miscarriage. For larger x, however, this difference in outcomes becomes smaller.
This feature is in line with our story-based criticism of the instrument. Suppose that the
underlying heterogeneity selects women into pregnancy rather than into motherhood. For
concreteness think of the heterogeneity as the amount of unprotected sex that a woman
has and suppose that this variable is highly correlated with outcomes. In a Bayesian
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Figure 1.3: Difference in expected outcomes conditional on probability of treatment
between the subpopulations with Z = 0 and Z = 1. Plotted with q = 1 and
bandwidths h = 0.25 and g = 2.00.

sense a woman who has a miscarriage reveals herself to be of the type that is prone to
have unprotected sex. In that sense she is very similar to women with a high probability
of becoming pregnant and carrying the child to term and very different from women who
become pregnant only with small probability. To turn this eye-balling of the plots in
Figure 1.3 into a rigorous argument we now take into account sampling error by applying
our formal testing procedure. For both the first and the second stage regression we
choose an Epanechnikov kernel. To have good power against local alternatives we choose
q = 2. To keep the problem tractable and to reduce the number of parameters we have to
choose, we set gj = g and hj = h for all j. We then run the test for a large number of
bandwidth choices letting h vary between 0.1 and 0.5 and letting g vary between 1 and 3.
To determine the bounds of integration xj and x̄j we use the naive sample equivalence
approach suggested in Section 1.4 with different values for cδ. Table 1.5 in the appendix
reports results for cδ = 0.05 and Table 1.6 reports results for cδ = 0.075. For these two
choices of cδ the test rejects at moderate to high significance levels for a large range of
smoothing parameter choices.

Our approach can also be used to investigate other instruments that have been
suggested in the literature on teen pregnancies. For example, Z or S could be based on
local variation in abortion rates or in availability of fertility related health services (cf.
Ribar 1994; Klepinger, Lundberg, and Plotnick 1995).

1.7 Conclusion

So far, inference about heterogeneous treatment effect models mostly relies on theoretical
considerations about the relationship between instruments and unobserved individual
characteristics that are not investigated empirically. This paper shows that under the
assumption that a binary and a continuous instrument are available, a parameter is
overidentified. This provides a way to test whether the model is correctly specified. The
overidentification result is not merely a theoretical curiosity, it has bite when applied
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to real data. We illustrate this by applying our method to a dataset on teenage child
bearing and high school graduation.

Apart from suggesting a new test, we also contribute to the statistical literature by
developing testing theory that with slight modifications can be applied to other settings
where index sufficiency holds under the null hypothesis. We accommodate an index that
is not observed and enters the test statistic as a nonparametrically generated regressor.
This setting is encountered, e.g., when testing the validity of the matching approach
along the lines suggested in Heckman et al. 1996 and Heckman et al. 1998. Heckman
et al. 1998 employ a parametric first-stage estimator. As a result, their second-stage
estimator is, to first order, identical to the oracle estimator. Our analysis suggests that
replacing the parametric first-stage estimator by a non- or semiparametric estimator is
not innocuous. In particular, it can affect the second-stage bandwidth choice and the
behavior of the test under local alternatives.

A theoretical analysis of our wild bootstrap procedure is beyond the scope of this
paper. Developing resampling methods for models with nonparametrically generated
regressors is an interesting direction for future research. We hope to corroborate the
findings in our exploratory simulations by theoretical results in the future.

To apply our method to a particular data set, additional considerations might be
necessary. In many applications the validity of an instrument is only plausible provided
that a large set of observed variables is controlled for. It is hard to accommodate a
rich covariate space in a completely nonparametric model. This is partly due to a curse
of dimensionality. Another complicating factor is that our testing approach has good
power only if, for fixed covariate values, the instruments provide considerable variation
in participation. This is what allows us to test the model for a wide range of unobserved
types. Typically, however, instruments become rather weak once the model is endowed
with a rich covariate space. These issues can be dealt with by imposing a semiparametric
model. As an example, consider the following simple variant of a model suggested in
Carneiro and S. Lee 2009. We let X denote a vector of covariates with possibly continuous
components and assume that the unobserved type V is independent of X. Treatment
status is determined by D = 1{R≥V } with R = r1(X) + r2(S,Z). The unobserved type
affects the treatment effect and not the base outcome. The observed outcome is

Y = µα(X) +D[µβ(X) + λ(V )].

The functions r1, µα and µβ are known up to a finite dimensional parameter. A
semiparametric version of our test would compare E[Dλ(V ) ∣ R = x,Z] in the Z = 0
and Z = 1 subpopulations. The fact that X is uninformative about V and the additive
structure allow for an overidentification result that uses variation in X to extend the
interval on which a function is overidentified. This contrasts sharply with Proposition 1.1
which relies on variation in S keeping the value of covariates fixed. In terms of asymptotic
rates this semiparametric model with a large covariate space is not harder to estimate
than our fully nonparametric model with a small covariate space and there is no curse of
dimensionality.

As seen in Section 1.6 plots of the quantities underlying the test statistic can be helpful
in interpreting test results and are a good starting point for discovering the source of a
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rejection. In many applications it is plausible to assume that while instruments are not
valid for extreme types (types with a particularly low or high propensity to participate),
they work well for the more average types. The plots can be used to heuristically identify
the subpopulation for which instruments are valid. For a subpopulation that based on
theoretical considerations is hypothesized to satisfy instrument validity, our approach
offers a rigorous way of testing the correct specification of the subpopulation.

Appendix 1.A Definition of estimators

Let Lg(⋅) = g−1L(⋅/g) and Kh(⋅) = h−1K(⋅/h). For the first-stage estimator set r̂z,j(s) = a0,
where a0 satisfies

(a0, . . . , aq) ∈ arg min(a0,...,aq)∈Rq+1 ∑
i∶Zi=z,Ji=j

(Di − a0 − a1(Si − s) −⋯

− aq(Si − s)q)
2
Lg(Si − s).

For the second-stage estimator set m̂z,j(x) = b0, where b0 satisfies

(b0, b1) ∈ arg min(b0,b1)∈R2 ∑
i∶Zi=z,Ji=j

(Yi − b0 − b1(r̂z,j(Si) − x))
2
Kh(r̂z,j(Si) − x).

Appendix 1.B Proofs

Proof of Theorem 1.2

The proposition follows from a sequence of lemmas. We first prove that the second-stage
regression function and the error terms from the first- and second-stage regressions behave
nicely under our assumptions about the primitives of the model.

Assumption 1.3
For each z ∈ {0,1}

(i) mz is twice continuously differentiable on (xL, xU).

(ii) there is a positive ρ such that Ez[exp(ρ ∣ζ ∣) ∣ S] and Ez[exp(ρ ∣ε∣) ∣ S] are bounded,

(iii) σ2
ζ,z(x) = Ez[ζ2 ∣ rz(S) = x], σ2

ε,z(x) = Ez[ε2 ∣ rz(S) = x], and σεζ,z(x) = Ez[εζ ∣
rz(S) = x] are continuous on (xL, xU).

Lemma 1.1 Assumption 1.1 is sufficient for Assumption 1.3.

Proof The lemma follows from plugging in the structural treatment model into the
observed quantities and arguing similarly to the proof of Theorem 1.1. ◻

In the next lemma we give a complete description of the relevant properties of our
first-stage estimator. We provide an explicit expression of a smoothed version of the
first-stage estimator that completely characterizes the impact of estimating the regressors
on the asymptotic behavior of the test statistic.
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Lemma 1.2 (First stage estimator) The first stage local polynomial estimator can
be written as

r̂z(s) = ρn(s) +Rn,

where

sup
s

∣Rn∣ = Op
⎛
⎝
gq+1

√
logn

ng
+ logn

ng

⎞
⎠

and ρn is given explicitly in equation (1.8). Wpa1 ρn is contained in a function class R
that for some constant K, any ξ > 5

4η
∗ − 1

4 and all ε > 0 can be covered by K exp(nξε−1/2)
ε-balls with respect to the sup norm. The true propensity score is contained in R.
Furthermore,

−m′(x)∫ Kh(rz(s) − x)(r̂z(s) − rz(s))fS∣Z=z(s)ds =
1

n
∑
i∶Zi=z

ψ
(2)
n,z,i(x) + op(n

−1/2),

with ψ
(2)
n,z,i as defined in Lemma 1.3. Moreover,

sup
s

∣r̂z(s) − rz(s)∣ = Op (n−
1
2
(1−η∗)) .

Proof Throughout, condition on the subsample with Z = z. Let e1 = (1,0, . . . ,0)⊺ and
µ(t) = (1, t, . . . , tq)⊺. Furthermore, define

M̄n(s) = Eµ(Si − s
g

)µ⊺ (Si − s
g

)Lg(Si − s).

Since we defined g in terms of the total sample size it behaves like a random variable

when we work conditionally on the subsample Z = z. We have g = ann−η
∗

z +Op (n−
1
2
−η∗)

for a bounded deterministic sequence an. From a straightforward extension of standard
arguments for the case of a deterministic bandwidth (c.f. Masry 1996) it can be shown
that r̂z can be written as

r̂z(s) = ρn(s) +Rn,

where

ρn(s) = rz(s) + gq+1bn(s) + e⊺1M̄−1
n (s) 1

n
∑
i

µ(Si − s
g

)Lg(Si − s)ζi, (1.8)

bn is a bounded function and Rn has the desired order. To show that the desired entropy
condition holds, note that M̄n is a deterministic sequence that is bounded away from
zero so that it suffices to derive an entropy bound for the functions

1

n
∑
i

µ(Si − s
g

)Lg(Si − s)ζi.

Wpa1 these functions have a second derivative that is bounded by
√
n−1g5 logn. The

desired bound on the covering number then follows from a straightforward corollary to
Theorem 2.7.1 in van der Vaart and Wellner 1996. To prove the statement about the
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smoothed first stage estimator note that under our assumptions we only have to consider
the smoothed error term

1

n
∑
i∶Zi=z

ψ∗n(x,Si)ζi,

where

ψ∗n(x, s) = −m′(x)∫ Kh(rz(u) − x)e′1M̄−1
n (u)µ(s − u

g
)Lg(s − u)fS∣Z=z(u)du

= −m′(x)∫ Kh(rz(s − gu) − x)e′1M̄−1
n (s − gu)µ(u)L(u)fS∣Z=z(s − gu)du.

Since fS∣Z=z is bounded and has a bounded derivative there is a function Dn(s, u) bounded
uniformly in s, u and x satisfying

M̄−1
n (s − ug)f(s − ug) −M−1 = gDn(s, u).

By standard kernel smoothing arguments

1

nz
∑
i∶Zi=z

{∫ Kh(rz(Si − ug) − x)Dn(Si, u)µ(u)L(u)du} ζi = Op
⎛
⎝

√
logn

nh

⎞
⎠
.

Noting that L∗(u) = e⊺1M−1µ(u)L(u) we have

1

n
∑
i∶Zi=z

ψ∗n(x,Si)ζi =
1

n
∑
i∶Zi=z

ψ
(2)
n,z,i(x) + op(n

−1/2).
◻

Next, we give an asymptotic expansion of the integrand in (1.4) up to parametric order.
The result states that the integrand can be characterized by a deterministic function that
summarizes the deviation from index sufficiency under the alternative and an asymptotic
influence function calculated under the hypothetical model Mnull.

Lemma 1.3 (Expansion) Uniformly in x

m̂0(x) − m̂1(x) = ∆K,h(x) +
1

n
∑
i

ψn,i(x) + op(n−
1/2)

where ψn,i = ψ(1)n,i + ψ
(2)
n,i and ψ

(j)
n,i = ∑z=0,1ψ

(j)
n,z,i, j = 1,2,

ψ
(1)
n,z,i(x) =

1{Zi=z}(−1)z

pzfR,z(x)
Kh(rz(Si) − x)εi,

ψ
(2)
n,z,i(x) = −m

′(x)
1{Zi=z}(−1)z

pzfR,z(x) ∫
Kh(rz(Si − gu) − x)L∗(u)du ζi.

Here εi = Y null − E[Y null ∣ rZ(S)], i.e, εi is the residual under the hypothetical model
Mnull, and L∗ denotes the equivalent kernel of the first step local polynomial regression.
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1.B Proofs

Proof The statement follows from an expansion of m̂z. Work conditionally on the
subsample with Z = z and let nz denote the number of observations in the subsample.
To avoid confusion, we write hn for the second-stage bandwidth, as h will sometimes
denote a generic element of a set of bandwidths. Let hz = n−ηz . Note that for C large
enough hn is contained in the set

Hnz = {h′ ∶ ∣h′ − hz ∣ ≤ Cn−1/2−η
z }

wpa1. Let e1 = (1,0)⊺, µ(t) = (1, t)⊺ and

M r
h(x) =

1

n
∑
i∶Zi=z

µ((r(Si) − x)/h)µ⊺((r(Si) − x)/h)Kh(r(Si) − x).

For arbitrary Rn-valued random variables W define the local linear smoothing operator

Krh,x,zW = e⊺1 (M r
h(x))

−1 1

nz
∑
i∶Zi=z

Wiµ(r(Si) − x
h

)Kh(r(Si) − x).

Decompose the estimator as

m̂z(x) =Kr̂hn,x,zY
n +Kr̂hn,x,z {(Y

n − Y null) −E[Y n − Y null ∣ S,Z]}
+Kr̂hn,x,z E[Y n − Y null ∣ S,Z]

=J1 + J2 + J3.

We now proceed to show that

J1 =m(x) + b1,n(x) +
1

n
∑
i

{ψ(1)n,z,i(x) + ψ
(2)
n,z,i(x)} + op(n

−1/2),

J2 = op(n−
1/2),

J3 = b2,n(x) + ∫ E[ϕn(S,Z) ∣ rZ(S) = x + hr,Z = z]K(r)dr + op(n−
1/2),

where bj,n, j = 1,2, are independent of z and all order symbols hold uniformly in x. For
the J1 term we apply the approach from Mammen, Rothe, and Schienle 2012 (MRS) and
expand J1 around the oracle estimator. Write

J1 = Kr̂hn,x,zεi +K
r̂
hn,x,zm(rz(Si)) = J1,a + J1,b.

For the J1,a term note that e⊺1 (M r
h(x))

−1
is stochastically bounded by a uniform over

Hnz version of Lemma 2 in MRS. For ρn as defined in Lemma 1.2 write

1

nz
∑
i∶Zi=z

Khn(r̂z(Si) − x)εi −
1

nz
∑
i∶Zi=z

Khn(rz(Si) − x)εi

= 1

nz
∑
i∶Zi=z

(Khn(r̂(Si) − x) −Khn(ρn(Si) − x)) εi

+ 1

nz
∑
i∶Zi=z

(Khn(ρn(Si) − x) −Khn(rz(Si) − x)) εi = I1 + I2.
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1 Overidentification test in a nonparametric treatment model

By the mean-value theorem I1 = op(n−1/2). For I2 note that Ez[ε ∣ S] = 0 so that following
the arguments in the proof of Lemma 2 in MRS

sup
x;h∈Hnz

P
⎛
⎝

sup
r1,r2∈R

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

(Kh(r1(Si) − x) −Kh(r2(Si) − x)) εi
RRRRRRRRRRR
> C∗n−κ1

⎞
⎠

≤ exp(−cnc),

where κ1 is defined in MRS and C∗ is a large constant. To check that κ1 > 1/2 note that
Theorem 1 in MRS allows bandwidth exponents in an open set so that it suffices to check
the conditions for hz. It is now straightforward to show that a polynomial number of
points in [x, x̄] ×Hnz provide a good enough approximation to ensure that

sup
x,h∈Hnz ,ρ∈R

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

(Kh(ρ(Si) − x) −Kh(rz(Si) − x)) εi
RRRRRRRRRRR
= Op(n−κ1)

and hence I2 = op(n−1/2). Similar arguments apply to

1

nz
∑
i∶Zi=z

r̂z(Si) − x
hn

Khn(r̂z(Si) − x)εi.

Therefore, J1,a can be replaced by its oracle counterpart at the expense of a remainder
term that vanishes at the parametric rate:

J1,a =
1

n
∑
i

ψ
(1)
n,z,i(x) + op(n

−1/2).

Note that in the last step we also replaced nz by pzn. Decompose J1,b as in the proof of
Theorem 1 in MRS. It is straightforward to extend their results to hold uniformly over
bandwidths in Hnz . Deduce that

J1,b =m(x) + b1,n(x) −m′(x)∫ Khn(rz(s) − x)(r̂z(s) − rz(s))fS∣Z=z(s)ds + op(n−
1/2).

for a sequence of functions b1,n that does not depend on the design. The previous results
use standard results about the Bahadur representation of the oracle estimator (cf. Masry
1996; Kong, Linton, and Xia 2010). The desired representation for J1 follows from
Lemma 1.2. For the J2 term apply Lemma 2 in MRS in a similar way as described above
to argue that

J2 −Krzhn,x,z {(Y
n − Y null) −E[Y n − Y null ∣ S,Z]} = J2 − J∗2 = op(n−

1/2).

By standard kernel smoothing arguments J∗2 = op(n−1/2). For the J3 term let Ai =
E[Y n

i − Y null
i ∣ Si, Zi] and consider the behavior of the terms

1

nz
∑
i∶Zi=z

Ai (
r̂z(Si) − x

hn
)
a

Khn(r̂z(Si) − x), a = 0,1.
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1.B Proofs

We focus on a = 0. The argument for the other case is similar. Let K ′
h(⋅) = h−1K ′(⋅/h).

For any r̃ (pointwise) between r̂z and rz

sup
x

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

K ′
hn(r̃(Si) − x)

RRRRRRRRRRR
≤ C sup

x

1

nzhz
∑
i∶Zi=z

1{∣rz(Si)−x∣≤Chz} = Op(1)

for a positive constant C. Noting that maxi≤n ∣Ai∣ = Op(cn) it is now easy to see that

1

nz
∑
i∶Zi=z

AiKhn(r̂z(Si) − x)

= 1

nz
∑
i∶Zi=z

Ai [Khn(rz(Si) − x) +K ′
hn(r̃(Si) − x)

r̂z(Si) − rz(Si)
hn

]

= 1

nz
∑
i∶Zi=z

AiKhn(rz(Si) − x) + op(n−
1/2)

uniformly in x. Let M = ∫ µ(t)µ⊺(t)K(t)dt, Mn =M rz
hn

and M̄n = EMn. By Lemma 2
in Mammen, Rothe, and Schienle 2012 and standard arguments we have

M r̂z
hn

(x) − fR∣Z=zM =M r̂z
hn

(x) −Mn(x) +Mn(x) − M̄n(x) + M̄n(x) − fR∣Z=z(x)M

=Op
⎛
⎝
n−

1
2
(1−3η) +

√
logn

nhn
+ hn

⎞
⎠

uniformly in x. Therefore,

J3 − f−1
R∣Z=z(x)

1

nz
∑
i∶Zi=z

AiKhn(rz(Si) − x) = J3 + J∗3 = op(n−
1/2).

It is straightforward to show that under our assumptions J∗3 can be replaced by its
expectation at the expense of an uniform op(n−1/2) term. Since

E[Y n − Y null ∣ S,Z] = E[Y n − Y null ∣ rZ(S)] + ϕn(S,Z),

and since fR∣Z=z has a bounded derivative

Ez J
∗
3 =∫ E[Y n − Y null ∣ rZ(S) = x + hnr]K(r)dr

+∫ E[ϕn(S,Z) ∣ rZ(S) = x + hnr,Z = z]K(r)dr + o(n−1/2).

Here we keep implicit that we are treating hn as a constant in the above expectations,
i.e., we are integrating with respect to the marginal measure of (Z,S). The conclusion
follows by noting that the first term on the right-hand side is independent of z. ◻

Plugging in from Lemma 1.3 gives an asymptotic expansion of the test statistic.
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1 Overidentification test in a nonparametric treatment model

Lemma 1.4

Tn =Tn,a + Tn,b + ∫ ∆2
K,h(x)dx + op(n

√
h),

where

Tn,a =
2

n2∑
i<j
∫ ψn,i(x)ψn,j(x)dx and Tn,b =

1

n2 ∫ ∑
i

ψ2
n,i(x)dx.

Proof Plug in from Lemma 1.3, expand the square and inspect each term separately.◻

Lemma 1.5 (Variance) For Tn,a as defined in Lemma 1.4

var(Tn,a) = n−2h−1V + o (n−2h−1) and

n
√
hTn,a

d→ N (0, V ).

Proof For the first part of the lemma, note that

∫ Kh(rz(s − gu) − x)L∗(u)du = ∫ {Kh(rz(s) − x) +K ′(χ1/h)∂srz(χ2)u
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡a(s,u,x)

g

h2
}L∗(u)du,

where χ1 is an intermediate value between rz(s − hu) − x and rz(s) − x, and χ2 is an
intermediate value between s − hu and s. As K and rz have bounded derivatives

ã(r, x) = E [∫ a(S,u, x)L∗(u)du ∣ rz(S) = r]

is a bounded function. By standard U-statistic arguments

var
⎛
⎝

2∑
i<j
∫ ψn,i(x)ψn,j(x)dx

⎞
⎠
= 4∑

i<j

E [∫ ψn,i(x)ψn,j(x)dx]
2

= 4(n
2
)∫ h{E[ψn,1(x)ψn,1(x + hx′)]}

2
dx′ dx.

Note that

E[ψn,1(x)ψn,1(x + hx′)] = ∑
z∈{0,1}

E[ψn,z,1(x)ψn,z,1(x + hx′)].

We consider here only one of the terms composing E[ψn,z,1(x)ψn,z,1(x + hx′)]. For the
other terms similar arguments apply. Let

q(x) = −
m′(x)1{Z=z}
pzfR∣Z=z

∫ Kh(rz(S − gu) − x)L∗(u)du.

34



1.B Proofs

Using Ez[ζ2 ∣ rZ(S) = x] = x(1 − x) we have

h[E q(x)q(x + hx′)ζ2
1 ]

=hE [
1{Z=z}m

′
z(x)m′

z(x + hx′)
p2
zfR∣Z=z(x)fR∣Z=z(x + hx′)

(Kh(rz(S) − x) +
g

h2
ã(rz(S), x))⋯

⋯ (Kh(rz(S) − x − hx′) +
g

h2
ã(rz(S), x − hx′)ζ2]

=x(1 − x)[m
′
z(x)]2

pzfR∣Z=z(x) ∫ K(y)K(x′ − y)dy + o(1) = x(1 − x)[m
′
z(x)]2

pzfR∣Z=z(x)
K(2)(x′) + o(1).

For the second part of the lemma it suffices to check the two conditions of Theorem 2.1
in de Jong 1987. Let Wij = 2n−1

√
h ∫ ψi(x)ψj(x) and show that

var−1 (∑
i<j

Wij) max
1≤i≤n

∑
1≤j≤n

var(Wij)→ 0

var−2 (∑
i<j

Wij)E{∑
i<j

Wij}
4
→ 3.

The first condition holds trivially. To show that the second condition is satisfied note that
var(∑i<jWij) converges to a constant. It is easy to see that asymptotically only terms of

the form EW 2
ijW

2
kl with {i, j} ∩ {k, l} = ∅ will contribute to E [∑i<jWij]

4
. There are

(4

2
)
(n

2
) [(n

2
) − 1]

2!
≈ 3

4
n4

such terms when expanding E [∑i<jWij]
4
. The condition then follows by noting that

var (∑
i<j

Wij) =∑
i<j

EW 2
ij

and that EW 2
ijW

2
kl factors as EW 2

ij EW 2
kl. ◻

We now apply standard U-statistic theory. As the next two lemmas show, Tn,b contributes
to the asymptotic bias and Tn,b contributes to the asymptotic variance.

Lemma 1.6 (Bias) For Tn,b as defined in Lemma 1.4

n
√
hTn,b =

1√
h
γn + op(1),

where γn is a deterministic sequence converging to γ.

Proof Write

n
√
hTn,b =

√
h

n
∑
i
∫ ψ2

n,i(x)dx = E{
√
h

n
∑
i
∫ ψ2

n,i(x)dx} + op(1) ≡ γn + op(1).
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1 Overidentification test in a nonparametric treatment model

Define the function a as in the proof for Lemma 1.5. To compute γn write

ψ2
n,z,i(x) =

1{Z=z}

p2
zf

2
R,z(x)

{K2
h(rz(S) − x)ε2 + [m′(x)]2K2

h(rz(S) − x)ζ2

− 2m′(x)Kh(rz(S) − x)εζ}

+
1{Z=z}

p2
zf

2
R,z(x)

( g
h2 ∫ g(S,u, x)L∗(u)du)

2

ζ2+

1{Z=z}

p2
zf

2
R,z(x)

g

h2
(∫ g(S,u, x)L∗(u)du)Kh(rz(S) − x)εζ

=Γ1(S,x) + Γ2(S,x) + Γ3(S,x).

Note that

h ∑
z=0,1

E∫ Γ1(S,x)dx→ γ,

where we kept the dependence of Γ1 on z implicit. Now show that the other terms
entering γn vanish. To show that h∑z=0,1 E ∫ Γ3(S,x)dx→ 0 it suffices to show that

Ez [(∫ g(S,u, x)L∗(u)du) εζ ∣ rz(S)]

is bounded. This follows immediately from the fact that ∫ g(S,u, x)L∗(u)du is bounded
and hence

Ez [∫ g(S,u, x)L∗(u)du εζ ∣ rz(S)] ≾ Ez[∣εζ ∣ ∣ rz(S)] ≤
√
σ2
ε (rz(S)) ≤ C

for some constant C. For h∑z=0,1 E ∫ Γ2(S,x)dx argue similarly. ◻

Proof of Theorem 1.3

Proof Using the expansion from Lemma 1.3 and applying standard smoothing arguments
to the stochastic term we get that for a small enough open set Gx ⊃ [x, x̄]

sup
x∈Gx

∣m̂0(x) − m̂1(x)∣2 = O ( 1

n
√
h
+ g2(q+1)) +Op (

logn

nh
) + op (

1

n
) .

Write

Tn(xn, x̄n) − Tn(x, x̄) = Tn(xn, x) − Tn(x̄, x̄n).

We can bound Tn(xn, x) by

∣xn − x∣ sup
x∈Gx

∣m̂0(x) − m̂1(x)∣ = op(n
√
h).

Similarly, we can find a bound for Tn(x̄, x̄n). ◻
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1.C Tables

Appendix 1.C Tables

θ = 0.10 θ = 0.05

Ch 0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25 1.50 1.75

null
Cg = 0.50 6.7 5.7 5.8 8.9 7.0 7.9 2.7 2.6 1.9 4.6 3.3 2.8
Cg = 0.75 9.2 6.4 8.2 6.5 6.4 7.0 4.6 2.0 3.2 2.8 3.2 2.8
Cg = 1.00 6.4 6.7 8.1 6.8 8.8 7.1 2.2 2.9 2.9 3.1 3.2 2.8

alternative 1
Cg = 0.50 65.8 65.8 67.7 63.8 65.3 65.7 50.5 49.9 53.2 47.5 50.6 50.8
Cg = 0.75 65.1 65.8 64.8 65.3 65.8 65.9 49.7 47.7 49.9 49.5 50.1 52.3
Cg = 1.00 66.3 65.0 66.4 67.9 64.8 66.5 50.4 51.2 50.3 51.1 50.9 49.2

alternative 2
Cg = 0.50 82.4 79.9 80.2 80.5 81.6 78.0 67.9 66.8 68.4 67.3 68.6 65.5
Cg = 0.75 79.2 81.0 79.9 80.6 80.4 79.8 66.1 68.3 68.0 68.2 66.5 65.8
Cg = 1.00 80.9 81.4 80.1 80.3 80.3 78.2 68.4 67.5 66.1 66.9 64.0 64.7

alternative 3
Cg = 0.50 6.9 8.1 8.8 7.7 5.0 6.7 2.3 3.9 3.3 4.2 1.8 3.2
Cg = 0.75 7.2 8.1 6.8 7.4 6.7 6.9 2.9 2.6 3.7 3.9 2.1 3.0
Cg = 1.00 7.7 8.0 6.2 6.7 7.8 7.1 2.6 3.3 3.1 2.3 3.5 2.6

alternative 4
Cg = 0.50 15.0 10.5 15.1 14.0 13.1 12.2 7.0 4.8 6.5 5.7 7.0 6.6
Cg = 0.75 12.5 13.9 13.8 12.9 13.6 13.3 5.2 6.2 7.0 7.0 6.3 5.9
Cg = 1.00 10.0 15.7 14.1 15.7 11.5 14.2 4.2 6.9 7.4 9.5 4.7 6.7

alternative 5
Cg = 0.50 12.0 12.4 15.5 13.5 14.2 13.2 5.7 4.6 7.4 4.9 5.8 6.0
Cg = 0.75 13.4 14.5 12.5 12.1 12.0 11.1 6.0 6.9 5.7 4.2 5.3 5.7
Cg = 1.00 12.2 14.3 13.1 12.6 12.9 12.2 5.3 5.8 5.7 5.9 6.4 6.2

alternative 6
Cg = 0.50 22.5 23.0 22.9 24.0 21.6 23.1 12.3 12.4 11.2 14.3 10.7 12.8
Cg = 0.75 23.3 20.6 25.3 23.5 23.3 20.0 12.5 11.4 13.2 12.0 13.5 12.1
Cg = 1.00 22.0 22.0 20.9 25.7 24.0 20.8 11.7 11.6 9.9 13.4 12.7 9.9

Table 1.3: Simulation. Empirical rejection probabilities in percentage points under nomi-
nal level θ. Sample size is n = 200.

D Y

Race Z n mean sd mean sd

black 0 787 0.19949 0.3999 0.8183 0.3858
1 67 0.26866 0.4466 0.6269 0.4873

hispanic 0 549 0.18033 0.3848 0.7687 0.4221
1 36 0.27778 0.4543 0.5278 0.5063

white 0 1394 0.07389 0.2617 0.8479 0.3592
1 77 0.20779 0.4084 0.6234 0.4877

Table 1.4: Teenage child bearing (D) and high-school graduation (Y ).
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g h Tn x1 x̄1 x2 x̄2 x3 x̄3 P (> Tn) test result

1 1.00 0.15 0.086 0.03 0.32 0.01 0.21 0.05 0.46 0.225 no rejection
2 1.50 0.15 0.053 0.03 0.27 0.03 0.18 0.05 0.41 0.224 no rejection
3 2.00 0.15 0.084 0.03 0.21 0.02 0.15 0.05 0.36 0.059 *
4 2.50 0.15 0.054 0.04 0.19 0.02 0.13 0.11 0.27 0.012 **
5 3.00 0.15 0.022 0.02 0.18 0.05 0.11 0.13 0.19 0.092 *
6 1.00 0.20 0.064 0.03 0.32 0.01 0.21 0.05 0.46 0.060 *
7 1.50 0.20 0.042 0.03 0.27 0.03 0.18 0.05 0.41 0.084 *
8 2.00 0.20 0.067 0.03 0.21 0.02 0.15 0.05 0.36 0.010 **
9 2.50 0.20 0.043 0.04 0.19 0.02 0.13 0.11 0.27 0.010 **

10 3.00 0.20 0.019 0.02 0.18 0.05 0.11 0.13 0.19 0.083 *
11 1.00 0.25 0.045 0.03 0.32 0.01 0.21 0.05 0.46 0.012 **
12 1.50 0.25 0.037 0.03 0.27 0.03 0.18 0.05 0.41 0.036 **
13 2.00 0.25 0.051 0.03 0.21 0.02 0.15 0.05 0.36 0.008 ***
14 2.50 0.25 0.035 0.04 0.19 0.02 0.13 0.11 0.27 0.025 **
15 3.00 0.25 0.017 0.02 0.18 0.05 0.11 0.13 0.19 0.090 *
16 1.00 0.30 0.040 0.03 0.32 0.01 0.21 0.05 0.46 0.010 **
17 1.50 0.30 0.035 0.03 0.27 0.03 0.18 0.05 0.41 0.036 **
18 2.00 0.30 0.044 0.03 0.21 0.02 0.15 0.05 0.36 0.021 **
19 2.50 0.30 0.030 0.04 0.19 0.02 0.13 0.11 0.27 0.022 **
20 3.00 0.30 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.080 *
21 1.00 0.35 0.039 0.03 0.32 0.01 0.21 0.05 0.46 0.005 ***
22 1.50 0.35 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.024 **
23 2.00 0.35 0.041 0.03 0.21 0.02 0.15 0.05 0.36 0.014 **
24 2.50 0.35 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.018 **
25 3.00 0.35 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.064 *
26 1.00 0.40 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.003 ***
27 1.50 0.40 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.021 **
28 2.00 0.40 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.007 ***
29 2.50 0.40 0.028 0.04 0.19 0.02 0.13 0.11 0.27 0.011 **
30 3.00 0.40 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.064 *
31 1.00 0.50 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.003 ***
32 1.50 0.50 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.012 **
33 2.00 0.50 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.012 **
34 2.50 0.50 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.005 ***
35 3.00 0.50 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.065 *

Table 1.5: Test results for varying bandwidths and cδ = 0.050. (*) reject at 0.10 level,
(**) reject at 0.05 level, (***) reject at 0.01 level.
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1.C Tables

g h Tn x1 x̄1 x2 x̄2 x3 x̄3 P (> Tn) test result

1 1.00 0.15 0.057 0.06 0.29 0.03 0.18 0.07 0.44 0.170 no rejection
2 1.50 0.15 0.033 0.06 0.24 0.05 0.15 0.08 0.39 0.208 no rejection
3 2.00 0.15 0.066 0.06 0.19 0.04 0.13 0.07 0.33 0.042 **
4 2.50 0.15 0.037 0.06 0.16 0.04 0.10 0.13 0.25 0.011 **
5 3.00 0.15 0.009 0.04 0.16 0.07 0.09 0.16 0.16 0.114 no rejection
6 1.00 0.20 0.041 0.06 0.29 0.03 0.18 0.07 0.44 0.038 **
7 1.50 0.20 0.028 0.06 0.24 0.05 0.15 0.08 0.39 0.108 no rejection
8 2.00 0.20 0.048 0.06 0.19 0.04 0.13 0.07 0.33 0.009 ***
9 2.50 0.20 0.029 0.06 0.16 0.04 0.10 0.13 0.25 0.014 **

10 3.00 0.20 0.009 0.04 0.16 0.07 0.09 0.16 0.16 0.101 no rejection
11 1.00 0.25 0.033 0.06 0.29 0.03 0.18 0.07 0.44 0.011 **
12 1.50 0.25 0.025 0.06 0.24 0.05 0.15 0.08 0.39 0.044 **
13 2.00 0.25 0.034 0.06 0.19 0.04 0.13 0.07 0.33 0.012 **
14 2.50 0.25 0.023 0.06 0.16 0.04 0.10 0.13 0.25 0.020 **
15 3.00 0.25 0.008 0.04 0.16 0.07 0.09 0.16 0.16 0.113 no rejection
16 1.00 0.30 0.031 0.06 0.29 0.03 0.18 0.07 0.44 0.010 **
17 1.50 0.30 0.024 0.06 0.24 0.05 0.15 0.08 0.39 0.036 **
18 2.00 0.30 0.031 0.06 0.19 0.04 0.13 0.07 0.33 0.015 **
19 2.50 0.30 0.020 0.06 0.16 0.04 0.10 0.13 0.25 0.023 **
20 3.00 0.30 0.007 0.04 0.16 0.07 0.09 0.16 0.16 0.138 no rejection
21 1.00 0.35 0.030 0.06 0.29 0.03 0.18 0.07 0.44 0.005 ***
22 1.50 0.35 0.024 0.06 0.24 0.05 0.15 0.08 0.39 0.024 **
23 2.00 0.35 0.029 0.06 0.19 0.04 0.13 0.07 0.33 0.017 **
24 2.50 0.35 0.018 0.06 0.16 0.04 0.10 0.13 0.25 0.013 **
25 3.00 0.35 0.007 0.04 0.16 0.07 0.09 0.16 0.16 0.124 no rejection
26 1.00 0.40 0.030 0.06 0.29 0.03 0.18 0.07 0.44 0.008 ***
27 1.50 0.40 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.020 **
28 2.00 0.40 0.029 0.06 0.19 0.04 0.13 0.07 0.33 0.016 **
29 2.50 0.40 0.028 0.04 0.19 0.02 0.13 0.11 0.27 0.005 ***
30 3.00 0.40 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.076 *
31 1.00 0.50 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.001 ***
32 1.50 0.50 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.012 **
33 2.00 0.50 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.012 **
34 2.50 0.50 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.010 **
35 3.00 0.50 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.062 *

Table 1.6: Test results for varying bandwidths and cδ = 0.075. (*) reject at 0.10 level,
(**) reject at 0.05 level, (***) reject at 0.01 level.
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CHAPTER 2

Testing index sufficiency with a predicted index

2.1 Introduction

In many economic models, the outcome variable of interest depends on observed covariates
only through a lower dimensional index. The notion that an index aggregates all
information provided by the covariates is commonly referred to as index sufficiency.
In this paper, I consider a statistical test of index sufficiency. In contrast to previous
research on this topic, I do not assume that the rule that aggregates covariates into the
index is known to the researcher. Instead, I assume that the rule is identified from the
data and that a consistent estimator of the index is available.

My test uses a testing approach due to Delgado and Manteiga 2001 (henceforth cited
as DM). The test statistic is based on the smoothed difference between the observed and
the predicted outcome distribution. Replacing the true index by its estimated counterpart
leads to a random perturbation of the smoother. In a regression setting, a comparable
problem is known as the generated regressors problem. My main result fully accounts for
the estimation error from estimating the index and gives an asymptotic expansion of the
test statistic around its oracle, i.e., around a version of the test statistic in which the
index is estimated without error.

Let X denote a random vector of observed covariates that takes values in Rdx . Let
r0 ∶ Rdx → Rd denote the true index and let Y denote a real outcome variable. Formally,
I want to test the hypothesis

H0 ∶ E[Y ∣X] = E[Y ∣ r0(X)]. (2.1)

So far, the literature has focused primarily on the cases r0(X) =X ′β and r0(X) = v(X ′β)
for an unknown finite-dimensional parameter β and a possibly unknown nonparametric
link function v. This is the classical single-index specification (Ichimura 1993). Model
checks for this specification have been considered in Xia et al. 2004; Stute and Zhu
2005; Chen and Van Keilegom 2009; Escanciano and Song 2010 and Maistre and Patilea
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2 Testing index sufficiency with a predicted index

2014. This paper adds to the literature by placing no restrictions on r0 beyond general
smoothness assumptions. In particular, r0 can be a multi-index, i.e. it is allowed to
map into vectors, and it can be fully nonparametric. I do not assume a specific first-
stage estimator. Instead, I follow the recent literature on nonparametrically generated
regressors (Mammen, Rothe, and Schienle 2012; Escanciano, Jacho-Chávez, and Lewbel
2014; Mammen, Rothe, and Schienle 2015) and provide high-level results that hold for
a large class of estimators that satisfy certain accuracy and complexity assumptions.
In terms of the scope of testable hypotheses, this paper is closest to Chen and Van
Keilegom 2009 who propose an empirical likelihood test for the validity of a general class
of semiparametric multi-index models. In terms of methodology, the present paper is
closer to Xia et al. 2004 and Stute and Zhu 2005 who also use a testing approach based
on empirical processes.

The hypothesis (2.1) is a special case of the significance testing problem considered in
DM. Their testing procedure has very favorable asymptotic properties. In particular, it
can detect local alternatives at a parametric rate, even though the null model is allowed
to belong to a nonparametric class. Moreover, the asymptotic behavior of the test is
independent of the size of X, allowing for a rich class of alternatives. However, for the
problem considered in this paper, the test statistic employed by DM is unfeasible since
the true index r0 is unknown. I assume that an estimator r̂ of r0 is available and consider
a feasible version of the test statistic in DM in which r0 is replaced by r̂.

This change is not innocuous. First, as I demonstrate below, the first-stage estimation
of the index changes the asymptotic behavior of the test statistic. In particular, a rejection
rule based on critical values computed according to the procedure suggested in DM will
typically not control the type-I error of the test. Secondly, for the automatic bias removal
that is built into the test statistic of DM to work well, the density of the estimated index
has to lie in a similar smoothness class as the density of the true index. In various relevant
scenarios such a condition does not hold. To account for this, I suggest an alternative
procedure that estimates the bias and removes it from the test statistic. I show that this
procedure works well under a set of conditions that do not restrict the density of the
estimated index. As an added bonus, this procedure requires weaker assumptions about
the order of the kernel function than the procedure in DM does. A third way in which
using a predicted index affects the test is of a more theoretical nature. The arguments in
DM rely on uniform convergence over a Vapnik-Chervonenkis (henceforth VC) class. This
uniformity can be achieved under minimal assumptions about the smoothing parameter.
All that is required is that the number of local observations approaches infinity. To
account for a predicted index, my uniform convergence arguments have to deal with
classes that are considerably more complex than VC classes. Consequently, my results
impose more stringent assumptions on the smoothing parameter than DM do. However,
for a wide range of testing problems, many bandwidth choices, including bandwidths
that are optimal with respect to the mean integrated squared error (MISE), are still
permissible.

The main building block of the stochastic expansion presented in this paper is a
new lemma for kernel-weighted U -statistics (Lemma 2.5 in the Appendix). This lemma
bounds the maximal deviation of the U -statistic using estimated kernel weights from the
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U -statistic using the true kernel weights. I adopt accuracy and complexity assumptions
about the predicted index that are similar to the assumptions imposed on generated
regressors in Mammen, Rothe, and Schienle 2012. As expected, for U -statistics the
conditions for ignoring higher-order effects of the predicted index are much weaker
than the conditions required for ignoring higher-order effects for the empirical process
considered in Mammen, Rothe, and Schienle 2012. I suspect that this result transcends
my particular application and will prove its usefulness in other semiparametric estimation
and testing problems with predicted quantities.

2.2 Motivating examples

In this section I present examples illustrating the relevance of index restrictions in
empirical economic research.

Example 1. Semiparametric binary choice model. The model by Klein and Spady 1993
models the relationship between a covariate vector X taking values in Rdx and a binary
outcome Y . Their model features a index function v(⋅, θ0) which is known up to the finite
dimensional parameter θ0 and an infinite dimensional link function. The index function
maps onto the real line and subsumes all information about the outcome, i.e.,

E[Y ∣X] = E[Y ∣ v(X,θ0)].

Setting r0(x) = v(x, θ0) this equation is equivalent to hypothesis (2.1). In this example
the index has dimension d = 1. Klein and Spady 1993 suggest a semiparametric likelihood
estimator θ̂ that consistently estimates θ0. Let v̂ denote the function v with the true link
function replaced by the nonparametric estimator suggested in Klein and Spady 1993.
This yields r̂(x) = v̂(x, θ̂) as an obvious plug-in estimator of the unknown index.

Example 2. Instrument validity in a treatment model. Consider a setting with binary
treatment D and latent outcomes Y0 and Y1. Let Y = DY1 + (1 − D)Y0 denote the
observed outcome. Suppose that the econometrician observes a vector of instruments
S taking values in Rds and a vector W of (other) covariates taking values in Rdw . Let
P (s,w) = E[D ∣ S = s,W = w] denote the propensity score. Moreover, suppose that, as in
Vytlacil 2002, U ∼ Uniform[0, 1] denotes an unobservable component that monotonically
affects the selection into treatment and that

(Y0, Y1, U)á S ∣W.

The latter condition imposes instrument validity in the sense that the variation of the
instrument is required to be orthogonal to the variation of the unobservables. Following
Dzemski and Sarnetzki 2014 it can be shown that

E[Y ∣ S,W ] = E[Y ∣ P (S,W ),W ].

This restriction fits into the class of index sufficiency problems considered in this paper.
Set X = (S′,W ′)′ and let x denote a generic realization from X. Defining the index

r0(x) = (P ((x1, . . . , xds)′, (xds+1, . . . , xds+dw)′), xds+1, . . . , xds+dw)
′
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this equation can be rewritten into the format of equation (2.1). In this example the
index has dimension d = 1 + dw and the unrestricted conditioning set has dimension
dx = ds + dw.

2.3 Test statistic

Suppose that the index r0(X) is continuously distributed and denote its density by fr0(X).
Moreover, define the population mean function m(t) = E[Y ∣ r0(X) = t]. DM show that
the hypothesis (2.1) is equivalent to

fr0(X)(r0(X))E[Y −m(r0(X)) ∣X] = 0 almost surely.

With δx(⋅) = 1{⋅≤x} this in turn can be rewritten in terms of unconditional moments as

T (x) = E[fr0(X)(r0(X))(Y −m(r0(X))δx(X)] = 0 for PX -almost all x.

T is an unobserved population quantity and has to be estimated in order to be used in a
test. To this end, suppose that a sample (Yi,Xi)1≤i≤n from (Y,X) is available. There
is also an estimator r̂ of r0 that may be correlated with the observed sample. Since
estimating the index r0 is a prerequisite for computing an estimator of T , r̂ will be
referred to as the first-step estimator. For a multivariate kernel function K ∶ Rd → R and
a bandwidth tupel h = (h1, . . . , hd) let

Kh,ij(r) = h−1
+ K (r(Xi) − r(Xj)

h
)

where h+ = h1⋯hd. Local constant estimators of fr0(X) and m evaluated at r0(Xi) are
given by

f̂r0(X),i =
1

n − 1
∑
j∶j≠i

Kh,ij(r̂) and m̂i = (f̂r0(X),i)
−1 1

n − 1
∑
j∶j≠i

Kh,ij(r̂)Yj .

Carrying over the estimator of T suggested in DM to a setup with a predicted index
yields the estimator

T̂n(x) = Tn(r̂, x) =
1

n
∑
i

f̂r0(X),i(Yi − m̂i)δx(Xi)

= 1

n(n − 1)∑i≠j
Kh,ij(r̂)(Yi − Yj)δx(Xi).

A suitable test statistic measures the distance of T̂n from the zero function and the
corresponding decision rule rejects for large values of the test statistic. This approach
exploits the fact that the population counterpart of T̂n is identical to the zero function
under the null hypothesis. Test statistics suggested by DM are

Cn = ∫ (
√
n T̂n)

2
dPn and Kn = sup

x∈Rdx
∣
√
n T̂n(x)∣ .

These are known as the Cramér-von Mises statistic and the Kolmogorov-Smirnov statistic,
respectively.
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2.4 Main results

The test does not place any parametric restrictions on the data generating process.
Instead, the data generating process is assumed to belong to a smooth class. The first
item of the following set of assumptions details this class. The second and third item
give the assumed properties of the kernel smoother.

Assumption 2.1
i) (Smoothness) The mean function m has (q + 1) bounded derivatives with q ≥ 1.

The true index r0 admits a bounded density fr0(X) with q2 bounded derivatives,
1 ≤ q2 ≤ q.

ii) (Kernel) Let K denote a product kernel, for u ∈ Rd, K(u) = ∏dl=1 k(ul) for a
function k ∶ R→ R. There is a constant L > 0 such that the function k satisfies for
all ul, ul,1, ul,2 ∈ R

∣ul∣ > L⇒ k(ul) = 0 (bounded support)

∣k∣ ≤ L (boundedness)

∣k(ul,1) − k(ul,2)∣ ≤ L ∣ul,1 − ul,2∣ (Lipschitz continuity).

Moreover there is an integer q1 ≥ 1 such that

∫ k(t)dt = 1

∫ k(t)tp dt = 0 for p = 1, . . . , q1.

iii) (Bandwidth) Write the bandwidth tupel as h = (h1, . . . , hd). For each j = 1, . . . , d,
there is a ηj > 0 such that hj ≍ n−ηj . Let η+ = η1 +⋯ + ηd and h+ = h1⋯hd so that
h+ ≍ n−η+.

Item (i) posits that the regression function m behaves locally like a polynomial. In
conjunction with a similar assumption on the density function fr0(X) this implies that
kernel-weighed expectations of the regression function can be well approximated by a
polynomial in the moments of the kernel function. In conjunction with the assumption
of a higher-order kernel in item (ii) this allows for a smoother that takes out lower-order
bias terms. Finally, item (iii) mandates that the bandwidths vanish at a polynomial rate.

The results in this paper do not presume a particular first-stage estimator. Following
Mammen, Rothe, and Schienle 2012 I assume instead that r̂ belongs to a large class of
uniformly consistent estimators. The restrictions placed on this class are summarized by
the following assumption.

Assumption 2.2 (Estimator of index function)
For each j = 1, . . . , d there is a δj > ηj and a sequence of sets R̃n,j such that with probability
approaching one r̂j is contained in the class

Rn,j = {rj ∈ R̃n,j ∶ ∥rj − r0,j∥∞ ≤ n−δj},
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i.e., limn→∞ P (r̂j ∈ Rn,j) = 1. For each j = 1, . . . , d, there are a γj ∈ [0,1) and a ξj > 0
such that Rn,j can be covered by (less than) exp(nξju−γj) u-balls with respect to the
∥⋅∥∞-metric. Let Rn =Rn,1 ×⋯ ×Rn,d.

This assumption imposes two kinds of restrictions on the class that contains r̂. First, it
assumes a uniform rate of consistency. This is a statement about the precision of the
estimator. The condition δj > ηj ensures that the predicted index is locally informative.
When taking local averages it guarantees that, based on the predicted index, the smoother
can correctly identify observations that are close to each other in terms of the true index.
Secondly, the assumption restricts the complexity of the class by imposing an upper
bound on its covering or entropy number. Under this restriction I can derive uniform
expansions, i.e., expansions that are true for all realizations of the predicted index. This
approach allows me to procede without imposing any restrictions on the correlation
structure between the predicted index and the observed sample. As discussed in Mammen,
Rothe, and Schienle 2012 the complexity assumption can be verified for a diverse range
of estimators such as parametric estimators, series estimators or kernel-based estimators.
In Section 2.5, I provide a detailed discussion of how to apply my results when a local
polynomial estimator is used to estimate the index.

To analyze the behavior of T̂n(x) it is convenient to split off the bias term. Define
the observational error ε = Y −m(r0(X)). Under the null hypothesis of index sufficiency
E[ε ∣X] = 0. To separate error and bias term write

T̂n(x) =
1

n(n − 1)∑i≠j
Kh,ij(r̂)(εi − εj)δx(Xi)

+ 1

n(n − 1)∑i≠j
Kh,ij(r̂)[m(r0(Xi)) −m(r0(Xj))]δx(Xi)

=T̂error,n(x) + T̂bias,n(x).

Under relatively weak conditions, the estimation of the index affects the asymptotic
behavior of T̂ only through the bias term. For each x ∈ Rdx let µx ∶ Rd → R be given by
s ↦ P [X ≤ x ∣ r0(X) = s]. Collect these functions in the class M = {µx ∶ x ∈ Rd}. DM
give conditions under which

T̂error,n(x) ≈
1

n
∑
i

fr0(X)(r0(Xi))(δx(Xi) − µx(r0(Xi)))εi.

It turns out that a similar result is true if r0 is replaced by its estimator r̂.

Theorem 2.1 Suppose that there is a s > 2 such that E ∣ε∣s <∞ and

0 < 1

2
[1 − η+] + (δ − η)min − max

1≤`≤d
[δ`γ` + ξ`]

0 < (δ − η)min −
1

2
max
1≤`≤d

[δ`γ` + ξ`]

0 <1 − η+
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and assume that the class M satisfies a uniform Lipschitz condition. Under Assump-
tion 2.1 and Assumption 2.2 we have

sup
x∈Rdx

∣T̂error,n(x) −
1

n
∑
i

fr0(X)(r0(Xi))(δx(Xi) − µx(r0(Xi)))εi∣ = op(n−
1
2 ).

In addition to conditions similar to those imposed by DM, this result requires some
restrictions on the behavior of the estimator r̂. The stringency of these restrictions
depends on the precision of the least precisely estimated component of r̂ and on the
complexity of the most complex component of r̂. Notably, the restrictions do not depend
on the size of the index vector. The restrictions on the first-stage estimator are intertwined
with the choice of the bandwidth h. Choosing larger bandwidths (i.e. smaller η+) admits
a larger class of estimators. This is quite intuitive. For a given first-stage estimator,
choosing larger bandwidths reduces the complexity of the estimated kernel weights and
thus makes it easier to derive an uniform expansion.

Theorem 2.1 considers a U -statistic of order two and gives conditions under which
asymptotic effects of estimating the index are negligible. It is instructive to compare
these with the conditions required in Lemma 1 of Mammen, Rothe, and Schienle 2012
which considers the corresponding problem for an empirical process, i.e., a U -statistic of
order one. They give the condition

1

2
< 1

2
(1 − η+) + (δ − η)min −

1

2
max
1≤`≤d

[δ`γ` + ξ`].

With much to spare, this is always a more stringent assumption than the second condition
in Theorem 2.1. It is more restrictive than the first condition in Theorem 2.1 for classes
that satisfy max1≤`≤d [δ`γ` + ξ`] < 1.

Next, consider the bias term T̂bias,n(x). Using multi-index notation (see Appendix 2.A)
we can Taylor-expand the regression function m and write

m(r0(Xi)) −m(r0(Xj)) ≈ − ∑
1≤∣α∣≤q

1

α!
∂αm(r0(Xi))(r0(Xj) − r0(Xi))

α
.

In order to use this expression in the characterization of the bias term it is convenient to
define Pn(r, x) = ∑1≤∣α∣≤q P

α
n (r, x) with

Pαn (r, x) = 1

n(n − 1)∑i≠j
δx(Xi)Kh,ij(r)

hα

α!
∂αm(r0(Xi))(

r(Xj) − r(Xi)
h

)
α

.

In the setting of DM the bias term T̂bias,n(x) ≈ 0. The following theorem indicates that
this is no longer true if the index is estimated.

Theorem 2.2 Suppose that Assumption 2.1 and Assumption 2.2 hold. For q∗ ≤ q let

∆(r, x) = 1

n(n − 1)∑i≠j
E[δx(Xi)Kh,ij(r0) ∑

1≤∣α∣≤q∗

1

α!
∂αm(r0(Xi)){ (r(Xj) − r(Xi))α

− (r0(Xj) − r0(Xi))α }]
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2 Testing index sufficiency with a predicted index

and Ξ(r, x) = EPn(r, x) . Suppose that

0 < 1

2
(1 − η+) + (δ − η)min + ηmin − max

1≤`≤d
[δ`γ` + ξ`]

0 < (δ − η)min + ηmin −
1

2
max
1≤`≤d

[δ`γ` + ξ`]

1

2
< (δ − η)min + (q∗ + 1)ηmin

1

2
< (δ − η)min + δmin

1

2
< (q + 1)ηmin.

Then

sup
x∈Rdx

∣T̂bias, n(x) −∆(r̂, x) +Ξ(r̂, x)∣ = op(n−
1
2 ).

If one is allowed to choose q∗ = 1 and if a linear representation of the first-stage estimator
is available then it is fairly straightforward to characterize the behavior of ∆(r̂, x). This
is illustrated by the example discussed in Section 2.5. Choosing q∗ > 1 relaxes the
restrictions on the first-stage estimator at the expense of a more involved structure of
∆(r̂, x).

The term Ξ(r̂, x) in Theorem 2.2 is the usual bias term in nonparametric kernel
regression. DM adopt smoothness assumptions under which its lower-order terms are
removed by using the higher-order kernel smoother. Their assumption can be adopted to
the setting with a predicted index.

Assumption 2.3
Suppose that Assumption 2.1 holds with q1 = q2 = q. Moreover, suppose that each r ∈Rn
admits a density fr(X) and suppose that all densities in {fr(X) ∶ r ∈Rn} have q derivatives
that are bounded uniformly over this class.

Under this assumption Ξ(r̂, x) = Op(n−(q+1)ηmin) uniformly in x ∈ Rdx . In addition to
restricting the population density as DM do this assumption also imposes restrictions
on the estimator. The density of an estimator does not typically inherit the smoothness
properties of its population counterpart. In some cases Assumption 2.3 will be violated
even though the population density fr0(X) may be perfectly smooth. For settings in
which the validity of Assumption 2.3 is in doubt I suggest an alternative procedure.
Suppose that an estimator Ξ̂(x) of Ξ(r̂, x) is available and define the bias-corrected term

T̂ corr
bias, n(x) = Tbias, n(x) − Ξ̂(x).

The challenge in constructing such an estimator is that it has to converge at a rate that
is faster than the parametric rate to ensure that

sup
x∈Rdx

∣T̂ corr
bias, n(x) −∆(r̂, x)∣ = op(n−

1
2 ).
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As it turns out, the conditions for such an estimator to exist are not too strong. The
proof of the following result exploits the fact that a higher-order kernel reduces bias
under an oracle version of the test.

Theorem 2.3 Suppose that Assumption 2.1 and Assumption 2.2 hold and suppose that
r0(X) has compact support. There are positive constants θ1, . . . , θq and estimators ∂̂αm
such that

sup
t

∣∂̂αm(t) − ∂αm(t)∣ = Op(n−θ∣α∣)

for all 1 ≤ ∣α∣ ≤ q. Define the estimator Ξ̂ = ∑1≤∣α∣≤q Ξ̂α with

Ξ̂α(x) = 1

n(n − 1)∑i≠j
δx(Xi)Kh,ij(r̂)

hα

α!
∂̂αm(r̂(Xi))(

r̂(Xj) − r̂(Xi)
h

)
α

.

Let κ = min{κ1, . . . , κ7} for

κ1 <
1

2
(1 − η+) + min

1≤s≤q
{θs + sηmin}

κ2 <
1

2
(1 − η+) + δmin + ηmin

κ3 < (q1 ∧ q2 + 1)ηmin + min
1≤s≤q

{θs + sηmin}

κ4 < (q1 ∧ q2 + 1)ηmin + δmin + ηmin

κ5 <
1

2
+ 1

2
(1 − η+) + (δ − η)min + ηmin − max

1≤`≤d
[δ`γ` + ξ`]

κ6 <
1

2
+ (δ − η)min + ηmin −

1

2
max
1≤`≤d

[δ`γ` + ξ`] .

κ7 <
1

2
+ ηmin

Then

sup
x∈Rdx

∣Ξ̂(x) −Ξ(r̂, x)∣ = op(n−κ).

The results presented in this section imply an expansion of T̂n(x) around its oracle
Tn(r0, x). DM show that

Tn(r0, x) ≈
1

n
∑
i

fr0(X)(r0(Xi))(δx(Xi) − µx(r0(Xi)))εi.

Therefore, Theorem 2.1 and Theorem 2.2 give conditions under which

T̂n(x) − Tn(r0, x) ≈ ∆(r̂, x) −Ξ(r̂, x).

If Assumption 2.3 holds or if T̂n is suitably corrected for bias then Ξ(r̂, x) drops out of
the expression in the previous display. Then, ∆(r̂, x) can be interpreted as giving the
deviation of T̂n from its oracle. It summarizes the effect that the first-stage estimation
has on the asymptotic distribution of the test statistic.
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2 Testing index sufficiency with a predicted index

2.5 Application

In this section I consider a concrete example of a first-stage estimator and I apply the
results from the previous section in order to quantify the influence of the first-stage
estimation on the asymptotic distribution. Suppose that the index r0 is identified from
the moment equation

E[Y̆ ∣X] = r0(X),

where Y̆ is an observed outcome variable. Divide X into two subvectors X(1) ∈ Rd
(1)
x

and X(2) ∈ Rd
(2)
x , i.e., dx = d(1)x + d(2)x and X = (X(1),X(2)). Suppose that r0 depends

only on X(1). In a slight abuse of notation, write r0(X) = r0(X(1)). In this section, I
consider local polynomial estimation of r0. For expositional reasons, I discuss the simplest
case possible, where both the covariate X(1) and the index r0(X(1)) have dimension

one, i.e., d = d(1)x = 1. At the expense of a more involved notation, it is straightforward
to adapt the results to cover more convoluted cases. In Appendix 2.D, I discuss the
validity of Assumption 2.2 for general local polynomial estimators without any restrictions
on the dimensionality. In the following, I assume that the first-stage estimator r̂ and
the second-stage estimator T̂n are computed from the same sample. In particular, the
procedure considered here does not require the researcher to split the sample.

Formally, suppose that a sample (Yi, Y̆i,X(1)i ,X
(2)
i )1≤i≤n from (Y, Y̆ ,X(1),X(2)) is

available and let T̂n denote the estimator defined in Section 2.3 computed on this sample.

Let L ∶ Rd
(1)
x → R denote a uni-variate kernel function. Also, let g denote a bandwidth

sequence and suppose that g ≍ n−η
∗
. Write Lg(⋅) = g−1L(⋅/g). The p-th order local

polynomial estimator of r0(x) is given by r̂(x) = b̂0(x) where

(b̂j(x))0≤j≤p ∈ arg minbj ,0≤j≤p∑
i

[Y̆i − ∑
0≤j≤p

bj (X(1)i − x(1))
j
]

2

Lg (X(1)i − x(1))

The following assumption summarizes some regularity assumptions about the distribution
of X.

Assumption 2.4
Suppose that the random variable X(1) takes values in a compact set D ⊂ Rdx(1) and that
its density fX(1) is bounded away from zero on D.

This assumption is fairly strong and chosen mainly to allow for an accessible presentation.
At the expense of additional notational clutter they can be relaxed considerably. In
particular, the assumption that the density fX(1) is bounded away from zero is non-
essential. A key feature of the expansion from Theorem 2.2 is that it depends on a
smoothed version of the first-stage estimator. The region where the density fX(1) is small
and where the local polynomial estimator behaves irregularly is automatically weighed
down. The down-weighing is by a locally smoothed version of the density rather than
the density itself and can therefore not offset irregular behavior completely. However,
the set-up allows for densities that approach zero as the sample size increases. As is
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2.5 Application

apparent from the proof of Theorem 2.4 the density is allowed to approach zero at a rate
n−τ , 0 < τ < η∗. This can be exploited by introducing an explicit trimming sequence that
trims out observations in the region where the density takes small values.

The following result describes the behavior of T̂n when the first-stage estimator is
chosen to be a local linear estimator, i.e., when the order of the local polynomial is p = 1.
I assume that the bandwidth sequences g and h vanish at MISE-optimal rates. It is
straightforward to extend this result to allow for a higher-order polynomial, bandwidths
that are not MISE-optimal or even to allow for higher-dimensional indices (d > 1) or
indices that aggregate higher dimensional covariates (dx(1) > 1). An advantage of using
MSE-optimal rates is that these are the rates targeted by data driven bandwidth selection
procedures (Jones, Marron, and Sheather 1996; Härdle and Marron 1985). Therefore, it
is possible to implement a test that satisfies the assumptions of the theorem.

Theorem 2.4 Suppose that Assumption 2.1 holds with d = dx = 1 and q = 2, and assume
that the class M satisfies a uniform Lipschitz condition. Moreover, Assumption 2.4 holds
and the first-stage kernel L has bounded support and one Lipschitz continuous derivative.
The bandwidth sequences h and g are chosen to be MISE-optimal. Let ζ = E[Y̆ −r0(X) ∣X]
and suppose that E ∣ζ ∣2 <∞ and E ∣ε∣s <∞ for a s > 0. If the first stage estimator fits a
local polynomial of order p = 1 (local linear estimator) then,

sup
x∈Rdx

∣T̂n(x) −Ξ(r̂, x) − {T̃n(x) + B̃n(x)}∣ = op(n−
1
2 ),

where

T̃n(x) =
1

n
∑
i

fr0(X)(r0(Xi)){δx(X) − µx(r0(X))}[εi − ∂m(r0(Xi))ζi],

B̃n(x) = −E[fr0(X)(r0(X)){δx(X) − µx(r0(X))}∂m(r0(X))B∗
n(X)],

and B∗
n is a bias term defined in Appendix 2.D.

T̃n(x) given above is reminiscent of the quantity Ũn defined in DM. Following their
arguments, it can be shown that T̃n converges weakly to a zero-mean Gaussian process
indexed by x ∈ Rdx with covariance kernel

Σx,x′ = E[f2
r0(X)

(r0(X))[δx(X) − µx(r0(X))][δx′(X) − µx′(r0(X))]

{σ2
ε (X) − 2∂m(r0(X))σε,ζ(X) + [∂m(r0(X))]2σ2

ζ(X)}],

where σ2
ε (x) = E[ε2 ∣X = x], σ2

ζ(x) = E[ζ2 ∣X = x] and σε,ζ(x) = E[εζ ∣X = x].
Since T̃n is unobserved, it can not serve as a basis to conduct inference. However, it

is possible to construct a muliplier-type bootstrap version of T̃n. Sample independently
of (Yi, Y̆i,Xi)1≤i≤n from a random variable V with EV = 0 and EV 2 = 1. Denote this
sample by (Vi)1≤i≤n. The bootstrap version of T̃n is given by

T̃ ∗n (x) =
1

n
∑
i

f̂r0(X)(r̂(Xi))(δx(Xi) − µ̂x(r̂(Xi)))[ε̂i − ̂∂m(r0(Xi))ζ̂i]Vi,

where f̂r0(X), µ̂x and ̂∂m(r0(Xi)) are appropriate estimators and ε̂i and ζ̂i are the
empirical residuals.
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2 Testing index sufficiency with a predicted index

2.6 Conclusion

Section 2.5 illustrates how the high-level results in Section 2.4 can be used to construct a
test for a concrete testing problem. Similarly, one can construct tests for other models
that impose index sufficiency. Some motivating examples are presented above. In addition,
Chen and Van Keilegom 2009 and Maistre and Patilea 2014 discuss several such models
that figure prominently in the econometric literature.

For ease of exposition, I have focused on real-valued outcomes. The apporach described
in this paper can be extended to also cover outcome variables that are vectors.

This paper focuses on index-sufficiency in the mean. As discussed in Maistre and
Patilea 2014, the researcher might be interested in testing the stronger statement of
index-sufficiency in the conditional law, i.e.,

H ′
0 ∶ Y áX ∣ r0(X).

This is equivalent to a problem of testing infinitely many mean restrictions

H ′′
0 ∶ E[1{Y ≤y} ∣X] = E[1{Y ≤y} ∣ r0(X)] for all y ∈ R.

Upon cursory inspection it seems that it is relatively straightforward to extend the
results from Section 2.4 to hold uniformly over a class of outcomes indexed by a VC-
class. Therefore, it may be possible to employ an extension of my approach to test for
index-sufficiency in the conditional law. To my knowledge, properties of such a test are
currently unknown and further research is needed.

Appendix 2.A Notation

For p > 0 and a measure µ let ∥⋅∥µ,p denote the Lp norm with respect to µ, i.e., for all
µ-measurable functions f we take ∥f∥µ,p = ∫ ∣f ∣p dµ. Take ∥⋅∥µ = ∥⋅∥µ,2. If argument
θ and the domain Θ of a function f are obvious, the supremum norm supθ∈Θ ∣f(θ)∣ is
denoted by ∥f∥∞. P always denotes the population probability measure and E denotes
the corresponding expectation. For a random variable Z, PZ denotes the measure that
“integrates Z out”, i.e., that integrates with respect to the marginal distribution of Z. Pn
denotes the empirical measure. Un denotes the empirical U-statistic of order 2, i.e., the
measure that assigns mass n(n− 1) to each ordered pair of observations. The covering or
entropy number of a class G for a cover consisting of u-balls in the ∥⋅∥-norm is denoted
N (u,G, ∥⋅∥). To write out multivariate Taylor expansions, I use multi-index notation.
For a multi-index α ∈ Nd0, x ∈ Rd and appropriately differentiable f ∶ Rd → R let

α! = α1!⋯αd! ∣α∣ = α1 +⋯ + αd
∂αf = ∂α1

1 f⋯∂αdd f xα = xα1
1 ⋯xαdd .

For vectors v, v1, v2 ∈ Rd let Diag(v) denote the d × d diagonal matrix with the vector
v on the diagonal and let v1/v2 = [Diag(v2)]−1v1. Moreover, let vmin = min1≤i≤d vi. For
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2.B Proofs of main theorems

a bandwidth vector h ∈ Rd++ let h+ = ∏dj=1 hj . For a kernel K, bandwidth vector h and
observations i and j kernel weights are defined by

Kh,ij(r) = h−1
+ K (r(Xi) − r(Xj)

h
) .

Appendix 2.B Proofs of main theorems

Proof of Theorem 2.1 The proof starts out from the following decomposition

sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
δx(Xi)Kh,ij(r̂)(εi − εj)

− 1

n
∑
i

fr0(X)(r0(Xi))(δx(Xi) − µx(r0(Xi)))εi∣

= sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
δx(Xi)(Kh,ij(r̂) −Kh,ij(r0))εi∣

+ sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
δx(Xi)(Kh,ij(r̂) −Kh,ij(r0))εj ∣

+ sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
δx(Xi)Kh,ij(r0)εi −

1

n
∑
i

fr0(X)(r0(Xi))δx(Xi)εi∣

+ sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
δx(Xi)Kh,ij(r0)εj −

1

n
∑
i

fr0(X)(r0(Xi))µx(r0(Xi))εi∣

=A1 +A2 +A3 +A4.

The goal is to prove that A1, . . . ,A4 are all contained in the op(n−
1
2 )-class. By Lemma 2.5

and Lemma 2.2

A1 =
1

n
∑
i

EXj [Kh,ij(r̂) −Kh,ij(r0)] δx(Xi)εi + op(n−
1
2 ) = op(n−

1
2 ).

Similarly, one can show that A2 = op(n−
1
2 ). The arguments for A3 and A4 are similar.

Here, I present only the proof for A4 as it requires slightly more convoluted arguments
than the corresponding proof for A3. By Lemma 2.6

A4 =
1

n
∑
i

(EXj [Kh,ij(r0)δx(Xj)] − fr0(X)(r0(Xi))δx(Xi)) εi + op(n−
1
2 ).

Let

Ga,i(x) = EX[h−1
+ K (r0(X) − r0(Xi)

h
) δx(X)]εi

Gb,i(x) = fr0(X)(r0(Xi))µx(r0(Xi))εi.
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Show that

sup
x∈Rdx

∣ 1

n
∑
i

(Ga,i(x) −Gb,i(x))∣ = op(n−
1
2 ).

Let G = {Ga,i(x) −Gb,i(x) ∶ x ∈ Rdx} and let An = {∥εi∥Pn,s ≤ CA} with CA large enough

that PAn → 1. There is a constant C̃ such that on An

logN (u,G, ∥⋅∥Pn) ≤ C̃Hn(u)
for

Hn(u) = (logn) + log(u−1 ∨ 1)
and all u > 0. Work conditional on An. Construct a u-cover of G in the following way.
Take ũ = (C∗)−1h+(u/2). The class {δx ∶ x ∈ Rdx} is VC (Pollard 1984, p. 18) and so is
µx(r0(Xi)) = E[δx(Xi) ∣ r0(Xi)] by Lemma 2.6.18 (vii) in van der Vaart and Wellner
1996. Let Q = 2s

s−2 . Take C1,n ⊂ Rdx to be a minimal set such that {δx ∶ x ∈ C1,n} covers

{δx ∶ x ∈ Rdx} with respect to the ∥⋅∥P,Q-norm. Similarly, take C2,n ⊂ Rdx to be a minimal

set such that {µx ∶ x ∈ C1,n} covers {µx ∶ x ∈ Rdx} with respect to the ∥⋅∥Pn,Q-norm. By
the VC property of the two classes there exist constants A and V such that C1,n and C2,n

can be chosen to contain less than Aũ−V elements each (Theorem 2.6.4 in van der Vaart
and Wellner 1996). By construction

Cn = {Ga,i(x) −Ga,i(x′) ∶ x ∈ C1,n, x
′ ∈ C2,n}.

is a cover of G and can be chosen such that log #Cn ≤ C̃ Hn(u) for a constant C̃ that is
independent of u. Next, I show that if C∗ is chosen large enough, then Cn will be a u-cover
of G with respect to the ∥⋅∥Pn-norm. Fix any x1 ∈ Rdx and take (x2, x

′
2) ∈ C1,n × C2,n

to be a nearest grid-point, i.e., ∥δx1 − δx2∥P,Q ≤ ũ and ∥µx1 − µx′2∥Pn,Q ≤ ũ. By Jensen’s

inequality

∣EX[h−1
+ K (r0(X) − r0(Xi)

h
)(δx1(X) − δx2(X))]∣

Q

≤C h−Q+ EX ∣δx1(X) − δx2(X)∣Q .
Therefore, by Hölder’s inequality

∥Ga,i(x1) −Ga,i(x2)∥Pn ≤C h
−1
+ (EX ∣δx1(X) − δx2(X)∣Q)

1
Q ( 1

n
∑
i

∣εi∣s)
1
s

.

≤C∗ h−1
+ ∥δx1 − δx2∥P,Q ≤ u

2
.

Moreover,

∥Gb,i(x1) −Gb,i(x′2)∥Pn

≤C h−1
+ ( 1

n
∑
i

∣fr0(X)(r0(Xi))(µx1(r0(Xi)) − µx′2(r0(Xi)))∣
Q
)

1
Q

( 1

n
∑
i

∣εi∣s)
1
s

≤C∗ h−1
+ ∥µx1 − µx′2∥Pn,Q ≤ u

2
.
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Collecting the results from above and applying the triangle inequality gives

∥Ga,i(x1) −Gb,i(x1) − (Ga,i(x2) −Gb,i(x′2))∥Pn ≤ u

and thus confirms that Cn is indeed a u-cover with respect to the ∥⋅∥Pn-norm. Since
fr0(X) is bounded and Lipschitz and µx is bounded and uniformly Lipschitz, the product
µx ⋅ fr0(X) is also uniformly Lipschitz. Therefore,

∣EX[h−1
+ K (r0(X) − r0(Xi)

h
) δx(X) − f0(Xi)µx(r0(Xi))]∣

= ∣∫ K(t)((µx ⋅ fr0(X))(r0(Xi) + ht) − (µx ⋅ fr0(X))(r0(Xi)))dt∣ ≤ C h

for a constant C that is independent of x and Xi. This insight can be used to bound the
empirical diameter

d̂iamn = sup
x∈Rdx

∥Ga,i(x) −Gb,i(x)∥Pn ≤ C h( 1

n
∑
i

∣εi∣2)
1
2

≤ C h.

Note that

∫
d̂iamn

0

√
log(u−1 ∧ 1)du ≤∫

d̂iamn∧1

0

√
log(u−1)du

≤∫
d̂iamn∧1

0
1 + log(u−1)du

≤(d̂iamn ∧ 1) + (d̂iamn ∧ 1)2 ≤ 2(d̂iamn ∧ 1) logn,

where the third inequality is due to ∫ x0 log(u−1)du = x[x + log(x−1)] ≤ x2 for 0 ≤ x ≤ 1.
Therefore, for large M̃ , the entropy integral can be bounded by

∫
d̂iamn

0

√
logN (u,G, ∥⋅∥Pn) ≤ C̃ ∫

d̂iamn

0

√
Hn(u) ≤3C̃ d̂iamn

√
logn ≤ M̃h logn.

Lemma 5.1 in van de Geer 2000 in conjunction with Corollary 3.4 from the same book
gives the exponential inequality

P (An ∧ sup
x∈Rdx

1

n
∣∑
i

(Ga,i(x) −Gb,i(x))∣ ≥ M̃ n−
1
2h logn) ≤ C exp

⎡⎢⎢⎢⎢⎣
−M̃

2(h logn)2

64C2d̂iam
2
n

⎤⎥⎥⎥⎥⎦
.

The conclusion follows by noting that the right-hand side of the exponential inequality
vanishes. ◻

Proof of Theorem 2.2 For K∗ given in Lemma 2.1 let

Gα0,ij(r, x) = δx(Xi)Kh,ij(r)
hα

α!
∂αm(r0(Xj))1{K∗

h,ij
>0} (

r0(Xi) − r0(Xj)
h

)
α
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and Pα0,n(r, x) = 1
n(n−1) ∑i≠j G

α
0,ij(r, x). Note that due to ∣Kh,ij(r)∣ ≤K∗

h,ij(r0) for r ∈Rn
the indicator function in this definition can be dropped without changing the expression.
For a function r̃ that maps pairs (x1, x2) onto a vector of points on the line segment
connecting r0(x1) and r0(x2) let

G̃α0,ij(r, x) = δx(Xi)Kh,ij(r)
1

(q + 1)!h
α∂αm(r̃(Xi,Xj))1{K∗

h,ij
>0} (

r0(Xi) − r0(Xj)
h

)
α

.

The intermediate value function r̃ can be chosen such that

1

n(n − 1)∑i≠j
δx(Xi)Kh,ij(r̂)[m(r0(Xi)) −m(r0(Xj))]

= 1

n(n − 1)∑i≠j
( ∑

1≤∣α∣≤q

Gα0,ij(r, x) + ∑
∣α∣=q+1

G̃α0,ij(r, x)) = ∑
1≤∣α∣≤q

Pα0,n(r, x) +Rn(r, x).

Below, it is shown that supr∈Rn,x∈Rdx ∣Rn(r, x)∣ = op(n−
1
2 ). The remainder of the proof is

based on the following stochastic decomposition

Pα0,n(r̂, x) ={Pα0,n(r̂, x) − Pα0,n(r0, x) −E[Pα0,n(r̂, x) − Pα0,n(r0, x)]}
+ {Pα0,n(r0, x) −EPα0,n(r0, x)} +EPα0,n(r̂, x)

=A1 +A2 +EPα0,n(r̂, x).

In the sequel I show that the terms A1 and A2 vanish at the parametric rate. The
expansion given in the theorem follows then from an expansion of EPα0,n(r̂, x). To
characterize the behavior of A1 define

dα0,ij(r, x) = nηmin(Gα0,ij(r, x) −Gα0,ij(r0, x)).

Applying Lemma 2.5 with

fn(Wi,Wj) =
n−ηminhα

α!
∂αm(r0(Xi))1{K∗

h,ij
>0} (

r0(Xj) − r0(Xi)
h

)
α

yields

sup
r∈Rn,x∈Rdx

∣ 1

n(n − 1)∑i≠j
(dα0,ij(r, x)−EWid

α
0,ij(r, x)

−EWjd
α
0,ij(r, x) +E dα0,ij(r, x))∣ = op(n−λ1)

for all

λ1 <
1

2
+ 1

2
(1 − η+) + (δ − η)min − max

1≤k≤d
[δkγk + ξk] .

By Lemma 2.2

sup
r∈Rn,x∈Rdx

∣ 1

n(n − 1)∑i≠j
(EWid

α
0,ij(r, x) −E dα0,ij(r, x))∣ = op(n−λ2)

sup
r∈Rn,x∈Rdx

∣ 1

n(n − 1)∑i≠j
(EWjd

α
0,ij(r, x) −E dα0,ij(r, x))∣ = op(n−λ2)
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2.B Proofs of main theorems

for all

λ2 <
1

2
+ (δ − η)min −

1

2
max
1≤k≤d

[δkγk + ξk] .

Collecting these results and noting that

Pα0,n(r̂, x) − Pα0,n(r0, x) =n−ηmin
1

n(n − 1)∑i≠j
dα0,ij(r̂, x)

gives

sup
x∈Rdx

∣A1∣ = op (n−(λ1+ηmin) + n−(λ1+ηmin)) = op(n−
1
2 ).

Repeating similar arguments for ∣α∣ = q + 1 and

d̃α0,ij(r, x) = n(q+1)ηmin(G̃α0,ij(r, x) − G̃α0,ij(r0, x))

gives

sup
r∈Rn,x∈Rdx

∣ 1

n(n − 1)∑i≠j
G̃α0,ij(r, x) −E G̃α0,ij(r, x)∣ = op(n−

1
2 ).

There is a universal constant C > 0 such that ∣E G̃α0,ij(r, x)∣ ≤ C n−(q+1)ηmin and hence

sup
r∈Rn,x∈Rdx

∣Rn(r, x)∣ = sup
r∈Rn,x∈Rdx

∣ 1

n(n − 1)∑i≠j
∑
∣α∣=q+1

G̃α0,ij(r, x)∣ = op(n−
1
2 ).

By Lemma 2.7

sup
x∈Rdx

∣A2∣ = op(n−
1
2
−ηmin) = op(n−

1
2 ).

Expanding EPα0,n(x, r̂) gives

EPα0,n(r̂, x)
=EPαn (r̂, x) −∆(r̂, x)

−E[δx(Xi)Kh,ij(r0) ∑
q∗+1≤∣α∣≤q

hα

α!
∂αm(r0(Xi)){( r̂(Xj) − r̂(Xi)

h
)
α

− (r0(Xj) − r0(Xi)
h

)
α

}]

−E[δx(Xi)(Kh,ij(r̂) −Kh,ij(r0))

∑
1≤∣α∣≤q

hα

α!
∂αm(r0(Xj)){( r̂(Xj) − r̂(Xi)

h
)
α

− (r0(Xj) − r0(Xi)
h

)
α

}]

=EPαn (r̂, x) −∆(r̂, x) +A3a +A3b.
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Since r̂ ∈Rn we have

sup
x∈Rdx

∣A3a∣ = op(n−((δ−η)min+(q
∗+1)ηmin)) = op(n−

1
2 ).

By Lemma 2.1 there is an integrable K∗ such that

∣Kh,ij(r̂) −Kh,ij(r0)∣ ≤K∗
h,ij(r0)n−(δ−η)min .

Hence

sup
x∈Rdx

∣A3b∣ = op(n−(δmin+(δ−η)min)) = op(n−
1
2 ). ◻

Proof of Theorem 2.3 Let D = {x ∈ Rdx ∶ ∥r0(x) − supp(r0(X))∥ ≤ 1} and let

K̃α
h,ij(r) =Kh,ij(r)(

r(Xj) − r(Xi)
h

)
α

.

Let Dα
n(x) = ∂̂αm(r̂(x))−∂αm(r0(x)). Under the assumptions of the theorem, this term

can be bounded uniformly. By Lipschitz continuity of all derivatives of m up to qth order

sup
x∈D

∣Dα
n(x)∣ ≤∣∂̂αm(r̂(x)) − ∂αm(r̂(x))∣ + ∣∂αm(r̂(x)) − ∂αm(r0(x))∣

≤ sup
t

∣∂̂αm(t) − ∂αm(t)∣ +C max
j=1,...,d

sup
x∈D

∣r̂j(x) − r0,j(x)∣

≤Op(n−θ∣α∣ + n−δmin).

The proof is based on the following stochastic decomposition of the estimator

P̂αn (x) =h
α

α!

1

n(n − 1)∑i≠j
{δx(Xi)Dα

n(x)K̃α
h,ij(r0)}

+ h
α

α!

1

n(n − 1)∑i≠j
{δx(Xi)Dα

n(x)(K̃α
h,ij(r̂) − K̃α

h,ij(r0))}

+ (Pαn (x, r0) −EPαn (x, r0))
+ (Pαn (x, r̂) − Pαn (x, r0) +EPαn (x, r0)) = I1 + I2 + I3 + I4.

The strategy of the proof is to show that the terms I1 through I3 vanish at the desired
rate. Finally, it is shown that I4 yields the desired limit. By standard arguments

sup
x∈D

h−1
+ ∣ 1

n
∑
j

K (r0(x) − r0(Xj)
h

)(r0(Xj) − r0(x)
h

)
α

−EK (r0(x) − r0(Xj)
h

)(r0(Xj) − r0(x)
h

)
α

∣ = Op
⎛
⎝

√
logn

nh+

⎞
⎠
.
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2.B Proofs of main theorems

Moreover, for an appropriate intermediate value function ỹ

E K (r0(x) − r0(Xj)
h

)(r0(Xj) − r0(x)
h

)
α

=∫ h−1
+ K (r0(x) − y

h
)(y − r0(x)

h
)
α

fr0(X)(y)dy

=(−1)α∫ {K(y)yα(fr0(X)(r0(x)) + ∑
1≤∣β∣≤q1∧q2

∂βfr0(X)(r0(x))(−hy)β)}dy

+ (−1)α∫ K(y)yα ∑
∣β∣=q1∧q2+1

∂βfr0(X)(ỹ(x, y))(−hy)
β dy.

The first term on the right-hand side is zero and the second term on the right-hand side
can be bounded by C n−(q1∧q2+1)ηmin , where the choice of the constant C does not depend
on x. Therefore,

sup
x∈D

h−1
+ ∣ 1

n
∑
j

K (r0(x) − r0(Xj)
h

)(r0(Xj) − r0(x)
h

)
α

∣

= Op
⎛
⎝

√
logn

nh+
+ n−(q1∧q2+1)ηmin

⎞
⎠
.

Collecting the results so far gives

I1 =hα
1

n
∑
i

(δx(Xi)Dα
n(x)

1

n − 1
∑
j∶j≠i

K̃α
h,ij(r0))

=n−∣α∣ηminOp
⎛
⎝
(n−θ∣α∣ + n−δmin)(

√
logn

nh+
+ n−(q1∧q2+1)ηmin)

⎞
⎠
= op(n−κ).

Using Lemma 2.1 to bound the summands in I2 gives

I2 ≤ C n−∣α∣ηmin−(δ−η)minOp(n−θ∣α∣ + n−δmin) = op(n−κ).

By Lemma 2.7

I3 = op(n−κ7).

To tackle the I4 term let

∆α
ij(r, x) = nηmin

hα

α!
∂αm(r0(Xi))(K̃α

h,ij(r) − K̃α
h,ij(r0)).

Lemma 2.5 implies

sup
r∈Rn,x∈Rdx

∣∑
i≠j

1

n(n − 1)(∆α
ij(r, x) −EWi∆

α
ij(r, x)

−EWj∆
α
ij(r, x) +E∆α

ij(r, x))∣ = op(n−(κ5−ηmin)).
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Now, Lemma 2.2 gives

sup
r∈Rn,x∈Rdx

∣ 1

n(n − 1)∑i≠j
(EWi∆

α
ij(r, x) −E∆α

ij(r, x))∣ = op(n−(κ6−ηmin))

sup
r∈Rn,x∈Rdx

∣ 1

n(n − 1)∑i≠j
(EWj∆

α
ij(r, x) −E∆α

ij(r, x))∣ = op(n−(κ6−ηmin)).

Since we can write Pαn (x, r̂) − Pαn (x, r0) = n−ηmin 1
n(n−1) ∑i≠j ∆α

ij(x, r̂) this implies

sup
x∈Rdx

∣Pαn (x, r̂) − Pαn (x, r0) − (EPαn (x, r̂) −EPαn (x, r0))∣

= op(n−κ5 + n−κ6) = op(n−κ).

Plugging I4 into this equation yields

sup
x∈Rdx

∣I4 −EPαn (x, r̂)∣ = op(n−κ)

and hence the conclusion. ◻

Proof of Theorem 2.4 Appendix 2.D gives a uniform expansion of the local polyno-
mial estimator.

r̂(x(1)) =r0(x(1)) + e′1[ESn(x(1))]−1 1

n
∑
i

εi Γ
⎛
⎝
X
(1)
i − x(1)

g

⎞
⎠
Lg(X(1)i − x(1))

+ e′1B∗
n(x(1)) + R̃n(x(1))

=r̃n(x(1)) + R̃n(x(1))

with

sup
x(1)∈D

∣R̃n(x(1))∣ = Op
⎛
⎝

logn

ng+
+ n−(p+1)η∗min

√
logn

ng+

⎞
⎠

First, I show that we can take r̂ = r̃ at the expense of a op(n−
1
2 )-term.

RRRRRRRRRRR

1

n(n − 1)∑i≠j
δx(Xi)h−1

+ [K ( r̂(Xi) − r̂(Xj)
h

) −K ( r̃(Xi) − r̃(Xj)
h

)] εi
RRRRRRRRRRR

≤C
d

∑
k=1

∥R̃k,n∥∞
hk

⎧⎪⎪⎨⎪⎪⎩

1

n(n − 1)∑i≠j
h−1
+ K

∗ (r0(Xi) − r0(Xj)
h

) ∣εi∣
⎫⎪⎪⎬⎪⎪⎭

≤C (logn)n−
1
2 min
k=1,...,d

(n−(
1
2
−d
(1)
x,k
η∗k−ηk) + n−((p+1)η∗k−

1
2
d
(1)
x,k
η∗k−ηk))Op (n−

1
2
(1−η+) + 1)

=op(n−
1
2 ).
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For the other terms in T̂n argue similarly. The approach for the rest of the proof is
to apply Theorem 2.1 and Theorem 2.2 with r̃ replacing r̂ and q∗ = 1. According to
Appendix 2.D we can take

η = η∗ = 1

5
, δ = 2

5
, γ = 1

2
and ξ > 0

when checking the assumptions of Theorem 2.1 and Theorem 2.2. It is straightforward
to verify that all restrictions are met. Therefore, uniformly in x

T̂error,n(x) =
1

n
∑
i

fr0(X)(r0(Xi))(δx(Xi) − µx(r0(Xi)))εi + op(n−
1
2 ).

Tbias, n(x) = −∆(r̃, x) +Ξ(r̃, x) + op(n−
1
2 ).

Next, I characterize ∆(r̃, x). The goal is to show that

sup
x∈Rdx

∣∆(r̃, x) − ∆̃(x)∣ = op(n−
1
2 ).

where

∆̃(x) = − 1

n
∑
i

ζi[δx(Xi) − µx(r0(Xi))]∂m(r0(Xi))fr0(X)(r0(Xi)).

Split r̃ into a bias and an error part. Start with the bias part

E [δx(Xi)Kh,ij(r0)∂m(r0(Xi)){B∗
n(X

(1)
j ) −B∗

n(X
(1)
i )}].

Note that

EXh
−1
+ K (r0(Xi) − r0(X)

h
) =fr0(X)(r0(Xi)) +O(∥h∥)

and uniformly in x

EXµx(r0(X))h−1
+ K (r0(X) − r0(Xj)

h
)∂m(r0(X))

= µx(r0(Xj))∂m(r0(Xj))fr0(X)(r0(Xj)) +O(∥h∥)

Therefore, uniformly in x

E [δx(Xi)Kh,ij(r0)∂m(r0(Xi))B∗
n(X

(1)
i )]

=E [δx(Xi)∂m(r0(Xi))fr0(X)(r0(Xi))B∗
n(X

(1)
i )] +O (n−(p+1)η∗−η) and

E [δx(Xi)Kh,ij(r0)∂m(r0(Xi))B∗
n(X

(1)
j )]

=E [µx(Xj)∂m(r0(Xj))fr0(X)(r0(Xj))B∗
n(X

(1)
j )] +O (n−(p+1)η∗−η) .
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Hence, uniformly in x

E [δx(Xi)Kh,ij(r0)∂m(r0(Xi)){B∗
n(X

(1)
i ) −B∗

n(X
(1)
j )}]

=E [{δx(Xi) − µx(Xi)}Kh,ij(r0)∂m(r0(Xi))B∗
n(X

(1)
i )] + o(n−

1
2 ).

Next, let

ϕn(x(1)) =
1

n
∑
i

ζi Γ
⎛
⎝
X
(1)
i − x(1)

g

⎞
⎠
Lg(X(1)i − x(1)).

and turn to the error part

E [δx(Xi)Kh,ij(r0)∂m(r0(Xi))e′1{[ESn(X(1)j )]−1ϕn(X(1)j ) − [ESn(X(1)i )]−1ϕn(X(1)i )}].

Let ν1(u) = E[Kh,ij(r0) ∣ r0(Xi) = u]. Uniformly in u

ν1(u) = fr0(X)(u) +O( ∥h∥ ).

For vectors u and g of the same dimension write ug = (Diag g)u and let

M = ∫ Γ(u)Γ′(u)L(u)du.

Note that

sup

v∈Rd
(1)
x

∣ESn(v − ug)f−1
X(1)(v − ug) −M∣

= sup

v∈Rd
(1)
x

∣∫ Γ(t)Γ′(t)L(t){fX(1)(v − ug + tg)
fX(1)(v − ug)

− 1} dt∣ = O(∥g∥)

Therefore, uniformly in v ∈ D

∫ δx(u)ν1(r0(u))∂m(r0(u))e′1[ESn(u)f−1
X(1)(u)]

−1
Γ(v − u

g
) g−1

+ L(v − u
g

) du

=∫ δx(v − ug)ν1(r0(v − ug))∂m(r0(v − ug))

e′1[ESn(v − ug)f−1
X(1)(v − ug)]

−1
Γ (u)L (u) du

=∫ δx(v − ug){fr0(X)(r0(v)) +O(∥g∥) +O(∥h∥)}{∂m(r0(v)) +O(∥g∥)}

{e′1M−1 +O(∥g∥)}Γ(u)L(u)du
= δx(v)fr0(X)(r0(v))∂m(r0(v))+

fr0(X)(r0(v))∂m(r0(v))∫ (δx(v − ug) − δx(v))e′1M−1Γ(u)L(u)du

+O(∥g∥ + ∥h∥)
= δx(v)fr0(X)(r0(v))∂m(r0(v)) +O(∥g∥ + ∥h∥).
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Hence, arguing similarly to the proof of Theorem 2.1 gives

sup
x∈Rdx

∣E{δx(Xi)Kh,ij(r0)∂m(r0(Xi))e′1[ESn(Xi)]
−1
ϕn(Xi)}

− 1

n
∑
i

ζi[δx(Xi)∂m(r0(Xi))fr0(X)(r0(Xi))]∣ = op(n−
1
2 ).

Let ν2(Xj) = EXi[Kh,ij(r0)δx(Xi)∂m(r0(Xi))]. Uniformly in u

ν2(u) = µx(r0(u))∂m(r0(u))fr0(X)(r0(u)) +O(∥h∥).

Uniformly in v

∫ ν2(u)e′1[ESn(u)f−1
X(1)(u)]

−1
Γ(v − u

g
) g−1

+ L(v − u
g

) du

=∫ ν2(v − ug)e′1[ESn(v − ug)f−1
X(1)(v − ug)]

−1
Γ(u)L(u)du +O(∥h∥)

=ν2(v)e′1M−1∫ Γ(u)L(u)du +O(∥g∥ + ∥h∥)

=µx(r0(v))∂m(r0(v))fr0(X)(r0(v)) +O(∥g∥ + ∥h∥).

Therefore,

sup
x∈Rdx

∣E{δx(Xi)Kh,ij(r0)∂m(r0(Xi))e′1[ESn(X(1)j )]−1
ϕn(X(1)j )}

− 1

n
∑
i

ζi[µx(r0(v))∂m(r0(v))fr0(X)(r0(v))]∣ = op(n−
1
2 ). ◻

Appendix 2.C Lemmas

The following lemma is a variation of an argument in B. Hansen 2008.

Lemma 2.1 Let u1 ∈ Rd and u2 ∈ Rd lie in an ε-ball around u0 ∈ Rd. Under Assump-
tion 2.1 (ii)

∣K(u1) −K(u2)∣ ≤K∗(u0) ∥u1 − u2∥

for a function K∗ depending only only on K and ε. K∗ can be chosen such that it is
positive, bounded, has bounded support, is Lipschitz continuous and satisfies ∣K ∣ ≤ K∗,
∣K(u1)∣ ≤ K∗(u0), ∣K(u2)∣ ≤ K∗(u0). Moreover, for α ∈ Nd0 there is a constant Cα
depending only on K, α and ε such that

∣K(u1)uα1 −K(u2)uα2 ∣ ≤ CαK∗(u0) ∥u1 − u2∥ .
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Proof There is a constant L̃ such that

∣K(u1) −K(u2)∣ ≤ L̃ ∥u1 − u2∥ .

∣K(u1) −K(u2)∣ ≤ ∣K(u1)∣ + ∣K(u2)∣

≤ Ld(1{∥u1∥≤L} + 1{∥u2∥≤L})

≤ (2Ld + L̃)1{∥u0∥≤L+ε}
def= K∗∗(u0).

K∗∗ satisfies all the properties required of K∗ with the exception of Lipschitz continuity.
Choose K∗ to be an appropriate Lipschitz continuous majorant of K∗∗. For the second
claim write

∣K(u1)uα1 −K(u2)uα2 ∣ ≤ ∣(K(u1) −K(u2))uα1 ∣ + ∣K(u2)(uα1 − uα2 )∣ = I1 + I2.

Since K∗ has bounded support and since u1 and u2 are close to u0, there is a constant C
such that

I1 ≤ CK∗(u0) ∥u1 − u2∥ .
For I2, note that u1 and u2 are bounded if u0 is in the support of K∗ so that

∣uα1 − uα2 ∣ ≤ C 1{K∗(u0)>0} max
j=1,...,d

∣uαj1,j − u
αj
2,j ∣

for a constant C. For j = 1, . . . , d with αj ≥ 1

∣uαj1,j − u
αj
2,j ∣ ≤ αj ∣û∣

αj−1 ∣u1,j − u2,j ∣

for û between u1,j and u2,j . If u0 is in the support of K∗, then û is bounded. Using
K(u1) ≤K∗(u0) we have

I2 ≤ CK∗(u0) max
j=1,...,d

∣u1,j − u2,j ∣ ≤ CK∗(u0) ∥u1 − u2∥ . ◻

Lemma 2.2 Let Φ and Ψ denote bounded V C-classes. Let Θ = Φ × Ψ ×Rn and let
θ = (φ, τ, r) denote a generic element from Θ. For any θ = (φ,ψ, r) ∈ Θ let θ0 = (φ,ψ, r0).
Let fn ∶ X ×X → R denote a function satisfying lim supn→∞ supw1∈W,w2∈W

∣fn(w1,w2)∣ <∞
and let an ∶ X → R and bn ∶W → R denote functions satisfying

lim sup
n→∞

E ∣an(X)∣s <∞ and lim sup
n→∞

E ∣bn(X, ε)∣t <∞

for s > 2 and t > 2. For α ∈ Nd0 define

G(θ, x, u) = h−1
+ EX[(r(X) − r(x)

h
)
α

K (r(X) − r(x)
h

)

fn(x,X)an(X)φ(X)]bn(x,u)ψ(x)
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and write Gi(θ) = G(θ,Xi, εi). Fix a κ∗ > 0 such that

κ∗ < 1

2
− η+
s
+ (δ − η)min −

1

2
max
1≤j≤d

[δjγj + ξj].

Then

sup
θ∈Θ

∣ 1

n

n

∑
i=1

(Gi(θ) −Gi(θ0) −E[Gi(θ) −Gi(θ0)])∣ = Op (n−κ
∗) .

Proof Let G = {G(θ) −G(θ0) ∶ θ ∈ Θ}. First show that there are positive constants C̃
and ũ such that on a set wpa1 for all 0 < u < ũ

logN (u,G, ∥⋅∥Pn) ≤ C̃ Hn(u),

with

Hn(u) = logn +
d

∑
j=1

nξj+γj(ηj+
η+/s)u−γj .

Let An = {∥bn∥Pn,s ≤ CA} and choose CA large enough that PAn → 1. Now work condi-

tional on An. Construct a u-cover of G in the following way. Take uφ,ψ = (C∗)−1 h+(u/6)
and for j = 1, . . . , d take ur,j = (C∗)−1 n−

η+/shj(u/6). Now, let Cφn denote a uφ,ψ-cover of

Φ with respect to the ∥⋅∥P, s
s−1

-norm and let Cψn denote a uφ,ψ-cover of Ψ with respect to

the ∥⋅∥Pn,Q-norm, Q = 2s
s−2 . Since Φ and Ψ are VC there exist constants A and V such

that Cφn and Cψn can be chosen to contain less than Au−Vφ,ψ functions each (Theorem 2.6.4
in van der Vaart and Wellner 1996). For each j = 1, . . . , d let Crn,j denote a ur,j-cover of
Rn,j with respect to the ∥⋅∥∞-norm. By construction

CGn = {G(θ) −G(θ0) ∶ θ ∈ Cφn × Cψn ×
d

∏
j=1

Crn,j}

is a cover of G and can be chosen such that

log #CGn ≤M1 +M2 logn +M3 logu−1 +M4

d

∑
j=1

(nξj+γj(ηj+η+/s)u−γj)

for constants M1, . . . ,M4. It is wlog to assume ξj > 0 and γj > 0 for all j = 1, . . . , d. By
l’Hôpital’s rule

lim
u→0

logu−1

u−γj
=∞

for all j. Thus, there is a ũ > 0 and a constant C̃ such that eventually

log #CGn ≤ C̃ Hn(u)

for all u < ũ. Next, show that if C∗ is chosen large enough then CGn will be a u-cover of
G with respect to the ∥⋅∥Pn-norm. Let θ1 = (φ1, ψ1, r1) denote a point in Θ and let θ2 =
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2 Testing index sufficiency with a predicted index

(φ2, ψ2, r2) denote a nearest grid-point, i.e., ∥φ1 − φ2∥P, s
s−1

≤ uφ,ψ, ∥ψ1 − ψ2∥Pn,Q ≤ uφ,ψ
and ∥r1,j − r2,j∥∞ ≤ ur,j for j = 1, . . . , d. To prove

∥G(θ1) −G(θ1,0) − [G(θ2) −G(θ2,0)]∥Pn ≤ u

it suffices to show
∥G(θ1) −G(θ2)∥Pn ≤

u

2
.

Decompose

∥G(θ1) −G(θ2)∥Pn ≤ ∥G(φ1, ψ1, r1) −G(φ2, ψ1, r1)∥Pn
+ ∥G(φ2, ψ1, r1) −G(φ2, ψ2, r1)∥Pn
+ ∥G(φ2, ψ2, r1) −G(φ2, ψ2, r2)∥Pn ≤ I1 + I2 + I3.

To bound the right-hand side note that on An

( 1

n

n

∑
i=1

∣bn(Xi, εi)∣2 )
1
2

≤ ( 1

n

n

∑
i=1

∣bn(Xi, εi)∣t )
1
t

≤ CA.

To bound I1 note that

EX ∣fn(x,X)an(X)(φ1(X) − φ1(X))∣

≤C (EX ∣an(X)∣s )
1
s (EX ∣φ1(X) − φ2(X)∣

s
s−1 )

s−1
s .

Therefore, for C∗ chosen large enough

I1 ≤C h−1
+ (EX ∣φ1(X) − φ2(X)∣

s
s−1 )

s−1
s ( 1

n

n

∑
i=1

∣bn(Xi, εi)∣2 )
1
2

≤C∗ h−1
+ ∥φ1 − φ2∥P, s

s−1
.

Since EX ∣fn(x,X)an(X)∣ ≤ C (EX ∣an(X)∣s )
1
s ,

I2 ≤C h−1
+ (EX ∣an(X)∣s )

1
s( 1

n
∑
i

∣ψ1(Xi) − ψ2(Xi)∣Q )
1
Q

( 1

n
∑
i

∣bn(Xi, εi∣t )
1
t

≤C∗ h−1
+ ∥ψ1 − ψ2∥Pn,Q .

For K∗ given in Lemma 2.1

h−1
+ EX ∣(K (r1(X) − r1(x)

h
) −K (r2(X) − r2(x)

h
))fn(x,X)an(X)∣

≤h
1
s
+

⎛
⎝
h−1
+ EX ∣K∗ (r0(X) − r0(x)

h
)∣

s
s−1 ⎞

⎠

s−1
s ⎛
⎝
EX ∣an(X)∣s

⎞
⎠

1
s d

∑
k=1

∥r1,k − r2,k∥∞
hk

≤C nη+/s
d

∑
k=1

∥r1,k − r2,k∥∞
hk

.
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The previous inequality yields an upper-bound on I3,

I3 ≤ C n
η+/s

d

∑
k=1

∥r1,k − r2,k∥∞
hk

( 1

n
∑
i

∣bn(Xi, εi)∣2 )
1
2

≤ C∗ n
η+/s 1

d

d

∑
k=1

∥r1,k − r2,k∥∞
hk

.

This concludes the proof that CGn is a u-cover of G. Next, I bound the empirical diameter
of G,

d̂iamn = sup
θ∈Θ

∥G(θ) −G(θ0)∥Pn .

For every θ ∈ Θ and for K∗ given in Lemma 2.1

∥G(θ) −G(θ0)∥2
Pn

≤C n−2(δ−η)min
1

n
∑
i

{h−1
+ EY [K∗ (r0(Y ) − r0(Xi)

h
) ∣an(Y )∣ ] ∣bn(Xi, εi)∣ }

2

≤n2(η+/s−(δ−η)min)
1

n
∑
i

∣bn(Xi, εi)∣2 ≤ C2
diam n

2(η+/s−(δ−η)min).

For the constant C from Lemma 5.1 in van de Geer 2000 let

βn =8CC̃
1
2

d

∑
j=1

(1 − γj/2)−1
n
γj/2(ηj+η+/s)(d̂iamn)

1−γj/2

≥8CC̃
1
2 ∫

d̂iamn

0
H

1/2
n (u)du

≥8C ∫
d̂iamn

0
log

1/2N (u,G, ∥⋅∥Pn) du.

The last inequality holds for large n and is due to the fact that d̂iamn < ũ eventually.
Lemma 5.1 and equation (5.1) in van de Geer 2000 yield the exponential inequality

P (An ∧ sup
θ∈Θ

1

n
∣∑
i

(Gi(θ) −Gi(θ0))∣ ≥ n
1
2βn) ≤ C exp

⎡⎢⎢⎢⎢⎣
− β2

n

64C2d̂iam
2
n

⎤⎥⎥⎥⎥⎦
.

To ensure that the right-hand side of the exponential inequality vanishes it suffices to
assume that ξj > 0 for all j which can be done wlog. Let

κ∗j =
1

2
− η+
s
+ (δ − η)min −

1

2
(ξj + ηjγj).

The claim about the convergence rate follows by noting that

min
1≤j≤d

κ∗j ≥
1

2
− η+
s
+ (δ − η)min −

1

2
max
1≤j≤d

[δjγj + ξj] > κ∗

and therefore

nκ
∗
n−

1
2βn ≤ C

d

∑
j=1

C
1−γj/2
diam n−(κ

∗
j−κ

∗) → 0.
◻
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2 Testing index sufficiency with a predicted index

Lemma 2.3 Let Φ and Ψ denote bounded V C-classes. Let fn ∶ X × X → R denote
a function satisfying lim supn→∞ supx1∈X ,x2∈X ∣fn(x1, x2)∣ < ∞ for some λ ∈ R and let
an ∶ X → R and bn ∶W → R denote functions satisfying

lim sup
n→∞

E ∣an(X)∣s <∞ and lim sup
n→∞

E ∣bn(X, ε)∣t <∞

for s > 2 and t > 2. Define

G(φ,ψ, x, u) = h−1
+ EX [K (r0(X) − r0(x)

h
) fn(x,X)an(X)φ(X)] bn(x,u)ψ(x)

and let Gi(⋅, ⋅) = G(⋅, ⋅,Xi, εi) and

κ∗ = 1

2
− η+
s
.

Then

sup
φ∈Φ,ψ∈Ψ

∣ 1

n

n

∑
i=1

(Gi(θ) −EGi(θ))∣ = Op (n−κ
∗√

logn) .

Proof Let G = {G(φ,ψ) ∶ φ ∈ Φ, ψ ∈ Ψ}. First show that there is a positive constant C̃
such that on a set wpa1

logN (u,G, ∥⋅∥Pn) ≤ C̃ Hn(u),

with
Hn(u) = (logn) + log(u−1 ∨ 1).

Let An = {∥bn∥Pn,s ≤ CA} and choose CA large enough that PAn → 1. Now work

conditional on An. Construct a u-cover of G in the following way. Take ũ = (C∗)−1 h+(u/2),
where C∗ is a constant to be determined later. Now, let Cφn denote a ũ-cover of Φ with
respect to the ∥⋅∥P, s

s−1
-norm and let Cψn denote a ũ-cover of Ψ with respect to the ∥⋅∥Pn,Q-

norm, Q = 2s
s−2 . Since Φ and Ψ are VC, there exist constants A and V such that Cφn and

Cψn can be chosen to contain less than Aũ−V functions each (Theorem 2.6.4 in van der
Vaart and Wellner 1996). By construction

CGn = {G(φ,ψ) ∶ φ ∈ Cφn , ψ ∈ Cψn }

is a cover of G and can be chosen such that

log #CGn ≤M1 +M2 logn +M3 logu−1

for constants M1, . . . ,M3. Next, I show that if C∗ is chosen large enough then CGn will
be a u-cover of G with respect to the ∥⋅∥Pn-norm. Let (φ1, ψ1) ∈ (Φ,Ψ) and let (φ2, ψ2)
denote a nearest grid-point, i.e., ∥φ1 − φ2∥P, s

s−1
≤ ũ and ∥ψ1 − ψ2∥Pn,Q ≤ ũ. Decompose

∥G(φ1, ψ1) −G(φ2, ψ2)∥Pn ≤ ∥G(φ1, ψ1) −G(φ2, ψ1)∥Pn
+ ∥G(φ2, ψ1) −G(φ2, ψ2)∥Pn ≤ I1 + I2.
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To bound the right-hand side note that on An

( 1

n

n

∑
i=1

∣bn(Xi, εi)∣2 )
1
2

≤ ( 1

n

n

∑
i=1

∣bn(Xi, εi)∣t )
1
t

≤ CA.

To bound I1 note that

EX ∣fn(x,X)an(X)(φ1(X) − φ1(X))∣

≤C (EX ∣an(X)∣s )
1
s (EX ∣φ1(X) − φ2(X)∣

s
s−1 )

s−1
s .

Therefore, for C∗ chosen large enough

I1 ≤C h−1
+ (EX ∣φ1(X) − φ2(X)∣

s
s−1 )

s−1
s ( 1

n

n

∑
i=1

∣bn(Xi, εi)∣2 )
1
2

≤C∗ h−1
+ ∥φ1 − φ2∥P, s

s−1
.

Due to EX ∣fn(x,X)an(X)∣ ≤ C (EX ∣an(X)∣s )
1
s ,

I2 ≤C h−1
+ (EX ∣an(X)∣s )

1
s( 1

n
∑
i

∣ψ1(Xi) − ψ2(Xi)∣Q )
1
Q

( 1

n
∑
i

∣bn(Xi, εi∣t )
1
t

≤C∗ h−1
+ ∥ψ1 − ψ2∥Pn,Q .

This concludes the proof that C∗ can be chosen such that CGn is indeed a u-cover of G.
Next, I bound the empirical diameter of G,

d̂iamn = sup
φ∈Φ,ψ∈Ψ

∥G(φ,ψ)∥Pn .

For every φ ∈ Φ and ψ ∈ Ψ and for K∗ given in Lemma 2.1

∥G(φ,ψ)∥2
Pn

≤C 1

n
∑
i

{h−1
+ EY [K∗ (r0(Y ) − r0(Xi)

h
) ∣an(X)∣ ] ∣bn(Xi, εi)∣ }

2

≤n2η+/s 1

n
∑
i

∣bn(Xi, εi∣2 ≤ C n
η+/s.

Note that

∫
d̂iamn

0

√
log(u−1 ∨ 1)du ≤∫

1

0

√
log(u−1)du ≤ ∫

1

0
1 + logu−1 du ≤ 2

The second inequality follows from
√
x < x for x > 1 and

√
x ≤ 1 for 0 ≤ x ≤ 1. Therefore,√

x ≤ x ∨ 1. The last inequality holds since ∫ x0 log(u−1)du = x [x + log ( 1
x
)] for x > 0. To

bound the covering integral set βn(u) = nη+/s
√

logn. For Cβ large enough

∫
d̂iamn

0

√
Hn(u)du ≤∫

d̂iamn

0
(
√

logn +
√

log (u−1 ∨ 1)) du

≤
√

logn d̂iamn + 2 ≤ Cββn.
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2 Testing index sufficiency with a predicted index

Choose M̃ > C̃Cβ. Lemma 5.1 in van de Geer 2000 in conjunction with Corollary 3.4
from the same book gives the exponential inequality

P (An ∧ sup
φ∈Φ,ψ∈Ψ

1

n
∣∑
i

Gi(φ,ψ)∣ ≥ M̃ n−
1
2βn) ≤ C exp

⎡⎢⎢⎢⎢⎣
− M̃2β2

n

64C2d̂iam
2
n

⎤⎥⎥⎥⎥⎦
.

The conclusion follows by noting that the right-hand side of the exponential inequality
vanishes. ◻

Lemma 2.4 (Nolan and Pollard 1987) Let L denote a class of functions on the
product space W ×W with envelope F satisfying PL(w, ⋅) = PL(⋅,w) = 0 for all w ∈W
for all L ∈ L. For a given sample W1, . . . ,Wn let Un denote the probability measure
that assigns equal mass to each of the n(n − 1) ordered pairs of elements from the set
{W1, . . . ,Wn}. There exists a universal constant C such that

√
n(n − 1)E sup

L∈L
∣UnL∣ ≤ C E[θn + τnJn(θn/τn)] (2.2)

where

Jn(s) = ∫
s

0
logN (x,L, ∥⋅∥U2n/τn

) dx,

τn = (U2nF
2)

1
2 and θn =

1

4
sup
L∈L

(U2nL
2)

1
2 .

Proof The proof proceeds along the steps outlined in Nolan and Pollard 1987 with
some small changes first proposed by Sherman 1994. ◻

Lemma 2.5 Let Φ and Ψ bounded VC-classes and let φ and ψ denote generic el-
ement from Φ and Ψ, respectively. For a function fn ∶ W ×W → R suppose that
lim supn→∞ supw1∈W,w2∈W

∣fn(w1,w2)∣ <∞. For some α ∈ Nd0 let

K̃α
h,ij(r) =Kh,ij(r)(

r(Xi) − r(Xj)
h

) and

Gij(φ, r) = K̃α
h,ij(r) fn(Wi,Wj)φ(Xi)ψ(Xj)εi.

Suppose that
1

2
(1 − η+) + (δ − η)min − max

1≤k≤d
[δkγk + ξk] > 0

and that max1≤k≤d γk < 1. Let ∆ij(φ, r) = Gij(φ, r) −Gij(φ, r0) and define the kernel

Li,j(r, φ,ψ) =L(r, φ,ψ,Wi,Wj)
=∆ij(r, φ,ψ) −EWi∆ij(r, φ,ψ) −EWj∆ij(r, φ,ψ) +E∆ij(r, φ,ψ).

Then

sup
r∈Rn,φ∈Φ,ψ∈Ψ

∣ 1

n(n − 1)∑i≠j
Lij(r, φ,ψ)∣ = op (n−

1
2 ) .
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Proof For K∗ given in Lemma 2.1 and a constant CF let

F̃ (Wi,Wj) = CF n−(δ−η)min[h−1
+ K

∗ (r0(Xi) − r0(Xj)
h

) ∣εi∣ + ∣εi∣
s/2 + 1].

A straight-forward application of Lemma 2.1 gives that

F (Wi,Wj) = F̃ (Wi,Wj) +EWiF̃ (Wi,Wj) +EWj F̃ (Wi,Wj) + +E F̃ (Wi,Wj)

is an envelope for L, i.e., ∣L∣ ≤ F provided that CF is chosen large enough. Let τn =
(U2nF

2)
1
2 . Let Θ = Rn × Φ × Ψ and let θ = (r, φ,ψ) denote a generic element from Θ.

Fix any u > 0. There exists a constant C̃ that is independent of u and a u-cover of
L = {L(θ) ∶ θ ∈ Θ} that has logarithmic size of less than C̃ Hn(u),

Hn(u) = logn + logu +
d

∑
k=1

(nξk+γk(δ−η)min+γkηku−γk) .

To construct such a cover let ũ = (C∗)−1h+n
−(δ−η)min(u/12) and for k = 1, . . . , d let

ur,k = (C∗)−1n−(δ−η)min−ηk(u/12), where C∗ is a constant to be determined later. Work
conditionally on a sample of size 2n from the distribution of W = (X, ε). Now, take a

ũ-cover Cφn of Φ with respect to the ∥⋅∥P2n,Q
-norm, Q = 2s

s−2 , and a a ũ-cover Cφ
′

n of Φ

with respect to the ∥⋅∥P -norm. Similarly, take a ũ-cover Cψn of Ψ with respect to the

∥⋅∥P2n,Q
-norm, Q = 2s

s−2 , and a a ũ-cover Cψ
′

n of Ψ with respect to the ∥⋅∥P -norm. Since Φ

and Ψ are VC, there are constants A and V such that Cφn , Cφ
′

n , Cψn , and Cψ
′

n can be chosen
to contain less than Aũ−V approximating functions each (Theorem 2.6.4 in van der Vaart
and Wellner 1996). Also, for k = 1, . . . , d let Crn,k denote a minimal ur,k-cover of Rk,n
with respect to the ∥⋅∥∞-norm. Let

CLn = {∆(r, φ,ψ) −EWi∆(r, φ′, ψ) −EWj∆(r, φ,ψ′)

+E∆(r, φ′, ψ′) ∶ (r, φ, φ′, ψ,ψ′) ∈
d

∏
k=1

Crn,k × Cφn × Cφ
′

n × Cψn × Cψ
′

n }.

It is straightforward to check that there is a C̃ independent of u such that log #CLn ≤
C̃Hn(u). I will now show that C∗ can be chosen so that CLn is a u-cover of L with respect
to the ∥⋅∥U2n/τn

-norm. Let L(θ1), θ1 = (r1, φ1, ψ1), denote an arbitrary point in L and let

∆(r2, φ2, ψ2) −EWi∆(r2, φ
′
2, ψ2) −EWj∆(r2, φ2, ψ

′
2) +E∆(r2, φ

′
2, ψ

′
2)

denote a nearest grid point in CLn , i.e.,

∥φ1 − φ2∥P2n,Q
≤ ũ ∥φ1 − φ′2∥P ≤ ũ

∥ψ1 − ψ2∥P2n,Q
≤ ũ ∥ψ1 − ψ′2∥P ≤ ũ
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and ∥r1,j − r2,j∥∞ ≤ ur,j for j = 1, . . . , d. Decompose

∣ L(θ1) − (∆(r2, φ2, ψ2) −EWi∆(r2, φ
′
2, ψ2)

−EWj∆(r2, φ2, ψ
′
2) +E∆(r2, φ

′
2, ψ

′
2))∣U2n/τn

≤ ∥∆(r1, φ1, ψ1) −∆(r2, φ1, ψ1)∥U2n/τn

+ ∥∆(r2, φ1, ψ1) −∆(r2, φ2, ψ1)∥U2n/τn

+ ∥∆(r2, φ2, ψ1) −∆(r2, φ2, ψ2)∥U2n/τn

+ ∥EWi∆(r1, φ1, ψ1) −EWi∆(r2, φ1, ψ1)∥U2n/τn

+ ∥EWi∆(r2, φ1, ψ1) −EWi∆(r2, φ
′
2, ψ1)∥U2n/τn

+ ∥EWi∆(r2, φ
′
2, ψ1) −EWi∆(r2, φ

′
2, ψ2)∥U2n/τn

+ ∥EWj∆(r1, φ1, ψ1) −EWj∆(r2, φ1, ψ1)∥U2n/τn

+ ∥EWj∆(r2, φ1, ψ1) −EWj∆(r2, φ2, ψ1)∥U2n/τn

+ ∥EWj∆(r2, φ2, ψ1) −EWj∆(r2, φ2, ψ
′
2)∥U2n/τn

+ ∥E∆(r1, φ1, ψ1) −E∆(r2, φ1, ψ1)∥U2n/τn

+ ∥E∆(r2, φ1, ψ1) −E∆(r2, φ
′
2, ψ1)∥U2n/τn

+ ∥E∆(r2, φ
′
2, ψ1) −E∆(r2, φ

′
2, ψ

′
2)∥U2n/τn

≤I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10 + I11 + I12.

I will now show that each of the terms I1, . . . , I12 can be bounded by u/12. By Hölder’s
inequality

I1 ≤C τ−1
n

d

∑
k=1

∥r1,k − r2,k∥∞
hk

¿
ÁÁÁÀ 1

n(n − 1)∑i≠j
(h−1

+ K∗ (r0(Xi) − r0(Xi)
h

) εi)
2

≤C∗ n(δ−η)min
1

d

d

∑
k=1

∥r1,k − r2,k∥∞
hk

.

The last inequality is due to

τn ≥CF n−(δ−η)min
1

n(n − 1)∑i≠j
h−1
+ K

∗ (r0(Xi) − r0(Xi)
h

) ∣εi∣ .

I4, I7 and I10 can be bounded in a similar manner.

I2 ≤C τ−1
n n−(δ−η)min

¿
ÁÁÁÀ 1

n(n − 1)∑i≠j
[h−1

+ K∗ (r0(Xi) − r0(Xi)
h

) ∣εi∣ (φ1(Xi) − φ2(Xi))]
2

≤C τ−1
n n−(δ−η)minh−1

+

⎛
⎝

1

n(n − 1)∑i≠j
∣φ1(Xi) − φ2(Xi)∣Q

⎞
⎠

1
Q ⎛
⎝

1

n(n − 1)∑i≠j
∣εi∣s

⎞
⎠

1
s
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≤C τ−1
n n−(δ−η)minh−1

+ ∥φ1 − φ2∥P2n

⎛
⎝

1

n(n − 1)∑i≠j
∣εi∣s + 1

⎞
⎠

1
2

≤C∗ h−1
+ ∥φ1 − φ2∥P2n

.

Similarly, one can argue that

I3 ≤C∗ h−1
+ ∥ψ1 − ψ2∥P2n

and

I8 ≤C∗ h−1
+ ∥φ1 − φ2∥P2n

By the conditional Cauchy-Schwarz inequality

∣EWiεi(φ1(Xi) − φ2(Xi))∣ ≤
√
EWi ∣εi∣

2

√
EWi

∣φ1(Xi) − φ2(Xi))∣
2
.

This gives a bound for I5

I5 ≤ C∗ h−1
+ ∥ψ1 − ψ′2∥P .

Similar arguments yield

I11 ≤C∗ h−1
+ ∥φ1 − φ′2∥P and

I12 ≤C∗ h−1
+ ∥ψ1 − ψ′2∥P .

By the Cauchy-Schwarz and Hölder’s inequalities

I6 ≤C τ−1
n n−(δ−η)minh−1

+ ( 1

n(n − 1)∑i≠j
[EWiεi(ψ1(Xj) − ψ2(Xj))]

2
)

1
2

≤C τ−1
n n−(δ−η)minh−1

+ ( 1

n(n − 1)∑i≠j
(ψ1(Xj) − ψ2(Xj))

2
EWi ∣εi∣

2 )
1
2

≤C h−1
+ ( 1

n(n − 1)∑i≠j
(ψ1(Xj) − ψ2(Xj))

Q)
1
Q

≤ C∗ h−1
+ ∥ψ1 − ψ2∥P2n,Q

.

An obvious variation of previous arguments gives

I9 ≤ C∗h−1
+ ∥ψ1 − ψ′2∥P .

This concludes the proof that there is a constant C̃ such that

logN (u,L, ∥⋅∥U2n/τn
) ≤ C̃ Hn(u)

for all u. Now apply Lemma 2.4. Let J and θn as defined in Lemma 2.4. Note that it is
wlog to assume ξk > 0 for all k = 1, . . . , d. By assumption there is a constant a < 1 such
that 0 ≤ γk < a for k = 1, . . . , d and thus eventually

J (θn/τn) ≤ C̃ ∫
1

0
Hn(u)du ≤

C̃

1 − a
d

∑
k=1

(nξk+(δ−η)min+γk+ηkγk) .
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The right-hand side of (2.2) is therefore bounded by

2 C̃

1 − aE ∥F ∥U2n

d

∑
k=1

(nξk+(δ−η)min+γk+ηkγk) .

To bound the expectations on the right-hand side write F̃ij = F̃ (Wi,Wj) and use that

E ∥⋅∥U2n
≤ (E ∥⋅∥2

U2n
)
1/2

. By the conditional Jensen inequality

E ∥F ∥2
U2n

≤8
1

n(n − 1)∑i≠j
(E(F̃ij)

2 +E(EWiF̃ij)
2 +E(EWiF̃ij)

2 +E(E F̃ij)
2)

≤8
1

n(n − 1)∑i≠j
(E(F̃ij)

2 +EEWi
(F̃ij)

2 +EEWi
(F̃ij)

2 +E(F̃ij)
2)

≤ 1

n(n − 1)∑i≠j
32E(F̃ij)

2
.

There is a constant C such that

E(F̃ij)
2 ≤4C2

F n
−2(δ−η)min(E∣h−1

+ K
∗ (r0(Xi) − r0(Xj)

h
) ∣

2
+E ∣εi∣s + 1)

≤C n−2(δ−η)minh−1
+ .

The last inequality follows since

h−1
+ EX [K∗ (r0(x) − r0(X)

h
)]

2

≤ ∫ ∣K∗(v)∣2 fr0(X)(r0(x) − vh)dv ≤ C

for a constant C that does not depend on x. Collecting the bounds from the previous
displays gives

E ∥F ∥U2n
≤ C n

1
2
η+−(δ−η)min .

Employing inequality (2.2) of Lemma 2.4 yields

√
nE sup

L∈L
∣UnL∣ ≤ C (n − 1)−

1
2 n

1
2
η+−(δ−η)min

d

∑
k=1

(nξk+γk(δ−η)min+γkηk) .

The right-hand side vanishes if min1≤k≤d κk > 0, where

κk =
1

2
(1 − ηmin) + (1 − γk)(δ − η)min − ξk − ηkγk for k = 1, . . . , d.

The desired rate follows from the inequality

κk ≥
1

2
(1 − ηmin) + (δ − η)min −max

1≤l≤d
[δlγl + ξl] for k = 1, . . . , d.

Finally, Markov’s inequality converts convergence in mean into convergence in probability,
concluding the proof. ◻
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2.C Lemmas

Lemma 2.6 Let Φ and Ψ denote bounded VC-classes and let φ and ψ denote generic
elements from Φ and Ψ, respectively. Suppose there are functions fn ∶W ×W → R and
bn ∶W → R satisfying

lim sup
n→∞

sup
w1∈W,w2∈W

∣fn(w1,w2)∣ <∞ and lim sup
n→∞

E ∣bn(X, ε)∣2 <∞.

For some α ∈ Nd0 let

K̃α
h,ij(r) =Kh,ij(r)(

r(Xj) − r(Xi)
h

) and

Gij(φ,ψ) = K̃α
h,ij(r0)φ(Xi)ψ(Xj)fn(Wi,Wj)bn(Xi, εi).

Moreover, suppose that max1≤k≤d γk < 1 and that the density fr0(X) is bounded. Define
the kernel

Li,j(φ,ψ) = L(φ,ψ,Xi,Xj) = Gij(φ,ψ) −EWiGij(φ,ψ) −EWjGij(φ,ψ) +EGij(φ,ψ)

and fix a constant κ such that

κ < 1

2
(1 − η+)

Then

√
n sup
φ∈Φ,ψ∈Ψ

∣ 1

n(n − 1)∑i≠j
Lij(φ,ψ)∣ = op (n−κ) .

Proof It is convenient to consider the scaled process G̃ = n− 1
2
η+G and the corresponding

scaled kernel L̃ = n− 1
2
η+L. As L = {L(φ,ψ) ∶ φ ∈ Φ, ψ ∈ Ψ} is VC and hence Euclidean,

the Main Corollary in Sherman 1994 is applicable. It suffices to find an envelope
F = F (Wi,Wj) such that ∣G̃∣ ≤ F and EF 2 < ∞. For a constant CF and K∗ given
by Lemma 2.1 let

F̃ij = CF h
− 1

2
+ K∗ (r0(Xi) − r0(Xj)

h
) ∣bn(Xi, εi)∣ .

Provided that CF is chosen large enough, the desired envelope is given by

F (Wi,Wj) = F̃ij +EWiF̃ij +EWj F̃ij +E F̃ij .

To verify the integrability condition write

E(F (Wi,Wj)2 ≤8E(F̃ 2
ij + (EWiF̃ij)2 + (EWj F̃ij)2 + (E F̃ij)2) ≤ 32EF̃ 2

ij

≤32C2
F E{EWjh

−1
+ [K∗ (r0(Xi) − r0(Xj)

h
)]

2

∣bn(Xi, εi)∣2 }

≤32C2
F E ∣bn(Xi, εi)∣2 <∞.
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2 Testing index sufficiency with a predicted index

The second inequality is due to the conditional version of Jensen’s inequality. The third
inequality exploits the fact that the bounded density assumption implies boundedness

of EWjh
−1
+ [K∗ ( r0(Xi)−r0(Xj)h )]

2
. The Main Corollary in Sherman 1994 gives that the

U -process with the scaled kernel is Op(n−1). The convergence rate for the unscaled
process is now obvious. ◻

Lemma 2.7 Suppose that m ∶ z ↦ E[Y ∣ r0(X) = z] has q + 1 bounded derivatives and
that the density function fr0(X) is bounded. Let

Gij(x) =Kh,ij(r0) δx(Xi) ∑
1≤∣α∣≤q

hα

α!
∂αm(r0(Xj))(

r0(Xi) − r0(Xj)
h

)
α

.

Then

√
n sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
(Gij(x) −EGij(x))∣ = Op (n−ηmin) .

Proof Fix α ∈ Nd0 such that 1 ≤ ∣α∣ ≤ q. For K∗ as given in Lemma 2.1 let

G̃αij(x) = nηminKh,ij(r0) δx(Xi)
hα

α!
∂αm(r0(Xj))1{K∗

h,ij
(r0)>0} (

r0(Xi) − r0(Xj)
h

)
α

.

Applying Lemma 2.6 with the bounded fn-function

fn(Wi,Wj) =
hα

α!
∂αm(r0(Xj))1{K∗

h,ij
(r0)>0} (

r0(Xi) − r0(Xj)
h

)
α

yields

√
n sup
x∈Rdx

1

n(n − 1)∣∑i≠j
(G̃αij(x)−EWiG̃

α
ij(x)

−EWj G̃
α
ij(x) +E G̃αij(x))∣ = Op (n−λ)

for all λ < 1
2(1 − η+). Next, establish that

sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
(EWiG̃

α
ij(x) −E G̃αij(x))∣ = Op (n−

1
2 )

sup
x∈Rdx

∣ 1

n(n − 1)∑i≠j
(EWj G̃

α
ij(x) −E G̃αij(x))∣ = Op (n−

1
2 ) .

This follows by applying Lemma 2.3 with the bounded fn-function from above. The
conclusion follows by noting that

Gij = n−ηmin ∑
1≤∣α∣≤q

G̃αij .
◻
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2.D Local polynomial estimator

Appendix 2.D Local polynomial estimator

Let Y denote a real-valued outcome and let X denote a covariate vector that takes values
in Rdx . Suppose that a sample (Yi,Xi)1≤i≤n from (Y,X) is available. Let L ∶ Rdx → R
denote a multi-variate kernel function. Also, let g = (g1, . . . , gdx) denote a bandwidth

sequence, write g+ = g1⋯gdx and suppose that gj ≍ n−η
∗
j . Write Lg(x) = g−1

+ L(x/g). The

p-th order local polynomial estimator of r0(x) is given by r̂(x) = b̂(0,...,0)′(x) where

(b̂α)0≤∣α∣≤p ∈ arg minbα(x),0≤∣α∣≤p
1

n
∑
i

⎡⎢⎢⎢⎢⎣
Yi − ∑

0≤∣α∣≤p

gαbα(x) (
Xi − x
g

)
α ⎤⎥⎥⎥⎥⎦

2

Lg (Xi − x) .

We need a way to order collections of functions indexed by a multi-index α. For a given
j = 1, . . . , p there are Nj = (j+dx−1

dx−1
) different α ∈ Ndx0 such that ∣α∣ = j. Order these α’s

lexicographically (with highest priority being given to the last position). Let g−1
j denote

the bijection that maps an α with ∣α∣ = j into its rank according to the lexicographic
ordering. Now, order the α’s as follows

αg0(1), αg1(1), . . . , αg1(N1), . . . , αgp(1), . . . , αgp(Np).

Let N = N1 +⋯ +Np. Let γ ∶ {1, . . . ,N}→ Ndx0 denote the function that maps positions
in the ordering to the corresponding multi-index

γ ∶ k ↦ gmax{j∶N0+⋯+Nj≥k}(k + 1 −max{j ∶ N0 +⋯ +Nj ≥ k}).

Also, for any dx-vector x let Γ(x) denote the vector of polynomials given by

(Γ(x))
j
= xγ(j)

and let b0,n and b̂n denote the N -vectors given by

(b0,n)j =
gγ(j)

γ(j)!∂
γ(j)r and (b̂n)j = b̂γ(j).

The estimated coefficients can be written as

b̂n(x) − b0,n(x)

=S−1
n (x) 1

n
∑
i

εi Γ(Xi − x
g

)Lg(Xi − x)

+ S−1
n (x) 1

n
∑
i
∑
∣β∣=p+1

gβ

β!
∂βr(x)Γ(Xi − x

g
)(Xi − x

g
)
β

Lg(Xi − x) + S−1
n (x)Rn(x)
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where

Rn(x) =(p + 1) ∑
∣β∣=p+1

gβ

β!

1

n
∑
i

(Xi − x
g

)
β

Γ(Xi − x
g

)Lg(Xi − x),

∫
1

0
[∂βr(x + λ(Xi − x)) − ∂βr(x)](1 − λ)p dλ

Sn(x) =
1

n
∑
i

Γ(Xi − x
g

){Γ(Xi − x
g

)}
′

Lg(Xi − x).

Let D denote a compact subset of the support of the random variable X and let

Qn(x) =
1

n
∑
i
∑
∣β∣=p+1

gβ

β!
∂βr(x)Γ(Xi − x

g
)(Xi − x

g
)
β

Lg(Xi − x).

Under some minor regularity conditions, it is well known (Masry 1996) that

sup
x∈D

∣Sn(x) −E Sn(x)∣ =Op
⎛
⎝

√
logn

ng+

⎞
⎠

sup
x∈D

∣[E Sn(x)]−1∣ =O (1)

sup
x∈D

∣ 1

n
∑
i

εi Γ(Xi − x
g

)Lg(Xi − x)∣ =Op
⎛
⎝

√
logn

ng+

⎞
⎠

sup
x∈D

∣Qn(x) −EQn(x)∣ =Op
⎛
⎝
n−(p+1)η∗min

√
logn

ng+

⎞
⎠

sup
x∈D

∣EQn(x)∣ =O(n−(p+1)η∗min)

sup
x∈D

∣Rn(x) −ERn(x)∣ =Op
⎛
⎝
n−(p+1)η∗min

√
logn

ng+

⎞
⎠

sup
x∈D

∣ERn(x)∣ =o(n−(p+1)η∗min).

This gives rise to two useful stochastic expansions. Let Bn(x) = [ESn(x)]−1EQn(x) and
B∗
n(x) = Bn(x) + [ESn(x)]−1ERn(x). Then,

sup
x∈D

∣b̂n(x) − (b0,n(x) + [ESn(x)]−1 1

n
∑
i

εi Γ(Xi − x
g

)Lg(Xi − x) +Bn(x))∣

= Op
⎛
⎝

logn

ng+
+ n−(p+1)η∗min

√
logn

ng+

⎞
⎠
+ o(n−(p+1)η∗min).
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In addition we have

sup
x∈D

∣b̂n(x) − (b0,n(x) + [ESn(x)]−1 1

n
∑
i

εi Γ(Xi − x
g

)Lg(Xi − x) +B∗
n(x))∣

= Op
⎛
⎝

logn

ng+
+ n−(p+1)η∗min

√
logn

ng+

⎞
⎠
.

The second expansion is more suited to our purposes. Next, I focus on

r̃(x) = r0(x) + e′1[ESn(x)]−1 1

n
∑
i

εi Γ(Xi − x
g

)Lg(Xi − x) + e′1B∗
n(x).

The r̂− r̃ part is typically so small that it can be dealt with by direct methods. It suffices
to bound the covering number of a class containing the random function

ϕn(x) =
1

n
∑
i

εi Γ(Xi − x
g

)Lg(Xi − x).

This is because adding a function or multiplying by a bounded function does not change
the order of the covering number. To ease the notation suppose that η∗1 = ⋯ = η∗dx = η

∗.
Suppose that L has K bounded derivatives and that the derivatives of order K satisfy a
Hölder condition with coefficient θ, i.e., for ∣α∣ =K and 0 < θ ≤ 1

∣∂αL(y) − ∂αL(y′)∣ ≤ C ∥y − y′∥θ .

Also, let D ⊂ Rdx denote a bounded and convex set. Note that for any ∣α∣ ≥ 1 and on the
set Lg(Xi − x) > 0

∣∂αΓ(Xi − x
g

)∣ ≤ C n∣α∣η∗ and

∣∂αg−1
+ L(Xi − x

g
)∣ ≤ C n∣α∣η∗g−1

+ ∣∂αL(Xi − x
g

)∣ .

Under some regularity conditions (e.g. bounded support of L) this implies

n−∣α∣η
∗ 1

n
∑
i

εi ∂
α{Γ(Xi − x

g
)Lg(Xi − x)} = Op

⎛
⎝

√
logn

ng−1
+

⎞
⎠
.

Therefore, wpa1 ϕn is contained in the class of functions whose ∣α∣-order derivatives are
bounded by M∣α∣ = nm∣α∣ with

m∣α∣ > ∣α∣η∗ + 1

2
dxη

∗ − 1

2
.

Similarly, it can be shown that for a universal constant C and ϕn in a set of probability
approaching one for all ∣α∣ =K and any x, x′

∣∂
αϕn(x) − ∂αϕn(x′)

∥x − x′∥θ
∣ ≤ CMK+θ.
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Theorem 2.7.1 of van der Vaart and Wellner 1996 implies wpa1 ϕn ↾D lies in a set Φ
satisfying

logN (ε,Φ, ∥⋅∥∞) ≤ C (M
ε

)
d

K+θ

for a constant C depending only on K and D. Therefore, wpa1 the random function
r̃ ↾D satisfies the complexity condition in Assumption 2.2 with γ = dx

K+θ and

ξ > ((K + θ)η∗ − 1

2
[1 − dxη∗])γ.

Suppose that η and η∗ are chosen to be the MISE-optimal rates so that η = (d+2(q+1))−1

(if q = q1 = q2 in Assumption 2.1) and η∗ = (dx + 2(p + 1))−1, respectively. Then,

δ = p + 1

dx + 2(p + 1) and δ − η = p + 1

dx + 2(p + 1) −
1

d + 2(q + 1) .
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Delgado, Miguel A and Wenceslao González Manteiga (2001). “Significance testing in
nonparametric regression based on the bootstrap”. In: Annals of Statistics, pp. 1469–
1507.

Dzemski, Andreas and Florian Sarnetzki (2014). “Overidentification test in a nonpara-
metric treatment model with unobserved heterogeneity”. Working Paper.

Escanciano, Juan Carlos, David Jacho-Chávez, and Arthur Lewbel (2014). “Uniform
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CHAPTER 3

An empirical model of dyadic link formation in a network
with unobserved heterogeneity

3.1 Introduction

Economic agents concentrate a substantial amount of their activities within their networks
of interpersonal relationships. These interpersonal relationships play a prominent role
when centralized institutions such as markets are missing or unable to provide certain
goods or services. Studying them provides valuable insights into many relevant economic
problems, such as information dissemination in small communities (Banerjee et al. 2013)
and informal insurance (Fafchamps and Lund 2003). Interpersonal relationships can
be formalized as directed links between agents. The collection of all links is called the
network. Given their vital role in many policy-relevant problems, it is important to
understand how networks are formed. Consequently, econometricians have endeavored to
estimate models of formation of informal insurance networks in villages (Fafchamps and
Gubert 2007; Leung 2014) or friendship networks in high-schools (Mele 2013).

This paper contributes to the literature by offering a new empirical model of network
formation. Similar to the classical approach by Holland and Leinhardt 1981, link formation
is modelled as a binary choice. An agent establishes a directed link to another agent
if, considering the joint attributes of the pair, the link surplus is deemed large enough.
Conditional on agent attributes, links are formed independently of each other. This is
the defining property of the class of so-called dyadic models. Though frequently applied
in practice (Mayer and Puller 2008; Fafchamps and Gubert 2007), little work has been
done to understand their theoretical properties (Graham 2014).

The main innovation of my model is that it employs a fixed effects approach to
account for relevant attributes that are not observable to the econometrician. Adding
fixed effects substantially complicates inference by introducing a so-called incidental
parameter problem (Neyman and Scott 1948). As a result, confidence intervals computed
from maximum likelihood estimators are not centered at the true parameter values. I
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investigate this problem formally in an asymptotic framework that sends the number of
agents to infinity. For the estimands considered in this paper I provide explicit correction
formulas that can be used to center the respective maximum likelihood estimator at the
true parameter value.

Most available alternatives to my approach capture unobserved heterogeneity by random
effects (Hoff 2005; Duijn, Snijders, and Zijlstra 2004; Krivitsky et al. 2009). A random
effects assumption imposes a very simple structure on unobserved heterogeneity and it
does not admit correlations between observed and unobserved agent characteristics. Fixed
effects dispose of such restrictions and allow for very general unobserved heterogeneity.

My model can capture two features that are frequently observed in real-world networks.
Homophily refers to the tendency of agents to initiate ties to agents who share similar ob-
served characteristics (McPherson, Smith-Lovin, and Cook 2001). This can be interpreted
as a distaste for social distance and is related to the concept of assortative matching
in other areas of economics (Becker 1973). Degree heterogeneity refers to the fact that
agents can exhibit vast differences in the number of in-bound or out-bound links. In my
model, degree heterogeneity is driven by homophily as well as by differences in the ability
of agents to initiate ties (productivity) and to attract links from other agents (popularity).
Due to the fixed effects approach, determinants of productivity and popularity need
not be observed, allowing observationally equivalent agents to exhibit diverse linking
strategies. This contributes crucially to the ability of the model to disentangle homophily
from unobserved sources of degree heterogeneity (Graham 2014).

A researcher might be interested in the linking model for two reasons. For some
research questions the bilateral linking model itself is of interest. For example, it might be
interesting to investigate whether homophily preferences discriminate against minorities.
In other cases, the researcher wants to learn about the behavior of the stochastic network
induced by the sum of all bilateral linking decisions. For example, the level of segregation
in the network determines how fast information spreads or how susceptible a community
is to outbreaks of sexual diseases (Bearman, Moody, and Stovel 2004).

To my knowledge, I am the first to formally discuss inference on local or global structure
of the network in the context of a dyadic network model. On the population level, it
is straightforward to calculate various features of the network from a known bilateral
linking model. This simplicity does not extend to estimation. In the present paper,
this is illustrated by a detailed discussion of a measure of transitivity. The level of
transitivity observed in a network is driven by agent productivity and popularity, i.e., the
agent-level heterogeneity captured by the fixed effects. Expected transitivity is therefore
a function of the fixed effects. Estimates of the fixed effects are provided as a by-product
of my estimation procedure allowing for a simple plug-in estimator. This highlights
an advantage of my method over alternative approaches in the literature on non-linear
models that condition out the fixed effects (Andersen 1970; Charbonneau 2014). However,
the plug-in estimator is affected by an incidental parameter problem, rendering standard
inference invalid. For the transitivity measure, I propose a procedure that overcomes this
limitation by adjusting for asymptotic bias and by estimating robust standard errors.
The general approach can be extended to other network features of interest, such as
average degree or various clustering coefficients.
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Comparing predicted network features to their observed counterparts can serve as a test
of model specification. This paper considers such a test based on predicted transitivity.
The test can be interpreted as looking in the direction of alternatives in which transitive
relationships have explanatory power. The suggested procedure expands on the idea of the
τ2-test in Holland and Leinhardt 1978 by allowing for an estimated reference distribution.
The estimation of model parameters induces an incidental parameter problem for the
test statistic. My testing procedure accounts for the presence of incidental parameters
and produces asymptotically valid critical values. For existing transitivity tests (Holland
and Leinhardt 1981; Karlberg 1997; Karlberg 1999) there are no formal results regarding
their asymptotic distribution. This paper provides for the first time a large sample theory
for a transitivity test for networks.

The finite-sample properties of my methods are investigated in simulations. In my
simulation design, the correction formulas offer considerable improvements. The empirical
coverage of confidence intervals constructed from uncorrected maximum likelihood esti-
mates is up to sixty percentage points below the nominal level. Applying the correction
formulas substantially increases the precision of the estimators and eliminates bias almost
completely. This results in an improved normal approximation that produces confidence
intervals that hold their nominal coverage level.

Identification in my model is achieved by an exogeneity assumption. Agents evaluate
each potential link in isolation of the rest of the network. In particular, there are no
network externalities. This means that linking decisions are independent of endogenous
network structure. This is plausible if agents do not care about links between other
agents or if the network is imperfectly observable. The exogeneity assumption is refutable
by the model specification test developed in this paper.

The literature on network formation offers some models that allow for network ex-
ternalities. These models do not, however, admit general unobserved heterogeneity.
For some facets of network structure, such as transitivity, network externalities and
unobserved heterogeneity offer competing explanations. To estimate a game of network
formation under asymmetric information, Leung 2014 provides a model in the spirit
of Aguirregabiria and Mira 2007. His approach can account for network externalities
but it requires observationally identical agents to play identical strategies. My model
does not constrain heterogeneity in this way. In applied research, exponential random
graph models (Wasserman and Pattison 1996; Snijders et al. 2006) are a popular way
to endogenize local network structure. Their micro-foundation (Mele 2013) does not
permit unobserved heterogeneity, they can be computationally intractable (Bhamidi,
Bresler, and Sly n.d.) and frequentist properties of estimators based on these models are
largely unknown (Chandrasekhar and Jackson 2014). My model does not impose such
restrictions.

Conditional on observed and unobserved agent characteristics, the stochastic network
induced by my dyadic linking model is an Erdős-Rényi graph (Erdős and Rényi 1960).
In real-world networks, unconditional or conditional-on-observables Erdős-Rényi models
often understate the level of transitivity (Davis 1970; Watts and Strogatz 1998; Apicella
et al. 2012). This is commonly attributed to the presence of network externalities and
taken to indicate that agents derive utility from transitive closure. In the context of a
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stylized example I offer an alternative explanation for the puzzle by showing that the
omission of latent popularity effects will lead to a downward bias of predicted transitivity.

The relevance of unobserved heterogeneity in a real-world network is investigated in
an empirical application. In the application, the methods developed in this paper are
applied to data on favor networks in Indian villages. The favor networks are constructed
from the survey data of Jackson, Rodriguez-Barraquer, and Tan 2012 and Banerjee
et al. 2013. A directed link from agent i to agent j exists if i nominates j as someone
she would ask for help if she needed to borrow household staples or money. From an
economic perspective these relationships are interesting because they can serve as a
partial insurance device. Predictions for transitivity from the model with fixed effects are
compared to predictions from a simple linking model in which linking decisions are based
solely on observed characteristics. The model with fixed effects predicts a much higher
level of transitivity than the simple model. Notably, the level of transitivity observed
in the sampled networks exceeds the predictions from the simple model by a significant
amount. In contrast, under the model with fixed effects, the transitivity test does not
detect excess transitivity. These results suggest that unobserved agent effects may affect
the evolution of the favor networks in a substantial way. In particular, controlling for
unobserved effects is essential for replicating the observed level of transitivity. This can
be achieved by using the methods developed in this paper.

In parallel research, Graham 2014 develops a dyadic network model with fixed effects.
My research differs from his contribution in two ways. First, I consider directed links,
whereas Graham 2014’s model assumes an undirected network. The choice of model is
dictated by the nature of the available data. Without data on the direction of links,
productivity and popularity effects can not be distinguished. In my application, there is
no monotone relationship between the two effects, suggesting a complex heterogeneity
pattern that would not be captured well by the kind of one-dimensional heterogeneity
that an undirected model is limited to. Secondly, Graham 2014 focuses on estimation of
the homophily component of link surplus, whereas I also discuss estimation and testing
of local structure.

From a technical perspective, dyadic network models are closely related to long-T
panel models. Consequently, this research ties in with the recent literature on incidental
parameters in non-linear panel models (Hahn and Kuersteiner 2011; Hahn and Newey
2004). In particular, some of the theoretical insights presented in this paper build on
results for maximum likelihood models with incidental parameters in Fernández-Val and
Weidner 2014.

Notation: Some notation from graph theory is helpful. Let V = V (n) = {1, . . . , n} denote
a vertex set and define the corresponding directed edge set E = E(n) = {(v, v′) ∶ v, v′ ∈
V (n), v ≠ v′}. The vertices represent agents and the edges represent links. For a given
link e = (v, v′), I refer to v as the sender and to v′ as the receiver of the link. A graph
g on V is a subset of E. For g ⊂ E, (v, v′) ∈ g is taken to mean that in g there is a
directed link from v to v′. I use the terms network and graph interchangeably. For
arbitrary graphs g, define the vertex function V that maps each graph g into the set of
its constituent vertices. For a given graph g, the in-degree of agent i is defined as the
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3.2 The linking model

number of links received by i, or din
i (g) = ∑j≠i 1((j, i) ∈ g). Similarly, the out-degree of

agent i is defined as the number of links sent by i, or dout
i (g) = ∑j≠i 1((i, j) ∈ g). The

degree of agent i is the the sum of her in-degree and her out-degree.

3.2 The linking model

3.2.1 Model definition

Agent i = 1, . . . , n may link to any agent j ≠ i. Linking decisions follow a static binary
choice model. Consider the link e = (i, j) and let Ye denote a binary variable that is one
if e is realized and zero otherwise. Sender i links to receiver j and Ye = 1 if link surplus
exceeds a link-specific shock,

Ye = 1(Y SP
e ≥ εe).

Y SP
e is the latent link surplus and (εe)e∈E is a vector of stochastically independent shocks

with known distribution F . The assumption of independent surplus shocks precludes
network externalities. For F any sufficiently smooth distribution can be chosen. Other
authors require the shock distribution to be logistic (Holland and Leinhardt 1981; Graham
2014). For the link e = (i, j) the latent surplus is given by

Y SP
(i,j) =X

′
(i,j)θ

0 + γS,0i + γR,0j . (3.1)

Here, X ′
(i,j)θ

0 is a measure of social distance between i and j based on observed charac-
teristics and hence represents the homophily part of the utility function. The parameter
θ0 specifies homophily preferences and is unknown. The link-specific vector of observed
covariates X(i,j) is typically a transformation of (Xi,Xj , Z(i,j)), where Xk are observed
characteristics of agent k and Ze are edge-specific covariates. The covariate profile of the
network is denoted by X = {Xe ∶ x ∈ E}.

The variables γS,0i and γR,0j are unobserved agent effects. Similar to Holland and

Leinhardt 1981, the sender or productivity effect γS,0i encapsulates all aspects related to
agent i’s eagerness to initiate links to other agents. Similarly, the receiver or popularity
effect γR,0j summarizes all of agent j’s qualities that determine her attractiveness as a
linking partner. In Section 3.6, I give an interpretation of the unobserved effects for a
concrete example.

Sender and receiver effects are treated as fixed effects, allowing for arbitrary correlations
between productivity, popularity and observed characteristics. Due to the fixed effects
approach, agent effects may subsume unobserved determinants of linking behavior such
as heterogeneous preferences or agent strategies in a latent game of social interaction.
Since inference is conditional on unobserved agent effects, strategies can be arbitrarily
correlated.

As in Holland and Leinhardt 1981, identification of the location of the unobserved
effects is achieved by the normalization

∑
i∈V (n)

(γS,0i − γR,0i ) = 0. (3.2)
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The specification of link surplus in (3.1) introduces three implicit assumptions. First, the
three components homophily, productivity and popularity are required to be additively
separable. This rules out, for example, linking behavior based on homophily preferences
that change according to how popular a potential linking partner is. Note, however, that
the separability assumption does not restrict correlations between the three components
of link surplus. Secondly, it is assumed that the homophily component belongs to a
known parametric family. Thirdly, all characteristics contributing to the homophily
component are assumed to be observable to the econometrician.

The observability assumption is relaxed in latent space models (Hoff, Raftery, and
Handcock 2002; Krivitsky et al. 2009). In these models, the mutual attraction between
agents is allowed to depend on distance in a low-dimensional latent space. The class of
latent space models does not, however, nest my model. The models in this class impose
a relatively simple structure of unobserved heterogeneity that can make it impossible to
correctly disentangle homophily from unobserved heterogeneity (Graham 2014).

To establish a baseline, I compare my linking model to a related model without fixed
effects. For this model equation (3.1) is replaced by

Y SP
(i,j) =X

′
(i,j)θ

H,0 +X ′
iθ
S,0 +X ′

jθ
R,0, (3.3)

where θH,0, θS,0 and θR,0 parameterize productivity, attractiveness and homophily, re-
spectively. For e = (i, j), let Xe = (X ′

e,X
′
i ,X

′
j)′ denote the variables predicting the

generation of link e and let θP,0 = (θH,0′, θS,0′, θR,0′)′. As this model does not account
for heterogeneity in a nonparametric way, it will be referred to as the parametric model
in the remainder of the paper. The nonparametric specification for the sender effect γSi
is replaced by X ′

iθ
S,0. Similarly, the receiver effect γRj is specified as X ′

jθ
R,0.

It is convenient to let π(i,j) = γS,0i + γR,0j denote the unobserved component of the
surplus of link e = (i, j). This way, equation (3.1) can be written more succinctly as

Y SP
e = X ′

eθ
0 + πe. Also, let γS = (γS1 , . . . , γSn )′, γR = (γR1 , . . . , γRn )′ and φ0 = (γS ′, γR′)′,

and let pe = F (X ′
eθ

0 + πe) denote the conditional probability of Ye = 1. Throughout, Ē
denotes the expectation operator conditional on unobserved effects and the covariate
profile, and E denotes the unconditional expectation operator.

3.2.2 Local structure

This section explores ramifications of the linking model for larger structures in the network
by considering network relationships within triads (groups of three). I will focus on a
triadic configuration called transitivity. Agents i, j and k are in a transitive relationship
if, possibly upon reshuffling the labels within the triad, the network contains the links
(i, j), (j, k) and (i, k). A tendency for transitive closure will result in a large number of
links between connected nodes. In this regard, transitivity is a driver of local clustering.

To define measures of transitivity, let (i, j, k) denote a triple of distinct vertices. For a
given graph g the triple is transitive if {(i, j), (j, k), (i, k)} ⊂ g. Figure 3.1 gives a visual
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Transitive triple Potentially transitive triple

Figure 3.1: A transitive and a potentially transitive triple.

representation of a transitive triple. Define the set of all possible transitive triples1

B ={β ⊂ E(n) ∶ β is a transitive triple}
={{(v1, v2), (v2, v3), (v1, v3)} ∶ {v1, v2, v3} ⊂ V, ∣{v1, v2, v3}∣ = 3}.

For every β ∈ B take β = {β1, β2, β3}, noting that the labelling of the edges is arbitrary.
Let Tβ = Yβ1Yβ2Yβ3 denote the binary indicator that is one if β is realized and zero
otherwise. Measures of transitivity are based on the count of transitive triples

Sn = ∑
β∈B

Tβ = ∑
β∈B

Yβ1Yβ2Yβ3 .

The simplest approach is to normalize Sn by the number of all possible transitive triples
∣B∣ = n3. This is the statistic discussed in this paper. It translates a concept for undirected
networks considered in Karlberg 1997 to directed networks. A popular alternative is to
normalize by the number of potentially transitive triples (Karlberg 1999; Jackson 2008,
p. 37, see also the right panel in Figure 3.1). This yields the clustering coefficient

Cln =
Sn

∑i∈V ∑j∈V ∖{i}∑k∈V ∖{i,j} Y(i,j)Y(i,k)
. (3.4)

In Section 3.7, I indicate how my analysis can be extended to the clustering coeffi-
cient. Most of the time, I will drop the normalization and refer to Sn as realized or
observed transitivity, and to its population counterpart ĒSn as predicted transitivity. The
normalization is expendable when comparing networks with the same number of agents.

It is well known that to correctly describe the transitivity of a graph, it is important
to account for degree heterogeneity (Karlberg 1999). In the context of my model, this
means that ignoring the unobserved effects can vastly distort predicted transitivity. This
is best illustrated by way of a simple example.

Example 3.1 Suppose that the set of agents can be partitioned into a set of normal
agents with cardinality n○ and a set of popular agents (the “attractors”) with cardinality
n⋆. Each edge to a normal agent has probability p○, and each edge to an attractor

1The set B coincides with the set of all transitive triples in the complete graph on n vertices gn = E(n).
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True model (Sn = 3) Projected model (Sn = 1)

Figure 3.2: Realizations of the true model M0 and the projected model Mproj from
Example 3.1. The rectangle represents the attractor, circles represent normal
agents.

has probability p⋆. Assume that popularity is the only relevant variable and that it
can not be observed by the econometrician. Call this model M0 and compare it to its
projection Mproj onto the space of models that ignore popularity. In the projected model
the common link probability is given by

p = n
○

n
p○ + n

⋆

n
p⋆.

Now, adopt an asymptotic framework by considering a sequence of models M0
n and

compare transitive triple counts between the true and the projected model. In the
appendix it is shown that if p○

p⋆ → α, 0 ≤ α < 1, and n○
n⋆ → λ > 0 then

EM0
n
[# transitive triples]

E
Mproj
n

[# transitive triples] → 1 + e(α,λ),

where

e(α,λ) = (1 − α)2λ

(1 + αλ)2
> 0.

Plots of the function e are provided in Figure 3.6 in the appendix. Details on the
calculations are in Appendix 3.C.1. Realizations of the models M0 and Mproj for the
parametrization n⋆ = 1, n○ = 4, p⋆ = .8 and p○ = .2 are depicted in Figure 3.2.

The stylized model shows that estimates of network transitivity based on a dyadic linking
model that ignores unobserved heterogeneity can vastly understate the true amount of
transitivity present in the network.

The stochastic network induced by a correctly specified dyadic model replicates the
behavior of the observed network. In particular, under asymptotics that take the number
of agents to infinity, observed transitivity Sn is consistent for predicted transitivity ĒSn.
A natural approach for checking the validity of the dyadic model is to test the equality of
these two quantities. Using transitivity to evaluate model performance is well-motivated.
The dyadic model competes with alternative models that allow for network externalities.
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For some applications, evidence for agent preferences for transitive closure has been
gathered (Leung 2014; Mele 2013). Thus, observing transitivity that surpasses the level
predicted by the dyadic model indicates that the dyadic model should be abandoned in
favor of a model that admits network externalities. To make this interpretation plausible,
it is crucial to specify a reference model that can account for all drivers of transitivity
that are permitted in a dyadic model. As argued above, this includes possibly unobserved
sources of degree heterogeneity. In Section 3.4.4, I develop a transitivity test based on a
feasible version of the test statistic

T̃n = n−3(Sn − ĒSn).

The prediction ĒSn is derived from the dyadic linking model from equation (3.1) and
can therefore account for degree heterogeneity.

The idea of testing a network model by considering its predictions for network features
that are not targeted by the model was first explored in Holland and Leinhardt 1978.
Karlberg 1999 also offers transitivity tests based on this paradigm. In his models, degree
heterogeneity does not have a structural interpretation. Its effect on transitivity is
eliminated by conditioning on the observed degree sequence. Karlberg 1999 does not
provide a large sample theory for the test and uses a simulation procedure to compute
critical values. My test statistic is asymptotically normal and approximate critical values
can be computed from this asymptotic distribution.

In the following some additional notation will be convenient. Consider a transitive
triple β. For given observed and unobserved agent characteristics, let ρβ = ∏βj∈β pβj
denote the probability of β being observed. Conditional on the realization of link e, this
probability is denoted

ρ−e(β) = ∏
βj∈β
βj≠e

pβj .

Also, define βne = 1
n ∑β∈B∶β∋e ρ−e(β).

3.3 Parameter estimation and incidental parameter bias

3.3.1 Conditional ML estimation

To estimate the linking model from equation (3.1) the agents effects are treated as
additional parameters to be estimated. The maximum likelihood estimator (θ̂, φ̂) of
the vector of structural parameters (θ0, φ0) maximizes a conditional likelihood criterion
under a constraint that imposes the normalization from equation (3.2). Formally, (θ̂, φ̂)
solves

max
θ,φ

1

n
∑

(i,j)∈E(n)

`(i,j)(X(i,j), γSi , γRj )

subject to: ∑
i∈V (n)

(γSi − γRi ) = 0
(3.5)
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with

`(i,j)(X(i,j), γSi , γRj ) =Y(i,j) logF(X(i,j)θ + γSi + γRj )

+ (1 − Y(i,j)) log (1 − F(X(i,j)θ + γSi + γRj )).

For the theoretical analysis it is convenient to impose the normalization indirectly by
penalizing the likelihood rather than by optimizing under a constraint (Fernández-Val and
Weidner 2014). Let v = (ι′n,−ι′n)′, with ιn denoting an n-vector of ones. The following
penalized program is equivalent to (3.5). For fixed b > 0

(θ̂, φ̂) ∈ arg maxθ,φ
1

n

⎧⎪⎪⎨⎪⎪⎩
∑

(i,j)∈E(n)

`(i,j)(X(i,j), γSi , γRj ) − b(v′φ)2
⎫⎪⎪⎬⎪⎪⎭
. (3.6)

3.3.2 Asymptotic framework and incidental parameter bias

The asymptotic framework considered in this paper sends the number of agents n to
infinity. The number of parameters estimated by the program (3.5) is increasing in n. For
every agent that is added to the network two additional parameters, namely the agent
specific sender and receiver effects, have to be estimated. This renders the maximum
likelihood estimator non-standard and leads to an incidental parameter problem (Neyman
and Scott 1948). In the context of the network model this means that certain parameters
are estimated with a bias that is of the same order as the stochastic part of the estimator.
Let µ denote a generic parameter of the model. In the remainder of the paper I will
explicitly consider µ = θ and µ = n−3 ĒSn. Let µ̂ML denote the plug-in estimator of µ
using the maximum likelihood estimates from (3.5), and let Vµ = limn→∞ var µ̂ML denote
its asymptotic variance. Similar to non-linear panel models (Hahn and Newey 2004;
Fernández-Val and Weidner 2014) the estimator µ̂ML has a representation

µ̂ML = µ + n−1biasµ + n−1N (0, Vµ) + op (n−1) ,

where biasµ is an unobserved deterministic term. Due to the presence of this bias term,
confidence intervals based on the normal approximations may not be centered on the true
parameter and tests may not hold their nominal level. The estimator µ̂ML is, however,
consistent.

In this paper I propose a procedure for analytical bias correction. I derive an explicit
expression for the leading term of the asymptotic bias in terms of observed and estimable
quantities. The bias can then be consistently estimated by plugging in the maximum
likelihood estimates. Subtracting the estimated bias from the maximum likelihood
estimator yields an estimator that is asymptotically normal and centered at the true
value.

Network data is fundamentally different from sampled panel data. In a panel, it is
a reasonable approximation to treat individuals as isolated clones of one generic agent.
In an asymptotic thought experiment we can keep adding more and more independent
copies of the same individual to the pool. As the pool grows larger, we eventually learn
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the covariate generating distribution. The thought experiment does not translate well to
networks. Agents interacting in a network are typically not strangers. Networks are built
on top of older social structures that have shaped agent characteristics in the past.

To address this concern, I will interpret all estimations as conditional on observed
covariates and unobserved effects. This comes at a cost, as it renders me unable to
answer some questions that might be of economic interest. I can answer the question
“What is the expected transitivity in a network consisting of a given set of agents with a
certain configuration of covariates and unobserved effects?” However, I am unable to
quantify fluctuations in observed transitivity that are due to random perturbations of
agent characteristics. This is because the asympotic framework does not allow me to
learn the generating process for agent characteristics.

3.3.3 Alternatives to analytical bias removal

In panel models, procedures following a similar approach of analytical bias removal
have been shown to work well in a variety of models (Hahn and Newey 2004; Hahn and
Kuersteiner 2011; Fernández-Val 2009; Fernández-Val and Weidner 2014). The main
drawback of this method is that it relies on an explicit expression for the asymptotic bias.
Even small changes to the model set-up can have repercussions for the asymptotic bias
approximation, forcing the researcher to re-do tedious derivations. Also, implementing
the bias formula can be a time consuming and error prone process. It is tempting to try
out methods that are less model specific, in that they are able to detect and remove the
bias without the researcher having to specify what it looks like. In the context of panel
methods, bootstrap and jackknife-based methods fulfil this requirement.

Bootstrap-based bias correction (Kim and Sun 2013) tries to replicate the estimation
problem by re-sampling from the error distribution. This approach has been thoroughly
explored in the research leading up to this paper. Most networks are rather sparse and
linking probabilities tend to be very small. Exploratory simulations have shown that in
this setting a naive bootstrap procedure can be numerically unstable, and can occasionally
suggest corrections that vastly overstate the true bias. Developing a bootstrap procedure
that can cope with a sparse network structure is an interesting avenue for future research.

Jackknife corrections (Hahn and Newey 2004; Dhaene and Jochmans 2010; Fernández-
Val and Weidner 2014) assume that the estimation problem is scalable in the following
sense. Parameter estimation is associated with an asymptotic bias that can be well-
approximated by a constant divided by the sample size. If the estimation procedure is
applied to a subset of the original data, the estimator admits a similar representation
with the same constant.

Under the scalability assumption, the constant can be recovered by noting that the
difference between estimates from a small and a large sample is a known multiple
of the constant. In panel models the invariance of the constant is justified by laws
of large numbers that rest on assumptions limiting the between-individuals and time
dependence of individual characteristics. Such assumptions are much harder to justify in
a network setting, as I discussed above. Even with generous independence assumptions
on individual characteristics, the link-specific covariates will still exhibit a substantial
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amount of correlation. To see this, note that n individual-specific covariates are mapped
into n(n − 1) link-specific covariates.

From an implementation point of view, jackknifing is a very attractive option for panels.
The observations can be partitioned into two sets that can be interpreted as observations
from two distinct panel models. Estimating the shorter panel models is cheap, since the
panel model has already been implemented. In contrast, it is not possible to estimate
dyadic network models from partitioning sets of link-specific observations. While this
does not invalidate jackknife inference in networks, it certainly makes it less appealing.

3.4 Analytical correction for incidental parameter bias

3.4.1 Assumptions and notation

For convenience of notation we introduce some abbreviations. Let

F(i,j) = F(i,j)(X(i,j)θ0 + γS,0i + γR,0j )

denote the distribution function of the (i, j) observation evaluated at the true index and
let fe = ∂Fe and ∂fe = ∂2Fe denote its first and second derivatives also evaluated at the
true index. Let He = fe/(Fe(1 − Fe)) and ωe = feHe.

Assumption 3.1 (Regularity conditions)
(i) The link function F is three times continuously differentiable.

(ii) Let f
(k)
e = ∂kfe, k > 0, and f

(0)
e = fe. For all non-negative integers k1, k2 such that

k1 + k2 ≤ 2

lim sup
n→∞

max
e∈E(n)

RRRRRRRRRRR

f
(k1)
e f

(k2)
e

Fe(1 − Fe)

RRRRRRRRRRR
<∞.

Moreover,

lim sup
n→∞

max
e∈E(n)

fe
Fe(1 − Fe)

<∞.

(iii) For a positive constant bL and almost all e ∈ E(n)

ωe =
f2
e

Fe(1 − Fe)
≥ bL.

(iv) The population version of the penalized objective function (3.6) is strictly concave.

Assumption 3.1 imposes the smoothness conditions from Assumption 4.1 in Fernández-
Val and Weidner 2014 on the network model. Part (i) of the assumption requires the
link function F to be sufficiently smooth. Popular choices such as the probit or the
logit link satisfy the requirement. Item (ii) ensures that higher-order derivatives of the
likelihood are well-behaved. In general, this assumption restricts both the shape of the
link function and the distribution of the true latent indices. For some link functions,

96



3.4 Analytical correction for incidental parameter bias

such as the one-dimensional Gaussian family, this assumption is satisfied for arbitrary
index distributions. Item (iii) guarantees that the inverse of the penalized Hessian is
well-behaved. This assumption is included primarily for technical convenience. For the
probit model, it is satisfied if the latent index is bounded away from infinity. This in turn
means that link probabilities are not allowed to vanish. In particular, it is not permitted
to enforce asymptotic sparsity of the generated graph by letting the unobserved effects
approach negative infinity. This might seem too restrictive. However, as I illustrate for a
model without unobserved effects in Appendix 3.C.2, explicitly modeling sparsity does
not require strong additional assumptions, nor does it change the analysis in a substantial
way. Therefore, in practical applications and for a given sample size, the link function can
be interpreted as incorporating the appropriate sparsity constant. Lastly, the concavity
assumption (iv) ensures that — at least asymptotically — there is a unique solution to
the program (3.5). It will typically be met if the parametric part of the model describes
a symmetric distance measure and if there is sufficient between-individual variation in
the observed covariates.

Fernández-Val and Weidner 2014 show that certain projections are helpful in describing
the asymptotic bias. To define corresponding projections for the network model, let PφA,
for any A = (Ae)e∈E , denote the orthogonal projection onto the space spanned by the

fixed effects under an inner product weighted by ω
1/2
e . In particular, (PA)i,j = γ̄Si + γ̄Rj

for any (γ̄Si , γ̄Ri )i∈V solving

min
γSi ,γ

R
j

∑
i≠j

ω(i,j) (A(i,j) − γSi − γRj )2
.

Let X̃e denote the component-wise residual of a projection of the Xe onto the space
spanned by the fixed effects, i.e., for k = 1, . . . ,dim(Xe) and A = (Xe,k)e∈E let X̃e,k =
Xe,k − (PφA)

e
.

3.4.2 Inference on homophily parameter

We will first consider estimation of the homophily parameter θ. The following theorem
gives the asymptotic distribution of θ̂, the maximum likelihood estimator of θ solving
the program (3.5).

Theorem 3.1 (Estimation of homophily parameter) Let

B∞ = − lim
n→∞

1

2n
∑
i∈V

∑j∶j≠iH(i,j)∂f(i,j)X̃(i,j)
∑j∶j≠i ω(i,j)

D∞ = − lim
n→∞

1

2n
∑
j∈V

∑i∶i≠jH(i,j)∂f(i,j)X̃(i,j)
∑i∶i≠j ω(i,j)

W̃∞ = lim
n→∞

1

n2 ∑
e∈E(n)

ωeX̃eX̃
′
e.
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3 An empirical model of dyadic link formation

Suppose that Assumption 3.1 holds and the above limits exist conditionally on (X, φ0)
and that W̃∞ > 0. Then conditional on (X, φ0)

n(θ̂ − θ0) dÐ→ W̃ −1
∞ B∞ + W̃ −1

∞ D∞ +N (0, W̃ −1
∞ ).

The theorem states that upon appropriate normalization the difference between the
estimator and the true parameter is asymptotically normal and centered at biasθ =
W̃ −1

∞ B∞ + W̃ −1
∞ D∞. The asymptotic bias term is due to the unobserved effects that enter

the estimation problem as an incidental parameter. The first term in the expression for
the asymptotic bias can be attributed to the estimation of the sender effects and the
second term can be attributed to the estimation of the receiver effects.

The rate of convergence to the limiting distribution is O(n). Note that we observe
n(n−1) potential links. so that n behaves like the square root of the total number of link
observations. Therefore, convergence is at the usual parametric rate (cf. Graham 2014).

Note that the theorem implies a version of the stochastic expansion sketched in
Section 3.3.2. For biasθ as defined above

θ̂ = θ0 + n−1biasθ + n−1N (0, W̃ −1
∞ ) + op (n−1) .

To center the estimator at the true value we want to remove the second term in this
expansion. Direct application of the theorem is infeasible as the asymptotic bias biasθ
is a function of the true latent index, which is unobserved. Since we have consistent
estimators of θ0 and φ0 at our disposal, we can construct a consistent plug-in estimator
of the asymptotic bias.

Define ˆ̃W −1
n , B̂n and D̂n as W̃ −1

∞ , B∞ and D∞, respectively, with the true latent index
replaced by Xeθ̂ + π̂e and limits replaced by finite sums over the observed vertex set.
Here, π̂(i,j) = γ̂Si + γ̂Rj . The estimator with analytical bias correction is given by

θ̂A = θ̂ − n−1 ˆ̃W −1
n B̂n − n−1 ˆ̃W −1

n D̂n.

Theorem 3.1 is closely related to a result for the binary choice panel model from Example 1
in Fernández-Val and Weidner 2014. To see this more clearly, we need to explore the
relationship between my network model and panel models.

First off, we have to think of each individual as occupying two distinct roles. For some
links the individual will take on the role of the sender, and for other links it will take on
the role of the receiver. Similar to certain arguments in game theory, this changes the
setting from one where n agents interact to one where 2n agents interact. In the network
model, two unobserved effects feed into the equation determining the linking behavior
for link (i, j), namely, the sender effect of sender i and the receiver effect of receiver j.
This is similar to a binary choice panel model with individual and time fixed effects. In
the panel model, the binary choice of individual i in period t depends on two unobserved
effects, namely, the individual effect of individual i and the time effect for period t. In
this sense, an (i, j) observation in the network model maps to an (i, t) observation in
the panel model. This relationship is obfuscated by the fact that senders and receivers in
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3.4 Analytical correction for incidental parameter bias

the network model share the same labels, whereas the individual and time dimensions in
a panel model are labeled differently. The network model is, however, not completely
congruent to the panel model. Note that self-links are not allowed. Therefore, sender
i will meet all receivers j ≠ i but will never meet receiver i. This is different from the
panel model where all individuals are observed at all time periods.

3.4.3 Inference on local structure

This section discusses estimation of predicted transitivity ĒSn. For link formation, I
consider the linking model with unobserved effects from equation (3.1), as well as the
parametric model from equation (3.3).

Measuring features of local structure such as transitivity is a network-specific estimation
problem with no counterpart in panel models. From a technical perspective, however, it
is noted that predicted transitivity averages over structural parameters in a way that is
reminiscent of a marginal effect in a panel model. This relationship can be exploited in
the theoretical analysis.

To emphasize that the success probabilities for transitive triples are functions of the
structural parameters and the observed covariate profile, I will write ρβ = ρβ(X, φ0, θ0)
for transitive triples β when discussing the model with unobserved effects. The number
of transitive triples predicted by the dyadic linking model is

ĒSn = ∑
β∈B(n)

ρβ = ∑
β∈B(n)

ρβ(X, φ0, θ0) = ∑
β∈B

∏
e∈β

Fe(Xeθ
0 + π0

e).

A plug-in estimator of this quantity can be constructed by replacing the structural
parameters by their maximum likelihood estimators,

ÊSn = ∑
β∈B(n)

ρβ(X, φ̂, θ̂0). (3.7)

Let Dn
e = feβne and

Rθ,n =
1

n3 ∑
β∈B

∂θρβ =
1

n2 ∑
e∈E(n)

Dn
eXe.

For the model without unobserved effects I adopt similar notation.
As in the discussion of the homophily parameter, all inference will be conditional on

unobserved effects and the observed covariate profile. For the limiting distribution to
be well-defined, certain limits will be required to exist. For the parametric model, I
will investigate the plausibility of this assumption by providing conditions on the data
generating process that guarantee that the required limits exist. I conjecture that similar
arguments can be made for the model with unobserved effects. Consider the following
assumption about the data generating process for the covariates.

Assumption 3.2
The Xe, e ∈ E(n), are identically distributed and

V (e) ∩ V (e′) = ∅ ⇒ Xe áXe′ .

Moreover, the components of Xe have bounded fourth moments.
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3 An empirical model of dyadic link formation

To interpret this assumption, recall that the function V returns the vertices of a graph
so that for e = (i, j) we have V (e) = {i, j}. The assumption restricts the dependence
between edge-specific covariates. As discussed above, it is not appropriate to assume
full independence of the edge-specific covariates. Assumption 3.2 offers a substantially
weaker alternative by requiring independence of covariates only for edges that have no
common vertices.

The following result characterizes the asymptotic distribution of the estimator of
predicted transitivity in the model without unobserved effects.

Theorem 3.2 (Predicted transitivity without unobserved effects) Consider
the model without unobserved effects from equation (3.1). Suppose that the link function
F is bounded away from zero and one on the support of the latent index, and that it is
three times continuously differentiable. Let Rθ,∞ = limn→∞Rθ,n,

W∞ = lim
n→∞

1

n2 ∑
e∈E(n)

ωeXeX ′
e,

V
(a)
T = lim

n→∞

1

n2 ∑
e∈E(n)

ωe {(Rθ,∞)′W −1
∞ Xe}

2
.

Suppose that conditional on X all limits exist and that V
(a)
θ > 0. Then

n−2 (ÊSn − ĒSn)
dÐ→ N (0, V

(a)
T )

conditionally on X. If Assumption 3.2 holds, then on a set with probability approaching one

Rθ,∞, W∞ and V
(a)
T exist. In particular, Rθ,∞ = E [∂θρβ(X, θ0)] and W∞ = E [ωeXeX ′

e].

Remark 3.1 The assumption that pe is bounded away from zero is undesirable in a
network context. It will lead to networks that are asymptotically dense. An analogue
result for a model with link function Fn = a−1

n F depending on n can be found in the
Appendix. Here, an is a known deterministic sequence. The main restriction is that
a−1
n n

2 → ∞. This assumption is not too strong. In particular, it allows for degree
sequences that are bounded away from infinity.

It should be noted that sometimes ĒSn might not be the right quantity to estimate. For
applications such as comparing transitivity across different networks, the unconditional
mean ESn is more informative. Under appropriate conditions on the sampling process
of the covariates and the unobserved effects, ÊSn consistently estimates ESn. However,

V
(a)
T given in Theorem 3.2 will not capture the true variance of ÊSn as an estimator

of ESn as it fails to take into account fluctuations of ĒSn around ESn as a source of
variation. Under common specifications of the data generating process, these fluctuations
can dominate the asymptotic distribution, rendering parameter estimation asymptotically
negligible (cf. Fernández-Val and Weidner 2014).

In this paper, I focus on transitivity for a given set of agents, and on testing predicted
transitivity against observed transitivity. For these purposes, ĒSn is an appropriate
measure.
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3.4 Analytical correction for incidental parameter bias

To present the companion result to Theorem 3.2 for the model with unobserved effects,
it is convenient to introduce new notation. We will need certain derivatives of predicted
transitivity with respect to sender and receiver effects. Let

δSi = n
⎛
⎝
∂(γSi )2

1

n3 ∑
β∈B

ρβ
⎞
⎠

and δRj = n
⎛
⎝
∂(γRj )2

1

n3 ∑
β∈B

ρβ
⎞
⎠
.

Also, note that

∂γSi
( 1

n3 ∑
β∈B

ρβ) =
1

n2 ∑
j∶j≠i

Dn
(i,j)

and that a corresponding equation holds for derivatives with respect to receiver effects.
For A = (−Dn

e /ωe)e∈E and Pφ defined as above let Ψe = (PφA)
e
.

Theorem 3.3 (Predicted transitivity with unobserved effects) Consider the model
with unobserved effects from equation (3.1). Let

Ξn =
1

n2 ∑
e∈E

Dn
e X̃e

and Ξ∞ = limn→∞ Ξn. For B∞, D∞ and W̃∞ as defined in Theorem 3.1 let

BTT
∞ = Ξ′

∞W̃
−1
∞ B∞ + lim

n→∞

1

2n
∑
i

∑j∶j≠i (δSi +H(i,j)Ψ(i,j)∂f(i,j))
∑j∶j≠i ω(i,j)

and

DTT
∞ = Ξ′

∞W̃
−1
∞ D∞ + lim

n→∞

1

2n
∑
j

∑i∶i≠j (δRj +H(i,j)Ψ(i,j)∂f(i,j))
∑i∶i≠j ω(i,j)

.

Let

VT = lim
n→∞

1

n2∑
e

ωe {Ξ′
∞W̃

−1
∞ X̃e −Ψe}

2
.

Assume that, conditional on (X, φ0), Assumption 3.1 holds, all limits are well defined
and finite, and VT > 0. Conditional on (X, φ0)

n−2 (ÊSn − ĒSn)
dÐ→ BTT

∞ +DTT
∞ +N (0, VT ).

Remark 3.2 If θ̂ in equation (3.7) is replaced by the bias corrected estimator θ̂A the
respective first term in the expression for BTT

∞ and DTT
∞ drops out. This is similar to a

corresponding result for marginal effects in Fernández-Val and Weidner 2014.

Theorem 3.3 shows that the plug-in estimator of predicted transitivity is affected by
incidental parameter bias. The first component of the asymptotic bias, BTT

∞ , is due to
the estimation of the sender effects, and the second component of the bias, DTT

∞ , is due
to the estimation of the receiver effects.

Note that ĒSn is of the same order as n3, so that convergence is, again, at the
parametric rate n.
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3 An empirical model of dyadic link formation

As before, the expression for the asymptotic bias offers a recipe for analytical bias
correction. Define B̂TT

n and D̂TT
n as BTT

∞ and DTT
∞ , respectively, with the true latent

index replaced by Xeθ̂ + π̂e and limits replaced by finite sums over the observed vertex
set. The bias corrected estimator is given by

ÊSn
A = ÊSn − n2B̂TT

n − n2D̂TT
n .

3.4.4 Testing local structure

This section formalizes the test idea developed in Section 3.2.2. In T̃n, replace ĒSn by
its estimator ÊSn to arrive at the feasible test statistic

Tn = n−3 (Sn − ÊSn) .

The transitivity test rejects for large values of the test statistic. As null models I will
consider both the model with and the model without unobserved effects.

Theorem 3.4 (Testing transitivity without unobserved effects) Consider the
model without unobserved effects from equation (3.1) and suppose that the conditions of
Theorem 3.2 are satisfied. Moreover, let

V
(a)
S = lim

n→∞

1

n2 ∑
e∈E(n)

Fe(1 − Fe) {βne −He (Rθ,∞)′W −1
∞ Xe}

2
.

Suppose that, conditional on X, V
(a)
S exists and that V

(a)
S > 0. Then

nTn = n−2 (Sn − ÊSn)
dÐ→ N (0, V

(a)
S ).

conditional on X.

Remark 3.3 In the Appendix it is shown that V
(a)
S can be replaced by

V
(b)
S = lim

n→∞

1

n2 ∑
e∈E(n)

∑
β,β′

β∩β′={e}
∣V (β)∩V (β)∣=2

(ρ−e(β) − 1
3X

◊
e )(ρ−e(β′) − 1

3X
◊
e )

n2
Fe(1 − Fe)

where X◊
e = He (Rθ,∞)′W −1

∞ Xe. This shows that the asymptotic variance is a function
of all subgraphs that are formed by taking two transitive triples that share exactly two
vertices and one edge. Note that this representation of the variance is not well suited for

computational purposes as compared to V
(a)
S it increases computational complexity from

O(n3) to O(n4).

For a brief heuristic description of how to derive the asymptotic distribution of the test
statistic, write

nTn = −n−2(ÊSn − ĒSn) + n−2(Sn − ĒSn).
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3.5 Simulations

For the first term we can exploit a stochastic expansion derived in the proof of Theorem 3.2.
Characterizing the second term is related to deriving the asymptotic distribution of the
triad census in the analysis of the original τ2-test (Holland and Leinhardt 1978). In
seminal work, Holland and Leinhardt 1970 and Holland and Leinhardt 1976 give an
explicit formula for the variance under their choice of reference distribution and conjecture
asymptotic normality. To date, I am unaware of a formal statement supporting this
conjecture. My proof of asymptotic normality exploits similarities between the count of
transitive triples and a certain class of U -statistics. For many reference distributions, the
distributional analysis of the triad census is amendable to the same approach.

In the model with unobserved effects we have to account for incidental parameter bias.

Theorem 3.5 (Testing transitivity with unobserved effects) Consider the model
with unobserved effects from equation (3.1). Suppose that the conditions of Theorem 3.3
are satisfied. Moreover, let

υe = βne −He (Ξ′
∞W̃

−1
∞ X̃e −Ψe)

and

VS = lim
n→∞

1

n2∑
e

Fe(1 − Fe)υ2
e .

Assume that, conditional on (X, φ0), VS exists and VS > 0. Conditional on (X, φ0)

nTn = n−2 (Sn − ÊSn)
dÐ→ −BTT

∞ −DTT
∞ +N (0, VS).

This result can be used to construct a bias corrected test statistic

TAn = n−3 (Sn − ÊSn) + n−1B̂TT
n + n−1D̂TT

n .

The bias corrected test statistic is asymptotically centered at zero, and critical values
can be computed from the normal distribution with variance VS .

In Section 3.2.2, I pointed out a useful relationship between predicted transitivity and
marginal effects in panel models. It is worth mentioning that the similarities do not
extend to the testing problem. Marginal effects are properties of the population model
that do not correspond to directly observable quantities. Therefore, they do not lend
themselves to tests of model specification in the same way that predictions for local
network structure do.

3.5 Simulations

In this section I report simulations that investigate the finite-sample performance of the
analytical bias correction both for the estimator of the homophily parameter as well as
for the estimator of predicted transitivity.

Agents i = 1, . . . , n are characterized by independent draws from the joint distribution
of (Xi, γ

S
i , γ

R
i ). Here Xi is an agent-specific observed covariate distributed according to

a Beta(2,2) distribution (cf. the specification in Graham 2014). This distribution will
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3 An empirical model of dyadic link formation

bias CI coverage

n λ c C NC C NC

80 0.0 1.5 0.09 0.51 97.2 92.4
1.7 0.03 0.52 96.8 92.6

0.5 1.5 0.02 0.45 95.8 93.2
1.7 −0.01 0.51 96.6 92.8

50 0.0 1.5 −0.01 0.41 96.2 94.4
1.7 0.05 0.54 97.0 91.6

0.5 1.5 −0.00 0.43 95.6 92.6
1.7 0.21 0.75 97.0 90.0

Table 3.1: Simulation results for the homophily parameter θ0. Columns labeled C refer to
the bias-corrected estimator and columns labeled NC refer to the uncorrected
estimator. The bias is in terms of the standard error of the estimator and the
nominal level of the confidence interval is 1 − α = 95%. Results are reported
for B = 500 simulations.

endow a majority of agents with similar characteristics and concentrates deviations from
the network average in a small, heterogeneous group of agents. This imitates a similar
pattern observed in the application. The unobserved effects are generated according to

γSi = λ(Xi − c) + (1 − λ)(Beta(0.5,0.5) − c) and

γRi = λ(Xi − c) + (1 − λ)(Beta(0.5,0.5) − c),

where the two Beta distributions are independent. The parametrization of the Beta
distributions concentrates probability mass at the boundaries of the unit interval. This
results in individuals being clustered into groups with low and high unobserved effects,
similar to what is observed in the application. The parameter λ ∈ (0,1) controls
correlation between unobserved heterogeneity and observed attributes and the positive
constant c shifts the success probability. In the simulations rather large values of
c are chosen to emulate the small linking probabilities encountered in practice. For
e = (i, j) the link-specific homophily variables is given by Xe = ∣Xi −Xj ∣. Note that with
this specification the (Xe)e∈E are not independent but Assumption 3.2 is satisfied for
X(i,j) = (X ′

(i,j), γ
S
S , γ

R
j )′. The true value of the homophily parameter is θ0 = 1.5 and the

link-specific disturbance is standard normally distributed.

Table 3.1 summarizes the behavior of the corrected and the uncorrected estimator
of the homophily parameter in B = 500 simulations for different parameter values and
two sample sizes. It reports the bias of the estimator in terms of its standard error as
well as the empirical coverage of a confidence interval with nominal level 1 − α = 95%.
For the uncorrected estimator we observe a positive bias roughly the size of half a
standard deviation. The bias is very effectively removed by the analytical bias correction,
resulting in parameter estimates that are centered around the true value. This shows
that, even in finite samples, bias correction based on an asymptotic approximation can
be a powerful tool for increasing the precision of the estimates. Confidence intervals for
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3.5 Simulations

bias CI coverage ÊSn

n λ c C NC P C NC P C NC P

80 0.0 1.5 0.08 1.49 −3.31 92.2 64.8 0.0 501 583 303
1.7 0.05 1.91 −2.21 96.4 51.4 0.0 73 104 38

0.5 1.5 0.06 1.66 −1.03 95.8 61.0 0.0 216 265 179
1.7 0.14 2.20 −0.67 97.4 33.4 0.0 25 39 19

50 0.0 1.5 0.01 1.49 −2.00 88.6 63.4 0.0 125 152 77
1.7 −0.19 1.69 −1.41 94.8 60.0 0.0 18 30 10

0.5 1.5 0.07 1.72 −0.54 94.0 58.4 0.0 54 76 45
1.7 −0.12 2.02 −0.46 95.0 43.0 0.4 6 12 5

Table 3.2: Simulation results for the estimator of predicted transitivity. Columns labeled
C refer to the bias-corrected estimator, columns labeled NC refer to the
uncorrected estimator and columns labeled P refer to the estimator based on
the parametric model. Bias is reported in terms of standard deviations and
the nominal level of the confidence interval is 1 − α = 95%.

the uncorrected estimator are slightly undersized. After analytical bias correction the
coverage probabilities are fairly close to the nominal size. The improvement is, however,
not as substantial as it is for the bias.

Turning to predicted transitivity, I will also consider an estimator for the parametric
model from equation (3.3). For the link e = (i, j), the parametric model uses the observed
covariates Xi and Xj to approximate sender and receiver effects. It is obvious from the
specification of the data generating process that for λ ≠ 1 this approximation will be
imperfect.

Table 3.2 reports simulation results for three estimators of predicted transitivity. The
estimates from the parametric model severely understate transitivity. This confirms
the theoretical considerations from Section 3.2.2, showing that failure to account for
unobserved sources of degree heterogeneity can result in severely down-biased transitivity
estimates. Note that confidence intervals constructed from estimates based on the
parametric model almost never contain the true parameter.

The fixed-effects estimator without bias correction exhibits a positive bias of about
one-and-a-half to slightly over two standard deviations. Confidence intervals constructed
from uncorrected estimates cover the true parameter with probability less than two-thirds.
This is a substantial deviation from the nominal level of 95%. In the designs with low
linking probability (c = 1.7), empirical coverage is as low as 30-40% in some cases.

In this simulation design, the analytical correction has very favorable finite sample
properties. It picks up the bias almost completely. After applying the correction formula,
the remaining bias is but a small fraction of a standard deviation. This considerably
improves the normal approximation. The empirical coverage of confidence intervals
computed from the asymptotic distribution is now very close to the nominal level of
95%.
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i jSender Receiver
link

i asks j for help

maybe flow of goods

Figure 3.3: Definition of link: There is a link from i to j if, under a hypothetical situation,
i would go to j to ask for help.

3.6 Application: Favor networks in Indian villages

I use the Indian village data from Banerjee et al. 2013 and Jackson, Rodriguez-Barraquer,
and Tan 2012. This data set contains survey data from 75 Indian villages. In each village,
about 30 - 40% of the adult population were handed out detailed questionnaires that
elicited network relationships to other people in the same village as well as a wide range
of socio-economic characteristics.

For this application, networks are defined on the village level. Therefore, the data
set contains 75 network observations. For each village, the set of agents is given by the
surveyed villagers. Links are defined by a social relationship related to anticipated favor
exchanges.

In the presentation of my estimation results for the homophily component I will only
consider a single village. To investigate the level of transitivity predicted by different
dyadic models, I take advantage of the full data set and use all villages.

The directed network considered in this application is constructed from the survey
questions “If you suddenly needed to borrow Rs. 50 for a day, whom would you ask?”
and “If you needed to borrow kerosene or rice, to whom would you go to?”. To set up
the network, I let every surveyed individual send directed links to each of the individuals
nominated in one of the two questions, provided that the nominee was also included in
the survey. The network generated in this way is defined to be the network of interest.
This avoids identification issues that arise when using a partial sample for inference on an
imperfectly observed population network (Chandrasekhar and Lewis 2011). Addressing
such problems is beyond the scope of this paper.

A link from agent i to agent j indicates that, in times of need, i would ask j for help.
Note that, if j accedes to the request, the direction of the flow of goods will be opposite
to the direction of the link. Figure 3.3 illustrates the behavior of two linked villagers
under the hypothetical situation from the survey question.

It is instructive to discuss the significance of productivity, popularity and homophily in
the context of this application. When deciding about whether to establish a link to some
agent j, a sender i ponders whether j is able and willing to grant the request. Agent j’s
ability to provide help is affected by her own wealth and liquidity as well as i’s ability to
repay the loan or return the favor in the future. In the context of my model, the first
effect contributes to j’s popularity, and the second effect adds to i’s productivity. Agent
j’s willingness to help is a function of how altruistic she is, of i’s skill in negotiating the
favor, and of how sympathetic j is towards i’s plight. The first two considerations are,
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again, subsumed in j’s popularity and i’s productivity, respectively. It is plausible to
assume that j is more sympathetic towards i the more similar the two of them are. This
tendency is a manifestation of homophily. For example, j might have a high willingness
to offer assistance to members of her own family, and have little inclination to help out
individuals assigned to a different caste.

In the highly stylized decision model sketched in the previous paragraph, many drivers
of productivity and popularity such as an innate predisposition towards acts of altruism,
or expectations about future liquidity are inherently unobservable. In the dyadic linking
model these unobserved factors will be captured by the unobserved agent effects. If the
network is based on survey data, the sender effect can also subsume reporting behavior.
This makes the estimator of the homophily parameter robust to some common forms of
measurement error. The taste for homophily is captured by the parametric part of the
latent index and it is assumed that all drivers of homophily are observed.

The fundamental assumption at the heart of the dyadic linking model is that for all
linking decisions the dyad (or pair) is the relevant point of reference. This is an exogeneity
assumption under which individuals evaluate each link in isolation of all other links. In
particular, they do not care about the future network positions of their potential linking
partners. In the context of the favor network this assumption is compelling for two reasons.
First, as the network is based on a hypothetical, it is and remains largely unobserved,
which makes it hard for individuals to condition their actions on network realizations.
Secondly, the hypothetical transfer of goods that defines the network relation only affects
the individuals within the dyad. This stands in stark contrast to other network relations,
such as friendship networks, where it is natural to assume that individuals derive utility
from links between their friends.

In other work the exogeneity assumption has been challenged. Jackson, Rodriguez-
Barraquer, and Tan 2012 argue that reciprocation of favors is best enforced by the threat
of other agents in the network to withhold future favors from shirking individuals. Leung
2014 provides estimates for preferences for local structure in favor networks. Since his
model does not allow for unobserved sources of degree heterogeneity it is, however, hard
to say whether the estimated effects are genuine or spurious (cf. Section 3.2.2). I will
maintain the exogeneity condition as a working assumption. Below, I use the model
specification test developed in this paper to critically assess its validity.

I now present detailed results for village 60, the largest village in the sample (n = 414).
The estimation is based on the dyadic linking model with unobserved effects developed
in this paper.

Table 3.3 lists all variables that are used in the specification for the homophily
component. For the variables related to education, individuals are sorted into one of
three bins according to their reported years of formal schooling. Individuals are assigned
to the bin “SSLC” if they have obtained a Secondary Schooling Leaving Certificate. In
India, this certificate is awarded to students who pass an examination at the end of grade
10. It is a prerequisite for enrolling in pre-university courses. All other individuals are
assigned to “no education” if they have completed less than five years of schooling, and to
“primary education” if they report at least five years of schooling. For caste membership
I adopt the fairly broad categorization from the data set. Individuals are described as
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Variable Description

same caste i and j belong to the same caste
age difference absolute value of age difference between i and j
same family i and j belong to the same family
same latrine i and j both live in a house with an own latrine
same status both i and j are household heads
same gender i and j have the same gender
same village native both i and j were born in the village
educ None-Primary one of i and j has no education,

the other has finished primary education
educ None-SSLC one of i and j has no education,

the other has a obtained a SSL certificate
educ Primary-SSLC one of i and j has finished primary education,

the other has obtained a SSL certificate

Table 3.3: Description of variables measuring homophily (Xe).

members of scheduled tribes, scheduled castes, other backwards castes (OBC’s) or general
castes.

Coef se T p-value

same caste 0.80 0.0484 16.44 0.0000
age difference -0.01 0.0022 -5.97 0.0000

same family 2.45 0.0943 26.01 0.0000
same latrine 0.07 0.0331 1.97 0.0486
same status 0.05 0.0467 1.05 0.2921
same gender 0.53 0.0483 11.02 0.0000

same village native 0.04 0.0351 1.09 0.2735
educ None-Primary -0.10 0.0428 -2.38 0.0173

educ None-SSLC -0.19 0.0504 -3.82 0.0001
educ Primary-SSLC -0.10 0.0499 -2.07 0.0388

Table 3.4: Homophily estimates for village 60.

Table 3.4 reports bias-corrected estimates and standard errors for the homophily
component. Family ties are a dominating factor for determining targets for favor requests.
This reflects a strong sense of solidarity between family members. Same caste membership
and same gender are other strong determinants of the network relation. This is in line
with findings in Leung 2014 who studies similar favor networks. The “same latrine”
dummy, which is included as a proxy of similarities in wealth, has a comparably small
estimated effect that is significant at the five percent but not at the one percent level.
This indicates that the aversion to connecting to members of other castes is not driven
solely by economic disparities. The education dummies are jointly significant at the one
percent level (p-value = .0003). The estimated effect is almost linear, with a difference
in education levels corresponding to one bin, decreasing the link surplus by roughly 0.1
points.
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Figure 3.4: Unobserved heterogeneity in village 60. Unobserved types for agents i =
1, . . . , n.

The unobserved type of agent i corresponds to the tupel (γSi , γRi ). Thus, every agent
type can be represented as a point on a two-dimensional plane. A plot of estimated
types is provided in Figure 3.4 with sender and receiver effects centered at their common
empirical mean2. The graph reveals an interesting pattern of unobserved heterogeneity.
Types cluster into four distinct groups. The largest cluster consists of agents with
relatively large sender and receiver effects (attractor-producers). The second largest
cluster is composed of agents with relatively large sender effects and relatively small
receiver effect (producers). The set of agents with below average sender effects splits
neatly into a group with relatively large receiver effects (attractors) and a group with
relatively small receiver effects (isolates).

This clustering pattern has interesting implications. First, there is no monotone
relationship between sender and receiver effects. This suggests that productivity and
popularity are distinct phenomena rather than two manifestations of one underlying
variable such as social skill. This exemplifies the value of using data on the direction of
links. Models for directed networks, such as Graham 2014, are by necessity restricted to
modelling one-dimensional types and can therefore not reflect as rich a picture of the
unobserved heterogeneity. Secondly, as most agents belong to clusters with large sender
effects, unobserved heterogeneity will drive linking behavior mainly through variations in

2Note that the normalization from equation (3.2) imposes equality of the empirical mean of the sender
effects and the empirical mean of the receiver effects.
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receiver popularity. Sender productivity plays a less defining role.

The clusters can be compared along a wide range of observed characteristics such as
age profiles (Figure 3.9). In the clusters with below-average receiver effects young and old
people are over-represented, whereas individuals in their prime working age are under-
represented. In the clusters with above-average receiver effects the pattern is inverted.
About 12% of the agents in the attractor-producer cluster participate in self-help groups
(SHGs). This is contrasted by almost non-existent participation rates in the other clusters.
SHGs are savings and loan clubs organized at the village level. They might be related
to productivity and popularity by attracting wealthier or more entrepreneurial villagers
who are interested in depositing savings or taking out loans. Additional comparisons of
cluster characteristics are provided in Table 3.6 in the appendix.

Unobserved agent effects determine in a fundamental way which links are formed. In
Figure 3.7 and Figure 3.8 in the appendix, unobserved types are plotted against observed
in-degrees and observed out-degrees, respectively. Agents belonging to the clusters with
low receiver effects do not attract any links, and agents belonging to the clusters with
low sender effects do not nominate any linking partners.

I now turn to estimating predicted transitivity and testing it against realized transitivity.
To this end, I compare the model with unobserved effects to a benchmark given by the
parametric model from equation (3.3). The parametric model approximates agent
productivity and popularity using a rich array of observed characteristics detailed in
Table 3.7 in the appendix. Results for almost all villages3 in the dataset are summarized
in Table 3.5 in the appendix.

For the model with unobserved effects, bias-corrected estimates are larger than the
uncorrected estimates. On average, the size of the correction is about two-and-a half
standard deviations. The magnitude of the estimated bias implies that for this application
the bias correction is an essential part of the testing procedure. Failure to implement the
correction will lead to substantially different test results.

As argued in Section 3.2.2, a model that does not account for all determinants of
productivity and popularity will understate transitivity. The transitivity estimates
from the parametric model are substantially lower than those obtained from the model
with fixed effects, capturing on average only roughly 12% of the transitivity estimated
by the model with unobserved heterogeneity. The degree to which the two estimates
diverge suggests that unobserved heterogeneity plays a substantial role in driving degree
heterogeneity. In other words, agent productivity and popularity are not explained well
by observed characteristics.

The vast differences between the two models in terms of estimated level of transitivity
are also reflected in the transitivity test. Figure 3.5 plots values of the test statistic
for both models. The choice of model crucially affects the statistical significance of the
difference between observed and predicted transitivity.

The parametric model rejects the null hypothesis of correct model specification for all
villages (significance level α = 0.05). In contrast, for the model with unobserved effects

3Some smaller villages for which collinearity issues in the specification of the parametric model arise,
have been excluded.
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Figure 3.5: Comparing test statistics under the model with unobserved effects to test
statistics under the model without unobserved effects for all networks in data
set. The shaded region gives the interval in which a two-sided test does not
reject at level α = .05.

the null is rejected only for about a quarter of the villages. It is unavoidable that passing
to a more complex model adds additional statistical noise. However, the differences in
test results are only partially due to larger standard errors in the model with unobserved
effects.

All Tn-values for the parametric model are positive, suggesting that the linking model
underestimates the network’s tendency towards transitive closure. A popular candidate
for the cause of such a failure is the notion that agents derive utility from transitive
relations. If this were true, then agents would care about endogenous attributes of the
network, violating the exogeneity assumption. For the model with unobserved effects
the test statistic takes on positive as well as negative values. All rejections are for
negative values of Tn. While this is still suggestive of non-random behavior, it invites a
fundamentally different interpretation of the way in which the model fails. A distaste for
transitivity does not have much theoretical appeal, leading the researcher to consider
other mechanisms, such as systematic under-reporting of transitive relations in the survey.

This illustrates well that specification tests can offer more than a binary indication
of model validity. Some rejections provide evidence that the model misrepresents the
economic context in a fundamental way. Other rejections have less severe repercussions
and might still allow the researcher to maintain the model as a useful approximation.

For the favor networks in Indian networks, it seems that accounting for unobserved

111



3 An empirical model of dyadic link formation

sources of degree heterogeneity may be sufficient to dismantle circumstantial evidence for
network externalities.

3.7 Conclusion

The ideas explored in this paper open up several avenues for future research into network
formation models.

An obvious extension is to replace independence of the link-specific shocks by a less
restrictive exogeneity assumption. It is natural to allow for correlation between the
two shocks that are relevant for the links between a given pair of agents. This can be
accomplished by passing to a model that imposes an iid assumption on tuples (ε(i,j), ε(j,i)),
i ≠ j. Such a model is a network version of a bivariate probit model with fixed effects.
The analysis of this model can proceed along similar steps as those outlined in this paper
for the simpler model. In the bivariate model, the correlation between the within-dyad
shocks is an additional parameter of economic interest. Similar to a corresponding
parameter in the model of Holland and Leinhardt 1981 this correlation describes agent
preferences for reciprocating links. An alternative approach is to put more structure
on the dyadic interaction by formulating link formation as an appropriate multinomial
choice problem that lets each pair of agents jointly decide which of the four possible
link configurations within the dyad they want to have. This approach requires that the
economist has sufficient prior knowledge about the nature of the dyadic interaction to
set up a meaningful choice model.

I have presented results for transitivity as an example of local structure. Depending on
the specific application in mind other features might be of interest. It is an interesting
challenge to provide a unified theory of inference in the presence of unobserved hetero-
geneity for a broad class of local network features. The difficulty of such an endeavor lies
in finding a general expression for the asymptotic bias.

In this paper, I focus on a relatively simple transitivity measure. This is mainly for
expositional convenience. In fact, the asymptotic distribution of a plug-in estimator of
the clustering coefficient from equation (3.4) is provided by a straightforward corollary to
my results. To see this, note that upon suitable normalization of the clustering coefficient,
the denominator can be replaced by its probability limit at the expense of an op(1) term.
Then, Theorem 3.3 and an appeal to the delta-method give the desired distribution.

My transitivity test improves on previous tests (Holland and Leinhardt 1978; Karlberg
1999) along two dimensions. First, it is asymptotically normal. Approximate critical
values can be obtained from the asymptotic distribution. This obviates the need for
computationally intensive simulations. Secondly, it explicitly takes into account the
estimation error from estimating the reference distribution. This caters to many empirical
applications in which knowledge about an appropriate reference distribution is limited.
These two achievements are possible because of the way the model controls for degree
heterogeneity. The unobserved effects approach allows for a flexible degree distribution
while also admitting a large sample theory. It seems that other testing problems in
networks could benefit from this framework as well. Further research is needed.
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As I have shown above, controlling for unobserved heterogeneity is essential for giving
an accurate description of local network features. In my application, a model that does
not admit unobserved heterogeneity estimates spurious excess transitivity. Controlling
for unobserved sources of degree heterogeneity reverses the verdict regarding transitivity.
The level of transitivity predicted from the model without unobserved effects is not
significantly higher than the observed level of transitivity. Recently, the econometric
research on network formation models has focused on allowing agents to care for en-
dogenous network attributes. Some significant progress has been made in this direction
(Mele 2013; Sheng 2014; Miyauchi 2014; Leung 2014), but this has come at the expense
of neglecting ramifications of unobserved heterogeneity. In particular, as I argue for
transitivity, unobserved heterogeneity and agent preferences for endogenous network
features (“network externalities”) are competing explanations when it comes to justifying
the prevalence of certain local structures. In some economic settings one explanation
might seem more plausible, for others, the other explanation is more compelling. In
settings in which both explanations have a claim to validity, identification strategies will
have to be developed to disentangle the two effects.

Appendix 3.A Notation

In this part of the appendix I introduce notation from Fernández-Val and Weidner
2014 (henceforth FVW) that will be helpful in the subsequent proofs. We let φ =
(γS1 , . . . , γSn , γR1 , . . . , γRn ) denote the incidental parameter vector. The unobserved effect
for the link (i, j) is π(i,j) = γSi + γRj . The likelihood contribution of edge e is

`e(θ, φ) = Ye log pe + (1 − Ye) log(1 − pe)
= Ye logFe(Xeθ + πe) + (1 − Ye) log(1 − Fe(Xeθ + πe)).

We write `e = `e(θ0, φ0) for the likelihood contribution evaluated at the true parameters.
Note that ∂π`e = He(Ye − pe) and ∂θ`e = (∂π`e)Xe (compare also Example 1 in FVW).
The empirical likelihood is

L(θ, φ) = 1

n
∑
e

`e(θ, φ) − b ((ι′n,−ι′n)φ)
2 /2,

where the last term is a penalty that imposes the restriction ∑i(γSi − γRi ) = 0 on the
incidental parameter and b is an arbitrary positive constant. We write L = L(θ, φ) and
L̄ = ĒL and use corresponding notation for the derivatives of the likelihood. Furthermore
we let

S = ∂φL = (
[ 1
n ∑j∶j≠i ∂π`(i,j)]i∈V

[ 1
n ∑i∶i≠j ∂π`(i,j)]j∈V

)

denote the likelihood score with respect to the incidental parameter evaluated at the
true parameters and let H = −∂φφ′L denote the corresponding Hessian. Let H̄ = ĒH and
H̃ =H − H̄.
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Appendix 3.B Proofs of main theorems

Proof of Theorem 3.1 The proof follows the same line of arguments as the proof of
Theorem 4.1 in FVW. The only difference is that, while in the panel set-up all time
periods are observed for each individual, in the network model only n−1 out of n possible
links to receivers are permitted. Namely, my model does not allow self-links. This,
however, can be accommodated. For example, note that the score with respect to the
incidental parameter can be written as

S = [Mιn
M ′ιn

]

where M is the n × n matrix with entries Mi,j = ∂π`(i,j) for i ≠ j and Mi,j = 0 otherwise.
This is the representation assumed in the application of Lemma D.11 of FVW and one
can proceed as in their proof. For the other projection arguments one proceeds similarly.
◻

Proof of Theorem 3.2 The theorem follows form an expansion in the proof of Theo-
rem 3.5. ◻

Proof of Theorem 3.3 The theorem follows from an expansion in the proof of Theo-
rem 3.6. ◻

Proof of Theorem 3.4 The result follows from Theorem 3.6 in conjunction with
Corollary 3.1 setting an = a = 1. ◻

Proof of Theorem 3.5 Let ρ̂β =∏e∈β pe(Xe, π̂e, β̂). We decompose

n−2 (Sn − ÊSn) = n−2∑β
(Te − ρβ) − (n−2∑β

ρ̂β − n−2∑β
ρβ).

For the first term, argue similarly to the proof of Theorem 3.6 that

n−2∑β
(Te − ρβ) = n−1∑

e

(Ye − pe)βne + op(1).

For the second term let ∆ = n−3∑β ρβ and ∆̂ = n−3∑β ρ̂β . Note that ∆ behaves like the
partial effect considered in FVW and employ their Theorem B.4 to show that conditional
on observables and unobserved effects

∆̂ −∆ = [∂θ′∆ + (∂φ′∆)H̄−1(∂φθ′L̄)] (θ̂ − θ0) +U (0)∆ +U (1)∆ + op (n−1)

with

U
(0)
∆ =(∂φ′∆)H̄−1S,

U
(1)
∆ = − (∂φ′∆̄)H̄−1H̃H̄−1S

+ 1

2
S ′H̄−1

⎡⎢⎢⎢⎢⎣
∂φφ′∆ +

dimφ

∑
g=1

[∂φφ′φg L̄] [H̄−1(∂φ′∆)]
g

⎤⎥⎥⎥⎥⎦
H̄−1S.
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Define the n × n matrix Dn by

Dn =
⎧⎪⎪⎨⎪⎪⎩

Dn
(i,j) for i ≠ j

0 otherwise

and note that

∂φ∆ = 1

n2
( Dn ιN
(Dn)′ ιN

)

and

∂θ∆ = 1

n2 ∑
e∈E

⎧⎪⎪⎨⎪⎪⎩

1

3n
∑
β∋e

∂θρβ

⎫⎪⎪⎬⎪⎪⎭
= 1

n2 ∑
e∈E

⎧⎪⎪⎨⎪⎪⎩
(∂θpβ)

1

n
∑
β∋e

ρ−e(β)
⎫⎪⎪⎬⎪⎪⎭
= 1

n2 ∑
e∈E

(∂πpβ)βneXe.

Using ∂πpβ = fe the projection argument from Lemma B.11 in FVW gives

∂θ′∆ + (∂φ′∆)H̄−1(∂φθ′L̄) = Ξn.

Arguments similar to the ones employed in the proofs of Theorem C.1 and Theorem 4.2
in FVW give

n
⎛
⎝

1

2
S ′H̄−1

⎡⎢⎢⎢⎢⎣

dimφ

∑
g=1

[∂φφ′φg L̄] [H̄−1(∂φ′∆)]
g

⎤⎥⎥⎥⎥⎦
H̄−1S − (∂φ′∆)H̄−1H̃H̄−1S

⎞
⎠

= lim
n→∞

1

2n
∑
i

∑j∶j≠iH(i,j)Ψ(i,j)∂f(i,j)
∑j∶j≠i ω(i,j)

+ lim
n→∞

1

2n
∑
j

∑i∶i≠jH(i,j)Ψ(i,j)∂f(i,j)
∑i∶i≠j ω(i,j)

+ op(1).

For the remaining term the arguments in FVW do not apply as ∂φφ′∆ does not exhibit
as symmetric a structure as the corresponding derivative of a partial effect. Instead write

n (∂φφ′∆) =
⎡⎢⎢⎢⎢⎣

AφSS AφSR
(AφSR)

′

AφRR

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

ĀφSS + Ã
φ
SS ĀφSR + Ã

φ
SR

(ĀφSR + Ã
φ
SR)

′

ĀφSS + Ã
φ
RR

⎤⎥⎥⎥⎥⎦

with Āφk a diagonal matrix such that ∥Āφk∥max = Op(1) and Ãφk such that ∥Āφk∥max =
Op(n−1) for k ∈ {SS,SR,RR}. By Lemma D.8 in FVW the expected Hessian with
respect to the incidental parameter has the same structure

H̄−1 = [ H̄
−1
SS H̄−1

SR

(H̄−1
SR)

′ H̄−1
RR

] =
⎡⎢⎢⎢⎢⎣

¯̄H−1
SS + ˜̄H−1

SS
¯̄H−1
SR + ˜̄H−1

SR

( ¯̄H−1
SR + ˜̄H−1

SR)
′ ¯̄H−1

RR + ˜̄H−1
RR

⎤⎥⎥⎥⎥⎦
.

Now note that, for D1,D2 diagonal stochastic matrices with ∥Dk∥max = Op(1), k = 1,2,
and M1,M2 stochastic matrices such that ∥Mk∥max = Op(n−1), k = 1,2, D1 ×D2 is a
stochastically bounded diagonal matrix, and D1 ×M1 and M1 ×M2 are bounded by an
Op(n−1) term. All bounds are in terms of the matrix maximum norm. Let Υ denote a
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n × n random matrix with entries Υi,j = ∂π`(i,j) if i ≠ j and Υi,j = 0 otherwise. The score
with respect to the incidental parameter can be written as

S = [SSSR
] = 1

n
[Υ ιn
Υ′ ιn

] .

Multiplying out the partitioned matrices and employing Lemma 3.2 multiple times gives

n (S ′H̄−1∂φφ′∆H̄−1S) = E [S ′S ¯̄H−1
SSĀ

φ
SS

¯̄H−1
SSSS] +E [S ′R ¯̄H−1

RRĀ
φ
RR

¯̄H−1
RRSR] + op(1).

Now

E [S ′S ¯̄H−1
SSĀ

φ
SS

¯̄H−1
SSSS] =

1

n2
E

⎧⎪⎪⎨⎪⎪⎩
∑
i

(ĀφSS)i,i
∑j∶j≠i (∂π`(i,j))

2

( 1
n ∑j∶j≠i ω(i,j))

2

⎫⎪⎪⎬⎪⎪⎭

= 1

n
∑
i

(n − 1)(ĀφSS)i,i
∑j∶j≠i ω(i,j)

+ o(1),

where the second equality follows from a Bartlett identity. By symmetry

E [S ′R ¯̄H−1
RRĀ

φ
RR

¯̄H−1
RRSR] =

1

n
∑
j

(n − 1)(ĀφRR)j,j
∑i∶i≠j ω(i,j)

+ o(1).

Since (ĀφSS)i,i = δ
S
i and (ĀφRR)j,j = δ

R
j ,

n (U (1)∆ ) = lim
n→∞

1

2n
∑
i

∑j∶j≠i (H(i,j)Ψ(i,j)∂f(i,j) + δSi )
∑j∶j≠i ω(i,j)

+ lim
n→∞

1

2n
∑
j

∑i∶i≠j (H(i,j)Ψ(i,j)∂f(i,j) + δRj )
∑i∶i≠j ω(i,j)

+ op(1).

Using similar arguments as in the proofs of Theorem C.1 in FVW one can show that

U
(0)
∆ = − 1

n
∑
e

Ψe∂π`e.

From the proof of Theorem 3.3

W̃∞ n (θ̂ − θ0) = B∞ +D∞ + 1

n
∑
e

(∂β`e − ∂π`e(Xe − X̃e)) + op(1).

Plugging in for the binary choice model gives

∂π`e =He(Ye − pe) and ∂β`e = (∂π`e)Xe.
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Therefore, the stochastic part of n−2 (Sn − ÊSn) can be written as

1

n
∑
e

(Ye − pe) (βne −He(Ξ′
nW̄

−1
∞ X̃e −Ψe))

= 1

n
∑
e

(Ye − pe) (βne −He(Ξ′
∞W̄

−1
∞ X̃e −Ψe))

− 1

n
∑
e

(Ye − pe)He ((Ξn −Ξ∞)′W̃ −1
∞ X̃e −Ψe) .

It can be shown by standard arguments that the second term is op(1). For the first
term, an appeal to the Lindeberg-Feller central limit theorem gives the desired normal
distribution. Collecting terms gives an asymptotic bias of BTT

∞ +DTT
∞ . ◻

Appendix 3.C Auxiliary results

3.C.1 Example 3.1

The claim in the example follows from the following lemma.

Lemma 3.1 Let ρ○n =
n○n
n p

○
n and let ρ⋆n =

n⋆n
n p

⋆
n. Then

lim inf
n

EMsimple,n
[# transitive triples]

E
Mproj

simple,n
[# transitive triples]

≥ 1 + lim inf
n

en.

with

en =
(p⋆n − p○n)2

p⋆np
○
n

(ρ
⋆
n

ρ○n
)(1 + ρ

⋆
n

ρ○n
)
−2

.

Proof Let Rn denote the ratio on the right-hand side. For a positive integer m define
the factorial power mk =m(m − 1)⋯(m − k + 1). We first ignore the n subscript and the
asymptotic framework and give an exact calculation for fixed n. For the denominator of
the ratio above we can write

E
Mproj

simple
[# transitive triples] = n3p3 = n3 (n

○

n
p○ + n

⋆

n
p⋆) def= n3Dn.

Turning to the nominator we partition all transitive triples (TTs) by the number of
attractor nodes that they contain.

0 attractors The number of TTs with exactly zero attractor nodes is

(n
○

3
) Iso(transitive triple) = (n○)3,

where Iso(G) is the number of isomorphisms of the graph G. Since all positions in a
transitive triple are unique, the number of isomorphisms of a transitive triple is equal to
the permutations of node labels, i.e., Iso(transitive triple) = 3!. Each of these TTs has
probability (p○)3. The contribution to the expectation is (n○)3(p○)3.

1 attractor There are (n○
2
)n⋆ ways of selecting the nodes. Given three nodes there are
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2! TTs with probability (p○)3

2! TTs with probability (p○)2p⋆

2! TTs with probability p○(p⋆)2.

In sum, the contribution of these TTs to the expectation is

n⋆(n○)2(p○)2p⋆ (1 + p
○

p⋆
+ p

⋆

p○
) = (n○)2n⋆(p○)2p⋆(3 +wn),

where

wn =
(p⋆ − p○)2

p⋆p○
.

2 attractors There are n○(n
⋆

2
) ways of selecting the nodes. Given three nodes there

are

2! TTs with probability (p⋆)3

2! TTs with probability (p⋆)2p○

2! TTs with probability p⋆(p○)2.

The contribution of these TTs to the expectation is

n○(n
⋆

2
)(p⋆)2p○ (1 + p

○

p⋆
+ p

⋆

p○
) = n○(n⋆)2p○(p⋆)2(3 +wn),

where wn is defined as above.

3 attractors Arguing as above it is easy to see that the contribution to the expectation
is (n⋆)3(p⋆)3.

Putting the results from above together we get

EMsimple
[# transitive triples]

=(n○)3(p○)3 + (3 +w)(n○)2n⋆(p○)2p⋆ + (3 +w)n○(n⋆)2p○(p⋆)2 + (n⋆)3(p⋆)3.

Returning to the asymptotic framework, dividing nominator and denominator by n3 and
expanding Dn it is now easy to see that

Rn = 1 +wn
(n○)2n⋆
n3 (p○)2p⋆ + n○(n⋆)2

n3 p○(p⋆)2

Dn
+ o(1)

= 1 +wn
(ρ○n)2ρ⋆n + ρ○n(ρ⋆)2

Dn
+ o(1).

Since

Dn = (ρ○n)3 + 3(ρ○n)2ρ⋆ + 3ρ○n(ρ⋆n)2 + (ρ⋆n)3
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we have
Dn

(ρ○n)2ρ⋆n
= f (ρ

⋆
n

ρ○n
) .

for f(x) = 3 + x2 + 3x + x−1 and hence by symmetry

Dn

ρ○n(ρ⋆)2
= f (ρ

○
n

ρ⋆n
) .

Now noting that f(x−1) = xf(x) straightforward calculations yield

[f (x)]−1 + [f (x−1)]−1 = x

(1 + x)2
.

◻

3.C.2 Sparse dyadic model without unobserved effects

In this appendix we consider a variation of the model (3.3) where the link function is
allowed to depend on n. We assume that the link function is given by Fn = a−1

n F for
a deterministic sequence an and a base link function F . For an → ∞ this allows for
asymptotically sparse networks. Both an and F are assumed to be known. For notational
convenience we redefine ρ−e(β) =∏βj∈β

βj≠e

Fe.

Theorem 3.6 Suppose that an ≥ 1 and a−1
n n

2 →∞. Assume that the base link function
F is bounded away from zero and one, and that it is three times continuously differentiable.
Let Rθ,∞ = limn→∞Rθ,n,

W̆∞ = lim
n→∞

1

n2 ∑
e∈E(n)

f2
e

Fe(1 − a−1
n Fe)

XeX ′
e,

V̆
(a)
S = lim

n→∞

1

n2 ∑
e∈E(n)

Fe(1 − a−1
n Fe) {βne −X◊

e }
2
,

V̆
(b)
S = lim

n→∞

1

n2 ∑
e∈E(n)

∑
β,β′

β∩β′={e}
∣V (β)∩V (β)∣=2

(ρ−e(β) − 1
3X

◊
e )(ρ−e(β′) − 1

3X
◊
e )

n2
Fe(1 − a−1

n Fe),

where X◊
e = (Rθ,∞)′ W̆ −1

∞ feXe/(Fe(1 − a−1
n Fe)). Suppose that conditional on X all limits

exist and that V̆
(a)
S > 0. Then conditionally on X

n−2 (Sn − ÊSn)
dÐ→ N (0, V̆

(a)
S ).

Moreover,

V̆
(b)
S

V̆
(a)
S

→ 1.
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Proof We work conditionally on X. First, we compute the variance of Sn. Since
triangles β and β′ are independent provided that β ∩ β′ = ∅ we get

varSn =E
⎛
⎝∑β∈B

(Tβ −ETβ)
⎞
⎠

2

=a−4
n ∑
(β,β′)∈B×B
∣β∩β′∣=1

E [(Tβ −ETβ)(Tβ′ −ETβ′)] +Hn

=a−5
n ∑

e
∑

(β,β′)∈B×B
β∩β′={e}

Fe(1 − a−1
n Fe)ρt−e(β)ρt−e(β′) +Hn,

where Hn captures the contribution to the expectation from triangle pairs that share 2
or 3 edges. The number of triangle pairs that share 2 edges and the number of triangle
pairs that share 3 edges (these are just the pairs (β,β), β ∈ B) are both of the same
order as n3. Note that since F is bounded away from zero there is a constant C1 such
that the contribution to the expectation is less than C1a

−4
n and C1a

−3
n for each pair of

triangles with 2 and 3 common nodes, respectively. Hence,

Rn = O (a−4
n n

3 + a−3
n n

3) = O (a−3
n n

3) .

Let Ŝn denote the Hajek-Projection of Sn −ESn onto the (Ye)e∈E , i.e.,

Ŝn =∑
e

E [Sn −ESn ∣ Ye] =∑
e
∑
β

E [Tβ −ETβ ∣ Ye] .

Obviously, E [Tβ −ETβ ∣ Ye] = 0 if e ∉ β. Otherwise,

E [Tβ −ETβ ∣ Ye] = a−2
n (Ye − a−1

n Fe)ρ−e(β).

Therefore,
Ŝn = a−2

n ∑
e
∑
β∋e

(Ye − a−1
n Fe)ρ−e(β)

and

var Ŝn = a−4
n ∑

e
∑

(β,β′)∈B×B
β∩β′={e}

ρ−e(β)ρ−e(β′)E (Ye − a−1
n Fe)

2

= a−5
n ∑

e
∑

(β,β′)∈B×B
β∩β′={e}

Fe(1 − a−1
n Fe)ρ−e(β)ρ−e(β′).

As F is bounded away from zero for some constant C

var Ŝn ≥ Ca−5
n n

4

and therefore
varSn

var Ŝn
≤ 1 +O ( 1

a−2
n n

) .
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As Hn ≥ 0 we also have varSn ≥ Ŝn and therefore

varSn

var Ŝn
→ 1

so that by Theorem 11.2 in van der Vaart 2000

Sn −ESn − Ŝn = op (
√

var Ŝn) = op (a
5/2
n n

−2) .

Then

Sn − ÊSn = Sn −ESn − (ÊSn −ESn)

= Ŝn − (ÊSn −ESn) + op (a
5/2
n n

−2) .

Turning first to the second term note that

ÊSn −ESn =a−3
n n

3Rθ,n(θ0)(θ̂ − θ0)

+ 1

2
a−3
n (θ̂ − θ0)′[∑

β

∂θθ′(Fβ1Fβ2Fβ3)(θ̃)](θ̂ − θ0)

=a−3
n n

3Rθ,n(θ̂ − θ0) +Op (a−3
n n

3∥θ̂ − θ0∥2) ,

where θ̃ is an intermediate value. It is easy to show that θ̂ has an asymptotically linear
representation

a−1
n n (θ̂ − θ0) = 1

n
∑

e∈E(n)

ψe +Op (
1

a−1
n n

)

with influence function

ψe = W̆ −1
∞

fe
Fe(1 − a−1

n Fe)
Xe(Ye − a−1

n Fe).

Plugging in the linear representation gives

a
5/2
n

ÊSn −ESn
n2

=a1/2
n Rθ,na

−1
n n(θ̂ − θ0) + op(1)

=a
1/2
n

n
∑

e∈E(n)

X◊
e (Ye − a−1

n Fe) + op(1).

Therefore

a
5/2
n

Sn − ÊSn
n2

=a
1/2
n

n
∑

e∈E(n)

(∑β∋e
ρ−e(β)
n

−X◊
e )(Ye − a−1

n Fe) + op(1).

The variance of the first term on the right-hand side is V̆
(a)
S + o(1). It is straightforward

to verify that Lindeberg’s condition is satisfied. The claim about V̆
(b)
S follows by noting

that

(∑β∋e
ρ−e(β)
n

−X◊
e )

2

= (∑
β∋e

ρ−e(β) − 1
3X

◊
e

n
)

2
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3 An empirical model of dyadic link formation

and expanding the square. It is then easy to see that the resulting sum is dominated by
pairs of triangles that share exactly two vertices. ◻

Under a distributional assumption about the Xe the limits in Theorem 3.6 can be shown
to exist and the asymptotic variance can be expressed as a function of subgraphs on the
vertex set {1,2,3,4}. To this end, let

B+v = {β ∶ β is a TT on {1,2, v}, (1,2) ∈ β}.

Corollary 3.1 Suppose that the assumptions of Theorem 3.6 and in addition Assump-
tion 3.2 hold. Suppose also that an → a. Let

V
(c)
θ = ∑

β∈B+3
β′∈B+4

E{(ρ−(1,2)(β) −
1

3
X◊

(1,2)
)(ρ−(1,2)(β′) −

1

3
X◊

(1,2)
)F(1,2) (1 − a−1F(1,2))} .

Then

W̆∞ = E{ f2
e

Fe(1 − a−1Fe)
XeX ′

e},

Rθ,∞ = E{∂θρβ(X, θ0)}

on a set with probability approaching one and

n−2a
5/2
n (Sn − ÊSn)

dÐ→ N (0, V̆
(c)
S ).

Proof The first two statements follow by standard arguments using the Markov in-

equality. Note that V̆
(c)
S = E V̆

(b)
S . The distributional result follows by Theorem 3.6 if we

show
V̆
(b)
S

E V̆
(b)
S

pÐ→ 1.

It suffices to show that the variance of the ratio on the left-hand side vanishes. To this
end, let

B̃ = {(β,β′) ∈ B ×B ∶ ∣β ∩ β′∣ = 1; ∣V (β) ∩ V (β′)∣ = 2}
and extend the vertex pairs of TTs. Let

(β,β′) = β ∪ β′ and V ((β,β′)) = V (β) ∪ V (β′).

Using these definitions, V̆
(b)
S can be written as limn→∞∑k∈B̃ Uk and it suffices to show

that
limn→∞ E{∑k,l∈B̃(Uk −EUk)(Ul −EUl)}

(limn→∞ E ∑k∈B̃ Uk)
2

→ 0.

Note that for E(Uk −EUk)(Ul −EUl) ≠ 0 we require V (k) ∩ V (l) ≠ ∅. Hence, pairs k, l
giving non-zero expectation have to comprise at most 5 vertices and are therefore at
most of order n5. ◻
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3.C.3 Lemmas

Lemma 3.2 Let Υ denote an n×n random matrix with entries Υi,j = Yi,j for independent,
mean-zero random variables Yi,j that satisfy EY 4

i,j ≤ C for a finite constant C. Moreover,
let M denote a random matrix with ∥M∥max = Op (n) and let D denote a random diagonal
matrix with ∥D∥max = Op(1). Then for A,B ∈ {Υ,Υ′}

(Aιn)′MB ιn = op (n2) ,
(Aιn)′DB ιn = E (Aιn)′DB ιn + op (n2) ,

and E (Υ ιn)′DΥ′ ιn = o (n2) .

Proof It suffices to consider the cases A = B = Υ (case 1), and A = Υ and B = Υ′ (case
2). Let ai and bj denote generic columns of A and B, respectively. Write

Wn = 1

n2
(Aιn)′MB ιn =

1

n2∑
i,j

1

n
a′ibj [nmi,j] =

1

n2∑
i,j

1

n
wi,j

for wi,j = 1
n ∑k ai,kbj,k. By assumption, there is a positive constant C1 such −C1 < nmi,j <

C1, uniformly in i, j. For case 1, wi,j = n−1∑k Yk,iYk,j and Ewi,j = 0 for i ≠ j and Ewi,j
is uniformly bounded otherwise and therefore EWn = o(1). Moreover,

Ewi,jwi′,j′ =
1

n2∑
k

EYk,iYk,jYk,i′Yk,j′ +
1

n2 ∑
k≠k′

EYk,iYk,jYk′,i′Yk′,j′ = O (n−1) + 0

uniformly over all i, i′, j, j′ such that i ≠ i′ or j ≠ j′ and uniformly bounded otherwise.
This implies E (Wn)2 = o(1). For case 2 wi,j = n−1∑k Yk,iYj,k. Note that Ewi,j = 0 if
either i ≠ k or j ≠ k and Ewi,j is uniformly bounded otherwise. Hence EWn = o(1). The
term Ewi,jwi′,j′ can be bounded as above. The other statements can be proven in a
similar way. ◻

123



3 An empirical model of dyadic link formation

Appendix 3.D Figures
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Figure 3.6: The function e from Example 3.1 plotted for various fixed values of λ.
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Figure 3.7: Unobserved type vs. observed in-degree for village 60.
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Figure 3.8: Unobserved type vs. observed out-degree for village 60.
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Figure 3.9: Age profiles by cluster for village 60. The unobserved type clusters are:
attractor-producers (AP), attractors (A), producers(P) and isolates (I).
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Appendix 3.E Tables

Village n Sn ÊSn
A

ÊSn ÊSn
P

TAn TPn

1 203 58 62 23 6 -0.31 37.89
2 203 32 61 20 6 -1.17 12.21
3 345 50 56 15 5 -0.42 51.75
4 256 52 80 18 7 -0.86 27.60
5 164 18 64 11 4 -2.27 12.88
6 110 17 68 12 5 -4.47 9.39
7 172 96 133 39 19 -0.73 20.63
8 109 47 106 33 17 -2.17 7.12
9 247 67 99 23 8 -0.83 38.68

11 142 46 164 30 14 -3.58 9.54
12 195 76 96 23 12 -1.08 18.34
14 150 93 195 53 17 -2.68 19.52
15 212 36 141 28 13 -4.71 6.70
16 178 83 151 46 19 -2.38 17.24
17 200 40 86 28 10 -2.29 13.74
18 284 32 101 21 8 -2.77 14.01
19 243 77 150 41 20 -2.16 13.79
20 159 69 143 42 14 -3.17 17.98
21 210 46 132 26 9 -2.85 17.62
23 280 84 132 26 9 -1.65 41.66
25 304 61 114 25 10 -1.06 30.07
26 149 67 116 31 14 -1.09 18.19
27 174 32 170 24 12 -1.11 6.58
28 395 66 83 25 8 -0.55 41.61
29 303 123 211 49 24 -1.42 21.32
30 170 94 287 34 16 -2.21 24.48
33 219 82 137 36 15 -1.25 19.92
34 181 93 282 33 19 -1.65 18.30
35 216 136 143 47 18 -0.17 32.07
36 293 245 239 92 29 0.11 56.52
37 132 108 114 43 17 -0.14 26.71
38 182 34 134 25 10 -2.66 10.26
39 370 117 173 46 23 -1.26 20.00
40 266 355 267 91 45 1.27 50.65
41 181 272 227 74 37 0.67 36.60
42 206 131 160 54 30 -0.49 18.02
43 227 226 170 55 27 0.95 51.46
44 258 245 163 65 32 1.60 45.06
45 263 66 143 24 11 -1.52 20.84
48 217 107 156 57 26 -1.08 18.01
49 184 79 102 44 25 -0.62 11.47
50 261 259 216 78 48 0.63 33.18
51 309 298 254 108 56 0.69 33.83
52 395 344 329 124 53 0.17 50.43
53 170 183 213 67 35 -0.36 26.43
54 124 64 159 49 27 -1.56 6.95

Continued on next page
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Table 3.5 – continued from previous page

Village n Sn ÊSn
A

ÊSn ÊSn
P

TAn TPn

55 279 201 249 71 37 -0.52 29.68
60 413 151 259 71 35 -1.39 20.59
62 242 161 138 52 25 0.52 34.35
64 294 158 155 39 17 0.07 50.28
65 341 344 325 115 57 0.20 38.40
66 189 41 67 19 7 -1.21 23.28
67 231 33 72 19 7 -1.38 15.77
68 164 17 119 21 9 -2.34 4.24
69 220 281 324 132 70 -0.45 21.51
71 298 169 203 55 32 -0.35 24.10
72 238 50 149 25 10 -2.12 17.30
73 217 98 142 47 21 -1.14 20.68
74 193 109 450 45 28 -1.88 14.39
76 269 137 159 41 20 -0.46 34.51
77 172 98 164 52 24 -1.15 17.40

Table 3.5: Estimating and testing predicted transitivity. Estimates for predicted transi-

tivity with bias correction (ÊSn
A

) and without bias correction (ÊSn). The
transitivity estimate for the model without unobserved effects is given by

ÊSn
P

. Test statistics for the model with and without unobserved effects are
given by TAn and TPn , respectively.

A AP I P

age 39 39 39 34
house has own latrine 0.60 0.42 0.79 0.64

no. of rooms 3.65 2.57 3.16 3.29
has savings account 0.30 0.40 0.21 0.27
participates in SHG 0.00 0.12 0.00 0.04

female 0.40 0.54 0.47 0.61
household head 0.45 0.42 0.32 0.27

spouse of household head 0.35 0.42 0.21 0.24
scheduled caste or tribe 0.20 0.32 0.16 0.25

general caste 0.05 0.02 0.00 0.02

Table 3.6: Village 60: means of observed covariates by type cluster (A = attractors, AP
= attractor-producers, I = isolates, P = producers).

127



References

Variable Description

age age of respondent
age2 square of age
female respondent is female
latrine respondent lives in a house with an own latrine
obc respondent’s caste is considered an OBC (Other Backward Caste)
general respondent’s caste is considered a General caste
educ Primary respondent has completed primary education
educ SSLC respondent has obtained a Secondary Schooling Leaving Certificate
has savings respondent has at least one savings account
has shg respondent participates in a SHG (Self Help Group)
is hhhead respondent is head of her household
is village native respondent was born in village

Table 3.7: Description of variables approximating productivity (Xi) and popularity (Xj).
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