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Abstract

One of the major problems in mathematical finance is the pricing of options. This requires
the computation of expectations of the form E(f(ST )) with f being the payoff function of the
option and ST being the solution to a stochastic differential equation at a specific time T . A
very popular choice for S is the Heston model.
While in the one-dimensional case E(f(ST )) can often be computed using methods based on
PDEs or the FFT, multidimensional models typically require the use of Monte-Carlo methods.
Here, the multilevel Monte-Carlo algorithm provides considerably better performance — a
benefit that is however reduced if the function f is discontinuous. This thesis introduces an
approach based on the integration by parts formula from Malliavin calculus to overcome this
problem: The original function f is replaced by a term including an antiderivative of f and a
Malliavin weight term. We will prove that because the antiderivative is continuous, we can
now apply multilevel Monte-Carlo to compute the value of the original expectation without
performance reduction. This theoretical result is accompanied by numerical experiments
which demonstrate that using the smoothed functional improves performance by a factor
between 2 and 4.
Furthermore, the same integration by parts trick that was used to smooth the functional can
be applied to derive a weak rate of convergence in the Heston model without making any
smoothness assumptions on the payoff f— at the price of a rather strong condition on the
model parameters.

Zusammenfassung

Eines der Hauptproblemfelder der Finanzmathematik ist die Berechnung korrekter Options-
preise. Zur Lösung muss ein Erwartungswert der Form E(f(ST )) berechnet werden, wobei f
das sogenannte Payoff-Funktional der Option ist und ST die Lösung einer stochastischen Dif-
ferentialgleichung zu einem festgelegten Zeitpunkt T ist. Sehr gerne wird zur Beschreibung
des Preises S das Heston–Modell gewählt.
Im eindimensionalen kann E(f(ST )) häufig mit Methoden berechnet werden, die auf
partiellen Differentialgleichungen oder der FFT basieren. Dagegen müssen in mehrdimensio-
nalen Modellen üblicherweise Monte-Carlo Methoden verwendet werden. Eine besonders
schnelle solche Methode ist der Multilevel Monte-Carlo Algorithmus – allerdings reduziert
sich ihr Geschwindigkeitsvorteil, falls die Funktion f unstetig ist. In dieser Dissertation
stellen wir eine Methode vor, die die Partielle Integration aus dem Malliavin–Kalkül nutzt
um dieses Problem zu lösen: Die ursprüngliche Funktion fwird durch eine Funktion ersetzt,
die eine Stammfunktion von f und einen Gewichtsterm enthält. Wie wir zeigen werden,
erlaubt die Stetigkeit der Stammfunktion uns, den ursprünglichen Erwartungswert mit dem
Multilevel Monte-Carlo Algorithmus zu berechnen, ohne dass sich die Geschwindigkeit
reduziert. Wir ergänzen dieses theoretische Resultat durch numerische Experimente, die
belegen, dass der Wechsel zum geglätteten Funktional die Geschwindigkeit um einen Faktor
zwischen 2 und 4 steigert.
Der gleiche Rechentrick mit der Partiellen Integration kann genutzt werden, um ohne jegliche
Glattheitsannahmen an das Payoff-Funktional eine schwache Konvergenzrate im Heston–
Modell zu beweisen – allerdings unter starken Voraussetzungen an die Modellparameter.
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Chapter 1

Introduction

Three topics will be combined in this thesis: The stochastic volatility model of Steve L.
Heston, [Hes93], the stochastic differential calculus developed by Paul Malliavin, [Mal76],
and the multilevel Monte-Carlo algorithm by [Hei01] and [Gil08].
The Heston model was designed to solve a serious drawback of the famous Black–Scholes
model: The latter assumes that the volatility remains constant, which contradicts real-world
market data. To solve this problem, the Heston model replaces the constant volatility by a
stochastic process on its own and is given by the SDEs

dSt = µStdt+
√
vtStdBt

dvt = κ(λ− vt)dt+ θv
γ
t dWt

Among the many stochastic volatility models that are proposed in the literature, the Heston
model stands out because it provides both flexibility and a semi-explicit representation of
the price of call, put and digital options. However, in multidimensional models or with
more complex options, there is usually no formula available and prices need to be computed
using a Monte-Carlo approach. A major advance in this area was the introduction of the
multilevel Monte-Carlo algorithm in the context of SDEs by Michael Giles, [Gil08]. For
Lipschitz continuous option payoffs the cost to reach a certain root-mean-square error ε
typically reduces from O(ε−3) for standard Monte-Carlo to O(ε−2(log ε)2) for multilevel
Monte-Carlo. However, it turns out that the benefit of multilevel Monte-Carlo depends on
the rate of L2-approximation of the underlying scheme. Unfortunately, for discontinuous
option payoffs this rate is smaller. It is here that Malliavin calculus comes into play: One
of the core rules of this calculus is an integration by parts rule, which can be used to
replace a functional by its antiderivative. By replacing the discontinuous functional by its
Lipschitz continuous antiderivative, we will be able to regain the computational complexity
of O(ε−2(log ε)2). This theoretical result (Theorems 8.9 and 9.2) is accompanied by our
numerical experiments, which show that using this technique leads to a significantly faster
algorithm. The integration by parts approach has been published first in [AN15].
The same integration by parts trick that accomplished to smooth a discontinuous payoff for
use in multilevel Monte-Carlo is employed in two other places in this thesis: To prove that
the multidimensional Heston model has a density; see Theorem 5.5. And to prove a weak
error rate of 1 for the drift-implicit Milstein scheme in the Heston model, even if the payoff
is not continuous; see Theorem 7.13.

This thesis is structured as follows: In the first chapter we will introduce the (generalized)
Heston model as main object of this thesis and collect many results that will be needed later.
In a small excursion in Section 2.4, we will prove the exact formulas for the prices of the
call and digital option in a one-dimensional standard Heston model. The multidimensional
model will be introduced later in Chapter 5.
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Chapter 1. Introduction

Chapters 3 and 4 will be used to give an introduction to Malliavin calculus and apply it to
the Heston model. While most results of Chapter 3 are standard and found in every book on
the topic, we need a few extensions — particularly of the chain rule — which are not found
in the literature, to the best of our knowledge.
The square root in the SDE of the volatility process and even more the fact that we will
later require a numerical approximation that always remains positive, will force us to use
non-standard approximation schemes. These schemes will be introduced and compared in
Chapter 6.
In Chapter 7 we consider the functionu(t, x, v) := E(f(Xt)|X0 = x, v0 = v), whereXt = logSt.
This function is typically used when studying the weak error rate of a scheme and we will
be able to prove that one of the schemes of Chapter presented in 6 has a weak error rate of 1.
In Chapter 8 we will finally turn our attention to the strong convergence rate and show how
it can be improved using Malliavin integration by parts.
In the last two chapters we will introduce the multilevel Monte-Carlo method and apply it
to our problem. We will find that the improved strong convergence rate indeed leads to a
faster algorithm for the quadrature of discontinuous options in the Heston model.

1.1 Notation and Calculation Tricks

Many results in this thesis will be concerned with asymptotic bounds on various quantities.
Because we rarely care about the involved constants, we will use the constant c throughout
this thesis to denote arbitrary constants. The value of c may change from term to term
and — unless otherwise stated — may depend on the model parameters. Of course, it is
always independent of the quantity that moves to the limit (typically the stepsize ∆→ 0).
When it is not clear from the context, we will give additional information. When using this
notation, computations often use the following two rules, which we will use without further
notice. For p ≥ 0we have

X ≤ c · (1+ Y)⇒ Xp ≤ c · (1+ Yp)

Xi ≤ c · (1+ Yi), i = 1, . . . ,N⇒ N∑
i=1

Xi ≤ c · (1+ max
i=1,...,N

Yi) ≤ c ·

(
1+

N∑
i=1

Yi

)

Of course, the value of c will depend on p and in the last rule also on the number of
summands.
We use the notation x+ to denote the positive part: x+ := max{0, x}.
To save parentheses we will follow the rule that in case of doubt exponents are always
included in expectations, e.g.

E

(∫t
0

xsds
)p

= E

((∫t
0

xsds
)p)

Because we will make extensive use of the Burkholder–Davis–Gundy inequality, we state it
here. A proof can be found e.g. in Theorem 3.28 of [KS10].

Theorem 1.1 Let Wt be a Brownian motion and (Xt)t∈[0,T ] be a square-integrable adapted
process. Then for every p ≥ 0 there exists a constant Cp > 0 such that

E sup
t∈[0,T ]

(∫t
0

XsdWs

)p
≤ Cp · E

(∫T
0

X2sds

)p/2
The constant only depends on p.

2



Chapter 2

The Heston Model

When the Black–Scholes formula was published in 1973, [BS73], it accounted for a major
boost both in the theory of financial mathematics as well as in the finance industry. An
important advantage of the model is that all parameters except one, the volatility, are
observable from the market. Since the price as computed by the Black–Scholes formula
is strictly increasing in the volatility, it is possible to invert the formula to compute the
missing volatility parameter from real prices, the so-called implied volatility. This makes it
easy to calibrate the model. However, it turns out that the implied volatility is not constant,
violating a central assumption of the model.
Many approaches exist which try to overcome this problem by making the volatility
stochastic; see e.g. [HW87], [Sco87], [SS91], [Hes93]. The first approach that provided a
(semi)-analytical formula for the option price was [SS91]. However, it assumes that the
price and the variance processes are independent which is too restrictive to fit the model
to real market data. So it was Steven L. Heston’s 1993 work “A Closed-Form Solution for
Options with Stochastic Volatility with Applications to Bond and Currency Options” that
first provided both the necessary flexibility and (almost) explicit formulas for the price of
European call and digital options.
More details on the development of option pricing theory can be found in [KK99] and in the
introduction to [KJ06].

2.1 The Cox–Ingersoll–Ross Process (CIR)

Heston chose to use a Cox–Ingersoll–Ross process (CIR process; [CIR85]) as variance process
for his model. For this reason we will collect some results on this process before proceeding
to the Heston model. In fact, much of the complexity of the Heston model stems from the
fact that the SDE for the CIR process contains a square root. Many standard results from the
theory of SDEs require globally Lipschitz coefficient functions and cannot be used with the
CIR process.
The CIR process is the solution to the SDE

dvt = κ(λ− vt)dt+ θ
√
vtdWt (2.1)

with given start value v0 > 0 and parameters κ, λ, θ > 0. It is known that this SDE possesses
a unique strong solution; see e.g. Theorem IV 3.2 in [IW89].
It turns out that the behavior of the CIR process — and thus of the Heston model — depends
heavily on the fraction

ν :=
2κλ

θ2

3



Chapter 2. The Heston Model

A particularly important example is the question, whether zero is attainable. The Feller test
(see [Fel51] or Chapter 15.6 in [Kar81]) can be used to prove

P(vt > 0 ∀t ≥ 0) = 1

if and only if ν ≥ 1.
The exact marginal distributions of the CIR process are known and can be written in terms
of non-central χ2-distributions; see [CIR85]. While this is of limited practical use, because
the number of degrees of freedom of the χ2-distribution — and consequently the cost of
an algorithm — grows with ν, it can be used to compute moments exactly. A very general
formula in this direction is given in Theorem 3.1 in [HK08]. In Chapter 7, it will be important
to know not only the existence of various moments, but also their dependence on the start
value v0.

Theorem 2.1 Fix T ≥ 0 and p ∈ R.

1. If p ≥ 0, then
E sup
t∈[0,T ]

vpt ≤ c · (1+ v
p
0 )

2. If p ≤ −ν, then Evpt =∞ for all t > 0.

3. If p ∈ (−ν, 0], then
sup
t∈[0,T ]

Evpt ≤ c · v
p
0

4. If 1 ≤ p < ν− 1, then
E sup
t∈[0,T ]

v−pt ≤ c · (1+ v−p−10 )

All constants depend on p, T , κ, λ, θ, but not on v0.

Proof. Theorem 3.1 in [HK08] gives an explicit formula for Evpt . If p ≤ −ν the expectation
is infinite as stated in the second claim. If p > −ν, then

Evpt = vp0 · e
−κtp · z−p · Γ(ν+ p)

Γ(ν)
· 1F1(−p, ν,−z)

with
z =

v0ν

λ(eκt − 1)

and the confluent hypergeometric function 1F1. This function is defined in Chapter 13.1 of
[AS64] where one can also find the following asymptotic behavior of this function for large z.

1F1(a, b,−z) =
Γ(b)

Γ(b− a)
|z|−a · O(|z|−1) (2.2)

In our setting we get for z > 1

sup
t∈[0,T ]

Evpt ≤ v
p
0 · sup

t∈[0,T ]
e−κtp · O(1) (2.3)

For z ∈ [0, 1] we can use the fact that 1F1 is continuous to bound supt∈[0,T ] Ev
p
t for p ≥ 0 by

sup
t∈[0,T ]

Evpt ≤ sup
t∈[0,T ]

(
λ(1− e−κt)

ν

)p
· Γ(ν+ p)

Γ(ν)
· sup
z∈[0,1]

1F1(−p, ν,−z) ∈ O(1) (2.4)

and for −ν < p < 0 by

sup
t∈[0,T ]

Evpt ≤ v
p
0 · e

κT |p| · Γ(ν+ p)

Γ(ν)
· sup
z∈[0,1]

1F1(−p, ν,−z) ≤ c · vp0

4



Chapter 2. The Heston Model

Together with (2.3) this proves the third claim.
To handle the first claim, we use the Burkholder–Davis–Gundy inequality

E sup
t∈[0,T ]

vpt = E sup
t∈[0,T ]

(
v0 +

∫t
0

κ(λ− vs)ds+
∫t
0

θ
√
vsdWs

)p

≤ c ·

vp0 + E
(∫T
0

|κ(λ− vs)|ds

)p
+ E

(∫T
0

θ2vsds

)p/2 (2.5)

If p ≥ 1, we apply Jensen’s inequality to get

E

(∫T
0

vsds

)p
≤ c · E

∫T
0

vpsds ≤ cT · sup
t∈[0,T ]

Evps

For p ∈ [0, 1], the same result follows by moving the exponent out of the expectation instead
of into the integral. Now (2.3) together with (2.4) prove that (2.5) is bounded by c · (1+ vp0 ).
It remains to prove the fourth claim. We use Lemma 2.12 from [NS14] to replace E sup by
supE at the cost of a higher inverse moment:

E sup
t∈[0,T ]

v−pt ≤ c ·

(
1+ sup

t∈[0,T ]
Ev−p−1t

)
Now the assertion follows from the third claim. �

Surprisingly, the integral over v−1s is p-integrable for all p ≥ 0, although integrability of v−ps
itself is restricted to p < ν by the last theorem.

Theorem 2.2 Assume ν > 1 and T > 0. Then for each p ≥ 0

sup
t∈[0,T ]

E

(∫t
0

1

vs
ds
)p

<∞
Proof. Because ν > 1we can choose ε < (ν− 1)2θ2/8 such that we can define

q :=
1

2

(
ν− 1−

√
(ν− 1)2 −

8ε

θ2

)
> 0

Now we choose a C ≥ 0 such that xp < Ceεx for all x ≥ 0. Our choice of ε implies
ν− q ≥ ν− (ν− 1)/2 > 0, so we can use Theorem 3.1 in [HK08] (note that their v2 equals
−q) to get

E

(∫t
0

1

vs
ds
)p
≤ C · E

(
exp

(
ε ·
∫t
0

1

vs
ds
))

= C · eκqt · v−q0 · γ
−q
t ·

Γ(ν− q)

Γ(ν− 2q)
· 1F1

(
−q, ν− 2q,−γtv0e

−κt
)

with
γt =

2κ

θ2
· 1

1− e−κt
>
2κ

θ2

and the confluent hypergeometric function 1F1(a, b,−z). Because this function is continuous,
the right-hand side is bounded by c · eκqTv−q0 for small z = γtv0e

−κt. For large z the
asymptotic expansion (2.2) gives

E

(∫t
0

1

vs
ds
)p
∈ O((γtv0e−κt)−1) = O(1)

�
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Chapter 2. The Heston Model

Because the volatility is strictly positive in the case ν ≥ 1, we can apply the Lamperti
transformation to get a process with constant diffusion term; see e.g. [Iac08]. For a general
SDE dxt = a(t, xt)dt + b(t, xt)dWt with strictly positive diffusion term b, the Lamperti
transformation is given as

F(t, x) := C ·
∫x
0

1

b(t, ξ)
dξ

for an arbitrary constantC. If F ∈ C1,2 then Itō’s formula shows that the transformed process
F(t, xt) has a constant diffusion term C:

dF(t, xt) =
(
∂tF(t, xt) + C ·

a(t, xt)

b(t, xt)
−
C

2
· ∂xb(t, xt)

)
dt+ CdWt

In the setting of the CIR process we choose C = θ/2 so that the transform is simply the
square root function: F(t, x) =

√
x. The SDE of the resulting process, which will be denoted

by σt, is

dσt =
((

κλ

2
−
θ2

8

)
1

σt
−
κ

2
σt

)
dt+

θ

2
dWt, σ0 =

√
v0 (2.6)

Note that the factor κλ/2− θ2/8 is positive, because ν ≥ 1. Like (2.1) this equation has only
one solution: Applying Itō’s formula again shows that the square of each solution solves
(2.1). Thus only

√
vt and −

√
vt can be solutions and the positive start value makes the latter

impossible.
Finally, we state that the processes σt and vt are continuous in Lp.

Theorem 2.3 Let T > 0, α ≥ 1, p ≥ 0 and assume ν > 1. Then

‖σαs − σαt ‖p ≤ c ·
√

|t− s|

for all s, t ∈ [0, T ]. The constants are independent of s and t.

Proof. First assume α = 1. Set K := κλ/2− θ2/8 and assume without loss of generality that
t ≥ s. The SDE of σt shows that

|σs − σt| ≤ K ·
∣∣∣∣∫t
s

σ−1u du
∣∣∣∣+ κ

2
·
∣∣∣∣∫t
s

σudu
∣∣∣∣+ θ

2
· |Wt −Ws|

The Cauchy–Schwarz inequality gives

|σs − σt| ≤ K ·
√
t− s ·

∣∣∣∣∫t
s

σ−2u du
∣∣∣∣1/2 + κ

2
·
√
t− s ·

∣∣∣∣∫t
s

σ2udu
∣∣∣∣1/2 + θ

2
· |Wt −Ws|

After taking the Lp-norm, the result follows from ‖Wt −Ws‖p ≤ c ·
√
t− s and Theorems

2.1 and 2.2.
For general α ≥ 1we use the mean value theorem and Hölder’s inequality:

‖σαs − σαt ‖p = α · ‖Θα−1‖2p · ‖σs − σt‖2p

for some random variable Θwith values between σs and σt. The result now follows from
Theorem 2.1. �

2.2 The Constant Elasticity of Volatility Process (CEV)

Mean-reverting constant elasticity of volatility processes provide a simple generalization
of the CIR process and can also be used as variance processes in the (generalized) Heston

6



Chapter 2. The Heston Model

model; see e.g. [LKvD10]. These processes result from replacing the square root of the CIR
process by vγ with γ ∈ [1/2, 1). Thus the CEV process is defined by the SDE

dv(γ)t = κ(λ− v
(γ)
t )dt+ θ(v(γ)t )γdWt (2.7)

with given start value v0 > 0. From now on, we will omit the superscript (γ). As for the CIR
process, existence and uniqueness of a solution follows from Theorem IV 3.2 in [IW89].
Many properties of the CIR process carry over to the generalization. In fact, many desirable
properties are always true for γ > 1/2while they might be false if γ = 1/2 and ν is too small.
As an example, for γ > 1/2 the CEV process is always strictly positive; see the boundary
classification results in Chapter 15.6 of [Kar81]. This allows us to compute the Lamperti
transformation as in the previous section. This time, the transformation takes the form
F(t, xt) = x

1−γ
t (for C = θ(1− γ)). The transformed process σ(γ)t = σt is the solution of the

SDE

dσt = (1− γ) ·
(
κλσ

− γ
1−γ

t − κσt −
γθ2

2
· σ−1t

)
dt+ θ(1− γ)dWt (2.8)

σ0 = v
1−γ
0

The next theorem concerning the moments of the CEV process provides another example
where the case γ > 1/2 behaves much better.

Theorem 2.4 Assume γ > 1/2 and let p, T ≥ 0. Then

E sup
t∈[0,T ]

vpt <∞ and sup
t∈[0,T ]

Ev−pt <∞
Proof. See Lemma 2.1 in [BBD07]. �

The Lp-continuity that was established in Theorem 2.3 extends to the case γ > 1/2.

Theorem 2.5 Let T > 0, α ≥ 1, p ≥ 0 and assume γ > 1/2. Then

‖σαs − σαt ‖p ≤ c ·
√
|t− s|

for all s, t ∈ [0, T ]. The constants are independent of s and t.

Proof. The claim is shown exactly as Theorem 2.3, this time using Theorem 2.4 to bound the
integrals. �

2.3 The Heston Price

The SDE for the Heston price differs from that of the Black–Scholes price only by using a CIR
process as stochastic variance process. The driving Brownian motions of both processes are
usually correlated. Let (Z1t)t, (Z2t)t be independent Brownian motions. Assume ρ ∈ [−1, 1]

and set ρ ′ :=
√
1− ρ2. Then we define the driving Brownian motions of the price and

variance process as Bt := ρZ2t + ρ
′Z1t and Wt := Z2t , respectively. Using three different

symbols for these Brownian motions will make it easier to deal with multidimensional
models later.
We consider the generalized Heston model, where the variance process is given by a CEV
process. The model is given by the following two SDEs.

dSt = µStdt+
√
vtStdBt

dvt = κ(λ− vt)dt+ θv
γ
t dWt

7



Chapter 2. The Heston Model

Table 2.1: The parameters of the Heston model.

µ ∈ R Interest rate. It is often omitted, because Itō’s formula
shows that the transformation S̃t := e−µtSt leads to
a Heston model with µ = 0.

κ > 0 Strength of mean-reversal property of the variance.
λ > 0 Mean variance: If v0 = λ then Evt = λ for all t > 0.

Otherwise the expectation converges to λ as t→∞;
see the formulas in the appendix of [And07].

θ > 0 Volatility of the volatility.
ρ ∈ [−1, 1] Correlation of Brownian motions. We abbreviate

ρ ′ :=
√
1− ρ2.

s0 > 0 Start price.
v0 > 0 Start variance.

γ ∈ [1/2, 1) Elasticity parameter for the CEV process in the gen-
eralized Heston model.

Table 2.1 provides an overview of the parameters, defining in particular the valid ranges.
Similar to the treatment of the CIR/CEV process, we will often apply a transformation to the
price and examine the transformed process. This time, the transformation consists of the
logarithm, which has the advantage that Itō’s formula yields an explicit representation for
the log-price Xt := log(St) in terms of the volatility, because St cancels out on the right-hand
side of the SDE:

dXt =
(
µ−

vt

2

)
dt+

√
vtdBt (2.9)

Applying the Burkholder–Davis–Gundy inequality and Theorems 2.1 and 2.4 to the integral
form of this representation gives

E sup
t∈T

Xpt <∞, ∀ p ≥ 0 (2.10)

Unfortunately, this result does not hold for the price process itself.

Theorem 2.6 For p ∈ (1,∞) define

T∗(p) := inf {t ≥ 0 : ESpt =∞}

Then in the case γ = 1/2we have

T∗(p) =∞ ⇐⇒ ρ ≤ −

√
p− 1

p
+
κ

θp

whereas in the case γ > 1/2 the following is true:

T∗(p) =

∞ if ρ < −
√
p−1
p

0 if ρ > −
√
p−1
p

Proof. For γ = 1/2 see [AP06] and [FKR10]. For γ > 1/2 see [LM07]. �

2.4 An Almost Explicit Formula for European Call Options

In the finance industry a European call option is the right to buy one unit of an underlying
stock at a future maturity time T for a price K(ST ) which might depend on the future stock

8



Chapter 2. The Heston Model

price ST . For classical European call options, K(ST ) is simply a constant fixed in advance.
Every finance company trading in options has to compute the correct price for the option
at a time t < T . As usual in mathematical finance, the correct price is the one that avoids
arbitrage; see e.g. [KK99].
In this section we will construct the price of a European call option in the standard Heston
model as presented in Heston’s original paper. As bonus we will get a formula for digital
options. Heston uses the same approach that Black and Scholes used to discover their famous
formula: build a risk-free portfolio containing the option. Being risk-free, the portfolio must
always have the same price as the risk-free bond or otherwise arbitrage will arise. This
reasoning can be captured in a PDE and the price is the solution to this PDE.
We will consider an option with payoff g(ST ), depending on the price at maturity time T .
For the call option with fixed strike price K we have g(s) = (s − K)+, because when the
maturity time T is reached, the owner of a call option will only use it if K < ST . An option
whose payoff is an indicator function, e.g. g(s) = 1[0,K](s), is called digital option.

2.4.1 Deriving the Heston PDE

We denote the price function of a given option by C(s, v, t). Inserting the current stock price
St, the variance vt and time point t gives the current price of the option. Obviously, the
function Cmust satisfy the terminal condition C(s, v, T) = g(s).
We now start to construct a risk-free portfolio including the option. Due to the additional
source of randomness in a stochastic volatility model, we need three building blocks to
construct a risk-free portfolio (compared to two in the Black–Scholes model):

1. the option C = C(St, vt, t),

2. the underlying asset St,

3. an additional option U = U(St, vt, t). We will assume that we know the price of this
option and that ∂U

∂v
6= 0. The price of Cwill not depend on U but the risk-free portfolio

will.

We build the portfolio as
Π = C+ αSt + βU (2.11)

where α and β are functions in St, Vt, t.
We assume that both prices C and U are twice continuously differentiable in s and v and
continuously differentiable in t, so that we can apply Itō’s formula to both. For a function
f(s, v, t) we define the differential operator

Γf =
∂f

∂t
+
1

2
vs2

∂2f

∂s2
+ ρθvs

∂2f

∂s∂v
+
1

2
θ2v

∂2f

∂v2

Itō’s formula leads to

dΠ = dC+ αdSt + βdU

= (ΓC+ βΓU)dt+
(
∂C

∂s
+ β

∂U

∂s
+ α

)
dSt +

(
∂C

∂v
+ β

∂U

∂v

)
dvt (2.12)

If the portfolio is to be risk-free, the dSt-term and the dvt-term must vanish. This settles
how to choose the portfolio:

α = −
∂C

∂s
− β

∂U

∂s
β = −

∂C

∂v
·
(
∂U

∂v

)−1

(2.13)

To avoid arbitrage opportunities, a risk-free portfolio must earn the risk-free rate µ of the
bond, i.e. dΠ = µΠdt. Together with (2.11) and (2.12) this leads to

ΓC+ βΓU = µ(C+ αSt + βU)

9



Chapter 2. The Heston Model

After inserting the specifications of α and β from (2.13), we can rearrange terms to get

ΓC− µC+ µSt
∂C
∂s

∂C
∂v

=
ΓU− µU+ µSt

∂U
∂s

∂U
∂v

(2.14)

This equation shows that the term on both sides is an invariant which is the same for all
options in the model and depends only on St, Vt, t. We call this invariant −f:

f(s, v, t) = −
ΓC− µC+ µs∂C

∂s
∂C
∂v

= −
ΓU− µU+ µs∂U

∂s
∂U
∂v

In particular, the function Cmust fulfill the PDE

ΓC+ µs
∂C

∂s
+ f(s, v, t)

∂C

∂v
− µC = 0 (2.15)

with terminal condition C(s, v, T) = g(s).
One might expect that f is some function inherent in the model but in fact we can choose
f arbitrarily, as long as the PDE 2.15 admits a solution. Conditions under which such a
solution exists can be found in [Fri64]; if it exists, the Feynman–Kac theorem (Section 4.4 in
[KS10]) allows to write it as

C(s, v, t) := E
(
e−µ(T−t) · g(S ′T )

∣∣∣S ′t = s, v ′t = v)
where (S ′t, V

′
t) are the solutions of the following SDEs:

dS ′t = µS
′
tdt+

√
v ′tS
′
tdBt

dv ′t = f(S
′
t, v
′
t, t)dt+ θ

√
v ′tdWt

This modified model is called the risk-neutral model, because if (2.15) admits a solution, it can
be computed as a simple expectation in the risk-neutral model.
Because the Heston model forms an incomplete market, it comes as no surprise that there is
no unique option price without further assumptions on the model. Only after specifying f
has the model enough information to allow unique option prices.
Following Heston, we specify the function f as

f(s, v, t) = κ(λ− v) − γv

for some parameter γ ∈ R and call the additional term γv the “price of volatility risk”.
With this choice the risk-neutral model is again a Heston model (with modified parameters
κ ′ = κ+γ and λ ′ = κλ/(κ+γ)). This has consequences for the numerical parts of this thesis:
Because we can always assume that we are already given a risk-neutral model, the problem
of computing option prices reduces to computing expectations in an Heston model. Note
also that the fraction ν = 2κλ/θ2 is the same in both models.
Inserting our specification of f into (2.15) gives the final Heston PDE:

∂C

∂t
+
1

2
vs2

∂2C

∂s2
+ ρθvs

∂2C

∂s∂v
+
1

2
θ2v

∂2C

∂v2
+ µs

∂C

∂s
+ (κ(λ− v) − γv)

∂C

∂v
− µC = 0 (2.16)

with terminal condition C(s, v, T) = g(s).
Equivalently, the price of an option can be given in terms of the log-price. Then C ′(x, v, t) :=
C(ex, v, t) must satisfy the PDE

∂C ′

∂t
+
1

2
v
∂2C ′

∂x2
+ρθv

∂2C ′

∂x∂v
+
1

2
θ2v

∂2C ′

∂v2
+

(
µ−

1

2
v

)
∂C ′

∂x
+(κ(λ−v)−γv)

∂C ′

∂v
−µC = 0 (2.17)

with terminal condition C ′(x, v, T) = g(ex).
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Chapter 2. The Heston Model

2.4.2 Solving the Heston PDE

Inspired by the Black–Scholes formula Heston assumed that in the case of a call option the
solution would have the form

C(St, vt, t) = St · P1 − Ke−µ(T−t)P2

where K is the strike price and P1, P2 are some probabilities depending on St, vt, t. He then
derived PDEs for P1 and P2 (see (2.24) below) and found an interpretation as probabilities in
slightly modified models (see Xj, vj below). Finally, he was able to invert the characteristic
function of these models to compute a semi-explicit formula for the probabilities and thus
for the price.
Define the processes X1, X2, v1, v2 by the SDEs

dXj(t) = (µ+ ujvj(t))dt+
√
vi(t)dBt

dvj(t) = (κλ− bjvj(t))dt+ θ
√
vj(t)dWt

with u1 = 1
2

, u2 = −1
2

, b1 = κ + γ − ρθ, b2 = κ + γ. Note that for j = 2 this is exactly the
risk-neutral model from the last section.
We will have to compute the characteristic function of the Xj first. It will be easier if we let
the characteristic function depend on τ = T − t and thus we define for j ∈ {1, 2}

ϕj(x, v, τ;y) := E(e
iyXj(T)|Xj(T − τ) = x, vj(T − τ) = v)

Theorem 2.7 The characteristic functions are given by

ϕj(x, v, τ;y) = exp
(
C(τ, y) +D(τ, y) · v+ iyx

)
with

Cj(τ, y) = µyiτ+
κλ

θ2

(
(bj − ρθyi+ dj)τ− 2 · log

(
1− gje

djτ

1− gj

))
(2.18)

Dj(τ, y) =
bj − ρθyi+ dj

θ2
· 1− e

djτ

1− gjedjτ

gj =
bj − ρθyi+ dj
bj − ρθyi− dj

dj =
√
(ρθyi− bj)2 − θ2(2ujyi− y2)

Proof. For brevity we will omit the index j. Theorem 3.7 in [Fri64] shows that for each
y ∈ R the following PDE has a unique solution which is twice differentiable:

(µ+ uv)
∂ϕ

∂x
+ (κλ− bv)

∂ϕ

∂v
+
1

2
v

(
∂2ϕ

∂x2
+ 2ρθ

∂2ϕ

∂x∂v
+ θ2

∂2ϕ

∂v2

)
−
∂ϕ

∂τ
= 0 (2.19)

with initial condition ϕ(x, v, 0) = eixy. The Feynman–Kac theorem now shows that the
solution of this PDE is exactly the characteristic function.
Assuming a solution of the form

ϕ(x, v, τ;y) = exp(C(τ, y) +D(τ, y) · v+ iyx) (2.20)

for some functions C and Dwith C(0, y) = D(0, y) = 0 transforms above PDE into

vϕ ·
[
−
1

2
y2 + ρθiyD(τ, y) +

1

2
θ2D2(τ, y) + uiy− bD(τ, y) −

∂D(τ, y)

∂τ

]
+ϕ ·

[
µiy+ κλD(τ, y) −

∂C(τ, y)

∂τ

]
= 0

11



Chapter 2. The Heston Model

Thus if we can solve the system of ODEs

∂D

∂τ
= −

1

2
y2 + ρθiyD(τ, y) +

1

2
θ2D2(τ, y) + uiy− bD(τ, y) (2.21)

∂C

∂τ
= µiy+ κλD(τ, y) (2.22)

we get a solution to the original PDE (2.19) by (2.20).
Equation (2.21) is a Riccati ODE with solution

D(τ, y) =
b− ρθyi+ d

θ2
· 1− e

dτ

1− gedτ

(see e.g. [Heu06]). This allows us to solve the ODE for C (2.22):

C(τ, y) = µiyτ+ κλ ·
∫τ
0

D(s, y) ds = µiyτ+ κλ · b− ρθyi+ d
θ2

·
∫τ
0

1− eds

1− geds
ds

It remains to solve the integral:

∫τ
0

1− eds

1− geds
ds =

∫τ
0

1− eds

(1− geds)edsd
· deds ds =

1

d
·
∫edτ
1

1− x

(1− gx)x
dx

=
1

d
·
∫edτ
1

1

x
−
1− g

1− gx
dx =

1

d
·
[

log(x) +
1− g

g
· log(1− gx)

]edτ
1

=
1

d

(
dτ+

1− g

g
· log

(
1− gedτ

1− g

))
= τ+

1− g

gd
· log

(
1− gedτ

1− g

)
The result now follows from the simple equation

(b− ρθyi+ d) · 1− g
gd

=
1

d
·
(
(b− ρθiy− d) − (b− ρθiy+ d)

)
= −2

�

For j ∈ {1, 2} define

Pj(x, v, t) := P(Xj(T) ≥ logK | Xj(t) = x, vj(t) = v)

The formula of Gil-Pelaez ([GP51]) can be used to compute these probabilities from the
characteristic function:

Pj(x, v, t) =
1

2
+
1

π
·
∫∞
0

1

y
· Im

(
e−iy logK ·ϕj(x, v, T − t;y)

)
dy (2.23)

From (2.19) it follows that these probabilities satisfy the PDE

∂Pi

∂t
+ (µ+ uiv)

∂Pi

∂x
+ (κλ− biv)

∂Pi

∂v
+
1

2
v

(
∂2Pi

∂x2
+ 2ρθ

∂2Pi

∂x∂v
+ θ2

∂2Pi

∂v2

)
= 0 (2.24)

with terminal condition Pj(x, v, T) = 1{x≥logK}.

Theorem 2.8 The correct price function of the digital option with payoff g(s) = 1[K,∞) is
given by e−µ(T−t)P2.

Proof. In case j = 2 equation (2.24) is exactly the price equation (2.17). As P2 solves this
PDE with the correct terminal condition, it must be the price. �
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Using the probabilities Pj, we can finally compute the price of a call option with Theorem
2.9. The price of a put option can then be computed using the well-known put-call parity;
see e.g. [KK99].

Theorem 2.9 The correct price function of the European call option with strike price K and
time to maturity T is given by

C(s, v, t) := s · P1(log s, v, t) − e−µ(T−t)K · P2(log s, v, t)

Proof. By definition, C satisfies the terminal condition C(s, v, T) = (s − K)+. Define
C ′(x, v, t) := C(ex, v, t) = exP1(x, v, t) − e

−µ(T−t)KP2(x, v, t). Partial derivatives of C ′ can
be written in terms of partial derivatives of the Pi:

∂C ′

∂t
= ex

∂P1

∂t
− µe−µ(T−t)KP2 − e

−µ(T−t)K
∂P2

∂t
∂C ′

∂x
= exP1 + e

x ∂P1

∂x
− e−µ(T−t)K

∂P2

∂x

∂2C ′

∂x2
= exP1 + 2e

x ∂P1

∂x
+ ex

∂2P1

∂x2
− e−µ(T−t)K

∂2P2

∂x2

∂2C ′

∂x∂v
= ex

∂P1

∂v
+ ex

∂2P1

∂x∂v
− e−µ(T−t)K

∂2P2

∂x∂v

Inserting these formulas into the left-hand side of the Heston PDE for C ′ (2.17) gives

ex
[
∂P1

∂t
+
1

2
v

(
P1 + 2

∂P1

∂x
+
∂2P1

∂x2

)
+ ρθv

(
∂P1

∂v
+
∂2P1

∂x∂v

)
+
θ2v

2
· ∂
2P1

∂v2

+

(
µ−

1

2
v

)
·
(
P1 +

∂P1

∂x

)
+ (κ(λ− v) − γv)

∂P1

∂v
− µP1

]
− e−µ(T−t)K

[
∂P2

∂t
+ µP2 +

1

2
v
∂2P2

∂x2
+ ρθv

∂2P2

∂x∂v
+
θ2v

2
· ∂
2P2

∂v2

+
(
µ−

v

2

) ∂P2
∂x

+ (κ(λ− v) − γv)
∂P2

∂v
− µP2

]
Both terms in brackets are 0 due to (2.24) and thus the function C ′ satisfies the Heston PDE
(2.17). Consequently, Cmust be the correct price function. �

2.4.3 Implementation of Complex Logarithm

Practical use of (2.23) seems straight-forward, in particular as the integrand turns out to be a
rapidly decreasing function and thus the indefinite integral poses no problem. What makes
problems, though, is the complex logarithm hidden in the formula of Cj(τ, y); see (2.18).
The complex logarithm is a multibranched function with a branch cut at the negative real
axis. For z = reiϕ = reiϕ+2πik, r > 0 and ϕ ∈ (−π, π] the values of all branches are given as

log z = log r+ iϕ+ 2πik, k ∈ Z

In our case, the argument of the logarithm is

ψ(y) :=
1− gj(y)e

dj(y)τ

1− gj(y)

Figure 2.1 shows that the graph of this function starts as a spiral that rapidly moves away
from zero. To compute the probabilities of (2.23) correctly, we must start at the default
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Chapter 2. The Heston Model

Figure 2.1: Left: Argument of complex logarithm. Because ψ moves outward extremely fast, this plot shows
ψ(y)/|ψ(y)| · (log log |ψ(y)|) with y ∈ (0, 120]. Right: The integrand for (2.23) with and without using the
correct branch of the complex logarithm. In both cases parameters were taken from [And07]: T = 10, µ = 0,
κ = 0.5, λ = 0.04, θ = 1, ρ = −0.9, v0 = λ, s0 = 100.

branch (k = 0) for y close to zero and then increase the value of kwhenever ψ crosses the
negative real axis. For a detailed discussion of this issue, see [KJ05].

The results of this section will be used to compute the reference values for the standard
Heston model in all numerical examples in the rest of this thesis.
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Chapter 3

Malliavin Calculus

Malliavin calculus introduces a stochastic derivative operator to stochastic calculus. Loosely
speaking, the derivative allows to differentiate random variables “in direction” of the chance
parameter ω. It was initially developed by Paul Malliavin in 1976 [Mal76] as a tool to
find sufficient conditions for the existence and regularity of densities. The most important
application in this direction is Malliavin’s probabilistic proof of Hörmander’s theorem,
which gives a sufficient condition for the solution of a stochastic differential equation to
possess an infinitely differentiable density. Besides regularity questions, Malliavin calculus
is nowadays also used for anticipating stochastic differential equations and mathematical
finance, where it is for example used to examine the sensitivity of option prices on various
parameters; see e.g. [DNOP09], [Nua06], [FLL+99].
In this chapter we will develop a basic theory of Malliavin calculus including almost all
proofs. In Sections 3.3 and 3.5 we will spend some effort to prove a very general chain rule
and to construct a slightly extended version of the Malliavin derivative. Both are tools that
we are going to use later and which are not found in the literature yet — to the best of our
knowledge. Finally, in Section 3.6 we state some more advanced results which we are going
to use, but whose proofs are well beyond the scope of this thesis.
Monographs on Malliavin calculus are for example [Nua06] and [DNOP09], a short intro-
duction for beginners can be found in [Øk97] and [Alt11]. This chapter is mainly based on
[Nua06] and [Alt11].

3.1 Preliminaries

There are several objects that can be used as fundamental objects upon which Malliavin
calculus is constructed. We will use isonormal Gaussian processes. We assume that we
are given a complete probability space (Ω,F , P), a real separable Hilbert space H and a
process (W(h))h∈H conforming with the following definition. We further assume that F is
generated by the random variables {W(h) : h ∈ H}.

Definition 3.1 An isonormal Gaussian process on a Hilbert space H is a linear mapping
W : H→ L2(Ω,F , P) such that

• For each h ∈ H the random variableW(h) is centered and Gaussian.

• W is an isometry: ‖W(h)‖2 = ‖h‖H for all h ∈ H. C

The linearity of W implies that the random variables (W(h))h∈H are jointly Gaussian1

The polarization identity proves 〈W(h),W(g)〉L2(Ω) = 〈h, g〉H. Put together we get that

1A set of random variables is called jointly Gaussian if each linear combination follows a Gaussian distribution.
A subset of such random variables is independent if and only it is uncorrelated.
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Chapter 3. Malliavin Calculus

two random variables W(h) and W(g) are uncorrelated/independent if and only if h ⊥ g.
Kolmogorov’s consistency theorem (see e.g. Theorem 62.3 in [Bau74]) shows that on every
Hilbert space there exists an isonormal Gaussian process.
The classical example of an isonormal Gaussian process is the Wiener integral with respect
to a d-dimensional Brownian motion Z. It maps h ∈ H := L2([0, T ];Rd) to

W(h) :=

∫T
0

h(t)dZt =
d∑
i=1

∫T
0

hi(t)dZit (3.1)

(with a fixed endtime T ). Although this so-called Wiener setting is the only isonormal
Gaussian process that we are going to use, we believe that it is easier to introduce Malliavin
calculus in the more abstract framework of above definition, because it provides exactly the
structure necessary for Malliavin calculus.
We denote by C∞

pol(R
d,R) the set of functions f : Rd → Rwhich are infinitely often differ-

entiable such that each (partial) derivative of any order is bounded by some polynomial.
C∞
b (Rd,R) is the subset of functions which are bounded and have bounded partial deriva-

tives of all orders.

Definition 3.2 A random variable X ∈ L2(Ω) is called smooth, if there exists n ∈ N, a
function f ∈ C∞

pol(R
n,R) and h1, . . . , hn ∈ H such that

X = f(W(h1), . . . ,W(hn))

The set of smooth random variables is denoted by S. The set Sb consists of those smooth
random variables which allow a representation using f ∈ C∞

b (Rn,R). C

The representation of a smooth random variable as a functional of severalW(hi) is of course
not unique. Often we will require the hi to be orthonormal; because W is linear, this clearly
is no restriction.

Proposition 3.3 The sets S and Sb are dense in Lp(Ω;F , P) for all p ≥ 1.

Proof (Sketch). It suffices to consider the case of Sb and p > 1. Let q be the Hölder conjugate
of p. Assume Z ∈ Lq(Ω) such that E(XZ) = 0 for all X ∈ Sb. Using an approximation
procedure via the exponential series , we then can show that even E(eW(h)Z) = 0 for all
h ∈ H (for the details see Theorem A.2 in [Alt11]). Because the set {eW(h) : h ∈ H} is total in
Lp(Ω), see Lemma 1.1.2 in [Nua06], this implies Z = 0 and thus Sb must be dense. �

3.2 The Malliavin Derivative

We will first define the derivative for smooth random variables and then extend it to a bigger
class of random variables.

Definition 3.4 Let X be a smooth random variable that can be written as

X = f(W(h1), . . . ,W(hn)) (3.2)
C

for f ∈ C∞
pol(R

n,R) and h1, . . . , hn ∈ H. Then we define the Malliavin derivative DX of X
as the H-valued random variable

DX =

n∑
i=1

∂if(W(h1), . . . ,W(hn)) · hi
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Note that the Malliavin derivativeDX is an element of Lp(Ω;H). In the Wiener setting this is
a random function inH = L2([0, T ];Rd) and for t ∈ [0, T ] we writeDitX instead of ((DX)(t))i.
A simple consequence of above definition is D(W(h)) = h. In the Wiener setting this means
for example that Di(Zit − Zis) = 1[s,t] for 0 ≤ s ≤ t ≤ T and Dj(Zit − Zis) = 0 for j 6= i. This
explains, why the i-th component of DX is regarded as derivative with respect to the i-th
Brownian motion Zi.
A random variable which is not differentiable is e.g. 1A for an event A with P(A) 6∈ {0, 1};
see Proposition 1.2.6 in [Nua06].
Of course, we have to prove that above definition is well-defined:

Theorem 3.5 The definition of the Malliavin derivative of a smooth random variable X does
not depend on the particular representation of X.

Proof (Sketch). For a detailed proof see Proposition 2.8 in [Alt11]. Given a random variable
Xwith representation (3.2), choose orthonormal vectors e1, . . . , er and a matrix A ∈ Rn×r
such that hi =

∑r
j=1 aijej, i = 1, . . . , n. Then for the linear map ϕ associated with A we

have
ϕ(W(e1), . . . ,W(er)) = (W(h1), . . . ,W(hn))

and thus

n∑
i=1

∂if(W(h1), . . . ,W(hn)) · hi =
r∑
j=1

n∑
i=1

∂if(ϕ(W(e1), . . . ,W(er)) · aijej

=

r∑
j=1

∂j(f ◦ϕ)(W(e1), . . . ,W(er)) · ej

Given two representations of X, we can thus switch both to representations using the same
orthonormal system without changing the derivatives. But because (W(e1), . . . ,W(er)) has
an r-dimensional standard normal distribution, both representations must coincide. Thus
both derivatives must be equal. �

The key to extending the derivative to a bigger domain is the integration by parts rule.
Later, we will use the same rule to improve the efficiency of the quadrature of discontinuous
payoffs; see Theorem 8.4.

Proposition 3.6 Let X ∈ S and h ∈ H. Then

E(〈DX,h〉H) = E(X ·W(h))

Proof. We can assume that X is given using a representation X = f(W(e1), . . . ,W(en)) with
orthonormal vectors ei ∈ H and e1 = h/‖h‖2H. We write νn for the n-dimensional standard
normal distribution. Then

E(〈DX,h〉H) =
n∑
i=1

E
(
∂if(W(e1), . . . ,W(en))

)
· 〈ei, h〉H

= E
(
∂1f(W(e1), . . . ,W(en))

)
=

∫
Rn

∂1f dνn

=

∫
Rn

∂1f(x) · (2π)−
n
2 e−

‖x‖2
2 dx

17
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Now we can use the integration by parts formula from ordinary calculus to replace ∂1f by f.
Because f is polynomially bounded, while the density of the normal distribution decreases
exponentially, the boundary term vanishes.

= −

∫
Rn

f(x) · (2π)−n2 e−
‖x‖2
2 · (−x1) dx

=

∫
Rn

f(x)x1dνn

= E(f(W(e1), . . . ,W(en)) ·W(e1))

= E(X ·W(h)) �

If we apply the integration by parts rule to a product X · Y of smooth random variables we
get

E(Y · 〈DX,h〉H) = E(X · Y ·W(h)) − E(X · 〈DY, h〉H) (3.3)

This small formula is the central tool in the extension of the Malliavin derivative to a closed
operator.

Definition 3.7 Let V,U be normed vector spaces. An operator A : domA ⊂ V → U is called

1. closed, if for all sequences (xn) ⊂ V the existence of lim xn and limAxn imply
lim xn ∈ domA and A(lim xn) = limAxn.

2. closable, if for all sequences (xn), (yn) ⊂ V the existence and equality of lim xn = limyn
and the existence of limAxn and limAyn imply limAxn = limAyn. C

Clearly, the second property allows to extend the closable operator A to a closed operator by
setting A(lim xn) := limAxn. To show that an operator is closable, it suffices to prove that
whenever a sequence (xn) ⊂ V converges to 0 and limAxn exists, then limAxn = 0 (because
in this case the conditions of Definition 3.7 2. imply xn − yn → 0 and limA(xn − yn) exists,
so limA(xn − yn) = 0).

Theorem 3.8 Let p ≥ 1. The operator D as defined in Definition 3.4 is closable from
S ⊂ Lp(Ω) to Lp(Ω;H).

Proof. Let (Xn)n∈N ⊂ S converge to 0 in Lp(Ω) such that DXn converges to some Z in
Lp(Ω;H). Formula (3.3) gives for arbitrary h ∈ H and Y ∈ Sb that

E(Y〈Z, h〉H) = lim
n→∞E(Y〈DXn, h〉H) = lim

n→∞
(
E(YW(h) · Xn) − E(〈DY, h〉H · Xn)

)
(3.4)

Because Y ∈ Sb, hence DY is bounded, the second summand converges to 0. The first
summand converges to 0, if we require that YW(h) is bounded. So let us define

A(h) := {Y ∈ Sb : FW(h) is bounded}

For every Y ∈ Sb and ε > 0 the random variable Ye−εW(h)2 is in A(h) and

lim
ε→0 Ye−εW(h)2 = Y

in Lp(Ω) by dominated convergence. Thus A(h) is dense in Sb for all h ∈ H. Therefore
(3.4) implies E(Y〈Z, h〉H) = 0 for all Y ∈ Sb and h ∈ H. Because Sb is dense in Lp(Ω), see
Proposition 3.3, this means that 〈Z, h〉H = 0 almost surely for all h and thus Z = 0 almost
surely. �
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Definition 3.9 Let p ≥ 1. We define the Malliavin derivativeD as the closure of the operator
D defined in Definition 3.4. The domain of D is denoted by D1,p and given by

D1,p :=

{
X ∈ Lp(Ω) : ∃(Xn)n∈N ⊂ S, Y ∈ Lp(Ω;H) s.t. Xn → X in Lp(Ω)

DXn → Y in Lp(Ω;H)

}
A random variable within D1,p is called differentiable. C

While the domain of D depends on the parameter p, the actual derivative DX does not
depend on p (as long as X ∈ D1,p). We define D1,∞ =

⋂
p≥1D1,p. Note that as a consequence

of the definition all differentiable random variables must be measurable with respect to the
underlying isonormal Gaussian processW.

3.3 Chain Rules

An important tool in Malliavin calculus is the chain rule. Because the derivative — like most
of stochastic calculus — is only defined up to sets of measure zero, the chain rule can be
extended to functions that are not everywhere differentiable. In our application of Malliavin
calculus to the quadrature of discontinuous functionals we will need a chain rule which is
more general than what can be found in the literature. In this section we will develop this
result in a series of increasingly general chain rules.
We say that the chain rule holds for a function ϕ : Rd → R and a random vector X =
(X1, . . . , Xd) with Xi ∈ D1,p, if ϕ(X) ∈ D1,p and

Dϕ(X) =

d∑
i=1

∂iϕ(X) ·DXi (3.5)

Because the Malliavin derivative is a closed operator, in order to prove the chain rule for ϕ
and X, it clearly suffices to find functionsϕk : Rd → R, k ∈ N, with the following properties:

1. The chain rule holds for all ϕk.

2. ϕk(X)→ ϕ(X) in Lp(Ω).

3. ∂iϕk(X) ·DXi → ∂iϕ(X) ·DXi in Lp(Ω;H) for all i = 1, . . . , d.

The proofs in this section will frequently use the following mollifier functions: For each
n ∈ N choose ψn ∈ C∞(Rd,R) such that ψn(x) = 0 if ‖x‖∞ ≥ 1/n and

∫
Rd
ψn(x)dx = 1.

Note that ∫
Rd

‖y‖ ·ψn(y)dy ≤
∫
{‖y‖≤1/n}

‖y‖ ·ψn(y)dy ≤
1

n

∫
Rd

ψn(y)dy =
1

n
(3.6)

Proposition 3.10 The chain rule holds if X1, . . . , Xd ∈ S and ϕ ∈ C∞
pol(R

d,R).

Proof. We can represent all Xi using the same h1, . . . , hn ∈ H so that

Xi = fi(W(h1), . . . ,W(hn))

Set f = (f1, . . . , fd). Then ϕ ◦ f ∈ C∞
pol(R

n,R) and thus ϕ(X) is a smooth random variable.
By definition, the derivative is

D(ϕ(X)) =

n∑
j=1

∂j(ϕ ◦ f)(W(h1), . . . ,W(hn)) · hj

=

n∑
j=1

d∑
i=1

∂iϕ(f(W(h1), . . . ,W(hn))) · ∂jfi(W(h1), . . . ,W(hn)) · hj

=

d∑
i=1

∂iϕ(X) ·DXi �
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Proposition 3.11 The chain rule holds if X1, . . . , Xd ∈ D1,p and ϕ : Rd → R is continuously
differentiable with bounded partial derivatives.

Proof. ϕ(X) ∈ Lp(Ω) follows from the mean value theorem. First assume that all Xi are
smooth random variables. Set

ϕ̃n(x) :=

{
ϕ(x) if ‖x‖ ≤ n
0 if ‖x‖ > n

and define
ϕn := ϕ̃n ∗ψn

ϕn is infinitely often differentiable and has bounded support and consequently ϕn ∈
C∞

pol(R
d,R) (note that this is not necessarily true for ϕ ∗ ψn). Thus the previous theorem

proves the chain rule for ϕn.
Moreover for each ω ∈ Ω we have (we abbreviate X = (X1(ω), . . . , Xd(ω)) and Qn :=
[−n,n]d)

|ϕn(X) −ϕ(X)| =

∣∣∣∣∫
Qn

ϕ(y) ·ψn(X− y)dy−

∫
Rd

ϕ(X) ·ψn(X− y)dy
∣∣∣∣

≤
∫
Qn

|ϕ(y) −ϕ(X)| ·ψn(X− y)dy+ |ϕ(X)| ·
∫
Qcn

ψn(X− y)dy

≤ sup ‖∇ϕ‖ ·
∫
Qn

‖y− X‖ ·ψn(X− y)dy+ |ϕ(X)| ·
∫
Qcn

ψn(X− y)dy

≤ sup ‖∇ϕ‖ · 1
n

+ |ϕ(X)| ·
∫
Qcn

ψn(X− y)dy

This converges to 0 almost surely and in Lp(Ω) because it is bounded by sup∇ϕ+ϕ(X).
Analogously

‖∂iϕn(X) ·DXi − ∂iϕ(X) ·DXi‖H ≤
(∫
Qn

|∂iϕ(y) − ∂iϕ(X)| ·ψn(X− y)dy

+ |∂iϕ(X)| ·
∫
Qcn

ψn(X− y)dy

)
· ‖DXi‖H

This converges to 0 almost surely because for a given ε > 0 we can choose δ = δ(ω) > 0
such that |∂iϕ(y) − ∂iϕ(X(ω))| < ε for all ywith ‖y− X(ω)‖ < δ. Thus for all n > 1/δ the
first integral is at most ε. Because ∂iϕ is bounded, convergence holds in Lp(Ω), too.
Now consider the general case. Choose X(n) = (X

(n)
1 , . . . , X

(n)
d ) with smooth random

variables X(n)
i such that X(n)

i → Xi in D1,p and almost surely as n→∞ uniformly in i. Then

|ϕ(X(n)) −ϕ(X)| ≤ sup ‖∇ϕ‖ · ‖X(n) − X‖

and

‖∂iϕ(X(n)) ·DX(n)
i − ∂iϕ(X) ·DXi‖ ≤ |∂iϕ(X

(n))| · ‖DX(n)
i −DXi‖H

+ |∂iϕ(X
(n)) − ∂iϕ(X)| · ‖DXi‖H

converge to 0 by bounded convergence. As above this suffices to prove the claim. �

Surprisingly the chain rule can be extended to some functions which are not differentiable
(to make equation (3.5) meaningful, we set ∂iϕ(x) := 0 where this partial derivative does
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not exist). Because we will continue to use the mollifier functions ψn, we need the following
lemma. We call a function Lipschitz in direction ei, if there exists a constant L ≥ 0 such that

|ϕ(x+ hei) −ϕ(x)| ≤ L · h ∀ x ∈ Rd, h ∈ R

Being locally Lipschitz in a direction ei means that for each x ∈ Rd there exist L(x) ≥ 0 and
ε(x) > 0 such that

|ϕ(x+ hei) −ϕ(x)| ≤ L(x) · h ∀h ∈ R, |h| ≤ ε(x)

Lemma 3.12 Let i ∈ {1, . . . , d} and assume ϕ : Rd → R is Lipschitz in direction ei. Then
∂i(ϕ ∗ψn) exists almost everywhere and equals ∂iϕ ∗ψn. If ϕ is only locally Lipschitz in
direction ei this is still true if n is large enough.

Proof. Rademacher’s theorem (see e.g. Theorem 6 in §5.8.3 of [Eva10]) proves that ∂iϕ
exists for almost every x ∈ Rd. For such xwe have

lim
h→0

1

h
(ϕ ∗ψn(x+ hei) −ϕ(x)) = lim

h→0
∫
Rd

1

h
(ϕ(x+ hei − y) −ϕ(x− y)) ·ψn(y)dy

The integrand is bounded by L · supψn and thus we can exchange integral and limit.

=

∫
Rd

∂iϕ(x− y) ·ψn(y)dy

= ∂iϕ ∗ψn(x)

If ϕ is only locally Lipschitz, we must choose n large enough such that the bound |ϕ(x+
hei − y) −ϕ(x− y)| ≤ L(x) · h holds for all y ∈ suppψn for h small enough. �

Assumption 3.13 The setM of points where ϕ is not partially continuously differentiable is
of the formM = N ∪ Zwhere P(X ∈ N) = 0 and Z is at most countable. C

Rademacher’s theorem shows that for every locally Lipschitz continuous function ϕ the set
M has Lebesgue measure zero. In particular, for these functions Assumption 3.13 is always
fulfilled if PX is absolutely continuous with respect to the Lebesgue measure.

Proposition 3.14 The chain rule holds if ϕ is Lipschitz continuous and Assumption 3.13
holds.

Proof. Let L be the Lipschitz constant of ϕ. ϕ(X) ∈ Lp(Ω) follows from

|ϕ(X)| ≤ |ϕ(X) −ϕ(0)|+ |ϕ(0)| ≤ L|X|+ |ϕ(0)|

Set ϕn := ϕ ∗ψn. Because ϕ is Lipschitz, all partial derivatives of ϕn are bounded by L so
the chain rule holds for ϕn by the previous theorem. Furthermore

|ϕn(X) −ϕ(X)| ≤
∫
Rd

|ϕ(y) −ϕ(X)| ·ψn(X− y)dy

≤ L ·
∫
Rd

|y− X| ·ψn(X− y)dy

≤ L · 1
n

Thus ϕn(X)→ ϕ(X) in Lp(Ω). For eachω ∈ Ωwe have

|∂iϕn(X) − ∂iϕ(X)| · ‖DXi‖H ≤
∫
Rd

|∂iϕ(y) − ∂iϕ(X)| ·ψn(X− y)dy · ‖DXi‖H

If X(ω) 6∈M, i.e. ∂iϕ is continuous at X(ω), the last integral converges to zero. On the other
hand, by Proposition 1.3.16 in [Nua06], for each x ∈ Rd there exists a null set Nx ⊂ Ω such
that DXi = 0 on {X = x} \Nx. Because Z is at most countable, above integral converges
almost surely (except on

⋃
z∈ZNz ∪N). The sequence is dominated by 2L ·DX and thus

converges to 0 also in Lp and the proof is complete. �
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To extend the chain rule to functions which are not globally Lipschitz continuous we clearly
need the following assumption.

Assumption 3.15 ϕ(X) ∈ Lp(Ω) and ∂iϕ(X) ·DXi ∈ Lp(Ω;H) for all i = 1, . . . , d. C

Proposition 3.16 The chain rule holds if ϕ is locally Lipschitz continuous and bounded and
Assumptions 3.13 and 3.15 hold.

Proof. Choose a sequence (nk)k ⊂ R such thatnk →∞ andP(‖X‖∞ = nk) = 0 for all k ∈ N.
Define ϕk(x) := ϕ(−nk ∨ x∧ nk), component-wise. By construction |∂iϕk| ≤ |∂iϕ| and ϕk
is Lipschitz continuous and Assumption 3.13 holds for ϕk. Thus the previous proposition
shows that the chain rule holds for ϕk(X). By dominated convergence ϕk(X) → ϕ(X) in
Lp(Ω) and ∂ϕk(X)DXi → ∂ϕ(X)DXi in Lp(Ω;H) which implies the chain rule for ϕ. �

Theorem 3.17 (Chain rule) The chain rule holds if ϕ is locally Lipschitz continuous and
Assumptions 3.13 and 3.15 hold.

Proof. Choose a sequence (nk)k ⊂ R such that nk → ∞ and P(|ϕ(X)| = nk) = 0 for all
k ∈ N. Set ϕk(x) := −nk ∨ ϕ(x) ∧ nk. By construction ϕk is bounded and Assumption
3.13 also holds for ϕk. Thus the chain rule holds for ϕk. By dominated convergence
ϕk(X)→ ϕ(X) and ∂iϕn(X)DXi → ∂iϕ(X)DXi. �

Corollary 3.18 The chain rule holds for a continuously differentiable function if Assumption
3.15 holds.

The next step is to extend the chain rule to functions which may even be not continuous in
some directions. This works as long as the Malliavin derivative of the random variables in
this direction vanishes. For this we have to extend our definition of chain rule slightly by
replacing (3.5) by

Dϕ(X) =
∑

i=1,...,d
DXi 6=0

∂iϕ(X) ·DXi (3.7)

Let A denote the set of indices i = 1, . . . , d with DXi 6= 0.

Proposition 3.19 Let ϕ : Rd → R be continuous except on a PX-zero set and assume that ϕ
is locally Lipschitz continuous in all directions ei, i ∈ A. If Assumption 3.15 holds, then the
chain rule holds for ϕ.

Proof. First assume that ϕ is bounded and globally Lipschitz continuous in all directions ei,
i ∈ A. Because the chain rule holds for ϕ ∗ψn we only have to prove ϕ ∗ψn(X)→ ϕ(X) in
Lp(Ω) and ∂iϕ ∗ψn(X) ·DXi → ∂iϕ(X) ·DXi in Lp(Ω;H) for i ∈ A. We have

|ϕ ∗ψn(X) −ϕ(X)| ≤
∫
Rd

|ϕ(y) −ϕ(X)| ·ψn(X− y)dy

The integrand converges almost surely to 0 because ϕ is continuous PX-almost everywhere.
Because the integral is bounded by 2 sup |ϕ|, above expression converges to 0 in Lp(Ω).
Furthermore

|(∂i(ϕ ∗ψn)(X) − ∂iϕ(X)) ·DXi| ≤
∫
Rd

|∂iϕ(y) − ∂iϕ(X)| ·ψn(X− y) · |DXi|dy

The integral is dominated by Li
n
·DXi due to (3.6) and thus this converges to 0 in Lp(Ω;H).

The extension to unbounded and locally Lipschitz functions is the same as in Proposition
3.16 and Theorem 3.17. �

A direct consequence of the chain rule applied to (x, y) 7→ x · y is the product rule.

Corollary 3.20 Assume X, Y ∈ D1,p such that X · DY ∈ Lp(Ω;H) and Y · DX ∈ Lp(Ω;H).
Then X · Y ∈ D1,p and

D(XY) = X ·DY + Y ·DX
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3.4 The Skorohod Integral

The adjoint operator of the Malliavin derivative plays an important and somewhat surprising
role: In the Wiener setting it is a generalization of the Itō integral to non-adapted processes.

Definition 3.21 Let δ denote the adjoint operator of D : D1,2 ⊂ L2(Ω) → L2(Ω;H). δ is
called the divergence operator or in the Wiener setting the Skorohod integral. C

BecauseD is an unbounded operator defined on a dense subset of L2(Ω), the precise meaning
of the previous definition is the following; see e.g. Definition VII.2.3 in [Wer07].

1. δ is defined on the subspace

dom(δ) := {u ∈ L2(Ω;H) : D1,2 3 X 7→ 〈DX,u〉L2(Ω;H) is continuous}

Because D1,2 is dense in L2(Ω), for u ∈ dom δ the functional X 7→ 〈DX,u〉L2(Ω;H) can
be uniquely extended to a linear functional ϕ on L2(Ω).

2. If u ∈ dom(δ), then δ(u) is the unique (by the Riesz representation theorem) element
Y ∈ L2(Ω) such that ϕ = 〈·, Y〉L2(Ω).

As a direct consequence of the definition we have

E(〈DX,u〉H) = E(Xδ(u)) (3.8)

for all X ∈ D1,2 and u ∈ dom(δ). This relation is called the integration by parts rule and
generalizes Proposition 3.6.

Remark 3.22 To prove that u ∈ dom(δ) and δ(u) = Y for some Y ∈ L2(Ω), it is sufficient to
show E(〈DX,u〉H) = E(XY) for all X ∈ S (or all X ∈ Sb or any other dense subset of D1,2).
Because if we approximate an arbitrary X ∈ D1,2 by Xn ∈ S we have

E(〈DX,u〉H) = lim
n→∞E(〈DXn, u〉H) = lim

n→∞E(XnY) = E(XY)
In particular the mapping D1,2 3 X 7→ 〈DX,u〉L2(Ω;H) is continuous, hence u ∈ dom δ, and
δ(u) = Y. C

Using this remark, we can compute the divergence of simple processes of the form u =∑n
i=1 Xihi with Xi ∈ S and hi ∈ H, i = 1, . . . , n: For every Y ∈ S we get from (3.3)

E(〈DY,u〉H) =
n∑
i=1

E(Xi〈DY, hi〉H) =
n∑
i=1

E(XiYW(hi) − Y〈DXi, hi〉H)

and thus

δ(u) =

n∑
i=1

XiW(hi) − 〈DXi, hi〉H (3.9)

For more complex random processes we will often use the following generalization of (3.9).

Proposition 3.23 LetX ∈ D1,2,u ∈ dom(δ) such thatXu ∈ L2(Ω;H) andXδ(u)−〈DX,u〉H ∈
L2(Ω). Then Xu ∈ dom(δ) and

δ(Xu) = Xδ(u) − 〈DX,u〉H
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Proof. Define A := Xδ(u) − 〈DX,u〉H. For every Y ∈ Sb the product rule (Corollary 3.20)
implies

E(〈DY,Xu〉H) = E(〈u,D(XY) − Y ·DX)H) = E(δ(u)XY − 〈u,DX〉H · Y) = E(A · Y)

By Remark 3.22, this is sufficient. �

In the Wiener setting, i.e.H = L2([0, T ];Rd) andW is the Wiener integral over ad-dimensional
Brownian motion Z on [0, T ], the divergence operator is called the Skorohod integral and
denoted by δ(u) =

∫T
0
usδZs. The resemblance to the notation of the Itō integral is justified

by the following theorem.

Theorem 3.24 Consider the Wiener setting. If u ∈ L2(Ω× [0, T ]) is an adapted process, then
u ∈ dom(δ) and δ(u) =

∫T
0
u(t)δZt =

∫T
0
u(t)dZt =

∑d
i=1

∫T
0
ui(t)dZit.

Proof (sketch). The full proof is given in Proposition 1.3.11 of [Nua06]. The main idea (for
simplicity assume d = 1) is that for an adapted step process u =

∑n
i=1 Xi1[ti,ti+1) with

0 ≤ t1 < · · · < tn ≤ T and suitable Xi, we can compute the Skorohod integral using (3.9) or
Proposition 3.23 as

δ(u) =

n∑
i=1

Xi · (Zti+1 − Zti) − 〈DXi, 1[ti,ti+1)〉L2([0,T ])

Because Xi is measurable with respect to {Zt : 0 ≤ t ≤ ti}, the derivative DtXi vanishes for
t > ti; see Proposition 1.2.8 in [Nua06]. Thus the second summand is zero, while the first
one clearly is the Itō integral. �

3.5 Partial Malliavin Derivatives

When working with multidimensional Heston models later, it will be useful to consider
models where only one price process is Malliavin differentiable. For this we introduce partial
Malliavin derivatives which only differentiate with respect to a single Brownian motion.
This is actually a special case of a much more general construction and because it makes the
notation easier, we will consider this general construction and then introduce the special
case that we will use later.
In the following let H̃ be a second Hilbert space and let A : H→ H̃ be a continuous linear
operator. On the set of smooth random variables S define DA as A ◦D, i.e.

DA(X)(ω) = A(DX(ω)), X ∈ S

As the following theorem shows, this is a closable operator, so that we can define the final
DA as the closure of DA = A ◦D. The domain of the closed operator is denoted by D1,p,A.

Theorem 3.25 The operator DA is closable from S ⊂ Lp(Ω) to Lp(Ω; H̃).

Proof. Let h ∈ H̃ and X, Y ∈ S. From (3.3) we get

E(〈ADX,h〉H̃ · Y) = E(〈DX,A∗h〉H · Y) = E(−X · 〈ADY, h〉H̃ + XYW(A∗h))

Let Xn be a sequence of smooth random variables converging to 0 in Lp(Ω) such that ADXn
converges in Lp(Ω; H̃) to some random variable u. For each h ∈ H̃ and Y ∈ Sb such that
YW(A∗h) is bounded, we have

E(〈u, h〉H̃Y) = lim
n→∞E(〈ADXn, h〉H̃Y)

= lim
n→∞E(−Xn〈ADY, h〉+ XnYW(A∗h))

= 0
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If we can prove that the set of considered Y is dense in Sb for each h ∈ H̃, then this
implies u = 0 and hence the assertion. In fact, for each h ∈ H̃ and Y ′ ∈ Sb we can choose
Y = Y ′e−εW(A∗h)2 to approximate Y ′ arbitrarily well and such that YW(A∗h)) is bounded;
see also the proof of Theorem 3.8. �

Because A is continuous, clearly D1,p ⊂ D1,p,A and DA = A ◦D on D1,p.

Proposition 3.26 For each p ≥ 1 we have DAX = 0 for each random variable X in the
D1,p,A-closure of the set

Sker := {X ∈ S : X = f(W(h1), . . . ,W(hn)), f ∈ C∞
pol(R

n,R), h1, . . . , hn ∈ kerA}

Proof. By our assumptions we can choose a sequence (Xn) ⊂ Sker such that Xn → X in
Lp(Ω) and DAXn → DAX in Lp(Ω; H̃). Then DAX = limDAXn = 0 by definition. �

The chain rules from Section 3.3 also hold for the operatorsDA: The analogue to Proposition
3.10 can be shown by a similar calculation. All other chain rules use only the closability of
the operator and thus the proofs remain valid when D is replaced by DA.

We define the operator δA as adjoint operator of DA, i.e.

dom δA := {u ∈ L2(Ω; H̃) : X 7→ 〈DAX,u〉H̃ is continuous for X ∈ D1,2,A}

On this set δA(u) is defined as the unique element of L2(Ω) such that

E(〈DAX,u〉H̃) = E(XδA(u)) for all X ∈ D1,2,A

Theorem 3.27 The operator δA equals δ ◦A∗. In particular dom δA = (A∗)−1(dom δ).

Proof. For a smooth random variable X we have 〈DAX,u〉H̃ = 〈DX,A∗u〉H. Using Remark
3.22 we have u ∈ dom δA if and only if X 7→ 〈DX,A∗u〉H is continuous on S, which is
equivalent to A∗u ∈ dom δ. In this case E(〈DAX,u〉H̃) = E(X · δ(A∗u)) which proves
δA = δ ◦A∗. �

Theorem 3.28 Assume that X ∈ D1,2,A, u ∈ dom δA, Xu ∈ L2(Ω; H̃) and XδA(u) −
〈DAX,u〉H̃ ∈ L2(Ω). Then Xu ∈ dom δA and

δA(Xu) = X · δA(u) − 〈DAX,u〉H̃

Proof. Let Y ∈ Sb. Then XY ∈ D1,2,A and we have

E(〈DAY, Xu〉H̃) = E(〈DA(XY), u〉H̃) − E(〈Y ·DAX,u〉H̃)
= E(XYδA(u)) − E(〈DAX,u〉H̃Y)
= E((XδA(u) − 〈DAX,u〉H̃) · Y)

which proves the claim; see Remark 3.22. �

We will now introduce the special case which will be later used in the multidimensional
Heston model. Consider the Wiener setting, i.e. the isonormal Gaussian process is given by
the Wiener integral over a d-dimensional Brownian motion Z on a fixed time interval [0, T ];
see (3.1). Let a ∈ Rd with ‖a‖ = 1, so that B := 〈a, Z〉 defines a Brownian motion. Define
A : H = L2([0, T ];Rd)→ H̃ := L2([0, T ]) by

Af(x) = 〈a, f(x)〉Rd for x ∈ [0, T ]
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In this case we write DB for the operator DA and D1,p,B for D1,p,A. DB can be interpreted
as Malliavin derivative with respect to the Brownian motion B. Random variables which are
differentiable in the one-dimensional Malliavin calculus with respect to B (i.e. the isonormal
Gaussian process in this calculus is the Wiener integral with respect to B), are also in
D1,p,B and both operators coincide. However, D1,2,B contains much more elements. If for
example a = e1, i.e. B = Z1, then only random variables measurable with respect to Z1

will be differentiable in the one-dimensional Malliavin calculus with respect to Z1. On the
other hand D1,p,Z1 contains all random variables Xwhich are measurable with respect to
Z2, . . . , Zd, their derivative being zero: Because S is dense, X can be approximated using
only Wiener integrals with respect to Z2, . . . , Zd and Proposition 3.26 showsDZ

1

X = 0. Also
note that for X ∈ D1,p the L2([0, T ];Rd)-valued random variable DX can be interpreted as
d-dimensional vector with the components DZ

1

, . . . , DZ
d

:

(DrX)i = D
Zi

r X

The adjoint operator of DB is δB = δ ◦ A∗ with A∗ : L2([0, T ]) → L2([0, T ];Rd), A(h)(t) =
h(t) · a for t ∈ [0, T ]. If a = ei, then the operator δA = δZ

i

is the Skorohod integral with
respect to the i-th Brownian motion.
The following proposition computes the derivative of an Itō integral where the integrand
is independent of the Brownian motion with respect to which we are differentiating. An
analogous result using the normal Malliavin derivative instead of the partial derivative
would require the integral to be differentiable with respect to all Zi, i = 1, . . . , d and thus
require stronger assumptions; see e.g. Proposition 1.3.8 in [Nua06].

Proposition 3.29 Let i, j ∈ {1, . . . , d}. Assume that Xt be a process in L2(Ω× [0, T ]) which
is adapted to the Brownian motion Z and independent of the Brownian motion Zj. Then∫T
0
XtdZit ∈ D1,p,Zj and for all r ∈ [0, T ]

Djr

(∫T
0

XtdZit

)
= Xr · 1i=j

Proof. Choose simple processes Xnt that converge against Xt in L2(Ω × [0, T ]). Assume
Xnt =

∑Kn
k=1A

n
k1[tnk ,t

n
k+1)

. Then the product rule and the asserted independence give

Djr

(∫T
0

Xnt dZit

)
=

Kn∑
k=1

Ank ·Djr(Zitn
k+1

− Zitn
k
) =

Kn∑
k=1

Ank · 1[tnk ,tnk+1)(r) · 1i=j = X
n
r · 1i=j

The assertion follows because the operator Dj is closed. �

Remark 3.30 Another instance of the general construction presented in this section is the
operator Dh, h ∈ H, introduced in (1.33) of [Nua06]. On smooth random variables it is
defined asDhX = 〈DX,h〉H. This differs from our operatorDB in thatDB only uses a scalar
product overRd inDBX = 〈DX,a〉Rd for X ∈ S and thus gives an L2([0, T ])-valued random
variable, while Dh uses the scalar product of H and thus DhX is real valued. C

3.6 Further Results

This short section states further results from Malliavin calculus which will be used within
this thesis. The proofs require much more of the theory of Malliavin calculus than what has
been done in the this chapter and can be found in [Nua06]. The first theorem gives an SDE
for the Malliavin derivative of an SDE solution — albeit under rather strong conditions on
the coefficients.
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Theorem 3.31 LetWt, t ∈ [0, T ], be anm-dimensional Brownian motion and let Xt, t ∈ [0, T ],
be the solution of the d-dimensional SDE

dXt = b(Xt)dt+ σ(Xt)dWt

Assume that both b : Rd → R
d and σ : Rd → R

d×m are continuously differentiable with
bounded derivatives (of first order). Then Xi(t) ∈ D1,∞ for all t ∈ [0, T ], i = 1, . . . , d. The
derivative DjrXi(t) satisfies almost everywhere the equation

DjrX
i(t) = σij(X(r)) +

d∑
k=1

m∑
l=1

∫t
r

∂kσil(X(s))D
j
rX
k(s)dWl(s) +

d∑
k=1

∫t
r

∂kbi(X(s))D
j
rX
k(s)ds

for r ≤ t and the equation DjrXi(t) = 0 for r > t.

Proof. This is a simplified version of Theorem 2.2.1 in [Nua06] together with the remark
following that theorem. �

Finally, we need a result on the smoothness of densities.

Lemma 3.32 Let µ be a finite measure on Rd. Assume that there exist constants ci,
i = 1, . . . , d such that ∣∣∣∣∫

Rd
∂iϕdµ

∣∣∣∣ ≤ ci‖ϕ‖∞
for all ϕ ∈ C∞

b (Rd). Then µ is absolutely continuous with respect to the Lebesgue measure
onRd.

Proof. This is Lemma 2.1.1 in [Nua06]. �
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Chapter 4

Malliavin Calculus in the Heston
Model

At various occasions in this thesis we will apply results from Malliavin calculus to the Heston
model. In this chapter we lay the foundations: We prove that both processes of the Heston
model are (under some conditions) Malliavin differentiable and we calculate the derivatives.

4.1 The Derivative of the Volatility

The standard result to compute the Malliavin derivative of a process given by an SDE is
Theorem 3.31. Unfortunately, the theorem requires the coefficients to be globally Lipschitz
and thus cannot be applied to neither the volatility nor the price process in the (generalized)
Heston model. This forces us to define a sequence of processes with globally Lipschitz
coefficients which approximate the Heston model. In fact, we will approximate the
transformed model (Xt, σt). This procedure was first carried out in [AE08] for the CIR
process.
Define the function f : R>0 → R as

f(x) := κλx−
γ
1−γ −

γθ2

2
x−1

With this definition the SDE of the transformed process is given by

dσt = (1− γ)(f(σt) − κσt)dt+ θ(1− γ)dWt (4.1)

While for γ = 1/2 the function f is always positive, it might become negative for γ > 1/2.
However, the limit behaviour limx↘0 f(x) = ∞ and limx→∞ f(x) = 0 ensures that there
exists a constant Cf ≥ 0 such that

f(x) ≥ −Cfx, x > 0 (4.2)

We will also need the following constant:

C ′f := sup
x>0

f ′(x) = sup
x>0

(
−
κλγ

1− γ
· x−

1
1−γ +

γθ2

2
· x−2

)
<∞ (4.3)

For each ε > 0 choose a function fε : R→ R satisfying the following conditions:

1. fε ∈ C∞(R,R),

2. fε = f on [ε,∞),
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3. fε ≤ f on (0,∞),

4. fε(x) ≥ −Cfx for all x ≥ 0,

5. f ′ε(x) ≤ C ′f for all x ∈ R,

6. |f ′ε| is bounded onR,

7. f ′ε(x) ≤ 0 for all x ≤ 0.

The approximating processes are now defined by replacing f by fε in the SDE (4.1): For
ε > 0 let (σεt)t be the solution of the SDE

dσεt = (1− γ)(fε(σ
ε
t) − κσ

ε
t)dt+ θ(1− γ)dWt (4.4)

This SDE satisfies the usual global Lipschitz and linear growth conditions and thus possesses
a unique strong solution.
In fact, σεt not only approximates σt but eventually more and more paths coincide as ε→ 0.

Proposition 4.1 There exists a setΩ∗ ⊂ Ωwith P(Ω∗) = 1 and such that σεt(ω) = σt(ω) for
all t ∈ [0, T ],ω ∈ Ω∗, and ε < ε∗(ω) := inft∈[0,T ] σt(ω). In particular σεt → σt almost surely
as ε→ 0.

Proof. LetΩ∗ ⊂ Ω be a set of measure one such that for allω ∈ Ω∗

• the integral form of the SDE (4.1) holds,

• σt(ω) > 0 for all t ∈ [0, T ],

• and the integral form of (4.4) holds for all ε > 0.

To prove the existence of such a set one can adapt the proof of the usual existence and
uniqueness theorem for SDEs (e.g. Theorem 2.9 in [KS10]) to the case of infinitely many
SDEs with the same constant diffusion term.
Letω ∈ Ω∗. From the integral form of the SDEs (4.1) and (4.4) we get

|σεt(ω) − σt(ω)| ≤ (1− γ)

∫t
0

|fε(σ
ε
τ(ω)) − f(στ(ω))|dτ+ (1− γ)κ

∫t
0

|σετ(ω) − στ(ω)|dτ

For all 0 < ε < ε∗(ω), t ∈ [0, T ] we have fε(σt(ω)) = f(σt(ω)) and thus

|σεt(ω) − σt(ω)| ≤
∫t
0

(1− γ)(Lε + κ) |σ
ε
τ(ω) − στ(ω)|dτ, t ∈ [0, T ],

where Lε is a Lipschitz constant for fε. By Gronwall’s lemma it follows that σt(ω) = σεt(ω)
for all t ∈ [0, T ]. �

Despite the last proposition, it is still possible for σεt to become negative. The proposition
makes sure that this is only possible if σt falls below ε.
To prove Lp-convergence of σεt to σt we need the following pathwise bound:

Lemma 4.2 Let ut be the Ornstein–Uhlenbeck process defined by the SDE

dut = −(1− γ)(Cf + κ)utdt+ θ(1− γ)dWt, u0 = σ0 (4.5)

Then P(ut ≤ σεt ≤ σt ∀ t ∈ [0, T ]) = 1 for all ε > 0.
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Proof. The main tool in this proof is the Yamada–Watanabe comparison lemma, Theorem
A.1, which allows to compare the solutions of two SDEs with the same diffusion coefficient
but different drift coefficients. The first part of the claim, P(ut ≤ σεt) = 1 follows directly from
the theorem because the drift coefficient of (4.5) is smaller than that of (4.4). Unfortunately,
the comparison lemma requires the drift coefficients to be continuously defined on the
whole ofR, which is not possible for the SDE of σ. We will still be able to prove the second
part using the comparison lemma after transforming the SDEs back: Define the process
vεt := (σεt)

1/(1−γ)
+ . Itō’s formula shows that vεt follows the SDE

dvεt =
(
(vεt)

γfε((v
ε
t)
1−γ) − κvεt +

θ2γ

2
(vεt)

2γ−1

)
dt+ θ(vεt)

γdWt

Now the comparison lemma can be applied to vεt and vt: The diffusion coefficients coincide
and satisfy condition (ii) in Theorem A.1 using h(x) = θxγ. The drift coefficient of vεt is
smaller than that of vt because fε ≤ f:

xγ · fε(x1−γ) − κx+
θ2γ

2
x2γ−1 ≤ xγ · f(x1−γ) − κx+ θ2γ

2
x2γ−1 = κ(λ− x)

We have established P(vεt ≤ vt) = 1. By applying the transformation x 7→ x1−γ again we get
P((σεt)+ ≤ σt). �

Proposition 4.3 Let p ≥ 1. Then

sup
t∈[0,T ]

|σεt − σt|→ 0

in Lp(Ω) as ε→ 0.

Proof. The claim follows from the almost-sure convergence established in Proposition 4.1, if
we can provide an integrable dominating function. For this we use the previous lemma:

sup
t∈[0,T ]

|σεt − σt| ≤ sup
t∈[0,T ]

|σt − ut| ≤ sup
t∈[0,T ]

σt + sup
t∈[0,T ]

ut

supσt ∈ Lp(Ω) follows from Theorems 2.1 and 2.4. It is well-known that supt∈[0,T ] ut ∈
Lp(Ω); see e.g. Example 6.8 in [KS10]. �

We are now ready to prove the Malliavin differentiability first of σεt , then of σt, finally of
vt. Because all these processes depend only on one Brownian motion, one-dimensional
Malliavin calculus overWt (with H := L2([0, T ])) is sufficient.

Proposition 4.4 Let t ∈ [0, T ]. Then σεt ∈ D1,∞ with derivative

Drσ
ε
t = θ(1− γ) · exp

(∫t
r

(1− γ)(f ′ε(σ
ε
s) − κ) ds

)
· 1[0,t](r)

Moreover this derivative is bounded by

sup
r,t∈[0,T ]

|Drσ
ε
t | ≤ θ(1− γ) · exp(T(1− γ) · C ′f)

Proof. Thanks to the Lipschitz continuity of the SDE coefficients of σεt we can apply Theorem
3.31 and learn that its derivative follows the integral equation

Drσ
ε
t = θ(1− γ) +

∫t
r

(f ′ε(σ
ε
s) − κ) ·Drσεsds

for r ≤ t. Its solution is exactly the asserted expression for Drσεt . Since one of the
requirements for fε was that f ′ε(x) ≤ C ′f, the bound follows trivially. �
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Proposition 4.5 We have σt ∈ D1,∞. The derivative is

Drσt = θ(1− γ) · exp
(∫t
r

(1− γ)(f ′(σs) − κ)ds
)
· 1[0,t](r) (4.6)

Furthermore
sup

r,t∈[0,T ]
|Drσ

ε
t −Drσt|→ 0

as ε→ 0 almost surely and in Lp(Ω) for all p ≥ 1.

Proof. For the moment, call the proposed derivative σ ′r,t:

σ ′r,t := θ(1− γ) · exp
(∫t
r

(1− γ)(f ′(σs) − κ)ds
)
· 1[0,t](r)

Proposition 4.1 proves that there exists a set Ω∗ ⊂ Ω with P(Ω∗) = 1 and σεt(ω) = σt(ω)
for all ω ∈ Ω∗ and ε ≤ ε∗(ω) := infs∈[0,T ] σs(ω). But then also Drσεt(ω) = σ ′r,t(ω). This
proves the asserted almost-sure convergence. The Lp-convergence follows from the uniform
bound for Drσεt established in the previous proposition. Because the Malliavin derivative is
a closable operator, this implies σt ∈ D1,∞ with Drσt = σ ′r,t. �

Note that in the standard Heston model the derivative is given by

Drσt =
θ

2
· exp

(
−

∫t
r

(
κλ

2
−
θ2

8

)
σ−2s +

κ

2
ds
)
· 1[0,t](r)

Theorem 4.6 We have vt ∈ D1,∞ with derivative

Drvt =
1

1− γ
· σ

γ
1−γ

t ·Drσt

= θvγt · exp
(∫t
r

θ2γ(1− γ)

2
· v−2(1−γ)s − κλγv−1s +−κ(1− γ) ds

)
· 1[0,t](r)

Proof. This follows directly from the chain rule Corollary 3.18. �

4.2 The Derivative of the Price Process

Similar to the volatility process, the SDE of the log-price process,

dXt =
(
µ−

1

2
σ

1
1−γ

t

)
dt+ σ

1
2(1−γ)

t dBt

does not have globally Lipschitz coefficients. To compute the derivative, we again need
to approximate Xt by the solutions of SDEs with suitable coefficient functions. To ensure
that the whole system of SDEs has globally Lipschitz coefficients, we must in particular
replace the process σt by the approximation σεt from the previous section. For ε > 0 choose
a function hε : R→ R satisfying the following properties:

1. hε is bounded and continuously differentiable,

2. hε(x) = x on [0, ε−1],

3. |hε(x)| ≤ |x| for all x ∈ R,

4. |h ′ε(x)| ≤ 1 for all x ∈ R.
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Now define the process Xεt as

Xεt = x0 +

∫t
0

µ−
1

2
h

1
1−γ
ε (σεs) ds+

∫t
0

h
1

2(1−γ)
ε (σεs)dBt

Lemma 4.7 For each p, q ≥ 1 the suprema

sup
t∈[0,T ]

|σqt − hε(σ
ε
t)
q| and sup

t∈[0,T ]
|σqt − hqε (σ

ε
t) · h ′ε(σεt)|

converge to 0 almost surely and in Lp(Ω) as ε→ 0.

Proof. Almost sure convergence follows from Proposition 4.1: If ε is small enough such that

ε ≤ inf
t∈[0,T ]

σt(ω) ≤ sup
t∈[0,T ]

σt(ω) ≤ 1
ε

then hε(σεt(ω)) = σεt(ω) = σt(ω) and h ′ε(σεt(ω)) = 1, t ∈ [0, T ], and thus both suprema are
0. Lp-convergence holds by dominated convergence because both suprema are bounded by
2 supt∈[0,T ] |σt|

q ∈ Lp(Ω); see Theorems 2.1 and 2.4. �

Proposition 4.8 supt∈[0,T ] |X
ε
t − Xt|→ 0 in Lp(Ω) for all p ≥ 1.

Proof. The SDEs in integral form and the Burkholder–Davis–Gundy inequality yield

E sup
t∈[0,T ]

|Xεt − Xt|
p ≤ c · E sup

t∈[0,T ]

∣∣∣∣∫t
0

σ
1
1−γ
s − h

1
1−γ
ε (σεs) ds

∣∣∣∣p

+ c · E sup
t∈[0,T ]

∣∣∣∣∣
∫t
0

(
σ

1
2(1−γ)
s − h

1
2(1−γ)
ε (σεs)

)2
ds

)p/2
for some c ≥ 0. Because |x− y|2 ≤ |x2 − y2| for x, y ≥ 0, the assertion now follows from the
previous lemma. �

Theorem 4.9 The log-price Xt is in D1,p for all p ≥ 1. The derivative is given by

D1rXt = ρ
′√vr · 1[0,t](r)

D2rXt =

(
ρ
√
vr −

1

2(1− γ)
·
∫t
0

σ
γ
1−γ
s Drσsds

+
1

2(1− γ)
·
∫t
0

σ
1

2(1−γ)
−1

s Drσs dBs

)
· 1[0,t](r)

For each r ∈ [0, T ] and i ∈ {1, 2} the derivative converges uniformly:

sup
t∈[0,T ]

|DirXt −D
i
rX
ε
t |→ 0

in Lp(Ω).

Proof. First we apply Theorem 3.31 to the system of SDEs with globally Lipschitz coefficients
(Xεt , σ

ε
t). For r ≤ t the result is

D1rX
ε
t = ρ

′h
1

2(1−γ)
ε (σεr)

D2rX
ε
t = ρh

1
2(1−γ)
ε (σεr) −

1

2(1− γ)
·
∫t
r

h
γ
1−γ
ε (σεs)h

′
ε(σ

ε
s)Drσ

ε
s ds

+
1

2(1− γ)
·
∫t
r

h
1

2(1−γ)
−1

ε (σεs)Drσ
ε
s dBs
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By Lemma 4.7 the first derivative as well as the first term of the second derivative converge
to ρ ′

√
vr and ρ

√
vr, respectively. To show convergence of the second term of the second

derivative we use the following inequality

sup
t∈[0,T ]

∣∣∣∣∫t
r

h
γ
1−γ
ε (σεs)h

′
ε(σ

ε
s)Drσ

ε
s − σ

γ
1−γ
s Drσs ds

∣∣∣∣
≤ T · sup

s∈[0,T ]

∣∣∣h γ
1−γ
ε (σεs)h

′
ε(σ

ε
s) − σ

γ
1−γ
s

∣∣∣ · sup
s∈[0,T ]

|Drσ
ε
s |

+ T · sup
s∈[0,T ]

∣∣∣σ γ
1−γ
s

∣∣∣ · sup
s∈[0,T ]

|Drσ
ε
s −Drσs|

Hölder’s inequality, Lemma 4.7, Proposition 4.5 and Theorem 2.1 prove that this converges
to 0 in Lp(Ω). After applying the Burkholder–Davis–Gundy inequality, the third term of the
second derivative can be shown to converge to 0 analogously. �

The chain rule Corollary 3.18 can be used to compute the derivative of the actual price
process asDirSt = St ·DirXt, provided both St and St ·DirXt are Lp-integrable (see Theorem
2.6 for the moments). Because we will only need derivatives of the log-price later, we omit
the details.

4.3 Higher Derivatives

For completeness, we will briefly show how to compute higher order Malliavin derivatives of
the square root CIR process. Higher order derivatives are defined by an iterative procedure;
see e.g. [Nua06]. Similar to the usual derivative, the domain of theN-the derivative depends
on the chosen Lp-norm and is denoted by DN,p. The n-th derivative is a random variable
with values in Lp(Ω;H⊗n).
Because we will not need these derivatives later, we restrict ourselves to the standard Heston
model (i.e. γ = 1/2) and the process σt.

Theorem 4.10 Let 2 ≤ N ∈ N, p ≥ 1 and t ∈ [0, T ] and assume

ν > 3(N− 1)
p

2
+ 1

Then σt ∈ DN,p.

Proof. We will define classes Apn ⊂ Lp(Ω;H⊗n) of random variables such that Dσt ∈ Ap1
and

X ∈ Apn, n < N =⇒ X ∈ D1,p(H⊗n) and DX ∈ Apn+1 (4.7)

This implies the assertion.
Define Ap1 as the class of random variables X ∈ Lp(Ω;H) that can be written as

X : r 7→ Fr

(∫b(r)
a(r)

σ−2u du

)
such that

• a and b are measurable with 0 ≤ a(r) ≤ b(r) ≤ t for all r ∈ [0, T ],

• [0, T ]×R+ 3 (r, x) 7→ Fr(x) is measurable,

• For each r ∈ [0, T ] the function Fr is infinitely often differentiable,

• Fr(x) is bounded over all (r, x) ∈ [0, T ] × R+ and the same holds for all partial
derivatives (w.r.t. x) of all orders of Fr.
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For n ≥ 2 define Ãpn as the class of random variables X ∈ Lp(Ω;H⊗n) that can be written as

X : (r1, . . . , rn) 7→ ∫
[0,t]d

Fr,s

(∫b1(r)
a1(r)

σ−2u du, . . . ,
∫bk(r)
ak(r)

σ−2u du

)
· σ−m1s1

· · ·σ−mdsd
ds

such that

• d, k ∈ N,

• ai and bi are measurable with 0 ≤ ai(r) ≤ bi(r) ≤ t for all r ∈ [0, T ] for all i = 1, . . . , k,

•
∑d
i=1mi ≤ 3(n− 1),

• [0, T ]d × [0, t]d ×Rk+ 3 (r, s, x) 7→ Fr,s(x) is measurable,

• for all r ∈ [0, T ]n, s ∈ [0, t]d, the function Fr,s is infinitely often differentiable,

• Fr,s(x) is bounded over all (r, s, x) ∈ [0, T ]n × [0, T ]d ×Rk+ and the same holds for all
partial derivatives (w.r.t. x) of all orders of Fr,s.

Finally set Apn := Lin(Ãpn).
Abbreviate Cσ = κλ/2− θ2/8. In Proposition 4.5 we have proven that σt ∈ D1,p and that

Drσt =
θ

2
· exp

(∫t
r

−
κ

2
−
Cσ

σ2s
ds
)
· 1[0,t](r) (4.8)

=
θ

2
· exp

(
−(t− r)

κ

2

)
· exp

(
−Cσ

∫t
r

σ−2u du
)

(4.9)

Because x 7→ θ/2 ·exp(−(t−r)κ/2) ·exp(−Cσx) is bounded and infinitely often differentiable,
we have Dσt ∈ Ap1 for all p ≥ 1.
For the proof of (4.7) we will restrict ourselves to the casen ≥ 2 as the casen = 1 is analogous
and even easier. So assume X ∈ Ãpn is given in the form specified above. Then for all
r ′ ∈ [0, T ] we can compute the derivative using the chain rule. The use of the chain rule is
justified because the result is in Lp(Ω;H⊗n+1) because

n∑
i=1

mn + 3 ≤ 3(n− 1) + 3 ≤ 3(N− 1)

and thus thanks to the assumption enough inverse moments of σ exist; see Theorem 2.1.
The result is

Dr ′X =

∫
s

(
k∑
i=1

∂iFr,s(· · · ) ·
∫bi(r)
ai(r)

−2

σ3u
·Dr ′σudu+ Fr,s(· · · )

n∑
i=1

−mi
σsi

)
· σ−m1s1

· · ·σ−mnsn
ds

=

k∑
i=1

∫
s∈[0,T ]d

∫bi(r)
ai(r)

−2∂iFr,s(· · · ) ·Drσu · σ−m1s1
· · ·σ−mnsn

· σ−3u duds

+

n∑
i=1

∫
s∈[0,T ]d

−miFr,s(· · · )σ−m1s1
· · ·σ−mnsn

· σ−1si ds

Using equation (4.9) it can be seen that this result is in Apn+1. �
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Chapter 5

Multidimensional Models

In practice, one will often have to compute option prices in models containing several
correlated stocks. This section introduces such a model. The exact formulas derived
in Section 2.4 are only available for a single Heston model, so we will need to resort to
Monte-Carlo methods to compute option prices in the multidimensional models.
The multidimensional model consists of d single models which are correlated only via the
underlying Brownian motions. For i = 1, . . . , d let (Bit) and (Wi

t) be Brownian motions on
[0, T ] with correlation matrix

Σ(B,W) =

(
(E(Bi1B

j
1))i,j=1,...,d (E(Bi1W

j
1))i,j=1,...,d

(E(Wi
1B
j
1))i,j=1,...,d (E(Wi

1W
j
1))i,j=1,...,d

)
Each model has its own group of parameters µi ∈ R, κi, λi, θi, si0, v

i
0 > 0 and γi ∈ [1/2, 1).

Because the correlation is determined via Σ(B,W) there is no need for the parameter ρ
anymore.

Definition 5.1 The d-dimensional Heston model consists of the 2d processes Si, vi that solve
the following SDEs with start values si0 and vi0.(

dSit
dvit

)
=

(
µiS

i
t

κi(λi − v
i
t)

)
dt+

(√
vitS

i
t 0

0 θi(v
i
t)
γi

)(
dBit
dWi

t

)
, i = 1, . . . , d (5.1)

As in the one-dimensional model we define the transformed processes Xit := log(Sit) and
σit := (vit)

1−γi and denote their start values by xi0 and σi0, respectively. C

This definition of the multidimensional model has the advantage that all properties of a
one-dimensional model established earlier in this thesis are still true for the one-dimensional
submodels of the multidimensional model.
We will always make the following assumption:

Assumption 5.2
• For each i = 1, . . . , d we have either νi := 2κiλi/θ2i > 1 or γi > 1/2.

• The matrix Σ(B,W) is positive definite. C

As discussed above, the first assumption guarantees positivity of vit and the existence of
some moments. The second assumption allows us to write(

B
W

)
= R · Z

with an upper triangular 2d× 2d-matrix R and a 2d-dimensional standard Brownian motion
Z:
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Lemma 5.3 If (Wi
t) is an n-dimensional Brownian motion with positive definite correlation

matrix ΣW := (E(Wi
1W

j
1))i,j=1,...,n, then there exists an upper triangular n × n-matrix R

and a n-dimensional standard Brownian motion (Zit) such thatW = RZ.

Proof. The following transformation reflects each component of a matrix through the central
point of the matrix:

g : Rn×n → R
n×n, (g(A))ij := An+1−i,n+1−j, i, j = 1, . . . , n

Note that g ◦ g = id, g(AT ) = g(A)T and g(A · B) = g(A) · g(B), because

g(AB)ij =

n∑
k=1

An+1−i,kBk,n+1−j =

n∑
k=1

An+1−i,n+1−kBn+1−k,n+1−j = (g(A) · g(B))ij

Because (g(ΣW))ij = (E(Wn+1−i
1 Wn+1−j

1 )) the matrix g(ΣW) is the covariance matrix of the
Brownian motion in reversed order (Wn

t , . . . ,W
1
t ) and in particular also positive definite.

Let LLT = g(ΣW) be its Cholesky decomposition and define R := g(L). Then R is an upper
triangular matrix and

RRT = g(L)g(L)T = g(LLT ) = g(g(ΣW)) = ΣW

Thus the covariance matrix of Z := R−1W is

ΣZ = R−1ΣW(R−1)T = RT (RT )−1 · R−1ΣW(R−1)T = RT (ΣW)−1ΣW(RT )−1 = Id

and hence Z is a standard n-dimensional Brownian motion. �

This lemma has two important consequences: In practice, the covariance matrix is often
fixed and one will need to construct the matrix R from the proof to generate the correlated
Brownian motions from a standard Brownian motion that can be simulated directly. And in
theory it allows to use multidimensional Malliavin calculus build on the Wiener integral
with respect to the independent Brownian motions Z1, . . . , Z2d; see (3.1). Remember that
for i = 1, . . . , 2d we write Di for the i-th component of the Malliavin derivative and that
this derivative is interpreted as Malliavin derivative w.r.t. Zi.
In order to prove the integration by parts rule Theorem 8.2, we need to find one derivative
of the log-price which is particularly simple, because otherwise it will not be possible to
compute the arising Skorohod integral. The trick will be to use the Malliavin derivative with
respect to Z1, because thanks to the triangular form of R, this Brownian motion appears only
in S1 and is independent of the other price processes and all volatility processes.
The following lemma makes this precise. It uses the partial Malliavin derivatives introduced
in Section 3.5.

Lemma 5.4 For each log-price process Xi there exists a Brownian motion Z̃i and a constant
ci ∈ R \ {0} such that

• DZ̃
i

r X
i = ci ·

√
vir · 1[0,t](r),

• Z̃i is independent from all other log-price processesXj, i 6= j, and all volatility processes
vi, i = 1, . . . , 2d (of course, this implies that DZ̃

i

is zero for all these processes).

For i = 1we can choose Z̃1 = Z1 and ci = R11.

Proof. First consider the case i = 1. For j = 1, . . . , d we can compute the derivative of Xjt
using that Z1 is independent from the volatility processes and Proposition 3.29: For 0 ≤ r ≤ t
we have

DZ
1

r X
j
t = D

Z1

r

(
xj0 +

∫t
0

µj −
vjs

2
ds+

2d∑
k=1

Rj,k

∫t
0

√
vjsdZks

)
= Rj,1

√
vjr
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Now the result follows because Rj,1 is zero for j > 1.
The case i > 1 can be proven analogously if we can find a decomposition (B,W)T = R̃Z̃with
a 2d-standard Brownian motion Z̃ and a matrix R̃whose first column has only a single entry
ci in the i-th column. To get this decomposition we reorder the Brownian motions B and
W so that Bi is first, apply Lemma 5.3 to get an upper triangular matrix and return to the
original order. �

A major tool in the derivation of the integration by parts formula for the Heston model
(Theorem 8.2) will be the Malliavin chain rule. For discontinuous functionals — which are
our main interest — the involved functions might only be Lipschitz continuous instead of
being continuously differentiable. Before we can apply the chain rule, we thus need to verify
that the multidimensional model has an absolutely continuous distribution; see Assumption
3.13.

Theorem 5.5 Let t ∈ [0, T ]. Then the law of the random vector Xt is absolutely continuous
with respect to the Lebesgue measure onRd.

Proof. By Lemma 3.32 a sufficient condition for the assertion is that there exists a constant c
such that

|E(∂iϕ(Xt))| ≤ c ·
1

t
· ‖ϕ‖∞

for all ϕ ∈ C∞
b (Rd,R) and each i = 1, . . . , d.

Let i ∈ {1, . . . , d}. Use Lemma 5.4 to choose a Brownian motion Z̃i that is independent
of all log-price and volatility processes except Xi and a constant ci such that DZ̃

i

r X
i
t =

ci ·
√
vir · 1[0,t](r). For the rest of the proof we write D for the derivative DZ̃

i

. Applying the
chain rule yields

Drϕ(Xt) = ∂iϕ(Xt) ·DrXit
because DrX

j
t = 0 for j 6= i. We use this in the following calculation.

|E(∂iϕ(Xt))| =
1

t
·
∣∣∣∣E(∫t

0

∂iϕ(Xt) ·DrXit ·
1

DrX
i
t

dr
)∣∣∣∣

=
1

tci
·

∣∣∣∣∣E
(∫t
0

Drϕ(Xt) ·
1√
vir

dr

)∣∣∣∣∣
Now we apply the integration by parts rule. Because the integrand of the arising Skorohod
integral is adapted, we can replace it by an Itō integral.

=
1

tci
·

∣∣∣∣∣E
(
ϕ(Xt)

∫t
0

1√
vir

dZ̃ir

)∣∣∣∣∣
≤ 1

tci
· ‖ϕ‖∞ · E

∣∣∣∣∣
∫t
0

1√
vir

dZ̃ir

∣∣∣∣∣
The expectation is finite by Theorems 2.1 and 2.4. �
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Chapter 6

Numerical Approximation

The literature presents a great number of approximation schemes for SDE solutions; see e.g.
[KP92]. Most of these schemes do not preserve the positivity of the CIR process. Due to the
square root in the SDE of this process, they cannot be applied to the Heston model without
modification. The price process, on the other hand, presents no difficulties, because in most
cases it suffices to approximate the log-price which can be given explicitly in terms of the
variance process. Therefore most approximation schemes that are proposed for the Heston
model are mainly schemes for the CIR process, complemented by a simple Euler method for
the price process.
When discussing schemes we will always denote a scheme by the name of the process
which is approximated and a hat to distinguish the two, i.e. x̂ approximates (xt)t. We will
assume to have a predefined endtime T and stepsize ∆, so that the scheme is indexed by
n = 0, . . . ,N := dT/∆e and the n-th step approximates the process at time n∆. In order to
simplify comparisons between the actual process and the approximation we will sometimes
abuse notation and use time indexes: We set x̂k∆ = x̂k for k = 0, . . . ,N and x̂T = x̂N.
Finally, we abbreviate the necessary Brownian increments by ∆nW =W(n+1)∆ −Wn∆, for
an arbitrary Brownian motionW.
We will restrict ourselves to a single (generalized) Heston model. Because the multidi-
mensional model introduced in Chapter 5 couples the model only via the correlation of
the underlying Brownian motions, all schemes presented in this chapter can trivially be
extended to the multidimensional case.

6.1 The Euler Scheme for the CIR/CEV Process

A first difficulty when approximating the CIR/CEV process is the γ-th power in the SDE:
A numerical scheme must either make sure to never fall below zero or replace the power
function by a function defined on the whole ofR. The obvious choices in the latter case lead
to the numerical schemes:

v̂n+1 = v̂n + κ(λ− v̂n)∆+ θ(v̂+n)
γ∆nW

v̂n+1 = v̂n + κ(λ− v̂n)∆+ θ|v̂n|
γ∆nW

Both schemes allow the approximation to become negative but nevertheless converge
strongly in L2, i.e.

E max
n=0,...,dT/∆e

|v̂n − vn∆|
2 → 0

as ∆→ 0; see [DD98] and [HM05]. A pathwise convergence rate was established in [Gy98]:
If ν ≥ 1 or γ > 1/2, then for each ε > 0 the convergence

1

∆1/2−ε
· |v̂n − vn∆|→ 0 (6.1)
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holds almost surely for ∆→ 0.
Because the integration by parts formula of Theorem 8.2 requires to divide by the volatility,
we will be only interested in schemes that never reach zero. A simple candidate is the
symmetrized Euler scheme

v̂n+1 =
∣∣v̂n + κ(λ− v̂n)∆+ θv̂γn∆nW

∣∣ (6.2)

This scheme satisfies the same pathwise convergence result (6.1). Unfortunately, Lp-
convergence results for this scheme are only known under rather restrictive assumptions on
ν, see [BBD07].
To find a scheme that preserves positivity, converges strongly in L2 and whose rate of
convergence is known, we have to examine more complex schemes.

6.2 The Drift-Implicit Square Root Euler Scheme (DISE)

This scheme was first suggested in [Alf05]. It preserves positivity and for the case γ = 1/2
a strong L2-convergence rate of 1/2 was proven in [DNS12]. Instead of using the original
SDE, the scheme uses the SDE after the Lamperti transformation σt := v

1−γ
t ,

dσt = f(σt)dt+ θ(1− γ)dWt

with

f(x) = (1− γ) ·
(
κλx−

γ
1−γ − κx−

γθ2

2
· x−1

)
Then the drift-implicit Euler method is used to approximate this process, and the approxi-
mation of the CIR process is obtained via back-transformation.

σ̂n+1 = σ̂n + f(σ̂n+1) · ∆+ θ(1− γ) · ∆nW (6.3)

v̂n+1 = σ̂
1/(1−γ)
n+1

To solve the first equation for σ̂n+1 we have to find a positive solution to x − f(x)∆ = c
for positive x and arbitrary right-hand sides c. This is always possible, if either γ > 1/2 or
ν > 1/2, because in these cases x− f(x)∆→ −∞ for x→ 0 and x− f(x)∆→∞ for x→∞.
Thus we have proven the following result.

Proposition 6.1 The drift-implicit square root Euler scheme is well-defined and preserves
positivity if either γ > 1/2 or ν > 1/2. C

While in general we will need root-finding algorithms to solve equation (6.3), the particularly
important case of γ = 1/2 allows for an explicit solution. In this case f is given by

f(x) =

(
κλ

2
−
θ2

8

)
· x−1 − κ

2
· x (6.4)

and leads to the equation

σ̂n+1 −

(
κλ

2
−
θ2

8

)
∆ · σ̂−1n+1 +

κ∆

2
· σ̂n+1 = σ̂n +

θ

2
· ∆nW

Multiplying this equation by 2σ̂n+1 gives a quadratic equation which for κλ− θ2/4 > 0, i.e.
ν > 1/2, always possesses a unique positive solution

σ̂n+1 =
σ̂n + θ

2
∆nW

β
+

√√√√ (σ̂n + θ
2
∆nW)2

β2
+

(
κλ− θ2

4

)
· ∆

β
(6.5)
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with β = 2+ κ∆.
In the case γ = 1/2 the drift-implicit square root Euler scheme is very similar to the drift-
implicit Milstein scheme, which is discussed in the next section. This can be seen by squaring
the implicit equation (6.3):

v̂n+1 = σ̂
2
n + σ̂nθ · ∆nW +

θ2

4
(∆nW)2 − f(σ̂n+1)

2∆2

+ 2f(σ̂n+1)∆ ·
(
f(σ̂n+1)∆+ σ̂n +

θ

2
∆nW

)
= σ̂2n + σ̂nθ · ∆nW +

θ2

4
(∆nW)2 − f(σ̂n+1)

2∆2

+

((
κλ−

θ2

4

)
· 1

σ̂n+1
− κσ̂n+1

)
· ∆ · σ̂n+1

= v̂n + κ(λ− v̂n+1) · ∆+ θ
√
v̂n · ∆nW +

θ2

4

(
(∆nW)2 − ∆

)
− f(σ̂n+1)

2∆2 (6.6)

Later we will make use of the following moment bounds and convergence rates for the DISE
scheme.

Theorem 6.2 1. Assume γ = 1/2 and ν > 2.

E sup
k=0,...,dT/∆e

|σ̂k∆|
p <∞ for all p > −

2

3
ν

and there exist constants Cp such that(
E sup
k=0,...,dT/∆e

|σk∆ − σ̂k∆|
p

)1/p
≤ Cp · ∆ for all 1 ≤ p < 2

3
ν

(
E sup
k=0,...,dT/∆e

|σk∆ − σ̂k∆|
p

)1/p
≤ Cp ·

√
∆ for all 1 ≤ p < 4

3
ν

Finally, if 1 ≤ p < ν, then the linearly interpolated scheme, i.e.

σ̄t :=

(
k+ 1−

t

∆

)
σ̂k∆ +

(
t

∆
− k

)
σ̂(k+1)∆ t ∈ [k∆, (k+ 1)∆]

satisfies (
E sup
t∈[0,T ]

|σt − σ̄t|
p

)1/p
≤ cp ·

√
∆ ·
√
| log(∆)|

for some constant cp.

2. On the other hand, if γ > 1/2, then

E sup
k=0,...,dT/∆e

|σ̂k∆|
p <∞ for all p ∈ R

and there exist constants Cp such that

E sup
k=0,...,dT/∆e

|σk∆ − σ̂k∆|
p ≤ Cp · ∆p for all p ≥ 1

Proof. These results were established in [DNS12] and [NS14]. �
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Note that the convergence rate results extend to σ̂αt for α ≥ 1, in particular to v̂t = σ̂
1/(1−γ)
t

and
√
v̂t = σ̂

1/2(1−γ)
t . Indeed, Taylor’s formula shows

|xα − yα| ≤ α sup
z∈[x,y]

zα−1 · |x− y| ≤ α · (xα−1 + yα−1) · |x− y| (6.7)

and thus if p ′ ∈ (p, 2ν/3) and q := pp ′/(p ′ − p), then Hölder’s inequality and the previous
theorem give(

E sup
k=0,...,dT/∆e

|σαk∆ − σ̂αk∆|
p

)1/p
≤ c ·

(
E sup
k=0,...,dT/∆e

(σα−1k∆ + σ̂α−1k∆ )q

)1/q

·

(
E sup
k=0,...,dT/∆e

|σk∆ − σ̂k∆|
p ′

)1/p ′
≤ c · ∆

for all k = 0, . . . , dT/∆e and α ≥ 1. Analogously for p ′ ∈ (p, 4ν/3)(
E sup
k=0,...,dT/∆e

|σαk∆ − σ̂αk∆|
p

)1/p
≤ c ·

√
∆

In the case γ = 1/2, we can sometimes weaken the condition on ν if we use the following
lemma to remove an inverse moment of σ̂k at the cost of one ∆−1/2.

Lemma 6.3 Let γ = 1/2 and p ≥ 1. There exists a constant Cp such that

sup
k=0,...,N

Eσ̂−pk ≤ Cp · ∆−p/2

Proof. Set

uk := σ̂k +
θ

2
∆kW and C∆ =

(
κλ−

θ2

4

)
· (2+ κ∆)

With these abbreviations we can write (6.5) as

σ̂k+1 =
uk +

√
u2k + C∆∆

2+ κ∆

If uk ≥ 0, this gives immediately

1

σ̂k+1
≤ 2+ κ∆√

C∆∆

Otherwise, if uk < 0, first observe that |uk| < θ
2
|∆kW| because σ̂k > 0. We use the mean

value theorem to get

(2+ κ∆)σ̂k+1 =
√
u2k + C∆∆−

√
u2k ≥

C∆∆

2
√
u2k + C∆∆

and thus

1

σ̂k+1
≤ 2(2+ κ∆)

C∆∆
·
√
u2k + C∆∆ ≤

2(2+ κ∆)

C∆
·

√
θ2

4
|∆kW|2 + C∆∆

∆

After taking the p-th power and expectation, the right-hand side is of order ∆−p/2 and the
proof is complete. �
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6.3 The Drift-Implicit Milstein Scheme (DIMIL)

The drift-implicit Milstein scheme for the CIR/CEV process reads

v̂n+1 = v̂n + κ(λ− v̂n+1) · ∆+ θv̂γn · ∆nW +
θ2γ

2
v̂2γ−1n ·

(
(∆nW)2 − ∆

)
(6.8)

and can be easily solved explicitly

v̂n+1 =
1

1+ κ∆

(
v̂n + κλ∆+ θv̂γn · ∆nW +

θ2γ

2
v̂2γ−1n ·

(
(∆nW)2 − ∆

))
(6.9)

Note that for γ = 1/2 the scheme is particularly simple and differs from the DISE scheme as
given in (6.6) only by omitting the last summand f(σ̂n+1)2∆2.

Theorem 6.4 For γ = 1/2 and ν > 1/2 the scheme DIMIL dominates the scheme DISE:
Denoting the approximation obtained by DIMIL and DISE by v̂MIL and v̂SE, respectively, we
have v̂MIL

n ≥ v̂SE
n for all n = 0, . . . , dT/∆e. In particular, the approximation remains strictly

positive.

Proof. Let h(σ,w) denote the value of the next step of the drift-implicit Euler scheme for
(σt) as a function of the current step value σ̂n = σ > 0 and the increment ∆nW = w, i.e.
h(σ,w) is the unique positive solution to the equation

h(σ,w) = σ+ f(h(σ,w))∆+
θ

2
w

with the function f being defined in (6.4). From (6.5) we learn that

∂σh(σ,w) =
1

β
·

1+ σ+ θ
2
w√(

σ+ θ
2
w
)2

+ C

 ≥ 1

β

with β = 2+ κ∆ and C = (κλ− θ2/4)∆β > 0 (thanks to ν > 1/2). Thus h(σ,w) is increasing
in the first component. From (6.6) we can see that h fulfills the equation

h2(σ,w) =
1

1+ κ∆
·
(
σ2 + κλ∆+ θσw+

θ2

4
·
(
w2 − ∆

)
− f(h(σ,w))∆2

)
Now assume that v̂MIL

n ≥ v̂SE
n for some n ≥ 0 and set σ̂MIL

n :=
√
v̂MIL
n . Putting our results

together gives

v̂SE
n+1 = h

2(σ̂SE
n , ∆nW)

≤ h2(σ̂MIL
n , ∆nW)

=
1

1+ κ∆

(
v̂MIL
n + κλ∆+ θσ̂MIL

n · ∆nW +
θ2

4

(
∆nW

2 − ∆
)
− f(h(σ̂MIL

n , ∆nW))2∆2
)

≤ 1

1+ κ∆
·
(
v̂MIL
n + κλ∆+ θ

√
v̂MIL
n · ∆nW +

θ2

4
·
(
(∆nW)2 − ∆

))
= v̂MIL

n+1

The result now follows by induction. �

Theorem 6.5 Assume γ = 1/2 and ν > 1. Then for all p > −2
3
ν

E sup
k=0,...,dT/∆e

v̂pk∆ <∞
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Moreover, if ν > 3, then (
E sup
k=0,...,dT/∆e

|vk∆ − v̂k∆|
2

)1/2
< c ·

√
∆

Proof. The convergence order was proven in Proposition 4.2 (ii) of [NS14]. For negative
moments the first claim follows from the last result and Theorem 6.2. For positive moments
we use (6.9) to get

v̂n+1 ≤ v̂n + κλ∆+ θ
√
v̂n · ∆nW +

θ2

4
·
(
(∆nW)2 − ∆

)
and by induction

v̂n ≤ v0 + nκλ∆+ θ

∫n∆
0

√
v̂∆bt/∆cdWt +

θ2

4
·
n−1∑
k=0

((∆kW)2 − ∆)

Now the Burkholder–Davis–Gundy inequality shows for p ≥ 2 that

E sup
k=0,...,dT/∆e

v̂pn ≤ c ·

(
1+ E sup

k=0,...,dT/∆e
v̂p/2n

)
The result follows by induction; the induction start for p = 1 is trivial. �

6.4 Extension to the Heston Model

All schemes presented in the previous sections can easily be extended to a scheme for the full
Heston model by using the standard Euler scheme for the price process. For our purposes
it is usually easier to approximate the log-price and compute the actual price only when
necessary. We call this scheme the log-Euler scheme:

X̂n+1 = X̂n +

(
µ−

1

2
v̂n

)
∆+

√
v̂+n∆nB

Ŝn+1 = exp(X̂n)

Sometimes it is possible to transfer the convergence rate of the scheme for the CIR process to
the log-price scheme:

Theorem 6.6 Let p ≥ 2. Assume that vt is approximated using a scheme v̂k that satisfies
E|v̂k∆|

q <∞ for all k = 1, . . . , dT/∆e and all q ≥ 0 and

sup
k=0,...,dT/∆e

∥∥∥√vk∆ −
√
v̂k∆

∥∥∥
p ′
≤ c ·

√
∆ (6.10)

for some p ′ > p. If X is approximated by the log-Euler scheme, then

sup
k=0,...,dT/∆e

‖Xk∆ − X̂k∆‖p ≤ c ·
√
∆

Proof. First note that Hölder’s inequality and the conditions on v̂ imply for q = pp ′/(p ′−p)

sup
k=0,...,dT/∆e

‖vk∆ − v̂k∆‖p ≤ sup
k=0,...,dT/∆e

∥∥∥√vk∆ −
√
v̂k∆

∥∥∥
p ′

·
∥∥∥√vk∆ +

√
v̂k∆

∥∥∥
q
≤ c ·

√
∆ (6.11)
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Now we can prove the assertion:

E|Xk∆ − X̂k∆|
p ≤ c ·

(
E

∣∣∣∣∣
∫k∆
0

vs − v̂η(s)ds

∣∣∣∣∣
p

+ E

∣∣∣∣∣
∫k∆
0

√
vs −

√
v̂η(s)dWs

∣∣∣∣∣
p)

We apply the Burkholder–Davis–Gundy inequality to the second summand.

≤ c · E

(∫T
0

|vs − vη(s)|
p + |vη(s) − v̂η(s)|

p

+ |
√
vs −

√
vη(s)|

p +
∣∣∣√vη(s) −√v̂η(s)∣∣∣p ds

)
≤ c · ∆p/2

Now the claim follows from (6.10), (6.11) and the continuity in Lp of vt; see Theorems 2.3
and 2.5. �

Unfortunately, so far the scheme DISE is the only scheme where the conditions of this
theorem could be proven, see Theorem 6.2 and the remark thereafter.

Corollary 6.7 Let 2 ≤ p < 4
3
ν. Assume that vt is approximated using the DISE scheme and

X is approximated using the log-Euler scheme. Then

sup
k=0,...,dT/∆e

‖Xk∆ − X̂k∆‖p ≤ c ·
√
∆

6.5 Further Schemes

Many more schemes to approximate the Heston model — typically more complex than the
ones presented here — are suggested in the literature, see e.g. [And07], [BK06], [LKvD10].
Somewhat outstanding among the schemes is the algorithm presented in work of Broadie
and Kaya, [BK06], because it simulates the Heston model exactly. Unfortunately, the
algorithm is complex and expensive so that its practical use is limited. This is discussed
e.g. in [And07]. This work also presents two schemes which approximate the Broadie–Kaya
scheme, sacrificing exactness for computational efficiency.
Most works try to improve the approximation of the volatility, which seems to be the main
problem. [KJ06] are an exception and propose a scheme based on the trapezoidal rule for
the log-price process.

6.6 Numerical Comparison of Approximation Schemes

We now perform a short comparison of the different schemes presented in this chapter. For
simplicity and because the Monte-Carlo algorithms which we use later assume a bias of
order 1, we will compare the so-called weak error, i.e. the bias achieved with a certain stepsize.
To highlight the dependence of the approximation on the stepsize, we will write Ŝ∆t etc. in
this section. The weak error is defined as

eweak(∆) := |E(f(Ŝ∆T )) − E(f(ST ))|

We say that a scheme achieves a weak order of convergence of α if

eweak(∆) ≤ c · ∆α

The literature contains various results which prove an order of convergence of α = 1 for
certain schemes if the function f is smooth enough and the coefficients of the underlying
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SDEs are nice enough; see e.g. [KP92]. So far none of those results cover the digital option
in the Heston model; see Theorem 7.13 for a first result in this direction. Nevertheless,
numerical practice has shown that a weak order of 1 is often achieved under much weaker
assumptions; this is also confirmed in the following experiments. However, there are also
rather simple models, where a weak order of 1 is provably not achieved by the Euler scheme;
see e.g. Proposition 2.3 in [Keb05].
We will use two different models, both of them being standard Heston models, but with
widely different values of ν.

M1) The parameters were taken from [ASK07]. ν is comfortably high at ν ≈ 2.011.

T = 2, µ = 0, κ = 5.07, λ = 0.0457, θ = 0.48, ρ = −0.767, v0 = λ, s0 = 100

M2) This model stems from [BK06]. The parameters make ν ≈ 0.634 and thus vt may hit
zero.

T = 1, µ = 0.0319, κ = 6.21, λ = 0.019, θ = 0.61, ρ = −0.7, v0 = 0.010201, s0 = 100

Because we are mainly interested in discontinuous options, we will use the payoff function
f = 1[0,s0].
In Chapters 8 and 10 it will be vital to use schemes which are guaranteed to always remain
positive (for ν > 1/2). We thus chose to compare the three presented schemes with this
property: The drift-implicit square root Euler scheme of Section 6.2, the drift-implicit Milstein
scheme of Section 6.3 and the symmetrized Euler scheme from (6.2).
The numerical experiment consists of the following steps:

1. First, for each model a reference value x∗ is computed using Theorem 2.8.

2. Now for each model and scheme and various step sizes of the form T/2k, k ≥ 2 we
compute an estimate of the weak error as

êweak =

∣∣∣∣∣ 1M ·
M∑
i=1

f(Ŝ∆,iT ) − x∗

∣∣∣∣∣
withM being at least 107 and Ŝ∆,iT denoting independent repetitions of Ŝ∆T .

3. The resulting figure plots the log2 of the number of steps (i.e. k) on the x-axis against
the log2 of the error êweak on the y-axis. The plot is complemented by a least-squares
fitted affinely linear function visualizing the rate of convergence: Assuming that
eweak ≈ c · ∆α = c · (T/N)α we have in log2-coordinates

log2 eweak ≈ log(c · Tα) − α · log2N

Thus the (negative) slope of the fitted line gives the measured rate of weak convergence.

The plots show that the DIMIL scheme achieves a weak error rate of 1 under far weaker
assumptions than required by Theorem 7.13. The two other schemes fail to reach weak
error rate in model M2 (ν ≈ 0.634) but achieve a higher rate in model M1 (ν ≈ 2.011).
However, the DISE scheme seems to reach a maximum accuracy of approximately 212.
Neither computing more samples nor using more discretization steps nor changing the
reference value to a value computed by DISE itself (using 212 discretization steps) removes
this behavior.
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Figure 6.1: Weak error of different schemes in model M1. The least-squares fits have the convergence rates (i.e.
negative slopes) 1.12 (DISE), 1.01 (DIMIL) and 1.49 (symmetrized Euler).

Figure 6.2: Weak error of different schemes in model M2. The least-squares fits have the convergence rates 0.48
(DISE), 1.02 (DIMIL) and 0.53 (symmetrized Euler).
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Chapter 7

Weak Error

This chapter is devoted to the function

u(t, x, v) := E(f(Xx,vT−t))

where Xx,vt denotes the usual log-price process, started at x0 = x and v0 = v. We will have
to restrict ourselves to the one-dimensional standard Heston model, i.e. γ = 1/2. First,
in Section 7.2, we will prove that u is infinitely often differentiable. Secondly, in Section
7.3, we will derive bounds on the derivatives. Unfortunately, both parts require different
approaches and lengthy proofs. As an application of the bounds on the derivatives of u, we
prove that the drift-implicit Milstein scheme has a weak error rate of 1 in Heston models
with sufficiently high ν.

7.1 Notation

For x ∈ R we write C≥x for {z ∈ C : Re(z) ≥ x}. For Ω ⊂ Cd we denote by C∞
pol(Ω) the set

of functions f : Ω → C which are infinitely often differentiable with the function and all
derivatives bounded by polynomials. C∞

b (Ω) denotes the subset where the function and all
derivatives are bounded by constants. For f ∈ C∞(R) and n,m ∈ N0 we define seminorms

pm,n(f) := sup
x∈R

(1+ |x|m) · |f(n)(x)| (7.1)

Finally, S denotes the Schwartz space of rapidly decreasing functions; see e.g. [Wer07].

S =
{
f : R→ C

∣∣∣ pm,n(f) <∞ ∀ m,n ∈ N0
}

The following lemma shows that the set C∞
pol(Ω) for arbitrary Ω is stable under common

operations.

Lemma 7.1 Let f, g ∈ C∞
pol(Ω). Then f·g ∈ C∞

pol(Ω) and f◦g ∈ C∞
pol(Ω). If g is bounded away

from 0, then also f/g ∈ C∞
pol(Ω). Finally, if both f and g take only values in {x ∈ R : x ≥ ε}

for some ε > 0, then (f/g)p ∈ C∞
pol(Ω) for all p ∈ R.

Proof. The first claim follows from the generalizations of the product and chain rule to
higher order derivatives (the latter is also known as Faà di Bruno’s formula; see [Bru57]).
The second claim holds because x 7→ x−1 is C∞

pol(Ω) on {z ∈ C : |z| > ε} for any ε > 0. By the
generalized chain rule, the n-th derivative of hp is a linear combination of terms

hp−(k1+···+kn) ·
n∏
m=1

(Dm(h))km
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for some ki ∈ N. Ifh and 1/h are inC∞
pol(Ω), then all these terms are bounded by polynomials.

Setting h = f/g proves the claim. �

7.2 The differentiability of u

In this section we will prove that the function

u(t, x, v) := E(f(Xx,vT−t))

is infinitely often differentiable; see Theorem 7.6.
In [BRFCU10] it is shown that for t > 0 the log-price Xx,vt has a C∞-density ϕt,x,v and that
its characteristic function ψt,x,v can be written as follows. Of course, this is just a different
formulation for the characteristic function ϕ2 of Section 2.4.

ψt,x,v(y) = E(e
iyXt) = ei(x0+µt)y · g1(y) · exp(−v0g2(y))

with

g1(y) =

(
eξt/2 · d
h(y)

)ν
g2(y) =

(iy+ y2) · sinh(d · t/2)
h(y)

h(y) = d cosh(d · t/2) + ξ sinh(d · t/2)
D = D(y) = (κ− iθρy)2 + θ2(iy+ y2)

d = d(y) =
√
D

ξ = ξ(y) = κ− iθρy

Similar to the complex logarithm of Section 2.4.3, the complex square root and the expo-
nentiation of a complex number are functions with multiple branches. The complex square
root in the definition of d poses no problem, because Re(D) = κ2 + (1− ρ2)θ2y2 > 0. The
exponentiation in the definition g1 is well-defined by the requirement that g1 is continuous.
This will be made more precise in the proof of Lemma 7.3 which establishes some properties
of above functions.

Lemma 7.2 The real value of g2 is always non-negative.

Proof. From Theorem 5.9 in [BRFCU10] we get the following representation of g2 (note that
in their notation we have g2(y) = iy ·G(iy)):

g2(y) = iy ·
1− e−κt

2κ
+ y2

∞∑
n=1

bn

a2n · (1− iy/an)

with bn ∈ R+, an ∈ R \ {0} such that
∑∞
n=1 bna

−2
n converges. The claim now follows from

Re(1/z) = Re(z)/|z|2 with z = 1− iy/an. �

Lemma 7.3 We have

1. g1 ∈ S,

2. g2 ∈ C∞
pol(R),

3. There exist constants c1, c2, y0 > 0 such that

Re(g2(y)) ≥ c1|y| ∀y ∈ R, |y| ≥ y0 and |g2(y)| ≤ c2(1+ |y|), ∀y ∈ R
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As a consequence

∂k+l

∂xk∂vl
ψt,x,v(y) = e

i(x+µt)y · g1(y) · exp(−vg2(y)) · (iy)k · (−g2(y))l

as a function in y is in S for all k, l ∈ N0.

Proof. For simplicity we assume that t = 2. The general case follows by replacing
every occurrence of e in the proof by ẽ := et/2 so that cosh(dt/2) = (ẽd + ẽ−d)/2 and
sinh(dt/2) = (ẽd − ẽ−d)/2. We prove the result in five steps, which prove necessary
properties of the functions d, e−d, h−1, g1, and g2, respectively.
1. Because d =

√
D with Re(D) ≥ κ2 > 0 and because the complex square root is in

C∞
pol(C≥κ2) we have d ∈ C∞

pol(R). Also Re(d) grows at least linearly: Re(z)2 ≥ Re(z2) is true
for all complex numbers z. In particular

Re(d) ≥
√

Re(D) ≥
√
1− ρ2θ|y| (7.2)

for all y ∈ R. On the other hand, |d| grows at most linearly, because D grows clearly
quadratically.
2. Therefore e−d ∈ S decreases faster than every polynomial. Now all derivatives of e−d are
sums of products of d, derivatives of d and always one factor e−d and thus bounded by a
polynomial times e−d. Consequently e−d ∈ S.
3. h can be rewritten as

h =
1

2
· (d+ ξ+ (d− ξ) · e−2d) · ed

Given the linear growth of d, Re(d), and ξ, we know that there exists an y0 ≥ 0 such that for
all |y| ≥ y0

|d− ξ| · e−2Re(d) ≤ κ ≤ 1
2

Re(d+ ξ) (7.3)

and thus∣∣d+ξ+(d−ξ) ·e−2d
∣∣ ≥ |d+ξ|− |d−ξ| ·e−2Re(d) ≥ 1

2
Re(d+ξ) > κ > 0, |y| > y0 (7.4)

On the other hand, from Proposition 5.4 in [BRFCU10] it follows that h does not have real
zeros (note that their function F relates to h via h(y) = d · F(iy)). Because it is continuous,
it must be bounded away from 0 on compact intervals. Together with (7.4) we can thus
conclude that there exists c > 0 such that∣∣d+ ξ+ (d− ξ) · e−2d

∣∣ ≥ |d+ ξ|− |d− ξ| · e−2Re(d) ≥ c > 0 (7.5)

for all y ∈ R. This implies 1/h ∈ S.
4. To prove that g1 ∈ S we need to define the exponentiation of ḡ1 := eξd/h by ν = 2κλ/θ2

more precisely. For z ∈ C the power zν can be any number of the form

|z|ν · eiν·(arg z+2πk) k ∈ Z

If ḡ1 crosses the negative real line, ḡν1 will be discontinuous for each fixed choice of k (in
fact, ḡ1 forms a spiral towards 0 and crosses the negative real line infinitely often). Instead,
the only choice which makes g1 continuous and satisfies g1(0) = 1 is

g1(y) := |ḡ1(y)|
ν · eiνα(y)

where the “rotation count” α : R→ R is defined by α(0) = 0, α is continuous and

α ≡ arg ḡ1(y) mod 2π
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Therefore

g1(y) =

∣∣∣∣ eξdh(y)

∣∣∣∣ν · eiνα(y)
=

∣∣∣∣eξ−d · 2d

d+ ξ+ (d− ξ)e−2d

∣∣∣∣ν · eiνα(y)
= eν(κ−Re(d)) ·

(
|2d|

|d+ ξ+ (d− ξ)e−2d|

)ν
· eiνα(y) (7.6)

The first factor is in S by 2.; using (7.5) and Lemma 7.1 the second factor is in C∞
pol(R).

Now consider the last factor eiνα(y) of (7.6). Note thatα(y) ≡ arg(ḡ1(y)) = arg(ḡ1(y)·eRe(d))
and that

ḡ1(y) · eRe(d) =
eξd · 2e−d

d+ ξ+ (d− ξ)e−2d
· eRe(d) =

2eξ−i·Im(d)d

d+ ξ+ (d− ξ)e−2d

This function is in C∞
pol(R) due to (7.5) and Lemma 7.1. As consequence of (7.3) we have∣∣∣ḡ1(y) · eRe(d)

∣∣∣ ≥ c · |d|

|d+ ξ|

for some constant c. Due to the linear growth of d and d+ ξ, this is bounded away from 0.
On {z ∈ C : |z| ≥ ε} the function arg is in C∞

b as long as the branch cut on the negative real
axis is avoided by switching to other branches in a continuous way. α does so by definition
and thus α ∈ C∞

pol(R). We have proven that the last factor of (7.6) is in C∞
pol(R). Because the

first factor was in S we have finally proven that g1 ∈ S.
5. g2 can be rewritten as

g2(y) =
iy+ y2

2h(y)
ed −

iy+ y2

2h(y)
e−d

=
iy+ y2

d+ ξ
+
iy+ y2

2

(
ed

h(y)
−

2

d+ ξ

)
−
iy+ y2

2h(y)
e−d (7.7)

The first part can be simplified to

iy+ y2

d+ ξ
=

(iy+ y2)(d− ξ)

θ2(iy+ y2)
=
d− ξ

θ2
(7.8)

Using h = ((d+ ξ)ed + (d− ξ)e−d)/2we can simplify the central part of (7.7):

ed

h(y)
−

2

d+ ξ
=

(d+ ξ)ed − 2h(y)

h(y)(d+ ξ)
= −

d− ξ

d+ ξ
· e

−d

h(y)
(7.9)

Combining (7.7), (7.8) and (7.9) gives

g2(y) =
d− ξ

θ2
−

(
d− ξ

d+ ξ
+ 1

)
· iy+ y2

2
· e

−d

h(y)

=
d− ξ

θ2
−
d(iy+ y2)

d+ ξ
· e

−d

h(y)

This proves that g2 ∈ C∞
pol(R) because d and ξ are linearly bounded, Re(d + ξ) ≥ 2κ and

e−d/h ∈ S. The latter fact also proves that the asymptotic behaviour of this function is
determined by the first summand (d− ξ)/θ2. Because Re(d) grows linearly, Re(ξ) = κ, and
|d|, |ξ| are bounded linearly, there must exist constants c1 and c2 as required.
The final claim about the derivative ∂k+l

∂xk∂vl
ψt,x,v is now obvious, because g1 ∈ S. �
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We need some further lemmas before we can prove the differentiability of u:

Lemma 7.4 For v > 0 and h ∈ R \ {0} define the function fh : C≥0 → C

fh(x) := e
−vx · h−2 ·

(
e−hx − 1+ hx

)
Then there exists h0 > 0 such that for all h ∈ R \ {0} with |h| ≤ h0 the function fh ◦ g2
is in C∞

pol(R) and the bounds of f ◦ g2 and its derivatives can be chosen to hold for all
h ∈ [−h0, h0] \ {0}.

Proof. fh ◦ g2 ∈ C∞(R) is obvious from Lemmas 7.1-7.3. Assume h0 > 0. Using Taylor’s
formula on the term in parentheses we get that there exists aΘ(x) ∈ C with |Θ(x)| ≤ |hx| and

|fh(x)| =
∣∣e−vxh−2 · (xh)2e−Θ(x)| ≤ |x|2e−vRex+h0|x|

for all x ∈ C and h ∈ [−h0, h0] \ {0}. Now we need the constants c1, c2, y0 from Lemma 7.3.
If y ∈ R, |y| ≤ y0, then

|fh(g2(y))| ≤ |g2(y)|
2 · eh0c2(1+y0)

Otherwise, if |y| ≥ y0, then

|fh(g2(y))| ≤ |g2(y)|
2 · e−vc1|y|+h0c2(1+|y|) ≤ (g2(y))

2 · eh0c2 · e−(vc1−h0c2)|y|

If h0 is chosen small enough such that vc1 − h0c2 ≥ 0, the last term is bounded.
Analogously, it can be shown that the derivatives of fh ◦ g2 are polynomially bounded, with
the bounds being independent of h (for |h| ≤ h0). �

Lemma 7.5 For all k, l ∈ N0 and all x ∈ R, v ∈ R+ the following limits hold in the Schwartz
space topology (see e.g. [Wer07]):

lim
h→0

1

h
· ∂

k+l

∂xk∂vl
(ψt,x+h,v −ψt,x,v) =

∂k+l+1

∂xk+1∂vl
ψt,x,v

and

lim
h→0

1

h
· ∂

k+l

∂xk∂vl
(ψt,x,v+h −ψt,x,v) =

∂k+l+1

∂xk∂vl+1
ψt,x,v

Proof. We start with the second claim. Convergence in S is equivalent to convergence in all
of the seminorms pm,n of this locally convex space; see (7.1). Thus we have to show that for
all k, l, n,m ∈ N0 the following converges holds

sup
y∈R

(1+ |y|m)

∣∣∣∣ ∂n∂yn
[
1

h
· ∂

k+l

∂xk∂vl
(ψt,x,v+h −ψt,x,v)(y) −

∂k+l+1

∂xk∂vl+1
ψt,x,v(y)

]∣∣∣∣ −→ 0

as h→ 0. With the derivatives from Lemma 7.3 the term in brackets can be written as

Ah(y) : = e
i(x+µt)yg1(y)e

−vg2(y)(iy)k(−g2(y))
l ·
(
h−1(e−hg2(y) − 1) + g2(y)

)
= h · ei(x+µt)yg1(y)(iy)k(−g2(y))l ·

[
e−vg2(y)h−2

(
e−hg2(y) − 1+ hg2(y)

)]
By the previous lemma there exists h0 > 0 such that for h ∈ R \ {0}, |h| ≤ h0, the last term in
brackets is in C∞

pol(R) with the bounds being independent of h. Clearly all other factors are
in the same set with g1 being even a Schwartz–function. Hence Ah(y) = h · Bh(y) for some
Bh ∈ S and thus

sup
y∈R

(1+ |y|m)

∣∣∣∣ ∂n∂ynAh(y)
∣∣∣∣ ≤ |h| · sup

y∈R
(1+ |y|m)

∣∣∣∣ ∂n∂ynBh(y)
∣∣∣∣

55



Chapter 7. Weak Error

which converges to 0. This proves the second claim.
The first assertion can be proven in the same way. Here the function Ah takes the form

Ah(y) : = e
i(x+µt)yg1(y)e

−vg2(y)(iy)k(−g2(y))
l ·
(
h−1(eixh − 1) − iy

)
= h · ei(x+µt)yg1(y)e−vg2(y)(iy)k(−g2(y))l ·

[
h−2(eixh − 1− ihy)

]
The term in brackets is

fh(y) := h
−2
(

cos(hy) − 1+ i(sin(hy) − hy)
)

With Taylor’s theorem we can show that fh is polynomially bounded: There exists
Θ1(hy), Θ2(hy) ∈ R such that

|fh(y)| =
∣∣h−2(− (hy)2 cos(Θ1(hy)) − i(hy)2 sin(Θ2(hy))

)∣∣ ≤ 2y2
Analogously one can prove that all derivatives of fh with respect to y are polynomially
bounded, the bounds being independent of h. The proof concludes as above. �

Remember that the space of tempered distributions is defined as the dual S ′ of the Schwartz
space; see e.g. [Wer07]. Each measurable and polynomially bounded function g : R → C
yields a tempered distribution Tg defined as

Tg(ϕ) := 〈Tg, ϕ〉 :=
∫
R

g(y)ϕ(y)dy, ϕ ∈ S

Our function u is the application of the tempered distribution defined by the payoff f to the
log-price density:

u(t, x, v) = E(f(Xx,vT−t)) =

∫
R

f(y)ϕT−t,x,v(y)dy = 〈Tf, ϕT−t,x,v〉

The final theorem of this section proves that the application of an arbitrary tempered
distribution to ϕT−t,x,v yields a smooth function in x, v.

Theorem 7.6 Let 0 ≤ t < T . For each tempered distribution F ∈ S ′ the function

A : x, v 7→ 〈F,ϕT−t,x,v〉
is in C∞(R×R+). In particular, this holds for the function u(t, ·, ·).

Proof. Let F denote the Fourier transformation f 7→ ∫∞
−∞ e−isyf(y)dy. Then ϕT−t,x,v =

F(ψT−t,x,v) and A(x, v) = 〈F ◦ F , ψT−t,x,v〉. We claim that for every k, l ∈ N0 we have

∂k+l

∂xk∂vl
A(x, v) =

〈
F ◦ F , ∂

k+l

∂xk∂vl
ψT−t,x,v

〉
Assume this claim holds for some k, l ∈ N0. Then

lim
h→0

1

h
·
(
∂k+l

∂xk∂vl
A(x, v+ h) −

∂k+l

∂xk∂vl
A(x, v)

)
= lim
h→0

〈
F ◦ F , 1

h

(
∂k+l

∂xk∂vl
(ψT−t,x,v+h −ψT−t,x,v)

)〉
=

〈
F ◦ F , ∂

k+l+1

∂xk∂vl+1
ψT−t,x,v

〉
by the continuity of F ◦ F from S to R and Lemma 7.5. This was the induction step for
l→ l+ 1. The step for k→ k+ 1 can be done in the same way. �

56



Chapter 7. Weak Error

7.3 Bounds on the Derivatives of u

In this section we will prove the following bound on the derivatives of u. In the whole
section we will assume that f : R→ R is measurable and bounded and ρ ∈ (−1, 1).

Theorem 7.7 Let k, l ∈ N0 with l ≤ 2 and set a0 = 0, a1 = 1, and a2 = 3. Assume
ν > k/2+ l. Then the partial derivatives of u are bounded in the following way

∂k+l

∂xk0∂v
l
0

u(t, x0, v0) ≤ c ·
(
1+ (T − t)−

k
2

(
1+ v0

−k
2
−al
))

We start with a lemma on the derivatives of σt. We write σt(σ0) to denote the square-root
volatility process in dependence of its start value. We will denote derivatives with respect to
σ0 by ∂σ and ∂σσ.

Lemma 7.8 For each t ∈ [0, T ] the process σt is twice differentiable with respect to the start
value σ and

0 < ∂σσt ≤ 1, |∂σσσt| ≤
1

2e
sup
s∈[0,t]

σ−1s

In particular, |σt(σ) − σt(σ̃)| ≤ |σ− σ̃| for all σ, σ̃ > 0.

Proof. Set C := κλ/2− θ2/8. From the integral equation of σt, see (2.6), we get

∂σσt = 1−

∫t
0

(
C

σ2s
+
κ

2

)
∂σσs ds

and hence

∂σσt = exp
(
−

∫t
0

C

σ2s
+
κ

2
ds
)
≤ 1

From this formula we can easily compute the second derivative as

∂σσσt = exp
(
−

∫t
0

C

σ2s
+
κ

2
ds
)
·
∫t
0

C

2σ3s
ds

≤ 1
2
e−

κt
2 · exp

(
−

∫t
0

C

σ2s
ds
)
·
∫t
0

C

σ2s
ds · sup

s∈[0,t]

1

σs

≤ 1
2
e−

κt
2

−1 · sup
s∈[0,t]

1

σs

because xe−x ≤ e−1 for all x ≥ 0. �

To prove Theorem 7.7 we rewrite u as composition

u(T − t, x0, v0) = E(f(X
x0,v0
t )) = E(H(x0, Y(

√
v0), Z(

√
v0))

with Y = Yt(σ0) :=
∫t
0
σ2s(σ0)ds, Z = Zt(σ0) :=

∫t
0
σs(σ0)dWs and

H(x0, y, z) := E
(
f(Xx0,v0t )

∣∣ Y = y, Z = z
)

Note that given Y and Z, the process Xx0,v0t does not depend on v0 anymore and thus H
does not depend on v0; we will see this explicitly in (7.12).
Y and Z are both differentiable: For Y this is a trivial consequence of Lemma 7.8 and for Z it
follows from the SDE of vt = σ2t :

Z = σ2t − σ
2
0 − κλt+ κ

∫t
0

σ2sds = σ2t − σ
2
0 − κλt+ κY (7.10)

In the sequel we will need various bounds on the derivatives of Y and Z which are collected
in the next lemma.
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Lemma 7.9 1. Let 0 ≤ p < ν. Then EY−p ≤ c · t−p · σ−2p0 .

2. For p ≥ 1we have E|∂σY|p ≤ c · tp · (1+ σp0 ).

3. For p ≥ 1we have E|∂σZ|p ≤ c · tp/2.

4. Let p ≥ 1 such that p/2 < ν− 1. Then

‖∂σσY‖p ≤ c · t · (1+ σ0) ·
(
1+ σ

−p+2
p

0

)
5. Let p ≥ 1 such that p/2 < ν− 1. Then

‖∂σσZ‖p ≤ c ·
√
t ·
(
1+ σ

−p+2
p

0

)
Proof. 1) For 0 ≤ p < ν Jensen’s inequality proves

EY−p = t−p · E

((
1

t
·
∫t
0

σ2sds
)−p

)
≤ t−p−1 · E

∫t
0

σ−2ps ds

≤ t−p · sup
s∈[0,t]

Eσ−2ps ≤ c · t−p · σ−2p0 (7.11)

where the last inequality follows from Theorem 2.1.
2) By Jensen’s inequality and Lemma 7.8 we have

E|∂σY|
p = E

∣∣∣∣∫t
0

2σs∂σσsds
∣∣∣∣p ≤ tp−1 · ∫t

0

2E|σs · ∂σσs|pds ≤ 2tp · sup
s∈[0,t]

E|σs|
p

and now the claim follows from Theorem 2.1.
3) An easy bound can be proven using (7.10): ∂σZ = 2σt∂σσt − 2σ0 + κ∂σY. As a
consequence suph∈[−ε,ε] |∂σZ(σ0 + h)|

p is integrable for all ε ∈ (0, σ0) and p ≥ 0. This
allows us to exchange limit and expectation in the following equation:

E|∂σZ|
p = E

(
lim
h→0

∣∣∣∣Z(σ0 + h) − Z(σ0)h

∣∣∣∣p)
≤ sup

|h|<ε

E

∣∣∣∣Z(σ0 + h) − Z(σ0)h

∣∣∣∣p
Now we apply the Burkholder–Davis–Gundy inequality to bound the difference quotient
and derive a better bound.

≤ c · sup
|h|<ε

E

(∫t
0

(
σs(σ0 + h) − σs(σ0)

h

)2
ds

)p/2
Because |σs(σ0 + h) − σs(σ0)| ≤ h by Lemma 7.8, this is bounded by ctp/2.
4) The derivative is given by

∂σσY =

∫t
0

(∂σσs)
2 + σs · ∂σσσsds

Together with Lemma 7.8 this yields

E|∂σσY|
p ≤ c · t ·

(
1+ E

(
sup
s∈[0,t]

σps · sup
s∈[0,t]

σ−ps

))
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Now choose ε > 0 such that p(1+ ε)/2 < ν− 1 and set q = (1+ ε)/ε. Thus

‖∂σσY‖p ≤ c · t ·

1+(E sup
s∈[0,t]

σpqs

) 1
pq

·

(
E sup
s∈[0,t]

σ−p(1+ε)s

) 1
p(1+ε)


By Theorem 2.1, these expectations are bounded respectively by c(1+ σ0) and

c

(
1+ σ

−
p(1+ε)+2
p(1+ε)

0

)
≤ c ·

(
1+ σ

−p+2
p

0

)
5) From (7.10) we get

∂σσZ = 2(∂σσt)
2 + 2σt · ∂σσσt − 2+ κ∂σσY

The terms σt · ∂σσσt and ∂σσY were bounded by ct(1+ σ0)(1+ σ
−(p+2)/p
0 ) in part 4) and

thus

‖∂σσZ‖p ≤ c ·
(
1+ t · (1+ σ0) ·

(
1+ σ

−p+2
p

0

))
Like in part 3) this allows to exchange limit and expectation when we derive a stronger bound
using difference quotients. From Taylor’s theorem we know that there exists Θ1, Θ2 ∈ [0, h]
such that

σs(σ0 + h) − σs(σ0) = ∂σσs(σ0) · h+ ∂σσσs(σ0 +Θ1) · h2

σs(σ0 − h) − σs(σ0) = −∂σσs(σ0) · h+ ∂σσσs(σ0 +Θ2) · h2

Adding both rows and using the bound from Lemma 7.8 we get

|σs(σ0+h)−2σs(σ0)+σs(σ0−h)| =
∣∣∂σσσs(σ0+Θ)+∂σσσs(σ0−Θ)|·h2 ≤ c·h2· sup

s ′∈[0,s]
σ−1s ′

With the Burkhold–Davis–Gundy inequality we get

‖∂σσZ‖p = lim
h→0

1

h2
‖Z(σ0 + h) − 2Z(σ0) + Z(σ0 − h)‖p

≤ lim
h→0 c ·

(
E

(∫t
0

1

h4
· |σs(σ0 + h) − 2σs(σ0) + σs(σ0 − h)|2ds

)p/2)1/p

≤ c ·

(
tp/2 · E sup

s∈[0,t]
σ−ps

)1/p
This is bounded as required due to Theorem 2.1. �

It turns out that ∂σY can be used to absorb one term of Y−1/2, decreasing the dependence on
v−10 by half a power. Additionally, the exploding behaviour of Y−1 for t→ 0 can be cancelled
by sufficiently high powers of ∂σY and ∂σZ (namely for k+ l/2 = p in the next lemma).

Lemma 7.10 Assume k, l ∈ N0 and p ∈ Rwith k/2 ≤ p < ν+ k/2. Then

E|(1+ Y−p) · (∂σY)k · (∂σZ)l| ≤ c ·
(
1+ v

k
2

0 + v
−(p−k2 )
0

)
· t−(p−k−

l
2 )

Proof. Using 0 ≤ |∂σσs| ≤ 1 and the Cauchy–Schwarz inequality we get

∂σY =

∫t
0

σs · ∂σσsds ≤
∫t
0

σsds ≤
√
t ·
(∫t
0

σ2sds
)1/2

=
√
tY
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Choose ε small enough such that (1+ ε)(p− k/2) < ν and set q = (1+ ε)/ε. Now we apply
the previous line, Hölder’s inequality and the bounds from the previous Lemma to get

E|Y−p · (∂σY)k · (∂σZ)l| ≤ c · E|Y−(p−k/2) · tk/2 · (∂σZ)l|

≤ c · tk/2 ·
(
EY−(1+ε)(p−k/2)

)1/(1+ε)
·
(
E(∂σZ)

ql
)1/q

≤ c · tk/2 · t−(p−k/2) · (1+ v−(p−k/2)
0 ) · tl/2

= c · t−(p−k−l/2) · (1+ v−(p−k/2)
0 )

Furthermore

E|(∂σY)
k · (∂σZ)l| ≤ ‖(∂σY)k‖2 · ‖(∂σZ)l‖2 ≤ c · tk+

l
2 · (1+ σk0)

Adding both parts concludes the proof. �

Because the log-price has a very simple SDE we can compute an explicit formula for H:
The conditional distribution of

∫t
0
σsdBs given Y is N (0, Y). Thus if N ∼ N (x0 + µt− y/2+

ρz, (1− ρ2)y) is independent of (Ws)s∈[0,T ], then

H(x0, y, z) = E

(
f

(
x0 + µt−

1

2
y+ ρz+

√
1− ρ2 ·

∫t
0

σsdBs

))
= E(f(N)) =

∫
R

(2π(1− ρ2)y)−1/2 · exp
(
−

θ2

2(1− ρ2)y

)
· f(x)dx (7.12)

with θ = θ(x0, x, y, z) = x− x0 − µt+ y/2− ρz.

Lemma 7.11 Let k, l,m ∈ N0. Then there exist n ∈ N and ci ∈ R and ki, li ∈ N0,
i = 1, . . . , n such that

∂k+l+m

∂xk0∂y
l∂zm

H(x0, y, z) =

∫
R

(2π(1− ρ2)y)−1/2 ·
n∑
i=1

ci
θki

yli
· exp

(
−

θ2

2(1− ρ2)y

)
· f(x)dx

and ki ≤ li, i = 1, . . . , n, and

min
i=1,...,n

ki

2
− li = −

k

2
− l−

m

2

Proof. We prove this result by induction on k+ l+m. The induction start for k = l = m = 0
is obvious from (7.12). So suppose the lemma holds for k, l,m and consider the induction
step k 7→ k+ 1.

∂k+1+l+m

∂xk+10 ∂yl∂zm
H = ∂x0

∫
R

(2π(1− ρ2)y)−1/2 ·
n∑
i=1

ci
θki

yli
· exp

(
−

θ2

2(1− ρ2)y

)
· f(x)dx

Due to the exponential decay of the exp-term we can move the additional derivative into
the integral.1 Thus

∂k+1+l+m

∂xk+10 ∂yl∂zm
H =

∫
R

(2π(1− ρ2)y)−1/2 ·
n∑
i=1

ci

[
−kiθ

ki−1

yli
+
θki

yli
· θ

(1− ρ2)y

]
· exp

(
−

θ2

2(1− ρ2)y

)
· f(x)dx

1As a consequence of the dominated convergence theorem, given a two-parameter function g we can ex-
change differentiation and integration (∂y

∫
R
g(x, y)dx =

∫
R
∂yg(x, y)dx), if there exists an ε > 0 such that

sup|h|<ε |∂yg(x, y + h)| ∈ L1(R).
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From this expression it can be seen that the assertion holds for k+ 1, l,m.
Now consider the induction step l 7→ l+ 1. As above we can move the additional derivative
inside. With

∂y(2π(1− ρ
2)y)−1/2 = (2π(1− ρ2)y)−1/2 · −1

2y

∂y
θki

yli
=
kiθ

ki−1

2yli
−
θkili

yli+1

∂y exp
(
−

θ2

2(1− ρ2)y

)
=

1

2(1− ρ2)

(
−θ

y
+
θ2

y2

)
· exp

(
−

θ2

2(1− ρ2)y

)
we can compute the derivative of the integrand and get

∂k+l+1+m

∂xk0∂y
l+1∂zm

H =

∫
R

(2π(1− ρ2)y)−1/2

·
n∑
i=1

ci

[
−θki

2yli+1
+
kiθ

ki−1

2yli
−
θkili

yli+1
+

1

2(1− ρ2)

(
−θki+1

yli+1
+
θki+2

yli+2

)]
· exp

(
−

θ2

2(1− ρ2)y

)
· f(x)dx

This proves that the assertion holds for k, l+ 1,m.
Because x0 and z both appear only in θ and ∂zθ = ρ∂x0θ, the induction stepm 7→ m+ 1 is
the same as k 7→ k+ 1 and the proof is complete. �

As a final preparation we need a bound for the derivatives of H.

Lemma 7.12 Let k, l,m ∈ N0. Then there exists a constant C such that for all x0, z ∈ R and
y > 0 ∣∣∣∣ ∂k+l+m

∂xk0∂y
l∂zm

H(x0, y, z)

∣∣∣∣ ≤ C · sup |f| ·
(
1+ y−(k

2
+l+m

2
)
)

Proof. Let X be an N (0, (1− ρ2)y)-distributed random variable. Then∫
R

1√
2π(1− ρ2)y

· |θ|
ki

yli
· exp

(
−

θ2

2(1− ρ2)y

)
dx =

E(|X|ki)

yli
= cyki/2−li (7.13)

for some constant c depending on the ki and ρ. The result now follows from Lemma 7.11.�

Proof (of Theorem 7.7). We will consider derivatives with respect to σ0 :=
√
v0 instead of

derivatives w.r.t. v0 and show that the function ũ(t, x0, σ0) := u(t, x0, σ20) satisfies

∂k+l

∂x0k∂σ
l
0

ũ(t, x0, σ0) ≤ c ·
(
1+ (T − t)−

k
2

(
1+ v

l
2

0 + v0
−k
2
−ãl
))

with ã0 = 0, ã1 = 1/2, ã2 = 2. The result then follows from ∂v0u = ∂σũ/(2
√
v0) and

∂v0v0u = (∂σσũ · v0−1 − ∂σũ · v0−3/2)/4.
Because Y and Z do not depend on x0, the case l = 0 follows from the previous lemma and
Lemma 7.9:∣∣∣∣ ∂k∂xk0 ũ(T − t, x0, σ0)

∣∣∣∣ = E ∣∣∣∣ ∂k∂xk0H(x0, Y, Z)
∣∣∣∣

≤ c · sup |f| · E
(
1+ Y−k/2

)
≤ c · sup |f| · t−k/2 · (1+ v−k/20 )

Note that here and in the following, the assumption ν > k/2+ lmakes sure that the arising
inverse moments of Y can be bounded; see Lemma 7.9.
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To bound the other derivatives we need the chain rule. First assume that k = 0, l = 1.

|∂σũ(T − t, x0, σ0)| ≤ E|∂yH(x0, Y, Z) · ∂σY|+ E|∂zH(x0, Y, Z) · ∂σZ|

≤ c · sup |f| ·
(
E
∣∣(1+ Y−1) · ∂σY∣∣+ E|(1+ Y−1/2) · ∂σZ|)

Lemma 7.10 allows us to bound both expectations by c · (1+ v1/20 + v
−1/2
0 ) which proves the

assertion for ∂σũ. The second derivative ∂σσũ can be bounded as follows:

|∂σσũ(T − t, x0, σ0)| ≤ E|∂yyH · (∂σY)2|+ E|∂zzH · (∂σZ)2|+ 2E|∂yzH · ∂σY · ∂σZ|
+ E|∂yH · ∂σσY|+ E|∂zH · ∂σσZ|

≤ c · sup |f| ·
(
E
∣∣(1+ Y−2) · (∂σY)2∣∣+ E ∣∣(1+ Y−1) · (∂σZ)2∣∣

+ E
∣∣∣(1+ Y−3/2) · ∂σY · ∂σZ∣∣∣

+ E
∣∣(1+ Y−1) · ∂σσY∣∣+ E ∣∣∣(1+ Y−1/2) · ∂σσZ∣∣∣ )

For the first three expectations we can again apply Lemma 7.10 to get a bound of c(1+v0+v−10 ).
For the fourth expectation we use Hölder’s inequality and Lemma 7.9:

E|(1+ Y−1) · ∂σσY| ≤ c ·
(
1+ E(Y−2)

)1/2 · (E(∂σσY)2)1/2
≤ c · (1+ t−1v−10 ) · t · (1+ v1/20 + v−10 )

≤ c · (1+ v1/20 + v−20 )

Analogously we get a c · (1 + v−3/20 )-bound for the last expectation E|(1 + Y−1/2) · ∂σσZ|.
Adding all terms together gives a c(1+ v0 + v−20 )-bound and the proof for the case k = 0,
l = 2 is complete.
The cases with k ≥ 1 follow analogously; one simply needs to replace ũ by ∂k

∂xk
0

ũ and H by
∂k

∂xk
0

H and Y−p by Y−p−k/2 and v−p0 by v−p−k/20 . �

7.4 Weak Error Expansion

One possible application of bounds on the function u is deriving the weak error rate. That
is, we search for a number α ≥ 0 such that

|E(f(X̂T ) − E(f(XT ))| ≤ c · ∆α

where ∆ is the stepsize of the discretization scheme. This is connected to the function u via

|E(f(X̂T ) − E(f(XT ))| = |E(u(X̂T , v̂T , T)) − u(x0, v0, 0)|

Remember that we only consider the one-dimensional standard Heston model. Because we
want to use Kolmogorov’s backward equation, we have to assume that f ∈ C20(R); see e.g.
Theorem 8.1.1 in [Øk07]. This restriction will be removed, when we prove the weak rate.
We will use the drift-implicit Milstein scheme introduced in (6.8). For simplicity we
only considered equidistant time discretizations in Chapter 6. We will allow an arbitrary
discretization 0 = t0 < · · · < tN = T in this chapter. Then the scheme is given by

v̂n+1 = v̂n + κ(λ− v̂n+1) · (tn+1 − tn) + θ
√
v̂n · (Wtn+1

−Wtn)

+
θ2

4

(
(Wtn+1

−Wtn)
2 − ∆

)
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We use the notation ∆ := maxi=0,...,N−1(ti+1 − ti), n(t) := max{n ∈ {0, . . . ,N} : tn ≤ t},
η(t) := tn(t), ∆t = t− η(t) and W̃t :=Wt −Wη(t) for an arbitrary Brownian motionW. Let
us define the following processes

X̂t := X̂n(t) +
(
µ−

1

2
v̂n(t)

)
∆t +

√
v̂n(t)B̃t (7.14)

ṽt := v̂n(t) + κλ∆t + θ
√
v̂n(t)W̃t +

θ2

4
(W̃2

t − ∆t)

v̂t :=
1

1+ κ∆t
ṽt

By definition X̂tn = X̂n, limt↗tn X̂t = X̂tn and the same holds for v̂t. Furthermore, when
restricted to an interval [ti, ti+1) the processes X̂t and ṽt are Itō processes, as can be seen
from

X̂t := X̂n(t) +

∫t
η(t)

(
µ−

1

2
v̂n(t)

)
ds+

∫t
η(t)

√
v̂n(t) dB̃s

ṽt := v̂n(t) +

∫t
η(t)

κλ ds+
∫t
η(t)

θ

(√
v̂n(t) +

θ

2
W̃s

)
dW̃s

After these preparations we can expand the weak error into local errors, following [TT90].

|E(f(X̂N)) − E(f(XT ))| =

∣∣∣∣∣
N∑
n=1

E
(
u(tn, X̂n, v̂n) − u(tn−1, X̂n−1, v̂n−1)

)∣∣∣∣∣
With the help of the function ũ(t, x, v) := u(t, x, v/(1+ κ∆t)) and above Itō processes we can
rewrite the local error in a form that allows to use Itō’s formula. To make notation simpler
we will usually omit the arguments of ũ(t, X̂t, ṽt) and u(t, X̂t, v̂t).

en := E
(
u(tn+1, X̂n+1, v̂n+1) − u(tn, X̂n, v̂n)

)
= E

(
ũ(tn+1, X̂tn+1

, ṽtn+1
) − ũ(tn, X̂tn , ṽtn)

)
=

∫tn+1

tn

E

[
∂tũ(t, X̂t, ṽt) +

(
µ−

v̂n

2

)
∂xũ+ κλ∂vũ+

v̂n

2
∂xxũ

+
√
v̂nρθ

(√
v̂n +

θ

2
W̃t

)
∂xvũ+

θ2

2

(√
v̂n +

θ

2
W̃t

)2
∂vvũ

]
dt

Now we replace the derivatives of ũ by the corresponding derivatives of u,

∂tũ(t, X̂t, ṽt) = ∂tu(t, X̂t, v̂t) −
κv̂t

1+ κ∆t
· ∂vu(t, X̂t, v̂t)

∂k+l

∂xk∂vl
ũ(t, X̂t, ṽt) =

1

(1+ κ∆t)l
· ∂

k+l

∂xk∂vl
u(t, X̂t, v̂t)

to get

en =

∫tn+1

tn

E

[
∂tu(t, X̂t, v̂t) +

(
µ−

v̂n

2

)
∂xu+

κ(λ− v̂t)

1+ κ∆t
∂vu+

v̂n

2
∂xxu

+
ρθ
√
v̂n

1+ κ∆t

(√
v̂n +

θ

2
W̃t

)
∂xvu+

θ2

2(1+ κ∆t)2

(√
v̂n +

θ

2
W̃t

)2
∂vv

]
dt

To remove ∂tuwe use Kolmogorov’s backward equation.

∂tu = −
(
µ−

v

2

)
∂xu− κ(λ− v)∂vu−

1

2
v∂xxu− ρθv∂xvu−

θ2

2
v∂vvu
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Using additionally (
√
v̂n + θ

2
W̃t)

2 = ṽt − (κλ− θ2/4)∆t we come up with

en =

∫tn+1

tn

E

[
1

2
(v̂t − v̂n)∂xu+ κ(λ− v̂t)

(
1

1+ κ∆t
− 1

)
∂vu

+
1

2
(v̂n − v̂t)∂xxu+ ρθ

(
v̂n

1+ κ∆t
− v̂t +

θ
√
v̂nW̃t

2(1+ κ∆t)

)
∂xvu

+
θ2

2

((
1

1+ κ∆t
− 1

)
v̂t −

4κλ− θ2

4(1+ κ∆t)2
∆t

)
∂vvu

]
dt

Finally, we use 1− 1/(1+ κ∆t) = κ∆t/(1+ κ∆t) and

v̂t − v̂n = (1+ κ∆t)v̂t − v̂n − κ∆tv̂t = κ∆t(λ− v̂t) + θ
√
v̂nW̃t +

θ2

4
(W̃2

t − ∆t)

We sort terms in groups containing either ∆t or
√
v̂nW̃t or W̃2

t − ∆t and end up with

en = e(1)n + e(2)n + e(3)n

with

e(1)n =

∫tn+1

tn

∆t · E
[

κ2

1+ κ∆t
(v̂t − λ)∂vu−

θ2

2(1+ κ∆t)

(
κv̂t +

4κλ− θ2

4(1+ κ∆t)

)
∂vvu

+
κ

2
(λ− v̂t)(∂xu− ∂xxu) −

ρθκλ

1+ κ∆t
∂xvu

]
dt

e(2)n =

∫tn+1

tn

E

[√
v̂nW̃t ·

(
θ

2
∂xu−

θ

2
∂xxu−

ρθ2

2(1+ κ∆t)
∂xvu

)]
dt

e(3)n =

∫tn+1

tn

E

[
(W̃2

t − ∆t) ·
(
θ2

8
∂xu−

θ2

8
∂xxu−

θ3ρ

4(1+ κ∆t)
∂xvu

)]
dt

7.5 Weak Error Rate

Using the error expansion derived in the last section we can now prove a rate of 1 for the
weak error.

Theorem 7.13 Assume that ν > 9/2. Then there exists a constant C such that for all
measurable and bounded f : R→ R the weak error is bounded by

|Ef(X̂N) − Ef(XT )| ≤ C · sup |f| · ∆

Proof. First assume that f ∈ C20(R), so that we can use the error expansion from the last
section. Using Lemmas 7.17 to 7.19 below, we can bound e(1)n , e

(2)
n , e

(3)
n by

e(i)n ≤
∫tn+1

tn

c · sup |f| · (t(T − t))−1/2 · ∆ dt

Thus

|Ef(X̂N) − Ef(XT )| =

∣∣∣∣∣
N−1∑
n=0

en

∣∣∣∣∣ ≤ c · sup |f| ·
∫T
0

(t(T − t))−1/2dt · ∆ = c · sup |f| · ∆

The result for general f follows now from a simple approximation procedure. �
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Three lemmas are missing to complete the preceding proof. Common to them is the difficulty
that for irregular f the derivatives ∂xu, ∂xxu and ∂xvu become infinitely large when t→ T .
Lemma 7.16 uses the integration by parts rule from Malliavin calculus to remove the
derivatives w.r.t. x and will be the key to complete the proof.
First we need a bound on the inverse moments of v̂t. Note that for ν > 3 this result is
stronger than the corresponding statement in Theorem 6.5.

Theorem 7.14 Assume 0 ≤ p ≤ ν− 1. Then

sup
t∈[0,T ]

Ev̂−pt ≤ c · v−p0

Proof. To use Itō’s formula for the function x 7→ x−p we need to localize the process. For
ε > 0 set τε := inf {t ≥ 0 : ṽt < ε}. First note that for u ∈ [0, T ](√

v̂η(u) +
θ

2
W̃u

)2
= ṽu −

(
κλ−

θ2

4

)
∆u ≤ ṽu

Using this equation and the Itō formula we get

Eṽ−pt∧τε = Eṽ−p
η(t∧τε)

− pκλ · E
∫t∧τε
η(t∧τε)

ṽ−p−1u du

+
p(p+ 1)θ2

2
· E
∫t∧τε
η(t∧τε)

ṽ−p−2u ·
(√

v̂η(t∧τε) +
θ

2
W̃u

)2
du

≤ Eṽ−p
η(t∧τε)

+ p

(
(p+ 1)

θ2

2
− κλ

)
· E
∫t∧τε
η(t∧τε)

ṽ−p−1u du

≤ Eṽ−p
η(t∧τε)

because the assumption p+ 1 ≤ ν implies that the second summand is negative. Thus

Ev̂−pt∧τε = (1+ κ∆t)
pEṽ−pt∧τε ≤ e

pκ∆t · Eṽ−p
η(t∧τε)

Now induction over the discretization subintervals shows

sup
t∈[0,T ]

Ev̂−pt∧τε ≤ e
pκTv−p0

With Fatou’s lemma the claim follows for Ev̂−pt . �

As described in Chapter 4, Malliavin calculus in the Heston model is based on two
independent Brownian motions Z1, Z2. The SDEs of the model are driven byW = Z2 and
B = ρZ2 + ρ ′Z1. In the following Dr will always denote the Malliavin derivative with
respect to Z1. Because Z1 is independent of vt, the derivativeDrv̂t is 0, while the derivative
of X̂t can easily be computed from (7.14) as

DrX̂t = ρ
′
√
v̂η(r) · 1[0,t](r) (7.15)

For t ∈ [0, T ] define I0(t) := 1,

I1(t) :=

∫t
0

v̂
−1/2
η(r) dZ1r

I2(t) :=

(∫t
0

v̂
−1/2
η(r) dZ1r

)2
−

∫t
0

v̂−1η(r)dr

The previous theorem shows that I1 and I2 are well-defined if ν ≥ 2.
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Proposition 7.15 Let k ∈ {0, 1, 2}, l ∈ N0, p ≥ 1 and t, t ′ ∈ [0, T ]. Further assume that

ν ≥ max {2, p(k/2+ l) + 1}

Then we have

E

∣∣∣∣ Ik(t)v̂lt ′

∣∣∣∣p ≤ c · tpk2
Proof. The case k = 0 follows directly from Theorem 7.14. The same is true for the case
l = 0, using additionally the Burkholder–Davis–Gundy inequality.
Now consider the case k = 1, l > 0. Setting q1 = 1 + 2l, q2 = (1 + 2l)/(l2), Hölder’s
inequality and the Burkholder–Davis–Gundy inequality give

E

∣∣∣∣∫t
0

v̂
−1/2
η(r) dZ1r · v̂−lt ′

∣∣∣∣p ≤
E(∫t

0

v̂−1η(r)dr
)pq1

2

 1
q1

·
(
Ev̂−lpq2t ′

) 1
q2

If pq1/2 ≥ 1we use Jensen’s inequality and get

≤ tp/2 sup
r∈[0,t]

(
Ev̂

−p( 1
2
+l)

η(r)

) 1
q1 ·

(
Ev̂

−p( 1
2
+l)

t ′

) 1
q2

This is bounded by our assumption and Theorem 7.14. If pq1/2 < 1 we use also Jensen’s
inequality, this time to move the exponent out of the expectation. To bound the arising Ev̂−1t
we need the assumption that ν > 2.
The case k = 2, l > 0 is handled analogously. �

Lemma 7.16 Let k ∈ {1, 2} and letG be a random variable independent from (Z1t)t∈[0,T ] such
that G ∈ Lp(Ω) for all p ≥ 1. Let h : R→ R be k-times continuously differentiable. Then

E

(
∂k

∂xk
h(X̂η(r)) ·G

)
= (tρ ′)−k · E

(
h(X̂η(r)) ·G · Ik

)

Proof. The chain rule Theorem 3.17 and (7.15) allow us to rewrite the expectation on the
left-hand side

E

(
∂k

∂xk
h(X̂η(r)) ·G

)
= t−1 · E

(∫t
0

∂k

∂xk
h(X̂η(r)) ·G ·DrX̂η(r) ·

1

DrX̂η(r)
dr

)

= (tρ ′)−1 · E
(∫t
0

Dr

(
∂k−1

∂xk−1
h(X̂η(r))

)
·G · v̂−1/2

η(r) dr
)

Now we can apply the integration by parts rule from Malliavin calculus; see (3.8).

= (tρ ′)−1 · E
(
∂k−1

∂xk−1
h(X̂η(r)) ·

∫t
0

G · v̂−1/2
η(r) δZ

1
r

)
Using Proposition 3.23, the Skorohod integral can be computed as GI1. The conditions of
the proposition are satisfied by the previous lemma.
If k = 2, we can repeat this procedure to get

E
(
∂xh(X̂η(r)) ·GI1

)
= (tρ ′)−1 · E

(
h(X̂η(r)) ·

∫t
0

GI1 · v̂−1/2η(r) δZ
1
r

)
Proposition 3.23 again shows that the Skorohod integral is exactly GI2. Put together, this
shows the claim. �
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Lemma 7.17 Assume ν ≥ 4. For k+ l ≤ 2 and G ∈ {1, v̂t} there is a constant C, independent
of t, such that ∣∣∣∣E G · ∂k+l∂xk∂vl

u(t, X̂t, v̂t)

∣∣∣∣ ≤ C · sup |f|

Proof. First assume k = 0 or t ≤ T/2. By Theorem 7.7 we have∣∣∣∣E G · ∂k+l∂xk∂vl
u(t, X̂t, v̂t)

∣∣∣∣ ≤ c · sup |f| ·
(
1+ (T − t)−

k
2 · E

∣∣∣G(1+ v̂−k2−alt

)∣∣∣)
The expectation is finite, if ν ≥ 4; see Theorem 7.14.
In the case k > 0 and t > T/2we first use the previous lemma to remove the derivatives w.r.t.
x (which would cause a (T − t)−k/2-term) and then apply Theorem 7.7:∣∣∣∣E G · ∂k+l∂xk∂vl

u(t, X̂t, v̂t)

∣∣∣∣ = (tρ ′)−k ·
∣∣∣∣E G · Ik · ∂l∂vlu(t, X̂t, v̂t)

∣∣∣∣
≤ c · sup |f| · E

∣∣G · Ik · (1+ v̂−alt )
∣∣

This expectation is finite by Proposition 7.15. �

Lemma 7.18 Assume ν > 9/2. For ∗ ∈ {x, xx, xv} and G ∈ {1, v̂t} there is a constant C,
independent of t, such that∣∣∣E√v̂n · W̃t · ∂∗u(t, X̂t, v̂t)∣∣∣ ≤ C · sup |f| · ∆ · (t(T − t))−1/2

Proof. 1.) The main trick will be to use the mean value Theorem. However, this will
introduce an additional derivative in both directions. Because each derivative w.r.t. x implies
a (T − t)−1/2-term in Theorem 7.7, we will first remove all of them using Lemma 7.16.∣∣∣∣E√v̂n · W̃t · ∂k+l∂xk∂vl

u(t, X̂t, v̂t)

∣∣∣∣ = (tρ ′)−k ·
∣∣∣∣E√v̂n · W̃t · Ik · ∂l∂vlu(t, X̂t, v̂t)

∣∣∣∣
Now we apply Taylor’s theorem

≤ (tρ ′)−k ·
[ ∣∣∣∣E√v̂n · W̃t · Ik · ∂l∂vlu(t, X̂n, v̂n)

∣∣∣∣
+

∣∣∣∣E√v̂n · W̃t · Ik · ∂l+1∂x∂vl
u(t, Θ1, Θ2) · (X̂t − X̂n)

∣∣∣∣
+

∣∣∣∣E√v̂n · W̃t · Ik · ∂l+1∂vl+1
u(t, Θ1, Θ2) · (v̂t − v̂n)

∣∣∣∣ ]
for some random variables Θ1, Θ2 with 0 < min{v̂η(t), v̂t} ≤ Θ2. The first expectation is zero
because W̃t is independent of the remaining terms. We will skip the second expectation
because it is similar to the third one. By Theorem 7.7 and Hölder’s inequality the third
expectation is smaller than

c · sup |f| · (tρ ′)−k ·
∥∥Ik · (1+Θ−al+1

2

)∥∥
1+ε
·
∥∥∥√v̂n · W̃t · (v̂t − v̂n)∥∥∥

(1+ε)/ε

The worst case for the first norm is k = l = 1, which makes al+1 = 3. To apply Proposition
7.15 we thus need ν > 9/2 and ε small enough. We get a bound of c · tk/2. For the second
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norm we use Hölder’s inequality and ‖v̂t − v̂η(t)‖q ≤ c ·
√
∆ for all q ≥ 1; this follows from

the definition of v̂t and the Burkholder–Davis–Gundy inequality. We get for arbitrary q ≥ 1∥∥∥√v̂n · W̃t · (v̂t − v̂n)∥∥∥
q
≤ ‖v̂n‖3q · ‖W̃t‖3q · ‖v̂t − v̂η(t)‖3q ≤ c∆

Summarizing, we have shown∣∣∣∣E√v̂n · W̃t · ∂k+l∂xk∂vl
u(t, X̂t, v̂t)

∣∣∣∣ ≤ c · sup |f| · t−k/2 · ∆

2.) Only in case k = 2, t < T/2 this does not suffice to prove the assertion. The solution is to
remove only a single x-derivative, instead of removing both:∣∣∣E√v̂n · W̃t · ∂xxu(t, X̂t, v̂t)∣∣∣ = (tρ ′)−1 ·

∣∣∣E√v̂n · W̃t · I1 · ∂xu(t, X̂t, v̂t)∣∣∣
≤ (tρ ′)−1 ·

[ ∣∣∣E√v̂n · W̃t · I1 · ∂xu(t, X̂n, v̂n)∣∣∣
+
∣∣∣E√v̂n · W̃t · I1 · ∂xxu(t, Θ1, Θ2) · (X̂t − X̂n)∣∣∣

+
∣∣∣E√v̂n · W̃t · I1 · ∂xvu(t, Θ1, Θ2) · (v̂t − v̂n)∣∣∣ ]

This can be bounded by c · sup |f| · t−1/2 · ∆ similarly to the first part. Note that the ∂xx-
derivative introduces a term (T − t)−1. Thus, in case k = 2 and t > T/2 we really need to
remove all x-derivatives as was done in the first part. �

Lemma 7.19 Assume ν > 5/2. For ∗ ∈ {x, xx, xv} and G ∈ {1, v̂t} there is a constant C,
independent of t, such that∣∣∣∣E (W̃2

t − ∆t) ·
∂k+l

∂xk∂vl
u(t, X̂t, v̂t)

∣∣∣∣ ≤ C · sup |f| · ∆

Proof. First consider the case k = 0 or t ≤ T/2. By Hölder’s inequality and Theorem 7.7 we
get for every ε > 0∣∣∣∣E (W̃2

t − ∆t) ·
∂k+l

∂xk∂vl
u(t, X̂t, v̂t)

∣∣∣∣
≤ c · sup |f| · ‖W̃2

t − ∆t‖ 1+ε
ε
·

(
1+ (T − t)−

k
2 ·
(
1+ Ev̂

−(1+ε)(k2−al)
t

) 1
1+ε

)

If ε is chosen small enough, the last expectation is finite by Theorem 7.14 (because al ≤ 1,
the assumption ν > 5/2 is sufficient). Thus we get

≤ c · sup |f| · ∆ ·
(
1+ (T − t)−k/2

)
In case k > 0 and t > T/2 we need to remove the derivatives with respect to x first using
Lemma 7.16.∣∣∣∣E(W̃2

t − ∆t) ·
∂k + l

∂xk∂vl
u(t, X̂t, v̂t)

∣∣∣∣ = (tρ ′)−k/2 · E
∣∣∣∣(W̃2

t − ∆t) · Ik ·
∂l

∂vl
u(t, X̂t, v̂t)

∣∣∣∣
This can be bounded analogously to the first part. �

The last three lemmas complete the proof of Theorem 7.13.
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Chapter 8

Quadrature of Discontinuous
Functionals

In practice one will try to approximate functionals like E(f(ST )) using multilevel Monte-Carlo
techniques. Assuming a bias of order 1, the convergence order can reach up to 1/2 instead
of 1/3 as with standard Monte-Carlo. The multilevel algorithm will be presented in the
next chapter where we will also learn that a good rate of L2-convergence is important to
benefit from the algorithm. In this chapter we will first prove that this L2-convergence order
is very low if the functional f is discontinuous. Then we will discuss an approach based
on Malliavin calculus to replace f by a smooth functional and thus regain the order that
is achieved for smooth functionals. We remark that [GNR14] study a similar smoothing
technique — without Malliavin calculus — in the case of distribution functions and densities.
Because it is the only scheme with a guaranteed strong convergence order of 1/2 for a wide
range of parameters, we will always use the scheme DISE to approximate vt.

Theorem 8.1 Let K > 0. Assume either γ > 1/2 or ν > 1. Define

r0 :=

{
1/4 if γ > 1/2
ν

4ν+3 else

Then (
E
∣∣∣1(−∞,K](XT ) − 1(−∞,K](X̂N)

∣∣∣2)1/2 ≤ cr · ∆r
for all 0 ≤ r < r0.

Proof. From Theorem 2.4 in [Avi09] we get(
E
(
1(−∞,K](XT ) − 1(−∞,K](X̂N))2)1/2 ≤ cp · (E ∣∣∣X− X̂

∣∣∣p) p
2(p+1)

for all p ≥ 1. By Theorem 6.6 this is bounded by

≤ cp · ∆
p

4(p+1)

if either γ > 1/2 or p < 4ν/3. To get the convergence rate r = p/(4(p+ 1)) arbitrarily close
to r0 we just need to choose a sufficiently high p. �

In Theorem 7.2 of [Avi09] it is proven that even in the simple case of the Euler scheme
and geometric Brownian motion, an L2-convergence order1 of 1/4 is optimal for the payoff
1(−∞,K].

1Avikainen uses the L1-norm. Replacing ‖ · ‖1 by ‖ · ‖22 in his proof shows the result stated here.
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8.1 An Integration by Parts Formula

This section presents a simple integration by parts formula for the Heston model that will
be the central tool to compute E(f(ST )) efficiently even for discontinuous f. Note that we
smooth the functional only in one direction. For simplicity we choose the first direction,
but by reordering the price processes one can smooth in other directions. However, when
one does so, one has to change the underlying Brownian motions according to Lemma 5.3.
The reason is that we heavily rely on the fact that DZ

1

r X
1
t = R11

√
v1r1[0,t](r) is particularly

simple, while DZ
1

r X
i
t = D

Z1

r v
j
t = 0 for i = 2, . . . , d and j = 1, . . . , d; see Lemma 5.4.

Theorem 8.2 Assume that f : Rd+ → R is PX-a.s. continuous and set F(x) := F(x1, . . . , xd) =∫x1
0
f(ξ, x2, . . . , xd)dξ. If there exists an ε > 0 such that

f(ST ) ∈ L1(Ω) and
F(ST )

S1T
∈ L1+ε(Ω)

then

E(f(ST )) = E

(
F(ST )

S1T
·

(
1+

1

R11T
·
∫T
0

(v1r)
−1/2dZ1r

))

Proof. We abbreviate DZ
1

by D. First we will prove a similar result for the log-price. If G is
a function satisfying the assumptions of the chain rule Proposition 3.19 and g = ∂1G, then

E(g(XT )) =
1

T
· E

(∫T
0

g(XT ) ·DrX1t ·
1

DrX
1
T

dr

)

=
1

T
· E

(∫T
0

DrG(XT ) ·
1

DrX
1
T

dr

)

=
1

R11T
· E

(
G(XT ) ·

∫T
0

(v1r)
−1/2 dZ1r

)
(8.1)

This formula is at the core of the theorem because it replaces the possibly discontinuous g by
an integrated and thus continuous functional G. The first functional to which we will apply
it, is g(x) := f(ex1 , . . . , exd) together with G(x) :=

∫x1
0
g(ξ, x2, . . . , xd)dξ+ F(1, ex2 , . . . , exd).

Assume f is bounded. Then g and G satisfy the assumptions to apply (8.1). Before we do so,
we write G in terms of F:

G(x) =

∫x1
0

f(eξ, ex2 , . . . , exd) · eξ · 1
eξ

dξ+ F(1, ex2 , . . . , exd)

=

[
F(eξ, ex2 , . . . , exd) · 1

eξ

]x1
0

+

∫x1
0

F(eξ, ex2 , . . . , exd) · 1
eξ

dξ+ F(1, ex2 , . . . , exd)

=
F(ex1 , . . . , exd)

ex1
+

∫x1
0

F(eξ, ex2 , . . . , exd) · 1
eξ

dξ (8.2)

Combining this with (8.1) gives

E(f(ST )) = E(g(XT ))

=
1

R11T
· E

(
G(XT ) ·

∫T
0

(v1r)
−1/2 dZ1r

)

=
1

R11T
· E

((
F(ST )

S1T
+

∫X1T
0

F(eξ, S2T , . . . , S
d
T ) ·

1

eξ
dξ

)
·
∫T
0

(v1r)
−1/2 dZ1r

)

=
1

R11T
· E

((
F(ST )

S1T
+H(XT )

)
·
∫T
0

(v1r)
−1/2 dZ1r

)
(8.3)
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with the functions

H(x1, . . . , xd) :=

∫x1
0

h(ξ, x2, . . . , xd)dξ and h(x1, . . . , xd) = F(e
x1 , . . . , exd)/ex1

Note that h and H again satisfy the assumptions for (8.1) and thus

1

R11T
· E

(
H(XT ) ·

∫T
0

(v1r)
−1/2 dZ1r

)
= E(h(XT )) = E

(
F(ST )

S1T

)
Applying this in (8.3) gives the result.
It remains to extend the formula to the case where f is not bounded. Choose bounded
measurable functions fn, n ∈ N, such that |fn| ≤ |f| and fn → f almost everywhere. For
n ∈ N we set Fn(x1, . . . , xd) :=

∫x1
0
fn(ξ, x2, . . . , xd)dξ. Dominated convergence shows

Fn → F almost everywhere. By assumption |Fn(ST )/S
1
T | ≤ |F(ST )/S

1
T | ∈ L1+ε(Ω). By

Theorems 2.2 and 2.4 the weight term

Π := 1+
1

R11T
·
∫T
0

(v1t)
−1/2dZ1t

is in Lq(Ω) for all q. Thus Hölder’s inequality and dominated convergence prove

Fn(ST )

S1T
· Π→ F(S1T )

ST
· Π

in L1(Ω). Because clearly fn(ST )→ f(ST ) in L1(Ω), this proves the claim. �

If the original functional f is bounded, then the arising functional of the log-price has nice
properties:

Proposition 8.3 For f : (R>0)d → R define G : Rd → R by

G(x) :=
1

ex1
·
∫ex1
0

f(ξ, ex2 , . . . , exd)dξ

If f is bounded by C ≥ 0, then G is also bounded by C and globally 2C-Lipschitz continuous
in x1 ∈ R:

|G(x1, x2, . . . , xd) −G(x
′
1, x2, . . . , xd)| ≤ 2C|x1 − x ′1|

for all x1, x ′1 ∈ R>0.

Proof. Clearly |G(x)| ≤ e−x1ex1C = C. Let x1, y1 ∈ R with x1 < y1. Then for all
x2, . . . , xd ∈ Rwe have

|G(ey1 , ex2 , . . . , exd) −G(ex1 , ex2 , . . . , exd)|

=

∣∣∣∣∣ 1ey1 ·
∫ey1
ex1

f(ξ, ex2 , . . . , exd)dξ+
(
1

ey1
−

1

ex1

)
·
∫ex1
0

f(ξ, ex2 , . . . , exd)dξ

∣∣∣∣∣
≤
∣∣∣∣ Cey1 (ey1 − ex1)

∣∣∣∣+ ∣∣∣∣ C

ex1ey1
(ey1 − ex1)ex1

∣∣∣∣
= 2C(1− ex1−y1)

≤ 2C(1− (1+ x1 − y1))

= 2C(y1 − x1) �
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8.2 Order of Convergence Using Integration By Parts

To use the integration by parts formula in practice, we need an approximation of the weight
term

Π := 1+
1

R11T
·
∫T
0

(v1t)
−1/2dZ1t

The obvious one is

Π̂ := 1+
1

R11T
·
N−1∑
k=0

(v̂1k∆)
−1/2 · ∆kZ1

It turns out that the integration by parts formula is also valid for functionals of the
approximation Ŝt. As a consequence, its usage for the quadrature of functionals of the
form E(f(ST )) will not introduce an additional bias. In the case γ = 1/2 however, while
the integral within Π has moments of all orders due to Theorem 2.2, this is not true for the
sum within Π̂. This is the reason why the next theorem requires stronger assumptions than
Theorem 8.2.

Theorem 8.4 Assume that the log-price X1 is approximated using the log-Euler scheme.
Assume further that f : Rd+ → R is PX-a.s. continuous and bounded. Define F(x) :=
F(x1, . . . , xd) =

∫x1
0
f(ξ, x2, . . . , xd)dξ. Then

E(f(Ŝ1N), . . . , Ŝ
d
N) = E

(
F(Ŝ1N, . . . , Ŝ

d
N)

Ŝ1N
· Π̂

)

Proof. Like before we will writeD for the derivativeDZ
1

. The log-Euler scheme is given by

X̂1n+1 = X̂
1
n +

(
µ−

1

2
v̂1n

)
· ∆+

√
v̂1n · ∆nB1

because ∆nB1 =
∑2d
i=1 R1,i∆nZ

i and Z1 is independent of v̂ we can easily calculate the
derivative of X̂1n:

DtX̂
1
n+1 = DtX̂

1
n + R11 ·

√
v̂1n · 1[n∆,(n+1)∆)(t)

By recursion this means

DtX̂
1
n+1 = R11 ·

√
v̂1
η(t) · 1[0,(n+1)∆)

On the other hand, clearly DX̂in = 0 for all i = 2, . . . , d. Now we can prove the result
analogously to Theorem 8.2, replacing Xt by X̂η(t) and vt by v̂η(t). �

Before we can prove the strong error rate of the scheme DISE, we need some preparations in
the next lemmas.

Lemma 8.5 Let γ = 1/2. Assume ε and q satisfy εq < ν− 1. Then

E

(∫T
0

σ−2(1+ε)s ds

)q
<∞

72



Chapter 8. Quadrature of Discontinuous Functionals

Proof. Choose ε ′ > 0 such that εq(1+ ε ′) < ν− 1 and set q ′ = (1+ ε ′)/ε ′. Then

E

(∫T
0

σ−2(1+ε)s ds

)q
≤ E

((∫T
0

σ−2s ds

)q
· sup
s∈[0,T ]

σ−2εqs

)

≤

E(∫T
0

σ−2s ds

)qq ′1/q
′

·

(
E sup
s∈[0,T ]

σ−2εq(1+ε
′)

s

)1/(1+ε ′)

This is finite due to Theorems 2.2 and 2.1. �

Lemma 8.6 Let γ = 1/2. Assume that ν > 2 and that vt is approximated using the DISE
scheme. Let q ≥ 0. Then there exists α ∈ (0, 1) such that

sup
k=0,...,N

(
Eσ̂−2qk

)1/q
≤ c · ∆−(1−α)

Proof. Choose α such that 4qα < 2ν/3. Then

sup
k=0,...,N

(
Eσ̂−2qk

)1/q
≤ sup
k=0,...,N

(
Eσ̂−4qαk

)1/2q
·
(
Eσ̂

−4q(1−α)
k

)1/2q
≤ c · ∆−(1−α)

because the first expectation is finite by Theorem 6.2 and the second one can be bounded by
Lemma 6.3. �

As a next step we prove an L2-convergence rate for the weight term in Π̂ when using the
DISE scheme.

Theorem 8.7 Assume that γ1 > 1/2 or ν1 > 3. Then(
E(Π̂− Π)2

)1/2
≤ c ·

√
∆

Proof. Because Π̂ depends only on the first Heston model, we will omit the index 1.
(i) First consider the case γ = 1/2 and ν > 3. Then Π̂ = 1+ 1/(R11T) ·

∫T
0
σ̂−1
η(s)dZs and thus

E|Π− Π̂|2 ≤ c · E

∣∣∣∣∣
∫T
0

1

σs
−

1

σ̂η(s)
dZs

∣∣∣∣∣
2

≤ c · E
∫T
0

1

σ2sσ̂
2
η(s)

|σs − σ̂η(s)|
2ds

≤ c · E
∫T
0

1

σ2sσ̂
2
η(s)

|σs − ση(s)|
2ds+ c · E

∫T
0

1

σ2sσ̂
2
η(s)

|ση(s) − σ̂η(s)|
2ds (8.4)

We will examine both summands independently and start with

S1 := E

∫T
0

1

σ2sσ̂
2
η(s)

|σs − ση(s)|
2ds

≤ E

(∫T
0

σ−2s · |σs − ση(s)|2 ds · sup
s∈[0,T ]

σ̂−2η(s)

)
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In the following we will frequently use Hölder’s inequality. The main reason for the
complexity of the calculations is the unusual fact that σ−2s does not have all moments, while∫T
0
σ−2s ds does. When using Hölder’s inequality we hence must make sure to enlarge not

the exponent within the integral but the one between integral and expectation.
Choose ε > 0 such that 1+ ε < ν/3 and set q = (1+ ε)/ε. Theorem 6.2 guarantees that the
necessary moments are bounded with the bound being independent of ∆.

sup
∆>0

E

(
sup
s∈[0,T ]

σ̂
−2(1+ε)
η(s)

)
<∞

Using Hölder’s inequality three times, always with exponents 1+ ε and q, we get

S1 ≤

(
E

(∫T
0

σ−2s · |σs − ση(s)|2 ds

)q) 1
q

·

(
E sup
s∈[0,T ]

σ̂
−2(1+ε)
η(s)

) 1
1+ε

≤ c ·

(
E

(∫T
0

σ−2s · |σs − ση(s)|2 ds

)q) 1
q

≤ c ·

E
(∫T

0

σ−2(1+ε)s ds

) q
1+ε

·
∫T
0

|σs − ση(s)|
2qds


1
q

≤ c ·

(
E

(∫T
0

σ−2(1+ε)s ds

)q) 1
q(1+ε)

·

(
E

(∫T
0

|σs − ση(s)|
2qds

)q) 1

q2

Because εq = 1 + ε < ν/3 < ν − 1 the first factor is finite by Lemma 8.5. Since the CIR
process is continuous in the mean (see Theorem 2.3), the last expectation is bounded by c∆.
Thus S1 ≤ c∆.
Now consider the second summand of (8.4):

S2 := E

∫T
0

1

σ2sσ̂
2
η(s)

|ση(s) − σ̂η(s)|
2ds

≤

(
E

(∫T
0

σ−2s · σ̂−2η(s)ds

)q) 1
q

·

(
E sup
k=0,...,dT/∆e

|σk∆ − σ̂k∆|
2(1+ε)

) 1
1+ε

The second factor is bounded by c∆2 as was shown in Theorem 6.2 (again we need the full
strength of the assumption 1 + ε < ν/3). We apply Hölder’s inequality twice to split the
first factor.

≤ c · E

(∫T
0

σ−2(1+ε)s ds

) q
1+ε

·
∫T
0

σ−2q
η(s)ds


1
q

· ∆2

≤ c ·

(
E

(∫T
0

σ−2(1+ε)s ds

)q) 1
q(1+ε)

·

(
E

(∫T
0

σ−2q
η(s)ds

)q) 1

q2

· ∆2

The first factor is bounded as above, the second factor is bounded by c∆−1 due to Lemma
6.3. Taken together, we have proven that S2 ≤ c∆ and the proof of the assertion is complete.
(ii) Now assume γ > 1/2. Set p = 1/2(1− γ) so that

√
vt = σ

p
t . Because inverse moments

of arbitrarily high powers exist for the CEV process and its approximation (see Theorems
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2.4 and 6.2), the proof is much easier in this case.

E|Π− Π̂|2 = E

∣∣∣∣∣
∫T
0

σ−ps − σ̂−p
η(s)dZs

∣∣∣∣∣
2

= c · E

∣∣∣∣∣
∫T
0

(σsσ̂η(s))
−p · (σ̂p

η(s) − σ
p
s )dZs

∣∣∣∣∣
2

= c ·
∫T
0

E
(
(σsσ̂η(s))

−2p · (σ̂p
η(s) − σ

p
s )
2
)

ds

≤ c · sup
s∈[0,T ]

[(
E σ−6ps

)1/3 · (E σ̂−6p
η(s)

)1/3 · (E(σ̂p
η(s) − σ

p
s

)6)1/3]
As mentioned above, the first two expectations are finite.

≤ c ·
(
E
(
σ̂p
η(s) − σ

p
η(s)

)6
+ E

(
σp
η(s) − σ

p
s

)6)1/3
= c ·

(
E
(
v̂η(s) − vη(s)

)6
+ E
(
vη(s) − vs

)6)1/3
Now we apply Theorems 2.5 and 6.2

≤ c · (∆6 + ∆3)1/3

≤ c · ∆

This concludes the proof. �

Under weaker assumptions we can still prove convergence:

Theorem 8.8 Assume that γ1 > 1/2 or ν1 > 2. Then(
E(Π̂− Π)2

)1/2 → 0 as ∆→ 0

Proof. We will again omit the index 1. For γ > 1/2 the claim follows from the last theorem,
so assume γ = 1/2. Consider again the decomposition E|Π− Π̂|2 ≤ S1 + S2 that was used in
the proof of the previous theorem. Choose ε > 0 such that 1+ ε < ν/2 and set q = (1+ ε)/ε.
Then by Hölder’s inequality

S1 = E

∫T
0

1

σ2sσ̂
2
η(s)

|σs − ση(s)|
2ds

≤

(
E

∫T
0

σ−2(1+ε)s ds

) 1
1+ε

·

(
E

∫T
0

σ̂−4q
η(s)ds

) 1
2q

·

(
E

∫T
0

|σs − ση(s)|
4qds

) 1
2q

≤ c ·

(
E

∫T
0

σ−2(1+ε)s ds

) 1
1+ε

·
(

sup
k=0,...,N

Eσ̂−4qk

) 1
2q

·

(
E

∫T
0

|σs − ση(s)|
4qds

) 1
2q

By our choice of ε the first expectation is finite. In Lemma 8.6 we have shown that the second
expectation is bounded by c∆−(1−α) for some α ∈ (0, 1). Theorem 2.3 shows that the third
factor is bounded by c∆. In summary, S1 ≤ c · ∆α which converges to 0.
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To bound S2 we apply Hölder’s inequality twice, again using 1+ ε and q as exponents:

S2 = E

∫T
0

1

σ2sσ̂
2
η(s)

|ση(s) − σ̂η(s)|
2ds

≤ E

(∫T
0

σ−2s · σ̂−2η(s) ds · sup
k=0,...,N

|σk∆ − σ̂k∆|
2

)

≤

(
E

(∫T
0

σ−2s σ̂
−2
η(s)ds

)q) 1
q

·
(
E sup
k=0,...,N

|σk∆ − σ̂k∆|
2(1+ε)

) 1
1+ε

The last factor is bounded by c∆due to Theorem 6.2 (note that under the stronger assumptions
of the previous theorem we were able to bound it by c∆2). Two other applications of Hölder’s
inequality give

≤ c ·

E
(∫T

0

σ−2(1+ε)s ds

) q
1+ε

·
∫T
0

σ̂−2q
η(s)ds


1
q

· ∆

≤ c ·

(
E

(∫T
0

σ−2(1+ε)s ds

)q) 1
q(1+ε)

·

(
E

(∫T
0

σ̂−2q
η(s)ds

)q) 1

q2

· ∆

Because εq = 1+ ε < ν/2 < ν− 1, the first factor is bounded by Lemma 8.5. By Lemma 8.6
there exists α ∈ (0, 1) such that

(
E

(∫T
0

σ̂−2q
η(s)ds

)q) 1

q2

≤ c · sup
k=0,...,N

(
Eσ̂−2q

2

k

) 1

q2 ≤ c · ∆−(1−α)

In summary we have shown that E|Π− Π̂|2 ≤ c · ∆α for some α > 0. �

After these preparations we can prove that the term on the right-hand side of the integration
by parts formula can be approximated with an L2-convergence rate of 1/2which is the same
we would get for a Lipschitz continuous functional; see Corollary 6.7. Set

P :=
F(ST )

S1T
· Π =

F(ST )

S1T
·

(
1+

1

R11T
·
∫T
0

(v1t)
−1/2dZ1t

)
(8.5)

P̂ :=
F(ŜT )

Ŝ1T
· Π̂ =

F(ŜT )

Ŝ1T
·

(
1+

1

R11T
·
N−1∑
k=0

(v̂1k∆)
−1/2 · ∆kZ1

)

Theorem 8.9 Assume that

• The DISE scheme is used to approximate the (log-)price.

• Either γ1 > 1/2 or ν1 > 3.

• The function f is bounded and globally Lipschitz continuous in all arguments except
possibly the first. Denote the Lipschitz constant by L.

Then
‖P̂ − P‖2 ≤ c · (sup |f|+ L) ·

√
∆

where the constant is independent of f.
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Proof. Let G be the function from Proposition 8.3:

G(x) :=
F(ex1 , . . . , exd)

ex1
=

1

ex1
·
∫ex1
0

f(ξ, ex2 , . . . , exd)dξ

The proposition shows that G is bounded by sup |f| and globally Lipschitz continuous in the
first argument with Lipschitz constant 2 sup |f|. Together with the additional assumption
of this theorem G must be globally Lipschitz continuous in all arguments with constant
2 sup |f|+ L. Now we can bound ‖P − P̂‖2 as follows:

‖P̂ − P‖2 = ‖G(X̂T ) · Π̂−G(XT ) · Π‖2
≤ ‖G(X̂T ) · (Π̂− Π)‖2 + ‖(G(X̂T ) −G(XT )) · Π‖2
≤ sup |f| · ‖Π̂− Π‖2 + (2 sup |f|+ L) · ‖ ‖X̂T − XT‖Rd · Π‖2

Choose ε > 0 small enough such that 2(1 + ε) < 4ν/3 and set q = (1 + ε)/ε. Then use
Hölder’s inequality.

≤ sup |f| · ‖Π̂− Π‖2 + (2 sup |f|+ L) · ‖X̂T − XT‖2(1+ε) · ‖Π‖q

Now the convergence order is provided by Corollary 6.7 and Theorem 8.7. Π has moments
of all orders (see Theorem 2.2).

≤ c · (2 sup |f|+ L) ·
√
∆ �

Again, weaker assumptions suffice to prove convergence:

Theorem 8.10 Assume that

• The DISE scheme is used to approximate the (log-)price.

• Either γ1 > 1/2 or ν1 > 2.

• The function f is bounded and globally Lipschitz continuous in all arguments except
possibly the first. Denote the Lipschitz constant by L.

Then
lim
∆→0 ‖P̂ − P‖2 = 0

Proof. The proof is exactly the same as that of the previous theorem, but using Theorem 8.8
instead of Theorem 8.7. �

8.3 Payoff Splitting

As will be explained in Chapter 9, the strong rate of convergence of 1/2 established in
Theorem 8.9 will lead to a numerical algorithm with costs in O(ε−2 · (log ε)2), where ε is
the root-mean-square error. However, the numerical experiments have shown that without
further work the constant involved in the O-notation when using the integration by parts
formula to smooth the functional is too large for the algorithm to be of any practical use.
The reason here is the variance of the term

∫T
0
v
−1/2
s dZ1s within the random variable P from

(8.5): Due to Jensen’s inequality and Evt ≈ λ, see the formulas in the appendix of [And07],
we have

V

(∫T
0

v−1/2s dZ1s

)
= E

(∫T
0

v−1/2s dZ1s

)2
=

∫T
0

E(v−1s )ds ≥
∫T
0

(Evs)
−1ds ≈ T · λ−1
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Figure 8.1: Split discontinuous functional f into f = f1 + f2 and apply smoothing via Malliavin integration by
parts only to the second summand.

= +

Because the parameter λ is typically low (see again [And07]), the variance will be high and
this carries over to the approximation

∫
v̂
−1/2
s dZ1s and P̂.

Fortunately, there is an easy way to weaken the problem. For this we will split the
discontinuous functional f into two parts f = f1 + f2 with f1 being continuous and f2 being
discontinuous, but with small support. Then we will apply the integration by parts formula
only to the second part f2. Given an antiderivative F2 of f2 the final estimator will then be
given by

P̂ := f1(ŜT ) +
F2(ŜT )

Ŝ1T
· Π̂ = f1(ŜT ) +

F2(ŜT )

Ŝ1T
·

(
1+

1

R11T
·
N−1∑
k=0

(v̂1k∆)
−1/2 · ∆kZ1

)
(8.6)

In case of the digital option f = 1[0,K] we will use the following splitting, which depends on
a parameter δ ∈ (0, 1); see Figure 8.1.

f1(x) =


1 x ≤ (1− δ)K

− 1
2δ
(x− K) + 1

2
x ∈ [(1− δ)K, (1+ δ)K]

0 x ≥ (1+ δ)K

f2(x) =


0 x ≤ (1− δ)K

− 1
2δ
(x− K) − 1

2
x ∈ [(1− δ)K,K]

− 1
2δ
(x− K) + 1

2
x ∈ (K, (1+ δ)K]

0 x ≥ (1+ δ)K

For typical payoffs the splitting can be done in a way such that f1 is Lipschitz continuous. In
this case the strong convergence rate 1/2 also holds for the splitted payoff:

Corollary 8.11 Let f = f1 + f2. Assume that

• The DISE scheme is used to approximate the (log-)price.

• Either γ1 > 1/2 or ν1 > 3.

• The function f1 is L1-Lipschitz continuous.

• The function f2 is bounded and L2-Lipschitz continuous in all arguments except
possibly the first.

Then the estimator in (8.6) satisfies

‖P̂ − P‖2 ≤ c · (sup |f|+ L1 + L2) ·
√
∆

where the constant is independent of f.

Proof. This follows directly from Corollary 6.7 for the Lipschitz continuous summand f1
and from Theorem 8.9 for the remaining summand. �

78



Chapter 9

Monte-Carlo Algorithms

In this chapter we will examine algorithms to estimate expectations. We start with the
fundamental Monte-Carlo algorithm and proceed to discuss first general multilevel Monte-
Carlo, then the adaptive version of the algorithm which we are going to use in the numerical
examples of the next chapter.
To simplify notation and because the algorithms are obviously not restricted to the Heston
model we will assume that we are approximating the solution ST of a possibly multidi-
mensional SDE with driving Brownian motionWt. Also, we define the shorthand notation
p := E(f(ST )) for the quantity that should be estimated.
It should be noted that for one-dimensional models Monte-Carlo algorithms are usually
outperformed by PDE-based or FFT-based algorithms. However, the basic Monte-Carlo
idea is unsurpassed in its simplicity and trivial to extend to higher dimensions, whereas
those other algorithms are mostly confined to a very low number of dimensions. The articles
[iHF10] and [CM99] present respectively a PDE-based method and an FFT-based method
for the Heston model.

9.1 Standard Monte-Carlo

The Monte-Carlo algorithm is the straightforward algorithm to compute expectations of
random variables that can be simulated approximately. It approximates the expectation by
the mean

P̂ :=
1

M
·
M∑
i=1

f(Ŝ∆,iN )

where Ŝ∆,iN , i = 1, . . . ,M, are independent simulations of ŜN using stepsize ∆. To find
optimal values forN andM, we recall the following small calculation for a random variable
X and a number a.

E|X−a|2 = E|X−EX+EX−a|2 = E|X−EX|2+|EX−a|2+2E(X−EX)·(EX−a) = V(X)+|EX−a|2

(9.1)
Using this equation the error of a Monte-Carlo algorithm can be divided into two parts: the
bias and the variance error. In fact, we have

E|P̂ − p|2 = V(P̂) + |EP̂ − p|2 =
1

M
V(f(ŜT )) + |EP̂ − p|2

Assuming a weak error rate of 1, i.e. |EP̂ − p| ≤ c · ∆ = cT/N, setting N := dT/εe will bound
the bias by c · ε, whereas settingM := dε−2e will bound the variance by c · ε2. Together we
get that the root-mean-square error is bounded by

‖P̂ − p‖2 ≤ c · ε
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The cost of the algorithm is then N ·M ∈ O(ε−3).

Algorithm 1: Standard Monte Carlo (assuming a bias of order 1)
Input: error tolerance ε
Output: estimation for E(f(ST ))

1 N := dT/εe and ∆ := T/N

2 M := dε−2e
3 SimulateM copies Ŝ∆,iN , i = 1, . . . ,M.

4 return P̂ :=
1

M
·
M∑
i=1

f(Ŝ∆,iN )

In the Heston model, a rate of 1 for the weak error was proven in Theorem 7.13, albeit
under rather strong assumptions on ν. However, as shown in Section 6.6, numerical practice
indicates that the rate 1 is valid under much weaker assumptions.

9.2 Multilevel Monte-Carlo (MLMC)

The efficiency of Monte-Carlo can be drastically improved when one uses approximations
of different stepsizes and combines them in a clever way. The multilevel Monte-Carlo
algorithm was first examined in the context of parametrical integration problems in [Hei01].
In [Gil08] the algorithm was first used in the context of SDEs.
Denote by P̂l, l ∈ N0, an approximation to f(ST ) using step size ∆l := T ·M−l, for a fixed
refinement parameterM (typicallyM ∈ {2, 4}). The idea of multilevel Monte-Carlo is to split
the expectation E(P̂L) into the telescoping sum

E(P̂L) = E(P̂0) +

L∑
l=1

E
(
P̂l − P̂l−1

)
(9.2)

and approximate each expectation on the right-hand side separately and independently
from the others. Given estimators Ŷ0 for E(P̂0) and Ŷl for E(P̂l − P̂l−1) we can then estimate
the target expectation p = E(f(ST )) by

Ŷ :=

L∑
l=0

Ŷl

On the first glance it might seem like a lot of additional work to approximateL+1 expectations.
However, for small l the approximation P̂l is cheap to simulate, while for large l the random
variables P̂l − P̂l−1 can typically be estimated with a low variance, so that few (expensive)
samples are already sufficient to reach high precision.
In our numerical experiments we will simply use standard Monte-Carlo to construct the
estimators Ŷl. That is, for l = 0we use

Ŷ0 :=
1

N0

N0∑
i=1

f(Ŝ∆0,iT ) (9.3)

and for l = 1, . . . , L the estimator is given by

Ŷl :=
1

Nl

Nl∑
i=1

f(Ŝ∆l,iT ) − f(Ŝ∆l−1,iT ) (9.4)
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These definitions leave a number of issues open that must be adressed before the algorithm
can be implemented in practice: It is still unclear how to choose L and Nl and it is not
specified how exactly f(Ŝ∆l,iT ) − f(Ŝ∆l−1,iT ) should be simulated. The first issue is solved
theoretically in the next section and practically by the adaptive Algorithm 3. The second
issue will be adressed in Section 9.2.2.

9.2.1 Costs of Multilevel Monte-Carlo

The generic MLMC algorithm does not require the estimators Ŷl to be given by (9.3) and
(9.4), but can be used with a wide range of estimators, as long as the costs are balanced in a
suitable way and weak and strong convergence rates of the error exist. Giles’ original article
[Gil08] proves a quite general result which is stated in the following.

Theorem 9.1 (Theorem 3.1 in [Gil08]) For l = 0, . . . , L let Ŷl = Ŷl(Nl) be an estimator
depending on a parameter Nl ∈ N. Denote the cost of Ŷl by Cl. Assume that the following
conditions are satisfied for some constants α ≥ 1/2 and β, c1, c2, c3 ≥ 0:

1. |EP̂l − p| ≤ c1 · ∆αl ,

2. E(Ŷ0) = E(P̂0) and E(Ŷl) = E(P̂l − P̂l−1) for l = 1, . . . , L,

3. V(Ŷl) ≤ c2 ·N−1
l · ∆

β
l ,

4. Cl ≤ c3 ·Nl · ∆−1
l .

Then for every ε < e−1 we can choose L and Nl in a way such that the root-mean-square
error of the combined estimator Ŷ =

∑L
l=0 Ŷl is bounded by ε, i.e.(

E |Ŷ − p|2
)1/2

≤ ε

and the total costs C are bounded by

C ≤


c · ε−2, β > 1

c · ε−2(log ε)2, β = 1,

c · ε−2−(1−β)/α, 0 < β < 1

(9.5)

Proof. [Sketch; for the full proof see [Gil08]]
A short calculation reveals that the choice

L :=

⌈
1

α
· logM(

√
2c1T

αε−1)

⌉
is large enough to guarantee that the bias is sufficiently small:

|E(Ŷ) − p| = |E(P̂L) − p| ≤
ε√
2

(9.6)

Because the necessary choice of Nl differs depending on β being less, equal or greater than
1, we will now restrict ourselves to the case β = 1. Set

Nl := d2ε−2(L+ 1)c2∆le

Then

V(Ŷ) =

L∑
l=0

V(Ŷl) ≤ c2 ·
L∑
l=0

N−1
l ∆l ≤

L∑
l=0

ε2

2(L+ 1)
=
ε2

2
(9.7)
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Now we can split the mean-square error in the usual way (see (9.1)) and combine (9.6) and
(9.7) to get the asserted error bound

E|Ŷ − p|2 ≤ ε2

It remains to bound the computational cost. To simplify this proof sketch, we will ignore the
rounding-up and use that Nl ≈ 2ε−2(L+ 1)c2∆l. Then

C =

L∑
l=0

Cl ≤ c3 ·
L∑
l=0

Nl∆
−1
l / c32ε

−2(L+ 1)2c2

Under the assumption ε < e−1, hence | log ε| > 1, it is easy to show that L ≤ c · log ε. This
proves C ≤ c · ε−2(log ε)2. �

9.2.2 Variance Reduction

To achieve the variance decay required by the third assumption in Theorem 9.1, it will be
necessary to simulate the two parts of P̂l− P̂l−1 not independently, but using the same path of
the underlying Brownian motion. Because P̂l−1 uses a stepsize of∆l−1 := T ·M−l+1 =M ·∆l
we can generate increments of stepsize ∆l, use them to simulate P̂l, and afterwards sum
them up in groups ofM increments to generate appropriate increments for the simulation of
P̂l−1.
Algorithm 2 describes the implementation in detail. We assume that the numerical scheme
is given in terms of a function φ, i.e. by

Ŝ∆n+1 = φ(Ŝ
∆
n , ∆,W(n+1)∆ −Wn∆)

Note that while this variance reduction technique requires a little more implementation
effort, the computational effort is actually reduced, because less random numbers need to be
generated compared to simulating P̂l and P̂l−1 independently.

Algorithm 2: Simulate P̂l − P̂l−1 using the same path ofW.
Input: Level l ≥ 1
Output: A random variable with expectation E(P̂l − P̂l−1) and low variance.

1 Nc :=M
l−1 // Number of steps on coarse level

2 ∆c := T/Nc // Coarse step size
3 ∆f := ∆c/M // Fine step size
4 Ŝ∆c := 0

5 Ŝ∆f := 0
6 for n = 1, . . . ,Nc do
7 ∆Wc := 0
8 for i = 1, . . . ,M do
9 Draw ∆Wf from N (0, ∆f · C) // C is the covariance matrix of W1

10 ∆Wc←∆Wc+∆Wf // sum up M fine increments for one coarse inc.
11 Ŝ∆f ← φ(Ŝ∆f , ∆, ∆Wf)

12 end
13 Ŝ∆c ← φ(Ŝ∆c , ∆, ∆Wc)

14 end
15 return f(Ŝ∆f) − f(Ŝ∆c)

The next theorem is a version of Theorem 9.1 in the case of our estimators (9.3) and (9.4).
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Theorem 9.2 Assume that

1. Ŷl are given by (9.3) and (9.4),

2. |Ef(Ŝ∆T ) − p| ≤ c · ∆,

3. The same Brownian path is used to generate both parts of f(Ŝ∆l,iT ) − f(Ŝ∆l−1,iT ) in (9.4).

4. ‖f(Ŝ∆T ) − f(ST )‖2 ≤ c · ∆β/2 for some β > 0.

Then for any ε < e−1 the parameters L andNl can be chosen in a way such that the resulting
estimator Ŷ :=

∑L
l=0 Ŷl achieves a root-mean-square error of

‖Ŷ − p‖2 ≤ ε

with the costs C being bounded by (9.5).

Proof. We only have to check the assumptions of Theorem 9.1. The second and fourth one
follow directly from the construction of the estimators. The required weak convergence rate
proves the first assumption (with α = 1). Under the assumption that P̂l and P̂l−1 use the
same path of the underlying Brownian motion, we can compare both to the exact solution
using this path.

P̂l − P̂l−1 = P̂l − f(ST ) − (P̂l−1 − f(ST ))

Together with the last assumption we can now bound the variance:

V(P̂l − P̂l−1) ≤
(
‖P̂l − f(ST )‖2 + ‖P̂l−1 − f(ST )‖2

)2
≤ c · ∆βl

for l = 1, . . . , L. This gives V(Ŷl) = V(P̂l − P̂l−1)/Nl ≤ c∆βl /Nl and thus the third
assumption of Theorem 9.1 holds. �

In Theorem 8.1 we proved that the third assumption of the previous theorem is satisfied for
f = 1[0,K], but only with the low convergence order β = 1/4. Assuming a weak error rate
of 1, this leads us to expect costs of order O(ε−5/2). On the other hand, for the functional
obtained by using the integration by parts rule, Theorem 8.9 proved that we can use the
previous theorem with β = 1 and thus expect costs of order O(ε−2 · (log ε)2).

9.2.3 Adaptive Multilevel Monte-Carlo

Before the multilevel technique can be applied in practice we still have to find a way of
determining the algorithm parameters L andNl. The proof of Theorem 9.1 was constructive
in that it provided exact formulas for these parameters. However, these formulas contained
the constants c1 and c2 stemming respectively from the weak and strong rate of convergence
of the scheme. While it is certainly possible to estimate these parameters in a separate prior
computation, the additional computational effort makes this endeavor unpromising. Instead
we will use an adaptive algorithm which tries to guess the correct values for L and Nl “on
the way”. The algorithm was already published in the original multilevel article [Gil08] and
is formulated in pseudocode in Algorithm 3.
Instead of fixing the maximum level L in advance, the algorithm starts with L = 0 and runs a
random amount of rounds. After each round either convergence is detected or L is increased
by one and the next round starts. For each level l from 0 to the current maximum level L we
store:

• Nl: the number of samples created so far. Samples are either simulations of P̂0 for
l = 0 or of P̂l − P̂l−1 for l ≥ 1.

• Ŷl: the mean of the samples,
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Algorithm 3: Adaptive Multilevel Monte-Carlo
Input: error tolerance ε, number of initial samples Nini
Output: estimation for E(f(ST ))

1 L := 0
2 Generate NL := Nini samples for level L // start a new round
3 Set VL to the sample variance
4 Compute Nl for l = 0, . . . , L using the formula

Nl := max

{
Nini,

⌈
2 · ε−2

√
Vl∆l

(
L∑
l ′=0

√
Vl ′/∆l ′

)⌉}
5 If this leads to an increase of Nl for some l = 0, . . . , L, generate additional samples on

level l
6 For l = 0, . . . , L set Ŷl to the mean of the samples on level l

7 if L ≥ 2 and the convergence condition max
{
M−1|ŶL−1|, |ŶL|

}
<

1√
2
(M− 1)ε holds

8 then return
L∑
l=0

Ŷl

9 else L := L+ 1 and goto step 2

• Vl: the sample variance of the first Nini samples. This will be used as an estimate for
V(P̂l − P̂l−1).

In each round the algorithm carries out the following steps.

1. Set NL := Nini and create Nini samples of P̂L − P̂L−1.

2. Set VL to the sample variance (with Bessel correction).

3. Use the new variance estimate to update the desired number of iterations per level Nl
for each level l = 0, . . . , L. The numbers are computed using the formula

Nl := max

{
Nini,

⌈
2 · ε−2

√
Vl∆l

(
L∑
l ′=0

√
V ′l/∆

′
l

)⌉}
Because the variance estimates Vl never change — except for the newly estimated VL,
of course — the value of Nl will increase by 2ε−2

√
VlVL (ignoring ceiling operation

and the lower bound ofNini). The lower bound ofNini makes sure thatNl will never
decrease. The formula is chosen so that the estimated variance of the whole estimator
is bounded by ε2/2:

V(Ŷ) =

L∑
l=0

V(Ŷl) =

L∑
l=0

V(P̂l − P̂l−1)

Nl

≈
L∑
l=0

Vl

Nl
≤

L∑
l=0

Vl ·

(
2ε−2

√
Vl∆l

L∑
l ′=0

√
V ′l/∆

′
l

)−1

=
ε2

2
(9.8)

4. For each level l = 0, . . . , L generate additional samples of P̂l − P̂l−1 to reach the new
Nl and update the mean Ŷl accordingly.

5. If L ≥ 2 (i.e. starting in the third round) check for convergence using the condition

max
{
M−1|ŶL−1|, |ŶL|

}
<

1√
2
(M− 1)ε
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This condition is based on a heuristic guess at the remaining bias |E(P̂L−P)|. Assuming
a weak rate of 1, the bias on level l is |E(P̂l − P)| ≈ c1 · ∆l. Thus

|E(P̂l − P̂l−1)| = |E(P̂l − P − (P̂l−1 − P))| ≈ c1(M− 1)∆l

Now if the condition is fulfilled, the following heuristic reasoning gives hope that the
remaining bias is bounded by ε/

√
2 when estimated based on either of the last two

levels.

|E(P̂L − P)| ≈ c1∆L ≈
|E(P̂L − P̂L−1)|

M− 1
≈ |ŶL|

M− 1
<

ε√
2

|E(P̂L − P)| ≈
c1∆L−1

M
≈ |E(P̂L−1 − P̂L−2)|

M(M− 1)
≈ |ŶL−1|

M(M− 1)
<

ε√
2

Together, the preceding estimates, (9.1) and (9.8) provide a heuristic bound to the mean-square
error.

E|Ŷ − p|2 = V(Ŷ) + |EŶ − p|2 / ε2
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Chapter 10

Numerical Results

In this final chapter we will compare different algorithms to compute the expectation Ef(ST )
for discontinuous f. In particular, we will check whether the integration by parts rule
presented in Chapter 8 improves the quadrature of this expectation. Because the theoretical
results of that chapter only hold for the drift-implicit square-root Euler scheme (DISE), we
will use this scheme throughout this chapter.
The numerical experiment will be the following: We first specify a model, a functional f of
the end price(s) and a list of accuracies ε1, . . . , εn. Then a reference value x∗ is computed —
by the exact formula of Theorem 2.8 for one-dimensional standard Heston models or by
algorithm A3 (see below) on a high input precision ε∗ = min{ε1, . . . , εn}/4. Finally, for each
accuracy ε each algorithm is executed N ≥ 500 times giving results Ŷi, i = 1, . . . ,N. After
these runs the empirical relative root mean-square error

rms =
1

x∗
·

√√√√ 1

N

N∑
i=1

(Ŷi − x∗)2 (10.1)

and the average costs as defined below are computed. The final plot shows the costs on
the x-axis and the error on the y-axis, both in log2-coordinates. To visualize the order of
convergence, each graph is accompanied by an affinely linear function that was fitted to the
log2-data using a least-squares fit.

10.1 The Algorithms

We will compare the following three algorithms. Because the theoretical results from chapter
8 only hold for the DISE scheme, we will always use this scheme. Numerical experiments
with the DIMIL scheme yield similar results, but with higher errors — as was already
indicated in Section 6.6 for model M1.

A1) Standard Monte-Carlo simulating f(ŜT ) directly; see Algorithm 1.

A2) Adaptive multilevel Monte-Carlo (see Algorithm 3) simulating f(ŜT ), i.e. using the
discontinuous functional.

A3) Adaptive multilevel Monte-Carlo using Malliavin integration by parts and payoff-
splitting as discussed in Chapter 8. To be precise we simulate the estimator from
(8.6):

P̂ := f1(ŜT ) +
F2(ŜT )

Ŝ1T
·

(
1+

1

R11T
·
N−1∑
k=0

(v̂1k∆)
−1/2 · ∆kZ1

)
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The costs of an algorithm are defined as the total number of approximation steps over all
levels. For standard Monte-Carlo (A1) this is simply d ·N ·M, where d is the dimension
of the model. For multilevel Monte-Carlo using the estimators (9.3) and (9.4) the costs are
defined as

cost = d ·

(
N0 +

L∑
l=1

Nl · (Ml +Ml−1)

)
(10.2)

Note that this definition takes into account that we need to generate two paths for each
sample of P̂l − P̂l−1.
As discussed in Chapter 9, we expect to find that the costs in terms of the root-mean-
square error ε are of order cost = O(ε−3) for standard Monte-Carlo (A1), and for multi-
level Monte-Carlo either cost = O(ε−5/2) when using a discontinuous functional (A2) or
cost = O(ε−2(log ε)2) when using a Lipschitz continuous functional (A3), even though the
assumptions of Theorem 8.9 are not satisfied for the standard Heston models considered
here.
To visualize the convergence order, each of the plots in this chapter also shows affinely
linear functions that were fitted to the log2-data using a least-squares fit. Assuming that
cost ≈ c · ε−α we have in log2-coordinates

log2 cost ≈ log(c) − α log2 ε

A least-squares fit will now compute the optimal values for log(c) and α to fit the linear
function to the (cost, ε)-data points. The slope of the function, i.e. α, gives the measured
exponent of the costs for algorithms A1 and A2. To take the additional logarithmic factor of
algorithm A3 into account, we additionally fit a logarithmic function to the data of algorithm
A3. Assuming cost ≈ c · ε−α(log ε)2 we get in log2-coordinates

log2 cost ≈ log(c) − α log2 ε+ 2 log | log ε|

Again a least-squares fit will be used to compute log(c) and α. The measured exponents are
listed in Table 10.1. Note that the logarithmic fit is not shown in the plots, because it would
be almost identical to the linear fit.

10.2 The Functional

Because the indicator function is the fundamental discontinuous function we will always
use the payoff function f = 1[0,K]. In multidimensional models the function will be applied
to the sum of all prices. To maximize the influence of the discontinuity we set

K := E

(
d∑
i=1

SiT

)
=

d∑
i=1

Si0

Because the discontinuity is exactly at the expected price, in financial mathematics this is
called an at-the-money option. Further numerical tests reveal that the benefit of the Malliavin
integration by parts formula decreases when the discontinuity is moved away from the
expected price, as one would expect.

10.3 The Models

In our numerical examples we will use two one-dimensional models. In both cases the
parameters were taken from [ASK07].
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a) Standard Heston model with parameters

T = 2, µ = 0, κ = 5.07, λ = 0.0457, θ = 0.48, ρ = −0.767, v0 = λ, S0 = 100

These are the same as for model M1 in Section 6.6.

b) Generalized Heston model with parameters γ = 0.6545 and

T = 2, µ = 0, κ = 4.1031, λ = 0.0451, θ = 0.8583, ρ = −0.760, v0 = λ, S0 = 100

Figure 10.1 shows that in both cases the price distribution is close to a normal distribution.
However, compared to the normal distribution the probability of very high prices is larger,
while very low prices are less probable.
In the multidimensional setting we again use two models, covering the cases γ = 1/2 and
γ > 1/2, respectively.

c) The parameters of the standard model were taken from [DLS11]. To avoid negative
correlations close to −1 the parameters ρ1 and ρ2 were slightly modified. As in the
one-dimensional cases we have T = 2 and µ1 = µ2 = µ3 = 0. The other parameters
are

κ1 = 1.0121, λ1 = 0.2874, θ1 = 0.7627, ρ1 = −0.7137, v10 = 0.2723, S
1
0 = 100,

κ2 = 0.5217, λ2 = 0.2038, θ2 = 0.4611, ρ2 = −0.8322, v20 = 0.2536, S
2
0 = 100,

κ3 = 0.5764, λ3 = 0.1211, θ3 = 0.3736, ρ3 = −0.4835, v30 = 0.1539, S
3
0 = 100

It remains to specify the correlation of the driving Brownian motions which is

Σ(B,W) =


1 0.0246 0.0598 ρ1 0 0

0.0246 1 0.6465 0 ρ2 0
0.0598 0.6465 1 0 0 ρ3
ρ1 0 0 1 0 0
0 ρ2 0 0 1 0
0 0 ρ3 0 0 1


In particular, the volatility processes are modelled as independent of the other volatility
and price processes.

d) Because the literature does not seem to contain parameters for the multidimensional
Heston model using CEV processes as volatility, we use the same parameters as for
model c) and set additionally γ1 = 0.63, γ2 = 0.68, γ3 = 0.71.

Figure 10.1: Density of the endprice. The left plot uses the standard Heston model a), the right plot the
generalized model b). The dashed line is the density of a normal distribution fitted to the price density. Both
plots show the sample distribution of 106 approximations generated using the DISE scheme and 28 steps.
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Figure 10.2: Densities of the endprices in multidimensional models. The left plot uses the standard Heston model
c), the right plot the generalized model d). The first, second and third price process is drawn solid, dashed or with
dashes and dots, respectively. Both plots are based on 500.000 approximations generated using the DISE scheme
and 28 steps.

10.4 Numerical Results

Figures 10.3-10.6 plot the measured costs (10.2) versus empirical relative root-mean-square
error (10.1) in models a) to d). In the one-dimensional models and the multidimensional
generalized model the use of the integration by parts formula leads to an algorithm which
is approximately 4 times more efficient than the multilevel Monte-Carlo algorithm which
uses the discontinuous functional f directly. In the multidimensional standard model the
benefit reduces somewhat to being 2 times more efficient. For the standard Heston model
the benefit is comparable to the benefit of MLMC over standard Monte-Carlo, while for the
generalized models b) and d) the benefit is significantly larger. However, it turns out to be
very important to choose the right splitting parameter δ for the integration by parts formula
to be of advantage.
The measurements of the convergence order in Table 10.1 show standard Monte-Carlo to be
very close to the theoretical value of 3, while the multilevel Monte-Carlo algorithms have
a higher order than theory predicts. For algorithm A3, one needs to take the logarithmic
factor of the predicted cost = O(ε−2(log ε)2) into account to move the measured exponent
close to the theoretical value of 2.
Additionally, we performed a comparison of running times. To this end, all three algorithms
were executed 500 times with input error tolerance of ε = 2−7.5 for algorithm A1 and ε = 2−8

for algorithms A2 and A3. The averages of the measured errors, costs and running times are
listed in Tables 10.2 to 10.4. Note that the achieved accuracy is approximately 2−7.5 for all
three algorithms and the running times are thus comparable.

Algorithm Model (a) Model (b) Model (c) Model (d)
A1: Monte Carlo 2.988 2.990 3.010 3.031
A2: Adaptive MLMC 2.634 2.760 2.752 2.991
A3: Adaptive MLMC &

Malliavin IBP
2.537 2.616 2.664 2.595

A3 with logarithmic fit 2.144 2.190 2.233 2.140

Table 10.1: Measured convergence order. The method of least-squares was used to fit a function of the form
cost = c · ε−α to the data, where ε is the relative root-mean-square error. In the last line cost = c · ε−α(log ε)2

was used instead. The table lists the resulting values of α.
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Figure 10.3: Model a) d = 1, γ = 0.5, δ = 0.3.
Input accuracies have been {2−5, . . . , 2−10} for algorithm A1 and {2−5, . . . , 2−11} for algorithms A2 and A3.
The reference value was computed using the formula of Theorem 2.8.

Figure 10.4: Model b) d = 1, γ = 0.6545, δ = 0.2.
Input accuracies have been {2−4, . . . , 2−9} for algorithm A1 and {2−5, . . . , 2−10} for algorithms A2 and A3. The
reference value was computed using algorithm A3 and ε = 2−12.
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Figure 10.5: Model c) d = 3, γ = 0.5, δ = 0.1.
Input accuracies have been {2−5, . . . , 2−9} for algorithm A1 and {2−5, . . . , 2−10} for algorithms A2 and A3. The
reference value was computed using algorithm A3 and ε = 2−12.

Figure 10.6: Model d) d = 3, γ1 = 0.63, γ2 = 0.68, γ3 = 0.71, δ = 0.15.
Input accuracies have been {2−4, . . . , 2−8} for algorithm A1 and {2−5, . . . , 2−9} for algorithms A2 and A3. The
reference value was computed using algorithm A3 and ε = 2−11.
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Algorithm Model (a) Model (b) Model (c) Model (d)
A1: Monte Carlo 0.005 (0.003) 0.005 (0.004) 0.003 (0.003) 0.004 (0.003)
A2: Adaptive MLMC 0.005 (0.003) 0.005 (0.003) 0.005 (0.003) 0.006 (0.005)
A3: Adaptive MLMC &

Malliavin IBP
0.004 (0.003) 0.005 (0.003) 0.005 (0.004) 0.006 (0.004)

Table 10.2: Empirical relative root-mean-square errors (with standard deviations); see (10.1). Input accuracy
was ε = 2−7.5 for algorithm A1 and ε = 2−8 for algorithms A2 and A3.

Algorithm Model (a) Model (b) Model (c) Model (d)
A1: Monte Carlo 11.9 11.9 35.7 35.7
A2: Adaptive MLMC 2.8 (1.3) 4.3 (1.6) 9.7 (2.9) 6.9 (2.6)
A3: Adaptive MLMC &

Malliavin IBP
0.9 (0.4) 1.4 (0.4) 5.3 (1.5) 2.7 (0.9)

Table 10.3: Measured costs (number of discretization steps) in million steps (with standard deviations); see
(10.2). Input accuracy was ε = 2−7.5 for algorithm A1 and ε = 2−8 for algorithms A2 and A3.

Algorithm Model (a) Model (b) Model (c) Model (d)
A1: Monte Carlo 0.92 (0.01) 7.90 (0.04) 5.24 (0.05) 28.92 (0.16)
A2: Adaptive MLMC 0.31 (0.16) 3.15 (1.17) 1.23 (0.44) 5.31 (2.34)
A3: Adaptive MLMC &

Malliavin IBP
0.10 (0.04) 0.97 (0.28) 0.64 (0.17) 2.00 (0.62)

Table 10.4: Running times in seconds (with standard deviations). Input accuracy was ε = 2−7.5 for algorithm
A1 and ε = 2−8 for algorithms A2 and A3. Higher running times in b) and d) are due to the bisection method
necessary in each step of the implicit scheme.

10.5 Conclusion

In this thesis we have seen several applications of the Malliavin integration by parts rule in
the Heston model. Most notably, the rule can be used to replace discontinuous functionals
of the Heston price by continuous ones. The exact formula is

E(f(ST )) = E

(
F(ST )

S1T
·

(
1+

1

R11T
·
∫T
0

(v1s)
−1/2dZ1s

))

with F being an antiderivative of f. An analogous formula holds for the price approximated
with the DISE scheme. When using multilevel Monte-Carlo, this leads to a significantly
faster algorithm, as we have shown both in theory and in practice.
Other applications of the integration by parts rule have been a proof that the price in the
multidimensional Heston model has a density, and the derivation of the weak error rate of 1
for discontinuous payoff functionals in Chapter 7. All these applications show that the rule
is a versatile tool to remove undesired derivatives from functionals of the Heston price.
In Chapter 7 one of the major problems when dealing with the Heston model became visible:
It is often difficult to obtain results without making strong assumptions on ν = 2κλ/θ2,
although numerical experiments indicate that these restrictions are rarely necessary in
practice. In the case of the weak error, the critical requirement stems from the necessary
inverse moments of the drift-implicit Milstein scheme. In a future article we will prove the
same result, but with moderate smoothness assumptions on the payoff f and essentially no
assumption on ν. And again, the Malliavin integration by parts rule will play a role.
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Appendix A

The following theorem — known as Yamada–Watanabe–Comparison Lemma — allows to
compare two diffusions with the same diffusion coefficient but different drifts. In the proof
of Lemma 4.2 it was used with h(x) = xγ, γ ∈ [1/2, 1). Because some work was necessary to
check the five conditions, we state the theorem including the conditions here.

Theorem A.1 (Prop. 5.2.18 in [KS10]) For j ∈ {1, 2} let Xj be a continuous adapted process
such that

Xjt = X
j
0 +

∫t
0

bj(s, X
j
s)ds+

∫t
0

σ(s, Xjs)dWs, t ∈ R≥0

Assume that the following conditions hold:

1. the coefficients σ(t, x) and bj(t, x) are continuous functions on R≥0 ×R,

2. σ(t, x) satisfies |σ(t, x) − σ(t, y)| ≤ h(|x − y|) for every t ≥ 0 and all x, y ∈ R and a
strictly increasing function h : R≥0 → R≥0 with h(0) = 0 and∫ε

0

h−2(u)du =∞
for all ε > 0,

3. X10 ≤ X20 almost surely,

4. b1(t, x) ≤ b2(t, x) for all t ≥ 0, x ∈ R,

5. either b1 or b2 is Lipschitz continuous, i.e. for j = 1 or j = 2 there exists a K > 0 such
that |bj(t, x) − bj(t, y)| ≤ K · |x− y| for all x, y ∈ R.

Then P(X1t ≤ X2t ∀ t ≥ 0) = 1.
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