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General introduction

Endogeneity hampers the econometric evaluation of economic causal relationships. Broadly
speaking, an economic model is affected by endogeneity when unobserved factors influencing
the dependent variable of interest are also related to (observed) independent variables. In
such cases, the causal effect of the observables cannot be separated from the causal effect of the
unobservables even if there are infinitely many data observations. Endogeneity is the result of
the complexity of human behavior and of the impossibility to observe all relevant information.
It is inherent in all economic disciplines. In labor economics for example, the level of
intelligence of an individual is generally unobservable and is related to the level of education
and other predictors of economic success. In the economics of education, school resources,
such as the quality of teachers or class sizes, might be related to the economic background
of students or the level of parents” support. The latter factor of school achievement is often
unobserved to the econometrician. In health studies, researchers are often concerned with
the dependence between genetic factors and behavior when they try to predict the individual
economic wellbeing or the accumulation of human capital.

These are only three out of many examples that demonstrate that the importance of
methods that can solve the problem of endogeneity cannot be overstated. When experiments
are not possible (due to political, financial or ethical reasons), instrumental variable methods
are one major potential solution to it. Instrumental variables (or simply instruments) are
variables that i) are observable, ii) are related to the observed independent variables and
iii) influence the dependent variable only through the independent ones. Variation in the
instruments can be used to “extract” the exogenous variation of the observed covariates,
which is then used to estimate the causal relationship of interest.

In my thesis, I contribute to the literature on instrumental variable(IV) methods in several
ways. First, I develop a new nonparametric IV method for treatment evaluation in the context
of duration models. Second, I provide a characterization of a broad class of nonparametric
penalized minimum distance IV estimators as projections and derive results about their
asymptotic properties. These contributions are the subjects of the two different chapters of
my thesis. I now give a brief outline of the structure and particular content of my work.

Chapter 1 of my thesis is based on the paper "Nonparametric instrumental variable
methods for dynamic treatment evaluation”, a joint project with Gerard Van den Berg and
Enno Mammen. The main object of interest is the distribution (or some functions of it)
of a duration variable. In a policy treatment evaluation framework, our identification and
estimation methods allow for two types of endogeneity. The first type arises from the decision
of agents based on unobservables to take or refuse an assigned treatment. The second type
arises over time due to selective exits of agents out of the population of interest. Both types of
endogeneity are inherent to economic policy evaluation but there is no method thus far that
tackles them both at the same time in a nonparametric way. Existing methods either ignore
one of the types of endogeneity or impose restrictive parametric structure. Our instrumental
approach can deal with both types of endogeneity in a completely nonparametric way. It relies
onrandom inflow into the population of interest. Furthermore, we do not assume separability
or independence of observed and unobserved covariates. In addition, our methods can deal
with censoring of the duration variable. We provide estimation procedures and derive their
asymptotics. In addition to the identification and estimation results, we also demonstrate
how to use our framework for the analysis of endogeneity.



The second chapter of my thesis is based on my paper “The effects of class size on school
performance: a nonparametric study with new shape-constrained instrumental variable
methods”. The main econometric focus of this chapter is the nonparametric shape analysis of
the mean regression function under endogeneity. Imposing shape constraints in estimation
has two main advantages. First, when a certain shape is predicted by economic theory,
imposing shape constraints on the estimates may be necessary for the interpretation of the
data in a policy evaluation context. Second, shape-constrained nonparametric estimators
are still much more flexible than parametric counterparts. An important question in the
econometric analysis in this context is what are the asymptotic properties of constrained
nonparametric estimators. I provide three main theoretical results. First, monotonically
constrained and unconstrained Tikhonov estimators are asymptotically equivalent when
the regression function is an inner point of the constrained set. In this case, imposing a
constraint does not lead asymptotically to a change in the behavior of the estimator. Second,
a broad class of penalized minimum distance estimators can be shown to be the projection
of the unconstrained counterparts on the constrained set. An important consequence is that
in some weak norm the constrained estimators, provided they exist, converge at least as
quickly to the model solution as the unconstrained estimators. For a certain subclass of
those estimators it can be further shown, that they are two-step projection estimators in the
following sense. In a first step, project in some general vector space the data on the set of
all potential regression functions to obtain the unconstrained estimator. In a second step,
project this projection on the constrained set to obtain the unconstrained estimator. The
third result is a demonstration of an application of the projection property. Consistency of
constrained estimators is shown to be related to properties of the model solution and the
conditional expectation operator. In addition, I suggest an empirical procedure for testing
for monotonicity.

Both chapters of my thesis contain simulations of the proposed methods. They differ
substantially in their purpose. In chapter 1, we show through a simulation study that in
a particular policy context, violations of the assumption of independent censoring of the
duration variable do not influence the performance of the estimator. This finding is of a great
importance for applied research as the independent censoring assumption is not testable. In
section 2, [ derive through a simulation study the optimal choices of the estimation parameters
in a sieves estimation approach and monotonicity constraint. These choices depend on the
sample size, the degree of endogeneity, the strength of the instrument and the functional
form of the regression function. The second part of the simulation study also shows that the
proposed ad hoc testing procedure works very well in finite samples.

Both the methodological and simulation parts of my thesis have clear application motiva-
tions. Their usage is demonstrated in two extensive empirical investigations in two important
economic disciplines: labor and education. In chapter 1, we evaluate a labor policy reform
that i) introduces active labor market policy measures for unemployed, such as training and
counselling, and ii) abolishes digression in unemployment insurance payments. The two
measures induce incentives with opposite direction and it is not clear what the overall im-
pact on the duration of unemployment would be. We use our IV approach for the evaluation
and find that the reform had a positive effect on the unemployment dynamics. In chapter
2, 1 find that the effect of class size on test scores in two different data sets is non-monotone.
Building on that novel finding, I suggest a simple educational production function that can
generate non-monotone causal effects.



The last result completes the chain econometric theory - simulation - empirical investiga-
tion - economic theory. It reflects my understanding of an integrated scientific process and
demonstrates that I have developed a broad set of skills during my PhD time.
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Chapter 1

Nonparametric instrumental variable
methods for dynamic treatment
evaluation

1.1 Introduction

Identification of dynamic treatment effects is hampered by three major problems. First,
suppose the treatmentis randomized att = 0, the point in time of inflow of individuals in some
state of interest. If unobservable factors of the outcome interact with the treatment status,
then, at some later point in time t > 0, the distributions of the unobserved characteristics
among survivors will differ across different treatment arms, Meyer (1996), Ham and LaLonde
(1996) and Eberwein, Ham, and LaLonde (1997). Additionally, if individuals can choose a
treatment status different from the one that has been assigned to them and if their decision
is related to unobserved characteristics, then estimation results will suffer from the standard
selection bias. We refer to these endogeneity causes as dynamic and static endogeneity.
Lastly, duration variables are often subject to censoring, a problem which is difficult to tackle
with standard regression methods. In this paper, we develop an instrumental variable (IV)
approach for identification and estimation of dynamic treatment effects on the conditional
survival function and the hazard of a duration variable. Our method solves the dynamic
and static endogeneity problems and allows for censoring. We do not adopt parametric or
semiparametric structure. We also do not impose independence or separability of observed
and unobserved characteristics.

We embed our IV approach in a dynamic regression discontinuity setting. A single
comprehensive treatment is assigned at a specific calendar point in time to all individuals
in some state of interest. A typical example is a labor market reform which changes the
structure of unemployment benefits. Cohorts of individuals receive the treatment at the
same point in time but at different elapsed durations of their spells. Due to dynamic selection
the distribution of unobserved characteristics at the moment of treatment will differ across
cohorts. Additionally, we allow for noncompliance. We achieve identification by using
the duration between inflow and treatment of the different cohorts as an instrument for the
endogenous dynamic treatment status. The identifying assumptions are that different cohorts
have equal distributions of the frailty at the moment of inflow conditional on observables



and that individuals do not anticipate the point in time of treatment or do not act upon this
information.

Additionally, our identification strategy can be applied to a setup in which individual
spells have the same starting point in time but the agents receive the treatment at different
(random) points in time. The latter setting is common to the Swedish practice of Active Labor
Market Policies (ALMP), see Sianesi (2004).

By dealing with both dynamic and static selection, our paper provides the link between
the standard (static) LATE literature and the literature on dynamic treatment evaluation.
On the one hand, our main result can be interpreted as a dynamic generalization of the
one-sided noncompliance identification result by Bloom (1984). On the other hand, our
strategy generalizes the method of Van den Berg, Bozio, and Dias (2014) by allowing for
static selection.

We suggest estimation procedures and derive their asymptotic properties. Our estimators
are dynamic versions of the Wald estimator.

We use our method to evaluate the French labor market reform PARE from 2001. On July
12001 the digression of the unemployment benefits over time was abolished and a package
of active labor market policy (ALPM) measures was introduced. The estimated treatment
effect of this reform on the conditional survival function is positive and increases over time.
In an exhaustive study, we defend the plausibility of our assumptions. We address the non-
testable random censoring assumption in a simulation study. Imposing of random censoring
is necessary due to a nonidentification result by Tsiatis (1975). Our simulation results indicate
that the estimator is robust to violations of the non-testable assumption. The reason is that
violations which are likely to occur in the PARE setting have opposite directions and offset
each other’s impact on the estimates. This is a novel result.

Finally, we provide a novel framework for analysis of endogeneity. The main purposes
are 1) to assess whether noncompliance is endogenous and 2) to measure the bias that would
be induced if the endogeneity is ignored. Understanding the selection process is important
in numerous economic applications. First, better knowledge of the reasons for the non-take
up of a policy reform help improve the policy design and increase its efficiency. Second,
evaluating pilot projects with noncompliance can be used to derive bounds for the effect of a
comprehensive policy reform (with perfect compliance). And third, better understanding of
endogeneity can be used to model selection explicitly in more complex models. Our methods
are based on a comparison of untreated noncompliers with a whole nontreated cohort at the
same elapsed duration. We evaluate the non-take up of the PARE reform. Our results indicate
that selection is endogenous and that one major reason for noncompliance is the expectation
of a quick exit. These findings are in line with previous empirical and theoretical studies, see
e.g. Blasco (2009).

The remainder of this paper is structured as follows. In section 2, we discuss the related
literature. We present our IV approach in section 3. In section 4, we apply our IV method
to the French labor market reform PARE. Section 6 concludes. All proofs are left for the
appendix.



1.2 Literature overview

The related literature can be divided into a theoretical and empirical strands. Our identi-
fication approach is related to the theoretical literature on regression discontinuity design.
Some recent developments in this field are those by Hahn, Todd, and van der Klaauw (2001),
Porter (2003), Frolich (2007) and Van den Berg, Bozio, and Dias (2014). The first three ap-
proaches do not incorporate censoring. The paper of Van den Berg, Bozio, and Dias (2014)
deals with censoring and dynamic selection. We generalize their model by allowing for
noncompliance. Our IV approach is related to the IV methods with a binary treatment such
as those in Imbens and Angrist (1994) and Imbens and Rubin (1997). These papers pose the
analysis in a static framework and do not consider censoring and dynamic endogeneity. IV
methods for duration data are considered for example in Robins and Tsiatis (1991), Chesher
(2002), Bijwaard and Ridder (2005), Bijwaard (2008) and Abbring and van den Berg (2005).
Typically, these studies adopt a semiparametric or a parametric structure. In their numerous
settings, Abbring and van den Berg (2005) either preclude dynamic selection by looking at
the unconditional survival function or adopt a semiparametric structure. Next, our paper is
related to the literature on dynamic matching estimators, see e.g. Sianesi (2004), Fredriksson
and Johansson (2008) and Crépon, Ferracci, Jolivet, and Van den Berg (2009), and to the
literature on dynamic discrete choices, see e.g. Heckman and Navarro (2007). These papers
assume full compliance. We discuss in detail their assumptions and results in section 1.3.2.
On the empirical side, we contribute to the literature on the influence of the structure of
unemployment insurance benefits on the unemployment duration, see for example Lalive
(2008), Lalive, van Ours, and Zweimdiller (2006) and Katz and Meyer (1990). Commonly, the
unemployment insurance expires after some predetermined period of time. This has driven
the literature to consider the impact of maximal length of the period of payments and the
amount of the (flat) entitlement on the unemployment duration hazard. Comparing flat with
digressive benefits, we contribute to this literature by giving insights on the influence of the
interim structure of the unemployment insurance payments on the employment dynamics.
A related question is studied in Prieto (2000) and Dormont, Fougere, and Prieto (2001), but
their econometric approaches involve the (semi-)parametric specifications of the Proportional
Hazards model and the Mixed Proportional Hazards model, respectively, which are hard to
justify with economic theory, Van den Berg (2001). Our methods avoid such restrictive
assumptions and rely solely on the timing of the treatment. Our paper contributes also to
the empirical literature on the effects of ALMP on the probability to find a job. The measures
introduced by the PARE reform include training, subsidized jobs, skill assessment and job
search assistance. Some studies considering training are Gritz (1997), Richardson and den
Berg (2001), Crépon, Ferracci, and Fougere (2007) and Crépon, Ferracci, Jolivet, and Van den
Berg (2009). Studies on the effectiveness of counselling can be found in Gorter and Kalb
(1996), Blundell, Dias, Meghir, and Reenen (2004), as well as in Crépon, Dejemeppe, and
Gurgand (2005), Van den Berg and Van der Klaauw (2010) and Van den Berg, Kjersgaard,
and Rosholm (2012). Studies considering subsidized jobs are Gerfin and Lechner (2002) and
Blundell, Dias, Meghir, and Reenen (2004). For a general overview see Bonnal, Fougere, and
Sérandon (1997), Heckman, Lal.onde, and Smith (1999) and Kluve (2010). A common feature
of most of these studies is the assumed parametric or semiparametric functional form of the
hazard. Lastly, another related branch of the literature focuses on the threat effects of ALMP.
Some recent papers are those of Black, Smith, Berger, and Noel (2003), Lalive, Zweimtdiller,
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and van Ours (2005), as well as Rosholm and Svarer (2008), Crépon, Ferracci, Jolivet, and
Van den Berg (2010) and Bergemann, Caliendo, van den Berg, and Zimmermann (2011).

1.3 Identification and estimation of dynamic treatment effects

1.3.1 Notation and a framework for dynamic treatment evaluation

Assume that all agents in some state of interest O are assigned to receive a treatment at a
specific calender point in time > 0. We are interested in the causal effect of this treatment
on the distribution of the duration of stay in O. We embed our analysis in a framework
with dynamic potential outcomes. We assume that potential outcomes of the individual i
depend on pretreatment characteristics X; and V;, of which the g-dimensional X; is observed,
g > 1, and the one-dimensional V; not. Let the random variable Z; denote the time from
inflow to the assigned point in time of treatment and S; the elapsed duration in O at which
individual 7 actually receives the treatment. S; is a choice variable whereas Z; is exogenous.
For each X = x,V = v,Z = z,S = 5, denote with T;(s,z,x,v) the potential duration of stay
in O of individual i if he or she had characteristics (x,v) and received (z,v) as values for
(Z,S). We allow Tj(s,z,x,v) to be a random variable. This assumption reflects some intrinsic
uncertainty in the transition, not necessarily observed and/or controlled by the agent, see
Lancaster (1990) for a discussion. Throughout the paper, we assume that Z is an exclusion
restriction in the sense that T;(s, z, x, v) = T;(s, x,v). For notational simplicity, we will suppress
the dependence on X and V as well as the individual index i.

This setup corresponds to a labor market program implementation, in which a policy
reform is administered at a fixed point in time. Our methods however, as shown in the
discussion below, can be extended to a setup with ongoing programs, in which the treatment
is assigned at random points in time to different individuals. The latter setting is common
to the Swedish practice of Active Labor Market Policies (ALMP), see Sianesi (2004). In a
labor market context, X might be education, gender, number of siblings, age and experience
at inflow, whereas V might be the ability of an unemployed or his or her motivation. In a
medical study, X might be some observed health marker, whereas V might be some genetic
unobserved component. X and V obtain values in Qx and Qy.

We enrich this dynamic framework by allowing the agents to opt out of the assigned
treatment. We refer to this opting out as static selection. To fix ideas, for each z € R, and each
(x,v) € Qx x Qy, let the random variable S(z,x,v) denote the potential compliance status
of an individual with observed and unobserved characteristics x and v, respectively, given
that the treatment z is assigned to that individual. For notational simplicity, we write S(z).
S(z) can be interpreted as the potential elapsed duration in O at which an agent would like
to be treated, if he or she was assigned to be treated at elapsed duration z. To make the
model tractable, an agent is only allowed to accept or reject an assigned treatment, and the
treatment is only offered once (see assumption Al in the following subsection, as well as
the corresponding discussion). Thus, for each z € R,, S(z) may take only the values z ( the
case of compliance) and oo (the case of noncompliance).! Agents are allowed to have an

! Alternatively, we might restrict the maximal potential duration of the state of interest to be equal to some

positive real number S. In that case, noncompliers receive S(z) = 5. We do not differentiate between these two
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arbitrary time structure of their compliance preferences. A cancer suffering patient might be
reluctant to accept a new therapy at an early stage of the disease, but his or her preference
might change at an advanced stage of the disease. Similarly, an unemployed person might
refuse a training early in the unemployment spell and be willing to attend it later on. To
account for the possibility of changing preferences, we refer to individuals who would be
willing to receive a treatment at some elapsed duration z, given that they were asked to do so,
as z-compliers. This notion generalizes the static compliance definition. This very general
framework allows us also to incorporate individual expectations about the own potential
outcome at different points in time.

Allowing for static selection is common in the standard literature on (static) treatment
evaluation, see Heckman and Vytlacil (2007). In a labor market program, unemployed
individuals might decide not to accept an offer for a training or a counselling service. An
often quoted example is the Job Training Partnership Act (JTPA) program, see Bloom, Orr,
Bell, Cave, Doolittle, Lin, and Bos (1997). In a medical study, patients assigned to drop out
from a therapy might be able to participate in a substitute program. Selection into or out
of a certain treatment status creates a potential endogeneity problem, which has given rise
to the development of the Local Average Treatment Effect (LATE) literature, see Imbens and
Angrist (1994). Typically, the randomized treatment assignment is used as an instrument for
the endogenous actual treatment status.?

While the standard LATE literature poses the evaluation problem as a static problem and
the time dimension is ignored, there is a branch of the econometric literature that focuses on
dynamic selection and precludes the possibility of static selection, see for example Eberwein,
Ham, and LaLonde (1997),Abbring and van den Berg (2003), Heckman and Navarro (2007)
for different methods of accounting for dynamic selection, as well as Abbring and Heckman
(2007) for an overview of dynamic treatment evaluation methods. Dynamic selection may
arise even when the experiment has been perfectly randomized at some initial point in time
t = 0 of the state of interest. If the unobserved heterogeneity interacts with the treatment
status, then its distribution at a later point in time t > 0 might differ between the different
treatment arms due to differences in the dynamics of transitions, see also Abbring and
van den Berg (2005). We develop a framework that deals with both static and dynamic types
of selection. Thus, we provide the link between the two branches of literature.

Let T be the actual duration of the spell. T might be right censored by a random variable
C. Define T := min{T,C} and the censoring indicator 6 := 1{T = T}. We observe (T,5) and
not directly (T, C). We assume access to an i.i.d. sample

(Tll Sl/lexlf 61)/ ceey (Tn/ Si’ll Zn/ Xi’l/ 571)/
where S; is missing if S; > T;.

Remark

Unless explicitly otherwise stated, we will denote with ¢, s, z elapsed durations in O (and not
calender time). Thus, for example, O refers to the point in time of inflow of an agent into O.
Furthermore, we do not need a binary process D;(t) that denotes the treatment status of an
agent i at time t. Before the calender point in time 7, nobody is treated. After r, all compliers

cases and write oo.
In line with the biometry literature, this instrument is also called Intention-to-Treat (ITT)
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are treated, that is, all individuals whose value of S is equal to the corresponding value of Z.
Therefore, the treatment status can be deduced from S, Z and the calender time.
The treatment effect of interest is

P(T(s)e[t,t+a)|T(s)>t,X,V)-P(T(s") e [t,t+a) |T(s") 2t ,X, V), (1.3.1)

that is, the additive effect of replacing the treatment s’ with the treatment s on the probability
to exit the state of interest between t and f + a conditionally on surviving up to t'. The case
s’ = oo induces a comparison between those treated at s and those never treated. Another
special case is the limit case a — 0, t' = t. Denote with O7()(t| X, V) the hazard of T(s) at t for
an individual with characteristics X and V. Then the individual additive treatment on the
hazard at t is defined as

Oy (t | X, V) = Openy (H| X, V). (1.3.2)

It reflects the additive change in the exit rate induced by a change of the treatment from s’ to
s. Additive effects on the distribution of the potential outcome are common in the literature,
see for example Fredriksson and Johansson (2008) and Crépon, Ferracci, Jolivet, and Van den
Berg (2009) for an effect on the unconditional survival function, Abbring and van den Berg
(2005) for an effect on the conditional survival function, Van den Berg, Bozio, and Dias
(2014) for an effect on the hazard. One appealing feature of additive treatment effects is their
intuitive interpretation. To see this, write P(T(s) € [t,t+a) | T(s) >t') = E[1{T(s) € [t,t +a)} |
T(s) > ¥/, X, V]. The indicator function is a Bernoulli random variable and its distribution is
completely determined by its expectation.

Traditionally, the literature has focused on identifying the (additive) effect on the uncon-
ditional survival function, thatis, t’ = 0:

P(T(s)e[t,t+a)|)-P(T(s") e [t,t +a)), (1.3.3)

see Fredriksson and Johansson (2008), Crépon, Ferracci, Jolivet, and Van den Berg (2009) and
Abbring and van den Berg (2005). This approach precludes dynamic selection, see Abbring
and van den Berg (2005) for a discussion.> Often though it might be of interest to identify
the effect of a treatment assigned at a later point in time only for those who actually would
receive the treatment. In the labor market example, such a case would arise if a treatment is
targeted at longterm unemployed individuals. In the medical example, due to its side effects,
a therapy might be targeted only at patients who are at an advanced stage of a disease. For
this reason, we consider the general case of conditioning on survival up to a point ¢’ = f for
0<t=s<s <oo,thatis

P(T(t)e[t,t+a)|T(t)2t,X,V)-P(T(s") e [t,t+a) | T(s') >t X, V). (1.3.4)

We do not impose a parametric form on the distribution of T(s) and we allow for separability
and general dependence of observed and unobserved covariates X and V, respectively. The
restriction t = s is necessary to “unify” the dynamic selection between treated and untreated,
as discussed in the next subsection. By redefining s to be the time to dropout of a treatment,
we can analyze the effect of the length s of a treatment on the distribution of T(s).

3 Abbring and van den Berg (2005) consider a case with conditioning on a positive elapsed spell duration,

t' > 0, that is, conditioning on T(s) > #',t' > 0, and derive bounds for the effect.
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There are two limitations we have to consider. First, not specifying the dependence of the
distributions of T(s) and the unobservables V makes it impossible to identify the individual
treatment effect 1.3.4. The price to pay for the functional form generality is that we have to
average V out. Due to dynamic selection, the distribution of the unobservables might 1) be
different in the subpopulation of survivors at some po