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Abstract—In the recent years, there has been significant 

development in the field of Probabilistic Frequent Itemset 

Mining (PFIM). Despite the complexity of calculating the 

frequentness probability of an itemset, approximation 

techniques allow us to reduce the complexity of the problem 

with very low approximation error. In this paper we investigate 

how to incorporate hierarchical taxonomies into the attribute 

uncertainty model, which assumes independence between the 

existential probability of items in a transaction. We propose 

scalable methods which can reduce noise, and ensure 

consistency of the transactions by approximating the 

dependencies between attributes implied by a background 

hierarchical taxonomy. We also perform experiments in order 

to evaluate the scalability, accuracy of the approximation, as 

well as the denoising performance of the proposed methods.  

 

Index Terms—Probabilistic frequent itemset mining, 

generalized rules,  hierarchical background knowledge. 

 

I. INTRODUCTION 

Uncertainty is inherent to many types of data and 

applications. It can originate, for instance, from measurement 

noise, trustworthiness of the source and confidence values of 

information extraction, automatic data enrichment, and data 

cleansing techniques. There are mainly two ways of 

modeling uncertain data: attribute uncertainty and tuple 

uncertainty. In the first, the existence of items in a transaction 

is uncertain, and in the latter, the items in the transactions are 

certain, but the existence of a transaction in the dataset is 

uncertain.  

In many applications, the uncertain attribute probability 

values are generated independently. Besides that, the 

attribute uncertainty is simpler to represent and to work with. 

However, its main drawback is that it assumes independence 

between the attributes. This results in the impossibility of 

modeling dependencies which might be contained in the 

background knowledge. Moreover, it might happen that, 

because of noise for example, an uncertain transaction is 

inconsistent with respect to the background knowledge. In 

this case, the background knowledge can be used to solve 

inconsistencies as well as to improve the quality of the data.  

Although the tuple uncertainty model enables 

dependencies to be represented, the number of tuples 

required to represent a single dependent transaction grows 

exponentially with the number of uncertain items. Even if we 

consider a hybrid of the attribute uncertainty and tuple 

uncertainty models, where only sets of interdependent items 
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are modeled with tuple uncertainty, while the independent 

items are represented with attribute uncertainty, this 

approach would be unfeasible in case of high 

interdependence between the attributes. 

Linked data mining is a concrete example of application 

where methods for dealing with large amounts of uncertain 

data and explicitly modeled dependencies are required 

[1]-[3]. Knowledge bases such as DBpedia, which have been 

generated in a (semi-) automatic way, naturally contain many 

uncertain statements. We can obtain explicit estimates of 

these uncertainties by means of data debugging techniques  

[4], or use the uncertainty values provided by machine 

learning methods for fact prediction [5]. Additionally, the 

schemas (or ontologies) which are provided by many RDF 

knowledge bases as background knowledge can help to speed 

up the mining process and to cope with the noise resulting, 

e.g., from probabilistic methods for knowledge base 

enrichment. In any case, the resulting uncertain knowledge 

base can be huge, and highly scalable mining algorithms are 

required, in order to deal with the magnitude of the data, 

uncertainty and available background knowledge. 

Hierarchical taxonomies, such as the example from Fig. 1
1
, 

are a common type of background knowledge. These 

taxonomies imply dependencies which cannot be represented 

with the attribute uncertainty model. These dependencies can 

be used to speed up the frequent itemset mining process [6], 

and also to improve the quality of the uncertain transactions. 

However, exploiting these dependencies to improve the 

quality of transactions is expensive and has scalability issues, 

as we will discuss in more details later in Section V. 
 

 
Fig. 1. Example of a hierarchical taxonomy T. 

 

In this paper we propose more scalable techniques that 

approximate the expensive exact dependencies computation, 

and can be represented with the attribute uncertainty model. 

These techniques basically involve recomputing the 

singletons’ existential probabilities in the transaction 

considering the dependencies implied by taxonomy. We also 

evaluate the proposed dependency approximations by 

measuring their performance in terms of runtime and distance 

to the exact dependency computation. Moreover, we evaluate 

the impact of these methods on both exact and approximated 

 
1 This is a subset of Google Product taxonomy:  

http://www.google.com/basepages/producttype/taxonomy.en-US.txt 
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PFIM. 

The rest of this paper is organized as follows. In Section II, 

preliminary concepts used by this paper are presented, 

Section III defines the problem object of  investigation, and in 

Section IV we discuss the related work. In Section V we 

describe the exact computation of dependencies, and the 

proposed approximation approaches are presented in Section 

VI. Section VII provides the experimental evaluation of these 

approaches, and finally, in Section VIII we state our 

conclusions. 

 

II. FOUNDATIONS 

In this section we briefly present some of the works which 

are fundamental to the understanding of this paper. Firstly we 

present the attribute uncertainty model, the possible world 

semantics, and finally exact probabilistic itemset mining and 

its approximations 

A. Attribute Uncertainty Model 

In this model, every attribute in each transaction carries 

some uncertainty information. All the attributes are assumed 

to be independent, and this assumption is used to compute the 

probability of composite itemsets. Let 𝐼 =  𝑖1 , … , 𝑖𝑛    be a set 

of n binary attributes called items, 𝐷 = {𝑡1, … 𝑡𝑑} a set of d 

uncertain transactions, and 𝑡𝑗 = {𝑦1 , … , 𝑦𝑚 } an uncertain 

attributes transaction where for every item 𝑦 ∈ 𝑡𝑗 has an 

existential probability 𝑃(𝑦 ∈ 𝑡𝑗 ). 

Since the attribute uncertainty model assumes 

independence between attributes, the probability that an 

itemset 𝑋 ⊆ 𝐼 exists in an uncertain transaction 𝑡 is simply 

the multiplication of the probabilities of each item 𝑖 ∈ 𝑋 as 

shown in Equation (2.1). 
 

𝑃(𝑋 ⊆  𝑡)  =  𝑃(𝑖 ∈  𝑡)𝑖∈𝑋                        (2.1) 
 

Also, the expected support of an itemset X is simply the 

sum of its existential probability in each transaction of D as 

shown in Equation (2.2). 
 

𝑒𝑠𝑢𝑝 𝑋 =  𝑃(𝑋 ⊆ 𝑡)𝑡∈𝐷                          (2.2) 
 

B. Possible World Semantics 

For an uncertain dataset 𝐷, there is a set of possible worlds   

𝑤𝑖 ∈ 𝑊 . For each 𝑤𝑖 , 𝐷  is a certain dataset 𝐷𝑖 =

{𝑡𝑖1 ,1 , … , 𝑡𝑖𝑑 ,𝑑  }, and 𝑡𝑖 ,𝑗  ⊆ 𝑡𝑗  is a possible certain transaction 

generated from 𝑡𝑗 . For the transaction 𝑡1  from Table I, for 

instance, we have 𝑡1,1 , 𝑡2,1 , 𝑡3,1 , 𝑡4,1  as possible transactions. 
 

TABLE I: THE POSSIBLE WORLDS OF THE TRANSACTION T1 

 BassGuitar Guitar 𝑃(𝑡𝑖,𝑗  ) 

𝑡1  0.9 0.8 -- 

𝑡1,1  0 0 0.02 

𝑡2,1  0 1 0.18 

𝑡3,1  1 0 0.08 

𝑡4,1  1 1 0.72 

 

The probability 𝑃(𝑡𝑖 ,𝑗 )  that an uncertain transaction 

𝑡 = 𝑡𝑖 ,𝑗  is calculated with Equation (2.3). Hence, the 

probability of possible world 𝑃(𝑤𝑖) is defined with Equation 

2.4, where: 
 

𝑃(𝑡𝑖 ,𝑗 )  =   𝑃 𝑥 ∈  𝑡𝑗  𝑥∈𝑡𝑖 ,𝑗
    1 − 𝑃(𝑦 ∈  𝑡𝑗 )𝑦∉𝑡𝑖 ,𝑗

  (2.3)  

 

𝑃(𝑤𝑖)  =   𝑃(𝑡𝑖 ,𝑗 )𝑡𝑥 ,𝑗∈𝐷𝑖
                        (2.4) 

 

C. Probabilistic Frequent Itemset Mining (PFIM) 

In order to determine if an itemset is probabilistic frequent, 

we calculate the frequentness probability, i.e. the probability 

that a given itemset is frequent 𝑃(sup 𝑋 ≥ 𝑚𝑖𝑛𝑠𝑢𝑝) [7], 

which is the sum of the probabilities of all possible worlds 

where 𝑋  is frequent. An itemset 𝑋 is a Probabilistic Frequent 

Itemset (PFI) if its frequentness probability satisfies a 

minimum probability frequent threshold (pft). Chui et al. [8] 

introduce frequent itemset mining on uncertain data based on 

expected support. This approach approximates the spmf to a 

unit step function and requires only the computation of 𝑒𝑠𝑢𝑝. 

Wang et al. [9] approximate the spmf of an itemset X to a 

Poisson distribution with 𝜆 = 𝑒𝑠𝑢𝑝(𝑋) and Calders et al. [10] 

approximate the spfm with a normal distribution defined by 

𝑁(𝑒𝑠𝑢𝑝 𝑋 , 𝑣𝑎𝑟(𝑋)), where 𝑣𝑎𝑟 𝑋 =  𝑃 𝑋 ⊆ 𝑡 (1 −𝑡∈𝐷

comparison of the three models presented above, and as a 

conclusion, the authors propose to generally use the normal 

distribution approximation because it yields the best trade-off 

between approximation quality and efficiency. 

 

III. PROBLEM DEFINITION 

The attribute uncertainty model assumes independence 

between attributes, however, if there is a hierarchical 

taxonomy as background knowledge, this independence does 

not hold (c.f. Section V). Considering the dependencies 

implied by such background knowledge can help improve the 

quality of the data, however, the exact computation of the 

dependencies is an expensive task. 

The problem is to exploit hierarchical taxonomies to 

improve the quality of uncertain data modeled with attribute 

uncertainty in an efficient and scalable way. Our objective is 

to approximate the dependencies, which are expensive to 

compute, and use them in order to reduce noise in the 

transactions. Our setting assumes the attribute uncertainty 

values to be acquired independently and the noise to be 

generated independently for each attribute. Moreover, the 

higher level nodes of the taxonomy to be attributes also 

present in the data. We also allow partial paths in the 

hierarchy, i.e., instances do not necessarily have to be leaf 

nodes. We propose scalable approximations of the 

dependencies computation, which can applied in the PFIM 

task improving the quality of the mining outcome. 

 

IV. RELATED WORK 

Srikant and Agrawal [6] introduced the problem of mining 

generalized association rules on certain data with background 

taxonomies. It enables the mining algorithm to learn rules 

across different levels of the taxonomy. This is important, 

because it may happen that at lower levels a rule does not 

satisfy the minimum support threshold. Considering higher 

levels allows us to mine rules which would not be learned 

𝑃(𝑋⊆𝑡)). Bernecker et al. [11] performed a thorough 
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otherwise, and to learn more concise and generalized rules. 

The authors propose methods which explore taxonomies to 

speed up the mining process. These methods make use of 

redundant itemset pruning, which prunes an itemset 𝑋 

containing an item 𝑥 and its generalization 𝑥 , since 𝑋  has the 

same support as 𝑋 − 𝑥 , and therefore does not need to have 

its support computed. This pruning technique plays an 

important role in this paper and it will be further discussed in 

 

 

 

Peterson and Tang [13] introduced probabilistic 

generalized frequent itemset mining on attribute uncertainty 

databases with taxonomies. On their setting the uncertain 

database contains exclusively leaf nodes, and the existential 

probability of a generalization is calculated as the probability 

of the union of its direct specializations which are assumed to 

be mutually independent. Their problem setting is different 

from ours, as we assume the generalized items to be already 

present in the database, and the uncertainty values to be 

obtained independently, which can lead to inconsistency, and 

they do not allow partial paths in the hierarchy Moreover, we 

exploit the dependencies implied by the background 

knowledge to improve the quality of this uncertainty values. 

 

V. EXACT COMPUTATION OF DEPENDENCIES 

We want to take into account the dependencies implied by 

the background knowledge in order to improve the quality of 

the transactions and solve inconsistencies. The computation 

of the dependencies can be done by generating the joint 

probability table of an uncertain transaction with all its 

possible worlds. As described in Section II, an uncertain 

database implies the existence of possible worlds 𝑤𝑖 ∈ 𝑊, 

whose probabilities sum up to 1. However, some of the 

possible worlds can be inconsistent w.r.t. the hierarchical 

background knowledge T, if for some  𝑥 ⊑ 𝑥  ∈ T, a 

transaction violates some of the constraints imposed by a 

taxonomy, which are described by Constraints 1, 2 and 3. 
 

TABLE II: EXAMPLE OF UNCERTAIN TRANSACTION  

 Bass 

Guitar 

Acoustic 

Guitar 

Electric 

Guitar 

Guitar String 

Instrument 

 𝑡2 0.9 0.5 0.1 0.8 0.8 

 

For an uncertain transaction t containing the items 𝑥 and 𝑥 , 

where 𝑥 ⊑ 𝑥  the following constraints apply: 

Constraint 1. The existential probability of 𝑥  is greater or 

equal to that of its specialization 𝑥, i.e., 𝑃 𝑥 ∈ 𝑡 ≥ 𝑃(𝑥 ∈ 𝑡)  

Constraint 2. The existential probability of an itemset X 

containing 𝑥  and 𝑥 is equal to that of 𝑋 − 𝑥 , i.e., 𝑃 𝑋 ⊆ 𝑡 =
𝑃(𝑋 − 𝑥 ⊆ 𝑡). 

Constraint 3. The existential probability of an itemset 𝑋 

containing 𝑥  and ¬𝑥  is zero, i.e., for  𝑋    𝑥, ¬𝑥  ⊆ 𝑋 , 

𝑃 𝑋 ⊆ 𝑡 = 0 

We define the 𝑊𝑇 ⊆ 𝑊  as the set of consistent, and 

𝑊𝑇\𝑊  as the set of inconsistent possible worlds w.r.t. a 

hierarchy 𝑇 . For the consistent worlds 𝑤𝑖 ∈ 𝑊𝑇 , we can 

recompute their probabilities taking into account that 

𝑃 𝑤𝑗  = 0 , ∀𝑤𝑗 ∈ 𝑊\𝑊𝑇  (c.f. Constraint 3), which we 

define as 𝑃𝑇(𝑤𝑖):  

𝑃𝑇 𝑤𝑖 =
𝑃(𝑤𝑖)

 𝑃(𝑤𝑗 )
𝑤𝑗 ∈𝑊𝑇

                           (5.5) 

Given Constraint 2, we know that the supports of 𝑋 and 

𝑋 − 𝑥  are exactly the same, therefore we can apply 

redundant itemset pruning (c.f. Lemma 1 from [6]). Also, 

note that in the attribute uncertainty model, Constraint 2 is 

always violated if Equation (2.1) is employed to compute 

𝑃(𝑋 ∈ 𝑡), unless 𝑃 𝑥 ∈ 𝑡 = 1. This problem can be solved 

if redundant itemset pruning is applied. Since of 𝑋  is 

redundant, its pruned an the PFIM, and its support is not 

computed with Equation (2.1), but inferred to be equal to that 

of 𝑋 − 𝑥 . 

 

        

        

        

        

        

        

        

        

        

        

        

        

 

A. Dependence Table 

The dependencies implied by a background taxonomy can 

be represented with a joint probability distribution table. 

Such table can be created by applying 2.4 and 5.5 to compute 

the probabilities of all possible worlds. Table III shows the 

resulting dependence table for the transaction 𝑡2 from Table 

II with 𝑇 from Fig. 1 as background knowledge. Note that 

∀𝑤𝑖 ∈ 𝑊\𝑊𝑇 , 𝑃 𝑤𝑖 = 0, since 𝑤𝑖  is inconsistent w.r.t. 𝑇. 

Therefore the inconsistent possible worlds are actually 

impossible and do not need to be represented in the 

dependence table. 

The existential probabilities of the itemsets are calculated 

by simply summing up the probabilities of consistent 

possible worlds in each a given itemset occurs, as shown in 

Equation (5.6). Table IV shows the resulting existential 

probability values 𝑃𝑇(𝑥 ∈ 𝑡)  of the singletons calculated 

Section V. Similar work on learning generalized association 

rules includes [12], which has a different approach that 

encodes the taxonomical information as digits into item ids.

TABLE III: DEPENDENCE TABLE FROM T2 (C.F. TABLE II) WITH POSSIBLE WORLDS 𝑤I ∈ 𝑊𝑇 PROBABILITIES FROM FIG. 1

Bass Guitar Acoustic Guitar Electric Guitar Guitar String Instrument P(wi) PT(wi)

w1 0 0 0 0 0 0.009 0.011

w2 0 0 0 0 1 0.009 0.011

w3 0 0 0 1 1 0.036 0.044

w4 0 0 1 1 1 0.004 0.005

w5 0 1 0 1 1 0.036 0.044

w6 0 1 1 1 1 0.004 0.005

w7 1 0 0 1 1 0.324 0.396

w8 1 0 1 1 1 0.036 0.044

w9 1 1 0 1 1 0.324 0.396

w10 1 1 1 1 1 0.036 0.044
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with Equation (5.6) on Table III. Note that the resulting 

transaction 𝑡2
𝑇  is now consistent w.r.t. 𝑇 , and the items 

probabilities got reinforced or weakened by the probabilities 

of the other items in the hierarchy. 

 

𝑃𝑇 𝑋 ⊆ 𝑡 =  𝑃𝑇(𝑤𝑖)𝑤𝑖∈𝑊𝑇 | 𝑋⊆𝑡                     (5.6) 

 

Note that in order to precisely represent the dependencies, 

we need to generate a dependence table for each uncertain 

transaction in the data, and the size of the table grows 

exponentially with the number of uncertain items in the 

transaction. 
 

TABLE IV: TRANSACTION T2
T

 RESULTED FROM TABLE III  

 
Bass 

Guitar 
Acoustic 

Guitar 
Electric 
Guitar 

Guitar 
String 

Instrument 

𝑡2
𝑇 0.880 0.489 0.098 0.978 0.989 

 

VI. APPROXIMATION APPROACHES 

The calculation of the dependencies implied by the 

background taxonomies can improve the quality of the data, 

however, creating the whole dependence table for each 

transaction in order to calculate the exact 𝑃𝑇  values is 

expensive and does not scale. Therefore, in this paper we 

propose some scalable approximations of the exact 

dependencies computation. 

The proposed approximation approaches consist of 

computing an approximation of the singletons existential 

probabilities considering the dependencies implied by the 

taxonomy. In order to better approximate composite itemsets 

existential probabilities, the conditional probabilities inherent 

to the hierarchical structure of the taxonomy can be exploited. 

However, it requires the approximated singleton probabilities 

to be consistent with the background taxonomy, as we will 

discuss in details in Section VI-A. 

A. Stratified Computation of Singleton Probabilities 

To approximate the singleton marginal probabilities from 

the dependence table, we propose a stratified approach. In 

order to reduce the complexity of the dependencies 

computation, the whole taxonomy is broken into smaller and 

simpler subsets. This is done by dividing it into non-disjoint 

strata of two levels. That is, a taxonomy of depth ℓ+1 and 

levels {𝑙0 , … , 𝑙ℓ}, is broken into ℓ strata {𝑠𝑜 , … , 𝑠ℓ−1}, where 

each stratum 𝑠𝑖 = {𝑙𝑖 , 𝑙𝑖+1} . The dependencies are then 

computed individually for each stratum, in a top-down or 

bottom-up manner. Since the all the items in the taxonomy, 

excluding the root and leaves, belong to two strata, they 

propagate the updates of the dependencies computation from 

one stratum to the next. 

 

 
Fig. 2. Example of stratified computation of dependencies. 

 

Each stratum is composed by one or more disjoint subtrees 

of the taxonomy with depth 2 which are assumed to be 

independent of each other. Each of these subtrees are 

composed by one item ̂x and its direct specializations 𝑥𝑖 ⊑ 𝑥 . 

For a single subtree the exact dependencies computation is 

performed, however, we do not need to create the dependence 

table. Instead, we can directly compute the probability of the 

parent 𝑃𝑇(𝑥 ∈ 𝑡) and the children 𝑃𝑇(𝑥 ∈ 𝑡) with Equations 

6.8, 6.9, 6.10. 
 

𝑃 𝑡 = ∅ =  1 − 𝑃 𝑥 ∈ 𝑡   1 − 𝑃 𝑥 ∈ 𝑡  𝑥 𝑥⊆𝑥      (6.7) 

 

𝑃 𝑇 ⊨𝑐𝑜𝑛𝑠 𝑡 = 𝑃 𝑥 ∈ 𝑡 + 𝑃(𝑡 = ∅)               (6.8) 

 

𝑃𝑇 𝑥 ∈ 𝑡 =
𝑃(𝑥∈𝑡)𝑃(𝑥 ∈𝑡)

𝑃(𝑇⊨𝑐𝑜𝑛𝑠 𝑡)
                         (6.9) 

 

𝑃𝑇(𝑥 ∈ 𝑡) =
𝑃(𝑥 ∈𝑡)

𝑃(𝑇⊨𝑐𝑜𝑛𝑠 𝑡)
                         (6.10) 

 

Fig. 2 shows an example of transaction with three strata 

𝑠0 = {𝑙𝑜 , 𝑙1} , 𝑠1 = {𝑙1 , 𝑙2}  and 𝑠2 = {𝑙2 , 𝑙3}  . The exact 

dependencies computation is performed for each subtree 

(identified by the rectangles in Fig. 2) stratum by stratum in 

top-down (𝑠0 , 𝑠1 , 𝑠2) or bottom-up (𝑠2 , 𝑠1 , 𝑠0)   fashion. All 

the subtrees in a given stratum are assuned to be mutually 

independent, therefore the order in which the subtrees of the 

stratum have their dependencies computed does not matter. 

One problem of the stratified approximation approach is 

that it does not guarantee consistency. From Equations (6.9) 

and 6.10, we can infer that for a subtree, the inequations 

𝑃𝑇 𝑥 ∈ 𝑡 ≤ 𝑃(𝑥 ∈ 𝑡) and 𝑃𝑇 𝑥 ∈ 𝑡 ≤ 𝑃(𝑥 ∈ 𝑡)  always 

hold. That means that applying the stratified dependence 

computation might result in an inconsistent transaction 

because, since all the non-root and non-leave nodes belong to 

two strata, the consistency of in one stratum can be disrupted 

by the dependence computation in the next stratum. 

The transaction t from Table V is an example of 

transaction where the stratified approximation results in an 

inconsistent transaction. The result of the bottom-up 

approach 𝑡𝑠𝑏𝑢
1  is inconsistent because  P(StringInstrument∈

𝑡𝑠𝑏𝑢
1 ) <  P(BassGuitar∈ 𝑡𝑠𝑏𝑢

1 ). That happens because although 

P(Guitar∈ 𝑡𝑠𝑏𝑢
1 )=0.731 after computing the dependencies of 

the first stratum, its existential probability is reduced to 0.343 

after the next stratum because of the low probability of its 

superclass P(StringInstrument ∈ 𝑡𝑠𝑏𝑢
1 )=0.2. 

B. Approximation of Composite Itemsets Probabilities 

We assume that all the sibling nodes are conditionally 

mutually independent given their parent. This assumption 

can be exploited when computing the existential probability 

of composite itemsets. The probability of the union of an 

itemset 𝑋  with an item 𝑖 ∉ 𝑋 , is calculated with Equation 

(6.11), where 𝑖𝑐𝑝  is the least general generalization of items 

in X and 𝑖, including their respective generalizations. 

 

𝑃 𝑋 ∪  𝑖 ⊆ 𝑡 =
𝑃 𝑋⊆𝑡 𝑃 𝑖∈𝑡 

𝑃(𝑖𝑐𝑝 ∈𝑡)
                      (6.11) 

 

If we want to calculate the probability of { Flute, 

Harmonica}, for instance, 𝑖𝑐𝑝  is Woodwind. Now if we want 

to compute the probability of {Flute, Harmonica, 

BassGuitar}, where X={Flute, Harmonica} and i= 

BassGuitar, then 𝑖𝑐𝑝 =MusicalInstrument. 
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The use of conditional probabilities for computing the 

support of composite itemsets can improve the accuracy of 

the approximation for composite itemsets. However, it has 

the additional cost of checking the taxonomy structure in 

order to compute the 𝑖𝑐𝑝  for every composite itemset. This 

involves obtaining all the generalizations of the items, 

computing their intersection and finding its least general item. 

Moreover, it requires the transaction to be consistent, which 

is not guaranteed to happen if the stratified computation 

approach from Section VI-A is used. If Equation (6.11) is 

applied on an inconsistent transaction, the anti monotonicity 

of support is violated when 𝑃(𝑖𝑐𝑝 ∈ 𝑡) < 𝑃(𝑖 ∈ 𝑡) , and it 

might also happen that the resulting existential probability is 

greater than 1. 

C. Iterative Stratified Computation 

As seen it Section VI-A, the stratified approach does not 

guarantee convergence. However, if applied iteratively on a 

transaction, the stratified approximation will gradually 

approach a convergence point which is always consistent. 

This convergence is illustrated in Table V, where 𝑡𝑠𝑏𝑢
𝑖  

shows the resulting transaction after iteratively applying the 

bottom-up stratified approximation i time, and 𝑡𝑠𝑏𝑢
∞  shows 

the consistent transaction to which the iterative bottom-up 

approach converges. We define as converged iterative 

stratified bottom-up, and top-down approaches (csbu and 

cstd respectively) as the iterative application of the stratified 

approximations (sbu and std) until the transaction converges. 

The convergence stop criterion is defined by as 

𝑑(𝑡𝑠𝑏𝑢
𝑖+1, 𝑡𝑠𝑏𝑢

𝑖 ) < 𝑑𝑐𝑜𝑛𝑣   for csbu, and 𝑑(𝑡𝑠𝑡𝑑
𝑖+1, 𝑡𝑠𝑡𝑑

𝑖 ) < for std, 

where 𝑑(𝑥, 𝑦)  is the euclidean distance between two 

uncertain transactions 𝑥 and 𝑦, and 𝑑𝑐𝑜𝑛𝑣   is the convergence 

threshold. We define 𝑡𝑐𝑠𝑏𝑢 = 𝑡𝑠𝑏𝑢
𝑖  and 𝑡𝑐𝑠𝑡𝑑 = 𝑡𝑠𝑡𝑑

𝑖 , where 

the stopping criterion is satisfied for i. Both iterative 

approaches also feature the approximation of composite 

itemsets probabilities presented in the last subsection. 
 

TABLE V: STEPS OF A BOTTOM-UP STRATIFIED DEPENDENCE COMPUTATION 

 Musical Instrument String Instrument Guitar Bass Guitar 

𝑡 0.95 0.2 0.55 0.55 

𝑡𝑒𝑥𝑎  0.973 0.469 0.343 0.188 

𝑡𝑠𝑏𝑢
1  0.973 0.469 0.352 0.402 

𝑡𝑠𝑏𝑢
2  0.99 0.621 0.299 0.191 

𝑡𝑠𝑏𝑢
3  0.997 0.712 0.246 0.066 

𝑡𝑠𝑏𝑢
4  0.999 0.769 0.2 0.017 

𝑡𝑠𝑏𝑢
5  1 0.965 0 0 

 

TABLE VI: COMPARISON OF A TRANSACTION T, WITH ITS EXACT REASONED (TEXA ) AND DIFFERENT APPROXIMATIONS 

 Musical Instr. Wood- wind String Instr. Harmo- nica Flute Guitar Harp Bass Guitar Acoustic Guitar Electric Guitar 

𝑡  0.6 0.2 0.7 0.5 0.7 0.1 0.2 0.2 0.2 0.1 

𝑡𝑒𝑥𝑎  0.947 0.592 0.736 0.296 0.414 0.119 0.147 0.024 0.024 0.012 

𝑡𝑠𝑡𝑑  0.862 0.581 0.679 0.291 0.407 0.112 0.136 0.022 0.022 0.011 

𝑡𝑠𝑏𝑢  0.947 0.592 0.736 0.312 0.437 0.126 0.155 0.032 0.032 0.016 

𝑡𝑐𝑠𝑏𝑢  1 1 1 0.184 0.257 0.008 0.009 0 0 0 

𝑡𝑐𝑠𝑡𝑑  1 1 0.876 0.141 0.197 0 0 0 0 0 

𝑡𝑝𝑒𝑡 13  0.931 0.85 0.539 0.5 0.7 0.424 0.2 0.2 0.2 0.1 

 

VII. EXPERIMENTS 

We divide the evaluation of the proposed approximations 

of dependencies computation into two parts. In the first part 

we measure the distance between the resulting transactions of 

the exact and the approximated dependencies computations 

as well as their runtimes. With that we can evaluate the 

accuracy and the cost of each of the approximations. In the 

second part we evaluate how the approximations can improve 

the quality of a noisy probabilistic dataset. We apply 

generalized FIM on a certain dataset with a taxonomy as 

background knowledge, and use the resulting frequent 

itemsets as gold standard. We then add noise to the dataset to 

generate the uncertain data and apply PFIM with the various 

proposed approaches. Finally we compare the resulting 

probabilistic frequent itemsets with the gold standard by 

calculating the precision, recall and F-measure. 

The methods compared in the experiments and their 

abbreviations are listed in Table VII. Table VI shows a 

comparison which illustrates the results of the different 

dependence computation approaches presented in this paper 

on an uncertain transaction t. The pet13[13] approach 

requires the existential probabilities of non-leaf nodes in the 

taxonomy to be ignored, as explained in Section 4. We also 

compare with a baseline method which ignores the 

taxonomical background knowledge (nbk) and another which 

employs only redundant itemset pruning (rip). 

A. Datasets 

We report results for experiments in two datasets. One is 

transactional data extracted from DBpedia 3.8
2

 for the 

statistical schema induction [3], with the original ontology’s 

class subsumption hierarchy as background knowledge. 

Every transaction in the dataset corresponds to a DBpedia 

instance, and the items correspond to classes and properties 

assigned to the instances. We also use the dataset 

T10I4D100K from the Frequent Itemset Mining Dataset 

Repository
3
. This dataset has 1000 items and no background 

knowledge, therefore we synthesize a hierarchical taxonomy 

where the original 1000 items are leaf nodes, and the 

taxonomy structure is generated based on the fanout 

parameter, which determines the number of specializations 

an item in the taxonomy should have. The number of levels  

in a taxonomy with n leaf nodes and fanout 𝜙  is ℓ =

 log𝜙 𝑛 + 1 , thus the greater the fanout the shallower, and 

 
2 http://wiki.dbpedia.org/Downloads38 
3 http://fimi.ua.ac.be/data/ 
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the lower the fanout the deeper the synthesized taxonomy is. 

The uncertain datasets used in the experiments are generated 

from certain data as follows: items contained in a given 

certain transaction are assigned an existential probability 

drawn from a normal distribution 𝑁(𝜇1, 𝜎1), and the items 

not contained are chosen with probability 𝑝0 to be assigned 

an existential probability 𝑁(𝜇0, 𝜎0). Uncertainty values are 

set to 1 or 0 when the value drawn from the normal 

distributions are greater than 1 or less than 0 respectively. For 

our experiments, we define the level of noise in the data with 

a variable x, which defines 𝜇1 = (1 − 𝑥), 𝜇0 = 𝑥  and𝜎1 =
𝜎0 = 𝑥 . That means the greater the 𝑥  the noisier the the 

generated uncertain dataset is. 
 

TABLE VII: ABBREVIATIONS OF THE COMPARED METHODS 

 Method 

exa Exact Dependency Computation 

nbk No Dependency and No Redundant Itemsets Pruning 

rip Redundant Itemsets Pruning Only 

std Stratified Top-down 

sbu Stratified Bottom-up 

cstd Converged Iterative Stratified Top-down 

csbu Converged Iterative Stratified Bottom-up 

pet13 Peterson et at. 2013 [13] 

 

B. Approximation Quality 

In this experiment we use the dataset T10I4D100K with 

𝑥 = 0.15 and 𝑝0 = 0.1. Since in this experiment we need to 

do the exact dependencies computation, whose runtime 

grows exponentially with the number of uncertain attributes, 

we limit the number of items in the transaction to k. In case 

the size of a transaction exceeds k, we keep the top-k most 

general items and remove the rest. For each transactions of 

the dataset, we measure the euclidean distance between each 

approximation and the exact computation. We also measure 

the average runtime of the exact and approximated 

dependencies computation. 

Fig. 3 shows how the runtime and distance of the proposed 

approximations is affected by the taxonomy fanout, number 

of items per transaction, and level of noise. The results reveal 

that the bottom-up approaches are overall better than the 

top-down, being less sensible to noise and more accurate on 

deeper taxonomies. Also, the iterative approaches 

significantly increase the runtime, and also increases the 

distance to exa. This is because repeatedly applying the 

stratified approach ends up exaggerating the effects of the 

dependence computation and therefore increasing the 

distance to exa. Overall sbu is the best performer with very 

low distance to the exact computation, low runtime, and high 

robustness. 

C. PFIM Performance 

In this experiment we evaluate how the dependence 

approximations can improve the PFIM task. In order to do so, 

we use the certain dataset T10I4D100K with a synthesized 

taxonomy, and apply a generalized FIM algorithm to obtain 

the set of frequent itemsets, which will be used as gold 

standard. It is important to mention that redundant frequent 

itemsets are not contained in the gold standard because of the 

redundant itemset pruning. Afterwards, we add noise to the 

data, as described earlier in this section, and perform PFIM 

using all the approaches listed in Table VII. For each 

approach we measure the runtime, and we compare the 

resulting set of probabilist frequent itemsets with the gold 

standard in order to calculate the precision, recall and 

F-measure. 
 

 
Fig. 3. Approximations runtime and euclidean distance from the 

approximations to the exact computation. 
 

We use the p-Apriori [14] and U-Eclat [10] as PFIM 

algorithms, and we run them with all the approximation 

approaches listed in Table VII. Experiments were done also 

with the exact spmf calculation [7], the normal distribution 

[10] and expected support [8] approximations. Neither the 

PFIM algorithm nor the spmf approximation choice affected 

the results. Therefore, for simplicity, we choose to report in 

the plots the results for U-Eclat with normal distribution 

model only. The compared approaches include all the 

methods listed in Table VI with the exception of exa, which 

could not be run due to time restrictions. The plots in Fig. 4 

report how the runtime and F-measure are affected by the 

taxonomy fanout, transaction size, noise level,and minimum 

support threshold. 

The results shown in Fig. 4 indicate that csbu has best 

F-measure overall. The cstd approach has an almost similar 

performance, however csbu is better on more noisy data. 

Both iterative approaches have a consistently higher 

F-measure than the single iteration stratified approaches sbu 

and std. It is also noticeable that the bottom-up approaches 

are more robust to noise than the top-down approaches. The 

improved F-measure of the proposed approximations in 

comparison to rip show the impact of the noise reduction 

resulted from the dependencies computations. All the 

proposed approaches also had better F-measure than pet13, 

whose low F-measure values are due to low precision. Since 

pet13 only considers the uncertain values at leaf nodes of the 

taxonomy, it tends to incorporate noise to the higher levels 

and increase the support of the itemsets. This results in a high 

recall, but also high number of false positives and therefore 
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low precision. 
 

 
Fig. 4. Comparison of PFIM runtime and F-measure. 

 

TABLE VIII: EXPERIMENTS ON DBPEDIA 3.8 SCHEMA INDUCTION 

 Runtime (s) Precision Recall 𝐹1-measure 

nbk 66753 0.1699 0.2222 0.1925 

rip 17433 1.0 0.2222 0.3636 

std 27258 1.0 0.3463 0.5145 

sbu 26735 0.9977 0.3554 0.5242 

cstd 67285 0.9952 0.3321 0.4980 

csbu 74013 0.9956 0.3665 0.5357 

pet13 104399 0.8944 0.2641 0.4078 

 

When analyzing the runtime, rip has the shortest runtime 

overall, as it makes use of the background knowledge in order 

to speed up the mining by pruning redundancies, and it does 

not perform any dependency computations. The stratified 

approaches sbu and std have a significantly longer runtime. 

This happens especially because of the increased support of 

itemsets after the noise reduction and consequent increased 

number of candidate itemsets. The time spent with the 

dependencies computation accounts on average for less than 

10% of the total runtime. For the iterative approaches, the 

cost of the additional iterations and the approximation of the 

existential probabilities of composite itemsets significantly 

increase the runtime.  

Finally, we perform an experiment on a schema induction 

table [3] from DBpedia 3.8 with 𝑥 = 0.5, 𝑝0 = 0.05, where 

we use the its ontology class subsumption hierarchy as 

background knowledge. The results are shown in Table VIII, 

and for every measure the best performer is shown in bold. 

Note that all the proposed approximations (std,sbu,csbu,cstd) 

significantly improved the recall in comparison to rip without 

compromising the precision. The csbu approximation is able 

to improve sbu, however, it takes more than twice the runtime 

and the F-measure gain is small.  

 

VIII. CONCLUSION 

In this paper we proposed scalable techniques which 

approximate dependencies from a taxonomical background 

knowledge in uncertain data modeled with attribute 

uncertainty. The proposed approximations, and in particular 

the bottom-up approaches can accurately approximate the 

exact computation. Applying these approximations on PFIM 

can improve the results quality without significantly affecting 

its scalability. The experiments indicate that the iterative 

bottom-up stratified approach csbu is the best overall 

performer, however, the extra iterations and the use of 

conditional probabilities from the background knowledge to 

compute the support of composite itemsets increase the 

runtime. In the future we plan to investigate approximation 

methods for other types of dependencies such as disjointness, 

and apply these methods on a large scale for Linked Data. 
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