
 

INSIGHT INTO COGNITIVE 
STRUCTURE 

 
ASSESSMENT, ANALYSIS, AND 

INSTRUCTIONAL INNOVATIONS 
 
 
 
 

K U M U L A T I V E  
H A B I L I T A T I O N S S C H R I F T 

 
Wirtschafts- und Verhaltenswissenschaftliche Fakultät 

Albert-Ludwigs-Universität Freiburg im Breisgau 
 
 
 
 
 
 
 
 
 
 
 
 

vorgelegt von 
Dirk Ifenthaler 

aus Müllheim / Baden 
 
 
 

Wintersemester 2010 / 2011



	   2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To 
Emma 

 
 

Knowing is a process not a product 
(Jerome S. Bruner) 



	   3 

 
 

 
ACKNOWLEDGEMENTS 

 



	   4 

This has been a thrilling scientific journey so far! During the last twelve years I had 

the special privilege to work with outstanding scientific researchers in the field of 

educational technology and cognitive psychology. 

 My journey began when I became a student teaching assistant for statistics at 

the Department of Educational Science at the Albert-Ludwigs-University of 

Freiburg. Working with Norbert M. Seel, Klaus-Peter Wild, and Thomas Eckert 

inspired me to dig deeper into the methodological understanding of education. 

Especially the application of statistical procedures for complex research designs kept 

me reading about and experimenting with various statistical software packages. 

Within this first stage of my journey I also developed my interest for the theoretical 

understanding of cognitive structures. 

 Using simulations for educational purposes marks the second stage of my 

scientific journey. Working with Sara-Dunja Menzel and Volker Schweinbenz on 

developing a simulation game for a better understanding of the complex processes of 

a school organization laid the foundation for a larger research project I recently 

initiated with my dear colleague and friend Volker Schweinbenz. Within this second 

stage I also got to know the scientific world outside of Freiburg through the ~monist 

project. Traveling to project meetings in Bielefeld and Frankfurt and discussing ideas 

of the project with Dietrich Dörner, Sören Lorenz, and Wolfram Horstmann set light 

into the various possibilities of scientific life.  

 The third stage of my scientific journey started when I got involved in a new 

project on model-based learning and teaching. Together with my innovative 

colleagues Bettina Couné, Katharina Schenk, and Ulrike Hanke, new approaches for 

the assessment and analysis of cognitive structures have been laid out. 

 My dissertation project marks the forth part of my scientific journey. Putting 

together my experience and ideas into a completely new project resulted in the 

development of a new technology for an automated assessment and analysis of 

cognitive structures – the SMD Technology. Defending my dissertation at the same 

day as my dear colleague and friend Pablo Pirnay-Dummer did, marked a very 

special day in this forth stage of my scientific journey. 

 Continuing working on my dissertation project and joining the ideas of Pablo 

Pirnay-Dummer with my ideas marks the highlight of the fifth stage of my scientific 

journey. Travelling the world and presenting our work together has always been a 

highly inspiring and joyful time. The number of my international collaborators has 
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grown ever since. It is always great to discuss new ideas with wonderful people and 

great researchers such as David H. Jonassen, Roy B. Clariana, Valerie J. Shute, 

Harold F. O’Neil, Tiffany A. Koszalka, James W. Pellegrino, Andrew S. Gibbons, 

and many more. Furthermore, the continuous support of J. Michael Spector helped 

me to push towards new projects and implementing new ideas into powerful tools – 

HIMATT (Highly Integrated Model Assessment Technology and Tools). Closely 

related to my projects on assessment and analysis of cognitive structures is a great 

colleague and a wonderful friend, Tristan E. Johnson. All our projects turned out to 

be respected in the scientific community. Additionally, organizing various 

conferences at the Albert-Ludwigs-University of Freiburg introduced me to a new 

group of great researchers, namely Pedro Isaías, Kinshuk, and Demetrios Sampson. 

Together with J. Michael Spector I am honored to be part of the CELDA (Cognition 

and Exploratory Learning in the Digital Age) conference committee organizing an 

annual international conference. Furthermore, a strong international research group 

focusing on problem solving, serious games, and their assessment has grown 

constantly, including my great colleagues Deniz Eseryel and Xun Ge. As a result of 

this highly productive stage of my scientific journey, most of the papers of this 

cumulative work originate from this period. Additionally, several edited volumes and 

a monograph in collaboration with Norbert M. Seel are some of the products of this 

stage. 

 Moving from the Albert-Ludwigs-University of Freiburg to the University of 

Mannheim marks another important stage of my scientific journey. At this current 

stage I am happy to seek advice from many valued colleagues, especially from 

Norbert M. Seel, Matthias Nückles, Oliver Dickhäuser, Olga Zlatkin-Troitschanskai, 

Klaus Breuer, and Peter Drewek. 

 I want to thank all the above mentioned colleagues and friends and those I 

may have forgotten for their inspiration, motivation, and continuous support. I shall 

not attempt to thank my wife Kathrin, my son Remo Max and my family. Everything 

I am and will be is a complex combination of their unconditional love, patience and 

unique ways. I dedicate this effort to them and hope to be worthy of the lives they 

live. I am looking forward to the next stages of this thrilling scientific journey! 

 

Dirk Ifenthaler 

Freiburg, December 2010 
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1 
PROLOGUE 

Strong theoretical foundations and precise methodology are always the one and only starting point for 
good research. Without sound foundations nothing follows, and thus a deep understanding of the 
theoretical assumptions of cognitive structure and methodology involved is mandatory for research on 
cognition and learning as well as for instructional design. Several research projects contribute to the 
overall scientific knowledge with regard to cognitive structure and its assessment, analysis, and 
instruction. Cognitive structure continued to be a key subject in different fields of research for more 
than a century. For good reason. Foundations from cognitive science, computer science, philosophy, 
and cognitive psychology describe the workings of the human mind in tasks of deductive and 
inductive reasoning, especially for reasoning in uncertainty. They lead to theories of problem solving 
and to theories of learning and instruction which are both highly interdependent. The development of 
useful systems has always been a goal for scientists and engineers serving professional communities 
in the fields of instructional design and instructional systems development. This cumulative work 
outlines a research project which enables an insight into cognitive structure highlighting ways of 
assessment, analysis, and instructional innovations.  
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Advances of technology 

As instructional psychology is becoming more specialized and complex and 

technology is offering more and more possibilities for gathering data, instructional 

researchers are faced with the challenge of processing vast amounts of data. Yet the 

more complex our understanding of the field of learning and instruction becomes and 

the more our theories advance, the more pronounced is the need to apply the 

structures of the theories to sufficiently advanced methodology in order to keep pace 

with theory development and theory testing. In addition to obtaining a good fit 

between theory and diagnostics, this task entails making the methodology and tools 

feasible (easy to use and easy to interpret). Otherwise, the methodologies will only 

be used by their developers. The development of useful systems has always been a 

goal for scientists and engineers serving professional communities in the fields of 

instructional design and instructional systems development.  

 The progress of computer technology has enabled researchers to adopt 

methods from artificial intelligence, graph theory, feature analysis, feature tracking, 

and applied statistics and to use computers to implement computer-based 

instructional systems. Researchers have now also succeeded in developing more 

effective tools for the assessment of knowledge in order to enhance the learning 

performance of students.  

The structure of this cumulative work 

 Several research projects contribute to the overall scientific knowledge with 

regard to cognitive structure. The following peer-reviewed publications build up this 

cumulative work highlighting ways of assessment, analysis, and instructional 

innovations. Table 1.1 illustrates the individual chapters and the corresponding 

publications.  

 Chapter 2 (based on Ifenthaler, 2010d) addresses information retrieval from 

human memory and how it will reflect in part the individual’s cognitive structure 

within and between concepts or domains. Accordingly, this chapter critically reflects 

possibilities and limitations of a systematic assessment and analysis of cognitive 

structure and introduces important concepts (e.g., externalization, representation, re-

representation).  
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 In chapter 3 (based on Ifenthaler, 2010c) it is argued that a wide variety of 

empirical approaches for the analysis of external representations of cognitive 

structure exist, but they often lack a solid theoretical foundation and their analysis is 

considered to be very time consuming. On the other hand, new technologies such as 

concept mapping tools are being introduced into learning environments, but the 

analysis of data collected with such new technologies still places a huge demand on 

methodologies. The purpose of chapter 3 is to introduce the computer-based and 

automated SMD Technology for relational, structural, and semantic analysis of 

externalized representations. 

 Chapter 4 (based on Al-Diban & Ifenthaler, in press) determines the strength 

and limitations of new methodological approaches. Overall, it is worthwhile to 

compare analysis approaches for measuring externalized mental models 

systematically in order to test their advantages and disadvantages, strengths and 

limitations. A series of pair-wise comparative studies show strengths, unique 

characteristics, and collective viability of different assessment and analysis methods. 

However, the above mentioned study only focused on conceptual differences of the 

analysis approaches and did not use empirical data. Accordingly, chapter 4 reports an 

empirical case study and compares two analysis approaches - QFCA (Qualitative & 

Formal Concept Analysis) and SMD (Surface, Matching, Deep Structure) - using 

identical data. The aim of this comparative study is to determine conceptual and 

empirical strengths and limitations of two different approaches for analyzing 

externalized cognitive structure. 

 Chapter 5 (based on Pirnay-Dummer, Ifenthaler, & Spector, 2010) introduces 

an integrated set of assessment tools called HIMATT (Highly Integrated Model 

Assessment Technology and Tools) which addresses this deficiency. HIMATT is 

Web-based and has been shown to scale up for practical use in educational and 

workplace settings, unlike many of the research tools developed solely to study basic 

issues in human learning and performance. In this chapter, the functions of HIMATT 

are described and several applications for its use are demonstrated. Additionally, two 

studies on the quality and usability of HIMATT are presented.  

 The “mystery of cognitive structure” is questioned in chapter 6 (based on 

Ifenthaler, Masduki, & Seel, in press). Many research studies have clearly 

demonstrated the importance of cognitive structures as the building blocks of 

meaningful learning and retention of instructional materials. Identifying the learners’ 
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cognitive structures will help instructors to organize materials, identify knowledge 

gaps, and relate new materials to existing slots or anchors within the learners’ 

cognitive structures. The purpose of this empirical investigation is to track the 

development of cognitive structures over time. Accordingly, it is demonstrated how 

various indicators derived from graph theory can be used for a precise description 

and analysis of cognitive structures. Results revealed several patterns that help to 

better understand the construction and development of cognitive structures over time. 

 Chapter 7 (based on Ifenthaler, accepted) investigates cross-domain 

distinguishing features of cognitive structures. In this experimental study, 

participants worked on the subject domains biology, history, and mathematics. 

Results clearly indicate different structural and semantic features of cognitive 

structures across the three subject domains. Additionally, we found that written texts 

and causal maps seem to represent different structure and content across the three 

subject domains when compared to an expert’s representation. 

 Chapter 8 (based on Ifenthaler & Seel, in press) reports findings from an 

experimental study in which 73 participants in three experimental groups solved 

logical word problems at ten measurement points. Changes of cognitive structures 

are illuminated and significant differences between the treatments are reported. The 

results also indicate that supportive information is an important aid for developing 

cognitive structures while solving logical problems. 

 Chapter 9 (based on Pirnay-Dummer & Ifenthaler, in press) presents an 

experimental study which integrates automated natural language-oriented assessment 

and analysis methodologies into feasible reading comprehension tasks. With the 

newly developed toolset, prose text can be automatically converted into an 

association net which has similarities to a concept map. The study investigates the 

effects of association nets made available to learners prior to reading. The results 

reveal that the automatically created graphs are highly similar to classical expert 

graphs. 

 Chapter 10 (based on Ifenthaler, 2009) reports a final experimental study on 

automated individualized feedback. Here, feedback is considered an elementary 

component for supporting and regulating learning processes. Different types of 

model-based feedback are investigated. Seventy-four participants were assigned to 

three experimental groups in order to examine the effects of different forms of 

model-based feedback. With the help of seven automatically calculated measures, 
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changes in the participants’ understanding of the subject domain “climate change”, 

represented by causal diagrams, are reported. 

 Finally, the epilogue highlights ongoing and future research projects for 

gaining a better insight into cognitive structure. These projects focus on new 

methodological developments as well on instructional applications. 
TABLE 1.1 
Peer-reviewed publications of the cumulative work 

 

Chapter 
No. Publication 

Impact factor from 
Journal Citation 
Reports®, Thomson 
Reuters	  (if available) 

Chapter 2 

Ifenthaler, D. (2010). Scope of graphical indices in 
educational diagnostics. In D. Ifenthaler, P. Pirnay-
Dummer & N. M. Seel (Eds.), Computer-based 
diagnostics and systematic analysis of knowledge (pp. 
213-234). New York: Springer. 

N/A 

Chapter 3 

Ifenthaler, D. (2010). Relational, structural, and semantic 
analysis of graphical representations and concept 
maps. Educational Technology Research and 
Development, 58(1), 81-97. doi: 10.1007/s11423-008-
9087-4 

1.183 

Chapter 4 

Al-Diban, S., & Ifenthaler, D. (in press). Comparison of two 
analysis approaches for measuring externalized mental 
models: Implications for diagnostics and applications. 
Journal of Educational Technology & Society. 

1.067 

Chapter 5 

 Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). 
Highly integrated model assessment technology and 
tools. Educational Technology Research and 
Development, 58(1), 3-18. doi: 10.1007/s11423-009-
9119-8 

1.183 

Chapter 6 

Ifenthaler, D., Masduki, I., & Seel, N. M. (in press). The 
mystery of cognitive structure and how we can detect 
it. Tracking the development of cognitive structures 
over time. Instructional Science. doi: 10.1007/s11251-
009-9097-6 

1.341 

Chapter 7 
Ifenthaler, D. (accepted). Identifying cross-domain 

distinguishing features of cognitive structures. 
Educational Technology Research and Development. 

1.183 

Chapter 8 

Ifenthaler, D., & Seel, N. M. (in press). A longitudinal 
perspective on inductive reasoning tasks. Illuminating 
the probability of change. Learning and Instruction. 
doi: 10.1016/j.learninstruc.2010.08.004 

2.372 

Chapter 9 

Pirnay-Dummer, P., & Ifenthaler, D. (in press). Reading 
guided by automated graphical representations: How 
model-based text visualizations facilitate learning in 
reading comprehension tasks. Instructional Science. 
doi: 10.1007/s11251-010-9153-2 

1.341 

Chapter 10 
Ifenthaler, D. (2009). Model-based feedback for improving 

expertise and expert performance. Technology, 
Instruction, Cognition and Learning, 7(2), 83-101. 

N/A 
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2 
SYSTEMATIC ASSESSMENT AND ANALYSIS OF 

COGNITIVE STRUCTURE & 

It is argued that the order in which information is retrieved from memory will reflect in part the 
individual’s cognitive structure within and between concepts or domains. When compared to that of a 
novice, a domain expert’s cognitive structure is considered to be more tightly integrated and to have a 
greater number of linkages between interrelated concepts. There is thus immense interest on the part 
of researchers and educators to diagnose a novice’s cognitive structure and compare it with that of an 
expert in order to identify the most appropriate ways to bridge the gap. However, an assessment and 
analysis of cognitive structures is always biased as we do not know the direct functions of 
internalization and externalization. Additionally, the possibilities of externalization are limited to a 
few sets of sign and symbol systems – characterized as graphical and language-based approaches. 
This chapter critically reflects possibilities and limitations of a systematic assessment and analysis of 
cognitive structure and links them to theoretical and methodological foundations. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Ifenthaler, D. (2010). Scope of graphical indices in educational 
diagnostics. In D. Ifenthaler, P. Pirnay-Dummer & N. M. Seel (Eds.), Computer-based diagnostics 
and systematic analysis of knowledge (pp. 213-234). New York: Springer. 
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Introduction 

Knowledge representation is a key concept in psychological and educational 

diagnostics. Thus, numerous models for describing the fundamentals of knowledge 

representation have been applied so far. The distinction which has received the most 

attention is that between declarative (“knowing that”) and procedural (“knowing 

how”) forms of knowledge (see Anderson, 1983; Ryle, 1949). Declarative 

knowledge is defined as factual knowledge, whereas procedural knowledge is 

defined as the knowledge of specific functions and procedures for performing a 

complex process, task, or activity. Closely associated with these concepts is the term 

cognitive structure, also known as knowledge structure or structural knowledge 

(Jonassen, Beissner, & Yacci, 1993), which is conceived of as the manner in which 

an individual organizes the relationships between concepts in memory (Ifenthaler, et 

al., in press; Shavelson, 1972). Hence, an individual’s cognitive structure is made up 

of the interrelationships between concepts or facts and procedural elements.  

 Further, it is argued that the order in which information is retrieved from 

memory will reflect in part the individual’s cognitive structure within and between 

concepts or domains. When compared to that of a novice, a domain expert’s 

cognitive structure is considered to be more tightly integrated and to have a greater 

number of linkages between interrelated concepts. There is thus immense interest on 

the part of researchers and educators to diagnose a novice’s cognitive structure and 

compare it with that of an expert in order to identify the most appropriate ways to 

bridge the gap (Ifenthaler, et al., in press; Ifenthaler & Seel, 2005). By diagnosing 

these structures precisely, even partially, the educator comes closer to influencing 

them through instructional settings and materials. 

Functions of representation and re-representation 

However, it is not possible to measure these internal representations of knowledge 

directly. Additionally, it is argued that different types of knowledge require different 

types of representations (Minsky, 1981). Therefore, we argue that it is necessary to 

identify economic, fast, reliable, and valid techniques to elicit and analyze cognitive 

structures (Ifenthaler, 2008). In order to identify such techniques, one must be aware 

of the complex processes and interrelationships between internal and external 

representations of knowledge. Seel (1991, p. 17) describes the function of internal 



	   17 

representation of knowledge by distinguishing three zones – the object zone W as 

part of the world, the knowledge zone K, and the zone of internal knowledge 

representation R. As shown in Figure 2.1, there are two classes of functions: (1) fin as 

the function for the internal representation of the objects of the world 

(internalization), and (2) fout as the function for the external re-representation back to 

the world (externalization).  

 

FIGURE 2.1. Functions of representation and re-representation 

Neither class of functions is directly observable. Hence, a measurement of cognitive 

structures is always biased as we are not able to more precisely define the above 

described functions of internalization and externalization (Ifenthaler, 2008). 

Additionally, the possibilities of externalization are limited to a few sets of sign and 

symbol systems (Seel, 1999b) – characterized as graphical and language-based 

approaches.  

 Lee and Nelson (2004) report various graphical forms of external 

representations for instructional uses and provide a conceptual framework for 

external representations of knowledge. Graphical forms of externalization include (1) 

knowledge maps, (2) diagrams, (3) pictures, (4) graphs, (5) charts, (6) matrices, (7) 

flowcharts, (8) organizers, and (9) trees. However, not all of these forms of 

externalization have been utilized for instruction and educational diagnosis 

(Ifenthaler, 2008; Scaife & Rogers, 1996; Seel, 1999a). Other forms of graphical 

approaches are the structure formation technique (Scheele & Groeben, 1984), 
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pathfinder networks (Schvaneveldt, 1990), mind tools (Jonassen, 2009; Jonassen & 

Cho, 2008), and causal diagrams (Al-Diban & Ifenthaler, in press). Language-based 

approaches include thinking-aloud protocols (Ericsson & Simon, 1993), teach-back 

procedures (Mandl, Gruber, & Renkl, 1995), cognitive task analysis (Kirwan & 

Ainsworth, 1992), and computer linguistic techniques (Pirnay-Dummer, et al., 2010; 

Seel, Ifenthaler, & Pirnay-Dummer, 2009). 

 As discussed above, there are numerous approaches for eliciting knowledge 

for various diagnostic purposes. However, most approaches have not been tested for 

reliability and validity (Ifenthaler, 2008; Seel, 1999a). Additionally, they are almost 

only applicable to single or small sets of data (Al-Diban & Ifenthaler, in press; 

Ifenthaler, 2010c). Hence, new approaches are required which have not only been 

tested for reliability and validity but also provide a fast and economic way of 

analyzing larger sets of data. Additionally, approaches for educational diagnostics 

also need to move beyond the perspective of correct and incorrect solutions. As we 

move into the 21st century, we argue that the application of alternative assessment 

and analysis strategies is inevitable for current educational diagnostics. 

  Alternative assessment and analysis strategies 

Externalizations are the only available artefacts for empirical investigations. An 

externalization is always made by means of interpretation. But the externalization 

also needs interpretation for its analysis. These are two different kinds of 

interpretation. All kinds of features may be clustered for a description and 

aggregation of the artefact. Some of the interpretation is done by the learner and 

some of it is carried out by humans and technology. In most cases a mixture of all 

three interpreters will be part of the assessment. This mixture and the complexity of 

the construct both make it specifically difficult to trace the steps and bits of 

knowledge.  

 Not all types of externalizations have the same types of properties and 

strengths, e.g., written language is always sequenced and has multiple dimensions at 

the same time (it is still impossible to trace them all), concept maps are not semantic 

webs most of the time due to underspecification problems and a lack of 

homogeneity, association networks do not have directions and propositions, causality 

networks can not deal with dynamics, and representations of dynamic systems are 
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almost impossible to aggregate – nor are they supposed to be aggregable in the first 

place. The list is not even complete (see Ifenthaler & Pirnay-Dummer, 2010a).  

 There is no easy and no complete way to integrate any of them, and the 

strength of good research therefore lies, maybe more than in other research domains, 

in a fitting integration: Multiple perspectives on the same construct are usually 

needed. Only if the research questions are very specific may a single approach 

suffice. But this is rarely the case. Researchers and practitioners will have to 

carefully justify their selection alongside their research questions and goals, 

especially if important long-term decisions are based upon the assessments. The 

same care should be taken for decisions in the field. The only way to make better 

decisions about the kind of externalization as well as the type of instrument to be 

used on it is to know the strengths and weaknesses of the instruments (Ifenthaler, 

2008; Ifenthaler & Pirnay-Dummer, 2010a). It is worth the effort to acquaint oneself 

with at least a representative selection of the available tools. 

 Once the external re-representations have been assessed and aggregated, two 

competing demands are at hand: First, we need to keep as much information from the 

external re-representations as possible. Secondly, especially in large datasets the 

information needs to be condensed in such a way that we are still able to selectively 

decide on or test our theories and practical goals. Combining both demands is not 

always easy and the measures need to be chosen carefully with an eye to the research 

question, evaluation, analysis, or designed plans in order to provide the proper 

answers.  

 In the field of computer-based diagnostics knowledge artefacts (objects of 

investigation) are very often graphs. If they are not graphs from the start, they are 

usually transferred into graphs after assessment. The purpose is aggregation 

(Ifenthaler, 2010d; Ifenthaler & Pirnay-Dummer, 2010a). Purely qualitative methods 

are the exception. However, their opposition to any kind of aggregation lies in their 

nature, and they can be aided by computer programs but not carried out 

automatically. Any aggregation of qualitative research results is at least to be 

considered a mixed method: Aggregation is quantitative by nature. This does not, on 

the other hand, mean that all aggregation serves the same purpose or that it can not 

differ in quality and the amount of information it preserves. As always, the choice of 

the right measures and comparisons is determined by the research question or 

practical goal. The main reason for comparison is the further processablity of the 
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artefacts, which is especially interesting for computer based analysis because it can 

be automated. The measures allow questions about whether one group of experts 

structures things differently than another or whether a group of learners makes 

progress over time, e.g., as compared to experts.  

 With computer-based analysis, large data sets are attainable even if resources 

are limited. When the objects under investigation are graphs, graph theory provides 

the only logical choice for analysis and a stable basis for several further 

developments (Harary, 1974; Tittmann, 2003, 2010). Surprisingly, the application of 

graph theory can only rarely be found in research on learning and instruction 

(Ifenthaler, 2010d). Usually very simple measures are used as single indicators 

which do not carry much of the initially rich information and are usually not 

validated at all (Ifenthaler, 2008). And even in the case that graph theory is applied, 

the measures used sometimes lack a connection to the theories of learning and 

instruction, and the scope of the measures is sometimes misinterpreted. 

 Good theories and sound research have a great chance of leading to practical 

improvements. The process may take time, but eventually when things are explained 

properly, the process succeeds; slower but usually more stable than by the use of 

intuitive approaches. But sometimes the odds are even more optimistic. These are the 

cases where the investigation itself is part of the improvement. The need for 

assessment strategies which support the process under assessment at the same time is 

not new (Ifenthaler & Pirnay-Dummer, 2010b).  

 However, with new technologies at hand, at least parts of this demand can be 

better fulfilled. This cumulative work will start with knowledge constructs, 

representations, and assessment methods and moves on to decisions on specific 

measures and reasoning. Then, the impact the assessment, the interpretation, the 

aggregation, and methodological decisions have on knowing and the learning process 

itself is presented. As diverse as they may be, the methods and technologies which 

will be described have one common advantage: They use the cognitive facilities and 

assess them at the same time. Moreover, they all use them in the way in which they 

are used in everyday situations. Even when used for assessment only, these methods 

do not create an artificial assessment situation which leads too far away from the 

usual reflection. Thus, this leads back to the beginning, where it is stated that the 

investigation of knowledge is recursive – and that the recursion may very well be 

infinite in theory (Ifenthaler & Pirnay-Dummer, 2010b).  
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3 
TOWARDS A NEW METHODOLOGY & 

A wide variety of empirical approaches for the analysis of external representations of cognitive 
structure exist, but they often lack a solid theoretical foundation and their analysis is considered to be 
very time consuming. On the other hand, new technologies such as concept mapping tools are being 
introduced into learning environments, but the analysis of data collected with such new technologies 
still places a huge demand on methodologies. The purpose of this chapter is to introduce the 
computer-based and automated SMD Technology for relational, structural, and semantic analysis of 
externalized representations. First, the theoretical foundation fort he proposed methodology is 
introduced. Second, the complex processes of externalizing internal knowledge representations (re-
representation) will be discussed. Third, the SMD Technology, which enables a measurement of 
graphical representations and concept maps with three different quantitative indices, is presented. 
Then, the empirical reliability and validity testing of the SMD Technology is highlighted. Finally, a 
broad field of applications for the SMD Technology within the field of research, learning, and 
instruction is discussed. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Ifenthaler, D. (2010). Relational, structural, and semantic analysis of 
graphical representations and concept maps. Educational Technology Research and Development, 
58(1), 81-97. doi: 10.1007/s11423-008-9087-4 
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Introduction 

The demand for good instructional environments presupposes valid and reliable 

tools, instruments, and methodologies for educational research. However, many of 

them are developed with little or no theoretical justification, which leads to doubtful 

findings and no contribution to the improvement of learning environments (Novak, 

1998). Accordingly, the development of new tools, instruments and methodologies to 

capture key latent variables associated with human learning and cognition requires a 

solid theoretical foundation.  

 One central interest of psychological and educational research is internal 

cognitive processes and systems, which are described by theoretical constructs such 

as mental models and schemata (Seel, 1991). However, mental models and schemata 

are theoretical scientific constructs which are not directly observable. Accordingly, 

researchers can only learn about mental models or schemata if (1) individuals 

communicate their internal systems (Seel, 1991) and if (2) valid and reliable 

instruments and methodologies are used to analyze them (Seel, 1999a). A wide 

variety of empirical approaches for the analysis of external representations of mental 

models and schemata exist (Al-Diban, 2002), but they often lack a solid theoretical 

foundation and their analysis is considered to be very time consuming (Ifenthaler, 

2008). On the other hand, new technologies such as concept mapping tools are being 

introduced into learning environments, but the analysis of data collected with such 

new technologies still places a huge demand on methodologies.  

 The purpose of this chapter is to introduce the computer-based and automated 

SMD Technology for relational, structural, and semantic analysis of graphical 

representations and concept maps. First, the theoretical constructs of mental models 

and schemata as a key concept for understanding human learning and problem 

solving processes are introduced. Second, the complex processes of externalizing 

internal knowledge representations (re-representation) will be discussed. Third, the 

SMD Technology, which enables a measurement of graphical representations and 

concept maps with three different quantitative indices, is presented. Then, the 

empirical reliability and validity testing of the SMD Technology is highlighted. 

Finally, a broad field of applications for the SMD Technology within the field of 

research, learning, and instruction is discussed. The chapter ends with a conclusion 

and future perspectives.  
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Background 

Mental models and schemata are theoretical constructs for understanding human 

learning and problem solving processes. Following the verdict of Piaget (1950, 

1976), it is argued that new information is processed by the complimentary processes 

of assimilation and accommodation. According to Seel (1991), a person can 

assimilate new information as long as an adequate schema can be activated. If the 

activated schema does not match exactly, it can be adjusted by means of accretion, 

tuning, or reorganization. The accretion process is defined as an accumulation of 

new information to the existing schema. Tuning can be described as a change of 

single components within the activated schema. The result of a successful adjustment 

of a schema is a subjective plausible solution of a problem or the understanding of 

new information. However, if the processes of accretion and tuning are not 

successful or if no schema is available at all, new information can only be 

accommodated by the process of reorganization. According to Seel (1991), the 

process of reorganization is realized by constructing a mental model (see Figure 

3.1). 

 
FIGURE 3.1. The process of assimilation and accommodation 
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Mental models are dynamic ad hoc constructions of individuals that provide 

subjective plausible explanations on the basis of restricted domain-specific 

information. Johnson-Laird (1983) describes the model building process as a step-

by-step reconstruction of an initial mental model (fleshing out). Additionally, the 

reduction to absurdity (Seel, 1991) is used to test whether the activated mental model 

can be replaced by another mental model. However, as long as an activated mental 

model provides enough subjective plausibility to meet the requirements of a 

phenomenon to be explained, there is no need for the construction of a new mental 

model. Seel (1991) assigns mental models four general functions, (1) simplification, 

(2) envisioning, (3) analogical reasoning, and (4) mental simulation. Depending on 

the objective of the model-building person, one of the four functions is used for the 

mental model building process. In comparison to the activation of an available 

schema, the mental effort for the construction of a mental model is higher and more 

time consuming (Seel, 2008).  

 Accordingly, learning, reasoning, and problem solving involve the 

construction of mental models and schemata. In order to support successful learning, 

reasoning, and problem solving, it is necessary to investigate the mental model 

building process precisely. However, as it is not possible to measure internal 

representations of knowledge directly (e.g., schemata, mental models), the following 

paragraph will focus on the complex processes of externalizing internal knowledge 

representations. 

Externalization of internal knowledge structures 

Theoretical constructs such as the mental models and schemata discussed above are 

used by cognitive and educational researchers to explain the complex phenomenon 

of human learning, reasoning, and problem solving. As long as these internal 

knowledge structures are not directly observable, researchers require adequate tools, 

instruments, and methodologies to allow people to externalize them. According to 

Scandura (2007), there exist various possibilities how to construct such knowledge 

representations. We consider the process of externalization as a conscious process of 

communicating mental models or schemata using adequate sign and symbol systems 

(see Le Ny, 1993). Hence, externalization can be realized through speaking out 

aloud, writing a text, drawing a picture, or constructing a diagram, graphic, or 

concept map (Ifenthaler, 2008). 
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FIGURE 3.2. Interrelation of internal and external representations 

 

As shown in Figure 3.2, we are able to distinguish between internal representations 

(e.g., mental models, schemata) and external re-representations (communicated using 

adequate sign and symbol systems). Furthermore, we argue that these two types of 

model representations are interrelated. First, through the process of internalization, a 

person is able to construct a mental model or activate an available schema. From the 

point of view of instructional design, the process of internalization is where we can 

systematically influence the construction of mental models by providing well-

designed external re-representations (e.g., learning materials, feedback, etc.) of 

phenomena to be explained (e.g., Norman, 1983).  

 Second, the process of externalization enables a person to communicate his or 

her understanding of phenomena in the world. This perspective is the only way in 

which researches can learn more about a person’s internal representations. 

Accordingly, adequate tools, instruments, and methodologies for the analysis of 

mental models or schemata can only be developed with a clear understanding of the 

complex processes of internalization and externalization. Although it appears to be 

possible to assess internal representations through their externalized re-

representations, we need to keep in mind that the re-representations might be biased 

through the lack of communication skills, the use of inadequate sign and symbol 

systems or the use of insufficient research instruments.  

 Therefore we argue that instruments used for the analysis of such constructs 

must have a strong theoretical foundation and be tested for reliability and validity 

(Ifenthaler & Seel, 2005; Seel, 1999a). A detailed review of methodologies for the 

assessment of graphical representations revealed a huge demand for an automated 

and computer-based tool (Ifenthaler, 2006). As a result, the SMD Technology was 

developed. 
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SMD technology 

Based on the theory of mental models (Seel, 1991) and graph theory (Bonato, 1990; 

Chartrand, 1977; Harary, 1974; Tittmann, 2003), the computer-based and automated 

SMD Technology (Surface, Matching, Deep Structure) uses (a) graphical 

representations such as concept maps or (b) natural language expressions to analyze 

individual processes in persons solving complex problems at single time points or 

multiple intervals over time. In the following, we define the externalized knowledge 

structures as a model M. 

 
FIGURE 3.3. Model M3 composed of two propositions Pi  

 

Depending on the elicitation process (e.g., using the Structure Formation Technique 

[paper and pencil]; concept mapping tools [computer-based]; natural language 

statements [computer-based or paper and pencil]), the raw data should be stored 

pairwise (as propositions Pi) including (a) the model number as an indicator of which 

model a proposition belongs to, (b) node1 as the first node of the proposition, (c) 

node2, which is connected to the first node, and (d) a link which describes the link 

between the two nodes (see Figure 3.3 and Table 3.1). 
TABLE 3.1 
Raw data of a model stored pairwise (as propositions) 
Model number Node1 Node2 Link 
003 cells animal cells consists of 
003 cells plant cells consists of 
…    

 

After the raw data has been transformed into the standardized format (see Table 3.1), 

it is stored on a SQL (structured query language) database. However, the 

transformation process of paper and pencil models (e.g., Structure Formation 

Technique) is very time consuming. Therefore, we recommend the use of computer-

based elicitation techniques which already support the standardized format (e.g., C-

Map, DEEP, MITOCAR) in order to guarantee a more economical analysis and 

additionally a highly reliable transformation process (Ifenthaler, 2006). 
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FIGURE 3.4. User interface of the SMD technology 

 

The automated analysis process of the SMD Technology will be started by the 

researcher through the User Interface, where all stored models in the SQL database 

can be selected (see Figure 3.4). After selecting the models Mi for the analysis 

process, the system will automatically calculate three numerical indicators out of all 

nodes and links - Surface, Matching, and Deep Structure - and generate standardized 

graphical re-representations for each individual model Mi (Ifenthaler, 2006). 

Surface structure 

The relational structure of each individual model Mi is represented on the Surface 

Structure. This simple and easily calculable indicator is computed as the sum of all 

propositions Pi in a model Mi. 

 
[1.1] 

 

θ is defined as a value between 0 (no proposition = no model) and n (n propositions 

Pi of a model Mi). The Surface Structure of model M3, represented in Figure 3.3, 

would result in θ = 2. According to the theory of mental models (Seel, 1991), the 
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number of nodes and links or propositions a person uses is a key indicator for the 

investigation of the progression of knowledge over time in the course of problem 

solving processes (Scandura, 1988). However, although this first indicator enables a 

rapid and economical analysis of the relational structure of a model Mi, additional 

indicators are required for a more detailed analysis. 

Matching structure 

The structural property of a model Mi is displayed on the Matching Structure. The 

second level of the SMD Technology indicates the range and complexity of a model 

Mi.  

 [1.2] 

 

μ is computed as the diameter of the spanning tree of a model Mi and can lie between 

0 (no links) and n. In accordance with graph theory, every model Mi contains a 

spanning tree. Spanning trees include all nodes of a model Mi and are acyclic 

(Tittmann, 2003). Figure 3.5 illustrates model M5 and its corresponding spanning 

tree. 

 
FIGURE 3.5. Model M5 and its corresponding spanning tree 

 

A diameter is defined as the quantity of links of the shortest path between the most 

distant nodes. For the calculation of the Matching Structure index, the spanning tree 

is transformed into a distance matrix D. 
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[1.3] 

 

The Matching Structure index is calculated as the maximum value of all entries in 

the distance matrix D. The diameter or Matching Structure of the spanning tree in 

Figure 3.5 is calculated as follows: 

 
[1.4] 

 

The change in range or complexity of a person’s model Mi is our second key 

indicator for the analysis of learning and problem solving processes (Seel, et al., 

2009). Further graph theoretical such as maximum circumference (all possible 

relations), ruggedness (quantity of sub models which are independent or not linked), 

linking density (quotient of actual amount of relations and the total amount of 

possible relations), or node centrality (weight of a single node within a model) can 

be used to describe and analyze the structure of a model Mi in more detail. 

Deep structure 

The semantic composition of a model Mi is measured on the Deep Structure. The 

Deep Structure is calculated with the help of the similarity measure (Tversky, 1977) 

as the semantic similarity between an individual model Mi and a reference model Mr. 

A reference model Mr is defined as a subject domain-specific model (e.g. expert 

solution; another subject’s model; the same subject’s model constructed at a different 

time point).  

 In contrast to the graph theory-based calculation of the Surface and Matching 

Structure, model analysis on the Deep Structure is realized through a similarity 

calculation between a model Mi and a domain-dependent reference model Mr. Hence, 

a reference model Mr of high quality is a necessary precondition for a comprehensive 

analysis of the Deep Structure.  

 A similarity measure describes the degree of similarity between two objects, 

represented by a number between 0 and 1. Decisive for a similarity measure are 

objects with similar and different features. Tversky (1977) considered an object as an 

amount of features. The identification of a similarity between two objects is realized 
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through a comparison of their features. The similarity formula takes not only the 

amount of similar features into account, but also the amount of different features. Lin 

(1998) defines similarity with the following three statements:  

1. The similarity between A and B is related to their commonality. The more 

commonality they share, the more similar they are. 

2. The similarity between A and B is related to the differences between them. 

The more differences they have, the less similar they are. 

3. The maximum similarity between A and B is reached when A and B are 

identical, no matter how much commonality they share. 

Accordingly, the smallest similarity between two objects A and B is given if no 

common features exist. In this case, the two objects are completely different and the 

similarity measure is 0. The similarity measure increases with a rise in the number of 

common features. A complete similarity of all features results in a similarity measure 

of 1.  

 The similarity of models on the Deep Structure is identified through the 

feature „proposition“ – the semantic characteristic of the proposition. The Deep 

Structure index δ is defined as the Tversky (1977) similarity between a model Mi and 

a reference model Mr. In general, we calculate: 

 
[1.5] 

 

A and B are the amount of propositions of a model comparison. The function f(M) 

corresponds to the number of elements in the amount M. The parameters α and β 

control the weighting of similar and different features. Both similar and different 

features are considered in the calculation if the weighting of α and β is equal (α = β 

= 0.5). The value of the Deep Structure index δ is defined between 0 (no semantic 

similarity between the models) and 1 (absolute similarity between the models). 

 The Deep Structure or semantic similarity between model M6 and reference 

model Mr is calculated in an automated iterative process. Every proposition in model 

M6 is analysed for similarity with every proposition in the reference model Mr. The 

Deep Structure index is calculated as follows: 

 [1.6] 
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Thus, the semantic similarity between model M6 and reference model Mr is δ = 0.57 

or 57%. The quantitative measures of the Surface, Matching, and Deep Structure can 

be used for further statistical analysis. A qualitative analysis is made possible with 

the standardized re-representations of the SMD Technology. 

 

FIGURE 3.6. Model M6 and reference model Mr 

 

Standardized re-representations 

The standardized graphical re-representation of the subject’s data is constructed as an 

undirected or directed graph with named nodes and links. This automated feature of 

the SMD Technology is realized with the help of the open source graph visualization 

software GraphViz (Ellson, Gansner, Koutsofios, North, & Woodhull, 2003). For 

every single analysis, four standardized PNG (Portable Network Graphics) images 

are generated. Images (1) and (2) are the re-representations of model Mi and 

reference model Mr (for an example see Figure 3.6). Image (3) represents the 

similarity model, including only the nodes and links which are semantically similar 

between model Mi and reference model Mr (see Figure 3.7).  

 
FIGURE 3.7. Similarity re-representation of model M6 and reference model Mr 
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Image (4) is defined as the contrast model. It includes only nodes and links which 

have no semantic similarity within model Mi and reference model Mr (see Figure 

3.8). 

 
FIGURE 3.8. Contrast re-representation of model M6 and reference model Mr 

 

Validation study 

To investigate the objectivity, reliability, and validity of the computer-based and 

automated SMD Technology, we conducted three quasi-experimental studies. The 

objectivity of the SMD Technology was guaranteed by the computer-based and 

automated realization of the instrument. In the following section we report our 

results for reliability and validity of the SMD Technology. 

Subjects 

Three quasi-experimental studies (Studies 1, 2, and 3) were conducted with 106 

subjects (70 female and 36 male) at the University of Freiburg. Their mean age was 

18.3 years (SD = 4.6). The subject domain of Study 1 was geology and that of 

Studies 2 and 3 was geophysics. The subjects spent five hours on successive days 

working on complex problems with a multimedia discovery-learning environment. 

Learning environment 

The multimedia discovery-learning environment consisted of four modules. The 

modules could be divided into declarative and heuristic modules. The declarative 

modules contained all information needed to solve the phenomenon in question, 

while the heuristic modules primarily supported the model building process 

(Dummer & Ifenthaler, 2005). 

 Starting from the problem & learning task area, the subjects solve complex 

tasks from specific subject domains (Study 1: geology; Studies 2 and 3: geophysics). 

The subjects can navigate through different topics of the subject domain within the 
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curriculum module. Additional information about the subject domain is provided in 

the form of various text documents, pictures, and audio recordings in the knowledge 

archive. The Model Building Kit (MoBuKi) provides the subjects with information 

about models, model building, and analogical reasoning. It contains three levels of 

abstraction of the material provided: (1) knowledge level; (2) procedural level; and 

(3) examples level. The toolbox is used to elicit the subjects’ understanding of the 

phenomenon in question constructing open concept maps. 

Procedure 

The three quasi-experiments took place in the computer laboratory at the University 

of Freiburg. Subjects had to solve a complex problem while working with a 

multimedia discovery-learning environment. The problem solution had to be elicited 

on six subsequent measurement points as an open concept map. Every subject was 

given an introduction to the use and construction of open concept maps.  

 All subjects were randomly assigned to three types of treatments. The groups 

were distributed as (a) scaffolding-based learning, (b) self-guided learning, and (c) 

control group. The subjects in group (a) received detailed feedback concerning their 

concept map during the model building process, subjects in group (b) received no 

feedback, and subjects in group (c) received no feedback and worked within a 

multimedia discovery-learning environment whose content was not linked to the 

complex problem to be solved. The quasi-experimental procedure consisted of three 

main parts: 

1. Pretest: Before the subjects were able to access the multimedia discovery-

learning environment, a pretest was conducted which included: (a) the 

domain specific knowledge test; (b) elicitation of the preconception of the 

complex problem to be solved as an open concept map; (c) a test on cognitive 

learning strategies (LIST-Test); (d) a test on intellectual abilities (BIS-Test). 

2. Model building process: During the quasi-experimental session, the subjects 

were asked to solve a complex problem while working within the multimedia 

discovery-learning environment. At five measurement points, the subjects 

had to elicit their understanding of the complex problem in question as an 

open concept map. 

3. Posttest: The individual learning outputs were captured with: (a) a domain 

specific declarative knowledge test; (b) elicitation of the final solution to the 

complex problem as an open concept map. 
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 The primary interest of the empirical investigation in this article is the 

experimental validation of the SMD Technology. Therefore, we focus in the 

following section on reliability and validity tests. However, details on the learning-

dependent progression of externalized models and treatment effects during the three 

quasi-experiments are reported in detail by Ifenthaler (2006) and Ifenthaler, Pirnay-

Dummer, and Seel (2007).  

Reliability test 

For the computation of the test-retest reliability (Spearman’s rank correlation), the 

Surface, Matching, and Deep Structure indices of measurement points three and four 

(control group) were used. 
TABLE 3.2 
Test-Retest Reliability of the SMD Technology  
 Test-retest reliability 
Surface Structure .824** 
Matching Structure .815** 
Deep Structure .901** 
** p < .01 (two-sided significance) 

 

The results in Table 3.2 show a high significant correlation between the indices 

(Surface, Matching, and Deep Structure). Accordingly, this result is a broad hint for 

the reliability of the quasi-experimental study. On the other hand, we want to point 

out that mental models are individual ad hoc constructions (Seel, 1991), and 

therefore standard reliability tests, e.g., Test-Retest-, Split-Half- or Odd-Even-Method 

(Rost, 2005), have only limited validity as they consider the latent variable to be 

stable. However, the detailed research design of the three quasi-experimental studies 

and the applied learning environment guarantee at least an exact repeatability of the 

experiments. 

Validity test 

Especially with newly designed and developed instruments (e.g., SMD Technology), 

it is necessary to map theory based characteristics to measurable criteria. The goal of 

the construct validation is to determine from a theoretical point of view what the 

instrument really measures. For this purpose, several methodological best practices1 

are available (see Lienert & Raatz, 1994). A comprehensive analysis of the theory of 

mental models (Johnson-Laird, 1983) and available instruments for the assessment of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Correlation of a test with several outside criteria; Correlation with tests with similar validation 
requirements; correlation with tests that assess other criteria; analysis of inter- and intraindividual 
differences in test results; factorial analysis (see Lienert & Raatz, 1994). 
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models constitutes the basis for the theory-based development of the SMD 

Technology. From an empirical point of view, the validity of the SMD Technology is 

identified with the outside criterion (1) MITOCAR, and (2) domain specific 

knowledge.   

 Pirnay-Dummer (2006) developed the instrument MITOCAR (Model 

Inspection Trace Of Concepts And Relations), which enables a structural and 

conceptual analysis of natural language expressions. The raw data of the third quasi-

experimental study (N = 47) was analyzed with the MITOCAR software, which was 

tested for reliability and validity (Pirnay-Dummer, 2006). In the following, we use 

the results of the MITOCAR analysis for validity tests of the SMD Technology.  
TABLE 3.3 
Correlation between the SMD Technology and MITOCAR (N = 47) 
 MITOCAR (concept 

and structure) Surface Structure Matching Structure 

MITOCAR (concept 
and structure) - .610**1 .527**1 

Surface Structure  - .766**1 
Matching Structure   - 
** p < .01; * p < .05 (two-sided significance) 
1 Pearson’s Correlation 

 

The results in Table 3.3 show significant correlations between the outside criterion 

MITOCAR and the Surface and Matching Structure of the SMD Technology2. After 

verifying convergent validity of the SMD Technology, we want to test the SMD 

Technology with another outside criterion. This second validity test is for divergent 

validity on the basis of a valid and reliable domain specific knowledge test consisting 

out of 19 multiple-choice questions (Couné, Hanke, Ifenthaler, & Seel, 2004). We 

assume that there is no correlation between the Surface and Matching Structure of 

the SMD Technology and the declarative knowledge measure. Further, we assume a 

correlation between the Deep Structure and the declarative knowledge.  

 The results in Table 3.4 show no correlations between the declarative 

knowledge and the Surface and Matching Structure. This is consistent with the 

theoretical and methodological assumptions of the SMD Technology - the indices of 

the Surface and Matching Structure have no direct connection to the subject domain. 

The significant correlation between the declarative knowledge and the Deep 

Structure confirms the assumptions of the SMD Technology – we assume that 

persons with high declarative knowledge in a specific subject domain will also have 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 The Deep Structure index δ of the SMD Technology compares the semantic similarity between a model and a 
reference model. This feature is not available with MITOCAR. Accordingly, the calculation of correlations 
between the Deep Structure and the MITOCAR indices is not necessary. 
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a high Deep Structure index δ. To sum up, the empirical analysis revealed 

convergent and divergent validity with regard to the outside criterion. Additionally, 

the SMD Technology was part of a series of comparative studies of different 

quantitative and qualitative methodologies conducted in order to determine the 

methodologies’ strength and unique characteristics and to report collective validity 

(see T. E. Johnson, O'Connor, Spector, Ifenthaler, & Pirnay-Dummer, 2006). 
TABLE 3.4 
Correlation between the SMD Technology and the declarative knowledge test (N = 47) 
 declarative 

knowledge Surface Structure Matching 
Structure Deep Structure 

declarative 
knowledge - .2731 .1121 .355*2 

Surface 
Structure  - .766**1 .0892 

Matching 
Structure   - .1662 

Deep Structure    - 
** p < .01; * p < .05 (two-sided significance) 
1 Pearson’s Correlation; 2 Spearman’s Correlation 

Applications for research, learning, and instruction 

The use of different computer-based tools for re-representing knowledge structures 

(e.g. concept mapping software) has become increasingly accepted for research, 

learning, and instruction (Jonassen, Reeves, Hong, Harvey, & Peters, 1997). In 

various research projects, concept maps have been used for analyzing learning 

outcomes, learners’ knowledge structures, and for self-assessment (Eckert, 2000; 

Mansfield & Happs, 1991; Stracke, 2004). In the field of learning and instruction, 

concept maps have been used for providing feedback and advance organizers and for 

facilitating problem solving tasks (Al-Diban, 2002; Jonassen, et al., 1997; Stoyanova 

& Kommers, 2002). However, a large number of the available tools do not support 

automated feedback and analysis features. Accordingly, the development of the 

computer-based and automated SMD Technology opens up a broad field of 

applications for research, learning, and instruction. 

SMD & research 

Re-representations of knowledge structures are often analyzed by raters using diverse 

scoring approaches (see Hilbert & Renkl, 2008; Jonassen, et al., 1997; Taricani & 

Clariana, 2006). Depending on the research question, the raters focus on the quantity 

and quality of nodes and links, causal relationships, semantic content, direction and 

strength of links, hierarchy, or other visual arrangements. However, measuring the 
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diverse information of individual concept maps by hand is very time consuming, and 

almost impossible for larger sets of data. Additionally, to guarantee high reliability 

and validity, every human rater must be an expert in the subject domain in question 

and in the application of quantitative and qualitative assessment strategies (Taricani 

& Clariana, 2006). Therefore, the automated analysis procedure of the SMD 

Technology calculates quantitative indicators of concept maps, which then can be 

used for further statistical computations.   

 So far, the SMD Technology has been applied in different fields of mental 

model research. Ifenthaler (2006) investigated the trajectory of mental models 

constructed by subjects working on complex problem solving tasks. An HLM 

analysis of three quasi-experimental studies (N = 106) showed a significant increase 

of propositions when subjects worked for five hours in a multimedia learning 

environment (Surface Structure). Accordingly, as long as new information is 

subjective plausible it will be added to a person’s knowledge structure. Further 

results indicate a significant increase in the diameter of the externalized knowledge 

structures (Matching Structure). Consequently, we found not only a significant 

learning-dependent increase in the number of propositions, but also a significant 

learning-dependent increase in structural complexity.  

 In order to investigate the learning-dependent progression of novices’ mental 

models to more expert-like models, Ifenthaler (2006) compared the semantic 

similarity of externalized knowledge structures of novices with expert knowledge 

structures in different subject domains. The results of the Deep Structure indicator of 

the SMD Technology revealed a significant increase in similarity between novice and 

expert models. However, further HLM analysis indicated that the learning time of 

five hours was not long enough to integrate all information provided and 

consequently to gain higher similarity to an expert’s solution of a problem. 

Predictions about novice’s problem solving skills to become more expert like are 

also possible (e.g., Ifenthaler, et al., 2007). Additionally, the provided learning 

materials and feedback could be improved for further experiments.  

 Ifenthaler et al. (2007) investigated the role of cognitive learning strategies 

and intellectual abilities in mental model building processes using the Deep Structure 

indicator of the SMD Technology. The results indicate that the training of mental 

model building skills is a complex problem which should be investigated further with 

regard to the roles of conditions based on the theory of mental models (Seel, 1991).  
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 Additionally, the SMD Technology has been used to investigate sharedness 

among team members (T. E. Johnson, Ifenthaler, Pirnay-Dummer, & Spector, 2009). 

The focus on individually constructed concept maps and team re-representations can 

help to identify problems of team performance and lead to a better understanding of 

the complex performance processes within teams. Thanks to the flexibility of the 

SMD Technology, other indicators can be easily implemented in order to produce 

specific measures for a large number of research questions. 

SMD & learning and instruction 

In the following, we will focus on the application of the SMD Technology for 

knowledge diagnosis, self-assessment, and knowledge management. Other 

applications in the field of learning and instruction, such as analysis of navigation 

paths in learning environments (Dummer & Ifenthaler, 2005), could be discussed on 

another occasion. 

 In order to provide learners with the best possible learning materials, the 

instructor or an Intelligent Tutoring System (ITS) must be aware of their state of 

knowledge. In general, knowledge diagnosis is applied by collecting necessary 

information about the learner with the help of various tests. By integrating the SMD 

Technology or parts of it (graphical re-representation; quantitative indicators) either 

into a computer-based learning environment or other instructional settings, it can 

easily be applied for individual knowledge diagnosis. The SMD Technology has been 

implemented as a cross-platform application which enables an easy integration into a 

computer-based learning environment. Therefore, the instructional designer may 

choose which components of the SMD Technology should be applied for an adequate 

knowledge diagnosis. The quantitative indicators could provide instant longitudinal 

information about the individual learning process. The indicators (Surface, Matching, 

and Deep) provide multiple information about changes in the knowledge structure 

and domain-specific knowledge acquisition. Depending on the results of the SMD 

Technology, the learning environments will provide specific feedback or other 

instructional materials to foster future learning processes. On the other hand, the 

graphical re-representation of the SMD Technology can be easily applied for 

individual feedback on specific tasks. The instructor could use the re-representation 

at a specific point during the learning phase to discuss the strength and weaknesses 

of a learner’s learning process. Additionally, the similarity and contrast model 

provide further feedback materials. 
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 Another use of the SMD Technology in the field of learning and instruction 

could be various fields of self assessment. As self assessment has the ambitious goal 

of making judgments about a learner’s own learning process, the feedback of an 

automated system should be very sensible to changes in the learner’s knowledge 

structure. As discussed above, the quantitative indicators and/or graphical re-

representations of the SMD Technology could be applied for self assessment. A 

learner could receive quantitative information about his or her learning progress after 

working for a defined period with a computer-based learning environment. 

 Additionally, the graphical re-representation could provide descriptive 

information about the learner’s knowledge structure. Furthermore, the similarity and 

contrast representation could elicit differences between previous points during the 

learning process or other learners or experts. This feature could therefore easily help 

to avoid the construction of misconceptions during self assessment phases. The 

major advantage of the SMD Technology for self assessment is the automated and 

instant generation of desired results. When learners receive the results of self 

assessment directly, their motivation to continue with the learning environment may 

be obtained longer than with other options of self assessment. 

 Finally, the SMD Technology could be applied for analysis of knowledge 

management processes. Individuals may use the quantitative indicators and or the 

graphical re-representations to compare it with other team members while working 

on a project. Also, the affordances of a task could be compared with the individual 

understanding of the task and gaps could be identified to solve it effectively. Another 

application of the SMD Technology for knowledge management could be the 

communication of individual or group knowledge for better cooperation and 

understanding with other members or groups of a project team. Further applications 

could include knowledge identification, knowledge use, and knowledge generation 

(Tergan, 2003). 

Conclusion and future perspectives 

The new developed SMD Technology is based on the theory of mental models (Seel, 

1991) and graph theory (Tittmann, 2003) and captures key latent variables associated 

with human learning and cognition. Graphical representations such as concept maps 

or natural language expression can be analyzed on three different levels. These levels 

help to describe individual knowledge structures from a relational, structural, and 
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semantic point of view. Additionally, graphical re-representations of the SMD 

Technology provide further information regarding the externalized knowledge 

structures of a person.  

 The objectivity, reliability, and validity of the computer-based and automated 

SMD Technology were investigated in three quasi-experimental studies. The results 

show a high reliability and validity in all indicators. Based on our findings, we 

developed further ideas for developing new features for the SMD Technology. These 

developments will include a tool for constructing concept maps, new techniques for 

describing the constructed models, and automated statistical reports.  

 Nevertheless, the SMD Technology or parts of it (graphical re-representation; 

quantitative indicators) can be easily integrated into various applications. The tool 

can be used not only in mental model research, but also in various fields of learning 

and instruction. Beyond this, such computer-based and automated instruments could 

also prove to be beneficial in a wide span of other fields of research on technology 

and instructional development. 
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4 
DETERMINING STRENGTHS AND LIMITATIONS OF 

METHODOLOGICAL APPROACHES & 

Over the past years, several possible solutions to the analysis problems of mental models have been 
discussed. Therefore, it is worthwhile to compare analysis approaches for measuring externalized 
mental models systematically in order to test their advantages and disadvantages, strengths and 
limitations. A series of pair-wise comparative studies show strengths, unique characteristics, and 
collective viability of different assessment and analysis methods. However, the above mentioned 
study only focused on conceptual differences of the analysis approaches and did not use empirical 
data. This chapter reports an empirical case study and compares two analysis approaches - QFCA 
(Qualitative & Formal Concept Analysis) and SMD (Surface, Matching, Deep Structure) - using 
identical data. Accordingly, the aim of this comparative study is to determine conceptual and 
empirical strengths and limitations of two different approaches for analyzing externalized cognitive 
structure. 
 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Al-Diban, S., & Ifenthaler, D. (in press). Comparison of two analysis 
approaches for measuring externalized mental models: Implications for diagnostics and applications. 
Journal of Educational Technology & Society. 
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Introduction 

Mental models are a basic cognitive construct which describes complex learning and 

problem solving processes. Generally speaking, a person constructs a mental model 

in order to explain or simulate specific phenomena of objects or events if no 

sufficient schema is available. Thus, mental models organize domain specific 

knowledge in such a way that phenomena of the world become plausible for the 

individual. Compared to that of a novice, a domain expert’s mental model is 

considered to be more elaborated and complex. Therefore, we argue that mental 

models mediate between an initial state and a desired final state in the learning 

process. Accordingly, there is an immense interest on the part of researchers to 

analyze a novice’s mental model and compare it with an expert’s in order to identify 

the most appropriate ways to bridge the gap.  

 Over the past years, several possible solutions to the analysis problems of 

mental models have been discussed (e.g.,  Clariana & Wallace, 2007; Ifenthaler, 

2008; T. E. Johnson, et al., 2009). Therefore, it is worthwhile to compare analysis 

approaches for measuring externalized mental models systematically in order to test 

their advantages and disadvantages, strengths and limitations. Johnson et al. (2006) 

set up a series of pair-wise comparative studies in order to determine the strength, 

unique characteristics, and collective viability of different assessment and analysis 

methods. A total of six studies compare the methods ACSMM (Analysis Constructed 

Shared Mental Models; T. E. Johnson, et al., 2009), SMD (Surface, Matching, Deep 

Structure; Ifenthaler, 2010c), MITOCAR (Model Inspection Trace of Concepts and 

Relations; Pirnay-Dummer & Ifenthaler, 2010), and DEEP (Dynamic Evaluation of 

Enhanced Problem Solving; Spector & Koszalka, 2004). Through study of their 

methodologies, the authors hope to better quantitatively and qualitatively represent 

individual and team mental models and better understand mental model development 

by comparing individuals and experts (T. E. Johnson, et al., 2006). However, the 

above mentioned study only focused on conceptual differences of the analysis 

approaches and did not use empirical data.  

 In addition to the above described comparative study by Johnson et al. 

(2006), our current study compares two analysis approaches - QFCA (Qualitative & 

Formal Concept Analysis) and SMD (Surface, Matching, Deep Structure) - using 

identical data. Accordingly, the aim of our comparative study is to determine 
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conceptual and empirical strengths and limitations of two different approaches for 

analyzing externalized mental models. Our comparison framework is laid out as 

follows: First, both analysis approaches are introduced. Second, we present the 

empirical study. Third, we report the results analyzed with both approaches, QFCA 

and SMD. Forth, on the basis of our results, we compare both analysis approaches. 

Finally, we conclude by determining how the two approaches could be used in 

conjunction for further mental model research. 

Analysis approaches 

A mental model is always content related and the assessment (elicitation) and 

analysis (measurement of elicitation) should allow a psychological and content based 

interpretation. However, the yet unsolved question is how to accurately diagnose 

mental models. Some issues that have yet to be resolved include identifying reliable 

and valid ways to elicit mental models and the actual analysis of the externalized 

models themselves (Ifenthaler & Seel, 2005; Kalyuga, 2006a). However, the 

possibilities of assessment (elicitation) of mental models are limited to a few sets of 

sign and symbol systems (Seel, 1999b) – characterized as graphical and language-

based approaches. Graphical approaches include the structure formation technique 

(Scheele & Groeben, 1984), pathfinder networks (Schvaneveldt, 1990), mind tools 

(Jonassen & Cho, 2008), and test for causal models (Al-Diban, 2008). Language-

based approaches include thinking-aloud protocols (Ericsson & Simon, 1993), 

cognitive task analysis (Kirwan & Ainsworth, 1992), and computer linguistic 

techniques (Seel, et al., 2009). However, not all of these elicitation methods interact 

with available analysis approaches. Therefore, we identified two analysis approaches 

(QFCA and SMD) which interact well with the graphical assessment method test for 

causal models (TCM). 

Analysis I: Qualitative & formal concept analysis (QFCA) 

As a first step of the QFCA, the amount of assessed data (graphical or natural 

language-based) will be reduced semi-automatically with help of coders, which look 

for semantic similarities, synonyms, and metaphors and build hierarchies of concepts 

and propositions.  Second, the data is imported into Cernato (Navicon, 2000). This 

program is based on lattice theory (Birkhoff, 1973) and allows content based 

comparisons of individual mental model representations. Figure 4.1 shows an 
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example of the results of an analysis. The figure presents a comparison of the 

preconceptions of 12 participants on the level of generic concepts. In the third step of 

the analysis the problem of structure isomorphism occurs, which usually prevents 

content based comparisons of simple concept mapping methods (see Nägler & Stopp, 

1996). This problem consists of the possibility that any number of identical concepts 

can be connected in the factorial number of arrays. This makes it nearly impossible 

to make content based comparisons of entire model representations. With the help of 

formal concept analysis (Ganter & Wille, 1996) all objects (here participants) can be 

systematically structured according to the entirety of all true attributes (here concepts 

or propositions). 

FIGURE 4.1. QFCA analysis of the “rainbow phenomenon” 

Accordingly, the formal concept analysis follows the following procedure: (a) Since 

the data is preserved for the most part in natural language, it is possible to reconstruct 

incorrect or missing concepts in the preconceptions of the participants (e.g., 

decomposition of light instead of color dispersion; a biological reflex instead of a 

physical reflex) and then discover any exceptional concepts participants used. (b) 

The whole of semantic surface features are preserved and can be compared. This 

allows us to, e.g., distinguish between participants with a low and high amount of 

prior knowledge. (c) Since concept “volume” is defined by all objects which can be 

reached by downward lines (see Figure 4.1), we are able to reconstruct which 

participants used, e.g., the concept “raindrop” (only 9 of the 12 participants). (d) We 

are able to analyze special questions (sections) in detail, e.g. what characterized the 

preconceptions of the participants who used the concept “rainbow figure” – two used 
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“refraction” (RSS, CMA) and one also used “reflexion” (RSS). However, no one 

used “dispersion,” “perception,” “sensibility for light,” or “solar radiation.” Research 

designs with more than one point of measurement would allow very interesting 

content-based comparisons of changes. 

Analysis II: Surface, matching, deep structure (SMD) 

The advent of powerful and flexible computer technology enabled us to develop and 

implement a computer-based analysis approach which is based on the theory of 

mental models and graph theory (Chartrand, 1977). SMD uses three core measures 

for describing and analyzing externalized mental models (Ifenthaler, 2010c). 

Additional measures are applied for an in-depth analysis (Ifenthaler, et al., in press). 

SMD requires for the assessed data to be stored pairwise (vertex-edge-vertex) for 

further analysis procedures. If the required data format is available (see Table 4.1), 

the raw data can be stored on an SQL (structured query language) database and the 

automated analysis procedure can be initiated by the researcher. 
TABLE 4.1 
Example of pair-wise raw data 
ID vertex 1 vertex 2 edge subject number 
001 Licht Ausbreitung ! 912abz3 
001 Licht Spalt - 912abz3 
… … … … … 

 

As a result, SMD generates three core measures, additional measures, and 

standardized graphical re-representations of the previously externalized mental 

models. These re-representations are concept map-like images with named nodes and 

named links (e.g., Figure 4.2). 

FIGURE 4.2. SMD re-representation of data shown in Table 1 

The core measures are composed of three levels – surface, matching, and deep 

structure. The surface structure measures the size of the externalized model, 

computed as the sum of all propositions (vertex-edge-vertex). It is defined between 0 

(no propositions) and n. The computed surface structure of the re-represented model 

in Figure 4.2 would result in θ = 3. The pedagogical purpose is to identify additions 
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or removals of vertices (growth or decline of the graph) as compared to previous 

knowledge representations and track change over time. 

 In order to analyze the complexity of an externalized model, Ifenthaler 

(2010c) introduced the matching structure µ. It is computed as the diameter of the 

spanning tree of an externalized model and can lie between 0 (no links) and n. The 

complexity indicator of the re-represented model in Figure 4.2 would result in µ = 2. 

The pedagogical purpose is to identify how broad (complex) the learner’s 

understanding of the underlying subject matter is. 

 Whereas the two above described measures focus on analyzing the 

organization or structure of an externalized model, the deep structure measures its 

semantic content. It is computed with the help of the similarity measure (Tversky, 

1977) as the semantic similarity between an externalized model and a reference 

model (e.g., expert solution, conceptual model, etc.). The measure is defined between 

0 (no similarity) and 1 (full similarity). The pedagogical purpose is to identify the 

correct use of specific propositions (concept-link-concept), i.e. concepts correctly 

related to each other. Additionally, misconceptions can be identified for a specific 

subject domain by comparing known misconceptions (as propositions) to individual 

knowledge representations. 

 

FIGURE 4.3. SMD reference (1), learner (2), cutaway (3), and discrepancy (4) re-representations 

In addition to the core measures, further graph theory based indicators are applied to 

more precisely describe the externalized mental models. With regard to analyzing the 

organization of the externalized models, Ifenthaler and colleagues (in press) 



	   47 

introduced the measures connectedness, ruggedness, cyclic, average degree of 

vertices, density of vertices and structural matching.  

1. The indicator connectedness analyses how closely the nodes and links of the 

externalized model are related to each other. The connectedness measure of 

the re-represented model in Figure 2 would result in φ = 1 (it is possible to 

reach every node from every other node). From educational point of view, a 

strongly connected knowledge representation could indicate a subjective 

deeper understanding of the underlying subject matter. 

2. Ruggedness indicates whether non-linked vertices of an externalized model 

exist, and if so it computes the sum of all submodels (a submodel is part of 

the externalization but has no link to the “main” model). The pedagogical 

purpose is to identify possible non-linked concepts, subgraphs or missing 

links within the knowledge representation which could point to a lesser 

subjective understanding of the phenomenon in question.  

3. The measure cyclic is an indicator for the closeness of associations of the 

vertices and edges used. A cycle is defined as a path returning back to the 

start vertex of the starting edge of an externalized model. A cycle in the re-

represented model in Figure 4.2 would be: Licht – Ausbreitung – Spalt – 

Licht. 

4. The average degree of vertices measure is computed as the average degree of 

all incoming and outgoing edges.  

5. The density of vertices indicator describes the quotient of concepts per vertex 

within a graph. Graphs which only connect pairs of concepts can be 

considered weak models; a medium density is expected for most good 

working models.  

6. The structural matching measure compares the complete structures of two 

graphs without regard to their content. This measure is necessary for all 

hypotheses which make assumptions about general features of structure (e.g., 

assumptions which state that expert knowledge is structured differently from 

novice knowledge).  

  

The pedagogical purpose of these measures is to identify the strength of closeness of 

associations of the knowledge representation. Knowledge representations which only 

connect pairs of concepts can be considered weak; a medium density is expected for 
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most good working knowledge representations. The additional semantic indicator 

vertex matching analyzes the use of semantically correct single concepts compared to 

a reference model. This measures is also used in the classic MITOCAR analysis 

procedure (see Pirnay-Dummer & Ifenthaler, 2010). The pedagogical purpose is to 

identify the correct use of specific concepts (e.g., technical concepts). The absence of 

a great number of concepts with regard to a reference representation indicates a less 

elaborated domain specific knowledge representation. 

 For an in-depth qualitative analysis, SMD automatically generates 

standardized re-representations. Figure 4.3 shows an example of a reference (1), 

learner (2), cutaway (3), and discrepancy (4) re-representation which also function as 

feedback within learning environments (Ifenthaler, 2009). These re-representations 

highlight semantically correct vertices (compared to a reference representation) as 

circles (ellipses for dissimilar vertices). 

 Various experimental studies on different subject domains have confirmed 

the high reliability and validity of the SMD (see T. E. Johnson, et al., 2006). 

Ifenthaler (2010c) reports test-retest reliability for SMD measures as follows: surface 

structure, r = .824, matching structure, r = .815, and deep structure, r = .901. Also 

convergent and divergent validity has been successfully tested (see Ifenthaler, 

2010c). 

Comparative study 

This initial comparative study determines conceptual and empirical strengths and 

limitations of the above described approaches for analyzing externalized mental 

models – QFCA and SMD. In order to have identical data available, we conducted a 

study (pre-post design) in physics and theology with high school students. This 

section introduces briefly the study’s methodology. 

Subjects 

The 12 participants (9 female, 3 male) of the reported pilot study were students in the 

10th grade from a traditional high school in Europe. Their mean age was 15.25 years 

(SD = .45), mean score CFT 20-R intelligence test = 106.92 (SD = 9.89). There were 

nine members of religious communities among the participants. Eight are active in 

their communities and eleven have religious interests. The participants volunteered 
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in response to an advertisement posted at their school. After finishing the study each 

participant was given a reward of 20 Euros. 

Materials 

The overall design (see Figure 4.4) included an assessment of the preconceptions of 

the participants in physics and theology, which began with a free association test 

with scenic pictures of rainbows (physics) and tsunami (religion) which served as an 

“ice-breaker-function” for the topic. This was followed by word problems with 

written text protocols and a dependant measure of the same problems from the test of 

causal models (TCM, Al-Diban, 2008). The participants were assessed according to 

relevant traits like intelligence with the standardized test of intelligence CFT 20-R 

(Weiß, 2006). The culture fair test measures the fluid intelligence factor with figural 

material, which is a substantial indicator for inductive reasoning and flexibility of 

thinking. Relevant learning strategies were assessed with LIST (Wild, 2000). 

Additionally, we used the standardized Neo-FFI test (Borkenau & Ostendorf, 2006) 

to examine general self-concept, self-perceived self-efficiency (Schwarzer & 

Jerusalem, 1999), and personality. Furthermore, the assessment contained a test on 

domain specific declarative knowledge in physics and religion. Demographic data of 

the participants were documented in an informal questionnaire. 

Assessment: Test for causal models (TCM) 

This assessment instrument was developed in order to realize the postulated 

theoretical functions of mental models, such as high individuality, phenomenon 

relatedness, situational permanence, reduction of complexity, and knowledge gain 

(Al-Diban, 2008). The standardized TCM (Test for Causal Models) is a combination 

of the Structure Formation Technique (Scheele & Groeben, 1984) and Causal 

Diagrams (Funke, 1990) and is a practicable method for discovering structure which 

is in line with the theory of mental models. The participants have to transform their 

answers into subjectively relevant causal sequences of if-then relations or cause-

consequence relations of the problem and its preconditions. The connections between 

single concepts represent the subjective causal thinking in a broad sense (van der 

Meer & Schmidt, 1992). A guided practice session in which the participants 

construct an example is provided in order to improve their competence in using the 

TCM. For the data assessment phase we used the computer based software MaNET 

(Mannheim Network Elaboration Technique, Reh, 2007) to enhance the usability for 
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the participants and to allow a standardized data processing for the subsequent 

analysis process. Additionally, we used the purpose-built graph to context interface 

(GTC, Al-Diban & Stark, 2007)  to export the assessed data and make them available 

to both analysis approaches, QFCA and SMD. 

Procedure 

All participants visited a learning lab at a European university on two subsequent 

days. The assessment procedure took three hours per day. The first part of the 

assessment consisted of a free association test, a demonstration of some slides with 

photographs of rainbows and life-threatening diseases. The participants had to write 

down all concepts they were spontaneously able to remember. All concrete 

problems, three in physics and three in religion, were measured twice: first as an 

open problem with transcribed text protocols from the teach back interview and 

second as a dependant measure which was constructed around these answers with the 

TCM. This test was conducted on laptops using the software MaNET. The working 

time was limited to 20 minutes. The participants had the task of depicting their 

answers with the help of a test of causal models (TCM) comprised of concepts and 

causal relations. The other traits measured in this test are shown in Figure 4.4. 

 
FIGURE 4.4. Research design 

 

On the one hand the two different topics – light models in physics and disease 

models in biology in combination with religion – were oriented toward the 

curriculum and the courses of instruction. On the other hand, these topics should 

represent two very different knowledge domains. This allows us to compare the 

mental model representations of the same persons in very different knowledge 

domains. It should be emphasized that the results of this initial study are descriptive 
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single cases only and not valid for a greater population group and general 

educational implications. 

Results 

The data collected in our study were analyzed with QFCA and SMD separately. 

Therefore, we describe our results in two separate sections and then compare the 

results of both analysis approaches. The “expert models” and “correct model 

concepts” applied to evaluate the semantic criteria of objective plausibility were 

developed with the help of specialists in physics education and theology. The expert 

models resulted in a rainbow (11 propositions), crack experiment (12 propositions), 

light electrical effect, (10 propositions) and disease situation model (18 

propositions). The “correct model concepts” represent key concepts and are a 

precondition for understanding each phenomenon correctly. In all cases, the criteria 

of objective plausibility are dependent on the semantic correspondence of the student 

model to the propositions of the expert model.  

 As far as the measured traits are concerned, there was a negative correlation r 

= -.625* between the trait “agreeableness” (Neo-FFI) and knowledge on the level of 

concepts in physics but no significant correlation with concepts concerning the 

disease problem. The objective plausibility of all three model representations to 

physical problems together (sum of all the physic problems) and the learning strategy 

“critical thinking” shows a high and significant correlation r = .869**, such as with 

“openness for new experiences” r = .707*. This result might indicate that the 

objective plausibility of the investigated physical problems is associated with 

intensive “critical thinking” learning strategies and a high personal “openness for 

new experiences”. 

Qualitative & formal concept analysis (QFCA) 

The QFCA analysis approach includes five quantitative structural measures (count of 

concepts, count of propositions, depth of connectivity, intensity of connections, 

ruggedness) and an in-depth content-based investigation. Table 4.2 shows the results 

of the five quantitative structural measures. On a descriptive level, there are 

remarkable differences between the four problems for the measures count of 

concepts and count of propositions. The other structural measures, intensity of 

connections and ruggedness, show almost equal values with comparable standard 

deviations. The majority of the mental model representations of all problems have a 
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low depth of connectivity, a low intensity of connections, and are not rugged. 

Additionally, the standard deviations show high interindividual differences in the 

“crack experiment” (II) and the “disease problem” (IV) for the measures count of 

concepts and count of propositions. 
TABLE 4.2  
QFCA structural measures 
 DOMAIN M SD Min Max 

I 7.08 2.64 4 13 
II 5.91 3.05 3 14 
III 5.67 1.12 4 7 

count of concepts 

IV 9.09 3.02 6 15 
I 6.75 3.31 3 14 
II 5.45 4.61 1 18 
III 5.3 1.50 3 8 

count of propositions 

IV 12.36 5.68 5 22 
I 1.08 0.16 0.83 1.33 
II 1.0 0.24 0.60 1.36 
III 1.12 0.18 1.00 1.50 

depth of connectivity 

IV 1.39 0.27 1.00 1.89 
I 0.34 0.11 0.18 0.5 
II 0.39 0.16 0.19 0.67 
III 0.43 0.16 0.33 0.83 

intensity of connections 

IV 0.35 0.10 0.18 0.53 
I 1.25 0.45 1 2 
II 1.27 0.65 1 3 
III 1.00 0.16 1 1 

ruggedness 

IV 1.00 0.00 1 1 
Note: DOMAIN: I = rainbow experiment (N=12), II = crack experiment (N=10), III = electrical 
effect experiment (N=9), IV = disease situation (N=12) 

In the next step, we analyzed the results for generic conceptss and propositions and 

determined to what extent they corresponded to the expert models (see Table 4.3).  
TABLE 4.3  
Content based similarity measures between participant and expert solutions 
 DOMAIN M SD Min Max 

I 51.09 19.65 22.2 80 
II 33.70 38.22 0 100 
III 28.94 23.58 0 66.7 

relative objective 
plausibility [propositions 
in %] 

IV 45.8 26.70 5.2 100 
I 3.08 1.24 2 6 
II 1.20 1.03 0 3 
III 1.44 1.24 0 4 

abs. objective plausibility 
[prop., max.11/12/10/18] 

IV 4.50 1.45 1 6 
I 1.17 0.94 0 3 
II 1.10 0.74 0 2 
III 0.88 0.78 0 2 

correct model concepts 
[6/7/8/20] 

IV 3.50 1.17 2 5 
Note: DOMAIN: I = rainbow experiment (N=12), II = crack experiment (N=10), III = electrical 
effect experiment (N=9), IV = disease situation (N=12) 
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Focusing the averages of the match with the expert models - relative and absolute 

objective plausibility - can be called small in general. The minimum of most 

semantic criteria represents the mental models to the physic problem (III) “light 

electrical effect”. This problem seems to be most difficult for the participants. The 

solutions to the biology & theology problem “disease situation” were slightly more 

competent. The use of correct model concepts is very low for all problem solutions, 

too. This indicates that the participants did not possess sufficient concept knowledge, 

which is a precondition for mental models with high objective plausibility. 

FIGURE 4.5. Comparison of participants for domain specific problem (I) 
 

It is easy to see which of the correct model concepts from the expert model are 

present and which are absent. Basically, the preconceptions are based solely on the 

radiation model. The absent correct concepts are “diffraction,” “dispersion,” “light 

rays”, and a “constant color spectrum” in contrast to the simple concept “colors.” 

These mental model representations contain no elements to explain its color 

spectrum. Instead, some participants worked with the “figure of rainbow” and tried 

to find explanations for this. 

 In addition, QFCA allows content based comparisons of the single cases with 

small groups (see Figure 4.6). Clearly, the participants CKJ and CMA show more 

knowledge then the participants LSM and CHS. Moreover, this method displays the 

data in such a way that the content becomes obvious. In a comparison of participants 



	   54 

CHS and CMA – Figure 4.6 – there is empirical evidence, that they share all five 

concepts used by CHS. But CMA was able to supplement his preconceptions with 

adequate concepts like “intensity of light” and “refraction” and also spent time 

thinking about “figure of rainbow,” “observer,” and the colors “blue,” “green,” and 

“red.”  

	   	  

	  
	  

 
FIGURE 4.6. Four single cases domain specific problem (I) 

 

In summary, QFCA can be a useful tool for making empirically based conclusions 

about mental model representations for single cases and small groups. It makes the 

content-based quality of preconceptions and special areas of interest easy to evaluate. 

With the help of data from more than one measurement point, conceptual changes 

become better and more accurately observable too. 
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Surface, matching, deep structure (SMD) 

The automated analysis procedure of SMD generates the above described 

quantitative measures. The results for the three physics domains and biology & 

religion domain are presented in Table 4.4 and 4.5. As can be seen by the frequencies 

and the Kolmogorov-Smirnov one-sample tests, we found no interindividual 

differences between the subjects, except for the measures connectedness and 

ruggedness in the first physics domain (rainbow experiment), and for the measure 

cyclic in the biology & religion domain (disease situation).  
TABLE 4.4 
Structural SMD measures 

 DOMAI
N M SD Min Max KS-Z p 

I 14.25 7.26 1.00 26.00 .39 .998 
II 16.50 13.29 3.00 42.00 .53 .942 
III 5.56 1.42 3.00 8.00 .71 .692 

surface structure 

IV 12.42 6.36 5.00 27.00 .59 .872 
I 4.92 1.93 1.00 7.00 .67 .761 
II 3.90 1.52 2.00 7.00 .55 .923 
III 3.67 .71 3.00 5.00 .82 .520 

matching structure 

IV 5.00 1.95 3.00 10.00 .77 .601 
I 0.92 .29 0 1 1.84 .002*

* II 1 0 1 1 - - 
III 1 0 1 1 - - 

connectedness 

IV 1 0 1 1 - - 
I 1.08 .29 1 2 1.84 .002*

* II 1 0 1 1 - - 
III 1 0 1 1 - - 

ruggedness 

IV 1 0 1 1 - - 
I .58 .51 0 1 1.29 .070 
II .4 .52 0 1 1.20 .110 
III .44 .53 0 1 1.07 .204 

cyclic 

IV .75 .45 0 1 1.59 .013* 
I 1.89 .27 1.5 2.29 .80 .542 
II 1.73 .46 1 2.43 .38 .999 
III 1.83 .26 1.5 2.29 .69 .723 

average degree of vertices 

IV 2.29 .44 1.67 3.14 .44 .991 
I .51 .19 .22 1.00 .55 .925 
II .40 .21 .19 .78 .79 .546 
III .39 .13 .10 .50 .71 .699 

density of vertices 

IV .31 .14 .10 .50 .95 .328 
I 14.67 6.53 2.00 27.00 .57 .897 
II 11.80 6.34 5.00 26.00 .67 .761 
III 5.78 1.20 4.00 7.00 .72 .678 

structural matching 

IV 9.92 3.20 6.00 14.00 .78 .577 
Note: DOMAIN: I = rainbow experiment (N=12), II = crack experiment (N=10), III = electrical 
effect experiment (N=9); IV = disease situation (N=12);KS-Z = Kolmogorov-Smirnov one-sample 
test; * p < .05; ** p < .01 
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In order to locate differences between the four domains, we computed conservative 

Kruskal-Wallis H-Tests. The frequencies of the surface structure between the 

domains were significantly different, χ2 (3, N = 43) = 11.40, p > .05. We also found 

significant differences for the measures structural matching, χ2 (3, N = 43) = 14.80, 

p > .05, vertex matching, χ2 (3, N = 43) = 19.42, p > .001, and propositional 

matching, χ2 (3, N = 43) = 11.36, p > .01. However, we found no significant 

differences for the remaining measures.  
TABLE 4.5 
Semantic SMD measures 

 DOMAI
N M SD Min Max KS-Z p 

I 12.50 5.50 1.00 21.00 .95 .330 
II 10.70 6.17 3.00 24.00 .66 .777 
III 3.00 1.32 1.00 5.00 .66 .778 

vertex matching 

IV 6.50 3.12 3.00 11.00 .71 .693 
I 14.00 7.09 1.00 25.00 .48 .974 
II 15.80 12.84 3.00 40.00 .64 .811 
III 5.11 1.62 3.00 8.00 .54 .932 

deep structure (propositional 
matching) 

IV 10.83 4.78 4.00 18.00 .78 .579 
Note: DOMAIN: I = rainbow experiment (N=12), II = crack experiment (N=10), III = electrical 
effect experiment (N=9); IV = disease situation (N=12);KS-Z = Kolmogorov-Smirnov one-sample 
test; * p < .05; ** p < .01 

 

Besides the descriptive measures (see Table 4.4 and 4.5), SMD compares the 

individual representations with an expert representation (see Table 4.6 and 4.7).  
TABLE 4.6 
SMD similarity measures (structure) between participant and expert solutions 
 DOMAIN M SD Min Max KS-Z p 

I .682 .260 .06 1.00 .550 .923 
II .546 .244 .21 .93 .758 .614 
III .427 .109 .23 .62 .711 .692 

surface structure 

IV .388 .199 .16 .84 .594 .872 
I .729 .239 .25 1.00 .706 .701 
II .711 .213 .40 1.00 .510 .958 
III .844 .155 .60 1.00 .860 .450 

matching structure 

IV .654 .166 .43 .86 .670 .760 
I .778 .160 .41 .93 .797 .548 
II .687 .204 .36 .99 .698 .714 
III .622 .209 .16 .79 .708 .699 

density of vertices 

IV .715 .214 .36 1.00 .551 .922 
I .564 .142 .29 .86 .556 .917 
II .731 .143 .50 1.00 .547 .926 
III .871 .113 .67 1.00 .645 .799 

structural matching 

IV .592 .099 .40 .80 1.039 .230 
Note: DOMAIN: I = rainbow experiment, II = crack experiment, III = electrical effect experiment; 
IV = disease situation; KS-Z = Kolmogorov-Smirnov one-sample test; * p < .05; ** p < .01 
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The comparisons are described with the help of the Tversky similarity (0 = no 

similarity; 1 = total similarity). Our analysis revealed interindividual differences in 

the three physics domains for the measure propositional matching. For all other 

measures, we found no interindividual differences between our subjects (see Table 

4.6 and 4.7). Regarding the differences between the subject domains, the Kruskal-

Wallis H-Test revealed significant differences between the measures surface 

structure, χ2 (3, N = 43) = 10.26, p > .05, structural matching, χ2 (3, N = 43) = 20.53, 

p > .001, and vertex matching, χ2 (3, N = 43) = 19.37, p > .001. 
TABLE 4.7 
SMD similarity measures (semantics) between participant and expert solutions 

 DOMAI
N M SD Min Max KS-Z p 

I .096 .076 .00 .27 .781 .575 
II .104 .077 .00 .27 .837 .486 
III .243 .080 .17 .42 .570 .901 

vertex matching 

IV .159 .050 .05 .23 .629 .824 
I .010 .024 .00 .07 1.720 .005*

* II .011 .035 .00 .11 1.657 .008*
* III .024 .049 .00 .12 1.409 .038* 

deep structure (propositional 
matching) 

IV .035 .042 .00 .11 1.029 .240 
Note: DOMAIN: I = rainbow experiment, II = crack experiment, III = electrical effect experiment; 
IV = disease situation; KS-Z = Kolmogorov-Smirnov one-sample test; * p < .05; ** p < .01 

 

In addition to the above reported quantitative measures, SMD enables us to 

automatically create cutaway and discrepancy re-representations for qualitative 

analysis. These standardized re-representations could be used for an in-depth 

analysis of the individual re-representations (see Figure 4.3).  

 The quite elaborated cutaway re-representation in Figure 4.7 includes all 

vertices and edges of the subject. Compared to the reference re-representation (expert 

solution of the crack experiment question) seven vertices are semantically correct 

(vertices as circles). However, there are also seven vertices which are incorrect 

compared to the expert solution. Additionally, the cutaway re-representation reveals 

that the student’s understanding of the phenomenon in question is not fully 

connected (2 submodels). Furthermore, the re-representation includes three circles. 

However, these circles include incorrect vertices (e.g. farben-rot-regenbogen-grün-

farben). 
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FIGURE 4.7. SMD cutaway re-representation, domain II (crack experiment)  

Pedagogical implications 

The primary purpose of this initial study was to compare the methodological range of 

QFCA and SMD. However, we briefly discuss the results from an educational point 

of view. Results from both analysis approaches show that the structural and semantic 

measures highlight important changes of the assessed knowledge representations. 

The structural measures of QFCA (e.g., count of concepts) and SMD (e.g., surface 

structure) show remarkable differences between the four subject domains. For the 

electrical effect experiment, we found significant less concepts in the subjects’ 

representations. The semantic measures (QFCA: correct model concepts; SMD: 

vertex matching, deep structure) show that the learners are far from using correct 

concepts compared to experts. Hence, the subjects of this initial study are still in their 

initial stage of the learning process. An instructional intervention would now focus 

on missing concepts or misconceptions found in the individual re-representation 

(e.g., Figure 4.7) and/or structural conspicuities (e.g., many submodels).  

Comparison of QFCA and SMD analysis approaches 

Using the same set of data, we were able to conduct an in-depth investigation of both 

analysis approaches. Minor differences in the results are caused by the 

transformation of the participant’s data into a raw data file. Hence, further studies 

should also focus on various assessment techniques and available interfaces to 
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analysis approaches to identify their strength and weaknesses as well. Although both 

analysis methods work quite well and produce a lot of indicators, there are several 

difficulties and differences to report.  

 The first point concerns the placement (classification) of the indicators in 

relation to the mental model results. This is essential not only to compare the 

empirical results of different indicators but also to compare results of different 

studies. A precondition for this point is to find arithmetic similarities between the 

analysis indicators (see Table 4.8). Although the quantitative measures should be 

equal, the values differ. After intensive checking we found that the export function of 

the assessment technique was not accurately exporting the raw data. Therefore, the 

quantitative measures differ minimally. The QFCA method uses the assessed data 

directly; for SMD we used the imprecise exported data.  
TABLE 4.8 
Comparison of indicators, scientific quality, and exploratory power of both analysis 
approaches 
 QFCA SMD 

Quantitative 
measures 

count of concepts & propositions 
ruggedness 

structural measures 
semantic measures 
various graph theory measures (e.g., 
ruggedness, cyclic) 

Qualitative 
measures 

relative objective plausibility 
absolute objective plausibility 
 correct model concepts 

standardized re-representations 
cutaway- and discrepancy re-
representations 

Objectivity semi-automated analysis 
raw data based algorithms  

automated analysis of predefined 
raw data structure 

Reliability partly tested (see Al-Diban, 2002) tested (see Ifenthaler, 2010c) 
Validity not tested  tested (see Ifenthaler, 2010c) 

Areas of 
application 

limited comparisons 
single case analysis 
small group analysis 

unlimited comparisons 
single case analysis 
large group analysis 
stochastic analysis 

Advantages and 
limitations 

semi-automated analysis 
structural decomposition into 5 
formal categories 
recomposition into 3 content-based 
criteria 

automated analysis 
structural decomposition into 3 key 
categories 
recomposition into “re- 
representations”  

 

Second, the scientific quality criteria objectivity, reliability, and validity should be 

checked and reported. The analysis step of qualitative restructuring of data in QFCA 

to find generic concepts and propositions is not wholly objective and characterized 

by degrees of freedom. 

 A third point is concerned with the areas of application for research and 

practice. These areas are limited in QFCA and almost unlimited in SMD. This great 

advantage of SMD is bought at the price of limitations in precision and the 

pedagogical information value of the highly aggregated criteria. Due to its automated 
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analysis, SMD is especially at an advantage for applications in pedagogical practice, 

where results are needed as quickly as possible. The QFCA results were analyzed 

with the help of coders, which is time consuming. 

Conclusions and future developments 

Basic questions of a reliable and valid diagnosis of mental models are not solved 

completely (see Ifenthaler, 2008). This article focuses on the quality of two analysis 

approaches, a matter in which there is a major lack of systematic research, and in 

which one seldom finds scientific criteria like objectivity, reliability, and validity (T. 

E. Johnson, et al., 2006). Actually, there is a lack of stochastic modelling concerning 

the analysis methods of the mental models approach, especially for content-based 

data. 

 Future research with bigger samples should focus on (a) the comparison of 

available assessment and analysis approaches, and (b) on the observation of 

processes of learning-dependent change (e.g., Ifenthaler, et al., in press). In this way, 

different types of subjective mental models could be identified and classified. When 

more is known about the modes by which mental model representations change, it 

will become possible to increase the individual specificity and efficiency of 

instructional designs (see Ifenthaler, 2008). Both described analysis approaches, 

QFCA and SMD, are applicable to different knowledge domains. Disadvantages of 

QFCA might be its capacity for no more than about small groups, or its inability to 

analyze complex knowledge representation contents. Hence, the approach is labor 

intensive and there is a need for further service interfaces. In contrast, SMD proved 

to be highly economical due to its automated process. The integration of the SMD 

analysis features into a new web-based research platform, HIMATT (Highly 

Integrated Model Assessment Technology and Tools) with graphical and text-based 

assessment and analysis techniques is a consequent and forward-looking approach 

(see Pirnay-Dummer, et al., 2010). A further development of HIMATT could also 

include the QFCA approach. These future developments will open up new 

opportunities for continuing research on mental models and lead to new instructional 

implications. 
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5 
HIGHLY INTEGRATED MODEL ASSESSMENT 

TECHNOLOGY AND TOOLS & 

There has been little progress in the area of practical measurement and assessment, due in part to the 
lack of automated tools that are appropriate for assessing the acquisition and development of complex 
cognitive skills and structures. In the last two years, an international team of researchers has 
developed and validated an integrated set of assessment tools called HIMATT (Highly Integrated 
Model Assessment Technology and Tools) which addresses this deficiency. HIMATT is Web-based 
and has been shown to scale up for practical use in educational and workplace settings, unlike many 
of the research tools developed solely to study basic issues in human learning and performance. In this 
chapter, the functions of HIMATT are described and several applications for its use are demonstrated. 
Additionally, two studies on the quality and usability of HIMATT are presented. The chapter 
concludes with research suggestions for the use of HIMATT and for its further development. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). Highly 
integrated model assessment technology and tools. Educational Technology Research and 
Development, 58(1), 3-18. doi: 10.1007/s11423-009-9119-8 
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Introduction 

Knowledge is at the center of all cognition. Knowledge is constructed by internal 

representation processes (e.g., mental models, schemata). Knowledge is activated 

and deployed through the use of external re-representation processes (e.g., concept 

maps, diagrams, verbal discourse). This means that models used for representation 

and re-representation are critical in nearly all decision making and problem solving 

activities. Moreover, representation and re-presentation processes are critical for 

learning and instruction.  However, how models can be developed and deployed 

effectively and efficiently to support learning, performance, and instruction is not 

well understood. One impediment to progress has been the lack of appropriate 

assessment tools that establish meaningful inferential links between external re-

presentations and internal representations.  

 Previously, tools to support research into mental model development and the 

acquisition of skilled performance required a great deal of time and effort on the part 

of highly trained researchers (e.g., think-aloud protocol analysis). As a result, such 

assessment tools have been limited to basic research and have not had an impact on 

practical issues such as the design of effective instructional systems and learning 

environments. The desire to have practical assessment tools that are useful for 

improving learning, performance, and instruction has motivated significant 

developments in the last several years (Ifenthaler, 2008). Techniques such as the 

structure formation technique (Bonato, 1990; Scheele & Groeben, 1984), concept 

mapping (Cañas, et al., 2004; Novak, 1998; Nückles, Gurlitt, Pabst, & Renkl, 2004; 

Spector, 2006; Spector, Dennen, & Koszalka, 2006), or the test for causal diagrams 

(Al-Diban, 2008) use graphical representations for assessment purposes. For 

language-oriented assessment, the thinking aloud protocol (Ericsson & Simon, 1993, 

1998) and MITOCAR (Pirnay-Dummer & Ifenthaler, 2010) have been developed for 

quantifying verbal data. Other assessment tools have been automated, such as 

Pathfinder (Schvaneveldt, 1990), but only a few of these tools are fully automated, 

including automation of both the elicitation and the analysis processes involved in 

assessing learning and performance. One tool that is fully automated is the SMD 

Technology: Structure, Matching, Deep Structure (Ifenthaler, 2010c), which is 

included together with several compatible tools in HIMATT (Highly Integrated 

Model Assessment Technology and Tools). The HIMATT tools have been 
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developed, implemented, studied, and systematically validated within numerous 

international research collaboration studies (T. E. Johnson, et al., 2006). After the 

cross-validation of the different individual tools that are now integrated in HIMATT, 

the researchers involved noted that these various tools were based on different but 

compatible methodologies; furthermore, they were implemented differently on 

diverse platforms. However, the underlying approach was quite similar and the 

notion of using external representations to determine how well internal 

representations were being developed ran through all these tools. The idea was then 

born to create a comprehensive toolset which combines and further automates these 

state-of-the-art model-based assessment methodologies.  

 Automation is particularly important when we think about applications in the 

field. As long as the tools are not automated and accessible to practitioners (e.g., 

teachers, instructional designers, trainers), they will only be used in prototype and 

research settings but not in the real-world applications. Feasible instruments that can 

help track the development of knowledge and skill of many individuals without 

excessive cost and effort are especially important when we apply the methodologies 

to time series experiments to systematically track changes over time (Ifenthaler, 

2008; Ifenthaler & Seel, 2005) or if we use them to show effects within a series of 

interventions (Ifenthaler, 2010d; T. E. Johnson, et al., 2009).  

 HIMATT (Highly Integrated Model Assessment Technology and Tools) is a 

new combined toolset which accounts for all of these constraints. It was developed to 

convey the benefits of each methodological approach into one environment which 

can be used by researchers with only little prior training. It is implemented to run on 

the Web, thus presenting all content on a standard Web browser to both the 

researchers and the subjects. 

Theoretical foundation 

Every implemented technology in HIMATT has its own theoretical background. This 

was one of the most important criteria in the decision as to which methodology 

should be used for HIMATT.  

 DEEP (Dynamic Enhanced Evaluation of Problem Solving) was developed 

specifically to assess progress of learning towards expert-like performance in 

domains involving complex and ill-structured problems, such as engineering design, 

environmental planning, and medical diagnosis (Spector & Koszalka, 2004). DEEP 
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was inspired by causal influence diagrams – a knowledge elicitation technique used 

by system dynamicists when developing simulation models for complex systems. In 

DEEP, a variation of causal influence diagrams called annotated causal concept maps 

is used to elicit a conceptualization of how an individual (or small group of persons) 

is thinking about a problem situation. The method involves identifying representative 

problems and then presenting them to respondents who are first asked to identify and 

describe the five or ten key factors influencing the problem situation. Problem 

respondents are then asked to identify and describe the relationships that exist among 

these key factors. These external representations can be compared with those of 

experts in a number of ways to see if learners are improving their representations 

over time and through instruction and beginning to think more like domain experts. 

DEEP only automated the process of eliciting the representation; in its first 

incarnation it did not automate the analysis, although the analytical methods used by 

Spector and Koszalka (2004) are completely compatible with those of the next two 

tools we describe (one of the motivations for integrating these tools). 

 MITOCAR (Model Inspection Trace of Concepts and Relations) and T-

MITOCAR (Text-MITOCAR) have a background in mental model theory (Johnson-

Laird, 1983; Johnson-Laird & Byrne, 1991; Seel, 1991), association psychology 

(Davis, 1990; Lewin, 1922; McCoon & Ratcliff, 1992; McNamara, 1992, 1994; 

Stachowiak, 1979), and linguistics (Frazier, 1999; Pollio, 1966; Russel & Jenkins, 

1954). Both MITOCAR and T-MITOCAR rely on the dependence of syntax and 

semantics within natural language and use the associative features of text as a 

methodological heuristic to represent knowledge from text sources. Unlike tools 

from Web ontologies and the semantic Web (Ding, 2001), MITOCAR and T-

MITOCAR can work on a comparably small amount of text (350 words +). 

 SMD and MITOCAR both combine analysis and comparison functions based 

on graph theory (Bollobàs, 1998; Tutte, 2001), set theory (Jech, 2007), model theory 

(Rothmaler, 2000), and similarity distribution measures (Kruskal, 1964; Tversky, 

1977). SMD also contains foundations for the measurement of change (e.g., Collins 

& Sayer, 2001; Harris, 1963; Ifenthaler, 2008; Ifenthaler & Seel, 2005). 

 Methodologically, the tools integrated into HIMATT touch the boundaries of 

qualitative and quantitative research methods and provide bridges between them. On 

the one hand, text can be analyzed very quickly without loosening the associative 

strength of natural language (MITOCAR and T-MITOCAR). Furthermore, 
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conceptual graphs can be annotated by experts (DEEP). All of the data, regardless of 

how it is assessed, can be analyzed quantitatively with the same comparison 

functions for all built-in tools without further manual effort or recoding. 

Additionally, HIMATT generates standardized images of text and graphical 

representations. 

HIMATT architecture 

The HIMATT architecture consists of two major platforms: a) HIMATT Research 

Engine and b) HIMATT Subject Environment. Functions for conducting and 

analyzing experiments are implemented within the HIMATT Research Engine. 

These functions include 1) Experiment Management, 2) Researcher Management, 3) 

Subjects Management, 4) View Function, and 5) Analysis and Compare Function. 

The HIMATT Subject Environment dynamically provides assigned experiments to 

individual subjects. 

 HIMATT has been implemented and runs on a Web server using Apache, 

MySQL (MY Sequential Query Language), and PERL (Practical Extraction and 

Report Language), plus additional packages such as GraphViz (Ellson, et al., 2003). 

Experiment management 

The core unit in HIMATT is the experiment, which can be laid out flexibly by the 

researcher. Experiments in HIMATT consist of three assessment modules: (1) DEEP, 

(2) T-MITOCAR, and (3) MITOCAR as well as an INSTRUCTION module which 

is used to give the subject instructions and explanations (see Figure 5.1). The 

instructions are texts which may contain HTML code (e.g., to link pictures, videos, 

or other objects). Thus, they may also be used to present simple interventions to the 

subjects between the assessments, although this option is not very well developed. 

Besides mandatory labels and names for experiments, the researcher can add meta-

information about them. This helps to identify the purpose of the experiment and 

quickly select from a large number of experiments with the help of a search function. 

Figure 5.1 shows an experiment in which three modules have been laid out. The 

sequence of this sample experiment is as follows: 1) introduction to the subject, 

where the purpose of the experiment and additional information is presented; 2) the 

T-MITOCAR module, where the subject is asked to write a statement of at least 350 

words; 3) an “outro,” where the subject gets further information after completing the 

experiment. The number and sequence of modules and the content of all subject 
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information can be changed any time. Once an experiment is laid out completely, 

subjects may be assigned to the experiments with the subject management function. 
 

 
FIGURE 5.1. HIMATT Experiment Management 

 

Subject management 

The subject management function includes multiple options. First, a researcher can 

add subjects to the HIMATT database. Subject information includes at least a 

username and a password. If a researcher wants to add a large number of subjects, 

HIMATT can automatically generate a specified number of subjects with individual 

usernames and passwords. Additionally, the user can include a prefix to all 

usernames or passwords in order to more easily identify them later on during 

experimentation and analysis procedures. 

 Another important option within the subject management is the assignment of 

subjects to experiments. Once an experiment has been laid out completely and 

subjects have been added to the database, researchers can assign subjects to 

experiments. HIMATT also contains an export function which enables the researcher 

to export all assigned subjects from an experiment onto a spreadsheet. Naturally, all 

subject information can be deleted and changed whenever the researcher wishes. 
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Researcher management 

As scientific experiments are very rarely conducted only by a single researcher, 

HIMATT supports research teams with members assigned to these roles: a) 

HIMATT Administrator, b) HIMATT Researcher, and c) HIMATT Research 

Assistant. Each role comes with permission to use different functions (see Table 5.1). 
TABLE 5.1 
HIMATT roles (X indicates permission) 

Role Sponsor 
Researchers 

Experiment 
Management 

Subjects 
Management 

View 
Function 

Analysis and 
Compare 
Function 

HIMATT 
Administrator X X X X X 

HIMATT 
Researcher  X X X X 

HIMATT 
Research 
Assistant 

  X X X 

 

Only the HIMATT Administrator can sponsor other researchers and give them 

access to the HIMATT Research Engine and HIMATT Subject Environment. So far, 

the three HIMATT Administrators are the authors of this article. A sponsored 

HIMATT Researcher has permission to create new experiments, add subjects, and 

view and analyze the results of the experiments. 

View function 

The view function presents the knowledge graph as a picture to the researcher. This 

function allows the researcher to choose from specific experiments and knowledge 

graphs, which are then available as PNG (Portable Network Graphics) images for 

download. 

  Depending on the underlying module (DEEP, T-MITOCAR, or MITOCAR) 

the graphs will have different features: annotations for DEEP concept maps, 

associative strengths at the links for T-MITOCAR, and pairwise rated strengths for 

MITOCAR. 

 Essentially, the standardized re-representation is done in the same way for all 

three modules using the pairwise stored information from the database and GraphViz 

(Ellson, et al., 2003). 
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FIGURE 5.2. HIMATT sample graph 
 

Analysis and compare function 

The analysis function mainly calculates descriptive measures for the stored 

knowledge representations. These descriptive measures include various structural 

indicators derived from graph theory (Harary, 1974; Hietaniemi, 2008).   

• Connectedness (SMD). Computed as the possibility to reach every node from 

every other node in the knowledge representation (Ifenthaler, et al., in press). 

• Ruggedness (SMD). Computed as the sum of subgraphs which are 

independent or not linked (Ifenthaler, et al., in press). 

• Average degree of vertices (SMD). Computed as the average degree of all 

incoming and outgoing edges of the knowledge representation (Ifenthaler, et 

al., in press). 

• Number of Cycles (SMD). Computed as the sum of all cycles (a path 

returning back to the start node of the starting link) within a knowledge 

representation (Ifenthaler, et al., in press). 

• Vertices, Nodes (SMD). Computed as the sum of all nodes within a 

knowledge representation (Ifenthaler, et al., in press). 
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• Edges, Links (SMD). Computed as the sum of all links within a knowledge 

representation (Ifenthaler, et al., in press). 

 

The measures for comparison can be applied to any undirected graph, not only to re-

representations from MITOCAR and T-MITOCAR. There are six core measures for 

the comparison of conceptual graphs from the SMD Technology (Ifenthaler, 2006, 

2010c) and from MITOCAR (Pirnay-Dummer, 2006). Some of the measures count 

specific features of a given graph. For a given pair of frequencies f1 and f2, the 

similarity is generally derived by this function: 

 
Which results in a measure of 0 ≤ s ≤ 1, where s=0 is complete exclusion and s=1 is 

identity. The other measures collect sets of properties from the graph (e.g., the 

vertices = concepts or the edges = relations). In this case, the Tversky similarity 

(Tversky, 1977) applies for the given sets A and B: 

 
α and β are weights for the difference quantities which separate A and B. They are 

usually equal (α = β = 0.5) when the sources of data are equal. However, they can be 

used to balance different sources systematically (e.g., comparing a learner model 

which was constructed within five minutes to an expert model, which may be an 

illustration of the result of a conference or of a whole book). 

• Surface (SMD). The surface measure (Ifenthaler, 2006, 2010c) compares the 

number of vertices within two graphs. It is a simple and easy way to calculate 

values for surface complexity. 

• Graphical Matching (SMD). The graphical matching (Ifenthaler, 2006, 

2010c) compares the diameters of the spanning trees of the graphs, which is 

an indicator for the range of conceptual knowledge. It corresponds with 

structural matching as it is also a measure for complexity only. 

• Concept Matching (MITOCAR). Concept matching (Pirnay-Dummer & 

Ifenthaler, 2010) compares the sets of concepts (vertices) within a graph to 

determine the use of terms. This measure is especially important for different 

groups which operate in the same domain (e.g., using the same textbook). It 

determines differences in language use between the models. 
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• Density of Vertices (MITOCAR). The density of vertices (Pirnay-Dummer & 

Ifenthaler, 2010) describes the quotient of terms per vertex within a graph. 

Since both graphs which connect every term with each other term (everything 

with everything) and graphs which only connect pairs of terms can be 

considered weak models, a medium density is expected for most good 

working models. 

• Structural Matching (MITOCAR). The structural matching (Pirnay-Dummer 

& Ifenthaler, 2010) compares the complete structures of two graphs without 

regard to their content. This measure is necessary for all hypotheses which 

make assumptions about general features of structure (e.g., assumptions 

which state that expert knowledge is structured differently from novice 

knowledge). 

• Propositional Matching (SMD). The propositional matching (Ifenthaler, 

2006, 2010c) value compares only fully identical propositions between two 

graphs. It is a good measure for quantifying semantic similarity between two 

graphs.  

• Balanced Semantic Matching. The balanced semantic matching uses both 

concepts and propositions to match the semantic potential between two model 

representations. 

 

 
FIGURE 5.3. Compare function including all six HIMATT core measures 

 

The measures are calculated automatically within seconds and are then displayed as 

pairwise sets including the six core measures described above (see Figure 5.3). 
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Additionally, the researcher can download a spreadsheet containing all measures for 

further statistical analysis. 

Subject environment 

Subjects login to another part of the software – the HIMATT Subject Environment. 

If they are only assigned to one experiment, they will be led directly to that 

experiment. If they are assigned to more than one experiment, they choose from a list 

of assigned experiments. In the experiment all instructions and modules are 

presented as laid out by the researcher in the HIMATT Experiment Management 

function. A final screen with a thank you statement marks the end of an experiment 

for the subject. Re-Login is of course possible if further experiments are available for 

the subject. 
 

FIGURE 5.4. Subject environment with DEEP module 
 

Figure 5.4 illustrates the HIMATT Subject Environment, where the subjects create a 

concept map within the DEEP module. Within this module, the subjects can add 

nodes and links to the concept map and annotate them with additional information.  

HIMATT test quality 

Objectivity 

As with all reactive instruments, all assessment parts of HIMATT measure behavior 

previously induced by an intervention, such as instructions to help the subject create 

a concept map or write a text on a given topic. In HIMATT all parts of an experiment 

are standardized for all subjects. The same holds true for all parts of the analysis and 



	   72 

comparison. Therefore, HIMATT is completely objective as long as experiments are 

carried out in the designed way. 

Reliability 

HIMATT supports an approximate representation of semantic and symbolic 

cognitive structures, such as schemata and mental models. Reliability will always 

depend on the theoretical construct under investigation. For schemata high reliability 

measures should always be expected because the construct is meant to be stable. 

With mental models, it is a different story. Mental models are on-the-fly 

constructions used to explain unexpected or complex phenomena in the outside 

world; they are believed to be discarded by the system after usage and may be 

involved in the construction of a schema if applied frequently and successfully. 

 However, promising reliability indices exist for most of the instruments 

integrated into HIMATT. For the SMD indices the reliability is reported as r = .82 

for surface structure, r = .82 for graphical matching, and r = .90 for propositional 

matching (Ifenthaler, 2006). For MITOCAR indices the retest reliability is reported 

to be between r = .94 (strength of connectedness measures) and r = .79 (contrast 

measures) for the proximity vector leading to the output graph (Pirnay-Dummer, 

2006). As already mentioned for objectivity, the measurements used to construct the 

graph from a text are not dependent on any interpretation. Therefore, reliability 

comes down to the question as to whether one is able to write the same text twice in 

response to the same task. From an experimental point of view, it is as easy to test 

this as it is to test classic items. Finding the right trade-off between memory effects, 

expressivity of language, and uncertainty of outputs which rely on the same 

constructs (e.g., for mental models) is not an easy task and should be handled with 

outmost methodological care. Critics would certainly address the memory problem 

with natural language and issues with learning during assessment while supporters 

would argue in the direction of expressivity and the problem of construct shifts if the 

reasoning processes are too far away from one other. 

Validity 

The comparison indices built into HIMATT using the SMD-MITOCAR 

methodologies address either the structure or the semantics of an assessed construct. 

They can be equally applied to natural language analysis and concept mapping. All 

of the indices make measurements of the graphs. Convergence is expected to be 
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different between the structural and the semantic indices. The correlation matrix 

shows the convergent validity within each area and the divergent validity between 

them. Validity was tested on N = 1,849,926 individual pairwise model comparisons. 

Each pair of models belongs to the same subject domain. 
TABLE 5.2 
HIMATT validity measures 
  BSMatch CMatch PMatch Surface GMatch SMatch Gamma 
BSMatch 1.00             
CMatch 0.71 1.00           
PMatch 0.91 0.68 1.00         
Surface 0.20 0.26 0.18 1.00       
GMatch 0.17 0.21 0.16 0.79 1.00     
SMatch -0.24 0.36 0.53 0.63 0.48 1.00   
Gamma 0.18 0.24 0.15 0.37 0.38 0.08 1.00 

 

Balanced semantic matching (BSMatch), concept matching (CMatch), and 

propositional matching (PMatch) are the semantic indices of HIMATT. Surface 

matching (Surface), graphical matching (GMatch), structural matching (SMatch), 

and gamma are structural indices. All convergent validity measures are reported in 

italics; the others are divergent validity measures (see Table 5.2). High validity 

measures can be reported throughout all of the semantic indices. The three structural 

indices aiming at the complexity (Surface, GMatch) or the full structure (SMatch) of 

the models are also aligned quite well. Gamma, however, is different. It accounts for 

the density of the model rather than for its complexity, which may be a reason why it 

does not correlate very well with the other structural indices. This may be a hint that 

gamma should be treated differently in the future. The surprisingly high correlation 

between propositional matching and structural matching is another interesting point 

to discuss and investigate further. At the moment we do not have a complete 

theoretical explanation for this effect throughout all of the models and investigated 

domains; but since both are more complex indices for addressing either structure or 

semantics, this may point to an interconnectedness between structure and semantics 

which might not be visible on a more cursory level of comparison (Jackendoff, 

1983). 

HIMATT usability 

We applied a usability test which included 26 items (see Appendix A, Table 5.4, for 

a translation of the items) which had to be answered on a Likert scale ranging from 1 

(highly disagree) to 5 (highly agree). Seventy-four students (66 female and 8 male) 
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from the University of Freiburg, Germany, participated in the usability study. Their 

average age was 21.9 years (SD = 2.3). 

 First, an explorative factorial analysis (varimax rotation) was carried out by 

means of selected variables (see Appendix A, Table 5.4). The eight extracted factors 

represent 72.8 % of the variance. The first factor is determined by six items (Nr. 4, 

14, 15, 17, 18, 21). Consequently, the first factor represents colors and screen design 

(Cronbach’s α = .843). The second factor is determined by five items (Nr. 3, 19, 20, 

23, 24) and represents the coherence of the HIMATT software (Cronbach’s α = 

.794). Factor three represents the learnability of HIMATT functions (Cronbach’s α = 

.725) and is determined by four items (Nr. 1, 2, 6, 8). The fourth factor is determined 

by four items (Nr. 7, 9, 10, 22). They represent the reliability and handling of 

HIMATT (Cronbach’s α = .733). The fifth factor is determined by three items (Nr. 5, 

11, 12) and represents the complexity of HIMATT functions (Cronbach’s α = .594). 

Factor six represents the character set of HIMATT (Cronbach’s α = .687), 

determined by two items (Nr. 25, 26). The seventh factor is determined by one item 

(Nr. 16) and represents use of colors for instructions. The eighth and last factor is 

also determined by one item (Nr. 13). It represents directions at the start of 

HIMATT. 

 Secondly, the eight factors were used to investigate the usability of HIMATT. 

Table 5.3 shows the descriptive statistics of the eight factors. 
TABLE 5.3 
Usability test results 
Factor Nr. M SD Min Max 
I 3.42 .64 1 5 
II 4.16 .45 3 5 
III 4.31 .48 3 5 
IV 3.86 .51 2 5 
V 4.23 .39 3 5 
VI 3.99 .56 2 5 
VII 3.51 .57 1 5 
VIII 4.15 .66 2 5 

 

The results of our usability test show that HIMATT and its features are widely 

accepted among the users. Particularly well accepted is the easy learnability of 

HIMATT functions (factor 3). This is also expressed by the high acceptance of 

factors five (complexity of HIMATT functions) and two (coherence of HIMATT). 

The usability test also revealed a high level of acceptance of the instructions at the 

start of HIMATT (factor 8).  
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HIMATT applications 

Basically, with HIMATT it is possible to investigate anything which addresses states 

and changes, analysis and comparison within the methodological boundaries of 

concept mapping, and the annotation of association networks on the basis of different 

kinds of text sources. Both groups and individuals can be assessed within classical 

experimental settings and field applications, for example, in learning and instruction 

or schooling and education. So far, individual tools from HIMATT have been used 

successfully in navigation tracking (Dummer & Ifenthaler, 2005), measurement of 

learning-dependent progression (Ifenthaler, et al., in press; Ifenthaler & Seel, 2005), 

cognitive learning strategies and intellectual abilities (Ifenthaler, et al., 2007), 

research on the quantitative comparison of expertise, reading comprehension 

(Pirnay-Dummer & Ifenthaler, in press), needs assessment, ontology oriented data 

mining, and organizational knowledge management. The comprehensive toolset will 

enable researchers to continue working on all of these research interests. It will also 

be possible to address additional fields due to the combination of the assessment and 

analysis tools. Not only will this make things easier and more integrated but also 

faster since the data will not have to be transferred from one tool to another anymore. 

Future development and directions 

While the current version of HIMATT represents a state-of-the-art assessment tool 

suite. HIMATT features such as arrows that reflect relative weights through thick 

and thin lines, nested diagrams that allow layers of a complex problem to be 

developed, elicited, and explored could be added. A significant direction for future 

development would be to take HIMATT and other sophisticated assessment tools 

and transform them into teaching tools. Since the earliest development of DEEP, 

users have commented that such assessment tools would make excellent teaching 

tools as well. Progress in the design of instruction for complex tasks requires tools 

such as HIMATT. Progress in developing personalized learning systems requires an 

extended version of HIMATT and other tools that can support formative feedback 

and self-regulatory behaviors. Just as science is cumulative, the tools used by 

scientists are cumulative. In this case, perhaps HIMATT represents a contribution to 

the development of cumulative knowledge and tools for both scientists (i.e., 

educational researchers) as well as for practitioners (i.e., teachers and instructional 

designers). 
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Appendix A 

TABLE 5.4 
Original items of the usability questionnaire and corresponding translations 

Item 
Nr. 

Factor 
Nr. 

Item 
load-
ing 

Original item Item translation 

1 III .795 Die Bedienung der Software ist 
leicht erlernbar. 

It is easy to learn how to work with 
the software. 

2 III .449 Ohne Unterstützung sind alle 
Funktionen zu bedienen. 

All functions can be used without 
support. 

3 II .611 Die Navigation innerhalb der 
Software ist mir leicht gefallen. 

I found it easy to navigate through 
the software. 

4 I .512 Optisch ist die Software 
ansprechend gestaltet. 

The design of the software is 
optically appealing. 

5 V .529 
Alle Buchstaben und 
Sonderzeichen erscheinen in 
üblicher Form auf dem Bildschirm. 

All letters and special characters 
appear as they should on the 
screen. 

6 III .403 Die Mausbedienung ist einfach. It is easy to use the mouse with the 
software. 

7 IV .645 Die Tastaturbedienung ist einfach, 
z.B. bei der Steuerung des Cursors. 

It is easy to use the keyboard, e.g., 
to move the cursor. 

8 III .842 Tippfehler können vor Ausführen 
einer Eingabe korrigiert werden. 

Typos can be corrected before 
making an entry. 

9 IV .848 
Die Software reagiert robust und 
informierend auf Bedienungsfehler. 

The software provides reliable and 
informative support in the case of 
operating errors. 

10 IV .459 

Die Software arbeitet fehlerfrei, 
zuverlässig und kontrollierbar, 
auch bei falschen Befehls- oder 
Antworteingaben. 

The software is error-free, reliable, 
and controllable, even when 
incorrect commands or answers are 
entered. 

11 V .556 Der Befehlsumfang für die 
Benutzung ist einfach. 

It is easy to learn the commands 
necessary to operate the software. 

12 V .805 

Befehle, Begriffe und Symbole für 
gleiche Sachverhalte und 
Bedienungsfunktionen werden 
einheitlich verwendet. 

Commands, terms, and symbols for 
the same item or operating function 
are uniform. 

13 VIII .729 
Die Benutzungshinweise, die am 
Anfang gegeben werden, sind klar 
und verständlich. 

The instructions provided at the 
beginning are clear and 
understandable. 

14 I .820 Die Qualität der Farben ist gut, z.B. 
durch klare Kontraste. 

The quality of the colors is good, 
e.g., clear contrast. 

15 I .671 
Durch farbliche Hinweise wird die 
Bedienung der Software erleichtert 
und erklärt. 

The color codes serve to simplify 
and explain the operation of the 
software. 

16 VII .810 
Die Farben zur Verdeutlichung der 
Bedienung werden einheitlich 
eingesetzt. 

The colors used to simplify the 
operation of the software are 
applied uniformly. 

17 I .616 
Die Farbgestaltung trägt sinnvoll 
zur Erleichterung und Erklärung 
der Bedienung der Software bei. 

The colors are a useful aid for 
explaining how to operate the 
software. 

18 I .914 
Insgesamt sind die Farben effektiv, 
sinnvoll und motivierend 
eingesetzt. 

In general, the use of color is 
effective, sensible, and motivating. 
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TABLE 5.4 continued 
Original items of the usability questionnaire and corresponding translations 

Item 
Nr. 

Factor 
Nr. 

Item 
load-
ing 

Original item Item translation 

19 II .793 Der Bildschirmaufbau ist 
übersichtlich und verständlich. 

The screen layout is clear and 
comprehensible. 

20 II .776 Die Textgestaltung ist sinnvoll, 
übersichtlich und gut lesbar. 

The text layout is sensible, clear, 
and easy to read. 

21 I .844 Die Farben sind effektiv, sinnvoll 
und motivierend eingesetzt. 

The use of color is effective, 
sensible, and motivating. 

22 IV .731 Die Anpassungsmöglichkeiten der 
Software sind umfangreich. 

There are many options for 
customizing the software. 

23 II .732 Die Navigation der Software ist 
benutzerfreundlich. 

The navigation of the software is 
user-friendly. 

24 II .444 
Die Qualität der Grafiken ist gut, d. 
h. klare Linien, Formen, Kontraste 
und verständliche Darstellungen. 

The quality of the graphics is good, 
i.e. they have clear lines, forms, 
and contrast and are well designed. 

25 VI .641 
Insgesamt ist die Textgestaltung 
sinnvoll, übersichtlich und gut 
lesbar. 

In general, the text layout is well 
designed and organized and is 
easy to read. 

26 VI .865 

Der Zeichensatz ist in seiner Form 
und Größe geeignet und gut lesbar, 
vor allem unter Berücksichtigung 
der Darstellung am Bildschirm. 

The font is suitable in form and 
size and is easy to read, particularly 
with regard to its appearance on the 
screen. 
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6 
MYSTERY OF COGNITIVE STRUCTURE? & 

Many research studies have clearly demonstrated the importance of cognitive structures as the 
building blocks of meaningful learning and retention of instructional materials. Identifying the 
learners’ cognitive structures will help instructors to organize materials, identify knowledge gaps, and 
relate new materials to existing slots or anchors within the learners’ cognitive structures. The purpose 
of this empirical investigation is to track the development of cognitive structures over time. 
Accordingly, it is demonstrated how various indicators derived from graph theory can be used for a 
precise description and analysis of cognitive structures. Results revealed several patterns that help to 
better understand the construction and development of cognitive structures over time. The chapter 
concludes by identifying applications for learning and instruction and proposing possibilities for the 
further development of the research approach. 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Ifenthaler, D., Masduki, I., & Seel, N. M. (in press). The mystery of 
cognitive structure and how we can detect it. Tracking the development of cognitive structures over 
time. Instructional Science. doi: 10.1007/s11251-009-9097-6 
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Introduction 

Many research studies have clearly demonstrated the importance of cognitive 

structures, which refer to how concepts within a domain are organized and 

interrelated within a person’s mind as the building blocks of meaningful learning and 

retention of instructional materials (Shavelson, 1974; Snow & Lohman, 1989). 

Ausubel (1963) highlighted the importance of this hypothetical construct as the 

principal factor in the accumulation of knowledge: “If existing cognitive structure is 

clear, stable, and suitably organized, it facilitates the learning and retention of new 

subject matter. If it is unstable, ambiguous, disorganized, or chaotically organized; it 

inhibits learning and retention” (p. 217).  

 As pointed out by Jonassen (1987), identifying the learners’ cognitive 

structures will help instructors to organize materials, identify knowledge gaps, and 

relate new materials to existing slots or anchors within the learners’ cognitive 

structures. In the process, misconceptions and preconceptions can also be identified 

and rectified (Seel, 1999a). The diagnosis of cognitive structures can act as a 

“topographic map” to identify key areas of learning difficulties and facilitate 

instructional interventions (Snow, 1989).  

 This approach can lead to the most suitable methods of instruction being 

utilized since different instructional strategies can lead to different cognitive 

structures and therefore to different learning outcomes (Mayer & Greeno, 1972). It 

can also be used to assess the effectiveness of learning by comparing the students’ 

cognitive structures to those of instructors, domain experts, and even to the 

knowledge structures of other outstanding students (Acton, Johnson, & Goldsmith, 

1994; Herl, Baker, & Niemi, 1996; Jonassen, 1987). 

 Numerous researchers have explored techniques for assessing and analyzing 

cognitive structures (Clariana & Wallace, 2007; Ifenthaler, 2006; Jonassen, 1987; 

Kalyuga, 2006a, 2006b; Koubek & Mountjoy, 1991; Pirnay-Dummer, 2006; Preece, 

1976; Young, 1998). Some of these methods, however, can be too time consuming 

and unsuitable as an assessment tool within instructional environments such as a 

classroom or work setting (Kalyuga, 2006b; Spector, et al., 2006). Additionally, 

some of the techniques may have questionable reliability and validity in terms of 

assessment outcomes (Seel, 1999a). 
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 The purpose of this empirical investigation is to track the development of 

cognitive structures over time. Accordingly, it is demonstrated how various 

indicators derived from graph theory can be used for a precise description and 

analysis of cognitive structures. The following section focuses on various definitions 

of cognitive structures. In the next section the perennial question of how to 

accurately diagnose cognitive structures is discussed. Then, the experimental study 

and the results are presented; followed by a discussion of how the research approach 

can be used to assess and analyze cognitive structures in various instructional 

settings. Finally, suggestions for further development of research approach are 

presented. 

Cognitive structure 

 The advent of adaptive learning environments with its emphasis on learners’ 

variable proficiency levels and cognitive preferences places greater urgency on the 

need for reliable and valid methods of diagnosing learners’ cognitive structures 

(Kalyuga, 2006a; Snow, 1990). The term “cognitive structures,” however, has many 

interpretations and since the definition of “cognitive structures” as a construct has 

strong implications on how it will be measured (Shavelson & Stanton, 1975), it is 

imperative that various definitions by researchers be examined for a better 

understanding of the term. 

 Many researchers conceive of cognitive structures, also known as knowledge 

structures or structural knowledge (Jonassen, et al., 1993), as the manner in which an 

individual arranges facts, concepts, propositions, theories, and raw data at any point 

in time (Taber, 2000), or more specifically as “a hypothetical construct referring to 

the organization of the relationships of concepts in memory” (Shavelson, 1972, p. 

226). It is assumed that the order in which information is retrieved from long-term 

memory will reflect in part the individual’s cognitive structure within and between 

concepts. By assessing the structure, even partially, the educator comes closer to 

influencing it in the student’s memory so that it corresponds with the structure of 

instructional materials. In other words, learning requires students to reorganize their 

cognitive structures, which are made up of a collection of ideas in semantic memory 

(Jonassen, 1988). These ideas are also known as “schema” and can be an object, 

event, or proposition with a set of attributes that the individual perceives as being 

associated with the idea. For example, the schema for a pencil can include attributes 
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such as its shape and also its function as a writing tool that occasionally needs 

sharpening. 

 According to Seel (1991) new information can be assimilated by a learner 

through the activation of an existing schema. In other words, an individual utilizes an 

existing schema in order to makes sense of the new information. In instances where 

the new information does not exactly fit into the schema, the schema undergoes 

adjustments by means of accretion, tuning, or reorganization (see Rumelhart & 

Norman, 1978). Accretion is the process of fitting in the new information into the 

existing areas within a schema. Tuning is defined as the process of changing certain 

parts of a schema to accommodate the new information. The outcome of the 

accretion and tuning process is the comprehension of the new information or as 

subjective plausible solutions to a problem. However, if accretion and tuning are 

unsuccessful, or in situations where no schema existed in the first place; new 

information is accommodated by means of the reorganization process. In other 

words, the individual uses the new information to create a new schema. 

  The accommodation process often leads to the development of mental 

models, which are dynamic ad hoc representations of reality to help the individual 

understand or simplify a phenomenon (see Gentner & Stevens, 1983; Johnson-Laird, 

1983; Seel, 1991, 2001). 

 Hence, an individual’s cognitive structure is made up of various schemata and 

mental models that can be embedded within one another within a hierarchy. A 

schema provides a framework that is used to interrelate various components of 

information about a topic into one conceptual unit. A schema is also made up of 

statements about important attributes of the conceptual unit, its purpose, and rules for 

selecting as well as using it (Norman, Gentner, & Stevens, 1976). These concepts are 

all organized within an interrelated network known as a semantic network which 

represents our cognitive structures. Since the schemata in our semantic network are 

interrelated based on various associations, an accepted method for representing such 

networks is through active structural networks (see Quillian, 1968). These structural 

networks are represented by nodes (schemata) and labeled links that connect nodes to 

one another – making it possible to represent what a learner knows through these 

networks.  Learning thus takes place when we create new nodes that are then linked 

to the existing ones and to each other. In other words, new cognitive structures are 

built upon pre-existing structures (Norman, et al., 1976). 
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 Koubek and colleagues (1994; 1991) expanded upon the attributes of 

knowledge structures as “the structure of interrelationships between elements, 

concepts and procedures in a particular domain, organized into a unified body of 

knowledge.” Within a given domain, elements refer to unique units of information 

which can be declarative elements such as concepts or facts; or procedural elements 

pertaining to how to do things within the domain. An individual’s knowledge 

structure is made up of the interrelationships between these elements. In this regard, 

cognitive structures can also be viewed as conceptual knowledge which transcends 

the mere storage of declarative knowledge. It is “an understanding of a concept's 

operational structure within itself and between associated concepts.” Through 

knowledge of the interrelationships between concepts, conceptual knowledge can be 

used to develop procedural knowledge for problem solving purposes within a 

specific domain (Tennyson & Cocchiarella, 1986). 

 Therefore, cognitive structure has major implications for comprehension, 

integration of new information, and the ability to solve domain-specific problems 

(Jonassen, et al., 1993; Shavelson, 1974). When compared to that of a novice, a 

domain expert’s cognitive structure is considered to be more tightly integrated and 

has a greater number of linkages among interrelated concepts. There is thus immense 

interest on the part of researchers to assess a novice’s cognitive structure and 

compare it with an expert’s in order to identify the most appropriate ways to bridge 

the gap. 

Diagnosis of cognitive structures 

Given the relevance of cognitive structures as a construct for assessing knowledge 

organization, assimilation, and accommodation, the perennial question is how to 

accurately diagnose them. Some issues that have yet to be resolved include 

identifying reliable and valid tools to elicit the external representation of such 

internal structures and the actual analysis of the structures themselves (Ifenthaler, 

2008; Jonassen, et al., 1993; Kalyuga, 2006a). However, as it is not possible to 

measure cognitive structures directly, individuals have to elicit or externalize them 

before researchers can analyze and interpret them (see Ifenthaler, 2008). 

Elicitation of cognitive structure 

A variety of techniques have been developed which can be classified as (a) natural 

language and as (b) graphical approaches. Prominent natural language approaches 
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are (1) Thinking Aloud Protocols (e.g., Ericsson & Simon, 1993, 1998), (2) Word 

Association (e.g., Gunstone, 1980; Shavelson, 1972), (3) Structure Formation 

Technique (Scheele & Groeben, 1984), and (4) MITOCAR, which stands for Model 

Inspection Trace of Concepts and Relations (Pirnay-Dummer, 2006). These and 

other natural language-based approaches utilize the most automated and natural 

means by which humans externalize their cognitive structures. They enable the 

verbalization of individual cognitive processes. However, Nisbett and Wilson (1977) 

question the quantification of the collected data and the explicit relation to cognitive 

processes as well validity and reliability of such techniques. On the other hand, it is 

argued that natural language approaches are less biased than graphical approaches, 

because natural language is more trained and highly automated (Pirnay-Dummer, 

2006). However, graphical approaches such as (1) Concept Mapping Tools (Cañas, 

et al., 2004; Nückles, et al., 2004), (2) Test for Causal Diagrams (Al-Diban, 2002), 

(3) DEEP, which stands for Dynamic Evaluation of Enhanced Problem-solving 

(Pirnay-Dummer, et al., 2010; Spector & Koszalka, 2004), and (4) Pathfinder 

(Schvaneveldt, 1990) also provide a sound basis for the elicitation of cognitive 

structures. Undeniably, the application of graphical approaches must always include 

extensive training on how to use these tools. Nevertheless and regardless of the type 

of approach, we claim that tools which are used for the elicitation and analysis of 

cognitive structure must have a strong theoretical foundation and need to be tested 

for reliability and validity accordingly (Ifenthaler, 2010c). 

Tracking changes in cognitive structure 

Equally important are the issues of tracking the progression of cognitive structures, 

which captures the transition of learners from the initial state to the desired state 

(Snow, 1989, 1990); and for repetitive measurements of change over an extended 

period of time for a more accurate diagnosis (Ifenthaler & Seel, 2005; Seel, 1999a). 

Accordingly, research on cognitive structures needs to move beyond the traditional 

two-wave design in order to capture changes more precisely (Spada, 1983; Willett, 

1988). As individuals reinstate and modify their cognitive structures when 

interacting with the environment (Jonassen, et al., 1993; Piaget, 1976; Seel, 1991), 

the necessity of conducting multiwave longitudinal experiments is evident. However, 

the collection and analysis of longitudinal data implicates various methodological 

dilemmas which should not be neglected (see Ifenthaler, 2008; Seel, 1999a). Besides 

general concerns about quantitative studies over time (Collins & Sayer, 2001; 
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Moskowitz & Hershberger, 2002), tracking changes in cognitive structures requires 

valid and reliable assessment techniques, adequate statistical procedures, and specific 

situations which enable the activation of such cognitive structures (Ifenthaler, 2008). 

Measures of analyzing cognitive structure 

As mentioned above, different approaches and tools can be applied to elicit cognitive 

structures. Accordingly, there are also various possibilities to measure cognitive 

structures (Koubek & Mountjoy, 1991). However, available methods are often very 

time consuming and sometimes limited in their ability to precisely measure cognitive 

structures (see Kalyuga, 2006a).  

 Therefore, our measurement technique is computer-based and highly 

automated, which enables us to analyze even larger sets of data within a few seconds. 

The foundation for analyzing cognitive structures is based on indicators derived from 

graph theory (Diestel, 2000; Harary, 1974). Graph theory is a promising approach 

and its fundamentals have been applied in various fields of research and practice, e.g. 

decision making, project management, network problems, etc. (Chartrand, 1977). A 

graph is constructed from a set of vertices whose relationships are represented by 

edges. Basics of graph theory are necessary to describe externalized cognitive 

structures as graphs (Bonato, 1990). 

A graph G(V,E) is composed of vertices V and edges E. If the relationship between 

vertices V is directional, a graph is called a directed graph or digraph D. A graph 

which contains no directions is called an undirected graph.  

The position of vertices V and edges E on a graph G are examined with regard to 

their proximity to one another. Two vertices x, y of G are adjacent if they are joined 

by an edge e. Two edges e≠f are adjacent if they have a common end or vertex x.  

A path P is a graph G where the vertices xi are all distinct. The length of a path P is 

calculated by the number of its edges ej. The vertices x0 and xk are called the ends of 

the path P.  

A graph G is indexed when single vertices V and edges E are distinguished by their 

names or content.  

Every connected graph G contains a spanning tree. A spanning tree is acyclic and 

includes all vertices of G. Spanning trees can be used for numerous descriptions and 

calculations concerning the structure of a graph.  

By describing externalized cognitive structures as graphs, including associated 

vertices and edges, we are able to apply various measures from graph theory to 
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analyze individual cognitive structures and, in addition, to track the development of 

cognitive structures over time (see Table 6.1).  
TABLE 6.1 
Measures for analyzing the organization of cognitive structures 

Measure Operationalization Computation 

Surface 
Structure 

The overall number of propositions 
(node-link-node) is an indicator for 
the development of a cognitive 
structure.  

Computed as the sum of all propositions 
(node-link-node) of a cognitive structure. 
Defined as a value between 0 (no 
proposition) and N (N propositions of the 
cognitive structure). 

Matching 
Structure 

The complexity of a cognitive 
structure indicates how broad the 
understanding of the underlying 
subject matter is. 

Computed as the quantity of edges of the 
shortest path between the most distant 
nodes (diameter) of the spanning tree of a 
cognitive structure. Defined as a value 
between 0 (no edges) and N. 

Connectedness 
A connected cognitive structure 
indicates a deeper understanding of 
the underlying subject matter. 

Computed as the possibility to reach every 
vertex from every other vertex in the 
cognitive structure. Defined as a value 
between 0 (not connected) and 1 
(connected). 

Ruggedness 

Non-linked vertices of a cognitive 
structure point to a lesser 
understanding of the phenomenon in 
question. 

Computed as the sum of subgraphs which 
are independent or not linked. Defined as 
a value between 1 (all vertices are linked) 
and N. 

Average 
degree of 
Vertices 

As the number of incoming and 
outgoing edges grows, the 
complexity of the cognitive structure 
is taken as more complex. 

Computed as the average degree of all 
incoming and outgoing edges of the 
cognitive structure. Defined as a value 
between 0 and N. 

Cyclic A non-cyclic cognitive structure is 
considered less sophisticated. 

A cyclic cognitive structure contains a 
path returning back to the start vertex of 
the starting edge. Defined as a value 
between 0 (no cycles) and 1 (is cyclic). 

Number of 
Cycles 

A cognitive structure with many 
cycles is an indicator for a close 
association of the vertices and edges 
used. 

Computed as the sum of all cycles within 
a cognitive structure. Defined as a value 
between 0 (no cycles) and N. 

Vertices A simple indicator for the size of the 
underlying cognitive structure. 

Computed as the sum of all vertices 
within a cognitive structure. Defined as a 
value between 0 (no vertices) and N. 

Edges A simple indicator for the size of the 
underlying cognitive structure. 

Computed as the sum of all edges within a 
cognitive structure. Defined as a value 
between 0 (no edges) and N. 

 

Table 6.2 provides additional measures for analyzing and comparing the semantic 

content of the cognitive structures. 

 Besides the three core measures (surface structure, graphical structure, 

propositional matching), we implemented the graph theory based measures as 

supplementary indicators into our computer-based analysis tool SMD Technology 

(Surface, Matching, Deep Structure). In an automated iterative process, the SMD 

Technology (Ifenthaler, 2010c) calculates numerical indicators for all measures 

described in Tables 6.1 and 6.2 and stores them in a database.  
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TABLE 6.2 
Measures for analyzing the semantic content of cognitive structures 

Measure Operationalization Computation 

Vertex 
Matching 

The use of semantically correct 
concepts (vertices) is a general 
indicator of an accurate 
understanding of the given subject 
domain. 

Computed as the sum of vertices of a 
cognitive structure which are semantically 
similar to a domain specific reference 
cognitive structure (e.g. expert structure). 
Defined as a value between 0 (no semantic 
similar vertices) and N. 

Propositional 
Structure 

The use of semantically correct 
propositions (vertex-edge-vertex) 
indicates a correct and deeper 
understanding of the given subject 
domain. 

Calculated as the semantic similarity of a 
cognitive structure and a domain specific 
reference cognitive structure. Defined as a 
value between 0 (no similarity) and 1 
(complete similarity). 

 

Additionally, standardized graphical re-representations of the externalized cognitive 

structures are generated. Figures 6.1 and 6.2 show two standardized re-

representations constructed by a participant at time points 1 and 5 of our experiment. 

In the following, we will briefly expound on the above described measures for 

analyzing the organization and semantic content of cognitive structures using the 

examples in Figure 6.1 and 6.2. 

 
FIGURE 6.1. Standardized re-representation of a participant’s cognitive structure at time point 1 
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FIGURE 6.2. Standardized re-representation of a participant’s cognitive structure at time point 5 

 

Table 6.3 shows the calculated measures for quantitatively describing the 

organization and semantic content of the two examples. The surface structure more 

than doubles during the learning process. This is also indicated by the measure 

vertices, which increases from 13 to 29. We conclude that the cognitive structure of 

the participant develops during the learning process. With the help of the measure 

graphical structure, we are able to find out whether the complexity of the cognitive 

structure also increases. In order to calculate the graphical structure of the two 

examples, a spanning tree is generated first. A spanning tree of Figure 6.1 or 6.2 

contains all vertices but no cycles. Then, the diameter of the spanning tree (shortest 

longest path) is calculated. As shown in Table 6.3, the diameter increases from 6 to 9 

in our two examples. Corresponding to this result, the measures connectedness and 

ruggedness give further information about the complexity of the cognitive structure. 

In both cases, the re-representations are connected – every vertex can be reached 

from every other vertex. This means that the participant has a deep understanding of 

the underlying subject matter and is able to connect various concepts (vertices) 

together. Accordingly, the measure ruggedness is 1. If this indicator were greater 
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than 1 it would indicate that the cognitive structure is divided into subsections 

(subgraphs). Thus, a less connected cognitive structure points to a poorer 

understanding of the subject matter. Furthermore, the measures cyclic and number of 

cycles point to an interesting difference between the two examples. The re-

representation in Figure 1 has no cycles; our example in Figure 6.2 has three cycles. 

This means that our participant added more associations of concepts to her cognitive 

structure while studying the subject matter. The average degree of vertices in both 

examples indicates that most concept have an incoming and an outgoing link.  
TABLE 6.3 
Measures calculated for the example re-representations in Figures 1 and 2 

Measure Result Figure 1 Result Figure 2 

Surface Structure 14 31 

Graphical Structure 6 9 

Connectedness 1 1 

Ruggedness 1 1 

Average degree of Vertices 2.11 2.14 

Cyclic 0 1 

Number of Cycles 0 3 

Vertices 13 29 

Vertex Matching 0.12 0.52 

Propositional Matching 0.04 0.19 

 

However, not all organizational indicators include information about the correctness 

of the concepts and links within the re-representation. Our measures vertex and 

propositional matching provide this information about the semantic content. The 

number of semantically correct vertices and propositions (compared to an expert re-

representation) increases during the learning process. Accordingly, not only does the 

organization of the cognitive structure grow more complex, it also becomes more 

correct in comparison with that of an expert. 

Assumptions and hypotheses 

As they are able to automatically describe and analyze large sets of data, we assume 

that these indicators are applicable for tracking the development of externalized 

cognitive structures over time. This leads to the following assumptions and 

hypotheses, which were tested in our experimental study.  
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H1.1: The organization of the externalized cognitive structures changes during the 

learning process.  

H1.0: The organization of the externalized cognitive structures does not change 

during the learning process.  

H2.1a: The numbers of semantic correct vertices of the externalized cognitive 

structures become more similar to the expert structure during the learning process. 

H2.0a: The numbers of semantic correct vertices of the externalized cognitive 

structures have no or only little similarity to the expert structure. 

H2.1b: The numbers of semantic correct propositions of the externalized cognitive 

structures become more similar to the expert structure during the learning process. 

H2.0b: The numbers of semantic correct propositions of the externalized cognitive 

structures have no or only little similarity to the expert structure. 

H3.1: The development of the organization of the externalized cognitive structures 

influences the course learning outcomes.  

H3.0: The development of the organization of the externalized cognitive structures has 

no or only little influence on the course learning outcomes. 

 

The (a) organization and (b) semantic nature of the cognitive structures changes 

during the learning process. Further, we assume (c) a correlation between the course 

learning outcome and the organization / semantics of the externalized cognitive 

structures. 

Method 

Participants 

Twenty-five students (18 female and 7 male) from the University of Freiburg, 

Germany, participated in the study. Their average age was 24.7 years (SD = 1.9). All 

students attended an introductory course on research methods in the winter semester 

2007. A total of 125 concept maps were collected at 5 measurement points during the 

semester. 

Procedure 

Data were collected through concept maps using the software CmapTools (Cañas, et 

al., 2004). According to Novak (1998), a concept map is a graphical two-dimensional 

representation of communicated knowledge and its underlying structure. A concept 
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map consists of concepts (graph theory: vertices) and relations (graph theory: edges). 

Research studies on the application of CmapTools indicate a wide acceptance of our 

theoretical assumptions on using this software (e.g. Coffey, et al., 2003; 

Derbentseva, Safayeni, & Cañas, 2004). Since our research study focuses on the 

development of cognitive structures, our longitudinal procedure included five 

measurement points. The main parts of our study were as follows: 

In a 60 minute introductory lesson, the subjects were introduced to the concept 

mapping technique and taught how to use the CmapTools software. Additionally, the 

instructor collected demographic data and delivered documentation on concept maps 

and the software, including examples. 

At five measurement points (MP, see Figure 3) during the course on research 

methods, the subjects were asked to create an open concept map relating to her or his 

understanding of research skills. Every subject needed to upload the concept map at 

a specified date and time during the course. 

The course learning outcome was measured through (1) five written assignments, (2) 

a written exam, and (3) a written research proposal. The score of the course learning 

outcome was rated between 0 and 100 points (Spearman-Brown-Coefficient, r = 

.902). 

 

 
FIGURE 6.3. Longitudinal research design 

 

After uploading the concept maps, the instructor gave the students a brief feedback to 

notify them that their maps had been successfully uploaded and that they should 

carry on with their studies in the course. As we used open concept maps in our 

research study, the subjects were not limited to specific words while annotating the 

concepts and relations. 

Analysis procedure 

Using the export function of CmapTools, we were able to store the subjects’ concept 

maps pairwise (as propositions) in a raw data table, including the (a) subject number, 
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(b) measurement point, (c) vertex 1, (d) vertex 2, and (e) edge connecting the two 

vertices. Having the raw data at hand, we uploaded all information onto the SQL 

database of our own SMD Technology (Ifenthaler, 2010c). We used the computer-

based analysis tool SMD Technology to calculate the above described graph theory 

based measures. Accordingly, the automated analysis process provides 11 indicators 

(see Table 1) for each subject representation. The SMD Technology has been tested 

extensively for reliability (e.g., test-retest reliability for rsurface = .824*; rgraphical = 

.815*; rpropositional = 901*) and validity (convergent and divergent validity 

rsurfaceXmitocar = .610**; rgraphicalXmitocar = .527**).  

 However, the statistical analysis of such longitudinal data requires a 

sharpened awareness of the problems involved in the measurement of change (e.g., 

Collins & Sayer, 2001; Harris, 1963; Ifenthaler, 2008). Accordingly, besides 

standard statistical procedures, we used HLM (Hierarchical Linear Models), which 

offers a wide spectrum of data analysis for longitudinal data (Raudenbush & Bryk, 

2002). The HLM analysis is realized in two analysis steps. The first growth model 

(Level 1; equation 1.1) tests the intraindividual change of the dependent variables. 

 
[1.1] 

	  
The second growth model (Level 2; equation 1.2) tests for possible effects of 

additional variables (e.g., student performance). 

 

 

[1.2] 

 

 

Results 

Our in-depth analysis of N=125 cognitive structures (5 re-representation of each of 

the 25 participants) revealed several patterns that helped us to better understand the 

construction and development of these constructs over time. To describe our results, 

we will first present descriptive results and corresponding figures (see Figures 6.4 

and 6.5). We will then show the outcomes of our HLM and correlation analysis.  
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Descriptive analysis 

The average course learning outcome of all subjects was M=84.68 (SD=10.53, 

Min=46, Max=96). The results of our cognitive structure measures (organization and 

semantic content) are described in Tables 6.4 and 6.5. 

  The sum of propositions (Surface Structure) increases throughout the five 

measurement points (Min=1, Max=247). Equally, the sum of vertices increases from 

MP1 to MP5. A total of n=57 (45.6 %) cognitive structures were fully connected (the 

possibility to reach every vertex from every other vertex). However, the average 

number of sub graphs (Ruggedness) nearly doubled from MP1 (Min=1, Max=3) to 

MP5 (Min=1, Max=8). 
TABLE 6.4 
Average scores (standard deviations in parenthesis) of graph theory based measures 
(organization) for measurement points 1 – 5 (N=25)  
  MP1 MP2 MP3 MP4 MP5 

Surface Structure M  
(SD) 

14.64 
(7.99) 

27.34 
(14.13) 

45.84 
(23.85) 

67.72 
(48.94) 

71.80 
(46.71) 

Graphical Structure M  
(SD) 

5.52 
(2.83) 

7.62 
(3.57) 

9.48 
(3.42) 

12.08 
(4.91) 

11.72 
(4.19) 

Connectedness M  
(SD) 

.68    
(.48) 

.80    
(.41) 

.44    
(.51) 

.44    
(.51) 

.36    
(.49) 

Ruggedness M  
(SD) 

1.44  
(.71) 

1.32   
(.74) 

2.12 
(1.42) 

2.28 
(1.49) 

2.72 
(2.01) 

Average Degree of Vertices M  
(SD) 

1.93  
(.43) 

2.06  
(.53) 

2.12  
(.39) 

2.11  
(.24) 

2.09  
(.26) 

Number of Cycles M  
(SD) 

2.52 
(2.37) 

3.38 
(2.59) 

4.12 
(2.68) 

4.76 
(3.95) 

4.48 
(3.00) 

Number of Vertices M  
(SD) 

14.40 
(6.69) 

24.65 
(11.76) 

42.24 
(22.60) 

63.96 
(45.85) 

68.16 
(44.33) 

 

Additionally, the increase in complexity of the cognitive structures is described by 

the Graphical Structure (Min=1, Max=24) and the Degree of Vertices (Min=1, 

Max=3.44). 76.8 % (n= 96) of all cognitive structures contained a cycle (a path 

returning back to the start vertex of the starting edge). We found also an increase in 

the average number of cycles from MP1 (Min=0, Max=8) to MP5 (Min=0, Max=12).  
TABLE 6.5 
Average scores (standard deviations in parenthesis) of graph theory based measures 
(semantic content ) for measurement points 1 – 5 (N=25)  
  MP1 MP2 MP3 MP4 MP5 

Vertex Matching M 7.00 
(3.97) 

12.76 
(6.11) 

17.16 
(7.33) 

21.00 
(8.12) 

21.24 
(8.19) 

Propositional Matching M .0099 
(.0186) 

.0288 
(.0363) 

.0247 
(.0316) 

.0379 
(.0370) 

.0383 
(.0399) 
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FIGURE 6.4. Development of cognitive structures over time 

 

The Vertex Matching (semantically similar vertices) increases throughout the five 

measurement points (Min=0, Max=34). The Propositional Matching, which 

describes the semantically similar propositions between an individual cognitive 

structure and an expert representation, also increases, but the overall similarity to the 

expert representation is rather low. 
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FIGURE 6.5. Development of cognitive structures over time 

HLM analysis 

To test our hypothesis we computed several HLM analyses. According to Hox 

(2002), the sample size of our study is just adequate. However, in order to validate 

our initial findings we suggest further studies with larger sample size. The results of 

our Level-1 HLM analysis (intraindividual change of cognitive structures over time) 

are described in Tables 6.6 and 6.7. The Mean Initial Status π0i indicates that all 

corresponding measures are significantly higher than 0. Although this is a rather 

trivial effect (see Renkl & Gruber, 1995), we think it is useful to examine all  HLM 

results. Except for Average Degree of Vertices, all other measures reveal a 

significant positive linear Mean Growth Rate π1i per measurement point (e.g. Surface 

Structure = 15.36). 

 Therefore, we accept H1.1: The organization (Surface Structure, Graphical 

Structure, Ruggedness, Number of Cycles, and Number of Vertices) of the 

externalized cognitive structures changes during the learning process, except for the 

measure Average Degree of Vertices. The Average Degree of Vertices indicates the 
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average number of incoming and outgoing edges. Accordingly, as most of the 

externalized cognitive structures are very broad and do not center in one vertex, each 

vertex takes two edges in average (see Table 6.4). This does not change during the 

learning process, as the subject domain (research skills) does not change and does 

not seem to be organized around one central vertex.  

 Likewise, our HLM analysis revealed a significant positive linear Mean 

Growth Rate π1i per measurement point for the measure Vertex Matching (3.67). This 

means that the subjects used more and more correct concepts (vertices) compared to 

the expert cognitive structure.  
TABLE 6.6 
Level-1 linear growth models of cognitive structures (organizational measures) 
  Coefficient SE t df p 

Mean Initial 
Status π0i 

14.95 1.95 7.64 24 <.001 
Surface Structure Mean Growth 

Rate π1i 
15.36 2.72 5.65 123 <.001 

Mean Initial 
Status π0i 

6.02 0.49 12.09 24 <.001 
Graphiical Structure Mean Growth 

Rate π1i 
1.66 0.29 5.62 123 <.001 

Mean Initial 
Status π0i 

1.27 0.11 11.48 24 <.001 
Ruggedness Mean Growth 

Rate π1i 
0.35 0.11 3.32 123 .002 

Mean Initial 
Status π0i 

2.01 0.08 24.19 24 <.001 Average Degree of 
Vertices Mean Growth 

Rate π1i 
0.03 0.03 1.32 123 .189 

Mean Initial 
Status π0i 

2.85 0.44 6.49 24 <.001 
Number of Cycles Mean Growth 

Rate π1i 
0.52 0.19 2.69 123 .008 

Mean Initial 
Status π0i 

13.68 1.79 7.65 24 <.001 
Number of Vertices Mean Growth 

Rate π1i 
14.59 2.63 5.56 123 <.001 

 

Therefore, we accept H2.1a: The numbers of semantic correct vertices of the 

externalized cognitive structures become more similar to the expert structure during 

the learning process. 
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TABLE 6.7 
Level-1 linear growth models of cognitive structures (semantic measures) 
  Coefficient SE t df p 

Mean Initial 
Status π0i 

8.49 0.85 9.94 24 <.001 
Vertex Matching Mean Growth 

Rate π1i 
3.67 0.41 8.99 123 <.001 

Mean Initial 
Status π0i 

0.0317 0.0056 5.63 24 <.001 Propositional 
Matching Mean Growth 

Rate π1i 
-0.0019 0.0016 -1.15 123 0.253 

 

Contrary to our expectations, we found no significant growth (Mean Growth Rate 

π1i) for the semantic measures Propositional Matching (see Table 6.7). The cognitive 

structures became only slightly more similar to the expert structure during the five 

measurement points. 

 Therefore, H2.1b had to be rejected in favor of H2.0b: The numbers of semantic 

correct propositions of the externalized cognitive structures had no or only little 

semantic similarity with the expert structure. 

 For all graph theory based measures, we computed a Level-2 HLM analysis 

for the predictor learning (course learning outcome; median split: 0 = low learning 

outcome, 1 = high learning outcome). We found no significant difference between 

subjects with low learning outcomes and high learning outcomes in an analysis of the 

development of their cognitive structures using the graph theory based measures. The 

general Level-2 equation results through substitution as follows (e.g., Surface 

Structure): 

 
[1.3] 

The Surface Structure of subjects with low learning outcomes scores an average of 

11.98. Subjects with high learning outcomes score an average of 18.16 (11.98+6.18). 

However, this difference is not significant. Additionally, the Surface Structure of 

subjects with low learning outcomes increases significantly by 13.00 per 

measurement points. However, the higher increase of the Surface Structure of 

subjects with higher learning outcomes by 17.93 (13.00+4.93) is not significantly 

different from that of the subjects with lower learning outcomes. Details for all graph 

theory based measures of the Level-2 HLM analysis are reported in Appendix A 

(Tables 6.9 and 6.10). Therefore, H3.1 had to be rejected in favor of H3.0: The 

development of the organization of the externalized cognitive structures has no or 

only little influence on the course learning outcomes. 
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Correlational analysis 

Table 6.8 shows the correlations for the course learning outcomes and the 

characteristics of the cognitive structures at the fifth measurement point. We found 

no significant correlation between the measures surface structure, graphical 

structure, connectedness, ruggedness, number of vertices, and propositional 

matching. However, the higher the learners’ course learning outcome was, the higher 

was the average degree of vertices, r = .58, p = .002. Equally, the higher the course 

learning outcome was, the higher were the number of cycles measured in the 

cognitive structures, r = .51, p = .009. 

 Additionally, our analysis revealed a significant correlation between the 

course learning outcomes and the measure vertex matching, r = .41, p = .038 (i.e., the 

higher the course learning outcome was, the higher was the number of similar 

vertices between the subject and expert externalization). 
TABLE 6.8 
Pearson’s correlations between cognitive structure (organization and semantic content) 
characteristics (MP 5) and course learning outcomes (N=25) 
 r p 
Surface Structure .22 .291 

Graphical Structure .31 .127 

Connectedness .31 .137 

Ruggedness -.34 .102 

Average Degree of Vertices .58** .002 

Number of Cycles .51** .009 

Number of Vertices .16 .438 
Vertex Matching .42* .038 
Propositional Matching .23 .270 

Note: * p < .05; ** p < .01 

Discussion 

The aim of this study was to diagnose the development of cognitive structures over 

time. For this purpose, we applied different measures derived from graph theory to 

precisely score the changes in the externalized cognitive structures.  

 According to the subjects, the software CmapTools applied to externalize the 

cognitive structures was user-friendly and motivated them to continue using it. 

Additionally, the export function of CmapTools enabled us to automatically include 

all assessed individual cognitive structures in our SQL database. Therefore, we 

conclude that the data transformation process from the CmapTools to our analysis 

database has a very high reliability. 
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 Contrary to other non-automated and time-consuming techniques for scoring 

open-ended concept maps (e.g., Al-Diban, 2002), our automated analysis procedure 

is expeditious and computes the different measures within seconds. As shown in 

previous experiments, the core measures of the SMD Technology have a high 

reliability and validity (see Ifenthaler, 2006, 2010c). The additionally implemented 

graph theory based measures allow us to more precisely diagnose changes in the 

externalized cognitive structures.  

 The in-depth analysis of all 125 cognitive structures revealed several patterns 

that help us to better understand their construction and development during learning 

processes. We distinguish between two types of measures: The (1) organizational 

measures (Surface Structure, Graphical Structure, Ruggedness, Number of Cycles, 

and Number of Vertices) help us to exactly locate changes in the composition of the 

externalized cognitive structure. On the other hand, the (2) semantic measures 

(Vertex Matching, Propositional Matching) indicate whether the content of the 

vertices and propositions used by an individual is correct compared to an expert’s 

cognitive structure. 

 The result of our HLM analysis revealed a significant growth in the 

organizational measures between measurement points one and five. The overall size 

of the cognitive structures (Surface Structure) increased many times over. 

Accordingly, this is an indicator for an accommodation process (see Piaget, 1976; 

Seel, 1991), i.e. the individuals continuously added new concepts (Number of 

Vertices) and links between concepts (Surface Structure) to their cognitive structures 

while learning. As a consequence, the complexity of the externalized cognitive 

structures also increased, which is indicated by the growth of the measure Graphical 

Structure and Number of Cycles. Therefore, we conclude that while learning and 

understanding more and more of a given subject matter, individuals are able to more 

tightly integrate single concepts and links. However, we also found a significant 

growth in the measure Ruggedness (i.e., non-linked concepts within the entire 

cognitive structure). The significant decrease in the measure Connectedness supports 

this result. This indicates that newly learned concepts are not immediately integrated 

into the cognitive structure. This delay of integrating concepts into the cognitive 

structure should be kept in mind when constructing instructional materials and 

learning environments. We also suggest analyzing this phenomenon in a future study 

more precisely. 
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 Contrary to the results of the organizational measures, our HLM analysis 

revealed only a significant growth in the semantic measure Vertex Matching. The 

individuals use more and more semantic correct concepts (vertices) during the 

learning process. As individuals become more familiar with the terminology of the 

subject domain (in our study research methods), they use these concepts more 

frequently. This learning process enables individuals to communicate their cognitive 

structures more precisely and more expert like. To reaffirm our assumptions, we also 

found a significant positive correlation between the course learning outcomes and the 

number of semantically correct concepts (Vertex Matching).  

 However, we found no significant growth in the semantic measure 

Propositional Matching. This result indicates that the individuals in our experiment 

were far from using the same proposition for describing the phenomenon in question. 

Nevertheless, the semantic analysis of cognitive structures is still a challenging 

endeavor. Therefore, we suggest improving the validity of the semantic measures 

using other heuristics (e.g., Pirnay-Dummer, et al., 2010). 

 Besides the quantitative measures, our own SMD Technology generates 

standardized graphical re-representations of all assessed cognitive structures as well 

as similarity and contrast re-representations. A similarity re-representation includes 

only the semantically correct concepts (vertices) and links (edges). On the other 

hand, the contrast re-representation includes all concepts (vertices) and links (edges) 

which are semantically incorrect (Ifenthaler, 2010c).  

 The quantitative measures and graphical re-representations generated by SMD 

Technology have various potential applications within a learning environment, such 

as knowledge diagnosis, self-assessments, rich feedback, prediction of performance 

on tasks, and knowledge sharing. 

 In order to provide effective instruction, it is important for students’ prior 

knowledge to be identified since the subsequent construction and organization of 

knowledge structures as well as mental models in a particular situation depends on 

the students’ preconceptions and naïve theories (Seel, 1999a). Knowing where the 

students are in terms of their initial cognitive states and the eventual progression of 

learning enables the teacher to make adjustments at the right time to enhance 

instructional effectiveness (Ifenthaler & Seel, 2005) or to make necessary changes to 

the instructional materials as part of a formative feedback process (Shute & Zapata-

Rivera, 2008). 
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 Automated knowledge diagnosis can also play an important role in an 

adaptive learning environment or intelligent tutoring systems (ITS) by integrating 

student performance data (using the abovementioned quantitative measures or 

graphical re-representations) into the student model of an ITS, thus enabling the 

system to tailor instructions to students’ individual needs. The system could identify 

gaps or discrepancies between the students’ and the experts’ re-representations; then 

provide the appropriate instructional content to overcome the deficiencies. 

 Another advantage of knowledge diagnosis is in relation to the possibility of 

self-assessment within an adaptive learning system (Ifenthaler, 2010c). The various 

quantitative indicators provide immediate information in terms of the range and 

complexity of the students’ knowledge structures. Then by comparing their 

structures to an expert or other students’, learners can make judgments about their 

own learning progress and identify areas of self-improvement. The immediacy of 

such comparisons can increase motivation by suggesting a course of action for the 

learners as well as the provision of constructive feedback (see Ifenthaler, 2009). 

 If the assessment of knowledge is carefully synchronized with specific tasks 

to be performed by the students, the SMD Technology can also be applied to provide 

detailed and individualized feedback for the execution of those tasks (Ifenthaler, 

2010c). This would be more helpful for student performance compared to a general 

feedback indicating success or failure since the teacher or the computer system can 

not only point out the errors but also provide suggestions on how to correct them 

(Shute & Zapata-Rivera, 2008). 

 Additionally, a person’s performance on a cognitive-oriented task can be 

predicted based on the characteristics of his or her knowledge structure (Koubek & 

Mountjoy, 1991). For example, a student with more complex knowledge structures 

may be ready for (and thus perform better) in higher-level problem solving tasks 

involving abstract domain-specific content, compared to a student whose knowledge 

structure is simpler. This can help the teacher or learning system allocate the 

appropriate level of assignment or the grouping of students as team members 

according to similar abilities. 

 In relation to team dynamics, the quantitative indicators and graphical re-

representations could also be used to facilitate knowledge sharing among team 

members (Ifenthaler, 2010c). Team understanding for the completion of a task could 

be compared with each individual’s understanding, thus differences can be identified 
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and the task completed in an effective manner. SMD Technology outputs can also be 

used to identify tacit knowledge that exist within individuals so that it can then be 

communicated and integrated into the team knowledge structures. Such an 

application is especially useful when you have new group members who need to get 

up to speed quickly within team projects. 

 In summary, a precise and stepwise diagnosis of cognitive structures helps us 

to better understand the differences within and between individuals as they develop 

over time. This will enable us to identify the most appropriate instructional materials 

and instructor feedback to be provided at suitable times during the learning process. 

We also suggest diagnosis of developing cognitive structures in different subject 

domains in order to detect variations in terms of how cognitive structures develop 

between different content areas. 

Conclusion and Future Work 

Our future work will involve validating our results in various subject domains and 

larger sample sizes. The core measures and the newly developed graph theory based 

measures of the SMD Technology will be further developed and implemented as a 

standard analysis tool for web applications. We will mainly concentrate on 

developing a new alternative for analyzing the semantic content of the externalized 

cognitive structures. Additionally, we are highly motivated to combine our tool with 

other existing analysis techniques in order to increase the reliability and validity of 

the diagnosis of changing cognitive structures. 
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Appendix A 

TABLE 6.9 
Level-2 linear growth models of cognitive structures (organization) and course learning outcomes 
  Coefficient SE t df p 

Mean Initial 
Status π0i 

11.98 1.54 7.77 23 <.001 

learning 6.18 3.82 1.62 23 0.119 
Mean Growth 
Rate π1i 

13.00 2.49 5.21 23 <.001 

Surface 
Structure 

learning 4.93 5.47 0.90 23 0.378 
Mean Initial 
Status π0i 

5.28 0.53 9.82 23 <.001 

learning 1.54 0.96 1.61 23 0.122 
Mean Growth 
Rate π1i 

1.76 0.41 4.28 23 <.001 

Graphical 
Structure 

learning -0.21 0.59 -0.36 23 0.723 
Mean Initial 
Status π0i 

1.48 0.15 10.17 23 <.001 

learning -0.43 0.20 -2.09 23 0.048 
Mean Growth 
Rate π1i 

0.29 0.14 2.04 23 0.053 
Ruggedness 

learning 0.12 0.21 0.59 23 0.562 
Mean Initial 
Status π0i 

1.79 0.09 18.00 23 <.001 

learning 0.46 0.14 3.29 23 0.004 
Mean Growth 
Rate π1i 

0.07 0.03 2.43 23 0.023 

Average Degree 
of Vertices 

learning -0.07 0.05 -1.48 23 0.153 
Mean Initial 
Status π0i 

1.68 0.54 3.12 23 0.005 

learning 2.44 0.73 3.36 23 0.003 
Mean Growth 
Rate π1i 

0.77 0.28 2.77 23 0.011 

Number of 
Cycles 

learning -0.53 0.37 -1.44 23 0.162 
Mean Initial 
Status π0i 

12.35 1.23 10.09 23 <.001 

learning 2.76 3.65 0.76 23 0.456 
Mean Growth 
Rate π1i 

12.42 2.25 5.51 23 <.001 

Number of 
Vertices 

learning 4.53 5.31 0.86 23 0.402 
 

TABLE 6.10 
Level-2 linear growth models of cognitive structures (semantics) and course learning outcomes 
  Coefficient SE t df p 

Mean Initial 
Status π0i 

6.89 0.89 7.75 23 <.001 

learning 3.32 1.59 2.08 23 0.048 
Mean Growth 
Rate π1i 

3.84 0.63 6.07 23 <.001 

Vertex 
Matching 

learning -0.36 0.81 -0.45 23 0.656 
Mean Initial 
Status π0i 

0.0291 0.0082 3.52 23 0.002 

learning 0.0053 0.0111 0.48 23 0.635 
Mean Growth 
Rate π1i 

-0.0023 0.0023 -1.01 23 0.323 

Propositional 
Matching 

learning 0.0011 0.0032 0.33 23 0.741 
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7 
BETWEEN-DOMAIN DISTINGUISHING FEATURES 

OF COGNITIVE STRUCTURE &  

This research aims to identify domain-specific similarities and differences of externalized cognitive 
structures. Cognitive structure, also known as knowledge structure or structural knowledge, is 
conceived as the manner in which an individual organizes the relationships of concepts in memory. 
By diagnosing these structures precisely, even partially, the educator comes closer to influencing them 
through instructional settings and materials. The assessment and analysis of cognitive structures is 
realized within the HIMATT tool, which automatically generates four quantitative indicators for the 
structural entities of written text or causal maps. Participants worked on the subject domains biology, 
history, and mathematics. Results clearly indicate different structural and semantic features across the 
three subject domains.  
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Ifenthaler, D. (accepted). Identifying between-domain distinguishing 
features of cognitive structures. Educational Technology Research and Development. 
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Introduction 

Knowledge representation is a key concept in psychological and educational 

diagnostics. Existing models for describing the fundamentals of knowledge 

representation are multifaceted. The distinction which has received the most critical 

attention is that between declarative (“knowing that”) and procedural (“knowing 

how”) forms of knowledge (see Anderson, 1983; Ryle, 1949). Closely associated 

with these concepts is the term cognitive structure, also known as knowledge 

structure or structural knowledge (Jonassen, et al., 1993). It refers to the manner in 

which an individual organizes the relationships between concepts in memory 

(Shavelson, 1972). Hence, an individual’s cognitive structure is made up of the 

interrelationships between concepts or facts and procedural elements. Furthermore, it 

is argued that the order in which information is retrieved from long-term memory 

and externalized will reflect in part the individual’s cognitive structure within and 

between concepts or domains (e.g., Strasser, 2010). Researchers and educators thus 

have immense interest in assessing and analyzing cognitive structures and comparing 

them with others in order to identify the most appropriate ways to facilitate learning 

and problem solving (Ifenthaler, et al., in press). By diagnosing cognitive structure 

precisely, or even partially, the educator can come closer to influencing it through 

instruction. It will help to organize materials, identify knowledge gaps as well as 

misconceptions, and relate new materials to existing slots or anchors within the 

learners’ cognitive structures (Jonassen, 1987). 

 Characteristics of cognitive structures have been researched and described for 

various subject domains. The majority of this research is concerned with domains in 

the natural sciences, e.g., physics (Chi, Glaser, & Rees, 1982) and biology (Baird & 

White, 1982). Other empirical studies have focused on within-domain specific 

features and the learning-dependent development of cognitive structure (e.g., 

Clariana & Wallace, 2007; Ifenthaler, et al., in press; Koubek, et al., 1994). 

However, as interdisciplinary learning and teaching is becoming more important 

(e.g., Nikitina, 2005), a comprehensive understanding of cognitive structures across 

different subject domains is inevitable. 

 In this chapter, an empirical study in which similarities and differences in 

externalized cognitive structure across three domains is reported: biology, history, 
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and mathematics. It is also intended to show an automated, reliable, and valid 

measurement technique that would make this identification possible. 

Background 

Researchers in the field of cognitive and developmental psychology have proposed a 

logic-based universal cognitive structure (e.g., Johnson-Laird & Byrne, 1991; Rips, 

1994), and there is hardly any doubt that the concept of cognitive structure is 

applicable to every domain of knowledge (Jonassen, et al., 1993). In addition, 

educational researchers have described the characteristics of cognitive structure for 

different domains, e.g. physics (Chi, et al., 1982) or biology (Baird & White, 1982). 

During the 1980s and 1990s, educational and cognitive psychology focused on 

domain specificity within cognitive structure. The objective was to identify the 

meaning or impact of different knowledge structures for specific domains of 

knowledge. Ennis (1989, 1990) and McPeck (1990) debated on and described 

domain specificity in their discussion on critical thinking. As a result, three 

principles of domain specificity have been developed: (1) It needs prior knowledge, 

(2) it cannot be transferred to other domains without explicit instructions focusing on 

transfer, and (3) it cannot be deduced from general critical thinking instructions. 

These principles constitute the foundation for ongoing research on domain specificity 

of cognitive structure.  

 Based on the above-described assumptions, many studies published in the 

past decades have focused on domain-specific knowledge, prior knowledge, and the 

structure of knowledge in various fields, such as physics (Clement, 1981; Moeira, 

1983), chemistry (Taber, 1995), science in general (Bliss, 1996; Watts, 1988), logic 

(Chase & Simon, 1973), and the social sciences (Voss, Greece, Post, & Penner, 

1983). Other studies have indentified the development of cross-domain scientific 

reasoning processes (Kuhn, Schauble, & Garcia-Mila, 1992), complex mathematical 

problem solving (Vye, Goldman, Voss, Hmelo, & Williams, 1997), and text 

processing in history (Wolfe & Goldman, 2005). However, our extensive literature 

review shows that previous studies focused primarily on knowledge structures in 

specific domains.  

 Furthermore, many insights about the nature of cognitive structure in 

different domains are influenced by research on expertise (e.g., Chi, Feltovich, & 

Glaser, 1981). Here, the objective is to identify the essential differences in cognitive 
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structures between novices and experts in a specific domain (Gruber & Ziegler, 

1996). Some approaches see expertise as being caused by giftedness (Sternberg, 

1993), others see it as a general, learnable phenomenon (Glaser, 1999). However, 

there is general agreement on the point that expertise is usually restricted to one 

domain (e.g., Gruber, 1994). This is mainly explained by the large amount of time a 

person needs to become an expert (Gruber, 1994). Empirical results show that a well-

organized cognitive structure is an essential factor for expertise (Gruber, 1994). 

Moreover, experts recognize meaningful patterns and relevant information for a 

problem faster than novices and spend a lot more time representing the core problem. 

Another characteristic is fast information processing, which can be explained by 

multifaceted elaboration supported by experience (Gruber & Ziegler, 1996). 

Accordingly, these findings confirm the assumption that cognitive structure may be 

context bound. 

 In contrast, interdisciplinary learning and teaching is widely discussed and 

claimed (e.g., Holley, 2009; Woods, 2007). Still, we were not able to identify 

empirical studies that compared cognitive structure across different subject domains. 

Therefore, our current research goes beyond the focus on cognitive structure within a 

single domain. More specifically, we aim to identify similarities and differences in 

externalized cognitive structure between three distinct subject domains: biology, 

history, and mathematics. These three domains represent different types of domains. 

History is regarded as ‘soft’ domain that lacks a central body of theory (Biglan, 

1973). On the other hand, mathematics is regarded as ‘hard’ domain with a central 

body of theory (Biglan, 1973). Biology can be classified in between the hard and soft 

domains. Additionally, these three subject domains were chosen due to their different 

instructional methods and because they are taught in nearly every grade. In the 

following sections we discuss unique features of these three domains and suggest 

possible cross-domain distinguishing features. 

Biology 

Biology, a natural science, is concerned with the study of life and includes 

interdisciplinary fields such as zoology, botany, physiology, medicine, and 

psychology (Nason & Goldstein, 1969). The scientific methods used in biology are 

multifaceted, including physical, mathematical, sociological, and psychological 

techniques. Empirical research on learning in biology has dealt with motivation, and 

interest as well as cognitive structure (Baalmann, 1997; Bayrhuber, 2001; Mintzes, 
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Yen, & Barney, 2008). Findings show that wide generalization of facts in biology 

has negative effects on highly elaborated knowledge structure (Eschenhagen, 

Kattmann, & Rodi, 2008). Additionally, knowledge in biology has strong 

correlations with the specific attitudes and interests of learners (Trumper, 2006).  

 Thompson and Mintzes (2002) showed that affective learning and teaching 

objectives are very important for biology education. This is evident in the large 

amount of topics involving ethical issues, like sexuality, the natural environment, and 

health education (Eschenhagen, et al., 2008). Domain-dependent learning objectives 

include issues involving plants, animals, and human beings, e.g., the variety of 

ecosystems, changes in populations, ecological sequencing, and interactions between 

the climate and living organisms (Tamir & Jungwirth, 1972). Additionally, basic 

concepts and techniques of the natural sciences are also elements in biology 

education. Hence, biology instruction focuses on transferring already existing 

(preschool) prior and general knowledge to a scientifically correct hierarchical order 

and specifying it during the learning process. In summary, knowledge structure in 

biology can be characterized as hierarchical, well-connected, but not very fine-

grained. 

History  

Methodologically speaking, history moved from pure descriptive historicism to a 

social science perspective to meet the requirements of modern society (Iggers, 1996). 

Empirical studies in history learning focus on the analysis of attitudes and affective 

dispositions towards specific events or people, e.g.: “Who is responsible for WWII?” 

(Hasberg, 2001). However, empirical research on cognitive structure in history is 

rare (von Borries, 2001). The few existing empirical investigations concerned with 

cognitive structure are limited to qualitative methods (Mirow, 1991; Pape, 2006). 

According to Mirow (1991), cognitive structure in history consists of unconnected 

knowledge islands developed from different sources. Moreover, there are fatal 

misinterpretations or misconceptions concerning the importance or the historical 

background of events (Donovan & Bransford, 2005; Mirow, 1991). For example, 

learners do not seem to be oriented towards canonized content; rather, they mobilize 

different content and situation-dependent memorizations, which leads to different 

“histories” (Rüsen, Fröhlich, Horstkötter, & Schmidt, 1991, p. 343). 

 From an instructional point of view, the overall learning and teaching 

objective of history is to cultivate a critical historical consciousness, e.g., a sense of 
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time, a sense of reality, moral sense, and a sense of history and politics (Pandel, 

1987). To sum up, cognitive structure in history can be characterized as linear, 

unconnected, and oversimplified.  

Mathematics 

Mathematics is one of the oldest sciences and is organized around many branches. 

Numbers, logic, geometry, algebra, and statistics are just a small part of the broad 

spectrum (Courant & Robbins, 2000). Mathematics is used as an ancillary science in 

nearly all other sciences. In contrast to biology and history, research in mathematics 

has long been focused on the cognitive structure of learners (de Corte, Greer, & 

Verschaffel, 1996). Findings concerning cognitive structure in mathematics have 

been discussed in research on psychology (Piaget, 1972) and artificial intelligence (J. 

Johnson, McKee, & Vella, 1994) as well as in other branches. They suggest that 

mathematical knowledge develops when coping with real world problems. These real 

world problems are abstracted to mathematical problems in a step-by-step process 

through assimilation and accommodation (Piaget, 1972). However, most of these 

studies analyze deterministic skills like counting (de Corte, et al., 1996). Empirical 

findings focusing on the cognitive structure of complex mathematical phenomena 

(e.g., differential and integral calculus) are not available. Overall, it is assumed that 

mathematical knowledge is strongly connected to a person’s mathematical reality, 

i.e. personal perceptions and experiences (Kitcher, 1983). Cognitive structures for 

mathematics may be very complex and have rich connections. Additionally, 

hierarchical as well as linear principles play a fundamental role in mathematical 

thinking (de Corte, et al., 1996; Kleinert, 2005). 

 From an instructional point of view, learning and teaching objectives have 

been a cause for controversy due to the wide range of available instructional methods 

and for ideological reasons. Still, general learning and teaching objectives include, 

e.g., the application of mathematics to other fields, creativity, and rational 

argumentation (Winter, 1975). As in biology, visual demonstration and application to 

the real-life situations of learners are typical instructional methods. To sum up, 

cognitive structure in mathematics can be characterized as linear and hierarchical, 

well-connected, and very specific. 
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Cross-domain distinguishing features 

The above-described theoretical and empirical assumptions of the three subject 

domains allow us to describe possible cross-domain distinguishing features: (1) 

Students’ knowledge in the domain biology is well structured and is ordered in 

hierarchical fashion. However, general knowledge and specific details are not well 

developed. (2) Historical knowledge is characterized by separate knowledge islands, 

is less structured, and oversimplified. Additionally, it often includes misconceptions, 

e.g., historical events are dated incorrectly. (3) Mathematical knowledge tends to be 

very complex and rich in relations. Moreover, it has a strong hierarchical 

organization and is characterized by everyday mathematical experiences.  

The clear structural organization in biology and mathematical knowledge leads us to 

the assumption that it might be significantly different from the fragmented 

knowledge in history. Hence, one might expect a more complex cognitive structure 

in biology and mathematics. However, biology includes less abstracted cognitive 

structure, whereas mathematics is characterized by more specified and complex 

cognitive structure. 

Our research 

Our research builds on the verdict that cognitive and educational researchers use 

theoretical constructs, e.g., mental models, schemata, etc., to explain complex 

cognitive structure and procedures for learning, reasoning, and problem solving (e.g., 

Gentner & Stevens, 1983; Johnson-Laird, 1983; Jonassen, et al., 1993; Lehrer & 

Romberg, 1996; Schauble, Klopfer, & Raghavan, 1991; Seel, et al., 2009; Snow, 

1989, 1990). However, these internal cognitive structures and functions are not 

directly observable. 

 Accordingly, the assessment and analysis of internal cognitive structure and 

functions requires that they be externalized. Therefore, we argue that it is essential to 

identify economic, fast, reliable, and valid techniques to elicit and analyze these 

cognitive structures (see Ifenthaler, 2008, 2010d). Methodologies include 

standardized questionnaires and interviews, think-aloud protocols (e.g., Ericsson & 

Simon, 1993), the assessment of log files or click streams (e.g., Chung & Baker, 

2003; Dummer & Ifenthaler, 2005), eye-tracking measures (e.g., Mikkilä-Erdmann, 

Penttinen, Anto, & Olkinuora, 2008), and Pathfinder networks (Durso & Coggins, 

1990; Schvaneveldt, 1990), as well as mind tools (e.g., Jonassen & Cho, 2008; 
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Spector, et al., 2006). Accordingly, the possibilities for externalizing cognitive 

structure are limited to a few sets of sign and symbol systems (Seel, 1999b) – 

characterized as graphical- and language-based approaches (Ifenthaler, 2010d). A 

widely accepted application for the assessment and analysis of cognitive structure is 

a concept, causal, or knowledge map which can be automatically scored and 

compared to an expert’s solution (Herl, et al., 1996; Spector, et al., 2006; Spector & 

Koszalka, 2004). On the other hand, there are convincing arguments indicating that 

natural language representations (e.g., written texts) are a good basis for assessing 

and analyzing cognitive structure (Ifenthaler & Pirnay-Dummer, 2009). 

As not every available methodology is suitable for this research (e.g., lack of 

reliability and validity, too labor intensive, etc.), we utilize the web-based assessment 

and analysis platform HIMATT (Highly Integrated Model Assessment Technology 

and Tools; Pirnay-Dummer, et al., 2010). 

 HIMATT is a combined toolset which was developed to convey the benefits 

of various methodological approaches in a single environment and which can be used 

by researchers with only little prior training (Pirnay-Dummer & Ifenthaler, 2010). 

Methodologically, the tools integrated into HIMATT touch the boundaries between 

qualitative and quantitative research methods and build bridges between them. First 

of all, written text can be analyzed very quickly without loosening the associative 

strength of natural language. Furthermore, causal maps can be annotated by experts 

and compared to other solutions. The automated analysis function produces measures 

which range from surface-oriented structural comparisons (e.g., number of used 

concepts, complexity of representation) to integrated semantic (e.g., correctness of 

concepts or propositions) similarity measures. There are four structural (surface, 

graphical, structural, and gamma matching) and three semantic (concept, 

propositional, and balanced propositional matching) measures available (see the 

Method section for a detailed description of them). All of the data, regardless of how 

it is assessed, can be analyzed quantitatively using the same comparison functions 

without further manual effort or recoding. 

 The central research objective in this study is to identify cross-domain 

distinguishing features of externalized cognitive structures. First, we look at two 

specific sources of externalization of cognitive structure, written text and causal 

maps. We expect these different forms of externalization to represent the same 

structural and semantic content within each subject domain (Hypothesis 1). More 



	   111 

specifically, due to the short time between writing texts and constructing causal 

maps, we expect a close match between the structural and semantic HIMATT 

measures (Pirnay-Dummer, et al., 2010; a description of all of the applied measures 

will be provided in the following section).  

 Secondly, previous empirical studies have focused on domain-specific 

features and the learning-dependent development of cognitive structure (e.g., 

Clariana & Wallace, 2007; Ifenthaler, et al., in press; Koubek, et al., 1994). 

However, an empirical analysis and comparison of the organization of cognitive 

structures across different domains has not been conducted so far. Accordingly, this 

study will identify similarities and differences in externalized cognitive structures 

between three different subject domains: biology, history, and mathematics. These 

three subject domains were chosen due to their different instructional methods and 

because they are taught in nearly every grade. Based on prior research (de Corte, et 

al., 1996; Kleinert, 2005; Mirow, 1991; Thompson & Mintzes, 2002), we 

hypothesize that the externalizations of the three subject domains have different 

structural features (Hypothesis 2.1). Additionally, we assume that the 

externalizations of biology knowledge are strongly organized in a hierarchy 

(Hypothesis 2.2), that the externalizations of mathematics knowledge are also 

strongly organized in hierarchical order (Hypothesis 2.3), and that the organization 

of externalizations of historical knowledge are less hierarchical (Hypothesis 2.4). We 

also assume that the externalizations in the history domain are less connected than 

those in biology and mathematics (Hypothesis 2.5). Last, on the basis of equal 

difficulty level of the learning material, we expect that the declarative knowledge 

(assessed with a domain-specific knowledge test) does not differ across the three 

domains (Hypothesis 2.6). 

 Finally, previous research studies on cognitive structure have found 

contradictory results concerning learners’ cognitive abilities in association with 

learning outcomes (e.g., Hilbert & Renkl, 2008; Ifenthaler, et al., 2007; O'Donnell, 

Dansereau, & Hall, 2002). Hence, our final research question will contribute to this 

vague empirical basis. We assume that learners with higher mathematical abilities 

will outperform those with lower mathematical abilities with regard to their learning 

outcomes in the mathematics domains (Hypothesis 3.1). Additionally, we assume 

that verbal and spatial abilities will have no effect on learning outcomes in the three 

subject domains biology, history, and mathematics (Hypothesis 3.2). 
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Method 

Participants 

Seventy-one students (61 female and 10 male) from a European university 

participated in the study. Their average age was 22.2 years (SD = 2.3). They were all 

enrolled in an advanced course on diagnostics in schools and further education and 

had studied for an average of 2.5 semesters (SD = 2.1). The first language of 85% of 

the participants was German. 15% of the participants spoke German as their second 

language. None of the participants were specially trained in the three subject 

domains biology, history, or mathematics. 

Materials 

The materials consisted of three domain-specific articles for the domains biology, 

history, and mathematics. Additional materials included knowledge tests for each 

domain, a test for experience with causal maps, three subscales of an intelligence 

test, and tools for eliciting the participants’ understanding of the phenomenon in 

question. 

Domain-specific articles 

Selection of the three domain-specific articles was based on (a) an equal difficulty 

level, (b) a similar text length, and (c) the integration into the high school 

curriculum. A German-language article on the human brain with 546 words was 

used as the first learning material for the biology domain. A German-language article 

on the European boarders with 720 words was used for the history domain. For the 

mathematics domain, a German-language article on the statistical procedures of the 

t-test with 500 words was used. 

Domain-specific knowledge tests 

Each knowledge test (biology, history, mathematics) included 10 multiple-choice 

questions with four possible solutions each (1 correct, 3 incorrect). They were 

developed on the basis of the domain-specific articles. In a pilot study (N = 5 

participants, independent from the participants of the main study), we tested the 

average difficulty level to account for ceiling effects. All participants had low prior 

knowledge in the three domains. They scored M = 3.2 correct answers (SD = 1.2) on 

the biology test, M = 3.4 correct answers (SD = 1.7) on the history test, and M = 2.1 

correct answers (SD = .9) on the mathematics test. In our experiment we 

administered two equivalent versions (in which the 10 multiple-choice questions 
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appeared in a different order) of the domain-specific knowledge tests (pre- and 

posttest). Participants did not receive feedback on the scores or on the correctness of 

their answers for the pre- and posttest. It took about five minutes to complete each 

test. 

Experience with causal maps test 

The participants’ experience with causal maps was tested with a questionnaire 

including eight items (Ifenthaler, 2009; Cronbach’s alpha = .87). The questions were 

answered on a five-point Likert scale (1 = totally disagree; 2 = disagree; 3 = partially 

agree; 4 = agree; 5 = totally agree), e.g., “I used causal maps to structure learning 

content”, “The construction of causal maps is easy.” (translated from German). 

Mathematical, spatial, and verbal abilities 

Three subscales of the I-S-T 2000 R (Amthauer, Brocke, Liepmann, & Beauducel, 

2001) were used to test the participants’ mathematical, spatial, and verbal abilities. 

This test is a widely used intelligence test in Germany with high reliability (r = .88 to 

r = .96; split-half reliability). 

 The first subscale was used to test the participants’ mathematical abilities. A 

total of 20 arithmetic problems (+, -, *, /) had to be completed. Participants had ten 

minutes to complete this subscale. The second subscale tested spatial abilities. The 

participants had nine minutes to choose similar cubes from a set of five by rotating 

them. Subset two included 20 cube problems. The third subscale we used tested 

verbal abilities. A total of 20 sentences with a missing word had to be completed 

using a set of five words. The participants had six minutes to complete this subset.  

HIMATT causal maps and text input tools 

The causal maps tool, which is part of the HIMATT (Pirnay-Dummer, et al., 2010) 

environment, was used to assess the participants’ understanding of the domain-

specific phenomenon in question. The intuitive web-based tool allows participants to 

create causal maps with only little training (Pirnay-Dummer & Ifenthaler, 2010). 

Once created, all causal maps are automatically stored on the HIMATT database for 

further analysis. The HIMATT text input tool was also used to assess the 

participants’ understanding of the domain-specific learning content. Participants’ 

written texts are automatically parsed and stored on the HIMATT database for 

further analysis. Written and on-screen instructions in form of questions were 

provided for each subject domain. 
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Procedure 

First, the participants completed a demographic data questionnaire and the 

experience with causal maps test. Secondly, they completed the test on verbal, 

mathematical, and spatial abilities. Next, the participants were given an introduction 

to causal maps and were shown how to use the HIMATT software. After a short 

relaxation phase, they completed the domain-specific knowledge test on history. 

Then they received the text on European borders. The participants had 15 minutes to 

read the text. Then they logged in to the HIMATT system, where they constructed a 

causal map on their understanding of European borders (ten minutes). Immediately 

afterwards, they wrote a text about their understanding of European borders (ten 

minutes). After another short relaxation phase, the procedure was repeated with the 

domains mathematics and biology (1. domain specific knowledge test, 2. reading of 

text, 3. construction of a causal map, 4. writing of text). In total, the experiment took 

approximately two hours. 

Data analysis 

During our experiment, the participants used the web-based platform HIMATT to 

externalize their understanding of the three subject domains in the form of a causal 

map and a written text. The automatically stored data were analyzed using the 

HIMATT analysis function (see Pirnay-Dummer, et al., 2010). Additionally, we used 

a qualitative scoring rubric to classify the hierarchical structure of the graphical 

externalizations. 

HIMATT 

In order to analyze the participants’ understanding of the phenomena in question 

(biology, history, mathematics), we used the seven measures implemented in 

HIMATT (see Table 7.1; Ifenthaler, 2010d; Pirnay-Dummer, et al., 2010).  

 Both written texts and causal maps were analyzed using the seven HIMATT 

measures. Before the written text can be analyzed, a parsing algorithm must be 

applied. The written text is tokenized, tagged, and stemmed, and the most frequent 

concepts and pairwise associations between concepts are determined (Pirnay-

Dummer & Ifenthaler, 2010). Accordingly, concepts from the written text are stored 

pairwise on the HIMATT database along with the strength of association. 

Additionally, the causal maps are stored on the HIMATT database directly. . 
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Each of the participants’ written texts and causal maps can be compared 

automatically against each other, across domains, or against a reference map (e.g., an 

expert representation). The automated analysis generates seven measures of 

HIMATT (see Table 7.1). They include four structural and three semantic measures 

(Ifenthaler, 2010c, 2010d; Pirnay-Dummer & Ifenthaler, 2010; Pirnay-Dummer, et 

al., 2010). 
TABLE 7.1 
Description of the seven HIMATT measures 
Measure 
[abbreviation]  and 
type 

Short description 

Surface matching  
[SFM] 
Structural indicator 

The surface matching (Ifenthaler, 2010c) compares the number of vertices 
within two graphs. It is a simple and easy way to calculate values for surface 
complexity. 

Graphical matching 
[GRM] 
Structural indicator 

The graphical matching (Ifenthaler, 2010c) compares the diameters of the 
spanning trees of the graphs, which is an indicator for the range of conceptual 
knowledge. It corresponds to structural matching as it is also a measure for 
structural complexity only. 

Structural matching 
[STM]  
Structural indicator 

The structural matching (Pirnay-Dummer & Ifenthaler, 2010) compares the 
complete structures of two graphs without regard to their content. This 
measure is necessary for all hypotheses which make assumptions about 
general features of structure (e.g. assumptions which state that expert 
knowledge is structured differently from novice knowledge). 

Gamma matching  
[GAM] 
Structural indicator 

The gamma or density of vertices (Pirnay-Dummer & Ifenthaler, 2010) 
describes the quotient of terms per vertex within a graph. Since both graphs 
which connect every term with each other term (everything with everything) 
and graphs which only connect pairs of terms can be considered weak 
models, a medium density is expected for most good working models. 

Concept matching  
[CCM]  
Semantic indicator 

Concept matching (Pirnay-Dummer & Ifenthaler, 2010) compares the sets of 
concepts (vertices) within a graph to determine the use of terms. This 
measure is especially important for different groups which operate in the 
same domain (e.g. use the same textbook). It determines differences in 
language use between the models. 

Propositional 
matching [PPM]  
Semantic indicator 

The propositional matching (Ifenthaler, 2010c) value compares only fully 
identical propositions between two graphs. It is a good measure for 
quantifying semantic similarity between two graphs. 

Balanced 
propositional 
matching  
[BPM] 
Semantic indicator 

The balanced propositional matching (Pirnay-Dummer & Ifenthaler, 2010) is 
the quotient of propositional matching and concept matching. Especially 
when both indices are being interpreted, balanced propositional matching 
should be preferred over propositional matching. 

 

HIMATT uses specific automated comparison algorithms to calculate similarities 

between a given pair of frequencies f1 (e.g., expert solution) and f2 (e.g., participant 

solution), which results in a measure of 0 ≤ s ≤ 1, where s = 0 is complete exclusion 

and s = 1 is identity. The other measures collect sets of properties using the Tversky 

similarity (Tversky, 1977). The Tversky similarity also results in a measure of 0 ≤ s 

≤ 1, where s = 0 is complete exclusion and s = 1 is identity. Please refer to Prinay-

Dummer and Ifenthaler (2010) for a detailed discussion of the comparison 

algorithms. 
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Every single measure integrated into HIMATT are tested for reliability. The 

reliability scores range from r = .79 to r = .94 and are tested for the structural and 

semantic measures separately and across different knowledge domains (Pirnay-

Dummer, et al., 2010). Validity scores are also reported separately for the structural 

and semantic measures. Convergent validity lies between r = .71 and r = .91 for 

semantic comparison measures and between r = .48 and r = .79 for structural 

comparison measures (see Pirnay-Dummer, et al., 2010). 

Structural classification 

Qualitative classification of the structure of the causal maps was based on the four 

categories introduced by Ku (2007): (1) hierarchy map, (2) spider map, (3) flowchart 

map, (4) system map. For each subject domain (biology, history, mathematics), we 

generated standardized graphical outputs using the HIMATT platform (see Figure 

7.1). 

FIGURE 7.1. Standardized graphical output of the domain history (hierarchical structure) 
 

All standardized graphical outputs (causal maps; N = 213) were coded using the 

above-described categories (1 = hierarchy structure; 2 = spider structure; 3 = 

flowchart structure; 4 = system structure; 5 = other structure). Each coder received a 
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printed set of the standardized graphical outputs (including a subject and domain 

code; N = 213) and a coding sheet, where they had to enter the subject and domain 

code and in which of the five categories it belonged to. Three independent 

researchers found an average interrater reliability of κ = .85 (Fleiss' kappa; Fleiss, 

1971). 

Results 

Initial data checks showed that the distributions of ratings and scores satisfied our 

assumptions concerning the analysis procedures. All effects were assessed at the .05 

level. As effect size measures, we used Cohen’s d (small effect: d < .50, medium 

effect .50 ≤ d ≤ .80, strong effect d > .80) and partial ƞ2 (small effect: ƞ2 < .06, 

medium effect .06 ≤ ƞ2 ≤ .13, strong effect ƞ2 > .13).  

 More than two-thirds of the participants (77%) did not use causal maps to 

structure their own learning materials before our experiment. Only 19% used 

software to create their own causal maps beforehand. 45% of the participants 

answered that they did not find it difficult to create a causal map, 55% had 

difficulties in creating causal maps. 

 On each domain-specific knowledge test (biology, history, mathematics), 

participants could score a maximum of 10 correct answers. ANOVA was used to test 

for differences among the three subject domains (Hypothesis 2.6). The correct 

answers differed significantly across the three subject domains, F(2, 210) = 5.51, p = 

.005, η2 = .05. Tukey HSD post-hoc comparisons of the three subject domains 

indicate that participants had significantly better scores on the biology test (M = 5.01, 

SD = 1.69, 95% CI [4.62, 5.41]) than on the history test (M = 3.93, SD = 1.78, 95% 

CI [3.51, 4.35]), p = .003. Comparisons between the correct answers on the 

mathematics test (M = 4.34; SD = 2.37) and the biology and history tests were not 

statistically significant at p < .05.  

Written text and causal maps 

For all three subject domains (biology, history, mathematics), the written texts and 

causal maps constructed by the participants were automatically compared to domain-

specific expert representations by the HIMATT analysis feature (see Table 7.1). 

Hence, for both written texts and causal maps, seven similarity scores (0 = no 

similarity; 1 = total similarity; for the measures surface, graphical, structural, 

gamma, concept, propositional, and balanced propositional matching) were available 
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for further statistical analysis. In order to identify possible expert-novice differences 

between written text and causal maps, we computed paired-sample t-tests for the 

seven HIMATT similarity scores between experts’ and participants’ representations 

for the three subject domains. (see Table 7.2). 
Table 7.2 
HIMATT similarity scores (standard deviations in parentheses) between causal maps, texts 
and expert representations for the three subject domains 

Subject domain 
Biology History Mathematics HIMATT 

similarity 
measure Causal 

map Text Causal 
map Text Causal 

map Text 

Surface	  
matching	  
[SFM] 

.527 (.298) .474 (.262) .314 (.234) .304 (.246) .460 (.234) .434 (.233) 

Graphical	  
matching	  
[GRM] 

.639 (.244) .522 (.184) .461 (.261) .538 (.271) .597 (.231) .670 (.230) 

Structural	  
matching	  
[STM] 

.659 (.210) .681 (.168) .551 (.171) .501 (.186) .576 (.153) .489 (.167) 

Gamma	  
matching	  
[GAM] 

.682 (.244) .730 (.286) .547 (.187) .518 (.246) .601 (.181) .448 (.227) 

Concept	  
matching	  
[CCM] 

.324 (.131) .052 (.079) .078 (.105) .141 (.083) .064 (.078) .097 (.081) 

Propositional	  
matching	  
[PPM] 

.023 (.052) .007 (.030) .008 (.021) .018 (.029) .005 (.020) .012 (.026) 

Balanced	  
propositional	  
matching	  
[BPM] 

.062 (.133) .032 (.112) .034 (.089) .088 (.136) .023 (.082) .058 (.115) 

Note. HIMATT similarity measures, 0 = no similarity; 1 = total similarity; SFM, GRM, STM, and 
GAM are structural measures; CCM, PPM, and BPM are semantic measures 

 

Interestingly, written text and causal maps seem to represent different structures and 

content across the three subject domains when compared to an expert’s 

representation. In the biology domain, the participants’ causal maps were 

significantly more similar to the expert’s representation than their written texts were 

with regard to the graphical matching (GRM) measure, t(70) = 3.25, p = .002, d = 

.54. Additionally, we found higher similarities between the participants’ causal maps 

and expert representations for the semantic HIMATT measures CCM, t(70) = 16.14, 

p < .001, d = 2.51, and PPM, t(70) = 2.27, p = .026, d = .38. In the history domain, 

analysis revealed significant differences for the semantic HIMATT measures. Here, 

the written texts of the participants were more similar to the expert’s representation 

with regard to CCM, t(67) = 3.41, p = .001, d = .67, PPM, t(67) = 2.27, p = .026, d = 
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.39, and BPM, t(67) = 2.52, p = .014, d = .47. In the mathematics domain, the 

participants’ written texts were significantly more similar to the expert’s 

representation than their causal maps were with regard to the GRM measure, t(67) = 

1.99, p = .050, d = .32. On the other hand, the participants’ causal maps were 

significantly more similar to the expert’s representation than their written texts were 

with regard to the STM measure, t(67) = 3.09, p = .003, d = .54, and the GAM 

measure, t(67) = 4.62, p < .001, d = .75. Additionally, we found higher similarities 

between the participants’ written texts and expert representations for the semantic 

HIMATT measure CCM, t(67) = 2.24, p < .028, d = .42.   

 Therefore, we had to reject Hypothesis 1. The causal maps and text did not 

represent the same structural and semantic content within the three subject domains. 

Cross-domain distinguishing features 

In order to identify the hypothesized cross-domain distinguishing features, we 

computed a MANOVA with the seven descriptive HIMATT measures (SFM, GRM, 

STM, GAM, CCM, PPM, BPM) as within-subject factors (see Table 7.3). The 

following between-subject factors were applied for the seven separate analyses: 1. 

Subject domain (biology, history, mathematics); 2. Elicitation  method (causal map, 

written text).  

 MANOVA showed a significant main effect of the subject domain on the 

descriptive HIMATT measures, Wilks’ Lambda = .749, F(14, 814) = 9.048, p < .001, 

η2 = .135. Univariate ANOVA’s revealed that the effect was caused by the dependent 

variables SFM, F(2, 413) = 5.561, p = .004, η2 = .026, GRM, F(2, 413) = 7.983, p < 

.001, η2 = .037, STM, F(2, 413) = 12.420, p < .001, η2 = .057, GAM, F(2, 413) = 

11.075, p < .001, η2 = .051, and CCM, F(2, 413) = 17.634, p < .001, η2 = .079. Post-

hoc comparisons using Tukey’s HSD revealed that the re-representations in the 

biology domain contained a larger surface (SFM) than did those in the history (p = 

.007) and mathematics (p = .022) domains. Additionally, the re-representations in the 

history domain were less complex (GRM) than those in the biology (p = .001) and 

mathematics (p = .004) domains. The complete structure (STM) of the re-

representations was larger in the biology domain than in the history (p < .001) and 

mathematics (p = .001) domains. The connectedness (GAM) of the re-representations 

in the biology (p = .002) and history (p < .001) domains was higher than in the 

mathematics domain. Finally, the number of semantically correct concepts in the 

biology domain was higher than in the history (p = .022) and mathematics (p < .001) 
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domains. Additionally, the number of semantically correct concepts in the history 

domain was higher than in the mathematics (p = .003) domain. 
Table 7.3  
HIMATT descriptive measures (standard deviations in parentheses) of participants’ causal 
maps and written texts for the three subject domains 

Subject domain 
Biology History Mathematics HIMATT 

descriptive 
measure Causal 

map Text Causal 
map Text Causal 

map Text 

Surface	  
matching	  
[SFM] 

13.704 
(4.086) 

24.409 
(32.656) 

9.294   
(3.516) 

16.543 
(19.880) 

10.268 
(3.517) 

17.471 
(11.742) 

Graphical	  
matching	  
[GRM] 

5.592   
(1.769) 

4.296   
(3.240) 

4.368   
(1.789) 

3.429   
(2.801) 

5.070    
(1.799) 

4.500 
(2.282) 

Structural	  
matching	  
[STM] 

13.831 
(3.676) 

11.803 
(9.746) 

9.324   
(2.985) 

9.429   
(7.866) 

9.972    
(3.052) 

10.677 
(4.952) 

Gamma	  
matching	  
[GAM] 

.468        
(.080) 

.469        
(.329) 

.457        
(.130) 

.537        
(.376) 

.429        
(.106) 

.312    
(.216) 

Concept	  
matching	  
[CCM] 

2.225   
(2.349) 

2.127   
(1.971) 

1.206   
(1.356) 

2.086   
(1.726) 

.563        
(.788) 

1.466 
(1.165) 

Propositional	  
matching	  
[PPM] 

.127        
(.375) 

.296        
(.595) 

.132        
(.420) 

.500        
(.737) 

.056        
(.232) 

.368    
(.710) 

Balanced	  
propositional	  
matching	  
[BPM] 

.026        
(.076) 

.091        
(.179) 

.042        
(.139) 

.154        
(.220) 

.026        
(.108) 

.123    
(.230) 

Note. SFM, GRM, STM, and GAM are structural measures; CCM, PPM, and BPM are semantic 
measures (compared to the domain specific expert representation) 

 

In addition, MANOVA revealed a significant main effect of the elicitation method 

on the descriptive HIMATT measures, Wilks’ Lambda = .667, F(7, 407) = 29.073, p 

< .001, η2 = .333. Univariate ANOVA’s revealed that the effect was caused by the 

dependent variables SFM, F(1, 413) = 26.669, p < .001, η2 = .061, GRM, F(1, 413) = 

16.552, p < .001, η2 = .039, CCM, F(1, 413) = 12.006, p = .001, η2 = .028, and PPM, 

F(1, 413) = 1.251, p = .016, η2 = .020. Written texts (M = 19.47, SD = 1.15) had a 

larger surface (SFM) than causal maps (M = 11.09, SD = 1.15). Additionally, the 

written texts contained more semantically correct concepts and propositions (M = 

1.89, SD = .11 for CCM, and M = .39, SD = .04 for PPM) than the causal maps (M = 

1.33, SD = .11, and M = .11, SD = .04, respectively).  

 Finally, MANOVA revealed a significant interaction effect of the subject 

domain and elicitation method on the descriptive HIMATT measures, Wilks’ 

Lambda = .888, F(14, 814) = 3.562, p < .001, η2 = .058. According to univariate 
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ANOVA’s this effect was caused by the dependent variables GAM, F(2, 413) = 

6.139, p = .002, η2 = .029, and CCM, F(2, 413) = 4.192, p = .016, η2 = .020. Figure 

2a shows the interaction effect on GAM. The connectedness of the re-representation 

in the history domain is higher for causal maps than for written texts. In contrast, the 

connectedness of the re-representations in the mathematics domain is higher for 

written texts than for causal maps. Figure 7.2b shows the interaction effect on CCM. 

Accordingly, the number of semantically correct concepts is higher for written texts 

than for causal maps in the subject domains history and mathematics. 

 Therefore, we accept Hypothesis 2.1. Externalizations of the three subject 

domains have different structural features. 

 
FIGURE 7.2. Interactions of subject domain x elicitation method on the descriptive HIMATT 

measures GAM (part A) and CCM (part B) 
 

Furthermore, a 5 x 3 (structural classification by subject domain) chi-square test was 

conducted to assess whether the structural classification (hierarchy, spider, flowchart, 

system, other) is different in the three subject domains (biology, history, 

mathematics). The results of the chi-square test were significant, χ2 (8, N = 71) = 

61.29, p = < .001.  Additionally, detailed analysis of standardized residuals was 

conducted in order to find out which structural classifications of the causal maps 

revealed significant differences (see Table 7.4). The hierarchical structure was the 

most frequent classification within the domains history and mathematics. In contrast, 

the spider structure was the most frequent classification in the biology domain. In the 

biology domain, the proportion of spider structure was much greater than 

hypothesized, while the proportion of hierarchy structure was lower than 

hypothesized. In the history domain, the proportion of spider structure was lower 

than hypothesized. In the mathematics domain, the proportion of hierarchical 
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structure was greater than hypothesized, while the proportion of spider structure was 

lower than hypothesized.  

 Therefore, we had to reject Hypothesis 2.2. The causal maps of the biology 

domain were less organized in hierarchical order than expected. However, we accept 

Hypothesis 2.3, as the causal maps of the mathematics domain were organized in a 

strongly hierarchical order. Furthermore, we had to reject Hypothesis 2.4, as the 

causal maps of the history domain were more strongly hierarchical in structure than 

expected.  
Table 7.4  
Frequency (% in parentheses) and standardized residuals of subject domain by structural 
classification 

Subject domain Structural 
classification Biology Standard 

residual History Standard 
residual Mathematics Standard 

residual 

Hierarchy 21 (29.6 
%) - 3.1 47 (66.2 

%) .9 55 (77.5 %) 2.2 

Spider 40 (56.3 
%) 5.3 8 (11.3 %) - 2.3 5 (7 %) -3.0 

Flowchart 0 (0 %) - .8 1 (1.4 %) .4 1 (1.4 %) .4 
System 0 (0 %) - .8 1 (1.4 %) .4 1 (1.4 %) .4 

Other 10 (14.1%) - .3 14 (19.7 
%) .9 9 (12.7 %) - .6 

Note. Standardized residuals equal to or higher than |1.96| indicate significant differences. 
 

Cognitive abilities 

Participants could score a maximum of 20 points on the three subscales of the I-S-T 

2000 R on mathematical, spatial, and verbal abilities. On the test for mathematical 

abilities the participants scored M = 10.46 points (SD = 4.03), on the test for spatial 

abilities they scored M = 10.65 points (SD = 3.10), and on the test for verbal abilities 

they scored M = 12.87 points (SD = 3.70). An analysis using Pearson’s correlation 

coefficient was performed to identify correlations between the participants’ cognitive 

abilities (mathematical, spatial, verbal), prior domain knowledge (biology, history, 

mathematics), and the HIMATT similarity measures. Analysis revealed the 

following correlations: Mathematical abilities and SFM (written texts) in the history 

domain, r(69) = -.30, p = .013; spatial abilities and PPM (causal maps) in the biology 

domain, r(71) = .23, p = .05; spatial abilities and GAM (written texts) in the history 

domain, r(69) = .28, p = .02; verbal abilities and prior knowledge in the history 

domain, r(71) = .37, p = .001; verbal abilities and SFM (causal maps) in the 

mathematics domain, r(70) = .30, p = .013; verbal abilities and SFM (written texts) 

in the mathematics domain, r(69) = -.29, p = .016; verbal abilities and GAM (causal 
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maps) in the mathematics domain, r(70) = .30, p = .014; verbal abilities and GAM 

(written texts) in the mathematics domain, r(69) = -.24, p = .044; verbal abilities and 

CCM (written texts) in the mathematics domain, r(69) = -.39, p = .001; verbal 

abilities and BPM (written texts) in the mathematics domain, r(69) = -.31, p = .01.  

 Therefore, our findings do not support Hypothesis 3.1. Mathematical abilities 

had no systematic effect on the externalized cognitive structures in the mathematics 

domain. Additionally, our findings do not completely support Hypothesis 3.2, as we 

found only non-systematic correlations between the HIMATT similarity measures 

and cognitive abilities across the subject domains. 

General discussion 

The aim of our study was to identify cross-domain distinguishing features of 

cognitive structures. Our experimental design included tasks in three different 

subject domains: biology, history, and mathematics. Participants were asked to 

externalize their understanding of the phenomenon in question in the form of causal 

maps and written texts. The participants’ re-representations (causal maps and written 

texts) were automatically analyzed with the HIMATT analysis features. Accordingly, 

not only do these automated process have very high objectivity, reliability, and 

validity (Pirnay-Dummer, et al., 2010), they are also very economical, especially 

when large data sets need to be analyzed within a short period of time (Ifenthaler, 

2010c). 

 First, we compared the causal maps and written texts to domain-specific 

expert representations. Due to the short time between the construction of the causal 

maps and written texts, we expected a close match between the structural and 

semantic features of the participants’ re-representations. However, we found that the 

written text and concept maps seem to represent different structure and content 

across the three subject domains when compared to an expert’s representation. 

Participants’ causal maps in the biology domain showed higher similarity to the 

expert representation than the written texts with regard to complexity and 

semantically correct concepts as well as propositions. In contrast, participants’ 

written texts showed higher similarities to the expert representation than the causal 

maps with regard to complexity (mathematics domain) and semantically correct 

concepts (history and mathematics domain). Hence, the type of externalization 

strategy also influences the knowledge which is represented (structurally and 
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semantically). These findings suggest that instructional approaches, grading, and 

feedback is highly dependent on the externalization strategy used by learners. 

Consequently, more empirical research is needed to provide a valid framework for 

suitable domain-dependent externalization strategies.   

 Based on these initial findings, we then investigated cross-domain 

distinguishing features of the participants’ re-representations across the subject 

domains biology, history, and mathematics. As expected, the results of our HIMATT 

analysis clearly indicate different structural and semantic features across the three 

subject domains. For example, participants were able to externalize larger cognitive 

structure (i.e. more concepts and relations) in the biology domain. Furthermore, the 

externalizations in the history domain were less complex than those in the biology 

and mathematics domains. Additionally, externalized cognitive structure in the 

biology domain was more integrated than in the other two domains. As far as 

semantically correct concepts are concerned, the externalizations in the biology 

domain included more correct terms than the other two domains. On the other hand, 

analysis revealed that cognitive structure externalized as written texts had a larger 

surface and contained more semantically correct concepts than causal maps. 

 Additionally, the structural classification by subject domain of the 

externalized cognitive structure revealed that hierarchical structure was the most 

frequent classification in the history and mathematics domains. In contrast, we found 

that externalizations in the biology domain were for the most part classified as spider 

structures.  

 Furthermore, we looked at the influence of mathematical, spatial, and verbal 

abilities on the learning outcomes. On the basis of previous studies (Hilbert & Renkl, 

2008; Ifenthaler, et al., 2007), we expected no correlation between cognitive abilities 

and learning outcomes. Indeed, we did not find systematic influences of cognitive 

abilities on learning outcomes. However, some results suggest that cognitive abilities 

might have some influence. Accordingly, we recommend for future experimental 

studies to concentrate on the influence of cognitive abilities on cognitive structure 

during learning processes. 

Instructional implications 

Our results indicate that cognitive structures are organized in different ways 

depending on the subject domain (Johnson-Laird, 1989). Accordingly, identifying 
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the learner’s cognitive structure will help to organize instructional materials, 

discover knowledge gaps, and relate new materials to existing slots or anchors within 

the learner’s cognitive structure (Jonassen, 1987). Hence, the classification of 

cognitive structure can act as a “topographical map” for identifying key areas of 

learning difficulties and facilitating instructional interventions (Ifenthaler, et al., in 

press; Snow, 1989). This might lead to the design of new learning materials which 

consider the unique features of specific subject domains and their related cognitive 

structure. Further it might help to design effective feedback methods to facilitate 

individual learning in a more effective and personalized way (Ifenthaler, 2009; 

Shute, 2008). 

 In addition, as the applied elicitation techniques seem to be highly domain-

specific, validating results using outside criteria seems unavoidable. These findings 

may have a major impact on future research and knowledge diagnosis. We strongly 

suggest investigating these initial findings further in future experimental studies 

(e.g., Ifenthaler & Pirnay-Dummer, 2009). 

 To sum up, the findings of our study suggest that a diagnostics of learner’s 

external representations always requires different elicitation techniques, e.g., written 

texts, verbal communication, or graphical drawings (de Vries, 2006). Clearly, a 

cognitive structure is internal to the mind, and for obvious reasons not directly 

observable (Seel, 1999a). Such representations are widely viewed as having a 

language-like syntax, and a compositional semantic (Spector, 2010; Strasser, 2010). 

A mental model is a representation of a thing, ideas or more generally, an ideational 

framework. It relies on language and uses symbolic pieces and processes of 

knowledge to construct a heuristic for a situation, which is instantiated by the world, 

or an internal process resembling the world, e.g., a mental simulation (Johnson-

Laird, 1983; Schnotz & Bannert, 2003). Its purpose is heuristic reasoning, which 

leads either to intention, planning, behavior, or to a reconstruction of cognitive 

processes (Piaget, 1976). The facilitation of model-building processes may lead to 

enhanced problem-solving strategies and better transfers to near and far subject 

domains (Anzai & Yokoyama, 1984; Gick & Holyoak, 1980; Ifenthaler, et al., 2007). 

Limitations and future research directions 

Despite the promising results of this study, some critical remarks are in order. First, 

our results are limited to three very specific topics within the subject domains 
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biology, history, and mathematics. Since cognitive structure seem to be highly 

domain dependent, we might also expect contradictory results within a single subject 

domain. Secondly, to gain more insight into the functions of cognitive structure and 

their domain-distinguishing features, a comparison across three subject domains is 

not sufficient by far. We thus suggest expanding our research question to other 

subject domains and including some topics which are closely related and others 

which are very different. An advanced research design of this kind would enable us 

to validate the findings of this initial study. Additionally, we recommend for 

researchers to reflect on possible elicitation techniques critically when investigating 

cognitive structure and knowledge in general. Further, in order to validate the 

structural and semantic measures of HIMATT, we recommend additional validation 

studies using outside criterions like the categories introduced by Ku (2007). 

However, in order to gain acceptable validation results, such an outside criterion 

needs to exactly match the HIMATT measures. 

 In summary, further studies will be needed to investigate the influence of 

externalization methodologies on learning and instruction. Also, additional studies 

concerning domain-distinguishing features are needed across and within various 

subject domains. This will give us more detailed insight into the functions of 

cognitive structure and help us to design more effective learning environments and 

apply more precise diagnosis strategies. The design and development of instruction is 

not only a matter of the applied methods and technologies; it is also highly dependent 

on the subject domain and last but not least on the cognitive structure learners 

already have developed prior to newly implemented instruction. 
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8 
A LONGITUDINAL PERSPECTIVE &  

Cognitive scientists have studied internal cognitive structures, processes, and systems for decades in 
order to understand how they function in human learning. Nevertheless, questions concerning the 
diagnosis of changes in these cognitive structures while solving logical problems are still being 
scrutinized. This chapter reports findings from an experimental study in which 73 participants in three 
experimental groups solved logical word problems at ten measurement points. Changes of cognitive 
structures are illuminated and significant differences between the treatments are reported. The results 
also indicate that supportive information is an important aid for developing cognitive structures while 
solving logical problems. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Ifenthaler, D., & Seel, N. M. (in press). A longitudinal perspective on 
inductive reasoning tasks. Illuminating the probability of change. Learning and Instruction. doi: 
10.1016/j.learninstruc.2010.08.004 
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Introduction 

Learning, discussed in terms of constructivist theories, occurs when learners actively 

construct meaningful mental representations closely related to presented information. 

In general, a distinction is made between several forms of mental representations 

such as concepts, images, schemata, and mental models. As a result of the so-called 

cognitive revolution in cognitive psychology, schemata and mental models emerged 

as central theoretical constructs which have enriched the psychological knowledge 

about information processing, logical reasoning, and problem solving (Gick & 

Holyoak, 1980; Rumelhart, 1980; Rumelhart, Smolensky, McClelland, & Hinton, 

1986). The idea that human cognition operates with mental models in thinking and 

reasoning can be traced back to “picture theories” of British empiricists of the 17th 

and 18th centuries, and can also be found in epistemology and psychology of the first 

half of the 20th century as Wittgenstein’s (1922) picture theory in his Tractatus as 

well as Craik’s (1943) epistemology of the nature of explanation demonstrate. 

Mental models returned as a powerful theoretical construct when Johnson-Laird 

(1983) as well as Gentner and Stevens (1983) published their works in the same year. 

Since then, study after study demonstrates that human reasoning exhibits particular 

features predicted by mental models which, therefore, emerged as important concept 

of logical reasoning and of creating plausibility in subject matter learning in various 

academic disciplines (e.g., Bonatti, 1994a, 1994b; Kalyuga, 2006c; Magnani & 

Nersessian, 2002; Rasch & Schnotz, 2009; Rumelhart, et al., 1986; Schaeken, 

Vandierendonck, Schroyens, d'Ydewalle, & Klauer, 2006; Schnotz & Bannert, 2003; 

Seel, 1991, 2003).  

 However, the construction of mental models presupposes semantic 

knowledge which is organized as schemata. Cognitive schemata can be conceived as 

the building blocks of mental models. As a consequence, some cognitive scientists 

argue that reasoning is regularly performed by means of pragmatic reasoning 

schemas (e.g., Cheng & Holyoak, 1985). Advocates of schema-based reasoning 

argue that generalizable knowledge is “stored” in reasoning schemas which contain 

the records of single cases of past successful reasoning and problem solving. Thus, 

schema-based reasoning extends the idea of case-based reasoning by referring to 

generalized “cases” (= schemata) rather than single cases and thus relies on the 
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effective use of generic contextual knowledge to be transferred onto a current 

problem (Turner, 1994). 

 In our research we operate with a cognitive architecture which integrates both 

kinds of reasoning into a comprehensive framework which operates on the learning-

dependent progression of mental models and their transition to (pragmatic reasoning) 

schemata. Thus, the present study was conducted to explore solution strategies of 

inductive reasoning tasks at ten measurement points.  

Cognitive architecture of reasoning 

A central assumption of cognitive psychology is that mental representations enable 

individuals to understand and explain experience and events, process information, 

and solve problems (Johnson-Laird, 1989). More specifically, Rumelhart et al. 

(1986) argue that these internal functions of the human mind are dependent on two 

interacting modules or sets of units: (1) schemata and (2) mental models. The 

resulting cognitive architecture corresponds to a great extent with Piaget’s 

epistemology (Piaget, 1943, 1976) and its basic mechanisms of assimilation and 

accommodation. 

 Clearly, assimilation is dependent on the availability and activation of 

schemata, which allow new information to be integrated immediately into pre-

existing cognitive structures. As soon as a schema can be activated, it runs 

automatically and regulates information processing in a “top down” manner. This 

allows information to be processed very quickly, a function which is vital for humans 

as it enables them to adapt to their environment spontaneously. If a schema does not 

fit immediately with the requirements of a new task it can be adjusted to meet them 

by means of accretion, tuning, or reorganization (Seel, et al., 2009). Accordingly, if a 

schema for any problem type is available, the schema is mapped onto the problem to 

be solved promptly (Jonassen, 2000). If assimilation is not successful, 

accommodation must take place in order to reorganized or restructure an individual’s 

knowledge. However, when no schema is available or its reorganization fails, the 

human mind switches to the construction of a mental model which is defined as a 

dynamic ad hoc representation of a phenomenon or problem that aims at creating 

subjective plausibility through simplifying and envisioning the situation, or through 

analogical reasoning (see Figure 8.1). 
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FIGURE 8.1. Cognitive functions of assimilation and accommodation 

  
In accordance with Johnson-Laird’s (1983) idea of “fleshing out,” we argue that an 

individual constructs a mental model by integrating relevant bits of domain-specific 

knowledge into a coherent structure step by step in order to meet the requirements of 

a phenomenon to be explained or a problem to be solved (Seel, 1991). Understanding 

this step-by-step process more precisely will help instructors to organize learning 

materials, identify knowledge gaps, and relate new learning materials to existing 

slots or anchors within the learners’ cognitive structures (Jonassen, 1987, 2000). 

Learning-dependent progression of mental models 

When humans are confronted with a problem, they can apply either a schema or a 

mental model that hypothesize mechanisms, either structures or processes, that 

account for the problem to be solved. However, in order to understand the 

continuous progression of learning, thinking, reasoning, and problem solving, the 

underlying mental representations must be assessed carefully at the various stages of 

the learning process. Evidently, measuring cognitive structures continuously or 

repeatedly during transitional stages is more effective than only measuring them 

before and after instruction. 

 In our current research, we characterize the learning-dependent progression of 

cognitive structures as a specific kind of transition which mediates between mental 

models, which describe the initial states of the learning process, and schemata, which 

are described as the desired end state of learning. Exempli gratia, a novice may not 

be able to activate a well-developed schema to solve a specific task. Hence, this 

novice will rely on general schemata and in all probability will fail to successfully 



	   131 

solve the task immediately (Jonassen, 2000). Accordingly, the novice will create, 

through an iterative process, various types of mental models in order to successfully 

(judged under subjective plausibility) solve the task. In contrast, an expert will 

recognize the type of task and map an existing schema onto the specific task to solve 

it (Jonassen, 2000). Therefore, our research focuses on the long-term perspective of 

changes in mental models and schemata along with the transition of mental 

representations from mental models to schemata. Specifically, we aim to identify 

transition points within a learning progression at which the shift of cognitive 

structures from mental model (fluctuation in probability of change) to schemata 

(decrease in probability of change) occur (see Figure 8.2). 

 

 
FIGURE 8.2. Transition of cognitive structures 

 

Feedback and cognitive structures 

Feedback is considered to be any type of information provided to learners with 

regard to their learning progress (Wagner & Wagner, 1985). Accordingly, feedback 

can take on many forms depending on a particular theoretical perspective, the 

purpose it is intended to serve, research goals, and methodological approaches. 

Moreover, feedback is considered an elementary component for supporting and 

regulating learning processes. Especially in computer-based and self-regulated 

learning environments, the nature of feedback is of fundamental importance (Simons 

& de Jong, 1992). Unlike this initial general understanding of feedback, the term 

informative feedback refers to all kinds of external post-response information used to 

inform the learner of his or her current state of learning or performance (Narciss, 

2006, 2008). Widely accepted forms of feedback include (a) knowledge of result, (b) 

knowledge of correct result, (c) knowledge of performance, (d) answer until correct, 

(e) knowledge of task constraints, (f) knowledge about concepts, (g) knowledge 
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about mistakes, (h) knowledge about how to proceed, and (i) knowledge about 

metacognition (Narciss, 2008). Feedback on cognitive structures, such as the use of 

conceptual models (i.e. explicit and consistent causal explanations of a given 

phenomenon) to help persons to build mental models or schemata of the system 

being studied, has also been investigated and discussed (e.g., Mayer, 1989; Norman, 

1983; Seel & Dinter, 1995). Further, new forms of automated and individualized 

feedback have been successfully implemented in self-regulated learning 

environments (e.g., Ifenthaler, 2009). 

 From an instructional point of view feedback can be provided by internal 

(individual cognitive monitoring processes) or external (various types of correction 

variables) sources of information. Internal feedback may validate the externally 

provided feedback, or it may lead to resistance against it (Narciss, 2008). However, 

the empirical evidence of effects of different types of feedback is rather inconsistent 

and contradictory in parts (e.g., Bangert-Drowns, Kulik, Kulik, & Morgan, 1991; 

Clariana, 1993; Kluger & DeNisi, 1996; Kulhavy, 1977; Mory, 2004).  

 While solving problems of the world, cognitive structures provide 

subjectively plausible explanations on the basis of restricted domain-specific 

information (see Ifenthaler, 2010c). Accordingly, such cognitive structures are in 

many cases resistant to changes as they have a high subjective plausibility which 

requires special types of feedback. Indeed, various research studies have shown that 

it is very difficult but possible to influence the generation of plausible mental models 

by providing specific information (see Anzai & Yokoyama, 1984; Ifenthaler & Seel, 

2005; Mayer, 1989; Seel, 1995; Seel & Dinter, 1995). Ifenthaler and Seel (2005) 

argue that it is important to consider how such feedback is provided to the learner at 

specific times during the learning process and how it is structured. 

Learning experiences and problem solving 

Individual differences in problem solving depend on the characteristics of the 

problem, i.e. its scope, degree of structuredness, and complexity, which correlates 

with the cognitive operations necessary for solving a problem (Funke, 1991). 

Problems can be well-structured or ill-structured: well-structured problems, like 

textbook problems, are composed of few variables, while ill-structured problems 

may include many factors or variables that may interact in unpredictable ways 

(Funke & Frensch, 1995). For many people, inductive reasoning tasks are not easy to 

solve and actually produce a problem (Holland, Holyoak, Nisbett, & Thagard, 1986). 
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From the perspective of research on problem solving, inductive reasoning tasks may 

be considered as well-structured problems for which a solution exists and can be 

found (Feeney & Heit, 2007).  

 Cognitive psychologists propose that the first thing a person does when 

confronted with a problem is to try to construct a mental representation of its relevant 

features (Dörner & Wearing, 1995). Accordingly, problem solving presupposes that 

people either activate appropriate schemata or actively construct meaningful 

representations, such as mental models, which represent and communicate subjective 

experiences, ideas, thoughts, and feelings. By means of such representations an 

individual is able to simulate real actions in imagination (in the sense of thought 

experiments) in order to solve problems (Seel, et al., 2009). In this context, a mental 

model fulfills several functions: (1) It guides the comprehension of the system as 

well as the concrete operations with it; (2) it allows the system’s states to be 

explained; and (3) it allows predictions about the system’s behavior and the effects 

of intervention in the system to be derived (Greeno, 1989; Young, 1993). As shown 

above, solving a task requires iterative steps of hypothesis testing as well as an 

increased time for constructing appropriate cognitive structures (Funke, 1992). This 

constitutes a problem in itself because cognitive structures are regularly incomplete 

and constantly evolving. They are usually not an accurate representation of a 

phenomenon but rather typically contain errors and contradictions. However, 

especially mental models are parsimonious and provide simplified explanations of 

complex phenomena. Additionally, they often contain measures of uncertainty 

concerning their plausibility. This allows mental models to be used even if they are 

incorrect from an expert’s perspective. 

 These iterative processes of hypothesis testing while solving a task are 

closely related with learning experiences that are represented in long-term memory 

as declarative and/or procedural knowledge (Jonassen, et al., 1993). Another 

indicator for solving tasks is the person’s awareness of the problem type (applied 

strategy). Sweller (1988) argues that experienced problem solvers are able to 

automatically use strategies to solve familiar tasks. However, transfers of successful 

strategies to different kinds of tasks are on rare occasions (Gick & Holyoak, 1980; 

Jonassen, 2000).  

 Accordingly, two types of change while investigating solving tasks with a 

longitudinal perspective are of special interest. The first has to do with how experts 
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(experienced problem solvers) adapt their learning experiences or strategies within 

the solution processes. The second is about how novices become experts over time, 

how their learning experiences develop / accumulate during this process, and how 

their strategies change (Seel, et al., 2009). 

Research questions and hypotheses 

Based on the literature overview, the following research questions and hypotheses 

were addressed: (1) Do specific transition points within a learning progression exist 

at which the shift of cognitive structures from mental model (fluctuation in 

probability of change) to schemata (decrease in probability of change) occurs? For 

being able to answer our first research question, we argue that there is strong 

evidence that the research on mental models and schemata has to move beyond the 

traditional two-wave design in order to capture changes more precisely (Ifenthaler, 

2008; Willett, 1988). Another requirement for measuring mental models and 

schemata precisely is that the diagnosis should be embedded in a complex problem 

situation (Funke, 1991; Seel, et al., 2009). Hence, participants are confronted with a 

set of different inductive reasoning tasks at ten measurement points. In inductive 

reasoning, the premises of an argument indicate some degree of support for the 

conclusion but not entail it (Feeney & Heit, 2007; Heit, 1998; Holland, et al., 1986; 

Sternberg & Gardner, 1983). There is an ongoing debate on processes of inductive 

reasoning focusing e.g., on development of reasoning process of children (e.g., 

Hayes & Thompson, 2007), teaching of inductive reasoning (e.g., K. J. Klauer, 

1996), self-directed learning (e.g., Wilhelm & Beishuizen, 2003), cross-sectional 

assessments (e.g., Csapo, 1997), and everyday decision making (e.g., Nisbett, 

Krantz, Jepson, & Kunda, 1983). The longitudinal perspective of our empirical 

investigation wants to add and complement the available body of literature on 

inductive reasoning. 

 In order to identify the specific point at which the transition of cognitive 

structures from mental models (discussed in terms of the fluctuation in probability of 

change) to schemata (discussed here as the decrease in probability of change) occurs, 

our experimental groups receive different types of task classes. One experimental 

group receives tasks which require identical solution procedures, whereas the other 

experimental group receives tasks with varying solution procedures. We assume that 

persons who receive inductive reasoning tasks which require identical solution 

strategies will have a stronger decrease in the probability of change, while persons 
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who receive tasks which require different kinds of solution strategies will have a 

stronger fluctuation in probability of change (Hypothesis 1). 

 Regarding feedback, we wanted to investigate a conservative type of 

feedback in our longitudinal study which provides information about the strategy in 

order to solve the task in question: (2) Can feedback effectively support the learning-

dependent development of cognitive structures? As shown above, feedback plays a 

particularly important role in highly self-regulated model-centered learning 

environments because it facilitates the development of mental models and schemata 

(Ifenthaler, 2009). Past research studies demonstrate how different forms of feedback 

can be provided to improve a person’s understanding of a specific task in a given 

context. However, most of these research studies lack a longitudinal perspective 

(e.g., Mayer, 1989; Norman, 1983; Shute, 2008). We assume that if learners have 

access to feedback, which guides them in finding a strategy to solve the logical 

reasoning task, they will perform better than they would without feedback 

(Hypothesis 2). 

 Additionally, previous research studies (e.g., Hilbert & Renkl, 2008; 

Ifenthaler, et al., 2007) have found that verbal and spatial abilities do not affect the 

quality of model-building processes. However, the above mentioned studies did not 

include a longitudinal design. Hence, we are interested in replicating these results 

within a longitudinal perspective. Additionally, as learning in our experimental 

investigation is highly self-regulated, motivation is another important factor to be 

taken into account (e.g., Keller, 1983). However, motivationally relevant factors are 

seldom linked to mental models and schemata. Therefore, a third research question to 

be explored is: (3) Do verbal abilities and the degree of achievement motivation 

affect the logical reasoning task outcome? We assume that persons with higher 

achievement motivation will outperform persons with lower achievement motivation 

(Hypothesis 3a). Additionally, we assume that verbal abilities will have no effect on 

the learning outcome (Hypothesis 3b). 

Method 

Participants 

Initially 73 German university students of educational science took part in our 

experiment. However, as not every student was present at all ten measurement 

points, we had a total of 64 participants (56 female and 8 male). Their mean age was 
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22.3 years (SD = 2.29). They were enrolled in a research methods course of 

intermediate level. 

Design 

The participants were randomly assigned to one of three experimental conditions: 

self-guided & non-varying strategy (SG-N; n1 = 21), self-guided & varying strategy 

(SG-V; n2 = 21), and scaffolding-based & non-varying strategy (SB-N; n3 = 22). 

Varying and non-varying strategy are related to the type of inductive reasoning tasks. 

Varying strategy means that the solution strategy for the inductive reasoning task 

changed at every measurement point. Participants in the SG-N groups had to solve 

four consecutive inductive reasoning tasks in which it was possible to apply the same 

solution procedure. Figure 8.3 shows the longitudinal research design with ten 

measurement points and the three experimental groups. Participants in the SB-N 

group received support on which strategy to apply for the first and sixth task. 

Participants in SG-N and SB-N received tasks in which the solution strategy was 

identical for measurement points one to four and six to nine (see Figure 8.3). 

Participants in SG-V received tasks with varying solution strategies at all ten 

measurement points. At measurement points one, five, and ten, the inductive 

reasoning tasks were identical for all experimental groups.  

 
FIGURE 8.3. Longitudinal research design (SG-N: self-guided & non-varying strategy; SG-V: self-
guided & varying strategy; SB-N: scaffolding-based & non-varying strategy; O = measurement of 

dependent variable; X = treatment; T = task; a, b,c, d, e = strategy to solve the task) 
 

Our experiment was implemented on a web-based platform, which enabled us to 

track the participants’ behavior and, more importantly, the time needed to solve the 

ten tasks. Based on the participants’ login and experimental condition, our web-

based platform assigned the corresponding task (and if required the feedback) at each 

measurement point. It was not possible to log in again to solve the task a second 

time. 

Materials  

• Achievement motivation inventory: The short version of the LMI-K 

(Leistungsmotivationsinventar; i.e. an achievement motivation inventory) 



	   137 

was used to test the participants’ achievement motivation. The LMI-K 

consists of 30 items which are combined to form a global value. Schuler and 

Prochaska (2001) report high reliability scores for the LMI-K (Cronbach’s 

alpha = .94). 

• Verbal abilities: A subscale of the I-S-T 2000 R (Amthauer, et al., 2001) was 

used to test the participants’ verbal abilities. This test is a widely used 

intelligence test in Germany with high reliability (r = .88 and r = .96; split-

half reliability). A total of 20 sentences with a missing word had to be 

completed using a set of five words. The participants had six minutes to 

complete this subset on verbal abilities.    

• Inductive reasoning tasks and feedback: 14 inductive reasoning tasks in the 

German language were administered at specific points in time (see Table 8.1 

for examples). Solving a task took approximately 15 minutes on average. As 

shown in our experimental design (see Figure 8.3), we administered tasks 

which required identical and different solution strategies. Two sets of four 

tasks required the same solution strategy, and the remaining six tasks required 

different solution procedures. Table 8.1 shows two examples of tasks, the 

corresponding feedback which was provided to the subjects in the SB-N 

group, and the solution. Difficulty of tasks increased slightly during the ten 

measurement points. 

• Logical reasoning rating test: The logical reasoning rating test consisted of 

five items focusing on the difficulty, motivation, time, solution procedure, 

and replicability of the tasks (Cronbach’s alpha = .83). The questions were 

answered on a four-point Likert scale (1 = totally disagree; 2 = disagree; 3 = 

agree; 4 = totally agree). 

Procedure 

In the first phase of the experiment, the participants completed a demographic data 

questionnaire, the short version of the LMI-K, and the subset of the I-S-T 2000 R. 

Additionally, participants were randomly assigned to the three experimental 

conditions. In the second phase, participants solved ten tasks within five weeks (two 

tasks per week, Mondays and Thursdays). After logging into the web-based platform 

with a personal codeword, the participants were provided with the task. Here the 

participants were asked to type in (a) the solution to the task and (b) the strategy they 

applied to solve it. Additionally, the participants had to estimate how long it took 
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them to solve the task (estimated time on task). Subsequently, they filled out the five 

items of the logical reasoning rating test. 
TABLE 8.1 
Two examples of inductive reasoning tasks with different solution strategies, provided 
feedback, and solutions (translated from German) 
Example task Provided feedback Solution 
A father is the same age as his three sons 
together. Ten years ago, he was three 
times as old as his oldest son and five 
times as old as his second oldest son. The 
youngest son is 14 years younger than his 
oldest brother. How old are the three 
sons? 

The problem includes four 
variables: Father (f), son 1 
(s1), son 2 (s2), and son 3 
(s3). Accordingly, you 
need four equations. 
Equation one would be: f = 
s1 + s2 + s3. Now find the 
remaining equations to 
solve the problem. 

Son one = 25 years old, 
son two = 19 years old, 
and son three = 11 years 
old. 

All three friends Anton, Hans, and Karl 
play two musical instruments. Hence, we 
are able to give everybody two of the 
following designations: Flautist, 
drummer, violinist, cellist, trumpeter, and 
pianist.  
The flutist likes to take the mickey out of 
the violinist; the trumpeter and violinist 
join Anton for watching a soccer game; 
the cellist is in debt to the drummer; the 
flutist is engaged with the sister of the 
cellist; Hans hid the trumpeter’s 
instrument; and Karl has won against 
Hans and the cellist in the last card game.  
Now it should be clear which instruments 
are played by whom? 

First create a table with 
three columns and three 
rows. The first column is 
for the names, the second, 
and third for the 
corresponding instruments 

Anton: pianist, cellist 
Hans: violinist, drummer 
Karl: trumpeter, flautist 

Scoring 

For each participant, an achievement motivation and a verbal ability score were 

determined. Furthermore, we determined each participant’s task solution score, 

points being awarded for partial or full solution of the tasks at the ten measurement 

points (0 – 5 points). Additionally, an average score for the logical reasoning rating 

test was determined. 

 Task strategy measure: To analyze the strategies for solving the tasks during 

our longitudinal experiment, a scoring rubric was developed. We determined each 

participant’s task solution score, points being awarded for partial or full solution of 

the tasks at the ten measurement points (0 – 5 points). The task strategy measure (0 = 

NS; 1 = WS; 2 = RS) at the ten measurement points was scored as follows: (NS) no 

strategy for solving the task; (WS) application of an incorrect strategy for solving the 

task; (RS) application of the correct strategy for the task. For the task solution score 

and task strategy measure we found a very highly significant correlation, r = .914, p 

< .001. 
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 Time spent for solving the tasks: We tracked the time spent on solving the 

task within the online experimental environment (TT: tracked time), and the 

participants were asked to estimate how long it took them to solve the task (ET: 

estimated time). 

 Using transition probabilities to identify change: A process which develops 

dependent on time and in accordance with probabilistic principles is a stochastic 

process. This means that we cannot predict with certainty its future behavior but 

rather only probabilities as to various possible states for the future. Bartholomew 

(1967) introduced the application of stochastic models for describing social 

processes, specifically the growth of different generations within families and 

societies. In this context, Ifenthaler and Seel (2005) considered the progression of 

cognitive structures to be comparable to the growth of such social processes. 

 Thus, we assume that changes in cognitive structures can be characterized by 

transition probabilities which develop over time. In order to model and analyze the 

likelihood that one given state of a cognitive structure (mental model or schemata) 

will be followed by another, we compute transition probabilities from one state to 

another. The results can be presented in a transitional probability matrix (see 

Equation 1). 

          (1) 

In matrix P, the entries in each row add up to 1. For example, there is a .38 

probability that a less elaborated cognitive structure will increase in size or a .23 

probability that an elaborated cognitive structure will decrease in size. These 

transition probabilities can be illustrated by means of a state transition diagram, 

which is a diagram showing all states and transition probabilities (see Figure 8.4). 

Possible missing arrows indicate zero probability; the density of the arrows indicates 

the potency of probability. 

 In order to identify which transition probability deviates significantly from its 

expected values, a z-score is computed to test significance. A z-score larger than 1.96 

absolute is then regarded as statistically significant at the .05 level (Bakeman & 

Gottman, 1997). The above-described stochastic models provide the mathematical 

basis for precisely computing learning-dependent changes in cognitive structures 

(Ifenthaler & Seel, 2005). 
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FIGURE 8.4. State transition diagram of Equation (1) 

 

Results 

Initial data checks showed that the distributions of ratings and scores satisfied the 

assumptions underlying the analysis procedures. Main effects of gender were not 

significant for any measure. All effects were assessed at the .05 level. As effect size 

measures, we used Cohen’s d (small effect: d < .50, medium effect .50 ≤ d ≤ .80, 

strong effect d > .80) and partial ƞ2 (small effect: ƞ2 < .06, medium effect .06 ≤ ƞ2 ≤ 

.13, strong effect ƞ2 > .13).  

Longitudinal perspective on task solution 

Participants spent an average of M = 206.78 (SD = 111.13) minutes solving all ten 

tasks (tracked time). In order to obtain an overview of overall performance during 

the ten measurement points, we analyzed the individual answers. Table 8.2 shows the 

means of task solution score and task strategy measure. An ANOVA showed no 

significant differences for the overall task solution scores between the SG-N (M = 

32.00, SD = 6.85), SG-V (M = 30.00, SD = 7.94), and SB-N (M = 32.54, SD = 8.05) 

experimental group, F(2, 63) = .66, p = .523. Also, we found no significant 

difference for the task strategy measure between the SG-N (M = 12.14, SD = 2.78), 

SG-V (M = 10.95, SD = 3.22), and SB-N (M = 10.86, SD = 3.43) experimental 

group, F(2, 63) = 1.09, p = .344. 
TABLE 8.2 
Means, standard deviations, minimum and maximum scores of task solution score and task 
strategy measure (N = 64) 

 M SD Min Max 

Task solution score 31.53 7.59 15 49 

Task strategy measure 11.31 3.16 4 19 
Note. For ten measurement points, task solution score (maximum = 50); task strategy measure 
(maximum = 20). 
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Learning-dependent progression of task solution score 

We computed a repeated-measure MANOVA with the task solution score at ten 

measurement points as a within-subjects factor, and experimental groups (self-guided 

& non-varying strategy, self-guided & varying strategy, and scaffolding-based & 

non-varying strategy) as a between-subjects factor. The sphericity assumption was 

not met (χ2(44) = 66.17, p = .017), so the Greenhouse-Geisser correction 

(Greenhouse & Geisser, 1959) was applied. The difference between measurements 

was significant, F(7.2, 437.5) = 26.85, p < .001, ƞ2 = .306 (strong effect). We also 

found a significant interaction, F(14.3, 437.5) = 3.06, p < .001, ƞ2 = .091 (medium 

effect). However, the difference between experimental groups was not significant, 

F(2, 61) = .66, p = .523. 

 

FIGURE 8.5. Mean task solution score over time, by experimental group 
 

The results of our MANOVA analysis indicated a significant difference in the mean 

task solution score over time (see Figure 8.5). Additionally, the significant 

interaction effect showed that the mean task solution score of the three experimental 

groups changed differently over time. A pairwise comparison of the task solution 

score at different times indicated significant differences between experimental 

groups for the following measurement points (MP): MP 3 – MP 4 (F(2, 61) = 6.43, p 

= .003, ƞ2 = .174), MP 4 – MP 5 (F(2, 61) = 4.03, p = .023, ƞ2 = .117), and MP 9 – 

10 (F(2, 61) = 4.64, p = .013, ƞ2 = .132). However, we found no difference in the 

mean task solution score between the three experimental groups over time. See 

Appendix A for means and standard deviations. 
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Transition probabilities of task strategy measure 

In order to model and analyze the likelihood that one given state of a cognitive 

structure (mental model or schemata) will be followed by another, we computed 

transition probabilities from one measurement point to another (see Appendix B for 

the transitional probability matrix, including z-scores). Based on the transition 

probabilities, we were able to illustrate all states and transition probabilities by 

means of a state transition diagram. Possible missing arrows within the diagrams 

indicate zero probability; the density of the arrows indicates the potency of 

probability. These transition state diagrams reveal similarities and differences 

concerning the task strategy measure (NS, WS, RS) of the tasks during the learning 

process (ten measurement points). Accordingly, these diagrams help us to identify 

specific points during the task solution process which may give an insight into 

changes of cognitive structures from mental models to schemata. 

 Overall, the transition probabilities and state diagrams for participants in the 

SG-N group (see Appendix B) revealed a possible schematization between MP1 and 

MP4 and between MP6 and MP9, because it was very likely that once they had 

applied a correct strategy for solving a task they did not revert to an incorrect 

strategy (see Figure 8.6).  

 
FIGURE 8.6. State transition diagram for participants in the SG-N experimental group (n1 = 21),  

MP 2 – 3 
 

For participants in the SG-V group the transition probabilities and state diagrams 

revealed a possible construction of mental models between MP1 to MP10 (see 

Appendix B), because it was very likely that they changed state between each 

measurement point and also often reverted to incorrect strategies (see Figure 8.7). 
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FIGURE 8.7. State transition diagram for participants in the SG-V experimental group (n2 = 21),  

MP 6 – 7 
 

The transition probabilities and state diagrams for participants in the SB-N group 

revealed a possible schematization between MP1 and MP4 and between MP6 and 

MP9 (see Appendix B), because it was very likely that once they applied a correct 

strategy to solve a task they did not revert to incorrect strategies. Additionally, the 

feedback at MP1 and MP6 caused higher probabilities of change at the following 

MPs (see Figure 8.8). 

 
FIGURE 8.8. State transition diagram for participants in the SB-N experimental group (n3 = 22),  

MP 8 – 9 
 

Finally, we found a high probability in all three experimental groups of solving the 

task correctly at MP9 and having no solution at MP10. Accordingly, we assume that 

the task at MP10 was too difficult (including the underlying strategy) to be solved by 

the participants. 

Verbal abilities and achievement motivation 

Participants could score a maximum of 210 points on the achievement motivation test 

and 20 points on the subset of the I-S-T 2000 R on verbal abilities. On the test for 

achievement motivation, participants scored M = 140.11 points (SD = 23.04) and on 
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the test for verbal abilities they scored M = 12.97 points (SD = 3.94). Table 3 shows 

the correlations for the task solution score and task strategy measure with the 

participants’ achievement motivation and verbal abilities scores. We found no 

significant correlation between achievement motivation or verbal abilities and the 

task solution score and task strategy measure. The data were divided into high and 

low achievement motivation groups by a median split. Still, a t-test analysis revealed 

no significant difference for the task solution score, t(62) = -.936, p = .353, and task 

strategy measure, t(62) = -1.74, p = n.s. Additionally, we divided the data into high 

and low verbal abilities groups by a median split. Also, the t-test analysis revealed 

no significant difference for the task strategy measure, t(62) = -1.70, p = n.s. 

However, we found a significant difference for the task solution score between 

participants with high verbal abilities (M = 33.41, SD = 7.82) and low verbal abilities 

(M = 29.66, SD = 7.00), t(62) = -2.02, p = .048, d = .51 (medium effect).  

 Accordingly, the results support the hypothesis that verbal abilities are not 

related to mental model and schematization processes for the task strategy measure. 

However, we have to reject our hypothesis for the task solution score since 

participants with high verbal abilities outperformed those with low verbal abilities. 

Additionally, we have to reject our hypothesis that achievement motivation has an 

influence on the task strategy measure and the task solution score. 
TABLE 8.3 
Correlations between achievement motivation, verbal abilities, task solution score, and task 
strategy measure (N = 64) 
 Achievement motivation Verbal abilities 
Task solution score .163 .205 

Task strategy measure .242 .178 
 

Discussion 

This study is part of our current research on model-based reasoning grounded on the 

theoretical assumptions of cognitive structures. In this paper we examined the 

progression of cognitive structures that learners produce in solving a series of tasks 

within a given instructional context. More specifically, we attempt to identify the 

learning-dependent progression of mental models and their transition to schemata. 

 On the on hand, mental models enable mental “leaps” in the establishment of 

truth values and operate only with the premises which are directly consistent with the 

conclusion (Holland, et al., 1986; Holyoak & Thagard, 1995). Thus, mental models 
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make it possible for people with minimal information to reach correct conclusions 

since they test the truth value of only the premises which are subjectively plausible 

and do not contradict the conclusion when combined with one another. On the other 

hand, Bransford (1984) has pointed out that schema activation and schema 

construction are two different problems. Although it is possible to activate existing 

schemata with a given topic, it does not necessarily follow that a learner can use this 

activated knowledge to develop new knowledge and skills. This can be done by 

means of constructing and revising explanatory models – as advocated in the mental 

model hypothesis (Seel, 1991). 

 Although we do not know how many repetitions of similar experiences will 

be necessary to develop a schema, we argue that learning experiences with 

structurally similar tasks will result in a learning-dependent progression of mental 

models. Snow (1990) identified the learning-dependent mental model progression as 

a specific kind of transition mediating between preconceptions, which describe the 

initial states of the learning process, and causal explanations, which are described as 

the desired end state of learning. We understand the initial states of learning as 

working models that are condensed – as a result of repeated learning experiences – to 

a stable mental model or even an inferential schema that can be applied to solve a 

class of particular problem solving tasks. More specifically, we assume that there is a 

specific point in the learning process at which a transition from a mental model 

(indicated by fluctuations in probability of change) to an inferential schema occurs 

(indicated by a decrease in probability of change).  

 At specific measurement points we found interesting significant differences 

between the treatments (Hypothesis 1). We found that learners in the SB-N condition 

(i.e., scaffolding-based with no variations in the type of task) outperformed learners 

in the SG-V condition at the first measurement point, F(2, 63) = 4.97, p = .010, d = 

.14. Hence, at the very beginning of the learning process the feedback (scaffold) was 

very effective and the learners were able to solve the task significantly better than 

students who did not receive the feedback (Hypothesis 2). However, at the following 

nine points of measurement there were only a few significant differences between the 

experimental groups. This indicates that all subjects were successful – independently 

of the particular experimental condition – in constructing effective mental models for 

mastering the tasks provided. 
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 Also, at the second measurement point the learners in the SG-V were 

outperformed by the learners of the SG-N and SB-N conditions, F(2, 63) = 7.05, p = 

.002, d = .19. Accordingly, learners who were able to apply the same mental model 

to the second task (conditions SG-N and SB-N) were more successful than learners 

who needed to apply another strategy (new mental model) to solve the task (SG-V 

condition). This supports the assumptions of our first research question.  

 Additionally, the significant difference between conditions at the fourth 

measurement point strengthens our hypothesis (Hypothesis 1). Here, learners in the 

SG-V condition (self-guided with variations of tasks) outperformed the learners in 

both the SG-N and SB-N conditions, F(2, 63) = 8.68, p < .001, d = .22. Hence, 

having applied different strategies to solve the tasks enables better performance after 

a specific learning period. This result supports the assumption that it is more 

effective to construct flexible mental models like those required by the variation of 

tasks. Seel, Darabi, and Nelson (2006) have pointed out that within any given 

domain of activity, the richness and flexibility of a learner’s mental model directly 

influences the quality of his or her task performances in that domain. In other words, 

a person (for instance, an expert) who has a rich and powerful set of strategies 

(mental models, related to a particular task domain) will show much greater 

productivity and diversity with respect to solving tasks than someone (for instance, a 

novice) who has only weak mental models. 

 Regarding the task solution strategy, we computed transition probabilities to 

identify fluctuations and stability over time. The state transition diagrams helped to 

identify differences between the three experimental groups. Actually, transition 

probabilities and state transition diagrams are good indicators for identifying 

fluctuation and stability in learning processes. This procedure can be considered a 

suitable methodology for assessing the learning-dependent progression of cognitive 

structures.  

 Furthermore, we looked at the influence of verbal abilities and achievement 

motivation on the task solution. We expected that learners with higher achievement 

motivation would outperform other learners (Hypothesis 3a). Additionally, on the 

basis of previous studies (Hilbert & Renkl, 2008; Ifenthaler, et al., 2007), we 

expected no differences between learners with high and low verbal abilities in terms 

of their mean task solution score (Hypothesis 3b). Indeed, the results of our research 

support the hypothesis that verbal abilities are not related to mental model and 
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schema processes for the task strategy measure. However, we have to reject our 

hypothesis for the task solution score since participants with high verbal abilities 

outperformed those with low verbal abilities. Additionally, we have to reject our 

hypothesis that achievement motivation has an influence on the task strategy 

measure and the task solution score. 

 In addition to extending the research literature on cognitive structure, our 

study may enhance information available to instructional designers and educators. 

Most people can cope effectively with cognitively demanding tasks by constructing 

and maintaining a mental model that provides them with enough understanding of the 

task to be accomplished. In this sense, the notion of mental models is interrelated 

with the investigation of inductive reasoning and problem solving, which provides a 

unique challenge for research in the field of learning and instruction (Jacobson & 

Archodidou, 2000). This can be illustrated by the discussion on higher-order 

instructional objectives concerning logical reasoning and problem solving. Actually, 

several scholars such as Lesh and Doerr (2000) and Schauble (1996), encourage the 

pursuit of higher-order objectives and argue that helping students to develop their 

own “explanatory models” should be among the most important goals of math and 

science education. A recommendation often made in recent learning theory and 

research is to involve students, either individually or in groups, in actively 

constructing mental models for mastering cognitively demanding tasks, such as 

inductive reasoning tasks. The construction of a mental model in the course of 

learning often necessitates both a restructuring of the underlying representations and 

a reconceptualization of the related concepts. Of course, there is no need for a mental 

model as long as the learner can assimilate the learning material into the structures of 

his or her prior knowledge. Therefore, a substantial resistance to assimilation is a 

prerequisite for constructing a mental model, and the degree of this resistance 

depends greatly on the complexity or difficulty of the tasks to be mastered. An 

alternative to a model-based approach of inductive reasoning within the realm of 

instruction is certainly a schema-based approach, such as cognitive load theory 

which recommends the use of means-end-analysis and worked examples that are 

presented to students to show them directly, step by step, the procedures required to 

solve conventional problems, such as inductive reasoning tasks (Sweller, 1988). Both 

the model-based and schema-based approach agree at the point that learning occurs 
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when people actively construct meaningful representations, such as mental models or 

schemata (Mayer, Moreno, Boire, & Vagge, 1999).  

 However, such representations are constructed from significant properties of 

external information, e.g. well-designed learning environments or materials. This 

corresponds with a basic assumption of constructivist approaches of learning 

according to which learners respond sensitively to characteristics of the environment, 

“such as the availability of specific information at a given moment, the duration of 

that availability, the way the information is structured” (and presented), “and the ease 

with which it can be searched” (Kozma, 1991, p. 180). In contrast with schema-

based argumentations researchers in the field of mental models argue that context 

sensitivity occurs consciously and intentionally. Among others, Anzai and 

Yokoyama (1984) assume that learners encode information on a problem in a mental 

model as soon as they begin working on it in order to gain a basic understanding of 

the situation and its demands. This initial experiential model can – and the learner is 

generally aware of this – be false or insufficient for accurately representing the 

subject domain in question. However, it is semantically sensitive toward key stimuli 

in the learning environment and can thus be transformed into a new model through 

accurate processing and interpretation of these key stimuli. The results of the 

experimental study of Anzai and Yokoyama (1984) as well as those of other studies 

(e.g., Ifenthaler, et al., in press; Ifenthaler & Seel, 2005; Seel & Dinter, 1995) 

demonstrate the contextual semantic sensitivity in the learning-dependent 

progression of mental models. Accordingly, learners search continuously for 

information in the given learning environment in order to complete or stabilize an 

initial mental model, also know as a multi-step process of model-building and 

revision (Penner, 2001). Hence, providing appropriate scaffolds or feedback could 

influence these complex processes. 

 With regard to the implemented feedback, we found that our conservative 

type of feedback (information about the strategy in order to solve the task; see Table 

8.1) administered at the first and sixth measurement point did not have a strong 

effect on the learning process and performance. However, we assume that a more 

elaborated and repetitive version of feedback could facilitate the development of 

mental models while solving inductive reasoning tasks. Accordingly, based on these 

findings, a newly conducted experimental study including 20 measurement points 

explores the effect of feedback on model-building processes in more detail. The 
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proposed model-based feedback not only includes information about the expert 

solution strategy but also incorporates the learner’s prior knowledge (Ifenthaler, 

2009). 

 In summary, a precise and stepwise assessment and analysis of cognitive 

structures helps us to better understand the differences within and between 

individuals as they develop over time. This will enable us to identify which 

instructional materials and instructor feedback are most appropriate at various times 

during the learning process in order to help educators struggling to find appropriate 

teaching tools to enhance learning and retention. 
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Appendix A 

TABLE 8.4 
Means (standard deviations in parenthesis) of task solution score over time (N = 64) 
    Experimental group Achievement motivation Verbal abilities Tracked time on task Logical reasoning rating 

    SG-N (n = 
21) 

SG-V (n = 
21)  

SB-N (n = 
22) 

Low (n = 
31) 

High (n = 
33) 

Low (n = 
32) 

High (n = 
32) 

Fast (n = 
32) 

Slow (n = 
32) 

Low (n = 
32) 

High (n = 
32) 

MP 1 3.95 (1.40) 3.52 (1.66) 4.73 (.46) 4.26 (1.18) 3.91 (1.49) 4.09 (1,3) 4.06 (1,41) 3.81 (1.49) 4.34 (1.15) 4.03 (1.45) 4.12 (1.26) 

MP 2 4.33 (1.32) 2.90 (1.41) 4.32 (1.52) 3.74 (1.65) 3.97 (1.47) 3.75 (1,74) 3.97 (1,36) 3.78 (1.62) 3.94 (1.5) 3.75 (1.63) 3.97 (1.49) 

MP 3 4.29 (1.45) 4.14 (1.39) 4.59 (.85) 4.61 (0.99) 4.09 (1.42) 3.91 (1,51) 4.78 (0,71) 4.31 (1.12) 4.38 (1.39) 4.41 (1.19) 4.28 (1.33) 

MP 4 2.86 (1.32) 4.52 (1.03) 3.45 (1.54) 3.65 (1.23) 3.58 (1.68) 3.53 (1,44) 3.69 (1,51) 3.25 (1.48) 3.97 (1.38) 3.50 (1.48) 3.72 (1.46) 

MP 5 3.24 (1.64) 3.19 (1.57) 2.86 (2.03) 2.68 (1.9) 3.48 (1.5) 2.88 (1,7) 3.31 (1,79) 3.06 (1.63) 3.13 (1.88) 2.91 (1.87) 3.28 1.61) 

MP 6 3.52 (1.69) 3.43 (2.11) 3.64 (1.92) 3.65 (1.76) 3.42 (2.02) 3.09 (1,96) 3.97 (1,73) 2.84 (1.97) 4.22 (1.54) 3.53 (1.87) 3.53 (1.93) 

MP 7 2.43 (1.91) 2.57 (1.96) 3.00 (1.98) 2.45 (1.88) 2.88 (2.00) 2.66 (1,98) 2.69 (1,93) 2.66 (1.95) 2.69 (1.96) 2.13 (1.79) 3.22 (1.95) 

MP 8 2.81 (1.75) 1.76 (1.90) 2.95 (1.94) 2.29 (1.9) 2.73 (1.93) 2.44 (1,9) 2.59 (1,95) 2.28 (1.94) 2.75 (1.88) 2.00 (1.92) 3.03 (1.79) 

MP 9 3.71 (1.93) 2.43 (1.78) 2.59 (2.44) 2.52 (2.17) 3.27 (2.04) 2.66 (2,24) 3.16 (2.00) 2.41 (2.2) 3.41 (1.95) 2.03 (2.04) 3.78 (1.85) 

MP 10 .86 (.85) 1.52 (1.40) .41 (1.18) .77 (1.06) 1.06 (1.39) .66 (0,94) 1.19 (1,45) .84 (1.22) 1.00 (1.27) .84 (1.11) 1.00 (1.37) 

Note. SG-N: self-guided & non-varying strategy; SG-V: self-guided & varying strategy; SB-N: scaffolding-based & non-varying strategy 
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Appendix B 

TABLE 8.5 
Transitional probabilities (z-scores in parenthesis) of the task strategy measure (NS, WS, RS) for the ten measurement 
points (N = 64) 

     Self-guided & non-varying 
strategy (n = 21) 

Self-guided & varying 
strategy (n = 21) 

Scaffolding-based & non-
varying strategy (n = 22) 

     NS WS RS NS WS RS NS WS RS 

NS 0 
(-.23) 

0 
(-.50) 

1 
(.57) 

0 
(.72) 

0 
(-.98) 

1 
(2.11) 

0 
(-.32) 

1* 
(2.58) 

0 
(-1.89) 

WS 0 
(-.72) 

.14 
(-.39) 

.86 
(.73) 

.33 
- 

.56 
(.63) 

.11 
(-.80) 

.20 
(.97) 

0 
(-1.01) 

.80 
(.17) MP 1-2 

RS .08 
(.80) 

.23 
(.60) 

.69 
(-.95) 

.36 
(.31) 

.46 
(-.21) 

.18 
(-.11) 

.06 
(-.76) 

.13 
(-.25) 

.81 
(.73) 

NS 0 
(-.23) 

0 
(-.50) 

1 
(.57) 

0 
- 

.14 
(-1.02) 

.86 
(1.03) 

0 
(-.32) 

.50 
(1.22) 

.50 
(-.97) 

WS 0 
(-.50) 

0 
(-1.08) 

1 
(1.24) 

0 
- 

.30 
(.14) 

.70 
(-.14) 

0 
(-.41) 

.33 
(.73) 

.67 
(-1.04) MP 2-3 

RS .06 
(.57) 

.25 
(1.24) 

.69 
(-1.43) 

0 
- 

.50 
(1.05) 

.50 
(-1.05) 

.06 
(.56) 

.12 
(-1.44) 

.82 
(1.05) 

NS 0 
(-.57) 

1 
(.80) 

0 
(-.42) 

0 
- 

0 
- 

0 
- 

1 
(1.67) 

0 
(-1.12) 

0 
(-.48) 

WS .25 
(.06) 

.75 
(.60) 

0 
(-.91) 

0 
(-.65) 

.17 
(.20) 

.83 
(.18) 

.25 
(-.11) 

.75 
(.91) 

0 
(-1.04) MP 3-4 

RS .25 
(.23) 

.56 
(-.95) 

.19 
(1.05) 

.07 
(.65) 

.13 
(-.20) 

.80 
(-.18) 

.24 
(-.73) 

.53 
(-.28) 

.24 
(1.20) 

NS .40 
(1.37) 

.40 
(-.39) 

.20 
(-.72) 

1 
(1.62) 

0 
(-.98) 

0 
(-.57) 

.17 
(-.68) 

.67 
(1.81) 

.17 
(-1.18) 

WS .15 
(-.54) 

.54 
(.73) 

.31 
(-.32) 

0 
(-1.18) 

1* 
(1.96) 

0 
(-1.05) 

.33 
(.70) 

.33 
(-.32) 

.33 
(-.32) MP 4-5 

RS 0 
(-.91) 

.33 
(-.54) 

.67 
(1.32) 

.29 
(.18) 

.41 
(-1.22) 

.29 
(1.24) 

.25 
(-.11) 

0 
(-1.67) 

.75 
(1-78) 

NS .25 
(.06) 

.25 
(-.18) 

.50 
(.11) 

.33 
(.31) 

0 
(-1.18) 

.67 
(.56) 

.67* 
(2.15) 

0 
(-1.35) 

.33 
(-.96) 

WS .40 
(1.66) 

.20 
(-.83) 

.40 
(-.67) 

.30 
(.14) 

.20 
(.71) 

.50 
(-.63) 

.38 
(.43) 

.13 
(-.52) 

.50 
- MP 5-6 

RS 0 
(-1.81) 

.43 
(1.03) 

.57 
(.62) 

.20 
(-.49) 

.20 
(.42) 

.60 
(.15) 

0* 
(-2.42) 

.38 
(1.78) 

.63 
(.89) 

NS .40 
(-.64) 

.40 
(.97) 

.20 
(-.23) 

.33 
(.65) 

.33 
(-.56) 

.33 
- 

.86* 
(2.29) 

.14 
(-1.21) 

0 
(-1.51) 

WS .67 
(.83) 

.33 
(.65) 

0 
(-1.62) 

.33 
(.42) 

.33 
(-.36) 

.33 
- 

.25 
(-1.11) 

.75* 
(2.05) 

0 
(-1.04) MP 6-7 

RS .50 
(-.21) 

.10 
(-1.42) 

.40 
(1.66) 

.17 
(-.89) 

.50 
(.76) 

.33 
- 

.36 
(-1.28) 

.27 
(-.46) 

.36* 
(2.21) 

NS .27 
(1.78) 

.46 
(-1.14) 

.27 
(-.14) 

1 
(1.62) 

0 
(-.83) 

0 
(-1.24) 

.55 
(1.30) 

.27 
(-1.30) 

.18 
- 

WS 0 
(-1.05) 

1* 
(2.22) 

0 
(-1.62) 

.67 
(-.42) 

.22 
(1.72) 

.11 
(-.80) 

.14 
(-1.74) 

.86* 
(2.92) 

0 
(-1.54) MP 7-8 

RS 0 
(-1.05) 

.40 
(-.89) 

.60 
(1.78) 

.57 
(-1.02) 

0 
(-1.05) 

.43* 
(1.97) 

.50 
(.41) 

0 
(-1.84) 

.50 
(1.82) 

NS .33 
(1.02) 

0 
(-.91) 

.67 
- 

.33 
(.76) 

.60 
(.42) 

.07 
(-1.58) 

.56 
(.79) 

0 
(-1.55) 

.44 
(.28) 

WS .08 
(-.90) 

.25 
(.80) 

.67 
- 

0 
(-.94) 

.50 
(-.21) 

.50 
(1.52) 

.56 
(.79) 

.33* 
(2.24) 

.11* 
(-2.37) MP 8-9 

RS .17 
(.20) 

.17 
(-.18) 

.67 
- 

.25 
(-.18) 

.50 
(-.32) 

.25 
(.68) 

0* 
(-2.02) 

0 
(-.88) 

1* 
(2.66) 

NS 1 
(1.78) 

0 
(-1.78) 

0 
- 

1* 
(2.51) 

0* 
(-2.77) 

0 
(-.65) 

1 
(1.70) 

0 
(-1.35) 

0 
(-.93) 

WS .50 
(-.11) 

.50 
(.11) 

0 
- 

.33* 
(-2.55) 

.58* 
(2-21) 

.08 
(.88) 

.67 
(-1.07) 

.33 
(1.57) 

0 
(-.41) MP 9-10 

RS .43 
(-1.24) 

.57 
(1.24) 

0 
- 

.67 
(.36) 

.33 
(-.18) 

0 
(-.42) 

.78 
(-.98) 

.11 
(.27) 

.11 
(1.23) 

Note. * indicate transitional probabilities whose values significantly exceed expected, p < .05. 



	  

	   152 

 

 

9 
FACILITATING LEARNING THROUGH GRAPHICAL 

REPRESENTATIONS &  

This experimental study integrates automated natural language-oriented assessment and analysis 
methodologies into feasible reading comprehension tasks. With the newly developed toolset, prose 
text can be automatically converted into an association net which has similarities to a concept map. 
The “text to graph” feature of the software is based on several parsing heuristics and can be used both 
to assess the learner’s understanding by generating graphical information from his or her text and to 
generate conceptual graphs from text which can be used as learning materials. The study investigates 
the effects of association nets made available to learners prior to reading. The results reveal that the 
automatically created graphs are highly similar to classical expert graphs. However, neither the 
association nets nor the expert graphs had a significant effect on learning, although the latter have 
been reported to have an effect in previous studies. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Pirnay-Dummer, P., & Ifenthaler, D. (in press). Reading guided by 
automated graphical representations: How model-based text visualizations facilitate learning in 
reading comprehension tasks. Instructional Science. doi: 10.1007/s11251-010-9153-2 
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Introduction 

Notwithstanding the tremendous efforts of research, design, and development for e-

learning, online learning, blended learning, and multimedia learning environments, 

text still holds the key position within learning environments. Learning has a strong 

connection to reading and always will. The material ranges from small annotations to 

whole textbooks. The technologies used in this study to support reading and 

understanding were initially developed as alternative assessment methods for finding 

out what a learner knows as opposed to what he or she does not know (e.g., counting 

errors in classical testing). Like all methodologies they have strengths and 

weaknesses with respect to what they account for and what features they convey. 

They never describe states of the mind directly but rather through the medium of 

external artifacts which correspond to internal states and allow some (but not all) 

conclusions about what is going on internally. This is a constraint for every empirical 

approach which addresses cognition. After using and validating the assessment 

technologies in many studies, we found that the graphical artifacts from the output of 

the new assessment tools may be used not only for assessment but also as a feedback 

component for learners. One reason for this is that they are comparatively easy to 

read, even for non-experts. In this study we investigate an immediate effect of the 

availability of these artifacts when they are used to support a typical short reading 

task. 

Model supported strategies for reading and understanding 

When learners are confronted with medium-sized or long texts, conceptual 

representations can help them to navigate the meaning – to assimilate the content or 

navigate the text more efficiently (Crinon & Legros, 2002; Seel & Schenk, 2003). 

While abstracts, indexes, and sequential information (e.g., tables of content) and their 

counterparts in text layout are very common aids for navigating the logical sequences 

of a text, semantic structures are (if at all) only embedded locally. For instance, many 

texts contain a table of contents, an index, or a glossary, all of which help the reader 

to navigate the logic (overview) of the text. Semantic structures, on the other hand, 

only illustrate local content. They can be found in pictures and graphs which 

illustrate the meaning of locally discussed information (e.g., Eliaa, Gagatsisa, & 

Demetriou, 2007; Hardy & Stadelhofer, 2006). Expert representations (e.g., models, 
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concept maps, or graphs invented and drawn by experts) help the reader to 

understand text as well as to assimilation its information into prior knowledge. The 

integration of new knowledge (assimilation) and the rearrangement of existing 

knowledge in order to incorporate new and conceptually different aspects 

(accommodation) are paramount to learning. Thus, the learning process itself uses 

heuristic resources of reasoning.  

 A theoretical framework for describing this interrelation is the theory of 

mental models, and assessment methods from this area of research may provide 

external graphical structures for visualizing structural content. The role of mental 

models in deductive and inductive reasoning within learning environments has a 

strong theoretical foundation (Dinter, 1993; Johnson-Laird, 1983; Seel, 1991, 2003) 

as well as a sound empirical basis (Al-Diban, 2002; Ifenthaler, 2010c; Ifenthaler & 

Seel, 2005; T. E. Johnson, et al., 2009; Jonassen & Cho, 2008; Jonassen, et al., 1997; 

Schnotz, 2001; Seel & Dinter, 1995). The general use of model representations in the 

form of concept maps for reading has already been investigated and discussed (e.g., 

Mayer, 1989). According to research findings, the best time to present graphical 

representations to learners is before the first reading, i.e. before they access the text. 

One of the major practical problems with this approach is that there is not always an 

expert available to provide the learners with an expert model because such a model 

has to be related solely to the specific text. Furthermore, not every expert is trained 

in reflecting an internal model in the format of a concept map (see Novak, 1998). 

Therefore, the quality may vary widely depending on the concept mapping skills of 

the experts one selects. Of course, such skills could be monitored or controlled. 

However, this involves additional manual effort, and it usually takes too long to 

work for normal classroom applications. Unfortunately, this is one reason why 

concept maps which are directly related to a text are rarely used in classrooms.  

 Therefore, our work integrates automated natural language-oriented 

assessment and analysis methodologies, e.g., SMD Technology (Surface, Matching, 

Deep, Ifenthaler, 2010c), T-MITOCAR (Text-Model Inspection Trace of Concepts 

and Relations, Pirnay-Dummer & Ifenthaler, 2010), into feasible reading 

comprehension tasks comparable to those implemented in an everyday classroom 

setting. Our studies have also already shown that the graphical assessment outputs 

exert considerable influence on ongoing writing (Pirnay-Dummer & Ifenthaler, 

2011) and learning (Ifenthaler, 2009, 2010a). 
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Re-representation 

A model is a representation of a thing or a fact or sets thereof. It always has a 

purpose, yet the purpose can vary. A model may serve more than one purpose. 

Representation formats can be diverse, ranging from analog (e.g., a miniature model 

of a house) to symbolic, from simple (where aspects are few and mostly constant) to 

complex (where aspects, variables, and functions change over time). 

 A mental model is a specific kind of model. It is inherent to a mind. It is 

either a representation of something which is outside the mind (the world) or 

something which is inside the mind (a representation of representations, e.g., a 

simple guess or a mental simulation). The purpose of mental models is to facilitate 

decision making, be it inductive, deductive, or different sets thereof. Decision 

making supports action in the world, including simple and complex problem solving. 

Human decision making uses a set of heuristics which provide shortcuts for problems 

which cannot be solved in a sufficient amount of time. Mental models support these 

heuristics and are thus considered to be at the center of human cognition. 

 Mental models cannot be observed directly. In order to study them, we need 

to represent them externally. The externalization process is a heuristic, as is the 

mental model construction process itself. Because two representation processes are 

involved – one leading from the world to the mind and the other from the mind back 

to the world again – we call external representations re-representations to underline 

the objects we are describing. Re-representations are of course not mental. However, 

they allow inferences about what is going on inside. Re-representation formats can 

be based on any objects which allow us to convey at least a part of the mental model. 

This may be done through language, formalisms, and arranging (e.g., graphical 

parts), but also by way of art or music. 

 Thus, the re-representations have purposes that transcend diagnostics 

(Ifenthaler, 2010d). First, they interact with the inherent model and are therefore 

often considered to be interesting objects during learning. Second, they are used to 

communicate. In fact, they are the only known means of establishing communication 

between minds. Most of the time this is done in natural language. Mental models 

cannot be shared; they can only be communicated by external means. In our studies, 

we rely on re-representations in different formats to assess the complex worlds of 

mental models. However, we also use the same formats to relay content back to the 

learners. 
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Automated graphical representations from texts 

Whereas classical methods like concept maps (e.g., Cañas, et al., 2004), conceptual 

graphs (e.g., Sowa, 1984), causal diagrams (e.g., Jensen, 2001), and structure 

formation techniques (e.g., Scheele & Groeben, 1984) are used to let the learner (or 

expert) conceptualize his or her knowledge graphically, natural language-oriented 

methodologies like T-MITOCAR (Pirnay-Dummer & Ifenthaler, 2010) use multiple 

phases from text to graph. T-MITOCAR automatically converts prose text to an 

association network using a heuristic.  

 To illustrate how far we can get by analyzing texts directly, it will be useful 

come back to an old axiom from research on association and sequences: What is 

closely related is also closely externalized (Pollio, 1966; Smith, 1894, 1918; Wells, 

1911). Texts contain model structures. Closer relations tend to be presented more 

closely within a text. This does not necessarily work within single sentences, since 

syntax is more expressive and complex. But texts which contain 350 or more words 

may be used to generate associative networks as graphs. The re-representation 

process is carried out in multiple stages. The goal of this approach is to improve the 

availability of graphical representations of written text across all subject domains (in 

schools, in companies, in learning management systems, in forums, in chats) and of 

course also for additional use within qualitative research. It can easily interface with 

other automated analysis tools, e.g., with the SMD Technology (Ifenthaler, 2010c) or 

ACSMM (Analysis Constructed Shared Mental Models, T. E. Johnson, et al., 2006). 

The SMD Technology uses pairwise list forms of graphical drawings (e.g., concept 

maps) or natural language statements to automatically generate two structural and 

one semantic measure for quantitatively assessing individuals’ re-representations. 

Besides these quantitative measures, SMD generates four standardized concept map-

like representations which can be used for qualitative analysis and as ready-to-use 

instructional materials: 1) individual or team representation, 2) reference or expert 

representation, 3) similarity representation (only including semantically similar 

propositions between individuals/teams and experts), and 4) contrast representation 

(including propositions which individuals/teams and experts do not share). The 

ACSMM technology aggregates individual models to group models by means of 

propositional frequencies which constitute a probability of “sharedness.” For a 

selectable probability value an aggregated model can be constructed by looking at 

which propositions are commonly shared on this level within a group. Depending on 
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the context, different values are selected. The T-MITOCAR text-to-graph process 

can be divided into four different stages (see Figure 9.1). Stage 1 is the text input 

interface, where text is taken into the system (e.g., through a browser interface or at 

the back end of learning software). In stage 2 the actual model is created by means of 

parsing and the calculation of association measures. Stage 3 contains the visual 

output and graphical analysis of the model, and stage 4 allows multiple structural and 

semantic methods of comparing the graphs. 

 

FIGURE 9.1. Process from text to graph 

When text is pasted to T-MITOCAR from any text source, it may contain characters 

which could disturb the re-representation process. Thus, all characters which are not 

part of a specific character set are deleted. The same happens to tags (e.g., HTML 

tags) and other expected meta-data within each text. When generating the model, we 

do not want to have formatting code in our way. After the whole text has been 

prepared in this fashion, it is split into sentences and tokens consisting of words, 

punctuation marks, quotation marks, and so on. This process is called “tokenizing” 

and is somewhat language dependent, which means that we need different tokenizing 

methods for each language we want to use. We only want nouns and names to be 

part of the final output graph. Hence, we need to find out which words are nouns or 

names. There are many different approaches and heuristics for tagging sentences and 

tokens. We found a combination of rule-based and corpus-based tagging to be most 

feasible when the subject domain of the content is not known in advance, and since 

T-MITOCAR is designed to work domain independently, this is an important factor. 

Tagging and the rules for it is a quite complex field of linguistic methods. An 

explanation of our tagging technique would go beyond what is presentable in this 

paper. Please see Brill (1995) for a good discussion on mixed rule-based and corpus-

based tagging. 

 Usually we would prefer for different inflexions of a word to be treated as 

one (e.g., the singular and plural forms “fire” and “fires” should appear only once in 

the re-representation). Stemming solves this problem by reducing all words to their 

word stems for the following stages leading to the output graph. Therefore, all words 
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within the initial text and all words within the tagged list of nouns and names are 

stemmed. After tagging and stemming, the most frequent noun stems are listed from 

the text. The amount of terms fetched from the text depends on its length in words 

and sentences. Thus, larger texts also generate larger models. There is, however, a 

ceiling value. In the running versions of T-MITOCAR no more than 30 single terms 

are fetched from a text. This value can of course be set for the software. The core 

algorithms of T-MITOCAR calculate associatedness: 

• The default length is calculated. The words are counted for each sentence. 

The default length is the longest sentence in the text plus one. 

• All fetched terms are paired so that all possible pairs of terms are in a list. 

• All sentences are analyzed for each pair. If the pair appears within a sentence, 

the distance for the pair is the minimum number of words between the terms 

of the pair within the sentence: If at least one term occurs more than one time 

in the sentence, then the lowest possible distance is taken. 

• If a pair does not appear in a sentence (also true if only one of the two terms 

is in the text), then the distance will be the default length. 

• The sum of distances is calculated for each pair. 

• The N pairs with the lowest sum of distances find their way into the final 

output model. Like the list of terms, N depends on the number of words and 

sentences within the text (exact values can be controlled by the software 

settings). 

• This process automatically cuts the maximum distance from re-

representation, even if pairs would normally be presented on the basis of the 

number of sentences and words. This prevents the algorithm from just 

deriving random pairs which do not really have any association evidence 

within the text. 

 

The weights are calculated from the pair distances. They are to some extent 

comparable to the combined measure of the MITOCAR toolset. All weights (0 ≤ w ≤ 

1) are mapped linearly so that 1 is the pair with the lowest sum of distances and 0 is 

the pair with the maximum sum of distances. Linguistic word stems sometimes look 

strange to untrained viewers. Although one can still guess which words they come 

from, deriving the output directly from the word stems is no help in reading the re-
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representations. Hence, lists of words and their stems are created during stemming 

for the specific text at hand.  

 After determining the associatedness and the weight, the procedures use this 

table to determine which word led most frequently to the stem: If it was the plural, 

then the plural moves into its place. If it was the singular, then the singular is 

presented. Thus, the final output model contains a real word in that it uses the 

inflexion which was most frequently used in the text. The list form is a table which 

accounts for an undirected graph containing all N pairs (see Table 9.1). It is sorted by 

weight (descending). 
TABLE 9.1 
List form of the graph output 
Term 1 Term 2 Sum of Distances Weight 
economy trade 3428 1 
exchange goods 5710 .60 
… … … … 

 

The weights (0 ≤ w ≤ 1) at the edges describe the overall weight for the whole noun-

distance oriented matrix generated from the text. The weights inside the brackets 

show the weights within the graph. This weight is also taken to generate the color of 

the edges. The strongest edge is red, while the weakest (compared to the graph, not 

to the text matrix) is blue.  

 The “text to graph” feature of the software is based on several parsing 

heuristics and can be used to assess the learner’s understanding by generating 

graphical information from his or her text as well as to generate conceptual graphs 

from texts which are used as learning materials. It may simply help to have the 

option of avoiding the effort of an expert model in everyday classroom settings, even 

if expert models turn out to work better than the automated representations. To create 

a graphical model from a text, all teachers need to do is upload the text and attach a 

label to it – in order to find it later on. Additionally available features to make the 

analysis easier are word counts (of nouns), tables (list form) of the models, and a 

comparison section that allows comparison of different text based models. The 

comparison contains measures for graph comparison and graphical representations 

(pictures), e.g., to represent intersections and difference models. 

 The output models comply with most of the quality indicators suggested by 

Mayer (1989). They are complete because they represent the text – and only the text 

is used to build up the structure. This is also the reason why we consider them to be 

concise as regards the task: They only present the associations within the text and 
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therefore have the same scope as the text. However, if the text itself does not 

correspond to the learning goal or the group then the model that is based on the text 

will also fail. Thus, the possibility of creating such a model does not obviate the need 

for the instructional task of selecting a fitting learning text. The models are directly 

related to the text by design. If the text is compatible with the learners then it will 

also be coherent, as long as it also includes a sufficient amount of words (≥ 350 

words). 

 Pirnay-Dummer, Ifenthaler, and Rohde (2009) provided a study which 

showed a positive effect of available models on writing when the learners’ own text 

was visualized for the experimental condition. We interpret this as an indicator for 

coherence. In order to decide whether the models are conceptual, it is important to 

know which basis they stand on. Within this study, the experts selected a text on an 

encyclopedic level. Thus, both the initial authors and the experts thought that it 

covered correct content and was still able to address a common audience – the 

models are conceptual to that extent. Whether the models are also considerate is not 

yet fully understood. We do not believe that this criterion can be fulfilled a priori by 

means of the algorithm. 

Measures of graph-comparison 

The measures for comparison can be applied to any graph, not only to re-

representations from T-MITOCAR. There are six core measures for the comparison 

of conceptual graphs from the SMD Technology (Ifenthaler, 2010c) and from 

MITOCAR (Pirnay-Dummer, 2006). The indices measure features of graphs. Of all 

the available measures from graph theory we picked the ones which are theoretically 

most likely to correspond to the constructs we are trying to describe. We also 

constructed new algorithms where necessary. In the course of our studies they have 

shown empirical stability on different occasions. Over time some of the measures 

may converge, and new ones will certainly also emerge as a result of discussions on 

future studies.  Some of the measures count specific features of a given graph. For a 

given pair of frequencies f1 and f2, the similarity results in a measure of 0 ≤ s ≤ 1, 

where s=0 is complete exclusion and s=1 is identity. The other measures collect sets 

of properties from the graph (e.g., the vertices = concepts or the edges = relations). In 

this case, the Tversky similarity (Tversky, 1977).  
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 The four structural and two semantic measures are defined as follows: (1) The 

surface measure (Ifenthaler, 2010c) compares the number of vertices within two 

graphs. It is a simple and easy way to calculate values for surface complexity. (2) 

The graphical matching (Ifenthaler, 2010c) compares the diameters of the spanning 

trees of the graphs and is an indicator for the range of conceptual knowledge. It 

corresponds with structural matching as it is also a measure for structural complexity 

only. (3) The density of vertices measure (also often called “gamma”) (Pirnay-

Dummer & Ifenthaler, 2010) describes the quotient of terms per vertex within a 

graph. Since both graphs which connect every term with each other term (everything 

with everything) and graphs which only connect pairs of terms can be considered 

weak models, a medium density is expected for most good working models. (4) The 

structural matching measure (Pirnay-Dummer & Ifenthaler, 2010) compares the 

complete structures of two graphs without regard to their content. This measure is 

necessary for all hypotheses which make assumptions about general features of 

structure (e.g., assumptions which state that expert knowledge is structured 

differently from novice knowledge).  

 (5) Concept matching (Pirnay-Dummer & Ifenthaler, 2010) compares the sets 

of concepts (vertices) within a graph to determine the use of terms. It counts how 

many concepts are alike. This measure is especially important for different groups 

operating in the same domain (e.g., using the same textbook). It determines 

differences in language use between the models. (6) The propositional matching 

(Ifenthaler, 2010c) value compares only fully identical propositions (concept-link-

concept) between two graphs. It is a measure for quantifying semantic similarity 

between two graphs.   

 The individual measures usually correlate differently. There are significantly 

higher correlations within each classification (convergent, structure between r=.48 

and r=.79 and semantics between r =.68 and r =.91) and lower correlations between 

them (divergent, between r = -.24 and .36). The density of vertices (gamma) usually 

stands alone and only rarely correlates with the other structural measures because it 

accounts for a different feature of structure (correlations between r=.37 and r=.38).  

 Pirnay-Dummer et al. (2010) provide a full validation study. The validation 

study was conducted with N = 1,849,926 model comparisons in 13 different subject 

domains ranging from common knowledge to scientific subject domains. There is not 

yet any indication of an interpretable convergence of the measures. They measure 
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different features. Depending on the research question, they either need to be 

reported completely or selected to fit with the hypotheses if possible, e.g., for 

research aiming only at the semantic level the structural indices may be omitted or 

treated as a covariate.  

Research questions and hypotheses 

We assume that conceptual graphs generated by the T-MITOCAR system can be 

used to improve reading comprehension in the same way as graphical representations 

from experts would. This assumption has two aspects. The first has to do with the re-

representation object: If the automated graphical representations and expert re-

representations share the same central features then they should induce similar 

effects because the objects are alike. The second aspect is directed at the source of 

the re-representation. If an expert solution is not available for a specific text, teachers 

only have a general representation to rely on, if at all. The alternative would be for 

them to invest the time to create a representation on their own. This is less likely if a 

large amount of learning texts are at hand, i.e. if the prototype is replaced by a real 

everyday classroom intervention. In this case the automated text representation may 

be feasible and still convey the model of the text – maybe even better than a general 

expert model in the field, because it is directly related to the content of the texts. 

Thus, we believe that the examination of the model representation influences the 

model building process in favor of the learning goals as long as the external 

representation corresponds closely to the selected text basis: Regardless of the 

learning goal, the text and the representations should correspond to each other as 

much as possible and share the same properties. This should result in semantic 

redundancy, which is known to support learning (Christmann & Groeben, 1999).  

 First, we want to show that the automated representations have high 

similarities to expert representations – to be on the safe side for interventions. If they 

are similar it makes sense to assume that they also have similar effects on learning 

because they share the same structural and semantic properties. This leads to the 

following first set of hypotheses we tested in our study (each presented as a classical 

pair of null and alternative hypotheses). 

 

H1.1: T-MITOCAR graphs have high semantic similarities to the expert models.  
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H1.0: T-MITOCAR graphs have only little or no semantic similarity to the expert 

models. 

 

H2.1: T-MITOCAR graphs have high structural similarities to the expert models.  

H2.0: T-MITOCAR models have only little or no structural similarity to the expert 

models. 

 

 Second, we want to compare the effects of the graphical representations on 

reading comprehension directly to see whether they have an influence and whether 

this influence is comparable to the effect that expert models have. 

 

H3.1: T-MITOCAR graphs lead to the same performance gain as expert models or 

more. 

H3.0: T-MITOCAR graphs lead to less performance gain than expert models. 

 

 In a control group we investigated the reading itself without providing any 

representation. Another control group was presented with a graph which was 

constructed from the terms but whose relations were completely arbitrary 

(randomized). With the second control group we wanted to see whether the effects 

were based on the relational structure of the re-representation or if they could be 

explained by the availability of the terms only – regardless of how they may have 

been organized. This allowed us to see how much of the effect was due to the 

organization of the knowledge: 

 

H.4.1: T-MITOCAR graphs lead to more performance gain than random graphs and 

no conceptualizations 

H.4.0: T-MITOCAR graphs lead to the same performance gain as random graphs and 

no conceptualizations or less 

Method 

Participants 

The experiment was conducted with 60 undergraduate students (34 female and 26 

male) from the University of Freiburg. Their mean age was 20.8 years (SD = 1.76). 

They were all students of fields which did not contain any content trained in this 
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experiment. It took the subjects about 1.5 hours to complete the full experiment. 

They were paid 10 Euros each as compensation for their participation. 

 

Materials 

• Three texts for the subject domains geodesy, English literature, and pharmacy 

were provided by three domain experts. Each text was selected to be used for 

training non-experts on the specific topic. The experts on geodesy and 

pharmacy chose texts from www.wikipedia.org, the text on literature was 

taken from Abrams (1993). 

• The conceptual graphs (expert model) for each subject domain (economy, 

English literature, and pharmacy) were provided by the domain expert. Each 

text (economy, English literature, and pharmacy) was processed by T-

MITOCAR, which also resulted in a graph (T-MITOCAR model). The 

similarity indices between the expert model and T-MITOCAR model were 

calculated for each of the three subject domains (see Table 3). Similarity 

indices are between 0 and 1 (0≤s≤1): 1 is identity and 0 is exclusion. To 

simplify the reading of the similarity values, the measure of similarity may to 

some extent be interpreted as being similar to correlations or contingencies 

(although they may of course not drop below zero). 

• Random models for each subject domain were created from the most frequent 

terms. Instead of using meaningful relations, the “propositions” were 

randomly assigned to pairs of terms. The number of randomly created links 

was derived on the basis of the distribution of link numbers within the expert 

models and the T-MITOCAR models. The models were randomized for 

every participant. 

• Test on general reading comprehension: The test was constructed on the 

theoretical basis of Groeben (1992) and Langer, Schulz von Thun, and 

Tausch (1974). All items on this test are measured on five point Likert scales. 

The four scales (45 items) of the test are: simplicity [12 items], (e.g., ease of 

reading, Cronbach’s alpha = .84); order [12 items], (e.g., structure and 

design, Cronbach’s alpha = .94); length [13 items], (e.g., appropriateness of 

length, Cronbach’s alpha = .83); motivational aspects [8 items], (e.g., mood 

of the text, writing style acts as stimulant, Cronbach’s alpha = .88) 
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• Three domain dependent knowledge tests (economy, English literature, and 

pharmacy, pretest and posttest versions), each including six multiple-choice 

questions (higher order) with six alternatives (one correct, five incorrect). The 

knowledge gain is measured as the difference between posttest and pretest in 

order to account for intra-individual differences (individual gain from 

reading). Table 9.2 shows one example question from the test for each 

domain. It contains the correct answer and two of the five incorrect answers. 

 
TABLE 9.2 
Example items of the domain dependent knowledge tests 
 

Item Correct answer Incorrect answer 
(selection) 

Geodesy Given an average GPS-
receiver, why is it very well 
possible that it shows “- 15m” 
while you are standing on top 
of a hill, 40m above sea level? 

GPS uses reference 
ellipsoid, differs from 
geoid by ± 110m 

With GPS, height is 
measured as "potential 
energy“, which needs to be 
translated into "meters 
above sea level“, which is 
not possible with absolute 
accuracy. 

English 
Literature 

Which term is related to the 
convention that the narrator 
knows everything that needs to 
be known about the agents, 
actions, and events and also 
has privilege to access to the 
characters’ thoughts, feelings, 
and motives? 

Omniscient point of 
view 

Self-Conscious narrator 
 
Self-effacing author 

Pharmacy What is the function of a filler 
in the manufacturing of 
tablets? 

A filler provides a 
quantity of materials 
which can accurately 
be formed into a 
tablet. 

A filler is added to reduce 
friction between the tablet 
and the punches during 
pressing of the tablet. 
 
A filler is used to speed up 
the disintegration of the 
tablet in the gastric tract. 

 

Design 

The three different subject domains (economy, English literature, and pharmacy) and 

the four sources of graphical representation (no conceptualization, random model, 

automated T-MITOCAR model, expert model) resulted in a total of 12 different 

experimental conditions for the 60 participants in our Latin square experimental 

design. In each experimental condition the participants read the domain dependent 

text and received a standardized graphical representation from an expert, a random 

model (including concepts from the subject domain connected randomly), an 

automated T-MITOCAR model, or no conceptualization . 



	  

	   166 

Procedure 

First, every participant completed a domain dependent pretest. After completing the 

pretest, they received either an expert model, an automated T-MITOCAR model, a 

random model, or no graphical conceptualization. After five minutes of study time 

with the graphical representation, the participants read the text. They were given 20 

minutes for reading. After the reading, the participants took the reading 

comprehension test and the domain dependent posttest. 

Results 

Graphically, the expert models look different from the T-MITOCAR models (see 

Figure 9.2). The expert uses different shapes, but only to distinguish between the 

topic and the rest of the content. Some but not all of the links are annotated. Link 

annotations are partly hierarchical, causal, or procedural/commenting. Also, some 

but not all of the links have directions. Thus, from a formalistic perspective, the 

graph would have to be analyzed as a non-hierarchical and undirected graph. 

 

	  
 

FIGURE 9.2. Sample graph created by the expert on pharmacy 
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To test the first two hypotheses, we calculated the similarity measures. Semantic and 

structural similarities (relationships) between the expert’s model and the T-

MITOCAR generated model are shown in Table 9.3. The results can be interpreted 

in the form of correlations to determine whether a value may be considered to 

indicate weak, medium, or high similarity (see Williams, 1968, for the interpretation 

of correlations and Tversky, 1977, for the interpretation of similarities). 

 Both semantics (concept matching and propositional matching) and structure 

have high similarities. Only the surface matching values have a medium similarity. 

All similarity indices are statistically significant on the level of graph-feature 

comparison (within each model comparison). Therefore we accept H1.1: T-

MITOCAR graphs have high semantic similarities to the expert models. We can also 

accept H2.1: T-MITOCAR graphs have high structural similarities to the expert 

models.  
TABLE 9.3 
Similarity measures between expert graph and T-MITCAR graph 
 Matching Index Pharmacy Literature Geodesy M 

Surface 0.72** 0.60** 0.50** 0.61 
Graphical 1.00** 0.92** 0.70** 0.87 
Structural 0.77** 0.74** 0.92** 0.81 

Structural 
Measures 

Gamma 0.96** 0.70** 0.67** 0.78 
Concepts 0.86** 0.91** 0.58** 0.78 Semantic 

Measures Propositional 0.84** 0.77** 0.67** 0.76 
Overall  0.86 0.77 0.67 0.77 

 

Additionally, we asked the experts who originally provided the expert models 

whether the T-MITOCAR models represent the content in a good way. Since there 

were only three experts (one for each domain), there is no systematic way to 

aggregate the answers reliably.  

 The pharmacy expert said (answer provided in German, translated into 

English by the authors): “Graphically, the two models do not look alike. However, 

their content is very similar. My own model is more detailed than the other [T-

MITOCAR] model, but the other model is more clearly arranged.” 

 The literature expert said (answer provided in English): “The model I 

provided includes more specific concepts than the other [T-MITOCAR] model. 

However, the core concepts and most important propositions are also represented in 

the automatically generated model. It seems to me that this technique could save a lot 

of time.” 

 The expert on geodesy said (answer provided in English): “I was surprised to 

find most of the core concepts of the matter represented in the automatically 
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generated model. Furthermore, the connections between these concepts are 

remarkably similar in the automatically generated model and the one made by me. 

Thus, it seems to me as though both models represent the important information 

equally well.” 

 Overall, it seems that the experts see a close relationship between the model 

they constructed on their own and the automatically created T-MITOCAR model. 

Additionally, the experts pointed out that the associations between individual 

concepts are correctly represented. The difference between the pretest and the 

posttest was considered to accurately reflect the performance gain. 

 There are no meaningful differences between the conditions as regards to 

performance gain. The differences shown in Table 9.4 are also not statistically 

significant (ANOVA: F(3, 176) = 0.2294, p > .05). No pairs have individually 

significant differences either.  Neither the pretest nor the posttest showed any ceiling 

effects. Ironically, this still corresponds to H3.1: T-MITOCAR graphs lead to the 

same performance gain as expert models or more. Of course this is not the kind of 

outcome we were expecting. But at least T-MITOCAR graphs do not differ from the 

expert graphs. 
TABLE 9.4 
Performance gain within the experimental variation 
 No Conceptualization Random Model Automated T-

MITOCAR Model 
Expert Model 

M 0.67 0.88 0.67 0.87 
SD 1.49 1.80 1.72 1.82 

 

We had to reject H4.1 in favor of H4.0: T-MITOCAR graphs lead to the same 

performance gain as random graphs and no conceptualizations or less. However, the 

text has a high influence on knowledge gain, as can be seen in Table 9.5. 
TABLE 9.5 
Knowledge gain depending on text/content 
 Pharmacy Literature Geodesy 
M 1.82 1.07 -0.56 
SD 1.49 1.31 1.35 

 

This has nothing to do with the fact that reading a text has an influence on learning 

(which should be obvious because text is the only media in this experiment). Rather, 

it means that different texts influence learning differently. The performance gain 

depending on the text is statistically significant (ANOVA: F(2, 177) = 46.426, p < 

.01). The text on geodesy caused a systematic knowledge loss. The pharmacy text 

offered the best chance to increase knowledge. As mentioned above, the tests were 
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constructed by the experts who selected the texts, and they were instructed to create 

the test items to match the texts. A further analysis did not raise any suspicion that 

the tests did not correspond sufficiently to the texts. 

To account for any possible hidden interaction effects, including effects from the 

(systematically varied) position of the subject domain and the models, we also 

conducted a multifactor variance analysis (see Table 9.6). 
TABLE 9.6 
Multifactor Variance Analysis 
 SS df F value p 
Modeltype 2.017 3 0.3408 0.7959 
Position 5.300 2 13.436 0.2642 
Text 159.834 2 405.161 <0.001** 
Modeltype:Position 3.312 6 0.2799 0.9457 
Modeltype:Text 13.046 6 11.023 0.3639 
Position:Text 4.051 4 0.5135 0.7259 
Modeltype:Position:Text 25.567 12 10.801 0.3811 
Residuals 284.036 144   

 

As shown in Table 9.6, nothing but the text had an effect on the knowledge gain (η2 

= 0.563). There were also no interactions between the experimental variation 

(position as varied by the Latin square design) and the outcome. We also compared 

the subjective readability of the texts using the above-mentioned four scale test (see 

Table 9.7). 
TABLE 9.7 
Subjective mean readability (standard deviations in parenthesis) of the texts 
 Pharmacy Literature Geodesy 
Simplicity 3.33 (0.56) 3.45 (0.51) 2.41 (0.52) 
Order / Layout 3.92 (0.61) 3.94 (0.65) 2.79 (0.75) 
Length 3.40 (0.57) 3.46 (0.45) 2.58 (0.50) 
Motivational Aspects 2.37 (0.74) 2.53 (0.84) 1.71 (0.54) 

 

Whereas the texts on pharmacy and literature were well accepted, the text on 

geodesy had obvious acceptance problems throughout all scales.  

 This may explain at least a part of the negative effect the text had on learning. 

All differences are statistically significant according to an ANOVA (see Table 9.8 

for details). There were no factor effects from the type of model presented (no 

model, random model, T-MITOCAR, and expert model) on the subjective readability 

ratings. The scale reliabilities within this study were between α=.84 and α=.94. The 

position in which a text had been presented during the experiment had an effect on 

motivation (see Table 9.9). 
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TABLE 9.8 
The influence of the text on the text ratings 
Simplicity 
 df SS F p η2 
Text 2 38.843 69.052*** <2.2e-16 .780 
Residuals 177 49.783    
Length      
 df SS F p η2 
Text 2 28.979 55.978*** <2.2e-16 .633 
Residuals 177 45.815    
Order / Design 
 df SS F p η2 
Text 2 51.451 57.107*** <2.2e-16 .645 
Residuals 177 79.734    
Motivation / Stimulation 
 df SS F p η2 
 2 23.126 22.341*** <2.231e-09 .252 
 177 91.608    

 

 Interestingly, the motivational aspects rose during work on the experiment 

(ANOVA: F(2, 177) = 3.4074, p < 0.5, η2 = 0,039). However, the effect is very low 

and the position did not have effects on any other subjective text ratings (see Table 

9.9). 
TABLE 9.9 
Mean effect (standard deviations in parenthesis) of the position on motivational/stimulant 
rating of the text 
 Position 1 Position 2 Position 3 
Motivation / Stimulant 1.99  (0.63) 2.28 (0.76) 2.34 (0.95) 

 

 To sum up, we found an overall knowledge gain in the domain dependent 

multiple choice tests. However, we found no effects indicating that conceptual 

models support reading comprehension, neither with the T-MITOCAR graphs nor 

with the expert models.  

Discussion 

The newly developed T-MITOCAR toolset enables researchers and instructors to 

convert prose text directly to an association net. The application of T-MITOCAR is 

also feasible for practitioners. After any text is submitted to the system, the re-

representation process is carried out in multiple stages. As a result, the system (1) 

provides a list of the most frequent terms, (2) displays a thumbnail and a full size 

picture of the graphical model, (3) displays the model in list form and generates a 

spreadsheet file for download, and (4) allows quantitative pairwise comparisons of 

two or more models. The automated quantitative analysis generates six core 

measures, ranging from surface over structure to semantic indicators (surface, 
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graphical matching, concept matching, density of vertices, structural matching, and 

propositional matching). With the help of these six indicators, we are able to describe 

and track changes in students’ and experts’ representations. An earlier pilot study 

raised high hopes for the efficiency and feasibility of the T-MITOCAR models for 

facilitating learning in reading comprehension. Irrespective of which graphical 

representation was provided (no conceptualization, random model, T-MITOCAR 

model, expert model), we revealed an overall knowledge gain in the domain 

dependent multiple choice tests. However, we found no effects in which conceptual 

models supported reading comprehension, neither with the T-MITOCAR graphs nor 

with the expert models. However, as we used an expert model constructed by only 

one expert, this may limit our results on this side. Accordingly, in future studies it 

could be helpful to ask more than one expert to generate a model, or to ask additional 

experts rating their colleagues expert model, as we did with the T-MITOCAR 

models. 

 The second prediction in Mayer (1989) assumes a reduction of verbatim 

retention when models are used to support understanding of novice or low achieving 

learners. However, we could not find this effect in our study. We cannot yet 

determine whether the models will improve problem-solving transfer either, since we 

did not incorporate a problem-solving performance test. We will have to address this 

aspect in a future study, since this may be an important blind spot for the use of T-

MITOCAR generated models. 

 Finally, administering a Latin square experimental design allowed us to 

control for hidden interaction effects, including the position of the text with foci on 

different subject domains (geodesy, English literature, pharmacy) and the type of 

model representation (no conceptualization, random model, T-MITOCAR model, 

expert model). The only significant effect which influenced the learning outcome 

was the text. Additional analysis revealed a high acceptance of the pharmacy and 

English literature texts, while the text on geodesy was not well received by the 

subjects. The overall motivational rating of the texts rose during our 1.5 hour 

experiment.  

Applications 

The T-MITOCAR technology can automatically generate graphs with only the text at 

hand. These graphs are structurally and semantically very similar to graphs 

conceptualized by human experts. Irrespective of the subject domain, we found a 
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high similarity between the computer-generated graph and the expert’s re-

representation. This could still allow a variety of applications. E.g., learners can use 

them in online learning environments to enhance their text understanding whenever 

they like.  

 The technology can be used on any texts or parts of texts to instantly generate 

a graphical conceptualization. It can also be used by instructors and teachers 

preparing for class or assignments (or for other homework) with an almost negligible 

amount of effort. Whereas human experts are not always available for a certain 

domain, T-MITOCAR can provide the necessary graph any time. Additionally, 

human experts require an extensive amount of time to re-represent a domain specific 

expert model. The T-MITOCAR graph thus saves researchers and instructors 

valuable time. Once our effects have been verified in international studies, the T-

MITOCAR technology will be ready for use in learning environments wherever 

expert models can be implemented to improve the quality of learning. Unfortunately, 

this does not work with simple text reading. 

Future projects 

One of the future projects will therefore concentrate on problem-solving transfer and 

also use a more learner-oriented technology. The technology has already been 

developed and implemented with interfaces to selected research tools like DEEP, 

SMD, MITOCAR (Pirnay-Dummer, et al., 2010). When measures are applied to re-

representations it helps methodologically to look at them from different perspectives 

(Jonassen & Cho, 2008). The different effects from the texts still need to be 

explained.  The experts choose the texts by applying the same instructions. The texts 

all had equal basic layouts and were about the same length. Nonetheless, there have 

to be identifiable features within the text that explain the differences between the 

effects. It would be useful to identify these features on the basis of the texts and test 

them in a further study, also taking a closer look at features of layout, syntax and 

semantics. This would not only help us to understand the reading comprehension 

task better but could also provide criteria for text development for learning and 

instruction. 

 

 



	  

	   173 

 

 

10 
FACILITATING LEARNING THROUGH 

INDIVIDUALIZED AUTOMATED FEEDBACK &  

Feedback is considered an elementary component for supporting and regulating learning processes. 
Feedback plays a particularly important role in highly self-regulated model-centered learning 
environments because it facilitates the development of mental models, thus improving expertise and 
expert performance. In this chapter, different types of model-based feedback are investigated. 
Seventy-four participants were assigned to three experimental groups in order to examine the effects 
of different forms of model-based feedback. With the help of seven automatically calculated 
measures, changes in the participants’ understanding of the subject domain “climate change”, 
represented by causal diagrams, are reported. The results strengthen our assumption that the mental 
model building process for experts and expert performance should be trained in a more direct way, 
such as with simulation environments. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& This chapter is based on: Ifenthaler, D. (2009). Model-based feedback for improving expertise and 
expert performance. Technology, Instruction, Cognition and Learning, 7(2), 83-101. 
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Introduction 

In the field of learning and instruction, feedback is considered an elementary 

component for supporting and regulating learning processes. Especially in computer-

based and self-regulated learning environments, the nature of feedback is of 

fundamental importance (Simons & de Jong, 1992). However, the empirical 

evidence of effects of different types of feedback is rather inconsistent and 

contradictory in parts (e.g., Bangert-Drowns, et al., 1991; Clariana, 1993; Kluger & 

DeNisi, 1996; Kulhavy, 1977; Mory, 2004). 

 In a broader sense, feedback is considered to be any type of information 

provided to learners (see Wagner & Wagner, 1985). Accordingly, feedback can take 

on many forms depending on theoretical perspective, the role of feedback, research 

goals, and methodological approaches. Unlike this initial general understanding of 

feedback, the term informative feedback refers to all kinds of external post-response 

information used to inform the learner of his or her current state of learning or 

performance (Narciss, 2006, 2008). Furthermore, from an instructional point of view 

feedback can be provided by internal (individual cognitive monitoring processes) or 

external (various types of correction variables) sources of information. Internal 

feedback may validate the externally provided feedback, or it may lead to resistance 

against the externally provided feedback (see Narciss, 2008). 

 Feedback plays a particularly important role in highly self-regulated model-

centered learning environments because it facilitates the development of mental 

models, thus improving expertise and expert performance (Johnson-Laird, 1989; 

Seel, 2003). However, this requires for the person to be sensitive to characteristics of 

the provided environment, such as the availability of certain information at a given 

time, the ease with which this information can be found in the environment, and the 

way the information is structured and mediated (Ifenthaler & Seel, 2005). Feedback 

on mental model construction, such as the use of conceptual models to help persons 

to build mental models of the system being studied, has already been investigated 

and discussed (e.g., Mayer, 1989). Conceptual models highlight the most important 

objects and associated causal relations of the phenomenon in question. However, not 

only do new developments in computer technology enable us to dynamically 

generate simple conceptual models and expert representations; they may also be used 
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to generate direct responses to the learner’s interaction with the learning 

environment. We define this as model-based feedback.    

 In this chapter, different types of model-based feedback generated 

automatically with our own HIMATT (Highly Integrated Model Assessment 

Technology and Tools) methodology will be investigated. The following section 

focuses on mental model development and model-based feedback. In the next section 

we present our newly developed HIMATT methodology, which enables us to 

generate different types of model-based feedback on the fly. Then we will describe 

the research design we used to investigate effects of different types of model-based 

feedback and present our results. We conclude with a discussion of our findings and 

suggestions for further development of our approach.  

Model building and feedback 

Since the beginnings of mental model research (e.g., Gentner & Stevens, 1983; 

Johnson-Laird, 1983; Seel, 1991) many research studies have provided evidence that 

“mental models guide and regulate all human perceptions of the physical and social 

world” (Seel & Dinter, 1995, p. 5). Accordingly, mental models are dynamic ad hoc 

constructions which provide subjectively plausible explanations on the basis of 

restricted domain-specific information (Ifenthaler, 2010c). Various research studies 

have shown that it is very difficult but possible to influence such subjectively 

plausible mental models by providing specific information (see Anzai & Yokoyama, 

1984; Ifenthaler & Seel, 2005; Mayer, 1989; Seel, 1995; Seel & Dinter, 1995). 

Ifenthaler and Seel (2005) argue that it is important to consider how such 

information is provided to the learner at specific times during the learning process 

and how it is structured. In accordance with the general definition of feedback 

introduced above (see Wagner & Wagner, 1985), such information for improving 

individual mental model building processes provided purposely and on the fly is 

referred to as model-based feedback.  

 The importance of feedback for improving knowledge and skill acquisition 

has been discussed controversially in educational research (e.g., Azevedo & Bernard, 

1995; Bangert-Drowns, et al., 1991; Narciss, 2008; Narciss & Huth, 2004; Shute, 

2008). Widely accepted forms of feedback include (a) knowledge of result, (b) 

knowledge of correct result, (c) knowledge of performance, (d) answer until correct, 

(e) knowledge of task constraints, (f) knowledge about concepts, (g) knowledge 
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about mistakes, (h) knowledge about how to proceed, and (i) knowledge about 

metacognition (see Jacobs, 1998; Narciss, 2008). Additionally, Schimmel (1983) 

found that feedback is most effective under conditions that encourage the learner’s 

conscious reception.    

 In accordance with empirical findings on feedback (see Schimmel, 1983) and 

mental model theory (see Ifenthaler, Pirnay-Dummer, & Spector, 2008; Seel, 1991), 

we argue that effective model-based feedback is composed of externalized 

representations (re-representations) of mental models. An externalization of a mental 

model of a learner or expert could be a causal model, concept map, written or spoken 

text, etc. (Ifenthaler, 2010c). Such externalized representations induce positive 

effects on internal information processing (see Galbraith, 1999). Additionally, 

model-based feedback aims at the development of mental models for the 

improvement of expertise and expert performance (Johnson-Laird, 1989). 

Accordingly, model-based feedback is highly associated with necessary expertise 

and expert performance in the specific subject domain. 

 Past research studies have shown how conceptual models (i.e. explicit and 

consistent causal explanations of a given phenomenon) can be provided to improve a 

person’s understanding of a specific problem in a given context (e.g., Mayer, 1989; 

Norman, 1983; Seel & Dinter, 1995). However, we argue that model based-feedback 

should not only include an expert’s solution of the given phenomenon. Rather, in 

order to be more effective the feedback should also take into account the person’s 

prior understanding (initial mental model, preconception), because such 

preconceptions are in many cases resistant to change as they have a high subjective 

plausibility (Ifenthaler & Seel, 2005; Seel & Dinter, 1995). In order to fulfill this 

requirement, we introduce two new forms of model-based feedback in this article: 

(1) cutaway model-based feedback and (2) discrepancy model-based feedback. These 

two forms of model-based feedback are considered as graphical re-representations 

constructed from a set of vertices whose relationships are represented by edges 

(Ifenthaler, et al., in press).  

 The cutaway model-based feedback is based on the individual’s 

preconception or on a more elaborated mental model constructed during the learning 

process. Additionally, an expert’s understanding of the phenomenon in question is 

taken into account. By combining both, the individual’s re-representation 

(preconception) and the expert’s re-representation, we create the cutaway model-
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based feedback re-representation. This re-representation includes all propositions 

(vertex-edge-vertex) of the individual’s re-representation and highlights semantically 

correct vertices (as compared to the expert’s re-representation); see Figure 10.1.  

 The discrepancy model-based feedback is also based on the individual’s 

preconception or on a more elaborated mental model constructed during the learning 

process. However, it includes only the propositions (vertex-edge-vertex) which have 

no semantic similarity to the expert’s re-representation. Additionally, semantically 

correct vertices (compared to the expert’s re-representation) are highlighted (see 

Figure 10.1).  

 Hence, model-based feedback aims at a restructuring of the underlying 

representations and a reconceptualization of the related concepts (vertices and 

edges). This is in following with Piaget’s epistemology (1950, 1976). New 

information provided through model-based feedback can be assimilated through the 

activation of an existing schema, adjustment by accretion, or tuning of existing 

schema. Otherwise it is accommodated by means of a reorganization process which 

involves building new mental models (Ifenthaler, et al., in press; Seel, et al., 2009).  

 In order to fulfill the requirement that model-based feedback be provided to 

the learner on the fly, it is necessary to implement the cutaway and discrepancy 

feedback in a computer-based environment. Accordingly, the automated model-

based feedback generation is described in the following section. 

Automated model-based feedback generation 

HIMATT (Highly Integrated Model Assessment Technology and Tools) is a 

combined toolset conveying the benefits of various methodological approaches in 

one environment. It is implemented and runs on a Web server using Apache, 

MySQL, PERL, and additional packages (Pirnay-Dummer, et al., 2010). The 

HIMATT architecture consists of two major platforms: The HIMATT Research 

Engine (functions for conducting and analyzing experiments) and the HIMATT 

Subject Environment (functions for dynamically providing assigned experiments to 

individual subjects). Methodologically, the tools integrated into HIMATT touch the 

boundaries of qualitative and quantitative research methods. Text and conceptual 

graphs can be analyzed quantitatively with the comparison function of the SMD 

Technology (Ifenthaler, 2010c) and MITOCAR (Pirnay-Dummer & Ifenthaler, 

2010). Additionally, Ifenthaler (Ifenthaler, 2010c) introduced an automated feature 
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of the SMD Technology to generate standardized graphical re-representations of 

subjects’ data with the help of the open source graph visualization software 

GraphViz (Ellson, et al., 2003). This algorithm, the newest add-on to the HIMATT 

toolset, enables us to generate automated model-based feedback. 

 The feedback function of the SMD Technology (Ifenthaler, 2010c), which we 

implemented in HIMATT (Pirnay-Dummer, et al., 2010), automatically generates 

standardized reference (e.g., expert), participant (e.g., learner), cutaway, and 

discrepancy re-representations. A cutaway re-representation includes all propositions 

(vertex-edge-vertex) of the individual’s re-representation. Additionally, the 

semantically correct vertices (compared to a reference re-representation, e.g., expert 

solution) are graphically highlighted as circles (ellipses for dissimilar vertices). The 

discrepancy re-representation of an individual only includes propositions (vertex-

edge-vertex) which have no semantic similarity to a reference re-representation. 

Additionally, the semantically correct vertices (compared to a reference re-

representation) are graphically highlighted as circles (ellipses for dissimilar vertices). 

Figure 1 shows an example of a reference (1), participant (2), cutaway (3), and 

discrepancy (4) re-representation. 

 
FIGURE 10.1. Reference, subject, cutaway, and discrepancy re-representations 

 

These automated and standardized re-representations are generated on the fly while 

participants work within the HIMATT environment. They are then used for 

individual model-based feedback during work on a learning task.  
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 The reference model (1) represents a best practice solution by an expert for 

the task to be completed. The participant’s model (2) is a solution found after a 

specified time of work on the task. With the reference (1) and participant (2) models 

at hand, HIMATT automatically generates the cutaway (3) and discrepancy (4) 

feedback models. The cutaway model allows the learner to see how many vertices 

are semantically correct (graphically highlighted circles compared to the expert 

solution). Additionally, the cutaway model provides information about the 

semantically incorrect vertices (ellipses). The discrepancy model only provides 

information about the semantically incorrect propositions compared to the expert 

solution (vertex-edge-vertex). Additionally, semantically correct vertices are 

highlighted. We argue that either feedback model (3) or (4) will have different 

effects when presented during the learning process. As the cutaway feedback model 

(3) helps to confirm the correct understanding of the phenomenon in question 

(compared with an expert), the discrepancy feedback model (4) causes a cognitive 

conflict, because correct propositions (vertex-edge-vertex) of the person’s 

understanding are deleted from the re-representation.  

 Each of the above described feedback models could help to improve expertise 

and expert performance in various subject domains. Therefore, we conducted an 

experimental study to investigate the effects of different types of model-based 

feedback. The research questions of this empirical investigation are as follows. 

Research questions 

Feedback plays a particularly important role in highly self-regulated model-centered 

learning environments because it facilitates the development of mental models, thus 

improving expertise and expert performance (see Ifenthaler & Seel, 2005). Past 

research studies demonstrate how conceptual models can be provided to improve a 

person’s understanding of a specific problem in a given context (e.g., Mayer, 1989; 

Norman, 1983; Seel & Dinter, 1995). Conversely, model-based feedback includes 

not only a conceptual or expert solution to the given phenomenon; it also includes 

the person’s prior understanding (initial mental model, preconception). Therefore, we 

introduced two forms of model-based feedback: (1) cutaway model-based feedback 

and (2) discrepancy model-based feedback. Accordingly, our first research question 

investigated in this chapter is: 
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Does model-based feedback (cutaway and discrepancy) facilitate the understanding 

of a specific phenomenon in question?  

Since it is possible to generate different forms of model-based feedback, we wanted 

to investigate which form of feedback is most accepted among participants. Thus, 

our second research question investigated in this article is: 

Do participants valuate the forms of model-based feedback differently? 

Additionally, previous research studies (e.g., Hilbert & Renkl, 2008; Ifenthaler, et 

al., 2007) have found that verbal and spatial abilities do not affect the quality of 

model-building processes and declarative learning outcomes. Therefore, a third and 

last research question to be explored in this article is:  

Do verbal and spatial abilities affect the declarative learning outcome and the quality 

of model-building processes? 

Method 

Participants 

Seventy-four students (66 female and 8 male) from the University of Freiburg, 

Germany, participated in the study. Their average age was 21.9 years (SD = 2.3). The 

participants were randomly assigned to the three experimental groups (1) cutaway 

feedback (n = 26), (2) discrepancy feedback (n = 24), and (3) expert feedback (n = 

24).  

Materials 

• A German-language article on climate change (Schönwiese, 2005) with 1,417 

words was used as learning content. 

• HIMATT causal diagram and text input tools were used to assess the 

participants’ understanding of the subject domain climate change. First, the 

participants constructed a causal diagram using vertices and edges in order to 

describe the phenomenon of climate change. Secondly, they had to write a 

text about their understanding of climate change. The causal diagrams and 

texts of all participants were stored in the HIMATT database for further 

analysis. 

• Two subsets of the I-S-T 2000 R (Amthauer, et al., 2001) were used to test 

the participants’ verbal and spatial abilities. This test is a widely used 

intelligence test in Germany with high reliability (r = .88 and r = .96; split-
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half reliability). The first subset we used tested the verbal abilities of the 

participants. A total of 20 sentences with a missing word had to be completed 

using a set of five words. The participants had six minutes to complete this 

subset. The second subset tested spatial abilities. Within nine minutes, the 

participants had to choose similar cubes from a set of five by rotating them. 

Subset two included 20 cube problems. 

• The participants’ experience with concept mapping and causal diagrams was 

tested with a questionnaire including eight items (Cronbach’s alpha = .87). 

The questions were answered on a five-point Likert scale (1 = totally 

disagree; 2 = disagree; 3 = partially agree; 4 = agree; 5 = totally agree). 

• The domain specific knowledge test included 27 multiple-choice questions on 

climate change. In a pilot study with 5 female und 5 male participants 

(average age 26.3 years, SD = 3.49), we tested the average difficulty level in 

order to account for ceiling effects. The participants scored 10.5 out of 27 

possible points on average (SD = 3.54, Min = 5, Max = 17). In our 

experiment we administered two versions (in which the 27 multiple-choice 

questions appeared in a different order) of the domain-specific knowledge 

test (pre- and posttest). It took about 10 minutes to complete the test. 

• The feedback model quality test consisted of nine items on whether the 

provided feedback model helped the participant to understand the text better 

(Cronbach’s alpha = .66). The questions were answered on a five-point Likert 

scale (1 = totally disagree; 2 = disagree; 3 = partially agree; 4 = agree; 5 = 

totally agree). 

Procedure 

First, the participants completed a demographic data questionnaire. Secondly, they 

completed the concept map and causal diagram experience questionnaire. Next, the 

participants completed the test on verbal (six minutes) and spatial abilities (nine 

minutes). Then they answered the 27 multiple choice questions of the domain 

specific knowledge test on climate change (pretest). After a short relaxation phase, 

the participants were given an introduction to concept maps and causal diagrams and 

were shown how to use the HIMATT software. Then, the participants used the 

username and password they had been assigned to log in to the HIMATT system, 

where they constructed a causal diagram on their understanding of climate change 

(ten minutes). Immediately afterwards, they wrote a text about their understanding of 
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climate change (ten minutes). A short relaxation phase followed, during which we 

automatically generated the individual feedback models for each participant. After 

that, the participants received the text on climate change and the automatically 

generated feedback model (cutaway, discrepancy, or expert model – depending on 

the assigned experimental group). All three types of feedback models were 

automatically generated with HIMATT. The cutaway feedback model (see Figure 

10.2) included all propositions (vertex-edge-vertex) of the participant’s pre-test 

causal diagram. Additionally the semantically correct vertices (compared to the 

expert re-representation) were graphically highlighted (circles are semantically 

correct to the expert; ellipsis are semantically incorrect compared to the expert re-

representation). The discrepancy feedback model included only propositions (vertex-

edge-vertex) of the participant’s pre-test causal diagram which had no semantic 

similarity compared to the expert re-representation. The expert feedback model 

consisted of a standardized re-representation of an expert on climate change. The 

participants had 15 minutes to read the text and examine their feedback model. 

Immediately after working on the text, the participants completed the model 

feedback quality test.  

 
FIGURE 10.2. Example of an automatically generated cutaway feedback model used in our 

experiment 
 

Then they answered the 27 multiple choice questions of the posttest on declarative 

knowledge. After another short relaxation phase, the participants used their username 

and password to log in to the HIMATT system for the second time. In the HIMATT 

posttest, they constructed a second causal diagram on their understanding of climate 

change (ten minutes) and wrote a second text regarding their understanding of 

climate change (ten minutes). Finally, the participants had to complete a short 

usability test regarding HIMATT features. 
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Analysis 

To analyze the causal diagrams constructed by the participants in the HIMATT 

environment, we used the seven core measures implemented in HIMATT (Pirnay-

Dummer, et al., 2010). Figure 10.3 shows the seven measures of HIMATT, which 

include four structural and three semantic indicators. 

 
FIGURE 10.3. HIMATT measures 

 

These seven measures are defined as follows (see Ifenthaler, 2006, 2010c, 2010d; 

Pirnay-Dummer, et al., 2010): 

 Surface Matching: The surface measure compares the number of vertices 

within two graphs. It is a simple and easy way to calculate values for surface 

complexity. 

 Graphical Matching: The graphical matching compares the diameters of the 

spanning trees of the graphs, which is an indicator for the range of conceptual 

knowledge. It corresponds to structural matching as it is also a measure for structural 

complexity only. 

 Structural Matching: The structural matching compares the complete 

structures of two graphs without regard to their content. This measure is necessary 

for all hypotheses which make assumptions about general features of structure (e.g., 

assumptions which state that expert knowledge is structured differently from novice 

knowledge). 
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 Gamma Matching: The gamma or density of vertices describes the quotient of 

terms per vertex within a graph. Since both graphs which connect every term with 

each other term (everything with everything) and graphs which only connect pairs of 

terms can be considered weak models, a medium density is expected for most good 

working models. 

 Concept Matching: Concept matching compares the sets of concepts 

(vertices) within a graph to determine the use of terms. This measure is especially 

important for different groups which operate in the same domain (e.g. using the same 

textbook). It determines differences in language use between the models. 

 Propositional Matching: The propositional matching value compares only 

fully identical propositions between two graphs. It is a good measure for quantifying 

semantic similarity between two graphs. 

 Balanced Propositional Matching: The balanced propositional matching 

index is the quotient of propositional matching and concept matching.  

Results 

Over two-thirds of the participants (68%) did not use concept maps or causal 

diagrams to structure their own learning materials before our experiment. Only 12% 

of the participants used concept mapping software to create their own concept maps 

before. On the other hand, over 40% of the participants answered that they did not 

find it difficult to create a concept map or causal diagram. Consequently, there was 

no significant difference in the learning outcome as measured by the domain-specific 

knowledge posttest between participants who used concept mapping software before 

the experiment and those who did not use concept mapping software at all, t(72) = 

.508, ns. 

Domain specific knowledge 

On the domain specific knowledge test (pre- and posttest), participants could score a 

maximum of 27 correct answers. In the pretest they scored an average of M = 7.78 

correct answers (SD = 2.10) and in the posttest M = 18.16 correct answers (SD = 

3.80). The increase in correct answers was significant, t(73) = 28.32, p < .001, d = 

3.096 (strong effect). The cutaway feedback group (M = 10.88, SD = 3.32) 

outperformed the discrepancy (M = 10.42, SD = 2.92), and expert group (M = 9.79, 

SD = 3.23) concerning their knowledge gain. However, these differences were not 

significant. 
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Verbal and spatial abilities 

Participants could score a maximum of 20 points in both subsets of the I-S-T 2000 R 

on verbal and spatial abilities. On the test for verbal abilities, participants scored M = 

12.76 points (SD = 3.66) and on the test for spatial abilities they scored M = 10.39 

points (SD = 3.15). As reported in Table 1, we found no significant correlations 

between the seven HIMATT measures and verbal and spatial abilities. However, the 

higher the learners’ spatial abilities were, the higher was their increase on the domain 

specific knowledge test (see Table 10.1). 
TABLE 10.1 
Correlations between learning outcomes, HIMATT similarity measures, and verbal and 
spatial abilities 
 Verbal abilities Spatial abilities 
Domain specific knowledge 
increase .108 .290* 

Surface Matching -.075 .051 

Graphical Matching -.213 -.139 

Structural Matching -.028 .056 

Gamma Matching .057 -.063 

Concept Matching -.139 -.004 

Propositional Matching .011 .130 

Balanced Propositional Matching -.004 .177 

Note. * p < .05 

 

Quality of feedback models 

An explorative factorial analysis (varimax rotation) was carried out by means of 

selected variables of the feedback model quality test (see Table 10.2).  
TABLE 10.2 
Factor analysis component matrix for nine items of the quality of feedback models instrument 
(N = 72) 

Nr Item (translated from German) Factor 1 Factor 2 
1 The model is clearly laid out. .787 .212 
2 The model is well-structured.                                                                       .733 -.261 
3 The concepts in the model are comprehensible. .725  
4 The links between the concepts are comprehensible. .663  
5 The model helped me understand the text. .640 -.371 
6 The model uses many unfamiliar concepts.  .767 
7 The model is complex.  .757 
8 The model confused me. .345 .612 
9 I would not understand the text without the model. .389 .449 

Note. Factor loading < .2 are suppressed 
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The two extracted factors represent 54% of the variance. The first factor is 

determined by five items. Consequently, the first factor represents clarity of the 

feedback model (Cronbach’s α = .756). Factor two represents support through the 

feedback model (Cronbach’s α = .595) and is determined by four items (see Table 

10.2). The two factors clarity of feedback model and support of feedback model were 

entered into a one-way ANOVA in order to test for differences between the three 

experimental groups (cutaway feedback, discrepancy feedback, and expert 

feedback). The ANOVA revealed a significant effect for the factor support of 

feedback, F(2, 69) = 4.22, p = .019, ƞ2 = .11. Accordingly, participants with 

discrepancy feedback (M = 4.08, SD = .70) rated the support of the feedback model 

highest (cutaway feedback: M = 3.81, SD = .56; expert feedback: M = 3.55, SD = 

.59). The ANOVA indicated no further significant effects. 

Quality of re-representations (HIMATT measures) 

The graphical re-representations of the participants were analyzed automatically with 

the HIMATT analysis feature. Hence, we computed the knowledge gain of the seven 

HIMATT measures by subtracting the pre- from the post measure. Table 10.3 shows 

the average gain of the HIMATT measures (surface, graphical, structural, gamma, 

concept, propositional, and balanced propositional matching) for the three 

experimental groups (cutaway feedback, discrepancy feedback, and expert 

feedback).   
TABLE 10.3 
Average gain of HIMATT measures for the three experimental groups (N = 74) 

 
Cutaway 
feedback  
(n = 26) 

SD 
Discrepancy 

feedback  
(n = 24) 

SD 
Expert 

feedback  
(n = 24) 

SD 

Surface 
Matching 1.731 3.779 3.375 2.871 4.826 4.579 

Graphical 
Matching -.192 1.497 .875 1.985 1.609 1.438 

Structural 
Matching 1.231 3.766 2.583 1.213 3.087 2.353 

Gamma 
Matching .005 .099 -.001 .142 -.019 .155 

Concept 
Matching .052 .074 .020 .067 .-010 .109 

Propositional 
Matching .007 .027 .006 .026 -.001 .002 

Balanced 
Propositional 
Matching 

-.008 .091 .000 .044 -.009 .079 
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The results showed a significant effect between participants in the three experimental 

groups for the HIMATT measure Surface Matching, F(2, 70) = 4.080, p = .021, ƞ2 = 

.10, with participants of the expert feedback group increasing their number of 

vertices higher than the other experimental groups. The one-way ANOVA also 

revealed a significant effect for the HIMATT measure Graphical Matching, F(2, 70) 

= 7.355, p = .001, ƞ2 = .17. The increase of complexity of participants was higher in 

the expert feedback group than in the others. Between the experimental groups, the 

increase of the HIMATT measure Structural Matching was also significant, F(2, 70) 

= 3.140, p = .049, ƞ2 = .08. Again, the participants in the expert feedback group 

outperformed the other experimental groups. For the semantic HIMATT measure 

Concept Matching we found a final significant effect, F(2, 70) = 3.243, p = .045, ƞ2 

= .08. Here, participants in the cutaway feedback group gained more correct concepts 

than the participants in the other two groups. However, we found no further effects 

for the HIMATT measures. 

Discussion 

The large body of theoretical and empirical studies on feedback provides very 

diverse insight into possible ways to support and regulate learning processes. Even 

meta-analyses (Azevedo & Bernard, 1995; Kluger & DeNisi, 1996; Schimmel, 1983) 

have provided contradictory results. However, feedback is considered to be an 

elementary component for facilitating learning outcomes. As feedback can take on 

many forms depending on the theoretical perspective, the role of feedback, and the 

methodological approach, it is important to consider which form of feedback is right 

for a specific learning environment.    

 The aim of our study was to examine different forms of model-based 

feedback for improving expertise. Hence, we introduced two new forms of model-

based feedback, which we defined as (1) cutaway model-based feedback and (2) 

discrepancy model-based feedback. As we were able to generate the model-based 

feedback automatically and on the fly, the participants received the model-based 

feedback just after finishing their pre-test, which served to motivate them further. 

Additionally, our HIMATT analysis features enabled us to score the participants 

solution automatically within an instant. Not only do these automated process have 

very high objectivity, reliability, and validity (Pirnay-Dummer, et al., 2010), they are 
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also very economical, especially when large sets of data need to be analyzed within a 

short period of time (Ifenthaler, 2010c). 

 An explorative factorial analysis of our newly developed instrument for 

identifying the quality of the model-based feedback found two factors. Our 

subsequent analysis of the factors clarity of feedback and support of feedback 

showed that learners rated the discrepancy feedback as being most supportive. Thus, 

by providing propositions which have no semantic similarity compared to an expert’s 

representation we were able to bring about the intended cognitive conflict 

(accommodation processes) and induce a reorganization of the participants’ 

cognitive structures (Piaget, 1976; Seel, 1991). From the participant’s perspective, 

simply receiving an expert solution as feedback seemed less helpful. 

 With the help of our seven automatically calculated HIMATT measures, we 

were able to investigate changes in the participants’ understanding of the subject 

domain “climate change” and re-represent them with causal diagrams. Participants 

who received the expert feedback added significantly more relations to their causal 

diagrams (Surface Matching) than did those in the other groups. Accordingly, the 

expert feedback provided them a broad spectrum of concepts and relations, which 

were then integrated into their own understanding of the phenomenon in question. 

This also explains the significant differences between the measures Graphical and 

Structural Matching. As the number of relations of a causal diagram increases, there 

is also a high probability that its complexity and complete structure will also 

increase.  

 However, an increase in these structural measures does not necessarily mean 

that the solutions of participants in the expert feedback group are better than these of 

the other participants. As a further analysis of the semantic HIMATT measures 

revealed, participants in the cutaway feedback group outperformed the other 

participants with regard to their semantic understanding of the phenomenon in 

question (Concept Matching). Accordingly, even if the structure increases, the 

semantic correctness of the learner will not automatically also increase. Hence, 

learners may integrate a huge amount of concepts into their understanding of the 

phenomenon which do not necessarily help them to come to a better and more 

correct solution to the problem.   

 Therefore, a further empirical investigation will focus on participants’ 

misconceptions (e.g., Ifenthaler & Seel, 2005) and how they can be influenced by 
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model-based feedback. Another study will investigate the similarities and differences 

between causal diagrams and natural language texts written on the same subject 

domain, “climate change.” Our hypothesis is that causal diagrams and texts do 

represent different forms of knowledge. However, this does not necessarily lead to 

the conclusion that one of these forms of assessment (causal diagram or text) is 

obsolete for identifying expertise and expert performance. Rather, we argue that both 

graphical and textual re-representations are needed to better understand the 

underlying cognitive processes of learning-dependent progression from novice to 

expert and, as a consequence, to provide more effective feedback and instructional 

materials. 

 As in a previous study (Ifenthaler, et al., 2007), intellectual abilities (verbal 

and spatial abilities) were not found to have an effect on the mental model building 

process. Only for spatial abilities did we find a positive correlation with the 

participants’ learning outcome. This result was also found in a study by Hilbert and 

Renkl (2008). Accordingly, when we train learners to become experts, we should not 

limit our focus to general abilities such as learning strategies and intellectual 

abilities. For expert performance it is far more important to train mental model 

building processes which enable persons to act and decide within complex domains. 

This strengthens our assumption that the mental model building process for experts 

and expert performance should be trained in a more direct way, such as with 

simulation environments (Dörner & Wearing, 1995; Ifenthaler, et al., 2007).  

 In further studies we will focus on the learning trajectories while providing 

forms of model-based feedback. This will give us more detailed insight into the 

effects of model-based feedback and how it helps to support and improve expertise 

and expert performance. 
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11 
EPILOGUE 

The epilogue will highlight some ongoing projects which are based on the so far acquired scientific 
knowledge on cognitive structure. Combining the theoretical and empirical knowledge on cognitive 
structure with new technological developments of the 21st century opens up new fields of research and 
instruction. First, AKOVIA (Automated Knowledge Visualization and Assessment) is presented as a 
consequent further development of the tools described above (e.g., SMD, HIMATT). Second, a new 
experimental research program is presented which addresses an extended longitudinal perspective. 
Third, a research program investigating emotions and the development of cognitive structures is 
introduced. Finally, two tools for an automated feedback generation (TASA and iGRAF) are 
highlighted. 
  



	  

	   191 

Essentials of cognitive structures 

Much effort was devoted to the development of a theoretical foundation of cognitive 

structures (e.g., Jonassen, 1987; Jonassen, et al., 1993), mental models (Dinter, 1993; 

Gentner & Stevens, 1983; Johnson-Laird, 1989; Norman, 1983; Seel, 1991), and 

schemata (Bransford, 1984; Rumelhart, 1980; Rumelhart, et al., 1986), as well as to 

their instructional application (e.g., Anzai & Yokoyama, 1984; Ifenthaler, et al., in 

press; Mayer, 1989; Seel, 1995, 2003). However, there are still a number of concerns 

as to their validity, i.e., which form of expression (visual or contextual - descriptive) 

better represents what one comprehends from a learning environment (Ifenthaler, 

2008; Ifenthaler & Seel, 2005; Seel, 1999a). 

 One essential question concerning the assessment of cognitive structure is 

which methodology should be used, one that uses visual representation (i.e., concept 

map) or one that consists of a written text (i.e., a summary). Many authors consider 

concept maps to be an adequate format of externalization for analyzing complex 

knowledge structures (T. E. Johnson, et al., 2009; Novak, 1998). Concept maps seem 

preferable to classical knowledge tests, such as multiple-choice tests for the purpose 

of representing linked knowledge by means of network-like visualization. On the 

other hand, there are strong arguments indicating that natural language 

representations are a good method for assessing cognitive structures (Ifenthaler, 

2008; Pirnay-Dummer & Ifenthaler, in press). 

 Various approaches and empirical studies enabling an insight into cognitive 

structure by addressing the above mentioned assessment and analysis issues have 

been presented (Al-Diban & Ifenthaler, in press; Ifenthaler, 2010c, 2010d, accepted; 

Ifenthaler, et al., in press; Pirnay-Dummer, et al., 2010). Further empirical studies 

investigated instructional innovations which may foster learning and therefore 

possibly changing underlying cognitive structures (Ifenthaler, 2009; Ifenthaler & 

Seel, in press; Pirnay-Dummer & Ifenthaler, in press). However, these empirical 

investigations do not mark the end of this challenging research program on cognitive 

structure. If anything, it is a first tiny step for an ongoing research endeavor in the 

21st century. 
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Pursuing the insight into cognitive structure 

The following sections highlight some ongoing projects which are based on the so 

far acquired scientific knowledge on cognitive structure. Combining the theoretical 

and empirical knowledge on cognitive structure with new technological 

developments of the 21st century opens up new fields of research and instruction 

(Ifenthaler, 2010b). First, AKOVIA (Automated Knowledge Visualization and 

Assessment) is presented as a consequent further development of the tools described 

above (e.g., SMD, HIMATT). Second, a new experimental research program is 

presented which addresses an extended longitudinal perspective. Third, a research 

program investigating emotions and the development of cognitive structures is 

introduced. Finally, two tools for an automated feedback generation (TASA and 

iGRAF) are highlighted. 

AKOVIA 

Although HIMATT (Highly Integrated Model Assessment Technology and Tools) 

has already been used by several researchers, it has two design problems worth 

mentioning. On the one hand, the user interface was accepted by researchers and 

subjects alike, and it even had a good usability (Pirnay-Dummer, et al., 2010). On the 

other hand, it was a web service which integrated both the data collection and the 

analysis. Researchers understandably wanted to integrate the data collection into 

their experiments and studies. However, subjects needed to log into HIMATT in 

order to input their data as text or draw graphs. They needed to enter another login, 

username, and password, which might have disturbed the experimental setting in 

some cases. The second design problem results from the first: We were often given 

raw data to upload into the HIMATT system so that the researchers could use the 

analysis facilities on their data. After following this procedure more often than the 

system had been used through the “front door,” it was time for a complete redesign 

of the blended methods. 

 Based on our experience with the HIMATT framework, the diagnostic toolset 

is taken one step further and developed AKOVIA (Automated Knowledge 

Visualization and Assessment). Instead of limiting the framework to a narrow set of 

data collection procedures, the development focuses on the implementation of more 

interfaces to different methods. The core analysis in AKOVIA is a comprehensive 

blend of MITOCAR, T-MITOCAR, and the SMD Technology. Thus, it is also based 
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strictly on mental model theory (Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991; 

Seel, 1991, 2003). The results of the analysis are unchanged. However, the input 

formats and outputs have been changed to better accommodate the needs of 

researches, thus allowing more applications as in the original technologies and 

HIMATT.  

 AKOVIA offers several different analysis tools which were initially 

developed for different purposes and integrates them into a single framework to 

obtain a more comprehensive perspective on the knowledge externalizations under 

analysis. 

 
FIGURE 11.1. AKOVIA framework (Pirnay-Dummer & Ifenthaler, 2010) 

 

Figure 11.1 provides an overview on the modules of AKOVIA. There are two 

general input formats (text and graph). Thus, the software can be used to analyze 

many currently available assessment methods. A standard interface may be used for 

graphical methods. This interface is derived from SMD and HIMATT and uses the 

list form. Specific interfaces are under construction. The software can visualize, 

aggregate, describe in detail, and compare the models. The measures from SMD and 

MITOCAR are embedded and available for use, as are the text to graph algorithms 

from T-MITOCAR. The availability of AKOVIA will provide researchers a simple 

to use toolset for a large set of research designs. 

Longitudinal perspective 

In previous research high fluctuations in the probability of change in solving logical 

reasoning tasks have been found (Ifenthaler, et al., in press; Ifenthaler & Seel, in 

press). This result corresponds largely with the theory of mental models (Johnson-

Laird, 1989), where mental models are defined as ad hoc constructions which a 
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person builds over and over again while solving new and unfamiliar problems. 

However, in this previous research not any evidence could be found for the 

emergence and consolidation of a cognitive schema during the time series 

measurements (Ifenthaler & Seel, in press). Based on the results of this study the 

investigation of model-based reasoning over an expanded period of time is extended, 

i.e. in total 20 measurements.  

 

 
FIGURE 11.2. Longitudinal research design 

 

Figure 11.2 shows the longitudinal design of the current study which enables a 

precise assessment across a total of 20 points of measurement. A computer-based 

multimedia learning environment has been created with a large set of different tasks. 

Participants were randomly assigned to two different experimental groups (NSG: 

non-varying strategy vs. VSG: varying strategy). The performance (applied strategy 

and solution) of the participants is measured for each of the 20 tasks (Ta, Tb, Tc, Td, 

Te being different task classes; * being feedback in form of a correct solution after 

solving the task). This extended research design may give a better insight into the 

development of cognitive structures in problem-solving situations. 

Emotions 

Besides the above discussed cognitive foundations of mental models and schemas, it 

is argued that emotional and motivational experiences have a major impact on the 

learning-dependent progression of cognitive structures due to the fact that whenever 

assimilation in a schema fails, this schema enters a state of disequilibrium which in 

turn evokes arousal. The term “motive” can be used to denote the presence of 

disequilibrium. Whenever an attempt at assimilation fails and corrective attempts are 

not immediately successful, a motive will be originated. This argumentation follows 

Berlyne’s (1971) views on the central role of arousal in curiosity motivation and 

active stimulus seeking. High levels of incongruity are innately aversive.  
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 Indeed, emotions are mental states which arise spontaneously rather than 

through conscious effort. A growing body of empirical studies shows that 

information processing is highly related with emotional experiences (e.g., Gray, 

2001; Isen, 1999; K. C. Klauer & von Hecker, 2009; Kuhl, 1983, 2000). According 

to Goetz, Preckel, Pekrun, and Hall (2007), emotions can be differentiated into 

present emotional experiences (state-emotions; e.g. “I am anxious at this moment”) 

and emotional experiences that occur consistently in specific situations (trait-

emotions; e.g. “I am generally anxious while taking math exams”). Kuhl (1983) 

introduced a model of emotional emergence where cognitive, emotional, and 

operational processes are reciprocal affect another.  Accordingly, cognitive processes 

and the reciprocal interactions with emotional states are the basis for goal-directed 

actions (Gross, 1998). More specifically, positive emotions promote the activation of 

schemas and mental models, whereas negative emotions restrict these activating 

functions. Baumann and Kuhl (2002) showed that learners in sad mood performed 

worse while solving tasks than those who were able to regulate negative emotions. 

Alternatively, positive emotional experiences may increase the learner’s optimism 

and confidence and thus facilitate the construction of mental models or application of 

alternative schemata.  

 In light of these observations, it is assumed that while measuring the learning-

dependent progression of model-based reasoning and their associated emotional 

experiences will improve the understanding of these complex cognitive functions. As 

a result, instructional materials and instructor feedback that are most appropriate at 

various times during the learning process may be identified. 

Intelligent feedback 

Research studies have shown that it is very difficult but possible to influence 

cognitive structures by providing specific information (see Anzai & Yokoyama, 

1984; Ifenthaler, et al., in press; Mayer, 1989; Pirnay-Dummer & Ifenthaler, in press; 

Seel, 1995; Seel & Dinter, 1995). Ifenthaler and Seel (2005) argue that it is important 

to consider how such information is provided to the learner at specific times during 

the learning process and how it is structured. In accordance with the general 

definition of feedback introduced above (Wagner & Wagner, 1985), an important 

aspect of model-based feedback is providing dynamic feedback generated 

purposively and individually to student-constructed models (Ifenthaler, 2009).  
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 Intelligent model-based feedback helps students to monitor their individual 

learning process. Automated knowledge assessment tools provide the basis to 

produce instant feedback on semantic and structural aspects of a person’s learning 

progression at all times during the learning process (Ifenthaler, 2009). Such dynamic 

and timely feedback can promote the learner’s self-regulated learning (Zimmerman 

& Schunk, 2001). Based on these new technologies, two intelligent and automated 

model-based feedback tools have been developed and implemented: TASA (Text-

Guided Automated Self Assessment), which generates automated feedback to 

learners based on natural language text input (Pirnay-Dummer & Ifenthaler, 2011). 

iGRAF (Instant Graphical Feedback) automatically generates graphical 

representations based on the prior knowledge of the learner (Ifenthaler, 2009, 2010a). 

 The main limitations for TASA so far are on the volitional level. Hence, 

future studies will concentrate on this aspect and also consider several covariates on 

the learners’ side. With the additional data at hand, we should be able to make the 

tool more stimulating. TASA is applicable to any learning task which involves 

writing. It may be used for short writing assignments. However, its strength clearly 

unfolds in long-term writing assignments, in which the students may continuously 

monitor their own progress and make their own decisions when using the automated 

tool. 

 The graphical feedback produced with iGRAF proved to facilitate self-

regulated learning. However, no systematic effect of the various forms of model-

based feedback could be found yet. However, the overall effectiveness of feedback 

generated with iGRAF shows high potential. Already available empirical evidence 

on the facilitation of self-regulated learning processes through intelligent model-

based feedback (TASA and iGRAF) provides high hopes for future developments 

and practical implications. Therefore, model-based feedback will guide a promising 

voyage towards the world of learning within Web 3.0 (Ifenthaler, 2010b; Ifenthaler 

& Seel, 2010b). 

Technology, Instruction, Cognition, and Learning 

In our digital age, technology, instruction, cognition, learning, and educational 

diagnostics are closely linked (Ifenthaler, 2010d; Ifenthaler, Isaias, Spector, Kinshuk, 

& Sampson, 2009; Ifenthaler & Seel, 2010a, 2010b). Researchers and engineers have 

always endeavoured to design and develop useful diagnostic systems to serve 

professional communities in the field of learning and instruction, and they will 
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continue to do so (Ifenthaler, 2010b). Future work on automated computational 

diagnostics, including approaches such as graph theory, will provide more and more 

powerful dynamic systems for the comprehensive analysis of large amounts of data 

in a short space of time. 



	  

	   198 

References 

Abrams, M. H. (1993). A glossary of literary terms. Fort Worth, TX: Harcourt Brace 

College Publishers. 

Acton, W. H., Johnson, P. J., & Goldsmith, T. E. (1994). Structural knowledge 

assessment: Comparison of referent structures. Journal of Educational 

Psychology, 86(2), 303-311.  

Al-Diban, S. (2002). Diagnose mentaler Modelle. Hamburg: Verlag Dr. Kovac. 

Al-Diban, S. (2008). Progress in the diagnosis of mental models. In D. Ifenthaler, P. 

Pirnay-Dummer & J. M. Spector (Eds.), Understanding models for learning 

and instruction. Essays in honor of Norbert M. Seel (pp. 81-102). New York: 

Springer. 

Al-Diban, S., & Ifenthaler, D. (in press). Comparison of two analysis approaches for 

measuring externalized mental models: Implications for diagnostics and 

applications. Journal of Educational Technology & Society.  

Al-Diban, S., & Stark, A. (2007). Pflichtenheft zur Graph to Context (GTC) 

Schnittstelle. Dresden: Technische Universität. 

Amthauer, R., Brocke, B., Liepmann, D., & Beauducel, A. (2001). I-S-T 2000 R. 

Göttingen: Hogrefe. 

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard 

University Press. 

Anzai, Y., & Yokoyama, T. (1984). Internal models in physics problem solving. 

Cognition and Instruction, 1(4), 397-450.  

Ausubel, D. P. (1963). Cognitive structure and the facilitation of meaningful verbal 

learning. Journal of Teacher Education, 14, 217-221.  

Azevedo, R., & Bernard, R. M. (1995). A meta-analysis of the effects of feedback in 

computer-based instruction. Journal of Educational Computing Research, 

13(2), 111-127.  

Baalmann, W. (1997). Schülervorstellungen zur Evolution. In H. E. Bayrhuber (Ed.), 

Biologieunterricht und Lebenswirklichkeit (pp. 163-167). Kiel: IPN. 

Baird, J. R., & White, R. T. (1982). A case study of learning styles in biology. 

International Journal of Science Education, 4(3), 325-337.  

Bakeman, R., & Gottman, J. M. (1997). Observing interaction. An introduction to 

sequential analysis. Cambridge, MA: Cambridge University Press. 



	  

	   199 

Bangert-Drowns, R. L., Kulik, C.-L. C., Kulik, J. A., & Morgan, M. (1991). The 

instructional effect of feedback in test-like events Review of Educational 

Research, 61(2), 213-238.  

Bartholomew, D. J. (1967). Stochastic models for social processes. New York: 

Wiley. 

Baumann, N., & Kuhl, J. (2002). Intuition, affect, and personality: Unconscious 

coherence judgements and self-regulation of negative affect. Journal of 

Personality and Social Psychology, 83, 1213-1223.  

Bayrhuber, H. E. (2001). Biowissenschaft in Schule und Öffentlichkeit. Kiel: IPN. 

Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Appleton-Century-

Crofts. 

Biglan, A. (1973). The characteristics of subject matter in different academic areas. 

Journal of Applied Psychology, 57(3), 195-203. doi: 10.1037/h0034701 

Birkhoff, G. (1973). Lattice theory. Providence, RI: American Mathematical Society. 

Bliss, J. (1996). Piaget und Vygotsky: Ihre Bedeutung für das Lehren und Lernen der 

Naturwissenschaften. Zeitschrift für Didaktik der Naturwissenschaften, 2(3), 

3-16.  

Bollobàs, B. (1998). Modern graph theory. New York: Springer. 

Bonato, M. (1990). Wissenstrukturierung mittels Struktur-Lege-Techniken. Eine 

grapentheoretische Analyse von Wissensnetzen. Frankfurt am Main: Lang. 

Bonatti, L. (1994a). Propositional reasoning by model? Psychological Review, 

101(4), 725-733.  

Bonatti, L. (1994b). Why should we abandon the mental logic hypothesis? 

Cognition, 50(1-3), 17-39.  

Borkenau, P., & Ostendorf, F. (2006). NEO-Fünf-Faktoren-Inventar. Göttingen: 

Hogrefe. 

Bransford, J. D. (1984). Schema activation versus schema acquisition. In R. C. 

Anderson, J. Osborn & R. Tierney (Eds.), Learning to read in American 

schools: Basal readers and content texts (pp. 259-272). Hillsdale, NJ: 

Lawrence Erlbaum. 

Brill, E. (1995). Unsupervised learning of dismabiguation rules for part of speech 

tagging. Paper presented at the Second Workshop on Very Large Corpora, 

WVLC-95, Boston. 



	  

	   200 

Cañas, A. J., Hill, R., Carff, R., Suri, N., Lott, J., Eskridge, T., et al. (2004). 

CmapTools: A Knowledge Modeling and Sharing Environment. In A. J. 

Cañas, J. D. Novak & F. M. González (Eds.), Concept Maps: Theory, 

Methodology, Technology, Proceedings of the First International Conference 

on Concept Mapping (pp. 125-133). Pamplona: Universidad Pública de 

Navarra. 

Chartrand, G. (1977). Introductory graph theory. New York: Dover. 

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 

55-81.  

Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive 

Psychology, 17, 391-426.  

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and 

representation of physics problems by experts and novices. Cognitive 

Science, 5(2), 121-152.  

Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. 

Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 1-75). 

Hillsdale, NJ: Lawrence Erlbaum. 

Christmann, U., & Groeben, N. (1999). Psychologie des Lesens. In B. Franzmann, K. 

Hasemann, D. Löffler & E. Schön (Eds.), Handbuch Lesen (pp. 145-223). 

München: Saur. 

Chung, G. K. W. K., & Baker, E. L. (2003). An exploratory study to examine the 

feasibility of measuring problem-solving processes using a click-through 

interface. Journal of Technology, Learning and Assessment, 2(2), Available 

from http://www.jtla.org.  

Clariana, R. B. (1993). A review of multiple-try feedback in traditional and 

computer-based instruction. Journal of Computer-Based Instruction, 20(3), 

67-74.  

Clariana, R. B., & Wallace, P. E. (2007). A computer-based approach for deriving 

and measuring individual and team knowledge structure from essay 

questions. Journal of Educational Computing Research, 37(3), 211-227.  

Clement, J. (1981). Student's preconceptions in introductory mechanics. American 

Association of Physics Teachers, 50(1), 66-71.  

Coffey, J. W., Carnot, M. J., Feltovich, P. J., Feltovich, J., Hoffman, R. R., Cañas, A. 

J., et al. (2003). A summary of literature pertaining to the use of concept 



	  

	   201 

mapping techniques and technologies for education and performance support. 

Pensacola, FL: Chief of Naval Education and Training. 

Collins, L. M., & Sayer, A. G. (Eds.). (2001). New methods for the analysis of 

change. Washington, DC: American Psychological Associtation. 

Couné, B., Hanke, U., Ifenthaler, D., & Seel, N. M. (2004). Modellkonstruktionen 

beim Problemlösen im Kontext entdeckenden Lernens: Eine Studie zur 

Implementierung theoretisch-begründeter Instruktionsprinzipien. Zweiter 

Bericht aus dem Forschungsprojekt „Modell-begründetes Lernen und Lehren. 

Multimediale Lernumgebungen als Gelegenheiten zum Nachdenken. 

Freiburg: Institut für Erziehungswissenschaft. 

Courant, R., & Robbins, H. (2000). Was ist Mathematik? Berlin: Springer. 

Craik, K. J. W. (1943). The nature of explanation. Cambridge, UK: Cambridge 

University Press. 

Crinon, J., & Legros, D. (2002). The semantic effects of consulting a textual 

database on rewriting. Learning and Instruction, 12(6), 605-626.  

Csapo, B. (1997). The development of inductive reasoning: Cross-sectional 

assessments in an educational context. International Journal of Behavioral 

Development, 20(4), 609-626.  

Davis, E. (1990). Representations of commonsense knowledge. San Mateo, CA: 

Morgan Kaufmann. 

de Corte, F., Greer, B., & Verschaffel, L. (1996). Mathematics teaching and learning. 

In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology 

(pp. 491-549). New York: Macmillan. 

de Vries, E. (2006). Students’ construction of external representations in design-

based learning situations. Learning and Instruction, 16(3), 213-227. doi: 

10.1016/j.learninstruc.2006.03.006 

Derbentseva, N., Safayeni, F., & Cañas, A. J. (2004). Experiments on the Effects of 

Map Structure and Concept Quantification during Concept Map 

Construction. In A. J. Cañas, J. D. Novak & F. M. González (Eds.), Concept 

Maps: Theory, Methodology, Technology, Proceedings of the First 

International Conference on Concept Mapping (pp. 125-132). Pamplona: 

Universidad Pública de Navarra. 

Diestel, R. (2000). Graph theory. New York: Springer. 



	  

	   202 

Ding, Y. (2001). A review of ontologies with the semantic web in view. Journal of 

Information Science, 27(6), 377-384.  

Dinter, F. R. (1993). Mentale Modelle als Konstrukt der empirischen 

Erziehungswissenschaft. Saarbrücken: Universität Dissertation. 

Donovan, M. S., & Bransford, J. D. (Eds.). (2005). How students learn. History, 

mathematics, and science in the classroom. Washington, D.C.: The National 

Academic Press. 

Dörner, D., & Wearing, A. (1995). Complex problem solving: Toward a 

(computersimulated) theory. In P. A. Frensch & J. Funke (Eds.), Complex 

problem solving: The European perspective (pp. 65-99). Hillsdale, NJ: 

Lawrence Erlbaum. 

Dummer, P., & Ifenthaler, D. (2005). Planning and assessing navigation in model-

centered learning environments. Why learners often do not follow the path 

laid out for them. In G. Chiazzese, M. Allegra, A. Chifari & S. Ottaviano 

(Eds.), Methods and technologies for learning (pp. 327-334). Sothhampton: 

WIT Press. 

Durso, F. T., & Coggins, K. A. (1990). Graphs in social and psychological sciences: 

Empirical contributions to Pathfinder. In R. W. Schvaneveldt (Ed.), 

Pathfinder associative networks: Studies in knowledge organization (pp. 31-

51). Norwood, NJ: Ablex Publishing Corportion. 

Eckert, A. (2000). Die Netzwerk-Elaborierungs-Technik (NET)—Ein 

computerunterstütztes Verfahren zur Diagnose komplexer Wissensstrukturen. 

In H. Mandl & F. Fischer (Eds.), Wissen sichtbar machen— 

Wissensmanagement mit Mapping-Techniken (pp. 138-157). Göttingen: 

Hogrefe. 

Eliaa, I., Gagatsisa, A., & Demetriou, A. (2007). The effects of different modes of 

representation on the solution of one-step additive problems. Learning and 

Instruction, 17(6), 658-672.  

Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2003). 

GraphViz and Dynagraph. Static and dynamic graph drawing tools. Florham 

Park, NJ: AT&T Labs. 

Ennis, R. H. (1989). Critical thinking and subject specificity: Clarification and 

needed research. Educational Researcher, 18(4), 4-10.  



	  

	   203 

Ennis, R. H. (1990). The extent to which critical thinking is subject-specific: Further 

clarification. Educational Researcher, 19(13), 13-16.  

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. 

Cambridge, MA: MIT Press. 

Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday life. 

Mind, Culture, and Activity, 5(3), 178-186.  

Eschenhagen, D., Kattmann, U., & Rodi, D. (2008). Fachdidaktik Biologie. Köln: 

Aulis Verlag Deubner. 

Feeney, A., & Heit, E. (Eds.). (2007). Indictive reasoning: Experimental, 

developmental, and computational approaches. New York: Cambridge 

University Press. 

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. 

Psychological Bulletin, 76(5), 378-382.  

Frazier, L. (1999). On sentence interpretation. Dordrecht: Kluwer. 

Funke, J. (1990). Systemmerkmale als Determinanten des Umgangs mit 

dynamischen Systemen. Sprache & Kognition, 9(3), 143,153.  

Funke, J. (1991). Solving complex problems: Exploration and control of complex 

problems. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem 

solving: Principles and mechanisms (pp. 185-222). Hillsdale, NJ: Lawrence 

Erlbaum. 

Funke, J. (1992). Wissen über dynamische Systeme: Erwerb, Repräsentation und 

Anwendung. Berlin: Springer. 

Funke, J., & Frensch, P. A. (1995). Complex problem solving research in North 

America and Europe: An integrative review. Foreign Psychology, 5, 42-47.  

Galbraith, D. (1999). Writing as a knowledge-constituting process. In M. Torrance & 

D. Galbraith (Eds.), Knowing what to write. Conceptual processes in text 

production (pp. 139-160). Amsterdam: University Press. 

Ganter, B., & Wille, R. (1996). Formale Begriffsanalyse. Mathematische 

Grundlagen. Berlin: Springer. 

Gentner, D., & Stevens, A. L. (1983). Mental models. Hillsdale, NJ: Lawrence 

Erlbaum  

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive 

Psychology, 12, 306-355.  



	  

	   204 

Glaser, R. (1999). Expert knowledge and processes of thinking. In R. McCormick & 

C. Paechter (Eds.), Learning and knowledge (pp. 88-102). Thousand Oaks, 

CA: Sage Publications. 

Goetz, T., Preckel, F., Pekrun, R., & Hall, N. C. (2007). Emotional experiences 

during test taking. Does cognitive ability make a difference? Learning and 

Individual Differences, 17, 3-16.  

Gray, J. R. (2001). Emotional modulation of cognitive control. Journal of 

Experimental Psychology: General, 130, 436-452.  

Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. 

Psychometrica, 25, 95-112.  

Greeno, J. G. (1989). Situations, mental models and generative knowledge. In D. 

Klahr & K. Kotovsky (Eds.), Complex information processing (pp. 285-318). 

Hillsdale, NJ: Lawrence Erlbaum. 

Groeben, N. (1992). Leserpsychologie: Textverständnis - Textverständlichkeit. 

Münster: Aschendorff. 

Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. 

Review of General Psychology, 2(3), 271-299.  

Gruber, H. (1994). Expertise. Opladen: Westdeutscher Verlag. 

Gruber, H., & Ziegler, A. (1996). Expertiseforschung. Theoretische und methodische 

Grundlagen. Opladen: Westdeutscher Verlag. 

Gunstone, R. F. (1980). Word association and the description of cognitive structure. 

Research in Science Education, 10, 45-53.  

Harary, F. (1974). Graphentheorie. München: Oldenbourg. 

Hardy, I., & Stadelhofer, B. (2006). Concept Maps wirkungsvoll als 

Strukturierungshilfen einsetzen. Welche Rolle spielt die Selbstkonstruktion? 

Zeitschrift für Pädagogische Psychologie, 20(3), 175-187.  

Harris, C. W. (Ed.). (1963). Problems in measuring change. Madison, WI: The 

University of Wisconsin Press. 

Hasberg, W. (2001). Empirische Forschung in der Geschichtsdidaktik. Neuried: ars 

una. 

Hayes, B. K., & Thompson, S. P. (2007). Causal relations and feature similarity in 

children's inductive reasoning. Journal of Experimental Psychology: General, 

136(3), 470-484. doi: 10.1037/0096-3445.136.3.470 



	  

	   205 

Heit, E. (1998). A bayesian analysis of some forms of inductive reasoning. In M. 

Oaksford & N. Chater (Eds.), Rational models of cognition (pp. 248-274). 

Oxford: Oxford University Press. 

Herl, H. E., Baker, E. L., & Niemi, D. (1996). Construct validation of an approach to 

modeling cognitive structure of U.S. history knowledge. Journal of 

Educational Research, 89(4), 206-218.  

Hietaniemi, J. (2008). Graph-0.84  Retrieved 06-05-2008, from 

http://search.cpan.org/~jhi/Graph-0.84/lib/Graph.pod 

Hilbert, T. S., & Renkl, A. (2008). Concept mapping as a follow-up strategy to 

learning from texts: what characterizes good and poor mappers? Instructional 

Science, 36, 53-73.  

Holland, J., Holyoak, K. J., Nisbett, R. E., & Thagard, P. (1986). Induction: 

Processes of inference, learning, and discovery. Cambridge, MA: MIT Press. 

Holley, K. (2009). The challenge of an interdisciplinary curriculum: a cultural 

analysis of a doctoral-degree program in neuroscience. Higher Education, 

58(2), 241-255. doi: 10.1007/s10734-008-9193-6 

Holyoak, K. J., & Thagard, P. (1995). Mental leaps. Analogy in creative thought. 

Cambridge, MA: MIT Press. 

Hox, J. (2002). Multilevel analysis. Techniques and applications. Mahwah, NJ: 

Lawrence Erlbaum. 

Ifenthaler, D. (2006). Diagnose lernabhängiger Veränderung mentaler Modelle. 

Entwicklung der SMD-Technologie als methodologisches Verfahren zur 

relationalen, strukturellen und semantischen Analyse individueller 

Modellkonstruktionen. Freiburg: FreiDok. 

Ifenthaler, D. (2008). Practical solutions for the diagnosis of progressing mental 

models. In D. Ifenthaler, P. Pirnay-Dummer & J. M. Spector (Eds.), 

Understanding models for learning and instruction. Essays in honor of 

Norbert M. Seel (pp. 43-61). New York: Springer. 

Ifenthaler, D. (2009). Model-based feedback for improving expertise and expert 

performance. Technology, Instruction, Cognition and Learning, 7(2), 83-101.  

Ifenthaler, D. (2010a). Bridging the gap between expert-novice differences: The 

model-based feedback approach. Journal of Research on Technology in 

Education, 43(2), 103-117.  



	  

	   206 

Ifenthaler, D. (2010b). Learning and instruction in the digital age. In J. M. Spector, 

D. Ifenthaler, P. Isaías, Kinshuk & D. G. Sampson (Eds.), Learning and 

instruction in the digital age: Making a difference through cognitive 

approaches, technology-facilitated collaboration and assessment, and 

personalized communications (pp. 3-10). New York: Springer. 

Ifenthaler, D. (2010c). Relational, structural, and semantic analysis of graphical 

representations and concept maps. Educational Technology Research and 

Development, 58(1), 81-97. doi: 10.1007/s11423-008-9087-4 

Ifenthaler, D. (2010d). Scope of graphical indices in educational diagnostics. In D. 

Ifenthaler, P. Pirnay-Dummer & N. M. Seel (Eds.), Computer-based 

diagnostics and systematic analysis of knowledge (pp. 213-234). New York: 

Springer. 

Ifenthaler, D. (accepted). Identifying cross-domain distinguishing features of 

cognitive structures. Educational Technology Research and Development.  

Ifenthaler, D., Isaias, P., Spector, J. M., Kinshuk, & Sampson, D. G. (2009). Editors' 

introduction to the special issue on cognition & learning technology. 

Educational Technology Research and Development, 57(6), 721-723. doi: 

10.1007/s11423-009-9127-8 

Ifenthaler, D., Masduki, I., & Seel, N. M. (in press). The mystery of cognitive 

structure and how we can detect it. Tracking the development of cognitive 

structures over time. Instructional Science. doi: 10.1007/s11251-009-9097-6 

Ifenthaler, D., & Pirnay-Dummer, P. (2009). Assessment of knowledge: Do 

graphical notes and texts represent different things? In M. R. Simonson (Ed.), 

Annual proceedings of selected research and development papers presented 

at the national convention of the Association for Educational 

Communications and Technology (32nd, Louisville, KY, 2009). Volume 2 (pp. 

86-93). Bloomington, IN: AECT. 

Ifenthaler, D., & Pirnay-Dummer, P. (2010a). Artefacts of thought: Properties and 

kinds of re-representations. In D. Ifenthaler, P. Pirnay-Dummer & N. M. Seel 

(Eds.), Computer-based diagnostics and systematic analysis of knowledge 

(pp. 75-76). New York: Springer. 

Ifenthaler, D., & Pirnay-Dummer, P. (2010b). Using knowlege to support knowing. 

In D. Ifenthaler, P. Pirnay-Dummer & N. M. Seel (Eds.), Computer-based 



	  

	   207 

diagnostics and systematic analysis of knowledge (pp. 259-260). New York: 

Springer. 

Ifenthaler, D., Pirnay-Dummer, P., & Seel, N. M. (2007). The role of cognitive 

learning strategies and intellectual abilities in mental model building 

processes. Technology, Instruction, Cognition and Learning, 5(4), 353-366.  

Ifenthaler, D., Pirnay-Dummer, P., & Spector, J. M. (Eds.). (2008). Understanding 

models for learning and instruction. Essays in honor of Norbert M. Seel. New 

York: Springer. 

Ifenthaler, D., & Seel, N. M. (2005). The measurement of change: Learning-

dependent progression of mental models. Technology, Instruction, Cognition 

and Learning, 2(4), 317-336.  

Ifenthaler, D., & Seel, N. M. (2010a). Online-Lernen im Unterricht. Schulmagazin 5-

10, 12, 11-14.  

Ifenthaler, D., & Seel, N. M. (2010b). Online-Lernen in der Schule. Schulmagazin 5-

10, 12, 7-10.  

Ifenthaler, D., & Seel, N. M. (in press). A longitudinal perspective on inductive 

reasoning tasks. Illuminating the probability of change. Learning and 

Instruction. doi: 10.1016/j.learninstruc.2010.08.004 

Iggers, G. G. (1996). Geschichtswissenschaft im 20. Jahrhundert. Göttingen: 

Vandenhoeck und Ruprecht. 

Isen, A. M. (1999). Positive affect. In T. Dalgleish & M. J. Power (Eds.), Handbook 

of cognition and emotion (pp. 521-539). John Wiley & Sons: Chichester. 

Jackendoff, R. (1983). Semantics and cognition. Cambridge, MA: MIT Press. 

Jacobs, B. (1998). Aufgaben stellen und Feedback geben  Retrieved 06-10, 2008, 

from http://www.phil.uni-sb.de/~jakobs/wwwartikel/feedback/index.htm 

Jacobson, M. J., & Archodidou, A. (2000). The design of hypermedia tools for 

learning: Fostering conceptual change and transfer of complex scientific 

knowledge. Journal of the Learning Sciences, 9(2), 145-199.  

Jech, T. (2007). Set theory. New York: Springer. 

Jensen, F. V. (2001). Bayesian networks and decision graphs. New York: Springer. 

Johnson, J., McKee, S., & Vella, A. (Eds.). (1994). Artificial intelligence in 

mathematics. New York: Oxford University Press. 

Johnson, T. E., Ifenthaler, D., Pirnay-Dummer, P., & Spector, J. M. (2009). Using 

concept maps to assess individuals and team in collaborative learning 



	  

	   208 

environments. In P. L. Torres & R. C. V. Marriott (Eds.), Handbook of 

research on collaborative learning using concept mapping (pp. 358-381). 

Hershey, PA: Information Science Publishing. 

Johnson, T. E., O'Connor, D. L., Spector, J. M., Ifenthaler, D., & Pirnay-Dummer, P. 

(2006). Comparative study of mental model research methods: Relationships 

among ACSMM, SMD, MITOCAR & DEEP methodologies. In A. J. Cañas 

& J. D. Novak (Eds.), Concept maps: Thery, methodology, technology. 

Procedings of the Second International Conference on Concept Mapping, 

Voume 1 (pp. 87-94). San José: Universidad de Costa Rica. 

Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of 

language, inference, and consciousness. Cambridge, UK: Cambridge 

University Press. 

Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of 

cognitive science (pp. 469-499). Cambridge, MA: MIT Press. 

Johnson-Laird, P. N., & Byrne, R. (1991). Deduction. Hove: Lawrence Erlbaum. 

Jonassen, D. H. (1987). Assessing cognitive structure: Verifying a method using 

pattern notes. Journal of Research and Development in Education, 20(3), 1-

14.  

Jonassen, D. H. (1988). Designing structured hypertext and structuring access to 

hypertext. Educational Technology, 28(11), 13-16.  

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational 

Technology Research & Development, 48(4), 63-85. doi: 

10.1007/BF02300500 

Jonassen, D. H. (2009). Externally modeling mental models. In L. Moller, J. B. Huett 

& D. Harvey (Eds.), Learning and instructional technologies for the 21st 

century. Visions of the future (pp. 49-74). New York: Springer. 

Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge: 

Techniques for representing, conveying, and acquiring structural knowledge. 

Hilsdale, NJ: Lawrence Erlbaum. 

Jonassen, D. H., & Cho, Y. H. (2008). Externalizing mental models with mindtools. 

In D. Ifenthaler, P. Pirnay-Dummer & J. M. Spector (Eds.), Understanding 

models for learning and instruction. Essays in honor of Norbert M. Seel (pp. 

145-160). New York: Springer. 



	  

	   209 

Jonassen, D. H., Reeves, T. C., Hong, N., Harvey, D., & Peters, K. (1997). Concept 

mapping as cognitive learning and assessment tools. Journal of Interactive 

Learning Research, 8(3/4), 289-308.  

Kalyuga, S. (2006a). Assessment of learners’ organised knowledge structures in 

adaptive learning environments. Applied Cognitive Psychology, 20, 333-342.  

Kalyuga, S. (2006b). Rapid assessment of learners’ proficiency: A cognitive load 

approach. Educational Psychology, 26(6), 735-749.  

Kalyuga, S. (2006c). Rapid cognitive assessment of learners’ knowledge structures. 

Learning and Instruction, 16(1), 1-11. doi: 

10.1016/j.learninstruc.2005.12.002 

Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.), 

Instructional-design theories and models. An overview of their current status 

(pp. 383-434). Hillsdale, NJ: Lawrence Erlbaum. 

Kirwan, B., & Ainsworth, L. K. (1992). A Guide to task analysis. London: Taylor & 

Francis Group. 

Kitcher, P. (1983). The nature of mathematical knowledge. Oxford: Oxford 

University Press. 

Klauer, K. C., & von Hecker, U. (2009). Gedächtnis und Emotion. In V. Brandstätter 

& J. H. Otto (Eds.), Handbuch der Allgemeinen Psychologie: Motivation und 

Emotion (pp. 661-667). Göttingen: Hogrefe. 

Klauer, K. J. (1996). Teaching inductive reasoning: some theory and three 

experimental studies. Learning and Instruction, 6(1), 37-57. doi: 

10.1016/S0959-4752(96)80003-X 

Kleinert, E. (2005). Drei Studien zur Struktur der Mathematik. Hamburger Beiträge 

zur Mathematik, 229, 1-66.  

Kluger, A. N., & DeNisi, A. (1996). Effects of feedback intervention on 

performance: A historical review, a meta-analysis, and a preliminary 

feedback intervention theory. Psychological Bulletin, 119(2), 254-284.  

Koubek, R. J., Clarkston, T. P., & Calvez, V. (1994). The training of knowledge 

structures for manufacturing tasks: An empirical study. Ergonomics, 37(4), 

765-780.  

Koubek, R. J., & Mountjoy, D. N. (1991). Toward a model of knowledge structure 

and a comparative analysis of knowledge structure measurement technique. 

West Lafayette, IN: Purdue University. 



	  

	   210 

Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61(2), 

179-211.  

Kruskal, J. (1964). Nonmetric multidimensional scaling: A numerical method. 

Psychometric Monographes, 29, 115-129.  

Ku, W. A. (2007). Using concept maps to explore the conceptual  knowledge of 

technology students: an exploratory study. doctoral dissertation. Ohio State 

University. Columbus, OH.  

Kuhl, J. (1983). Emotion, Kognition und Motivation. I: Auf dem Weg zu einer 

systemtheoretischen Betrachtung der Eomtionsgenese. Sprache und 

Kognition, 2, 1-27.  

Kuhl, J. (2000). A functional-design approach to motivation and self-regulation: The 

dynamics of personality systems interaction. In M. Boekaerts, P. R. Pintrich 

& M. Zeidner (Eds.), Handbook of self-regulation (pp. 111-169). San Diego, 

CA: Academic Press. 

Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of 

scientific reasoning. Cognition and Instruction, 9(4), 285-327.  

Kulhavy, R. W. (1977). Feedback in written instruction. Review of Educational 

Research, 47(2), 211-232.  

Langer, I., Schulz v. Thun, F., & Tausch, R. (1974). Verständlichkeit in der Schule, 

Verwaltung, Politik und Wissenschaft. München: Reinhardt. 

Le Ny, J.-F. (1993). Wie kann man mentale Repräsentationen repräsentieren? In J. 

Engelkamp & T. Pechmann (Eds.), Mentale Repräsentation (pp. 31-39). 

Bern: Huber. 

Lee, Y., & Nelson, D. (2004). Instructional Use of Visual Representations of 

Knowledge. Paper presented at the Society for Information Technology and 

Teacher Education International Conference 2004, Atlanta, GA, USA. 

Lehrer, R., & Romberg, T. (1996). Exploring children´s data modeling. Cognition 

and Instruction, 14(1), 69-108.  

Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: 

Key components of models and modeling. In P. Cobb, E. Yackel & K. 

McClain (Eds.), Symbolizing and communicating in mathematics classrooms. 

Perspectives on discourse, tools, and instructional design (pp. 361-383). 

Mahwah, NJ: Lawrence Erlbaum Associates. 



	  

	   211 

Lewin, K. (1922). Das Problem der Wissensmessung und das Grundgesetz der 

Assoziation. Teil 1. Psychologische Forschung, 1(191-302).  

Lienert, G. A., & Raatz, U. (1994). Testaufbau und Testanalyse. Weinheim: Beltz. 

Lin, D. (1998). An information-theoretic definition of similarity. In J. W. Shavlik 

(Ed.), Proceedings of the fifteenth international conference on machine 

learning (pp. 96 - 304). San Francisco, CA: Morgan Kaufmann Publishers 

Inc. 

Magnani, L., & Nersessian, N. (Eds.). (2002). Model-based reasoning: Science, 

technology, values. Dordrecht: Kluwer. 

Mandl, H., Gruber, H., & Renkl, A. (1995). Mental models of complex systems: 

When veridicality decreases functionality. In C. Zucchermaglio, S. Bagnara 

& S. U. Stucky (Eds.), Organizational learning and technological change 

(pp. 102-111). Berlin: Springer. 

Mansfield, H., & Happs, J. (1991). Concept maps. Australian Mathematics Teacher, 

47(3), 30-33.  

Mayer, R. E. (1989). Models for understanding. Review of Educational Research, 

59(1), 43-64.  

Mayer, R. E., & Greeno, J. G. (1972). Structural differences between learning 

outcomes produced by different instructional methods. Journal of 

Educational Psychology, 63(2), 165-173.  

Mayer, R. E., Moreno, R., Boire, M., & Vagge, S. (1999). Maximizing constructivist 

learning from multimedia communication by minimizing cognitive load. 

Journal of Educational Psychology, 91(4), 638-643.  

McCoon, G., & Ratcliff, R. (1992). Inference during reading. Psychological Review, 

99(3), 440-466.  

McNamara, T. P. (1992). Priming and constraints it places on theories of memory 

and retrieval. Psychological Review, 99(4), 650-662.  

McNamara, T. P. (1994). Priming and theories of memory: A reply to Ratcliff and 

McCoon. Psychological Review, 101(1), 185-187.  

McPeck, J. E. (1990). Critical thinking and subject specificity: A reply to Ennis. 

Educational Researcher, 19(10), 10-12.  

Mikkilä-Erdmann, M., Penttinen, M., Anto, E., & Olkinuora, E. (2008). Constructing 

mental models during learning from science text. Eye tracking methodology 

meets conceptual change. In D. Ifenthaler, P. Pirnay-Dummer & J. M. 



	  

	   212 

Spector (Eds.), Understanding models for learning and instruction. Essays in 

honor of Norbert M. Seel (pp. 63-79). New York: Springer. 

Minsky, M. (1981). A framework for representing knowledge in mind design. In R. 

J. Brachmann & H. J. Levesque (Eds.), Readings in knowledge 

representation (pp. 245-262). Los Altos, CA: Morgan Kaufmann. 

Mintzes, J. J., Yen, C., & Barney, E. C. (2008). Assessing knowledge, attitudes, and 

behavior towards charismatic megafauna. The case of dolphins. Journal of 

Environmental Education, 36(2), 41-55.  

Mirow, J. (1991). Geschichtswissen durch Geschichtsunterricht? Historische 

Kenntnisse und ihr Erwerb innerhalb und außerhalb der Schule. In B. von 

Borries, H. Pandel & J. Rüsen (Eds.), Geschichtsbewußtsein empirisch (pp. 

53-109). Pfaffenweiler: Centaurus-Verlagsgesellschaft. 

Moeira, M. A. (1983). Assessment of content and cognitive structures in physics at 

college level. Assessment & Evaluation in Higher Education, 8(3), 234-245.  

Mory, E. H. (2004). Feedback research revisited. In D. H. Jonassen (Ed.), Handbook 

of research on educational communications and technology (pp. 745-783). 

Mahwah, NJ: Lawrence Erlbaum. 

Moskowitz, D. S., & Hershberger, S. L. (Eds.). (2002). Modelling intraindividual 

variability with repeated measures data. Mahwah, NJ: Lawrence Erlbaum. 

Nägler, G., & Stopp, F. (1996). Mathematik für Ingenieure und 

Naturwissenschaftler. Graphen und Anwendungen. Stuttgart: Teubner. 

Narciss, S. (2006). Informatives tutorielles Feedback. Entwicklung- und 

Evaluationsprinzipien auf der Basis instruktionspsychologischer 

Erkenntnisse. Münster: Waxmann. 

Narciss, S. (2008). Feedback strategies for interactive learning tasks. In J. M. 

Spector, M. D. Merrill, J. van Merrienboer & M. P. Driscoll (Eds.), 

Handbook of research on educational communications and technology (pp. 

125-143). New York: Taylor & Francis Group. 

Narciss, S., & Huth, K. (2004). How to design informative tutoring feedback for 

multimedia learning. In H. M. Niegemann, D. Leutner & R. Brünken (Eds.), 

Instructional design for multimedia learning (pp. 181-195). Münster: 

Waxmann. 

Nason, A., & Goldstein, P. (1969). Biology; introduction to life. Menlo Park, CA: 

Addison-Wesley. 



	  

	   213 

Navicon. (2000). Cernato 2.1. Begriffliche Wissensverarbeitung. Frankfurt: Navicon 

GmbH.  

Nikitina, S. (2005). Pathways of interdisciplinary cognition. Cognition and 

Instruction, 23(3), 389-425. doi: 10.1207/s1532690xci2303_3 

Nisbett, R. E., Krantz, D. H., Jepson, C., & Kunda, Z. (1983). The use of statistical 

heuristics in everyday inductive reasoning Psychological Review, 90(4), 339-

363. doi: 10.1037/0033-295X.90.4.339 

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal 

reports on mental processes. Psychological Review, 84, 231-259.  

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. 

Stevens (Eds.), Mental models (pp. 7-14). Hilsdale, NJ: Lawrence Erlbaum 

Associates. 

Norman, D. A., Gentner, D. R., & Stevens, A. L. (1976). Comments on learning 

schemata and memory representation. In D. Klahr (Ed.), Cognition and 

Instruction (pp. 177-196). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Novak, J. D. (1998). Learning, creating, and using knowledge: concept maps as 

facilitative tools in schools and corporations. Mahwah, NJ: Lawrence 

Erlbaum Associates. 

Nückles, M., Gurlitt, J., Pabst, T., & Renkl, A. (2004). Mind Maps und Concept 

Maps. Visualisieren - Organisieren - Kommunizieren. München: DTV. 

O'Donnell, A. M., Dansereau, D. F., & Hall, R. H. (2002). Knowledge maps as 

scaffolds for cognitive processing. Educational Psychology Review, 14, 71-

86.  

Pandel, H. (1987). Dimensionen des Geschichtsbewusstseins. Ein Versuch, seine 

Struktur für Empirie und Pragmatik diskutierbar zu machen. 

Geschichtsdidaktik, 12(2), 130-142.  

Pape, M. (2006). Methodische Zugangsweisen zur Erfassung von 

Geschichtsbewusstsein im Kindesalter: Gruppendiskussionen und 

Kinderzeichnungen. In G. Hilke & M. Sauer (Eds.), Geschichtsdidaktik 

empirisch - Untersuchungen zum historischen Denken und Lernen (pp. 85-

110). München: LIT Verlag. 

Penner, D. E. (2001). Cognition, computers, and synthetic science: Building 

knowledge and meaning through modeling. Review of Research in Education, 

25, 1-35.  



	  

	   214 

Piaget, J. (1943). Le developpement mental de l'enfant. Zürich: Rascher. 

Piaget, J. (1950). La construction du réel chez l’enfant. Neuchatel: Delachaux et 

Niestlé S.A. 

Piaget, J. (1972). Das mathematische Denken. Stuttgart: Klett. 

Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett. 

Pirnay-Dummer, P. (2006). Expertise und Modellbildung: MITOCAR. Freiburg: 

FreiDok. 

Pirnay-Dummer, P., & Ifenthaler, D. (2010). Automated knowledge visualization 

and assessment. In D. Ifenthaler, P. Pirnay-Dummer & N. M. Seel (Eds.), 

Computer-based diagnostics and systematic analysis of knowledge (pp. 77-

115). New York: Springer. 

Pirnay-Dummer, P., & Ifenthaler, D. (2011). Text-guided automated self assessment. 

A graph-based approach to help learners with ongoing writing. In D. 

Ifenthaler, Kinshuk, P. Isaias, D. G. Sampson & J. M. Spector (Eds.), 

Multiple perspectives on problem solving and learning in the digital age (pp. 

217-225). New York: Springer. 

Pirnay-Dummer, P., & Ifenthaler, D. (in press). Reading guided by automated 

graphical representations: How model-based text visualizations facilitate 

learning in reading comprehension tasks. Instructional Science. doi: 

10.1007/s11251-010-9153-2 

Pirnay-Dummer, P., Ifenthaler, D., & Rohde, J. (2009). Text-guided automated self-

assessment. In Kinshuk, D. G. Sampson, J. M. Spector, P. Isaias & D. 

Ifenthaler (Eds.), Proceedings of the IADIS international conference on 

cognition and exploratory learning in the digital age (pp. 311-316). Rome: 

IADIS Press. 

Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). Highly integrated model 

assessment technology and tools. Educational Technology Research and 

Development, 58(1), 3-18. doi: 10.1007/s11423-009-9119-8 

Pollio, H. R. (1966). The structural basis of word association behavior. The Hague: 

Mouton. 

Preece, P. F. W. (1976). Mapping cognitive structure: A comparison of models. 

Journal of Educational Psychology, 68(1), 1-8.  

Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic 

information processing (pp. 216-270). Cambridge, MA: MIT Press. 



	  

	   215 

Rasch, T., & Schnotz, W. (2009). Interactive and non-interactive pictures in 

multimedia learning environments: Effects on learning outcomes and learning 

efficiencyLearning and Instruction (Vol. 19, pp. 411-422). doi: 

10.1016/j.learninstruc.2009.02.008 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models. Applications 

and data analysis methods. Thousand Oaks, CA: SAGE Publications. 

Reh, H. (2007). MaNET (Mannheimer Netzwerk Elaborations Technik) Version 

1.6.4. Mannheim: MaResCom GmbH.  

Renkl, A., & Gruber, H. (1995). Erfasung von Veränderung: Wie und wieso? 

Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 

27(2), 173-190.  

Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. 

Cambridge, MA: MIT Press. 

Rost, D. H. (2005). Interpretation und Bewertung pädagogisch-psychologischer 

Studien. Weinheim: Beltz. 

Rothmaler, P. (2000). Introduction to model theory. Amsterdam: Gordon & Breach 

Science Publishers. 

Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, 

B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading and 

comprehension (pp. 33-58). Hillsdale, NJ: Lawrence Erlbaum. 

Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning and restructuring: 

Three model of learning. In R. L. Klatzky & J. W. Cotton (Eds.), Semantic 

factors in cognition (pp. 37-53). Hillsdale, NJ: Lawrence Erlbaum. 

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). 

Schemata and sequential thought processes in PDP models. In J. L. 

McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing. 

Explorations in the microstructure of cognition. Volume 2: Psychological and 

biological models (pp. 7-57). Cambridge, MA: MIT Press. 

Rüsen, J., Fröhlich, K., Horstkötter, H., & Schmidt, H. G. (1991). Untersuchungen 

zum Geschichtsbewußtsein von Abiturienten im Ruhrgebiet. In B. von 

Borries, H. Pandel & J. Rüsen (Eds.), Geschichtsbewußtsein empirisch (pp. 

221-344). Pfaffenweiler: Centaurus-Verlagsgesellschaft. 



	  

	   216 

Russel, W. A., & Jenkins, J. J. (1954). The complete Minnesota norms for responses 

to 100 words from the Kent-Rosanoff word association test: University of 

Minnesota. 

Ryle, G. (1949). The concept of mind. London: Hutchinson. 

Scaife, M., & Rogers, Y. (1996). External cognition: how do graphical 

representations work? International Journal of Human - Computer Studies, 

45(2), 185-213.  

Scandura, J. M. (1988). Role of relativistic knowledge in intelligent tutoring. 

Computers in Human Behavior, 4(1), 53-64.  

Scandura, J. M. (2007). Introduction to knowledge representation, construction 

methods, associated theories and implications for advanced tutoring/learning 

systems. Technology, Instruction, Cognition and Learning, 5(2), 91-97.  

Schaeken, W., Vandierendonck, A., Schroyens, W., d'Ydewalle, G., & Klauer, K. C. 

(Eds.). (2006). The mental models theory of reasoning. Refinement and 

extensions. Mahwah, NJ: Lawrence Erlbaum. 

Schauble, L. (1996). The development of scientific reasoning in knowledge-rich 

contexts. Developmental Psychology, 32(1), 102-119.  

Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Student´s transition from an 

engineering model to a science model of experimentation. Journal of 

Research in Science Teaching, 28(859-882).  

Scheele, B., & Groeben, N. (1984). Die Heidelberger Struktur-Lege-Technik (SLT). 

Eine Dialog-Konsens-Methode zur Erhebung subjektiver Theorien mittlerer 

Reichweite. Weinheim: Beltz. 

Schimmel, B. J. (1983). A meta-analysis of feedback to learners in computerized and 

programmed instruction. Paper presented at the AREA 1983, Montreal. 

Schnotz, W. (2001). Kognitive Prozesse bei der sprach- und bildgestützten 

Konstruktion mentaler Modelle. In L. Sichelschmidt & H. Strohner (Eds.), 

Sprache, Sinn und Situation (pp. 43-57). Wiesbaden: Deutscher 

Universitätsverlag. 

Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from 

multiple representation. Learning and Instruction, 13(2), 141-156. doi: 

10.1016/S0959-4752(02)00017-8  

Schönwiese, C.-D. (2005). Klimawandel - Tatsache oder Fiktion? Energiewirt, 104, 

26-29.  



	  

	   217 

Schuler, H., & Prochaska, M. (2001). Leistungsmotivationsinventar. Göttingen: 

Hogrefe. 

Schvaneveldt, R. W. (1990). Pathfinder associative networks: Studies in knowledge 

organization. Norwood: NJ: Ablex Publishing Corporation. 

Schwarzer, R., & Jerusalem, M. (Eds.). (1999). Skalen zur Erfassung von Lehrer- 

und Schülermerkmalen. Dokumentation der psychometrischen Verfahren im 

Rahmen der Wissenschaftlichen Begleitung des Modellversuchs 

Selbstwirksame Schulen. Berlin: Freie Universität Berlin. 

Seel, N. M. (1991). Weltwissen und mentale Modelle. Göttingen: Hogrefe. 

Seel, N. M. (1995). Mental models, knowledge transfer, and teaching strategies. 

Journal of Structural Learning and Intelligent Systems, 12(3), 197-213.  

Seel, N. M. (1999a). Educational diagnosis of mental models: Assessment problems 

and technology-based solutions. Journal of Structural Learning and 

Intelligent Systems, 14(2), 153-185.  

Seel, N. M. (1999b). Educational semiotics: School learning reconsidered. Journal of 

Structural Learning and Intelligent Systems, 14(1), 11-28.  

Seel, N. M. (2001). Epistemology, situated cognition, and mental models: ‘Like a 

bridge over troubled water’. Instructional Science, 29(4-5), 403–427.  

Seel, N. M. (2003). Model-centered learning and instruction. Technology, 

Instruction, Cognition and Learning, 1(1), 59-85.  

Seel, N. M. (2008). Empirical perspectives on memory and motivation. In J. M. 

Spector, M. D. Merrill, J. van Merrienboer & M. P. Driscoll (Eds.), 

Handbook of research on educational communications and technology (pp. 

39-54). New York: Routledge. 

Seel, N. M., Darabi, A. A., & Nelson, D. W. (2006). A dynamic mental model 

approach to examine schema development in performing a complex 

troubleshooting task: Retention of mental models. Technology, Instruction, 

Cognition and Learning, 4(3-4), 303-329.  

Seel, N. M., & Dinter, F. R. (1995). Instruction and mental model progression: 

Learner-dependent effects of teaching strategies on knowledge acquisition 

and analogical transfer. Educational Research and Evaluation, 1(1), 4-35.  

Seel, N. M., Ifenthaler, D., & Pirnay-Dummer, P. (2009). Mental models and 

problem solving: Technological solutions for measurement and assessment of 

the development of expertise. In P. Blumschein, W. Hung, D. H. Jonassen & 



	  

	   218 

J. Strobel (Eds.), Model-based approaches to learning: Using systems models 

and simulations to improve understanding and problem solving in complex 

domains (pp. 17-40). Rotterdam: Sense Publishers. 

Seel, N. M., & Schenk, K. (2003). Multimedia environments as cognitive tools for 

enhancing model-based learning and problem solving. An evaluation report. 

Evaluation and Program Planning, 26(2), 215-224.  

Shavelson, R. J. (1972). Some aspects of the correspondence between content 

structure and cognitive structure in Physics education. Journal of Educational 

Psychology, 63(3), 225-234.  

Shavelson, R. J. (1974). Methods for examining representations of a subject-matter 

structure in student memory. Journal of Research in Science Teaching, 11(3), 

231-249.  

Shavelson, R. J., & Stanton, G. C. (1975). Construct validation: Methodology and 

application to three measures of cognitive structure. Journal of Educational 

Measurement, 12(2), 67-85.  

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 

78(1), 153-189.  

Shute, V. J., & Zapata-Rivera, D. (2008). Using an evidence-based approach to 

assess mental models. In D. Ifenthaler, P. Pirnay-Dummer & J. M. Spector 

(Eds.), Understanding models for learning and instruction: Essays in honor 

of Norbert M. Seel (pp. 23-42). New York: Springer. 

Simons, P. R. J., & de Jong, F. P. C. M. (1992). Self-regulation and computer-aided 

instruction. Applied Psychology: An International Review, 41(4), 333-346.  

Smith, W. G. (1894). Mediate association. Mind, 3(11), 289-304.  

Smith, W. G. (1918). Methods for studying controlled word associations. 

Psychobiology, 1(6), 369-428.  

Snow, R. E. (1989). Toward assessment of cognitive and conative structures in 

learning. Educational Researcher, 18(9), 8-14.  

Snow, R. E. (1990). New approaches to cognitive and conative assessment in 

education. International Journal of Educational Research, 14(5), 455-473.  

Snow, R. E., & Lohman, D. F. (1989). Implications of cognitive psychology for 

educational measurement. In R. L. Linn (Ed.), Educational measurement (pp. 

263-331). New York: ACE/Macmillan. 



	  

	   219 

Sowa, J. F. (1984). Conceptual structures: Information processing in mind and 

machine. Reading, MA: Addison-Wesley. 

Spada, H. (1983). Die Analyse von Veränderungen im Rahmen unterschiedlicher 

testtheoretischer Modelle. In W.-R. Minsel & R. Scheller (Eds.), Brennpunkte 

der Klinischen Psychologie (pp. 83-105). München: Kösel-Verlag. 

Spector, J. M. (2006). A methodology for assessing learning in complex and ill-

structured task domains. Innovations in Education and Teaching 

International, 43(2), 109-120.  

Spector, J. M. (2010). Mental representations and their analysis: An epestimological 

perspective. In D. Ifenthaler, P. Pirnay-Dummer & N. M. Seel (Eds.), 

Computer-based diagnostics and systematic analysis of knowledge (pp. 27-

40). New York: Springer. 

Spector, J. M., Dennen, V. P., & Koszalka, T. A. (2006). Causal maps, mental 

models and assessing acquisition of expertise. Technology, Instruction, 

Cognition and Learning, 3(2), 167-183.  

Spector, J. M., & Koszalka, T. A. (2004). The DEEP methodology for assessing 

learning in complex domains (Final report to the National Science 

Foundation Evaluative Research and Evaluation Capacity Building). 

Syracuse, NY: Syracuse University. 

Stachowiak, F. J. (1979). Zur semantischen Struktur des subjektiven Lexikons. 

München: Wilhelm Fink Verlag. 

Sternberg, R. J. (1993). Giftedness as developing expertise. In K. A. Heller, F. J. 

Mönks, R. J. Sternberg & R. F. Subotnik (Eds.), International handbook of 

giftedness and talent (pp. 55-66). Oxford: Pergamon. 

Sternberg, R. J., & Gardner, M. K. (1983). Unities in inductive reasoning. Journal of 

Experimental Psychology: General, 112(1), 80-116. doi: 10.1037/0096-

3445.112.1.80 

Stoyanova, N., & Kommers, P. (2002). Concept mapping as a medium of shared 

cognition in computer- supported collaborative problem solving. Journal of 

Interactive Learning Research, 13(1/2), 111-133.  

Stracke, I. (2004). Einsatz computerbasierter Concept Maps zur Wissensdiagnose in 

der Chemie. Empiri- 

sche Untersuchungen am Beispiel des Chemischen Gleichgewichts. Münster: 

Waxmann. 



	  

	   220 

Strasser, A. (2010). A functional view toward mental representations. In D. 

Ifenthaler, P. Pirnay-Dummer & N. M. Seel (Eds.), Computer-based 

diagnostics and systematic analysis of knowledge (pp. 15-26). New York: 

Springer. 

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. 

Cognitive Science, 12, 257-285.  

Taber, K. S. (1995). Development of student understanding: a case study of stability 

and lability in cognitive structure. Research in Science & Technological 

Education, 13(1), 89-99.  

Taber, K. S. (2000). Multiple frameworks?: Evidence of manifold conceptions in 

individual cognitive structure. International Journal of Science Education & 

Training, 22(4), 399-417.  

Tamir, P., & Jungwirth, E. (1972). Teaching objectives in biology: Priorities and 

expectations. Science Education, 56(1), 31-39.  

Taricani, E. M., & Clariana, R. B. (2006). A technique for automatically scoring 

open-ended concept maps. Educational Technology  Research and 

Development, 54(1), 65-82.  

Tennyson, R. D., & Cocchiarella, M. J. (1986). An empirically based instructional 

design theory for teaching concepts. Review of Educational Research, 56(1), 

40-71.  

Tergan, S.-O. (2003). Managing knowledge with computer-based mapping tools. In 

D. Lassner & C. McNaught (Eds.), Proceedings of the ED-media 2003 world 

conference on educational multimedia, hypermedia & telecommunication 

(pp. 2514-2517). Honolulu, HI: University of Honolulu. 

Thompson, T. L., & Mintzes, J. J. (2002). Cognitive structure and the affective 

domain: On knowing and feeling in biology. Journal of Science Education, 

24(6), 645-660.  

Tittmann, P. (2003). Graphentheorie. Eine anwendungsorientierte Einführung. 

München: Carl Hanser Verlag. 

Tittmann, P. (2010). Graphs and networks. In D. Ifenthaler, P. Pirnay-Dummer & N. 

M. Seel (Eds.), Computer-based diagnostics and systematic analysis of 

knowledge (pp. 177-188). New York: Springer. 

Trumper, R. (2006). Factors affecting junior high school students’ interest in 

biology. Science Education International, 17(1), 31-48.  



	  

	   221 

Turner, R. M. (1994). Adaptive reasoning for real-world problems: A schema-based 

approach. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Tutte, W. T. (2001). Graph theory. Cambridge, UK: Cambridge University Press. 

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.  

van der Meer, E., & Schmidt, B. (1992). Finale, kausale und  temporale Inferenzen. 

Analyse ihres kognitiven Hintergrundes. Zeitschrift für Psychologie, 200, 

303-320.  

von Borries, B. (2001). Lehr- und Lernforschung im Fach Geschichte. In W. Gerhard 

(Ed.), Lehren und Lernen im Kontext empirischer Forschung und 

Fachdidaktik (pp. 399-438). Donau-Wörth: Auer. 

Voss, J. F., Greece, T. R., Post, T. A., & Penner, B. C. (1983). Problem-solving skill 

in the social sciences. In G. H. Bower (Ed.), The psychology of learning and 

motivation: Advances in research and theory. New York: Academic Press. 

Vye, N. J., Goldman, S. R., Voss, J. F., Hmelo, C., & Williams, S. (1997). Complex 

mathematical problem solving by individuals and dyads. Cognition and 

Instruction, 15(4), 435-484.  

Wagner, W., & Wagner, S. U. (1985). Presenting questions, processing responses, 

and providing feedback in CAI. Journal of Instructional Development, 8(4), 

2-8.  

Watts, M. (1988). From concept maps to curriculum signposts. Physics Education, 

23, 74-79.  

Weiß, R. H. (2006). Grundintelligenztest Skala 2 Revision. Göttingen: Hogrefe. 

Wells, F. L. (1911). Some properties of the free association time. Psychological 

Review, 18, 1-24.  

Wild, K. P. (2000). Lernstrategien im Studium. Strukturen und Bedingungen. 

Münster: Waxmann. 

Wilhelm, P., & Beishuizen, J. J. (2003). Content effects in self-directed inductive 

learning. Learning and Instruction, 13(4), 381-402. doi: 10.1016/S0959-

4752(02)00013-0 

Willett, J. B. (1988). Questions and answers in the measurement of change. Review 

of Research in Education, 15, 345-422.  

Winter, H. (1975). Allgemeine Lehrziele im Mathematikunterricht. Zentralblatt für 

Didaktik der Mathematik, 3, 106-116.  



	  

	   222 

Wittgenstein, L. (1922). Tractatus logico-philosophicus. New York: Harcourt Brace 

& Company. 

Wolfe, M. B. W., & Goldman, S. R. (2005). Relations between adolescents' text 

processing and reasoning. Cognition and Instruction, 23(4), 467-502.  

Woods, C. (2007). Researching and developing interdisciplinary teaching: towards a 

conceptual framework for classroom communication. Higher Education, 

54(6), 853-866. doi: 10.1007/s10734-006-9027-3 

Young, M. J. (1993). Instructional design for situated learning. Educational 

Technology  Research and Development, 41(1), 43-58.  

Young, M. J. (1998). Quantifying the characteristics of knowledge structure 

representations: A lattice-theoretic framework. Los Angeles, CA: CRESST. 

Zimmerman, B. J., & Schunk, D. (2001). Theories of self-regulated learning and 

academic achievement: An overview and analysis. In B. J. Zimmerman & D. 

Schunk (Eds.), Self-regulated learning and academic achievement. 

Theoretical perspectives (pp. 1-37). Mahawah, NJ: Lawrence Erlbaum 

Associates. 

 

 


