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Hall Bausparkasse is gratefully acknowledged.



4



Contents

1 Introduction 9

1.1 Sequential Moves and Comparative Statics in Strategic Market Games . 11

1.2 The Effects of Competition on Bargaining Power in Repeated Bilateral

Negotiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Communication Networks and Cooperation . . . . . . . . . . . . . . . . 17

2 Sequential Moves and Comparative Statics in Strategic Market Games

21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Comparative Statics and Timing . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Simultaneous Moves . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Sequential Moves: The Sellers as First-Movers . . . . . . . . . . 29

2.3.3 Sequential Moves: The Buyers as First-Movers . . . . . . . . . 31

5



2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Stable Trading Structures . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Elimination of the No-Trade Equilibrium and Walrasian Convergence . 37

2.6 Existence of a Subgame Perfect Equilibrium . . . . . . . . . . . . . . . 40

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 The Effects of Competition on Bargaining Power in Repeated Bilat-

eral Negotiations 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Powerful Buyers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Disadvantageous Outside Options . . . . . . . . . . . . . . . . . . . . . 50

3.4 The Effect of Buyer Competition . . . . . . . . . . . . . . . . . . . . . 58

3.5 Relation to the Bargaining Literature . . . . . . . . . . . . . . . . . . 71

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Communication Networks and Cooperation 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Equilibrium and Choice of Contacts . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Cooperation without Institutions ? . . . . . . . . . . . . . . . . 88

6



4.4 Noisy Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Noise and Equilibrium Restrictions . . . . . . . . . . . . . . . . 90

4.4.2 Analysis of Equilibria with Noisy Communication . . . . . . . . 92

4.5 Gossip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Appendix to Chapter 2 (The Proof of Proposition 2) 111

B Appendix to Chapter 3 (The Proof of Proposition 6) 117

7



8



Chapter 1

Introduction

The early oligopoly studies by Cournot [13] and Bertrand [8] have shaped

economists’ thinking using game theoretic methods before the invention of game theory.

Nowadays, the standard textbook Cournot model and Bertrand model continue to

influence the way economists think of various aspects of market power. Among others,

these are phenomena such as cartel formation and implicit collusion or the influence of

the number of sellers on the distribution of surplus.

Both the Cournot model and the Bertrand model make important distinctions

between buyers and sellers. Sellers are able to influence prices and move first. They

choose prices or quantities anticipating the non-strategic reaction of the buyers. The

buyers are just represented by a demand function (i.e. act passively) and move second.

Given the sellers’ choices of quantities or prices, the demand function provides market

clearing. This asymmetry in behavior is different from General Equilibrium Theory

which treats buyers and sellers symmetrically. There, all agents behave as price takers

and make their decisions simultaneously. Since sellers are modelled as strategic players,
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the Cournot model and the Bertrand model allow to discuss phenomena which can

not be analyzed in General Equilibrium Theory: for example, the models provide a

framework to study cartel formation and implicit collusion. Due to the asymmetry

between buyers and sellers these aspects can be discussed only for the sellers. In

addition, they can be studied only under the restriction that the other side of the

market, the buyers, behaves non-strategically. In other words: certain roles which

agents might play in a given market are fixed exogenously. In a Cournot model, only

sellers can develop patterns of implicit collusion sustained by price wars, as modelled

with the aid of the theory of infinitely repeated games (Abreu, Pearce and Stacchetti

[2]).

The exogenous fixation of roles causes the following difficulty. In the end, we

do observe markets in which buyers do not act passively. Many intermediate goods

markets today are characterized by market power on both the seller and the buyer side.

For example, markets for retailing tend to involve significant market power of retail

chains. The power of such chains is a matter of serious policy concern (see Dobson

and Waterson [17] and [18]). As a result both producers as sellers and retail chains as

buyers exercise market power. Hence theoretic considerations of collusive behavior in

such a market should not be based on the textbook story of tit-for-tat in a repeated

Cournot oligopoly model. This being said, how robust are our insights on collusion in

a framework where sellers and buyers are symmetric?

The present dissertation looks at situations without distinctions between buyers

and sellers and discusses these issues in three distinct settings. In all settings all eco-

nomic agents act strategically. Chapter 2 considers a strategic market game model

as originally developed by Shapley and Shubik [52]. I analyze how the distribution
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of surplus in the market depends on the number of buyers and sellers under different

timing structures. Chapter 3 studies patterns of cooperation and collusion in a model

of decentralized trading where prices are determined by repeated bilateral negotiations.

Chapter 4 considers the functioning of information networks intended to sustain coop-

eration in a Prisoner’s Dilemma with changing partners. As we shall see, the results

depend on assumptions on the mechanism of price formation (central exchange versus

decentralized negotiations), the timing (one-shot game versus infinitely repeated game)

and the observability of moves (perfect information versus imperfect information).

In the remainder of this introduction I discuss the motivation for these papers

and their main contributions in more detail.

1.1 Sequential Moves and Comparative Statics in

Strategic Market Games

In a recent paper, Bloch and Ghosal [10] study the formation of trading groups in a

bilateral oligopoly. Their model of bilateral oligopoly is based on a strategic market

game model à la Shapley and Shubik [52]. Strategic market games model strategic

exchange economies as noncooperative simultaneous moves games. Traders send si-

multaneously bids and supplies of goods to the market mechanism. The goods’ prices

are determined by the ratio of bids and supplies for a good. A strategic market game

models a market with market power on both sides and a centralized exchange and price

formation mechanism. It is a spot market organized as an exchange where each trader

obtains a share of the total bids from the other side of the market which is proportional

to his share of the total bids from his side of the market. Strategic market games are
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deemed to be an advantage over Cournot oligopolies since all agents act strategically.

Bloch and Ghosal find that the only strongly stable trading group is the grand

coalition where all agents trade on the same market. A trading group is strongly stable

if no coalition of traders can deviate such that all of its members obtain at least as high

as a utility as before and some members obtain a strictly higher utility. The incentives

to form trading groups are derived from two comparative statics results on the Nash

equilibrium of the noncooperative model of exchange. First, traders on one side of the

market always benefit from an increase in the number of traders on the other side of

the market. Second, on any symmetric market, where the number of traders of the two

types is equal, the traders’ utilities increase with the size of the market. Third, Bloch

and Ghosal find that (p.375)

...one of the most intuitive results obtained in partial equilibrium oligopoly

analysis does not carry over to the case of bilateral oligopoly. In the classical

Cournot oligopoly, as the number of firms increases, the profit of each firm

is reduced. In the context of bilateral oligopoly, an increase in the number

of traders of one type may induce either positive or adverse effects on the

traders of this type...

These findings give rise to two problems: first, one has the feeling that in such

centralized exchange markets traders would not benefit from more competition. More-

over, not all traders trade on the same market in such markets, i.e. there exist different

exchanges where a good can be traded.

We know from Cournot oligopoly theory that, as the number of firms increases,

the profit of each firm is reduced.
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Moreover, we know from the Cournot oligopoly model (Bloch and Ghosal, p.369)

...that traders have an incentive to set up distinct, separate markets on

which they behave as monopolists...

There are two differences between strategic market games and Cournot oligopoly

models. Strategic market game models exhibit strategic behavior from all traders and

simultaneity) of moves. I consider a sequential version of the Shapley-Shubik models

in which traders on one side of the market, the sellers, move first. The buyers observe

the sellers’ choices and move second. I discuss an example where sellers are risk-neutral

and buyers’ utility is quasilinear and quadratic. For the simultaneous moves game of

that setting, an increase in the number of sellers may have a positive effect on sellers’

utilities. Moreover, the only strongly stable trading structure is the one where all agents

trade on the same market. With sequential moves, the following results are obtained:

first, as the number of sellers increases, the profit of each seller is unambiguously

reduced. Second, on any symmetric market, an increase in the number of traders has

ambiguous effects on the sellers’ equilibrium utilities! This in turn implies that there

might exist strongly stable trading structures in which not all agents trade on the same

market.

The introduction of sequential moves has a further implication. In simultaneous

moves strategic market games there is always a no-trade equilibrium. The strategic

market games literature contains many results that predict Walrasian equilibria in the

competitive limit. However, they usually come at the expense of ad hoc assumptions

that rule out the pathological no trade equilibria. Weyers [56] studies a strategic mar-

ket game with limit prices to solve this problem.1 The set of Nash equilibria of this

1The limit price mechanism of Mertens [40] is a mechanism for determine prices and final allocation
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game converges to the set containing the competitive and the no-trade equilibrium,

when players are replicated. Two-rounds of iterated deletion of weakly dominated

strategies eliminate the no-trade equilibria. A sequential moves strategic market game

proposes another, simpler solution to this problem concerning the no-trade equilibrium.

In essence, traders face a coordination problem, where one equilibrium, the trade equi-

librium pareto-dominates the no-trade equilibrium. It is well known that in a 2-player

coordination game with sequential moves and perfect information the Pareto-dominant

equilibrium emerges as the unique subgame perfect equilibrium. Hence only the trade-

equilibrium emerges in my sequential strategic market game. I show for an example

that this unique subgame perfect equilibrium converges to the Walrasian equilibrium

as the market size goes out of bounds.

1.2 The Effects of Competition on Bargaining Power

in Repeated Bilateral Negotiations

”We have a saying at this company: our competitors are our friends and

our customers are our enemies...God damn buyers [are the enemy]. We’ve

gotta have them. But they are not my friends. You’re my friend. I want

to be closer to you than I am to any customer because you can make us

money.”

This quote is from a former executive of Archer-Daniels-Midland (ADM), a lysine pro-

ducer. Lysine is a food additive designed to put additional meat on hogs. The quote

when agents trade a finite number of goods by placing an arbitrary number of market or limit orders.
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was recorded by an FBI mole. Largely on the basis of the audio- and videotapes he pro-

vided, a federal jury in Chicago convicted three former ADM executives in September

1998 of engaging in an international conspiracy to fix lysine prices.2

For any economist, the meaning of such a statement seems clear: competitors

are friends if they help to sustain collusive prices by reducing production. This is the

simple mechanism we know from the standard Cournot textbook model.

For most business-to-business goods, Cournot markets or markets similar to the

double auction-like scenario of chapter 2 are just the tiny tip of a huge market of

such one-to-one deals. Most business-to-business goods are traded through bilateral

contracts.3 That is, we have a situation of bilateral oligopoly with bilateral negotations;

both buyers and sellers exercise market power. Then matters are not all that obvious!

To see why consider a market with repeated bilateral negotiations, as modelled in

chapter 3. Sellers make all the offers and have zero value for the good, the buyers have

a commonly known value of one. Buyers can accept or reject an offer. Every trader

maximizes the sum of his discounted per-period utilities from transactions. Suppose

there is only one seller and only one buyer, the case of bilateral monopoly. The infinite

repetition of the stage game does not preclude the buyer from extracting all the surplus.

Threats to refuse any slightly unsatisfactory offer - even if this would be better than

not to buy at all - are credible if acceptance induces a reputation for softness and

implies worst equilibria in the rest of the relation. Hence, in a market where infinitely

repeated transactions take place in isolation, the presence of other buyers does not

matter for any individual buyer: there is an equilibrium in which the buyer extracts

the full surplus from the bargaining. The argument is based on the Folk Theorem of

2See http://www.wwnorton.com/mip/ime/varian/28b.htm for more.
3See The Economist [19].
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repeated game theory and does not rely on other buyers providing punishment through

price wars as in a Cournot oligopoly. It is hence not clear what the above quote - with

interchanged roles of buyers and sellers - means in such a world. I shall argue that

”competitors are friends” holds if there are outside options for the buyers in form of

alternative trading partners!

Suppose that there are alternative trading partners for each buyer, that is, a sce-

nario with increased seller competition. In contrast to economic intuition, the presence

of more sellers reduces a buyer’s surplus as compared to the bilateral monopoly situ-

ation. Outside options yield more benign equilibria than the worst equilibrium in the

continuation of the current relationship. The argument presumes that the alternative

trading partners have no information about a buyer’s trading history. Hence, they

cannot be integrated into a system of punishment strategies.

I then allow buyers to visit a seller who is currently matched to another buyer.

If this happens, the two buyers compete for the seller. Buyers’ competition mitigates

the negative effect of the outside option. In particular, competing buyers prevent each

other from achieving a favorable equilibrium in a new relation. In other words: the

profitability of the outside option is reduced through competition. This in turn yields

more severe punishments than in the case without competition. Then, a buyers payoff

in a situation with competition exceeds his payoff in the best equilibrium without

competition for any discount factor.

The main result of the chapter is that the presence of competitors may be useful

while the presence of more agents on the other side of the market is not. The effect

of competition to sustain favorable equilibria is well known from infinitely repeated

Cournot or Bertrand games. Chapter 3 shows that implicit collusion as suggested by

16



these models also can be modeled in a market with bilateral negotiations. The role of

competition, however, is a different one. In the Cournot and in the Bertrand model,

competition on the same side of the market causes a problem in the first place. The

problem for any buyer in the model of chapter 3 is that competition on the other side of

the market reduces his surplus by introducing an outside option. Buyers’ competition

limits the value of the outside option for each buyer.

1.3 Communication Networks and Cooperation

The Walrasian theory of exchange is a theory of anonymous interaction among many

traders. The only social structure is a market, a mechanism which adjusts prices

such that supply equals demand. This mechanism is able to allocate scarce means

efficiently making any social pattern other than the market itself superfluous. However,

we observe that people do hold personal network-like relations to each other. There is

an extensive sociological literature documenting various patterns of social relations in

networks (see Wellmann and Berkowitz for a survey [55]). Granovetter [27] criticizes the

pure ”market” approach of economics and proposes the concept of social embeddedness:

social structures affect economic actions through various mechanisms.

Chapter 4 studies the influence of social structures on market outcomes in form

of a communication network. In a community where trust and cooperative behavior

cannot be assured, network based mechanisms are important institutions. The mecha-

nisms work through communication and fear of punishment for misbehavior or through

anticipation of reward in case of good behavior. For example, ethnic communities such

as the Dominicans in New York and the Cubans in Miami use such systems to sustain
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informal credit channels (see Portes and Sensenbrenner [46]). The well known rotating

credit associations among Asian immigrants, for example the Chinese on Java, rely on

trust enforcement through network mechanisms as well (see Granovetter [28]).

There are two questions which concern the structure of such a communication

network. First, information, judgements and gossip are exchanged only among close

friends in such a network. This implies that a network member may use his close friends

as an effective threat to enforce cooperative behavior. The mechanism is simple: if the

partner with whom I interact today cheats on me, I inform my close friends which in

turn cheat on the noncooperator tomorrow. It seems optimal to choose the number

of close friends as large as possible. The second question concerns the optimal size of

the communication network. If interaction with network members yields cooperation

while this is impossible with agents outside the network, it seems best to have a huge

network.

In chapter 4 I discuss these issues in a setting of an infinitely repeated Prisoner’s

Dilemma with changing partners and random matching. Before the repeated inter-

action starts, agents form a network and each network member chooses a number of

contacts to other network members. If two agents meet, they observe the number

of contacts their partner has. Then they play the Prisoner’s Dilemma. After having

played the stage game, they inform their close contacts about the partner’s choice of

action. In such a setting, the community wishes to choose a huge network. Moreover,

it is best if all network members have close contacts to all other network members:

this is the most effective threat inducing the most severe punishments. These findings

stand in contrast to the following observations. First, people do not entertain close
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contacts to all people in their network of personal relations4. Second, networks with a

large number of participants are ineffective.

To provide a rationale for these observations, I introduce noise in the communi-

cation among agents. There are many reasons why communication should be noisy.

Either I might inform my friends mistakenly about my partner’s behavior or there might

be some distortion in the technology used to transmit information. There might also

be errors in interpretation of messages actually sent correctly. Then a network mem-

ber has to fulfill his punishment obligation although nobody did defect or a network

member might get punished although he behaved cooperatively. It is then optimal not

to entertain close contacts to all other network members: it is best to have a number of

close contacts which is just enough to deter other agents from defecting. More noise has

another detrimental effect: suppose that each agent receives noisy information about

a partner not only from the network member who interacted last with that partner,

but also from all other network members - gossip. Then, as the number of agents in

the network gets large, cooperation fails. The reason is that network members cannot

distinguish between information with content and pure noisy information stemming

from gossip. If the network cannot provide cooperation and if there is a cost to set up

the network then the community does not form a network at all.

4see Boissevain [11].
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Chapter 2

Sequential Moves and Comparative

Statics in Strategic Market Games

2.1 Introduction

Strategic market games have been developed by Shubik [53] and Shapley and Shubik

[52] as an alternative to Cournot oligopoly models. In strategic market game models,

traders send simultaneously bids and supplies of goods to the market mechanism. The

ratio of bids and supplies exchanged for a good determine its terms of trade. Strategic

market games are models of exchange in which all players behave strategically. This

is deemed to be an advantage over Cournot oligopoly models where the demand side

behaves non-strategically.

A recent paper by Bloch and Ghosal [10] suggests that strategic market games

à la Shapley and Shubik might have a rather counterintuitive property: an increase

in the number of traders on the one side of the market might increase equilibrium
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utilities for all traders, i.e. those on the same side of the market as well as those on

the other side of the market (Bloch and Ghosal [10], p. 375). The finding contrasts

with the familiar Cournot result that an increase in the number of sellers implies lower

profits for each one of them. In general, Bloch’s and Ghosal’s results show that the

effect of an increase in the numbers of traders of the same type cannot be predicted.

In contrast, an increase in the number of traders of the other type is always beneficial.

For symmetric markets, that is, markets with the same number of traders on each side

of the market, Bloch and Ghosal show that all traders benefit from an increase in the

number of traders (Proposition 2.2.).

In fact there are two differences between strategic market games à la Shapley-

Shubik and Cournot oligopoly models. Strategic market game models exhibit strategic

behavior from all traders and simultaneity of all moves. The main motivation for the

present chapter is to regain comparative statics properties as known from Cournot

oligopolies for Shapley-Shubik strategic market games. This chapter considers a se-

quential version of the Shapley-Shubik models. I present an example where in the

simultaneous version traders benefit from an increase in the number of traders of the

same type. I show that this counterintuitive result does not hold for the first movers

in the sequential version of the game. Hence the finding of Bloch and Ghosal concerns

sequential versus simultaneous moves games rather than Shapley-Shubik strategic mar-

ket games versus Cournot oligopoly models. Both in the simultaneous version and in

the sequential version, an increase in the number of traders on the other side of the

market is beneficial. For symmetric markets, I find that effects on first-movers’ utilities

are ambiguous as the number of traders increases.

I develop a model similar to the one used in Bloch and Ghosal [10]. There are
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two goods and two types of traders, buyers and sellers: each buyer’s utility is quadratic

and quasilinear and sellers’ utility is linear. Sellers hence could be interpreted as firms.

Each trader type initially owns one unit of one of the goods only. The timing in the

model is sequential: the sellers choose their strategy first. The buyers observe the

sellers’ choices and make their move. I adopt subgame perfect Nash equilibrium as the

solution concept.

After setting up the model, I illustrate the main qualitative implication of se-

quential moves versus simultaneous moves in strategic market games. I compute the

Nash equilibrium in the simultaneous moves version of the game and show that sellers’

equilibrium utilities might increase as the sellers’ number increases. Buyers’ equilib-

rium utilities increase always as the number of buyers increases. For both sides of the

market the very intuition from Cournot oligopolies does not hold.

I then study the sequential version with the sellers moving first and find that an

increase in the number of sellers has always the expected negative effect on the sellers’

utilities! Intuitively, the buyers’ behavior in the second stage forces sellers to decrease

their individual equilibrium supplies. The equilibrium price decreases as well so that

the overall effect is unambiguous. Buyers still benefit from an increase in the number

of buyers! If the market is symmetric, the sellers might benefit from a decrease in the

number of traders while the buyers benefit from an increase in the number of traders.

Apart from implications for comparative statics, the sequential model produces

further results. In their paper, Bloch and Ghosal study the formation of trading groups

in bilateral oligopoly. They find that the only strongly stable trading structure is the

grand coalition where all agents trade on the same market. A trading group is strongly

stable, if no coalition of traders can deviate such that all of its members obtain at

23



least as high as a utility as before and some members obtain a strictly higher utility.

I find that with sequential moves other strongly stable trading structures might exist.

Intuitively, this finding is based on the result that, for symmetric markets, first-movers

might prefer markets with a small number of traders.

The introduction of sequential moves has a further implication. In simultaneous

moves strategic market games there is always a no-trade equilibrium. The strategic

market games literature contains many results that predict Walrasian equilibria in the

competitive limit.1 However, they usually come at the expense of ad hoc assumptions

that rule out the pathological no-trade equilibrium. My sequential moves strategic

market game eliminates the no-trade equilibrium and I show, albeit only by means of

an example, convergence of the unique subgame perfect equilibrium to the Walrasian

equilibrium as the number of traders gets large. Weyers [56] proposes a much more

complex game to eliminate the no-trade equilibrium. She studies a strategic market

game with limit prices.2 The set of Nash equilibria of this game converges to the set

containing the competitive equilibria and the no-trade equilibrium, when players are

replicated. Two-rounds of iterated deletion of weakly dominated strategies eliminate

the no-trade equilibria in her model.

The organization of this chapter is as follows. Section 2.2 sets up the basic model

for the comparative statics analysis. Section 2.3 provides a detailed study of compar-

ative statics effects and compares the outcomes to those obtained in the simultaneous

moves setting. In section 2.4 I discuss the implications of my findings for the formation

1See Mas-Colell [37] for an overview.
2The limit price mechanism of Mertens [40] is a mechanism for determining prices and final allo-

cation when agents trade a finite number of goods by placing an arbitrary number of market or limit

orders.
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of trading groups. Section 2.5 presents Walras convergence and section 2.6 proves exis-

tence of a subgame perfect Nash equilibrium for more general strategic market games

with sequential moves.

2.2 The Model

The model setup in this section follows roughly Bloch and Ghosal [10], except for the

different timing.

There are two finite sets of traders: B := {1, ..., B} and S := {1, ..., S}. Traders

are indexed i = 1, ..., B with i ∈ B and j = 1, ..., S with j ∈ S. Traders i ∈ B are

called buyers and traders j ∈ S are called sellers.

There are two tradeable goods in the economy, x and y. Good x will sometimes

be called ”money”, good y is a consumption good, say wheat. The final allocation

of money and wheat for the traders are denoted by xi, xj, yi and yj, respectively.

Endowments are distributed so that all buyers have one unit of money and all sellers

have one unit (or bushel) of wheat.

I assume that the sellers move first (all sellers move simultaneously). Each seller

j decides what amount of wheat he wants to supply. The buyers observe the sellers’

choices and make their strategy choices (simultaneously ). Each buyer i decides what

amount of money he would like to pay.

The sellers’ strategy sets are given by

Aj := {sj |sj ∈ R+
0 , 0 ≤ sj ≤ 1}.

Let A := ×j∈SAj and let s ∈ A denote the strategy profile for the sellers, that is
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s = (s1, ..., sS). The buyers’ strategy sets are given by

Ai := {bi(·) | bi : A → [0, 1]}.

Again, b(·) = (b1(·), ..., bB(·)) denotes the strategy profiles for the buyers. Let s :=∑
j∈S sj and b(·) :=

∑
i∈B bi(·).

The strategy choices (s, b(·)) determine the market clearing price p for one unit

of wheat as

p =
b(s)

s
(2.1)

and the final allocation

yi =
bi(s)

p
, (2.2)

xi = 1− bi(s), (2.3)

yj = 1− sj, (2.4)

xj = sj · p. (2.5)

I define 0
0

:= 0.

The corresponding payoffs are

U(b(·), s) = f

(
bi(s)

p

)
+ (1− bi(s)), (2.6)

where

f

(
bi(s

p

)
= α

(
bi(s)

p

)
− β

2

(
bi(s)

p

)2

(2.7)

for all buyers i ∈ B. We assume that, for all (b(·), s) and for all α > 0, there exists

β < α, β > 0 such that U ′′ < 0 and f ′ > 0. It is easy to check that the condition

0 < β < α for all α > 0 is in fact sufficient for U ′′ < 0 and f ′ > 0.

26



The payoffs for the sellers are given by

π(b(·), s) = sj · p + (1− sj) (2.8)

for all j ∈ S.

I chose risk neutrality for the sellers to interpret sellers as firms. This allows me

to relate the model and its results to Cournot oligopoly models.

2.3 Comparative Statics and Timing

In this section, I examine and compare comparative statics effects for the simultaneous

moves and the sequential moves case. First, I recapitulate briefly the comparative

statics results obtained by Bloch and Ghosal [10] for the simultaneous moves version

of the model in section 2.2.

2.3.1 Simultaneous Moves

For the simultaneous moves setting the buyers’ strategy sets are given by

Ai := {bi|bi ∈ R, 0 ≤ bi ≤ 1}

for all i.

It is straightforward to compute the unique Nash equilibrium in pure strategies(
b̂, ŝ
)
,

b̂ =
1

β

S

S − 1

(
α− B

B − 1

S

S − 1

)
(2.9)
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and

ŝ =
1

β

B

S

(
α− B

B − 1

S

S − 1

)
. (2.10)

Suppose that

α >
B

B − 1

S

S − 1
,

so that the existence of an interior solution is guaranteed.

I obtain the Nash equilibrium by differentiating the payoff functions of all traders

with respect to their referring strategy. The first-order conditions are necessary and

sufficient due to the assumptions on α and β. A simple argument shows that any Nash

equilibrium in pure strategies must by type-symmetric: all sellers employ the same

strategy and all buyers employ the same strategy.

The equilibrium price is given by

p =
S

S − 1
. (2.11)

Equilibrium payoffs are

π
(
b̂, ŝ
)

=
1

β

B

S(S − 1)

(
α− B

B − 1

S

S − 1

)
+ 1 (2.12)

and

U
(
b̂, ŝ
)

=
1

β

(
α− B

B − 1

S

S − 1

)(
α− S

S − 1

)
(2.13)

−β

2

(
α

β
− 1

β

B

B − 1

S

S − 1

)2

+ 1. (2.14)

Simple computations yield the following comparative statics result.
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Result 1. The Nash equilibrium satisfies

(R1)
∂U

∂B
> 0, (R2)

∂U

∂S
> 0, (R3)

∂π

∂B
> 0.

Moreover,

(R4)
∂π

∂S
> 0

if and only if

α <
B

B − 1

S

S − 1

2S

2S − 1
.

Results (R1) and (R4) demonstrate the counterintuitive property which a strate-

gic market game à la Shapley and Shubik might have. An increase in the number of

sellers might increase sellers’ equilibrium utilities and an increase in the number of

buyers increases buyers’ equilibrium utilities. The results (R2) and (R3) are what one

would expect.

2.3.2 Sequential Moves: The Sellers as First-Movers

For the sequential moves version with the sellers as first movers, the buyers’ Nash

equilibrium strategies in the second stage are given by

b∗ = α
B − 1

B2
s− β

B − 1

B3
s2. (2.15)

The problem in the first stage reduces to finding a Nash equilibrium in a game among

the sellers with payoff functions

π(sj, s−j) = sj(D − C s) + (1− sj), (2.16)
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where

D = α
B − 1

B
and C = β

B − 1

B2
. (2.17)

As unique subgame perfect equilibrium strategies, I obtain

s∗1 =
D − 1

C(S + 1)
(2.18)

and

b∗1 = α
B − 1

B2

S(D − 1)

C(S + 1)
− β

B − 1

B3

(
S(D − 1)

C(S + 1)

)2

. (2.19)

Equilibrium payoffs are

π1(b
∗, s∗) =

(D − 1)2

C(S + 1)2
+ 1 (2.20)

and

U1(b
∗, s∗) = α

(
S(D − 1)

BC(S + 1)

)
− β

2

(
S(D − 1)

BC(S + 1)

)2

− α
B − 1

B2

S(D − 1)

C(S + 1)
(2.21)

+β
B − 1

B3

(
S(D − 1)

C(S + 1)

)2

+ 1. (2.22)

A simple computation gives

Result 2. The subgame perfect Nash equilibrium with the sellers moving first satisfies

(R5)
∂U1

∂B
> 0, (R6)

∂U1

∂S
> 0, (R7)

∂π1

∂B
> 0, (R8)

∂π1

∂S
< 0.

Result (R8) states the main point of this chapter: the introduction of sequential

moves gives us back the intuitive effect of an increase in the sellers’ number on their

equilibrium utilities - as opposed to (R4). However, an increase in the buyers’ number

still leads to higher equilibrium utilities for the buyers.
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2.3.3 Sequential Moves: The Buyers as First-Movers

For the sake of completeness I also analyze the case with the buyers as first movers.

Again, a straightforward computation of the subgame perfect equilibrium gives

s∗2 =
B(α(S − 1)− S)

βS2
(2.23)

and

b∗2 =
α(S − 1)− S

β(S − 1)
(2.24)

as unique equilibrium strategies. Equilibrium payoffs are

π2(b
∗, s∗) =

B(α(S − 1)− S)

βS2(S − 1)
+ 1 (2.25)

and

U2(b
∗, s∗) = α

(
α(S − 1)− S

βS

)
− β

2

(
α(S − 1)− S

βS

)2

(2.26)

+1− α(S − 1)− S

β(S − 1)
. (2.27)

Result 3. The subgame perfect Nash equilibrium with the buyers moving first satisfies

(R9)
∂U2

∂B
= 0.

Moreover,

(R10)
∂π

∂S
> 0

if and only if

α >
S3 − 3S2 + S

S3 − 3S2 + 3S − 1
.
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As in the simultaneous moves setting, result (R10) asserts that an increase in

the number of sellers might increase sellers’ equilibrium utilities if they move second.

Thus, the order of moves is a relevant aspect for comparative statics results. Result

(R9) shows that an increase in the buyers’ number does not affect their equilibrium

utilities at all. This result seems to come from the assumption of sellers’ risk-neutrality.

2.3.4 Discussion

The results (R2) and (R3) are what one would expect and will not be further com-

mented on. For (R1), note that an increase in the number of buyers induces an in-

creased bidding from the buyers for wheat. The increased bidding lets sellers increase

their wheat supplies as well, leading to an increased trading volume in the market. The

increased trading volume has no effects on the equilibrium price then because of the

constant seller markup. The intuition for (R4) is similar. An increase in the number

of sellers induces an increased wheat supply. The increased supply leads to an increase

in buyers’ bids of money. Here the increased trading volume of wheat has an effect on

the equilibrium price; the increase in the number of sellers leads to a lower equilibrium

price. For α small enough, however, the positive effect on quantities overcompensates

the negative price effect on sellers’ equilibrium utilities.

With sequential trade the increase in the number of buyers still affects the buy-

ers positively ((R5)). In contrast, result (R8) shows that sellers’ equilibrium utilities

cannot increase as their number increases. Again the increase in the number of sellers

leads to increased bids of the buyers. While the aggregate equilibrium quantity of

wheat supplied by the sellers increases, each individual seller’s wheat supply decreases.

So does the equilibrium price for wheat. These are the effects we usually should expect
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from a Cournot oligopoly model. Only if the sellers move second, competition may be

advantageous for them ((R10)). Thus, there are two points to be noted:

1. The introduction of sequential moves in strategic market game models makes it

possible that the very intuition from Cournot oligopolies can be regained. An

important difference between Cournot oligopolies and Shapley-Shubik strategic

market games concerns the timing, not only that in Shapley-Shubik strategic

market games all traders behave strategically.

2. It is important who moves first and who moves second. Traders still find it

advantageous to be more numerous if they move second.

What accounts for the differences between results (R8) and (R4)? In the sequen-

tial moves framework, (cf.(R8)), the sellers face a given reaction from the buyers. The

buyer’s strategy choice in stage two restricts the possible price-quantity combinations

for the sellers. In my model the buyers’ strategy choices play the restrictive role of

the demand curve in Cournot oligopoly models and the relevant aspects for the sell-

ers’ revenues are the elasticities along that curve. For (R4) these restrictions are such

that the individual wheat quantity cannot increase for a seller if the number of sellers

increases.

In the simultaneous moves framework the buyers’ strategy choices do not play

this restrictive role. The simultaneity of moves may even cause buyers to adjust their

strategy choices such that they are willing to buy a much larger quantity of wheat than

before. If buyers buy a much larger quantity, sellers increase their individual wheat

supplies as well, which finally might result in higher equilibrium utilities.

How general are these comparative statics results? In particular, how general is
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the result that first-movers never benefit from an increase in the number of traders on

the own side of the market? For more general utility functions for the buyers, the setting

with risk-neutral sellers moving first is very similar to a Cournot oligopoly. Seade [51]

has shown for a Cournot oligopoly with a general inverse demand function that firms

never benefit from more competition if firms’ payoff functions are concave and if a

certain equilibrium stability condition holds. It is not obvious if the same sufficient

conditions are relevant here and how to transfer these insights to the sequential moves

Shapley-Shubik game. While concavity could simply be imposed in the sequential

Shapley-Shubik game, it is not clear how to formulate a dynamic that selects the

subgame perfect equilibrium and how the stability condition would have to look like.

2.4 Stable Trading Structures

In their paper Bloch and Ghosal characterize stable trading structures. They show that

the only strongly stable trading structure is the grand coalition where all agents trade

on the same market. I shall argue that there might be other strongly stable structure

if moves are sequential. To save on notation I keep the discussion informal.

Let me first introduce some notions from Bloch’s and Ghosal’s analysis. A trad-

ing group is a collection of traders of both types who agree to trade with one another.

Agents can only trade inside their trading group. Different trading groups hence cor-

respond to separate markets. A trading structure is a collection of trading groups on

which agents trade. Bloch and Ghosal focus on trading structures where all traders

participate to a market, no agents are excluded from trading. A trading structure

is strongly stable if no coalition of traders can form a trading group in which all its
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members obtain at least as high a utility as before and some traders obtain a strictly

higher utility.

Bloch and Ghosal show that the only strongly stable trading structure is the

structure in which all agents trade on the same market (Proposition 3.2). The proof

relies on two comparative statics results: Proposition 2.2 in their paper says that in

symmetric markets, i.e. markets with the same number N of buyers and sellers, all

agents prefer N to be large. Proposition 2.3 states that all agents prefer an increase in

the number of agents on the other side of the market. Suppose now that B = S = N

and that α = 2, β = 1.3 Then, in the simultaneous moves version, Proposition 2.2 of

Bloch and Ghosal [10] holds. Since Proposition 2.3 of their paper holds as well, the

only strongly stable structure is the grand coalition where all agents trade on the same

market. Note that this result does not depend on the values of α, as long as N exceeds

4. Consider now the sequential moves version. Sellers’ equilibrium utilities are given

by

πs(b
∗, s∗) =

(N − 2)2

(N − 1)(N + 1)2
. (2.28)

A quick computation shows that this function has a unique maximum at N = N∗ ≈

6.733! Hence it is increasing for N < N∗ while it is decreasing for N > N∗ To under-

stand this result, note that an increase in N has two effects on a seller’s equilibrium

utility. First, as N increases buyers bid less strategically and increase their bids which

is beneficial for the sellers.

This is the usual effect in strategic market game models as the number of agents

gets large. On the other hand, we have the effect known from Cournot oligopolies: an

3The values for α and β are chosen for the sake of exposition. The finding of this section also holds

for other values of α and β.
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increase in the number of sellers lowers individual quantities sold and the equilibrium

price. For N small enough, the first effect dominates the second one. For N large

enough the negative effect dominates! Hence, independent from the effect of an increase

in N on the buyers’ equilibrium utilities, sellers have an incentive of forming small

trading groups. Proposition 2.2 from Bloch and Ghosal does not hold in the sequential

model! The buyers’ equilibrium utility is

Us(b
∗, s∗) =

(N − 2)(3N4 −N3 + 2N2 + 2N − 2)

2(N2 − 1)2(N + 1)
, (2.29)

which is strictly increasing in N . These findings have the following implication. Sup-

pose that the overall number of agents is kN∗, k ≥ 2. Then a trading structure with k

separate submarkets with N∗ buyers and sellers in each submarket might be strongly

stable. The reason is as follows. In Bloch and Ghosal (Proposition 3.2.) any such

trading structure is not stable since all traders would agree to form one single market.

This holds since all traders prefer large symmetric markets to small symmetric marktes

if traders move simultaneously. However sellers do prefer small symmetric markets if

they move first and we cannot be sure if there are other strongly stable trading struc-

tures apart from the grand coalition. Any statement about the formation of trading

groups in the sense of Bloch and Ghosal hence rests on the particular utility functions

used if one considers a sequential moves model.
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2.5 Elimination of the No-Trade Equilibrium and

Walrasian Convergence

Suppose that

Ui(b(·), s) =
√

bi(s/p) + (1− bi(s)) (2.30)

and

πj(b, s) =
√

sjp + (1− sj). (2.31)

Moreover, I set B = S = N and label the game G.

If buyers and sellers move simultaneously, there are in fact two Nash equilibria.

First, there is the no-trade equilibrium, that is, b̂ = ŝ = 0. Second, there is a Nash

equilibrium with trade given by

b̂ = ŝ =
(N − 1)2

4N2
. (2.32)

The Walrasian equilibrium for the given economy, with B = S = N , is given by

xi = 3/4, xj = 1/4, yi = 1/4, yj = 3/4, p = 1. From previous results (e.g. Shapley and

Shubik [52]), we also know that the following holds.

Result 4. As N → ∞, the Nash equilibrium with trade coincides with the Walrasian

equilibrium. Final allocations xi, yi, xj, yj and equilibrium prices are the same.

As Weyers [56] argues this result comes at the expense of some ad hoc assumption

that rules out the pathological no trade equilibrium. Weyers [56] proposes a strategic
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market game with limit prices to solve this problem.4 The set of Nash equilibria of this

game converges to the set containing the competitive equilibria and no-trade, when

players are replicated. Two-rounds of iterated deletion of weakly dominated strategies

eliminate the no-trade equilibria. A sequential moves strategic market game proposes

another, simpler solution to the problem of no-trade equilibria. In essence, traders face

a coordination problem, where one equilibrium, the trade equilibrium pareto-dominates

the no-trade equilibrium. It is well known that in a 2-player coordination game with

sequential moves and perfect information the Pareto-dominant equilibrium emerges as

the unique subgame perfect equilibrium. Hence only the trade-equilibrium emerges in

my sequential strategic market game.

I now compute the unique subgame perfect Nash equilibrium with sequential

moves and start in the second stage of the game. Given any choice s from the sellers,

the buyers solve

max
b(s)

√
bi(s)/p + 1− bi(s). (2.33)

Letting φi(s) denote a buyer’s equilibrium strategy in each subgame, one obtains

φi(s) =
N − 1

N3/2

√
s ∀i ∈ B. (2.34)

The sellers solve

max
sj

(
sj

N · φi(s)∑
j sj

)1/2

+ 1− sj. (2.35)

This gives

4The limit price mechanism of Mertens [40] is a mechanism for determining prices and final allo-

cation when agents trade a finite number of goods by placing an arbitrary number of market or limit

orders.
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Result 5. For the sequential moves game, with B = S = N , the unique equilibrium

strategies are given by

s∗ =

(
N − 1

2N

)2/3(
2N − 1

4N

)4/3

(2.36)

and

b∗ =

(
N − 1

2N

)4/3(
2N − 1

4N

)2/3

. (2.37)

The equilibrium price is

p =

(
2N − 2

2N − 1

)2/3

. (2.38)

The result states that no-trade is not an equilibrium of the sequential moves

version of the strategic market game. Letting N →∞, gives the result of the following

Proposition.

Proposition 1. As N →∞, the final allocation and the equilibrium prices of sequential

moves strategic market game coincide with the allocation and the equilibrium prices of

the Walrasian equilibrium.

Walras convergence has been previously established for simultaneous moves strate-

gic market games.5 Proposition 1 states that Walras convergence can be obtained for

sequential moves strategic market games as well. The robustness of a convergence

property with respect to a change in the timing has been noted by Robson [48]. He

shows that the equilibria of a Stackelberg oligopoly model converge to the efficient

equilibrium as the number of firms tends to infinity.

5See Mas-Colell [37] for an overview.
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2.6 Existence of a Subgame Perfect Equilibrium

In this section, I discuss existence of a subgame perfect Nash equilibrium for a more

general strategic market game model with sequential moves.

I modify the model and let the payoff functions be

U(b(·), s) = f(bi(s)/p) + (1− bi(s)) (2.39)

and

π(b, s) = f(sj · p) + (1− sj). (2.40)

We assume that the function f is a strictly increasing and strictly concave func-

tion,

f ′′ < 0 < f ′ (2.41)

over the whole domain. Moreover, f is twice continuously differentiable.

Strategy sets are defined as in section 2. The following definition formalizes the

solution concept for the game.

Definition 1. Subgame perfect equilibrium. The profiles (b∗, s∗) corresponds to a sub-

game perfect Nash equilibrium in pure strategies if, for all i ∈ B and for all j ∈ S,

(i) s∗j ∈ argmax
s′j∈[0,1]

πj(s
′
j, s

∗
−j, b

∗).

and, for all subgames induced by s,

(i) b∗i (·) ∈ argmax
bi(·)′∈[0,1]

Ui(bi(s)
′, b∗−i(s), s

∗).
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Proposition 2. In the sequential strategic market game for S ≥ 1, B ≥ 2 there exists

a symmetric subgame perfect Nash equilibrium, s∗1 = ... = s∗S and b∗1 = ... = b∗B.

Proof. See Appendix A.

Proposition 2 asserts that there exists a subgame perfect Nash equilibrium in

pure strategies - even for the case with one seller (S = 1). It is well known that Nash

equilibria in simultaneous moves strategic market games do not exist for S = 1.

2.7 Conclusion

This chapter focusses on the implications of sequential moves on comparative statics

results in strategic market games à la Shapley-Shubik. I have shown by means of an

example that counterintuitive effects of more competition (i.e.more traders on the same

side of the market) might vanish if the timing in such games is sequential. Moreover,

results on the formation of trading groups and Walrasian convergence were established.

I also provided an existence proof of a subgame perfect equilibrium.

Let us consider one last implication of sequential moves strategic market games.

Shapley-Shubik games provide a modelling framework for collusion or cartel formation

in markets where all agents act strategically. Suppose that we are in the simultaneous

moves world of section 2.3 and that one side of the market, the sellers, say, aims to

maximize the sellers’ joint surplus. Suppose also that it is feasible to enforce implicit

collusive behavior.

A quick computation shows that sellers maximize their joint revenue by setting

s = 0. Then the buyers’ best response is to bid nothing (see equation (2.15)). Hence,
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implicit collusion based on joint surplus maximization is not profitable for the sellers!

This changes if we are in a world with sequential moves. As shown in section 2.3.2, the

situation with sequential moves is very similar to the one where Cournot oligopolists

face a linear demand curve. And we do know that a strategy which maximizes joint

revenue is available and profitable (i.e. provides higher utility than the utility with

individual maximization) in this situation. Hence moving first provides sellers with

a profitable strategy which maximizes joint revenue while this is not feasible with

simultaneous moves.

Suppose further that moves are sequential but that cartel formation cannot be

enforced. Then, standard infinitely repeated game arguments could be used to study

self-enforcing implicit collusion. In particular, one could examine how the results by

Green [29] and Lambson [36] extend to the case of strategic agents on both sides of

the markets. Lambson, in particular, shows whether the folk theorem holds as the

number of firms in an infinitely repeated Cournot oligopoly increases without bounds.

He shows that the folk theorem holds in the limit iff demand increases at the same

rate as the number of firms and if some bound on the Cournot price sequence exists.

It could be interesting to discuss a similar question in a setting where all agents act

strategically. In particular, what can be said about sustaining collusion as the ratio

number of sellers/number of buyers varies? From the previous paragraph, it seems that

such an analysis should be based on a model with sequential rather than simultaneous

moves.
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Chapter 3

The Effects of Competition on

Bargaining Power in Repeated

Bilateral Negotiations

3.1 Introduction

” We have a saying at this company: our competitors are our friends and our

customers are our enemies...God damn buyers [are the enemy]. We’ve gotta have

them. But they are not my friends. You’re my friend. I want to be closer to you

than I am to any customer because you can make us money.” (a former executive

of Archer-Daniels-Midland (ADM), a lysine producer)1

1Lysine is a food additive designed to put additional meat on hogs. The quote was recorded by an

FBI mole. Largely on the basis of the audio- and videotapes he provided, a federal jury in Chicago

convicted three former ADM executives in September 1998 of engaging in an international conspiracy

to fix lysine prices. See http://www.wwnorton.com/mip/ime/varian/28b.htm for more.
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Many intermediate goods markets today are characterized by market power on

both the seller and the buyer side. For example, markets for retailing tend to involve

significant market power of retail chains. The power of such chains is a matter of serious

policy concern (see Dobson and Waterson [17] and [18]). As a result both producers

as sellers and retail chains as buyers exercise market power. The market structure is a

bilateral oligopoly.

In many cases, prices in such markets are negotiated by bilateral negotiations.

For example, most business-to-business goods are traded through bilateral contracts.

Spot markets, organized as exchanges or auctions, are just the tiny tip of a huge market

of such one-to-one deals (see The Economist [19]).

Economists’ understanding of bilateral oligopoly is very incomplete. What are

the prices negotiated, and how does the distribution of surplus depend on the number

of buyers and the number of sellers? What is the role of agents’ information and

strategies? What are the effects of repeated transactions? Is there scope for implicit

collusion in such a market as we know it from Cournot or Bertrand markets? The

meaning of the quote above seems clear in the context of a Cournot market: competitors

may be friends if they help to sustain collusive prices in a given market, for example,

by reducing production quantities. In a bilateral oligopoly where prices are negotiated,

matters are not all that obvious!

To see why consider the situation of a bilateral monopoly in which the seller

makes all the offers. The seller has zero value for the good, the buyer has a commonly

known value of one. The buyer can accept or reject an offer. The infinite repetition

of the stage game does not preclude the buyer from extracting all the surplus.2 If the

2Every trader maximizes the sum of his discounted per-period utilities from transactions.
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buyer accepts any slightly unsatisfactory offer - even if this were better than not to

buy at all - he gets ”punished” by switching to the worst equilibrium in the rest of

the relation. In a market where many transactions as this one take place in isolation,

the presence of other buyers does not matter for any individual buyer: the argument

based on the Folk Theorem does not rely on other buyers providing punishments as in a

Cournot oligopoly model. It is then not clear why the above quote - with interchanged

roles of buyers and sellers - should hold. I shall argue that ”competitors are friends”

for the buyers if there are outside options for the buyers in form of alternative trading

partners!

This chapter presents a model of bilateral oligopoly and analyzes the effects of

repeated interaction and competition on bargaining outcomes in a market with bilateral

negotiations. Sellers make all offers and have value zero for the good, the buyers have

a commonly known value of one. Every trader maximizes the sum of his discounted

per-period utilities from transactions. I look for optimal equilibria from the buyers’

perspective under the following three types of trading models: (1) a randomly matched

pair of a seller and a buyer repeat their negotiations forever, (2) a buyer has an outside

option to negotiate with an alternative seller who has no information about the buyers

trading history and (3) a buyer can visit a new seller who is currently matched to

another buyer, and if this happens, the two buyers compete for the seller. I show that

the order of equilibrium payoffs of a buyer in the three trading models is (1) > (3) > (2).

While a buyer can exploit all the surplus in (1), an outside option to trade with a

new seller with no information of trading history is - contrary to economic intuition -

harmful to the buyer in (2). The presence of other buyers and buyers’ competition in

(3) limits the value of the outside option. The equilibrium sustained by competition
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can be interpreted as implicit buyer collusion since it is similar to price war equilibria

sustaining implicit collusion in repeated oligopoly game models with centralized trading

mechanisms.

Theories of markets with decentralized trade have mainly been developed in mod-

els with random matching and one-shot bargaining interaction (see Osborne and Ru-

binstein [44] for an excellent overview). These are mostly models with a one-shot-

bargaining scenario, e.g. Diamond [16], Rubinstein and Wolinksy [49] and [50], Gale

[25], Binmore and Herrero [9], Vincent [54] and, more recently, de Fraja and Sákovics

[15] and Ponsati [45]. In particular, Rubinstein and Wolinsky [50] and Vincent [54] show

how bargaining outcomes in markets depend on the amount of information agents use

and how ”punishment” mechanisms sustain certain equilibria. I examine the effective-

ness of punishments and their dependence on information and strategic options for

repeated bargaining transactions. I assume less information flow than Rubinstein and

Wolinksy [50] (section 2 and section 4 in their paper) and Vincent [54] (section 2 in his

paper).3 For example, traders do not know other traders’ identities and do not know

the trading history of a new trading partner.

Just as Rubinstein and Wolinsky [50] or Vincent [54] for one-shot bargaining

games, the literature on the folk theorem in repeated games (see Fudenberg and Tirole

[24], ch.5) discusses how certain equilibria can be sustained by punishment strategies.

Repeated games have also formed our understanding of implicit collusion sustained by

the threat of competition in markets with centralized trading mechanisms (e.g. Abreu

[3], Friedman [23] and Abreu, Pearce and Stacchetti [2]). This chapter shows how

Abreu’s and Friedman’s ideas may be employed in a framework with decentralized

3see Muthoo [42], ch.10 for an overview on repeated bargaining with two players
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trading mechanisms. I show how competition among buyers enlarges the surplus buy-

ers can extract if other punishment mechanisms are of restricted use due to limited

information flow.

The chapter is also related the literature studying market power in bargaining

situations, e.g. Gul, Sonnenschein and Wilson [32]. Bargaining games under incomplete

information can be interpreted as a market in which a monopoly seller makes sequential

offers to buyers with different valuation. As in my paper, sellers make all the offers

in these works. In some circumstances, buyers can extract all the surplus from the

bargaining, that is, the Coase conjecture holds. Gul [31] and Ausubel and Deneckere

[6] show that the presence of a second seller provides for better equilibria for the sellers

since they can collude, supported by price wars in case of a deviation. This effect

is similar to the one in my model. The difference is that the market studied in this

chapter is a bilateral oligopoly rather than the durable goods oligopoly studied in those

papers.

To explain the relation of the main arguments in the chapter, I shall provide an

informal description of the model and its main results. I introduce the basic model in

section 3.2. A seller has a commonly known value of zero for the good, a buyer has a

commonly known value of one. In each one-shot transaction the seller makes an offer

to the buyer who can accept or reject. The infinite repetition of this stage game does

not preclude the buyer from extracting all the surplus. Threats to refuse any slightly

unsatisfactory offer - even if this would be advantageous - are credible if acceptance

induces a reputation for softness and implies worst equilibria in the rest of the relation.

In section 3.3 I show that outside options in form of alternative trading partners

reduce the buyer’s surplus. Outside options yield more benign equilibria than the worst
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equilibrium in the continuation of the current relationship. The argument presumes

that the alternative trading partners have no information about a buyer’s trading

history. Hence, they cannot be integrated into a system of punishment strategies.

I characterize the equilibria with the maximal surplus for the buyers by arguments

similar to the optimal penal code of Abreu [1].

In section 3.4, I allow buyers to leave their trading partner and to compete for

a seller who is currently matched to another buyer. I also allow each trading pair to

observe the bargaining history of another buyer. Then, the presence of other buyers is

useful since they can be integrated into a system of punishment strategies hence limiting

the value of the outside option. One can interpret these equilibria as implicit buyer

collusion since they are similar to equilibria sustaining implicit collusion in repeated

oligopoly game models. The buyers’ payoffs in an equilibrium sustained by competition

exceed those in the best equilibrium without competition for any discount factor.

In section 3.5 I compare the model in more detail to the papers by Rubinstein

and Wolinsky [50] and Vincent [54]. I conclude in section 3.6.

3.2 Powerful Buyers

There are two sets of traders, buyers and sellers. Each set contains two traders.4 A

typical seller will be denoted by s, a typical buyer will be denoted by b. Time is discrete

and indexed by t = 1, 2, .... At each point in time, each seller receives an endowment of

one indivisible unit of some good. The good is homogenous, i.e. all sellers’ endowments

are perfect substitutes. The good is also perishable. It cannot be stored from period to

4The numbers are chosen for the sake of exposition
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period. Sellers’ valuation of their endowment is zero. Sellers derive utility from money.

A seller who sells his unit in some period at price p receives utility p in that period.

Buyers have no endowment of the good, but they have money. In each period, each

buyer has exactly one unit of money which is nonstorable. Buyers are interested in

buying at most one unit of the good. Every buyer’s valuation of the good is equal to

1. A buyer who pays a price p for the good receives in that period utility 1− p.

Both traders receive a period payoff of 0 if the seller’s offer is rejected. A trader’s

overall payoff equals the expected present value of the sums of his discounted per-

period payoffs. Sellers and buyers maximize the sums of discounted present values of

their period utilities. Sellers’ discount factor is δs ∈ (0, 1). Buyers’ discount factor is

δb ∈ (0, 1).

Initially all traders are in a matching pool. At time t = 1, the two buyers get

matched to the two sellers. Each buyer is assigned to one seller, and no seller is

matched to more than one buyer. I denote a relation as (bs). In the relation (bs),

seller s makes a take-it-or-leave-it offer to buyer b by proposing a price ps(t) ∈ R to b.

The buyer may accept this price, (Y ), or reject the offer, (N). Denote this action as

rb(t) ∈ {Y,N}. All this continues indefinitely. Each trader observes all the events in

his relation. Strategies are functions from these histories to action sets.

This scenario might resemble a market for an intermediate good. Sellers are the

upstream firms, buyers the downstream firms which buy in each period a fixed amount

of the intermediate good. Since buyers have a positive valuation for the good, this

might be a scenario where buyers have market power on the final good sector which

allows them to make positive profits on any unit they buy from the input good. The

model focusses on the interaction in the intermediate goods market this assuming that
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profits (and hence valuations) which buyers can obtain in the final market are not

affected by whatever happens in the intermediate goods market.

Proposition 3. For δb ≥ 1/2 there is a subgame perfect equilibrium such that in each

relation the buyer and the seller trade for the price ps(t) = 0.

Proposition 3 says that in each period any buyer can extract all the surplus from

the bargaining in a subgame perfect equilibrium. A buyer supports this equilibrium

by building up a reputation for being a tough bargaining partner and by rejecting

all prices above zero. Any soft behavior, as the acceptance of a higher price, leads

to the harshest punishment possible (see Abreu [3], [1]). Buyers cannot avoid the

punishment and, anticipating this, have an incentive to stay tough for δb ≥ 1/2. Each

seller recognizes his partner as a tough bargaining partner and does not demand a price

higher than zero.

3.3 Disadvantageous Outside Options

Suppose there is a third seller. We shall see how the presence of that additional

trading partner reduces a buyer’s ability to extract surplus from the bargaining given

the amount of information sellers use. Outside options as introduced in this section

create a difficulty for the buyers which competition among buyers resolves in the next

section, section 3.4.

Remark 1. I shall comment on the assumption with three sellers and two buyers below.

The numbers are chosen for the sake of exposition and the results do not depend upon

them.
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The sequence of events is as follows: in t = 1, there is random matching. Each

buyer is assigned to one seller, and no seller is matched to more than one buyer. One

seller remains unmatched and receives a per-period payoff of zero. In each relation

(bs) the seller s proposes a price which buyer b can accept or reject. Then, b has two

options which I denote αb(t) ∈ {stay, leave}:

(i) αb(t) = stay: Stay with seller s. In that case their relation continues, in t = 2

seller s makes a proposal which b can accept or reject and so on

(ii) αb(t) = leave: Leave seller s. Then buyer b and seller s return to the matching

pool where they wait to get matched anew in the next period.

In time t = 2, there is again random matching. Any unmatched buyer gets

matched. If there is no unmatched buyer, no new match is formed. Then the same

bargaining game as before is played: each seller proposes a price to the buyer with

whom he is matched. The buyer can accept or reject this price and so forth. All this

continues indefinitely.

In each period in which he has a partner each trader only observes the price

proposed, the response to this price, and the decision of the buyer whether or not

to separate. Traders do not observe what happens in matches in which they are not

involved. Traders do not observe the identities of their trading partners.5 Summarized,

I impose

Assumption 1. All agents’ strategies can only be conditioned on the history of play

5This assumption might seem unrealistic in a setting with 5 traders. But recall that I chose the

small number for the sake of exposition. The assumption seems quite realistic in a market with more

traders.
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with the current partner.

To formalize this assumption, let b(t) denote the buyer with whom a given seller

is matched in period t and define s(t) similarly. A seller’s private bargaining history is

Hs(t) = {ps(1), rb(1)(1), αb(1)(1), ..., ps(t−1), rb(t−1)(t−1), αb(t−1)(t−1)} (3.1)

and a buyer’s private bargaining history is

Hb(t) = {ps(1)(1), rb(1), αb(1), ..., ps(t− 1), rb(t− 1), αb(t− 1)}. (3.2)

Buyer b’s acceptance decision is given by

rb(t) : Hb(t)× R −→ {Y,N} (3.3)

and the outside option strategy for b is given by

αb(t) : Hb(t)× R× {Y,N} −→ {leave, stay}. (3.4)

A buyer’s strategy set is given by

Σb = {rb(t) : Hb(t)× R → {Y,N}} × {αb(t) : Hb(t)× R× {Y, N} → {leave, stay}}.

(3.5)

The formal description of a strategy for the seller is given by

ps(t) : Hs(t) −→ R. (3.6)

I impose a stationarity assumption on the sellers’ strategies: the seller employs

the same strategies in each buyer-seller relation no matter when the relation starts.

Assumption 2. Each seller employs the same strategy in each relation - independent

from the time t in which the relation starts.
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A seller ”has no watch” and does not distinguish between a relation that starts

in period 1 and a relation that starts in, say, period 10. In other words, any seller who

starts a new relation is not able to reconstruct his new partner’s bargaining history

just from the number of the period that relation starts.

Assumption 2 implies that traders cannot condition their behavior on the bar-

gaining history of a new trading partner, similar to the papers by Ghosh and Ray [26]

and Datta [14].6 In those papers the sets of agents are large and there is either the pos-

sibility that a match breaks down for exogenous reasons or that new agents constantly

flow in the matching pool. One or both of these modelling assumptions guarantees in

those models that it is impossible for any agent in the pool to know if a new partner is

new in the market or if he broke up an old relation. Assumption 2 restricts strategies

in the same way: a seller cannot condition his behavior on the fact that a new trading

partner broke up an old relation. I chose to work with the stationarity assumption

rather than to work with more agents to simplify the exposition. All my results extend

to the case of a large number of buyers and sellers and constant flow of new traders in

the matching pool.

Denote the set of strategies for a seller as

Σs = {ps(t) : Hs(t) −→ R} (3.7)

As usual in the study of extensive games I want to use an equilibrium concept

that is stronger than Nash equilibrium and embodies sequential rationality. Given

that the game has no subgames and that sellers’ strategies are continuous variables the

usual definitions of subgame perfect equilibrium or sequential equilibrium do not apply.

6These are papers on sustaining cooperation in Prisoner’s Dilemma situations when agents are

randomly matched and when there is limited information flow.
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Even so, the notion that no player wants to deviate from the equilibrium strategy at

any point in time given that all other traders stick to their equilibrium strategy is well

defined. This is because assumption 1 makes it possible to treat behavior in any one

period as if the pair played a genuine subgame. I do not give a formal definition of

this notion of sequential rationality.

I impose further restrictions on the strategy profiles and consider strategy profiles

which are characterized by (i) a sequence of target prices {pE(t)}∞t=1 which the buyers

would like to sustain and (ii) a sequence of punishment prices {pD(t)}∞t=τ+1 indicating

the continuation following the acceptance of prices higher than the target price in any

period τ . This restriction excludes, for example, strategies which ”reward” a buyer for

not accepting prices higher than the target price.

Given two sequences {pE(t)}∞t=1, {pD(t)}∞t=τ+1 the associated strategies are speci-

fied as followed.

• in the first period of any relation, the seller proposes pE(1) and the buyer accepts

any p ≤ pE(1) and rejects any p > pE(1)

• regardless of the history, the buyer never leaves

• if in all periods t′ < t the buyer has rejected any offer p > pE(t) or if no such offer

has been made, the seller proposes pE(t) and the buyer accepts any p ≤ pE(t)

and rejects any p > pE(t) for all t > t′

• if in periods τ < t the buyer has accepted any offer p > pE(τ), then the seller

proposes pD(t) from period τ + 1 on, which the buyer accepts, for all t > τ .

Strategies for all buyers and all sellers which generate the two sequences
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{pE(t)}∞t=1, {pD(t)}∞t=τ+1 are referred to as an equilibrium if for any t and any history

up to t it is sequentially rational for any trader to follow his prescribed strategy given

that all other traders follow their strategy.

Proposition 4. In an equilibrium with pE(t) := pE for all t = 1, 2..., we must have

pE(t) = 1 for all t and for all matched pairs.

Proof. Suppose there is an equilibrium with price sequences pE(t) ∈ [0, 1) satisfying

pE(t) = pE(t + 1) := pE for all t = 1, 2.... Suppose that the seller proposes a price

p, pE < p < 1 to a buyer. If pE is an equilibrium the buyer has to reject p. If the buyer

follows this prescription, his payoff is

0 +
δb

1− δb

(1− pE). (3.8)

If the buyer accepts p his payoff is

(1− p) + δbU
P , (3.9)

where UP denotes maximum continuation payoff a buyer can achieve after a devia-

tion given that he gets punished for his deviation. From assumptions 1 and 2, the

punishment sequence has to be pD(t) = pE in any equilibrium and hence

UP =
(1− pE)

1− δb

. (3.10)

Then accepting p is strictly profitable. This argument holds for all pE ∈ [0, 1).

Proposition 4 asserts that stationary target prices combined with an outside op-

tion in form of new trading partners cause a complete loss of the buyers’ bargaining

power. The market provides buyers with no incentives to stay tough in bargaining:

buyers can always leave their partner if they face a punishment from the next period
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on. The new trading partner does not know the deviant buyer’s trading history and

allows the buyer to extract surplus by trading to the same price as if no deviation

had occurred. But then there is no incentive for the buyer to build up a reputation

for being tough in his first relation and he is willing to accept higher prices. Sellers

anticipate this behavior and propose a price of one right away.

For non-stationary target prices buyers can extract surplus from the bargaining.

Proposition 5. If δb ∈ (1/2, 1) there is an equilibrium which generates the following

decreasing sequence of prices: pE(1) = 2 and pE(t) = 0 for all t = 2, 3, .... The

equilibrium is sustained by {pD(t)}∞t=τ+1 = {pE(t)}∞t=1 if a buyer accepts an offer p(τ) >

pE(τ) in period τ . This equilibrium yields strictly positive utilities for all buyers.

Proof. I propose the following equilibrium strategies:

• Let pE(1) = 2 and pE(t) = 0 for all t = 2, 3, ....

• For any match (bs): s proposes pE(t), b accepts all p(t) ≤ pE(t) and rejects all

p(t) > pE(t). Moreover, b never leaves s.

• If b accepts any p(τ) > pE(τ) in period τ , restart the price sequence, that is,

pD(τ + 1) = pE(1) = 2 and pD(τ + k) = 0 for all k = 2, 3, ...

The only interesting point is when s proposed p(t) > pE(t) for some t ≥ 2. The

incentive constraint for b reads

0 +
δb

1− δb

≥ (1− p(t)) + δb

(
−1 +

δb

1− δb

)
(3.11)
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for all p(t), t ≥ 2. Since this incentive constraint has to hold for all p(t), it has to hold

for p(t) = 0. Rearranging terms for p(t) = 0 yields

δb ≥
1

2
(3.12)

It is straightforward to check that all other equilibrium conditions are satisfied as well.

In particular, it is not profitable for a buyer to leave his current trading partner and try

to escape from his punishment. Buyers’ equilibrium utilities are strictly positive.

Proposition 5 demonstrates how a decreasing target price sequence yields a strictly

positive utility level for a buyer. The market provides buyers with incentives to stay

tough in bargaining if it is costly to build up a new reputation for being tough. A high

initial price keeps a buyer from leaving his current partner since any deviation triggers

a restart of the decreasing price sequence with the same trading partner. If the buyer

takes his outside option, the new partnership starts with the high first period price as

well and hence taking the outside option is not a profitable deviation.

Next, I look for optimal equilibria from the perspective of the buyer. An equi-

librium is optimal if it yields the highest payoffs for the buyer for a given discount

factor δb. This does not follow the Folk-Theorem approach which gives results on fea-

sible payoffs for discount factors ”sufficiently large”.7 Rather, I suppose that traders

are not absolutely patient.8 Denote an optimal equilibrium (target) price sequence by

{p∗(t)}∞t=1 and the equilibrium utility from {p∗(t)}∞t=1 as U(p∗). I omit the dependence

of the optimal target price sequence on δb and write simply {p∗(t)}∞t=1. As the previous

proposition suggests an optimal equilibrium target price sequence is decreasing and is

7see Fudenberg and Tirole [24], ch. 5, for a discussion of various versions of the Folk-Theorem for

perfect and imperfect information.
8see Abreu [3], [1] for a seminal analysis in this spirit.
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supported by the threat of restarting the sequence in case of a deviation.

Proposition 6. For all δb ∈ (1/2, 1), the target price sequence

p∗(1) =
1

δb

, p∗(2) = p∗(3) = ... = 0 (3.13)

is optimal and yields

U(p∗) =

(
2δb − 1

1− δb

)
1

δb

. (3.14)

Proof. See Appendix B.

Remark 2. The next section introduces information leakage: after the buyer’s accep-

tance decision each trading pair (bs) receives information about the bargaining history

of buyer b′ 6= b. Note that all results of this section continue to hold even under this

additional assumption. Assumption 2 implies that in a new relation sellers would not

use any of this information, even if it were obtained in a previous match.

3.4 The Effect of Buyer Competition

This section introduces an additional action for a buyer: he can leave his trading

partner and visit the other seller who is currently trading. We shall see how this

assumption combined with some information flow implies more severe punishments

for a deviant buyer. Then, for any discount factor, buyers can extract more surplus

than in the best equilibrium of the previous section (Proposition 6). This section thus

highlights the role of competition in a market with bilateral negotiations: similar to

markets with centralized trading systems, competition may be used as an effective
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punishment system to increase market power of one side of the market. This works in

particular if other punishment mechanisms are useless due to limited information flow,

as shown in the previous section. Hence, in this setting with bilateral negotiations

buyer competition mitigates the negative effects’ from seller competition. In Cournot

or Bertrand oligopoly models, competition mitigates negative effects from competition

on the same side of the market.

The sequence of events is as follows. Again, at time t = 1, the two buyers get

matched to two sellers, one seller remains unmatched. Each buyer is assigned to one

seller, and no seller is matched to more than one buyer. In a match between two

agents, say (bs), seller s makes a take-it-or-leave-it offer to buyer b by proposing a

price ps(t) ∈ R to b. The buyer may accept this price, (Y ), or reject the offer, (N).

Then the pair (bs) receives information about the bargaining history of buyer b′ 6= b.

I call this event information leakage and shall describe it in detail below. Both seller

s and buyer b receive the same information. Then, b has three options which I denote

with αb(t) ∈ {stay, leave, b’}:

(i) αb(t) = stay: stay with s

(ii) αb(t) = leave: leave s and return to the pool to get matched anew

(iii) αb(t) = b’: visit the seller who is matched to buyer b′.

When b stays, (bs) play the same bargaining game again. When b leaves, that is, if

αb(t) = leave, then both b and s return to the matching pool. I shall explain in detail

below what happens if αb(t) = b’. All this continues indefinitely.

The sequence of events is depicted in figure 3.1.
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Figure 3.1: Sequence of Events

Information Leakage:

Denote by Hb(t) the set of trading histories for any buyer b up to period t with

hb(t) ∈ Hb(t). An element hb(t) = ({ps(τ)(τ)}, {rb(τ)}, {αb(τ)})t
τ=1 of Hb(t) is a se-

quence of price offers, possibly from various sellers, {ps(τ)(τ)}t
τ=1, a sequence of ac-

tion choices {rb(τ)}t
τ=1,rb(τ) ∈ {Y, N}, and a sequence of action choices {αb(τ)}t

τ=1 ,

αb(τ) ∈ {stay, leave, b’},for buyer b.

In each period each matched pair (bs) observes the full experienced trading history

from period 1 to t of the other buyer, that is (bs) observes that element hb′(t) ∈ Hb′(t)

which actually occurred. An observation in period t includes price offers and responses

from the same period t. This is possible since information leakage occurs after the

trading stage. The main result does not depend on this assumption which is made for

simplicity. Denote the information which (bs) receive as I(bs)(t).

Only matched trading pairs receive information. The seller who is not matched

receives no information and any seller who returns to the pool forgets any previously

obtained information about any buyer’s bargaining history.
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Visiting other Sellers:

Suppose b chooses αb(t) = b′ and that b′ currently trades with s′. Then the

situation is as follows. Seller s′ proposes a price to buyers b′ which b′ accepts or rejects.

If buyer b′ accepts then buyer b returns to the pool and both b′ and s′ learn the full

experienced trading history of buyer b. Then, b′ has his three options: leave, stay or

choose b, and so on, that is, (b′s′) continue their relation.

If buyer b′ rejects, he has to return to the pool and seller s′ and buyer b start a new

relation in which s′ makes a proposal to b. Buyer b can reject or accept this proposal.

If b rejects or accepts the proposal of s′, the relation between b and s′ continues with

the information leakage stage and b and s′ learn the full trading history of buyer b′.

Then, b has his three options: leave, stay or choose b′, and so on.

All this is common knowledge among b′, s′ and b. Note that there is always some

seller with whom buyer b′ is matched: even if b′ has left his partner in the last period,

he is matched again with probability 1. Figure 3.2 depicts the situation.
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Strategies and Information:

Apart from information leakage, traders do not observe what happens in matches

in which they are not involved. For example, while b and s are matched, s learns

nothing about the trading history of previous matches of buyer b. As already noted

traders in any given relation do not use any information obtained through information

leakage in any previous match. However, b and s learn each period the trading history

of buyer b′. In each period in which he has a partner each agent only observes the

price proposed, the response to this price, the information transmitted by information

leakage and the decision of the buyer whether to return to the pool, to look for a

new trading partner or to stay with his current partner. Traders do not observe the

identities of their trading partners.

Let b(t) denote the buyer with whom a given seller is matched in period t and

define s(t) similarly. A seller’s private bargaining history is

Hs(t) = {ps(1), rb(1)(1), αb(1)(1), Ib(1)s(t), ..., ps(t−1), rb(t−1)(t−1), αb(t−1)(t−1), Ib(t−1)s(t−1)}

(3.15)

and a buyer’s private bargaining history is

Hb(t) = {ps(1)(1), rb(1), αb(1), Ibs(1)(1), ..., ps(t− 1), rb(t− 1), αb(t− 1), Ibs(t−1)(t− 1)}.

(3.16)

Buyer b’s acceptance decision is given by

rb(t) : Hb(t)× R −→ {Y,N} (3.17)

and the outside option strategy for b is given by

αb(t) : Hb(t)× R× {Y,N} −→ {b′, pool, stay}. (3.18)
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A buyer’s strategy set is given by

Σb = {rb(t) : Hb(t)× R → {Y,N}} × {αb(t) : Hb(t)× R× {Y,N} → {b′, pool, stay}}.

(3.19)

The formal description of a strategy for the seller is given by

ps(t) : Hs(t) −→ R. (3.20)

Again, I impose the stationarity assumption 2 on the sellers’ strategies. Denote

the set of strategies for a seller as

Σs = {ps(t) : Hs(t) −→ R} (3.21)

The Effect of Buyer Competition:

I shall now explain how buyer competition affects the bargaining outcome. Sup-

pose that buyers want to sustain a target price sequence {pE(t)}∞t=1 := {p◦(t)}∞t=1. A

deviation occurs if a seller proposes a price p(t) > p◦(t) which is accepted by his trading

partner. If buyer b deviates, I construct a punishment such that buyer b has to pay the

high period 1 price for all future periods to his current trading partner, say s, whom he

does not leave. If he should try to avoid the punishment by returning to the matching

pool, the other buyer b′ visits any new trading partner of buyer b in any future period.

This induces competition among the two buyers. Competition allows any seller to pro-

pose a price of 1 to b and to start a new relation with b′ if b should reject the proposal.

The deviant buyer b rejects this price of 1 and misses the trading opportunity and looks

for a new partner each period. The threat of competition prevents b from looking for a

new, unmatched trading partner and b accepts willingly his punishment from s. Since
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the punishment constructed through competition is more severe than the most severe

punishment in section 3.3, buyers can extract a higher surplus for any discount factor.

Lemma 1. For a decreasing target price sequence {pE(t)}∞t=1 := {p◦(t)}∞t=1 there ex-

ist equilibrium strategies such that {p◦(t)}∞t=1 is supported in an equilibrium through

{pD(t)}∞t=τ+1 = p◦(1), for δb large enough.

Proof. Each equilibrium strategy is described as a collection of states and rules of

transition between them. Most of the states are defined for any trading pair (bs). One

state has to be defined for the situation when a buyer, say b′, competes for the seller s

who is matched with buyer b. The equilibrium strategies and the states are described

in Table 3.1. Transition rules are given in Table 3.2.

The state E(bs) dictates traders’ behavior for any (bs) as long as b does not

deviate. The state P(bs) dictates traders’ behavior for any (bs) if b did deviate. The

state A(bs) is an intermediate state in which play only rests for one period. It triggers

competition among buyers: play switches to this state only if b′ is in a punishment

phase (state P(b′s′)) and chooses ”leave”. Play leaves state A(bs) in any case after one

period. The state B(bsb′) denotes the situation in which buyer b has deviated, left his

previous trading partner, is matched to seller s and where buyer b′ competes for seller

s. All states are defined for any buyer b, any seller s, any pair (bs) and for any triple

(bsb′).

Not all transitions from the state B(bsb′) are described since there are numerous

possibilities.

Two points are critical for sequential rationality and must be dealt with:
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Strategies/States E(bs) P(bs) A(bs) B(bsb′)

s proposes p◦(t) p◦(1) - p = 1 to b, p◦(1) to b′

b accepts p ≤ p◦(t) p ≤ p◦(1) - nothing

b’s action αb(t) stay stay b′ -

Table 3.1: Equilibrium strategies

switch from to if

E(bs) P(bs) b accepts p(t) > p◦(t)

E(bs) A(bs)

if b′ is in a punishment phase (state

P(b′s′)) and chooses ”leave”

E(bs) E(bs) otherwise

P(bs) P(bs) forever (absorbing)

A(bs) ”restart” E(bs)

If b is supposed to compete for the

seller of b′ but did not leave his cur-

rent partner s.

A(bs) B(b′s′b) otherwise

B(b′s′b) E(b′s′) if b′ accepts the first proposal from s′

B(b′s′b) E(bs′) otherwise

Table 3.2: Transition Rules

(i) Buyer b, after having defected, tries to avoid his punishment by running away

from seller s.

(ii) Buyer b′, having observed the deviation of buyer b does not want to participate

in the punishment of buyer b.

The above described strategies circumvent these problems:
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(i) The prescribed strategies are sequentially rational. If b tries to avoid his

punishment he finds a new partner and trades for the price of p◦(1) for one period

with, say, seller s′. But since his decision to go back to the pool is noticed by buyer

b′, buyer b′ competes then for the new seller of b for the next period and is willing to

start a new relationship. Knowing this, seller s′ demands a price of one from b. This

causes b to take his outside option and to leave s′ the period before (after trade with s

has occurred at the price p◦(1)). But this happens in all future periods: b always has

to pay the price p◦(1) if he leaves s; buyer b′ does not allow him to get to low price

periods. Since according to the proposed equilibrium strategies b has to pay p◦(1) in

his relationship with s, a deviation, that is, leaving s, is not profitable for δb sufficiently

large.

(ii) To make sure that buyer b′ does actually play his role in the punishment

of defector b, I require that the equilibrium price sequence p◦(t) gets restarted in the

relation (b′s′) whenever b′ does not follow his prescribed strategy. If b′ leaves his partner

and competes for the new seller s of b, he will be the new trading partner of s since

seller s makes his ”old” buyer b a price offer of one which this buyer rejects. Since b′

will be the new trading partner of s and since this is a new relation (b′s) start with the

high first period price and lower prices follow. According to the equilibrium strategies

it is not a profitable deviation for b′ to stay with his old partner. It is also not profitable

for b′ to return to the matching pool since there he has to start a new relationship as

well with a decreasing price sequence.

It is easy to check that the proposed strategies satisfy all other equilibrium con-

ditions, too.
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Proposition 7. There exists a target price sequence {p◦(t)}∞t=1 such that

U(p◦(t)) > U∗(p∗(t)) for all δb ∈ (0, 1)

in equilibrium.

Proof. Let p◦(1) > 0 and p◦(t) = 0 for all t = 2, 3, .... Fix δb. I determine p◦(1). By

Lemma 1, the incentive constraint for a buyer if a seller proposes a price p(t) > p◦(t)

in excess of p◦(t) is given by

0 +
δb

1− δb

≥ (1− p(t)) +
δb(1− p◦(1))

1− δb

for all p(t) (3.22)

for period 1. Since this constraint has to hold for all p(t) it certainly has to hold for

p(t) = p◦(t). Solving for p◦(1), I obtain p◦(1) ≥ (1− δb)/δb. The incentive constraints

for periods t = 2, 3, ... are given by

0 +
δb

1− δb

≥ (1− p(t)) +
δb(1− p◦(1))

1− δb

. (3.23)

for all p(t). In these cases, I set p(t) = 0. Solving then for p◦(1), I obtain p◦(1) ≥

(1− δb). To satisfy both incentive constraints, p◦(1) ≥ (1− δb)/δb has to hold. Since I

want to determine the maximal utility buyers can achieve, I let p◦(1) = (1− δb)/δb.

If p◦(1) = (1− δb)/δb, then

U(p◦(t)) =
(2δb − 1)(1− δb) + δ2

b

δb(1− δb)
>

2δb − 1

δb(1− δb)
= U∗(p∗(t))

for all δb ∈ (0, 1).
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Proposition 8. Maximum utility for buyers in a collusive equilibrium is given by

U(p◦(t)) =
(2δb − 1)(1− δb) + δ2

b

δb(1− δb)
.

The optimal equilibrium price sequence that implements this utility level is given by

p◦(1) =
1− δb

δb

, p◦(2) = p◦(3) = ... = 0.

Proof. I only need to show that there exists no other equilibrium price sequence

{pa(t)}∞t=1 which yields buyers a higher utility given the available punishments. So

suppose that {p◦(t)}∞t=1 is an equilibrium price sequence and that there exists another

equilibrium price sequence {pa(t)}∞t=1 with pa(1) < p◦(1) and pa(t) > 0 for at least one

t ≥ 2. Suppose that U(pa(t)) > U◦(p◦(t)).

Since {p◦(t)}∞t=1 is an equilibrium price sequence, by Lemma 1 the following in-

centive constraint holds for the buyers in period t = 1 if a seller proposes a price higher

than p◦(1) :

0 +
δb

1− δb

≥ (1− p◦(1)) + δb

[
1

1− δb

(
1− 1− δb

δb

)]
. (3.24)

Choose p◦(1) such that this incentive constraint holds with equality.

The appropriate incentive constraint in t = 1 for the alternative equilibrium price

sequence {pa(t)}∞t=1 is

0 + δbU
a
c ≥ (1− pa(1)) + δb

[
1

1− δb

(
1− 1− δb

δb

)]
, (3.25)

where Ua
c is the equilibrium continuation payoff from period 2 on for the equilib-

rium price sequence {pa(t)}∞t=1. But if pa(1) < p◦(1), the last constraint cannot hold:
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since equation (3.24) holds with equality, the LHS (RHS) of (3.25) is smaller (larger)

than the LHS of (3.24). Hence the price sequence {pa(t)}∞t=1 cannot be an equilibrium

price sequence.

The optimal equilibrium price sequence has a positive first period price and is

zero thereafter. For the closed form solution for p◦(1), consult the proof of Proposition

7.

Let us discuss the role of the various assumptions play for the results of this

paper: in section 3, the assumption that traders do not use any information about a

new trading partner’s history and the assumption that buyers can look for alternative

trading partners reduce the surplus a buyer is able to extract - as compared to the

situation of a bilateral monopoly.

In the present section, both information of, say, (bs) about the history of b′ and the

strategic option which creates competition among the buyers offset the negative effect

which the outside option induces. It is important to note that without the possibility

of competition all results from section 3 continue to hold even under the assumption

that traders can observe events in other relations! This comes from the stationarity

assumption for sellers’ strategies, assumption 2. If traders had only information about

the other buyer’s history, a buyer still could avoid a harsh punishment by running away

and looking for a new, unmatched trading partner who has no information about the

buyer’s history. The start of a new relation of the deviant buyer would be observed,

but not be punished!

It is hence the additional strategic option for competition which increases a

buyer’s surplus in section 4. While the strategic option to look for a new trading
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partner reduces the buyers’ surplus, the option to look for a new trading partner who

is currently matched - competition - increases the surplus again.

While all results from sections 2 and 3 can be obtained for one buyer, the result

of section 4 relies on the presence of more than one buyer! To understand more the role

of the presence of another buyer in providing punishments, it is helpful to compare the

present work to the literature on norm enforcement in games with large populations

(see Kandori [34] and Ellison [21]). This literature focuses on the enforcement of

norms in situations of common interest among all agents, for example cooperation in

a Prisoner’s Dilemma. In common interest situations, all agents may contribute to the

most severe punishment for an agent who deviates from the norm. In my model, the

situation is not one of common interest: buyers try to sustain a norm which is not in

the interest of sellers. Still sellers help in sustaining a good equilibrium for the buyers

by providing punishments. This comes out most clearly in the bilateral monopoly case:

whenever a buyer accepts a price higher than the target price he is punished by the

stage game equilibrium with the seller proposing a price of one for all future periods.

This sort of punishment does not seem to have a natural interpretation and has the

feature that sellers even prefer to be in a punishment stage. But the sellers’ possible

help as punishers is reduced if they cannot condition their behavior on information

about a new trading partner. In that situation buyers can achieve better equilibria

- even with full information flow - only if other buyers contribute to a more severe

punishment, if ”competitors are friends”.
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3.5 Relation to the Bargaining Literature

In Vincent [54], buyers make sequential offers to a single seller. The first buyer makes

an offer which, if it is accepted, ends the game. If not, the second buyer gets to

make an offer and so on. All agents observe all events in the market. Note that a

single buyer could extract all the surplus given that he makes the offer. Vincent shows

that the presence of many buyers still allows the buyers to extract some surplus: each

buyer proposes a price of zero and the seller gives the good to each buyer with equal

probability. This equilibrium is sustained by the threat of competition: if one buyer

proposes a price higher than zero, the seller rejects this offer and the next buyer(s)

makes a much higher offer which the seller then accepts. Hence, buyer competition is

not necessarily disadvantageous for the buyers. In contrast, I show that the presence

of other buyers is actually needed if individual bargaining power is reduced by the lack

of credible commitment to ”accept” punishments. Moreover, since I model a market

with repeated one-shot transactions I can explicitly study the trade-off between a

”realized” short term gain and the long term loss of a deviation as it is known from

other infinitely repeated games. Finally, sellers and buyers cannot be integrated that

easily in a punishment system as in Vincent’s paper since each agent possesses only

information about his private bargaining history. Due to the stationarity assumptions

sellers are not able to reconstruct a buyer’s bargaining history.

Since the paper by Vincent is closely related to the paper by Rubinstein and

Wolinsky [50], most of these comments apply also to the paper by Rubinstein and

Wolinsky. Rubinstein and Wolinsky study a random matching model where the pro-

poser in a simple ultimatum bargaining game is selected randomly. If two agents agree
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on a price, they trade and depart from the market. If they don’t agree they leave

and get matched anew. Rubinstein and Wolinsky have two cases under which buyers

can extract all the surplus (in the case without discounting). In the first case, agents

observe the full history of the whole game and sellers observe buyers’ identities. In the

second case, each agent only observes his private history but sellers still do observe the

buyers’ identities. My informational assumptions reduce each seller’s role in providing

”punishments” for a defecting buyer. This enables me to highlight the role of buyer

competition. The presence of other buyers matters since they have to be integrated in

the system of punishment strategies.

3.6 Conclusion

I presented a model of bilateral oligopoly with bilateral negotiations, random matching

and an option to continue trade. The model allowed me to study the effects of compe-

tition in a bilateral oligopoly which is characterized by such features. Increased seller

competition turns out to be detrimental for buyers if sellers do not observe a buyer’s

private bargaining history. Buyer competition mitigates this negative effect induced

by the outside option since buyer competition limits the value of the outside option by

punishing buyers who use that option.

The main result of this chapter is that the presence of competitors may be useful

while the presence of more agents on the other side of the market is not. The effect

of competition to sustain favorable equilibria is well known from infinitely repeated

Cournot or Bertrand games. I argue that implicit collusion as suggested by these mod-

els also can be modeled in a market with bilateral negotiations. The role of competition,
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however, is a different one. In the Cournot and in the Bertrand model, the problem

is that competition on the same side of the market might cause a problem in the first

place. The problem for any buyer in the model this chapter is that competition on the

other side of the market reduces his surplus by introducing an outside option. Buyers’

competition limits the value of the outside option for each buyer.

Repeated game models usually are plagued by a multiplicity of equilibria. I fo-

cused on equilibria which seem to be natural. In particular, the equilibria which model

implicit buyer collusion in section 4 are interesting since they model an institution

which we also observe in real world economies. Still, there are other equilibria and

any equilibrium is associated with a certain distribution of surplus between buyers and

sellers. However, in real life markets we do not observe any distribution of surplus

in bilateral oligopolies. In a given market, one or the other side is the dominant side

of the market and is able to dictate the terms of trade. In other words: it would be

interesting to have a model which explains endogenously which side of such a market

obtains a higher surplus. Such a model would necessarily have to narrow the set of

equilibria in such a repeated game model. To do so, there have to be restrictions on the

strategies players use in equilibrium. To find reasonable restrictions on strategies one

could look at institutional details and certain competition policy aspects. One could

think, for example, of a model where competition policy is modeled as a player who is

able to exclude certain strategies for one side of the market or the other. This in turn

would influence the distribution of surplus in the market.
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Chapter 4

Communication Networks and

Cooperation

4.1 Introduction

Network based mechanisms are important institutions for the enforcement of trust and

cooperative behavior in communities. The mechanisms work through communication

and fear of punishment for misbehavior or through anticipation of rewards in case of

good behavior. For example, ethnic communities such as the Dominicans in New York

and the Cubans in Miami use such systems to sustain informal credit channels (see

Portes and Sensenbrenner [46]). The well known rotating credit associations among

Asian immigrants, for example the Chinese on Java, rely on trust enforcement through

network mechanisms as well (see Granovetter [28]).

In such a network, information, judgements, gossip and so on are exchanged only

among close friends. The number of close friends network members have among each
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other is hence an important input to foster cooperation. A dense network, that is, a

network where each network member has many close ties seems beneficial since each

network member may use these ties as an effective threat to enforce cooperative behav-

ior. It is less clear what the costs of a dense network are. For example, an exacerbation

of the obligations within a network can conspire exactly against the network. Portes

and Sensenbrenner display interesting examples like faulty assaults or constraints on

freedom. Boissevain [11] studies the structure of relations inhabitants of Malta have.

He shows with an example of two inhabitants that people generally do not maintain

close ties to all members in their network. What is then the optimal number of con-

tacts or close friends for each network member, and what might constrain the number

of close friends in one’s network?

Another important dimension with direct consequences for economic behavior is

the network size, that is, the overall number of participants in a network. Granovetter

[28] notes the success of the overseas Chinese on Java, which is based on rotating credit

associations. The Javanese failed in establishing such a mechanism. Being immigrants,

the Chinese are a small community in relation to the Javanese: in a Javanese town

dubbed ”Modjokuto” they numbered 1.800 out of a total of approximately 18.000.

Granovetter offers the following explanation. Successful Javanese face demands for a

piece of the cake achieved from an unlimited number of other Javanese (relatives, kins,

etc.). The Chinese immigrants did not suffer from such excessive claims, since their

immigrant status simplified the process of ”decoupling” from relatives and kins. This

chapter suggests that there is an additional detrimental effect of large numbers. On

the one hand, cooperating network members benefit from a large number of network

members since it is more likely that they interact with other cooperating network
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members. On the other hand, large communities are plagued by gossip which makes

monitoring more difficult. In particular, the number of close friends which is required

to sustain cooperation can then be prohibitively high.

This chapter addresses these two issues in the setting of a repeated Prisoner’s

Dilemma with changing partners. In a world with noisy communication I show that it

is in general not socially optimal to have close contacts to all other network members.

However, private incentives differ and network members choose to have close contacts to

all other network members. Moreover, as the size of the network gets large, cooperation

fails; if network formation is costly, no network sustaining cooperation might form at

all.

The basic framework is that of a repeated game with changing partners à la Kan-

dori [34]. Before the repeated interaction starts, a subset of all agents form a network

and each network member chooses a number of other network members - close con-

tacts - to whom he communicates the events in each of his per-period interactions. If

communication is frictionless harshest punishments are achieved by choosing as many

contacts as possible. Moreover, it is optimal to have as many network members as

possible. If communication is noisy, it is no longer socially optimal to have a maximum

number of contacts possible. The reason is that noisy communication might lead to

sanctions with positive probability although there was no misbehavior. This lowers the

overall benefit from cooperation if the number of contacts is too large. The message

is that communication and information flow among all members is not socially opti-

mal. However, private incentives to maintain close contacts might significantly differ

from social incentives, so that an overinvestment in relations may occur. The noise in

communication may be interpreted as noise in the technology which is used to trans-
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mit information. Another interpretation is that each agent, with positive probability,

mistakenly reports as compared what actually happened.

In a community there is not only communication among close friends, but also

communication among all network members. Hence, individuals receive messages with

some informational content from their close friends while they receive pure noisy mes-

sages - gossip - from all other network members. Then, as the number of network mem-

bers gets large, cooperation cannot be sustained anymore. Intuitively, if the number of

network members gets large, agents cannot distinguish between gossip information and

truthful information; cooperation fails. If network formation were costly no network

would form! The finding suggests also why in many communities we do not observe

communication networks but other, more centralized institutions, such as courts which

rely not only on communication as a means of investigation.

Milgrom, North and Weingast [41] model the role of courts in enforcing cooper-

ation in a basic setting similar to the one in this chapter. In their paper, agents may

inform a court about a partner’s misbehavior and they also may obtain information

about a partner’s previous behavior from the court. Hence information flows through

a central institution whereas here information flows are decentralized. Greif’s [30]

remarkable work on the Maghribi trader’s coalition studies an efficiency wage based

mechanism which the Maghribi used to enforce honest behavior from their agents. A

wage which has to be paid to enforce honest behavior is decreasing in the probability

of future hiring. Hence a merchant prefers to hire an honest agent. Such a mechanism

also rests on the assumption of information flow among the Maghribis. In contrast to

the present work, Greif does not model the details of the communication network. An-

other paper which explicitly models network benefits from a communication network
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is Boorman’s [12] analysis on the impact of communication networks on job search.

There is a also growing literature on strategic noncooperative network formation

which focusses on individual incentives to form links, e.g. Bala and Goyal [7] or Jackson

and Wolinsky [33].1 Bala and Goyal interpret their model as a model of information

flow. An agent’s benefits and costs in a network in their paper is given by the number of

agents he is linked to. The authors show that specific network architectures, e.g. a star

or a ring, emerge as a Nash equilibrium in a strategic game of link formation. I contrast

to Bala and Goyal I do not study the pattern of a network but examine the number

of links or contacts agent must have to sustain cooperation. Benefits and cost from a

contact are determined directly from the repeated interaction that follows the stage of

contact formation. In particular, I model costs from network formation endogenous:

the same mechanism which supports cooperation through communication in the first

place might be detrimental to the community if communication in the network is noisy.

The aspect that frictions are present in networks is missing in most of the literature

mentioned (section 5 in Bala and Goyal [7] is a notable exception).

Kranton and Minehart [35] also analyze patterns of strategic network formation.

Network benefits are given by an economic environment of trade among buyers and

sellers. Buyers must form links to sellers before they can buy one unit of a good. After

the stage of link formation an efficient trading mechanisms (e.g. a generalization of an

ascending-bid auction) allocates the goods among the buyers. Kranton and Minehart

show that the efficient network structure, i.e. a network structure which maximize

overall surplus, is always an equilibrium. In contrast, I show that if communication is

1See Aumann and Myerson [5] and van den Nouweland [43] for approaches using cooperative game

theory.
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noisy, private and social incentives for network formation differ.

The rest of the chapter is organized as follows. Section 4.2 sets up the model.

Conditions for a network equilibrium without noise are derived in section 4.3. Section

4.4 contains the result on the optimal number of contacts with noise, while section

4.5 presents the result on cooperation failure when the number of network members

gets large. Section 4.6 discusses how the results of the model are affected if certain

assumptions are changed and section 4.7 concludes.

4.2 The Model

I shall first describe the situation without communication network. There are i =

1, ..., I > 2 agents, where I is even. The number i ∈ {1, ..., I} is also called the identity

of agent i. Time is discrete, t = 1, 2, ..., and runs from one to infinity. In each period,

all agents get matched pairwise. If a match forms, the two agents play the following

stage game.

C D

C a, a b, c

D c, b 0, 0

with c > a > 0 > b.

Each agent only observes his private history but does not observe the events in

other matches. For each agent, a strategy is a function from his private history to

his action set. Each agent maximizes his average discounted payoff. Let δ ∈ (0, 1)

denote the discount factor for all agents. This setting is equivalent to those studied
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by Kandori [34] or Ellison [21]. Whereas Kandori and Ellison sustain cooperation

through punishments relying on contagion effects coming back to hit a noncooperator,

I shall consider a more direct punishment mechanism.2 This more direct punishment

mechanism comes from a communication network.

The Game with Communication Network

Suppose that N ≤ I agents have decided to set up a communication network.

The game looks then as follows.

(N1) all agents inside the network know and recognize the identities of other network

members. Let N denote the set of network members.

(N2) in period 0 - before the repeated interaction starts - all network members choose

simultaneously Li ≤ N − 1 contacts or close friends. Let Li denote the set of

contacts of agent i. These contacts will sometimes be called outgoing contacts.

We say that i has a contact to j if j ∈ Li. Let Li be the set of agents who have

a contact to i, that is Li = {j ∈ N , j 6= i|i ∈ Lj}. Let Li denote the number of

network members who have a contact to i, that is, Li = #Li. These contacts will

sometimes be called incoming contacts. A network L is defined as the pattern of

contacts agents have among each other. Each network L implies, for each network

member i, a number of contacts i has to other agents, Li, and a number of contacts

other agents have to i, Li. Let LN(L) ∈ RN×2, LN = {(L1, L1), ..., (LN , LN)} be

the matrix of these numbers. For the rest of the paper only these numbers, not

the exact pattern of contacts of agents, are relevant and I write LN . 3 Agents

2I shall explain the relation of this chapter to their papers in more detail below.
3Hence two networks L and L′ are equivalent if LN (L) = LN (L′)
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who are not network members cannot choose contacts.

(N3) Relations among agents are not symmetric, that is j ∈ Li ; i ∈ Lj for all

i, j ∈ N . Hence, for agents i ∈ N and j ∈ N , i has a contact to j and j has a

contact to i if and only if j ∈ Li and i ∈ Lj. Moreover, relations among agents

are not transitive, that is, i ∈ Lj ∧ z ∈ Li ; z ∈ Lj for all i, j, z ∈ N .

(N4) The repeated interaction itself is as follows: in any period t = 1, 2, ..., agents get

matched pairwise. All agents can get matched both with agents in the network

and with agents outside the network. If two network members i and j meet they

observe the number of contacts Li and Lj of their partner and then choose their

action, C or D.

(N5) after network members i and j have played the stage game, both i and j inform

their respective contacts (Li contacts for i and Lj contacts for j) of their partners’

actions in the match. Hence the information of i given to his Li contacts contains

an element of the set {C, D} and the identity (i.e. a number i ∈ {1, ..., I}) of

his partner. This information about i is available to the Lj contacts of j at the

beginning of the next period.

Assumptions (N1)-(N5) define a game with communication network.

Equilibrium Strategies in the Repeated Game:

In the repeated game with network formation, strategies for a network member i

are now functions from private histories and from the information i receives from the

Li agents who chose to have contacts to i in period 0. For the periods t = 1, 2, ...,

that is, for the infinitely repeated interaction following any choice of a communication

network L, I consider equilibria involving the following strategies:
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(E1) agents outside the network choose D in each period.

(E2) agents inside the network choose C if they have the information that their partner

has always chosen C. If there is no information since the partner is not a network

member an agent chooses D.

(E3) agents inside the network choose D if they have the information that their partner

has chosen D in any previous period. An agent who has chosen D meeting an

agent who plays C chooses D forever after.

(E4) if a network member i deviated in a match with network member j, then j informs

all his Lj contacts about this. That is, he sends the message D and i’s identity

to all his Lj contacts. Agent i sends the message C and the identity of j. From

the next period on those Lj contacts punish i forever after. If both i and j chose

C, then both agents send the message C to their respective contacts.

(E5) once punishment for an agent i takes place, i sends the message C to all his Li

contacts for the rest of the game.

To understand (E5), suppose that network member i did not cooperate when

playing with network member j and that j informs all his Lj contacts about this.

Assumption (E5) says that noncooperator i does not trigger punishments on his pun-

ishers by informing his Li contacts. The assumption assures that punishing is always

a best response in the equilibrium described for the punishers. If assumption (E5)

does not hold, an agent who is required to punish another agent might fear further

punishment and chooses C when he is supposed to choose D. As in Kandori [34] one

could circumvent the problem and fix stage game payoffs such that punishing is a best

response (i.e. b has to be sufficiently small). Then, all the qualitative results of the

83



paper continue to hold even if (E5) is not imposed. I chose to impose assumption (E5)

since, in contrast to Kandori’s analysis I do not want to focus on contagion effects. I

discuss the implications of relaxing (E5) for the results of this paper in more detail in

section 4.6.

The equilibrium strategies (E1) to (E4) are considered since they seem natural in

a communication network I have in mind. Network members inform their close contacts

about any network member choosing D. This noncooperator is then punished by the

close friends of the agent who was cheated. The strategies resemble in a simple way

the communication network mechanisms used by ethnic communities as mentioned in

the introduction.

Let σn denote the strategy profile for network member described above while σ−n

denotes the strategy profile for all agents not in the network. The strategy profile for

all agents is denoted by σ. The payoff V n
i (σ) for a network member, is

V n
i (σ) =

N − 1

I − 1
a (4.1)

The average expected payoff Vi(σ) for an agent not in the network is Vi(σ) = 0.

I take a network with N members as given and ask wether network members

are willing to participate. A network of size N is beneficial if and only if all network

members are willing to participate. This participation constrained is required to hold

for all histories of play. Hence, to have a network which is beneficial to all participants,

V n
i (σ) ≥ 0 has to hold for all histories of play. Note that this participation constraint

is satisfied for any network size N . If the payoff from both partners playing D is

d > 0, c > a > d > b, then N has to be sufficiently large. If there is some exogenous

cost for network formation, for example, if it is costly to maintain contacts, then V n
i (σ)

84



has to exceed this cost as well.

4.3 Equilibrium and Choice of Contacts

In this section I analyze if and under what conditions the strategies specified in (E1)

to (E5) form an equilibrium indeed. Moreover, I determine the number of contacts

agents choose in period 0.

I shall first show the optimality of (E4) and (E5).

Lemma 2. For any L, information transmission as specified in (E4) and (E5) is always

optimal.

Proof. (E4). Suppose that agents behave according to (E5). Pick agent i ∈ N . Sup-

pose that in a match with i agent j plays C. If agent i informs his Li contacts that

j played D, they punish j forever after, which does not increase i′s payoff. Suppose

that j played D. If agent i does not inform his contacts about this, his payoff does not

increase either (due to (E5)) . Moreover, any information of i about some other agent

z 6= j would not increase i′s payoff either.

(E5). With a similar argument, a noncooperator j cannot increase his payoff

sending the message D instead of the message C.

Given this lemma, punishing a noncooperator is an equilibrium in the continua-

tion game after any defection, as required in (E3).

To have network members cooperate as required in (E2), the following incentive
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constraint has to hold for all i ∈ N :

N − 1

I − 1
a ≥ N − 1

I − 1
c +

δ

1− δ

(
N − Lj − 1

I − 1
a

)
(4.2)

for all j ∈ Lj.

The benefit of cooperation is given by the probability of meeting a network mem-

ber, (N − 1))/(I − 1) times the payoff of cooperation, a. The benefit from defection

is the defection payoff c and the continuation payoff. The continuation payoff from

defection is zero with probability Lj/(I − 1) and with probability (I −N)/(I − 1) and

a with probability (N −Lj − 1)/(I − 1). Due to Lemma 1 it is always a best response

for j′s Lj contacts to punish i.

Solving inequality (4.2) yields

Lj ≥ L◦ =
(N − 1)(1− δ)(c− a)

δa
(4.3)

as the minimum number of contacts each network members needs to have in order to

sustain cooperation.4 Thus it is not necessary that all network members have contacts

to all other network members. Behavior as specified in (E1) is clearly optimal. Last

note that V n
i (σ) ≥ 0 holds for all histories of play.

To determine the number of contacts agents choose in period 0, I focus on network

members’ equilibrium choices which induce the maximal threat on their partner.

(E6) network members choose a number of contacts such that their partners payoff is

lowest in case of noncooperation.

Contact choices induce extremal equilibria in the sense of Abreu, [3] or [1]. Hence,

it is optimal for each agent during the stage of contact formation that every agent

4This number is actually [L◦] + 1, where [x] denotes the next largest integer to x.

86



chooses Li = N − 1. This number of links provides the harshest punishment for a

noncooperator.

If the communication network L is organized such that it maximizes each network

member’s utility, it is also an optimal strategy that all network members have Li =

N − 1 contacts. This implies also that each network member is contacted by all other

network members, Li = N − 1. Hence network members’ private incentives and social

incentives for the network as a whole are the same! Efficient communication network

formation is always an equilibrium on the game of network in stage 0, given repeated

interaction from period 1 on.

Considering network size, note that equilibrium payoffs are increasing in N so

that agents prefer large networks. If c > a/(1 − δ), the number of contacts required

to sustain cooperation would strictly exceed N − 1; cooperation based on a network

mechanism fails in that case. The following Proposition summarizes these observations.

Proposition 9. Suppose that (E1) to (E6) hold in the game with communication net-

work.

(i) Cooperation is sustainable in the network if and only if

Li ≥
(N − 1)(1− δ)(c− a)

δa

for all i ∈ N .

(ii) Suppose that contact choices induce extremal equilibria. For all N∗ ≥ 2, it is

then optimal to form a network in which each network member chooses Li =

N − 1 contacts. Then punishment is maximal and cooperation in the network

can be sustained for δ ≥ (c − a)/c. The choice of Li = N − 1 is optimal for
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each individual network member and also optimal if the network maximizes each

network member’s utility: efficient communication network formation is always

an equilibrium.

(iii) Since equilibrium payoffs for network members are strictly increasing in N , it is

optimal to have all agents in the network, that is N = I is optimal.

(iv) If c > a/(1− δ) it is not possible to sustain cooperation.

4.3.1 Cooperation without Institutions ?

In Kandori [34] and Ellison [21] cooperation is sustained by punishments relying on

contagion effects coming back to hit a noncooperator. In such a contagion equilibrium,

all agent initially cooperate. If an agent ever meets an opponent who defects, he defects

from then on. Hence, playing D today will eventually lead all agents to play D. If

these strategies are an equilibrium depends on how fast contagion spreads, which in turn

depends on the number of agents and on the stage game payoffs. The main problem is

that agents prefer to continue choosing C even after meeting an agent who plays D in

order to slow down the spread of contagion. In particular, Kandori shows that, for any

fixed number of agents, the contagion strategies are an equilibrium for discount factors

close to 1 if stage game payoffs are such that the payoff to playing C against an agent

playing D is sufficiently negative. Ellison extends Kandori’s work and assumes that a

publicly observable random variable is available. The public randomization allows to

adjust the severity of the punishments. Punishments can be tailored such that agents

fear a breakdown of cooperation, so they do no deviate first. Moreover, they do not

fear the breakdown so much that they do not spread out the play of D.
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In those papers cooperation is possible without any institutions. However, we do

observe communication networks (see the introduction of this paper)! A reason for this

could be that the direct punishments in this chapter work for discount factors smaller

than the discount factor required to sustain Kandori’s or Ellison’s mechanism.

Proposition 10. The discount factor necessary to sustain cooperation through network

formation is smaller than the discount factor necessary to sustain cooperation through

contagion.

Proof. Cooperation through contagion requires a larger discount factor than coopera-

tion through network formation if a noncooperator’s continuation payoff after defection

is larger.

With network formation, a noncooperator is punished immediately forever after

a deviation. Hence, a noncooperator’s continuation payoff after a deviation is zero.

In punishments relying on a contagion effects and it lasts at least (I−2)/2 periods

until a noncooperator is punished with probability 1 in every period. Hence, in the first

(I − 2)/2 periods after a deviation there is always a strictly positive probability that

a noncooperator is not punished. This implies that the infimum of a noncooperator’s

continuation payoff is strictly bounded away from zero.

Hence this more effective way of punishment might be a reason why we observe

institution such as communication networks or courts (see Milgrom, Weingast and

North [41]).
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4.4 Noisy Communication

In the previous section it was optimal for each agent to choose as many contacts as

possible. This choice was optimal since contacts never became active in equilibrium.

A large number of contacts is a very effective threat! However, in many networks, the

same mechanism which supports cooperative actions may also be detrimental to the

agents in the network. In particular, if communication is noisy, those contacts might

not cooperate with me although I myself did cooperate. It may then be optimal if my

partner has fewer than N − 1 contacts. Moreover, it could be that I have to punish

other network members even though they did cooperate. Hence, I prefer that Li, the

number of other network members who have a contact to me, is not too high. I shall

analyze the socially optimal choice of a communication network L when there is noise

in the transmission of information.

4.4.1 Noise and Equilibrium Restrictions

I model the presence of noise as follows. Suppose that there is noise in the stage of

the game where each agent informs his Li contacts about the behavior of his partner

j in a given period. Two things can happen: the partner j of agent i did deviate, but

none of i′s contacts received the message and all of i′s contacts continue to believe that

j did cooperate. Or, j did not deviate, but the Li contacts of agent i did receive the

message that agent j did deviate.

Formally, each message between two agents generates one of two signals at each

period. The signal space is given by X = {C,D} and is the same for all matches. The

signal C is interpreted as a ”good” signal, the signal D is interpreted as a ”bad” signal.
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Let, for all matches between i and j, i, j ∈ N ,

α = Pr(Li contacts receive signal C |j reports C)

1− α = Pr(Li contacts receive signal D |j reports C)

β = Pr(Li contacts receive signal C |j reports D)

1− β = Pr(Li contacts receive signal D |j reports D).

I assume β < α. It is more likely that signal C results if C was reported than if D was

chosen. All contacts of a network member receive the same signal. Each agent receives

Li signals and each agent can identify the network member to whose behavior a given

signal is related. Moreover, after a match between i and j, it is common knowledge

for j and all the network members in the set Li which signal the agents in the set Li

observe. Similarly for i and the network members in the set Lj.

The game is now as follows: assumptions (N1)-(N5) from section 4.2 hold. The

only difference is that information transmission is noisy. For the repeated interaction

in periods t = 1, 2, ..., for any network choice L, I consider the following equilibria.

(E1) agents outside the network choose D in each period

(E2) agents inside the network start the repeated interaction by playing C. An agent

inside the network continues to choose C if he receives the signal C about the

previous behavior of his new partner. If an agent does not receive any signal

about his new partner, he chooses D.

(E3) if an agent i receives a signal D about the previous behavior of an agent j, then

agent j is punished by i. The punishment of i lasts forever after a deviation, that

91



is, all agents who receive signal D about j punish j whenever they meet j.

(E4) information transmission: if in a match between i and j both agents choose C,

then both agents send the message C to their respective contacts. If i deviates

while j plays C then i sends the message C while j sends D. Once punishment

for an agent i takes place, i sends the message C to all his Li contacts for the

rest of the game. Messages produce signals according to the signal technology

described afore.

(E5) equilibrium strategies for all network members are symmetric, that is, all agents

use the same strategies.

Requirement (E4) contains the analogue to assumption (E4) in section 4.2: punish-

ments are not contagious. Moreover, I assume that (E6) from the previous section

holds: agents choose contacts which induce the most severe punishment on their part-

ners. I also assume that all network members choose the same number of contacts,

Li = L for all i ∈ N . In the rest of this section I analyze the conditions for (E1)− (E5)

to be an equilibrium in the repeated game. I also characterize the communication

network L which maximizes the network members’ overall surplus and compare the

result to the communication network L which arises from network members’ private

incentives under assumption (E6).

4.4.2 Analysis of Equilibria with Noisy Communication

In contrast to the previous section, not only the number of contacts each agent i has

is important for the analysis. Since each network member may have to punish other

agents in each period with positive probability, it is also important, how many other
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agents have contacts to agent i. Recall that Li denotes the number of agents in the

network who have contacts to i, that is Li := {# ∪j Lj|i ∈ Lj} where # denotes the

cardinality of the set ∪jLj. Let p(Li) denote the probability that agent i receives a

signal C. Given that these other network members did actually cooperate, p(Li) is a

function of α. The exact expression for p(Li) is complicated and depends on L, that

is, the exact pattern of contact choices in period 0. However, it clearly holds that

p′(Li) < 0 and 0 < p(Li) < 1 for Li > 0. That is, the more other agents chose agent

i as a close friend, the lower the probability that agent i does not have to fulfill any

punishment obligations.

Denote by V +
i the payoff from the proposed equilibrium strategy profile. It is

given by

V +
i = (1− δ)

N − 1

I − 1
a + δαp(Li)V

+ + δ(1− α)p(Li)
N − Lj − 1

I − 1
a, (4.4)

where Lj are the contacts each partner j ∈ N of i has. Using symmetry, Lj = L for

all j ∈ N , this can be rewritten as

V +
i =

[(1− δ)(N − 1) + δp(Li)(1− α)(N − L− 1)]a

(I − 1)(1− δαp(Li))
. (4.5)

It is easy to show that this expression is strictly monotonically decreasing in L and

in Li. The more network members have contacts to i, the more often i has to punish

another network member. The larger the number of contacts i′s partners j 6= i have to

other agents, the more often i is punished. In both cases, an increase in the respective

number of contacts lowers i′ s payoff.

Moreover, the following incentive constraint has to hold to fulfill (E2):

V +
i ≥ (1− δ)

N − 1

I − 1
c + δβp(Li)V

+
i + δ(1− β)p(Li)

N − Lj − 1

I − 1
a. (4.6)
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Note that the probability p(Li) is the same on both sides of that equation: p(Li) denotes

the probability that agent does not have to punish other agents he gets matched to and

thus obtains a positive payoff from the interaction with them. Using the expression for

Vi, we obtain that

L ≥ (N − 1)(c− a)(1− δαp(Li))

(α− β)δap(Li)
(4.7)

has to hold to sustain cooperation, given the stage of contact formation in period

0. Note that L is increasing in Li. The more network members have contacts to i,

the higher is his deviation payoff relative to the payoff from cooperation. Hence a

larger number of contacts outgoing from network members, L, is required. Note that

(E3), (E4) and (E1) are satisfied by the same arguments as in section 4.3.

If the network aims to maximize overall surplus of its members, it maximizes in

the game of contact formation in period 0 each network member’s utility. Since all that

matters are the numbers of ingoing and outgoing contacts LN induced by a network

L, the network maximizes

max
LN

V +
i for all i ∈ N subject to (4.7).

We know that the objective function V +
i is strictly decreasing in Lj, j 6= i and Li for

all i. On the other hand, the incentive constraint (4.7) has to hold. Suppose, for

simplicity, that the network maximizes overall welfare of its members by choosing LN

such that Li = Lj = L, j 6= i. This means that each network member has the same

number of incoming and outgoing contacts. This is the case, for example, if all network

members have contacts to all other network members. Then, the incentive constraint

reads as

ap(L)L

(1− δαp(L))
≥ (N − 1)(c− a)

(α− β)δ
. (4.8)
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If L = 0, the left-hand side of equation (4.8) is zero, hence there must be a choice of

contacts with L > 0. On the other hand note that the left-hand side of the equation

(4.8) is strictly increasing in L! Hence there exists a unique L∗ with 0 < L∗ < N − 1

such that this incentive constraint is satisfied indeed for any strictly decreasing function

p(L). Moreover, since each network member’s utility is decreasing in L, it is optimal

to choose L∗ as the number of contacts agents have and agents receive.

Proposition 11. Suppose that the network maximizes the surplus of its members by

choosing Li = Li = L for all i.

(i) The strategies (E1)− (E5) form an equilibrium in the infinitely repeated game in

periods t = 1, 2, ... if every agent has L contacts, where L satisfies

ap(L)L(1− δ)

(1− δαp(L))
≥ (N − 1)(1− δ)(c− a)

(α− β)δ

Punishment is induced by bad signals, D, providing incentives for cooperation

which occurs on good signals, C.

(ii) Equilibrium payoffs are equal to

V +
i =

[(1− δ)(N − 1) + δp(L)(1− α)(N − L− 1)]a

(I − 1)(1− δαp(L))
. (4.9)

for all i ∈ N and are monotonically decreasing in L.

(iii) The optimal number of contacts for each network member L∗ is given by the

unique number L∗ that solves

ap(L∗)L∗(1− δ)

(1− δαp(L∗))
=

(N − 1)(1− δ)(c− a)

(α− β)δ
. (4.10)

The proposition states that it may well be optimal to restrict the number of

contacts and close contacts each agent has. In particular,

L∗ < N − 1 ⇔ a <
(c− a)(1− δαp(N − 1))

p(N − 1)(α− β)δ
.
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In that case it is optimal to have fewer than N − 1 contacts in the network.5 As one

easily checks, the following comparative statics results hold.

∂L∗

∂a
< 0,

∂L∗

∂δ
< 0,

∂L∗

∂c
> 0,

∂L∗

∂N
> 0,

∂L∗

∂α
< 0,

∂L∗

∂β
> 0 (4.11)

The optimal number of contacts decreases as α increases (β decreases). The intuition

for this would be that less noise in communication reduces the need for powerful pun-

ishments so less close contacts are necessary to sustain cooperation. On the other hand,

network size N increases, many contacts are needed: as N increases, a noncoopera-

tor finds more easily partners for future cooperation. This increases the incentives to

deviate from the cooperative equilibrium. Then, more contacts are needed to induce

more severe punishment. As the incentives for deviation, c, increases, the number of

contacts must be higher as well.

The private incentives for network formation differ significantly from the social

incentives. It is easy to see that, for each network member, a choice of N − 1 contacts

is again an equilibrium of the network formation game in period 0 if the choice of

contacts is supposed to induce extremal equilibria. This holds since each network

members payoff function V +
i does not depend on the number of contacts agent i has to

other agents. The payoff of network member i is decreasing in the number of contacts

other network members have to i and is also decreasing in the number of contacts other

partner have. But the payoff of i does not depend on Li.

5In the language of graph theory, the optimal network is not connected, i.e. there is not a path

between every pair of agents. Connectedness is a standard assumption in much of recent work on social

learning and local interaction; see e.g. Anderlini and Ianni [4], Ellison [20] or Ellison and Fudenberg

[22].
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4.5 Gossip

In the previous section, the distribution of the signal depended only on the outcome

of any given match. In this section I add more noise to the situation and model

network gossip. I assume that each agent is informed about the behavior of a friend’s

partner not only through a more or less informative signal which is generated from any

given match. Rather, each agent receives a noisy message from each other network

member. The interpretation is that even network member who did not observe an

agent’s behavior gossip about what that agent did.

Formally, for any given agent i, the partner matched to i receives now

• one signal about i’s behavior which is informative according to the above defined

probabilities α and β. It still holds that α > β. Suppose for simplicity that α = 1

and β = 0.

• and also signals from all the other N − 2 agents in the network. Those agents

did not observe what i did in the previous period. So, they gossip and transmit

their gossip to the new partner of i: each of the N − 2 signals can be C with

probability γ and D with probability 1− γ. The probability γ is not conditioned

on the action agent i and his partner took in the previous period. An agent does

not know the source of the signal: he does not know if any of the N − 1 signals

is generated by gossip or by the last match of agent i. The signal technology is

hence anonymous in the sense of Green [29].

Hence, each agent receives N − 1 signals about the behavior of his new partner.

Each agent then uses a simple rule to evaluate the N − 1 signals and to condition his
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future actions on the signals.

• If a sufficiently large share K ∈ (0, 1) of the signals is C, an agent cooperates

with his new partner. Otherwise, he chooses action D.

Let |C| denote the number of signals with the value C an agent received about his new

partner and define, for all i, j ∈ N ,

α̂ = Pr(Li contacts receive at least (N − 1) ·K signals C |j reports C)

β̂ = Pr(Li contacts receive at least (N − 1) ·K signals C |j reports D).

I assume α̂ > β̂. It is more likely that signal C results relatively more often if C was

chosen than if D was chosen. All network members receive the same signals. I shall

for further use rewrite these probabilities as

α̂ = Pr(|C|/(N − 1) ≥ K|C)

and

β̂ = Pr(|C|/(N − 1) ≥ K|D).

Since these probabilities are the same for i, j ∈ N , j 6= i, subscripts are omitted.

Basically, we have now a situation similar to the one in section 4.4, but with ”more”

noise.

Given the probabilities α̂ and β̂, one can repeat the exercise from the previous

section and solve for the number of L contacts each agent has. I consider the same

equilibria as in the previous section and impose the same assumptions on contact choice.
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I denote with q(Li) the probability that a network member does receive enough signals

C so that he does not have to punish another network member.

I now analyze the possibilities for network cooperation as N gets large. Recall

that the incentive constraint is given by

L ≥ (N − 1)(c− a)(1− δα̂p(Li))

(α̂− β̂)δap(Li)
(4.12)

for all i ∈ N . This can be rewritten as

(α̂− β̂) ≥ (N − 1)(c− a)(1− δα̂q(Li))

aq(Li)Lδ
. (4.13)

for all i ∈ N . I use this incentive constraint to show that cooperation fails as N gets

large.

Proposition 12. There exists N such that for all N ≥ N cooperation cannot be

sustained.

Proof. Note that

α̂ = Pr(|C|/(N − 1) ≥ K|C) = Pr(|C|/ ≥ K(N − 1)− 1|C).

This follows from the fact that in case of the partner’s action being C, any new partner

of any of the agents involved in the match obtains one signal C for sure (Recall that

α = 1). This lowers the critical bound of other signals an agent has to obtain to

continue with cooperation.

On the other hand, since β = 0, we have

β̂ = Pr(|C| ≥ K(N − 1)|D) = Pr(|C| ≥ K(N − 1)|D).
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The argument is now that limN→∞ |α̂− β̂| = 0 while the right hand side of (4.13)

tends to infinity as N →∞. To see this, note that

β̂ = 1−
K(N−1)∑

k=1

(
K(N − 1)

k

)
γk(1− γ)K(N−1)−k

and

α̂ = 1−
K(N−1)−1∑

k=1

(
K(N − 1)− 1

k

)
γk(1− γ)K(N−1)−1−k.

Then, α̂− β̂ is given by

K(N−1)∑
k=1

(
K(N − 1)

k

)
γk(1− γ)K(N−1)−k−

K(N−1)−1∑
k=1

(
K(N − 1)− 1

k

)
γk(1− γ)K(N−1)−1−k.

Note that

K(N−1)∑
k=1

(
K(N − 1)

k

)
γk(1− γ)K(N−1)−k =

K(N−1)−1∑
k=1

(
K(N − 1)− 1

k

)
γk(1− γ)K(N−1)−1−k + γK(N−1).

Hence, |α̂ − β̂| = γK(N−1) and limN→∞ |α̂ − β̂| = 0. So there exists ε > 0 such that

|α̂ − β̂| < ε for all N ≥ N . Moreover, as N → ∞ the right hand side of (4.13), tends

to infinity. This holds since all other expressions in the denominator of the expression

on the right hand side of that equation cannot tend to infinity as well as N → ∞.

Moreover, no expression in the numerator can go to zero as N → ∞. But since the

left hand side of the equation cannot be larger than ε, there exists N such that for all

N ≥ N equation (4.13) does not hold.

It is straightforward to extend the Proposition for any α ∈ (0, 1) and any β ∈

(0, 1), α > β.
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If there is a cost for network formation, the network would not form if N ≥ N !

The finding also suggests why in many communities we do not observe decentralized

cooperation networks. If the number of community members gets large, other institu-

tions such as courts might be needed (see Milgrom, North and Weingast [41]). Courts

use a huge legal apparatus which does not rely on decentralized communication alone.

4.6 Discussion

I briefly discuss the robustness of these results with respect to assumption (E5). This

assumption prevents contagious punishments. Without this assumption, it is not clear

if agents fulfill their punishment obligations. I shall demonstrate how the qualitative

results of this chapter hold even without assumption (E5).

Consider first the analysis and results of section 4.3, the situation without noise.

The relevant condition is that the payoff from punishing a noncooperator has to be

higher than the payoff from playing C:

0 +
δ

1− δ

[
I −N

I − 1
0 +

Lj + 1

I − 1
0 +

N − Lj − 2

I − 1
a

]
≥ (4.14)

b +
δ

1− δ

[
I −N

I − 1
0 +

1

I − 1
0 +

N − 2

I − 1
a

]
.

There are two possibilities to satisfy this constraint without making assumption (E5).

First, the payoff b from playing C when my partner plays D can be made small enough

to provide the correct incentives. This is the same requirement as in Kandori [34] who

needs this assumption to make his contagion mechanism work (see section 4.3.1). A
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second possibility would be the incentive constraint for Lj and derive an upper bound

L̂ on the number of contacts. Then, we would have two restrictions on the number of

contacts. First, as shown in section 4.3, the number of contacts has to be high enough

to ensure cooperation:

Lj ≥ L◦ =
(N − 1)(1− δ)(c− a)

δa
. (4.15)

Second, the number of contacts has to be less than L̂ to ensure network member’s

participation in a punishment stage of the game. Hence, L◦ < L̂ would have to hold

for such an equilibrium to exist. Suppose that this condition holds and that network

members choose contacts which induce extremal equilibria (assumption (E6)). This

numbers of contacts is then given by L̂. This is also a number which is optimal from

a social point of view. Hence, private and social incentives overline as in section 4.3.

Consider now the model with noise. Recall that network members’ payoffs are

decreasing in the number of contacts their partners have. The number of contacts has

to be high enough to ensure cooperation. On the other hand, punishment has to be

ensured. Again, this can be achieved by making b sufficiently small. Or, the number

of contacts has to be low enough to ensure network members’ participation in the

punishment but high enough to sustain cooperation in the first place. Clearly, since

network members payoffs are decreasing in the number of contacts of their partners,

it is socially optimal to choose the lower number of the two which is just enough to

support cooperation. Private incentives would again go in the other direction and

agents would choose too much contacts in the game of contact formation in stage 0.

In other words: the basic results from section 4.4 continue to hold. This is also valid

for the main result in section 4.5.
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4.7 Conclusion

This paper models a communication network and shows how the optimal number of

contacts in such a network is affected when communication is noisy. If communication

is noisy, it is not optimal to have close contacts to all network members. Moreover, as

the number of network members gets large, cooperation in the network fails. If network

formation is costly, we cannot expect a network to form.

There are many other institutions sustaining cooperation in such situations, for

example courts. It would be interesting to examine under which circumstances we

observe decentralized institutions such as communication networks and under which

circumstances we observe the existence of centralized institutions such as courts. More-

over, when would we expect a mechanism without any institution as the contagion

mechanism proposed by Kandori and Ellison?

Another line of research could focus on communication networks in a setting where

there is additional source of externalities among network members. While in my setting

honest information transmission is always a best response, one can easily imagine a

situation where an agents payoff strictly increases if an other agent gets punished. This

could be the case if there is not only a double-sided moral hazard problem but also if

there is the situation that a network member benefits from another network member

being punished. Suppose, for example, that there is some competitive relation among

some or all network members. Hence, there is a direct incentive to assault another

network member even if that network member did cooperate. The network would then

serve not only as a means to support cooperation but information flow is then also a

means to hurt a potential competitor.
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and the Competitive Price. Working paper, University of York, 2000.

[16] P. Diamond. Mobility Costs, Frictional Unemployment and Efficiency. Journal of

Political Economy, (89):798–812, 1981.

[17] P. Dobson and M. Waterson. Countervailing Power and Consumer Prices. Eco-

nomic Journal, (107):418–430, 1997.

[18] P. Dobson and M. Waterson. Retailing Power: Recent Developments and Policy

Implications. Economic Policy, (28):133–164, 1999.

106



[19] The Economist. B2B Exchanges: The Container Case. October 21st, 2000.

[20] G. Ellison. Learning, Local Interaction and Coordination. Econometrica,

(61):1047–1072, 1993.

[21] G. Ellison. Cooperation in the Prisoner’s Dilemma with Anonymous Random

Matching. Review of Economic Studies, (61):567–588, 1994.

[22] G. Ellison and D. Fudenberg. Rules of Thumb for Social Learning. Journal of

Political Economy, (101):612–644, 1993.

[23] J. Friedman. A Non-Cooperative Equilibrium for Supergames. Review of Eco-

nomic Studies, (28):1–12, 1971.

[24] D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, Mass., 1991.

[25] D. Gale. Limit Theorems for Markets with Sequential Bargaining. Journal of

Economic Theory, (43):20–54, 1987.

[26] P. Ghosh and D. Ray. Cooperation in Community Interaction without Interaction

Flows. Review of Economic Studies, (63):491–519, 1996.

[27] M. Granovetter. Economic Action and Social Structure: The Problem of Embed-

dedness. American Journal of Sociology, (91):411–438, 1985.

[28] M. Granovetter. The Economic Sociology of Firms and Enterprise, in The

Economic Sociology of Immigration. Essays on Networks, Ethnicity, and En-

trepreneurship (Alejandro Portes, Ed.). Russell Sage Foundation, New York, 1995.

[29] E. Green. Non-Cooperative Price Taking in Large Dynamic Markets. Journal of

Economic Theory, (22):155–182, 1980.

107



[30] A. Greif. Contract Enforceability and Economic Institutions in Early Trade: The

Magribi Traders’ Coalition. American Economic Review, (83):525–548, 1993.

[31] F. Gul. Noncooperative Collusion in Durable Goods Oligopoly. Rand Journal of

Economics, (3):248–254, 1987.

[32] F. Gul, H. Sonnenschein, and R. Wilson. Foundations of Dynamic Monopoly and

the Coase Conjecture. Journal of Economic Theory, (39):155–190, 1986.

[33] M. Jackson and A. Wolinsky. A Strategic Model of Economic and Social Networks.

Journal of Economic Theory, (77):44–74, 1996.

[34] M. Kandori. Social Norms and Community Enforcement. Review of Economic

Studies, (59):63–80, 1992.

[35] R. Kranton and D. Minehart. Buyer-Supplier Networks. American Economic

Review, (91):485–508, 2001.

[36] V. Lambson. Self-Enforcing Collusion in Large Dynamic Markets. Journal of

Economic Theory, (34):282–291, 1984.

[37] A. Mas-Colell. The Cournotian Foundations of Walrasian Equilibrium: An Expo-

sition of Recent Theory. ch 7. In W. Hildenbrand, editor, Advances in Economic

Theory. Cambridge University Press, 1982.

[38] M. McManus. Numbers and Size in Cournot Oligopoly. Yorksh. Bull. Soc. and

Econ. Res., (14):68–75, 1962.

[39] M. McManus. Equilibrium, Numbers and Size in Cournot Oligopoly. Yorksh. Bull.

Soc. and Econ. Res., (16):112–118, 1964.

108



[40] J. Mertens. The Limit Price Mechanism. CORE DP 9650, 1996.

[41] P. Milgrom, D. North, and B. Weingast. The Role of Institutions in the Revival of

Trade: The Law Merchant, Private Judges, and the Champagne Fairs. Economics

and Politics, (1):1–23, 1990.

[42] A. Muthoo. Bargaining Theory with Applications. Cambridge University Press,

Cambride, UK, 1999.

[43] A. van den Nouweland. Games and Networks in Economic Situations. PhD thesis,

University of Tilburg, 1993.

[44] M. Osborne and A. Rubinstein. Bargaining and Markets. Academic Press, San

Diego, New York, 1990.

[45] C. Ponsati. Search and Bargaining in Simple Markets. Working paper, Universitat
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Appendix A

Appendix to Chapter 2 (The Proof

of Proposition 2)

I shall prove the Proposition by establishing four Lemmata. I introduce some further

notation. Given an equilibrium in stage two of the game, the correspondence s → b∗i (·)

will be denoted as φi(·). The vector (φ1(·), ..., φ(·)) will be denoted as φ. Let Φ(s) :=∑
i∈B φi(s).

Lemma 3. (i) In each of the subgames in stage 2, a unique symmetric Nash equi-

librium in pure strategies (b∗1(s), ..., b
∗
B(s)) exists. It is given by

b∗i := b∗ = f ′(s/B)
s(B − 1)

B2
. (A.1)

(ii) The correspondence Φ(s) is a continuous function in s :=
∑

j∈S sj.

Proof. (i). It is straightforward to show that any Nash equilibrium in stage must be

symmetric, that is b∗1(s) = ... = b∗B(s) for all s. To find the Nash equilibrium, I compute
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the first-order condition and use symmetry to find a unique solution

b∗i := b∗ = f ′(s/B)
s(B − 1)

B2
. (A.2)

for all i. Due to concavity of f this is a maximum indeed.

(ii). This follows immediately from inspection of equation (A.2) and from the

assumption that f is twice continuously differentiable.

Given these results, the problem amounts to show existence of a Nash equilibrium

for the game between the sellers, where now,

π(sj, s−j) = f (sjp(s)) + 1− sj (A.3)

with

p(s) =
Φ(s)

s
= f ′(s/B)

B − 1

B
, (A.4)

from Lemma 3.

Lemma 4. p′(s) < 0 ∀ s.

Proof. Recall that f ′′ < 0. The result follows then from equation (A.4).

We cannot prove that π is quasiconcave, let alone be concave in sj for any seller

j. However, note that π is a continuous function.

Let R be the reaction correspondence of any seller for that game, that is

R : [0, (S − 1)] → [0, 1] (A.5)

and r := inf R.

Using standard arguments, one can prove
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Lemma 5. The correspondence R satisfies

(i) R is nonempty

(ii) R is closed

Proof. Omitted.

Given these results, I complete the proof with an argument building on Roberts

and Sonnenschein [47] - of which the original idea appeared in McManus ([38] and

[39]). Roberts and Sonnenschein show existence of a symmetric Nash equilibrium in

pure strategies for the Cournot model with general downward sloping demand functions

and symmetric firms.1 Notice that, from Lemma 4, the ”inverse demand function”

slopes downward as a result of the model! Roberts and Sonnenschein [47] (Lemma, p.

114) prove that a symmetric pure strategy Nash equilibrium exists, if the best response

correspondences in the game between the sellers are nonempty, closed from the right

and exhibit only upward jumps. They might be sloping downward, though. 2 Since,

from Lemma 5, R is nonempty and closed, existence of a symmetric Nash equilibrium

is assured if I can establish that best response correspondences jump only upwards.

The last step shows hence that the function r defined by r = inf R is upper

semicontinuous from the left, that is sn
−j → s−j, s

n
−j < s−j implies lim sup r(sn

−j) ≤

r(s−j). As a last piece of notation, let σ =
∑

k∈S\{j} sk. Then, s = σ + sj,

Lemma 6. The function r(s−j) := inf R(s−j) is upper semicontinuous from the left.

1Symmetry refers to the firms’ cost functions.
2I will not state this result formally, but the reader may convince himself by a drawing for the

one-dimensional case when best responses are single-valued.
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Proof. I proceed in three steps.

Step 1. I show that if, for any s−j, sj is such that for all s̃j ≥ sj, I have

πj(sj, s−j) ≥ πj(s̃j, s−j), then this implies r(s−j) ≤ sj. Assume not, that is r(s−j) > sj.

Then πj(sj, s−j) ≥ πj(r(s−j), s−j) would imply sj ∈ R(s−j), a contradiction, since

sj < r(s−j) = inf R(s−j).

Step 2. Assume that sj = r(s−j). Then, for any ŝj such that ŝj ≥ sj, it must

hold that

f (sjp(sj + σ))− sj ≥ f (ŝjp(ŝj + σ))− ŝj. (A.6)

I omit the initial endowment 1 on both sides. Since the function π is continuous and

since, from Lemma 4, p′ < 0, it also holds that, for any δ > 0,

f ((sj + δ)p(sj + σ))− (sj + δ) ≥ f ((ŝj + δ)p(ŝj + σ))− (ŝj + δ). (A.7)

Rewrite the last inequality as, after proceeding in the same way as for ŝj ≥ sj,”for

any u ≥ (sj + δ),

f ((sj + δ)p((sj + δ) + (σ − δ)))− (sj + δ) ≥ f (up(σ − δ + u))− u.” (A.8)

This reads: sj + δ is better than u against σ − δ. Moreover, u ≥ (sj + δ). I shall

use this information in the last step, step 3, and apply step 1 on these inequalities.

Step 3. Combining step 1 and the last equation in step 2, I get

r(s−j − δ) ≤ sj + δ. (A.9)

Letting δ := s−j − sn
−j, this expression is equal to

r(sn
−j) ≤ sj + (s−j − sn

−j). (A.10)
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Taking lim sup on both sides, I finally get

lim sup
sn
−j→s−j

r(sn
−j) ≤ sj. (A.11)
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Appendix B

Appendix to Chapter 3 (The Proof

of Proposition 6)

I look for prices p(1), p(2), ... that maximise the buyer’s objective function and that

are sustainable as an equilibrium. In this equilibrium, trade always occurs and buyers

never leave their sellers. Moreover, the buyer always rejects any prices higher than the

ones specified by the equilibrium price sequence. If a buyer accepts a higher price the

equilibrium price sequence gets restarted. By this construction I impose the most severe

punishment on a defector. The most severe punishment is the restart of the sequence

since the buyer can always leave the seller and start a new partnership. Hence, any

punishment that the buyer’s trading partner imposes cannot be harsher than a restart

of the equilibrium price sequence and any optimal equilibrium must be supported by

the most severe punishment.

The incentive constraints for the buyers that must be satisfied by any optimal
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equilibrium price sequence {p∗(t)}∞t=1 are given by

∞∑
τ=t+1

(1− p∗(τ))δτ−t
b − δb

[
∞∑

t=1

δt−1
b (1− p∗(t))

]
≥ (1− p(t)) (B.1)

for all t and for all p(t).

Equation (B.1) compares, at each point in time, the trade-off between a one-

period gain from a deviation from the prescribed equilibrium, which is 1− p(t), to the

discounted future losses which are given by the left hand side of equation (B.1). The

first term on the left hand side is the expected discounted payoff from following the

equilibrium strategy whereas the second term on the left-hand side resembles the restart

from the price sequence {p∗(t)}∞t=1. Incentive compatibility requires that discounted

future losses exceed the one-period deviation gain at each point in time. Let E(t, δb)

be the set of all price sequences that satisfy the incentive constraints.

An optimal price sequence is a solution to problem (P):

(P) max
p(t)∈E(t,δb)

∞∑
t=1

δt−1
b (1− p(t)) (B.2)

In words: if I look for a price sequence that maximizes buyers’ expected dis-

counted utility subject to p∗(t) satisfying the incentive constraints for all t, I must end

up with {p∗(t)}∞t=1 itself. Since {p∗(t)}∞t=1 depends on δb, I denote buyers’ utility from

an optimal equilibrium sequence as U∗(p∗(t)) ≡ U∗.

Suppose, I wish to implement a price sequence with p∗(1) > 0, p∗(2) = p∗(3) =

... = 0. Then, in equilibrium, the following incentive constraints have to be satisfied

for the buyers after each proposal from a seller.

I have, for t = 1,

0 +
δb

1− δb

≥ (1− p(t)) + δbU
∗ for all p(t) ≥ p∗(1). (B.3)

118



For all t = 2, 3, ...,

0 +
δb

1− δb

≥ (1− p(t)) + δbU
∗ for all p(t) ≥ 0. (B.4)

To satisfy the requirement of sequential rationality within each relationship , I

have to find the incentive constraints which put the hardest restrictions on U∗ for any

given δb. The other constraints will be satisfied as well. It is easy to see that he crucial

constraint is the one from period 2 onwards. Sequential rationality requires that I set

p(1) = p∗(1) and p(t) = 0 for all t = 2, 3, ....

This yields, from equation (B.4),

U∗ ≤
(

2δb − 1

1− δb

)
1

δb

, (B.5)

which I let hold with equality.

I show next that the proposed price sequence is optimal indeed. Let pA(t) denote

any arbitrary price sequence with 0 ≤ pA(t) ≤ 1 for all t. Let UA(pA(t)) be the utility

from an arbitrary sequence and let UA(t) be the continuation utility from period t on

for all t.

Lemma 7.

U∗(p∗(t)) ≥ UA(pA(t))

for all sequences pA(t).

Proof. Suppose that there exists an alternative price sequence {pA(t)}t=1∞ such that

U∗(p∗(t)) < UA(pA(t)) and that pA(t) 6= 0 for at least one t ≥ 2 and pA(1) < p∗(1).

Fix the equilibrium with the sequence {p∗(t)}∞t=1. In particular, choose p∗(1) such

that the incentive constraint for the equilibrium in period 1 holds with equality:
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0 +
δb

1− δb

= (1− p∗(1)) + δbU
∗. (B.6)

Suppose that there exists a sequence {pA(t)}∞t=1 with pA(t) 6= 0 for at least one

t ≥ 2 and pA(1) < p∗(1) such that UA(pA(t)) > U∗(p∗(t). For {pA(t)}∞t=1 to be an

equilibrium, I require in period t = 1,

0 + δbU
A(2) ≥ (1− pA(1)) + δbU

A. (B.7)

Suppose that this constraint is satisfied. Note that, by assumption, UA > U∗

and pA(1) < p∗(1). Then, the LHS of (B.7) is < than the LHS of (B.6) and that

the RHS of (B.7) is larger than the RHS of (B.6). But then, given δb, if {p∗(t)}∞t=1 is

an equilibrium, (B.7) cannot hold. This in turn implies that {pA(t)}∞t=1 cannot be an

equilibrium, yielding a contradiction.

The derivation of p∗(1) = 1/δb follows immediately from solving the equation

(1− p∗(1)) +
δb

1− δb

=

(
2δb − 1

1− δb

)
1

δb

.
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