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Summary
Flow lines are production systems that can be found, e.g., in the food and
automotive industries, for production at high volume. Modern information
technology allows flexible and short-term changes of buffer capacities in
flow lines by means of control mechanisms such as electronic Kanban cards.
This thesis investigates the potential of time-dependent adjustments of buffer
capacities to account for time-dependent changes in demand and machine
characteristics. Performance evaluation approaches for given buffer alloca-
tions and algorithms to systematically derive time-dependent buffer alloca-
tions are developed. In contrast, the existing literature typically assumes con-
stant buffer capacities and treats their allocation as a long-term design prob-
lem.
The first essay presents an overview of the existing literature on buffer ca-
pacity optimization in unreliable flow lines. All reviewed articles assume that
flow lines operate under steady-state conditions. The second essay provides
a survey and classification of performance evaluation approaches for queue-
ing systems with time-dependent parameters and their applications. It is ap-
parent that, even for single-stage systems with finite buffer capacities, there
are no exact analytical solutions. The third essay introduces two sample-
based approaches for the performance evaluation of flow lines with a time-
dependent processing rate on the first machine and constant buffer capaci-
ties and constant rates for the subsequent machines. The equivalence of the
two approaches has been established for a special case. The numerical study
demonstrates that, given a time-dependent input, buffers can smooth the out-
put over time. The fourth essay proposes a sample-based evaluation approach
that accounts for time-dependent buffer capacities. The numerical study in-
dicates the potential for influencing key performance measurements, such as
work in process inventory (WIP) and throughput by time-dependent buffer al-
locations. The fifth essay reports monotonicity properties for the WIP and the
service level of a flow line with respect to time-dependent buffer capacities
based on a numerical study. A search algorithm utilizes these properties to
find time-dependent buffer capacities. The numerical study indicates that the
generated solutions lead to lower average WIP compared to constant buffer
capacities while satisfying the same service level goal.
Future research should address the analysis of larger and more general sys-
tems. Their analysis may require the development of new evaluation and
optimization methods.
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1 Introduction

Flow lines are production systems which are typically installed for produc-
tion involving high volumes and comparatively low costs. Amongst others,
manufacturers in the automotive and food industries use this manufacturing
concept (Liberopoulos and Tsarouhas, 2002; Li, 2013).

A flow line consists of multiple stations in series. Each station performs man-
ufacturing operations on discrete workpieces that move individually along the
line. The operations at each station are performed either manually by workers
or automated. In both cases, the production processes are typically subject to
both stochastic and time-dependent effects. The stochastic variability of the
time workers need to perform a given manufacturing task can be represented
by random variables. The processing time of automated machines is typically
close to deterministic. However, they are subject to random breakdowns and
successive repairs (Inman, 1999). Time-dependent effects, i.e., parameter
changes over time, e.g., in the random variables, may occur in the production
system itself or may be induced by customers. Time-dependent changes in
the customer demand, e.g, as a result of seasonal patterns, are reported by
Tardif and Maaseidvaag (2001) and Takahashi and Nakamura (2002). A less
explored field is that of time-dependent changes in the production process.
The changes are caused by learning effects during the ramp-up (Terwiesch
and Bohn, 2001) and the introduction of new manufacturing technologies
and machinery (Jaikumar and Bohn, 1992). These effects often improve both
mean and variance of the production process.

Typically, buffers are allocated between stations to compensate for stochastic
effects in the production process. They decouple the stations by storing pro-
cessed workpieces in the event of a long processing time or a breakdown in
the downstream station. If the buffer capacities are finite, blocking may occur,
i.e., the condition in which a station stops processing as it cannot move the
completed workpiece to the downstream buffer. Moreover, the workpieces
stored in the buffers can prevent a station from starving, i.e., a station stops
processing due to a lack of raw material. The adequate allocation of finite
buffer capacities represents a crucial decision. Inadequate or misallocated
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buffer capacities may lead to a reduction in throughput and ultimately to lost
sales, whereas excessively buffer capacities lead to high installation costs and
additional costs originating from WIP stored in the buffers (Gershwin and
Schor, 2000). This WIP produces inventory holding costs as well as oper-
ational risks such as damage, theft, or, in the case of perishable goods, de-
terioration and consequently costs incurred due to scrapping. Burman et al.
(1998) optimized the buffers for the printer production at Hewlett-Packard
and increased revenues by $280 million. Liberopoulos and Tsarouhas (2002)
increased the profit of a Greek food company by $19,150 per week. Their op-
timization of buffer capacities reduced costs for scrapping and overtime and
also yielded additional revenue.

The physical limitation of the number of workpieces arising from finite buffer
capacities can also be deliberately created by control mechanisms, such as
Kanban. The maximum WIP at each stage is limited by the corresponding
number of Kanban cards at each stage. Allocating Kanban cards to stations
means in effect a decision on the buffer capacities. A formal equivalence of
Kanban-controlled flow lines and flow lines with finite buffers is established
by Berkley (1991). Originally introduced by Toyota, Kanban cards also serve
as production authorization (Monden, 1983). Production at each station is
only possible if both WIP and a matching Kanban card are available. Pro-
cessed workpieces are moved jointly with the card to a downstream buffer.
The cards are detached from the workpieces as soon as production on the
following station starts. The cards are then moved to the upstream station to
signal demand for replenishment.

The flexibility of the Kanban control mechanism also permits changes in Kan-
ban allocations, i.e., buffer allocations, to account for time-dependent changes
in the demand and production process. Tardif and Maaseidvaag (2001) pro-
pose to add and capture extra cards in relation to inventory thresholds. Taka-
hashi and Nakamura (2002) use statistical analysis of the demand data to
detect changes in the parameters of the demand distribution. If a parameter
change is detected, the Kanban allocation is adapted in such a way that it
matches the new demand parameters. Both approaches do not take into ac-
count information about future parameter changes. This information can be
made available if parameters are under direct control, e.g., the introduction of
new machinery, or if empirical data allow precise forecasts, e.g., by learning
curves. Here there is an opportunity for further research with the objective
of proactively changing the Kanban allocation to account for time-dependent
parameter changes.
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One way of exploiting the flexibility of Kanbans is to determine time-de-
pendent Kanban allocations in such a way that they minimize the average
WIP in the flow line while maintaining a required service level. This de-
cision problem is hard to solve for two main reasons: First, the stochastic
and time-dependent impacts lead to non-linear changes in performance with
respect to changes of the Kanban allocation. Hence, even with practical ex-
perience, intuition is only of limited help in predicting the outcome of such
changes. Consequently, adequate performance evaluation approaches need to
be developed. Secondly, allowing a time-dependent change means that addi-
tional complexity is added to the already NP-hard Buffer Allocation Problem
(Smith and Cruz, 2005). The large number of candidate allocations makes a
complete enumeration of the solution space impossible even for small prob-
lems. All in all, the evaluation and determination of time-dependent buffer
allocations in stochastic flow lines is a novel and challenging research field
which requires the development of new analytical methods.

Initially, this thesis reviews and classifies the literature on the Buffer Allo-
cation Problem under steady-state conditions and on performance evaluation
approaches for queueing systems with time-dependent parameters. Subse-
quently, new performance evaluation approaches are developed. Finally, a
local search algorithm for the derivation of time-dependent buffer allocations
is proposed. The algorithm is based on numerically observed monotonicity
properties of the system performance in the time-dependent buffer alloca-
tions. Numerical examples illustrate that time-dependent buffer allocations
represent an adequate way of minimizing the average WIP in the flow line
while achieving a desired service level.

Chapter 2 proposes a classification scheme for flow lines and different ver-
sions of the Buffer Allocation Problem. A survey with respect to flow lines
with unreliable machines is conducted. The articles are categorized according
to the introduced classification scheme. Common assumptions, existing test
instances, and existing solution approaches are identified. In many cases the
underlying assumptions of the model and the characteristics of the solutions
obtained are described only insufficiently or not at all. The new classification
scheme is designed to establish a set of characteristics which are required for
systematic numerical comparisons of different solution algorithms. All of the
reviewed flow line models assume steady-state conditions. This article was
written jointly with Sophie Weiss and Raik Stolletz1.

1Weiss, S., J. A. Schwarz, and R. Stolletz (2015). Buffer Allocation Problems for stochastic
flow lines with unreliable machines. In Proceedings of the 10th Conference on Stochastic
Models of Manufacturing and Service Operations, Volos, Greece, pages 271-277
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Chapter 3 introduces a classification scheme for performance evaluation ap-
proaches of queueing systems with time-dependent parameters. The develop-
ment of performance evaluation approaches is often motivated by real-world
problems. Service, IT, and road and air traffic systems are identified as the
main areas of application. The adaption of buffer capacities in response to
time-dependent behavior is investigated only in a single article, in this case in
a call center context. The developed classification scheme groups the existing
literature in accordance with the key ideas of analysis into three main cate-
gories, (i) numerical and analytical solutions, (ii) approximations based on
models with piecewise constant parameters, and (iii) approximations based
on modified system characteristics. The survey reveals that exact analyti-
cal solutions are established only on the basis of restrictive assumptions. In
particular, no exact results are available for systems with finite buffer capac-
ities. Methodological links are established between the different approaches.
These links exist for approaches from the same category of the classification
scheme but also beyond category borders. Moreover, a list of existing numer-
ical comparisons for different approaches is provided to enrich the picture of
the relations between the approaches. The article is the result of joint work
with Gregor Selinka and Raik Stolletz2.

The fourth chapter presents two sampling approaches for the performance
analysis of flow lines with a time-dependent production rate for the first ma-
chine but constant and finite buffer capacities. Sampling approaches replace
random variables by sampled realizations of the random variables which then
allow a deterministic analysis. Insights regarding the time-dependent and
stochastic system can be obtained from sample averages. The first approach
is based on a mixed-integer program (MIP). It captures the discrete nature of
workpieces in the line but approximates the continuous time by discrete-time
intervals. The second approach is based on partial and ordinary differential
equations in continuous time. However, it approximates the discrete work-
piece by establishing a continuum. References for both continuous and dis-
crete material flow models are reviewed. In addition, it is shown that the two
proposed approaches are equivalent, given certain linearity assumptions, and
thereby the two literature streams can be linked. A numerical study demon-
strates the accuracy of both approximations relative to a discrete-event sim-
ulation in continuous time. Moreover, it is shown that buffers do not only
capture stochastic variations but also smooth the time-dependent output in-
duced by a time-dependent processing rate for the first machine. This article

2Schwarz, J. A., G. Selinka, and R. Stolletz (2016). Performance analysis of time-dependent
queueing systems: Survey and classification. Omega (DOI: 10.1016/j.omega.2015.10.013)

4



was written jointly with Simone Göttlich, Sebastian Kühn, and Raik Stolletz3.

Chapter 5 proposes a sample-based evaluation approach for systems with
time-dependent buffer allocations. It introduces the concept of adapting buffer
capacities to account for time-dependent station parameters. Further, the par-
ticular characteristics of a buffer capacity reduction are discussed. A nu-
merical study demonstrates the accuracy of the evaluation approach by com-
parison with a discrete-event simulation. In addition, it provides numerical
evidence that time-dependent buffer allocation can be used to influence key
performance characteristics of flow lines such as WIP and throughput. This
article was written jointly with Raik Stolletz4.

Chapter 6 investigates a serial flow line with finite buffers which serves a
stochastic and time-dependent demand from a finished goods buffer. Each
station of the line is characterized by generally distributed processing times
with time-dependent parameters. We propose time-dependent changes in
buffer capacities utilizing Kanban cards to minimize the required WIP, while
maintaining a predefined γ-service level over a finite planning horizon. We
first report monotonicity results for the service level and the expected aver-
age WIP with respect to time-dependent buffer capacities that are observed in
a numerical study. Based on these observations, a local search algorithm
is developed. The numerical study demonstrates that the generated time-
dependent allocations reduce the required WIP, as compared to constant allo-
cations. Moreover, we test allocation approaches based on steady-state mod-
els and demonstrate that they may lead to infeasibility. This article was writ-
ten jointly with Raik Stolletz5.

The Chapters 2 to 6 may be read independently. Each of the chapters includes
an introduction, a review of the relevant literature, and concluding remarks
for the chapter in question. The references for all chapters are listed in a joint
bibliography. Conclusions and indications for future research based on this
thesis as a whole are provided in Chapter 7.

3Göttlich, S., S. Kühn, J. A. Schwarz, and R. Stolletz (2016). Approximations of time-
dependent unreliable flow lines with finite buffers. Mathematical Methods of Operations
Research (DOI: 10.1007/s00186-015-0529-6)

4Schwarz, J. A. and R. Stolletz (2013). A sampling approach for the analysis of time-dependent
stochastic flow lines. In Proceedings of the 9th Conference on Stochastic Models of Manu-
facturing and Service Operations, Seeon, Germany, 2013, pages 181-188

5Schwarz, J. A. and R. Stolletz (2015). A proactive approach to Kanban allocation in stochastic
flow lines with time-dependent parameters. Working paper
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2 Buffer Allocation Problems for
stochastic flow lines with
unreliable machines

Co-authors:
Sophie Weiss and Raik Stolletz
Chair of Production Management, Business School, University of
Mannheim, Germany

Published in:
Proceedings of the 10th Conference on Stochastic Models of Manufacturing
and Service Operations, Volos, Greece, 2015, pages 271-277

Abstract:
The Buffer Allocation Problem in serial production lines is solved for dif-
ferent objectives, constraints, and assumptions. The aim of this work is to
characterize analyzed production lines with unreliable machines and the un-
derlying decision problems. We investigate unreliable serial lines with finite
intermediate buffers and a single machine per station that processes discrete
material. Moreover, we review existing solution approaches.
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2.1 Introduction

Flow lines process workpieces sequentially on multiple stations. These pro-
duction systems usually have a finite buffer capacity and are frequently used
in manufacturing, in particular in the automotive industry (Tempelmeier, 2003;
Li, 2013). They often experience random processing times, stochastic fail-
ures, and successive repairs. This leads to blocking and starvation which
reduce the throughput of the line. A station starves if it cannot produce due
to a lack of material in the upstream buffer whereas a blocked machine stops
production due to a full downstream buffer. The choice of the total buffer
capacity and its allocation between machines is a key design decision. This is
because buffer capacities are associated with the costs of the buffer itself and
the related work-in-process inventory (WIP) stored in it. The decision on the
buffer capacities and their allocation is well known as the Buffer Allocation
Problem (BAP).

The BAP is a well-researched problem which is hard to solve. On the one
hand, the exact performance evaluation of flow lines is only possible for small
systems under specific assumptions, and on the other hand, the allocation
of buffer capacities is an NP-hard combinatorial problem (Smith and Cruz,
2005). Therefore, exact solutions for the BAP exist only for special cases
(Enginarlar et al., 2005). However, heuristic search algorithms in combina-
tion with approximative evaluation methods are frequently used. The solution
quality of these approaches is typically investigated numerically. Gershwin
and Schor (2000) provide a comprehensive overview of solution approaches
for the BAP published prior to the year 2000.

We provide a survey of the characteristics of the lines for analyzed instances
of the BAP. We focus on unreliable serial lines with finite intermediate buffers
and a single machine per station that processes discrete material (Figure 2.1).

M1 B1 Mi Bi MK BK-1 
… … 

Figure 2.1: Serial production line with K stations (circles) and K − 1 buffers
of capacity Bi (rectangles)

Further, we discuss different problem formulations of the BAP and their so-
lution approaches. We include references that have been published after the
review of Gershwin and Schor (2000).
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The remainder is organized as follows: Section 2.2 provides a classification
of flow line characteristics. Section 2.3 addresses the different versions of the
decision problem and the corresponding solution approaches. Concluding
remarks and suggestions for future research are provided in Section 2.4.

2.2 Classification scheme for characteristics of
flow lines

The key characteristics of serial lines are the number of stations, K , and the
stations’ stochastic properties. A station is characterized by the distribution of
the processing times, the times to failure (TTF), and the times to repair (TTR).
We found the following distributions in the literature: Deterministic (DET),
Exponential (EXP), Erlang (ERL), Rayleigh (RA), Geometric (GEO), Uni-
form (U), Gamma (GAMMA), Normal (NORM), Lognormal (LOGN), and
Bernoulli (BER). We distinguish whether all machines have the same (bal-
anced line) or different properties (unbalanced line). We include references
only if all of these key characteristics are clearly documented with published
parameters for all distributions.

In addition to the key characteristics, a set of assumptions about the flow of
workpieces in the line is required in order to reproduce the dynamics of a flow
line (Dallery and Gershwin, 1992). An assumption has to be made on the sup-
ply of raw material in front of the first machine, which can be unlimited, i.e.,
saturated or limited. Similarly, the demand for finished goods can be a lim-
iting factor or there is a saturated demand. Moreover, the type of blocking
has to be defined. If a buffer is full, the upstream station may either process
an additional workpiece which then remains on the station until space in the
downstream buffer becomes available, i.e., blocking after service (BAS), or
no workpiece enters the machine until a buffer space becomes available, i.e.,
blocking before service (BBS). Unreliable stations can experience operation-
dependent (OD) or time-dependent (TD) failures. In the former case, a station
fails only while it is processing workpieces, while in the latter case, break-
downs occur independent of the operational status. If a failure occurs while
a workpiece is being processed, it has to be specified whether the progress
on the workpiece is conserved or lost. The differentiation becomes obsolete
for exponentially distributed processing times or discrete-time models with
Bernoulli and Geometric failures if the processing time equals the time inter-
val length. In several cases these detailed assumptions are not reported on in
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the surveyed papers. We mark missing information by * and not applicable
categories by - in the tables. Notably, many references lack the required in-
formation to reproduce the instance of the line. Other features receive only
little or no attention and are therefore not included in the table. For example
scrap is only considered by Han and Park (2002). Moreover, correlations in
the processing times are addressed only by Weiss and Stolletz (2015). They
demonstrate that correlations can have a substantial impact on the optimal
buffer allocation. Table 2.1 shows unreliable lines reported in the literature
after the review of Gershwin and Schor (2000).

Table 2.1: Characteristics of unreliable flow lines

Reference N
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Alon et al. (2005) 3,5,6,10 EXP EXP EXP x x x * TD -
5 ERL EXP EXP x x x * TD *

Bekker (2013) 5 EXP EXP EXP x x x * OD -
5 LOGN EXP EXP x x x * OD *

Chiang et al. (2000) 15 DET EXP EXP x x x BBS OD *
Demir et al. (2011) 5,9,10,12,20,40 DET GEO GEO x x * * -
Diamantidis and Papadopoulos (2004) 4-6,10 DET BER BER x x x * OD -
Dolgui et al. (2002) 5 DET EXP EXP x x x * OD *
Dolgui et al. (2007) 5 DET EXP EXP x x x * OD *
Enginarlar et al. (2002) 2-20 DET EXP EXP x x BBS * *

2-20 DET ERL ERL x x BBS * *
2-20 DET RA RA x x BBS * *

Enginarlar et al. (2005) 3-30 DET EXP EXP x x BBS TD *
Gershwin and Schor (2000) 5,10,12,20,30 DET GEO GEO x x x * * -

3,20 DET GEO GEO x x * * -
7 DET EXP EXP x x x * * *

Han and Park (2002) 5,10 DET GEO GEO x x x * * -
5,10 DET GEO GEO x x * * -

Helber (2001) 6 DET GEO GEO x x * OD -
Kim and Lee (2001) 3,8,10 EXP EXP EXP x x x BAS OD x
Kose and Kilincci (2015) 5,10 DET GEO GEO x x x * * -

9,20,40 DET GEO GEO x x * * -
Lee et al. (2009) 5 DET GEO GEO x x x BBS OD -
Lee and Ho (2002) 5,6 EXP EXP EXP x x * * -

5,6 EXP EXP EXP x * * -
Li (2013) 9,20 DET EXP EXP x x x * * *
Massim et al. (2010) 3,5,10 DET EXP EXP x x x * OD *
Matta et al. (2012) 5 DET EXP EXP x x x * OD *

12 DET GEO GEO x x x * OD -
Nahas et al. (2006) 7 DET EXP EXP x x x * * *
Papadopoulos and Vidalis (2001a) 3-6 EXP EXP EXP x x x BAS OD x
Sabuncuoglu et al. (2006) 3,5,10 DET EXP EXP x x * OD x

4-6,8-10 EXP EXP EXP x x x * OD x
4,5,7-10,12 DET EXP EXP x x x * OD x

Savsar (2006) 5 EXP EXP U x x * OD,TD *
7 DET U/EXP/NORM/ U/NORM/ x x x * OD,TD *

ERL/GAMMA LOGN/DET
Shi and Gershwin (2009) 3-6,12 DET GEO GEO x x x * OD -
Shi and Gershwin (2014) 30,70 DET GEO GEO x x * OD -

20 DET GEO GEO x x x * OD -
Shi and Men (2003) 9 DET GEO GEO x x * * -
Tempelmeier (2003) 8,19,23 DET EXP EXP x x x * OD *

14 ERL EXP EXP x x x * OD *
14 EXP EXP EXP x x x * OD -

Weiss and Stolletz (2015) 14,24 DET/ERL EXP EXP x x x BAS OD x
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Two-thirds of the references consider flow lines that are balanced. Processing
times are mostly deterministic with exponentially or geometrically distributed
TTF and TTR. In almost all other cases processing times are exponentially
or Erlang-distributed, again with exponentially distributed TTF and TTR. It
can be observed that OD-failures dominate TD-failures. For the majority
of the references the assumptions on conservation of work during failures
is either not applicable or not addressed. With respect to the supply of the
line, all but one of the articles assume unlimited supply. Lee and Ho (2002)
assume random arrivals with exponentially distributed inter-arrival times. The
blocking policy is often not defined. For the cases in which the blocking
policy is defined, BBS occurs twice as often as BAS.

Some instances of flow lines are used by multiple authors. Kose and Kilincci
(2015), Demir et al. (2011), Lee et al. (2009), and Nahas et al. (2006) use in-
stances of Gershwin and Schor (2000). Instances proposed by Papadopoulos
and Vidalis (2001a) are utilized by Sabuncuoglu et al. (2006). Furthermore,
Bekker (2013), Dolgui et al. (2007), Alon et al. (2005), and Dolgui et al.
(2002) base their choice of instances on Vouros and Papadopoulos (1998).

2.3 Classification scheme for decision problems

The literature encompasses three main versions of the BAP. They all share the
decision on the vector B = (B1,B2, ...,Bi , ...,BK−1), where Bi represents
the capacity of the buffer behind station i .

(i) Primal Problem:

min

K−1∑
i=1

Bi (2.1a)

s.t.
E[Th(B)] ≥ Th∗ (2.1b)
Bi ∈ N0, 1 ≤ i ≤ K − 1 (2.1c)

The objective of the primal problem is to minimize the total buffer capacity in
the line while ensuring that the expected throughput, E[Th(B)], equals or ex-
ceeds a given desired throughput, Th∗. Th∗ is usually selected as percentage
of the theoretically achievable throughput in a line with infinite buffers.
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(ii) Dual Problem:

max E[Th(B)] (2.2a)
s.t.

K−1∑
i=1

Bi = Btot (2.2b)

Bi ∈ N0, 1 ≤ i ≤ K − 1 (2.2c)

The dual problem with respect to the introduced primal (2.1) is the maxi-
mization of the expected throughput subject to the total buffer capacity, Btot ,
available in the line. The value of Btot is usually given by space requirements
on the shop floor. However, the dual problem may also be used to solve the
primal problem by repetitively solving the dual for several values of total
buffer capacities (Lee et al., 2009; Tempelmeier, 2003).

(iii) Profit Problem:

max Profit = αE[Th(B)] − β E[WIP(B)]− γ
K−1∑
i=1

Bi (2.3a)

s.t.

K−1∑
i=1

Bi ≤ Btot (2.3b)

E[Th(B)] ≥ Th∗ (2.3c)
Bi ∈ N0, 1 ≤ i ≤ K − 1 (2.3d)

An attempt to directly balance the economic benefits of throughput with the
buffer-related costs in the objective function is the profit problem. It uses
weightings α, β, and γ to convert the technical measures of expected through-
put, expected WIP, and buffer capacities into monetary units. The objective
is to maximize the profit resulting from the gained revenue under the consid-
eration of costs for the buffer capacities and the WIP stored in them. There
is a constrained and an unconstrained version of the profit problem, i.e., Con-
straints (2.3b) and (2.3c) are not necessarily part of the decision problem. In
the references considered, the parameters α, β, and γ are chosen without a
direct link to empirical data.
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(iv) Other Problems:

The works of Kim and Lee (2001) and Lee and Ho (2002) consider special
cases of the BAP. Kim and Lee (2001) solely focus on the cost originating
from the expected WIP, whereas Lee and Ho (2002) omit WIP-related costs
and include costs for occurring throughput losses. Helber (2001) emphasizes
that cash flows from revenue and investments in buffer capacities have differ-
ent time scales. Thus, Helber (2001) suggests the use of a net present value
approach. The problems introduced so far are all based on a single objective.
Another idea is a multi-objective function. This approach delivers pareto-
optimal solutions. Bekker (2013) employs this concept for the conflicting
goals of throughput and WIP.

Table 2.2 lists the types of decision problems and the solution approaches
that can be found in the literature. Most of the references address the primal
or the dual problem. Both are addressed equally often. The minority of the
references covers the optimization of profits.

The solution approaches for the BAP include a generative and an evaluative
part. The generative method selects candidate solutions which have to be
evaluated. The evaluation method determines the performance of the line,
e.g., expected throughput or expected WIP, for a given buffer allocation.
Sometimes integrated approaches are applied. Weiss and Stolletz (2015) use
a Benders Decomposition approach which is based on a mixed-integer pro-
gramming formulation. In this special case, the corresponding master- and
subproblem divide the approach into an integer programming-based gener-
ative and an evaluative method. An approach only delivers exact solutions
if the generative and the evaluative part are both exact. Note that the sim-
ulation result converges to the exact solution if the length of the simulation
run or the number of replications is chosen large enough. We therefore mark
simulation with (x) in the table. Exact results for both, the generative and
the evaluative method, are obtained only for two-machine lines (Enginarlar
et al., 2002, 2005). For long simulation runs, Weiss and Stolletz (2015) also
provide exact results. Metaheuristics, such as Genetic algorithms (GA), tabu
search (TS), and artificial neural networks (ANN) are developed mainly for
the dual problem. In contrast, rule-based allocation strategies and search al-
gorithms are often employed for the primal problem. Maximization of profit
functions is mainly addressed by genetic algorithms and gradient methods.
Evaluation approaches are typically based on simulation, decomposition, and
aggregation.
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Table 2.2: Characteristics of the decision problems
Decision
Problem

Solution Approach

Reference Pr
im

al

D
ua

l

Pr
ofi

t

O
th

er
s

Generative method E
xa

ct

Evaluation method E
xa

ct

Alon et al. (2005) x Alias method based on cross entropy Simulation (x)
Bekker (2013) x Cross entropy method Simulation (x)
Chiang et al. (2000) x Rule of thumb Aggregation
Demir et al. (2011) x TS DDX

x Binary search and TS DDX
Diamantidis and
Papadopoulos (2004)

x Dynamic Programming Aggregation

Dolgui et al. (2002) x GA Aggregation
Dolgui et al. (2007) x Hybrid GA and Branch and Bound Aggregation
Enginarlar et al. (2002) x Analytical solution x Analytical solution x

x Buffer allocation rule -
Enginarlar et al. (2005) x Analytical solution x Analytical solution x

x Analytical solution x Aggregation
x Buffer allocation rule -

Gershwin and Schor (2000) x Search algorithm DDX/ADDX
x Gradient algorithm DDX/ADDX

x Gradient algorithm DDX/ADDX
Han and Park (2002) x Steepest descent with penalty function Aggregation
Helber (2001) x Gradient algorithm Decomposition
Kim and Lee (2001) x Local search Decomposition
Kose and Kilincci (2015) x Hybrid GA and Simulated Annealing Simulation (x)
Lee et al. (2009) x ANN and GA Simulation (x)
Lee and Ho (2002) x Modified responds surface methodology Simulation (x)
Li (2013) x Bottleneck-based iterative approach Approx. analytical formula
Massim et al. (2010) x Artificial immune algorithm DDX
Matta et al. (2012) x Numerical optimization technique Kriging approximation
Nahas et al. (2006) x Degraded ceiling approach ADDX
Papadopoulos and Vidalis
(2001a)

x Sectioning approach Markovian state model

Sabuncuoglu et al. (2006) x Search algorithm Simulation (x)
Savsar (2006) x Enumeration Simulation (x)
Shi and Gershwin (2009) x Gradient method Decomposition
Shi and Gershwin (2014) x Gradient method with segmentation Decomposition
Shi and Men (2003) x Hybrid nested partition and TS DDX
Tempelmeier (2003) x Search algorithm and gradient-based search ADDX

x Gradient-based search ADDX
Weiss and Stolletz (2015) x Integer program x Simulation (x)

2.4 Conclusion and future research

We introduce a classification scheme that is used to describe existing unreli-
able flow lines for which the BAP is solved in its different problem formula-
tions. Common assumptions are unlimited supply and an infinite last buffer.
Failure type, conservation of work, and blocking type are only reported on
insufficiently. Most of the references consider the primal and the dual prob-
lem. The maximization of a profit function is only considered in few cases.
The corresponding solution approaches are mostly heuristic for both the gen-
erative and the evaluation part. Although some instances are used in several
publications, there is a need for a library of sample instances with a com-
plete description of the line characteristics and the allocations obtained with
different solution approaches.
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Abstract:
Many queueing systems are subject to time-dependent changes in system pa-
rameters, such as the arrival rate or number of servers. Examples include
time-dependent call volumes and agents at inbound call centers, time-varying
air traffic at airports, time-dependent truck arrival rates at seaports, and cyclic
message volumes in computer systems.

There are several approaches for the performance analysis of queueing sys-
tems with deterministic parameter changes over time. In this survey, we
develop a classification scheme that groups these approaches according to
their underlying key ideas into (i) numerical and analytical solutions, (ii) ap-
proaches based on models with piecewise constant parameters, and (iii) ap-
proaches based on modified system characteristics. Additionally, we identify
links between the different approaches and provide a survey of applications
that are categorized into service, road and air traffic, and IT systems.
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3.1 Introduction

Many queueing systems feature time-dependent changes in parameters. Ex-
amples of non-stationary parameters, such as the arrival rate or number of
servers, include time-dependent call volumes and agents at inbound call cen-
ters, time-varying air traffic at airports, non-stationary truck arrival rates at
container terminals, and cyclic message volumes in IT systems. Because
these time-dependent parameter changes can have a substantial impact on a
queueing system’s performance, they must be considered in the design and
control of such systems.

In this article, we classify performance evaluation methods for single-stage
queueing systems with time-dependent but deterministic parameter changes.
While such systems are also called non-stationary, time-varying, time-inhomo-
geneous, or non-homogeneous queueing systems, we solely use the term
time-dependent queueing systems.

The analysis of time-dependent queueing systems has a long tradition dat-
ing back to Kolmogorov (1931). Since then, the practical relevance of such
systems has stimulated increasing interest in various research areas, includ-
ing mathematics, computer science, and operations management. Such an
analysis itself is difficult since common relations for steady-state queueing
systems, such as Little’s law, must be reformulated (Bertsimas and Mourtzi-
nou, 1997).

The contribution of the present work is a survey and classification of the
literature on performance evaluation approaches for time-dependent queue-
ing systems and their applications. Additionally, links between different ap-
proaches are identified and discussed.

The remainder of this paper is organized as follows. The scope of the survey
and the classification scheme are introduced in Section 3.2. In Section 3.3,
approaches for the analytical treatment of time-dependent queueing systems
are reviewed and classified according to the developed scheme. A visualiza-
tion of links between the approaches and a review of numerical studies that
compare several methods are provided in Section 3.4. Areas of application
and their unique characteristics are described in Section 3.5. In Section 3.6,
concluding remarks and areas for future research are provided.
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3.2 Scope and classification scheme

The survey presented in this paper reviews and classifies approaches for the
time-dependent performance evaluation of single-stage queueing systems with-
out spatial dimension, known as point queues, that include

• abandonments and retrials,

• arrivals from an infinite population that are served individually by a
single server or one of multiple parallel servers (for a treatment of fi-
nite source systems, see e.g. Alfa (1979), Chung and Min (2014), and
references within),

• waiting rooms larger or equal to one (i.e., waiting or loss-waiting sys-
tems; for a recent but incomplete survey of time-dependent loss queues,
see Alnowibet and Perros (2006)),

• and deterministic system parameters that change over time (the tran-
sient analysis of systems with constant parameters is addressed, e.g.,
by Van de Coevering (1995), Tarabia (2000), and references within).

We survey approaches that allow for the performance analysis of arbitrary
time instances. Discrete-event simulation is also applied for time-dependent
performance evaluation. However, it is associated with a simulation error.
This error can be reduced by an increase in the number of replications at the
price of increasing run times (Nasr and Taaffe, 2013). Moreover, structural
system properties remain intractable. Thus, the survey comprises only ap-
proaches which do not require the generation of random numbers.

We identify three main categories of evaluation approaches: the first cate-
gory comprises numerical and analytical solution approaches for systems of
equations that describe the time-dependent behavior of a queueing system
(Section 3.3.1); the second category includes approaches that assume piece-
wise constant parameters and that apply stationary or transient models (Sec-
tion 3.3.2); and the third category includes approximation methods that mod-
ify the number of servers or properties of the processed jobs (Section 3.3.3).
Figure 3.1 presents our classification scheme including these categories and
all evaluation approaches reviewed in this work. In the corresponding sec-
tions, each approach is described in terms of its key idea, its chronological
development, and its advantages and limitations. These descriptions include
only references that develop or methodologically extend an approach.
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All surveyed references together with the characteristics of the analyzed queue-
ing systems are listed in Tables 3.2, 3.3, and 3.5 to 3.10. For each reference
that considers several queueing systems, the characteristics of the most gen-
eral one are given. The references are sorted chronologically for each ap-
proach. The notation used in the following sections is provided in Table 3.1.

Table 3.1: Notation

Model description

λ Arrival rate
X Arriving batch size distribution
c Number of parallel servers
µ Processing rate
Y Batch service size distribution
s Max. no. of jobs served by a batch server
ρ = λ

cµ Traffic intensity
K Maximum no. of jobs in the system
PPrio Preemptive priority
NPPrio Non-preemptive priority
t Time parameter
(·)’ Derivatives with respect to time

Performance measures

U Utilization
LQ No. of jobs in the queue
LS No. of jobs in the system
WQ Waiting time of a job
W S Sojourn time of a job

Probabilities

Pn = P(LS = n) Probability of n jobs in the system
Pw = P(WQ > 0) Probability of waiting
P = (P0,P1, ...) Vector of state probabilities

The development of approaches for the performance evaluation is often driven
by real-world problems. Hence, many articles include both, an evaluation ap-
proach and its application to a real-world problem. The classification accord-
ing to the area of application considers the references that include a detailed
description of a specific application accompanied by a numerical study. The
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reviewed applications of the approaches are divided into the areas of service
systems (Section 3.5.1), road and air traffic systems (Section 3.5.2), and IT
systems (Section 3.5.3).

3.3 Performance evaluation approaches

3.3.1 Numerical and analytical solutions

The Chapman-Kolmogorov equations (CKEs) compose a set of differential
equations (DEs) that describes the dynamic behavior of a Markovian queue-
ing system. For an M (t)/M (t)/c system, the DEs are given as

P ′0(t) =µ(t)P1(t)− λ(t)P0(t), n = 0

P ′n(t) =(n + 1)µ(t)Pn+1(t) + λ(t)Pn−1(t)

− (λ(t) + nµ(t))Pn(t), 1 ≤ n < c

P ′n(t) =cµ(t)Pn+1(t) + λ(t)Pn−1(t)− (λ(t) + cµ(t))Pn(t), n ≥ c.
(3.1)

Analytical solutions for these DEs exist only for special cases, e.g., c = ∞.
However, solutions can be obtained numerically by using the Euler method
or a Runge Kutta scheme. Systems with an infinite waiting room result in
an infinite number of DEs. Kolesar et al. (1975) suggest approximating such
systems by using a system with a finite but sufficiently large waiting room.

The CKEs are introduced by Kolmogorov (1931) for an M (t)/M /c system.
The numerical solution of the CKEs is used for the performance evaluation
of an M (t)/M /1/K system by Koopman (1972), an M (t)/M (t)/1/K sys-
tem with two separate queues and a common server by Bookbinder (1986),
and a multi-class M (t)/M (t)/1/K/NPPrio system by Van As (1986). In
addition, the numerical solution is used in the evaluation part of optimization
algorithms, e.g., by Parlar (1984) and Nozari (1985), as well as in the dy-
namic programming approaches of Bookbinder and Martell (1979) and Jung
and Lee (1989b).

The numerical solution for the CKEs has the advantage that the complete
time-dependent distribution of the state probabilities is obtained. Thus, this
solution can be used to calculate relevant quantiles (Ingolfsson et al., 2002).
However, the main disadvantages are that the solution approach applies only
to Markovian systems and has long computation times (Ingolfsson et al., 2007).
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Approximation approaches are proposed to reduce computation times. In-
stead of solving the CKEs directly, Escobar et al. (2002) suggest first reduc-
ing the state space of an M (t)/Ek (t)/c/K system as an approximation of the
original state space and then solving the reduced number of DEs numerically.

Another widely used approach for reducing the computational effort is the
closure approximation or surrogate distribution approximation (SDA).
In this approach, the large or infinite number of CKEs is replaced by a small
number of DEs for the moments of the distribution of the number of jobs
in the system. The k -th moment differential equation (MDE) is obtained
by summation of the differential equations in (3.1), each multiplied by nk .
The differential equations for the first moment E[LS (t)] and the variance
Var[LS (t)] of an M (t)/M (t)/c system are given by

E[LS (t)]′ =

∞∑
n=0

n · P ′n(t) = λ(t)− c · µ(t) + µ(t) ·
c−1∑
n=0

(c − n) · Pn(t),

(3.2)

Var[LS (t)]′ =

∞∑
n=0

(
n − E[LS (t)]

)2 · P ′n(t)

=

∞∑
n=0

n2 · P ′n(t)− 2 · E[LS (t)] ·
∞∑

n=0

n · P ′n(t)

= λ(t) + c · µ(t)− µ(t) ·
c−1∑
n=0

(c − n) · Pn(t) ·
(
2 · E[LS (t)] + 1− 2 · n

)
.

(3.3)

MDEs (3.2) and (3.3) are independent of the maximum number of jobs in the
system. Hence, systems with a large or infinite waiting room can be analyzed
efficiently. However, to solve these MDEs, the time-dependent state probabil-
ities Pn(t) must be known. They are assumed to follow a certain distribution
that closes the set of MDEs. This surrogate distribution is always chosen
such that its first and second moments match E[LS (t)] and Var[LS (t)], re-
spectively. The closed MDEs can then be solved numerically.

The idea of focusing on the analysis of MDEs is used in an earlier study by
Clarke (1956). However, Rider (1976) reports the first attempt to approxi-
mate the expected queue length of an M (t)/M (t)/1 system with a closure
for the probability of an idling server. Since then, different types of distri-
butions have been used as a surrogate distribution. For instance, Rothkopf
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and Oren (1979) use the negative binomial distribution for the number of
jobs in an M (t)/M (t)/c system. Clark (1981) shows that the Polya Eggen-
berger distribution yields superior results for the same type of system. The
Polya Eggenberger distribution is also used for priority queues by Taaffe and
Clark (1988) and phase-type arrival and service processes by Ong and Taaffe
(1988). These models go along with an increased state space. Taaffe and
Ong (1987) introduce state-space partitioning to handle the growing state
space. Instead of using a single SDA for the complete state space, the ap-
proximation quality is improved by introducing subspaces and allowing for
different surrogate distributions depending on the respective subspaces. Lau
and Song (2008) analyze a queue with multiple job classes by first aggregat-
ing the classes, then applying the model of Rothkopf and Oren (1979), and
subsequently disaggregating the results again. Pender (2014a) uses the Pois-
son distribution as a surrogate distribution and obtains a closed-form solution
for E[LS (t)]. To improve the quality of the approximation of Var[LS (t)], he
suggests a truncated Poisson-Charlier polynomial expansion. In an approach
unlike the other approaches, Massey and Pender (2013) propose using a con-
tinuous distribution for the approximation of the queueing process. Thereby,
they derive the so-called Gaussian-variance and Gaussian-skewness approx-
imations. These approaches are complemented by the approach of Pender
(2014b), who includes the fourth MDE, reflecting the kurtosis of the queue
length distribution, in his approximation based on a Gram Charlier expansion.

A key idea of the SDA is to calculate only moments of a distribution. Thus,
the performance analysis is limited to these moments. Typically, the first and
second moments of the number of jobs in the system are calculated. The SDA
requires the Markov property for the arrival and service process. However, the
use of phase-type distributions allows for the analysis of different coefficients
of variations (Taaffe and Clark, 1988). This comes at the cost of an increased,
but still limited, number of DEs (Ong and Taaffe, 1988).

Markovian queueing systems are often described by generating functions that
can often be reduced to an integral equation or formulations that include
modified Bessel functions. These evaluation approaches are known as semi-
analytical, semi- numerical (SASN) approaches (Tan et al., 2013). A survey
and numerical comparison of early SASN approaches is provided by Leese
and Boyd (1966).

Clarke (1956) obtains a Volterra-type integral equation for the probability
of an empty system in an M (t)/M (t)/1 system. An explicit solution is
found for the special case of a constant relation λ(t)/µ(t). The approaches
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of Luchak (1956) and Luchak (1957) involve Taylor expansions to obtain the
probability of jobs in the system and the busy period of an
M (t)/PH (t)/1 system, respectively. Rosenlund (1976) studies the busy
period of an M (t)X /G/1 system with batch arrivals distributed according
to X . The system also features balking, i.e., arriving jobs join the queue
only with a certain probability. Lyubarskii (1982) obtains the busy period
of a G(t)/G(t)/1 system as a two-dimensional Volterra integral equation.
Wragg (1963) and Zhang and Coyle (1991) find the complete state probability
distribution of an M (t)/M (t)/1 system as a solution of integral equations.
Stadje (1990) develops a solution approach for the M (t)/M (t)/2 system that
is similar to the approach of Clarke (1956). A multi-server M (t)/M (t)/c
system is analyzed by Margolius (1999). Margolius (2005) derives integral
equations for the probability distribution of jobs in an M (t)/M (t)/c(t) sys-
tem. By considering quasi-birth-and-death processes, Margolius (2007) gen-
eralizes her results to phase-type distributions and establishes a connection
with matrix analytic methods (Margolius, 2008). Al-Seedy et al. (2009) ex-
tend the analysis of M (t)/M (t)/1 systems by incorporating time-dependent
balking. For a special structure of λ(t) and µ(t), Al-Seedy and Al-Ibraheem
(2003) and El-Sherbiny (2010) obtain the probability distribution of LS (t) in
an M (t)/M (t)/∞ system.

Nelson and Taaffe (2004) derive a quasi-closed form of MDEs that describes
the expected number E[LS (t)] and the variance Var[LS (t)] of jobs in the sys-
tem in a PH (t)/PH (t)/∞ system and integrate them numerically. Similarly,
Nasr and Taaffe (2013) derive quasi-closed MDEs for the first and second mo-
ments of the departure process of a PH (t)/M (t)/c/K system. In contrast
to the SDA, the partial-moment differential equations that are used to close
the MDEs are exact.

Table 3.2 summarizes the references that use a numerical solution approach
and links them to the considered queueing systems. It becomes apparent
that the approaches are applicable to a wide range of queueing systems with
features such as priorities and abandonments. However, the numerical solu-
tions of the CKEs and the SDA exploit the Markovian property. Notably,
Czachórski et al. (2009) use the CKE approach only for the special case
of exponential distributions, and Rothkopf and Johnston (1982) analyze an
M (t)/M /1 system and then scale the results according to the Polaczek-
Kintchine formula to integrate general service times.
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Table 3.2: Numerical solution approaches
Reference Queueing system

Numerical solution of the CKEs

Kolmogorov (1931) M (t) / M / c
Leese and Boyd (1966) M (t) / M / 1
Koopman (1972) M (t) / M / 1 / K
Kolesar et al. (1975) M (t) / M (t) / c(t)
Rider (1976) M (t) / M (t) / 1
Bookbinder and Martell (1979) M (t) / M / c / K
Rothkopf and Oren (1979) M (t) / M (t) / c
Clark (1981) M (t) / M (t) / c
Parlar (1984) M (t) / M (t) / c / K
Nozari (1985) M (t) / M / c
Bookbinder (1986) M (t) / M (t) / 1 / K
Van As (1986) M (t) / M / 1 / K / NPPrio
Taaffe and Ong (1987) PH (t) / M (t) / c / K
Ong and Taaffe (1988) PH (t) / PH (t) / 1 / K
Taaffe and Clark (1988) M (t) / M (t) / 1 / K / NPPrio
Jung and Lee (1989b) M (t) / M / c(t)
Tipper and Sundareshan (1990) M (t) / M / 1
Green and Kolesar (1991) M (t) / M / c
Green et al. (1991) M (t) / M / c
Jung (1993) M (t) / M / c
Green and Kolesar (1995) M (t) / M / c
Green and Kolesar (1997) M (t) / M / c
Massey and Whitt (1997) M (t) / M / c
Escobar et al. (2002) M (t) / Ek (t) / c / K
Ingolfsson et al. (2002) M (t) / M / c(t) / K
Ingolfsson et al. (2007) M (t) / M / c(t)
Czachórski et al. (2009) G(t) / G / 1 / K / PPrio
Gillard and Knight (2014) M (t) / M / c(t)
Jacquillat and Odoni (2015) M (t) / Ek (t) / 1

Surrogate distribution approximation (SDA)

Rider (1976) M (t) / M (t) / 1
Rothkopf and Oren (1979) M (t) / M (t) / c
Clark (1981) M (t) / M (t) / c
Rothkopf and Johnston (1982) M (t) / G / 1
Taaffe and Ong (1987) PH (t) / M (t) / c / K
Ong and Taaffe (1988) PH (t) / PH (t) / 1 / K
Taaffe and Clark (1988) M (t) / M (t) / 1 / K / NPPrio
Ingolfsson et al. (2007) M (t) / M / c(t)
Lau and Song (2008) M (t) / M / c
Massey and Pender (2013) M (t) / M / c(t) + M
Pender (2014a) M (t) / M (t) / c(t) + M (t)
Pender (2014b) M (t) / M (t) / c(t) + M (t)

Semi-analytical, semi-numerical approaches (SASN)

Clarke (1956) M (t) / M (t) / 1
Luchak (1956) M (t) / PH (t) / 1
Luchak (1957) M (t) / PH (t) / 1
Wragg (1963) M (t) / M (t) / 1
Leese and Boyd (1966) M (t) / M / 1
Rosenlund (1976) M (t)X / G / 1
Lyubarskii (1982) G(t) / G(t) / 1
Stadje (1990) M (t) / M (t) / 2
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Table 3.2: Numerical solution approaches - continued
Zhang and Coyle (1991) M (t) / M (t) / 1
Margolius (1999) M (t) / M (t) / c
Al-Seedy and Al-Ibraheem (2003) M (t) / M (t) / ∞
Nelson and Taaffe (2004) PH (t) / PH (t) / ∞
Margolius (2005) M (t) / M (t) / c

M (t) / M / c(t)
Margolius (2007) PH (t) / M (t) / 1
Margolius (2008) M (t) / Ek / 1

M (t) / M (t) / 1
Al-Seedy et al. (2009) M (t) / M (t) / 1
El-Sherbiny (2010) M (t) / M (t) / ∞
Nasr and Taaffe (2013) PH (t) / M (t) / c / K

Analytical results and explicit solutions (EXPL) for time-dependent queue-
ing systems exist only for special system configurations and usually cannot
be generalized.

Palm (1943) and Khintchine (1969) show that in an M (t)/M /∞ system,
the number of jobs LS (t) is Poisson distributed for a queueing system which
started operating in the distant past. Newell (1966) extends the results to
general service times. Ramakrishnan (1980) provides a simple argument for
these findings for the special case of deterministic service times. Sharma and
Gupta (1983) consider an M (t)/PH /∞ system and prove that LS (t) is Pois-
son distributed if it follows a Poisson distribution at the beginning of the time
horizon. For exponentially distributed service times and a given number of
jobs at t = 0, Thakur et al. (1972) derive the mean and variance of LS (t).
Abol’nikov (1968) obtains the generating function for the number of jobs in
an M (t)X /M /∞ system and uses it to derive E[LS (t)]. Shanbhag (1966)
studies an M (t)X /G/∞ system and confirms that LS (t) is a Poisson pro-
cess for the special case of an initially empty system and P(X = 1) = 1, i.e.,
all jobs arrive individually. Carrillo (1991) and Eick et al. (1993b) review
reported analytical results with respect to the M (t)/G/∞ system. In addi-
tion, Eick et al. (1993b) highlight that in contrast to the stationary case, LS (t)
depends on the service time distribution beyond its mean.

Brown and Ross (1969), Purdue (1974a), and Purdue (1974b) extend the anal-
ysis to time-dependent service time distributions. Brown and Ross (1969)
show that for the M (t)X (t)/G(t)/∞ system, LS (t) and the number of de-
partures DS ,c(t) up to time t follow a compound Poisson process. Purdue
(1974b) and Foley (1982) demonstrate that LS (t) and DS ,c(t) correspond
to Poisson processes if the system is initially empty and if batch arrivals are
omitted. McCalla and Whitt (2002) derive an explicit formula for E[LS (t)]
in a G(t)X (t)/G(t)/∞ system and propose an approximation for the distri-
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bution of LS (t), since it is not a Poisson distribution.

Several authors focus on the analysis of the M (t)/M (t)/∞ system. Purdue
(1974a) obtains the mean and variance of LS (t), given the initial distribution
of jobs LS (0). For the special case of an initially empty or Poisson-distributed
number of jobs in the system, Collings and Stoneman (1976) confirm that
LS (t) is Poisson distributed. Additionally, Kambo and Bhalaik (1979) ob-
tain the joint probability distribution of LS (t) and DS ,c(t), which is used
to derive the time-dependent mean and variance of both LS (t) and DS ,c(t).
Seemingly unaware of the previous findings, Ellis (2010) derives the same
formulas for E[LS (t)] and Var[LS (t)] as obtained earlier by Kambo and Bha-
laik (1979). Both Ellis (2010) and Kambo and Bhalaik (1979) demonstrate
that the expected number of jobs in the system can be described by DE (3.4)
with solution (3.5)

E[LS (t)]′ = λ(t)− µ(t) · E[LS (t)], (3.4)

E[LS (t)] = E[LS (0)] · e−
∫ t
0
µ(τ)dτ + e−

∫ t
0
µ(τ)dτ ·

t∫
0

λ(τ)e
∫ τ
0
µ(r)drdτ.

(3.5)
Thakur and Rescigno (1978) establish that solution (3.5) for a stochastic sys-
tem is equivalent to the solution for a D(t)/D(t)/∞ system.

Dai (1998) derives bounds on the moment-generating function of LS (t) for an
M (t)/M (t)/1 system and discusses bounds on E[LS (t)]. Knessl and Yang
(2002) obtain explicit results for an M (t)/M (t)/1 system given a special
form of the traffic intensity. Green and Soares (2007) find exact formulas
for the probability P(WQ(t) > w) of waiting longer than w time units in an
M (t)/M /c(t) system under the assumption that the state probabilities Pn(t)
are known and that a maximum of one change in the number of servers occurs
in the interval under consideration. For the case of more than one change, they
propose approximation formulas. Kim and Ha (2012) exploit the property
that the explicit solution for an M (t)/M /∞ system can be used to model an
M (t)/M /c(t) + M system with Poisson abandonments if the abandonment
rate equals the service rate.

Except for four references in Table 3.3, all the references report results for
infinite-server systems. In addition, all but one of the analyzed queueing
systems share the property of a Poisson arrival process with time-dependent
rate.
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Table 3.3: Analytical results and explicit solutions (EXPL)

Reference Queueing system

Palm (1943) M (t) / M / ∞
Newell (1966) M (t) / G / ∞
Shanbhag (1966) M (t)X / G / ∞
Abol’nikov (1968) M (t)X / M / ∞
Brown and Ross (1969) M (t)X(t) / G(t) / ∞
Khintchine (1969) M (t) / M / ∞
Thakur et al. (1972) M (t) / M / ∞
Purdue (1974a) M (t) / M (t) / ∞
Purdue (1974b) M (t) / G(t) / ∞
Collings and Stoneman (1976) M (t) / M (t) / ∞
Thakur and Rescigno (1978) M (t) / M (t) / ∞
Kambo and Bhalaik (1979) M (t) / M (t) / ∞
Ramakrishnan (1980) M (t) / D / ∞
Foley (1982) M (t) / G(t) / ∞
Sharma and Gupta (1983) M (t) / PH (t) / ∞
Eick et al. (1993a) M (t) / G / ∞
Eick et al. (1993b) M (t) / G / ∞
Dai (1998) M (t) / M (t) / 1
Green and Kolesar (1998) M (t) / G / ∞
Knessl and Yang (2002) M (t) / M (t) / 1
McCalla and Whitt (2002) G(t)X(t) / G(t) / ∞
Buczkowski and Kulkarni (2006) M (t) / G / ∞
Green and Soares (2007) M (t) / M / c(t)
Ellis (2010) M (t) / M (t) / ∞
Kuraya et al. (2011) M (t) / M / ∞
Kim and Ha (2012) M (t) / M / c(t) + M

3.3.2 Approaches based on models with piecewise constant
parameters

3.3.2.1 Piecewise stationary models with independent periods

This set of approaches divides the overall time horizon T into intervals for
which constant input parameters are assumed. The performance in each in-
terval [ai , bi ] (i = 1, 2, ..., I ) is then analyzed independently by using steady-
state formulas. The approaches differ in the length l of the analyzed intervals
and the determination of the input parameters in the corresponding perfor-
mance calculations (see Table 3.4 for the case of a time-dependent arrival
rate λ(t)).
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The simple stationary approximation (SSA) averages the system parame-
ters over the complete time horizon. Green et al. (1991) apply this approach
to systems with periodic time-dependent input parameters. The simple peak
epoch approximation (SPEA) approximates the time-dependent performance
based on the stationary performance by using the instantaneous peak input
parameters. In a similar way, the simple peak hour approximation (SPHA)
divides the time horizon into intervals and uses the input parameters of the
peak interval as inputs in the performance calculation. Both concepts are
used by Green and Kolesar (1995) for an M (t)/M /c system and by Green
and Kolesar (1998) for an M (t)/M /∞ system, each with a periodic input
arrival rate.

Shorter intervals are used by the stationary independent period-by-period
approximation (SIPP). Therein, the SIPP Avg considers the average over
an interval; the SIPP Max, the maximum; and the SIPP Mix, a combination
of the mean and maximum as inputs in the performance calculations. The
lagged versions of the SIPP incorporate a time lag of one expected service
time between the input parameters and the resulting system performance.

The interval length is set to l = 0 in the pointwise stationary approxima-
tion (PSA). Here, the instantaneous parameter values serve as inputs in the
performance calculation. Similar to the Lag SIPP, the Lagged PSA considers
a time lag between the input parameters and the resulting performance val-
ues. The average stationary approximation (ASA) uses the mean value over
the preceding interval [t − 1

µ , t ] as the input in the performance calculation
at time t . In the similar effective arrival rate approximation (EAA), the con-
sidered interval of input parameters is additionally shifted backward in time
by the expected waiting time. The recent approximation (RA) calculates a
weighted average of the parameters up to time t with weight factor δ. This
approach is applied to infinite-server queues with dependencies among suc-
cessive service times indicated by superscript D in the Kendall notation (Pang
and Whitt, 2012a). A peak epoch analysis of a periodic M (t)/M /c system is
performed by Green and Kolesar (1997) with a lagged PSA, which considers
the difference between the time of the peak value of the probability of delay
when the standard PSA is applied and the time of the real peak value.

The main advantage of the approaches described in this subsection is their
low computational complexity, especially when closed-form steady-state so-
lutions exist for the considered system configuration (Ingolfsson et al., 2007).
However, any transient behavior within an evaluation interval is neglected,
which results in approximation errors, especially for highly utilized systems
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in which long transient phases occur until the steady state is reached (Green
and Kolesar, 1991). Further approximation errors result from the independent
analysis of consecutive intervals, as a high number of waiting jobs at the end
of one interval, e.g., has a substantial impact on the expected waiting time
in the subsequent interval. The approaches cannot be used for the analysis of
overloaded systems if no steady state exists (Jiménez and Koole, 2004). Whitt
(1991) shows that the PSA is asymptotically correct for an M (t)/M (t)/c
system if the arrival and service rates increase with constant traffic intensity
(compare with uniform acceleration in Section 3.3.3.2). The accuracy of the
PSA for an M (t)/M /c system with and without abandonments is analyzed
by Steckley and Henderson (2007). Eick et al. (1993a) analyze the SSA and
the PSA for infinite-server queueing systems with periodic arrival rate and
compare their results with the exact solutions.

An overview of the literature on the evaluation approaches described in this
subsection is presented in Table 3.5. The approaches are applicable to a wide
range of system characteristics, including abandonments and heterogeneities.
However, most analyzed systems consider Poisson arrivals, and many con-
sider exponentially distributed service times.

3.3.2.2 Piecewise stationary models with linked periods

Similar to the approaches described in Section 3.3.2.1, the stationary backlog-
carryover approximation (SBC) divides the overall time horizon into in-
tervals and applies steady-state formulas. However, backlogs of non-served
arrivals within an interval are carried over to the succeeding interval and are
then considered in its performance evaluation.

Each interval is analyzed in two steps. In the first step, a loss system is
assumed to calculate a backlog of unserved arrivals based on the lost jobs.
These unserved arrivals are carried over to the successive interval. In the
backlog calculation, the actual arrivals and the backlog of arrivals carried
over from the previous interval are used as the input. In the second step, the
performance measures are calculated based on the steady-state model of the
corresponding waiting system. Here, a modified arrival rate is chosen such
that the utilization of the waiting system equals the utilization of the loss sys-
tem, as approximated in the first step.
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Table 3.5: Approaches based on piecewise stationary models (independent
periods)

Reference Queueing system

Kolesar et al. (1975) M (t) / M (t) / c(t)
Foote (1976) M (t) / M / c(t)
Rider (1976) M (t) / M (t) / 1
Curry et al. (1978) M (t) / M / c
Newell (1979) M (t) / D / 1
Kolesar (1984) M (t) / M / c / K
Sze (1984) M (t) / G / c
Kwan et al. (1988) M (t) / M / c(t)
Agnihothri and Taylor (1991) M (t) / PH / c(t)
Green and Kolesar (1991) M (t) / M / c
Green et al. (1991) M (t) / M / c
Whitt (1991) M (t) / G / c
Deng et al. (1992) M (t) / M (t) / c(t)
Andrews and Parsons (1993) M (t) / M (t) / c(t)
Eick et al. (1993a) M (t) / G / ∞
Thompson (1993) M (t) / M (t) / c(t)
Green and Kolesar (1995) M (t) / M / c
Choudhury et al. (1997) M (t) / G(t) / 1
Green and Kolesar (1997) M (t) / M / c
Green and Kolesar (1998) M (t) / G / ∞
Kolesar and Green (1998) M (t) / M / c
Green et al. (2001) M (t) / M / c(t)
Ingolfsson et al. (2002) M (t) / M / c(t) / K
Green et al. (2003) M (t) / M / c(t)
Koole and van der Sluis (2003) M (t) / M / c(t)
Dietz and Vaver (2006) M (t) / M / c(t)
Green et al. (2006) M (t) / M / c(t)
de Bruin et al. (2007) M (t) / M / ∞
Ingolfsson et al. (2007) M (t) / M / c(t)
Steckley and Henderson (2007) M (t) / M / c + M
Wall and Worthington (2007) M (t) / G / c
Atlason et al. (2008) M (t) / M / c(t)
Liu and Wein (2008) M (t) / M / c / K
Singer and Donoso (2008) M (t) / M / c(t)

M (t) / G / c(t)
Stolletz (2008a) M (t) / M (t) / c(t)
Kuraya et al. (2009) M (t) / M / ∞
Manohar et al. (2009) M (t) / G(t) / ∞
Zhang (2009) M (t) / M / c

M (t) / G / c
Ingolfsson et al. (2010) M (t) / M / c(t)
Dietz (2011) M (t) / M (t) / c(t) + M
Stolletz (2011) M (t) / G / c(t)

Pang and Whitt (2012a) G(t)X / GD / ∞
Pang and Whitt (2012b) G(t) / GD / ∞
Chassioti et al. (2014) M (t,n) / G / c
Chen and Yang (2014) M (t) / G / c
Vanberkel et al. (2014) M (t) / G / ∞
Selinka et al. (2016) M (t) / M / c
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The SBC is introduced by Stolletz (2008a) for an M (t)/M (t)/c(t) system.
Stolletz (2008b) extends the SBC to the analysis of M (t)/G(t)/1 systems.
M (t)/G/c(t) systems are considered by Stolletz (2011). Stolletz and Lager-
shausen (2013) analyze G(t)/G/1/K systems. To improve the accuracy of
the approximation, these authors use a variable interval length that depends
on the utilization of the system. Selinka et al. (2016) extend the SBC to the
analysis of a queueing system with two job classes, two server classes, and a
routing decision on arrival.

To account for overload situations, the coordinate transformation tech-
nique (CTT) uses a model partially based on a deterministic fluid approx-
imation (Section 3.3.3.2) that offers an accurate performance approximation
for overloaded periods.

An interval’s performance is calculated by using a transformation of a steady-
state queueing formula. The transformation is chosen such that it converges
to both the performance according to the steady-state formula for decreasing
traffic intensities and the performance according to a deterministic fluid ap-
proximation for increasing traffic intensities. Such a transformation used in
the analysis of an M (t)/M (t)/1 system is shown in Figure 3.2. As the per-
formance at the end of an interval is used as the initial condition in the fluid
approximation of the succeeding interval, the CTT integrates dependencies
between successive intervals.

0.0 1.0 2.0

E
xp

ec
te

d 
so

jo
ur

n 
tim

e

Traffic intensity

  Steady-state
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Figure 3.2: Transformation with LS = 0 as initial condition (Kimber et al.,
1977)
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Kimber et al. (1977) introduce the CTT for an M (t)/M (t)/1 system. How-
ever, the shape of the time-dependent traffic intensity is restricted to a rectan-
gular peak and adjacent-to-peak periods with a traffic intensity of zero. Kim-
ber and Hollis (1978) extend this approach in analyzing peaks with non-zero
adjacent-to-peak periods and considering general shapes of the peak traffic
intensity. Catling (1977) analyzes an M (t)/G/1 system and allows for a
general shape of the input arrival rate that is not restricted to a single peak.
The CTT for G(t)/G(t)/1 systems with arbitrary input parameters is con-
sidered by Kimber and Daly (1986). Brilon and Wu (1990) derive a formula
for the average queue length in an M (t)/D/1 system with a parabolic shape
of the time-dependent arrival rate. Griffiths et al. (1991) expand the CTT to
an M (t)/G(0,s)/1 system with batch service up to a maximum of s jobs.
However, in their version of the CTT, dependencies between successive time
intervals are not considered. These dependencies are considered again by
Holland and Griffiths (1999), who use the CTT to analyze the time-dependent
performance of M (t)/M (1,s)/c systems.

Including dependencies between consecutive intervals, the SBC and the CTT
take the transient behavior of a system’s performance into consideration. More-
over, they can be applied to the performance evaluation of temporarily over-
loaded systems (Kimber and Hollis, 1978; Stolletz, 2008a). The characteris-
tics of the analyzed systems are quite different (Table 3.6). However, all but
one of the cited references consider systems with an infinite waiting room.

Table 3.6: Approaches based on piecewise stationary models (linked periods)

Reference Queueing system

Catling (1977) M (t) / G / 1
Kimber et al. (1977) M (t) / M (t) / 1
Kimber and Hollis (1978) M (t) / M (t) / 1
Kimber and Daly (1986) G(t) / G(t) / 1
Brilon and Wu (1990) M (t) / D / 1

Griffiths et al. (1991) M (t) / G(0,s) / 1
Holland and Griffiths (1999) M (t) / M (1,s) / c
Stolletz (2008a) M (t) / M (t) / c(t)
Stolletz (2008b) M (t) / G(t) / 1
Stolletz (2011) M (t) / G / c(t)
Chen et al. (2013c) M (t) / Ek / c(t)
Stolletz and Lagershausen (2013) G(t) / G / 1 / K
Selinka et al. (2016) M (t) / M / c
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3.3.2.3 Piecewise transient models

The approaches described in this paragraph are based on transient models
(BOT) that are used to analyze consecutive intervals with constant input pa-
rameters. The system state at the end of an interval serves as initial condition
for the performance evaluation of the subsequent interval.

The transient solution of a queueing system with a finite waiting room is
used by Upton and Tripathi (1982) to approximate the performance of an
M (t)/M /1 system with an infinite waiting room. Choudhury et al. (1997)
use numerical transform inversion and apply transient models to analyze an
M (t)/G(t)/1 system. Parthasarathy and Sudhesh (2006) derive the exact
transient solution for an M /M /1 system by using generating functions and
then apply it to an M (t)/M (t)/1 system with piecewise constant input pa-
rameters. This approach is extended by Griffiths et al. (2008) to the case
of Erlang-distributed service times. Duda (1986), Czachórski et al. (2009),
and Czachórski et al. (2010) use the diffusion approximation for the transient
performance evaluation (see also Section 3.3.3.2).

A common approximation technique for the transient analysis of Markovian
queueing systems is the uniformization/randomization (UR) approxima-
tion. This approach analyzes the transient performance of a continuous-time
Markov chain (CTMC) by transformation in a discrete-time Markov chain
(DTMC).

The transition probability matrix A of the DTMC is derived by the uni-
formization of the generator matrix of the original CTMC. If the overall out-
going transition rates are identical for all states in the CTMC, the probability
g(j ) for j transitions within one evaluation interval of the DTMC follows
a Poisson distribution. Thus, self-transitions are included to unify the over-
all transition rates out of every state in the original CTMC. Then, the state
probability vector P(i) at the end of interval i can be calculated according to
Equation (3.6), where Aj denotes a j -times multiplication of the matrix A by
itself. Here, the transitions within an interval are randomized according to the
Poisson distribution mentioned above. Only a maximum of m possible transi-
tions within one interval is considered to preserve computational tractability.
The chosen value of m must be sufficiently large to achieve a reasonable ap-
proximation quality of the infinite number of possible state transitions

P(i) =

m∑
j=0

g(j ) · P(i − 1) · Aj . (3.6)
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To account for non-stationary input parameters, the time-dependent generator
matrix and the resulting time-dependent transition probability matrix must be
considered.

Grassmann (1977a) reports the first study to use the concept of the uniformiza-
tion/ randomization approximation. Here, the transient behavior of an
M /M /1 system is analyzed, but only constant input parameters are con-
sidered. However, the applicability of the approach to the analysis of time-
dependent systems is mentioned by Gross and Miller (1984) and assessed for
general Markovian systems by Van Dijk (1992). Dormuth and Alfa (1997)
apply the uniformization/randomization approach in the performance analy-
sis of an MAP(t)/PH (t)/1/K system. Furthermore, they extend the ap-
proach by incorporating an online adaptation of the length of the discretiza-
tion intervals to improve the performance approximation. Flexible interval
lengths are also included in the modification of Arns et al. (2010). Although
their approach is applicable to general Markovian systems, it is applied to the
analysis of an M (t)/M (t)/1/K system in their numerical study. Creemers
et al. (2014) apply the uniformization/ randomization approximation in the
analysis of PH (t)/PH (t)/c(t)+PH (t) systems with limited and unlimited
waiting rooms to approximate queueing systems with general distributions.

A major advantage of the uniformization/randomization approach is its appli-
cability to any Markovian queueing system. Furthermore, the complete time-
dependent distribution of the state probabilities is derived (Gross and Miller,
1984). However, the approach is characterized by high computation times
(Grassmann, 1977b; Ingolfsson et al., 2007). Table 3.7 shows that piecewise
transient models can be used in the performance evaluation of a wide range
of system configurations. Such models require only a tractable method for
the transient analysis with arbitrary initial conditions.

Table 3.7: Approaches based on piecewise transient models
Reference Queueing system

Upton and Tripathi (1982) M (t) / M / 1
Gross and Miller (1984) M (t) / M (t) / c(t) / K
Mok and Shanthikumar (1987) M (t) / M / c(t) / K + M
Choudhury et al. (1997) M (t) / G(t) / 1
Dormuth and Alfa (1997) MAP(t) / PH (t) / 1 / K
Hebert and Dietz (1997) M (t) / PH (t) / 1
Parthasarathy and Sudhesh (2006) M (t) / M (t) / 1
Ingolfsson et al. (2007) M (t) / M / c(t)
Griffiths et al. (2008) M (t) / Ek / 1
Arns et al. (2010) M (t) / M (t) / 1 / K
Ingolfsson et al. (2010) M (t) / M / c(t)
Creemers et al. (2014) G(t) / G(t) / c(t) + G(t)

G(t) / G(t) / c(t) / K + G(t)
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The underlying idea of the discrete-time approach (DTA) is to replace the
continuous time with discrete points in time at which the system state is ob-
served. The use of this approach leads to an approximation error if the system
does not operate with time slots. The state probabilities for the next obser-
vation point are obtained by multiplying the state probability vector of the
current observation point with a time-dependent transition probability ma-
trix. The evolution of the system performance over time is then obtained
through recursive vector matrix multiplications. In contrast to the UR, which
discretizes a CTMC via uniformization, the DTA directly assumes that time is
discrete and that only one transition per interval is possible. Depending on the
queueing system and the length of the discretization interval, one transition
accounts for multiple arrivals and/or multiple service completions.

Galliher and Wheeler (1958) introduce the basic idea for an M (t)/D(t)/c(t)
system. Setting the interval length equal to the service time is reported to
work well if the deterministic service time is rather short compared with the
time interval of interest. Otherwise, Minh (1978) suggests modifying the
interval length and introducing auxiliary state variables for the remaining ser-
vice time in addition to the number of jobs in the system. This concept is
also used by Alfa (1982), Omosigho and Worthington (1985), Omosigho and
Worthington (1988), Brahimi and Worthington (1991a), Brahimi and Wor-
thington (1991b), Mejı́a-Téllez and Worthington (1994), and Chassioti and
Worthington (2004) to model a general service time distribution. Regarding
the arrival process, these models require only that the number of arrivals in
each discretization interval be an independent random variable. This assump-
tion allows for time-dependent Poisson processes, potentially with batch ar-
rivals, and DX (t) arrival processes where the inter-arrival time is equal to
the interval length and where the batch size distribution X is time-dependent.
Although Powell and Simão (1986) call their approach numerical simulation,
they use the same technique of auxiliary variables in analyzing a discrete-
time M (t)X /G(t)Y /1/K bulk queue with a random number of Y jobs that
can be served simultaneously under different dispatching rules for the server.
Kahraman and Gosavi (2011) focus on stranded customers, i.e., unserved cus-
tomers that remain in the queue directly after the visit of the server, and con-
sider different dispatching rules. Alfa (1990) and Alfa and Chen (1991) avoid
the use of computationally expensive auxiliary variables by approximating
the probability of an empty system by using the Maximum Entropy Princi-
ple. The expected queue length is then obtained based on the probability
of an empty system. Using an approach unlike the approaches discussed so
far, Moore (1975) observes the system state at the departure time of the jobs
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from the queue. At these observation points, the expected queue length of
an M (t)X (t)/Ek/1 system is computed. Worthington and Wall (1999) pro-
vide a survey of most of the existing DTAs for systems with time-dependent
Markovian arrival processes, generally distributed service times, and single
or multiple servers.

Table 3.8: Discrete-time approaches (DTA)

Reference Queueing system

Galliher and Wheeler (1958) M (t) / D(t) / c(t)
Koopman (1972) M (t) / D / 1 / K

Moore (1975) M (t)X(t) / Ek / 1
Minh (1978) M (t)X / G / 1
Alfa (1982) M (t)X / GY / 1

M (t)X / GY / 1 / K
Upton and Tripathi (1982) M (t) / M / 1
Omosigho and Worthington (1985) M (t)X(t) / G / 1 / K

DX(t) / G / 1 / K

Powell and Simão (1986) M (t)X / G(t)Y / 1 / K

DX(t) / G(t)Y / 1 / K

Omosigho and Worthington (1988) M (t)X(t) / G / 1 / K

DX(t) / G / 1 / K
Alfa (1990) M (t) / D / 1
Brilon and Wu (1990) M (t) / D / 1

DX(t) / D / 1
Alfa and Chen (1991) M (t) / G / 1
Brahimi and Worthington (1991a) DX(t) / G / 1
Brahimi and Worthington (1991b) M (t) / G / c / K

DX(t) / G / c / K
Lackman et al. (1992) M (t) / D / 1 + D

M (t) / D / 1 + D / NPPrio
Mejı́a-Téllez and Worthington (1994) M (t) / G(0,s) / 1
Daniel (1995) M (t) / D / c / K

Bennett and Worthington (1998) DX(t) / G / 1
Daniel and Pahwa (2000) M (t) / D / c / K
Chassioti and Worthington (2004) M (t) / G / c(t)

M (t) / G / c(t) / K
Wall and Worthington (2007) M (t) / G / c

DX(t) / G / c
Alfa and Margolius (2008) M (t) / M (t) / c(t)
Daniel and Harback (2008) M (t) / D / c / K
Daniel and Harback (2009) M (t) / D / c / K
Viti and van Zuylen (2009) M (t) / D(t) / 1 / K
Viti and van Zuylen (2010) M (t) / D(t) / 1 / K

Kahraman and Gosavi (2011) M (t) / GY / 1
Blumberg-Nitzani and Bar-Gera (2014) DX(t) / D / 1
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The main advantage of the DTA is its flexibility with respect to the service
time distribution (see Table 3.8) and the derivation of the time-dependent
probability distribution for the complete state space. Hence, the approach
allows one to obtain quantiles of the number of jobs in the system and the
distribution of the virtual waiting time (Minh, 1978; Wall and Worthington,
2007). The major disadvantage of the DTA is the rapidly growing state space
with an increasing waiting room and the need for an additional auxiliary vari-
able for every additional server.

3.3.3 Approaches based on modified system characteristics

3.3.3.1 Modified number of servers

Although most real systems have a finite number of servers, the explicit re-
sults for infinite-server systems gain relevance in approximation approaches.
An overview of the literature on these approaches is presented in Table 3.9.

In queueing systems with an infinite number of parallel servers, the time-
dependent number of busy servers LB (t) is comparatively easy to determine
(see Section 3.3.1). Thus, this number can be used to estimate performance
measures of systems with a finite number of servers. Such an infinite-server
approximation (INFSA) is applied by Jennings et al. (1996) to analyze the
probability of waiting in a G(t)/G(t)/c(t) system. They use a normal ap-
proximation to estimate the distribution of busy servers in the infinite-server
system and apply their results to derive a staffing formula. Feldman et al.
(2008) use such an INFSA to analyze M (t)/G/c(t) + G systems. Liu and
Whitt (2012a) derive a delayed-infinite-server (DIS) approximation model
that is applied in a staffing algorithm for an M (t)/G/c(t) + G system by
decomposing the original system into two infinite-server systems – one rep-
resenting the waiting jobs including abandonments and the other representing
the jobs in service.

The key idea of the modified offered load approach (MOL) is the approxi-
mation of the time-dependent offered load in a queueing system by the num-
ber of busy servers in the corresponding system with an infinite number of
servers. Based on this relation, a modified arrival rate is derived, and this
arrival rate is then used to calculate the system’s performance for every point
in time by using steady-state models. In doing so, the MOL takes advantage
of the known solution of the DE describing the number of jobs in an infinite-
server system (see Section 3.3.1).
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For an M (t)/M (t)/∞ queueing system, the expected number LS (t) = LB (t)
of busy servers at time t is given by Equation (3.5). The modified arrival rate
λMAR(t) = E[LB (t)] · µ(t) is chosen such that the expected number of busy
servers in the stationary M /M /c system equals the expected number of busy
servers in the time-dependent infinite-server system.

Jagerman (1975) introduces the MOL to analyze the blocking probability in
M (t)/M /c/c systems. The applicability of the MOL to the analysis of more
general queueing systems with waiting rooms is mentioned by Jennings et al.
(1996). Massey and Whitt (1997) apply the MOL to evaluate an M (t)/M /c
system and compare their results with the numerical solution of the CKEs.
Feldman et al. (2008) extend the MOL to analyze M (t)/G/c(t) + G sys-
tems. In addition to the DIS approach mentioned above, Liu and Whitt
(2012a) develop the DIS-MOL, which is an extension in which the offered
load in the queue, representing the jobs in service, is used as an input for
a stationary M /G/c + G system. Using an approach similar to the MOL,
Yom-Tov and Mandelbaum (2014) use the time-dependent number of busy
servers in an infinite-server system as the input in their staffing algorithm for
an M (t)/G/c(t) system.

In contrast to the methods described in Section 3.3.2.1, the MOL does not
analyze the performance of intervals independently. Nevertheless, as the
derivation of the modified arrival rate corresponds to the calculation of the
exponentially weighted moving average over the period [−∞, t ], the MOL
is similar to the EAA and the RA described in Section 3.3.2.1, which also
use a moving average as the input in the performance calculations according
to steady-state formulas (Ingolfsson et al., 2007). The transient behavior and
dependencies between intervals are taken into account in the derivation of
the modified arrival rate. Thus, the MOL has a structure similar to the SBC
(Section 3.3.2.2). Owing to the application of infinite-server systems, the
approximation quality of the MOL renders this approach more suitable for
systems with a decreasing probability of waiting, i.e., an increasing number
of servers or decreasing traffic intensity (Jennings and Massey, 1997; Massey
and Whitt, 1997). Additionally, the approximation quality decreases with in-
creasing rate of change in the input arrival rate (Jagerman, 1975). Jennings
and Massey (1997) show that the idea of the MOL is applicable to any time-
dependent system if its state space is a subset of the state space of a larger
system for which the performance is simpler to evaluate. Massey (2002) pro-
vides an overview through 2002 of the literature on approaches that use the
explicit solution of infinite-server systems.
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Table 3.9: Infinite-server approximations (INFSA)

Reference Queueing system

Sze (1984) M (t) / G / c
Jennings et al. (1996) G(t) / G(t) / c(t)
Green and Kolesar (1997) M (t) / M / c
Massey and Whitt (1997) M (t) / M / c
Ingolfsson et al. (2007) M (t) / M / c(t)
Feldman et al. (2008) M (t) / G / c(t) + G
Liu and Wein (2008) M (t) / M / c / K / PPrio
Liu and Whitt (2012a) M (t) / G / c(t) + G
Yom-Tov and Mandelbaum (2014) M (t) / G / c(t)

3.3.3.2 Modified job characteristics

The fluid approximation, the pointwise stationary fluid flow approximation,
and the diffusion approximation replace discrete jobs with a continuum. These
approaches differ in the way that they consider stochasticity. The fourth ap-
proach, the uniform acceleration, modifies the arrival and service rate of the
jobs.

The key idea of the fluid approximation (FLUID) is to replace randomly
arriving discrete jobs with a deterministic continuum. This continuum can be
interpreted as a fluid that flows with rate λ(t) into a reservoir. The service
process is approximated by a deterministic outflow from the reservoir. The
level of fluid in the reservoir then serves as an approximation for the number
of jobs in the system. The derivative with respect to time of the fluid level
for a queueing system with c parallel servers without a queue length limit is
given by

E[LS (t)]′ ={
0 if E[LS (t)] = 0 ∧ λ(t) ≤ µ(t) · c,
λ(t)− µ(t) ·min{c; E[LS (t)]} otherwise.

(3.7)

The fluid approximation represents one of the first approaches for the analysis
of time-dependent queueing systems. It is described in the book of Newell
(1971) as engineering approach for the performance evaluation of systems
for which temporary overload rather than randomness is the primary reason
for the existence of queues. A direct application of the fluid approximation
can be found in Horonjeff (1969), Koopman (1972), Wirasinghe and Shehata
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(1988), and Janic (2009). It is also used by Harrison and Zeevi (2005) and
Swaroop et al. (2012) within optimization approaches. Mandelbaum et al.
(2002) investigate a fluid approximation for an M (t)/M (t)/c(t)+M (t) sys-
tem with retrials. An adjusted fluid approximation for this system is proposed
by Ko and Gautam (2013). Aguir et al. (2004) modify the queueing model
and include the effect of balking but assume a time-invariant service rate. By
choosing a balking probability of 0 if LS < K and 1 otherwise, their model
can also approximate systems with a finite waiting room. Whitt (1999) de-
velops the fluid approximation for an M (t)/G/c/PPrio system by reducing
the service rate of a given class by the demand of all higher classes. Ridley
et al. (2004) derive the fluid approximation for a two-class M (t)/M /c/PPrio
system that is supported by a limit theorem. Ko and Gautam (2010) propose
a Gaussian-based adjustment of the fluid approximation for a system with
servers that switch between an active and an inactive pool.

Hampshire et al. (2009) combine the fluid approximation with the MOL ap-
proach (see Section 3.3.3.1) to analyze the abandonments and blocking prob-
ability in an M (t)/M /c(t)/K (t) +M system. Liu and Whitt (2012b) intro-
duce the fluid approximation for a G(t)/G/c(t)+G system. They separately
track the fluid in the queue and on the servers. For both parts, two-parameter
functions LQ(t , y) and LS (t , y) describe the amount of fluid at time t that
has spent at most y time units in the queue and on the server, respectively.
Thus, abandonments can be treated as a proportion of the fluid that leaves the
queue without being served depending on y . The authors develop an algo-
rithm that generates approximations for E[LQ(t)] and E[LS (t)], as well as
for the expected head of line and virtual waiting time. Liu and Whitt (2011)
use this modeling approach to establish an asymptotic loss of memory prop-
erty for a G(t)/M (t)/c(t)+G(t) fluid approximation, i.e., the performance
of the queue becomes asymptotically independent of the initial condition as
time proceeds.

Apart from the use of the fluid approximation for performance evaluation, an-
other literature stream establishes fluid limits for stochastic queueing systems.
The existence of such fluid limits supports the use of the fluid approximation,
particularly under heavy traffic. For a more in-depth discussion on fluid lim-
its and their derivation, see Jiménez and Koole (2004), Liu and Whitt (2014),
and the references therein. As Table 3.10 shows, the fluid approximation is of-
ten used for queueing systems with stochastic inter-arrival and service times.
However, for periods of persistent underload, the fluid approximation predicts
an empty system since it neglects randomness as a reason for the occurrence
of queues. Pender (2014b) notes that a deterministic surrogate distribution
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also leads to a fluid approximation. The fluid approximation gains additional
relevance as integral part of other analytical approaches, namely, in the CTT
(Section 3.3.2.2) and in the pointwise stationary fluid flow approximation,
which is described in the next paragraph.

The pointwise stationary fluid flow approximation (PSFFA) combines the
deterministic fluid approximation with steady-state queueing formulas to in-
tegrate stochasticity. The fluid flow described by Equation (3.7) is modified
such that the outflow from the system depends on the server utilization. The
utilization is approximated by the inverse of stationary queueing formulas
such that the utilization becomes a function of the expected number of jobs in
the system E[U (t)] = g−1(E[LS (t)], c). All parameters are assumed to be
constant, and the queueing system is assumed to be in the steady state at time
t , i.e., pointwise stationary (Section 3.3.2.1). The resulting DE (3.8) can be
integrated numerically to obtain the expected number of jobs in the system
over time

E[LS (t)]′ = λ(t)− µ(t) · c · g−1(E[LS (t)], c). (3.8)

A finite waiting room causes blocking and reduces the effective arrival rate.
Consequently, for finite waiting rooms, an additional function that relates the
blocking probability to the expected number of jobs in the system is required.
Chen et al. (2011) note that Equation (3.8) can be used directly for queue-
ing systems with a finite waiting room by solving it subject to the constraint
E[LS (t)] ≤ K .

Agnew (1976) reports the first attempt to relate the outflow of a fluid queue
to the expected number of jobs in the system. He derives general proper-
ties of the function E[U ] = g−1(E[LS (t)], 1) and notes that this function
can be either determined through statistical analysis from real systems or de-
termined analytically. Tipper and Sundareshan (1990) analyze a heteroge-
neous M (t)/M /1 system where arrivals originate from multiple indepen-
dent sources. They introduce a DE similar to Equation (3.8) for the to-
tal number of jobs in the system and one additional equation for each job
class. Coining term PSFFA, Wang et al. (1996) provide approximations for
M (t)/G/1, G(t)/G/1, and M (t)/M /1/K systems. Chen et al. (2013c)
invert the approximation of Cosmetatos (1976) numerically with a bisection
method and, thus, extend the approach to a multi-server M (t)/Ek/c(t) sys-
tem. Based on a data set, Xu et al. (2014) use polynomial curve fitting to
derive g−1(E[LS (t)], 1).
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The PSFFA delivers results only for the expected value of the number of
jobs in the system. Higher moments remain intractable. E[LS (t)] converges
to exact steady-state values for constant parameters if the inverse function
g−1(E[LS (t)], c) is exact. However, Tipper and Sundareshan (1990) and
Wang et al. (1996) report that the PSFFA reaches the steady state too rapidly.
This leads to an overestimation of peaks and an underestimation of valleys for
quickly varying input rates. Although the PSFFA and the SDA (Section 3.3.1)
are independently developed approaches, they share the same MDE as the
starting point, i.e., for c = 1, Equation (3.2) simplifies to Equation (3.8) (Fil-
ipiak, 1984). The approaches differ in how they obtain the unknown proba-
bility 1− P0 = E[U ].

The diffusion approximation (DIFF) replaces the mathematically intractable
discrete stochastic process LS (t) with a continuous stochastic process X (t)
which is known as Brownian motion. The incremental changes
dX (t) = X (t + dt)−X (t) are normally distributed with infinitesimal mean
bdt and infinitesimal variance adt . For a non-empty system, the stochastic
process X (t) is described by diffusion equation (3.9)

∂f (x , t)

∂t
=

a(t)

2
· ∂

2f (x , t)

∂x 2
− b(t) · ∂f (x , t)

∂x
. (3.9)

Equation (3.9) is also known as the Kolmogorov or Fokker-Planck equation
with probability density function f (x , t) and x as a continuous approxima-
tion of the number of jobs in the system. Depending on a(t) and b(t) as well
as on the boundary conditions, explicit solutions of the partial differential
equation (3.9) exist; otherwise, it must be solved numerically. The diffusion
approximation goes along with three key modeling decisions. (i) Depending
on the system characteristics, a(t) and b(t) must be chosen. They either are
a function of time (Newell, 1968a) or are assumed to be piecewise constant,
and transient solutions are combined as described in Section 3.3.2.3 (Duda,
1986). (ii) Boundary conditions must be imposed to model the behavior of
the stochastic process if the system is empty or, if applicable, if it reaches its
waiting room limit K . For heavy traffic situations, Equation (3.9) is typically
solved subject to boundary conditions. This leads to a reflected Brownian
motion, i.e., trajectories of X (t) do not spend time at the boundary but are
directly reflected. Such a condition does not work for underload situations,
as idle times of the server must be taken into account. Thus, elementary re-
turn barriers are imposed, which ensure that X (t) stays in a boundary state
for a certain period of time according to a stochastic holding time distribu-
tion. (iii) Only the moments of LS (t) may be directly approximated by their
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equivalents of X (t). To obtain the state probabilities Pn(t), the continuous
density function f (x , t) must be re-discretized (Duda, 1986).

In his pioneering works, Newell (1968a,b,c) proposes the diffusion approxi-
mation for G(t)/G/1 systems. He considers the case of a rush hour caused
by an increasing arrival rate that eventually exceeds the service rate and then
returns to values below the service rate. Knessl (2000) provides an exact so-
lution of the diffusion process for ρ ≈ 1 with an initially empty queue, which
is generalized to arbitrary initial conditions by Knessl and Yang (2001). Both
models assume that ρ(t) either is linear in t or increases in a single step.
Giorno et al. (1987) propose the diffusion approximation for the queue length
distribution of the M (t ,n)/M (t ,n)/1 system. In their study, the arrival and
service rates are time- and state-dependent such that they increase with the
number of jobs n in the system. Their findings resemble the results of the
special case discussed by Clarke (1956). Di Crescenzo and Nobile (1995)
also analyze an M (t ,n)/M (t ,n)/1 system but use a more general arrival
rate function that includes the model by Giorno et al. (1987) as a special
case. Ko and Gautam (2010) obtain an adjusted diffusion model by using
an adjusted fluid approximation. Mandelbaum et al. (2002) provide numer-
ical results for the diffusion approximation of an M (t)/M (t)/c(t) + M (t)
system with retrials, which is based on a limit theorem established by Man-
delbaum et al. (1998). The adjusted version of the limit theorem by Ko and
Gautam (2013) improves the approximation quality of the diffusion approx-
imation for systems with a small number of servers and for E[LS (t)] close
to c(t). Massey and Pender (2013) show that their SDA is equivalent to
the approach of Ko and Gautam (2013). Filipiak (1983) suggests moving
the reflecting barrier from 0 to −1 to approximate underload situations in an
M (t)/M (t)/1 system. Following the idea of a piecewise transient analysis
(Section 3.3.2.3), Duda (1986) proposes an elementary return barrier diffu-
sion approximation with Coxian distributed holding times at the return bar-
rier for the transient solution of a G/G/1 system. Czachórski et al. (2009)
and Czachórski et al. (2010) introduce another elementary return barrier with
exponentially distributed holding times to model a finite waiting room for a
G/G/1/K/PPrio system with multiple job classes and a simple G/G/1/K
system, respectively. Kimura (2004) provides a limited survey with respect
to time-dependent and steady-state diffusion models.

The diffusion approximation can be used for non-Markovian systems since
a(t) and b(t) depend on the means and variances of the arrival and service
processes (Table 3.10). In addition, the use of the diffusion approximation
for such systems results in an approximation of the complete probability dis-
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tribution of LS (t). Further, it is rigorously supported by limit theorems and
results of the uniform acceleration technique, which is described in detail in
the next paragraph.

The uniform acceleration (UA) technique simultaneously increases the ar-
rival and service rate such that their ratio remains fixed. UA may be regarded
as the non-stationary analogue to steady-state analysis (Massey, 2002). Sim-
ilar to the INFSA, which utilizes the tractability of infinite-server systems,
the derived scaled queueing systems allow for an enhanced analytical under-
standing of the time-dependent behavior.

Keller (1982) reports the first attempt to use this scaling. Starting with the dis-
crete stochastic process, he provides an attempt to rigorously derive Newell’s
diffusion approximation. Massey (1985) coins the term UA and proposes
ρ∗(t0, t) = sup

0≤t0≤t

∫ t

t0
λ(τ)dτ/

∫ t

t0
µ(τ)dτ as a modified parameter to differ-

entiate between underloaded and overloaded queues. The results are refined
by Yin and Zhang (2002). Mandelbaum and Massey (1995) apply UA to the
sample path of an M (t)/M (t)/1 system and obtain an asymptotic expan-
sion. Yang and Knessl (1997) correct the results of Keller (1982) and further
extend them to general service processes. Flick and Liao (2010) extend the
approach of Massey (1985) to queueing systems with more than one server.
The case of finite waiting rooms is treated by Tan et al. (2013).

The results of the UA serve as rigorous justification for the PSA, the fluid
approximation, and the diffusion approximation. These results suggest that
the PSA works well for underloaded queues (Flick and Liao, 2010) and that
overloaded queues are well approximated by the fluid approximation (Man-
delbaum and Massey, 1995). In addition, these findings substantiate the core
idea of the CTT.

Table 3.10: Approximations based on modified job characteristics
Reference Queueing system

Fluid approximation (FLUID)

Newell (1968b) G(t) / G / 1
Gaver (1969) D(t) / D(t) / 1
Horonjeff (1969) D(t) / D(t) / 1
Paullin and Horonjeff (1969) D(t) / D / c
Newell (1971) D(t) / D(t) / 1
Koopman (1972) D(t) / D / 1 / K
Newell (1979) D(t) / D / 1
de Neufville and Grillot (1982) D(t) / D / 1
Wirasinghe and Shehata (1988) D(t) / D / 1
Jung and Lee (1989a) G(t) / G / c(t)
Wirasinghe and Bandara (1990) D(t) / D / c
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Table 3.10: Approximations based on modified job characteristics - continued
Whitt (1999) M (t) / G / c / PPrio
Mandelbaum et al. (2002) M (t) / M (t) / c(t) + M (t)
Aguir et al. (2004) M (t) / M / c(t) + M

M (t) / M / c(t) / K + M
Jiménez and Koole (2004) M (t) / M / c
Ridley et al. (2004) M (t) / M / c / PPrio
de Barros and Tomber (2007) D(t) / D / 1
Kuwahara (2007) D(t) / D / 1
Hampshire et al. (2009) M (t) / M / c(t) / K (t) +M
Janic (2009) D(t) / D(t) / 1
Viti and van Zuylen (2009) M (t) / D(t) / 1 / K
Bertsimas and Doan (2010) M (t) / M / c(t) + M
Chen and Yang (2010) D(t) / D / 1
Ko and Gautam (2010) M (t) / M / c(t)
Viti and van Zuylen (2010) M (t) / D(t) / 1 / K
Liu and Whitt (2011) G(t) / M (t) / c(t) + G(t)
Stolletz (2011) M (t) / G / c(t)
Liu and Whitt (2012b) G(t) / G / c(t) + G
Swaroop et al. (2012) D(t) / D / 1
Ko and Gautam (2013) M (t) / M (t) / c(t) + M (t)
Massey and Pender (2013) M (t) / M / c(t) + M
Chen and Yang (2014) M (t) / G / c
Pender (2014a) M (t) / M (t) / c(t) + M (t)

Pointwise stationary fluid flow approximation (PSFFA)

Agnew (1976) G(t) / G / 1
Filipiak (1984) M (t) / M / 1
Tipper and Sundareshan (1990) M (t) / M / 1
Wang et al. (1996) M (t) / G / 1

G(t) / G / 1
M (t) / M / 1 / K

Chen et al. (2011) M (t) / G / 1
Chen et al. (2013a) M (t) / Ek / c(t)
Chen et al. (2013b) M (t) / Ek / c(t)
Chen et al. (2013c) M (t) / Ek / c(t)
Yang et al. (2013) M (t) / Ek / c(t)
Chen and Yang (2014) M (t) / G / c
Xu et al. (2014) D(t) / D / 1

Diffusion approximation (DIFF)

Newell (1968a) G(t) / G / 1
Newell (1968b) G(t) / G / 1
Newell (1968c) G(t) / G / 1
Keller (1982) M (t) / M (t) / 1
Filipiak (1983) M (t) / M (t) / 1
Duda (1986) G(t) / G(t) / 1
Giorno et al. (1987) M (t,n) / M (t,n) / 1
Jung and Lee (1989a) G(t) / G / c(t) / K
Di Crescenzo and Nobile (1995) M (t,n) / M (t,n) / 1
Knessl (2000) G(t) / G(t) / 1
Knessl and Yang (2001) G(t) / G(t) / 1
Mandelbaum et al. (2002) M (t) / M (t) / c(t) + M (t)
Janic (2005) G(t) / G(t) / 1
Czachórski et al. (2009) G(t) / G / 1 / K / PPrio
Czachórski et al. (2010) G(t) / G / 1 / K
Ko and Gautam (2010) M (t) / M / c(t)
Ko and Gautam (2013) M (t) / M (t) / c(t) + M (t)
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Table 3.10: Approximations based on modified job characteristics - continued
Lovell et al. (2013) G(t) / G(t) / 1 / K
Massey and Pender (2013) M (t) / M / c(t) + M
Pender (2014a) M (t) / M (t) / c(t) + M (t)

Uniform acceleration (UA)

Keller (1982) M (t) / M (t) / 1
Massey (1985) M (t) / M (t) / 1
Mandelbaum and Massey (1995) M (t) / M (t) / 1
Yang and Knessl (1997) M (t) / G / 1
Yin and Zhang (2002) M (t) / M (t) / 1
Flick and Liao (2010) M (t) / M (t) / c
Tan et al. (2013) M (t) / M / 1 / K

3.4 Methodological relations and numerical
comparisons

The classification scheme introduced in Section 3.2 groups approaches that
share a common idea in their analysis. In addition, we discuss links between
approaches in Section 3.3. These links are summarized in Figure 3.3, which
reveals that there are links between approaches not only within classification
categories but also beyond category boundaries.

Besides the identified methodological links, some approaches are compared
numerically in the literature. References that include numerical studies com-
paring two or more approaches for single-, multi-, and infinite-server systems
are listed in Table 3.11.

The majority of these numerical studies focus on multi-server systems with
Markovian properties. Further, some studies include general distributions,
abandonments, or heterogeneities. From a methodological point of view,
it becomes apparent that a popular benchmark is the numerical solution of
the CKEs, as the approximation error then originates only from the numer-
ical solution scheme. Ingolfsson et al. (2007) compare approaches from all
three main categories of our classification scheme for an M (t)/M /c(t) sys-
tem. Apart from that study, most studies compare approaches within a single
category. The quality of approximation approaches strongly depends on the
system parameters. Nevertheless, some conclusions with respect to the ap-
plicability of a subset of the discussed approaches are provided by Stolletz
(2008b) and Chen et al. (2013c).
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Numerical and 
analytical solutions
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Figure 3.3: Methodological links between approaches for the performance
evaluation of time-dependent systems
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3.5 Areas of application

3.5.1 Service systems

Many customer service systems experience time-dependent arrival rates and
numbers of servers (Thompson, 1993; Whitt, 2013). Surveys on time-depend-
ent queueing models that are used for staffing decisions in service systems are
provided by Green et al. (2007), Whitt (2007), Defraeye and Van Nieuwen-
huyse (2011), and Defraeye and Van Nieuwenhuyse (2016). Hampshire and
Massey (2010) integrate the performance analysis of time-dependent queue-
ing systems in the optimization of multiple aspects of the communications
industry. The applications can be categorized into the areas of telephone call
centers, health care facilities, emergency services, service counters, and re-
pair facilities.

Inbound telephone call centers are often characterized by a time-dependent
arrival rate and a time-dependent number of agents (Gans et al., 2003). Where-
as Sze (1984), Aguir et al. (2004), and Ridley et al. (2004) describe the perfor-
mance evaluation of call centers, all other references cited in this paragraph
concentrate on the development of staffing algorithms for call centers. Kole-
sar and Green (1998) focus on the analysis of the peak hour in their staffing
analysis. Most of the models for call centers apply queueing systems with
Poisson arrivals and exponentially distributed service times (Andrews and
Parsons, 1993; Kolesar and Green, 1998; Green et al., 2001, 2003; Koole and
van der Sluis, 2003; Ridley et al., 2004; Dietz and Vaver, 2006; Atlason et al.,
2008; Hampshire et al., 2009; Ingolfsson et al., 2010). Abandonments are
considered by Feldman et al. (2008), Hampshire et al. (2009), Bertsimas and
Doan (2010), Dietz (2011), and Kim and Ha (2012). Customers who reen-
ter the system after abandonment (retrials) are analyzed by Sze (1984) and
Aguir et al. (2004). Sze (1984) considers abandonments as part of the ar-
riving jobs that require a service time of zero. All of the models mentioned
above consider systems with an infinite waiting room. In contrast, Mok and
Shanthikumar (1987) consider a system with a limited waiting room. A call
center that can be modeled as an M (t ,n)/G/c queueing system with state-
dependent balking is considered by Chassioti et al. (2014). Mok and Shan-
thikumar (1987) consider a heterogeneous queueing system with two server
classes, i.e., scheduled servers and standby servers that are used only if the
queue exceeds a predetermined threshold. Different job classes and job class-
dependent priorities are considered by Ridley et al. (2004) and Bertsimas and
Doan (2010).
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The request for medical services at health care facilities, such as emer-
gency departments, can vary significantly over time (Bhattacharjee and Ray,
2014). Consequently, the number of medical personnel is often also time-
dependent. Applications include the performance analysis of emergency fa-
cilities (Collings and Stoneman, 1976; de Bruin et al., 2007), staffing in clin-
ical wards (Agnihothri and Taylor, 1991; Gillard and Knight, 2014; Yom-Tov
and Mandelbaum, 2014), and ambulance management (Singer and Donoso,
2008). Yom-Tov and Mandelbaum (2014) derive a model that includes re-
entrant patients/repetitive service in clinical wards. Brahimi and Worthington
(1991a) and Bennett and Worthington (1998) use the DTA to analyze out-
patient appointment systems. The optimal patient mix with respect to patient
service requirements is analyzed by Vanberkel et al. (2014).

Similarly, emergency services providers, such as police or fire fighters, face
time-dependent service requests. Such systems are considered in the staffing
and scheduling algorithm of Green et al. (2006). Green and Kolesar (1995)
evaluate peak hour effects for emergency service systems. Bookbinder and
Martell (1979) minimize the damage potential of forest fires by considering
the allocation of available helicopters. Alfa and Margolius (2008) evaluate
the queue of requests for police patrol cars, and Kolesar et al. (1975) and
Ingolfsson et al. (2002) apply time-dependent queueing systems as part of
scheduling algorithms for police patrol cars.

Service counters and facilities in airport terminals, such as check-in coun-
ters, security checks, departure lounges, and baggage claim facilities, experi-
ence time-dependent traveler arrivals. A detailed description of these applica-
tions is provided in the survey by Tošić (1992). The approaches of Horonjeff
(1969), Paullin and Horonjeff (1969), de Neufville and Grillot (1982), Wiras-
inghe and Shehata (1988), Wirasinghe and Bandara (1990), and de Barros
and Tomber (2007) rely on the fluid approximation. Stolletz (2011) uses the
SBC to analyze the performance of check-in counters. As another type of
service counter with time-dependent arrivals, a fast food restaurant is studied
by Kwan et al. (1988). Foote (1976) evaluates the performance of a drive-in
banking facility with multiple lines involving jockeying. Kolesar (1984) ana-
lyzes the expected number of waiting customers in front of automated teller
machines to evaluate different layouts for a bank lobby. The staffing at border
crossings in the form of a stationary congestion-based policy is considered by
Zhang (2009). Liu and Wein (2008) derive a model to determine the number
of necessary beds for the detention and removal of illegal aliens at border
crossings.
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The demand for repairs at repair facilities is also often time-dependent. The
analysis of such systems provides insights into the required inventory level of
spare parts over time. Jung (1993) analyzes a repair facility for expensive air-
craft parts. Jung and Lee (1989a) and Lau and Song (2008) optimize stocking
levels of spare parts in repair facilities in a military context. Buczkowski and
Kulkarni (2006) use the explicit solution of an M (t)/G/∞ system to model
the time-dependent number of items under warranty to determine the optimal
funding of a warranty reserve.

All references reporting an application in the area of service systems are listed
in Table 3.12. The second column (Emb.) shows that the performance eval-
uation is often embedded within optimization algorithms, especially for call
centers and emergency services. The third column indicates whether real-
world data are used in the numerical study. The fluid approximation and
methods based on stationary models are most frequently used.

Table 3.12: Applications in the area of service systems
Reference Emb. Real data Eval. method

Telephone call centers

Sze (1984) SIPP
Mok and Shanthikumar (1987) x x UR
Andrews and Parsons (1993) x x SIPP
Kolesar and Green (1998) x x SPHA
Green et al. (2001) x x SIPP
Green et al. (2003) x x SIPP
Koole and van der Sluis (2003) x x SIPP
Aguir et al. (2004) x FLUID
Ridley et al. (2004) x FLUID
Dietz and Vaver (2006) x SIPP
Atlason et al. (2008) x SIPP
Feldman et al. (2008) x INFSA, MOL
Hampshire et al. (2009) x FLUID
Bertsimas and Doan (2010) x x FLUID
Ingolfsson et al. (2010) x SIPP, UR
Dietz (2011) x x SIPP
Kim and Ha (2012) x x EXPL
Chassioti et al. (2014) x PSA

Health care

Collings and Stoneman (1976) EXPL
Agnihothri and Taylor (1991) x x SIPP
Brahimi and Worthington (1991a) x DTA
Bennett and Worthington (1998) x DTA
de Bruin et al. (2007) x SIPP
Singer and Donoso (2008) x SIPP
Gillard and Knight (2014) x CKE
Vanberkel et al. (2014) x x PSA
Yom-Tov and Mandelbaum (2014) x x MOL
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Table 3.12: Applications in the area of service systems - continued
Reference Emb. Real data Eval. method

Emergency services

Kolesar et al. (1975) x x CKE, SIPP
Bookbinder and Martell (1979) x x CKE
Green and Kolesar (1995) SPHA
Ingolfsson et al. (2002) x x CKE, SIPP
Green et al. (2006) x x SIPP
Alfa and Margolius (2008) x DTA

Service counters

Horonjeff (1969) x FLUID
Paullin and Horonjeff (1969) x FLUID
Foote (1976) x SIPP
de Neufville and Grillot (1982) x FLUID
Kolesar (1984) x SIPP
Kwan et al. (1988) x x SIPP
Wirasinghe and Shehata (1988) x FLUID
Wirasinghe and Bandara (1990) x x FLUID
Thompson (1993) x SIPP
de Barros and Tomber (2007) x FLUID
Liu and Wein (2008) x MOL, PSA
Zhang (2009) SIPP
Stolletz (2011) SBC

Repair facilities

Jung and Lee (1989a) x DIFF, FLUID
Jung (1993) x CKE
Buczkowski and Kulkarni (2006) x EXPL
Lau and Song (2008) x SDA

3.5.2 Road and air traffic systems

Road traffic systems, such as roads, bridges, and intersections, are often an-
alyzed by using time-dependent queueing systems to model rush hour and off-
peak effects in traffic flows. Catling (1977) applies the CTT for an M (t)/G/1
system to analyze the delay at road junctions. The same approximation method
is used by Kimber et al. (1977), Kimber and Hollis (1978), and Kimber
and Daly (1986) to analyze the performance of three-arm major/minor pri-
ority junctions. Kimber et al. (1977) and Kimber and Hollis (1978) apply
an M (t)/M (t)/1 model and restrict their analysis to artificial data, whereas
Kimber and Daly (1986) consider real-world data and apply a G(t)/G(t)/1
system. The CTT is applied by Griffiths et al. (1991) to analyze the Channel
Tunnel between France and England modeled as an M (t)/G(0,s)/1 system.
Brilon and Wu (1990) compare the results of a discrete-time approach with
empirical data for a one-lane street with a traffic light. Viti and van Zuylen
(2009) and Viti and van Zuylen (2010) develop a DTA to evaluate the queue
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length at the end of and within a green/red cycle of intersections. Blumberg-
Nitzani and Bar-Gera (2014) obtain within-cycle results through an interpo-
lation between the results of the end-of-cycle model. Griffiths et al. (2008)
analyze a 24-hour flow pattern on the Severn Bridge between England and
Wales as an M (t)/Ek/1 system based on piecewise transient models. Gaver
(1969) applies the fluid approximation to analyze the time-dependent queue-
ing delays that occur during and after accidents on freeways. Departure time
choice and commuting problems also often rely on the deterministic fluid ap-
proximation (see Kuwahara (2007) and the references therein).

Time-dependent demand is also distinct for car and truck handling facili-
ties. Chen and Yang (2010), Chen et al. (2011), Chen et al. (2013a), Chen
et al. (2013b), Chen et al. (2013c), Yang et al. (2013), and Chen and Yang
(2014) analyze truck handling facilities at seaports. Based on these analyses,
several optimization techniques are proposed to optimize the time-dependent
truck arrival process. Selinka et al. (2016) apply the SBC to the performance
evaluation of the truck handling system at an air cargo hub with heteroge-
neous jobs and heterogeneous servers.

Curry et al. (1978) analyze the performance of the queueing process at an air-
port’s taxi stand. In their analysis, they consider the exponentially distributed
clearing of a queue that corresponds to a context in which busses collect all
customers waiting for a taxi. Deng et al. (1992) develop a model for the
optimal allocation of taxis to service zones.

Air traffic is also often time-dependent. Early models for the analysis of run-
ways are proposed by Galliher and Wheeler (1958), Koopman (1972), and
Omosigho and Worthington (1985). Bookbinder (1986) analyzes a Marko-
vian queueing system with two separate queues for landing and departing
aircrafts and a single runway as a common server. Stolletz (2008b) analyzes
a similar model with generally distributed service times. Hebert and Dietz
(1997) use the uniformization/randomization approximation and Lovell et al.
(2013) use the diffusion approximation to evaluate the time-dependent perfor-
mance of a single runway. Janic (2009) investigates delays on airport runways
under heavy snowfall. In the analysis, the runway’s service rate depends on
a second queue representing the accumulated snow at airports. Jacquillat and
Odoni (2015) use a queueing model in their algorithm to control departure
and arrival service rates to maximize the efficiency of an airport’s runway sys-
tem. Jung and Lee (1989b) propose a dynamic programming approach with
an embedded time-dependent queueing model to staff air traffic controllers.
Congestion-based prices for airport capacity are determined based on the dif-
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fusion approximation by Janic (2005), whereas Daniel (1995), Daniel and
Pahwa (2000), Daniel and Harback (2008), and Daniel and Harback (2009)
use the basic DTA of Galliher and Wheeler (1958). Swaroop et al. (2012)
include the fluid approximation in their derivation of slot-controlled flight
schedules.

Table 3.13: Applications in the areas of road and air traffic

Reference Emb. Real data Eval. method

Road traffic

Gaver (1969) FLUID
Catling (1977) CTT
Kimber et al. (1977) CTT
Kimber and Hollis (1978) CTT
Kimber and Daly (1986) x CTT
Brilon and Wu (1990) x DTA
Griffiths et al. (1991) CTT
Kuwahara (2007) x FLUID
Griffiths et al. (2008) x BOT
Viti and van Zuylen (2009) DTA, FLUID
Viti and van Zuylen (2010) DTA,FLUID
Blumberg-Nitzani and Bar-Gera (2014) DTA

Car and truck handling facilities

Curry et al. (1978) x SIPP
Deng et al. (1992) x x SIPP
Chen and Yang (2010) x FLUID
Chen et al. (2011) x PSFFA
Chen et al. (2013a) x x PSFFA
Chen et al. (2013b) x x PSFFA
Chen et al. (2013c) x PSFFA
Yang et al. (2013) x PSFFA
Chen and Yang (2014) x FLUID, PSA,PSFFA
Selinka et al. (2016) x SBC

Air traffic

Galliher and Wheeler (1958) x DTA
Koopman (1972) x FLUID

CKE, DTA
Omosigho and Worthington (1985) x DTA
Bookbinder (1986) x CKE
Jung and Lee (1989b) x CKE
Daniel (1995) x x DTA
Hebert and Dietz (1997) x BOT
Daniel and Pahwa (2000) x x DTA
Janic (2005) x x DIFF
Daniel and Harback (2008) x x DTA
Stolletz (2008b) SBC
Daniel and Harback (2009) x x DTA
Janic (2009) x FLUID
Swaroop et al. (2012) x x FLUID
Lovell et al. (2013) x DIFF
Jacquillat and Odoni (2015) x x CKE
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All references considered in this section are included in Table 3.13. The
number of servers in road and air traffic systems cannot be adjusted over
time. Instead, arrival patterns are optimized, e.g., at truck handling facilities.

3.5.3 IT systems

Computer and communication networks transfer data packets whose arrival
rates often significantly vary over time (Tripathi and Duda, 1986). The amount
of data that can be stored at a certain node is limited. Full buffers may lead to
serious performance degradations owing to delays from waiting for transmis-
sion capacity or packet retransmissions. Lackman et al. (1992) develop a DTA
for a statistical multiplexer that processes real-time and non-real-time traffic.
Van As (1986) compares a common-buffer configuration with a foreground-
background congestion control mechanism. Tipper and Sundareshan (1990)
demonstrate how the PSFFA can be used to find optimal time-dependent ar-
rival rates to individual nodes. The PSFFA is also used by Xu et al. (2014) to
evaluate the performance of nodes in multihop wireless networks with con-
stant bit rate traffic. Czachórski et al. (2009) and Czachórski et al. (2010)
use the diffusion approximation to model nodes in a wireless network based
on the IEEE 802.11 standard and the impact of an adaptive increase and de-
crease in TCP flow. The fluid and diffusion approximations are used by Ko
and Gautam (2010) for the performance evaluation of queues that occur for
peer-based multimedia content delivery. The number of active nodes of two
different classes in a peer-to-peer (P2P) internet telephony system is modeled
with an M (t)/M /∞ system and analyzed via the SIPP and explicit solutions
by Kuraya et al. (2009) and Kuraya et al. (2011). McCalla and Whitt (2002)
evaluate the volume of lines in private line telecommunication services by
using the explicit solution of a G(t)X (t)/G(t)/∞ system.

Rothkopf and Johnston (1982) apply the SDA to predict the queues in front
of printers for which the arrival rate of jobs is time-dependent. The cov-
erage process on a straight line in a sensor field is analyzed by Manohar
et al. (2009), who show that this process can be modeled as a time-dependent
M (t)/G(t)/∞ system. In such a system, the time corresponds to the loca-
tion in the sensor field, and the number of jobs in the system corresponds to
the number of sensors that cover the associated area.

All references reporting applications with IT systems are presented in Ta-
ble 3.14. In contrast to studies on other areas of application, most references
focus on the performance evaluation only.
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Table 3.14: Applications in the area of IT systems

Reference Emb. Real data Eval. method

Rothkopf and Johnston (1982) x SDA
Van As (1986) CKE
Tipper and Sundareshan (1990) x PSFFA
Lackman et al. (1992) DTA
McCalla and Whitt (2002) x EXPL
Kuraya et al. (2009) SIPP
Czachórski et al. (2009) DIFF
Manohar et al. (2009) PSA
Czachórski et al. (2010) DIFF
Ko and Gautam (2010) DIFF, FLUID
Kuraya et al. (2011) EXPL
Xu et al. (2014) PSFFA

3.6 Conclusions and future research

This paper provides a structured overview of approaches for the performance
evaluation of time-dependent queueing systems (Section 3.3). We discuss
links between the different approaches and demonstrate that numerical com-
parisons exist only for a subset of the existing approaches (Section 3.4). Thus,
a research gap remains for a comprehensive numerical study comparing the
approximation quality of approaches within all three categories for different
types of queueing systems with various levels of stochasticity and different
time-dependent patterns for the system parameters. Moreover, a methodolog-
ical extension of some approaches is needed to analyze general systems. An
opportunity for the development of new approaches lies in the combination
of existing ideas concerning approximation. For instance, a transformation,
as suggested by the CTT, could be integrated into approaches that currently
rely on regular steady-state queueing formulas.

Section 3.5 demonstrates the wide range of areas of application for time-
dependent queueing systems, including service, road and air traffic, and IT
systems. The currently used evaluation methods are often based on stationary
models, discrete-time approaches, or fluid approximations. Notably, some
evaluation methods are used only within a single area of application. For ex-
ample, the CTT is used only for the analysis of road traffic systems, and the
PSFFA is used mainly for truck handling facilities. In general, for all areas of
application, a systematic test of other evaluation approaches may represent a
worthwhile investigation. Most of the optimization algorithms that use em-
bedded time-dependent queueing formulas involve decisions regarding the
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number of servers in service systems. In the area of truck handling and IT
systems, the arrival rate is treated as a decision variable. The optimization of
service rates is addressed only by the theoretical work of Parlar (1984) and is
a potential field of future research. Another open field is the time-dependent
decision regarding the provision of waiting rooms, which is introduced in a
call center context by Hampshire et al. (2009). In summary, this review shows
that there are numerous areas of application for time-dependent queues. A
promising field of research is the extensive use of time-dependent perfor-
mance evaluation approaches as embedded with optimization procedures.
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Abstract:
Flow lines process discrete workpieces on consecutive machines, which are
coupled by buffers. Their operating environment is often stochastic and time-
dependent. For the flow line under consideration, the stochasticity is gener-
ated by random breakdowns and successive stochastic repair times, whereas
the processing times are deterministic. However, the release rate of work-
pieces to the line is time-dependent, due to changes in demand. The buffers
between the machines may be finite or infinite. We introduce two new sam-
pling approaches for the performance evaluation of such flow lines: one
method utilizes an approximation based on a mixed-integer program in dis-
crete time with discrete material, while the other approximation is based on
partial and ordinary differential equations in continuous time and with a con-
tinuous flow of material. In addition, we sketch a proof that these two approx-
imations are equivalent under some linearity assumptions. A computational
study demonstrates the accuracy of both approximations relative to a discrete-
event simulation in continuous time. Furthermore, we reveal some effects
occurring in unreliable flow lines with time-dependent processing rates.
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4.1 Introduction

Flow lines consist of several, serial machines that perform consecutive pro-
cessing tasks. The flow line considered in this paper includes buffers located
between two adjacent machines. It processes discrete workpieces, which
can be moved independently along the line, i.e., the material flow is asyn-
chronous. The operating environment of such flow lines is stochastic due to
random machine failures and the associated downtime needed to implement
repairs. This stochasticity may lead to blocking and starvation. A machine
starves if it idles due to a lack of workpieces in the upstream buffer. Con-
versely, for finite buffer capacities, blocking may occur if a processed work-
piece cannot leave a machine immediately due to a full downstream buffer.

The literature on flow lines commonly assumes that flow lines operate un-
der steady-state conditions (Dallery and Gershwin, 1992). In particular, the
setting of the flow line is constant over time and the flow line is observed
after a sufficient amount of time has passed. Thus, the probability distri-
butions that describe the flow line behavior are time-invariant. However, in
practice the setting of the line may change over time. Hence, a steady state
is not reached or even does not exist. Dynamic changes of the setting arise
from learning effects associated with production ramp-ups, newly introduced
production technologies, or seasonal demand patterns (Terwiesch and Bohn,
2001; Jaikumar and Bohn, 1992; Takahashi and Nakamura, 2002). This pa-
per focuses on time-dependent changes of the workpieces’ release rate to the
line, which typically occur after changes in the demand pattern. The supply
of raw material for the first machine, as well as the storage capacity for fin-
ished goods behind the last machine, are assumed to be unlimited. The buffer
capacities between the machines may be finite or infinite.

Related to flow lines two literature streams can be distinguished: optimiza-
tion and evaluation approaches. Optimization approaches aim to find a set-
ting of the line, e.g., the buffer allocation, to fulfill a given objective, e.g.,
maximization of the throughput. A comprehensive survey pertaining to the
optimization of buffer allocations under steady-state conditions is provided
by Demir et al. (2014). For evaluation approaches the line setting is given
and the approaches provide exact or approximative results of the line per-
formance. The performance evaluation of flow lines under steady-state con-
ditions is studied in numerous articles. These evaluations are often based
on Markov chains, decomposition approaches, or discrete-event simulation
(Dallery and Gershwin, 1992). Evaluation models add value as they reveal
the relationship between the setting of the line, e.g., buffer capacities, and the
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line performance. Moreover, they can be used as integral part of optimization
approaches (Demir et al., 2014).

We propose two new sampling approaches for the performance evaluation
of time-dependent, unreliable flow lines that produce discrete workpieces in
continuous time: The first approximation is based on a discrete-time, mixed-
integer program (MIP), which maintains the property of discrete workpieces.
This approximation replaces the continuous time with equal-length, discrete-
time intervals. The second proposed approximation preserves the property
of continuous time but approximates the discrete material using a continuous
flow model. The continuous flow model is described by partial differential
equations, and the numerical solution of the continuous model utilizes nu-
merical methods that include a discretization of time. A discrete-event sim-
ulation (DES) in continuous time with discrete material is used to evaluate
the accuracy of both approximations. Figure 4.1a illustrates the relationship
between the different approaches.

DES is a very powerful and common approach for the modeling of unreliable
flow lines. It can be interpreted as a microscopic level, which means that the
computation highly depend on the number of workpieces to be considered.
We introduce an intermediate and a macroscopic level. The different levels of
detail regarding the workpieces leads to a model hierarchy which is depicted
in Figure 4.1b.
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Figure 4.1: Relationships between the proposed approximations and discrete-
event simulation
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The basic idea is to transfer the detailed DES model with information about
individual workpieces and their dynamical behavior to other scales. For in-
stance, the MIP still includes discrete workpieces but only traces aggregated
values which describe the number of workpiece in the buffers. Based on the
intermediate approach, we are able to derive a macroscopic model avoiding
the dependency on single workpieces. This continuous model relies on con-
tinuous time and approximates individual workpieces by a density function.

The advantages of the proposed models over DES are: First, both new ap-
proaches do not trace individual workpieces and thereby reduce the depen-
dency on the workpieces’ release rate. Second, the MIP approach for eval-
uation bears the potential to be converted into an optimization approach for
system parameters, e.g., the buffer capacities. This two-step approach of first
deriving an evaluation formulation and subsequently using the power of the
MIP to optimize key system parameters has been successfully applied by,
e.g., Alfieri and Matta (2012) and Helber et al. (2011) for the buffer alloca-
tion problem under stationary conditions.

Our literature survey focuses on articles related to the two approximation
approaches under consideration. First, approaches that maintain the discrete
flow of material are reviewed. Subsequently, existing approaches that use
continuous flow models are presented.

Even under steady-state conditions, exact solutions for the performance eval-
uation of unreliable flow lines with finite buffers are known only for three ma-
chine lines for which repair times and the time between failures are geomet-
rically distributed (Gershwin and Schick, 1983). For time-dependent systems
with finite buffer capacities exist no exact analytical approaches, even with
restriction to a single stage (Schwarz et al., 2016). For an approximation of
a single-stage G(t)/G/1/k queueing model, see Stolletz and Lagershausen
(2013). Nasr and Taaffe (2013) proposed a time-dependent decomposition
approach for networks consisting of Ph(t)/M (t)/s/k queues. However, this
approach is limited to exponential processing times and assumes that work-
pieces are lost in case of a full buffer. Hence, the characteristic effect of
blocking of upstream machines in flow lines is neglected. For the analysis
of time-dependent flow lines only DES techniques are applied (Fan, 1976;
Takahashi and Nakamura, 2002).

Chan and Schruben (2008) proposed the idea of modeling stochastic discrete-
event systems as optimization problems, and it is noted that this concept is
methodologically related to our discrete-time approach. In this field, Helber
et al. (2011) evaluated and optimized the performance of the buffer alloca-
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tion in a flow line under stationary conditions. They used the realizations of
random variables as a deterministic input for a discrete-time MIP. Alfieri and
Matta (2012) optimized the buffer allocation using a sampling approach in
continuous time. Contrary to these sampling approaches, our analysis con-
siders changes of the rates over time and obtains measures for the resulting
time-dependent performance.

The second literature stream is related to the proposed continuous-flow ap-
proach. Recently, Tan (2015) applied the sample-based optimization ap-
proach to a continuous flow line. Other approaches use partial differential
equations to model the transport of workpieces through the flow line. These
equations describe the density of workpieces as a continuous function of time
and space, where the latter may be seen as the degree of completion of the
workpieces. Early approaches for flow lines with infinite buffer capacities
and smaller networks can be found in Vandergraft (1983), whereas recent de-
velopments in the field are presented, e.g., by Göttlich et al. (2005) or by
D’Apice et al. (2010). The efficient description of large but deterministic
production networks and their analysis have been considered by Fügenschuh
et al. (2008). They establish the equivalence of a discretized model based
on partial differential equations and a MIP model that both assume contin-
uous material flow. Furthermore, optimization issues, such as maximization
of throughput, have been considered by Kirchner et al. (2006) and other re-
searchers. The stochastic influences of random breakdowns have been inves-
tigated by Degond and Ringhofer (2007) and by Göttlich et al. (2011). The
former focused on the derivation of a time-recursion from which a partial
differential equation model was obtained. However, the latter directly used
partial differential equations to describe the evolution of a whole network.
In this case, piecewise deterministic processes (PDP), originally invented by
Davis (1984, 1993), were used to efficiently solve the model. Furthermore,
Göttlich et al. (2011) presented a modified version of the stochastic simulation
algorithm (SSA) of Gillespie (2001). All previously introduced models based
on partial differential equations include infinite buffer capacities. In contrast,
our model assumes finite buffer capacities. This is a novel and mathemati-
cally challenging restriction to the model.

The contribution of this paper is threefold: First, two new analytical ap-
proaches for the evaluation of time-dependent, unreliable flow lines are pro-
posed. Second, the paper provides a model hierarchy and a discussion on the
relationship between the two approximation approaches. By establishing the
equivalence of the MIP model with discrete material flow and the continuous
material flow model, we connect two literature streams. Third, insights re-
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garding the time-dependent behavior of unreliable flow lines are provided via
a numerical study. Moreover, the approximation quality of both approaches
is demonstrated via a comparison with a DES that models discrete material
while maintaining continuous time.

The remainder of the article is organized as follows. In Section 4.2, the
considered flow line is described. The discrete-time, discrete-flow approach
is presented in Section 4.3. Alternatively, Section 4.4 includes the deriva-
tion of a continuous-time, continuous-flow approximation. In addition, a
model reduction is proposed in Section 4.5, which relates both approxima-
tion approaches to one another. The numerical study presented in Section 4.6
demonstrates the approximation quality and provides insights regarding the
time-dependent behavior of flow lines. Concluding remarks and suggestions
for future research are provided in Section 4.7.

4.2 Modeling of time-dependent flow lines

4.2.1 Model description

buffer 2 buffer M buffer 1 

∞ ∞ 
1 … 1 2 

machine 0 machine 1 
 

machine 2 machine m machine M 

processing  rates        μ0(t)  μ1 μ2 μm  μM  

failure rates d0
 
 d1 d2 dm dM 

repair rates r0 r1 r2 rm rM 

buffer capacities - b1 b2 bm bM 

… 1 … bM 1 2 1 … b2 1 2 
… 

buffer m 

1 … bm 1 2 … 1 b1 

Figure 4.2: Flow line with time-dependent release rate and random break-
downs and repairs

The flow line model consists of m = 0, 1, 2, ...,M machines coupled by
buffers with capacity bm in front of machine m (see Figure 4.2). Collec-
tively, buffer m and machine m form station m . This notation complies with
the common notation for continuous-flow networks, i.e., the machine and its
preceding buffer share the same index. We assume that the flow line pro-
duces a single product. This assumption is common for flow lines as they are
typically used for mass production (Dallery and Gershwin, 1992). The line
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starts empty at time t = 0. Discrete workpieces enter the line via (artificial)
machine m = 0. This machine has an infinite supply of raw materials and
therefore never starves. Furthermore, we assume that there is unlimited space
behind machine m = M . Transportation times between machines and buffers
are assumed to be negligible. The finite capacity of the buffers m = 1, ...,M
may cause blocking of upstream machines whenever a buffer is completely
filled with workpieces. For the following analysis, blocking after service is
assumed. This implies that a workpiece remains on machine m after being
processed until an empty space at buffer m + 1 becomes available. Addi-
tionally, the processing rate µ0(t) of machine m = 0 is time-dependent and
represents the release rate of workpieces into the line, starting at time t = 0.

All machines process the workpieces on a first-come first-serve basis. The
raw processing times of machine m are deterministic with rate µm . This is
a common assumption for flow lines, justified by the behavior of automated
machines with little or no variability with respect to raw processing times
(Dallery and Gershwin, 1992; Dolgui et al., 2002). However, the effective
processing times are stochastic due to unreliable machines, i.e., machines are
subject to random breakdowns. There are two failure modes which can be
distinguished: run-based and time-based failures. A run-based failure can oc-
cur only if the machine is processing a workpiece whereas time-based failures
can occur independently of the machine’s state (operating, idling, or blocked)
(Wu, 2014). We model a flow line with time-based failures. This kind of
failure may be caused by faulty electronic parts and/or software controlling
the machines (Buzacott and Hanifin, 1978), power outages, or by preventive
maintenance which is deliberately started during an idling period (Wu et al.,
2011). Time-based failures may also be used to approximate run-based fail-
ures but according to Mourani et al. (2007) this results in an underestimation
of the throughput rate. Nevertheless, Li and Meerkov (2009) report that their
numerical study revealed only minor difference of 1% to 3% between the two
failure modes for throughput and work in process (WIP).

The time between failures is exponentially distributed with failure rate dm for
machine m . If machine m breaks down, the repair process starts immediately
with an exponentially distributed repair time with rate rm . The processing
is continued without loss of previous work after the completion of the repair
time. In the special case that a machine breaks down during a blocking pe-
riod, the workpiece can leave the blocked machine as soon as the blocking is
resolved, regardless of the machine’s repair status.
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4.2.2 Performance measures

Time-dependent performance measures of interest are related to WIP and the
output of the flow line. We focus on risk neutral expected values, as it is
common in the literature on flow line evaluation and optimization (Demir
et al., 2014; Weiss et al., 2015). E[WIPm(t)] measures the expected number
of workpieces in buffer m and on machine m at time t . The line throughput
is equivalent to that of the last machine m = M . The expected cumulated
output E[TH c(t)] of the flow line at time t equals the expected number of
workpieces produced up to t on machine m = M .

4.2.3 Sampling approach

We choose a sampling approach to account for randomness of the unreliable
machines. Our mathematical formulation deploys a two-state stochastic pro-
cess (Göttlich et al., 2011)

ωm : R≥0 × S −→ B
t × s 7−→ ωm (t , s)

(4.1)

for all machines m = 1, . . . ,M . Note that ωm (t , s) = 0 ∈ B = {0, 1}
indicates a broken machine, while ωm(t , s) = 1 implies that a machine is
operating properly. The state process ωm depends both on the time and on
the random sample s ∈ S . Thus for a fixed time t ≥ 0, ωm(t , ·) is a binary
random variable, whereas for a fixed random sample, ωm (·, s) is a realization
of the state process (see Figure 4.3).

Up-times: 

Down-times: 

t 
ωm(∙,s) : 1 0 

t*+Δτm t* 

Δτm 

1 

Figure 4.3: Realization of a two-state process ωm with values in B

To model the state switching of a machine (independent of the inventory level
in its buffer, on the machine, or the state of other machines), we use the failure
rate dm and the repair rate rm for each machine m . The former describes
the switching rate from ωm = 1 to ωm = 0, while the latter defines the
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rate of switching from ωm = 0 to ωm = 1. Then, for each machine, the
time ∆τm between two state transitions occurring at the switching points
t? and t? + ∆τm is randomly chosen according to those rates. We assume
an exponential distribution with the density function Exp(t ;λ) and the rate
parameter

λ = λ(ωm(t?)) =

{
dm ωm(t?) = 1,

rm ωm(t?) = 0.
(4.2)

4.3 MIP model for the evaluation of
time-dependent flow lines

The core idea of the discrete-time approximation is to maintain discrete ma-
terial but to approximate the continuous time by discrete intervals i of equal
length τi = τ ∀i . We propose a MIP for the time-dependent performance
evaluation which is based on a formulation by Helber et al. (2011) for the
evaluation of flow lines under stationary conditions. The proposed MIP solely
decides on the production quantities and the storage of workpieces in the
buffers. The values of the decision variables in the optimal solution serve as
approximation of the flow line performance. The buffer capacities are given
as integer values exogenously, as the model in the presented form is used for
performance evaluation only. In principle, buffer capacities may be converted
into decision variables. However, this requires the development of efficient
solution techniques which is out of the scope of the present paper.

The MIP integrates the randomness of breakdowns and repairs by sampling of
production capacities. Helber et al. (2011) use a single sample to approximate
the stationary system behavior based on a time average. However, informa-
tion regarding the time-dependent behavior is lost due to this time averaging.
Thus, the new approach presented in the following derives the performance of
the system over time from averages of s = 1, 2, ...,S samples. For sample s ,
the production capacity cm,i,s equals the number of workpieces that machine
m can produce during interval i if it were to operate in isolation. It is derived
from samples of the failure and repair times represented by the stochastic pro-
cess ωm . The values of cm,i,s are obtained in two steps. We first generate
a list with the continuous completion times of the processing, inducing sam-
pled up and down times, for every machine in isolation. In a second step, the
completion times are converted into discrete production capacities cm,i,s per
machine m , interval i , and sample s .
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For the generation of continuous completion times we consider that produc-
tion may take place only during up-times, i.e., if ωm(t , s) = 1 holds for
sample s . Thus, as long as an isolated machine m is operating, it produces
at a given rate µ0(t) and µm , respectively. However, if a breakdown occurs,
processing is interrupted. Under the assumption of work conservation, the
processing is continued after the repair process has been completed. For the
time-dependent machine m = 0 the processing times are determined at the
start of production according to the processing rate µ0(t). Hence, a change in
the rate µ0(t) becomes effective with the first workpiece after the rate change.

In the second step, we obtain the potential production capacity cm,i,s for
each machine m , discrete interval i , and sample s from the list of continuous
completion times by counting the number of finished workpieces during the
interval i . Thus, the capacity cm,i,s always takes integer values. For the
special case of τ = 1/µm the processing of workpieces prior to the first
breakdown may finish immediately at the end of interval i . In this case the
workpiece is assigned to interval i .

Table 4.1 lists the additional notation for the MIP. All undefined variables,
such as TH−1,i,s and WIPb

m,0,s , are omitted from the respective constraints.

Table 4.1: Notation for the discrete-time and discrete-material model

Indices
i = 1, 2, ..., I discrete intervals
s = 1, 2, ...,S samples

Parameters
bm exogenously given capacity of the buffer before machine m
cm,i,s potential processing capacity of machine m in interval i for sample s

Integer decision variables
WIPb

m,i,s end-of-interval inventory level of buffer m in interval i for sample s
THm,i,s production quantity of machine m in interval i for sample s

max
S∑

s=1

M∑
m=1

I∑
i=1

(I − i)THm,i,s (4.3a)

s.t.

WIPb
m,i,s = WIPb

m,i−1,s + THm−1,i,s − THm,i+1,s , m = 1, ...,M , ∀i ,∀s (4.3b)

THm,i,s ≤ cm,i,s , ∀m, ∀i , ∀s (4.3c)

WIPb
m,i,s ≤ bm , m = 1, ...,M , ∀i , ∀s, (4.3d)

WIPb
m,i,s ,THm,i,s ≥ 0, and integer ∀m,∀i ,∀s (4.3e)
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The objective function (4.3a) maximizes the total production on all stages.
The weight factor (I − i) decreases with increasing values of i . Hence, it
favors production in early intervals and consequently ensures that all work-
pieces are moved through the line as fast as possible. Constraints (4.3b) are
inventory balance equations. The inventory in buffer m at the end of inter-
val i equals the inventory at the end of the previous interval i − 1 increased
by the production quantities THm−1,i,s of the upstream machine in interval
i and decreased by the production quantities THm,i+1,s of the downstream
machine in the next interval i + 1. This implies that workpieces produced
from machine m − 1 flow into buffer m within an interval. From buffer m to
machine m however, workpieces are moved only at the end of intervals. Ac-
cording to Constraints (4.3c), the production quantity in each interval may not
exceed the sampled potential production quantity. It can, however, be lower
in the case of blocking or starvation. Nevertheless, it is guaranteed by Con-
straints (4.3d) that the inventory in the buffers does not exceed the buffer re-
striction. Finally, all decision variables must be non-negative integers (4.3e).
Note that the model can be solved independently for each sample s .

When the production capacities are such that cm,1,s ≥ 1 for all machines m ,
Constraints (4.3b) allow for a positive throughput at the last machine in the
first interval. To avoid this type of initial condition, we generate the sampled
production capacities of the first periods with respect to the real (not dis-
cretized) schedule for the first workpiece. The sampled production capacities
cm,i,s are set to zero for all intervals before the first arrival of a workpiece.
Helber et al. (2011) implemented a minimum lead-time of one interval be-
tween adjacent machines. In contrast to this approach, the modified sampling
considers the actual length of the processing and repair times with respect to
the first workpiece.

The proposed MIP model permits two types of approximation errors. In
particular, a simulation error that decreases as the number of samples S in-
creases. In addition, discretization errors originate from the inventory balance
equation (4.3b) which allows the transfer of workpieces within and at the end
of an interval. The magnitude of these discretization errors depends on the
length of the intervals τ . Preliminary tests show that setting the length of the
discretization interval equal to τ = min

m
{1/µm ,min

t
{1/µ0(t)}} yields small

approximation errors, such that this τ is also used in the numerical study.

We use a standard solver to obtain solutions of the MIP (4.3). Potentially,
specialized algorithms or heuristics can also be utilized to solve the problem.
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4.4 Continuous model for the evaluation of
time-dependent flow lines

In this section we present a continuous-time modeling approach as an alterna-
tive to the one presented in Section 4.3. We first concentrate on the derivation
of a deterministic model. Subsequently, we explain how random breakdowns
and repairs can be included. We close the section with a brief introduction to
the numerical methods used to solve this stochastic model.

The approach presented in this section allows for continuous time but does not
trace each workpiece individually. Instead, we consider the density of work-
pieces, which is the non-integer number of workpieces per unit length. We
assume that each machine has a spatial extension, which may be interpreted
as continuous degree of completion. Furthermore, we model the processing
on each machine m as a continuous flow along each machine with a constant
velocity vm . As the density of workpieces is non-integer, the transfer to and
from machines is a continuous variable as well.

buffer 2 buffer M buffer 1 

∞ ∞ 

machine 0 machine 1 

 

machine 2 machine m machine M 

… 1 … bM 1 2 1 … b2 1 2 
… 

buffer m 

1 … bm 1 2 … 

… … 
m=0 x1=0 

x2=0 

m=1 m=2 m m=M x1=1 

1 … 1 2 1 b1 

Figure 4.4: Flow line represented by unit intervals and zero space dimen-
sional buffers

We model each machine as an one-dimensional arc and use a single coordi-
nate x ∈ [0, 1] to uniquely determine the location (the degree of completion)
within a machine (see Figure 4.4). We define the density ρm(x , t) of work-
pieces on machine m at position x at time t as the number of workpieces on
machine m per unit length. With this definition of density, we are able to
analyze the flow fm on each machine m . The flow corresponds to the num-
ber of workpieces per time unit moving along the machine. It depends on
the density ρm(x , t). If the density ρm(x , t) is in the free flow regime, i.e.,
machine m is working below its flux limit and is not congested, then the flow
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is given by vmρm (see Figure 4.5). In other words, the more workpieces are
available the greater is the flow. This holds up to the maximal flux µmax

m of ma-
chine m . This µmax

m corresponds to the rate µm in the original flow line model
presented in Section 4.2. On the other hand, if the downstream buffers are full,
we observe congestion on machine m . The information about the congestion
is passed backwards through machine m with the velocity vm , too. The ma-
terial flow is then reduced to 2µmax

m − vmρm (see Figure 4.5). This marks a
difference between the continuous model and the discrete model (4.3). For the
discrete model, blocking interrupts material flow, whereas in the continuous
model, congestion only reduces the flow on machine m to the flow allowable
by the downstream machine m + 1.

We define σm = µmax
m /vm as the maximal density which is allowed for a free

flow being attained on machine m and thus we get

fm(ρm(x , t)) =

{
vmρm(x , t) 0 ≤ ρm(x , t) ≤ σm ,
2µmax

m − vmρm(x , t) σm ≤ ρm(x , t) ≤ 2σm .
(4.4)

free flow congestion

ρm

fm(ρm)

σm

µmax
m

ρ∗m ρ̂m

Figure 4.5: Flow (or clearing) function (4.4) (solid) and indicated two density
values yielding the same flow value (dashed line). The relation is
ρ∗m = 2σm − ρ̂m , where ρ∗m < σm is the free flow density and
ρ̂m > σm the congested density of the corresponding flow value

As ρm(x , t) describes the density of workpieces at position x at time t on
machine m , the number of workpieces in a section [xa , xb ] of machine m
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equals the integral of the density between the points 0 ≤ xa < xb ≤ 1 at
time t

xb∫
xa

ρm(x , t)dx . (4.5)

In the same way, we can express the amount of workpieces flowing through
position x within a time interval 0 ≤ t1 < t2

t2∫
t1

fm(ρm(x , t))dt . (4.6)

Assuming sufficient regularity on ρm(x , t) and fm(ρm(x , t)) we obtain ma-
terial balance equation (4.7), because no parts are lost or generated within
each single machine. This states, that the number of workpieces in section
[xa , xb ] at time t2 equals the number of workpieces, which were there at time
t1 plus the number of workpieces, which entered the section at xa in time
interval [t1, t2] minus the workpieces, which left the section at xb in this time
interval (see Figure 4.6)

xb∫
xa

ρm(x , t2)dx =

xb∫
xa

ρm(x , t1)dx+

t2∫
t1

fm(ρm(xa , t))dt−
t2∫

t1

fm(ρm(xb , t))dt .

(4.7)

From the fundamental theorem of calculus we obtain

ρm(x , t2)− ρm(x , t1) =

t2∫
t1

∂tρm(x , t)dt (4.8a)

fm(ρm(xa , t))− fm(ρm(xb , t)) =

xb∫
xa

∂x fm(ρm(x , t))dx (4.8b)

for sufficiently smooth derivatives. Combining the balance equation (4.7)
and Equations (4.8) yields

xb∫
xa

t2∫
t1

∂tρm(x , t)dt dx +

t2∫
t1

xb∫
xa

∂x fm(ρm(x , t))dx dt = 0 . (4.9)
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t2∫
t1

fm(ρm(xa , t))dt
t2∫
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Figure 4.6: Graphical interpretation of Equation (4.7). Workpieces flowing
into and out of the region xa < xb are marked by arcs and com-
puted according to (4.6). The number of workpieces within the
region are calculated by (4.5) and marked as light gray (lines) for
time t1 (t2)

If we assume that Equation (4.9) holds for all sections [xa , xb ] in machine
m and all time intervals [t1, t2], then we get the scalar transport equation
(or conservation law) (LeVeque, 1992). This conservation law describes the
transport of the density of workpieces within each machine

∂tρm(x , t) + ∂x fm(ρm(x , t)) = 0 . (4.10)

The machines are coupled by buffers without spatial extension. Buffer m is
placed in front of machine m at xm = 0 and directly after machine m − 1
at xm−1 = 1 (see Figure 4.4). For each buffer m , we introduce a variable
qm(t) describing its inventory level at time t . The derivative ∂tqm(t) ex-
presses the change in the number of workpieces in the buffer m at time t (in
workpieces per time). It is positive if workpieces enter the buffer and negative
if the buffer is (partially) cleared. We obtain a rate equation for the buffer m ,
i.e., the change of inventory in buffer m , ∂tqm(t), is the difference of the
inflow γin

m(t) to buffer m and the outflow γout
m of buffer m (see, e.g., Coclite

et al. (2005); Garavello and Goatin (2012))

∂tqm(t) = γin
m(t)− γout

m (t) . (4.11)

Both the inflow γin
m(t) to and the outflow γout

m (t) of buffer m are given in
workpieces per time unit. For the computation of the outflow, we have to
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distinguish two cases. If the buffer is filled (0 < qm(t) ≤ bm ), machine m
can produce at its current maximal flux, which we define by γ̂m(t). This
flux depends on the density of machine m . If it is in free flow regime,
γ̂m(t) = µmax

m and if it is congested (see Figure 4.5, right part), the cur-
rent maximal flux is reduced to the maximal flow being able to be processed,
γ̂m(t) = 2µmax

m − vmρm(0, t), yielding γ̂m(t) = min{µmax
m , 2µmax

m

−vmρm(0, t)}. On the other hand, if buffer m is empty (qm(t) = 0), then
there are two subcases: either machine m − 1 provides less than machine m
is able to process (fm−1(ρm−1(1, t)) < γ̂m(t)) or machine m − 1 makes
more workpieces available to machine m than it can process. The latter re-
sults in a rise of inventory in buffer m . This yields the following relation for
the outflow

γout
m (t) =

{
min {fm−1 (ρm−1(1, t)) , γ̂m(t)} qm(t) = 0,

γ̂m(t) 0 < qm(t) ≤ bm .
(4.12)

This choice of the buffer outflow ensures that the throughput is as large as
possible and that the buffer is emptied as quickly as possible (see Coclite
et al. (2005); Garavello and Goatin (2012)).

Similar to the outflow, we have to distinguish two cases considering the in-
flow γin

m(t). If there is space left in the buffer (qm(t) < bm ), the inflow to the
buffer is given by the output of the upstream machine m − 1, i.e., the flow at
xm−1 = 1. On the other hand, if the buffer is at its maximal capacity, it is not
possible to transfer more flow into the buffer than machine m is able to pro-
cess. Accordingly, this may lead to congestion on machine m − 1. Thus the
flow is transferred from machine m−1 to buffer m according to the equation

γin
m(t) =

{
fm−1 (ρm−1(1, t)) 0 ≤ qm(t) < bm ,

min {fm−1 (ρm−1(1, t)) , γ̂m(t)} qm(t) = bm .
(4.13)
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Summarizing, the following model has been generated to represent a flow line
with finite buffers in continuous time and continuous space

0 = ∂tρm(x , t) + ∂x fm(ρm(x , t)) (4.14a)

∂tqm(t) = γin
m(t)− γout

m (t) (4.14b)

γin
m(t) =

{
fm−1 (ρm−1(1, t)) 0 ≤ qm(t) < bm

min {fm−1 (ρm−1(1, t)) , γ̂m(t)} qm(t) = bm

(4.14c)

γout
m (t) =

{
min {fm−1 (ρm−1(1, t)) , γ̂m(t)} qm(t) = 0

γ̂m(t) 0 < qm(t) ≤ bm

(4.14d)

ρm(x , 0) = ρ0
m(x ), qm(0) = q0

m , f0(ρ0(0, t)) = min {µ0(t), γ̂0(t)} ,
(4.14e)

where q0
m and ρ0

m(x ) describe the initial values of the buffer m and ma-
chine m , respectively. The inflow (release rate) µ0(t) to the flow line repre-
sents the boundary value for the inflow. Note that breakdowns and repairs can
be incorporated into model (4.14) by allowing the flux µmax

m to be dependent
on the state of the machine and time as shown in the following equation

µmax
m (t , s) = µmax

m · ωm(t , s). (4.15)

This yields a modified flow function as well as a modification to the in- and
out-flux of the buffer, implying that all deterministic capacities µmax

m in (4.14)
are replaced according to (4.15). Model (4.14) generates a unique solution
for the flow line problem. As we will show in Section 4.5, this solution cor-
responds to the one computed by the MIP model (4.3).

4.4.1 Numerical solution of the continuous model

In this section, we describe how the stochastic flow line model is solved nu-
merically. First, we consider the deterministic flow line model (4.14). In order
to solve the differential equations within the flow line model (4.14) numeri-
cally, we need to discretize both space and time and consequently, we intro-
duce a spatial grid 0 = xm,0, . . . , xm,j , . . . , xm,J = 1 with
xm,j = xm,0 + j∆x for each machine m and a time grid 0 = t0, ..., ti , ..., tI
= T with ti = t0 + i∆t , respectively. We define the deterministic time grid
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T = (ti)i with

∆t = min
m=0,...,M

{
∆x

|f ′m(ρ)|

}
,

where the time step is chosen to fulfill the stability condition (LeVeque, 1992)

∆t

∆x
|f ′m(ρ)| ≤ 1 (4.16)

for all machines m = 0, . . . ,M . Note that the resolution of each grid may be
arbitrarily small as long as stability condition (4.16) is fulfilled and that fm are
piecewise differentiable functions for each m . We choose to use an explicit
Euler scheme to solve the buffer equation (4.14b). For the discretization of
the transport equation (4.14a) we use a Godunov scheme (LeVeque, 1992).
This is a necessary extension to the approaches of Gillespie (1976, 2001) and
Göttlich et al. (2011) as the modeling of finite buffer capacities leads to waves
of negative speed, which have to be covered by the numerical scheme.

We now turn to the solution of the stochastic flow line model, i.e., model (4.14)
with µmax

m (t , s) according to (4.15). Randomness occurs only at the points in
time, where the states of a machine switch, the so-called switching points.
The random variable ωm(·, s) that describes the switches between machine
states is a step-function with a finite number of jumps in [0 = t0,T ] for al-
most every sample s . Thus, for each sample s ∈ S , we obtain a sequence
T s

= {t̄si }i of switching points t̄si such that almost every time there is a finite
number Ω = Ω(s) of state transitions, i.e., t0 = t̄s0 < t̄s1 < · · · < t̄sΩ = T .
Furthermore, ω(·, s) is constant on each interval

[
t̄si , t̄

s
i+1

)
, namely

ω(t , s) = ω(t̄si , s) for all t̄si ≤ t < t̄si+1 and for all i ≥ 0. Between the
switching points the flow line behaves in a completely deterministic man-
ner. Consequently, the solution of stochastic version of model (4.14) can be
computed with a deterministic solver within an interval

[
t̄si , t̄

s
i+1

)
(see Algo-

rithm 4.4.1).

This concept is known as a piecewise deterministic process (PDP), which
was first formulated by Davis (1984, 1993). For one sample, such a PDP can
be solved by the following stochastic simulation algorithm (SSA) (Gillespie
(1976, 2001); Göttlich et al. (2011), see Algorithm 4.4.2). The algorithm
first samples the next switching point and then uses a deterministic numerical
solver to compute the solution of model (4.14) between two switching points.
The initial values for each step are given by the final values of the former step.

To calculate a solution for the set of S samples, the deterministic time grid T
is used as a common grid for all realizations. For each single realization
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we refine the time grid by adding the sampled switching times. In this way,
each switching point t̄si ∈ T̄ s is included in the time grid and the stability
condition (4.16) is satisfied.

Algorithm 4.4.1 Deterministic solution of model (4.14) in time interval[
t̄si , t̄

s
i+1

)
Require: Sampled switching times t̄si and t̄si+1; densities ρm(·, t̄si ) and queues qm(t̄si ) for all m ∈ M ;

global time grid T = (ti )i
Ensure: ρm(·, t) and qm(t) for t̄si ≤ t ≤ t̄si+1 and for all m ∈ M

1: Compute local time grid s(
t̃l
)
0≤l≤L

=
{
t̄si , t̄

s
i+1

}
∪ T |

[
t̄si , t̄

s
i+1

]
= {t̄si , ti , ti+1, . . . , ti+L−2, t̄

s
i }

2: for l = 0 to L− 1 do
3: for m = 0 to M do
4: γ̂m(tl ) = min {µmax

m , 2µmax
m − vmρm(0, tl )}, ∆tl = tl+1 − tl

5: Compute γout
m (tl ) according to (4.14d)

6: Compute γ in
m(tl ) according to (4.14c)

7: Do Euler step for queue: qm(tl+1) = qm(tl ) + ∆tl

(
γ in
m(tl )− γout

m (tl )
)

8: Set in-/outflow of queue as boundary conditions at tl :

ρm(x−1, tl ) =

{
(2µmax

m − γout
m (tl ))/vm ρm(0, tl ) > σm ∨ fm(ρm (0, tl )) = γout

m (tl )

γout
m (tl )/vm otherwise

ρm(xJ+1, tl ) =

{
γ in
m+1(tl )/vm ρm(1, tl ) < σm ∨ f (ρm (1, tl )) = γ in

m+1(tl )(
2µmax

m − γ in
m+1(tl )

)
/vm otherwise

9: for j = 0 to J do

10:
ρm(xj , tl+1) =ρm(xj , tl )−∆tl/∆x ×

(
F (ρm (xj , tl ) , ρm(xj+1, tl ))

− F (ρm (xj−1, tl ) , ρm (xj , tl ))
)

with the so-called Godunov Flux F(ρl , ρr ) =

{
minρ∈[ ρl ,ρr ) f (ρ) ρl ≤ ρr
maxρ∈[ ρr ,ρl )

f (ρ) ρl ≥ ρr
11: end for
12: end for
13: end for

Algorithm 4.4.2 Stochastic simulation algorithm
Require: [t0,T ] real interval. Initial data for t = t0.
Ensure: One realization of stochastic flow line model (4.14) on [t0,T ].
1: while t̄si < T do
2: Sample next switching point t̄si+1

3: Compute solution in the interval
[
t̄si , t̄

s
i+1

)
according to Algorithm 4.4.1.

4: Set i = i + 1.
5: end while
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4.5 Link between MIP and continuous model

We now explain the connection between the MIP and the numerical solu-
tion of (4.14). The key idea is to link the buffer equation (4.14b) to Equa-
tion (4.3b) by freezing the stochastic terms. Note that the MIP is piecewise
deterministic and thus it suffices to consider the freezed stochastic terms, pro-
vided the discrete-time interval is chosen sufficiently small, such that every
switching point is also a discretization point. Recalling the need for a dis-
cretization in space and time for the numerical solution of (4.14), we reuse
the equidistant spatial grid defined in Section 4.4.1, i.e., xm,j = j ·∆x with
j = 0, . . . , J for machine m with J ≥ 1. To simplify the notation of the
continuous-time model (4.14), we assume that the velocity on each machine
m is fixed at vm = v = 1.

For the following discussion, we use a coarse discretization with ∆x = 1
for each machine, i.e., x0 = 0 and x1 = 1 are the only two discretization
points. We abbreviate the density in these points by ρim,0 = ρm(0, ti) and
ρim,1 = ρm(1, ti). For this discretization, we must distinguish between a
free flow and a congested flow line. We first consider the case of free flow,
ρim,j ≤ σm , j = 0, 1. Using a left-handed upwind scheme with the stability
condition (4.16), where f ′m(ρ) = ±v , we obtain from Equation (4.14a)

ρi+1
m,1 − ρim,1

∆t
+ v

ρim,1 − ρim,0
∆x

= 0

⇐⇒ ρi+1
m,1 = ρim,1 −

∆t

∆x
v
(
ρim,1 − ρim,0

)
.

We now choose the time step ∆t = ∆x/v fulfilling (4.16) for the equality
case. Doing so, the above equations becomes

ρi+1
m,1 = ρim,0. (4.17)

Second, we consider the congested flow line, i.e., ρim,j > σm , j = 0, 1.
Using a right-handed, upwind scheme (LeVeque, 1992), we obtain

ρi+1
m,0 − ρim,0

∆t
− v

ρim,1 − ρim,0
∆x

= 0

⇐⇒ ρi+1
m,0 = ρim,0 +

∆t

∆x
v
(
ρim,1 − ρim,0

)
.

Again, the stability condition (4.16) must hold, and by choosing ∆t = ∆x/v ,
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we find that
ρi+1
m,0 = ρim,1. (4.18)

Straightforward Euler discretization (LeVeque, 1992) of Equation (4.14b) to
model the filling of the buffer yields

q i+1
m − q im

∆t
= γin,i

m − γout,i
m , (4.19)

where q im = qm(ti), γin,i
m = fm−1

(
ρim−1,1

)
and γout,i

m = fm
(
ρim,0

)
. Using

(4.17) we can substitute the last term in Equation (4.19) for the free flow case
as

γout,i
m = fm

(
ρi+1
m,1

)
. (4.20)

In order to find a representation for γout,i
m when congestion is present on ma-

chine m at time ti (i.e., ρim,0 > σm ), there are two cases to be discussed:
Congestion being resolved and congestion enduring. From Equation (4.18),
we know that ρi−1

m,1 = ρim,0 > σm holds. In the first case the congestion
is resolved in time step ti , and thus ρim,1 = 2σm − ρi−1

m,1 < σm (see Fig-
ure 4.5). The update for the next time step is done according to (4.17), yield-
ing ρi+1

m,1 = ρim,0. Thus, the flow values are found as

fm
(
ρi+1
m,1

)
= fm

(
ρim,0

)
. (4.21)

The second case is that congestion persists on in time step ti , and hence,
we get ρim,1 = ρi−1

m,1 > σm and ρi+1
m,0 = ρim,1 (see (4.18)). Consequently,

the density ρi+1
m,0 at time step ti+1 has to be considered. This yields two

subcases: Either the congestion is still present in time step ti+1, implying
that ρi+1

m,1 = ρim,1 = ρi−1
m,1 = ρim,0 and yielding fm

(
ρi+1
m,1

)
= fm

(
ρim,0

)
, or

the congestion is resolved in time step ti+1. In the latter subcase, we obtain
ρi+1
m,1 = 2σm − ρim,1 < σm , and, consequently, the flow values are related as

follows

fm
(
ρi+1
m,1

)
= fm

(
ρim,1

)
= fm

(
ρi−1
m,1

)
= fm

(
ρim,0

)
. (4.22)

Hence, for any case, we may rewrite (4.19) in terms of the flow values, yield-
ing

q i+1
m = q im + ∆t

(
fm−1

(
ρim−1,1

)
− fm

(
ρi+1
m,1

))
. (4.23)
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With respect to the balance equation (4.3b), the following theorem is stated.

Theorem 4.5.1. Let WIPb
m,i = q i+1

m and τ−1 · THm,i = f
(
ρim,1

)
and

∆x = 1. Then, each numerical solution of the time-continuous model (4.14)
is also a solution for the discrete-time model (4.3).

4.6 Numerical evaluation of the approximation
approaches

4.6.1 Performance measures

Performance measures of interest are the expected work in process
E[WIPm(t)] at each station m and the expected cumulated output of the line
E[TH c(t)].

The performance calculation for the discrete-time model is as follows: The
WIP on machine m = 0 is always 1 as it does not suffer from starvation. For
the remaining stations m = 1, 2, . . . ,M (machine and buffer in front of the
machine), the expected WIP at the end of interval i can be determined by the
difference of the cumulated production of machine m − 1 and the cumulated
production of machine m up to the end of interval i

E[WIPm,i ] =


1 m = 0,

1
S

S∑
s=1

i∑
i′=1

(THm−1,i′ ,s − THm,i′ ,s) m = 1, 2, . . . ,M .

(4.24)
The expected number of produced workpieces up to the end of interval i (i.e.,
the expected cumulated output of the line) is given by

E[TH c
i ] =

1

S

S∑
s=1

i∑
i′=1

THM ,i′ ,s . (4.25)

In contrast, the performance measures for the continuous-time model are cal-
culated in the following way: The expected WIP on station m at time t is
given as the inventory level in the buffer plus the difference of the workpieces
having entered machine m up to time t and those having already left machine
m by time t , yielding
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E[WIPm(t)]

=
1

S

S∑
s=1

qm(t , s) +

t∫
0

fm(ρm(0, t̃ , s)) dt̃ −
t∫

0

fm(ρm(1, t̃ , s)) dt̃

 .

(4.26)

Furthermore, the expected number of workpieces produced by time t is com-
puted as the cumulated outflow from the last machine M

E[TH c(t)] =
1

S

S∑
s=1

t∫
0

fM (ρM (1, t̃ , s)) dt̃ . (4.27)

For t = ti being the end of interval i , we are able to compare (4.24) to (4.26)
as well as (4.25) to (4.27).

4.6.2 Case I: Increase of the release rate
To evaluate the accuracy of the proposed approximations and to gain initial
insights regarding the time-dependent performance of unreliable flow lines,
we first analyze two cases of three-machine lines in detail and subsequently
54 cases with lines of different length in Section 4.6.4.

For both cases with M = 2, the buffer m = 1 is infinite, and the buffer m = 2
is finite with capacity b2 = 5. Machine m = 0 is assumed to be reliable,
whereas machines m > 0 fail randomly with exponentially distributed time
between failures and repair times. The system is observed for a finite horizon
of 200 time units.

In the first case, the rate of the reliable machine m = 0 increases from 0.75
for t < 100 to 0.9 for 100 ≤ t ≤ 200. Machine m = 0 starts as the
bottleneck. After the change in the processing rate at t = 100, all machines
are bottlenecks if the unreliability of machines m = 1, 2 is considered (see
Table 4.2).

For the continuous model the velocity and maximal capacity is set equal to 1
on all machines. Four discretization points in space and time are used, giving
∆x = ∆t = 1/4. The length of the discretization interval for the discrete-
time approach is τ = 1 and α = 10. A set of S = 1, 000 samples is used for
both of the approximation approaches and all test cases. The DES includes
1 million replications, which ensures tight confidence intervals.
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Table 4.2: Parameters for an increasing release rate µ0(t)

Test case parameters Approximation

m bm dm rm µm vm µmax
m

0 — 0 ∞ 0.75 | 0.9 1 1
1 ∞ 1/45 1/5 1 1 1
2 5 1/45 1/5 1 1 1

Figure 4.7a depicts the expected work in process E[WIP1(t)] of station 1.
The oscillations in the simulation are caused by correlations of the output
of the machines for different samples due to the deterministic and discrete
material outflow of machine m = 0. The MIP approach exhibits oscillations
similar to those of the DES. These types of oscillations do not occur for the
continuous model (CON) as the density of workpieces constantly leaves the
machines. For the sake of comparability to the continuous model, we compute
a time average over multiple periods for the MIP and DES. We average values
over four time units, which is the least common multiple of all processing
times. It also represents the longest processing time of all machines.

Figure 4.7b demonstrates that the averaged work in process E[WIPm(t)] is
well approximated for both stations. Workpieces start to accumulate at both
stations and do not reach a steady state during the first 100 time units. The
maximum absolute deviation to the simulation is 0.6782 workpieces (0.1667
workpieces) for the MIP and 0.4561 workpieces (0.1086 workpieces) for the
continuous model in station 1 (station 2).
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Figure 4.7: Expected WIP over time for an increase of the release rate
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Figure 4.8a reveals that both approximations of the expected cumulated out-
put E[TH c(t)] match very well with the simulated results. The relative errors
of the approximations to the simulation in Figure 4.8b show that the contin-
uous model slightly overestimates the throughput for the first periods. This
initial overestimation is due to the approximation of continuous flow. The
density of workpieces constantly leaves the machine, even before the mini-
mum lead time of

∑m
m′=1

1
µm′

.
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Figure 4.8: Expected cumulated output and its relative error over time for an
increase of the release rate

4.6.3 Case II: Decrease of the release rate

For the second case, we consider a decrease of the release rate µ0. The re-
maining parameters are chosen such that the bottleneck shifts from machine
m = 2 to machine m = 0 after t = 100 (see Table 4.3).

Table 4.3: Parameters for a decreasing release rate µ0(t)

Test case parameters Approximation

m bm dm rm µm vm µmax
m

0 — 0 ∞ 0.625 | 0.25 1 1
1 ∞ 1/45 1/5 1 1 1
2 5 1/95 1/5 0.5 1 0.5
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Figure 4.9: Expected WIP over time for a decrease of the release rate

Figures 4.9a and 4.9b depict the expected work in process E[WIPm(t)] for
the last two stations. The bottleneck is located at machine m = 2 for t < 100,
which leads to a high WIP for buffer m = 2. This causes a high probability of
blocking for machine m = 1, and hence, an increasing WIP for station 1. The
decrease of the rate µ0 resolves the blocking issue in this case for machine
m = 1, and the inventory levels in both buffers decrease as a result.

The MIP approach overestimates E[WIP1(t)] and underestimates E[WIP2(t)],
while the overall WIP is well approximated. Notwithstanding the approxima-
tion errors mentioned in Section 4.3, this shift in the WIP may be explained
by the underestimation of the WIP on machine 2 in this example. Based on
the assumption of the inventory balance equation (4.3b), a workpiece is taken
from the buffer at the end of the period before the production finishes. The
time that workpieces spend on m = 2 is underestimated by exactly one time
unit as the length of the discretization interval τ = 1 is just half of a process-
ing time 1/µ2. If the buffer capacity b2 is reached, the underestimation of the
time that workpieces spend on machine m = 2 leads to an overestimation of
the time workpieces spend on station 1. This in turn leads to the observed
overestimation of the inventory at station 1.

The continuous model results in a similar error for machine m = 2. It reduces
the maximum flow through the machine m = 2, such that the model predicts
that fewer workpieces will be present on the machine compared to the actual
system.
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The cumulated output of the flow line is well approximated by both ap-
proaches (see Figure 4.10a). The cumulated output increases at a constant
rate shortly after the start of production. The throughput rate of machine
m = 2 drops after t > 150. This late reaction relative to the decrease of
the rate µ0(t) is based on a high expected WIP level at time t = 100. We
observe again an overestimation for the continuous model at the beginning of
the time horizon (t < 40); see the relative errors in Figure 4.10b. For later
time values, this error tends to zero. The MIP approximates the cumulated
output with a maximum relative error of only 1.4%.
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decrease of the release rate
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4.6.4 Impact of the number of machines and buffer
capacities

In the following, we evaluate the impact of the number of machines M in the
flow line, the buffer capacities bm , and different time-dependent release rates
µ0(t) on the expected cumulated output E[TH c(t)] of the line. We consider a
set of stepwise constant rate functions µ0(t), which increases to a maximum
rate h and subsequently decreases to 0 in the time interval [0, 700]. They are
characterized by step lengths l ∈ {100, 140, 233.33} and maximal release
rates h ∈ {0.8, 1.0, 1.5}. Figure 4.11 depicts an example with l = 140 and
h = 1.0. Two different buffer capacities bm ∈ {5, 20} and three different
numbers of machines M ∈ {3, 10, 20} are tested. For all configurations,
machines m > 0 have the processing rate µm = 1, failure rate dm = 1/45,
and repair rate rm = 1/5. All in all, 54 test cases are considered.

The discretization interval for the discrete-time approach is set to
τ = min

m
{1/µm(t)}. For the continuous model, we set the velocity and max-

imal flux vm = µmax
m = 1 for all machines m > 0. The numerical solution

scheme uses discretization intervals of ∆x = ∆t = 1/4.

Table 4.4 summarizes the results of the expected cumulated output at times
t ∈{100, 350, 700, 800} for all 54 test cases. The relative deviations of the
MIP and the continuous approach to a DES with S = 1, 000, 000 replica-
tions are given in brackets. With respect to approximation quality, Table 4.4
suggests a close match of both approximations to the DES. The average ab-
solute deviations to the DES are 0.81% for the MIP (4.3) and 0.47% for the
continuous model (4.14), respectively.
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Figure 4.11 depicts the detailed development in the time interval [0, 800] for
the cases of bm = 5,M = 10, l = 140, and h = 1.0. Both approaches
approximate E[TH c(t)] very well.

It becomes apparent that the time-dependent behavior of the release rate does
not directly translate to the expected cumulated output of the flow line. The
discontinuities in the release rate are marked by kinks in the cumulated release
rate µc

0(t) =
∫ t

0
µ0(t̃)d t̃ . These kinks are less pronounced in the cumulated

output curve. Comparisons with the cases M ∈ {3, 20}, and bm = 50 reveal
that this smoothing effect increases with the number of machines M and with
buffer capacities bm . This demonstrates the impact of the flow line’s design
on its time-dependent performance.

Next, we compare the case of the time-dependent release rate to a constant
release rate. We set µ0(t) = µconst

0 =
∫ T

0
µ0(t)
T dt = 0.6, such that it corre-

sponds to the average release rate of the time-dependent case. The constant
release rate yields a 8.7% higher cumulated output at time t = 800 compared
to the time-dependent case, which illustrates the relevance of the time-depen-
dent effects in the flow line.
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Figure 4.11: Cumulated output E[TH c(t)] obtained by the MIP, the contin-
uous model, and the DES for µ0(t) with h = 1.0, l = 140,
M = 10, and bm = 5 ∀m
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4.7 Conclusion

In this work, two new approximation approaches for the performance eval-
uation of time-dependent, unreliable flow lines are introduced. For the first
time, the MIP sampling approximation is used as an approach to evaluate a
non-stationary flow line. The continuous model extends the existing literature
on continuous supply chain models via the incorporation of finite buffers and
congestion. We demonstrate that both approaches coincide on a deterministic
level, which links the two corresponding literature streams.

The discussion on the approximation quality is supported by a numerical
study. The numerical study also provides new insights regarding time-depend-
ent effects in flow lines. In particular, the impact of a time-dependent release
rate on the cumulated output is quantified. Moreover, the numerical study
reveals a time-dependent smoothing effect with respect to the expected cu-
mulated output.

A potential extension to the model is the integration of multiple product types.
The proposed model can be used as a basis for this extension if no or only mi-
nor setups are required between the processing of different product types.
Another direction of future research is the extension to performance mea-
sure which reflect, e.g., risk aversion to account for empirical research which
suggests that operations managers are not necessarily risk neutral (Bendoly
et al., 2006). Both approximation approaches are methodologically closely
linked to performance optimization. Thus, future work should be directed
towards the optimization of the design and control of flow lines under a time-
dependent and stochastic operating environment. Potential objectives include
the minimization of necessary buffer capacities or the optimization of the re-
lease rate. Moreover, from a methodological point of view, the integration
of the stochastic effects without generation of random numbers is a potential
field of future research.
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Abstract:

Flow lines often operate under stochastic and time-dependent influences, for
example during the ramp-up phase. The considered model assumes stochas-
tic processing times with arbitrary distributions which may change over time.
Finite buffers are allocated between the machines to compensate for these
stochastic effects. A discrete-time sampling approach for the analytical per-
formance evaluation is proposed. The accuracy of the approach is demon-
strated by comparison to a discrete-event simulation. Moreover, different
time-dependent buffer allocation strategies are proposed and evaluated.
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5.1 Introduction

Flow lines often operate under stochastic and time-dependent influences. In
the literature, stochastic impacts from random demand, processing times, ma-
chine failures, and subsequent repair times are widely acknowledged (Dallery
and Gershwin, 1992). In unpaced flow lines usually buffers are placed be-
tween adjacent machines in order to limit the negative effects of blocking
and starving. A machine starves if it idles due to a lack of raw material
and is blocked if a processed workpiece cannot leave the machine due to a
full downstream buffer. Jaikumar and Bohn (1992) first describe and discuss
that production systems often operate under non-stationary conditions. The
time-dependent behavior occurs if the parameters of the random distributions
change over time. Reasons are learning effects during the ramp-up (Terwi-
esch and Bohn, 2001), introduction of new manufacturing technologies, or
seasonal demand patterns.

In contrast to the buffer allocation for flow lines under steady-state conditions
(Demir et al., 2014), the time-dependent buffer allocation for non-stationary
operating environments has received little attention so far. In practice, time-
dependent changes of the buffer space configuration are easily realizable
within a certain range. This holds especially for many modern production sys-
tems that are controlled by a pull mechanism. In pure pull systems the number
of Kanban cards corresponds to the available buffer space. Hence, the buffer
space is easily adaptable by means of the cards. This paper provides an initial
approach for the systematic analysis of time-dependent buffer allocations for
stochastic flow lines. This includes a description of unique characteristics for
buffer changes over time. Moreover, an sample-based evaluation approach
for the performance analysis is proposed, which bears the potential for modi-
fications towards an optimization model. A numerical study demonstrates its
accuracy and provides first insights regarding the system behavior.

There is a rich body of literature with respect to the analytical performance
evaluation of stochastic flow lines under steady-state conditions (Dallery and
Gershwin, 1992). However, the performance evaluation of time-dependent
stochastic flow lines with finite buffers has not yet been addressed in an an-
alytical way. Instead, engineering related literature suggests simulation as
modeling tool (Fleischer et al., 2004). Fluid and diffusion approximations
account for non-stationarity but assume infinitely large buffers (Vandergraft,
1983; Duda, 1986). This assumption neglects the effects of blocking which is
characteristic for many manufacturing systems. The fluid approach approx-
imates the discrete flow of goods by a continuous one and assumes deter-
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ministic service times. For heavy traffic situations these approximations are
justified by the functional law of large numbers. Diffusion approximations
further utilize the functional central limit theorem and describe the network
behavior by a one dimensional reflected Brownian monition. For the evalua-
tion of a finite buffer followed by a single machine with a time-dependent in-
terarrival time distribution a Stationary Backlog Carry Over (SBC) approach
is proposed by Stolletz and Lagershausen (2013).

For a comprehensive survey of solution approaches for the optimization of
buffer allocations under steady-state conditions, the reader is referred to Demir
et al. (2014). Due to the combinatorial complexity of the problem a variety
of heuristics have been applied. Helber et al. (2011) develop a discrete-time
sampling approach. They propose a mixed-integer program (MIP) for the
optimization of buffer allocations. Related publications utilize a continuous-
time sampling approach (Matta, 2008; Alfieri and Matta, 2012). Thereby, op-
timal buffer allocations with respect to the analyzed samples can be obtained.
To the best of our knowledge, in analytical models, the buffer allocation is
treated solely as static and strategic decision problem for production systems
under steady-state conditions. Merely, practitioners from the semiconductor
industry suggest to change the CONWIP level over time to account for time-
dependent effects (Haller et al., 2003).

Consequently, we propose an evaluation method for the performance evalua-
tion as an initial step towards the systematic analysis of buffer spaces under
non-stationary operating conditions. The remainder is structured as follows:
Section 5.2 describes the analyzed system in detail and states the underlying
assumptions. In Section 5.3, a sampling approach for the performance eval-
uation of time-dependent stochastic flow lines is proposed. The numerical
study in Section 5.4 demonstrates the accuracy of the model and the potential
of time-dependent buffer allocation strategies. Finally, concluding remarks
and further directions regarding the optimization of time-dependent buffer
allocations are given in Section 5.5.

5.2 Time-dependent stochastic flow lines

In the following, a flow line is considered which produces a single product.
The line consists of K consecutive machines and K − 1 buffers. Between
machine k and k + 1 the buffer space is assumed to be bk ,t at time period
t . The index t indicates that the buffer space is allowed to change in certain
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intervals over time. Stochastic effects of demand and supply are omitted as
we assume an infinite supply of raw material for machine 1 and an infinitely
large buffer capacity behind machine K . We assume blocking after service,
i.e., a processed workpiece remains on machine k if the buffer k is full until
a buffer space becomes available. This corresponds to a configuration where
the number of Kanban cards at stage k equals bk ,t + 1. While each of the
bk ,t cards corresponds to a buffer space, the additional card is used for a
workpiece on the machine. We assume that the effective processing times
are stochastic and time-dependent with an effective production rate of µk ,t .
Figure 5.1 depicts the considered flow line.

Three basic cases can be distinguished if the buffer allocation is allowed to
change over time. First, in the case of bk ,t = bk ,t+1 the buffer setting does
not change. Second, for bk ,t < bk ,t+1 the available buffer space is increased.
This can be realized by adding more Kanban cards to stage k of the flow
line. Additional care is needed for the third case: bk ,t > bk ,t+1, of a buffer
space reduction. The inventory level at the end of period t may be greater
than the allowed buffer space in period t + 1. In this case we assume that the
inventory may exceed the buffer space temporarily. However, the production
of the upstream machine is stopped until the inventory level falls below the
new buffer limit. This can be implemented by removing the Kanban cards
from the excessive bins. The alternative of scrapping excessive inventory is
economically unfavorable. In addition, a selective reduction of the production
ahead of time is practically infeasible because of the stochastic environment.

buffer 2 buffer K-1 buffer 1 

∞ ∞ 1 … b1,t 1 2 

machine 1 machine 2 

 

machine 3 machine k machine K 

effective 

processing  

rates 
μ1,t  μ2,t  μ3,t  μk,t μK,t 

… 1 … bK-1,t 1 2 1 … b2,t 1 2 … 

buffer k 

1 … bk,t 1 2 … 

Figure 5.1: Stochastic flow line with time-dependent buffer allocation and ef-
fective processing times

96



5.3 Evaluation by a discrete-time sampling
approach

This section presents a discrete-time sampling approach for the evaluation of
the model described in the preceding section. The related approach of Helber
et al. (2011) approximates the stationary behavior by deliberately ignoring
the warm-up phase and building a time average for the remaining part of the
sample. To evaluate the dynamic system behavior, we consider a set of S
independent samples instead of a single sample. Each of them is generated as
described by Helber et al. (2011). Random realizations of the processing time
distributions are used to describe the isolated behavior for each machine k
while ignoring blocking and starving caused by other machines. The sampled
processing capacities ck ,t,s are then given by the number of finished work-
pieces during discrete periods of equal length Tlength . The processing time
is determined when the workpiece enters the machine. Hence, the processing
is completed according to this time regardless of a changing distribution dur-
ing the processing. Figure 5.2 illustrates the case of a change regarding the
processing rate over time with µk ,1 < µk ,2. The dashed intervals represent
realizations of the random variable describing the processing time distribu-
tion during phase 1 and the solid intervals, respectively, for the second phase.

Phase 1 Phase 2 

Sampled 
capacity 1 

Random 
processing  
times 

ck,t,s : 1 2 3 3 4 

Figure 5.2: Time-dependent generation of production capacities ck ,t,s for
sample s on machine k in period t

The sampled processing capacities serve as deterministic input of a MIP.
Compared to the existing model of Helber et al. (2011), the buffer space pa-
rameter has now a period index t . To allow for decreasing buffer spaces,
the binary decision variable Zk ,t,s indicates whether the allowed inflow to
buffer k is positive or 0 in period t for sample s . It is 0 if the inventory
present at the buffer is greater than or equal to the buffer space. The complete
notation for the MIP evaluation model can be found in Table 5.1.
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Table 5.1: Notation for the evaluation model

Indices
k = 1, ...,K machines in the flow line
t = 1, ...,T periods
s = 1, ...,S samples

Parameters
bk,t exogenously given capacity of the buffer behind machine k at

period t
ck,t,s potential processing capacity of machine k in period t for sample s
M sufficiently large number

Integer and binary decision variables
Yk,t,s end-of-period inventory level of buffer k in period t for sample s
Qk,t,s production quantity of machine k in period t for sample s
Zk,t,s binary variable, 1 if allowed flow into buffer k for sample s is

positive, 0 otherwise

max
S∑

s=1

K∑
k=1

T∑
t=1

(10T − t)Qk,t,s (5.1)

s.t.

Yk,t,s = Yk,t−1,s + Qk,t,s −Qk+1,t+1,s ,k = 1, ...,K , t = 1, ...,T , s = 1, ...,S , (5.2)

Qk,t,s = 0, k = 1, ...,K , t < k , s = 1, ...,S , (5.3)

Qk,t,s ≤ ck,t,sZk,t,s , k = 1, ...,K , t = 1, ...,T , s = 1, ...,S , (5.4)

Yk,t,s ≤ bk,t + M (1− Zk,t,s), k = 1, ...,K − 1, t = 1, ...,T , s = 1, ...,S ,
(5.5)

MZk,t,s ≥ bk,t −Yk,t−1,s , k = 1, ...,K − 1, t = 1, ...,T , s = 1, ...,S ,
(5.6)

−M (1− Zk,t,s) ≤ bk,t −Yk,t−1,s , k = 1, ...,K − 1, t = 1, ...,T , s = 1, ...,S ,
(5.7)

Yk,t,s ,Qk,t,s ≥ 0, and integer k = 1, ...,K , t = 1, ...,T , s = 1, ...,S , (5.8)

Zk,t,s ∈ {0, 1}, k = 1, ...,K , t = 1, ...,T , s = 1, ...,S . (5.9)
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The objective (5.1) is to maximize the production on every stage of the flow
line in every period over all samples. The weight factor (10T − t) causes a
prioritization of early production. Hence, every item is moved downstream
as early as possible.

Constraints (5.2), (5.3), and (5.8) are identical to the formulation of Helber
et al. (2011), besides the additional index s . Constraints (5.2) represent inven-
tory balance equations. The inventory at the end of period t equals the inven-
tory level at the end of the preceding period t − 1 increased by the amount of
processed workpieces of machine k in t and reduced by the processed work-
pieces on machine k + 1 in the succeeding period t + 1. It is assumed that
the workpieces are transferred to the next machine at the end of each period.
Further, the workpieces used at k + 1 in t + 1 are not included in the end
of period inventory of buffer k . Please note that variables not defined (e.g.,
QK+1,T+1) are omitted from the respective constraints. We assume that the
flow line starts completely empty such that workpieces are neither present on
the machines nor in the buffers. Constraints (5.3) ensure this initial condition.
Constraints (5.4) limit the production to the sampled capacity or to 0, respec-
tively, if the allowed inflow is 0. According to Constraints (5.5), the inventory
level at the end of t needs to be smaller than the available buffer space if the
allowed inflow to buffer k is positive. For this case Zk ,t,s = 1 holds and
the constraints are binding. The inventory may be larger if there is excessive
inventory from a recent buffer reduction and the allowed inflow is 0. As in
this case Zk ,t,s = 0 holds, Constraints (5.5) become redundant. It should
be noted that the buffer space does not depend on the sample s in contrast
to the other decision variables and parameters. Constraints (5.6) makes sure
that Zk ,t,s is set to 1 if the available space in buffer k is positive at the begin-
ning of period t .The complementary constraints (5.7) ensure that Zk ,t,s is 0
if the inventory level at the beginning of t exceeds the available buffer space.
Finally, according to (5.8), Yk ,t,s and Qk ,t,s are non-negative integer values
and all Zk ,t,s are binary variables (5.9). As all decision variables depend on
the samples, the model may be solved for each sample independently.

Based on the solution of the proposed MIP, a set of key performance measures
can be obtained. The work in process WIP at the end of period t for machine
k + 1 and buffer k can be calculated by subtracting the cumulated production
up to t of machine k + 1 from the one at machine k

E[WIPk ,t ] =
1

S

S∑
s=1

(

t∑
τ=1

Qk ,τ,s −
t∑

τ=1

Qk+1,τ,s). (5.10)
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The expected line throughput E[Tht ] in period t can be obtained from the
production rate at machine K

E[Tht ] =
1

S · Tlength

S∑
s=1

QK ,t,s . (5.11)

The expected cumulated output of the flow line over the planning horizon is
given by

E[Qcumulated ] =
1

S

T∑
t=1

S∑
s=1

QK ,t,s . (5.12)

Such a discrete-time sampling approach goes along with two kinds of approx-
imation errors. On the one hand, a simulation error arises as the behavior of
the random variables is approximated by a finite set of samples. This error
decreases with an increased number of S . On the other hand, a discretization
error may occur due to the assumption of constraints (5.2) that a workpiece
which finishes processing on machine k during period t can be processed at
the earliest in period t + 1 on machine k + 1. This leads to artificial blocking.
Another discretization error is made regarding the end of period inventory. As
described above, the inventory Yk ,t,s does not account for workpieces which
are used in the period t + 1 on machine k + 1.

5.4 Numerical study

The following numerical study demonstrates the accuracy of the proposed
evaluation approach and provides first insights regarding the system behavior
for time-dependent buffer allocations. The analyzed flow line has K = 2
machines with a buffer in between. The processing times are assumed to be
exponentially distributed. This rather simple configuration is chosen in or-
der to maintain a distinct analysis of the otherwise potentially overlapping
effects. A discrete-event simulation serves as benchmark for the approxima-
tion approach. Each simulation run consists of 1, 000, 000 replications. The
sample size S for the MIP is 10, 000. For the MIP the period length Tlength

is set to the largest expected processing time of all machines over time. The
analysis focuses on the performance measures WIP (5.10), throughput (5.11),
and cumulated output (5.12). The outline of the numerical study is as follows.
First, the system behavior is analyzed for a change of the buffer space while
all other system parameters remain the same over time. Second, it is assumed
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that processing rates of both machines increase at a point in time. The strat-
egy of a Static Buffer Allocation (SBA) is compared to a Dynamic Buffer
Allocation (DBA). Third, we investigate the impact of the point in time when
the buffer allocation is changed for the DBA strategy. Fourth, a stepwise
adjustment from one buffer capacity via an intermediate buffer allocation is
investigated.

The first analysis examines the impact of changing buffer allocations. The
processing rates are given by µ1,t = µ2,t = 1 and are constant over time. Two
time-dependent buffer allocations are tested. Both of them include a change
of the buffer capacity at the beginning of period tbc = 51. We investigate
a change from a small capacity to a large one (SL) and a change from a
large to a small capacity (LS). Figure 5.4 depicts the development of the WIP
and the throughput obtained by the MIP evaluation model and the discrete-
event simulation (Sim). As expected for the LS case, the WIP exceeds the
buffer and machine capacity temporarily. The graphs in Figure 5.4 reveal that
the transient as well as the steady-state values are well approximated by the
evaluation model. Due to the artificial blocking caused by the discretization
error, the throughput is underestimated by the MIP approach. Consistently
with the observations of Helber et al. (2011), the approximation quality is
better for larger buffer capacities.

Changes to the buffer allocation are primarily motivated by non-stationary
system parameters. For the subsequent examples we assume that the process-
ing rates of both machines increase by 20% to 1.2 at the beginning of period
trc = 51. Next, the SBA strategy is compared to the DBA strategy. The SBA
sets a constant buffer allocation over the whole planning horizon. Dynamic
changes of the system over time are ignored and only the system parameters at
the end of the planning horizon are taken into account. The buffer allocation
is determined such that it guarantees a goal throughput at a minimum buffer
capacity assuming the steady state. The DBA strategy changes the buffer al-
location if the system configuration changes. The buffer allocation is then set
to the optimal steady-state value for each phase of constant system parame-
ters. For the considered case and a goal throughput of 0.9, the steady-state
buffer capacity is b1,t = 7 for t < tbc = 51 and b1,t = 1 for t ≥ tbc = 51.
The observed throughput peak in Figure 5.3b for the DBA strategy originates
from the excessive inventory of the first phase (Figure 5.3a) which is then pro-
cessed with the increased rate. The expected cumulated production generated
by the DBA is 7.9% higher than the one of the SBA.

101



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100
period t 

WIP over time 

DBA Sim

DBA MIP

SBA Sim

SBA MIPE[WIP1,t] 

(a) Expected WIP over time

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100
period t 

 

DBA Sim

DBA MIP

SBA Sim

SBA MIP

E[Tht] 

(b) Expected throughput over time

Figure 5.3: Static and dynamic buffer allocations, with trc = tbc = 51 for the
dynamic allocation
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Figure 5.4: Change of the buffer capacity from b1,t = 7 to b1,t′ = 2 (LS) and
b1,t = 2 to b1,t′ = 7 (SL) for t < tbc ≤ t ′
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Figure 5.5: Dynamic buffer allocations for trc = 51 and tbc ∈ {31, 51, 71}
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Figure 5.6: Stepwise dynamic buffer allocations with binter1,t ∈ {3, 4, 5}
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Production managers usually aim at a constant production rate close to their
goal production rate. Hence, the observed throughput peak of the DBA is
undesirable. Subsequently, we examine the impact of the time tbc when
the buffer allocation is changed. So far, it is assumed that the buffer al-
location is changed simultaneously with the rate change (tbc = 51). Fig-
ure 5.5 depicts the results for the DBA with changed buffer configurations
at tbc ∈ {31, 51, 71}. The throughput peak is even longer and higher for
tbc = 71 as the large buffer configuration is maintained also for situations
with the increased processing rates. For tbc = 31, there is no throughput
peak but as the buffer capacities are decreased too early, the throughput falls
below the desired level prior to the rate change. The value of tbc , which min-
imizes the deviation from the goal throughput, is therefore expected to be
between 31 and 51.
For the analysis depicted in Figure 5.6, the DBA strategy is extended by an
intermediate buffer capacity binterk ,t . This capacity is used between the actual
DBA buffer configurations. The underlying idea is to take also the transient
behavior of the buffer change into account. For the considered example binter1,t

is valid for 40 < t ≤ 60. Figure 5.6b reveals that the height of the throughput
peak can be controlled by binter1,t . The higher binter1,t the higher is the through-
put peak.

5.5 Conclusion and future research

This paper presents an initial approach towards time-dependent buffer allo-
cations for flow lines under non-stationary conditions. Therefore, the unique
characteristics of time-dependent buffer allocations are discussed. Further-
more, a sampling evaluation approach is presented. The numerical study
demonstrates its accuracy and the potential arising from changes of the buffer
allocation over time. Further research is needed to develop decision mod-
els for the optimization of time-dependent buffer allocations. The sampling
approach bears the potential to combine the optimizing power of linear pro-
gramming with the modeling flexibility of simulation. Future research should
explore the option of converting the so far exogenously given buffer capaci-
ties bk ,t into decision variables. The key decisions to be made are when and
in what kind of steps the buffer allocation has to be changed in order to react
adequately to changing system parameters.
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Abstract:
Flow lines operate under stochastic and time-dependent influences. Stochas-
ticity originates from random demand and processing times. Time-dependent
changes in parameters are caused, e.g., by seasonal demand or due to replace-
ment of machinery. We propose a time-dependent change in buffer capacities
by utilizing Kanban cards to minimize the required work-in-process (WIP)
inventory while maintaining a predefined gamma service level over a finite
planning horizon.

We report observations regarding the monotonicity of the gamma service level
and the expected average WIP in the line with respect to time-dependent
buffer capacities. Based on these observations, a local search algorithm is
developed. The numerical study indicates that the algorithm evaluates only a
small fraction of all possible allocations. Moreover, we provide examples that
demonstrate the advantages of time-dependent, as compared to constant allo-
cations. Tests of allocation approaches based on steady-state models indicate
that they may lead to infeasibility and poor performance.
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6.1 Introduction

Flow lines are production systems for high volume production, e.g., used
by manufacturers from the automotive industry (Li, 2013). They operate
under stochastic and time-dependent influences. Stochastic impacts of ran-
dom demand, processing times, machine failures, and subsequent repairs are
widely acknowledged in the literature (Dallery and Gershwin, 1992). Time-
dependent changes in parameters lead to non-stationarity of the flow line. For
instance, changes in demand over time on the supply chain level cause time-
dependent demand arriving at the flow line (Takahashi et al., 2004; Shang,
2012). Replacement of machinery or learning effects during the production
ramp-up cause time-dependent effects in the production system itself (Jaiku-
mar and Bohn, 1992; Terwiesch and Bohn, 2001). If these effects occur in
flow lines, they directly impact their performance.

We consider a serial flow line with finite buffer capacities which serves a
stochastic and time-dependent demand from a finished goods buffer. The
flow line is controlled by Kanban cards with continuous review policy, i.e,
cards without attached workpieces are immediately transferred to upstream
stations to signal demand. The number of Kanban cards limits the work in
process (WIP) inventory and is equal to the required buffer capacity plus one
(Berkley, 1991). Each station in the line is characterized by generally dis-
tributed processing times with time-dependent parameters. Whereas the ac-
tual processing times are random, the time-dependent changes in the random
variables’ parameters are assumed to be deterministic and known in advance.
This is a valid assumption particularly for parameters of the flow line. These
parameters are either under direct control, e.g., for the introduction of new
machinery, or empirical data allow for reliable forecasts, e.g, from learning
curves (Lapre et al., 2000).

The minimization of WIP while maintaining a given service level is a com-
mon goal for demand-driven flow lines and production systems (Gaury et al.,
2000; Liu et al., 2004). A γ-service level is selected to reflect both, the num-
ber of backorders and the time the backorders persist (Schneider, 1981). We
propose a time-dependent change of the buffer capacities to minimize the ex-
pected average WIP while maintaining a predefined γ-service level over a
finite planning horizon. In practice, time-dependent changes of buffer capac-
ities are easy to realize by means of Kanban cards. This new approach is
termed Proactive Kanban, as it changes the number of Kanban cards before
inventory thresholds are met or changes of system parameters are detectable
by statistical analyses.
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The majority of the literature on flow lines assumes constant parameters and
steady-state conditions. Hence, the allocation of Kanban cards is typically
treated as a design decision. An exception is the analysis of time-dependent
demand processes. To the best of our knowledge, changes in parameters of the
flow line itself have not been analyzed. The existing approaches that use the
flexibility of Kanban cards to adapt the buffer capacities for time-dependent
demand are based on historic data or inventory thresholds (Takahashi, 2003).
These approaches only react to parameter changes. Hence, the potential of
planning for known parameter changes remains unused.

To solve the new decision problem we suggest a local search algorithm. The
algorithm uses discrete-event simulation to evaluate the performance of a
given time-dependent Kanban allocation. In addition, two approaches that
rely on steady-state models are developed.

The goals of this study are: (i) to provide a time-dependent card setting that
delivers the desired service level at a minimal average WIP level for flow
lines that are subject to stochasticity and time-dependent parameter changes
and (ii) to generate insights into how time-dependent card settings differ from
standard approaches based on steady-state assumptions. Our contributions
can be summarized as follows:

1. We introduce a new card setting approach and the resulting decision
problem which accounts for time-dependent changes of flow line pa-
rameters by means of changes in buffer capacities.

2. The numerical study demonstrates that the proposed approach improves
the system performance compared to constant allocations. Moreover,
we test approaches based on stationary models and show that they may
lead to infeasibility and poor performance. Further, the numerical study
provides an example that a change of buffer capacities before the pa-
rameter change can lead to lower expected average WIP than a simul-
taneous or delayed change of buffer capacities.

The remainder of the paper is organized as follows. The related literature is
reviewed in Section 6.2. The flow line model and the resulting decision prob-
lem are described in Section 6.3. Subsequently, we develop a local search
algorithm in Section 6.4. It is based on numerical observations of the mono-
tonicity of the service level and the expected average WIP in the line with
respect to time-dependent buffer capacities. Section 6.5 numerically investi-
gates the benefits of the new card setting approach. Concluding remarks and
directions for future research are provided in Section 6.6.
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6.2 Literature review

We first review performance evaluation approaches for time-dependent and
stochastic systems. Second, existing Kanban card setting approaches in the
literature are presented. Moreover, we emphasize the differences to time-
dependent supply chain models. Finally, we provide a brief summary of
structural properties with respect to buffer capacities in flow lines.

No exact analytical performance evaluation approaches are available for pro-
duction systems with finite and time-dependent buffer capacities, even with
restriction to single-stage systems (Schwarz et al., 2016). An approximative
approach for a single-stage system is introduced by Hampshire et al. (2009).
Existing approaches for the analysis of time-dependent multi-stage systems
lack key properties of flow lines. They assume infinite buffer capacities (Van-
dergraft, 1983), infinite number of servers (Massey and Whitt, 1993), or that
customers are lost if they arrive at a full downstream buffer (Nasr and Taaffe,
2013). Hence, the characteristic effect of blocking is neglected. Recently,
Meerkov and Zhang (2008) and Zhang et al. (2013) proposed approaches for
the transient performance evaluation of flow lines with constant parameters.
These approaches can in principle be used for the approximation of piecewise
constant parameters (Seki and Hoshino, 1999). However, they are restrictive
in their assumptions on the used probability distributions. In the absence of
analytical models, discrete-event simulation is the common approach to per-
formance evaluation of Kanban systems with parameters and number of Kan-
ban cards that change over time (Tardif and Maaseidvaag, 2001; Takahashi
and Nakamura, 2002).

The literature on Kanban card allocation can be classified according to the
external parameters that describe the system and the card setting. Both can
be either constant over time or time-dependent. Traditional Kanban systems
are designed for stochastic production systems with constant parameters and
have a constant card setting (Diaz and Ardalan, 2010). A survey of differ-
ent variants of traditional Kanban systems is provided by Berkley (1992).
For flow lines with constant parameters, time-dependent increases of buffer
capacities during an initial transient phase are evaluated by Anderson and
Moodie (1968). They conclude that it is best to start with the allocation that
is suitable for the steady state.

Time-dependent changes of system parameters can to some extend be cov-
ered by constant buffer capacities (Göttlich et al., 2016). However, if the
magnitude of changes is too high or non-cyclic, a change of the number of
Kanban cards, i.e., of the buffer capacities, can be beneficial. The approaches
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that change the Kanban allocations over time can be further distinguished by
the information the reallocation is based on. Tardif and Maaseidvaag (2001)
suggest an Adaptive Kanban concept. It releases and captures extra cards
depending on inventory thresholds. The Reactive Kanban approach by Taka-
hashi and Nakamura (2002) uses statistical analysis to detect a change of the
demand distribution. Subsequently, the number of cards is adapted to meet
the new demand parameters, while the transient transition phase in-between is
neglected. For both, adaptive and reactive Kanban, metaheuristics such as ge-
netic algorithms and parameter variations are used to determine the number
of Kanban cards. Takahashi (2003) numerically compares adaptive and re-
active Kanban. Both approaches outperform the traditional Kanban system.
However, none of the approaches uses information about future parameter
changes for the reallocation of cards.

The impact of time-dependent demand changes is also investigates by the
inventory theory literature. Serial inventory systems with time-dependent de-
mand are analyzed by Clark and Scarf (1960) and recently by Shang (2012).
Both models include echelon base-stock policies, i.e., for replenishment de-
cisions on each stage m they consider the inventory at stage m and all down-
stream stages. In contrast, Kanban is an installation stock policy for which a
replenishment at stage m is triggered solely by the inventory level at stage m
(Axsäter and Rosling, 1993). Additionally, the Kanban control is not equiv-
alent to a base-stock policy as the reordering differs in the case of empty
buffers (Spearman, 1992). Iida (2002) and Bollapragada and Rao (2006) con-
sider time-dependent and stochastic production capacity for single-stage in-
ventory systems. However, all of the reviewed inventory models assume a
periodic review policy whereas the flow line under consideration operates
with continuous review.

Structural properties of flow lines with respect to buffer capacities are so far
only established for parameters and buffer capacities that are constant over
time. A good overview of the available results is provided by Glasserman
and Yao (1996). There are no proven structural results for flow lines with
time-dependent and generally distributed processing times with respect to the
relation of time-dependent buffer capacities and the resulting service level
or expected average WIP. To the best of our knowledge, even for flow lines
with constant parameters and buffer capacities, structural properties for the γ-
service level and the expected average WIP are not addressed in the literature.
Based on numerical studies So (1997) and Papadopoulos and Vidalis (2001b)
provide some observations regarding the WIP under steady-state conditions
for a given total buffer capacity in the line.
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6.3 Proactive Kanban System

6.3.1 Flow line model

We consider a Kanban system with m = 1, ...,M stages that produces a
single product and operates for a finite planning horizon of length T . The
required notation can be found in Table 6.1.

The transport of workpieces is assumed to occur instantaneous and with neg-
ligible transportation times. At each stage, Kanban cards circulate between
buffer m and station m . Each workpiece that completes processing at sta-
tion m is stored together with an attached card. The cards are detached from
the workpieces that start processing on station m +1 and are transferred back
to station m where they are collected and serve as production authorization
signals. Station m starts processing a workpiece only if a Kanban card from

Table 6.1: Notation for Proactive Kanban Systems

Indices
m = 1, ...,M Stages in the flow line
i = 0, ..., I Changes of buffer allocations over time
Parameters
T Length of planning horizon
γ∗ Goal γ-service level
bmax
m Maximum buffer capacity at stage m
0 = t∗0 , t

∗
1 , ..., t

∗
i , ..., t

∗
I Time of the i th change of the buffer

allocation
Decision variables
B =

B1,0 · · · B1,i · · · B1,I

...
. . .

...
. . .

...
Bm,0 · · · Bm,i · · · Bm,I

...
. . .

...
. . .

...
BM ,0 · · · BM ,i · · · BM ,I

Buffer capacities at stage m after the i th
change

Dependent variables
W (B) Average WIP in the line over the

planning horizon
W−(B) Backorder level over the planning horizon
SLγ(B) γ-service level over the planning horizon
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stage m and a workpiece in buffer m − 1 are available. The formal equiva-
lence of such a Kanban system with constant card setting and a flow line with
finite and constant buffer capacities and blocking after service mechanism is
established by Berkley (1991).

The distinctive feature of the Proactive Kanban System is that the number
of cards at each stage can change over time. The number of Kanban cards
may be changed at predefined time instances t∗i . If the number of cards at
stage m is increased at time t∗i (Bm,i < Bm,i+1), the additional cards are
directly added at station m to authorize production. In case of a card reduction
(Bm,i > Bm,i+1), cards without an attached workpiece are retrieved. If this
is insufficient to attain the desired number of cards, the remaining cards are
removed from workpieces in the buffer, starting with the workpiece that is
processed next at the downstream station. Consequently, until all workpieces
without cards are served, the number of workpieces may temporarily exceed
the number of cards at a given stage.

Figure 6.1 depicts a flow line representation of the considered system, in-
cluding the synchronization point between customer demand and finished
goods as final stage. The supply of raw material to station 1 is assumed to
be unlimited. The processing times of all stations are generally distributed
and characterized by their time-dependent rate µm(t) and the coefficient of
variation cvm(t) at time t . We assume piecewise constant rates. The time-
dependent changes in rates and coefficients of variation are given by forecasts.
They are independent of the timing of buffer capacity changes. Potentially,
the type of the distribution may also change over time. We further assume
that all parameter changes are effective immediately, i.e, the residual time of
a workpiece that is processed on a station is adapted accordingly. At the final
stage customer demand arrives with generally distributed inter-arrival times
with time-dependent rate λc(t) and coefficient of variation cvc(t). It is served
from a finished goods buffer behind station M . Orders that cannot be served
immediately are backlogged.

buffer 2 buffer 1 

∞ 

station 1 station 2 station m station M demand 

rate μ1(t)  μ2(t)  μm(t)  μM(t)  λc(t)  

coefficient of variation cv1(t)  cv2(t)  cvm(t)  cvM(t)  cvc (t)  

buffer m 

… 

buffer M 

1 … Bm,i 1 2 1 … B2,i 1 2 1 … B1,i 1 2 … 1 … BM,i 1 2 

1 … 1 2 

Figure 6.1: Flow line representation of the Proactive Kanban System
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6.3.2 Proactive Kanban Card Setting Problem

The Proactive Kanban Card Setting Problem is given by the non-linear mixed
integer program (6.1).

min E[W (B)] (6.1a)
s.t.:

SLγ(B) ≥ γ∗ (6.1b)
0 ≤ Bm,i ≤ bmax

m ∀m,∀i (6.1c)

The key decision is to determine the time-dependent allocation of Kanban
cards, i.e., the buffer capacities B. The objective (6.1a) is to minimize the
expected average WIP, E[W (B)], in the line, which is a function of B. The
WIP accounts for all workpieces in line. This includes the workpiece on sta-
tion m = 1, but not the infinite amount of workpieces in front of it. By Con-
straints (6.1c) we enforce a maximum buffer capacity, bmax

m , at every stage m
that must not be exceeded during the planning horizon. Hence, the model ac-
counts for physical limitations of the buffers between the stations. The model
can support greenfield planning by selecting bmax

m sufficiently large. Accord-
ing to Constraint (6.1b), the flow line has to fulfill a goal γ-service level γ∗.
The γ-service level relates the backorder level, W−(B), to the total demand,
NT , over the planning horizon. The achieved expected γ-service level also
depends on B. Based on the discussion of Chen et al. (2003) we adapt the
standard γ-service level definition to a finite planning horizon

SLγ(B) = 1− E
[
W−(B)

NT

]
. (6.2)

In the following, we assume that at time t = 0 there are no workpieces in the
line. However, for long planning horizons the decision model may serve as
a building block in a rolling planning horizon approach. In this case, initial
values of workpieces in the flow line have to be set. Furthermore, only a sub-
set of the allocation decisions is fixed. Hence, the rolling horizon approach
allows for the integration of updated information regarding the system status
and forecasts of parameter changes as time passes.
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6.4 Solving the Proactive Kanban Card Setting
Problem

Motivated by analytical results for a Markovian single-stage system in steady
state we present insights on the behavior of the expected average WIP and
γ-service level in Proactive Kanban Systems based on numerical experiments.
In the absence of analytical solutions, a discrete-event simulation is used to
evaluate given allocations. Based on the two key observations we propose
dominance criteria for time-dependent buffer allocations. Subsequently, a
local search algorithm which systematically evaluates potential candidate al-
locations is introduced. It exploits the observed properties from Section 6.4.1
to reduce the number of required evaluations to find solutions for problem (6.1).

6.4.1 Observations from numerical tests

It is possible to establish the following properties for a Markovian system,
given constant buffer capacities over time and steady-state conditions.

Theorem 6.4.1. E[W (BM )] is strictly increasing and convex in the buffer
capacity, BM , given M = 1, exponentially distributed processing times, Pois-
son demand, and steady-state conditions.

Theorem 6.4.2. SLγ(BM ) is strictly increasing and concave in the buffer ca-
pacity, BM , given M = 1, exponentially distributed processing times, Pois-
son demand, and steady-state conditions.

The proofs are based on a closed-form solution which can be obtained from
a birth and death process representation of the system (see Appendix A).

Motivate by this insights for the steady-state systems, a set of numerical ex-
periments is conducted to gain insights into how the performance measures
expected average WIP and γ-service level in Proactive Kanban Systems are
influenced by the time-dependent buffer allocation. The experiments include
varying numbers of stations M , processing distributions, numbers of buffer
changes I , and timings of buffer changes t∗i . Exemplary results of the con-
ducted numerical study can be found in Appendix B.

With respect to the expected average WIP we make the following observation.

Observation 6.4.3. The expected average WIP, E[W (B)], is non-decreasing
in Bm,i ∀m,∀i .
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Notably, the expected average WIP in a Proactive Kanban System is not nec-
essarily convex in the buffer capacities. A numerical counter example can be
created by buffer capacity increases close to the end of the planning horizon.
This increase of the buffer capacity causes decreasing marginal increases of
the expected average WIP as the remaining time during the planning hori-
zon may not be sufficient to fill the buffer to its steady-state value. We
provide such an example for a single station system (M = 1), a planning
horizon of T = 1000, exponentially distributed processing times with rate
µ1(t) = 2/3, t ∈ [0; 1000], and Poisson demand with rate λc(t) = 0.5
∀t ∈ [0, 1000]. The expected average WIP in the system, E[W (B)], for a
buffer capacity change from B1,0 = 5 at t = 980 to varying values of B1,1 is
depicted in Figure 6.2. Clearly E[W (B)] is not convex in B1,1.
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E[W(B)] 

B1,1 

Figure 6.2: Example of non-convexity of E[W (B)] in B1,1

The second observation is made with respect to the service level.

Observation 6.4.4. The γ-service level, SLγ(B), is non-decreasing in
Bm,i ∀i ,m .

Intuitively, larger buffer capacities allow a higher compensation of the stochas-
tic and time-dependent influences. Hence, the cumulated throughput increases,
whereas the arriving customer demand is independent of the buffer capacities.
Hence, the backlog decreases and reversely the service level increases.
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6.4.2 Dominance between time-dependent buffer
allocations

Every evaluation of an allocation B provides information about E[W (B)]
and SLγ(B). To exclude a set of other candidate allocations from future
evaluations we use this information and the Observations 6.4.3 and 6.4.4.

Every feasible allocation B is used to exclude all allocations B′ with
B ′m,i ≥ Bm,i ∀m,∀i , i.e., all allocations with componentwise greater or
equal buffer capacities. Observation 6.4.3 suggests that for these allocations
E[W (B′)] ≥ E[W (B)] holds. Consequently, the allocations B′ are not can-
didates for a lower objective value than E[W (B)]. Moreover, the resulting
expected average WIP, E[W (B)], of the feasible allocation provides an up-
per bound on the objective value. In the following, UBW denotes the best
upper bound on the objective value found so far by the algorithm.

Every infeasible allocation B with SLγ(B) < γ∗ is used to exclude all al-
locations B′ with B ′m,i ≤ Bm,i ∀m,∀i . According to Observation 6.4.4
the service level of the allocations B′ is expected to be lower than the one of
allocation B, i.e., SLγ(B′) ≤ SLγ(B). Hence, the allocations B′ are also
infeasible. If in addition E[W (B)] > UBW holds, we also exclude all allo-
cations B′ with B ′m,i ≥ Bm,i ∀m,∀i . According to Observation 6.4.3 the
allocations B′ cannot yield an improved objective value because any increase
in the buffer capacities will lead to an at least as high expected average WIP
value as UBW .

6.4.3 Local search approach

The proposed algorithm exploits the dominance criteria to avoid a complete
enumeration of all allocations. Given that Observations 6.4.3 and 6.4.4 hold
true, the algorithm delivers optimal results. It divides the decision problem
into subproblems with two decision variables Bm′,i′ and Bm′′,i′′ and fixed
values for all other decision variables Bm,i ,m ∈ {1, 2, ...,M }\{m ′,m ′′},
i ∈ {0, 1, ..., I }\{i ′, i ′′}. A subproblem is solved if all allocations are either
evaluated or excluded by a dominating allocation. In the following we first
describe the case M = 1 and then explain the required extensions of the
algorithm to cases with M > 1.

117



The algorithm solves all subproblems that are generated by iterating over all
possible configurations of the decision variables BM ,i , i ∈ {0, 1, ..., I }\{i ′, i ′′}.
Information about dominated allocations obtained from previously solved
subproblems are exploited to reduce the number of required evaluations. For
all i ∈ {0, 1, ..., I }\{i ′, i ′′} the algorithm divides the interval of not evaluated
values into two subintervals. Starting with the evaluation of
BM ,i = bbmax

M /2c ∀i ∈ {0, 1, ..., I }\{i ′, i ′′} the algorithm continues re-
cursively with the subintervals [0; bbmax

M /2c − 1] and [bbmax
M /2c+ 1; bmax

M ].
This recursive procedure systematically evaluates allocations which poten-
tially dominate infeasible and feasible allocations of other subproblems.
The best upper bound, UBW , on the objective value is constantly updated
during the search process. Thus, at termination of the algorithm, the obtained
solution is the allocation which generates the best upper bound found.

Each subproblem is solved in three steps as illustrated in Figure 6.3. In
part (a) of step 1 the value of BM ,i′′ is fixed to bmax

M and the smallest value
for BM ,i′ which results in a feasible allocation is determined (B1a

M ,i′). For
the search a bisection method is applied. It exploits the observation that the
service level increases in the buffer capacities. After step 1 (a) all allocations
with BM ,i′ < B1a

M ,i′ are excluded from future evaluations within subprob-
lem due to infeasibility. Moreover, according to the dominance criterion for
feasible solutions, all allocations with BM ,i′′ = bmax

M ∧ BM ,i′ ≥ B1a
M ,i′ are

excluded from being evaluated within the subproblem.

Step 1 (b) applies a bisection method to determine B1b
M ,i′′ , i.e, the small-

est value of BM ,i′′ that ensures feasibility with given BM ,i′ = B1a
M ,i′ . The

advantage of step 1 is that it quickly determines if according to Observa-
tions 6.4.3 and 6.4.4 no feasible solution exists to the subproblem
(B1a

M ,i′ > bmax
M ), or if all allocations are feasible (B1a

M ,i′ = B1b
M ,i′′ = 0).

If neither of this is the case the algorithm continues with step 2.

In step 2 the feasible allocation in the subproblem with the lowest value of
BM ,i′′ and the corresponding lowest possible value of BM ,i′ is determined.
We therefor fix the value of BM ,i′ to bmax

M and determine the smallest value
of BM ,i′′ that ensures feasibility (B2a

M ,i′′ ). The search of the bisection method
is limited to allocations that are not dominated by allocations that were eval-
uated in step 1. In step 2 (b) we fix BM ,i′′ to the value obtained for B2a

M ,i′′ in
step 2 (a) and search for B2b

M ,i′ , i.e., the smallest value of BM ,i′ that provides
a feasible allocation given B2a

M ,i′′ . After completion of step 2 all allocations
with BM ,i′′ ≥ B2a

M ,i′′ ∧ BM ,i′ ≥ B2b
M ,i′ can be excluded from future evalua-

tions due to the dominance criterion for feasible allocations. Furthermore, the
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Figure 6.3: Search procedure for subproblem with 2 decision variables BM ,i′

and BM ,i′′

allocations with lower buffer capacities than in the allocation (B2b
M ,i′ ,B

2a
M ,i′′)

are expected to be infeasible, i.e., all allocations with BM ,i′′ < B2a
M ,i′′ and

BM ,i′ < B2b
M ,i′ ∧ BM ,i′′ = B2a

M ,i′′ are excluded from future evaluations.

To complete the search in the subproblem we iteratively increase the value
of BM ,i′′ (step 3). For each iteration the corresponding smallest value of BM ,i′ ,
which ensures feasibility, is obtained. Dominated allocations from previous
iterations are excluded from the search with the bisection method. The algo-
rithm terminates the search in the subproblem if all allocations are dominated
by already evaluated allocations.
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For M > 1 it has to be specified for which buffers m ′ and m ′′ the sub-
problems are solved. The iteration then has to be performed over all val-
ues of the remaining decision variables Bm,i ,m ∈ {1, 2, ...,M }\{m ′,m ′′},
i ∈ {0, 1, ..., I }\{i ′, i ′′}.
There are three reasons that prevent the algorithm from completely iterating
over all allocations, (i) the efficient solution of the subproblems in three steps,
as outlined above, (ii) that infeasible allocations for one subproblem are as-
sumed to be also infeasible for all other subproblems with smaller fixed buffer
capacities Bm,i ,m ∈ {1, 2, ...,M }\{m ′,m ′′}, i ∈ {0, 1, ..., I }\{i ′, i ′′},
and (iii) that allocations which are dominated by a feasible allocation with
smaller expected average WIP are also dominated in all subproblems with
larger fixed buffer capacities.

Preliminary numerical test show that the obtained allocation is not affected by
the choice of m ′,m ′′,i ′ and i ′′. However, the numerical results indicate that
buffers and phases for which low buffer capacities are expected in the solu-
tion should be selected as m ′,m ′′,i ′ and i ′′. They tend to reduce the number
of required evaluations because infeasible allocations with high buffer capac-
ities Bm,i ,m ∈ {1, 2, ...,M }\{m ′,m ′′}, i ∈ {0, 1, ..., I }\{i ′, i ′′} are found
early in the search process.

6.4.4 Approaches based on steady-state models

Steady-state models dominate the flow line literature. Moreover, Anderson
and Moodie (1968) suggest that for a transient phase, given constant param-
eters, the buffer allocation that is best for the steady state should be imple-
mented. Hence, we introduce two approaches that demonstrate how steady-
state models can be applied to heuristically solve the Proactive Kanban Card
Setting Problem. Both approaches incorporate the information about future
parameter development but differ in the way how they aggregate this infor-
mation. The two approaches are originally developed by Kolesar et al. (1975)
and Green et al. (1991) for staffing in single-stage service systems.

(i) Simple stationary approximation (SSA)

Time-averages of the parameter values are calculated over the complete plan-
ning horizon. The averages are then used as constant parameters for a single
steady-state model. The approach delivers a constant allocation over the plan-
ning horizon.
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(ii) Stationary independent period by period approximation (SIPP)

The decision problem is decomposed in time. For each phase with constant
buffer capacities, time-averages of the parameter values are used as input
for the steady-state performance evaluation. This approach allows for time-
dependent allocations by solving I + 1 independent allocation problems.

The advantage of the two approaches is that they make the rich body of litera-
ture on methods for the performance evaluation in steady state accessible for
the optimization of time-dependent systems. However, both approaches ne-
glect some of the time-dependent behavior induced by the parameter changes.
Consequently, neither feasibility nor optimality with respect to the original
problem can be guaranteed.

6.5 Numerical study

In the following, the proposed solution approaches from Section 6.4 are ap-
plied to solve the Proactive Kanban Card Setting Problem for different param-
eter configurations. We first focus on the case with M = 1 and compare the
proposed local search algorithm to card settings based on steady-state models
and constant allocations. Subsequently, the effects of changing processing
time distributions in lines with M > 1 are investigated. Finally, we comment
on the runtime performance of the local search algorithm for all investigated
cases. Moreover, we compare the obtained solution to optimal results gener-
ated by a complete enumeration.

The planning horizon of all tests is T = 32 h = 1920 minutes. We set the
restriction of the buffer capacity to bmax

m = 20. The demand is assumed to
arrive according to a Poisson process with rate λc(t) = 0.5, t ∈ [0, 1920]
(orders per minute).
For the search algorithm we use 20,000 replications in the performance eval-
uation with a Java-based discrete-event simulation.

6.5.1 Impact of the timing of buffer changes

We first consider a single-stage system (M = 1) and a goal service level of
γ∗ = 0.85. The processing times are exponentially distributed. Motivated by
a replacement of machinery we assume a time-dependent processing rate that
increases from µ1(t) = 2/3, t ∈ [0; 960) at t = 960 minutes to µ1(t) = 1,
t ∈ [960; 1920) jobs per minute. We first analyze the case of a single
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change in the buffer allocation (I = 1) synchronously with the rate change at
t∗1 = 960 in detail, before we turn to a sensitivity analysis of cases with
different t∗1 .

The Proactive Kanban Allocation (PKA) obtained with the algorithm intro-
duced in Section 6.4.3 and the results of the three benchmark approaches are
provided in Table 6.2. The time-dependent behavior of the expected WIP,
E[W (B, t)], in the system at time t is depicted in Figure 6.4. This detailed
time-dependent performance evaluation is based on discrete-event simulation
with 100,000 replications.

Table 6.2: Comparison of allocations and resulting performance for
M = 1, I = 1, t∗1 = 960, γ∗ = 0.85, µ1(t) = 2/3, t ∈ [0; 960),
µ1(t) = 1, t ∈ [960; 1920), and λc(t) = 0.5 ∀t ∈ [0, 1920]

Approach B1,0 B1,1 SLγ(B) E[W (B)]

PKA 13 4 0.854 7.946
SSA 5 5 0.440 4.872
SIPP 12 3 0.809 7.018
CONST 12 12 0.869 11.442
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Figure 6.4: Expected WIP over time for I = 1, t∗1 = 960 for PKA, constant,
and steady-state based allocations

Both allocations based on steady-state models, SSA and SIPP, lead to in-
feasible solutions. The averaging of the processing rates over time by the
SSA leads to a drastic underestimation of the required buffer capacity. Even
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though the SIPP approach gets closer to the desired service level it still un-
derestimates the required buffer capacities, as it neglects the transient effects.

To create a benchmark for the objective value based on a feasible allocation,
we determine the allocation given a constant allocation (CONST). To obtain
this allocation we solve the original problem with the additional constraint
BM ,0 = BM ,1. Thus, this approach captures the time-dependent system be-
havior. The constant allocation has a lower buffer capacity in the first half
of the planning horizon compared to the PKA. However, in the second half
of the planning horizon the capacity of the constant allocation is three times
greater than in the PKA. This leads to a substantial accumulation of WIP for
the constant allocation (see Figure 6.4). A 30.5% reduction of the expected
average WIP can be achieved by applying the time-dependent allocation.

So far we assumed a synchronous change of the buffer capacities and the pro-
cessing rate. In the following, we investigate the sensitivity of the solutions
with respect to the timing of the buffer change t∗1 .

Figure 6.5a depicts the expected average WIP, E[W (B)], obtained from the
PKA and the relative reduction of the expected average WIP compared to the
constant allocation for values of t∗1 ranging from 480 to 1440. By definition
the results for the constant allocation are independent of t∗1 and can be found
in Table 6.2. Figure 6.5b depicts the respective results for t∗1 in the range from
912 to 1008, i.e., values of t∗1 close to the rate change of µ1(t) at t = 960
minutes.

For the tested cases the lowest expected average WIP and respectively the
highest reduction is achieved for a change of the buffer capacity at t∗i = 924.
This illustrates the potential of a planned buffer change, even before the
change in the processing rate of µ1(t) at t = 960 minutes occurs. Com-
paring the results of t∗1 < 924 with the results for t∗1 > 924, it becomes
apparent that the expected average WIP grows faster for buffer changes be-
fore t = 924 minutes compared to changing the allocation after t = 924
minutes (see Figure 6.5a).

The corresponding PKAs are depicted in Figures 6.5c and 6.5d. It can be ob-
served from Figure 6.5c that smaller values of t∗1 tend to require lager values
of BM ,1. This is because the buffer capacity BM ,1 has to be adapted before
the rate change, i.e, when still a larger capacity is required. If t∗1 is set close
to the rate change at t = 960, the PKA is independent of the timing of the
buffer change t∗1 , (see Figure 6.5d).
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(a) Expected average WIP and relative WIP re-
duction compared to CONST allocations for
t∗1 ∈ [480; 1440]
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(b) Expected average WIP and relative WIP
reduction compared to CONST allocations
for t∗1 ∈ [912; 1008]
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Figure 6.5: Impact of the timing of the buffer change t∗1 (I = 1)

6.5.2 Impact of the number of buffer changes

Next we consider the potential of additional buffer capacity changes. The ex-
pected average WIP reductions if two additional changes are allowed (I = 3)
are depicted in Figure 6.6a.

The best allocation that is obtained with only a single change (I = 1) at time
t = 924 serves as a benchmark, represented by the grey and black lines for
the expected average WIP and the relative WIP improvement compared to a
constant allocation, respectively. To ensure that the benchmark allocation is
also a potential allocation for the case with I = 3 changes we set t∗2 = 924
minutes and only vary the timing of the first and the third buffer change, t∗1
and t∗3 .
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Figure 6.6: Impact of the number of buffer changes I and their timing t∗i

Figure 6.6b reveals that the capacity of the buffer in the beginning, B1,0 = 13,
and at the end of the planning horizon, B1,3 = 4, equals the capacities from
the PKAs allocation in the single change (I = 1) case for all tested combi-
nations of t∗1 and t∗3 . The additional flexibility of setting values for B1,1 and
B1,2 is used to reduce the buffer capacity in smaller steps.

From the tested configurations the one with additional changes 50 minutes
before and 50 minutes after t∗2 = 924 provides the smallest expected average
WIP value. However the additional reduction of the expected average WIP
compared to a single change (I = 1) amounts only to 1%.

6.5.3 Lines with multiple stations and Erlang-k processing
distributions

In this section we investigate the benefits of time-dependent buffer alloca-
tions in multi-stage systems. A process improvement at the bottleneck sta-
tion m = 1 is considered. The processing distribution changes at t = 960
from an exponential distribution with rate µ1(t) = 2/3, t ∈ [0, 960), to an
Erlang-k distribution with µ1(t) = 1, t ∈ [960, 1920], job per minute and
cv2

1 (t) = 0.5, t ∈ [960, 1920]. Stations m = 2 and, if applicable m = 3,
have an exponential processing distribution with constant rate µm(t) = 1,
t ∈ [0, 1920],m > 1 job per minute. We allow for a single change of the
allocation, i.e., I = 1, at time t∗1 = 960 and set the goal service level to
γ∗ = 0.8.
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Table 6.3 includes the results of the PKAs and a constant card setting. For
both tested cases M = 2 and M = 3 a reduction of the expected average
WIP by about 17% is achieved by a time-dependent compared to a constant
allocation.

To further emphasize the need for the joint consideration of all buffer capaci-
ties, we investigate the case for which only the finished goods buffer capacity,
BM ,i , is allowed to be changed (PKA- BM ,i ). For the case of M = 3 stations,
a change of the buffer capacity BM ,i allows for a 3.6% reduction compared
to a 17.7% reduction of the expected average WIP by changing the complete
buffer allocation. The results illustrate that in order to take full advantage of
the improved processing time distribution at the bottleneck station m = 1, a
change of all buffer capacities in the line is required.

Table 6.3: Comparison of allocations and resulting performance for multi-
stage systems I = 1, t∗1 = 960

Approach B1,0 B1,1 B2,0 B2,1 B3,0 B3,1 SLγ(B) E[W (B)]

M
=

2 CONST 5 5 7 7 - - 0.801 12.056
PKA- BM ,i 3 3 12 5 - - 0.803 11.287
PKA 5 1 9 5 - - 0.805 9.940

M
=

3 CONST 5 5 3 3 9 9 0.803 17.294
PKA- BM ,i 5 5 3 3 11 6 0.805 16.680
PKA 6 1 3 2 9 7 0.800 14.232

6.5.4 Performance of the search algorithm

Table 6.4 provides insights regarding the efficiency of the proposed local
search algorithm based on the test cases described in Sections 6.5.1 to 6.5.3.
We sort the different problem instances by the number of decision variables,
i.e., M · (I + 1) for the Proactive Kanban Card Setting Problem. The test
cases from Section 6.5.1 include two decision variables, the cases from Sec-
tion 6.5.2 and the two-station case from Section 6.5.3 both have four deci-
sion variables, whereas six decision variables are included in the three-station
case. The algorithm was also used for the determination of the CONST allo-
cation and the PKA-BM ,i in Section 6.5.3. This results in additional problem
instances with two, three, and four decision variables. Table 6.4 includes
the average number of evaluated allocations for the different numbers of de-
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cision variables. Moreover, it provides the average percentage of evaluated
allocations of all possible allocations. Even though the number of evalua-
tions increases with the number of decision variables, the share of evaluated
allocations decreases. This indicates the efficiency of the algorithm also for
problems with over 85 million possible allocations, e.g., for the discussed
three station case.

Table 6.4: Computational efficiency of the local search algorithm

No. of decision variables 2 3 4 6

Average no. of evaluated alloc. 16.5 156 808 47,637
Average % of all alloc. evaluated 3.736 1.684 0.415 0.056

We investigate the quality of the obtained solutions by comparison to a com-
plete enumeration. A comparison is only possible for problems with a maxi-
mum of four decision variables due to run times that otherwise exceed several
weeks. For all tested cases the local search algorithm terminates with the op-
timal solution. Moreover, both Observations 6.4.3 and 6.4.4 hold for all of
these cases.

6.6 Conclusion and further research

Proactive Kanban Allocations are proposed as an approach that accounts for
time-dependent parameters by means of time-dependent changes of buffer
capacities. The objective is to minimize the required expected average WIP
while maintaining a predefined γ-service level over a finite planning horizon.
Monotonicity of the service level and the expected average WIP with respect
to time-dependent buffer capacities is observed. The observations are used to
establish dominance relations between time-dependent buffer allocations. A
search algorithm that is based on these dominance criteria obtains accurate
solutions while evaluating only a small percentage of all possible allocations.
The numerical study demonstrates that the proposed approach reduces the
required WIP compared to constant allocations. Moreover, allocation ap-
proaches based on steady-state models are tested. It is shown that they may
lead to insufficient service levels. Further we provide an example for which
a proactive change in the buffer allocation before the rate change is advan-
tageous. For multi-stage systems the numerical study provides an example
for which a time-dependent change of all buffer capacities in the line is re-
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quired to take full advantage of the improved processing time distribution at
a bottleneck station.

The proposed approach leaves the potential for further methodological en-
hancements. For instance, a proof of the observed monotonicity results is of
interest. In addition, the development of more advanced heuristics to obtain
solutions for larger systems is another field for future research.
Moreover, variations of the investigated decision problem are also worth to be
considered. For the finite-horizon problem, the use of service level goals for
subperiods of the planning horizon could be considered. Furthermore, exten-
sions of other control policies such as CONWIP to a time-dependent setting
can be developed.
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7 Conclusions and Outlook

7.1 Conclusions
This thesis suggests and investigates approaches for the analysis of buffer
allocations in flow lines under stochastic and time-dependent influences.

Chapter 2 introduces a classification scheme which characterizes unreliable
flow lines and reviews various different formulations of the Buffer Allocation
Problem. It is observed that in many cases not all the characteristics which
are required to reproduce the models are reported in the literature. Moreover,
all of the reviewed articles assume steady-state conditions.

A structured overview of approaches for the performance evaluation of time-
dependent queueing systems is provided in Chapter 3. Links between the
different approaches are established and discussed. It can be observed that
numerical comparisons exist for only a subset of the reviewed approaches.
Moreover, there are no exact analytical solutions for time-dependent queue-
ing systems with finite buffers. In the literature only a single approximate
approach for time-dependent buffer capacities in a call center exists.

Chapter 4 includes two new sampling approaches for the performance evalu-
ation of time-dependent unreliable flow lines with constant and finite buffer
capacities. One is based on a mixed-integer program in discrete time with
discrete material, while the other approximation is based on partial and or-
dinary differential equations in continuous time and with a continuous flow
of material. It can be demonstrated that both approaches coincide on a de-
terministic level which links the two corresponding literature streams. The
numerical study demonstrates the accuracy of both approaches. Moreover,
increased buffer capacities help to smooth the cumulative output over time,
given a time-dependent release rate to the flow line.

Chapter 5 presents an initial approach towards time-dependent buffer capac-
ities in flow lines. The MIP sampling approach of the previous chapter is
modified to allow the buffer capacities to change over time. A numerical
study indicates that changes of buffer capacities over time can be applied to
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ensure a stable throughput, given time-dependent changes in the production
rate.

Finally, Chapter 6 proposes a time-dependent change in buffer capacities by
utilizing Kanban cards to minimize the required expected average WIP while
maintaining a predefined service level over a finite planning horizon. A nu-
merical study suggest monotonicity properties for the service level and the ex-
pected average WIP with respect to time-dependent buffer capacities. Based
on these observed properties, a local search algorithm is developed. The algo-
rithm allows to obtain solutions while evaluating only a small percentage of
all possible allocations. The numerical study illustrates that the proposed ap-
proach reduces the required WIP to fulfil a given service level when compared
to constant allocations over time. Moreover, allocation approaches based on
steady-state models are tested. These may lead to insufficient service levels.

7.2 Further possible research directions

This thesis sheds a first light on time-dependent changes in buffer capacities
to account for time-dependent parameters in flow lines. An initial attempt has
been made to provide performance evaluation approaches and a systematic
solution of the trade-off between service level and WIP in the line. However,
there is still room for further methodological improvements.

The performance evaluation approaches used in Chapters 4 to 6 require the
generation of random numbers. This produces a simulation error which can
only be reduced by increasing the number of replications, which in turn in-
creases the computation times. Future research should explore how existing
ideas reviewed in Chapter 3 can be combined to further increase the quality
of the approximation, and how these ideas can be adapted for the analysis of
time-dependent and stochastic flow lines.
A rigorous proof for the observed monotonicity results is also of interest.
Even under steady-state conditions, theoretical insights on how the buffer al-
locations influence the WIP in flow lines with multiple stations are missing.
Consequently, theoretical support for the observations of So (1997) and Pa-
padopoulos and Vidalis (2001b) is desirable. Moreover, the identification of
additional structural properties which result in bounds on the objective value
or the required buffer capacities could contribute to a speeding-up of the so-
lution process.
The development of advanced heuristics to obtain solutions for larger systems
is another field for future research. The proposed local search algorithm might
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be one starting point for their development, e.g., by deliberately not solving
all subproblems. Another direction to be explored is the use of metaheuris-
tics such as Simulated Annealing or Genetic Algorithms. They have been
successfully applied to solve the Buffer Allocation Problem under steady-
state conditions (see Chapter 2). Due to their generic structure they are also
applicable for the Proactive Kanban Card Setting Problem.

Proactive Kanban is a first approach to address the trade-off between the de-
sired customer service level and WIP in flow lines with time-dependent pa-
rameters. Variations of this decision problem are also worth considering.

In the flow line literature, the use of expected values of performance mea-
sures is common (see Chapter 2). The use of higher moments and quantiles
of the distribution of performance measures can be a meaningful extension.
One example for such an additional requirement could be a service level goal
that has to be met with a certain probability. In addition, the use of service
level goals for subperiods of the planning horizon could be considered. This
prevents solutions in which poor performance during a given period is com-
pensated by overachieving the performance in another period.
By allowing the removal of all Kanban cards from a stage, the Proactive Kan-
ban Card Setting Problem can be extended to solve an order release problem.
By removing all Kanban cards from the first stage, the inflow of new work-
pieces is stopped. This offers the potential to further reduce the WIP in the
line. This extension makes the approach also applicable to problems with
constant parameters over time, but with additional constraints on the inven-
tory level. This would be the case, for instance, if a line starts empty and all
workpieces have to be cleared from the line again at the end of the planning
horizon, e.g., when processing perishable goods which cannot be allowed to
stay in the buffers over night.
Chapter 6 describes a Proactive Kanban policy and focuses on determin-
ing its parameters. Extensions of other control policies such as CONWIP
and Extended Kanban to a time-dependent setting are another potential field
for future research. Ng et al. (2012) and Xanthopoulos and Koulouriotis
(2014) compare numerically different policies under steady-state conditions.
Whether their findings can be translated to the time-dependent setting or not
is well worth investigation.

The consideration of new inventory control policies and decision problems
may also require methodological advances, such as establishing new struc-
tural properties and developing new analytical performance evaluation and
optimization algorithms.
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Appendix A

A flow line as described in Section 6.3.1 with M = 1, Poisson demand, exponen-
tially distributed processing times, and a constant buffer capacity under steady-state
conditions can be modeled as a birth and death process with discrete and infinite state
space {0, 1, 2, ...,n, ...}. A state n is defined as the number of unused buffer spaces,
plus 1 if station M is not blocked, plus the number of backlogged customer orders. A
transition to a greater state occurs with rate λc and a transition to a smaller state with
rate µM . The steady-state probability Pn of state n is given by

Pn = (1− ρ)ρn , ∀n ≥ 0, (A.1)

with ρ = λc/µM and stability condition ρ < 1 (Gross et al., 2008, p.59). Thus, in the
following we focus on the relevant range of 0 < ρ < 1.

Proof of Theorem 6.4.1:
The expected WIP is given by

E[W (BM )] = (1− P0) +

BM∑
n=0

((BM + 1)− n) · Pn

= (1− (1− ρ)) +
BM∑
n=0

((BM + 1)− n)(1− ρ)ρn

= ρ+ (1− ρ)((BM + 1)

BM∑
n=0

ρn −
BM∑
n=0

nρn)

= ρ+
ρ(BM + 2)− ρBM+2 − BM − 1

(ρ− 1)
. (A.2)

Note that if the machine is not blocked, it is processing a workpiece. This part of the
WIP is covered by the first summand of (A.2). The above simplifications are based on
closed form representations of geometric series.
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We find the derivative with respect to BM assuming BM to be continuous. However,
the obtained properties also hold for BM taking only positive integer values. The first
derivative with respect to BM is given by

∂E[W (BM )]

∂BM
=
ρ− 1− ln(ρ)ρBM+2

ρ− 1
= 1 +

ln(ρ)ρBM+2

1− ρ . (A.3)

For (A.2) to be strictly increasing it is sufficient to show

ln(ρ)ρBM+2

1− ρ > −1⇔ ln(ρ)ρBM+2 > ρ− 1⇔ ln(ρ)ρBM+2 − ρ > −1. (A.4)

The left hand side of Inequality (A.4) is increasing in BM . Hence, we consider the
case of BM = 0. For this case we analyze the left hand side by building the following
first and second derivatives with respect to ρ

∂

∂ρ
ln(ρ)ρ2 − ρ = ρ+ 2ρ ln(ρ)− 1, (A.5)

∂2

∂ρ2
ln(ρ)ρ2 − ρ = 2 ln(ρ) + 3. (A.6)

The necessary and sufficient conditions for a global minimum are fulfilled by ρ = 1
with value -1. It follows that (A.3)> 0, for 0 < ρ < 1.

The second derivative of E[W (BM )] is always positive for 0 < ρ < 1

∂2E[W (BM )]

∂B2
M

=
ln2(ρ)ρBM+2

1− ρ > 0. (A.7)

Hence, E[W (BM )] is strictly convex and increasing in BM .�

Note that E[W (BM )] converges for large BM to a linear increase with gradient 1 as

lim
BM→∞

∂E[W (BM )]

∂BM
= lim

BM→∞
1 +

ln(ρ)ρBM+2

1− ρ = 1, (A.8)

and

lim
BM→∞

∂2E[W (BM )]

∂B2
M

= lim
BM→∞

ln2(ρ)ρBM+2

1− ρ = 0. (A.9)
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Proof of Theorem 6.4.2:
Tardif and Maaseidvaag (2001) use intuitive arguments and Little’s law to show that
the backlog decreases in the number of Kanbans. Here, we provide a closed-form
solution and use it to rigourously establish first and second order properties. From the
steady-state distribution we obtain

E[W−(BM )] =

∞∑
n=BM+1

(n − (BM + 1))Pn

= (1− ρ)

 ∞∑
n=BM+1

nρn − (BM + 1)

∞∑
n=BM+1

ρn


= (1− ρ)(ρ

BM+1(−(BM + 1)ρ+ ρ+ (BM + 1))

(1− ρ)2

− (BM + 1)ρBM+1

(1− ρ) ) (A.10)

=
ρBM+2

(1− ρ) . (A.11)

Again, we build the derivative with respect to BM while assuming BM to be continu-
ous. For 0 < ρ < 1 we find

∂E[W−(BM )]

∂BM
=

ln(ρ)ρBM+2

1− ρ < 0, (A.12)

∂2E[W−(BM )]

∂B2
M

=
ln2(ρ)ρBM+2

1− ρ > 0. (A.13)

Hence, E[W−(BM )] is strictly decreasing convex. In steady state the γ-service level
is given by SLγ(BM ) = 1− E[W−(BM )]

λ
. From the result for the expected backlog it

follows that the γ-service level is strictly increasing and concave in BM .�
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Appendix B

Results for the expected average WIP and γ-service level for a system with T =
1920,M = 1, exponentially distributed processing times with rate µ1(t) = 2/3, t ∈
[0; 960), µ1(t) = 1, t ∈ [960; 1920), Poisson demand process with rate λc(t) =
0.5, t ∈ [0, 1920], I = 1 and varying t∗1 .
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Figure B.1: Expected average WIP and γ-service level for t∗i = 480
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Figure B.2: Expected average WIP and γ-service level for t∗i = 960
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Figure B.3: Expected average WIP and γ-service level for t∗i = 1440

Results for the expected average WIP and γ-service level for a system with
T = 1920,M = 2, a change in the processing distribution of m = 1 from an expo-
nential distribution with rate µ1(t) = 2/3, t ∈ [0, 960), to an Erlang-k distribution
with µ1(t) = 1, t ∈ [960, 1920] and cv2

1 (t) = 0.5, t ∈ [960, 1920]. Exponential
processing distribution of station m = 2 with rate µm(t) = 1, t ∈ [0, 1920],m > 1,
Poisson demand process with rate λc(t) = 0.5, t ∈ [0, 1920], I = 1, and t∗1 = 960.
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Figure B.4: Expected average WIP and γ-service level for M = 2, I = 1,
t∗i = 960, B1,0 = B1,1 = 1
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