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Abstract

Machine activity recognition aims to automatically predict human activities from
a series of sensor signals. It is a key aspect to several emerging applications, es-
pecially in the pervasive computing field. However, this problem faces several
challenges due to the complex, relational and ambiguous nature of human activ-
ities. These challenges still defy the majority of traditional pattern recognition
approaches, whether they are knowledge-based or data-driven. Concretely, the cur-
rent approaches to activity recognition in sensor environments fall short to repre-
sent, reason or learn under uncertainty, complex relational structure, rich temporal
context and abundant common-sense knowledge. Motivated by these shortcom-
ings, our work focuses on the combination of both data-driven and knowledge-
based paradigms in order to address this problem. In particular, we propose two
logic-based statistical relational activity recognition frameworks which we describe
in two different parts.

The first part presents a Markov logic-based framework addressing the recog-
nition of complex human activities under realistic settings. Markov logic [RDO6]
is a highly flexible statistical relational formalism combining the power of first-
order logic with Markov networks by attaching real-valued weights to formulas in
first-order logic. Thus, it unites both symbolic and probabilistic reasoning and al-
lows to model the complex relational structure as well as the inherent uncertainty
underlying human activities and sensor data. We focus on addressing the challenge
of recognizing interleaved and concurrent activities while preserving the intuitive-
ness and flexibility of the modelling task. Using three different models we evaluate
and prove the viability of using Markov logic networks for that problem statement.
We also demonstrate the crucial impact of domain knowledge on the recognition
outcome.

Implementing an exhaustive model including heterogeneous information sources
comes, however, at considerable knowledge engineering efforts. Hence, employ-
ing a standard, widely used formalism can alleviate that by enhancing the porta-
bility, the re-usability and the extension of the model. In the second part of this
document, we apply a hybrid approach that goes one step further than Markov
logic network towards a formal, yet intuitive conceptualization of the domain of
discourse. Concretely, we propose an activity recognition framework based on
log-linear description logic [NNS11]], a probabilistic variant of description logics.
Log-linear description logic leverages the principles of Markov logic while allow-
ing for a formal conceptualization of the domain of discourse, backed up with
powerful reasoning and consistency check tools. Based on principles from the ac-
tivity theory [KN12], we focus on addressing the challenge of representing and
recognizing human activities at three levels of granularity: operations, actions and
activities. Complying with real-life scenarios, we assess and discuss the viability
of the proposed framework. In particular, we show the positive impact of augment-
ing the proposed multi-level activity ontology with weights compared to using its
conventional weight-free variant.
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Zusammenfassung

Die maschinelle Aktivitdtserkennung hat das Ziel menschliche Aktivitdten mit Hilfe
einer Reihe von Sensorsignalen vorauszusagen. Dies ist eine Schliisseltechnologie
aus derer sich zahlreiche Anwendungsfelder ergeben welche vor allem im Bereich
des “Pervasive Computing” zu finden sind. Durch die komplexe, verflochtene und
mehrdeutige Natur von menschlichen Aktivititen gibt es viele Herausforderun-
gen zu losen. Aktuelle Losungsansitze hdufig versagen in der Modellierung, im
Reasoning oder Lernen unter Unsicherheit, unter komplexen relationalen Struk-
turen, unter reichem zeitlichen Kontext und unter dem Vorhandensein von um-
fangreichem Doménenwissen Wissen. Unsere Arbeit iiberwindet diese Defizite in
dem wir den Fokus auf die Kombination von datenbasierten und wissensbasierten
Ansitzen legen. Diese Arbeit ist in zwei Teile unterteilt, welche zwei logikbasierte,
statistik-relationale Aktivititserkennungsframeworks vorstellen.

Der erste Teil ist ein Markov-Logik basiertes Framework welches die Erken-
nung von komplexen menschlichen Aktivititen unter realistischen Bedingungen
thematisiert. Markov-Logik [RDO06] ist ein flexibler statistisch-relationaler For-
malismus der die Stirken von Pridikatenlogik und Markov-Netzwerken vereint, in
dem reelle Gewichte mit pradikatenlogischen Formeln verbunden werden. Fol-
glich werden symbolisches und probabilstisches Reasoning kombiniert und er-
lauben es sowohl die komplexe relationale Struktur als auch die dazugehdrige Un-
sicherheit, die menschlichen Aktivitdten und Sensordaten zugrunde liegt, zu mod-
ellieren. In dem Teil wenden wir uns der Herausforderung zu, verschachtelte und
gleichzeitig stattfindende Aktivitdten zu erkennen. Unter der Verwendung von drei
verschiedenen Modellen wird gezeigt, dass Markov-Logik Netzwerken fiir dieses
Problem angewendet werden konnen. Ebenfalls wird der entscheidende Einfluss
von Doménenwissen auf das Ergebnis des Erkennungsprozesses demonstriert.

Der zweite Teil dieses Dokuments behandelt einen hybriden Ansatz, der ver-
glichen mit Markov-Logik Netzwerken einen Schritt weiter in Richtung einer for-
malen und dennoch intuitiven Konzeptualisierung der Doméne geht. Das erhoht
die Portabilitit, die Wiederverwendbarkeit und die Erweiterbarkeit des Modells.
Das Aktivititserkennungsframework basiert auf log-linearer Beschreibungs-
logik [NNS11]], einer probalistischen Variante von Beschreibungslogiken. Die log-
lineare Beschreibungslogik verwendet die Ansédtze von Markov-Logik wihrend
gleichzeitig eine formale Konzeption der Domine, erginzt mit weitreichenden
Ableitungs-und Konsistenziiberpriifungsmoglichkeiten, erlaubt wird. Basierend
auf Prinzipien der Aktivitdtstheorie [KN12] werden die Repridsentation und die
Erkennung von menschlichen Aktivitdten auf drei Granularititsebenen durchgefiihrt:
Operationen, Aktionen und Aktivititen. Die Realisierbarkeit des vorgeschlage-
nen Frameworks wird anhand lebensnaher Szenarien beurteilt und diskutiert. Wir
werden insbesondere den positiven Einfluss der Erweiterung der vorgeschlagenen
multi-level Aktivitdtsontologie mit Gewichten mit der konventionellen Variante
ohne Gewichte vergleichen.
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Introduction

“The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life
until they are indistinguishable from it.”

—Mark Weiser






Introduction

The genesis of ubiquitous computing, also called pervasive computing, can be
traced back to 1991 when Mark Weiser coined this term in his seminal paper “The
Computer for the 21st Century” [Wei91]]. There, he explains his vision of creat-
ing environments saturated with computing and communication capabilities, yet
“calmly” integrating them with human users until they disappear into the back-
ground. Whereas this perception was ahead of time then, it has recently received
growing attention due to the latest technology advances and application demand.
Many sensor technologies that were out of reach in 1991 are now viable low-cost
commercial products. Small, light-weight, low-power wired and wireless sensing
technologies are making substantial progress. This enabled the creation of mobile,
wearable sensing modalities as well as embedded sensing infrastructures for so
called “smart spaces”.

Wearable sensors together with smart environments have pushed the research
contributions in ubiquitous computing from simple low-level sensor data process-
ing to more sophisticated high-level data integration. A particularly relevant focus
has been shifted to context reasoning and context-aware applications, a crucial as-
pect to fulfil Mark Weiser’s vision. Usually, context is defined as “any information
that can be used to characterize the situation of an entity” [DeyOl]]. A context-
aware application is defined by the same authors as “an application that uses the
context of an entity to modify its behaviour to best meet the context of the user”.
Thus, information that is directly acquired from sensor data can be seen as low-
level context (e.g time, temperature, humidity, luminosity, etc. ), while high-level
context is information that is inferred from the low-level one.

Numerous solutions for a number of real-world problems have become increas-
ingly reliant on one particular aspect of high-level context, namely human activity.
The ability to automatically recognize what the user is doing and what they will do
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next enables to reason about their current and upcoming needs. Inferring such con-
text information augments the available services with reactive and even proactive
assistance. Also referred to as “plan recognition”, “goal recognition” or “intent
recognition”, the field of activity recognition plays a crucial role in a wide spec-
trum of applications. These applications range from the health-care domain, where
user’s health status and lifestyle are monitored and assessed contentiously (e.g.
[HKAK1Q], [ACRV13]), to fall and anomaly detection (e.g. [LSHT09]), fitness
tracking and promotion of healthy lifestyle (e.g. [CMTT08])), smart houses with
context-aware services (e.g. [CCTK13])), robotics(e.g. [VVO8I), security and surveil-
lance (e.g. [LSPZ0S]), pedestrian traffic (e.g. [MD14]), entertainment and video
games (e.g. [KHL™13]), to task assistance and safety instructions in car manufac-
turing (e.g. [SROT08]).

Sensor-based activity recognition: Activity recognition systems are generally
either based on the use of visual sensing facilities or that of emerging light-weight
sensors such as wearable and environmental dense sensors. Our work is classified
into the second category to which we will refer as sensor-based activity recognition
in contrast to vision-based activity recognition. An exhaustive review about vision-
based activity recognition can be found in the work of Aggarwal and Ryoo [AR11]].

Wearable sensors generally are used to capture the user’s motions, location,
vital signs, environmental data, and their interaction with surrounding objects. This
latter also requires environmental sensors which are embedded in closed spaces
such as “smart houses”, “smart hospitals” and “smart meeting rooms”. Besides
object-interaction, these sensors usually capture the user’s motion and their indoor
location.

Among the most widely used wearable sensors we distinguish accelerometers
and gyroscopes which measure proper acceleration and orientation respectively.
These two sensors were successfully used to recognize physical movement of the
user [LL13]. Other prominent wearable sensors are GPS receivers which are inten-
sively used in outdoor activity recognition by tracking users’ itinerary [FCRS13|.
Vital signs sensors such as electrocardiogram (ECG), skin conductance sensors(SC)
are emerging trends especially in health and fitness monitoring applications [ACRV13]].
Finally, common to both groups of sensors are RFID tags and readers. Just like in-
ertial sensors are indispensable for body locomotion and movement recognition,
equipping surrounding items with RFID tags while wearing RFID reader is also
compulsory for the recognition of specific activities such as “preparing a sand-
wich” and “cleaning” [MVC™10].

Complex human activities: In the activity recognition community, the term “ac-
tivity” does not universally designate the same concept. Indeed, human activities
can vary through a wide spectrum of granularity levels. It ranges from very short
and simple gestures such as “move hand” to complex composite activities and sit-
uations such as “Shopping”. Despite this irregularity, there is an implicit distinc-



tion between two big categories: low-level and high-level activities. Low-level
activities are also called “actions”, “atomic activities” or “simple activities”. They
generally denote simple ambulatory behaviour having a short and stable duration.
These low-level activities are commonly atomic and can not be broken into finer
grained components. Thus, they can not be interrupted and are always performed in
sequential manners. Examples include “walking”, “running”, “sitting” and “open
the door”. Several statistical approaches and well established machine learning al-
gorithms have proven to infer low-level activities with ease [LL13]]. These focus
on the problem of dealing directly with noisy sensor data to discover and extract
interesting patterns that can be mapped into activities.

Convinced by the viability of the current approaches, more research efforts
have recently appeared in order to extend the recognition from low-level to high-
level activities. This extended recognition problem is best understood as a specific
case of abduction, i.e. reasoning to the best explanation. The main idea states that
“if the user is carrying out a high-level activity Y they would perform the sequence
of actions X, and we if observe X, we may postulate that they are executing Y.

Whereas this formulation facilitates the understanding of the high-level activ-
ity recognition problem, the proposed approaches to solve are still facing several
challenges due to the following aspects. High-level activities are typically com-
posed of a sequence of low-level activities over an extended duration. These can
be performed in different manners and in different sequences. The sequences are
inherently variant in terms of their time span and temporal order of their compo-
nents. For example, the activity “put the table” might be performed in one of the
following simplified sequences (1) “open drawer”, “fetch a plate”, “fetch a spoon”,

LN

“close the drawer”, “walk”, “put down plate”, “put down spoon”, or (2) “open
drawer”, “fetch a plate”, “walk”, “put down plate”, “walk”, “fetch a spoon”, “close
the drawer”, “walk”, “put down spoon”. Besides such possible deviations, high-
level activities can be interleaved, concurrent and even aborted. For instance, the
subject could initiate the activity of “putting the table” then interrupts its sequence
to “go to the bathroom” before resuming it.

Another crucial difference between low-level and high-level activities is the rel-
evant impact of contextual information on the recognition performance. Context
information can cover manifold aspects such as location, temporal features (e.g.
weekdays versus weekends), environmental conditions (e.g. weather, luminosity,
humidity, noise), and surrounding objects. Apart from wearable sensors, and espe-
cially accelerometers, Manzoor et al. [MVC™10] show, in their systematic study,
that environmental sensors embedded in different objects are also mandatory for
the recognition of specific high-level activities like “cleaning up”.

In general, frameworks proposed to recognize high-level activities from light-
weight sensor data can be classified in flat models, which attempt to recognize
high-level activities directly from sensor data, and hierarchical ones which first in-
fer low-level activities then use them to recognize high-level activities. The latter
method has been shown to better address the recognition task [LC11].
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Based on this basic two-levels conceptualization, this work focuses on the
recognition of high-level activities. For a comprehensive review about the recog-
nition of low-level activities the reader is invited to check the work of Preece et.
al [PGK™09]]. Throughout this thesis, we will employ the terms activity, compos-
ite activity and complex activity interchangeably to denote high-level activities. A
more formal categorization of the different types of composite activities is detailed
in the next Chapter. There, we present a multi-level structure of high-level activities
founded on activity theory [KN12].



Trends in Human Activity Modelling and
Recognition Approaches

The problem of automatically recognizing complex activities have been approached
by various methods which can be generally classified as data-driven, knowledge-
driven or hybrid. In this chapter we first identify the chief requirements of a realis-
tic activity recognition system and associate them with the advantages and disad-
vantages of each paradigm. Then we provide a review of the existing approaches
for sensor-based complex activity recognition following the same classification.

Using large amounts of collected sensor data, data-driven approaches em-
ploy mining and machine learning techniques to create probabilistic activity mod-
els. Based on these models, new sensor data can be classified into the correspond-
ing human activities. Contrastively, knowledge-driven approaches basically rely
on domain-related expertise to specify formal activity models using knowledge
representation and engineering techniques. The activity models basically encode
common-sense and domain knowledge about activities. Activity recognition is then
realised by applying logical reasoning on the constructed models whenever sensor
data is available.

These two paradigms have complementary strengths and weaknesses when ap-
plied to activity recognition. The major limitations are detailed in terms of require-
ments and desired aspects of a realistic activity recognition systems:

® Addressing uncertainty: uncertainty is a crucial aspect in activity mod-
elling and recognition. Uncertain knowledge affects several levels of the
activity recognition process: From noisy sensor data to the ambiguity of
their interpretation. Whereas data-driven approaches provide great flexibil-
ity and allow to control different alternatives, knowledge-driven approaches

7
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are static and can not handle uncertain data.

Ability to address complex activities: modelling complex human activities
and their underlying relational structure usually requires highly expressive
description formalisms. Unlike knowledge-driven approaches, data-driven
ones are not flexible enough to capture and model such complex relation-
ships between different entities.

Ability to handle complex (temporal) relationships: a special but es-
sential type of complex relationships in activity models consists in tempo-
ral information. Temporal context is crucial for context-aware application
in general and activity recognition in particular. It can significantly im-
prove the recognition rates [Dav13]]. Apart from few advanced statistical ap-
proaches such as Skip Chain Conditional Random Fields (SC-CRF) [HYO08]
and Emerging Patterns (EP) [GWT™09], the majority of data-driven meth-
ods fail to recognize non-sequential activities such as concurrent and inter-
leaved ones [KHC10]. Contrastingly, knowledge-driven approaches are very
well-suited to model highly complex relationships between the model’s en-
tities. However, due to the lack of uncertainty support, they are inadequate
for modelling and manipulating the required temporal information.

Portability and re-usability: activity recognition applications are meant to
be flexible in terms of their settings. They should support portability across
environments and users. Not only the same activity is often carried out in
different manners by different subjects, but it could also be performed in
several ways by the same subject. Thus, it is difficult for data-driven ap-
proaches to collect adequate data sufficient to handle this variability. Thus,
reusing the same model under different settings remains a challenge for these
data-driven methods.

Ease of integration of background knowledge and rich context data: the
inherent structure and common-sense underlying our daily activities are a
crucial aspect for their automatic recognition. For instance, certain activities
are known to normally happen under a particular context, e.g. the activity of
“brushing teeth” usually takes places in the bathroom in the morning after
“waking up” and at the evening before “sleeping”. Such trivial common-
sense knowledge can easily be introduced in knowledge-driven approaches
yet might not necessarily be captured by data-driven approaches, due to the
lack of a sufficiently large training set.

Extensibility: activity recognition applications require dynamic systems which
support the easy extension of the activity models. Being strongly dependent
on a given dataset, data-driven approaches would necessitate new data as
well as the creation of a new model in order to support additional activi-
ties. Knowledge-driven approaches, however, are easily extensible through
inserting new rules for instance.
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® Declarative and intuitive modelling: comprehensible activity models strongly
facilitate their interpretation, extension and application. While knowledge
driven approaches are usually declarative and easy to understand, data-driven
approaches, on the opposite, are less intuitive.

® Cold-start problem: activity recognition systems are supposed to perform
well immediately. Since data-driven approaches require substantial dataset,
they usually suffer from data sparsity and the “cold start” problem.

2.1 Data-driven approaches to activity recognition

Most state-of-the-art activity recognition systems rely on probabilistic models with
supervised learning paradigms. Notable examples of these approaches employ
Hidden Markov Models( [PEKPOS], [BPPW09], [LC11]), naive Bayes [[TILO4],
dynamic Bayesian networks [vKKO7] and conditional random fields([NDHC10],
[VVLOT]).

Hidden Markov models (HMM) are one of the most popular choices to address
activity recognition. HMM are directed graphical models that aim at inferring the
states a sequence of hidden variables (ay, ..., a,) from an input of a sequence of
observations (01, ...,0,). In activity recognition, the hidden states correspond to
the human activities while the observation refer to the sensor data. For the sake
of tractability, each sensor observation is assumed to be only dependent on the
activity from the same time slice, and each activity is assumed to only depend on
the previous one. HMM are generative models: in order to determine the most
probable sequence of activities given the sensor observation, the joint probability
p(0, a) is maximized.

Due to their inflexible structure, HMM have serious limitations in presenting
multiple interacting activities and modelling long-range dependencies [KHC10].
Representing relational information and arbitrary dependencies is, thus, difficult.
In the best case, this would require to propositionalize the domain which results in a
combinatorial increase in the number of variables and model’s parameters [SK12].
To relax these strict independence assumptions, some researchers have applied dy-
namic Bayesian networks to recognize human activities [INKT09]]. Despite their
flexibility compared to HMM, both models perform only well under unrealistic set-
tings where activities are performed in laboratory conditions and follow the same
sequences [SZC13]]. Addressing natural scenarios with interleaved and concurrent
activities remains a challenge for these approaches [KHC10], [SZC13].

Besides generative probabilistic models, researchers have investigated discrim-
inative models such as conditional random fields (CRF). CRF are undirected graphs
allowing for arbitrary dependency relationships among the observed and hidden
variables sequences. Unlike HMM, which rely on Bayes rule to estimate the dis-
tribution over hidden states from observations, CRFs directly represent the condi-
tional distribution over hidden states given the observations. Thus, the most prob-
able state sequence of the hidden variables is inferred by directly maximizing the
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conditional probability p(a|o) rather than maximizing the joint probability p(a, o).
Even if linear-chain CRF outperform HMM in several activity recognition ex-
periments ((NDHCI10], [VVLO7]), both models still share some weaknesses. Espe-
cially, they are unable to handle changes in activities [SZC13|| and are inflexible in
supporting arbitrary dependencies in the input space [[GKO6]. This is a particularly
heavy limitation due to the relevance of the inherently rich and long-range inter-
and intra-activity temporal relationships underlying human activity sequences.

Being more suitable for purely sequential data [KHCI10], these techniques
have been extended in different ways as a step towards supporting more sophis-
ticated relational temporal and atemporal information. Examples include Skip-
chain CRF (SCCRF) [HYO08], interleaved HMM (IHMM) [MBKOS], logical HMM
(LoHMM) [NBT™08] and CRF for logical sequence [GKO06].

Hence, despite being well suited for simple activities, data-driven techniques,
in general, have a number of shortcomings when applied to the recognition of com-
plex high-level activities as summarised above. Especially in terms of portability,
extensibility, and support for complex relational information and common-sense
knowledge. Consequently, it is at best troublesome to add and acquire further con-
textual information to these models.

2.2 Knowledge-driven approaches to activity recognition

Most human activities generally involve a regular set of objects. For instance, the
activity “dish-washing” implies opening the “dishwasher door”, putting “wash-
able dishes” into the “dishwasher”, putting the “dishwasher detergent”, closing the
“dishwasher door” then selecting and starting the washing program. Another ex-
ample is the activity “wash hands” which consists in interacting with the “water
tab”, the “soap” and finally the “towel”. Nonetheless, depending on the subject’s
habits, available equipment and lifestyle, there might be some deviations even in
such structured activities. “dish-washing”, for example, might be performed man-
ually by interacting with the water tab in the kitchen, the the dishes and the dish
detergent.

Knowledge-driven approaches rely on such inherent common-sense and prior
knowledge about human activities in order to create reusable formal activity mod-
els. Prior knowledge about activities of daily living (ADL) is especially rich and
usually covers different contextual features such as specific objects, locations and
times.

Compared to the data-driven paradigm, little research has been performed in
knowledge-driven activity recognition [OCS12]. Among those, we note a domi-
nation of logic-based formalisms. Founded on existing knowledge representation
and engineering techniques, the recognition task is solved by logical inference ap-
plied to axioms and rules specified in the activity model and the generated domain
theory. The inference step is supported by a reasoning process which outputs the
activities that semantically explain the given sensor observations.
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In the context of plan recognition, the first attempts to develop an expressive
logical framework could be traced back to the work of Schmidt [SSG78]]. However,
the proposed approach does not handle uncertain data and was never applied to real
sensor data. Logic-based approaches have recently received more an more interest
in the activity recognition community.

A major strength of this paradigm has been highlighted by Chen and Nu-
gent [CNM™08]| through their extended temporal reasoning framework based on
event calculus (EC). Event calculus (EC) was originally introduced by Kowalski
and Sergot [KS86] as a logic programming formalism for representing events and
their effects. The events are the origin of any state change in the domain. The states
are referred to as fluents and can be seen as properties of the domain at a specific
time point. The effect of events on fluent as well as the temporal relations between
them are determined by predicates. In the context of activity recognition, events
correspond to the sensor activations and deactivations, also called sensor events.
The state of the domain’s entities such as the objects the subject is interacting with
or the states of the sensor themselves, are represented by the fluents. Simple and
compound activities are inferred by deductive reasoning using a set of axioms stat-
ing how and when the truth holds based on causal relations of predicates. Despite
its flexibility and its powerful temporal reasoning, the proposed framework was
only validated with a simplistic scenario of “making tea”. Also, the absence of a
sound probabilistic reasoning seriously limits its applicability. A number of event
calculus dialects have sprung up since Kowalski and Sergot’s original paper. The
majority use a subset of the full event calculus, proposed by Shanahan [Sha99].
Interestingly, some of the recently emerging dialects tried to combine EC with
probabilistic reasoning [SPVAT1]].

Using manually designed rules to define human activities in terms of sensor
observations and required temporal constraints, Cirillo et al. [CLPS09]| propose a
temporal reasoning framework (OMPS) to address activity recognition. The rules
encode different temporal relationships based on the restricted Allen’s interval Al-
gebra [[All83] such as “during”, “started by” and “finished by”. For instance, the
activity “taking lunch” is defined as an activity taking place “during” the afternoon,
is “started by” activity “cooking” and “finished by” the activity “eating”. Given the
sensor observations, the temporal constraints are synchronized. If the imposed re-
quirements do not lead to a propagation failure, then the corresponding hypothesis
holds. Thus, the framework offers significant support to address rich temporal con-
text. However, due to the deterministic nature of the rules, the approach is too static
to handle real-life scenario and their inherent uncertainty. In a recent extension of
this work [PCD™13], the authors propose to relax their method by reasoning with
multiple hypothesis instead of one.

Earlier attempts employing Allen’s interval algebra to reason about complex
temporal relationship in the context of smart houses can be found in the works
of Augusto and Nugent [[ANO4] and that of Jakkula and Cook [JCCQ7]. The first
combine active databases with temporal reasoning to define ECA (Event-Condition
Action) rules. The authors define composite activities as a straightforward compo-
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sition of primitive events. Their use of temporal reasoning is, thus, only for defining
the precondition of the rules rather than recognizing complex activities. Similarly,
Jakkula and Cook [JCCOQ7] focus on mining temporal constraints between sensor
events such as “Tv is on” and “light is on” and use them to detect abnormal event
sequences violating the constraints without addressing the challenge of the recog-
nition of complex activities.

Another distinguishable line of research explores the use of description logics
(DLs) [BCM ™ 03] to model human activities and ontological reasoning to recog-
nize them. This trend has recently gained increasing attention due to its formal
way to represent heterogeneous sensor and context data, as well as activities in a
unified framework with well-structured terminology. This makes ontology-based
systems understandable, shareable, and reusable by both humans and machines.
Ontology-based approaches describe activities by linking them to constraints or
sensor and context data through properties. They are especially well suited for el-
egantly modelling and reasoning with different abstraction levels of human activi-
ties. The recognition process matches the observed data to the required conditions
defining each activity and infers the corresponding one. Motivated by the emi-
nent role of context information and common-sense knowledge in modelling and
recognizing human activities, several activity and context ontologies have been
proposed. The majority of these ontologies, however, are used for data integration
purposes, for learning unknown objects or for categorizing terms [CHN"12]. An
extensive survey about ontologies for human activity representation is provided by
Rodriguez et. al [RCLCF14]]. Among the minority that explicitly conceptualize
activities and their interrelationships in a unified framework, are the works of Chen
et al. [CNO9], [CNW12], that of Riboni et.al [RB11] and Springer et. al [STQ9].
Despite the highly expressive DLs employed, the models include very simple ac-
tivities such “whether a ringing person is authorized to enter or not” [ST09] and are
hardly capable of addressing the temporal context of the activities, nor do they sup-
port uncertain knowledge, which impairs the system’s performance. Overcoming
the first two limitations is the focus of the work of Saguna et. al [SZC11]] and that
of Okeyo et. al (JOCS12], [OCW13]]) which combines ontological and temporal
knowledge modelling formalisms to create composite activity models.

In addition to the large modelling efforts required by knowledge-based ap-
proaches, this paradigm fails in addressing the imperative of handling uncertain
knowledge. Recently, several researchers have endeavoured to explore extensions
and combinations of both knowledge-based and data-based approaches in order to
meet the requirements of realistic activity recognition systems. We refer to these
methods as hybrid approaches.

2.3 Hybrid approaches to activity recognition

Different hybrid approaches have been recently applied to activity recognition.
They usually attempt to extend knowledge driven approaches probabilistic aspects
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( [RBO9], [FATTI], [HRN™12]], [CNO14], [YSDI4]) or to incorporate complex
relational modelling techniques in data-driven approaches ([GKO6], [KRRO6],
[MBKOS], [HYO0S]), NBTT08], [HNS11b], [MMvO™12], [SK12]). Being closely
related to the proposed methods in this thesis, an accurate description of these
works is provided in the related work sections.
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Preliminaries

3.1 Machine recognition of human activities

As introduced above, machine activity recognition aims to automatically predict
the activities of a human beings from a series of sensor signals.

In this chapter, we provide preliminary knowledge required for subsequent
chapters. This includes a formal definition of the activity recognition problem
preceded with a brief theoretical definition of human activities based on activity
theory. The chapter also covers introductory background about graphical mod-
els as a basis for several statistical relational approaches. Finally, the last section
formulates the research problem addressed in this thesis.

3.1.1 Human activities and activity theory

In a conceptual grounding originally developed by the Russian psychologist Alek-
sei Leontiev around 1930, human activities are defined as a relationship between
an acting human being and an entity existing in the world called “object” [KN12].
This interaction is determined by a particular motive to meet certain need(s) of the
subject, where objects are not necessarily physical entities as long as they exist in
the world. This object-orientedness of activities is the first principle of activity
theory.

The theoretical concept of activities presents their structure in a three-level hi-
erarchy bridging the Why, the What and How respectively as depicted in Figure[3.1]
The top level corresponds to the activity itself, which is driven by a motive in or-
der to respond to a particular need such as “having a meal”. Such an activity is
realized through a series of conscious actions. These steps should lead to the goals
required to achieve the object motive. A subject is typically aware of the goals they

15
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Figure 3.1: The hierarchical structure of human activities. Activities are composed of
actions, which are, in turn, composed of operations. As indicated by the bi-directional
bold arrows, the upper layer indicates the motive, the second is driven by goals and the
lowest refers to conditions. [KN12]

want to attain. These are often decomposed into sub-goals and sub-sub-goals and
so on. For instance, the activity of “having a meal” usually implicates the action
of “preparing meal” which in turn might involve “cutting vegetables™ and so forth.
This decomposition goes on until it reaches the lowest layer, where actions turn into
sub-conscious automatic operations such as “opening the fridge”(see Figure [3.1)).

Nonetheless, activity theory does not provide a taxonomy of human activi-
ties. In fact, it is a descriptive and declarative framework to guide and support
researchers ask the right questions and find out key aspects of their problem. Es-
pecially, the boundaries between the proposed layers are very vague. Revisiting
the previous example, “cutting vegetables” can turn into an automatic routine if
the subject practices it several times. Thus, it would belong to the operation layer
rather than to the actions. This aspect makes activity theory difficult to apply in
computational fields [YLC11].

Within the community of sensor-based activity recognition, some notions of
activity theory have been successfully employed in computer systems. However,
they have been designated with different terms leading to ambiguity in the utilized
scientific discourse. Depending on the application and the available sensor data,
different specifications have appeared at different levels of activity granularity. For
instance, Saguna et al. differentiate between atomic activity and complex activity
in their work [SZC13]]. Chen and Nugent [CNQ9]| create an ontology based on three
categories: Sub-activity, activity and goals. Hong et al. also decompose activities
in sub-activities and sub-sub-activities [HNM™09], while Hu and Yang [HYOS]]
suggest a rich goal taxonomy to represent activities at different levels of complex-
ity. Finally, several works, like the one of Singla et al. [SCSEQ9], selected a well-
defined set of activities of daily living (ADLSs) used by health professional to assess
the functional status of a subject. ADLs are the necessary self-care activities car-
ried out by human beings in their daily routines. They can be basic (transfers,
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locomotion, dressing, personal hygiene, and feeding) [Kat83]] or instrumental such
as shopping and housekeeping [Gra08].

As mentioned earlier, we notice a common bold distinction between the lowest
level of activities and the higher-level ones, despite these variations. The first typi-
cally coincide with physical gestures which require on-body sensors to capture the
subject’s movements such “walking” and “running”. Higher levels generally refer
to complex activities that usually require environmental sensing facilities to detect
the interaction of the user with their surroundings [MVC™10] such as “housekeep-
ing” or “preparing a meal”. The activity categories in between remain ill-defined.

Sequential, interleaved and concurrent activities

Real life daily routines indicate that human beings tend to undertake multiple ac-
tivities at a time rather than in a sequential manner (see Figure[3.2|(¢)). These may
be executed in parallel or even overlap.

A segment of activities can have different types of temporal structures. Typi-
cally, human activities are sequential, interleaved or concurrent. As illustrated in
Figure (#i1), two activities A and B are interleaved if the actor starts carrying
out activity A then interrupts it to move to activity B before coming back to A
again.

Example 1. The subject might start “cooking” (activity A), then goes to “answer-
ing the phone” (Activity B) before resuming “cooking” (activity A). In this case,
A and B are interleaved (Figure|3.2| (iii))

Now if we slightly alter this example, we could illustrate the case of concurrent
activities:

Example 2. Assuming that the actor is using a wireless phone, they can resume
“cooking” while still “talking on the phone”. In this case, A and B are concur-

rent (Figure[3.2] (i4)).

Thus, a subject can be actively or passively engaged in more than one activ-
ity. Being actively engaged in more than one activity corresponds to the case of
concurrent activities, whereas the second case corresponds to interleaved activi-
ties. In this context, we distinguish between foreground and background activities.
Formally, an activity is a background activity at a given time step t if the subject
initiates that activity at an anterior time step d (d < t) and interrupts it at some time
step f (d < f < t) before resuming it at an ulterior time step g (d < f <t < g). A
foreground activity, on the opposite, is an activity the user is actively carrying out.
In Example [2]both “cooking” and “talking on the phone” are foreground activities.
However, in Example 1| “cooking” is first considered as foreground activity until
the user “answers the phone”. At that moment, “cooking” becomes a background
activity, while “talking on the phone” is then interpreted as foreground activity.
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Figure 3.2: Possible temporal structures of two complex activities A and B

3.1.2 Recognizing human activities

In a simplistic scenario with strictly sequential activities, recognizing the activity
of a particular subject can be formally defined as follows.

Definition 1. Without loss of generality, let us assume a given set O = {01, ..., 0}
of n vectors of sensors’ observations collected at n time steps t;, t = 0,...,n re-
spectively. Let us also assume that at each time step t;, the subject is engaged
in exactly one activity a; out of a set A = {a1,...,an} of m predefined activi-
ties’ labels, i.e. the activities to be recognized by the system. Activity recognition
corresponds to finding a bijection f: O — A such as: ¥ o; € O f(0;) = a;.

However, as mentioned above, real life situations usually implicate complex
scenarios including interleaved and concurrent activities. Thus, the previous defi-
nition has to be relaxed depending on the application, the sensor data collected and
the set A of activities to be recognized.

Determining the activity a; corresponding to each observation o; refers to an
event-based recognition. In a more general window-based recognition approach,
all the sensors’ observations within a pre-defined time window w; are collected as
input vector o,,,. The size of the time window can either be determined by a (a)
maximum duration, (b) maximum number of events or (c¢) both.

Definition 2. Under these settings we denote by A, the set of activities carried out
by the subject during w;. Let Oy={0yy,, ..., 0w, } be the set of observation vectors
collected during the time windows w;, © = 0, ..., n respectively. The objective of
machine activity recognition is to find a mapping m: O,, — A such as:

Vow, € Ow, m(oy,;) = Aw,

Thus, given the sensor observations, the activity recognition system returns the
subset of the activities being carried out by the subject. In time windows where
the user is not engaged in any predefined activity (such as wandering in the house
without any purpose), it returns the empty set. Manifestly, event-based recogni-
tion is a special case of the window-based recognition approach, where the time
windows w; are reduced to one single event.
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Figure 3.3: Evaluation Metrics: each predicted activity that is absent in the reference set
is counted as a false positive. Each activity missing in the prediction set but present in the
reference set is counted as false negative. Correctly predicted activities are true positives.

3.1.3 Evaluation of machine recognition of human activity

Typically, machine activity recognition is evaluated against a given ground truth
based on well-known metrics from related fields such as information retrieval and
pattern recognition. Among the existing works, the most popular metrics are ac-
curacy ( [CHN™12|], [SCSEQ09], [HYO0S8]) and the triple precision, recall and
Fy measure ([KCDI10], [WPPT07], [GCTLIO]).

Accuracy is usually defined as the the portion of correctly recognized activities
among the entire sequence.

Precision, recall and Fy measure are calculated in terms of true positives,
false positives and false negatives. These are explained below and illustrated in
Figure[3.3

Let Hyp,,, be the set of activities m (o, ) predicted during the time window w;.
By definition, the corresponding ground truth is A, ; the set of activities carried
out by the subject during the same time window. An activity a is counted as:

" true positive, if f a € {Aw, N Hypuw, }

B falsepositive, if f a € {=Aw, N Hypy, }

" falsenegative,if f a € {Ay, N " Hypuw, }

Let T'P;, F'P; and F'N; respectively denote the sum of the true positives, false
positives and false negatives within the time window w;. Thus, the precision,

recall and F| measure over a given sequence of time windows wy, ..., wy, can be
obtained according to these formulae:

2 ic I

Precision =
Qi TP+ 370, FRy)

3.1
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2 iz Ih

Recall = m o
Qi TP+ >0, F'N)

3.2)

Precision * Recall
F =2 3.3
fmeasure * Precision + Recall (3-3)

The introduced expressions calculate global values, i.e. micro-averages, of a
given activity sequence regardless of the activity specific recognition performance
(equation (3.4)). Consequently, the weight of an activity is higher if it occurs
more frequently within the given sequence. Alternatively, calculating the macro-
averages corresponds to averaging the precision, recall and Fy — measure of
each activity (equation (3.5)).

The precision P, and recall R, of a specific activity a are obtained by replac-
ing the total number of true positives (3| T'F;), false positives (3", FP;) and
false negatives (3| FN;) in equations (3.1), (3.2), by the total number of
those time windows where a appears as true positive (I'FP,), false positives (F'F,)
and false negatives (F'N,) respectively (equation (3.5)).

P
macro — average Precision = Za‘iﬁa 3.4
TP,
micro — average Precision = ZaeA = 3.5

dacaTPo+ ) ca PP,

Figure explains this evaluation method through some examples. There,
a simple routine is depicted, where a subject starts “cooking” then “answers the
phone” during “cooking”. At time window wyg they start “cleaning up”, while the
“cooking” activities continues in the background. At time window w3 they re-
sume “cooking” and finish it. Finally they start “eating” at time window wi4. Let
us consider the predicted sequence of that routine also displayed in the same Fig-
ure. Comparing the predictions to the ground truth, we first observe an example
of a time window, wy with two true positives: “cooking” and “answer the phone”.
Thus, in the evaluation process two true positives are added to the sum of true
positives. Further, we see an example of a time window, w1, with one true posi-
tive (“cleaning up”) and one false negative (“cooking”). This results in increasing
both the sum of true positives and that of false negatives by one. Finally, the time
window w13 shows an example of a time window with both a false negative (“cook-
ing”) and false positive (“eating”). Following this explanation the total number of
true positives in this mini example is 19. The total number of false positives is 1
(occurring in w13) and the total number of false negatives is 5 (occurring in time
windows wg to wy3). Thus, the resulting precision, recall and F1-measure for this
mini-example are calculated as follows:

19 19
Precision = ——— =0.95 Recall = ——— =0.79
recision 19+1) eca (194 5)
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Figure 3.4: Evaluation method for predicting foreground, background and concurrent ac-
tivities. At each time window, we compare the predicted with the actual activities. We
increase the number of true positives each time an activity is present in the ground truth

EEINNT3

and the predicted output, such as activities “cooking”, “answer the phone” at time win-
dow w4 and and “cleaning up” at time window wjg. If an activity is predicted, but is
not in the ground truth, the number of false positives is incremented by one, such as in
time window w;3. Finally, for each activity that is actually carried out but not predicted,
we increment the number of false negatives by one, such as activity “cooking” in time
windows w1 and wi3.

2%0.95%0.79

0.95 109 080

Based on the given definitions and examples, the first intuition would be to
approach activity recognition from a pure machine learning perspective. Activity
recognition could then be seen as a sequential classification problem where the ac-
tivity at a given time step ¢ depends on that of previous and/or future time steps.
The goal would be to optimize the number of time steps with correctly predicted
activities. In real life routines, however, human activities often have strong depen-
dencies and a a rich underlying structure. For example, we can not put the dishes in
the dishwasher without opening the dishwasher first. To solve such problems with
a significant background knowledge and entity relations, a paradigm that addresses
statistical and relation features is required.
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3.2 From graphical models to statistical relation models

Many, if not most, real world applications need to address two major challenges
simultaneously: complex relational structure and uncertainty. Responding to these
two pressing needs have been one of the recently emerging trends of both inductive
logic programming (ILP) and statistical machine leaning communities [GT07a].

Purely statistical models usually abstract from the rich logical structure under-
lying data in complex systems. Generally, we are interested in representing and
manipulating (even partially) structured data involving objects, events and their re-
lationships. For instance, in a smart environment setting, we might want to detect
not only the current action of a particular subject from sensor data but whether
they are engaged in a high level situation of a “cleaning the table after eating their
breakfast in the kitchen”. However, dealing with real data, such as sensor readings,
also requires addressing the uncertainty arising from noise, incomplete and am-
biguous data. This uncertain aspect usually needs to be supported at each level of
representation including the types of the involved objects, their identities and their
quantitative and qualitative relationships.

As a step towards incorporating these complementary paradigms, both the
ILP community and statistical machine learning community started developing
novel methods. These are referred to as statistical relation learning (SRL) sys-
tems [[GTO07a]. Among their motives is the intuitive and compact representation of
uncertain models including the underlying relational structure. They also aim at
supporting efficient inference and learning algorithms for these models.

Among the proposed formalisms, the majority rely on the combination of graph-
ical models, probabilistic grammars and logical formulae [GT07a]. These combi-
nations are especially motivated by the rich expressiveness of logic and the ability
of graphical models to capture uncertain knowledge and independence structure
among entities.

3.2.1 Probabilistic graphical models in a nutshell

The true state of the world can rarely be determined with certainty by our ob-
servations. These are not only partial and incomplete but often noisy and erro-
neous. Consequently, real world applications require models which consider dif-
ferent possibilities as well as complex, non-deterministic entity relationships. This
inescapably implies dealing with uncertainty and reasoning about what is probable,
not just about what is possible [KE09].

Probabilistic graphical models leverage the principles of graph theory and prob-
ability theory to facilitate the construction of models which are effective in practice.
Separating knowledge and reasoning, these declarative formalisms offer an appeal-
ing approach for a broad range of problems. They allow to represent and reason
with the underlying probability distribution where the probabilistic parameters are
usually learnt from cumulative data. The acquired parameters are fitted automati-
cally to a given model supplied by human experts. The expert model exploits the
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independence properties within a specific domain to achieve a compact distribution
and alleviate the inference task.

There are different types of probabilistic graphical models. These can be classi-
fied into directed and undirected graphs. In this section, we give a brief description
of each category and provide a summary of two fundamental aspects: representa-
tion and inference. Thereby, we use the two common classes Bayesian networks
and Markov networks as examples.

Representation

The goal of probabilistic graphical models is to represent the relationships between
different entities in order to provide an answer to any question about the modelled
domain. The model should efficiently encode the probability distribution P over
the set of random variables symbolizing the domain entities. Explicitly specify-
ing the joint distribution P is computationally very expensive and often intractable
even in very simple scenarios. To overcome this barrier, the distribution is often
factored into modular components by exploiting the independence properties en-
coded in the domain. In Probability theory, two sets of random variables X and Y
are independent in a distribution P, if and only if

PX =2z,Y=y)=PX=2)P(Y =y)

for all values x € Val(X) and y € Val(Y). Rewritten with condition prob-
abilities, this corresponds to P(X = z|Y = y) = P(X = x) for all values
z € Val(X) and y € Val(Y). In other words, X and Y are independent if
our guessing about the value of X does not change in the presence of any extra
knowledge about the value of Y.

Conversely, X and Y are conditionally independent given a third set of ran-
dom variables Z in a distribution P if and only if

PX=x,Y=ylZ=2)=PX=2z2|Z=2)PY =y|lZ==2)

or equivalently, P(X|Y,Z) = P(X|Z) for all values x € Val(X), y € Val(Y)
and z € Val(Z). In this case, X and Y are dependant as long as there is no
evidence about Z. Once Z is observed, they become independent and any knowl-
edge about X does not affect our guessing about Y any more and vice versa. To
illustrate these notions, let us consider the following simple example.

Example 3. We consider a world with four binary random variables Daytime ,
HealthState, Activity, and BedSensor. Daytime represents the part of the
day and can either be “day” or “night”. HealthState reflects the health state of
a given person which can either be “sick” or “fit”. Activity encodes the activity
of a given person and can take the value “sleeping” or “awake”. Thereby we
assume that the subject is usually “sleeping” during the “night” and “awake”
during the “day”. We also assume that the subject tends to be “sleeping” when
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“sick”. BedSensor detects the presence of the subject on the bed and usually
takes the value “on” if the subject is “sleeping” and “off” if they are “awake”.

We consider a smart environment where the subject’s activity and their health
state can not be observed directly. Knowing that the current Daytime equals
“ night” would favour our guessing that the subject is currently “sleeping” and
consequently that BedSensor is “on”(since they are most probably lying down
on their bed) and vice versa. In this case, Daytime and BedSensor are depen-
dent. However, observing the subject’s activity makes them independent: Once we
know for certain that the subject is “sleeping”, any further information about the
Daytime can be ignored while inferring whether the user is lying on the bed. To
summarize, we say that Daytime and BedSensor are conditionally independent
given Activity.

Conversely, DayTime and HealthState are independent as long as the ac-
tivity of the user is not known. Yet, they become dependent once we observe
Activity. Indeed, knowing that the subject is “sleeping”, the probability of them
being “healthy” decreases when that of (DayTime =“day”) increases. This is
called the “explaining away effect”.

Independence among the parameters of a given distribution P is a key concept
for a compact representation. Instead of involving the entire set of parameters to
calculate the conditional probability of a certain variable X, those variables that
are (conditionally) independent on X can be ignored given the adequate evidence.
This allows the factorization of the joint distribution.

Directed graph models: Bayesian network representation A Bayesian net-
work is a data structure based on a directed acyclic graph G and capable of repre-
senting any full joint distribution. The nodes of the graph G represent the random
variables of the domain and the edges represent the direct dependency between
them. By exploiting conditional independence properties, it can usually provide a
very concise representation of the distribution. Given the parents, the children and
the parent’s of the children of a given node Xj, the rest of the network can be ig-
nored while computing the probability distribution of X;. This set of nodes renders
X, independent of the rest of the network and is referred to as the Markov blan-
ket of X;. A Bayesian network associates a conditional probability distribution
P(X;|Parents(X;)) with each node X;. This is illustrated in Figure 3.5/ where a
simple Bayesian network of the scenario described in Example [3]is represented.

Undirected graph models: Markov network representation Unlike directed
graphical models, undirected graphical models are useful when the direction of
the variables influence is hardly discernible. Due to this abstraction, they usually
offer a simpler alternative to the representation of the independence structure as
well as to the inference task [KF09|]. Markov networks are the second common
class of probabilistic models. Like in Bayesian networks, each node of the graph
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P(Daytime=day)
0.6

P(HealthState=fit)
0.75

HealthState

P(Activity=awake|
DayTime | HealthState Daytime,
HealthState)
day fit 0.95
day sick 0.80
night fit 0.15
Activity | P(Bed-Sensor=on| night | sick 0.05
y Activity)
awake 03 Bed-Sensor
sleeping 0.9

Figure 3.5: Baysian network representing the scenario introduced in Example |3 The
graph and the associated conditional probability tables (CPT) represent one of the possible
probability distributions described in Example |§|

corresponds to a variable. An unmediated interaction between two nodes is repre-
sented with an edge linking them. Due to the absence of directed influence between
the variables, a Markov network requires a symmetric parametrization instead of
the conditional probability distributions. These parameters capture the affinity be-
tween a set of variables D in form of a potential function ¢(D) : V(D) — RT. A
higher value ¢(D) indicates more compatibility between the variables in D. The
potential function ¢(D) is a factor that can be seen as the contribution of the sub-
set D to the overall joint distribution. Continuing Example [3] the corresponding
Markov network can be represented as depicted in Figure [3.6]

Compared to the Bayesian network structure, understanding the dependencies
in Markov networks is simpler. The dependency between two nodes is broken if
every path between them is blocked by observing intervening nodes. Hence, a vari-
able Xj; is independent of the rest of the network given its immediate neighbours.
As we can see in Figure [3.6] the network encodes the same set of independence
assumption as in the previous Bayesian network (Figure[3.3)). The extra edge link-
ing the nodes DayT'ime and HealthState ensures that these remain dependent if
Activity is observed as explained in the previous section.

On another hand, the definition of the factors in Markov network allows to
decide between creating a discriminative or a generative model. In the first the
factor potentials are defined by some conditioned-on data where a clear distinc-
tion between observable(input) X and hidden(output) Y data is mandatory. Given
the observed data, the parameter of discriminative graphical model define a con-
ditional probability distribution P(Y|X') over possible values of the hidden vari-



26 CHAPTER 3. PRELIMINARIES

HealthState

DayTime | HeathState | Activity | ¢,

day fit sleeping | 10

day fit awake 100

@ day sick sleeping | 80

Activity | Bed-Sensor 0, day sick awake 20
sleeping | on 150 night fit sleeping | 90
sleeping | off 5 night fit awake 10

awake off 150 night sick sleeping | 150
awake on 5 night sick awake 5

Figure 3.6: Markov network representing the scenario introduced in Example |3 The
network encodes the same set of independence assumptions as in the Bayesian network in
Figure @ but not exactly the same probability distribution.

ables. Generative models, on the opposite, represent the joint probability distri-
bution P(X,Y’). This means that it requires P(X ), the probability distribution of
the observable data. This makes them more general than the discriminative ones
since they can address arbitrary prediction problems (such as erroneous input data).
Nonetheless, conditional approaches have more freedom to fit the data because they
do not have to estimate the same parameter O that represents both P(X; O) and
P(Y|X; O) at the cost of ignoring P(X) [GT07al.

Parametrization and Log-linear models: the joint distribution P(X) over a set
of variables X encoded in a probabilistic graphical model G is determined by its
structure and parameters. P(X) is a Gibbs distribution parametrized by the set
of k factors & = {¢1(D1), ..., dr(Dx)} as follows:

1
For X ={X1...Xp}, P(X)=~ [1¢i(D;) (3.6)
J
where

e Z is a normalisation constant given by Z = 3 . [, ¢;(D;).
e Dj is the subset of variables which participate in factor ¢;.

e Each subset D; coincides with a clique if G is undirected.

For Bayesian networks, the factors simply correspond to the conditional prob-
ability distribution. Recall that a clique of an undirected graph G,, is a complete
sub-graph of GG,,. This is equivalent to a sub-graph where every pair of variables is
connected by an edge.
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In many graphical models, we can observe a context-specific structure. Such a
structure presents distinguishable patterns for specific values of the model’s vari-
ables. In order to make these patterns more apparent, an alternative parametrization
of the factors converts them into log-space. More precisely, the factors are rewritten
in ¢(D) = exp(—e(D)) by introducing a function € such as €(D) = —log ¢(D).
The resulting probability distribution is, thus, guaranteed to be positive. For in-
stance, by revisiting Example 3] we notice that ¢(Activity, BedSensor) aspire to
a high probability in instantiations where the values of Activity and BedSensor
agree (by respectively acquiring the values “sleeping” and “on” and vice versa)
and a low probability otherwise. This affinity pattern can be captured by the em-
ploying a log-linear framework introducing a function f(D) : D +— R called a
feature. Principally, f(Activity, BedSensor) can be seen as an indicator func-
tion for the event “Activity and BedSensor agree”and would take the value 1 if the
event holds, and 0 if it does not. Compared to the full factor representation, this al-
lows more compactness through sparing the explicit specification of 2 extra values
out of 22 originally. Based on this, the log-linear model can be generally defined
as follows [[KFO09].

Definition 3. A distribution P is a log-linear model of a Markov network over a
graph G if it is associated with:

o a set of features F' = {f1(D1), ..., f(Dy)}. where each D; is a complete
sub-graph in G.

® a set of weights w1, ...wy, such that
1
P(X1,.., Xpn) = — exp [_Zwifi(Di):| (3.7)

Inference

Inference in probabilistic graphical models is a mechanism to answer particular
queries. We distinguish three common types of queries. The first computes the
conditional probability of a subset of variables given some evidence and the second
finds the most probable assignment to all non-evidence subset of variables (Most
probably explanation (MPE)). The third is the so called maximum a posteriori
(MAP) query. Its task is to determine the most likely assignment X'* to a selected
subset of non-evidence variables X that forms the query. To do so, the following
equation has to be solved. MAP queries combines, in a way, elements from the
first two query types (summation as an element of conditional probability query
and maximizations as a component of MPE query) [GT07a].

. _ _ _1 (D,
X* = arg;naxP(X =X),P(X) = 1;[¢J(DJ) (3.8)

where
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e Z is a normalisation constant given by Z = 3 . v []; #;(D;).

e Dj is the domain of the factor ¢; (i.e. the subset of variables which partici-
pate in factor ¢;).

Since Z is a constant and the logarithmic function is monotone, maximizing
the expression in Equation [3.8|is equivalent to maximizing the following sum.

X arg;rmx%jlog(qb(Dﬁ)

Theoretically, solving these inference tasks is possible by simply generating the
joint distribution then deriving the required conditional probability or finding out
the most likely variable assignment. This naive approach is called “Enumeration-
Ask” algorithm. More efficient derivatives such as “Variable Elimination” have
been proposed to reduce the number of required computational operations through
caching intermediate results [RN10]. For example, referring to the Markov net-
work in Figure [3.6] answering the query “what is the most probable activity of
the user during the day knowing that they are fit and in a good health” would im-
ply comparing the the probability of the subject sleeping under this evidence as
well as the probability that they are awake under the same evidence. The activity
with the higher probability would be the answer to the MAP query. In this simple
example we have the following.

argmax Z log(¢(Dj)) = argmax [log(¢1) + log(qﬁg)]
ze{awake,sleeping} J ze{awake,sleeping}

= argmax [log(¢(Activity = z, HealthState = fit, DayTime = day))+
ze{awake,sleeping}

log(¢(Activity = z, BedSensor = of f)]

From the factors table in Figure 3.6 we have:

If Activity = sleeping, Zlog(¢(Dj)) = (log(10) + log(5)) = 3.9
J

If Activity = awake, Zlog(qb(Dj)) = (log(100) + log(150)) = 9.6
J

Hence, given this evidence, we obtain the most probable assignment

X* = {day, fit, awake,on}

The activity awake yields the maximum a posteriori estimation of the user’s
activity. On the other hand, if the query is concerned with conditional probability
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values then Equation [3.6 can be applied as follows. Here, Z refers to the partition
function obtained by Z = 3_, . ¢ [[; ¢;(D;) and c is a normalization constant.

P(Activity = sleeping|HealthState = fit, DayTime = day, BedSensor = of f)
= axP(Activity = sleeping, HealthState = fit, DayTime = day, BedSensor = of f)

:a*%(lo*S):%*a*\SO

P(Activity = awake|HealthState = fit, DayTime = day, BedSensor = of f)
1
= Z*a*P(Activity = awake, HealthState = fit, DayTime = day, BedSensor = of f)

:a%(100*150) :%*a*15*103

The complexity of exact inference highly depends on the structure of the net-
work and its width. However, in the general case, it remains N P — hard [GTO7all.
This motivates formulating the inference task as an optimization problem where
sampling-based inference techniques are usually employed.

Inference as Optimization Within the optimization framework, inference prin-
cipally attempts to approximate the target function Pg with an easier distribution
Q. This approximation usually encodes similar independence structure but allows
simpler query answering than Pg. The main challenge is to find the best approx-
imation QQ* out of a predefined class of “easy” distributions Q. Based on a sim-
ilarity function, computing marginals of the distribution can be formulated as an
optimization problem minimizing the value of a distance function between Py and
Q*, such as the relative entropy, subject to some constraint space [KF09|]. Solving
MAP inference can also be effectively approached under the optimization frame-
work by applying integer linear programming (ILP) [RYOSl]. The problem is
converted to maximizing a linear objective function over a finite number of integer
variables, subject to a set of linear constraints over these variables [Sch98|]. The
linear objective function is obtained by introducing a vector p of binary variables
allowing to represent every possible assignment X" to the graph’s set of variables
X and maximize the a-posteriori probability over them.
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Vx,; € Val(Xk),V$j € Val(Xl),V(Xk,Kl) e FE:

max1mlze [ZZH x;) pi(x;) Z Z Oij (s, x5) g (s, ;)

X x4 (Xk,X7) i T

subject to :

pi(zi) € {0,1} and pij(2s, ;) € {0,1}, (3.9

Z pi(z;) =1 and Z Hiy (zi,2) = 1, (3.10)

pay = ) pig (@i wg) and o, = D pig(@i, @5) (3.11)
J 2

More precisely, the given constraints can be expressed as follows. For each
possible state z; € Val(X}) of a variable X}, we define u;(x;) such as p;(x;) = 1
if x; belongs to a particular assignment X, and p;(z;) = 0 otherwise (Equa-
tions [3.9)and [3.10). To encode the dependencies within the graph G, we need fur-
ther variables p;;(x;, x;) for each instantiation z; € Val(Xy) and z; € Val(X;)
where X, and X; are linked with an edge the graph G. In particular, 11,5 (z;, z;) =
1if z; = 1 and z; = 1. Otherwise, p;j(x;, ;) = 0 (Equations and . In
the ILP community, very powerful and fast solvers have been implemented such as
GurobiE] and CLPEXEI to calculate a (possibly) exact solution.

Typically, these methods are unlikely to scale and are not efficient for big and
complex models. Except for particular classes of graphical models, they can not
operate in polynomial time and are rather seen as fast alternative for small and
middle-sized problems.

To deal with the worst-case combinatorial explosion of big and complex mod-
els, sampling-based methods are commonly used. These methods are also called
particle-based approximate inference. A set of particles is a set of generated in-
stantiations designed to present and estimate a good approximation to the joint
distribution [KFQ9]. The existing sampling methods vary in the way they gen-
erate samples from the posterior distribution. The Markov Chain Monte Carlo
(MCMC) class of sampling algorithms offers widely used techniques which apply
equally well to direct and undirected graphs. The main idea is to generate a se-
quence of samples such as they progressively get closer and closer to the desired
posterior distribution. The sampling process is simulated based on a Markov chain
with a predefined stationary distribution, where the nodes correspond to the the set
of possible instantiations of the distribution’s variables. A stationary distribution
presupposes that each possible instantiation is aperiodically reachable from any
other instantiation. A new sample is obtained by randomly changing the preceding
one. Gibbs sampling is a simple and effective representative of MCMC which

"http://www.gurobi.com/
Zhttp://www-03.ibm.com/software/products/de/de/ibmilogcpleoptistud/
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returns consistent estimates for posterior probabilities. It works by sampling each
variable in turn given its Markov blanket in the network. This defines a specific
transition probability between the states of the Markov chain. After a suitable
burn-in period, the process settles into a dynamic equilibrium and reaches the de-
sired stationary distribution. The posterior probability values are proportional to
the fraction of time spent in each state [RN10].

Also belonging to the MCMC family [KF09|], MaxWalkSAT [SKC96] is a
local search algorithm for MAP inference in probabilistic graphical models. It is an
optimization version of the local-search satisfiability solver WalkSAT [SK96]. The
latter attempts to find an assignment satisfying a given set of propositional clauses
in conjunctive normal form (CNF). To do so, the algorithm begins by randomly
generating an assignment to the formula’s variables. As long as the formula is
not satisfied, it iteratively selects one of the unsatisfied clauses randomly. With
a probability p, it flips the value assigned to one of its literals and with 1 — p it
flips a literal that maximizes the number of satisfied clauses. In the MaxWalkSAT
variant, the formula’s clauses are weighted. Hence, the goal is not only to find an
assignment that satisfies the formula but the one that maximizes the total weight of
the satisfied clauses.

3.2.2 Logic-based statistical relational models

Whereas statistical relational systems can elegantly be introduced from the induc-
tive logic perspective as extending logical formulae with probabilistic information,
the bottom up view starting from the probabilistic graphical models is imperative
to understanding them.

A particularly large number of these formalisms use variants of first order logic
to compactly represent repetitive structures in graphical models. The key idea is
to make abstraction of specific instances and allow to share information among
groups of them. Hence, they model the meta-information sufficient to construct the
probabilistic graphical model and obtain the corresponding probability distribution.
This construction, called grounding, consists in substituting the variables of the
higher level specification with concrete instances from the domain of discourse.
The resulting instantiated graphical models are referred to as ground models.

This principle of template model has several benefits.

From a knowledge engineering perspective, the abstraction from specific in-
stantiations allows similar elements to share the same parameters and properties.
This trait is even more relevant for applications with rich background knowledge
since this knowledge can easily be represented as a set of general regularities.
Thanks to such relational and logical abstractions, knowledge acquired about one
instance can generalize to other similar entities including unseen ones. For in-
stance, let us consider a smart house equipped with RFID tags attached to different
objects in order to recognize the inhabitant’s activities. As an example, all the
washable dishes in the kitchen can be grouped as similar items since they usu-
ally are involved in the activity “putting the dishes into the dishwasher”. Thus,
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describing this activity could be lifted to that abstract group of entities instead of
specifying every possible washable item in the kitchen. Additionally, this insures
that new elements of this group are automatically related to the same activity.

From a technical point of view, template models allow to avoid the full in-
stantiation of graphical models during inference which improves the runtime and
the accuracy [Rie08]]. Decoupling the representation semantics from the underly-
ing inference algorithms offers an attractive declarative aspect. Thus, application
developers can improve domain-specific models independently of the reasoning al-
gorithms. Conversely, machine learning researchers can focus on foundations and
reasoning algorithms. Further details about first order probabilistic languages can
be found in the exhaustive survey of Salvo Braz et al. [dSBAROS]].

A multitude of logic-based languages have been proposed by the statistical
relational community. While the majority builds upon directed graphical models
such as Bayesian networks [[GT07a], undirected models have drawn increasing in-
terest recently. These are especially convenient for models where the acyclicity re-
quirement can not be easily met. Much of success is the language of Markov logic
networks (MLN) [RD06] which combines first-order logic with Markov networks.
First-order logic formulae easily and flexibly encode structural and relational in-
formation underlying both observed and hidden variables. The model’s formulae
can be seen as soft constraints on the set of possible instantiations of the graph’s
variables. These assignments are usually referred to as possible worlds. However,
unlike in traditional logic, a possible world does not have to satisfy every logical
formula of the model. Instead of becoming impossible, it simply becomes less
and less probable by violating more and more formulae. The strength of these soft
constraints is determined by an associated weight. Besides the soft constraints,
MLN also supports hard constraints. Hard constraints are logic formulae that must
always hold. These are distinguished by infinite weights. The probability distri-
bution over the possible worlds is calculated as log-linear model over the resulting
weighted ground formulae. An in-depth explanation of MLN and their processing
steps is provided in Part II of this thesis.

Since MLN combine first-order logic with probabilistic graphical models, it
can be seen as a generalization of many other SRL approaches based on special
cases of first-order logic [[GT07a]. For instance, to convert a relational Markov
network [TAKO2] in a MLN, it suffices to introduce a formulae with its corre-
sponding weight for each possible state of each clique template in the relational
Markov network [DRO4]].

Another research stream has opted for directed graphical models such as Bayesian
networks to approach statistical relation learning. An important class of mod-
els which includes relational Bayesian networks [Jae97/|] and Bayesian logic pro-
grams [GTO7b] is referred to as Knowledge Based Model Construction(KBMC) [Bac93]].
The key idea is to use probabilistic logical knowledge bases to generate a specific
propositional probabilistic model. This is specified by a set of horn clauses c; along
with the corresponding conditional probability distribution encoding P (head(c;)|body(c;)).
Thus, the nodes of the generated Bayesian network represent the ground predi-
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cates. The parents of a node n appearing in the heads of a set S of Horn clauses
are those predicates that appear in the bodies of S. Whereas causal models, such
as Bayesian networks, often allow a more intuitive representation of probabilistic
influence thanks to conditional probabilities, they encounter important modelling
issues. For instance, the set of parents having a direct influence on a given vari-
able may vary as the number of domain elements may change among the pos-
sible instantiations. To address the problem, some works (e.g. [Jae97]) propose
combination functions such as noisy-or to map several separately modelled con-
ditional distributions to a single one. For a detailed overview of the existing SRL
approaches, we refer the reader to the work of Getoor and Taskar [GT07a]).

The emergence of new statistical relational representation formalisms have
also raised new challenges for the underlying inference algorithms. Reasoning
with probabilistic and deterministic dependencies includes a constraint satisfac-
tion problem (CSP). Consequently, applying approximate inference via sampling
requires the samples to be a solution to the constraint satisfaction problem encoded
in model. Under strong dependencies of a variable given its Markov blanket, state
transition becomes very unlikely. Thus, the convergence of the sampling mecha-
nism becomes extremely slow when the weights get larger and the required ergod-
icity breaks down in the limit of deterministic dependencies [PD06]. Combining
MCMC with satisfiability testing is a possible way to approach this challenge for
Markov logic networks. In the MC-SAT algorithm, Poon and Domingos [PDO6]
employ slice sampling instead of Gibbs sampling to adapt the uniform Sample-
SAT (i.e. WalkSAT plus Simulated annealing) uniform sampler to highly non-
uniform distributions over possible worlds. Another interesting aspect about in-
ference of template based statistical relational systems is exploiting the relational
structure and resulting regularities. The main idea is to lift the inference problem
to the first-order model in order to avoid explicit state enumeration and eliminate
groups of ground atoms in a single step. This idea is called lifted inference and
was first applied by Poole on the variable elimination algorithm [PooO3l]. Fur-
ther efforts to propose other lifted variants of inference algorithms have followed.
Among those, we mention lifted MaxWalkSAT which was introduced by Singla
and Domingos [SDO08] in the context of MLN.
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Problem Statement

So far we have introduced the fundamentals of sensor-based recognition of human
activities. Based on these we can now precisely formulate our research problem.

As explained previously, sensor-based activity recognition is a key aspect to
several emerging applications. However, this problem is very challenging due to
numerous reasons. Principally, the complex and relational nature of human activ-
ities and their ambiguity defy the majority of traditional pattern recognition ap-
proaches. Multitasking is generally an inherent characteristic in real world daily
routines as shown by Hao Hu et al. [HHPZ"08]. Indeed, human activities spread
over a wide range of granularity levels and are often overlapping, alternating, and
sometimes abandoned. On the other hand, they are associated with rich prior and
common-sense knowledge, which is susceptible to support the recognition task.
The goal of this work is to propose, design, implement and evaluate activity recog-
nition frameworks that comply with the requirements identified in the introduc-
tory part. Motivated by the shortcomings of the two main recognition paradigms
applied in the literature (i.e data-driven and knowledge-drive), this work focuses
on the combination of both of them in order to address this problem statement.
Concretely, we opt for two logic-based statistical relational approaches which we
describe in two different parts.

Part I covers a Markov logic-based approach [RDO6]| to address sensor-based
activity recognition. The overall aim is to assess the viability of this formalism
for recognizing complex human activities under realistic settings. Since these set-
tings inevitably include concurrent and interleaved activities, we are interested in
inferring the current performed activity(ies) as well as any other activities cur-
rently in progress from real-world sensor data. Especially, we appraise the ability
of Markov logic to represent and reason with certain and uncertain multi-relational
data, including sophisticated temporal relationships. We propose three models in

35
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order to analyze and review the effect of these major features on the recognition
performance and establish the evaluation process.

Part II focuses on representing and recognizing human activities at different
levels of granularity. Given the importance of rich background knowledge and
contextual data for human activity, this part proposes a framework to assimilate
atomic operations and context data to represent, reason and recognize increasingly
complex activities in a unified ontology based framework. Leveraging log-linear
description logic [NNS11]], the proposed solution not only provides a formal and
comprehensible conceptualization of the domain of discourse but also offers pow-
erful reasoning services including both certain and uncertain knowledge. We use
real-life multi-modal sensor data to evaluate the performance of our system under
realistic settings such as user-independent evaluation and real-time recognition.

4.1 Research questions

We propose to respond to the research challenges delineated above by answering
the following questions.

I.1 How can Markov logic be applied to represent and recognize complex
human activities and which advantages does it have compared to state
of the art approaches?

This question can be considered as a motivating introduction to Part I of this thesis.
Its answer requires an in-depth comparison of Markov logic with other approaches
applied to sensor-based activity recognition. This comparison justifies our choice
for this formalism. The advantages of a Markov logic-based framework are driven
and illustrated by concrete modelling examples.

1.2 How can temporal information be modelled and reasoned about in a
Markov logic-based framework in order to recognize interleaved and
concurrent activities?

Concretising the previous question, this one corresponds to a major contribution of
our work. Whereas simple temporal context might be sufficient to predict sequen-
tial activities, more sophisticated models might be necessary to infer interleaved
and concurrent activities. To answer this question, we need a formalism capable of
representing and reasoning with long-range temporal relationships. This is a key
aspect and a major challenge in this task.

1.3 What is the impact of incorporating prior knowledge such as common-
sense information on the recognition quality?

This question implicitly involves the viability of the proposed approach to flexibly
integrate prior knowledge into the suggested framework. This feature is second
major contribution of this work, since prior knowledge is inherent in the domain
of human activities as explained in the previous chapters. The question is thus
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concerned with formulating examples of relevant prior knowledge such as common
sense information and determining its effect on the recognition accuracy.

L4 How does this approach perform when applied to real-life sensor data?
This question complements the previous ones. The models designed to answer
Question 1.2 have to be evaluated with real-life datasets in order to assess their
viability for realistic applications. The answer for this question is, thus, delivered
through the results of this evaluation process.

I.5 What are the limitations of this approach in the context of complex ac-
tivity recognition?

Naturally, answering Questions 1.1-1.4 raises interrogations about the limitations

of the proposed Markov logic-based framework. The encountered problems and

weaknesses provide the answer to this research question.

II.1 How can we build a log-linear description logic based ontology to rep-
resent and reason with the background knowledge and relational struc-
ture underlying human activities?

Guided by the previous research questions, which we address in Part I of this thesis,
the first research question of Part II builds upon the lessons learnt from applying the
proposed Markov-logic based approach. Essentially, we are interested in expand-
ing and reasoning with the background knowledge using a formal and commonly
shared conceptualization of the human activities and their hierarchical structure,
as described in the activity theory. Based on these requirements, we propose to
investigate the use of log-linear DL to represent and reason about human activities
at different levels of granularity.

IL.2 How can we use such a log-linear DL based ontology to not only rep-
resent but also to recognize multi-level human activities from heteroge-
neous sensing modalities in one unified framework?

Given an ontology about multi-level human activities, the immediate research ques-
tion that arises is how to use that same framework to recognize the activities be-
ing carried out by a person from real-life sensor data. The answer to this question
should also cover the challenge of the heterogeneity of the required sensing modal-
ity.

II.3 What are the benefits and limitations of using a highly expressive and
probabilistic DL to represent and recognize human activities at different
levels of granularity? And how viable is this approach under real-time,
real-life and user-independent settings?

Investigating the use of the log-linear DL formalism for activity and recognition
automatically involves evaluating its advantages and limitations. In particular, this
evaluation should cover testing the approach under real-life and real-time settings
in order to show its viability for real-life applications. Also, to assess its potential
for re-usability, the validation process should also include user-independent exper-
iments.
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4.2 Dissertation outline

The previous chapters exhaustively presented the prerequisites for this work and
outlined the state of the art of the problem statement. The remaining of this docu-
ment consists of two parts.

Part I presents a Markov logic-based framework for recognizing complex ac-
tivities. The first chapter addresses the first research Question I.1. It distinguishes
between three categories of closely related work and compares them to the pro-
posed approach. These categories can be designated as: (1) probabilistic graphical
models extended with techniques for modelling relational data, (2) data-driven ap-
proaches combined with probabilistic modelling and reasoning techniques and (3)
hybrid approaches.

The second chapter establishes the core of Part I by answering both Question
1.2 and 1.3. It first explains the theoretical background for Markov logic networks
and illustrates its different aspects with examples from the activity recognition do-
main. Besides the overall idea of this formalism, its syntax, semantics and pro-
cessing steps, we also cover the main aspects explaining the inference and the
parameter estimation processes. Next, it reveals the three concrete Markov logic
models proposed to address the problem statement. The models are disclosed fol-
lowing three aspects: knowledge representation, the concrete set of formulae and
the employed application data.

The evaluation method as well as the obtained results of applying the intro-
duced models are thoroughly depicted in the third chapter. This completely covers
Question 1.4.

Finally, the fourth chapter summarizes Part I. It compiles the concrete answers
to the research questions defined in the problem statement chapter and concludes
the Part with a brief report of our related current and future work. The discussion
section of this chapter concisely answers Question I.5.

Part II presents a log-linear description logic-based framework for represent-
ing and recognizing multi-level activities. In the first chapter we elaborate on the
related works, where we provide an overview of ontology-based frameworks for
sensor-based activity recognition. The overview is organized in two categories
based on whether the proposed approaches support uncertainty or not.

The second chapter addresses the principle research questions, i.e. Question
I1.1 and IL.2. It first provides exemplified fundamentals of both description logics
and log-linear description logic. Then it presents the main contributions by ex-
plaining the proposed ontology-based framework to model and recognize human
activities at different levels of granularity.

To address the last research Question, the approach is evaluated in the third
chapter. There, we describe different experiments and report the obtained results.
The experiments include user-independent evaluation under real-life settings. We
complete the answer of that question by discussing the advantages and the limita-
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tions of the proposed method. We also outline our current and future work towards
overcoming some of the reported shortcomings.

4.3 Citations to previously published work

This dissertation systematizes and extends the content of the previous publications.
A major part of the work described in Part I was realised under the supervision and
guidance of Dr. Mathias Niepert and Prof. Heiner Stuckenschmidt. The published
content can be found in the following selected publications:

Rim Helaoui, Mathias Niepert, and Heiner Stuckenschmidt. Recognizing inter-
leaved and concurrent activities using qualitative and quantitative temporal rela-
tionships. Pervasive and Mobile Computing, 7(6):660670, 201 1.

Rim Helaoui, Mathias Niepert, and Heiner Stuckenschmidt. Recognizing in-
terleaved and concurrent activities: A statistical-relational approach. In PerCom,
pages 19, 2011.

Part II was accomplished in cooperation with Prof. Daniele Riboni under the
guidance of Prof. Heiner Stuckenschmidt and Prof. Claudio Bettini from the uni-
versity of Milan. The published content can be accessed in these selected papers:

Rim Helaoui, Daniele Riboni, Mathias Niepert, Claudio Bettini, and Heiner
Stuckenschmidt. Towards activity recognition using probabilistic description log-
ics. Activity Context Representation: Techniques and Languages, 12. Jg., S. 05.,
2012

Rim Helaoui, Daniele Riboni, and Heiner Stuckenschmidt. A probabilistic on-
tological framework for the recognition of multilevel human activities. In Ubi-
Comp, pages 345354, 2013.

Throughout of this document, we will roughly designate the contents originat-
ing from our publications. The omission of this indication signifies the novelty of
the material.
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Part 1

Markov Logic and Recognizing
Complex Activities

“Reality is not a function of the event as event, but of the relationship
of that event to past, and future, events.”

—Robert Penn Warren
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Related Work and Contributions

As stated in the introductory part of this dissertation, a majority of the approaches
to activity recognition in sensor environments fall short to represent, reason or learn
with four decisive aspects of the domain: (i) uncertainty, (ii) complex relational
structure, (iii) rich temporal context (including long-range temporal relationships)
and (iv) abundant common-sense knowledge.

Approaches combining complementary aspects from the data-driven and knowledge-
driven paradigms have shown to be a promising direction towards developing re-
alistic activity recognition system. We roughly distinguish three categories of hy-
brid approaches. The first category essentially encompasses probabilistic graph-
ical models extended with techniques for modelling relational data. The second
encloses knowledge-base approaches combined with probabilistic modelling and
reasoning techniques such as probabilistic ontologies for instance. Finally, the
third category consists in other hybrid approaches mostly based on activity signa-
ture. Following this classification, in this chapter we discuss these approaches and
accurately compare them to ours.

1.1 Relational extensions of probabilistic graphical
models

Increasing efforts to apply standard probabilistic graphical models with more struc-
tured state spaces can be distinguished in the literature. Several extensions have
been applied to the activity recognition problem. These extensions range from sim-
ple variants of standard probabilistic sequence models, i.e. HMM and linear-chain
CRF to more general logic-based extensions of probabilistic graphical models such
Bayesian networks and Markov networks. In the following, we explain and discuss
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the main ones.

1.1.1 Relaxations of standard probabilistic sequence models

A particularly widely-used approach to sensor-based activity recognition are hid-
den Markov models (HMM) and their discriminative counterpart linear-chain con-
ditional random fields as introduced earlier in this document. Being very well
suited for several sequence recognition tasks such as speech recognition, these
methods have shown serious limitations when applied to activity recognition under
realistic settings ([GKO6], [KHC10], [SZC13])). These limitations are mainly due
to their inflexible structure. We identify two principal extensions of these standard
methods to address the challenges of activity recognition.

Interleaved hidden Markov models (IHMM)

To relax this inflexibility and adapt HMM to the challenge of recognizing in-
terleaved activities, Modayil et al. [MBKOS|| have proposed interleaved hidden
Markov models (IHMM) where each state consists of a current activity and a
record of the last object observed while performing each activity. By keeping track
of the last object used before the activity changes, the probabilistic model gains an
additional indicator that helps identify interrupted activities once they are resumed
by the user. This added flexibility comes at the cost of the size of the state space
which increases significantly. This not only requires adequate optimization tech-
niques to maintain the efficiency of HMM but also necessitates larger training sets
to train all possible resulting state paths.

Skip-chain conditional random fields (SCCRF)

The discriminative analogue of HMM, i.e. linear-chain conditional random fields
(CRF), have also shown comparable limitations when it comes to representing
long-range dependencies. A very similar extension idea to the IHMM has been
also employed to address the recognition of interleaved and concurrent activities
in [HYOS8|]. Linear-chain CRFs are undirected graphical models with the same
topology as HMM. Thus, due to their strict independence assumptions, they can not
represent dependencies between distant terms in the input. Skip-chain conditional
random fields (SCCRF) extend linear-chain CRFs with additional long-distance
edges between sets of observations. The resulting model is a general CRF with two
clique templates one for the linear chain portion and one for the skip edges. In their
work, Hu and Yang [HYOS]| create skip edges between sensor observations which
most probably correspond to the same activity. On the other hand, the authors
create a separate correlation graph between activities to obtain the probabilities of
concurrent ones. Based on the combination of the output of the SCCRF model and
that of the correlation graph, they infer the user’s activities. Unfortunately, SCCRF
potential functions pose a computationally expensive inference problem especially
when a large numbers of skip edges is involved [MS06|]. Furthermore, to prevent
the recognition accuracy from deteriorating, every partial model of the interleaved
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activities has to be observed during the training phase.

Whereas these two extensions of standard probabilistic sequence models en-
hance the recognition of interleaved activities, their inflexibility makes them inad-
equate to represent and reason with complex relational structure such as reasoning
with time intervals and modelling activity duration for example. Moreover, they
lack an intuitive modelling interface to flexibly complement and control the auto-
matically estimated parameters through the integration of common-sense knowl-
edge within a unified framework. A very simple example of such knowledge is the
exclusion of specific activity transitions such as the transition from “taking shower”
to “leaving home” without going through the activity “dressing” for instance.

1.1.2 Logic-based extensions of probabilistic graphical models

As opposed to their propositional counterparts, logic-based probabilistic graphical
models are abstractions in form of a first-order representation of the symbols used
to generate the original graphical model. Hence, an abstract variable consists of
a predicate name and a set of parameters that can be instantiated with constant
ground values. The main idea is to allow for a compacter representation of repeti-
tive structures in the graphical model and allow specific instances to share the same
parameters. These approaches belong to logic-based statistical relational models
described in the preliminaries chapter of this thesis. In the context of the activ-
ity recognition task, four major logic-based statistical relational approaches can be
identified as discussed below.

Logical hidden Markov models (LOHMM)

Introduced by Kersting et. al [KRRO6], LOHMM are a generalization of stan-
dard HMM allowing a compact representation of probability distributions over
sequences of logical atoms. This distribution is defined by the transition prob-
abilities between abstract states together with the probabilities of their instantia-
tions. Leveraging logic-based reasoning techniques and the logical structure of
the model, LOHMM offer an elegant formalism that often outperforms standard
HMM [KRRO6].

LOHMM where applied to activity recognition by Natarajan et al. [NBTT08]].
However, despite the proposed efficient particle filter-based inference technique,
the authors employed synthetic data to validate their approach. The selected data
consists in a simplistic kitchen scenario totally isolated from realistic settings and
challenges such as interleaved and concurrent activities. The logical extension of
HMM offers one step towards more intuitive and compact modelling techniques,
nonetheless selecting a structure of a LOHMM is a significant problem [KR12].
Furthermore, it remains highly constrained with its strong independence assump-
tions. Flexibly modelling highly inter-related entities and complex temporal rela-
tionships remains a challenge for this formalism.



46 CHAPTER 1. RELATED WORK AND CONTRIBUTIONS

Markov logic networks
Recall from the introductory part of this document that Markov logic networks
extend first-order logic to probabilistic setting by attaching weights to formulae.
These weighted formulae collectively construct a template for the generation of a
Markov random field. Thus, compared to other statistical relational approaches,
Markov logic networks is probably the most expressive formalisms [DRO4f]. The
adoption of first-order logic not only offers a superior expressiveness but also cre-
ates a particularly intuitive modelling interface. This interface together with the
highly flexible structure of Markov networks, establish a declarative unified frame-
work best suited for addressing the four activity recognition challenges introduced
above, i.e. uncertainty, complex relational structure, rich temporal context (includ-
ing long-range temporal relationships) and abundant common-sense knowledge.
Since conditional random fields have shown to outperform generative graphical
models in several labelling tasks, we opt for Markov logic network that casts a
conditional random field to capture the conditional probabilities between the ob-
servable and hidden predicates. Thus, our proposed model does not require the
representation of the probability distribution of the input data as imposed by its
generative, directed counterparts such as Bayesian logic networks [MMvO™12].
Markov logic networks have originally been explored in the context of activ-
ity recognition by Biswas et, al. [BTEO7]] and Tran et, al. [ID08|]. Nonetheless,
their algorithms are designed with visual activity recognition in mind and take
video data as main input. Unlike our approach, their works address a very lim-
ited temporal context and only very atomic sequential activities such as “shaking
hands” [TDOS8]. To the best of our knowledge, our work ([HNS10], [HellO],
[HNS11all, [HNS11b]]) was the first attempt to employ Markov logic in order to
address sophisticated temporal relationships and recognize complex human activ-
ities in sensor environments. Not surprisingly, several works appeared afterwards
to leverage this powerful formalism in the context of activity recognition [SK12]|.
Among these efforts, we notice a particular focus on extending the idea of tem-
poral reasoning based on the well-established theory of event calculus [SPVAT11]],
[FASP12], [SPAV12].

Conditional random fields for logical sequence (TildeCRF)

Gutmann et al. [GKO6|] considered the special case of MLN where the ground
Markov model is represented as a CRF. In that case, the potential factors of the
graph define a probability distribution over possible outputs conditioned on ob-
served inputs. The authors proposed a framework named TildeCRF and applied
it on a very elementary job scheduling usecase with four cities and 8 activities to
demonstrate the validity of their system. Besides being subsumed by MLN, the
application of their system is not really related to our problem statement.

Bayesian logic networks
Also following the same principle as lifting Markov networks to the relational
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level, Bayesian logic networks (BLN) [JvGB11] are a meta-model formulated in
weighted first-order logic formulae which constructs a probability distribution from
a Bayesian network and global logical constraints. Compared to MLN, BLN can
only create a generative model where the probability distribution of the observable
variables can not be omitted unlike the discriminative version of MLN. Whereas
BLN have been applied for robotic action recognition through representing multi-
object interactions in a scene [MMvO™ 12, there are no relevant works applying
this formalism to address sensor-based activity recognition.

1.2 Probabilistic extensions of knowledge-driven
approaches

Rather than lifting statistical techniques to the relational level, some researchers
have proposed hybrid systems by extending knowledge-driven methods. Their
ultimate motivation is to preserve the multiple advantages of knowledge-driven
paradigms while solving the problem of supporting uncertainty.

In this context, sensor based activity recognition was approached by Filippaki
et al. [EAT11] through the combination of obligatory and optional constraints. In
their rule-based system, they attempt to recognize a simple sequence of scenar-
ios with hierarchically organized activities such as “watch TV” and “phone call”.
The integration of confidence values with the optional entities enables the system
to cope with uncertain and incomplete data. To infer the activities with the high-
est confidence without violating the obligatory rules, they employ weighted Partial
MaxSAT problem (WP-Max-SAT). Despite the similarity of the overall concept
of combining certain and uncertain rules within one framework, our MLN based
method offers an incomparably more expressive framework with sound probabilis-
tic semantics.

Another line of research opted for extending ontology based representation of
the user’s activities, their environment and their context with some support of prob-
abilistic reasoning or statistical methods [RBO9], [HRS13[], [CNO14], [YSD14].
For the sake of concision, we omit a detailed description of these approaches and
refer the reader to Part II of this work which is dedicated to this trend.

1.3 Other hybrid approaches

Essentially based on mining techniques, two major works can be assigned to this
third category of hybrid approaches. In the first [GWT09], the authors investigate
the use of emerging patterns (EP) with sliding windows to address the recognition
of interleaved and concurrent activities. An emerging pattern is a feature vector of
an activity that describes significant changes between that activity and other activ-
ities. In other words, emerging patterns represent the item sets which maximize
the growth rate from a data set to another. The advantage of this techniques is that
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emerging patterns can be extracted from sequential activities and then be used for
concurrent and interleaved scenarios. However, this approach is prone to limita-
tions since a sliding time window might exclude some of the distinguishing fea-
tures. This imposes the use of a segmentation algorithm to improve the results. In
addition, the approach does not support the integration of background knowledge
and complex inter-entities relations.

The second work [SZC13|] focuses on the relevance of context data to represent
and reason about concurrent and interleaved activities. Inferring the activities first
goes through mapping the context data to a high-level situation such as “office
room” before using it to recognize the user’s activity (e.g “eating lunch”). Similarly
to emerging patterns, the authors define the activities in terms of a weighted list
of components (atomic activities). In this kind of activity signature, the weights
indicate the respective relevance levels of the components to the occurrence of the
defined activities. Compared to our work, the proposed framework shares the same
weaknesses with the EP-based work of Gu et al. [GWT 09| discussed above.



Modelling and Recognizing Complex
Activities with Markov Logic Networks

This chapter builds the core of Part I. Based on the preliminaries introduced pre-
viously, we first explain the theoretical background of Markov logic and illustrate
it with examples from the activity recognition domain. Besides the overall idea of
this formalism, its syntax, semantics and processing steps, we also cover the main
aspects explaining the inference and the parameter estimation processes. Next, we
present our Markov logic models addressing the research questions of this part.
Whereas the first two models: The Basic Model and the Start-End Model origi-
nate from anterior publications ([HNS11a], [HNS11b]), The States-Based Model
is new. For a systematic and consistent presentation of the models, we have signif-
icantly altered the organization provided in the mentioned publications.

The introduction and explanation of the models go through two basic sections.
The first is rather abstract and covers the knowledge representation adopted. The
second details the concrete set of formulae, the application data and the experimen-
tal settings.

2.1 Markov logic networks

Markov logic is perhaps one of the most flexible and general languages in the realm
of statistical relational knowledge representation. It is a widely used formalism due
to its declarative nature and ease of experimentation as well as the availability of
efficient learning and reasoning algorithms. Incorporating both first-order logic
and probabilistic graphical models, Markov logic allows objects and their complex
relationships to be expressed in an intuitive and flexible manner. It thus offers a
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common language unifying several well-known statistical relational approaches.
These include Markov random fields, logistic regression, hidden Markov models
and conditional random fields [DRO4].

In the following, we briefly provide the necessary background in first order
logic before we describe the fundamentals of the Markov logic theory and its ap-
plication to human activity recognition.

2.1.1 Background

Propositional logic: one simple computer tractable formalism to describe facts
about a given domain and reason about them is propositional logic. Syntactically,
it consists of boolean atomic sentences called propositions that can construct com-
plex sentences, also called formulae, using logical connectives. The commonly
used logical connectives of propositional logic are negation (— A is true if and only
if A is false), conjunction (A A B is true if and only if both A and B are true), dis-
junction (A V B, which is true if and only if A or B is true) and implication (A =
B, which is true if and only if B is true or A is false). Together, the propositional
formulae build up a propositional knowledge base. Every propositional knowledge
base can be converted to a conjunctive normal form (CNF). A conjunctive normal
form (CNF) is a conjunction of clauses. A clause is a disjunction of literals and a
literal refers to an atom or its negation. Finally, a Horn clause is a disjunction of
literals of which at most one is not negated.

Semantically, the meaning of a sentence is evaluated by its truth value (true or
false) with respect to an interpretation I. An interpretation I is an assignment of
truth values (true or false) to all atoms in a knowledge base. [ satisfies a given
formulae F' if and only if F' is evaluated to be “true” under I. In that case, I is
called a model of F and is denoted by I = F. A knowledge base K B entails
a formula F' (denoted by KB = F) if F is true in all interpretations where the
knowledge base K B is true. Determining whether a given formula F' if is entailed
by a knowledge base K B is called inference. Deciding whether there is at least
one interpretation that satisfies a given formulae is referred to as the satisfiability
(SAT) problem which is a prototypical NP-complete problem.

Example 4. Let’s consider the following sentences based on Example[3|introduced
in the previous Part. Let

B D be: “DayTime = day” ® H be: “HealthState = fit’
B A pe: “Activity = awake” B B pe: “BedSensor = off’

Reducing our scenario to deterministic (i.e. certain) dependencies between the
different variables in Figures[3.5 and[3.6] we could describe it using the following
simple propositional knowledge base.

" DANH— A m-DV-H - -A
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" A B " -A—-B

Consequently, one model of this knowledge base would be {D = true, H =
false, A = false and B = false}. The model describes the world where “the
subject is not fit, thus is sleeping during the daytime and consequently, the bed
sensor is turned on”.

First-order logic: Whereas propositional logic is expressive enough for such
simple scenarios, it is incapable of describing complexer information about ob-
jects and their relations. Bringing the previous example closer to real life would
suggest, for example, to include a new variable determining the subject concerned
by this model. This is especially important for cases where two or more subjects
are living in the same house, for example. Given this new information, our knowl-
edge base is required to determine new formulae such as “ if a resident is fit then
that same resident is awake during daytime”. Furthermore, it would be also helpful
to precise that “the activity of that person at a given day is related to their health
state during that same day”.

Based on the foundations of Propositional logic, first-order logic (FOL) bor-
rows representational ideas from natural language to allow atoms to have internal
structures. Especially, it generalizes it by abstracting away from entity-specific
propositions. Thus, symbols are allowed to have arguments instead of strictly pre-
defined truth values.

The basic elements of the first order logic syntax are constants, predicates,
functions and variables. Constants refer to objects in the domain of interest. Vari-
ables range over the objects and can be seen as place-holder, as opposed to con-
stants. In our previous example, a resident is an object that could be represented
by the variable r. The names of the residents, such as “Bob” and “Mary”, would
correspond to the constants. Variables and constants might be typed. In that case,
they only range over a specific type of objects such as “residents” in our example.

Functions map tuples of objects to objects. They usually serve to avoid giving
a distinct name to each object. For instance, with BedO f(Bob) we can designate
the bed of Bob without naming that concrete bed. Finally, predicates represent a
property of or a relation between objects that can be true or false. As an exam-
ple, the predicate HasActivity(Bob, Sleeping) would return “frue” if “Bob” is
having the activity “sleeping” and “false” otherwise.

Similarly to propositional logic, an interpretation determines exactly which
constants refer to which objects, relations and functions. Any expression refer-
ring to an object is called a ferm. Putting terms together creates atomic sentences
that state facts. Concretely, atoms are obtained by applying predicate symbols to
a tuple of terms. For instance, the atom BedSensorState(On, BedO f(Bob))
states that the bed sensor of Bob’s bed is “on”. As in propositional logic, complex
sentences, also called formulae, are constructed by applying logical connectives
to atomic sentences. The following example formula states that “if sleeping is the
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activity of Bob, then his “bed-sensor” is “on”:
HasActivity(Bob, Sleeping) — BedSensorState(On, BedO f(Bob))

Generalizing such a statement to all the residents of the house is fortunately
possible in FOL. This is enabled by two standard quantifiers: universal (V) and
existential (3). Vz F' is true in a given model, if and only if the logical expression
F is true for all possible objects x in the domain of F'. Jx F' is true if and only if
F' is true for at least one object in the domain of F'. The formulae of a knowledge
base are implicitly conjoint and can be seen as one big formula.

A ground term is a term without variables and a ground formula is a formula
containing only ground terms as arguments. The function symbols and constant
symbols of a set of clauses .S represent the Herband universe of S. The assign-
ment of truth values to each possible ground predicate creates a possible world,
also called a Herband interpretation.

To determine whether a formula is entailed by a given first-order logic knowl-
edge base, it is convenient to convert it to the conjunctive normal form (CNF)
and check whether KB A —F' is unsatisfiable. Inference in first-order logic can
be reduced to propositional inference by inferring non-quantified sentences from
quantified ones. However, while inference is decidable for propositional logic, it
is only semidecidable in first order logic. Thus, there exist effective methods that
always provide a correct and finite proof if a given formula is entailed by some
knowledge base. Nonetheless, given the set Sr of all the formulae not entailed
by a given knowledge base K B, there is no algorithm, that for every F' € Sp is
capable of deciding that F' is not entailed by K 5.

There are several extensions and restrictions applicable to first-order logic al-
lowing to alleviate the inference problem and make it more efficient. For instance,
limiting the domain of discourse to a finite set of entities (and hence imposing a
function-free first-order logic) allows any first-order logic knowledge base to be
converted to a propositional knowledge base with a complete decision procedure.
Furthermore, the use of typed entities and predicates reduces the number of ground
atoms.

Example 5. Generalizing Example[|to several residents, we could state following
formulae:

® F1:Va HasHealthState(x, Fit) A DayTime(Day)
— HasActivity(z, Awake))

8 F2:Vx DayTime(Night) AN HasHealthState(x, Sick)
— HasActivity(z, Sleeping))

® F3:Vx HasActivity(z, Sleeping)
— BedSensorState(On, BedO f(x))
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® P4 :Vx HasActivity(z, Awake)
— BedSensorState(Of f, BedOf(x))

" F'5 : Vo HasHealthState(x, Fit) <> ~HasHealthState(x, Sick)
® F6 : DayTime(Day) <> ~DayTime(Night)
" F'7: BedSensorState(Of f,z) <» mBedSensorState(On, x)

While Formulae F[I|to F|model the dependencies between the subject’s health
state, their activity and their “bed-sensor”, the last three formulae (F 5| to F [?])
express simple common-sense knowledge such as “a person can not be sick and fit
at once’.

Within a domain of discourse with two constants “Bob” and “Mary”, the
propositionalization of this first-order logic knowledge base would simply require
grounding the sentences using all possible ground-term substitutions: {x/Bob}
and {x/Mary}. Assuming that each person has only one bed, we replace the
ground terms “BedOf(Bob)” and “BedOf(Mary)” by a new proposition to avoid in-
finitely nested terms such as “BedOf{(BedOf(Bob))”. Grounding Formulae F|I|and
F ] for instance, would result in the following sentences:

" HasHealthState(Bob, Fit) A DayTime(Day)
— HasActivity(Bob, Awake))

" HasHealthState(Mary, Fit) A DayTime(Day)
— HasActivity(Mary, Awake))

" HasActivity(Bob, Sleeping) — BedSensorState(On, BedO f Bob)
" HasActivity(Mary, Sleeping) — BedSensorState(On, BedO f M ary)

2.1.2 Markov logic: formalism and processing steps

The simple first-order knowledge base depicted in Example [5]is too inflexible to
conciliate with real world scenarios. Manifestly, there are many situations where
a subject might be “sleeping” during the “day” even if they are “fit”’. The main
idea of Markov logic [DRO4] is to soften first-order formulae and tolerate their
violation. Accordingly, a world that does not satisfy a given “soft” formula would
be “less probable” instead of being “impossible”.

Usually, the knowledge base formulae convey a set of constraints with different
degrees of strength. For instance, following the previous example, the state of the
“bed sensor” is usually a stronger indicator for the activity of the subject then their
health state and the daytime. This means that the situations (i.e. “worlds”) where
the bed sensor indicates the correct activity are more frequent than those where the
subject’s “health state” and the “daytime” do. Hence, formulae F [3|and F i have
a higher number of more probable models then formulae F[I|and F2l The former
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formulae are, thus, more probable and express stronger constraints. Whereas these
soft constraints can be violated, it is clearly not the case for the last three formulae
F[5|to F[7] Apparently, these have to hold in every possible world.

The Markov logic formalism associates first-order logic formulae with a weight
indicating the constraint’s strength. The weight of a formula F' scales the difference
in log-probability between a world w,, that satisfies n groundings of F' and a world
wyy, that results in m true groundings of F, all else being equal [SK12[]. Thus, the
higher weight, the greater the difference in the probability between the worlds w,,
and wy,, other things being equal. Reciprocally, the more evidence there is that a
formula is valid the higher its probability and hence its weight.

The probability of a ground formula is the sum of the probabilities of the worlds
where that formula is true. Despite the monotonically increasing relationship be-
tween the weights and the probability of ground formulae, there is no generic com-
plementarity of a weight as compared to the weight for its negation [Spil2].

Collectively, the weighted formulae define a template model for the construc-
tion of a probabilistic graphical model and are called a Markov logic network. The
weights parametrize the probability distribution over possible worlds. The prob-
ability of a possible world is proportional to the exponentiated sum of weights of
ground formulas that are satisfied in that world.

Example 6. One possible extension of the first-order knowledge base of Example
to a Markov logic network would be as follows.

" (wy =1.5) Va HasHealthState(x, Fit) A DayTime(Day)
— HasActivity(x, Awake))

B (wy =2.5)  VaDayTime(Night) N HasHealthState(x, Sick)
— HasActivity(z, Sleeping))

B (w3 =4.0) Va HasActivity(z, Sleeping)
— BedSensorState(On, BedO f(z))

" (wy =4.0) Va HasActivity(x, Awake)
— BedSensorState(Of f, BedOf(x))

B (w5 = 00) Va HasHealthState(z, F'it)
< ~HasHealthState(z, Sick)

B (wg = 00) DayTime(Day)
< = DayTime(Night)

B (w; = 00) BedSensorState(Of f, x)
< —BedSensorState(On, x)

Syntax

A signature is a triple S = (O, H,C) with O a finite set of typed observable
predicate symbols, H a finite set of typed hidden predicate symbols, and C' a finite
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set of typed constants. Formally, a Markov logic network (MLN) is a pair of two
sets (F", F*). F* is a set of n pairs {(Fj,w;)},i = 1,...,n with each F; being a
function-free first-order formula built using predicates from O U H and each w; €
R a real-valued weight associated with formula F;. F" is a is a set of { function-
free first-order formulae {F;},i = 1,...,1. The elements of F" are referred to as
hard formulae and those of F* as soft formulae. In the following, we employ the
terms formulae, axioms, rules and constraints interchangeably.

Semantics

Let M = (F", F*) be a Markov logic network with signature S = (O, H, C).
A grounding of a first-order formula F' is generated by substituting each occur-
rence of every variable in F' with constants in C' with the same type. Existentially
quantified formulae are substituted by the disjunctions of their groundings over the
finite set of constants. This definition of the semantics of Markov logic makes sev-
eral assumptions:
(a) different constants refer to different objects (unique names assumption)
(b) the only objects in the domain are those representable using the constants (do-
main closure assumption [RD0G]).
These assumptions ensure that the resulting ground Markov logic network has a
finite number of nodes. A set of ground atoms is a possible world.

Let gg be the set of all possible groundings of formula F' with respect to the
set of constants C. Let W be the set of all possible worlds with respect to S. Then,
the probability of a possible world W € W is given by

7 XD <Z(F¢,wi) 2 Gegg: wkG wi) ifVE € F*: W = GF

0 otherwise

p(W) =

2.1
where Z is the partition function.
The score sy of a possible world W is the sum of the weights of the ground
formulae that are satisfied in W

sw= ) ), w 2.2)

(Fwi) Gegl: WG

As indicated by Equation [2.T]and [2.2] the probability of a possible world W' is
proportional to its exponentiated score.

Usually, hard formulae are assigned very large weights compared to soft ones.
Thus, the score of a world satisfying all hard formulae will be significantly higher
than that of a world violating one of them. From the graphical models perspective,
a Markov logic network generates a ground Markov network with a node for every
ground term. The set of nodes belonging to the same ground formula G are
fully connected as a clique D. For each clique D we define a feature function
f(D) mapping the truth assignment of its ground terms to the truth value of the
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Figure 2.1: Illustration of the processing steps for a simple knowledge engineering prob-
lem with Markov logic. Each step is illustrated by a concrete example at the bottom. After
building the template model based on the expertise knowledge in step (1), a ground Markov
network network is constructed based on the domain’s finite set of instances (step (2)).
Step (3) executes the inference to answer the required query.

corresponding ground formula Gr. The feature function is an indicator whether
the event “G r is true” holds.

Together with the corresponding weights, the feature functions provide real-
valued outputs that depend on the state of the corresponding cliques in the network.
Thus, they define clique potentials of the Gibbs distribution that factorizes over the
generated ground Markov network. Replacing each factor ¢;(D;) of the Gibbs
distribution by the exponentiated weight of the corresponding ground formula e",
the probability distribution defined in Equation [2.T) can be written as a log-linear
model as follows.

p(W) = eXp< o> wif(G ) (2.3)

(szwz) GEQFZ

Setting n;(WW) as the number of true groundings of the formula F; in a world
W, Equation[2.3] can be simplified as follows.

p7) = e Y- (win(in)) 2.4

Based on this syntax and these semantics, the key processing steps for apply-
ing Markov Logic to a given knowledge engineering problem are as depicted in
Figure 2.1]

Step (1): consists in providing the input theory and the domain description
in form of first order formulae adopting the Markov logic syntax. Following the
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simple example provided, the model comprises four formulae: two hard constraints
and two soft constraints with their respective weights. Along with the signature,
the model simply states that both the “daytime” and the “health state” of a subject
influence their “activity”. The weights signify that the influence of “health state”
of the subject on its “activity” is more important than that of the “daytime”. The
model also integrates straightforward but useful background knowledge in form of
hard constraints. This indicates that the “daytime” can not be “Day” and “Night”
at once, and that the subject can not be “Sick” and “Fit” at once neither.

Step (2): here a ground network is constructed based on both the created model
and the corresponding finite set of instances. In the context of the illustrating exam-
ple, there are only two possible interpretations for the subject’s activity: “Awake”
and “Sleeping”. Looking at the generated ground Markov network we can see two
cliques linking the ground atoms appearing in each of the formulae.

step (3): finally, the inference task takes place in this step. It answers the re-
quested query. In the provided example, one possible inference task is to find the
most probable activity of the user during the day given that they are sick. The main
challenge of the inference step is to avoid as much as possible the exponential com-
plexity emerging from taking all possible combinations of predicates and ground
terms.

2.1.3 Inference and parameter estimation

Recall that ordinary queries in probabilistic graphical models are special cases of
Markov logic network inference with zero-arity predicates. On another side, the
logical query of whether a given formula F' is entailed by a knowledge base K B
can be answered by determining whether P(F|KB) = 1. This holds in finite
domains and can be achieved by assigning infinite weights to all the formulae
in the K B. Thus, addressing the inference problem in Markov logic networks
implicates the need to handle both probabilistic and logical inference. Since the
first is #P-complete and the second is NP-Complete, no better results can be ex-
pected [DRO4]. Fortunately, inference in Markov logic network leverages advan-
tages from both domains. Concretely, exploiting both approximate inference meth-
ods and context-specific independencies enhances the efficiency of the inference.
In the context of activity recognition, the main inference task is to determine the
most probable state of a Markov logic network given some observations. There-
fore, we need to compute the set of ground atoms of the hidden predicates that
maximizes the probability of the world given both the ground atoms of observ-
able predicates and all ground formulae. This is an instance of MAP (maximum
a-posteriori) inference in the ground Markov logic network as introduced in the
Preliminaries chapter.

Formally, this can be defined as follows. Given a Markov logic network with signa-
ture S = (O, H,C), let O be the set of all ground atoms of observable predicates
and H be the set of all ground atoms of hidden predicates both with respect to C'.
We make the closed world assumption with respect to the observable predicates.
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Assume that we are given a set O’ C O of ground atoms of observable predicates.
In order to find the most probable state of the Markov logic network we have to

compute
argmax Z Z wj. (2.5)

c
HEH (7 wy) GegR.: O'UR/EG

As denoted by Equation[2.5] the MAP inference problem reduces to finding the
truth assignment that maximizes the sum of weights of satisfied clauses. Thus, a
particularity suitable method for solving exact inference in Markov logic networks
is Integer Linear Programming (ILP) [RieO8]. As introduced in the Preliminaries
Chapter, ILP is concerned with optimizing a linear objective function over a finite
number of integer variables, subject to a set of linear constraints over these vari-
ables [Sch98], [Ril02].

Alternatively, approximate inference approaches have been successfully ap-
plied to Markov logic networks. MaxWalkSAT [SKC96] is probably one of the
most commonly used ones. Belonging to the MCMC family [KFQO9|], MaxWalk-
SAT [SKC96] is an optimization version of the local-search satisfiability solver
WalkSAT [SK96].

Since propositional inference schemes are quite expensive, recent methods
have been introduced to avoid propositionalizing the entire domain. Referred to
as lifted inference algorithms, their key idea is to answer queries and reason about
them at the first-order level without grounding them thoroughly. This is achieved
by treating indistinguishable groups of objects as a unit. A lifted version of the
MaxWalkSat has been proposed and successfully applied to Markov logic net-
works [SG13]]. Another recent extension of the MAP inference algorithms applied
to Markov logic is the cutting plane approach [RieO8]]. It is especially suitable for
ILP since it maintains its exactness. The key idea is to progressively instantiate
small parts of the Markov logic network and solve them. These small parts are
iteratively selected based on the next most violated constraints.

From a knowledge engineering perspective, assigning adequate weights to Markov
logic formulae is a particularly important and delicate task. In terms of probability,
the effect of the weight of a single ground formula can be intuitively understood.
Nonetheless, it might become too difficult to determine as soon as the same ground
atoms appear in more than one formula. In the simplest case of a model with one
single weighted ground formula (F, w,) and according to Formula the ratio
between the probability of a world x1 where Fy is true and a world x> where it is
false is ggi;; = exp (wy). Hence, the weight w, of a formula corresponds to the

log odds between the two words; wy, = 10g(£gz;; ).

However, even in the simplest applications, the same atoms usually appear in
more then one single formula. In such a case, reversing a formula F' would impli-
cate changes in every other formula with common variables. The ratio between the
probability of a world satisfying a formula F' and one which does not is no longer
uniquely dependent on the weight of F'. The one-to-one correspondence between
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the weights and the formulae would not hold. Instead, the formulae weights are
collectively determined by the probabilities of all formulae. Since the interactions
between the model’s formulae are typically hard to predict, their weights should
rather be seen as empirical probabilities. Instead of specifying them manually
based on the logical form of the model, maximum likelihood weights should be
estimated from data [RDO6].

Like the majority of the training algorithms for log-linear models, learning for-
mulae weights for Markov logic networks can be realised with standard learning
methods based on the gradient of the conditional likelihood function. The model
can be trained generatively by maximizing the (pseudo-) log-likelihood of the re-
lational data base or discriminatively trained by maximizing the conditional log-
likelihood (CLL) of the query predicates given the evidence ones [SD03). Since
pseudo-likelihood is consistently outperformed by discriminative training [LDO7],
we provide more information about the latter.

Given a collection of relational databases with the closed world assumption [DRO4],
the model’s weights can be updated using the gradient g scaled by a learning rate
n as indicated in Equation [2.6]

Wi41 = W — NG (2.6)

The derivative of the CLL with respect to weights can be calculated as follows.

0 0
ij log p(y|z;w) = nj(w,y) — ij log Z (2.7
1 0
=n;(z,y) — 7 Z % exp Z nj(z,y Yw; (2.8)
=n;(z,y) ZZeXpZnJ )N (z,y') (2.9)

=nj(z,y) = Y njz,y XD 2y iy (1)
) J

Zy// exp Zj” wj//njl/ (CL’, y”)

(2.10)
=ny(x,y) = > _ (@, y)py o w) (2.11)
= nj(2,y) — Ewn;(z,y)] (2.12)

where we denote by n;(x,y) the number of true groundings of the formula
F} in a world with assignment x for the observed atoms (evidence) and y for the
hidden ones. Thus, the partial derivative with respect to the jth weight w; is the
number of true groundings of the jth formula in the data minus its expectation
according to the current model. The expected number of true groundings of F is
calculated over the given training databases.
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Algorithm 1 Voted perceptron algorithm for Markov logic with T" epochs

wo < 0
epochWeighty = 0
fort < 1... T do
fori=1...N do
ymap < ILP(z,y)

W; & Wi—1 + n[n(yCurrentModel) - n(yMAP)]
end for

epochW eight; = % D i1 N Wi
end for
return 7Y, , ,epochWeight,

Since counting the expectations Ey,[n;(x,y’)] is intractable [DRO4], the voted
perceptron algorithm [SDOS[ has been applied to train markov logic networks
by approximating the expected number of true groundings with the most probable
state of the non-evidence atoms given the evidence one [LDOQ7]. Originally used to
train Hidden Markov Models, voted perceptron was shown to deliver good results
for Markov logic networks by replacing the orginal viterbi algorithm by a Markov
logic MAP inference method [LDO7]]. For instance, the voted perceptron algorithm
depicted below employs ILP as MAP inference method. Obviously, the algorithm
is flexible in terms of the MAP inference method to be applied: ILP can be, for
example, substituted by the MaxWalkSAT algorithm.

Algorithm (1| presents the pseudo-code of the voted perceptron for Markov
logic. The models’ weights are encoded in a vector w which is estimated by it-
erative updates using gradient ascent as explained above. The weights vector is
updated by passing though the N training databases. At each training database 1,
the update rule introduced in Equationis applied. The vector n; (Ycurrent Model)
represents the numbers of true groundings of the current model’s formulae in the
database i and n;(yarap) the vector of the most probable state of world given
the evidence(MAP) using the current weights vector w;. The whole process (i.e.
epoch) is repeated 7' times. As indicated by the last step of the algorithm, the final
weight vector correspond to the average of the weights’ vectors from all iterations
and all databases. This reduces the risk of over-fitting.

To further optimize this learning algorithm, Lowd and Domingos [LDO7] have
proposed to address the problem of ill-conditioning of the data and its effect on the
learning efficiency. Instead of using the same learning rate 7 for all weights, they
assign a different one to each of them. The per weight learning rate 7); is defined
as the ratio between a global learning rate 7 and the number 7n; of true groundings
of the related formula F);. Thus, they reduces the effect of the variance of counts
between formulae on the convergence speed of the gradient ascent algorithm. The
new weight update rule is depicted in Equation[2.13
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w1 =w, + g 2.13)
n;

Besides voted perceptron, other more sophisticated methods have been pro-
posed to learn Markov logic weights. These includes multiplying the gradient g
by the inverse Hessian for a faster convergence (diagonal Newton method) and the
scaled conjugate gradient. The reader is invited to check the work of Lowd and
Domingos [LDO07] and that of Huynh and Mooney [HM11]] for more details.

Given training databases, it is also possible to learn a model’s formulae auto-
matically or improve manually specified ones. This can be achieved with inductive
logic programming (ILP) techniques. Learning Markov logic network structure
goes beyond the scope of this thesis. For further information, we refer to the work
of Kok and Domingos [KDOS]|

In general, Markov logic networks are especially appealing for applications
with complex multi-relational data and significant apriori knowledge. Recogniz-
ing human activities integrates substantial common-sense knowledge which also
includes complex temporal and non-temporal associations between the activities,
the sensors and the user’s context. The flexibility of Markov logic networks in rep-
resenting such complex data with highly generic structure in a rigorous predicate
approach makes particularly attractive.

2.2 Knowledge representation

We argued that an effective activity recognition framework should support easy,
intuitive and flexible knowledge engineering. It should be robust to the differ-
ent environments and settings by providing semantics rather than an appearance
model [SKA™13]]. It should also be expressive enough to model complex temporal
and non-temporal relations and constraints between different entities. This is a cru-
cial criteria to address interleaved and concurrent activities. Finally, an effective
activity recognition framework should handle both certain and uncertain knowl-
edge in a sound probabilistic manner. In the following, we describe our Markov
logic based activity recognition framework which meets these requirements.

As introduced in the first part of this thesis, each human activity triggers par-
ticular sensor events. This sensor data is usually collected as sensor values with
corresponding timestamps. In our framework we are interested in recognizing the
activities which occurred at each of these timestamps. In the rest of this document,
we use a simplified representation of these original timestamps and refer to the
simplified values with “time steps”.

Recall that we distinguish between foreground activities and background ac-
tivities. Given a sensor event s at a time step ¢, a foreground activity at time step
t is the activity that triggered s. At time step ¢, we designate by background ac-
tivity each activity running in the background and is not necessarily involving the
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user’s interaction. As an example, let us assume that a subject, who is living in a
smart-house, starts “preparing tea” at time step ¢. They first “use the electric water
boiler” at t. Then, while the water is boiling, they “answer the phone” at time step
t 4+ 1. At time step ¢ 4+ 2 and ¢ + 3 they resume “preparing tea” by “pouring the
hot water into the teacup. In this scenario, the triggered sensors would capture the
interaction with the “electric water boiler” at ¢, the “phone” at ¢ 4 1, the “teacup”
at ¢ + 2 and the “electric water boiler” at ¢ + 3. Following our terminology, we
identify:

® Time step ¢: one foreground activity, “prepare tea” and no background
activities.

® Time step ¢ + 1: one foreground activity “answer the phone” and one
background activity “prepare tea”.

® Time step ¢ + 2 and ¢ + 3: one foreground activity, “prepare tea” and no
background activities.

To show the viability of our approach to address the defined problem statement,
we propose three models.

The Basic Model and the Start-End Model focus on intra-and inter-activity
temporal relationships as well as the relevance of the integration of common-sense
knowledge on the overall performance. While the Basic Model is designated to
recognize the foreground activity of the subject at each time step, the Start-End
Model, introduces implicit time intervals by detecting the start and ending points of
each activity. This extension allows the recognition of both the foreground activity
and the background activities of the user.

Leveraging the rich object-relational structure and related common-sense knowl-
edge, the States-Based Model sheds some light on the viability of Markov logic
networks to model and reason with uncertain relational data to recognize inter-
leaved and concurrent fine-grained human activities. Unlike the two first models,
the States-Based Model is designed to infer these activities from the user’s low-
level actions associated with their object interaction

We begin by introducing the models predicates. These represent binary vari-
ables defining the set of sensors and activity events as well as temporal features.
An example of such a predicate would be current Activity(activity, timestep).
Given the set of possible activities and time steps, the truth value of each ground-
ing indicates whether a particular activity is being actively carried out at a specific
time steps. The introduced predicates are used to determine a set of rules to infer
the user’s activities from the sensor observations.

2.2.1 Representing temporal events

Tables [2.1] 2.2] and [2.3] describe the core predicates used in each model respec-
tively. The predicates are grouped into observable, i.e. can be observed from the
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Table 2.1: Core Predicate used in the Basic Model.

Hidden Predicates
currentActivity(a,t) Activity a, Indicates whether activity a is being
Timestep t carried out at time step t

Observable Predicates

sensor(s,t) Sensor event a, Indicates whether sensor s is fired

Timestep t at time step t

input sensor data or hidden, i.e. have to be inferred. The first column depicts
the predicate name, the second column determines the parameters accepted by the
predicate and the last column provides a short description of the encoded seman-
tics.

In our approach, we propose to explicitly model event instances with integer
time steps as shown in the predicate tables. This offers a high flexibility in manipu-
lating temporal information. Qualitative temporal relationships-such as “after”” and
“before”- can be detected by comparing time steps, whereas qualitative temporal
information-such the gap between two events- can be treated by simple arithmetic
operations applied to them.

As a step towards richer temporal relationships, the Start-End Model asso-
ciates time steps with the start/end points of an activity by extending the predicate
set with “startActivity(activity, timestep)” and “endActivity(activity, timestep)”.
The activity events are thus treated as intervals, which enables the recognition of
both foreground and background activities as explained in the Recognition Frame-
work Section.

Operating with intervals allows to capture the semantics of every possible tem-
poral relationship between two event instances. These relationships and their alge-
bra have been defined in Allen’s interval algebra [AlI83]] and can be easily modelled
though adding further predicates and generic reasoning rules.

Since the state of the user’s environment, and more specifically their surround-
ing objects, helps restrict the set of possible activities, the States-Based Model
introduces this additional context. Thanks to the logical reasoning supported by
our framework, it is easy to infer that an object remains in the same state until
the user changes that state. We model this additional temporal information by
adding the hidden predicate “currentObjectState(action, timestep)” as explained in
the next sections.

2.2.2 Knowledge base

As noted above, a sequence of human activities usually exhibits significant struc-
ture and inherent common-sense knowledge. For example, our activities generally
follow a typical routine in weekdays, while they might differ during the weekends
and special occasions. Such background covers both certain and uncertain knowl-
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Table 2.2: Core Predicate used in the Start-End Model.

Hidden Predicates

currentActivity(a,t) Activity a, Indicates whether activity a is being carried
Timestep t out at time step t

startActivity(a,t) Activity a, Indicates whether activity a has started at
Timestep t time step t

endActivity(a,t) Activity a, Indicates whether activity a has ended
Timestep t at time step t

Observable Predicates

sensor(s,t) Sensor event a, Indicates whether sensor s is fired

Timestep t at time step t

edge and can help differentiate between activities sharing a large set of similar
sensor data. Certain knowledge could be, for example, that “eating a meal would
not take place before preparing it” or that “going to work does not take place be-
fore dressing up”. As uncertain knowledge we know, for instance, that “a person
would usually take a shower after exercising and not before it” and that “they would
brush their teeth before going to bed”. In our models, we distinguish between three
classes of formulae.

Abduction axioms are soft formulae that capture the dependency between the
sensor events and the activities which triggered them. Since complex activities
usually involve a sequence of sensor events rather than one single observation, an
abduction formulae can, for example, link an activity at time step ¢ to the sequence
of sensor events at time steps (¢t — 1) and (¢).

Temporal axioms are soft and hard formulae that express temporal relationships
between the user’s activities. Especially, the transition probabilities between activ-
ities play a crucial role, as explained in the previous paragraph. These transition
probabilities can be easily learnt using soft rules manipulating successions of end
and start points of activities. Hard temporal formulae in our model incorporate
definite temporal constraints. As illustrated above, this can impose particular ac-
tivity ordering such as stating that “if preparing a meal is occurring at time step ¢
and eating that meal is taking place at time steps d then d > t”.

General constraints are hard formulae about the model’s predicate that assure
its overall logical consistency. For instance, if an activity is being executed at
timestamps ¢ then it must have started at a timestamps d, where d < ¢.
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Table 2.3: Core Predicate used in the States-Based Model.

Hidden Predicates
currentActivity(a,t) Activity a, | Indicates whether activity a
Timestep t | is being carried out at time step t
currentObjectState(c,t) Action ¢ Indicates whether the state of
Timestep t | the object manipulated by
action c is valid at time step t
Observable Predicates
currentAction(c,t) Action c, Indicates whether action ¢
Timestep t | takes place at time step t
actionOpen(c) Action ¢ Indicates whether action ¢
corresponds to opening an object
actionClose(c) Action ¢ Indicates whether action ¢
corresponds to closing an object
hasWashableObject(c) Action ¢ Indicates whether the object involved
by action a is a washable object
hasFreshEntity(c) Action ¢ Indicates whether the object involved
by action c is a fresh entity
hasInDrawerEntity(c) Action ¢ Indicates whether the object involved
by action ¢ belongs to the kitchen’s
drawers
hasObjectDrawer(c) Action ¢ Indicates whether action ¢ manipu-
lates one of the the kitchen’s drawers
haveSameObject(c, a) Action c, Indicates whether action ¢ and
Activity a | activity a manipulate the same object
haveSameActionObject(cy, c2) Action cq, Indicates whether two actions
Action ¢y ¢1 and co manipulate the same object




66 CHAPTER 2. MODELLING AND RECOGNIZING ACTIVITIES

2.2.3 Activity recognition models based on Markov logic networks

Based on the set of predicates and the three formulae categories defined in the
previous section, we present and explain the entire set of rules of our models in
this section. For the sake of clarity, we present the model’s axioms in pure Markov
logic.

Note that the presented models are oriented towards activities from general daily
routines, with a focus on kitchen-related activities. Given the adequate knowledge,
the models can be adapted to other application domains.

The Basic Model: inferring foreground activities

Our first model aims at recognizing the foreground activity of the user at each
time step. Especially, we focus on demonstrating the relevance of common-sense
knowledge in improving the overall recognition accuracy. Recall from the previous
section that we only have to incorporate one hidden predicate (current Activity(a, t))
in this formulation. For the observable data we define one predicate, sensor(s,t),
modelling that sensor s has been triggered at time step ¢. Since the sensors bear
the names of the objects they tag, such a predicate indicates that the user is using
object s at time step t. The Basic Model consists of a set of 7 formulae depicted
in Table[2.4] and illustrated in Figure

The first two formulae are general constraints citing that (1) the user has to
be carrying out at least one activity at each sensor event (2) unlike background
activities, the user cannot be involved in more than one foreground activity at a
time. Thus, these constraints together assure the condition of having exactly one
foreground activity at each sensor observation.

Formulae (3) and (4) are weighted abduction axioms capturing the dependen-
cies between the activities and the corresponding sensors. Whereas the first in-
dicates the dependency level between the foreground activity and the sensor ob-
servation within the same time slice, the second extends this dependency with the
previous sensor observation. As example consider the case where the user is cur-
rently interacting with a “spoon” during a morning routine. At that time point,
many interpretations are possible such as “preparing oatmeal” or “making tea” for
example. However, if the preceding observation indicates that the subject is inter-
acting with “sugar” for instance, the activity “making tea” will be more probable
and hence inferred as the current foreground activity.

Finally, Formulae (5), (6) and (7) incorporate some common-sense knowledge
related to our application domain. These hard temporal axioms constraint the tem-
poral order of an example of three activities sharing a particularly large set of
common sensors in order to alleviate the ambiguity of their interpretation. Such
ambiguity would usually lead to several recognition problems. Nonetheless, this
sample common-sense knowledge helps to avoid most of these problems as shown
by our experiments below. Formula (5) states that the activity of “eating break-
fast” precedes the activity of “clearing the table”. Formula (6) and (7) express that
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Figure 2.2: The figure illustrates soft and hard formulae modelling the abduction and tem-
poral axioms of the Basic Model. Three time slices are depicted: t—1, ¢ and d where d > t.
In each time slice the corresponding predicates are represented by boxes labelled with their
name. Boxes with dotted contour design hidden predicates while plain boxes correspond
to observable predicates. Formulae (3) and (4) represent the model’s abduction axioms
capturing the dependencies between the activities and the corresponding sensors. The hard
temporal formulae define qualitative temporal constraints on three activities: “setting the
table”, “eating break fast” and “clearing the table”.

the activity of “setting the table” precedes both activities of “eating breakfast” and
“clearing the table”.

Given these rules, predicting the foreground activity at a particular time step ¢ is
thus equivalent to computing the MAP state of the ground Markov logic network.

The Start-End Model: inferring foreground and background activities

We refer to our second model as the Start-End Model. The model aims at cap-
turing long-range qualitative and quantitative temporal relationships between the
sensor observations and the activities in order to recognize both foreground and
background activities at each time step. More precisely, the model enables the
recognition of the start and end points of an activity a using two additional pred-
icates startActivity(a,t) and end Activity(a,t) (see Table[2.2)). Thus, the states
of three hidden predicates are inferred jointly, which potentially improves the over-
all recognition. The inference is based on the set of formulae depicted in Table
The formulae are illustrated in Figure [2.3] to reflect the intuitive and declarative
aspect offered by the Markov Logic framework.

Additionally to the general constraints defined in the Basic Model, two further
formulae: 3 and 4 are inserted. These ensure that an activity does not occur after it
ends nor before it starts.
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Table 2.4: Set of formulae for the Basic Model.

General Constraints

1 V Timestep t, Activity a : currentActivity(a,t)
2 VTimestep t, Activity a1, Activity as [a1 # az] :
[current Activity(ay,t) = — current Activity(ag, t)]
Abduction Axioms
3 Y Sensor s, Timestep t, Activity a :
sensor(s,t) = [currentActivity(a,t)]
4 YV Sensor s1, so, Timestep t, Activity a :
[sensor(s1,t) A sensor(sa,t + 1)] = current Activity(a,t + 1)
Hard Temporal Axioms
5 VTimestep ty, to :
[to > t1 + 1] = [current Activity(“Clear The Table” 1)
= —current Activity(“Eat Break fast” , t2)]
6 VTimestep ty, to :
[to > t1 + 1] = [current Activity(“Clear The Table” 1)
= —current Activity(“Set The Table” , ts)]
7 VTimestep ty, to :

[ta > t1 + 1] = [current Activity(“Set The Table” , ts)
= —current Activity(“Eat Break fast” , t1)]
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Formulae 6, 7 and 8 are soft formulae depicting the model’s abduction axioms.
The first one (formula 6) models the dependencies between sensor observations
and activities within the same time slice. The two others formalize that the first
and last pair of objects used during an activity are a good indicator for its start and
end points respectively.

Finally, the Start-End Model expands the temporal common-sense background
knowledge included in the Basic Model to also cover the start and end points of the
activities (formulae 15, 16 and 17). This extension comprises three hard formulae
stating that for the transition from activity “eating break fast” to “clearing the
table” to take place, the first one has to end and the second one has to start. This
information helps reinforce the prediction of the correct transition between these
activities.

Even though the last one among these three formulae would always be true
given formula 2, we included it in the model to the sake of an intuitive comprehen-
sion of the common-sense knowledge incorporated in this model.

The model also encloses more general temporal relationship capturing the tran-
sition probabilities between activities as well as their temporal order. Concretely,
the soft temporal formula 9 captures the likelihood that an activity a; is followed
by a different activity as.

Besides the activities succession model, one further common aspect of daily
routines is that some activities are usually carried out in a structured and almost the
same manner. These activities implicate the same actions from their starting point
to their end point. In a common daily living scenario there are many examples of
such activities like taking a shower for instance. In the dataset under consideration,
we depict such a structure in activities “M aking juice” and “Setting the table”
where the number of events separating their beginning and end time points hardly
varies. We refer to this number as duration. The soft formulae 10 and 11 attribute
a fixed duration to each of these two activities in order to highlight the benefit of
quantitative temporal features on the recognition quality. The duration of these
activities is hence fixed to its most probable value (7 and 15 respectively) and em-
ployed to reinforce the recognition of their start and end points. Even if assigning
a weight to these formulae adds flexibility to this duration model, other more so-
phisticated formulation of the temporal quantitative features might be beneficial to
improve the prediction of less structured activities of the set. This includes replac-
ing fixed values with intervals for example.

The States-Based Model: infroducing entities’ states to recognize fine-grained
activities

The focus of this model is to leverage domain-knowledge structure as well as en-
tities states over time to recognize activities. The model is applied to the problem
of recognizing fine grained activities such as “get cheese” and “put away cheese”
from simpler actions such as “open fridge” and “fetch cheese”. Thus, the state
of objects the user interacts with is a significant indicator for the activity being
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Figure 2.3: Illustration of the soft formulae of the Start-End Model. Predicates are
represented by boxes labelled with their name. Boxes with dotted contour design hidden
predicates while all other boxes correspond to observable predicates. Formula (6) models
the dependency between the activities and the corresponding sensors. Formula (7) formal-
izes that the first pair of activated objects during an activity are a good indicator for its
start time. Analogously, formula (8) models that the last pair of activated objects during an
activity is a good indicator for the activities end time. Finally, formula (9) models the tem-
poral relationship between activities, that is, the likelihood that an activity a; is followed
by a different activity as [HNS11b]

carried out. For instance, knowing that the “fridge” is “open” and that the user is
grasping a fresh item (such as cheese), would highly favour the activity of “get-
ting cheese” rather than “preparing sandwich” as being the current activity of the
user. Inversely, omitting the state of the “fridge” increases the ambiguity of inter-
pretation of the current action, and both activities “getting cheese” and “preparing
sandwich” might become equally probable.

Deriving the state of an entity over an interval of time can be intuitively modelled
in Markov logic. Indeed, an entity remains in the same state from timestep ¢ to the
following timestep ¢ + 1, as long as the action taking place at £ 4+ 1 does not alter
the state of the entity in questions. Such knowledge can be modelled by simple
first order formulae as shown by the three hard temporal axioms 6, 7 and 8 in
Table 2.6] Note that given the domain defined by the employed dataset, we are
mainly interested in whether an object, such as a “drawer”, “fridge” etc. is open at
a given timestep ¢. This explains formula 6 which states that if the user is “open-
ing” an object at timestep ¢, the state of that object corresponds to “open” at the
same timestep. Formulae 7 and 8 extend the reasoning to the following timestep,
i.e, t + 1 as long as the user does not “close” the same object. Thus, the derived
state spreads over a chain of consecutive timesteps until an action occurs to change
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it.

In order to recognize the user’s activities from simpler actions, we propose 5 ab-
duction axioms as specified in Table[2.6] The first formula captures the conditional
dependency between activities and actions belonging to the same time step. Unlike
the previous two models, we relax the restriction of having exactly one activity at
each time step. Manifestly, this renders the model more flexible and more general.
However, the resulting recognition task is more ambiguous. Since the model aims
at recognizing activities from simpler ones, namely actions, the sequence of these
actions plays a crucial role in distinguishing between activities sharing a significant
set of common actions such the activities “get milk” and “put away milk”. Thus,
an activity is composed of a sequence of actions. This knowledge is formalized by
the second abduction axiom in Table 2.6l

The remaining three axioms (3, 4 and 5) are added to reinforce the recognition of
specific activities, where the state of related objects is a strong indicator for them.
More precisely, formula 3 is designed to boost the recognition of the activities of
putting or getting an item from the fridge such as“milk” for instance. These ac-
tivities are described as those where the user interacts with a “fresh” entity, while
the “fridge is open”. Thus, the weight of this formula captures the dependency
between each action and activity which belong to the same time slice ¢ and are
consistent with the above description. Similarly, formula 4 addresses activities
where the subject uses items which belong to one of the kitchen drawers while that
“drawer is open”. Finally, formula 5 handles the explicit case of the activity “put in
dishwasher” which is linked to the occurrence of actions involving washable items
while the “dishwasher is open”. As apparent from these formulae, this model re-
flects a rich relational structure between the actions, activities and the related ob-
jects. These relations and attributes are intuitively represented with different predi-
cates such as hasSameObject(action, activity), hasW ashableObject(action)
and hasFreshEntity(action). Through these predicates, several actions and ac-
tivities can be grouped to share predefined properties. This highlights the viability
of MLN to handle the complexity of this domain of discourse.
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Table 2.5: Set of formulae for the Start-End Model.

General Constraints

VTimestept, 3 Activity a : currentActivity(a,t)
VTimestept, Activity a1, Activity as :

[a1 # ag] = [currentActivity(ai,t) = — current Activity(az, t)]

YV Timestepty, ta, Activitya :
startActivity(aq,t) = —endActivity(az, t)

V' Timestepty, to, Activity a : [t; > to]
= [current Activity(a,t1) = —endActivity(a, t2)]

VTimestepty, ta, Activitya : [t; < to]
= [current Activity(a,t1) = — start Activity(a, t2)]

Abduction Axioms

V Sensor s, Timestep t, Activity a :
sensor(s,t) = [currentActivity(a,t)]

V Sensor s1, sa, Timestep t, Activity a :
[sensor(s1,t) A sensor(sa,t+ 1)]
= [endActivity(a,t + 1) A currentActivity(a,t + 1)]

YV Sensor s1, sa, Timestep t, Activity a :
[sensor(si,t+ 1) A sensor(sz,t)]
= [startActivity(a,t) A current Activity(a, t)]

Soft Temporal Axioms

V Timestep t, Activity ay, as : endActivity(ay,t) A
startActivity(az,t + 1) A currentActivity(as,t + 1)

10

VTimestep t; :

start Activity(“MakeJuice” 1)
= [endActivity(“MakeJuice” , t; + T)

11

VTimestept; :

start Activity(“Set Table” 1)
= [endActivity(“Set Table”, t; + 15)

Hard Temporal Axioms

12

VTimestep tq, ts :

[to >t +1] =

[current Activity(“Clear The T'able” ,t1)
= —current Activity(“Eat Break fast” , t2)]

13

VTimestep ty, to :

[to >t +1] =

[current Activity(“Clear The Table” , t1)
= —current Activity(“Set The Table” , t2)]

14

VTimestep ty, to :

[t22t1+1]:>

[current Activity(“Set The Table” , ta)
= —current Activity(“Eat Break fast”,t1)]

15

VTimestept; :

current Activity(“FEat Break fast”  t1) A
currentActivity(“Clear The T'able” 1 + 1)
= endActivity(“Fat Break fast”,t1)]

16

VTimestep t; :

current Activity(“FEat Break fast”  t1) A
currentActivity(“Clear The T'able” 1 + 1)
= startActivity(“Clear The Table”  t; + 1)]

17

VTimestep t; :

current Activity(“Fat Break fast”  t1) A
currentActivity(“Clear The Table” , t1 + 1)
= —current Activity(“Eat Break fast”  t; + 1)]
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Table 2.6: Set of formulae for the States-Based Model.

Abduction Axioms

1 Y Action ¢, Timestep t, Activity a :
currentAction(c,t) = [current Activity(a,t)]

2 V Action ¢y, co, Timestep t, Activitya :
[currentAction(cy,t) A currentAction(ca,t + 1)]
= [current Activity(a,t) A currentActivity(a,t + 1)]

3 Y Action c, Timestep t, Activity a :

[current Action(c, t) A currentObjectState(“OpenFridge” t)
NhasFreshEntity(c) A haveSameObject(c, a)

= [current Activity(a, t)]

4 V Action ¢y, co Timestep t :

[currentAction(c1,t) A currentObjectState(ca, t)
AhasInDrawer Entity(c) A actionOpen(ca)
AhasObject Drawer(ca)]

= [current Activity(a, t)]

5 Y Action c, Timestep t, Activity a :

[current Action(c, t)

A currentObjectState( “OpenDishwasher”  t)
A hasW ashableObject(c)]

= [current Activity(“PutIntoDishwasher” t)]

Hard Temporal Axioms

6 V Action ¢, Timestep t,: [current Action(c, t) A actionOpen(c)]
= [currentObjectSate(c,t)]

7 Y Action ¢y, ¢, Timestep t,:
[currentAction(c,t) A —actionClose(c)]
= [currentObjectSate(c,t — 1) = currentObjectSate(c,t)]

8 Y Action ¢y, ¢, Timestep t,:

[currentAction(c1,t) A actionClose(c)
A—haveSameActionObject(c, c2)]
= [currentObjectSate(ca,t — 1) = currentObjectSate(ca, t)]
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Evaluation and Results

After presenting our models, we evaluate their performance under realistic settings
and report the obtained results in this chapter. As already mentioned, the evaluation
results of both the Basic Model and the Start-End Model were already released
in [HNS11al] and [HNS11b]. Those of the States-Based Model, however, are
unpublished. The evaluation scheme concerns the following tasks:

® Predict the foreground activity(ies) for each time step
® Infer start and end times of every activity
® Derive all background activities at each new sensor event

® Derive the states of surrounding objects and use these to recognize
fine-grained activities

3.1 Recognition framework and experiments

We identify three major implementations for applying the introduced Markov logic
networks: “Alchemy”[l, “Tuffy” [INRDS11]], “Rocklt” [NNS13| and “Markov: The-
Beast” [Rie08]]. We estimate the third framework to be most appropriate to our
problem statement and defined models. This is justified by two main reasons.

The first is that, at the time of our experiments, only “Markov: TheBeast” al-
lows for flawless arithmetic operations on integers, while the two others suffer from
implementation bugs. This is a mandatory feature in our model in order to repre-
sent and reason with long-range qualitative and quantitative temporal relationships.

The second reason is that “Markov: TheBeast” framework provides a special
“if a then b” syntax where a should contain only observable predicates while b

"http://alchemy.cs.washington.edu/
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contains hidden ones. Unlike a weighted logical implication “a — b”, the weight
of an expression in form of “if a then b” represents the degree to which a and b
co-occur. Since a is always given as evidence, P(a) is irrelevant to the model and
by attaching a weight to a A b we represent the conditional probability of b given
a. Based on this representation for probabilistic causal influence only groundings
where a and b are T'rue are considered. Whereas all instances with a = False
would have been included in the case of a probabilistic logical implication.

This easily allows to create a discriminative model instead of a generative one.
Just like the difference between conditional random fields and Markov random
fields, the advantage of a discriminative Markov logic model is that it directly
models the prediction problem P(Activity|SensorObservations) instead of the
full probability distribution P(Activity, SensorObservations). As such, they
are more accurate since they do not require the probability distribution over the
input data (i.e. sensor observations).

Thus, the semantics of “Markov: TheBeast” [R1e08] require a clear distinction
between hidden and observable predicates. The provided evidence should contain
all the observable predicates and none of the hidden ones. If the truth value of an
observable predicate is not explicitly specified, it is assumed to be false (closed-
world assumption). Hence, specifying particular values of hidden variables is only
possible in form a hard formulae.

3.1.1 Datasets

In our experiments, we have used three real-life datasets. The Basic Model and
the Start-End Model were implemented using the Intel dataset, which consists of
real data collected by Patterson et al. [PFKPOS)|. The States-Based Model was
applied to the “Opportunity dataset” [KHF™ 11}, a part of the EU research project
“Activity and Context Recognition with Opportunistic Sensor Conﬁguration’ﬂ

The data provided by Patterson et al. [PEKPOS] was collected in a lab equipped
with 60 RFID tags placed on different objects. The objects were involved in per-
forming a set of eleven fine-grained activities depicted in Table [3.1] To detect the
user’s interaction with the objects, they wore two RFID gloves that triggered RFID
tags within 2 inches, as shown in Figure [3.2] The data collection periods had a
mean duration of 27 min per day on ten different days. The performed activities
are highly interleaved in nature (see Figure[3.1]) and are only performed once.

This dataset comprises two sets: “standard data” and “full data” The first is
provided in form of timely ordered events relating, for each time step, the ID of
active sensors and the activity being carried out. Unlike the standard data, the full
data provides all concurrent activities for each time step. Given their purposes, we
applied the Basic Model to the standard data and the Start-End Model to the full
data.

The “Opportunity dataset” was collected in a highly rich networked smart

Zhttp://www.opportunity-project.cu
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Figure 3.1: A sample from Patterson’s assisted living dataset ([PEKPOS5]]). The graph
shows the highly interleaved nature of activities. The (red) triangles mark the begin and
end times of each activity. The (green) stars indicate when an activity is in the foreground.
For instance, up to four interleaved activities (“Making vanilla latte”, “Make boiled eggs”,
“Make tea” and “Set the table”) are in progress at time step 30.

room simulating a studio flat. A total of 72 sensors with 10 modalities were de-
ployed in 15 wireless and wired networked sensor systems in the environment [KHF ™ 11]).
Several users participated in a naturalistic collection process of a morning rou-
tine [LPBT10]. As illustrated in Figure the deployed sensors can be classi-
fied into wearable sensors such accelerometers and environmental sensors such as
RFID tags and readers. The wearable sensors are used to infer body gestures like
“reach” and “move” as well as modes of locomotion like “sit” and “lie”. The envi-
ronmental sensors detect the objects the user is interacting with. The dataset covers
four levels of activity granularities. Our States-Based Model was applied to rec-
ognize the intermediate level referred to as “simple activities” from what is called
“manipulative gestures” [HRS13l]. As described by the States-Based Model, we
refer to the input data (“manipulative gestures”) as actions and the output (‘“simple
activities”) as activities, for the sake of simplicity. This recognition task is more
complex than the two others (see Part II). Especially, the data was annotated by
different persons and the resulting labels do not cover all the possible activities,
leaving some sensor observations with no annotation. We use the data collected
by three different participants S10, S11, and S12, with three different routines
each (ADL1, ADL2, ADL3). The activities are interleaved and concurrent. A
total of 21 different activities and 40 different actions are carried out in the dataset
routines. Figure depicts the sensing modalities used to collect the data: RFID
tagged objects in the picture on the top and wearable sensors at the bottom picture.
The collected activities are listed in Table

3.1.2 Experimental settings

As mentioned above, we used “Markov TheBeast” |[Rie08]] to implement our recog-
nition framework. We integrated the mixed integer programming solver Gurobﬂ

3http://www.gurobi.com/
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and applied it to the ILP instances for the MAP inference. The soft formulae
weights were estimated via supervised on-line learning. In our experiments, we
opted for discriminative learning since it was demonstrated to outperform gener-
ative learning for training Markov logic networks [[SD05]]. We applied 15 epochs
of perceptron rule-based weight updates in the Basic Model, the Start-End Model
and margin infused relaxed algorithm (MIRA) with 15 epochs in the States-Based Model.
In the latter, the loss function is computed from the number of false positives and
false negatives over the hidden atoms. Markov: TheBeast permits to learn the
weight of first-order formulae as well as the weights of the individual groundings.
This is especially relevant to capture the different dependencies between particular
instances such as the activity MakeT'ea and the object Spoon for instance. To
improve the learning of the weights, we omitted the input of identical successive
sensor activity.

The models were tested using n-fold cross-validation. All experiments were
conducted on a desktop PC with AMD Athlon Dual Core Processor 5400B with
2.6GHz and 1GB RAM.

3.2 Results and discussion

To evaluate the recognition performance of our system, we apply the Precision,
Recall and Fy score metrics explained in Preliminaries Chapter. Given that only
one foreground activity can be carried out at each time step of the Basic Model and
the Start-End Model, the resulting number of false positives and false negatives
is identical in that case. This does not apply to the States-Based Model because
the participants can be involved in two different activities simultaneously (due to
wearing two RFID readers instead of one) or just in none.

In this section, we report and discuss the results of the described experiments.
The results are organized per Model.

3.2.1 Inferring Foreground Activities: results of the Basic Model

Using the concise set of rules described in Table 2.4 we evaluate the Basic Model
using leave-one out cross validation and the averaged recognition’s precision and
recall over the 10 morning routines confirm the viability of our approach by reach-
ing an Fl-measure of 93% with a standard deviation of o = 0.06 (seeTable .
This slightly outperforms state-of-the-art approaches [HY08] applied on the same
standard data of Patterson’s dataset [PEKPOS] where the authors report an accu-
racy of 92%. Note that, since exactly one activity is output at each time step, then
each time step counts either as true positive or both a false positive and false neg-
ative. Thus, the total number false positive is equal to the total of false negatives
and the sum of true positives is equal to the sum of true negatives. Thus, all of the
precision, recall, F1-measure and accuracy have the same value.

To give an impression about the nature of the dataset, the results of our models



80 CHAPTER 3. EVALUATION AND RESULTS

Table 3.3: Results for the recognition of foreground activities using the standard data for
the Basic Model and the full data for the Start-End Model. The evaluation is computed
from leave-one out cross validation.

Basic Model Start-End Model || Baseline I || Baseline II
Precision || 0.93(c = 0.06) 0.92(c = 0.03) 0.31 0.16
Recall 0.93(c = 0.06) 0.92(c = 0.03) 0.31 0.16
By 0.93(c = 0.06) 0.92(c = 0.03) 0.31 0.16

are compared to those of the majority class baseline depicted in the third column
(Baseline I) of the same Table The majority class selects the activity with the
highest number of occurrences from the training data and outputs it as the predicted
current activity. The resulting performance is significantly lower.

An important aspect of our approach is to show the substantial effect of incor-
porating common-sense knowledge on the recognition accuracy. Figure[3.4] gives a
detailed insight into this effect. Activities “Set T'he T'able, Fat Break fast”, and
“Clear TheTable” share a particularly high number of common objects which
makes their recognition ambiguous. Extending the model with the background
knowledge, however, significantly improves their recognition. Especially, the av-
erage precision, recall and F1-score of the recognition of activities over 10 morn-
ing routines “Set T'he T'able” (4) and “Clear The Table” (8) almost double. The
overall F1-score raises from 0.88 to 0.93.

The potential of background knowledge to significantly improve the recogni-
tion of foreground activities is also confirmed by the results plotted in Figure [3.4]
The figure unfolds the single precision values of each morning routine of the
dataset and shows the robustness of the amelioration throughout the data.

3.2.2 Inferring Foreground and Background Activities:
results of the Start-End Model

Recall that the Start-End Model uses the full data of Patterson’s [PEKPOS] dataset
to jointly infer the foreground activities, the start point of the activities and their
end points. Based on these, we first derive Background activities by assuming that
an activity is still in progress from its predicted start point until its predicted end
point. At each time step the set of predicted background activities is compared to
that of the ground truth.

To reduce the complexity of the underlying ground model, we have omitted
identical successive sensor data and used the resulting dataset for the evaluation
of the Start-End Model. Note that it is straightforward to reconstruct the original
sensor data including successive duplicate events by retaining the prediction results
until the next new sensor event. Although we dropped these experiments here, we
think that this evaluation most probably increases the precision and recall values



3.2. RESULTS OF THE START-END MODEL 81

‘-With Background Knowledge| |Without Background Knowledg%

o o o
~ fee] (<}
T T T

o
&)
T

Average F1 measure
o o o o
SRSt
T T T T

o
[
T

2 3 4 7 8 9 10 11

5 6
Activities
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the common-sense constraints provided in Table 2:4] Table [3.1] shows the assignments of
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compared to the reduced version of the full data.

Similarly to the Basic Model, our analysis of the evaluation results focuses on
the importance of incorporating background knowledge for the overall recognition
quality. First, we look into the precision, recall and F1-score of recognizing fore-
ground activities with a subset of the formulae of the Start-End Model as depicted
in the third row of Table [3.3] These values correspond the inference results of the
hidden predicate current Activity(activity, timepoint) using the same common-
sense knowledge as in the Basic Model. The values surpass 90% while applying
the majority class baseline leads to an F'1-score as low as 0.16. The particularly
low standard deviation across the 10 routines constructing the dataset suggests a
high robustness of the model.

Keeping the same subset of common-sense knowledge as in the Basic Model,
we assess the recognition of foreground and background activities.

The inference precision, recall and F1-score of the three hidden predicates
current Activity(activity, timepoint), start Activity(activity, timepoint) and
endActivity(activity, timepoint) are summarised in Table While the start
points of the activities are recognized with a high recall and precision, recogniz-
ing the end points of the activities shows a clearly lower recall. This indicates
that human activities might be initiated in a more consistent manner than they are
terminated.

A crucial advantage of recognizing the start and end points of the activities is
the ability to capture qualitative temporal relationships between the activities as
stated by formula 9 in Table 2.5 The weights confirm the intuition that a daily
“routine” preserves similar chronological order for some activities (the three first
lines of the Table) and yet allows randomness for the others such as “using the
phone”.

Based on the inferred start and end points of the activities, we now evaluate
the recognition of background activities. These are derived by being considered
in progress during the interval separating their start and end time points. This
derivation implicates the following cases.

Case I: false negatives of the predicate endActivity(activity, timestep) In case
the end point of a particular activity is missing, the activity counts as a background
activity for every subsequent timestep. For a more reliable evaluation method, we
opt for this strict assumption despite the high number of false positives it induces.

Case II: false negatives of the predicate startActivity(activity, timestep) In the
case the framework misses the starting point of an activity, we compare two differ-
ent interpretation of this failure.

= Assumption I Each activity with a missing start point does not count among
the background activities. Thus, if the activity is recognized as foreground
activity at two distinct timesteps ¢ and d (¢ < d), it still is not derived as
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Figure 3.6: Illustration of a false negative for the predicate endActivity and its impact
on the overall recognition quality. Whereas the ground truth indicates that the activity
Making Vanilla Latte ends at time step 48, that event it not detected by the model.
Thus, the activity is interpreted to continue as background activity along the remaining
time steps till the end of routine. Obviously, this adds more than 50 false positives in the
overall evaluation process

a background activity in during the intevall [¢, d]. Thus, this strict assump-
tion is expected to engenders several false negatives for the recognition of
background activities.

= Assumption IT Unlike the derivation of missing end points, it is easy to inter-
pret the timestep of the first apparition of a particular activity in the inferred
foreground activities as its starting point. In this assumption, if the model
fails in detectin the starting point of an activity, we consider that activity “in
progress” from its first apparition till its end.

Table [3.6] compares the recognition precision and recall for both assumptions.
Independently of the assumption, the Fl-score reached by the Start-End Model
in recognizing both foreground and background activities jointly is higher than
80%. A closer look at Table [3.5] explains the lower values of precision com-
pared to the very high recall. Indeed, the relatively low recall of inferring the
predicate endActivity(activity,timestep) indicates a higher number of activi-
ties with missing end points. As explained by our strict assumptions above, this
results in a significant number of false positives of the corresponding activity.
An example where the model fails in recognizing the end point of the activity
“MakingV anillaLatte” is drawn in Figure

Finally, we examine the evolution of the recognition performance by progres-
sively enriching the a-priori domain knowledge within the model. As shown in
Figure incorporating further temporal axioms including new quantitative tem-
poral relationships increases the F score under both assumptions. The quantitative
temporal relationships captured by the soft temporal axioms 10 and 11 in Table[2.3]
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Table 3.4: Some selected weights for successive activities. The activities can be inter-
rupted by others. Higher weights are given for two activities a; and as if ao starts when aq

ends (see Table

Activity A Following Activity As Average Weight
Eat Breakfast Clear the Table 13.1
Make Oatmeal Make Boiled Eggs 9.8
Make Tea Eat Breakfast 1.6
Use The Phone Set The Table 0.0

Table 3.5: Results for the recognition of the start and end points of the activities the
full data for the Start-End Model. Both models rely on a reduced subset of background
knowledge (rules 1-3). The evaluation is computed from leave-one out cross validation.

Current Start End Global
Precision 0.92 0.97 0.97 0.93
Recall 0.92 0.90 0.71 0.91
Fy 0.92 0.93 0.82 0.92

increase the recall values of the inference the hidden predicate
endActivity(activity, timepoint) from 0.71 to 0.76. It reinforces the inference
of the start and end point for both “M ake juice” and “Set the table” activities and
thus explain the overall improvement in the recognition results. Since the dataset
includes highly interleaved sequences of activities, we compared our results to a
baseline which maximizes the recall value by always predicting all the activities as
being in progress.

3.2.3 Inferring fine-grained interleaved and concurrent foreground
activities: results of the States-Based Model

Whereas the previous two models mainly focus on representing and reasoning with
inter-activities temporal axioms, this one features rich semantic information and
highly-relational formulae including entity states over time. The overall perfor-
mance of the model is evaluated using the same metrics explained above. Like in
the Start-End Model, we address an event-based recognition task where we omit
successive duplicates of input data as well as null events. Compared to the Ba-
sic Model and the Start-End Model, the States-Based Model does not require
exactly one activity to be actively carried out at each time step. Instead, the partici-
pants can be “getting salami from the fridge” and “getting cheese from the fridge”
at the same time point. They can even be performing a sequence of actions that
does not correspond to any of the activities. Furthermore, the annotation of the
available data was carried out offline by different persons [HRS13]], which yields
noteworthy deviations in how the actions’ sequences are interpreted.
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Table 3.6: Results for the recognition of both background and foreground activities using
the full data for the Start-End Model. The evaluation is computed from leave-one out
cross validation.

Precision Recall F'1-measure
Assumption [ 0.73 0.99 0.84
Assumption II 0.71 0.99 0.82
EVALUATION WITH ASSUMPTION | EVALUATION WITH ASSUMPTION 11
1 1
0.9 0.9
0.8 0.8 ; .
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Figure 3.7: Results for the recognition of concurrent activities using the full data for
the Start-End Model. The evaluation is computed from leave-one out cross validation.
The concurrent activities have been derived under the Assumption I on the left and As-
sumption II on the right. The plot compares the recognition performance with different
temporal relationships.

Two hidden predicates are defined in the States-Based Model: currentOb-
JjectState(action, timestep) and currentActivity(activity, timestep). The first is an
auxiliary predicate which is derived by three deterministic rules as depicted in Ta-
ble 2.6 Consequently, it is always correctly inferred and will not be considered
in the evaluation results. The second predicts the participant’s foreground activ-
ity(ies) at a given time step. Since the user can be actively engaged in more than
one foreground activity at a time, the calculation of the true positives, false pos-
itives and false negatives is realized following the same method described in the
Start-End Model. Since our dataset was collected by three different participants
510, S11 and S12, with three routines each (ADL1, ADL2 and ADL3), we com-
pute the results from user-independent leave-one cross validation and average the
recognition precision and recall over the three routines. In other words, for each
subject, we use their three routines as test data and train the system with the remain-
ing six routines of the different participants. The final evaluation results correspond
to the average of the evaluations of the three routines ADL1, ADL2 and ADL3.

To explore the dataset and give an impression on the discriminative degree of
actions on activities, we first run a baseline model comparable to logistic regres-
sion. The model encodes only the first abduction axiom in Table which then
outputs the most probable activity given the current action. As summarized in Ta-
ble the model’s precision is pretty high with an average of 0.72, while the
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Table 3.7: Results for the recognition of foreground activities applying a baseline model
to the opportunity dataset. The model uses only the first abduction axiom of the States-
Based Model (Table[2.6) and thus outputs the most probably activity(ies) given the current
action(s). The reported evaluation results are computed in a user-independent setting as
explained above. The results of each user represent the averages and standard deviation
(o) over three routines ADL1, ADL2, and ADL3.

Baseline
S10 S11 S12
Precision || 0.74 (o =0.03) | 0.61 (o =0.06) | 0.81 (o = 0.03)
Recall 0.32 (0 =0.03) | 024 (6 =0.03) | 0.41 (o = 0.07)
F) measure || 0.44 (o =0.02) 0.34 (0 =0.04) 0.54 (o =0.07)

Table 3.8: Results for the recognition of foreground activities applying the States-
Based Model to the opportunity dataset. The model uses all axioms listed in Table
The reported evaluation results are computed in a user-independent setting as explained
above. The results of each user represent the averages and standard deviation (o) over
three routines ADL1, ADL2, and ADL3.

the States-Based Model
S10 S11 S12
Precision 0.89 (o =0.01) 0.85 (o =0.03) 0.86 (o =0.01)
Recall 0.8 (0 =0.03) 0.58 (o =0.05) 0.83 (o =0.07)
F} measure 0.84 (o =0.01) 0.69 (o =0.05) 0.84 (o0 =0.03)
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Table 3.9: Global results of the States-Based Model with and without the three abduction
axioms 3 — 5 (see Table [2.6). The reported values are correspond to micro and macro
averages over all activities using user-independent leave-one cross validation as explained
above.

With axioms 3 — 5 Without axioms 3 — 5

F'1 measure micro-average 0.7 0.67

F'1 measure macro-average 0.79 0.77

recall average value is very low (0.55). This is partially due to the annotation is-
sues mentioned above and especially to unlabelled actions.Applying the entire set
of axioms of the States-Based Model to the data significantly improves the quality
of performance for each subject as shown in Table[3.8] While the average precision
is only increased by 2%, the average recall value surpasses the double compared to
the baseline model. Worthy of notice is the difference in performance between the
subjects. The results of subject S11 is particularly low compared to S10 and S12.
This underlines the effect of the annotation process used in this dataset. Indeed, as
mentioned in [HRS13]], the persons who annotated the data for S10 and S12 were
able to communicate and agree about the same data interpretation, which did not
apply for annotating S11. Additionally, taking a closer look into the per-activity
recognition accuracy, we notice that the set of activities executed by S10 and S12
is smaller then those carried out by S11. Figure|3.8|illustrates per-activity F'1 mea-
sures. Activities marked with an asterisk (x) are those that are absent in at least one
of the three routines of S10 or S12 data. The figure indicates that these activities
are those with the worst recognition results. Thus, their absence might boosts the
overall performance of the model of the S10 and S12 data compared to that of
S11.

To assess the effect of the semantic features encoded in the abduction ax-
ioms 3 — 5 of Table we compare the performance of the States-Based Model
without and with these formulae. While the biggest jump in the recognition quality
compared to the baseline is realised by the second abduction axiom (Table [2.6)),
the incorporation of abduction axioms 3 — 5 raises the micro- and macro-average
of Fl-measures. Recall that the first is an average over activity instances while the
second is an average over activity classes. The results of both averages are exposed
in Table
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Figure 3.8: Per-activity recognition results for the States-Based Model. The reported
F1-measure values of each subject (S10, S11 and S12) represent the averages over three
routines ADL1, ADL2, and ADL3. Activities marked with an asterisk (x) are those that
are absent in at least one of the three routines of the S10 or S12 data.



Conclusion

In this Part we have presented three Markov logic based frameworks to address
the recognition of complex human activities under realistic settings. Our proposed
approach benefits from a formal and declarative semantics, a variety of inference
mechanisms, and methods for learning collections of sensor events and activities
that satisfy some pattern. This facilitates efficient modelling and knowledge engi-
neering, which are clearly separated from the generic inference mechanism.

After providing the theoretical background of Markov logic networks illus-
trated with simple examples, we drew the advantages of this approach compared to
state of the art methods. Especially, we focus on addressing the challenge of recog-
nizing interleaved and concurrent activities while preserving the intuitiveness and
flexibility of the modelling task. Using three different models we have shown that
Markov logic offers a simple but effective combination of statistical and relational
features to accurately recognize interleaved and concurrent activities.

4.1 Summary

Throughout this part, we have answered the first five research questions defined
in our problem statement. For Question I.1, we first exposed the weaknesses of
pure data-driven approaches and knowledge-driven approaches. This highlighted
the advantages of combining them to address the requirements of a realistic activ-
ity recognition system. The review was then refined through a detailed comparison
of our logic-based statistical relational approach, Markov logic, with related meth-
ods proposed in the literature. The advantages of applying Markov logic for this
recognition task were explained and illustrated with example models.

Moving to more realistic scenarios, we have presented three different models

89
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to cover key knowledge representation features. These include representing tem-
poral knowledge as well as the integration of background information. As with
respect to Question 1.2, the first proposed model focuses on point-wise temporal
representation to model qualitative temporal relationship between the activities.
The second model extends the first one with implicit interval-based temporal in-
formation. This is realised through the detection of the start and end points of the
activities. Thus, additionally to the recognition of foreground activities, the model
further allows the prediction of parallel activities running in the background. Inter
and intra-activities temporal relationships are reinforced in this second model by
the addition of guantitative temporal features such as the duration of an activity.
Finally the third model accentuates the ability of Markov logic networks to ele-
gantly represent and reason with highly relational data. The model leverages the
inherent structure and common-sense knowledge to derive the states of surrounding
artefacts over a particular period of time. This additional information has shown
to boost the recognition of related activities. The ability to easily incorporate and
reason with integer values and apply simple arithmetic operations on them greatly
facilitates and supports modelling sophisticated temporal relationships.

Both uncertain and certain temporal information was included in the models
and have shown to improve the recognition performance. Especially, temporal
common-sense knowledge incorporated in form of hard constraints in the two first
models almost doubled the recognition accuracy of particular activities without
deteriorating the rest. This neatly positive impact of incorporating common-sense
knowledge in the model solved Question 1.3.

The three models were applied to two real-life datasets in order to answer
Question 1.4. The sensor data was collected in smart environments where the par-
ticipants executed a set of complex activities in a naturalistic manner. Both datasets
include highly interleaved activities. The second one also allows the participants to
be actively involved in two activities at a time. The three models have successfully
learned weights for soft formulae capturing temporal and non-temporal dependen-
cies between individual activities. While the first two models were evaluated with
the first dataset involving one single user, the data used for the third model was
collected by three different subjects. This allowed a user-independent evaluation
process. The reported results ascertain the viability of the proposed approach to
the defined recognition task and have demonstrated a drastic increase compared to
the baselines used.

Lastly we answer Question L5 in the discussion section of this chapter by
summarizing the major limitations imposed by our Markov logic-based framework.

4.2 Impact

We discern a positive impact of our work on the activity recognition community.
Convinced by the suitability of Markov logic to address complex event and ac-
tivity recognition, several works have followed the same direction with a spe-
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cial interest in Markov logic-based temporal reasoning. For instance, Skarlatidis
et al. [SPVAI11] focus on a very expressive model to represent and reason with
interval-based temporal information based on Allen’s algebra [AlI83l]. Similarly,
Song et al. [SKA™13|] propose a Markov logic network for recognizing com-
plex activities from gestures and objects interaction. They use both point-wise
and interval-based temporal information to reason about the events and activities.
Chahuara et al. also conclude in their work [CEFPV12] that Markov logic based
models are more adapted for activity recognition than traditional classifiers.

4.3 Discussion

While Markov Logic has been very successfully applied in several challenging
applications such as activity recognition, Markov logic models are hard to inter-
pret. Especially, a formula’s weight is not an intuitive representation the prob-
ability that a grounding of that formula, independently of the rest of the model,
holds [BMK™10]. Instead, the weight depends on the entire interactions between
the model’s atoms and their weights. Thus, it cannot be related to the probability
of the formula without taking into account the weights of the other formulas. Since
the outcome of the overall interactions between the model’s formulae is almost
impossible to foresee in the context of the knowledge engineering task, the auto-
matic estimation of weights from annotated data is highly recommended. How-
ever, the quality of the learnt weights strongly depends on that of the annotation.
As shown in our third model, in real-life datasets, annotations do not always cor-
respond to the actual activities that are carried out by the user. Moreover, fully
relying on automatic weight estimation often leads to less robustness due to the
risk of over-fitting. A step towards controlling learnt weights and integrate prior
knowledge at this level of modelling would be to combine both subjective and au-
tomatically learnt weights. A promising approach in this direction is the work of
Papai et al. [PGK12] which presents a formalism for using prior expert knowledge
for weight learning without requiring the consistency of that knowledge.

On the other hand, whereas using “Markov: TheBeast” [Rie08] is especially
suitable for our discriminative models, it should be noticed that this framework
is less appropriate for generative ones. Especially, it does not allow partial and
uncertain observations and can not marginalize over missing input values since it
does not model the full probability distribution. Thus, for applications with noisy
sensor data for instance, this framework might not be the optimal choice.

4.4 Work in progress and future work

Inspired by the success of applying Markov logic to activity recognition, we are
currently working on applying this formalism to activity forecasting as well as ac-
tivity assessment. Both tasks belong to open challenges of the research field.
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Activity forecasting is concerned with the prediction of future activities given
a sequence of sensor data. Even if this sounds similar to the recognition problem
addressed in this thesis, the task has fundamental differences. The major one is
that the sensor data is not observed at the time steps where the activities have to
be inferred. Thus additional background knowledge is crucial for this task. An-
other critical difference is that predicting the next activity might not be sufficient
for several applications. Instead, it is usually of interest to infer the activities that
would most probably take place within a predefined time slot (e.g. one hour). Pre-
liminaries results have shown an improvement of the F'1-measure over traditional
machine learning techniques such as Naive Bayes and decision trees.

Activity assessment refers to attributing scores to the activities carried out in
a smart environment indicating how well that activity was executed. The quality
is determined by whether the activity was completed and how long its completion
took. The assessment also distinguishes between critical and non-critical errors
depending on their impact on the participants security and comfort. Interval-based
temporal reasoning will be integrated in the Markov-model to flexibly reason with
the different situations. This work is carried out in cooperation with our colleagues
at the university of Milan [I and is still at its early stages.

Generally, extending the Markov logic framework to real-time applications is
also an appealing direction. The idea consists in applying the Markov model in a
window-based setting with an iterative call of the learning and inference process
after the input is updated with new data. Also, given the layered nature of human
activities, our interests include the joint recognition of activities at different levels
of granularities in a unified framework. Finally, moving towards automatic extrac-
tion of prior knowledge might help generate models with rich context data. This
might support the portability and re-usability of the model by using widely spread
knowledge description formalisms such description logic(DL) [BCM™03]. The
last three aspects played a major motivating role to the work described in Part II.

"http://homes.di.unimi.it/ riboni/



Part 11

Representing and Recognizing
Multilevel Activities with
Log-Linear Description Logics

“To know an object is to lead to it through a context
which the world provides.”

—William James
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Related Work and Contributions

Throughout the first Part of this document, the crucial impact of domain knowl-
edge on the recognition of complex human activities has been demonstrated and
particularly highlighted. Indeed, the integration of rich and expressive background
knowledge enables further correlations between activities and other domain enti-
ties, which go beyond extracted patterns and attributes. However, implementing
an exhaustive model including heterogeneous information sources comes at con-
siderable knowledge engineering efforts. Hence, employing a standard, widely
used formalism is highly recommended, in order to enhance the portability and
re-usability of the model. To meet these additional requirements, we propose to
employ a hybrid approach that goes one step further than Markov logic network
towards a formal, yet intuitive conceptualization of the domain of discourse. Con-
cretely, we propose to use a probabilistic variant of description logics as a common
vocabularies for representing and reasoning about knowledge relevant to human
activities and their semantic inter-connections, in order to automatically recognize
them from sensor data. Complying with the general challenges of an activity recog-
nition system depicted in the Introduction Chapter, this ontology-based approach
addresses activities of different complexity levels and is capable of handling un-
certainty related to any aspect within one unified framework.

Conventional ontology-based approaches have recently been gaining increas-
ing popularity in the pervasive computing area in general and in the activity recog-
nition community in particular. However, the existing solutions still face several
shortcomings. Indeed, although it is usually assumed that knowledge-based ac-
tivity recognition can create complete models, in reality it is very difficult, if not
impossible, to manually cover all permutations of different users, activities, and
performance styles [YDS™'15]. Hence, the lack of native support for representing
and reasoning over probabilistic knowledge within DL-based activity recognition
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frameworks is a major open challenge. Unlike our system, which unites both sym-
bolic and probabilistic reasoning, the majority of the proposed solutions need to
decouple the recognition process from the semantic description of the activities in
order to manage uncertainty.

In this Chapter, we provide an overview of the existing ontology-based ap-
proaches to recognize human activities from sensor data. We distinguish between
two categories: frameworks that do not support uncertainty and those that do. We
start by presenting the first category. There, the majority of the employed ontolo-
gies are usually only used for the representation step. They are combined with
other techniques for the recognition step. Being closely related to our work, we put
a special emphasize on approaches that use ontologies for both modeling and rec-
ognizing human activities. The second category is addressed in the second section
of this Chapter. It presents recent attempts to empower ontology-based activity
recognition frameworks with uncertainty support. Similarly to the first section,
the overview pays particular attention to works that propose a unified framework
for modeling and recognizing activities with a seamless integration of uncertain
knowledge.

1.1 Ontology-based approaches to activity recognition:
deterministic frameworks

Ontologies have been extensively used for context modeling in pervasive comput-
ing ( [YDS™15], [RCLCFI4]). They offer several advantages that make them
particularly desirable for this field. These advantages include (1) their ability to
effectively model and reason over taxonomic knowledge, (2) their support for con-
sistency check and (3) their uniform and commonly-agreed vocabulary. The first
feature meets the need of such systems for modelling contextual information at dif-
ferent levels of granularity and abstraction. Thanks to the supported subsumption
reasoning, it also allows to derive further implicit and increasingly detailed con-
texts. The second helps deal with heterogeneous and imperfect context informa-
tion coming from different sources. Indeed, information within a pervasive sensor-
driven system usually include contextual data, domain knowledge and events. Con-
textual data mainly consists of abstracted sensor data describing properties of an
environment or a user. This abstraction enhances their semantic meaning and al-
lows their integration in consistent representation. Finally, the third is important
for creating an understandable knowledge base, which can be easily shared and
re-used by different platforms.

Such ontology-based models have been recently espoused to recognize and
understand user’s activities from sensor data. The majority of the works, how-
ever, do not use them for the recognition process. Instead, they exploit them as
mapping mechanisms for multiple terms of an object, to categorize terms or to
create a common conceptual template for data integration, interoperability, and
reuse [CHNT12]. To the best of our knowledge, only very few works have been
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approaching both activity representation and recognition in a unified ontological
framework([YDS ™ 15], [RCLCF14],[CHN™12]]). Typically, ontological reasoning
is used in these works to check the consistency of the aggregated set of contextual
information and to infer higher level information such as the user’s activity. One of
the first works in this direction is that of Chen et al.( [CNM™08], [CNO9]], [CNW12]).
Very close to our work, the authors assume that there is an unknown activity corre-
sponding to a given sensor input. Using ontological reasoning, the activity concept
which contains as many perceived properties as possible is determined to be the
predicted activity corresponding to the observed situation. Thus, the authors pro-
ceed to an incrementally specific recognition of the activities through the progres-
sive activation of the sensors. However, this top down approach fails to recognize
fine-grained activities unless the higher one is correctly recognized. Besides, the
evaluation data used is collected in a partially predefined and strictly sequential
manner including fixed time interval separating the complex activities. Finally,
and most importantly, the proposed framework does not address the uncertainty
aspect in human activities. Particularly, the model implicitly assumes a determin-
istic mapping from the context data to the activities’ descriptions.

Similarly, the work of Springer et al. [STQ9|] leverages subsumption reasoning
to infer activities at different levels of granularity based on the current contextual
information. Their system is tested with simplistic cases such as “recognizing
whether a ringing person is authorized to enter the house or not”. The system’s
inability to address uncertainty imposes severe limitations towards applying it in
real life scenarios.

The highly expressive ontological framework proposed by Riboni and Bet-
tini [RB11] is very related to our work. Indeed, the authors use the same description
logic language (OWL2) as in our proposed system. Combined with rules, they use
their activity ontology to recognize activities for a smart home and a smart office
scenario. The solution is proposed to overcome expressiveness limitations pointed
out in their formal ontological framework COSAR [RBQ9], which combines on-
tological reasoning and multi-class logistic regression (MLR) for probabilistic ac-
tivity recognition. Although their work includes statistical methods to recognize
simple activities, the ontological reasoning about complex ones does not address
uncertainty.

Another ontology-based approach that also supports data-driven learning ca-
pabilities has been recently proposed by Chen et al. [CNO14]|. The approach uses
semantic technologies as a conceptual backbone and technology enablers for mod-
eling, classication, and learning of activities of daily living (ADL). Compared to
their contributions, our framework supports finer grained activity levels. This em-
phasizes the need for a sound and integrated uncertainty support, which is missing
in their system. Besides, the evaluation of the approach has been carried out under
non-realistic assumptions exempt from interleaved and concurrent activities.

Finally, the MetaQ framework proposed by Meditskos et al. [MDK135]] com-
bines SPARQL queries and OWL 2 activity patterns to recognize activities in Am-
bient Assisted Living (AAL) environments. Whereas this approach has the appeal-
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ing advantage of reasoning over intricate temporal dependencies between activities,
the translation of the meta-knowledge OWL patterns into SPARQL queries is not
able to handle uncertain and imperfect information.

Bridging the gap between ontology-based approaches and supporting uncer-
tainty for activity recognition, has been the concern of some recent works as we
explain in the next section.

1.2 Ontology-based approaches to activity recognition:
frameworks with uncertainty support

Although much research has been devoted to extending DL-based models and rea-
soning services in order to handle uncertain information, only a limited number
of works have explored their viability for activity recognition. Indeed the major-
ity of the activity recognition approaches that leverage ontological modeling and
uncertainty support only use ontologies to provide activity descriptors for activity
definitions. Activity recognition is, then, performed based on probabilistic and/or
statistical reasoning. For example, Knox et al. [KCD10] propose a lazy instance
based approach where they use a vector of the sensors’ values to define their cases.
A semantically extended case base is created through extracting ontological rela-
tionships between sensors, locations and activities. This allows them to reduce the
resulting number of cases.

Further efforts to exploit semantic information to improve the recognition system
are detected in [YSKT07] and [WPP"07|]. Relying on the subsumption hierar-
chy, the former involves ontology to handle unlearned objects and map them into
learned classes. At the recognition step, parametric mixture models are applied. In
the latter, the subsumption hierarchy helps automatically infer probability distribu-
tions over the current actions given the object in use. Thus, the integrated common-
sense knowledge is used to learn a dynamic Bayesian network-based activity classi-
fier. Other attempts to cope with uncertainty involve applying a hierarchy Bayesian
networks based on the ontology’s instances such as in [LLDO7)]. Including the
challenge of recognizing concurrent activities in their work, Ye et al. [YSD14]
have recently proposed the KCAR system which recognizes activities by matching
segmented sensor sequences to ontological activity proles. They handle the ambi-
guity of interpretation of the sensor data by employing a hierarchy-based similarity
measure to quantify the similarity on spatial, temporal, and thematic aspects in the
corresponding ontologies.

All these works dissociate the inference step from the semantic model. This as-
pect limits the ability of incorporating rich background and common sense knowl-
edge. It also strips the system from other advantages of symbolic reasoning such as
consistency check. To the best of our knowledge, the works of Hong et al. [HNM™09]],
the one of Hoelz et al. [HKF13]], and that of Rodriguez et al. [RCLCF14] are the
only exceptions. In the first [HNM™T09], the authors model the interrelationships
between sensors, contexts and activities. They use the resulting hierarchical net-
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work of ontologies to generate evidential networks. Following Dempster-Shafer
theory of evidence, they calculate and define the heuristic relationships between
the network’s nodes in form of evidential mappings. These mappings are used
through seven steps of evidential operations as inference process. Obviously, their
evidential network discloses limited expressiveness compared to our DL language
OWL2 [OWL09]. The second work [HKF13] is an extension of the one presented
by Kurz et al. in [KHF™ 11] focusing on the autonomous selection of the best set of
available sensors to recognize a given goal. Using an ontological description of do-
main knowledge, the authors propose to use the semantic information between the
different goals. This allows to reason with sub and super concepts in order to refine
the recognition goal in case of missing sensing capabilities and exploit available
data of related sensors. Thanks to the introduced “context predicates” and “De-
gree of Fulfilment (DoF)” notions, recognition goals can be modelled and inferred
while enabling a weight distribution to sensor-goal mappings. Despite the promis-
ing aspect of this top-down approach, it was only evaluated with a simplistic low-
level scenario involving one single recognition goal: “Locomotion”. Moreover, the
subsumption axioms do not support uncertainty, which might limit the applicabil-
ity of the framework under realistic settings. Finally, the third work [RCLCE14]]
adopts fuzzy DL [BSOS8] to address uncertainty in activity recognition. The au-
thors provide a proof of concept of their approach in work scenarios. Concretely,
the approach consists in calculating the membership value of each attribute in the
ontology based on membership functions and some predefined attributes values.
However, unlike our log-linear ontology, in order to “fuzzify” a standard ontology,
new attributes need to be created for each node in the ontology to represent uncer-
tain information. Basically, the proposed formalism addresses fuzziness (i.e. vague
knowledge), while we need to represent probable knowledge to recognize human
activities from sensor data. This is because we are interested in reasoning about
events (i.e. activities) which either happened or not, rather than facts with different
degrees of truth. However, fuzzy knowledge can be a beneficial extension to our
approach when reasoning about facts related to the activities. As an example, it
would be interesting to be able to map continuous values, such as activity duration,
into discrete concepts such “long activity” and “short activity”.
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Modelling and Recognizing
Multi-level Activities with
Log-linear Description Logics

Recall from the previous chapters that human activities are complex, ambiguous
and have different levels of granularity. These characteristics remain valid even for
restricted sets of activities such as basic activities of daily living (ADLs) [Org02].
Although ADLs can be performed within home environments with relatively clear
semantics, providing a meaningful computational model remains a challenging
task. In this chapter we approach this task using a hybrid framework based on
formal knowledge representation mechanisms. Especially, we propose a log-linear
description logic-based framework to model and reason about activities of daily
living from the inhabitant gestures and their interaction with objects of interests.
The framework shares the same fundamentals underlying Markov logic network
while allowing for a formal conceptualization of the domain of discourse, backed
up with powerful reasoning and consistency check tools.

The main part of this work has been realized and published in [HRN™12]
and [HRS13]] in cooperation with partners from the university of Milano El

In the following, we first provide an overview of the theoretic foundations un-
derlying our proposed system. This covers fundamentals of description logics and
that of log-linear description logic [NNS11]. Then, we present our log-linear on-
tology modeling the domain of discourse including multi-level activities. Finally,
we propose a technique to leverage ontology reasoning to recognize the multi-level
activities from sensor data.

"http://homes.di.unimi.it/riboni/
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2.1 Description logics and log-linear description logic

The research in area of description logics (DLs) emerged from the idea of using
first-order logic to represent network based systems [BCM™03] such as semantic
networks and frames. This has been primary motivated by the need for precise se-
mantic characterization unifying these different representation structures. Descrip-
tion logics have intended to adopt the intuitive and natural representation mecha-
nisms of first-order logic yet with less complex reasoning techniques. Thus, they
can be seen as a decidable fragment of first-order logic, which relies on unary pred-
icates to denote sets of individuals and binary predicates to represent relationships
between these individuals [BCM™03]. Depending on the required application, dif-
ferent levels of expressive power have appeared in form of various description logic
formalisms.

Despite their advantages, DLs have crucial limitations when applied to several
real life domains. Especially, they are lacking the ability to represent uncertain
knowledge. Several extensions have been proposed to overcome this deficiency.
Log-linear description logic [NNS11], is one of these. Based on the same principle
as Markov logic, this formalism lies in the core of our proposed framework.

2.1.1 Foundations of description logics

Description logics refer to a family of knowledge representation formalisms estab-
lished to allow a logic-based representation of the knowledge of a given application
domain. The representation includes definitions of the domain’s concepts as well
as the specification of its objects and individuals. Central to these formalims is the
reasoning about the created knowledge base content. The reasoning task essen-
tially consists in inferring implicit knowledge from an explicit knowledge base in
order to answer specific queries [BCM™03].

DL Syntax

The signature of a knowledge base (KB) system based on description logics con-
sists of three components:

® Atomic concepts are designated by unary predicate symbols and denote
types, categories or classes of entities.

® Atomic roles are designated by binary predicate symbols and are used to
express relationships between concepts.

® Individuals stand for all the names used to represent the domain’s entities.
They correspond to constants in first order logic.

Similarly to first order logic, these atomic components can be used to build
more complex expressions by applying several kinds of constructors such as stan-
dard first order logic boolean operators (V, A, —), restricted form of quantifiers
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Table 2.1: Major DLs concept constructors: Their syntax, semantics and symbol [Baa03]|

Name Syntax ~ Semantics Symbol
Top T AT AL
Bottom L 0 AL
Intersec. CMD CTND? AL
Union cubD ctubD? U
Negation —(C' AT — {CI} C
vae  VR.C  {a € AT|Vb.(a,b) € RT - be CT} AL
Rest.

Exist. JR.C  {a € AT|Fb.(a,b) € REAb e CT} £
Quant.

Unqual. >nR {a€ AT||{b € AT|(a,b) € RT}| > n}

Numb.  <nR {ac AT||{be Af|(a,b) € RT}| < n} N
Rest. =nR {ac AT||{bec A%|(a,b) € RT}| =n}

Qual. >nR {ac AT||{bec AT|(a,b) € REANb € CT}| > n}

Numb.  <nR {aeAZ||{be AT|(a,b) € REAbe CT}| <n} Q
Rest. =nR {ac AT||{bc A¥|(a,b) € REAbec CT}| =n}
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(¥, 3), and counting (<, >, =). However, concept expressions are variable-free,
since they denote the set of all individuals satisfying the properties specified in the
expression. Moreover, while some constructors are related to logical ones in first
order logic, others have no matches. These include transitivity and functionality
for instance. Like concepts, roles expression, such as role hierarchies, can also be
built using role contractors.

Following this syntax, a DL knowledge bases comprise two components: the
TBox and the ABox. The former introduces the terminology (concepts and roles)
used to represent the application domain and builds a set of axioms modeling gen-
eral knowledge about it. The second contains a set of facts expressing knowledge
about specific situations through assertions about named individuals in terms of
the introduced terminology.

The TBox: The axioms of a TBox can be divided into definitions and subsump-
tion axioms. Definition axioms are called concept equality and state that a concept
C is equivalent to concept D (denoted C' = D). This allows the introduction of
symbolic names for complex expressions. The following example associates the
description on the right hand to “Vacuuming”. Thus, “Vacuuming” is defined as an
activity whose actor is using a vacuum.

VACUUMING = ACTIVITY 1 IHASACTOR. 2.1)
(PERSON M 3 USESOBIECT.VACUUM)

In case a concept can not be defined precisely, subsumption axioms are used
instead. These indicate the necessary conditions for a concept using concept inclu-
sion. Thus, a concept C' is subsumed by a concept D (denoted C' C D) if C'is a
subclass of D. This kind of axioms is also designated as a “is-a” relationship. For
instance, a “social activity” requires at least two participants but not every activity
engaging two participants is necessarily a “social activity”. This can be expressed
by the following subsumption axiom.

SOCIALACTIVITY C ACTIVITYI > 2HASPARTICIPANT.PERSON (2.2)

The ABox: Introducing individuals by asserting names to the TBox concepts is
the role of the ABox. Thus, specific states of the domain of discourse can be de-
scribed. Using the subsumption axiom [2.2] an ABox can provide a specific social
activity name, let’s say “playing cards”, which was carried out by some known
participants, lets say “Mary” and “Bob”. The corresponding concept and role as-
sertions would look as follows.
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Table 2.2: Terminological and assertional axioms in DL knowledge bases [BaaO3|]

Name Syntax Semantics \

Concept inclusion C T D ctc pt

Role inclusion RCS RTC §7

Concept equality C =D ct=D*

Concept assertion ~ C(a) at € C*

Role assertion R(a,b) (aT,b%) € RT
SOCIALACTIVITY(PlayingCards) (2.3)

HASPARTICIPANT(PalyingCards, M ary)
HASPARTICIPANT(PalyingCards, Bob)

DL Semantics

In description logics concepts are interpreted as a set of individuals and roles are
interpreted as sets of individual pairs. Formally, this interpretation 7 is defined in
terms a non-empty set AT representing the domain of discourse and an interpre-
tation function assigning a set AZ C A7 to each atomic concept A and a binary
relation R C AT x AZ to each atomic role R. The interpretation of concept
descriptions, subsumption and assertion axioms is obtained by extending the inter-
pretation function Z through inductive definitions as denoted in Table Hence,
a subsumption axiom C' T D is satisfied by an interpretation Z if and only if
C*T C D”. Similarly, an interpretation Z satisfies an equivalence axiom C' = D
if and only if C* = D?. Finally, an interpretation 7 satisfies a disjointness axiom
C M D C Lifandonly if CT N DT = {).

Assertion axioms(ABox) are given their semantics by extending an interpreta-
tion Z to individual names. If the resulting interpretation maps distinct individuals
names to distinct individuals, then it respects the so called unique name assump-
tion(UNA). We say that an interpretation Z satisfies the concept assertion C'(a)
if and only if a € CZ. Also, it satisfies the role assertion R(a,b) if and only
if (aZ,b%) € RZ. Although assertion axioms can be compared to a relational
database, it is important to note that its domain of interpretation can be infinite
and obeys to the open-world assumption. Consequently, while absence of informa-
tion in a database instance is interpreted as negative information, it only indicates
incomplete knowledge in an ABox.

Based on this definition of the interpretation function Z, description logics can
be identified as fragments of first-order predicate logic. Thus, atomic concepts
can be considered as unary predicates, roles can be viewed as binary predicates
and individuals as constants. Following this observation, any concept C' can be
translated into a predicate logic formula F¢(x) with one free variable = such that



106 CHAPTER 2. MODELLING AND RECOGNIZING ACTIVITIES

for every interpretation Z, the set of elements of A satisfying Fc(x) coincides
with the interpretation set CZ. Concretely, an atomic concept A is translated into
the formula A(x) and the basic constructors are translated into their counterparts.

The DLs Family:

Several description logic languages have been defined. They basically differ in
the set of allowed operators and have, consequently, different expressiveness lev-
els. The basic language is referred to as DL AL, an abbreviation of “attribute
language”. Considering A as an atomic concept, C' and D as concepts descrip-
tions, and R as functional role, DL AL allows the universal concept (T), the bot-
tom concept (L), atomic negation (—A), concept intersection (C' M D), complex
concept negation (—C'), universal restrictions (VR.C) and limited existential quan-
tification (3R.T) [SSS91]]. These basic modeling features have been enriched and
extended to allow more expressiveness for specifying and querying knowledge.
The simplest extension consists in adding the negation of arbitrary concepts (e.g.
—(C 1 D) = -C U ~—D). The resulting language is referred to as ALC, an abbre-
viation for “ attribute language with complements”. The complete naming scheme
for mainstream DLs comply with the following naming convention:

((ALCIFLIELIS)H]ISR)[ONT]IFIEUIN| QP

F L symbolizes a DL that allows concept intersection, universal restriction,
limited existential quantification and role restriction. EL permits subsumption
and equivalence axioms as well as concept operators, yet no role or axioms op-
erators. S denotes an extension through transitivity axioms. The letter O in-
troduces the support for nominal concepts, which are concepts that have exactly
one instance used for their description. Role inverses (e.g. hasParticipants =
isParticipantO f ) are allowed in DLs with names containing the letter Z. The
letter F features agreements (sometimes also called the same — as constructor)
and disagreements. £ and U allow full existential quantification and concept
union respectively. Finally, Q and A indicate the possibility to use qualified (e.g.
> 2hasParticipants.Person) and non-qualified (e.g. > 2hasParticipants)
cardinality restrictions respectively. The introduced constructors, their syntax,
their semantics and their symbols are summarized in Table

Offering the logic basis of the web ontology languages OWL DL and OWL2
DL respectively, the SHOZNP) DL and SROZQP) are key DLs representa-
tives in our work.

Reasoning about knowledge in DL

Besides formal syntax and semantics, DLs offer powerful reasoning services which
are based on efficient, sound and complete algorithms (e.g. Tableau algorithm [BSO1]).
Like in first-order predicate logic, a knowledge base comprising TBox and ABox
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contains implicit knowledge that can be made explicit through inference. For in-
stance, we can conclude that the activity PLAYINGSOCCER is not an IDLEACTIVITY
from example|[/| although this information does not figure explicitly.

Typical TBox reasoning tasks include subsumption and satisfiability checking.
The first consists in determining whether a concept C' subsumes a concept D such
as determining whether the concept Activity subsumes the concept Social Activity
for instance. Subsumption checking allows the derivation of the implicit taxonomic
relations and hierarchies among concepts. The second identifies whether a concept
description has a model, i.e. whether there is an interpretation that satisfies it. A
straightforward example of an unsatisfiable concept is (C' A ~C'). Besides satisfi-
ability and subsumption, two other concept relationships are particularly relevant
for inference: Equivalence and disjointness. Formally, these four properties can be
defined as follows [BCMT03].

Definition 4. Satisfiability: A concept C is satisfiable with respect to a TBox T if
there exists a model T of T such that C* is nonempty. In this case we say also that
T is a model of C.

Definition 5. Subsumption: A concept C is subsumed by a concept D with respect
to a TBox T if CT C C7 for every model T of T. In this case we write C' "1 D
orT =CLCD.

Definition 6. Equivalence: Two concepts C and D are equivalent with respect to
a TBox T if CT = D7 for every model T of T . In this case we write C =7 D or
TEC=D.

Definition 7. Disjointness: Two concepts C and D are disjoint with respect to a
TBox T if CT N DT = () for every model T of T .

Example 7. Let’s consider the following TBox:

SOCIALACTIVITY C ACTIVITY 2.4)
SPORTACTIVITY T ACTIVITY
IDLEACTIVITY C ACTIVITY
IDLEACTIVITY C —=SPORTACTIVITY
PLAYINGSOCCER C SOCIALACTIVITY 'l SPORTACTIVITY
SLEEPING C IDLEACTIVITY

With respect to this TBox, ACTIVITY subsumes all of SOCIALACTIVITY,
SPORTACTIVITY and IDLEACTIVITY.

Since SPORTACTIVITY and SOCIALACTIVITY are disjoint, PLAYINGSOCCER
is also disjoint with IDLEACTIVITY and in particular with SLEEPING. Similarly,
SLEEPING is disjoint with SPORTACTIVITY. These last disjointness relationships
follow from the semantics of “C".
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Central to the ABox reasoning tasks is consistency checking. An ABox A is
said to be consistent with respect to a TBox T, if there is an interpretation Z that
satisfies the knowledge base KB = (T, A). For instance, if SOCIALACTIVITY and
INDIVIDUALACTIVITY are defined as disjoint concepts in the TBox, then asserting
both SOCIALACTIVITY (playingCards) and INDIVIDUALACTIVITY (playingCards)
results in an inconsistent knowledge base. Instance checking is another important
ABox reasoning problem which consists in deciding whether a particular assertion
« is entailed by an ABox A (A |= «). An ABox A entails an assertion « if every
interpretation Z that satisfies A also satisfies «e. Thus, this task can be used to solve
more complex problems such as answering queries. Concretely, it allows to retrieve
all individuals a that belong to a given concept description C' (i.e A = C(a)).
For example one might be interested in finding all social activities that involve at
least 3 participants (SOCIALACTIVITY I > 3hasParticipants). An interesting
variant of this retrieval problem is the realization problem. It computes the most
specific concept(s) that each individual is an instance of. For example, if a knowl-
edge base consists of two concepts ACTIVITY and SOCIALACTIVITY such that
SOCIALACTIVITY C ACTIVITY and two assertions ACTIVITY (playingCards)
and SOCIALACTIVITY (playingCards) then the realization returns the concept
SOCIALACTIVITY.

2.1.2 Log-linear description logic

Despite their advantages, description logics offer very restricted means of express-
ing real-life relationships between concepts. This deficiency is mainly due to the
inability of these purely deterministic formalisms to handle imprecision and un-
certainty. Imprecision and uncertainty are typical aspects of real life applications.
They are particularly accentuated in the domain of sensor-based activity recog-
nition which is characterized by complex, incomplete and erroneous data. Con-
cretely, sensor readings could occasionally become unreliable or even absent and
the same activity could be carried out in different manners. For instance, the activ-
ity “sleeping” could be defined as an “activity which has an actor that is in bed”.

SLEEPING C ACTIVITY [ 3HASACTOR. (2.5)
(PERSON M 3HASLOCATION.BED)

Nonetheless, this description is not accurate enough for real life scenarios. In
fact, sleeping might occasionally take place on the sofa, for instance, instead of
the bed. Thus, to create a realistic model given specific sensing capabilities (here
the location and temporal context only), a more flexible DL-based framework is
urged. Such a framework should support the expression of knowledge with differ-
ent degrees of confidence. Many attempts have recently appeared in this direction
such as probabilistic description logics [Luk08]], fuzzy OWL [Str0S]] and log-linear
DL [NNS11]]. In the following, we explain the principles of the latter, which we
adopt in our proposed system.
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Log-linear DL combines log-linear models [KF09] and DLs [BCM™03] in or-
der to represent and reason about uncertain knowledge. Borrowing the same idea
underlying Markov logic [RDO06], which is explained in Part I of this document, its
syntax is that of description logics except that it is possible to assign real-valued
weights to general concept inclusion axioms (GCIs), role inclusion axioms (RIs),
and assertions. The semantics is defined by a log-linear probability distribution
over coherent and consistent knowledge bases as explained below.

Syntax of log-linear DL

In the following, we use the terms constraint box (CBox) and knowledge base (KCI3)
interchangeably. Moreover, for ease of presentation, we will use the term axiom
to denote general concept inclusions (GCls), role inclusions (RIs), and concept
and role assertions. Similarly to Markov logic, a log-linear knowledge base C =
(CP, V) can be formally defined as a pair consisting of a deterministic knowledge
base CBox CP and an uncertain knowledge base CBox CY = {< ¢, w, >} with
each c being an axiom and w, a real-valued weight assigned to c.

The uncertain CBox CY contains weighted axioms, i.e axioms that might be
violated. Hence, a log-linear K3 may be inconsistent. The greater the weight
of an uncertain axiom, the more confidence there is for it to hold. Revisiting the
definition of the activity “sleeping”, the axiom provided in[2.5]can be extended with
a weight in order to express that sleeping usually, but not necessary, is a subclass
of activities whose actors are in bed (let’s say with weight 1.2). Thus, a CBox
containing that axiom can, for example, also contain two weighted assertions like
“p is a person that is an actor of Sleeping” and that “p does not have location
Bed” with weights 0.6 and 0.9 respectively .

The deterministic CBox CP contains axioms that always hold and is assumed
to be coherent and consistent. For instance, given the axiom defining a “social
activity” as a subclass of “activities that have at least two actors”, it is impossible
to derive that a subject is having a “social activity” by themselves.

Semantics of log-linear DL

The semantics of log-linear DL is based on a probability distributions over co-
herent and consistent knowledge bases. Comparing the log-linear DL axioms to
the Markov logic first order formulae, the definition of this distribution becomes
straightforward; given a log-linear knowledge base C = (CP,CVY) and a CBox C’
with CP € ¢’ C CP U {c: (c,w.) € CY}, we have that

1 <Z ) if C' is coherent
Pre(C) =< Z P\ 2feec\c®y ) and consistent;
0 otherwise

where Z is the normalization constant of the log-linear distribution Prc. Notice
that, based on these semantics, an axiom with weight 0 that is not in conflict with
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any other axiom has the marginal probability of 0.5. This leads to a distribution
compatible with the open-world assumption.

Let us consider the log-linear CBox C = (CP, CY) introduced above and extend
it as follows.

Deterministic CBox CP
c1:  PERSON(p)
ca: BED(D)
c3: COUCH(c)
c4:  SLEEPING(s)
cs: COUCHMBED C L

Uncertain CBox CY

cg: < SLEEPING C ACTIVITY MY HASACTOR.
(PERSON mn3 HASLOCATION.BED), 1.2 >

cr: < HASACTOR(s, p),0.6 >
cs: < HASLOCATION(p, ¢),0.8 >

This CBox C comprises five concept descriptions: ACTIVITY, PERSON, BED,
CoucCH, and SPEELING. It contains also two role descriptions HASACTOR and
HASLOCATION. The last four concepts are instantiated with the individuals p, b, s, ¢
respectively. Moreover, the knowledge base states that “a Couch is not a Bed” (cs),
that “Sleeping is usually an activity of which the actor is in Bed” (cg), that “the
subject p is probably sleeping”(c7) and, finally, that “the subject p is probably on
the Couch” (cg).

Considering this ontology in the traditional context, where all axioms are de-
terministic, would lead to inconsistency. In that case, the given axioms entail that
the subject p must be sleeping on the couch, which contradicts the definition of
the activity “sleeping” supposed to take place in bed. Relaxing Axioms cg — cg by
adding weights to them allows to violate them and resolve the inconsistency. Ac-
cording to the semantics of log-linear DL, only coherent and consistent subsets of
these axioms, which include the entire C, will be possible, i.e. have a probability
greater than zero.

Concretely, the probability distribution over coherent and consistent knowledge
bases is determined based on the following 8 cases.

® The first refers to the case where all uncertain axioms are considered not to
hold, thus, the resulting ontology C’; consists of four assertions (¢; — ¢4)
and the disjointness axiom cs.

® The second case results in a CBox C’ where the activity “Sleeping” is
defined to take place in “Bed” (axiom cg) along with the deterministic CBox
CP.

® The third rejects ¢ and cg. The resulting CBox C's refers to the case where
the actor is sleeping but they don’t have to be in “Bed”, nor the “Couch”.
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® The fourth, C’4 corresponds to the case where the subject is on the couch but
no information is given on whether they are sleeping or not.

® The fifth, C’s, refers to the case where sleeping is defined as an activity
whose actor is in bed and that the subject p is sleeping. Thus, the fact that p
is on the couch (hence not in bed) is omitted.

® The sixth, C’¢, keeps the same definition of sleeping, yet does not state
whether p is sleeping or not. Instead, it states that the subject p is on the
couch.

® The seventh,C’7, excludes the definition of the activity sleeping while stating
that p is sleeping on the couch.

® Finally, the eighth possibility, C’s. is nothing else than the entire CBox C,
which results in an inconsistent knowledge base, and thus, has a zero
probability.

Following the log-linear model introduced above, the probabilities of these knowl-
edge bases can be calculated as follows:

Pre(C1 = {CD}) =Zlexp(0) =~0.04
Pre(C) = {CP, c6}) = Z lexp(1.2) = 0.14
Prc(C4 = {CP, 7)) = Z lexp(0.6) =~ 0.08
Pre(C) = {CP, cs}) =Z1exp(0.8) ~0.1
Pre(Ch ={CP,cs,c7}) = Z lexp(1.8) =~ 0.27
Pre(Cf = {CP,cs,c8}) = Z 'exp(2.0) =~ 0.33
Pre(CL = {CP,cr,c8}) = Z 'exp(1.4) ~0.18

Prc(C% = {CP, cs,c7,c8}) =0

Where Z is a normalization constant calculated as: Z = exp(0) + exp(1.2) +
exp(0.6) +exp(0.8) +exp(1.8) +exp(2.0) +exp(1l.4) =~ 1+3.3+1.8242.22+
6.04+744+4~225

Under the given syntax and semantics, the central inference task is the maxi-
mum a-posteriori (MAP) query, i.e.“Given a log-linear ontology, what is a most
probable coherent and consistent ontology over the same class and property names?”’

The application of the MAP query to the simple ontology shown in the exam-
ple would return the CBox C*, that is coherent, consistent and having the highest
probability. According to the probability distribution presented in the same exam-
ple, the output C* of the MAP inference coincides with the CBox Cf. Hence, the
most probable coherent and consistent ontology is the one that keeps the fact about
the user’s location, i.e. the couch as well as the definition of the activity “sleeping”
as an activity whose actor is in bed, while omitting whether the p is sleeping or not.

Solving the MAP inference in log-linear DL first goes through a transformation
of the knowledge base into a Markov logic network [RDO6]. This permits to use the
well-established inference algorithms developed for the Markov logic formalism
and explained in Part I of this thesis. For a detailed insight into this transformation
procedure, the user is referred to the work of Niepert et al. [NNS11]].
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2.2 Representing multi-level activities with log-linear DL

Raw sensor data often originate from different modalities. It needs to be aggregated
into more consistent conclusions and lifted to higher levels of abstractions, such as
inferring body postures from wearable sensors for instance. Reasoning with the
information collected from these sources necessitates modeling rich semantic rela-
tions. Also, it demands a uniform way of representing heterogeneous information,
including different contextual aspects, e.g. location, body posture, objects, so that
it can be re-used and shared regardless of the underlying sensing technologies.

In this section, we describe our approach for representing human activities at
different levels of granularity using log-linear description logic [NNS11]. Con-
cretely, our model espouses the basic hierarchy underlying activity theory [KN12|
introduced in the preliminaries chapter of this thesis. Activities, actions and oper-
ations are defined as ontological concepts in terms of lower level components that
are required in order to perform them. For example, the action “dishwashing” usu-

LR N3

ally involves the operations “opening the dishwasher”, “putting down the dishes in
the dishwasher”, “closing the dishwasher door” and “turning on the dishwasher”.
The action “dishwashing” is in its turn a component of the definition of the activ-
ity “cleaning up”. Aside from activity, action and operation concepts, other major
entities from the domain are also modeled. This includes the objects the user is
interacting with, the user’s body gestures and postures as well as related properties
to establish temporal relationships between the operations.

To illustrate this structure, we adopt the framework proposed by the European
project “Opportunity” [KHF11] as introduced in Part I, Chapter 3. Its hier-
archical scheme designates the highest level of abstraction (level 1) as Complex
Activities level. This would correspond to “activities” in the activity theory model.
“cleaning up” is an example of a complex activity defined by this framework.

One level lower (level 2), parallel to “actions” in activity theory, the notion of
Simple Activities is introduced. A Simple Activity can refer to an action such as
“get salami” for instance. At this level, the temporal sequence of the underlying
components is especially relevant. Indeed, “getting salami” usually goes through
three operations: first the fridge door is opened, then the salami is fetched before
the fridge door is closed again.

Operations correspond to level 3 and are labeled Manipulative Gestures in
the Opportunity framework. They, themselves, can still be represented in terms
of even finer grained gestures translating body movements linked to the objects
used by the subject. For instance, the Manipulative Gesture “fetch salami” can
be fragmented into “reach salami” and “move salami”. Such gestures are denoted
as Atomic Gestures and constitute the finest grained level in the framework, i.e.
level 4.

Using log-linear DL, we model the presented multilevel structure as follows.
Central to our ontology, is the class PERSON representing the subject carrying
out the different activities. A person interacts with their environment through
their arms, represented by a class ARM and/or their body posture, referred to as
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LocoMOTION TYPE. The arms allow the subject to use objects, which are repre-
sented by a class OBJECT. The manner the user’s arms manipulate the objects is
described through the class FUNCTION. Thus, and as shown in Example[§] increas-
ingly complex activities can be iteratively defined in terms of simpler ones based
on the properties linking the ontology classes. These classes and the properties
linking them are depicted in Figure[2.1]

Example 8. The Complex Activity CLEANUP can be defined as a subclass of the
concept COMPLEX ACTVITY whose actor is a person having PUTAWAYMILK as
“Simple Activity”.

CLEANUP C COMPLEXACTIVITY N JHASACTOR. (2.6)
(PERSON mnd DOESSIMPLEACTIVITY.PUTAWAYMILK)

The “Simple Activity” PUTAWAYMILK can be, in its turn, defined as a “Simple
Activity” whose actor is a PERSON that has the “Manipulated Gesture” PUTDOWNMILK.

PUTAWAYMILK C SIMPLEACTIVITY M 3HASACTOR. 2.7)
(PERSON = DOESMANIPULATIVEGESTURE.PUTDOWNMILK)

The entity PUTDOWNMILK can now be defined in terms of the “Atomic Ges-
ture” REACHMILK. This latter class is described as an ATOMICGESTURE that
has an actor a PERSON which has an ARM with function REACH and object MILK.

PUTDOWNMILK C MANIPULATIVEGESTURE 1 3HASACTOR. (2.8)
(PERSON mE= DOESATOMICGESTURE.REACHMILK)

REACHMILK C ATOMICGESTURE N dHASACTOR. (2.9)
(PERSON M IHASARM. (ARM I

JHASFUNCTION.REACH M 3 USESOBJECT.MILK)

The described structure presents the basic idea behind our multi-level model.
Nonetheless, it is too simple to comply with real life human activities. First, ac-
tivities can not be merely defined in terms of finer grained ones, since the same
operation can be a component of two or more distinct activities. In our frame-
work, and as illustrated in Figure [2.2] for example, being involved in the Simple
Activity “put away milk” can either mean that the subject is “cleaning up” or that
they are “having a coffee”. Second, the temporal sequence of actions and opera-
tions is essential to the definition of several activities and actions. For example,
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the Simple Activity “get milk” is usually distinguished by first “opening the fridge”
then “fetching milk”. The same operations carried out in the inverse order would
refer to the opposite Simple Activity “putaway milk”. Among the four granular-
ity levels proposed in our model, Simple Activities are especially sensitive to the
temporal sequence of their components. However, the description logic underly-
ing log-linear DL [NNS11] is OWL2, which does not natively support temporal
reasoning. Therefore, we adopt an ad-hoc method based on an ontology pattern
that allows the representation of triadic properties. Concretely, we introduce a
class T-MANIPULATIVEGESTURE, having three properties to represent the actor,
the performed Manipulative Gesture, and its order of execution. Thus, the Simple
Activity GETMILK can be describes as in indicated in Example [9]

Example 9. The “Simple Activity” “GETMILK " defined as a sequence of “OPENFRIDGE”
then “FETCHMILK” would then be defined through the following axiom

GETMILK C SIMPLEACTIVITY I (2.10)
JHASACTOR. (PERSON M 3dHAST-MANIPGESTURE.

(T-MANIPULATIVEGESTURE I
JHASMANIPGESTURE.OPENFRIDGE
MIHASORDER = 1) M
dHAST-MANIPGESTURE.
(T-MANIPULATIVEGESTURE I
JHASMANIPGESTURE.FETCHMILK
M3IHASORDER = 2)))

Incorporating temporal sequences in the activity model draws it closer to real
world scenarios. Yet, it is very common that the same activity is carried out in
different manners. For example, while “getting milk™ is often invariable, “putting
away milk”, on the opposite, might either go through “opening the fridge” first
then “fetching the milk™ or the other way around. In order to keep the fridge’s
door closed as long as possible, it is more probable that the subject first “fetches
the milk” then “opens the fridge”. Hence, these temporal sequences are not de-
terministic and require uncertainty support. The same holds for the ambiguity of
interpretation of finer-grained activities in terms of coarser-grained one. Indeed
the fact that the same operation can often contribute to conflicting actions (i.e.,
actions that cannot be executed at the same time) would lead to the contradictory
conclusion that the subject is involved in both of them.

Log-linear DL allows to cope with these obstructions. By introducing weighted
axioms as concept description. The weighted axioms compose our uncertain CBox
CY, while we express the incompatibility of certain activities as disjointness axioms
in the deterministic CBox CP. As shown in Example the axioms weights can be

Zhttp://www.w3.0rg/TR/2004/WD-swbp-n-aryRelations-20040721/
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manually defined based on background knowledge, or can be automatically learned
from a training set of performed activities (see next Chapter for more details).

Example 10. Revisiting Level 3 (Manipulative Gesture) of the sample multi-level
structure illustrated in Figure the corresponding uncertain CBox CY includes
of the following axioms:

FETCHMILK C MANIPULATIVEGESTURE 1 JHASACTOR. (2.11)
(PERSON 3 DOESATOMICGESTURE.MOVEMILK), 0.9

FETCHMILK C MANIPULATIVEGESTURE ' 3HASACTOR. (2.12)
(PERSON 3 DOESATOMICGESTURE.REACHMILK), 1.2

PUTDOWNMILK T MANIPULATIVEGESTURE N 3HASACTOR. (2.13)
(PERSON 3 DOESATOMICGESTURE.MOVEMILK), 0.9

PUTDOWNMILK = MANIPULATIVEGESTURE 1 JHASACTOR. (2.14)
(PERSON I 3 DOESATOMICGESTURE.RELEASEMILK), 1.2

The corresponding deterministic CBox CP consists of the following axiom:

PUTDOWNMILK N FETCHMILK C L (2.15)

The main components of the introduced multi-level activity ontology are reca-
pitulated in Figure 2.1 and the entire ontology is attached as appendix. Based on
this model, we describe our ontology-based technique to recognize human activi-
ties at different levels of granularity in the next section.

2.3 Recognizing multi-level activities

Given the probabilistic ontology described above, we can reason about the input
sensor data in order to infer the user’s operations, actions and activities in real
time. As imposed by real-life scenarios, our recognition method is not limited to
sequential performance of activities but also covers concurrent ones.

Concretely, raw sensor data is segmented and classified into higher level infor-
mation using statistical methods. The output is linked to properties of our ontology
in order to map the user’s situation to a computational model and automatically
reason about it. Given a specific situation in which the user is performing par-
ticular movements and interacting with particular object(s), we can assume that
there is one or more unknown operations that have generated the observed situa-
tion. This concept of unknown operation is defined as an operation whose actor
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doesCompIexActlvny

/
hasLocomotionType hasAct ComplexActIVIty
asActor

- doesSimpleActivity

hasActor SimpleActivity

i doesManipultaiveGesture

\ hasActor ) )
\ ManipulativeGesture

hasT-ManipulativeGesture hasManipulativeGesture
\ i
. ) )
E T-ManipulativeGesture
hasOrder

Figure 2.1: The core classes (represented as nodes) and properties (edges) of our multi-
level activity ontology. It includes classes PERSON, ARM, FUNCTION and OBJECT to
represent the user and their “arm functions” (e.g., push, pull, ...) as well as the used
objects detected by the wearable and environmental sensors. The HASARM property re-
lates each instance of class PERSON to their ARMS, and hence, to the sensor observations
by properties HASFUNCTION and USESOBJECT. The ontology includes an extensive col-
lection of Atomic Gestures (Level 4), Manipulative Gestures(Level 3), Simple Activities
(Level 2) and Complex Activities (Level 1). As explained earlier, each of these classes is
described in terms of finer grained ones, i.e. classes from the next level. Simple Activities,
in particular, are defined in terms of the temporal sequences of Manipulative Gestures and
modes of locomotion of the actor. We adopt an ontology pattern to keep track of those
sequences, using the T-MANIPULATIVEGESTURE class and its HASORDER property.

LocomotionType
*& hasArm

hasFunction ~ usesObject

is performing the observed sensor data. For instance, in the case of the “Opportu-
nity” framework, specific gestures and postures of the user such as “reach”, “move”
and “lie” are inferred from wearable sensors like accelerometers and gyroscopes.
The interaction with surrounding objects is detected via RFID tags and wearable
RFID readers. Hence, the activation of sensors placed on a milk’s bottle, for ex-
ample, are fed into the ontology through the property usesObject(Milk), meaning
that milk has been used. Similarly, the property hasFunction(Reach) links the ob-
served movement “reach” to the ontology. The unknown operation is then defined
as an “operation whose actor is reaching their hand and interacting with milk”. If
some operation concept(s) have been defined by this set of operation properties ,
e.g., FetchMilk, then that operation(s) can be deemed as the type of operation(s)
for the perceived context, provided they are not contradictory. In the case of in-
compatibility (e.g. “open fridge” and “close fridge”), the operation(s) that lead to
the most probable coherent ontology are selected. The same principle is employed
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“Complex Activities”
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Figure 2.2: An example of the multi-level activities from the “Opportunity” frame-
work [KHF™11]]. The framework comprises four levels of granularity. While level 4
corresponds to the sensor data, level 3, 2and 1 depict the operation, action and activity
levels respectively. In the Opportunity framework, these levels are referred to as Manip-
ulative Gesture, Simple Activity and Complex Activity.“move milk” and “reach milk” are
two examples of Manipulative Gesture.“Move milk” can either indicate that the user is
“putting down milk” or that they are “fetching milk”, but not both simultaneously due to
the disjointness of the two actions. Adding weights (e.g. w;) to the concept descriptions
allows to model such inconsistent knowledge bases as explained below.

to recognize action(s) from the inferred operation(s) as well as activity (ies) from
inferred action(s).

Thus, conceptually, the recognition problem can be mapped to the classifica-
tion of the activity description using the multi-level activity ontology as classifier.
Technically, it amounts to the task of subsumption reasoning with Description Log-
ics (i.e., to decide whether a concept description created from sensor observations
is is equivalent a concept definition within the activities model).

The following sections provide a detailed description of the recognition steps
at the levels of operations (Manipulative Gesture), actions (Simple Activity) and
activities (Complex Activities).
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2.3.1 Recognizing operations (Manipulative Gestures)

Recall that operations, which are referred to as Manipulative Gestures in the “Op-
portunity” framework, are recognized based on the so called Atomic Gestures (e.g.
“reach milk™), which are a straightforward combination of the used artifact (e.g.,
“milk™) and the movement inferred from body worn sensors (e.g. “reach”). Dur-
ing a predefined time window 73, the performed body functions and used objects
are first represented as ontological classes and assertions and added to the proba-
bilistic ontology. Then, the resulting Atomic Gestures are linked to the actor via
the properties hasFunction and usesObject. For each of these Atomic Gestures a
new axiom is added to the deterministic CBox of the log-linear knowledge base.
As explained above, this axiom describes the unknown Manipulative Gesture(s)
(UNKNOWNMG) being carried out by the actor. The unknown Manipulative Ges-
ture is defined in terms of the Afomic Gestures performed by the actor. For the
example where the actor is observed to be engaged in “reaching milk”, the follow-
ing axiom is added:

UNKNOWNMG = MANIPULATIVEGESTURE N JHASACTOR. (2.16)
(PERSON r ElDOESATOMICGESTURE.REACHMILK)

After adding these observations, the resulting ontology may be inconsistent.
For example, according to the multilevel activity structure, the set of Atomic Ges-
tures performed during 73 may lead to the derivation of two (or more) disjoint
Manipulative Gestures, i.e. Manipulative Gestures that cannot be executed at the
same instant, like “open fridge” and “close fridge”. Inconsistencies are resolved by
computing the most probable consistent and coherent ontology C* as explained in
the previous section. The Manipulative Gestures performed during the time win-
dow 73 are then inferred through standard subsumption and equivalence reasoning
on C*. These steps are summarized in Algorithm 2]

Note that collecting operations within a time window creates a semantic context
that helps address the ambiguity of interpretation of these operations regardless of
their temporal order. As example, let us consider the scenario where a person
is performing the two operations “move milk” and “reach milk” during a time
window of duration 73. As illustrated in Figure[2.2] “move milk” can either indicate
that the user is “putting down milk” (axiom; with weight w;) or that they are
“fetching milk” (axioms with weight ws), but not both simultaneously due to the
disjointness of the two actions. Given that the observed operation “reach milk” is
only involved in action “fetch milk” (axioms with weight ws) but not in action
“put down milk”, the log-linear model will attribute a higher probability to the
ontology where azioms and axioms hold, but not axiom;. Thus, “move milk” is
interpreted in the context of the operation “reach milk” since they both happened
during the same time window.
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Algorithm 2 Recognizing Operations (Manipulative Gestures)

elapsedTime < O;
S <+ 0;
for all New Atomic Gesture AG do
while elapsedTime < 75 do
S + SUAG;
Update elapsedTime;
end while
for all AG € S do
newAxiom < "UNKNOWNMG = MANIPULATIVEGESTURE T[]
JHASACTOR. (PERSON mn4 DOEsATOMchESTURE.AG)”;
C + CUnewAxiom;
end for
C* <+ M APQuery(C);
C*s < subsumptionChecking(C*)
for all MG T MANIPULATIVEGESTURE in C*5 do
if MG = UnknownM anipulativeGesture then
return MG
end if
end for
Reset elapsedTime;
S« 0
end for

2.3.2 Recognizing actions (Simple Activities)

Similar to the recognition of operations (Manipulative Gestures) from sensor ob-
servations, the predicted operations are used to create a class description of the
concept “unknown Simple Activity” UNKNOWNSA. However, instead of deleting
the current collection of Manipulative Gestures, these are stored in a buffer as long
as no Simple Activity has been recognized. In particular, from one time window
to the next, the order of each buffered Manipulative Gesture is updated accord-
ingly. Since in our ontology the longest sequence composing a Simple Activity
consists of four Manipulative Gestures these can have a maximum order of four
before they are deleted from the buffer. Once a Simple Activity concept is found
to be equivalent to the UNKNOWNSA class description, the axiom explaining that
equivalence is retrieved. If no equivalent classes are found, the buffer is updated by
pushing the new Manipulative Gestures and deleting the oldest one(s). We refer to
the time window covering these buffered Manipulative Gestures as . A detailed
description of these recognition steps is depicted by Algorithm 3]
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Algorithm 3 Recognizing Actions (Simple Activities)

elapsedTime + 0;
S <+ 0;
Buf fer B;
for all predicted M anipulative Gesture MG do
while Greatest — MG — Order < 5 do
push M Gsinto B;
Increment maximumOrder;
end while
for all MG € B do
newAxiom < description of concept UNKNOWNSA using B
C + CUnewAxiom;
end for
C* <+ M APQuery(C);
C*s < subsumptionChecking(C*)
for all SA C SIMPLEACTIVITY in C*; do
if SA = UNKNOWNSA then
return SA
end if
end for
end for

2.3.3 Recognizing activities (Complex Activities)

As indicated by Algorithm[d] the process of recognizing activities from actions (i.e.
Complex Activities from Simple Activities) undergoes similar steps as the recogni-
tion of operations (i.e. Manipulative Gestures). Here, the Simple Activities are
collected over a longer time window 7;. During that time, several Simple Activ-
ities might be performed. The resulting context helps discriminate between the
corresponding Complex Activities and allows the omission of intra-activity tem-
poral relationships while keeping a reasonable recognition performance (see next
Chapter for results).
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Algorithm 4 Recognizing Activities (Complex Activities)

elapsedTime < O;
S+ 0;
for all Recognized Simple Activity SA do
while elapsedT'ime < 11 do
S+ SUSA;
Update elapsedTime;
end while
for all SA € S do
newAxiom <+  "UNKNOWNCA =  COMPLEXACTIVITY T[]
JHASACTOR. (PERSON 1 IDOESSIMPLEACTIVITY.SA)”;
C + CUnewAxiom;
end for
C* <+ M APQuery(C);
C*s « subsumptionChecking(C*)
for all CA T COMPLEXACTIVITY in C*; do
if CA = UNKNOWNCA then
return C'A
end if
end for
Reset elapsedTime;
S <+ 0;
end for
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Evaluation and Results

In order to evaluate the approach described in the previous chapter, a prototype
system has been implemented. The evaluation experiments have been carried out
using a real-life dataset collected in the context of the EU research project “Ac-
tivity and Context Recognition with Opportunistic Sensor Configuration” (“Op-
portunity”) [KHFT11]] ﬂ In this chapter we describe our framework, present the
evaluation experiments then report and discuss the obtained results. Additionally
to the results published in [HRS13]], this chapter leverages some new content such
as the introduction of two baselines and an approach to learn log-linear axioms
weights.

3.1 Evaluation dataset

Recall from Part I, Chapter 3 that a total of of 72 sensors with 10 modalities have
been deployed in the context of the “Opportunity” project. The testbed simulates
a studio flat where a naturalistic collection process of a morning routine has been
carried out by several users. As visible in Figure the deployed sensors can be
classified into wearable sensors (e.g. accelerometers) and environmental sensors
(e.g. RFID tags and readers). The worn sensors are used to detect the postures of
the users and the movements of their hands (e.g. “lie”, “reach”). The environmental
sensors indicate which objects the user is manipulating (e.g. “Knife”). Whereas
the dataset provides this inferred information, it only includes the annotation for
the highest level of activities (i.e. Complex Activities). We have completed the
annotation task for three different subjects S10, S11, and S12 with three different
routines each (ADL1 — 3). The annotation task has been accomplished by three

"http://www.opportunity-project.eu
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Figure 3.1: Illustration of a typical portion from the multilevel structured activities. This
shows a high concurrency degree. As it can be depicted, the user can be simultaneously
involved in “Fetch Glass”, “Close Fridge” at level3, and “Drink from Glass”, “Get Bottle”
at level 2

other persons. The resulting diversity has inevitably impacted the consistency of
data. While labels have been attributed to events at each level of granularity, they
do not cover all entries, leaving some sensor observations with no annotation at
one or more levels.

Figure [3.1]depicts a sample from the collected and annotated data. In the illus-
trated sequence, the user is first engaged in the Complex Activity “sandwich time”
then they start “cleaning up”. This is indicated by the asterisks plotted in the up-
per strip of the figure. In the following strip, the Simple Activities are represented
by circles. According to these, the user mostly carries out two Simple Activities
concurrently. For instance, around time point ¢ + 11 they “get a cheese knife” and
“get a salami knife” at the same time (each with one hand). Some time later, they
“get a bottle” and start “drinking from glass” without “releasing the bottle”. Fi-
nally, after few activities omitted in the figure, they “put down the cheese knife”
as well as the “salami knife” simultaneously. Similarly, Manipulative Gestures are
also highly concurrent. For instance, according to the plotted lozenges, the user is
still “fetching the salami knife”” with one hand while “closing the drawer” with the
other.

Regardless of their granularity level, about 150 activities have been considered
during the data collection. Among those, 40 belong to Manipulative Gestures level,
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Figure 3.2: Axiom definition for PutlnDishwasher in the Protégé editor [HRS13|]

21 to the Simple Activities level. The Complex Activities set comprises “Clean
up”,“Coffee time”, “Relaxing” and “Sandwich time”.

3.2 Implementation and experimental setup

Our proposed system presents two major components. The first consists of the
log-linear ontology which models the domain of discourse. The second provides
a java-based framework to parse the ontology and augment it with the input data,
initiate the reasoning process and output the inferred activities. The following
sections describe the proposed framework and the performed experiments.

3.2.1 Framework description

Following the “Opportunity” structure, our log-linear ontology has been devel-
oped using the Protégé OWL editor [KENMO4]. The activity classes and axiom’s
weights have been defined by observing the data of user S10. Concretely, the
weights are encoded by attaching the annotation property confidence to the corre-
sponding axioms. An example illustrating the definition of PUINDISHWASHER as
shown in the Protégé editor is captured in the snapshot depicted in Figure

For parsing the ontology, our prototype system relies on the OWL-API?| Fol-
lowing the algorithms delineated in the previous Chapter, the program starts by as-
serting an instance of PERSON representing the current individual to the ontology.
Using the input data collected within a time window of 73 = 1s the classes ARM,
FuNCION and OBJECT as well as the the corresponding properties are instantiated

2http://owlapi.sourceforge.net/
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accordingly. Once the elapsed time at starting point exceeds 73, the reasoning pro-
cess described below is triggered.

Based on the observed instances, the resulting Atomic Gestures are first added
to the ontology and used to introduce the UNKNOWNMG class concept to the
probabilistic ontology. We use the Elog reasoner [NN11] to output the most
probable coherent and consistent one. Concretely, the reasoner solves the MAP
inference task by transforming the input log-linear knowledge base in a Markov
logic knowledge base and inferring the MAP state using the Markov logic solver
ROCKIT [NNS13f]. After the execution of ROCKIT and, thus, solving the ILP
problem, ELOG translates the retrieved MAP state back to ontology axioms and re-
turns a materialized OWL ontology [Noel4|]. To guarantee the consistency and co-
herency of the returned solution, Elog iteratively queries the Pellet reasoner [SPG ™07
to derive explanations for emerging incoherences or inconsistencies and adds those
as new constraints to the ILP. The new problem is solved and the process is started
over again until all inconsistencies and incoherences are resolved. The resulting co-
herent and consistent ontology serves again as input for the Pellet reasoner to infer
the equivalent class(es) to the introduced “unknown class”. The obtained classes
represent the predicted Manipulative Gestures during the given time window. At
the next sensor input, the collected data is deleted and the whole collection-reasoning
process is triggered again. In order to reduce the complexity of this process, we
dynamically discard the axioms that do not involve the currently observed input
and reason with a subset of the axioms.

The obtained Manipulative Gestures are collected and introduced to the ontology
through new axioms describing the UNKNOWNSIMPLEACTIVITY concept. As
long as no Simple Activity is inferred, the whole process is repeated up to 4 times.
Once a Simple Activity S A; is found to be equivalent to the unknown simple activ-
ity concept, the system retrieves the axioms explaining that equivalence using the
Pellet’s explanation feature. This allows to identify the number n, n € {1,...,4} of
Manipulative Gestures time windows 73 involved in recognizing S A;. The recog-
nition results are then completed retroactively by attributing SA; as one of the
predicted Simple Activities over the last n 73 time windows.

Finally, Complex Activities are recognized using the Simple Activities collected
during a time window 7 = 30s. The lengths of the respective time windows
Ti,i € {1,2,3} have been estimated from the data used to create the ontology.
Figure recapitulates the rationale behind the recognition process by sketching
the major steps implemented in our prototype .

3.2.2 Experiments and evaluation

We have conducted three sets of experiments in order to evaluate our approach.
Each set corresponds to the data generated by one of the three available subjects,
i.e. 510, S11 and S12. For each set, we have applied our recognition algorithm

3https://code.google.com/p/elog-reasoner/
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Figure 3.3: Schema of the proposed recognition framework: our prototype implements
three phases in order to recognize multi-level activities. The first consists in integrating the
pre-processed sensor data into the log-linear ontology along with a new unknown activity
concept which models the activity(ies) to be predicted. The second runs the log-linear DL
reasoner on the resulting ontology to obtain the most probable one. The third applies the
DL reasoner Pellet to reason about the Elogs’ output, in order to infer implicit knowledge
about the activity concepts equivalent to the unknown activity concept. Those correspond
to the recognition results for the finer grained level. Following the same steps explained
above, these are in their turn integrated into the log-linear ontology in order to recognize
coarser grained activities

to three daily routines, i.e. ALD1, ADL2 and ADL3. Additionally, we have
carried out the same set of experiments using two baseline approaches. Their
basic idea consists in reasoning with the classical non-probabilistic version of the
activity ontology. Theoretically, in the absence of any support for uncertainty in
our framework, one of the following two situations should appear at each time
window: situation (1) either the input contains no confounding components and the
introduced UNKNOWNACTIVITY class can be, thus, mapped to the corresponding
activity(es) or situation (2) it does, and results in a set of disjoint activities, making
the added UNKNOWNACTIVITY class unsatisfiable.

Nonetheless, simply using the weight-free version of the original log-linear
ontology in the recognition process would still result in an unsatisfiable UNKNOW-
NACTIVITY concept even in the second situation. Indeed, as soon as the user is
engaged in any activity that shares one or more of its definition axioms with its dis-
joint counterpart, the UNKNOWNACTIVITY class will be equivalent to those two
disjoint classes and, hence, unsatifiable. Thus with such an ontology, the system
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only returns a non-empty output for those time windows where the user in only
engaged in an activity that has no disjoint classes. Given that only 10% of the
Manipulative Gestures do not have a disjoint class and that the execution of the
different activities is well balanced throughout the datasets, the recognition results
(average Fl-measure) are, in that case, as low as 0.15 for Manipulative gestures,
0.06 for Simple Activities and 0.27 for Complex Activities. To avoid this, we pro-
pose the following two alternatives, where the first addresses situation (1) and the
second addresses situation (2) as detailed below.

Baseline 1: using subsumption axioms instead of equivalence In this baseline
we change the definition (equivalence) axioms to subsumption axioms. Thus, and
as illustrated in Figure the Manipulative Gesture “fetch milk” for example,
would be a superclass of the two anonymous classes “Manipulative Gesture which
has an actor is performing the Afomic Gesture move milk” and “Manipulative Ges-
ture which has an actor is performing the Atomic Gesture reach milk”. Since the
pellet reasoner would skip unnamed classes, these would be only considered in the
reasoning when an UNKNOWNMG class in added as equivalent to those unnamed
class expressions (i.e. “Manipulative Gesture which has an actor is performing
the Atomic Gesture move milk” or “Manipulative Gesture which has an actor is
performing the Atomic Gesture reach milk” in our example).

Thus, given a time window w, if the user is engaged in the Atomic Gesture
“move milk”, which would result in the two disjoint Manipulative Gestures, ‘“fetch
milk” and “put down milk”, then the system’s output would be null. However, if
the user is engaged in the Atomic Gesture “reach milk”, that is only part of the
Manipulative Gesture “fetch milk”, then the system still returns “fetch milk” as
recognized Manipulative Gesture. Thus, the difference between this approach and
the one with the equivalent axioms (i.e. the weights-free version of the original
log-linear ontology) is that this approach models two disjoint activity classes in a
way, that they are not always unsatisfiable, but only then, when the user is engaged
in one common component, i.e. “move milk” in the above example.

After creating this static ontology variant, we alter the recognition process by
skipping the log-linear reasoning (i.e. the Elog reasoner) and directly applying
subsumption check to derive the direct superclasses of the unknown Manipulative
Gesture, Simple Activity or Complex Activity.

Baseline 2: removing disjointness axioms In order to implement situation (2)
explained above, this baseline approach creates another variant of the original log-
linear ontology by removing the disjointness axioms. Thus, in each time window
where the system can not decide whether the user is carrying out an activity or
its opposite, this approach outputs both. In our “fetch milk” example, this method
would recognize both “fetch milk” and “put down milk” in any time window where
the user is “moving milk” and “reaching and/or releasing milk”.
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Figure 3.4: Example class description of the Baseline 1 ontology: In order to avoid the
unsatisfiability of the unknown user classes, we alter the class descriptions by using sub-
sumption axioms instead of equivalence ones. the Manipulative Gesture Fetch Milk would
be then a superclass of two possible descriptions.

In order to evaluate the prediction output of the explained experiments, we first
reproduce the same windowing technique on the ground truth and obtain a set of
Manipulative Gestures for each 75 time window, a set of Simple Activities for each
To time window and a set of Complex Activities for each 7 time window. Then we
compare those to the set of predicted activities at the corresponding time windows.
Based on this, we compute the precision, recall and F1-measure as explained in the
Preliminaries Chapter.

3.3 Results and discussion

We depict the results of our multi-level recognition framework in Table[3.1} Given
that the ontology has been created using data from the user 510, the first column
represent user-dependent evaluation. User-independent evaluation is reported in
the second and third columns using the data of user S11 and S12 respectively. The
rows correspond to the three levels of abstraction adopted in our activity model. For
each subject, we calculate the mean values of the precision, recall and F1-measure
over the three routines (ADL1, ADL2 and ADL3) as well as the corresponding
standard deviations o.

For a compacter representation of the results, Table [3.2] portrays the overall
average performance for each granularity level using the entire data. Despite the
variability of the collected data due to involving different users and different an-
notators, our system delivers comparable performance levels, i.e. relatively small
sigma values. Accordingly, the reported results validate the robustness of the ap-
proach under user-independent setting.
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Generally, the system is highly precise independently of the granularity level.
However, while the obtained recall values are acceptable for Manipulative Gesture
and Complex Activities, the system seems to miss a relatively significant number of
Simple Activities. This limitation has several reasons. On one side, the erroneous
and missing predictions from the Manipulative Gesture level most probably vio-
late an entire Simple Activity sequence. Now, since Simple Activities usually spread
over two, three or four Manipulative Gesture time windows, each wrong predic-
tion at the Manipulative Gesture level probably results in one, two, three or even
four missing predictions at the Simple Activity level. For instance, if the ground
truth contains the following Manipulative Gesture sequence: {(“OpenFridge”, t),
(“FetchMilk™, ¢ + 1), (“CloseFridge”, t + 2)}, which corresponds to the follow-
ing sequence at the Simple Activity level: {(“GetMilk’, ¢*), (“GetMilk”, t + 1),
(“GetMilk™, t 4 2)}, then any error in the Manipulative Gesture sequence probably
leads to a non-existent Simple Activity sequence and will consequently lead to three
Simple Activity false negatives. Given that the user operates with two hands, such
scenarios are very likely. In particular, the user might be still touching the “Fridge”
while “fetching the milk”, which alters the sequence into the following: “Open-
Fridge”, “FetchMilk”, “OpenFridge”, “CloseFridge” and inhibits the recognition
through the defined axiom. This shortcoming can be alleviated by adding fur-
ther weighted axioms defining the same Simple Activity using all partial sequences
of Manipulative Gestures. For the example given above, this corresponds to, for
instance, adding further weighted axioms defining “GetMilk” in terms of subse-
quences such as {“OpenFridge”, t, “FetchMilk”, ¢t + 1}. Consequently, if the the
system fails in recognizing “CloseFridge” at ¢ + 2, the system would still be able to
output the correct Simple Activity for ¢t and ¢ + 1. Our system already implements
some of these axioms. However, extensively specifying all the different sequences
of Manipulative Gestures that may characterize Simple Activities is infeasible due
to the limited temporal reasoning support related to the adopted formalism.

Despite the low recall at Simple Activities level, Complex Activities have been
recognized with a relatively high Fl-measure (i.e. 0.75). This can be explained
by the fact that the set of Complex Activities is limited to 4 disjoint classes, which
can be discriminated by “key”, highly weighted Simple Activities. For example,
the Complex Activity “Clean up” can be strongly discriminated from the other
Complex Activities by key Simple Activities such “put in dishwasher”. Hence, the
weighted axiom defining “Clean up” in terms of “put in dishwasher” will be highly
weighted and will allow the correct recognition of that complex activity. Even
if the system fails in recognizing several Simple Activities within a given 7; time
window, it is highly probable that the correct Complex Activity is still recognized
thanks to the high precision of the predicted Simple Activities.

Comparing these results to those of the baselines introduced in the previous
section reinforces the viability of our framework. As visualized in Figure [3.5]
Baseline 1 yields a high precision but very poor recall whereas Baseline 2 does
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Table 3.1: Recognition results for the three subjects S10, S11 and S12. The values cor-
respond to the average values over three morning routines of each subject. The standard
deviation between these routines is symbolized by o.

Subject S1I0 | Subject S11 Subject S12
Complex Precision 0.9(c0.038) | 0.92(0.025) | 0.92(50.06)
Activity Recall 0.58(c0.114) | 0.71(c0.05) 0.65(c0.08)
Fl-measure || 0.7(c0.088) 0.8(c0.041) | 0.76(c0.074)
Simple Precision 0.87(c0.045) | 0.82(c0.075) | 0.88(c0.029)
Activity Recall 0.4(00.054) | 0.37(c0.008) | 0.5(c0.051)
Fl-measure || 0.55(c0.042) | 0.51(c0.021) | 0.64(c0.042)
Manipulative Precision 0.87(c0.017) | 0.84(c0.206) | 0.84(c0.021)
Gesture Recall 0.82(¢0.193) | 0.79(c0.031) | 0.82(c0.21)
Fl-measure || 0.85(c0.017) | 0.81(c0.024) | 0.83(c0.016)

Table 3.2: Average recognition results over three routines for subjects S10, S11 and S12.
Each subject was evaluated using three different routines.Only the data generated S10 was
considered to build our ontology and define its axioms. The variation (o) between the
results of respective users is also reported.

All Users || Manipulative Gestures || Simple Activities || Complex Activities
Precision || 0.85(c 0.01) 0.86(c 0.02) 0.91(c 0.01)
Recall 0.81(c 0.01) 0.42(¢ 0.05) 0.65(0 0.04)
Fy 0.83(c 0.01) 0.57(0 0.05) 0.75(c 0.03)

the opposite for the recognition of Manipulative Gestures. This is an expected out-
come given that Baseline 1 skips all time windows where both an activity and its
disjoint opposite could be implied, hence the high precision and low recall. Re-
versely, Baseline 2 outputs all candidate activities even if those include opposite
pairs, hence the high recall and low precision. These values give an insight into
the challenges imposed by the Opportunity dataset. In particular, it indicates that
only around 20% of the time intervals are unambiguous and can be directly cor-
rectly mapped to the correct Manipulative Gesture. It also reveals that almost half
the time windows do have more than one interpretation and can not be straightfor-
wardly mapped to a Manipulative Gesture. The resting 30% refer to time intervals
that happen to contain two opposite Manipulative Gestures. Those explain the dif-
ference between the recall level of Baseline 1 and Precision level of Baseline 2. Our
approach proposes a trade-off between both baselines and reaches a significantly
higher F1-measure than those. It allows to address the ambiguous time intervals
thanks to the probabilistic feature of the ontology and reasoning routine.

At the Simple Activities level, the recognition performance is remarkably low
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for both baselines. They both perform poorer than our framework, as shown in
Figure Given the very low recall of the Manipulative Gesture recognition
achieved by Baseline 1, that method would fail in recognizing almost all Simple
Activities since these require a sequence of correctly predicted Manipulative Ges-
tures. Whereas the recall value of Baseline 2 is comparable to the one of our
framework, it is significantly less precise than our approach. This can be explained
by the fact that several opposite Simple Activities share similar sequence patterns
for opposite Manipulative Gestures. Thus, if two opposite Manipulative Gestures
are recognized within one time window, these would probably result in the pre-
diction of two opposite Simple Activities according to Baseline 2. Hence the high
number of false positives compared to our approach.

Finally, Figure [3.7| presents the recognition results at the Complex Activities
level. At that level, our approach considerably outperforms both baselines in terms
of recall and precision.

3.4 Work in progress and future work

We are currently considering further modelling techniques to address incomplete
data. This can be realized by adding category classes such as “use fridge” as a
superclass for all the Atomic Gestures involving the object “fridge” such as “open
fridge” or “close fridge”. Such an approach would allow to avail of the subsump-
tion semantics and derive inferences of composite activities even if the correct
“gesture” is missing from the sensor observations. Further improvement sugges-
tions could also include adding weights to the disjointness axioms of our log-linear
ontology. This might improve the results by possible addressing the occasional
co-occurrence of opposite activities withing one time window.

We additionally investigate two further directions for future work. The first
is the automatic estimation of the axiom’s weights from data and the second is a
holistic approach to recognize the three levels of granularity instead of the current
sequential approach.

Automatic estimation of the axiom’s weights: In order to alleviate the mod-
eling effort, we propose to automatically learn the axioms weights from the data.
This can be done by creating the equivalent Markov logic network and using the
existing learning algorithms such as voted perceptron [SD05]. We have applied
this idea to the recognition of Manipulative Gestures. Concretely, we have defined
the Markov network depicted in Table [3.3] where we model the operation carried
out by the user as well as the object the user is interacting with, separately. We
define two types of operations: AG_Operation , i.e. operations corresponding to
the observed Afomic Gestures and MG_Operations, i.e. operations that correspond
to the hidden Manipulative Gesture. The proposed Markov network lifts the ontol-
ogy axioms defining the Manipulative Gestures by making statements about sets
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Figure 3.5: Manipulative Gestures recognition performance compared to baseline results:
As expected, Baseline 1 yields a high precision but very poor recall whereas Baseline 2
does the opposite. Our approach proposes a trade-off between both and reaches a signifi-
cantly higher F1-measure
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Figure 3.6: Simple Activities recognition performance compared to baseline results: the
effect of the limited temporal reasoning support in the adopted formalism can be seen in
the low recognition performance for simple activities reached by our approach as well as
the two baselines. The temporal sequences modeled in the ontologies are highly sensitive
to the performance level of the recognition of the Manipulative Gestures. Also at this level
our method outperforms both baselines
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Figure 3.7: Complex Activities recognition performance compared to baseline results:
similarly to the Manipulative Gesture level, the expected performance of Baselines 1 and 2
is depicted in the respective low recall/high precision and high recall/low precision results.
Given the better recognition results of the two other levels, our method outperforms the
two baselines in both recall and precision.

of these. Hence, the ontology axioms for that level of granularity are factorized
into one single soft rule and two hard formulae. The soft formula, i.e, formula
1, captures the weights between any “related” Atomic Gesture and Manipulative
Gesture pair. An Atomic Gesture AG and a Manipulative Gesture M G are related
if MG is defined in terms of AG in our ontology. The two hard formulae factorize
the disjointness axioms by stating that the same object can not be “fetched” and
“put down” at the same instant and the same for “opening” and “closing” the same
object. The weights are learnt using the Markov logic engine TheBeast [RieOS]].
The obtained weights are attributed to the corresponding ontology axioms and the
recognition algorithm is applied. As depicted in Table 3.4} the obtained average
results outperform those of the manual setting.

Motivated by these promising results, we intend to apply the same idea to the
recognition of the two other levels of granularity. Modeling the set of template rules
defining Simple Activities in terms of temporally ordered Manipulative Gesture is
one of the main challenges.

Holistic recognition approach: Jointly recognizing the activities at different
levels of granularity allows to reason with them as a whole rather than as a col-
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Table 3.3: MLN formulae to automatically estimate the weights of our log-linear ontology
axioms.

Soft Constraints

1 VY Timestep t, AGOperation a, M GOperation m, Object o1, 09 :
[currentAG(a, 01,t) A areRelated(a, 01, m, 02)
= currentMG(m, o02,1)]

Hard Constraints

2 YV Timestep t, Object, o :

currentMG(” Fetch”,0,t) = —current M G(” Putdown”, o,t)]
3 YV Timestep t, Object, o :

currentMG(”Open”, o,t) = —currentMG(”Close”, o,1)]

Table 3.4: Results of recognizing Manipulative Gestures for the three subjects S10, S11
and S12 with automatically extracted weights versus manually designed weights. The F1-
measures reported correspond to the average F1-measure over three morning routines of
each subject. The standard deviation between these routines is symbolized by o.

S10 S11 S12
Automatically extracted weights | 0.87(c0.021) | 0.83(c0.035) | 0.84(c0.021)
Manually designed weights 0.85(¢0.017) | 0.81(c0.024) | 0.83(c0.016)

lection of levels. In particular, the recognition of finer grained activities can ben-
efit from the context gained at a coarser grained level. For example, given that
the user is carrying out the Complex Activity “cleaning up”, the holistic approach
would end up favoring the prediction of the Manipulative Gestures that would lead
to that Complex Activity. Concretely, it would allow to choose the axioms that
would lead to the overall greater sum of weights over the three levels rather than
sequentially choosing the ones with the highest weights on each level separately.
Figure [3.§] illustrates the difference between both approaches based on a simple
example. In that Figure, the simple multi-level structure from Figure [2.2]is revised
and extended with further weighted axioms defining the Complex Activity “clean
up” in terms of the Simple Activity “put in dishwasher” which is in its turn de-
fined in terms of the Manipulative Gesture “open the dishwasher”. For the sake of
simplicity, we omit the temporal order at the Simple Activity level. Let us assume
that the user is “cleaning up”. In particular, let us assume they are “having milk”
in one hand to put it away and “opening the dishwasher” to “put the dirty dishes
there”. Hence, the system gets as input two Atomic Gestures “move milk” and
“reach dishwasher” within a 73 time window. Based on the defined weights, the se-
quential approach would output “open dishwasher” and “fetch milk” as predictions
for the Manipulative Gestures level. These would be input to the next recognition
step, which would predict “get milk” and “put in dishwasher” as Simple Activ-
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ities. Finally, the system would recognize “coffee time” as the user’s Complex
Activity. Allowing the system to reason with the different levels of activity gran-
ularity at the same time, however, would lead to choosing the paths that yield the
highest sum of weights, i.e. those that go through the Simple Activities “put in dish-
washer” and “put away milk” and the Manipulative Gestures “open dishwasher”
and “put down milk”. Thus, the holistic approach leverages an indirect feedback
from coarser grained activity levels to finer grained ones to improve the predic-
tion results. In order to realize this, we propose to update our ontology with three
axioms instead of one. The axioms should define the concepts of UNKNOWMG,
UNKNOWNSA and UNKNOWNCA respectively, where UNKNOWNSA is defined in
terms of UNKNOWNMG and UNKNOWNCA is defined in terms of UNKNOWNSA.
Obviously, a major challenge for the holistic approach remains in determining the
appropriate weights. Unlike the sequential one, they are much less intuitive to de-
fine since they contribute to the whole network rather than from one level to the
next. One solution to this problem is to automatically estimate the weights from
the data.
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Figure 3.8: Different outputs of the holistic approach (right
versus the atomistic approach (left), adopted in our recognition framework. The
light nodes are inferred to be false and the dark ones are inferred as true. Allowing
the system to reason with the different levels of activity granularity at the same
time leads to choosing the paths that yield the highest sum of weights rather than
sequentially choosing the ones with the highest weights on each level separately.
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Conclusion

In this part we have presented a hybrid ontology-based framework to represent and
recognize human activities from wearable and environmental sensor data. Based
on highly expressive log-linear description logic [NNS11], the system unites both
symbolic and probabilistic reasoning. This allows to model the complex relational
structure as well as the inherent uncertainty underlying human activities and sensor
data. Log-linear description logic leverages the same principles of Markov logic
and those of ontology reasoning in a unified declarative and intuitive framework.
After providing the theoretical background of log-linear description logic and ex-
plaining its application to the representation and recognition of human activities,
we have drawn the advantages of this approach compared to existing ontology-
based approaches to sensor-based activity recognition.

Unlike the majority of related works, it supports the inherent uncertain nature
of human activities without sacrificing the advantages of ontological modeling and
reasoning. These advantages include consistency checking, the ability of integrat-
ing rich background knowledge and the simultaneous recognition of coarse and
fine-grained activities. The use of a standard description formalism enhances the
portability and re-usability of the proposed system, and supports the representation
of heterogeneous and uncertain context data.

Based on principles from the activity theory [KN12[], we have focused on ad-
dressing the challenge of representing and recognizing human activities at three
levels of granularity, while preserving the intuitiveness and flexibility of the mod-
eling task. Complying with real-life scenarios, the proposed framework covers not
only sequential activities but also concurrent ones. It is also viable for address-
ing state of the art challenges including user independent and real time activity
recognition.

139
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4.1 Summary

Throughout this part, we have answered the last three research questions defined
in our problem statement. For Question IL.1, we have proposed a log-linear on-
tology modeling human activities at three levels of granularity. The hierarchical
structure is adopted from the well established activity theory [KN12|] explained in
the Preliminaries Chapter. It includes operations, actions and activities. We have
espoused the Opportunity framework [KHEFT11] to create an ontology containing
a total of around 200 classes. Whereas the definitions of activities at the lowest
and highest levels of granularity do not include temporal information, modeling
those at the second level includes the temporal order of their components. The
ontology axioms are either certain or uncertain. Uncertain axioms are annotated
with weights that contribute to their probability distribution. Given the proposed
ontology, we have applied a log-linear DL reasoner to recognize the three levels
of activity granularity from real-life sensor data. The rationale of the recognition
technique consists in the assumption that there is an unknown activity correspond-
ing to a given sensor input. Using MAP inference, the unknown activity concept is
added to the ontology then the activity concept which contains as many perceived
properties as possible is determined to be the predicted unknown activity corre-
sponding to the observed situation. This contribution covers the research Question
I1.2. Finally, in order to answer research Question I1.3, we have evaluated our
prototype against two different baselines. The main idea of the baselines consisted
in using two weight-free variants of the proposed multi-level ontology in order to
highlight the advantage of uncertainty support in our framework. The datasetE]
was collected using both wearable and environmental sensors which indicate the
user’s gestures as well as the objects in use. The validation scenario is compatible
with real life settings since it includes concurrent and interleaved activities. Based
on the obtained results we depict the main limitations of our approach in the next
section.

4.2 Discussion

Whereas many of the features underpinning our log-linear description logic-based
approach are well suited for formally capturing and reasoning over rich and uncer-
tain semantic interconnection among entities, some issues remain unsolved.

In particular, our system does not efficiently support temporal reasoning, which
is a key requirement for human activity recognition. There are some alternatives
to address this limitation though. One of these consists in a Markov logic-based
approach for Temporal reasoning using RDF(S). The formalism uses Allens inter-
val algebra [AlI83] to express temporal relations between facts and reasons about
these by transforming the RDFS statements and constraints to Markov Logic. The
idea has been introduced by Huber, Meilicke and Stuckenschmidt [HMS14]. In

"http://www.opportunity-project.eu
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a collaboration with the latter, it has been applied it to our multi-level activity
framework. Generally, the obtained results have reached better recall but lower
precision. Even though the overall performance has improved slightly, the ap-
proach still faces some shortcomings such as lower expressiveness and incapabil-
ity to infer knew knowledge from the input intervals. A comparable alternative to
addressing temporal reasoning in our framework is the use of temporal DL. For
example, temporal DL is used for reasoning about actions and plans in [AF98].
Compared to our framework, actions would represent operations (like Afomic Ges-
tures and Manipulative Gestures and plans correspond to activities, which are de-
fined as temporally-constrained sequences of actions. Nonetheless, this upgrade
comes at the cost of no support of uncertainty. A loosely-coupled technique where
time is treated as concrete domain [LMO07] can be also employed. Concretely, the
ontology instances can be related to values of the temporal domain by functional
properties. Reasoning about relationships among the time intervals corresponding
to the different activities can be done using an external reasoner.

Additionally to the urge of supporting temporal reasoning in our system, alle-
viating the knowledge engineering task is highly desired. To do so, we propose to
learn not only the axiom’s weights from data but also the axioms themselves. Us-
ing ontology learning approaches [LV14] might be a promising direction towards
this goal.
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Appendix:
Multi-level Activities Ontology

Classes
AGBiteBread

AGBiteBread = AtomicGesture M 3 hasAGActor (Person 1 3 hasArm (Arm 1 3 has-
Function Bite " 3 hasObject Bread))
AGBiteBread C AtomicGesture

AGCleanTable

AGCleanTable = AtomicGesture ' 3 hasAGActor (Person [ 3 hasArm (Arm M1 3 has-
Function Clean M 3 hasObject Table))
AGCleanTable = AtomicGesture

AGCloseDishwasher

AGCloseDishwasher = AtomicGesture 1 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Close M 3 hasObject Dishwasher))
AGCloseDishwasher C AtomicGesture

AGCloseDoor

AGCloseDoor C AtomicGesture

AGCloseDoorl

AGCloseDoorl = AGCloseDoor M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Close M 3 hasObject Doorl))
AGCloseDoorl T AGCloseDoor

AGCloseDoor2

AGCloseDoor2 = AGCloseDoor ' 3 hasAGActor (Person M 3 hasArm (Arm M1 3 has-
Function Close ' 3 hasObject Door2))
AGCloseDoor2 C AGCloseDoor

145
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AGCloseDrawer

AGCloseDrawer = AtomicGesture

AGCloseDrawerl

AGCloseDrawerl = AGCloseDrawer I 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Close M 3 hasObject Drawer1))
AGCloseDrawerl T AGCloseDrawer

AGCloseDrawer2

AGCloseDrawer2 = AGCloseDrawer M 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Close " d hasObject Drawer?2))
AGCloseDrawer2 T AGCloseDrawer

AGCloseDrawer3

AGCloseDrawer3 = AGCloseDrawer ' 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Close M 3 hasObject Drawer3))
AGCloseDrawer3 C AGCloseDrawer

AGCloseFridge

AGCloseFridge = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Close M 3 hasObject Fridge))
AGCloseFridge C AtomicGesture

AGCutBread

AGCutBread = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Cut M 3 hasObject Bread))
AGCutBread C AtomicGesture

AGCutSalami

AGCutSalami = AtomicGesture ' 3 hasAGActor (Person ' 3 hasArm (Arm I 3 has-
Function Cut M 3 hasObject Salami))
AGCutSalami C AtomicGesture

AGLockDoor

AGLockDoor C AtomicGesture



AGLockDoorl1

AGLockDoorl = AGLockDoor M 3 hasAGActor (Person [ 3 hasArm (Arm M 3 has-
Function Lock M 3 hasObject Door1))
AGLockDoorl = AGLockDoor

AGLockDoor2

AGLockDoor2 = AGLockDoor M 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Lock M 3 hasObject Door2))
AGLockDoor2 C AGLockDoor

AGMoveBottle

AGMoveBottle = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Move M 3 hasObject Bottle))
AGMoveBottle C AtomicGesture

AGMoveBread

AGMoveBread = AtomicGesture M 3 hasAGActor (Person ' 3 hasArm (Arm 1 3 has-
Function Move ' 3 hasObject Bread))
AGMoveBread C AtomicGesture

AGMoveChair

AGMoveChair = AtomicGesture 1 3 hasAGActor (Person [ 3 hasArm (Arm M 3 has-
Function Move " 3 hasObject Chair))
AGMoveChair C AtomicGesture

AGMoveCheese

AGMoveCheese = AtomicGesture 1 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Move " 3 hasObject Cheese))
AGMoveCheese = AtomicGesture

AGMoveCup

AGMoveCup = AtomicGesture 'l 3 hasAGActor (Person ' 3 hasArm (Arm I 3 has-
Function Move N 3 hasObject Cup))
AGMoveCup C AtomicGesture

AGMoveGlass

AGMoveGlass = AtomicGesture M 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Move " 3 hasObject Glass))
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AGMoveGlass T AtomicGesture

AGMoveKnife

AGMoveKnife = AtomicGesture

AGMoveKnifeCheese

AGMoveKnifeCheese = AGMoveKnife M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Move M 3 hasObject KnifeCheese))
AGMoveKnifeCheese T AGMoveKnife

AGMoveKnifeSalami

AGMoveKnifeSalami = AGMoveKnife M 3 hasAGActor (Person M 3hasArm (Arm M 3 has-
Function Move " 3 hasObject KnifeSalami))
AGMoveKnifeSalami T AGMoveKnife

AGMoveLazychair

AGMoveLazychair = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Move 'l 3 hasObject Lazychair))
AGMoveLazychair C AtomicGesture

AGMoveMilk

AGMoveMilk = AtomicGesture I 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Move ' 3 hasObject Milk))
AGMoveMilk C AtomicGesture

AGMovePlate

AGMovePlate = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Move 'l 3 hasObject Plate))
AGMovePlate = AtomicGesture

AGMoveSalami

AGMoveSalami = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm 1 3 has-
Function Move " 3 hasObject Salami))
AGMoveSalami C AtomicGesture

AGMoveSpoon

AGMoveSpoon = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Move M 3 hasObject Spoon))



AGMoveSpoon C AtomicGesture

AGMoveSugar

AGMoveSugar = AtomicGesture N 3 hasAGActor (Person M 3 hasArm (Arm ' 3 has-
Function Move 1 3 hasObject Sugar))
AGMoveSugar C AtomicGesture

AGOpenDishwasher

AGOpenDishwasher = AtomicGesture 1 3 hasAGActor (Person [ 3 hasArm (Arm M 3 has-
Function Open ' 3 hasObject Dishwasher))
AGOpenDishwasher C AtomicGesture

AGOpenDoor

AGOpenDoor = AtomicGesture

AGOpenDoorl

AGOpenDoorl = AGOpenDoor " 3 hasAGActor (Person ' 3 hasArm (Arm I 3 has-
Function Open M 3 hasObject Door1))
AGOpenDoorl C AGOpenDoor

AGOpenDoor2

AGOpenDoor2 = AGOpenDoor M 3 hasAGActor (Person M 3 hasArm (Arm 1 3 has-
Function Open " 3 hasObject Door2))
AGOpenDoor2 C AGOpenDoor

AGOpenDrawer

AGOpenDrawer C AtomicGesture

AGOpenDrawerl

AGOpenDrawerl = AGOpenDrawer ' 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Open M 3 hasObject Drawerl))
AGOpenDrawerl T AGOpenDrawer

AGOpenDrawer2

AGOpenDrawer2 = AGOpenDrawer M 3 hasAGActor (Person M 3 hasArm (Arm M1 3 has-
Function Open " 3 hasObject Drawer2))
AGOpenDrawer2 T AGOpenDrawer
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AGOpenDrawer3

AGOpenDrawer3 = AGOpenDrawer M 3 hasAGActor (Person M 3 hasArm (Arm 1 3 has-
Function Open " 3 hasObject Drawer3))
AGOpenDrawer3 C AGOpenDrawer

AGOpenFridge

AGOpenFridge = AtomicGesture 'l 3 hasAGActor (Person ' 3 hasArm (Arm Il 3 has-
Function Open M 3 hasObject Fridge))
AGOpenFridge C AtomicGesture

AGReachBottle

AGReachBottle = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm 1 3 has-
Function Reach M 3 hasObject Bottle))
AGReachBottle T AtomicGesture

AGReachBread

AGReachBread = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Bread))
AGReachBread C AtomicGesture

AGReachChair

AGReachChair = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Chair))
AGReachChair T AtomicGesture

AGReachCheese

AGReachCheese = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm 1 3 has-
Function Reach M 3 hasObject Cheese))
AGReachCheese T AtomicGesture

AGReachCup

AGReachCup = AtomicGesture ' 3 hasAGActor (Person I 3 hasArm (Arm ' 3 has-
Function Reach M 3 hasObject Cup))
AGReachCup C AtomicGesture

AGReachDishwasher

AGReachDishwasher = AtomicGesture M 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Dishwasher))



AGReachDishwasher C AtomicGesture

AGReachDoor

AGReachDoor C AtomicGesture

AGReachDoorl1

AGReachDoorl = AGReachDoor " 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Door1))
AGReachDoorl T AGReachDoor

AGReachDoor2

AGReachDoor2 = AGReachDoor M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Door2))
AGReachDoor2 T AGReachDoor

AGReachDrawer

AGReachDrawer T AtomicGesture

AGReachDrawerl

AGReachDrawerl = AGReachDrawer M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Drawerl))
AGReachDrawerl C AGReachDrawer

AGReachDrawer2

AGReachDrawer2 = AGReachDrawer M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach " 3 hasObject Drawer2))
AGReachDrawer2 C AGReachDrawer

AGReachDrawer3

AGReachDrawer3 = AGReachDrawer M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach " 3 hasObject Drawer3))
AGReachDrawer3 C AGReachDrawer

AGReachFridge

AGReachFridge = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Fridge))
AGReachFridge C AtomicGesture
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AGReachGlass

AGReachGlass = AtomicGesture I 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Glass))
AGReachGlass C AtomicGesture

AGReachKnife

AGReachKnife T AtomicGesture

AGReachKnifeCheese

AGReachKnifeCheese = AGReachKnife M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject KnifeCheese))
AGReachKnifeCheese T AGReachKnife

AGReachKnifeSalami

AGReachKnifeSalami = AGReachKnife M 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject KnifeSalami))
AGReachKnifeSalami = AGReachKnife

AGReachLazychair

AGReachLazychair = AtomicGesture ' 3 hasAGActor (Person [ 3 hasArm (Arm 1 3 has-
Function Reach M 3 hasObject Lazychair))
AGReachLazychair C AtomicGesture

AGReachMilk

AGReachMilk = AtomicGesture [ 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Milk))
AGReachMilk C AtomicGesture

AGReachPlate

AGReachPlate = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm ' 3 has-
Function Reach M 3 hasObject Plate))
AGReachPlate C AtomicGesture

AGReachSalami

AGReachSalami = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Salami))
AGReachSalami T AtomicGesture



AGReachSpoon

AGReachSpoon = AtomicGesture M 3 hasAGActor (Person [ 3 hasArm (Arm M 3 has-
Function Reach ' 3 hasObject Spoon))
AGReachSpoon C AtomicGesture

AGReachSugar

AGReachSugar = AtomicGesture 1 d hasAGActor (Person [ d hasArm (Arm M 3 has-
Function Reach ' 3 hasObject Sugar))
AGReachSugar C AtomicGesture

AGReachSwitch

AGReachSwitch = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Switch))
AGReachSwitch C AtomicGesture

AGReachTable

AGReachTable = AtomicGesture M 3 hasAGActor (Person I 3 hasArm (Arm M 3 has-
Function Reach M 3 hasObject Table))
AGReachTable T AtomicGesture

AGReleaseBottle

AGReleaseBottle = AtomicGesture ' 3 hasAGActor (Person ' 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Bottle))
AGReleaseBottle = AtomicGesture

AGReleaseBread

AGReleaseBread = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm Il 3 has-
Function Release M 3 hasObject Bread))
AGReleaseBread C AtomicGesture

AGReleaseChair

AGReleaseChair = AtomicGesture M d hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Chair))
AGReleaseChair C AtomicGesture

AGReleaseCheese

AGReleaseCheese = AtomicGesture 1 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Cheese))
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AGReleaseCheese C AtomicGesture

AGReleaseCup

AGReleaseCup = AtomicGesture ' 3 hasAGActor (Person I 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Cup))
AGReleaseCup C AtomicGesture

AGReleaseDishwasher

AGReleaseDishwasher = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm 1 3 has-
Function Release M 3 hasObject Dishwasher))
AGReleaseDishwasher T AtomicGesture

AGReleaseDoor

AGReleaseDoor C AtomicGesture

AGReleaseDoor1l

AGReleaseDoorl = AGReleaseDoor ' 3 hasAGActor (Person M d hasArm (Arm M J has-
Function Release M 3 hasObject Doorl))
AGReleaseDoorl C AGReleaseDoor

AGReleaseDoor2

AGReleaseDoor2 = AGReleaseDoor M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Door2))
AGReleaseDoor2 T AGReleaseDoor

AGReleaseDrawer

AGReleaseDrawer C AtomicGesture

AGReleaseDrawerl

AGReleaseDrawerl = AGReleaseDrawer M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release [ 3 hasObject Drawer1))
AGReleaseDrawerl C AGReleaseDrawer

AGReleaseDrawer2

AGReleaseDrawer2 = AGReleaseDrawer M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Drawer2))
AGReleaseDrawer2 = AGReleaseDrawer



AGReleaseDrawer3

AGReleaseDrawer3 = AGReleaseDrawer M 3 hasAGActor (Person I 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Drawer3))
AGReleaseDrawer3 C AGReleaseDrawer

AGReleaseFridge

AGReleaseFridge = AtomicGesture 1 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Fridge))
AGReleaseFridge C AtomicGesture

AGReleaseGlass

AGReleaseGlass = AtomicGesture M 3 hasAGActor (Person M 3hasArm (Arm M 3 has-
Function Release M 3 hasObject Glass))
AGReleaseGlass C AtomicGesture

AGReleaseKnife

AGReleaseKnife T AtomicGesture

AGReleaseKnifeCheese

AGReleaseKnifeCheese = AGReleaseKnife M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release " 3 hasObject KnifeCheese))
AGReleaseKnifeCheese = AGReleaseKnife

AGReleaseKnifeSalami

AGReleaseKnifeSalami = AGReleaseKnife [ 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release " 3 hasObject KnifeSalami))
AGReleaseKnifeSalami = AGReleaseKnife

AGReleaseLazychair

AGReleaselLazychair = AtomicGesture 1 3 hasAGActor (Person M 3 hasArm (Arm M1 3 has-
Function Release M 3 hasObject Lazychair))
AGReleaseLazychair C AtomicGesture

AGReleaseMilk

AGReleaseMilk = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Milk))
AGReleaseMilk T AtomicGesture
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AGReleasePlate

AGReleasePlate = AtomicGesture M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Plate))
AGReleasePlate = AtomicGesture

AGReleaseSalami

AGReleaseSalami = AtomicGesture M 3 hasAGActor (Person I 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Salami))
AGReleaseSalami C AtomicGesture

AGReleaseSpoon

AGReleaseSpoon = AtomicGesture ' 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release M 3 hasObject Spoon))
AGReleaseSpoon C AtomicGesture

AGReleaseSugar

AGReleaseSugar = AtomicGesture I 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Release ' 3 hasObject Sugar))
AGReleaseSugar C AtomicGesture

AGReleaseSwitch

AGReleaseSwitch = AtomicGesture M 3 hasAGActor (Person I 3 hasArm (Arm 1 3 has-
Function Release M 3 hasObject Switch))
AGReleaseSwitch T AtomicGesture

AGReleaseTable

AGReleaseTable = AtomicGesture 'l 3 hasAGActor (Person M 3 hasArm (Arm I 3 has-
Function Release M 3 hasObject Table))
AGReleaseTable T AtomicGesture

AGSipCup

AGSipCup = AtomicGesture ' 3 hasAGActor (Person ' 3 hasArm (Arm 'l 3 has-
Function Sip M 3 hasObject Cup))
AGSipCup C AtomicGesture

AGSipGlass

AGSipGlass = AtomicGesture I 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Sip M 3 hasObject Glass))



AGSipGlass C AtomicGesture

AGSpreadCheese

AGSpreadCheese = AtomicGesture 1 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Spread M 3 hasObject Cheese))
AGSpreadCheese = AtomicGesture

AGStirSpoon

AGStirSpoon = AtomicGesture I 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Stir M 3 hasObject Spoon))
AGStirSpoon C AtomicGesture

AGUnlockDoor

AGUnlockDoor C AtomicGesture

AGUnlockDoorl

AGUnlockDoor1 = AGUnlockDoor "M 3 hasAGActor (Person M 3 hasArm (Arm M 3 has-
Function Unlock " 3 hasObject Doorl))
AGUnlockDoorl C AGUnlockDoor

AGUnlockDoor2

AGUnlockDoor2 = AGUnlockDoor M 3 hasAGActor (Person M 3 hasArm (Arm 1 3 has-
Function Unlock M 3 hasObject Door?2))
AGUnlockDoor2 T AGUnlockDoor

Arm

Arm C Thing

AtomicGesture

AtomicGesture C Thing

Bite

Bite C Function

Bottle

Bottle T Object
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Bread

Bread C Object

CACleanup

CACleanup = ComplexActivity M 3 hasCAActor (Person M 3 hasSimpleActiv-
ity SAPutawayBread)

CACleanup = ComplexActivity M 3 hasCAActor (Person M 3 hasManipulativeG-
esture MGCleanTable)

CACleanup = ComplexActivity M 3 hasCAActor (Person M 3 hasSimpleActiv-
ity SAPutinDishwasher)

CACleanup = ComplexActivity M 3 hasCAActor (Person " 3 hasSimpleActiv-
ity SAPutawayMilk)

CACleanup = ComplexActivity M 3 hasCAActor (Person " 3 hasSimpleActiv-
ity SAPutawayBottle)

CACleanup = ComplexActivity M 3 hasCAActor (Person M 3 hasSimpleActiv-
ity SAPutawayCheese)

CACleanup = ComplexActivity I 3 hasCAActor (Person M 3 hasSimpleActiv-
ity SAPutawaySalami)

CACleanup C ComplexActivity

CACleanup C — CACoffeeTime

CACleanup C — CASandwichTime

CACleanup C - CARelaxing

CACoffeeTime

CACoffeeTime = ComplexActivity 'l 3 hasCAActor (Person M 3 hasSimpleAc-
tivity SAPutSugar)

CACofteeTime = ComplexActivity M 3 hasCAActor (Person M 3 hasSimpleAc-
tivity SAGetMilk)

CACoffeeTime = ComplexActivity M 3 hasCAActor (Person M 3 hasSimpleAc-
tivity SADrinkfromCup)

CACoffeeTime C ComplexActivity

CACoffeeTime C — CARelaxing

CACoffeeTime T — CASandwichTime

CACoffeeTime C — CACleanup

CAldle

CAldle C ComplexActivity



CARelaxing

CARelaxing = ComplexActivity I 3 hasCAActor (Person I 3 hasSimpleActiv-
ity SALieonLazychair)

CARelaxing = ComplexActivity

CARelaxing C -~ CASandwichTime

CARelaxing C = CACoffeeTime

CARelaxing = — CACleanup

CASandwichTime

CASandwichTime = ComplexActivity M 3 hasCAActor (Person M 3 hasSimple-
Activity SAPrepareSalami)

CASandwichTime = ComplexActivity M 3 hasCAActor (Person M 3 hasSimple-
Activity SAGetPlate)

CASandwichTime = ComplexActivity M 3 hasCAActor (Person M 3 hasSimple-
Activity SAGetCheese)

CASandwichTime = ComplexActivity M 3 hasCAActor (Person " 3 hasSimple-
Activity SAGetBread)

CASandwichTime = ComplexActivity M 3 hasCAActor (Person " 3 hasSimple-
Activity SAGetBottle)

CASandwichTime = ComplexActivity I 3 hasCAActor (Person M 3 hasSimple-
Activity SAEatBread)

CASandwichTime = ComplexActivity I 3 hasCAActor (Person M 3 hasSimple-
Activity SAGetKnifeCheese)

CASandwichTime = ComplexActivity I 3 hasCAActor (Person M 3 hasSimple-
Activity SAPrepareCheeseSandwich)

CASandwichTime = ComplexActivity ' 3 hasCAActor (Person 1 3 hasAtomicGes-
ture AGCutBread)

CASandwichTime = ComplexActivity I 3 hasCAActor (Person 'l 3 hasSimple-
Activity SADrinkfromGlass)

CASandwichTime = ComplexActivity " 3 hasCAActor (Person 'l 3 hasSimple-
Activity SAGetKnifeSalami)

CASandwichTime = ComplexActivity M 3 hasCAActor (Person M 3 hasSimple-
Activity SAGetSalami)

CASandwichTime C ComplexActivity

CASandwichTime C — CARelaxing

CASandwichTime C — CACleanup

CASandwichTime C — CACoffeeTime

Chair

Chair C Object
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Cheese

Cheese C Object

Clean

Clean C Function

Close

Close C Function

ComplexA ctivity
Cup
Cup C WashableObject

Cut

Cut C Function

Dishwasher

Dishwasher C Object

Door

Door C Object

Doorl

Doorl C Door

Door2

Door2 C Door

Drawer

Drawer C Object

Drawerl

Drawerl C Drawer



Drawer2

Drawer2 C Drawer

Drawer3

Drawer3 C Drawer

Fridge
Fridge C Object

Function

Function C Thing

Glass
Glass C WashableObject

Knife
Knife C WashableObject

KnifeCheese
KnifeCheese C Knife

KnifeSalami

KnifeSalami C Knife

Lazychair

Lazychair C Object

LeftArm
LeftArm C Arm
Lie

Lie C Locomotion

Lock

Lock C Function
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Locomotion

Locomotion C Thing

MGCleanTable

MGCleanTable = ManipulativeGesture ' 3 hasMGActor (Person [l 3 hasAtomicGes-
ture AGCleanTable M 3 hasAtomicGesture AGReleaseTable)

MGCleanTable = ManipulativeGesture I 3 hasMGActor (Person [ 9 hasAtomicGes-
ture AGCleanTable M 3 hasAtomicGesture AGReachTable)

MGCleanTable = ManipulativeGesture 1 3 hasMGActor (Person 'l 3 hasAtomicGes-
ture AGCleanTable)

MGCleanTable = ManipulativeGesture

MGCloseDishwasher

MGCloseDishwasher = ManipulativeGesture [ 3 hasMGActor (Person 1 3 hasAtomicGes-
ture AGCloseDishwasher)

MGCloseDishwasher = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachDishwasher)

MGCloseDishwasher = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseDishwasher)

MGCloseDishwasher C ManipulativeGesture

MGCloseDishwasher C = MGOpenDishwasher

MGCloseDoor

MGCloseDoor = ManipulativeGesture ' 3 hasMGActor (Person 'l 3 hasAtomicGes-
ture AGLockDoorl)

MGCloseDoor = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachDoor2)

MGCloseDoor = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseDoor2)

MGCloseDoor = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGCloseDoorl)

MGCloseDoor = ManipulativeGesture ' 3 hasMGActor (Person [ 3 hasAtomicGes-
ture AGReleaseDoor1)

MGCloseDoor = ManipulativeGesture 1 3 hasMGActor (Person [ 3 hasAtomicGes-
ture AGCloseDoor?2)

MGCloseDoor = ManipulativeGesture 1 3 hasMGActor (Person [ 3 hasAtomicGes-
ture AGLockDoor2)

MGCloseDoor = ManipulativeGesture N 3 hasMGActor (Person N 3 hasAtomicGes-
ture AGReachDoorl)

MGCloseDoor C ManipulativeGesture

MGCloseDoor C - MGOpenDoor



MGCloseDrawer

MGCloseDrawer = ManipulativeGesture

MGCloseDrawerl

MGCloseDrawer1 = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseDrawerl)

MGCloseDrawer1 = ManipulativeGesture M 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGCloseDrawerl)

MGCloseDrawerl = ManipulativeGesture 'l 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachDrawerl)

MGCloseDrawerl = MGCloseDrawer

MGCloseDrawerl C - MGOpenDrawerl

MGCloseDrawer2

MGCloseDrawer2 = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseDrawer?2)

MGCloseDrawer2 = ManipulativeGesture M 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachDrawer?2)

MGCloseDrawer2 = ManipulativeGesture 1 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGCloseDrawer2)

MGCloseDrawer2 = MGCloseDrawer

MGCloseDrawer2 C - MGOpenDrawer2

MGCloseDrawer3

MGCloseDrawer3 = ManipulativeGesture 1 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGCloseDrawer3)

MGCloseDrawer3 = ManipulativeGesture M 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachDrawer3)

MGCloseDrawer3 = ManipulativeGesture 'l 3 hasMGActor (Person " 3 hasAtomicGes-
ture AGReleaseDrawer3)

MGCloseDrawer3 = MGCloseDrawer

MGCloseDrawer3 C - MGOpenDrawer3

MGCloseFridge

MGCloseFridge = ManipulativeGesture [ 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGReleaseFridge)

MGCloseFridge = ManipulativeGesture N 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachFridge)

MGCloseFridge = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGCloseFridge)
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MGCloseFridge = ManipulativeGesture
MGCloseFridge C - MGOpenFridge

MGPFetchBottle

MGFetchBottle = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGMoveBottle)

MGFetchBottle = ManipulativeGesture ' 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGReachBottle)

MGFetchBottle C ManipulativeGesture

MGPFetchBottle T — MGPutdownBottle

MGPFetchBread

MGFetchBread = ManipulativeGesture 1 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveBread)

MGFetchBread = ManipulativeGesture 1 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachBread)

MGFetchBread C ManipulativeGesture

MGFetchBread & — MGPutdownBread

MGPFetchCheese

MGFetchCheese = ManipulativeGesture ' 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGMoveCheese)

MGFetchCheese = ManipulativeGesture 1 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachCheese)

MGFetchCheese C ManipulativeGesture

MGFetchCheese C = MGPutdownCheese

MGFetchCup

MGFetchCup = ManipulativeGesture 1 3 hasMGActor (Person [l 3 hasAtomicGes-
ture AGReachCup)

MGFetchCup = ManipulativeGesture 1 3 hasMGActor (Person [ 3 hasAtomicGes-
ture AGMoveCup)

MGFetchCup C MGFetchWashableObject

MGFetchCup C — MGPutdownCup

MGFetchGlass

MGFetchGlass = ManipulativeGesture I 3 hasMGActor (Person [ 9 hasAtomicGes-
ture AGReachGlass)
MGFetchGlass = ManipulativeGesture 1 3 hasMGActor (Person 'l 3 hasAtomicGes-
ture AGMoveGlass)



MGFetchGlass = MGFetchWashableObject
MGFetchGlass T = MGPutdownGlass

MGPFetchKnifeCheese

MGFetchKnifeCheese = ManipulativeGesture 1 3 hasMGActor (Person 'l 3 hasAtomicGes-
ture AGReachKnifeCheese)

MGFetchKnifeCheese = ManipulativeGesture ' 3 hasMGActor (Person 'l 3 hasAtomicGes-
ture AGMoveKnifeCheese)

MGFetchKnifeCheese C MGFetchWashableObject

MGFetchKnifeCheese T — MGPutdownKnifeCheese

MGPFetchKnifeSalami

MGFetchKnifeSalami = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachKnifeSalami)

MGFetchKnifeSalami = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveKnifeSalami)

MGFetchKnifeSalami C MGFetchWashableObject

MGPFetchKnifeSalami T — MGPutdownKnifeSalami

MGPFetchMilk

MGFetchMilk = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachMilk)

MGFetchMilk = ManipulativeGesture ' 3 hasMGActor (Person [ 3 hasAtomicGes-
ture AGMoveMilk)

MGFetchMilk C ManipulativeGesture

MGFetchMilk C — MGPutdownMilk

MGPFetchPlate

MGFetchPlate = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachPlate)

MGFetchPlate = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMovePlate)

MGFetchPlate C MGFetchWashableObject

MGFetchPlate = — MGPutdownPlate

MGPFetchSalami

MGFetchSalami = ManipulativeGesture N 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGMoveSalami)
MGFetchSalami = ManipulativeGesture [ 3 hasMGActor (Person [ 3 hasAtomicGes-
ture AGReachSalami)
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MGFetchSalami C ManipulativeGesture
MGFetchSalami T — MGPutdownSalami

MGFetchSpoon

MGFetchSpoon = ManipulativeGesture I 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachSpoon)

MGFetchSpoon = ManipulativeGesture N 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveSpoon)

MGFetchSpoon = MGFetchWashableObject

MGFetchSpoon C - MGPutdownSpoon

MGPFetchSugar

MGFetchSugar = ManipulativeGesture 1 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGMoveSugar)

MGFetchSugar = ManipulativeGesture 1 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachSugar)

MGFetchSugar C ManipulativeGesture

MGFetchSugar C — MGPutdownSugar

MGPFetchWashableObject

MGFetchWashableObject C ManipulativeGesture

MGInteractwithChair

MGlInteractwithChair = ManipulativeGesture N 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveChair)

MGiInteractwithChair = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachChair)

MGlInteractwithChair = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseChair)

MGiInteractwithChair C ManipulativeGesture

MGInteractwithLazychair

MGiInteractwithLazychair = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGMoveLazychair)

MGInteractwithLazychair = ManipulativeGesture N 3 hasMGActor (Person 1 3 hasAtomicGes-
ture AGReachLazychair)

MGInteractwithLazychair = ManipulativeGesture N 3 hasMGActor (Person 1 3 hasAtomicGes-
ture AGReleaseLazychair)

MGiInteractwithLazychair C ManipulativeGesture



MGOpenDishwasher

MGOpenDishwasher = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseDishwasher)

MGOpenDishwasher = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGOpenDishwasher)

MGOpenDishwasher = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachDishwasher)

MGOpenDishwasher C ManipulativeGesture

MGOpenDishwasher = = MGCloseDishwasher

MGOpenDoor

MGOpenDoor = ManipulativeGesture 'l 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGUnlockDoor2)

MGOpenDoor = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachDoorl)

MGOpenDoor = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachDoor2)

MGOpenDoor = ManipulativeGesture ' 3 hasMGActor (Person 1 3 hasAtomicGes-
ture AGReleaseDoorl1)

MGOpenDoor = ManipulativeGesture 'l 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseDoor?2)

MGOpenDoor = ManipulativeGesture 'l 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGOpenDoorl)

MGOpenDoor = ManipulativeGesture 'l 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGOpenDoor2)

MGOpenDoor = ManipulativeGesture 'l 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGUnlockDoorl)

MGOpenDoor C ManipulativeGesture

MGOpenDoor = — MGCloseDoor

MGOpenDrawer

MGOpenDrawer C ManipulativeGesture

MGOpenDrawerl

MGOpenDrawerl = ManipulativeGesture ' 3 hasMGActor (Person 'l 3 hasAtomicGes-
ture AGReachDrawerl)

MGOpenDrawer1 = ManipulativeGesture 1 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGOpenDrawerl)

MGOpenDrawer1 = ManipulativeGesture 1 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGReleaseDrawerl)

MGOpenDrawerl C MGOpenDrawer
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MGOpenDrawerl C — MGCloseDrawerl

MGOpenDrawer2

MGOpenDrawer2 = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseDrawer2)

MGOpenDrawer2 = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGOpenDrawer?2)

MGOpenDrawer2 = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachDrawer2)

MGOpenDrawer2 C MGOpenDrawer

MGOpenDrawer2 C — MGCloseDrawer2

MGOpenDrawer3

MGOpenDrawer3 = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReachDrawer3)

MGOpenDrawer3 = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGOpenDrawer3)

MGOpenDrawer3 = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseDrawer3)

MGOpenDrawer3 C MGOpenDrawer

MGOpenDrawer3 = - MGCloseDrawer3

MGOpenFridge

MGOpenFridge = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseFridge)

MGOpenFridge = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachFridge)

MGOpenFridge = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGOpenFridge)

MGOpenFridge C ManipulativeGesture

MGOpenFridge C = MGCloseFridge

MGPutdownBottle

MGPutdownBottle = ManipulativeGesture [ 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGMoveBottle)

MGPutdownBottle = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseBottle)

MGPutdownBottle = ManipulativeGesture

MGPutdownBottle = — MGFetchBottle



MGPutdownBread

MGPutdownBread = ManipulativeGesture 1 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseBread)

MGPutdownBread = ManipulativeGesture " 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGMoveBread)

MGPutdownBread C ManipulativeGesture

MGPutdownBread C — MGFetchBread

MGPutdownCheese

MGPutdownCheese = ManipulativeGesture ' 3 hasMGActor (Person " 3 hasAtomicGes-
ture AGMoveCheese)

MGPutdownCheese = ManipulativeGesture N 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseCheese)

MGPutdownCheese = ManipulativeGesture

MGPutdownCheese = — MGFetchCheese

MGPutdownCup

MGPutdownCup = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseCup)

MGPutdownCup = ManipulativeGesture 1 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGMoveCup)

MGPutdownCup C MGPutdownWashableObject

MGPutdownCup = — MGFetchCup

MGPutdownGlass

MGPutdownGlass = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseGlass)

MGPutdownGlass = ManipulativeGesture ' 3 hasMGActor (Person I 3 hasAtomicGes-
ture AGMoveGlass)

MGPutdownGlass C MGPutdownWashableObject

MGPutdownGlass = — MGFetchGlass

MGPutdownKnifeCheese

MGPutdownKnifeCheese = ManipulativeGesture 1 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseKnifeCheese)

MGPutdownKnifeCheese = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGMoveKnifeCheese)

MGPutdownKnifeCheese = MGPutdownWashableObject

MGPutdownKnifeCheese = — MGFetchKnifeCheese
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MGPutdownKnifeSalami

MGPutdownKnifeSalami = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveKnifeSalami)

MGPutdownKnifeSalami = ManipulativeGesture 1 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseKnifeSalami)

MGPutdownKnifeSalami © MGPutdownWashableObject

MGPutdownKnifeSalami C — MGFetchKnifeSalami

MGPutdownMilk

MGPutdownMilk = ManipulativeGesture ' 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveMilk)

MGPutdownMilk = ManipulativeGesture 1 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReleaseMilk)

MGPutdownMilk C ManipulativeGesture

MGPutdownMilk © — MGFetchMilk

MGPutdownPlate

MGPutdownPlate = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleasePlate)

MGPutdownPlate = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGMovePlate)

MGPutdownPlate = MGPutdownWashableObject

MGPutdownPlate C — MGFetchPlate

MGPutdownSalami

MGPutdownSalami = ManipulativeGesture I 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveSalami)

MGPutdownSalami = ManipulativeGesture I 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseSalami)

MGPutdownSalami C ManipulativeGesture

MGPutdownSalami C — MGFetchSalami

MGPutdownSpoon

MGPutdownSpoon = ManipulativeGesture 1 3 hasMGActor (Person [ 3 hasAtomicGes-
ture AGMoveSpoon)

MGPutdownSpoon = ManipulativeGesture [ 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseSpoon)

MGPutdownSpoon = MGPutdownWashableObject

MGPutdownSpoon C — MGFetchSpoon



MGPutdownSugar

MGPutdownSugar = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGMoveSugar)

MGPutdownSugar = ManipulativeGesture ' 3 hasMGActor (Person ' 3 hasAtomicGes-
ture AGReleaseSugar)

MGPutdownSugar C ManipulativeGesture

MGPutdownSugar C — MGFetchSugar

MGPutdownWashableObject
MGPutdownWashableObject = ManipulativeGesture

MGSwitchSwitch

MGSwitchSwitch = ManipulativeGesture 1 3 hasMGActor (Person 'l 3 hasAtomicGes-
ture AGReleaseSwitch)

MGSwitchSwitch = ManipulativeGesture M 3 hasMGActor (Person M 3 hasAtomicGes-
ture AGReachSwitch)

MGSwitchSwitch C ManipulativeGesture

ManipulativeGesture

ManipulativeGesture C Thing

Memory
Milk
Milk C Object

Move

Move C Function

Object
Object C Thing

Open

Open C Function

Person

Person C Thing
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Plate
Plate = WashableObject

Reach

Reach C Function

Release

Release C Function

RightArm
RightArm C Arm

SADrinkfromCup

SADrinkfromCup = SimpleActivity N 3 hasMemory (Memory M 3 hasAG AGSip-
Cup M hasV alue hasOrder ”1” M 3 hasMemory (Memory ' 3 hasMG MGFetch-
Cup M hasV alue hasOrder ”2”

SADrinkfromCup = SimpleActivity I 3 hasMemory (Memory ' 3 hasAG AGSip-
Cup " hasV alue hasOrder ”2” I 3 hasMemory (Memory 1 3 hasMG MGFetch-
Cup M hasV alue hasOrder ”3” I 4 hasMemory (Memory ' 4 hasMG MGPutdown
Cup M hasV alue hasOrder 17

SADrinkfromCup C SimpleActivity

SADrinkfromGlass

SADrinkfromGlass = SimpleActivity ' 3 hasMemory (Memory ' 3 hasAG AGSip
Glass M hasV alue hasOrder ”2” 1 3 hasMemory (Memory ' 3 hasMG MGFetch-
Glass 1 hasV alue hasOrder ”3” M 3 hasMemory (Memory N 3 hasMG MGPut-
downGlass 1M hasV alue hasOrder 17

SADrinkfromGlass = SimpleActivity ' 3 hasMemory (Memory ' 3 hasAG AGSip
Glass M hasV alue hasOrder ”1” 1 3 hasMemory (Memory ' 3 hasMG MGFetch-
Glass I hasV alue hasOrder 72"

SADrinkfromGlass C SimpleActivity

SAEatBread

SAEatBread = SimpleActivity M1 3 hasMemory (Memory M 3 hasAG AGBite-
Bread M hasV alue hasOrder 17 M 3 hasMemory (Memory " 3 hasMG MGFetch-
Bread M hasV alue hasOrder 72"

SAEatBread = SimpleActivity M 3 hasMemory (Memory ' 3 hasAG AGBite-
Bread M hasV alue hasOrder 2" M 3 hasMemory (Memory M 3 hasMG MGFetch-



Bread M hasV alue hasOrder ”3” M 3 hasMemory (Memory 1 3 hasMG MGPut-
downBread M hasV alue hasOrder 17
SAEatBread C SimpleActivity

SAGetBottle

SAGetBottle = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGFetch-
Bottle MhasV alue hasOrder ”1” M 3 hasMemory (Memory ' 3 hasMG MGOpen-
Fridge M hasV alue hasOrder 2"

SAGetBottle = SimpleActivity " 3 hasMemory (Memory M 3 hasMG MGClose-
Fridge M hasV alue hasOrder 17 1 3 hasMemory (Memory I 3 hasMG MGFetch-
Bottle M hasV alue hasOrder 72 I 4 hasMemory (Memory M 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ”’3”

SAGetBottle = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGClose-
Fridge M hasV alue hasOrder 17 1 3 hasMemory (Memory ' 3 hasMG MGFetch-
Bottle 1 hasV alue hasOrder 72”

SAGetBottle C SimpleActivity

SAGetBottle C - SAPutawayBottle

SAGetBread

SAGetBread = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGClose-
Drawer3 M hasV alue hasOrder 1 I 3 hasMemory (Memory 1 3 hasMG MGFetch-
Bread M hasV alue hasOrder 72"

SAGetBread = SimpleActivity I 3 hasMemory (Memory ' 3 hasMG MGFetch-
Bread M hasV alue hasOrder 17 1M 3 hasMemory (Memory ' 3 hasMG MGOpen-
Drawer3 M1 hasV alue hasOrder 2"

SAGetBread = SimpleActivity M 3 hasMemory (Memory " 3 hasMG MGClose-
Drawer3 M hasV alue hasOrder ”1” I 3 hasMemory (Memory I 3 hasMG MGFetch-
Bread M hasV alue hasOrder ”2” M 3 hasMemory (Memory M 3 hasMG MGOpen-
Drawer3 M hasV alue hasOrder ’3”

SAGetBread C SimpleActivity

SAGetBread C — SAPutawayBread

SAGetCheese

SAGetCheese = SimpleActivity 3 hasMemory (Memory ' 3 hasMG MGFetchCheese M hasV alue ha-
sOrder ”’1” M d hasMemory (Memory ' 3 hasMG MGOpenFridge M hasV alue ha-

sOrder 72”

SAGetCheese = SimpleActivity N 3 hasMemory (Memory M 3 hasMG MGClose-

Fridge M hasV alue hasOrder ”1” M 3 hasMemory (Memory M 3 hasMG MGFetchCheese M hasV alue ha-
sOrder 72”

SAGetCheese = SimpleActivity I 3 hasMemory (Memory ' 3 hasMG MGClose-

Fridge M hasV alue hasOrder 17 1 3 hasMemory (Memory I 3 hasMG MGFetchCheese M hasV alue ha-
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sOrder 2 M 3 hasMemory (Memory M 3 hasMG MGOpenFridge M hasV alue ha-
sOrder ”3”

SAGetCheese = SimpleActivity

SAGetCheese C — SAPutawayCheese

SAGetKnifeCheese

SAGetKnifeCheese = SimpleActivity ' 3 hasMemory (Memory 1 3 hasMG MG-
CloseDrawer1 1 hasV alue hasOrder 17 I 34 hasMemory (Memory " 3 hasMG MG-
FetchKnifeCheese M hasV alue hasOrder 2" M 3 hasMemory (Memory M 3 hasMG MGOpen-
Drawerl I hasV alue hasOrder 3"

SAGetKnifeCheese = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MG-
FetchKnifeCheese M hasV alue hasOrder 17 M 3 hasMemory (Memory M 3 hasMG MGOpen-
Drawerl 1M hasV alue hasOrder 727

SAGetKnifeCheese = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MG-
CloseDrawer1 M hasV alue hasOrder 17 I 4 hasMemory (Memory M 3 hasMG MG-
FetchKnifeCheese ' hasV alue hasOrder 27

SAGetKnifeCheese C SimpleActivity

SAGetKnifeSalami

SAGetKnifeSalami = SimpleActivity I 3 hasMemory (Memory I 3 hasMG MGFetchKnife-
Salami M hasV alue hasOrder 1 1M 3 hasMemory (Memory ' 3 hasMG MGOpen-

Drawerl 11 hasV alue hasOrder 727

SAGetKnifeSalami = SimpleActivity I 3 hasMemory (Memory M 3 hasMG MG-
CloseDrawerl M hasV alue hasOrder ’1” M 3 hasMemory (Memory M 3 hasMG MGFetchKnife-
Salami M hasV alue hasOrder 72 M 3 hasMemory (Memory M 3 hasMG MGOpen-

Drawerl M hasV alue hasOrder 737

SAGetKnifeSalami = SimpleActivity ' 3 hasMemory (Memory " 3 hasMG MG-
CloseDrawerl M hasV alue hasOrder ’1” M 3 hasMemory (Memory M 3 hasMG MGFetchKnife-
Salami I hasV alue hasOrder 727

SAGetKnifeSalami C SimpleActivity

SAGetMilk

SAGetMilk = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGClose-
Fridge M hasV alue hasOrder 17 M 3 hasMemory (Memory ' 3 hasMG MGFetch-
Milk M hasV alue hasOrder 2" M 3 hasMemory (Memory " 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ”3”

SAGetMilk = SimpleActivity M 3 hasMemory (Memory " 3 hasMG MGFetch-
Milk M hasV alue hasOrder ”1” I 4 hasMemory (Memory M 3 hasMG MGOpen-
Fridge M hasV alue hasOrder 2"

SAGetMilk = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGClose-
Fridge M hasV alue hasOrder 17 M 3 hasMemory (Memory ' 3 hasMG MGFetch-
Milk M hasV alue hasOrder 2"



SAGetMilk C SimpleActivity
SAGetMilk C = SAPutawayMilk

SAGetPlate

SAGetPlate = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGClose-
Drawer2 M hasV alue hasOrder 1 1 3 hasMemory (Memory 1 3 hasMG MGFetch-
Plate M hasV alue hasOrder 2 M 3 hasMemory (Memory M 3 hasMG MGOpen-
Drawer2 11 hasV alue hasOrder 737

SAGetPlate = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGFetch-
Plate M hasV alue hasOrder 17 M 3 hasMemory (Memory 'l 3 hasMG MGOpen-
Drawer2 11 hasV alue hasOrder 27

SAGetPlate = SimpleActivity I 3 hasMemory (Memory " 3 hasMG MGClose-
Drawer2 M hasV alue hasOrder 17 1M 3 hasMemory (Memory 1 3 hasMG MGFetch-
Plate 1M hasV alue hasOrder 727

SAGetPlate C SimpleActivity

SAGetSalami

SAGetSalami = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MGClose-
Fridge M hasV alue hasOrder ’1” I 3 hasMemory (Memory N 3 hasMG MGFetch-
Salami M hasV alue hasOrder 2" M 3 hasMemory (Memory ' 3 hasMG MGOpen-
Fridge M hasV alue hasOrder 3"

SAGetSalami = SimpleActivity M 3 hasMemory (Memory ' 3 hasMG MGFetch-
Salami M hasV alue hasOrder 1 ' 3 hasMemory (Memory ' 3 hasMG MGOpen-
Fridge " hasV alue hasOrder ~2”

SAGetSalami = SimpleActivity M 3 hasMemory (Memory M1 3 hasMG MGClose-
Fridge M hasV alue hasOrder ’1” M 3 hasMemory (Memory M 3 hasMG MGFetch-
Salami M hasV alue hasOrder 72”

SAGetSalami C SimpleActivity

SAGetSalami C — SAPutawaySalami

SALieonLazychair

SALieonLazychair = SimpleActivity ' 3 hasMemory (Memory ' 3 hasLocomo-
tion Lie M hasValue hasOrder ”1” M 3 hasMemory (Memory ' 3 hasLocomo-
tion Sit M hasV alue hasOrder ”2” M 3 hasMemory (Memory M 3 hasMG MGIn-
teractwithLazychair M hasV alue hasOrder 2"

SALieonLazychair = SimpleActivity M 3 hasMemory (Memory 1 3 hasL.ocomo-
tion Lie M hasV alue hasOrder 717

SALieonLazychair C SimpleActivity
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SAPrepareCheeseSandwich

SAPrepareCheeseSandwich = SimpleActivity M 3 hasMemory (Memory ' 3 hasAG AGSpread-
Cheese 1M hasV alue hasOrder ”1” 1M 3 hasMemory (Memory M 3 hasMG MG-
FetchKnifeCheese ' hasV alue hasOrder 27

SAPrepareCheeseSandwich = SimpleActivity ' 3 hasMemory (Memory ' 3 hasAG AGSpread-
Cheese M hasV alue hasOrder ”2” M 3 hasMemory (Memory 1 3 hasMG MG-
FetchCheese M hasV alue hasOrder 4" 1 3 hasMemory (Memory M 3 hasMG MG-
FetchKnifeCheese M hasV alue hasOrder ”3” I 3 hasMemory (Memory 1 3 hasMG MG-
PutdownKnifeCheese M hasV alue hasOrder 17

SAPrepareCheeseSandwich = SimpleActivity M 3 hasMemory (Memory M 3 hasAG AGSpread-
Cheese M hasV alue hasOrder ”1” M 3 hasMemory (Memory M 3 hasMG MG-
FetchCheese M hasV alue hasOrder 3" 1M 3 hasMemory (Memory M 3 hasMG MG-
FetchKnifeCheese M hasV alue hasOrder 27

SAPrepareCheeseSandwich = SimpleActivity ' 3 hasMemory (Memory ' 3 hasAG AGSpread-
Cheese M hasV alue hasOrder ”2” M 3 hasMemory (Memory M 3 hasMG MG-
FetchKnifeCheese M hasV alue hasOrder ”3” M 4 hasMemory (Memory ' 4 hasMG MG-
PutdownKnifeCheese ' hasV alue hasOrder 17

SAPrepareCheeseSandwich C SimpleActivity

SAPrepareSalami

SAPrepareSalami = SimpleActivity 3 hasMemory (Memory M 3 hasAG AGCut-
Salami M hasV alue hasOrder ”1” M 3 hasMemory (Memory 1 3 hasMG MGFetchKnife-
Salami M hasV alue hasOrder 72" M 3 hasMemory (Memory ' 3 hasMG MGFetch-
Salami M hasV alue hasOrder 737

SAPrepareSalami = SimpleActivity M 3 hasMemory (Memory M 3 hasAG AGCut-
Salami M hasV alue hasOrder 2 M 3 hasMemory (Memory I 3 hasMG MGFetchKnife-
Salami M hasV alue hasOrder 3" I 3 hasMemory (Memory N 3 hasMG MGFetch-
Salami M hasV alue hasOrder ”4” M 3 hasMemory (Memory 1 3 hasMG MGPut-
downKnifeSalami M hasV alue hasOrder 17

SAPrepareSalami = SimpleActivity 3 hasMemory (Memory M 3 hasAG AGCut-
Salami M hasV alue hasOrder 2 I 3 hasMemory (Memory N 3 hasMG MGFetchKnife-
Salami I hasV alue hasOrder ”3” M 3 hasMemory (Memory ' 3 hasMG MGPut-
downKnifeSalami M hasV alue hasOrder 17

SAPrepareSalami = SimpleActivity M 3 hasMemory (Memory M 3 hasAG AGCut-
Salami M hasV alue hasOrder ”1” M 3 hasMemory (Memory 1 3 hasMG MGFetchKnife-
Salami M1 hasV alue hasOrder 727

SAPrepareSalami C SimpleActivity

SAPutSugar

SAPutSugar = SimpleActivity M 3 hasMemory (Memory " 3 hasAG AGStir-
Spoon M hasV alue hasOrder 17 1M 3 hasMemory (Memory 1 3 hasMG MGFetch-



Spoon M hasV alue hasOrder 72" I 4 hasMemory (Memory " 3 hasMG MGFetch-
Sugar M hasV alue hasOrder 73"

SAPutSugar = SimpleActivity I 3 hasMemory (Memory " 3 hasAG AGStir-
Spoon M hasV alue hasOrder 2" M 3 hasMemory (Memory 1 3 hasMG MGFetch-
Spoon M hasV alue hasOrder 3 ' 4 hasMemory (Memory ' 3 hasMG MGFetch-
Sugar M hasV alue hasOrder ”4” M 3 hasMemory (Memory M 3 hasMG MGPut-
downSpoon M hasV alue hasOrder 17

SAPutSugar C SimpleActivity

SAPutawayBottle

SAPutawayBottle = SimpleActivity M 3 hasMemory (Memory M 3 hasMG MG-
CloseFridge M hasV alue hasOrder 17 1M 3 hasMemory (Memory I 3 hasMG MGFetch-
Bottle ' hasV alue hasOrder 3" 'l 4 hasMemory (Memory N 3 hasMG MGPut-
downBottle I hasV alue hasOrder 72”

SAPutawayBottle = SimpleActivity I 3 hasMemory (Memory M 3 hasMG MG-
CloseFridge M hasV alue hasOrder ”1” I 3 hasMemory (Memory 1 3 hasMG MGFetch-
Bottle M hasV alue hasOrder 4 ' 3 hasMemory (Memory 1 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ”3” I 3 hasMemory (Memory " 3 hasMG MGPut-
downBottle M hasV alue hasOrder ”2”

SAPutawayBottle = SimpleActivity N 3 hasMemory (Memory [ 3 hasMG MGFetch-
Bottle M hasV alue hasOrder ”3” M 3 hasMemory (Memory " 3 hasMG MGOpen-
Fridge M hasV alue hasOrder 2 I 4 hasMemory (Memory " 3 hasMG MGPut-
downBottle I hasV alue hasOrder 17

SAPutawayBottle C SimpleActivity

SAPutawayBottle C = SAGetBottle

SAPutawayBread

SAPutawayBread = SimpleActivity [ 3 hasMemory (Memory M 3 hasMG MG-
CloseDrawer3 M hasV alue hasOrder ”1” M 3 hasMemory (Memory M 3 hasMG MGFetch-
Bread M hasV alue hasOrder ”3” M 3 hasMemory (Memory M 3 hasMG MGPut-
downBread M hasV alue hasOrder 2”

SAPutawayBread = SimpleActivity I 3 hasMemory (Memory 1 3 hasMG MG-
CloseDrawer3 M hasV alue hasOrder ”1” ' 3 hasMemory (Memory N 3 hasMG MGFetch-
Bread M hasV alue hasOrder ”4” 1M 3 hasMemory (Memory N 3 hasMG MGOpen-
Drawer3 M hasV alue hasOrder ”3” M 3 hasMemory (Memory 1 3 hasMG MG-
PutdownBread ' hasV alue hasOrder 72”

SAPutawayBread = SimpleActivity N 3 hasMemory (Memory N 3 hasMG MGFetch-
Bread M hasV alue hasOrder ”3” M 3 hasMemory (Memory M 3 hasMG MGOpen-
Drawer3 M hasV alue hasOrder ”2” M 34 hasMemory (Memory M 3 hasMG MG-
PutdownBread M hasV alue hasOrder 17

SAPutawayBread C SimpleActivity

SAPutawayBread C — SAGetBread
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SAPutawayCheese

SAPutawayCheese = SimpleActivity N 3 hasMemory (Memory I 3 hasMG MG-
FetchCheese M hasV alue hasOrder ”3” M 3 hasMemory (Memory M 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ”2” M 34 hasMemory (Memory " 3 hasMG MGPut-
downCheese M hasV alue hasOrder 717

SAPutawayCheese = SimpleActivity M 3 hasMemory (Memory ' 3 hasMG MG-
CloseFridge M hasV alue hasOrder 17 1 3 hasMemory (Memory 1 3 hasMG MG-
FetchCheese M hasV alue hasOrder ’3” 1 3 hasMemory (Memory N 3 hasMG MG-
PutdownCheese M hasV alue hasOrder 27

SAPutawayCheese = SimpleActivity I 3 hasMemory (Memory ' 3 hasMG MG-
CloseFridge M hasV alue hasOrder 17 1 3 hasMemory (Memory ' 3 hasMG MG-
FetchCheese M hasV alue hasOrder ”4” M 3 hasMemory (Memory M 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ”3” M 34 hasMemory (Memory " 34 hasMG MGPut-
downCheese M hasV alue hasOrder 2"

SAPutawayCheese C SimpleActivity

SAPutawayCheese C — SAGetCheese

SAPutawayMilk

SAPutawayMilk = SimpleActivity [ 3 hasMemory (Memory 1 3 hasMG MGFetch-
Milk M hasV alue hasOrder 3" M 3 hasMemory (Memory " 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ”2” M 4 hasMemory (Memory 'l 34 hasMG MGPut-
downMilk M hasV alue hasOrder 17

SAPutawayMilk = SimpleActivity I 3 hasMemory (Memory N 3 hasMG MG-
CloseFridge M hasV alue hasOrder 17 1 3 hasMemory (Memory 1 3 hasMG MGFetch-
Milk M hasV alue hasOrder ”4” I 4 hasMemory (Memory M 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ’3” M 34 hasMemory (Memory " 3 hasMG MGPut-
downMilk M hasV alue hasOrder 27

SAPutawayMilk = SimpleActivity I 3 hasMemory (Memory M 3 hasMG MG-
CloseFridge M hasV alue hasOrder 17 M 3 hasMemory (Memory M 3 hasMG MGFetch-
Milk M hasV alue hasOrder ”3” Il 3 hasMemory (Memory M 3 hasMG MGPut-
downMilk M hasV alue hasOrder 727

SAPutawayMilk C SimpleActivity

SAPutawayMilk C - SAGetMilk

SAPutawaySalami

SAPutawaySalami = SimpleActivity ' 4 hasMemory (Memory "M 3 hasMG MGFetch-
Salami M hasV alue hasOrder 3" M 3 hasMemory (Memory ' 3 hasMG MGOpen-
Fridge M hasV alue hasOrder ”2” M 3 hasMemory (Memory M 3 hasMG MGPut-
downSalami M hasV alue hasOrder ”1”

SAPutawaySalami = SimpleActivity M 39 hasMemory (Memory M 3 hasMG MG-
CloseFridge M hasV alue hasOrder 17 ' 3 hasMemory (Memory ' 3 hasMG MGFetch-
Salami M hasV alue hasOrder ”4” M 3 hasMemory (Memory 1 3 hasMG MGOpen-



Fridge M hasV alue hasOrder 3 Il 4 hasMemory (Memory ' 3 hasMG MGPut-
downSalami M hasV alue hasOrder 72"

SAPutawaySalami = SimpleActivity [ 3 hasMemory (Memory " 3 hasMG MG-
CloseFridge M hasV alue hasOrder 17 1M 3 hasMemory (Memory I 3 hasMG MGFetch-
Salami M hasV alue hasOrder ’3” I 3 hasMemory (Memory ' 4 hasMG MGPut-
downSalami M hasV alue hasOrder 72"

SAPutawaySalami C SimpleActivity

SAPutawaySalami C — SAGetSalami

SAPutinDishwasher

SAPutinDishwasher = SimpleActivity 1 3 hasMemory (Memory I 3 hasMG MG-
CloseDishwasher 'l hasV alue hasOrder 1 ' 3 hasMemory (Memory ' 3 hasMG MGFetch-
WashableObject 1 hasV alue hasOrder ”3” I 3 hasMemory (Memory M 3 hasMG MG-
PutdownWashableObject I hasV alue hasOrder 27

SAPutinDishwasher = SimpleActivity 1 3 hasMemory (Memory N 3 hasMG MGFetch-
WashableObject M hasV alue hasOrder ”3” M 3 hasMemory (Memory M 3 hasMG MGOpenDish-
washer M hasV alue hasOrder 72 M 4 hasMemory (Memory M 3 hasMG MGPut-
downWashableObject M hasV alue hasOrder 17

SAPutinDishwasher = SimpleActivity 1 3 hasMemory (Memory I 3 hasMG MG-
CloseDishwasher M hasV alue hasOrder 717 M 3 hasMemory (Memory M 3 hasMG MGFetch-
WashableObject ' hasV alue hasOrder ’4” 1 3 hasMemory (Memory ' 3 hasMG MGOpenDish-
washer M hasV alue hasOrder ”3” M 3 hasMemory (Memory M 3 hasMG MGPut-
downWashableObject M hasV alue hasOrder 2"

SAPutinDishwasher C SimpleActivity

Salami

Salami C Object

SimpleActivity
Sip

Sip E Function

Sit

Sit © Locomotion

Spoon

Spoon C WashableObject
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Spread

Spread C Function

Stand

Stand T Locomotion

Stir

Stir C Function

Sugar
Sugar C Object

Switch

Switch C Object

Table
Table C Object

Thing
Unlock

Unlock C Function

UserCA
UserCA C ComplexActivity

UserMG

UserMG C ManipulativeGesture

UserSA

UserSA C SimpleActivity

Walk

Walk C Locomotion



WashableObject
WashableObject C Object

Object properties

hasAG

3 hasAG Thing C Memory
T C V hasAG AtomicGesture

hasAGActor

3 hasAGActor Thing = AtomicGesture
T C V hasAGActor Person

hasArm

3 hasArm Thing C Person
T C V hasArm Arm

hasAtomicGesture

J hasAtomicGesture Thing C Person
T C V hasAtomicGesture AtomicGesture

hasCAActor

3 hasCAActor Thing = ComplexActivity
T C V hasCAActor Person

hasFunction

3 hasFunction Thing C Arm
T C V hasFunction Function

hasLocomotion

J hasLocomotion Thing C Person
T C V hasLocomotion Locomotion

hasMG

3 hasMG Thing C Memory
T C V hasMG ManipulativeGesture
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hasMGA ctor

3 hasMGActor Thing C ManipulativeGesture
T C V hasMGActor Person
hasManipulativeGesture

3 hasManipulativeGesture Thing C Person

T C V hasManipulativeGesture ManipulativeGesture
hasMemory

3 hasMemory Thing C SimpleActivity

T C V hasMemory Memory

hasObject

3 hasObject Thing C Arm

T C V hasObject Object

hasSimpleActivity

d hasSimpleActivity Thing = Person

T C V hasSimpleActivity SimpleActivity
Data properties

hasOrder

3 hasOrder Datatype Literal = Memory
T C V hasOrder Datatype integer
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