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Abstract 

Most previous results on determinants of inventive performance are biased because inventive 
performance is measured with error. This measurement error causes attenuation bias. More 
specifically, for example age and education as drivers of patenting success have biased coefficients 
and too high standard errors when inventive performance is measured in short observation periods. 
The reason for measurement errors in inventive performance is that patents are typically applied for 
in waves.  
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1. Introduction 

An influential and growing literature measures inventive performance by counting the 

number, quality or value of patents of an inventor. To the best of our knowledge, almost all 

published papers on determinants of inventive productivity on the basis of patent 

applications employed very short measurement periods: four years (Walsh and Nagaoka, 

2009 for the US), five years (Giuri et al., 2007; Sauermann and Cohen, 2010), six years (Walsh 

and Nagaoka, 2009 for Japan), nine years (Vänäänen, 2010), and ten years (Mariani and 

Romanelli, 2007).2  
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 The only exceptions we are aware of are the papers by Hoisl (2007a, 2007b). She uses the patenting histories 

of 3049 German inventors at the European Patent Office between 1977 and 1999/2002 and calculates age – 
output relationships of inventors. Jung and Ejermo (2014) use the observation period 1985-2007 but do not 



A short measurement period of patenting activity is prone to measurement error, however, 

because patents are not applied for continuously but in waves. Reasons for this pattern are 

for example strategic application behaviour and the splitting-up of one invention into several 

patents for example to create so-called “royalty stacking” where several patents apply to 

one new product (Lemley and Shapiro, 2007). In our data on the patenting history of German 

inventors for example, on average, inventors had no European patent in about 80% of the 

years during their career. This finding coincides with strong variance of patenting success 

over time found in other studies (Hoisl, 2007a, p. 627). We therefore expect an attenuation 

bias induced by measurement error in the dependent variable (Griliches and Mairesse, 1996) 

when the observation period of patenting behaviour is shorter than the entire (observable) 

career.  

Let true individual inventive productivity measured over the entire career be y*. The variable 

y measures true inventive productivity with error: y = y*+e. The structural model is thus: y* = 

x´ß+v with x a vector of explanatory variables, ß a vector of regressors and v an error term. 

The data however show the relationship y = x´ß + v + e. The first consequence of 

measurement error in y is that the composite error term is too large, which implies a larger 

covariance matrix for ˆ
OLS . The second consequence is that ˆ

OLS  is biased if e is correlated 

with x (Wooldridge, 2010, p. 77-78).  

This paper demonstrates that the measurement of the effect of education level and age on 

inventive performance indeed suffers from both sources of attenuation bias on inventive 

performance when the observation period is shorter than the entire career. We chose the 

two exemplary explanatory variables because these are the most widely used exogeneous 

variables in the estimation of inventive performance literature. 

2. Data  

Our data have been collected in the course of a self-administered survey of German 

inventors mainly active in clean technology (CT) and mechanical elements (ME) and merged 

with the complete list of European patent (EP) applications of all inventors. The data are 

                                                                                                                                                                                     

calculate determinants of inventive performance. Gruber et al. (2013) use the patent history of inventors 
between 1977 and 2003. They explain technological recombination breadth instead of inventive performance.  



therefore comparable with the papers mentioned above based on PatVal and other survey 

data linked with patent histories. 

We identified all patent applications with priority dates between 2004 and 2008 assigned to 

the two fields that listed at least one inventor with home address in Germany. This resulted 

in 8,313 inventors in our basic sample. We received 1,700 responses (response rate 29.5 

percent). We added all patent applications of the responding inventors between 1978 and 

2010 using the PATSTAT database. Further details on the data generation and descriptive 

statistics can be found in Frosch et al. (2015). 

3. Empirical strategy  

Using our data, we replicate the estimation approaches of the papers mentioned above and 

vary the length of the observation period – we use the full career observation length, a ten 

year spell from 2000-2009 and a five year spell from 2005-2009.3 We interpret changes in 

effect size and significance between the three observation lengths as attenuation bias. We 

can identify patent applications of our inventors for a maximum period of 33 years (1978-

2010) and therefore assess inventive performance for most inventors for their entire career 

until 2010.  

We use forward citations as measure of patent quality besides the number of patents. The 

binary variable jfractbinC ,,  indicates whether patent application j receives at least as many 

( 1,, jfractbinC ) or less ( 0,, jfractbinC ) fractional citations (i.e. citations corrected for the 

number of co-inventors) than the average patent application in the same priority year t and 

technology field k: 
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 Please note that in our sample about two thirds of the inventors only had inventions in the 2000-2009 period 

and one third only in the 2005-2009 period. 



Inventive performance of inventor i equals the average of the above-average citation counts, 

i.e. the sum of the binary indicators for all patent applications J of inventor i, divided by the 

number of work years (Frosch et al., 2015): 
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Birth cohort is measured by six dummy variables taking the value of one if the inventor was 

born before 1970, between 1966 - 1970, 1961 - 1965, 1956 - 1960, 1951 - 1955, 1946 - 1950, 

and zero otherwise. This implies that the oldest cohort is older than 60 years of age at the 

time of our survey.  

The inventor´s highest formal educational level is measured by three dummy variables taking 

the value of one in case the inventor obtained a vocational education, conducted academic 

studies, or received a PhD, and zero otherwise.  

In line with the literature, we also control for the characteristics of the inventors´ employers 

(patent applicants). We aggregate applicant characteristics over the entire career of 

inventors and compute applicant type shares. The latter are defined as the number of patent 

applications produced by the inventor while associated with an applicant institution of a 

certain type (research institution or university, private company, independent inventor) 

divided by the total number of patent applications filed by the inventor. The size of the 

patent portfolio, the number of employees of the applicant institutions, the patent status 

(pending, refused, withdrawn, and granted) and technology shares of patents are calculated 

similarly. Period shares capture the temporal distribution of the inventor’s activity and help 

us to differentiate between time and cohort effects. The descriptive statistics of our sample 

are reported in Table 1. 

We use the full observation periods for the calculation of all explanatory variables and 

therefore do not vary between observation lengths. The reason is that with our approach 

the measurement quality of age and education is not affected by the period length. Some 

explanatory variables such as applicant institution characteristics of patent portfolio would 

otherwise be measured with error in shorter periods. Using the entire observation periods 

for these explanatory variables reveals the pure attenuation bias induced by measurement 



errors of the dependent variable in shorter observation periods. Measurement errors in the 

explanatory variables might lead to an additional attenuation bias (Wooldridge, 2010). 

4. Results 

The average Gini-coefficient of all inventors for their patents during their career  reveals a 

very unequal distribution of patents over time. On a possible range from 0 (completely equal 

distribution of patent citations over time) to 1 (completely unequal distribution of patent 

citations over time) it takes the value 0.84. This implies that patent with more than average 

citations are granted in waves and many inventors have a large share of years during their 

career without patents that have been cited more than average. When we take inventive 

performance data from the entire career, an academic education increases performance by 

about 13% and a PhD by 41% in comparison to vocational training. If we only consider 

maximally ten years of productive output (2000-2009), only PhD has a massive influence of 

over 145% and academic education has the same influence on productivity as vocational 

training. If we consider a period of five years (2000-2005), again the dummy for academic 

education has no significance and the PhD dummy has a much smaller value than in the nine 

year period. Longer observation periods hence lead to higher significant and more plausible 

estimates of the impact of education on inventive performance. Especially a PhD is – with an 

almost 50% higher number of patents per work year that are cited more than the average of 

the patents in the same field – a good predictor of a high inventive productivity during the 

career. When we look at the coefficients of our groups of birth cohorts, we also find that the 

size and sometimes even the sign of the coefficients changes. Birth cohort has hardly any 

impact in the shorter observation periods and the expected declining impact with age in the 

complete patenting history sample, compare Table 2. In the full career sample, we find that 

inventive productivity is about 5% lower for inventors who were older than 45 in the year 

2010 in comparison to inventors who were younger than 40.  

We repeat our estimations with the number of patents instead of their quality as dependent 

variable. Again, the coefficients of age and education in the shorter observation periods are 

smaller and less significant, compare Table 3. This means that attenuation bias also reduces 

the significance and size of the determinants of inventive productivity if we use a quantity 

measure instead of a quality measure.  

We therefore replicate the comparably low and insignificant impact of age and education on 

inventive productivity when the dependent variable is measured by few years of patent 



history as in most papers in the literature (Mariani and Romanelli, 2007, Giuri et al., 2007; 

Walsh and Nagaoka, 2009, Sauermann and Cohen, 2010; Vänäänen, 2010). We also obtain a 

comparably stronger impact of age and education on the number of patents than the quality 

of patents as found for example by Mariani and Romanelli (2007).  

When we use log age instead of age groups or fractional counts instead of whole patent 

counts in robustness tests, we get roughly the same results (also compare Frosch et al., 

2015). Our results are also robust if we use average value and the maximum value of the 

patents invented by the inventor as dependent variables (Mariani and Romanelli, 2007) or if 

we include temporal concentration of patenting activity (Hoisl, 2007a). This means that our 

results are not driven by the choice of the dependent variable or the list of explanatory 

variables. 

 

5. Conclusions 

Our analysis shows that almost all papers on inventive productivity based on patent 

applications published in journals so far are affected by attenuation bias. More specifically, 

measurement errors for the dependent variable in short observation periods lead to biased 

coefficients and significance levels for age and education that are too low. Measurement 

errors are induced because patents are applied for in waves, for example as a consequence 

of several patents applied for from one invention. One reason for this behavior might be 

“royalty stacking”. Patenting activities therefore should be measured on the basis of 

complete inventor careers data instead of shorter periods if possible.  

Our paper also has implications for other measures of inventive productivity when these are 

not evenly distributed over time. An obvious example for other measures that might be 

affected by attenuation bias is publication activities of scientists and their citations. Van Ours 

(2009) for example notes that economists tend to have many years without publications and 

some years with a lot of publications.4 Also citations of published work by scientists might 

strongly vary from year to year. 

This short note only proofs on the basis of one linked employer-patent data set that 

extending the observation period dramatically changes the size and sometimes the sign of 

important explanatory variables in estimations on inventive productivity. It may be 
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 Levin and Stephan (1991) for example use a two years observation period to predict research productivity 

over the life cycle. 



important to replicate published estimates on the determinants of inventive productivity 

that used short observation periods with longer patent data, citation or publication histories 

in order to make sure that the results are robust. Especially the impact of the variables that 

have a low or insignificant impact on inventive performance such as age and education 

might have been underestimated. 

Based on the results of this paper, we recommend that future studies aiming to gain reliable 

insights into the drivers of inventive or scientific productivity should make use of 

performance measures that span as many periods as possible. 
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Tables 
Table 1: Variable descriptions and descriptive results (N = 1,593) 

VARIABLES Mea
n 

Media
n 

S.D.  Description 

ln(patent quality+1) 

0.06 0.03 0.09 

ln of sum of dummy variables taking the 
value = 1 if a patent receives more 
(fractional) citations than average of all 
patents in same technology field and 
year, divided by number of working years 
plus one  

Birth year after 1970 
0.21 0 0.41 

Dummy = 1 if inventor was born after 
1970 (reference category) 

Birth year 1966–1970 
0.21 0 0.41 

Dummy = 1 if inventor was born between 
1966 and 1970 

Birth year 1961–1965 
0.14 0 0.35 

Dummy = 1 if inventor was born between 
1961 and 1965 

Birth year 1956–1960 
0.11 0 0.32 

Dummy = 1 if inventor was born between 
1956 and 1960  

Birth year 1951–1955 
0.16 0 0.37 

Dummy = 1 if inventor was born between 
1951 and 1955 

Birth year 1946–1950 
0.21 0 0.41 

Dummy = 1 if inventor was born between 
1946 and 1950 

Vocational education 

0.11 0 0.32 

Dummy = 1 if highest level of education is 
vocational education in 2010 (reference 
category) 

Academic education 
0.59 1 0.49 

Dummy = 1 if highest level of education is 
academic education 

PhD 
0.3 0 0.46 

Dummy = 1 if highest level of education is 
PhD 

Applicant size: 1 patent 
0.04 0 0.17 

Share of applicant firms with 1 patent 
(1978–2010) 

Applicant size: 2–24 
patents 0.17 0 0.34 

Share of applicant firms with 2–24 
patents 

Applicant size: 25–249 
patents 0.21 0 0.37 

Share of applicant firms with 25–249 
patents 

Applicant size: 250–999 
patents 0.13 0 0.3 

Share of applicant firms with 250–999 
patents 

Applicant size: 1000–9999 
patents 0.46 0.32 0.46 

Share of applicant firms with more than 
1,000 patents 

Applicant type: private 
company 0.93 1 0.24 

Share of applicant private companies 

Applicant type: 
university/research 
institute 0.04 0 0.19 

Share of applicant university/research 
institutes 

Applicant type: individual 0.03 0 0.15 Share of individual applicants 

Patent application 
pending 0.37 0.31 0.34 

Share of pending patents 



Patent application 
withdrawn 0.15 0 0.23 

Share of withdrawn patents 

Patent application refused 0.01 0 0.07 Share of refused patents 

Patent application granted 0.47 0.5 0.34 Share of granted patents 

Electrical machinery, 
apparatus, energy 0.12 0 0.27 

Area share of patents at inventor level in 
the respective technological field 

Electrical engineering 0.02 0 0.08  

Semiconductors 0.05 0 0.17  

Instruments 0.05 0 0.14  

Chemistry 0.03 0 0.14  

Materials/surface 
technology/chemical 
engineering/environmenta
l technology 0.13 0 0.26 

 

Mechanical engineering 0.1 0 0.22  

Engines, pumps, turbines 0.15 0 0.3  

Mechanical elements 0.2 0 0.32  

Transport 0.1 0 0.23  

Other fields 0.04 0 0.15  

Share of patents 1975-
1979                                                                 0 0 0.02 

Period share of patents at inventor level 
in the respective period 

1980-1984                                                                                  0 0 0.03  

1985-1989                                                                                  0.01 0 0.06  

1990-1994                                                                                  0.03 0 0.08  

1995-1999                                                                                  0.07 0 0.15  

2000-2004                                                                                  0.25 0.15 0.29  

2005-2009                                                                                  0.61 0.62 0.35  

2010-2012                                                                 0.02 0 0.07  

 

 



Table2: Regression models of patent quality with different observation periods 

  
(Model 1a) 
Full Career 

(Model 1b) 
2000-2009 

(Model 1c) 
2005-2009 

VARIABLES 
ln(patent 

quality + 1) 
ln(patent quality+ 

1) 
ln(patent quality 

+ 1) 

Academic education 0.127** 0.741 0.271 
 [0.055] [0.449] [0.298] 
PhD degree  0.409*** 1.458*** 0.611** 
 [0.086] [0.500] [0.308] 
Birth year  1966-1970       -0.023** -0.012 0.006 
                                                                                [0.009] [0.046] [0.035] 
Birth year 1961-1965                                                                     -0.040*** -0.011 -0.005 
                                                                   [0.010] [0.040] [0.033] 
Birth year 1956-1960                                                                          -0.043*** 0.027 0.015 
 [0.008] [0.041] [0.034] 
Birth year 1951-1955                                                             -0.062*** -0.013 0.035 
                                                                               [0.009] [0.040] [0.041] 
Birth year 1946-1950                                                                              -0.049*** 0.053 0.068* 
                                                                [0.010] [0.052] [0.035] 

Additional control variablesA  Included included Included 

Observations 1,593 1,593 1,473 
R-squared 0.160 0.152 0.046 

Notes:  

Dependent variable: ln(patent quality +1), patent quality as measured by average above 
average citation counts 
All time-varying explanatory variables are calculated between job entry and 2010 and 
divided by 10, besides dummies.  
Reference categories: vocational education, birth year later than 1970. 
A Applicant size and type shares, patent status shares, technical area shares, period shares, 

and constant. 
Robust standard errors based on applicant clusters in brackets. 
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 
 



 
Table 3: Regression models of patent number with different observation periods 

  
(Model 2a) 
Full Career 

(Model 2b) 
2000-2009 

(Model 2c) 
2005-2009 

VARIABLES 

ln(average 
number of 

patents per work 
year+1) 

ln(average 
number of 

patents per work 
year+1) 

ln(average 
number of 
patents per 

work year+1) 

Academic education 0.395** 0.530* 0.104 
 [0.194] [0.272] [0.245] 
PhD degree  1.452*** 1.339*** 0.545* 
 [0.281] [0.354] [0.290] 
Birth year  1966-1970       -0.138*** -0.132*** -0.099*** 
                                                                                [0.028] [0.033] [0.030] 
Birth year 1961-1965                                                                     -0.188*** -0.109*** -0.060* 
                                                                   [0.034] [0.036] [0.033] 
Birth year 1956-1960                                                                          -0.245*** -0.122*** -0.088*** 
 [0.029] [0.033] [0.030] 
Birth year 1951-1955                                                             -0.303*** -0.133*** -0.058* 
                                                                               [0.028] [0.034] [0.033] 
Birth year 1946-1950                                                                              -0.329*** -0.092** 0.094** 
                                                                [0.038] [0.044] [0.043] 

Additional control 
variablesA Included included Included 

Observations 1,593 1,586 1,450 
R-squared 0.264 0.169 0.124 

Notes: see Table 2  
 


