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Abstract—Iconic images represent an abstract topic and use a
presentation that is intuitively understood within a certain cul-
tural context. For example, the abstract topic “global warming”
may be represented by a polar bear standing alone on an ice
floe. Such images are widely used in media and their automatic
classification can help to identify high-level semantic concepts.
This paper presents a system for the classification of iconic
images. It uses a variation of the Bag of Visual Words approach
with enhanced feature descriptors. Our novel color pyramids
feature incorporates color information into the classification
scheme. It improves the average F1 measure of the classification
by 0.117. The performance of our system is further evaluated
under a variety of parameters.

Keywords: image classification, semantic image search, iconic
images

I. INTRODUCTION

A large amount of free multimedia content is available on
the Web today. This includes images and videos, but also
associated textual descriptions or tags. When searching for
multimedia content, image search engines like Google Images
or Flickr find a large number of pictures. Most commercial
search engines rely heavily on a textual description that
surrounds the content, for example on a Web page or that was
added manually. These search engines work well, if the topic
to be searched for can be labeled with a brief and meaningful
description. However, it is not always easy for users to find
suitable keywords to be used in the search. This becomes
even more challenging when searching for abstract topics like
“climate change”. Such a search request may be answered by a
large variety of multimedia content. Images may show reasons
for climate change, e.g., “air pollution” or possible solutions
like “wind turbines”. Figure 1 shows two example results of
such a search query.

In this paper, our aim is to go one step further and search for
iconic images. In an iconic image, the visualized objects are
not relevant on their own, but the complete scene represents
a larger, more abstract topic which is understood intuitively
within a certain cultural context. An example would be the
picture of a polar bear standing on an ice floe. In many western
countries such an iconic picture represents global warming,
and it has been used in this context for years. Both photographs
in Figure 1 are typical examples of iconic images as well.
Smokestacks can be considered iconic if they are associated
with the topic of “air pollution”, which in turn represents the
larger theme “climate change”.

To specify the term iconic image, we refer to the definition
of Ponzetto et al. [1]: An iconic image concisely represents
an entity that refers to a larger topic, and that is widely used
in public communication. Such a topic is identified by media

Fig. 1. Two iconic images of climate change. Smokestacks (causal attribution)
and wind turbines (proposed solution) [1].

users easily and can trigger a substantial affective, cognitive
and/or behavioral reaction.

This paper presents a multimedia system that allows the
classification of iconic images. The automatic classification
of iconic images is a very challenging subject due to the
fact that algorithms have great problems in ’understanding’
high-level semantic concepts. Many applications benefit like
media retargeting [2, 3], saliency detection [4], or video
summarization [5, 6] if the semantic content of an image or
a video is known. Iconic images are also an important topic
for other sciences like literary studies [7, 8]. The goal of such
studies is to find out how iconic images are used in different
cultures, e.g., how a picture of a polar bear on an ice floe
or a smokestack affects people in developing countries. It is
also of interest, how the content is used over time and if
there is a wear-out effect of certain iconic representations. The
manual inspection of iconic images is very time consuming.
Our system helps to pre-select candidates of iconic images of
different topics and arranges them for manual inspection.

The system also helps to evaluate the quality of different
classification algorithms, and supports users in their choice of
parameters. The bag of visual words (BoVW) method is used
as a starting point. To improve the basic algorithm and to make
it more robust for iconic image search, color information in
the images is considered additionally. Our novel color pyramid
scheme enhances the basic BoVW method by adding feature
points associated with a basic color.



The rest of this paper is structured as follows. Section
II discusses various methods that extend the basic BoVW
algorithm and other approaches of classifying iconic images.
The used algorithm as well as the developed color pyramid
feature are described in detail in Section III. Sections IV and V
present our data set and the experimental results, respectively.
Section VI summarizes the paper.

II. RELATED WORK

Much work has been done in the past few years in the
areas of image and object classification [9, 10, 11] as well as
context based image retrieval [12, 13, 14]. One of the most
successful techniques is the Bag of Visual Words (BoVW)
approach which has been widely studied in the literature [15,
16].

Several improvements for the general BoVW approach have
been proposed. Lazebnik et al. [17] proposed an improve-
ment for the Bag of Visual Words method by using spatial
information of visual words. Their approach is based on the
pyramid matching scheme described in [18]. The difference to
the standard Bag of Visual Words technique is the usage of
visual word histograms. Usually, such vectors only represent
the frequency of visual words for each image, and they do
not include any spatial information. In the modified approach,
location is considered as well.

Sato and Katto [19] suggested to modify the standard Bag
of Visual Words algorithm applied in the area of object
recognition by using Saliency Maps and Seam-Carving [20].
Their idea is based on the observation that many images from
object recognition datasets have fairly large background areas.
In their approach, such insignificant regions are ignored in
order to improve the recognition rate.

Sharma [21] improved the method by Lazebnik et al. [17]
by adding saliency information. The computed features are
weighted with the corresponding saliency map. The proposed
approach combines saliency modeling with the learning of
a classifier: In one step, the saliency maps of the positive
examples are fixed while the separating hyperplane is being
optimized. In the next step, the generic saliency map is being
tuned while keeping the hyperplane vector fixed.

The only work in the context of multimedia and computer
vision that considers iconic images was proposed by Ponzetto
et al. [1]. Their definition of the term “iconic image” is based
on the work in [7, 8], as media icons with the focus on hot
and sensitive topics. An iconic image refers to an abstract
topic, which cannot be depicted directly, but is visualized via
related concepts instead. An example is given by [22] with
the abstract topic of global warming which is depicted by the
concrete concept “polar bear on melting ice floe”. Ponzetto et
al. propose an approach for the classification of iconic images
by reducing the amount of human supervision. The approach
consists of five steps. It starts with a human-selected basic set
of iconic images along with their caption. Such pictures can be
found using Google image search, restricted to Wikipedia and
National Geographic Education. In a second step, the dataset
is enlarged using a query-by-text approach from the images
descriptions. The next two steps are devoted to detecting and
filtering outliers from the automatically queried dataset. A

picture is only preserved if either both caption and image have
references to a person or neither has such references. The final
step promotes diversity among images. When the dataset was
built, it was checked manually to determine if each image is
iconic of not.

We have developed a complete system that makes it possible
to classify iconic images and to evaluate the performance of
different classification algorithms [23]. Most of the previous
work considers specific objects or scene categories. Only
Ponzetto et al. [1] consider the problem of iconic image
classification. We also introduce our novel color-based features
called color pyramids that significantly improve the classifica-
tion results on our iconic image dataset.

III. CLASSIFICATION SYSTEM

Our system implements a variation of the Bag of Visual
Words (BoVW) approach. BoVW is analogous to the Bag
of Words method that is widely used for text classification
[24]. The first step is building a vocabulary, which includes
the detection of keypoints, computation of descriptors, and
clustering. The next step is the creation of feature vectors and
the training of a classifier on the labeled training data. The
trained classifier can then be used to label new, unknown im-
ages. In the following subsections, the basic BoVW approach
is discussed. Our proposed extension that uses color pyramids
is discussed in Section III-C. Section III-D then gives some
implementation details. The source code 1 of the classification
system is available for download under the GNU General
Public License.

A. Building the Vocabulary

The construction of a vocabulary of visual words starts with
keypoint detection and the computation of descriptors in such
obtained points. There are various well-established techniques
to perform this task such as the SIFT detector/descriptor [25]
and the SURF detector/descriptor [26]. The SIFT descriptor is
based on gradients computed around the keypoint and consists
of a vector with 128 elements. SURF computes the Haar-
wavelet responses and stores a vector with 64 entries. A
computationally efficient option for keypoint detection is to
use the GRID detector: An image is divided into several cells,
and the center of each cell is considered as a point of interest
(see Figure 2). The keypoint size equals the size of a cell
multiplied by a keypoint scale factor between 0.0 and 1.0.

To build the vocabulary, a set of training images is used.
The training images are iconic images for which the larger
topic they represent is known. Keypoints are then detected in
all training images and corresponding descriptors are com-
puted. The obtained descriptors are clustered using the k-
means algorithm. A vocabulary is then defined by a set of
computed centroids after the clustering phase. These cluster
centroids are called visual words. The construction process of
the vocabulary is visualized in Figure 3.

In previous works, the vocabulary size varies from hundreds
[17] to hundreds of thousands [24] of elements. According
to [24], if the vocabulary size is too small, the resulting

1Source code of the classification system:
http://ls.wim.uni-mannheim.de/de/pi4/research/projects/iconicimages/



Fig. 3. Building a vocabulary. Keypoints and descriptors are computed over the training images. The descriptors are points in a high-dimensional feature
space. By using k-means clustering, the descriptors are clustered into a smaller number of clusters whose centroids represent the visual words.

Fig. 2. An example of the GRID detector with a keypoint scale of 1.0 (left)
and 0.5 (right).

vocabulary will not be representative of the training images,
because different descriptors can be matched to the same
visual word. However, if a vocabulary has too many entries,
similar descriptors are mapped to different visual words, and
the computational costs for clustering and using a classifier
increase. Our system allows the user to manually define the
vocabulary size. It may vary between 2 and 10000 cluster
centroids. For keypoint detection, the SIFT, SURF, and GRID
keypoint detectors can be used. They each can be combined
with the SIFT or the SURF descriptor.

B. Classification

After the first phase of building the vocabulary is complete,
a classifier is chosen and trained. For each image with index i
from a training set, a histogram vector vi of the visual words
from the vocabulary is computed as:

vi = (v1i, v2i, ..., vMi), (1)

where M is the size of the used vocabulary, and vji is
the number of times that the visual word j is contained
in image i. The computed visual words histograms along
with the ground truth image labels serve as input to the
classifier. To predict a label for a new image, a visual word
histogram for this image is calculated and fed to a trained
classifier. We implemented the two classifiers Support Vector
Machines (SVM) and Normal Bayes Classifier (NBC) which
are described in the following.

Support Vector Machine

A Support Vector Machine (SVM) is a well-known tech-
nique for binary classification problems [27]. It learns an op-
timal separating hyperplane between two classes from training
examples.

Let {V, Y } be a training set, where V = (v1, ..., vN )
represents N training samples with each sample consisting
of M features. Y = (y1, ..., yN ) denotes the labels of the
samples such that yi = −1 means that the sample belongs
to the first class C1 and yi = 1 means that it belongs to
the second class C2. In our case, one training sample is a
histogram of visual words that belongs to one of the training
images. Initially, it is assumed that the two classes are linearly
separable. This assumption is relaxed later. The goal is to build
a linear function f(v) such that

f(vi) > 0 ∀ vi ∈ C1, and (2)

f(vi) < 0 ∀ vi ∈ C2. (3)

This is equivalent to finding a linear function such that

yif(vi) > 0 ∀ vi ∈ V. (4)

Multiplying the function f by some positive number yields

yif(vi) > 1 ∀ vi ∈ V. (5)

By making use of the fact that f(x) is a linear function,
Equation (5) can be rewritten as

yi(w · vi + b) > 1 ∀ vi ∈ V, (6)

where b is a number and w is a vector of coefficients. All
hyperplanes that fulfill w · v+ b = ± 1 are separating hyper-
planes. The distance between the two boundary hyperplanes
equals 2

||w|| .
Vectors vi that belong to such boundary hyperplanes are

called support vectors. To separate classes better, the distance
between such two hyperplanes should be maximized, which
means that ||w|| should be minimized. This leads to an updated
goal formulation: Find the minimum of a quadratic functional
0.5(w · w). According to the Karush-Kuhn-Tucker conditions
[28], this task is equivalent to finding a Lagrangian’s saddle
point:

L(w, b, λ) = 0.5(w · w) −
N∑

i = 1

λi(yi(w · xi + b) − 1)→ min
w,b

max
λ

subject to
∀i = 1, ..., N : λi ≥ 0, and
λi(yi(w · vi + b) − 1) ≥ 0

(7)



From Equation (7), it follows that either yi(w·vi+b)−1 = 0
or λi = 0. This can be used to rewrite the Lagrangian (7) into
the following form

L(w, b, λ) =

N∑
i = 1

λi − 0.5‖
N∑

i = 1

λiyivi‖2 (8)

and the goal is to find critical points of L(w, b, λ). This
problem can be solved by one of the many existing gradient-
based optimization methods.

Defining S as the subset of the training data for which
members have non-zero Lagrange multipliers λi, the optimal
hyperplane function is given as

f(v) =
∑
i ∈ S

λiyi(vi · v) + b. (9)

A more detailed description of Support Vector Machines
can be found in [29]. If the dataset is not linearly sep-
arable, the SVM approach maps the input feature vector
v = (v1, ..., vM ) ∈ RM into a feature space with higher
dimensionality by using the mapping function φ : RM → H
and finds the optimal hyperplane in this new space where the
classes are linearly separable again. The function K(v, v′) =
(φ(v) · φ(v′)) is called a kernel function that computes the
dot product in the higher dimensional space. The separating
function then has the following form:

f(v) =
∑
i ∈ S

λiyiK(vi, v) + b. (10)

Normal Bayes Classifier
The Normal Bayes classifier is a conditional probability

model, and it is a special case of the Naive Bayes model [30].
In Naive Bayes classification, an instance under consideration
is represented by a feature vector v = (v1, ..., vM ) where
vj is a feature and M is the number of features. For each
possible class Ck, the probability p(Ck|v1, .., vM ) of the
features belonging to that class is computed. Then, the instance
is assigned to the class with the highest probability. Using the
Bayes theorem, this probability is calculated as

p(Ck|v) =
p(Ck)p(v|Ck)

p(v)
. (11)

According to the Naive Bayes model, each feature is condi-
tionally independent given the class. The numerator can thus
be rewritten into:

p(Ck|v) =

p(Ck)
M∏
j=1

p(vj |Ck)

p(v)
. (12)

Here, the denominator is constant for each set of features and
in practice, only the numerator is of interest. The class Ck
with the biggest numerator thus gets assigned to the considered
instance v.

The conditional probability of one feature vj under the given
class Ck can be calculated as

p(vj |Ck) =
#(vj , Ck) + 1

#(Ck) + M
, (13)

where #(vj , Ck) is the number of features of type vj in the
training set of the class Ck, and #(Ck) denotes the total
number of features in the training set of the class Ck. In
other words, p(vj |Ck) is calculated as the relative frequency of
occurrence of visual word vj in the training images belonging
to class Ck. Laplace smoothing is used in the calculation to
avoid probabilities of zero. An image is then assigned to the
class

C? = arg maxk log(p(Ck)) +
M∑
j=1

log(p(vj |Ck)). (14)

The Normal Bayes Classifier (NBC), in contrast to the Naive
Bayes model, assumes that features are normally distributed.
They are not necessarily independent as required by the
Naive Bayes Classifier. The NBC algorithm computes the
mean vectors for each class along with the co-variance matrix
and then uses them to make the prediction [31]. The Bayes
decision rule in case of two classes with normal distribution
has the following form:

1

2
(v − M1)

T
Σ1
−1(v − M1)−

1

2
(v − M2)

T
Σ2
−1(v − M2)

+
1

2
ln
|Σ1|
|Σ2|

C1

≷
C2

ln
p(C1)

p(C2)
,

(15)

where v is the observation vector, M1 and M2 are mean
vectors, Σ1 and Σ2 are co-variance matrices.

Classification of an Image
The computed visual word histograms along with image

topic labels serve as input to a classifier. To predict a label
for a new image, a visual word histogram for this image is
calculated and fed to an already trained classifier. In our sys-
tem, both the NBC and the SVM classifier are implemented.
In the case of multi-class classifications there are two main
approaches: ’one against all’ and ’one against one’. In the first
case, a classifier is trained for each class to separate it from
all other classes. Considering ’one against one’, a classifier is
trained for each combination of two classes. This increases
the number of classification steps (computation time). Our
system uses ’one against one’ as default configuration because
it shows better results.

C. Color Pyramids Feature

We propose color pyramids as a novel feature to enhance
the basic BoVW method with color information. Feature de-
scriptors like SIFT or SURF do not consider color information.
The idea of color pyramids was motivated by the concept of
spatial pyramids as presented by Lazebnik et al. [17]. Instead
of dividing an image into spatial sub-regions, it is divided into
color sub-regions. If coarse to fine color intervals are used, a
hierarchy is created that is similar to spatial pyramids.

The first step to compute the color pyramids feature is to
convert the input image into the HSV color space, and to
discard everything but the hue channel. Then, keypoints and



Fig. 4. An example of color masks. Original image (left), color mask with
hue value 120 (center), and color mask with hue value 240 (right). Color
masks are computed with a range of 20 and blurred with a Gaussian filter of
size 5× 5.

descriptors are calculated in the input image. L evenly spaced
values ck from the hue channel are selected and L color masks
Mk are calculated that contain a range r of colors around each
value. The color mask Mk is defined as

Mk(x, y) =

{
255, I(x, y) ∈ [ck − r, ck + r],

0, otherwise
(16)

where I denotes the source image and (x, y) is the pixel
coordinate. Optionally, color masks can be smoothed to reduce
noise. Figure 4 shows an example of two computed color
masks. White means that a pixel’s color is within the color
range of the mask, and black means that it is not.

Next, a complete histogram of visual word vectors v0 is
computed by using all keypoints along with their descriptors.
For each created color mask Mk, k ∈ 1, ..., L, all keypoints
that lie on black pixels in the mask are filtered out. By
using only the remaining keypoints and their descriptors, a
histogram of visual word vectors vk is computed that is
specific to the considered color mask Mk. All vectors vk are
then concatenated into one large visual word histogram vector
(v0, v1, ..., vL) that represents an image. The structure of this
vector now also captures the color information. The vector is
then used as feature in the BoVW method. Figure 5 shows two
histogram vectors of the same image. One contains all visual
words and the other one contains only those in a specific color
mask.

D. Implementation

We implemented a complete system for iconic image clas-
sification. This source code of the system2 is available under
the GNU public license and may be reused or extended. We
used the C++ OpenCV library and the QT framework for our
implementation. The SVM implementation is based on the
LibSVM library. Our system supports a simple graphical user
interface where the functionality is divided into six categories
(see the tabs in Figure 6).

The first step is to build a vocabulary. The system supports
SIFT, SURF, and GRID as keypoints detectors. The keypoint
descriptors can be computed using either SIFT or SURF.
Optionally, saliency maps can be used as discussed in Section

2The system is available at:
http://removed.due.to.anonymous.review.

Fig. 5. Top: Histogram vectors without using a mask. Bottom: Histogram
vectors when using the first mask with a hue value of 120. The horizontal
axes label all 20 visual words from the dictionary used in the example. The
vertical axes represent the normalized number of visual words found in the
image.

II, and the vocabulary size can be set to values between 2 and
10000. After specifying the location of the input images, the
system computes the vocabulary and stores it in the ’.yml’
format.

The next step is the training of a classifier. SVM or NBC
may be chosen as a classifier. Our SVM implementation
supports four different kernels:

• Linear: K(x, y) = (x, y),
• Polynomial:
K(x, y) = (γ(x, y) + coef0)degree, γ > 0,

• Radial Basis: K(x, y) = e−γ||x−y||
2

, γ > 0, and
• Sigmoid: K(x, y) = tanh(γ(x, y) + coef0).

Advanced options like saliency maps, spatial pyramids, and
Color Pyramids can be selected. Additional settings for spatial
pyramids such as grid type (horizontal or standard) and a grid
level (between one and four) can also be specified.

The third tab is used to predict class labels for unknown
input images. The vocabulary must be available and the
training must be done before using the prediction. Again,
advanced functions can be selected with corresponding check
boxes. This functionality is relevant for users who do not wish
to train a classifier on new labeled iconic images, but want to
use an already trained classifier on a collection of unknown
images. The prediction results are stored in a text file.

The last two tabs are used for cross validation and quality
measurements. Cross validation allows the automatic separa-
tion of an annotated dataset into a number of equal blocks.
Using several iterations, each block becomes the testing data
without label information while all other blocks are used for
training. A default value of 10 blocks is pre-defined. The
predicted testing data is compared to the ground truth, and
aggregated results (precision, recall, and F1) are stored in a
text file. A confusion matrix as depicted in Figure 10 is also
computed automatically.



Fig. 6. GUI of the iconic image classification system. Creating the vocabulary (left), training the classifier (middle), and validation (right).

Category Class Global topic Image size
label (avg.)

Mushrooms 9 Biodiversity 194 x 226
Reef 12 Biodiversity 185 x 232
Summer Forest 6 Biodiversity 178 x 224
Cattle 3 Agriculture 175 x 235
Wheat 15 Agriculture 174 x 229
Tractor 14 Agriculture 171 x 238
Air Balloons 2 Air 190 x 219
Clouds 4 Air 165 x 238
Plane 11 Air 170 x 238
Elephants 5 Africa Nature 176 x 234
Lions 8 Africa Nature 183 x 228
Giraffe 7 Africa Nature 198 x 215
Aurora 1 North Nature 161 x 236
Owls 10 North Nature 208 x 212
Seal 13 North Nature 170 x 236

TABLE I
OVERVIEW OF THE USED DATASET.

IV. DATASET

The iconic image dataset was generated based on the
pipeline described in [1]. The seed images along with their
keywords for each topic were chosen based on Google image
search as well as on Google image search restricted to the Na-
tional Geographic and Wikipedia encyclopedias. Afterwards,
based on the requests with the collected keywords which
represents names for the used categories, dataset images were
gathered from Flickr. Topics that have less than one hundred
pictures were not selected. The remaining images were filtered
manually based on their correspondence to their topic.

The idea behind iconic image classification is that each
global topic includes several more narrow sub-categories. For
example, the categories mushroom, reef, or summer forest
refer to the larger topic of biodiversity. By classifying images
from such sub-categories, it is possible to distinguish iconic
images from the global topics. If a category that is assigned to
an image is incorrect, even though the larger topic is correct,
it is still considered as an error.

The created dataset consists of fifteen categories with 100
images in each. Each of the categories belongs to one of the
five global topics. They are biodiversity, agriculture, air, africa
nature and north nature. Table I presents the chosen global
topics along with their sub-categories, class labels, and an

Fig. 7. Image examples from the used dataset.

average image size. There are 1500 images in total. Figure
7 shows one example image for each of the categories.

V. EXPERIMENTAL RESULTS

This section presents selected results from the classification
of iconic images. In the first part, we focus on our proposed
technique that uses color pyramids and compare it to the basic
BoVW approach. The color pyramids technique is orthogonal
to other existing methods that improve the BoVW approach.
It can be combined with spatial pyramids or saliency maps
for example. The second part discusses parameter settings
and findings when combining saliency maps, spatial or color
pyramids. The computational effort of our system is evaluated
at the end of this Section.

A. Results for color pyramids

To evaluate the improvement of classification accuracy
when using color pyramids, the settings described in Table II
were applied. Multiple SVMs were combined in a “one against
one” approach to achieve multi-class classification. There is
one SVM for each pair of classes, and a label for a new entity
is assigned in a maximum voting process. To detect keypoints,
the GRID detector was used. Each image was divided into
10× 10 regions, and the keypoint size was set to be equal to
the minimum side of a cell. To implement the color pyramids



Variable Name Value
Vocabulary Settings

Keypoints detector GRID
Keypoints scale 1.0
Number of cells 10 x 10
Keypoints descriptor SIFT
Vocabulary size 150

Training Settings
Classifier SVM
Type One vs. One
Kernel linear
Color pyramids {false, true}

Cross-Validation Settings
K-fold 10

TABLE II
COLOR PYRAMIDS TEST SETTINGS.

Fig. 8. Achieved F1 measure for each class with and without using color
pyramids (CP).

method, ten different color masks were computed with the hue
values equally distributed between 0 and 180. The range was
set to 20 to create slightly overlapping color masks. Each mask
was then smoothed with a Gaussian filter of size 9.

Figure 8 shows the F1 measure for each category. Using
color pyramids as features leads to better results. The biggest
increase in F1 measure is 0.144 for class 7 (giraffe). There
is no significant benefit (0.0039) in the case of class 5 which
depicts gray or dark brown elephants. On average, the use of
color pyramids improves the F1 measure by 0.1176.

When comparing the confusion matrices (see Figure 10),
a decrease of type 1 and 2 errors can be seen when using
color pyramids. For instance, class 1 (aurora) is partially
misclassified as class 4 (clouds). This error drops significantly
when colors are also considered. A possible reason is that the
sky in the aurora images usually contains green colors that
are unlike the blue sky in the cloud pictures. Wheat pictures
where the major color is beige, are not misclassified as cattle
(green grass), forest (green color), mushroom (beige, green,
yellow, red colors) or owl (brown, white, green colors) as much
anymore. The balloon label is less often assigned to images
from the categories cattle, elephant, giraffe or lion. Forest
pictures are less often confused with pictures of lion, owl,
elephant, and wheat. Without considering colors, mushroom

Fig. 9. An example of false negative classification. Under each image, its
actual class label is written along with the assigned wrong class label in
parentheses.

Fig. 11. F1 values achieved when using the SIFT and the SURF descriptors
as features.

images are more often predicted as reef images. Figure 9
shows examples of false classifications.

B. Results for different configurations

We measured the F1 value for various parameter settings
in our system. In our experiments, we found that GRID
outperforms both SIFT and SURF as keypoint detector. For
this reason, we always use GRID as keypoint detector in the
following experiments.

To evaluate the SIFT and SURF descriptors, the settings
presented in Table II were used, except always without consid-
ering color pyramids. Figure 11 shows that the SIFT approach
reaches higher F1 measure values for each class. The largest
difference in the results occurs in class 6 (forest) and class
11 (plane). The smallest difference is less than 4% for the
category 8 (lion). This leads to the conclusion that the SIFT
descriptor outperforms the SURF descriptor for the use in our
iconic image dataset.

The next experiment evaluates difference choices for the
vocabulary size. The same configuration as before is used
again. Figure 12 presents the calculated F1 values when
changing the vocabulary size from 50 to 500 in steps of 50.
No consistent behavior between the classes could be observed.
Some classes like 7 (giraffe) or 14 (tractor) clearly benefit from
using a larger vocabulary. On the other hand, the F1 measure



Fig. 10. Confusion matrices comparing the standard BoVW method with the SIFT descriptor and the advanced method using color pyramids.

Fig. 12. F1 measure values when changing the vocabulary size. Each color
corresponds to one vocabulary size.

drops significantly for classes 1 (aurora), 6 (forest), and 15
(wheat) when increasing the vocabulary size. A vocabulary
size of 150 appears to be a good compromise for the iconic
image dataset, so it is set as the default value.

The last experiment considers spatial pyramids of different
levels. Figure 13 shows examples of a horizontal grid as well
as two regular grids. Using spatial pyramids with any grid
improves the F1 measure for all classes (see Figure 14). The
regular grid yields much more reliable results compared to the
horizontal grid. For instance, SL1 outperforms HL1 in 14/15
cases, for level two, SL2 is better in 15/15 cases, and for level
three, it is better in 10/15 cases. If too many grids are used
(in our case level 3), the regions become too small and the F1
measure value drops. Using a standard level two grid yields
the highest F1 value for all classes except for class 6 (forest).

Fig. 13. Spatial pyramids with a horizontal grid (level 1) as well as regular
grids of level 2 and 3.

Fig. 14. Depicted F1 measure when using spatial pyramids. HLi specifies
the horizontal grid of level i, while SL is the regular grid. The green bars
show the results when no spatial pyramids are used.

Our obtained results show that spatial pyramids also improve
the classification results of our iconic image dataset.

C. Computational Effort

This subsection compares the runtime of the standard and
the advanced BoVW methods. For this experiment, the dataset



Fig. 15. Effect of the vocabulary size on the runtime.

was limited to 1000 pictures in total. All the other test
settings are defined in Table II. We used two laptops for
this evaluation3 that are comparable to standard workplace
computers. All time measurements were carried out five times
on each machine.

We first compare the runtime of the different descriptors
when training the vocabulary. When the SIFT descriptor is
used, the runtime is approximately 28 minutes (35 minutes
for laptop 2). In comparison, SURF requires only 6 minutes
(8 minutes for laptop 2). This is an expected result since SURF
descriptors are designed to be computationally efficient.

The effect of changing the vocabulary size is analyzed
next. In general, the computation time increases with larger
vocabulary sizes (see Figure 15). This is mainly caused by
increasing the number of clusters in the k-means method. The
outlier at 400 clusters on laptop 1 was probably caused by
additional processes that were executed in the background.

Figure 16 compares the runtime of the advanced algorithms.
As expected, the runtime of the spatial pyramids increases with
higher levels. The difference in performance between using no
spatial pyramids (“no” in the figure) and using a standard level
three grid (SL3) reaches 70 minutes for laptop 1 and more
than 90 minutes using laptop 2. The performance depends on
the number of spatial regions where keypoints are considered.
To apply the spatial pyramids feature with a certain level, all
previous levels are used as well. The number of cells increases
as 2l in the number of levels l for the horizontal grid and
4l for the standard grid. This explains why with each level,
the computation time increases significantly. With the current
setting, the runtime of the color pyramids is between that of
the spatial pyramids with levels 2 and 3. The speed of the
color pyramids depends on the number of color masks used.
It decreases if less than 10 masks are used or if the overlap
between the color masks is reduced.

3Intel Core i7-2670QM (2.20 GHz) and Intel Core i7-720QM (1.60 GHz),
both with 4GB RAM and Windows 7 OS.

Fig. 16. Runtime of the advanced algorithms: spatial pyramids (HL and SL),
no pyramids (no), and color pyramids (CP).

VI. CONCLUSION

We presented a system for iconic image classification. Our
system may be used by scientists of literary studies for ana-
lyzing and understanding the use of iconic images in the Web.
In addition, it makes it possible to easily evaluate different
Bag of Visual Words algorithms and compare classification
results. As a novel feature, we proposed color pyramids that
enhance the standard Bag of Visual Words method with color
information. They make it possible to distinguish between
similar textures like grass or wheat by considering their colors.
Using this feature increases the average F1 measure for all
classes of iconic images by 0.117. We also analyzed the
basic Bag of Visual Words method in detail and varied all
parameters including the vocabulary size as well as several
keypoint detectors and descriptors. Both the source code of
the system is available for download.

The decision of whether an image is iconic or not is still
mainly made by a human observer. Familiarity with the global
topic and the image context play an important role here.
As future work, we would like to develop algorithms that
generally answer the question about iconicity in multimedia
documents. To achieve this goal, a combined analysis of text
and image search will be required.
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