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Sourcing Innovation: Public and Private Feedback in Contests 1

1. Introduction

Firms increasingly source their innovation from beyond their own boundaries (Chesbrough 2003,

von Hippel 2005). Although doing so enables them to exploit a much broader knowledge base, it

also creates substantial challenges for managing the innovation process. Most notably, the firm

yields its immediate control over the process and the inventors. Innovation contests provide the

firm with a mechanism for retaining some control. At the outset of the contest, the firm specifies its

goals; at the end of the contest, it grants an award—typically to the inventor with the best solution.

Thus the competitive setting incentivizes the inventors. These elements are foundational aspects

of all contests. But the firm also makes other more discretionary choices about exerting control.

For instance, the firm may provide feedback during the innovation process: it may dynamically

inform the inventors about how much it values their (preliminary) innovations, thereby gradually

eliminating any uncertainty about its preferences and thus affecting the inventors’ decisions as the

contest unfolds. Yet this possibility confronts the firm with challenging decisions: When sourcing

innovation through a contest, should the firm give intermediate performance feedback or not? If it

does, should the feedback be public, so that everyone can observe it, or private, so that only the

concerned party is aware? Answering these questions is the focus of our study.

Consider the example of Kaggle. In recent years, many companies have begun to collect vast

amounts of data. However, few have built their own machine learning capabilities sufficient to

the task of fully exploiting this data. Building such capabilities is difficult because technology

evolves rapidly, and so different groups of data scientists worldwide leapfrog each other with respect

to knowledge about certain contexts. In this dynamic environment, Kaggle provides a platform

that companies can use to access precious outside knowledge and resources. More precisely, it

allows companies to provide data (typically a small sample of the full problem) and organize a

contest. For example, in 2012 the Heritage Provider Network offered a reward of $500k to the

team that would best “[i]dentify patients who will be admitted to a hospital within the next year

using historical claims data.” When setting up such a contest, companies must define the rules

of engagement. In particular, those rules establish the relevant metric—typically, out-of-sample

accuracy of the algorithm’s predictions—and specify the reward(s) offered. In response to the

contest announcement, data scientists compete against each other by developing at their own

expense (of time and money) algorithms that perform the required task. The group of scientists that

ultimately provides the best-performing algorithm wins the prize. During the competition, data

scientists can enter preliminary versions of their code and receive feedback on how well it performs.

Yet Kaggle not only provides absolute performance feedback to the team itself; it also maintains
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a public “leaderboard” so that each participant or team can study its performance relative to all

competing submissions.

Many such contests have been devised that involve data applications. For example, the Netflix

Prize, organized by Netfilx itself, was established to award $1 million to the group that built

the best algorithm for predicting how users would rate movies. But contests and platforms for

contests have permeated many other fields as well. In the software context, for example, platforms

such as Devpost (which focuses on API development) and IEEEmadC (for mobile applications)

have sprung up. The SAP Google Glass Challenge rewarded development teams that created

applications integrating SAP platform technologies with Google Glass, and the Microsoft Imagine

Cup encouraged applications that could have a major impact on our future life.

All these examples follow a common underlying script. A firm has a problem that requires a

tailored innovation, a problem with some inherent uncertainty. The firm advertises a reward for

solving this problem. Many different solvers can devise a solution. In providing a solution, each

solver exerts effort for which he incurs some private cost; but given the task’s inherent uncertainty,

the solver cannot predict exactly how his performance is influenced by effort. Furthermore, the

solver cannot perfectly anticipate which features of a solution the firm values and which it does

not. In short, the consequences of effort are stochastic. Conversely, the firm immediately recognizes

the value of a solution, once presented with it, but has no way of knowing how much effort the

solver needed to expend. So the firm cannot hire the solver and directly compensate him for those

efforts. Finally, the solution process is inherently dynamic and therefore extended over time.

Their commonalities notwithstanding, the examples just given differ in two key respects: the

type of feedback and the firm’s objective. Kaggle and the Netflix Prize give public feedback—

that is, the feedback they provide on each entry can be observed by all solvers. In contrast, the

software development platforms Devpost and IEEEmadC provide feedback in decidely different

ways: IEEEmadC informs developers privately about the quality of their own initial submission

but without publishing information on the performance of competitors; even more restrictively,

Devpost provides no interim performance feedback at all. And whereas the Netflix Prize’s objective

was to identify the best solution, the SAP Google Glass Challenge and the Microsoft Imagine Cup

sought to incentivize raising the community’s average solution quality.

The common script, known as a “contest”, is a well-studied one (Lazear and Rosen 1981,

Moldovanu and Sela 2001, Terwiesch and Xu 2008, Siegel 2009). However, the aspect of feedback

has received only sparse attention (for notable exceptions, see Aoyagi 2010, Ederer 2010, Goltsman

and Mukherjee 2011). In particular, we do not know what type of feedback, public or private, is
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optimal for which type of objective, best or average performance. To fill this gap, we aim in this

paper to establish when and how feedback can be used to increase the value of innovation contests.

Our study makes several contributions to the existing literature. First, it puts on a solid the-

oretical foundation the answer to a fundamental question: Can the firm make feedback decisions

dynamically or must it rather commit, at the outset, to a particular feedback mapping (a transla-

tion of first-round performance to feedback signal)? We find that the contest holder must commit

to a feedback mapping in advance of the contest. Second, the paper extends existing insights from

the literature on public feedback and average solution quality to innovation contests in which the

firm is interested only in the best outcomes. Third, our paper’s main contribution is offering a solu-

tion to the technically challenging problem of private feedback, and comparing the case of private

feedback to the cases of public feedback and no feedback. We uncover a non trivial relationship

between the contest characteristics and the benefits of private, public, and no feedback. Thus our

paper makes a first step toward a comprehensive understanding of feedback in contests—and hence

toward a comprehensive theory of sourcing innovation.

2. Related Literature

The question of how to motivate innovation and creativity has become a central topic of academic

inquiry (see e.g. Manso 2011, Erat and Krishnan 2012, Ederer and Manso 2013, Erat and Gneezy

2015). In particular, contests as a mechanism for eliciting opportunities have become a focal point

of attention. The literature on contests is broad, spanning both the economics and the operations

management literatures.1 Starting with the pioneering work of Lazear and Rosen (1981), Green

and Stokey (1983), and Nalebuff and Stiglitz (1983), the contest has become the primitive for

studying a wide variety of settings; these include lobbying, promotional competition, litigation,

military conflict, sports, education, internal labor markets, and of course R&D management (for

an overview of applications, see Konrad 2009). It will be useful for our purposes to classify works

in the contest literature along two dimensions.2 The first dimension classifies this research in terms

1 The operations management literature uses the term “tournaments”. The economics literature prefers the term
“contest”, of which “all-pay auctions” and “tournaments” are special cases. We shall use “contest” throughout because
it is the more established term.

2 In this section we focus on theoretical work, but there is also a broad empirical and experimental literature (for
a comprehensive survey of the experimental work, see Dechenaux et al. 2014). Many researchers have investigated
the implications of architectural decisions that are made at the outset of a contest. These decisions include, among
others, the award structure (Bull et al. 1987, Liu et al. 2014), the number of solvers (Garcia and Tor 2009, Boudreau
et al. 2011, Lim et al. 2014), talent differences (Schotter and Weigelt 1992, Fonseca 2009, Jeppesen and Lakhani
2010, Bockstedt et al. 2015), the distribution of information (Brookins and Ryvkin 2014), and problem uncertainty
(Boudreau et al. 2011). More recently, researchers have begun to pay closer attention to decisions that are made
in the course of a contest. Most notably, the center of attention has shifted toward the consequences of providing
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of its major technical assumptions and thus of the situations to which the contest applies; the

second dimension classifies the literature in terms of the particular contest design question being

addressed.

With regard to the first classifying dimension, the most important distinction between different

innovation-related contest models is based on the link between a solver’s effort and his contest

performance. This link between a solver’s action and the outcome is one that ranges from purely

deterministic to purely stochastic, with many hybrid forms that incorporate both deterministic

and stochastic components. To a lesser extent we further differentiate between models that focus

on the best performance versus average performance.

The economics literature has largely (although not exclusively) focused on deterministic links.

Two substreams have emerged. The literature on complete information contests assumes that all

characteristics of the players are observable. Early work has seeked to characterize equilibria in

symmetric contests (e.g., Glazer and Hassin 1988), but that aim has been expanded to settings

that feature asymmetric cost functions or valuations (e.g., Che and Gale 2003, Siegel 2009, 2010,

2014b). The literature on incomplete information contests assumes that each solver holds some

piece of private information which is often framed as some type of individual capability. Research

in this substream has yielded results both for symmetric settings (i.e., for ex ante identical solvers;

see Krishna and Morgan 1997, Moldovanu and Sela 2001) and for asymmetric settings (i.e., for

ex ante different solvers; see Amann and Leininger 1996, Parreiras and Rubinchik 2010, Siegel

2014a). The central concern in much of this literature is exploring how solvers can be induced to

provide good solutions on average (Krishna and Morgan 1997, Moldovanu and Sela 2001). That

being said, there is some research (e.g., Moldovanu and Sela 2006) that focuses also on the best

entry’s performance.

A second stream of literature assumes that there is a stochastic link between solvers’ actions and

contest outcomes. This stream was originated by Taylor (1995) in the context of R&D contests and

later generalized by Fullerton and McAfee (1999). An extreme is presented by Gaba et al. (2004) and

in-contest feedback. Several studies highlight the motivation effect of feedback. For instance, Berger and Pope (2011)
show—in their empirical investigation of data from basketball games—that the feedback of being slightly behind
motivates a team to fight harder. In contrast, Casas-Arce and Asis Martinez-Jerez (2009) present empirical evidence
from sales contests that public feedback results in lower effort if the performance difference becomes substantial, a
finding that is confirmed by the laboratory experiments of Ludwig and Lünser (2012). Interestingly, experimental
evidence by Kuhnen and Tymula (2012) indicates that even the mere announcement of future feedback has an effect
on the behavior of contest problem solvers. Ederer and Fehr (2009) and Gürtler and Harbring (2010) investigate the
implications of manipulatable feedback; each study finds that solvers react to feedback even when it is not truthful
(although that reaction is much weaker than when the feedback is truthful). Wooten and Ulrich (2014) demonstrate
that although directed feedback raises the average quality of all submissions, it may reduce the best submission’s
quality. We find it intriguing that none of the works just cited has studied the implications of private feedback.
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Tsetlin et al. (2004) who investigate contests that lack any deterministic relation between actions

and outcomes. Closer to our work are those studies that consider a combined deterministic and

stochastic relationship between actions and outcomes. This approach has gained traction among

those who study contests in the context of innovation (e.g., Terwiesch and Xu 2008, Terwiesch and

Ulrich 2009, Ales et al. 2014, Körpeoğlu and Cho 2015). These researchers have also shifted the

focus from fostering average performance to maximizing the best entry’s performance.

The technical classification in terms of how effort and outcomes are related is important on

a conceptual level. First of all, assuming a stochastic link between effort and outcome seems

appropriate when modeling innovation and R&D contexts. The search for new products, methods,

and technologies is inherently uncertain, so disregarding that aspect will call model predictions into

serious question. A second point reinforces this notion. As Siegel (2009, p. 72) emphasizes, analyzing

a stochastic link between effort and outcomes requires fundamentally different assumptions than in

the deterministic case—especially with regard to interaction effects between effort and uncertainty.

These assumptions make the models applicable to different types of settings yet entail very different

predictions about a solver’s behavior.

The existing contest literature can also be classified according to a second criterion—namely, the

(contest) design issue being addressed. Prominent among such issues is whether or not access to the

contest ought to be limited: Should (or shouldn’t) the contest be open to everybody? The literature

that assumes a deterministic effort-to-outcome link tends to favor a degree of restrictiveness (e.g.,

Taylor 1995, Moldovanu and Sela 2001), and some researchers have even postulated that—under a

wide array of assumptions—the optimal number of solvers is two (Fullerton and McAfee 1999, Che

and Gale 2003). However, the literature focusing on innovation contests takes a more nuanced view.

In particular, these studies emphasize that the contest designer must balance two countervailing

forces: a larger number of entrants yields a larger number of trials, but at the cost of each solver

expending less effort on his respective trial (Terwiesch and Xu 2008).3 Bid caps have been studied

as a means for limiting access to a contest (Gavious et al. 2002, Che and Gale 2003) and so have

more advanced mechanisms such as auctions for the right to participate (Fullerton and McAfee

1999). Another prominent issue is the optimal award structure. Conditions for the optimality of

one prize versus many prizes depend on the solvers’ cost function (Moldovanu and Sela 2001), on

performance uncertainty (Ales et al. 2014), and on whether the firm is seeking the best solution

or merely to improve the average solution (Moldovanu and Sela 2006). Another perspective is

3 As an exception to this general concept Ales et al. (2014) and Körpeoğlu and Cho (2015) give examples of contests
for which individual solution efforts are increasing in the number of competitors.
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Figure 1 Classification of the Contest Literature

  

offered by Che and Gale (2003) who discuss menus of prizes. The last major issue is the contest’s

temporal structure. Should the contest designer offer one big collective contest or instead a series

of “cascading” contests?—see Moldovanu and Sela (2006) and Konrad and Kovenock (2009).

All of these questions presume that the contest holder is relatively passive during the course of

the contest. More recently, attention has been shifting to the actions that a contest holder could

take as the contest unfolds—for instance, to preclude collusion among different solvers (Gürtler

et al. 2013). However, the most important in-contest decision is whether or not to provide interim

performance feedback.

The literature on feedback in contests is sparse. The paper generally acknowledged to be the first

in this area (Yildirim 2005) does not address feedback per se, but instead focuses on information

disclosure as a strategic choice made by solvers. Gershkov and Perry (2009) are likewise not primar-

ily concerned with feedback as we understand it here; instead, they are concerned with optimally

aggregating scores by combining intermediate and final reviews when the review process itself is

noisy. However, there are three papers that do address feedback in contests in a more narrow sense.

Goltsman and Mukherjee (2011) explore a setting in which solvers compete for a single price by

fulfilling two tasks at which they can either fail or succeed. Closer to our work, both Aoyagi (2010)

and Ederer (2010) examine settings in which a firm provides feedback to solvers who have to make

continuous effort choices.

It is noteworthy that past work on feedback in contests shares three aspects that bear strongly on

our work. First, all authors casually assume that—whatever its feedback policy—the firm should

pre-commit to a truthful feedback mapping; that is to a truthful translation of first-round perfor-

mance to feedback signal. In other words, rather than dynamically choosing the feedback signal
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that optimizes outcomes dynamically once the contest is under way the firm should credibly pre-

commit at the start of the contest to giving truthful feedback. Second, the papers cited here all

take the firm’s main interest to be average effort provision and not the value of the best perfor-

mance.Third, and most importantly, none of these works consider private feedback. In short, past

work on feedback in contests restricts attention to the question of how public feedback influences

a solver’s average solution quality.

We extend previous work along those three dimensions. First, we establish the necessity of

pre-commitment in feedback by first solving our game without such pre-commitment. Second, we

investigate how feedback affects the outcome of innovation contests—that is, contests in which the

firm’s interest is in strictly the best solution. Our third and main contribution is introducing private

feedback into the analysis, which allows us to make full comparisons among different feedback

policies. In sum, our analysis establishes which kind of feedback (no, public, or private feedback)

should be used for which kind of contest and which kind of objective (average vs. best solution).

Figure 1 summarizes the foregoing discussion, and it makes clear that further analysis is required

if we are to develop a more comprehensive understanding of how feedback should be used in

innovation contests.

3. Model Setup

Let us recapitulate our model’s requirements in terms of both the firm and the solvers. The firm

understands its own preference structure sufficiently that, when presented with a solution, it can

express how much it values the solution. However, the firm cannot know the effort level expended

by solvers in achieving a given performance because the link between performance and effort has

a stochastic component. In contrast, each solver knows how much effort he expends and also

understands that expected performance increases in effort. Yet, solvers still experience ex ante

uncertainty about how, exactly, effort links to performance; ex post, solvers are uncertain about

the firm’s preference structure and so, even after devising a solution, they cannot truly evaluate

its performance. This ex post uncertainty follows because for any true innovation effort the firm

cannot fully specify, in advance, what criteria it values or how they should be weighted.

Consider the Microsoft Imagine Cup, which seeks software applications that “change the future

of software solutions”. The stated goal is clearly so broad that Microsoft cannot pre-specify exactly

what it wants; once presented with a solution, however, the firm will know how to evaluate the

result. In contrast, the solvers are naturally unable to anticipate precisely how the firm will react to

their software applications. Although the implemented functionality will, of course, partly depend
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Figure 2 Structure of the Innovation Contest with Feedback

  

on the effort of solvers, the “inspiration” factor is always in play—and thus the contest outcome

depends on an element of randomness.

Stochasticity in effort consequences implies that neither a solver’s performance nor his solution

efforts are verifiable. As a consequence, the firm can neither write a contract on performance

(because its preference structure is non-verifiable) nor contract for a solver’s effort (because the

solver’s effort is non-verifiable). The firm must therefore resort to alternative mechanisms in order

to create proper incentives for the solvers. Foremost among such mechanisms are “contests”, in

which solvers compete against each other by submitting rival solutions. As a means of dynamically

influencing the solvers’ effort provision in the course of a contest, the firm may (partially) resolve

the solvers’ uncertainty about their performance by transmitting interim performance feedback.

Such feedback can come in three different forms: no feedback, public feedback (each solver can

observe the feedback given to all solvers for all solutions), or private feedback (each solver can only

observe feedback for his own solution).

As do the different examples described in the Introduction, our model must reflect that different

firms pursue different goals. A firm may be exclusively interested in the best solution and not care

about any of the other solutions. Alternatively, the firm may be interested in using the contest to

raise the average solution quality of all competing solvers.

Formal Model Description. In order to create a parsimonious model that nonetheless cap-

tures the essence of the scenario just outlined, we consider a firm that is hosting a dynamic inno-
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vation contest over two rounds, t∈ {1,2}, with two risk-neutral solvers, i and j.4 The primitives of

the contest are common knowledge; its basic structure is depicted in Figure 2.

In a first step, the firm publicly announces the contest, the fixed award A for which the two

solvers compete, and its feedback policy. In order to concentrate on the role of feedback (and to

limit technical complexity), we treat A> 0 as a parameter. Our decision variable for the firm at

this stage is whether and how to give feedback. The firm may choose to give no feedback at all;

to offer public feedback (i.e., both solvers receive the same information about their own and their

competitor’s performance); or to provide private feedback (i.e., solver i receives feedback on his

own performance but not on the performance of solver j, and vice versa).

Next, solver i expends effort ei1 ≥ 0 at private cost ce2
i1, with c > 0. He finds an initial solution

of value vi1 = keei1 + ζi1, where ke > 0 is the (commonly known) sensitivity of effort and ζi1 is a

random shock that follows a (commonly known) uniform distribution, ζi1 ∼ Uniform(−a/2, a/2)

with a> 0.

After the first round, the firm perfectly observes vi1. However, solver i’s effort is unobservable

to the firm (and the other solver); hence the firm cannot determine whether a high solution value

stems from a high effort, a high random shock, or both. In contrast, solver i knows how much

effort he has invested; however, since he cannot observe the realization of ζi1, he is uncertain about

the true performance of his solution. To provide solver i with additional information regarding his

performance, the firm provides interim performance feedback according to its feedback policy—

which for now need not be truthful. Formally, let Σ be an arbitrary measurable set that contains

all possible signals that the firm can transmit as feedback, and denote by si ∈ Σ (sj ∈ Σ) the

feedback about solver i’s (j’s) absolute performance. Depending on the firm’s feedback policy,

solver i observes (i) neither si nor sj (no feedback); (ii) si and sj (public feedback), or (iii) only si

(private feedback).

Upon observing the firm’s feedback, solver i updates his belief about the realization of the

first-round performances v1 = (vi1, vj1) according to Bayesian rationality. Then, solver i expends

additional solution effort ei2 ≥ 0 and submits his final solution vi2 = vi1 + keei2 + ζi2, where ζi2 is

again a random shock that follows the same distributional assumptions as in the first round. Ran-

dom shocks are independent and identically distributed across solvers and rounds. For notational

simplicity we define ∆ζt = ζit−ζjt as the difference of the random shocks in round t with associated

probability density function g∆ζt .

4 For notational simplicity, we explicitly define only the parameters for solver i; an identical set of parameters applies
to solver j.
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Finally, after receiving the final solutions v2 = (vi2, vj2), the firm announces the winner of the

contest by choosing the solution with the highest value. Thus solver i wins if vi2 > vj2 (ties can be

broken by invoking any rule).

Model Implications. The firm will naturally seek to employ the feedback strategy that maxi-

mizes its expected profits. The two different profit functions are Πbest =E[max{vi2, vj2}]−A if the

firm is interested in the performance of the best solution only, and Πavg = E[vi2 + vj2]/2−A if the

firm wishes to maximize the average performance of both solvers.

Whereas the firm—whatever its profit function—is interested in the solvers’ absolute perfor-

mance, each solver is interested only in his relative performance. More precisely, a solver only cares

about whether or not he wins the contest. The utility that solver i receives from winning the con-

test is A−
∑

t ce
2
it; losing the contest yields a utility of −

∑
t ce

2
it. Hence solver i’s expected utility

of participating in the contest is ui =A ·P(vi2 > vj2)−
∑

t ce
2
it, and he chooses how much effort to

invest in the contest by maximizing his expected utility.

We are interested in Perfect Bayesian Equilibria (PBE) of the contest. To avoid unnecessary

technical complications during the analysis, we assume that κ ≡ (a2c)/(Ak2
e) > 1. For technical

reasons, similar assumptions on the contest’s inherent performance uncertainty have become cus-

tomary in virtually the entire literature on contests (see, e.g., Nalebuff and Stiglitz 1983, Aoyagi

2010, Ederer 2010). Clearly, κ increases in the variance of the random noise and the costs of effort,

and it decreases in the size of the award and the effort sensitivity. Thus, with a relatively higher κ,

improvement effort is relatively more expensive and the solution performance becomes relatively

more stochastic.

4. Feedback: Commitment and Truthfulness

The goal of any interim performance feedback must be to influence dynamically the solvers’ effort

choices, for otherwise feedback would be futile. In this section, we establish the key properties that

any feedback policy must possess in order to actually fulfill this goal.

As shown in Figure 2, the firm announces at the outset of the contest whether it provides feed-

back as well as whether the feedback content is public or remains private. Yet the firm does not

necessarily announce how a solver’s performance will be mapped into a specific feedback instance;

that is, the firm is free to choose its feedback mapping after observing the solvers’ first-round

performance. Formally, a feedback mapping is a tuple (r,Σ) that maps solver i’s first-round per-

formance vi1 into a set of possible feedback signals Σ according to the relation r : R→ Σ. Put

differently, given the realization of vi1, the firm determines a feedback signal si that is drawn from
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the probability density function r(si|vi1). Because the firm can choose the feedback mapping after

observing the solvers’ performance, a strong incentive misalignment arises between the firm and

the solvers. On the one hand, each solver appreciates true performance feedback. On the other

hand, the firm wishes to use the feedback as a way of maximizing the solvers’ second-round effort

irrespective of first-round outcomes. This tension has a detrimental effect on the value of feedback

in the unrestricted game.

Theorem 1 (Feedback Commitment and Truthfulness). The firm can influence the

solvers’ second-round effort provision with interim performance feedback if and only if (i) the firm

pre-commits to a feedback mapping (r,Σ) before the contest starts and (ii) the feedback mapping is

indicative of a solver’s true performance—that is, r(si|vi1) 6= r(si|v′i1) for some si, vi1, and v′i1.

The essence of Theorem 1 is that, in order to provide impactful feedback, the firm must credibly

commit to a feedback mapping at the outset of the contest and, moreover, this feedback mapping

must reflect the solvers’ actual performance. The intuition for this result is instructive. Suppose

that the firm does not credibly commit to a certain feedback mapping. In this case, the firm has

a strong incentive to manipulate feedback with the goal of boosting the solution efforts of the

solvers. In fact, because the feedback signal does not affect the firm’s profits directly but only

indirectly (i.e., through the solvers’ efforts), the firm always provides the feedback that maximizes

second-round efforts irrespective of first-round outcomes. In equilibrium, each solver anticipates

this manipulation and discards the received information as meaningless; thus each solver acts as

if he never received any feedback. Mathematically, the unique equilibrium of the game depicted in

Figure 2 is a so-called babbling equilibrium in the spirit of the well-known “cheap talk” results of

Crawford and Sobel (1982). Therefore, the firm can avoid meaningless information transmission

only if it commits to its feedback mapping at the beginning of the contest.

This simple game-theoretic property has deep repercussions for practice. First of all, the firm

needs to devise methods for committing itself. One such method can be rooted in technology.

Kaggle and the Netflix Prize, for example, distribute a part of their data set; this allows solvers

to try out their algorithms on the data and receive automated performance information. Another

method is to rely on the firm’s reputation. It is clear that if the firm does not have a reputation for

sticking to its feedback mapping, then the solvers will discount the feedback signals. This implies

that firms should build a reputation for providing the feedback mapping that they announced.

Deviating from this reputation will destroy the firm’s credibility and render feedback moot.

The second major implication of Theorem 1 is that the feedback signal must be not only pre-

committed, but also indicative of the truth. If feedback is not correlated with acutal performance
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then solvers will discount it, and again the situation would decay into a babbling equilibrium.

Consider the Kaggle example. Because the firm wants the solvers to adapt the algorithm to a real

situation, it cannot distort the data set without inflicting harm on itself. In short, the feedback

mechanism must provide commitment and entail truthfulness.

5. Solution Efforts of the Solvers

Given the results of the previous section, we now turn our attention to the question of how the

firm can influence the solvers’ solution efforts by providing pre-committed and truthful feedback.

Specifically, from here on we assume that if the firm provides feedback, it does so by truthfully

revealing a solver’s absolute performance; that is, r : vi1 7→ vi1.

In this section, we focus on the solvers’ solution efforts under each feedback policy. We can do

so without specifying the firm’s objectives because, given a particular feedback policy, the solvers’

strategies are independent of the firm’s goals. That is, each solver tries to win the contest, regardless

of whether the firm aims to improve average performance or rather to attain the best performance.

As a benchmark, we characterize the solvers’ equilibrium efforts in the absence of feedback

(Section 5.1). We then examine how the provision of public feedback affects the solvers’ solution

efforts (Section 5.2). Finally, we determine equilibrium solution efforts under a private-feedback

policy (Section 5.3). Although we discuss a few initial managerial implications, we leave the answer

to our research question—of when and how feedback should be provided—to Section 6, which

compares the different feedback policies in terms of the firm’s profits.

5.1. No Feedback

In the benchmark case of no feedback, the firm does not provide any interim performance infor-

mation to the solvers. Thus, the solvers’ two-stage effort choice problem reduces to a simultaneous

single-stage utility maximization problem. Mathematically, solver i chooses his solution efforts to

maximize his expected utility ui =A ·P(vi2 > vj2)−
∑

t ce
2
it.

Proposition 1 (No-Feedback Policy). The unique PBE under a no-feedback policy is sym-

metric with

eno
1 = eno

2 =
Ake
3ac

. (1)

Proposition 1 parallels previous results of Taylor (1995) and Fullerton and McAfee (1999). Given

that neither solver receives any interim performance information after the first round and that

the costs of effort are convex, solution efforts are identical across rounds. Moreover, since solvers

are symmetric at the outset of the contest, it follows that they always choose the same effort in
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equilibrium; in other words, no solver leapfrogs his competitor by investing more effort. So, under

a no-feedback policy, it is only the inherent performance uncertainty that ultimately determines

the contest winner.

At this point, it is instructive to examine how our key contextual parameters affect a solver’s

solution efforts. As we would expect, solution efforts are increasing in the size of the award, A, and in

the effort sensitivity, ke; they are decreasing in the costs of effort, c, and in the involved uncertainty,

a. Thus, a solver exerts relatively more effort if effort becomes relatively more rewarding (i.e., A/c

increases) and if effort becomes relatively more important (i.e., ke/a increases).

5.2. Public Feedback

Next we study the implications of truthful public feedback. In this case, after submitting his initial

solution, each solver learns his own first-round performance as well as his competitor’s performance.

Thus public feedback perfectly reveals the solvers’ first-round performance difference before the

start of the second round. As a result, solvers are no longer symmetric in the second round of the

contest.

Proposition 2 (Public-Feedback Policy). The unique PBE under a public-feedback policy

is symmetric with

epub
1 =E∆ζ1

[
epub

2 (∆ζ1)
]

=
Ake
3ac

, (2)

epub
2 (∆ζ1) =

Ake
2a2c

· (a− |∆ζ1|) . (3)

Public feedback informs solver i about his absolute and relative first-round performance. In line

with previous work (Aoyagi 2010, Ederer 2010), Proposition 2 states that each solver cares only

about his relative performance and completely disregards the absolute performance information.

This focus on relative performance has far-reaching implications for the solvers’ solution efforts.

The closer are the solvers’ first-round performances, the greater are the second-round efforts. So

the more competitive the contest is in the second round, the harder the solvers fight to win the

contest. In contrast, if the first-round performance difference is substantial, then solvers reduce

their solution efforts because the contest is de facto decided. In the extreme case, if |∆ζ1|= a,5 the

follower can no longer win with positive probability; hence no solver expends any solution effort in

the second round.

Another interesting result of Proposition 2 is that, surprisingly, despite being asymmetric in the

second round, both solvers expend the same amount of effort. In other words, the first-round leader

5 An event of probability 0.
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pursues a simple blocking strategy; that is, he tries to keep the follower at distance but without

trying to increase the performance gap. At the same time, the follower tries to not fall farther

behind but without attempting to close the gap. However, it is noteworthy that these dynamics

do not ensure that the first-round leader will win the contest. The follower might be fortunate in

the second round (i.e., he might receive a large positive second-round shock), which would enable

him to overtake the interim leader.

Finally, we note that the ex ante expected effort in both rounds is identical. This result follows

from the fact that a solver’s performance increases linearly in effort while the costs of effort are

convex increasing. In expectation, then, it is optimal for a solver to split his solution efforts equally

between the two rounds.

5.3. Private Feedback

We have just shown that, under a public-feedback scenario, solvers set their second-round solution

efforts as a function of their relative first-round performance. Such a policy is no longer possible

under a private-feedback scenario because each solver receives information only about his own per-

formance. Thus, it is only the absolute performance information that can affect a solver’s solution

effort.

The absence of relative performance information fundamentally affects the contest’s information

structure. Whereas solvers always possess symmetric and consistent beliefs under no and public

feedback, private feedback introduces an asymmetric and inconsistent belief structure. In other

words, the solvers’ assessments of their chances to win need not be “coherent” under private feed-

back. Suppose, for example, that each solver receives the information that he performed extremely

well in the first round. Then both solvers believe that their respective chances of winning are much

greater than 1/2, although in reality they are merely 1/2. Moreover, solvers are never entirely

certain whether they are ahead or behind their competitor—in contrast with the public-feedback

scenario. It is this asymmetric belief structure that results in serious mathematical complications

and that enforces asymmetric equilibrium solution efforts. Proposition 3, which summarizes the

solvers’ equilibrium solution efforts under private feedback, clearly mirrors this reality, as the

second-round equilibrium can only be characterized in closed form using inverse functions.

Proposition 3 (Private-Feedback Policy). Let vpri(ζi1) = ζi1 + kee
pri
2 (ζi1). Then the

unique PBE under a private-feedback policy is symmetric and given by

epri
1 =Eζi1

[
epri

2 (ζi1)
]
, (4)
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ζi1 = v−1(vpri) =


γ1e

3
2aκv

pri
+ γ2e

1
2aκv

pri − a
(

1
6

+ 2κ
)

if vo− a≤ vpri < vu

γ3e
1
aκv

pri − aκ if vu ≤ vpri ≤ vo
γ4e

3
2aκv

pri
+ γ5e

1
2aκv

pri
+ a

(
1
6
− 2κ

)
if vo < v

pri ≤ vu + a,

(5)

with the constants defined by vu = 2aκ ln(x), vo = 2aκ ln(y), γ1 = pn2(x−ny)/(3x2o), γ2 =

pxy(n3x+ y)/(x2o), γ3 = p(n2x2 + y2)/(2x2o), γ4 = −p(x−ny)/(3nx2o), and γ5 = pxy(n3x +

y)/(nx2o), where m = (1− 6κ)/(1 + 6κ), n = e1/(2κ), o = 3y2 − n2x2 + 4n3xy, p = a(1 + 6κ), and

x∈
[
e−1/(4κ), e−1/(4κ)·(1−1/κ)

]
and y ∈

[
e1/(4κ), e1/(4κ)·(1+1/κ)

]
are the unique solutions to the following

system of equations

mn2x4− 4mn3x3y− 3(m+n2)x2y2− 4n−1xy3 + y4 = 0 (6)

1− 6κ2

κ(1 + 6κ)
+m ln(y)− ln(x) +

n2x4 + 8n3x3y+ 9(1 +n2)x2y2 + 8n−1xy3 + y4

6x2(3y2−n2x2 + 4n3xy)
= 0. (7)

Before discussing the managerial implications of Proposition 3, it is worth commenting on the

game-theoretic characteristics of the private-feedback policy. The key distinguishing feature of

private feedback (compared to no- and public-feedback) is that it introduces an “undetermined

asymmetry” owing to the asymmetric belief structure. It is well established that games with asym-

metric belief structures are notoriously difficult to solve, so reviewing our solution methodology

here may prove useful for future studies facing similar issues.6 First, from the first-order conditions,

the equilibrium effort function epri
2 (ζi1) has to solve the following integral equation:

Ake ·Eζj1 [g∆ζ2(ζi1 + kee
pri
2 (ζi1)− ζj1− keepri

2 (ζj1))|ζi1] = 2cepri
2 (ζi1). (8)

We can readily verify that epri
2 (ζi1) cannot be characterized in closed form (this argument is con-

firmed ex post by Equation (5)). To circumvent this issue we introduce the auxiliary function

vpri(ζi1) = ζi1 + kee
pri
2 (ζi1), which summarizes the total effect of ζi1 on solver i’s performance. The

key step in proving Proposition 3 is to substitute vpri(ζi1) into (8) and then to transform the inte-

gral equation into a system of three Bernoulli equations in the variable v−1(vpri).7 The solution to

this system of Bernoulli equations remains implicit, but we can show that the desired solution is

identical to the solution of a system of “equations of damped vibrations”. This second key step

6 For full mathematical details, we relegate the interested reader to the Appendix.

7 For general polynomial cost functions ceni2 with n > 1, Equation (8) can be transformed into a system of Abel
equations of the second kind. In mathematical theory, it is well established that general Abel equations do not have
known solutions. In the case of n= 2, however, these Abel equations can be further reduced to a system of Bernoulli
equations.
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Figure 3 Equilibrium Second-Round Effort under Private Feedback

Note. The functions are based on the following set of parameters: A= 1, a= 1, ke = 1, c= 1.01.

enables us to rely on standard mathematical tools and thus finally present v−1(vpri) in closed form

(see e.g. Polyanin and Zaitsev 2003).

The formulation in Proposition 3 is somewhat unwieldly, but in Corollary 1 we provide an

approximation for a solver’s second-round effort function epri
2 (ζi1) that is much more tractable

than the original. Our numerical analyses suggest that Corollary 1 provides an exceptionally good

approximation even for low κ, which makes it a good starting point for reflecting on Proposition 3.

Corollary 1. Define γ̃3 = a(1 + 6κ)e(κ−1)/(2κ2)/(2(1 + 2e1/κ)), and let

ẽ2(ζi1) =−ζi1
ke

+
aκ

ke
ln(ζi1 + aκ)− aκ

ke
ln(γ̃3). (9)

Then limκ→∞ e
pri
2 (ζi1)− ẽ2(ζi1) = 0 for all ζi1.

Figure 3 visualizes the equilibrium effort functions epri
1 and epri

2 (ζi1) as well as the value function

vpri(ζi1) = ζi1 + kee
pri
2 (ζi1) for different first-round shocks. The graph makes salient that Proposi-

tion 3 provides striking managerial insights for those staging innovation contests.

First, as before, each solver splits his expected solution effort equally between the two rounds.

That is: in expectation, the first and the second round contribute equally to a solver’s overall

performance. Second—and intriguingly—effort in the second round, epri
2 (ζi1), does not increase

monotonically in ζi1. In fact, epri
2 (ζi1) has an inverted U-shape; it increases in ζi1 for ζi1 ≤ 0 but

decreases in ζi1 for ζi1 > 0. Thus solvers with a moderate first-round performance (i.e., ζi1 = 0) exert

substantial effort in the second round, whereas solvers with a very high or very low first-round

performance reduce their second-round efforts. The reason is that a moderately performing solver

perceives the contest as being highly competitive whereas exceptionally good- or ill-performing
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solvers perceive the contest as de facto decided. Moreover, in contrast with the public-feedback

scenario, with private feedback the bad solvers reduce their efforts to a greater extent than do

good solvers; that is, epri
2 (−ζi1)< epri

2 (ζi1) for all ζi1 > 0 (observe the asymmetry in Figure 3). This

finding is caused by the absence of relative performance information. A solver with a high first-

round shock can never be certain that he is ahead of his competitor. As a result, he invests more

effort to maintain his chances of winning in case the competitor is equally strong—even though

that is an unlikely event. In other words, private feedback induces well-performing solvers to invest

relatively more effort; it makes them relatively more risk averse.

But does this mean that less fortunate players can leapfrog better solvers through effort provision

in the second round? The answer is No. To see this, observe that vpri(ζi1) (i.e., the total contribution

of ζi1 to a solver’s performance) increases in ζi1. Clearly, the more fortunate a solver is in the first

round (i.e., the higher his shock ζi1), the better he performs in the contest. More interestingly, this

intuitive result also sheds light on the solvers’ strategic behavior. In equilibrium, no solver ever

allows a less fortunate solver (i.e., a solver with a lower first-round shock) to overtake him in the

second round by exerting enough effort. Thus, once a solver has fallen behind his competitor after

the first round, he needs a good random shock in the second round in order to win the contest.

6. The Optimal Feedback Policy

Having characterized the solvers’ equilibrium solution efforts under the different feedback policies,

we are now ready to answer our research question: Which feedback policy is the best for which kind

of objective (refer to Figure 1)? To structure the analysis, we first discuss the optimal feedback

policy for maximizing average performance (Section 6.1); we then shift our focus to maximizing

the performance of the best solution (Section 6.2).

6.1. Maximizing Solvers’ Average Performance

Since the firm must set the feedback policy at the outset of the contest and since solvers are ex ante

symmetric, it follows that Πavg = E[vi2 + vj2]/2−A= E
[∑

i,t eit

]
/2−A= E [

∑
t eit]−A. That is,

maximizing average performance is equivalent to maximizing the sum of one solver’s (ex ante)

expected first- and second-round efforts. Theorem 2A compares the (ex ante) expected first- and

second-round effort choices of a solver as well as the firm’s expected profits for no, public, and

private feedback.

Theorem 2A (The Optimal Feedback Policy for Average Performance). The fol-

lowing statements hold:

(i) epri
1 < epub

1 = eno
1 ;
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(ii) Eζi1
[
epri

2 (ζi1)
]
<E∆ζ1

[
epub

2 (∆ζ1)
]

= eno
2 ;

(iii) Πpri
avg <Πpub

avg = Πno
avg.

The first noteworthy result of Theorem 2A is that, in each round, the ex ante expected effort

of each solver is identical under a no-feedback and a public-feedback policy. Toward the end of

better understanding this result, we remark that public feedback can have two opposing effects on a

solver’s effort choice in the second round. On the one hand, if the revealed first-round performance

difference is relatively low (|∆ζ1| < a/3) then each solver understands that the contest is highly

competitive and therefore is motivated to expend more effort than under a no-feedback policy.

On the other hand, if the performance difference is relatively large (|∆ζ1| > a/3) then solvers

are discouraged from investing effort because they believe that the contest is almost decided. In

equilibrium, these countervailing effects of motivation and de-motivation offset each other owing

to the symmetry of the random shock difference ∆ζt; thus, E∆ζ1

[
epub

2 (∆ζ1)
]

= eno
2 . It is clear that,

when deciding on his first-round solution effort, each solver anticipates this balance between the

motivation and de-motivation effects and therefore chooses the same effort as under a no-feedback

policy: epub
1 = eno

1 .

In contrast, the announcement of private feedback reduces the willingness of solvers to expend

solution effort as compared with both the no-feedback and public-feedback cases. Two different

effects are responsible for this result. First, much as under a public-feedback policy, private feedback

can motivate a solver to expend more effort than in the no-feedback case whenever he showed a

middling performance in the first round.8 However, this motivation effect is much less pronounced

for private than for public feedback. To see why, recall that the motivation effect of public feedback

is strongest when the firm communicates a small performance difference. Under private feedback,

the firm never releases relative performance information and so each solver can only (and will)

form a belief about the performance difference. Yet given the inherent randomness of performance,

each solver knows that it is very unlikely his competitor has achieved a similar performance. As a

result, solvers respond only moderately to the motivation effect of private feedback.

Second, and even worse, private feedback has a strong de-motivating effect on relatively ill-

performing solvers. As Figure 3 illustrates, solvers with a bad first-round performance exert less

effort in the second round than do solvers with a good first-round showing. Put differently, the

anticipated performance gap between bad and good solvers widens in the second round because of

8 This happens if and only if −aκ(1 +W0(−γ3e
−1+1/(3κ2)/(aκ)))< ζi1 <−aκ(1 +W−1(−γ3e

−1+1/(3κ2)/(aκ))), where
W0 (resp. W−1) is the upper (resp. lower) branch of the Lambert W function.
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their asymmetric effort choices. As a result, a phenomenon arises that is not present under a public-

feedback regime: a solver with a relatively bad first-round performance realizes that he may face

a competitor that he can never beat. Hence the set of potential competitors against whom he can

win shrinks and so the solver starts to shirk. In short, private feedback reduces the competitiveness

of the contest, which in turn induces the solvers to reduce their effort.

This phenomenon also has a strong effect on a solver’s first-round effort provision. Since effort

in the second round is reduced, he is careful to refrain from wasting too much effort in the first

round; that is why epri
1 < epub

1 . Thus the mere pre-announcement of private interim performance

feedback has a negative effect on the solvers’ expected behavior. This “strategic” effect is absent

when announcing a public-feedback contest.

In sum: since maximizing the solvers’ average performance is equivalent to maximizing the

solvers’ average effort provision, it follows that a private feedback policy always generates the

lowest expected profits for the firm.

6.2. The Quest for the Best Solution

In practice, most innovation contests are designed to elicit one exceptional idea that promises

significant value upon implementation. In this case, the firm focuses not on maximizing the solvers’

average performance but rather on maximizing the performance of the best solution; that is,

the firm maximizes Πbest = E[max{vi2, vj2}] − A. Theorem 2B reveals that, for certain types of

innovation contests, private feedback is the optimal policy.

Theorem 2B (The Optimal Feedback Policy for Best Performance). The following

statements hold:

(i) Πpub
best = Πno

best;

(ii) There exists a κ> 1 such that Πpub
best >Πpri

best for all κ< κ;

(iii) There exists a κ<∞ such that Πpri
best >Πpub

best for all κ> κ.

Irrespective of whether the firm is interested in the solvers’ average or best performance, employ-

ing a public-feedback policy generates the same expected profits as does a no-feedback policy. This

result stems from the identity of expected effort under these two feedback policies (as established

in Theorem 2A).

The key result of Theorem 2B is that public feedback dominates private feedback if κ< κ whereas

private feedback is optimal if κ> κ.9 To better understand this result, recall that κ= (a2c)/(Ak2
e);

9 Unfortunately, the complexity of the equilibrium emerging under a private-feedback policy makes it hard to find
the dominant strategy for medium κ. Investigating this question numerically, however, reveals that κ= κ; thus there
is a unique threshold for the performance uncertainty κ above which a private-feedback policy maximizes the firm’s
expected profits.
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Figure 4 Ex ante Expected Second-Round Efforts under Private and Public Feedback

Note. The graphs compare solver i’s (expected) equilibrium second-round effort conditional on ζi1 under private feed-

back (solid line; epri
2 (ζi1)) and under public feedback (dashed line; Eζj1 [epub

2 (∆ζ1)]. In the left panel, the performance

uncertainty is low (κ = 1.01); in the right panel, the performance uncertainty is high (κ = 4). The vertical dotted

line marks the unique intersection point of the two curves. The parameters employed are: A= 1, a= 1, and ke = 1;

c= 1.01 (left panel), c= 4 (right panel).

that is, κ increases in the variance of the random noise, a, and the cost of effort, c, and κ decreases

in the announced award, A, and the effort sensitivity, ke. Reformulating κ= (a/ke)
2/(A/c) helps

us interpret κ. The numerator of the reformulation is a measure of how uncertain the contest is;

if a is large and ke is low, then effort does not play a large role in winning the contest and hence

uncertainty dominates. The denominator is a measure of profitability; if the prize is large and the

cost is low, then profitability is high. Overall, then κ is a measure of how uncertain one unit of

gain is for each of the solvers and thus it is a normalized measure of contest uncertainty. Hence, we

denote κ as “performance uncertainty”.10 Then Theorem 2B implies that, for innovation contests

in which effort is relatively more important than uncertainty (i.e., when κ < κ), public feedback

is optimal. In contrast, for innovation contests with substantial performance uncertainty (κ > κ),

private feedback outperforms public feedback.

But what is the intuition behind this result—particularly since, according to parts (i) and (ii)

of Theorem 2A, private feedback induces lower average performance than public feedback (or

no feedback)? We can answer this question by considering Figure 4, which compares solver i’s

expected second-round effort conditional on his first-round shock, ζi1, under the private-feedback

(solid line) and public-feedback (dashed line) scenarios.11 The figure’s left (resp. right) panel shows

10 An even simpler way to interpret the meaning of κ is based on recognizing that the quadratic numerator easily
dominates the denominator in many situations, from which it follows that κ can be viewed simply as a measure of
contest uncertainty.

11 Under private feedback, solver i’s expected second-round effort conditional on ζi1 is simply epri
2 (ζi1), as stated

in Proposition 3. Under public feedback, solver i’s expected second-round effort conditional on ζi1 is given by
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the functions for low (resp. high) κ. There are two important observations to be made here. First,

comparing the solid and the dashed lines plotted in each panel shows that public feedback induces

a larger effort than does private feedback for most first-round shocks. This result is consistent with

our finding that private feedback induces a lower ex ante expected effort than does public feedback.

Moreover, comparing the two panels reveals that, for low performance uncertainty κ, the reduction

in average effort under private feedback is much greater than for high performance uncertainty.

Second, for top-performing solvers (i.e., solvers with a high first-round shock), private feedback

increases effort provision: the solid line surpasses the dashed line for sufficiently high ζi1. This result

reflects the need of top performers to protect their good position more fiercely under private than

under public feedback owing to the lack of relative performance information. Additionally, Figure 4

also shows that the fraction of performers for which private feedback increases expended effort is

small under low performance uncertainty but is substantial under high performance uncertainty.

Of course, it is exactly these top performers in whom the firm is interested when maximizing

the performance of the best solution. So when using private feedback, the firm faces a non trivial

trade-off. On the one hand, private feedback reduces the solvers’ average effort provision; on the

other hand, it fosters higher effort from the best solvers. Thus the optimal feedback policy is the

one that best balances the average effort provision with the likelihood that a top-performing solver

participates in the contest. Consider the left panel of Figure 4. For low κ, the decrease in average

effort under private feedback is relatively pronounced and the likelihood of a top-performing solver

(i.e., a solver with a first-round shock to the right of the dotted vertical line) participating in

the contest is relatively low. As a result, public feedback dominates private feedback. In contrast,

the right panel reveals that the reduction in average effort is much less pronounced for high κ.

Furthermore, the chances that a solver exerts more effort under private than public feedback are

much greater (i.e., the solid line crosses over the dashed line much more to the left). So in this

case, private feedback is the optimal feedback policy.

Our finding that the optimal feedback policy is tightly linked to the relative importance of effort

and uncertainty yields two immediate managerial implications. First, when setting up an innovation

contest, it is crucial for the firm to identify the extent to which a solver’s performance depends on

stochasticity. For instance, there is seldom much uncertainty involved with contests that seek to

foster incremental innovation. For such contests, the hosting firm should provide public feedback.

In contrast, private feedback is the preferred choice for ideation contests that aim to develop

Eζj1 [epub
2 (∆ζ1)] for epub

2 (∆ζ1) as in Proposition 2. Note that we take the expectation over ζj1 in the public-feedback
case in order to make it directly comparable with the private-feedback scenario.
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novel concepts, new ideas, or breakthrough research with high levels of uncertainty. Second, a firm

should not always strive to maximize the solvers’ expected efforts. In particular, if the performance

uncertainty is substantial then the firm is better-off sacrificing average effort levels and instead

maximizing only the effort levels of the best solvers.

From the viewpoint of social welfare, Theorem 2B (in conjunction with Theorem 2A) constitutes

another important result for contests with substantial inherent uncertainties: the private feedback

policy is not only optimal for the firm but also socially efficient. More precisely, a private-feedback

policy maximizes the firm’s expected profits and also allows solvers to reduce their expected efforts,

leaving them with a higher expected utility. Thus, both the firm and the solvers prefer private

feedback over public feedback in settings of high performance uncertainty. Hence the announcement

of private feedback enables a firm to ex ante minimize the frictions between its own interests and

those of the solvers.

7. Conclusions

Contests are a frequently used mechanism for providing incentives when companies source inno-

vation from the outside. In fact, companies sometimes even use them to provide incentives on the

inside. Prize competitions organized via the Internet are contests, as are many other efforts to

procure innovative and tailored parts. Feedback has been extensively used in practice to improve

both the efficiency and the efficacy of contests. However, our understanding of when and how to

provide which kind of feedback—and of when to refrain from giving feedback—is limited. The aim

of this paper is to begin building a more comprehensive understanding of feedback in contests.

As a first result, we have rigorously established the importance of commitment and truthful-

ness in feedback. Whatever its feedback policy, a firm that holds a contest must announce at

the outset a feedback mapping (a translation of first-round performance to feedback signal) that

transmits truthful information, and then it must adhere to that mapping. If these criteria are not

met, then offering feedback is futile because it will simply be ignored in equilibrium. As a conse-

quence, companies must either establish technical or organizational means to ensure commitment

and truthfulness. An example of technical means is the establishment of clear and measurable

success criteria that solvers can verify—for example, by testing their algorithms on a real data set.

An example of organizational means is reputation building. A firm that is perceived as being trust-

worthy and fair will benefit from its reputation in terms of being able to influence the solvers; any

diminution in its reputation would eliminate that benefit. This explains why, in practice, truthful

pre-committed feedback is frequently observed as part of a trustful buyer–supplier relation.
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Figure 5 Summary of Feedback Benefits

The main contribution of this paper is to extend current research on feedback in contests—which

has concentrated on public feedback to raise average solution effort—along two dimensions. First,

we study feedback in contests where the host is interested in the best performance only. Second,

and most importantly, we introduce private feedback. By building such a general framework for

analyzing feedback in contests, we can exhaustively identify the settings in which any of a wealth of

practically relevant feedback policies is ideal. It is remarkable that, when deciding on their feedback

policy, companies need to focus on only two simple dimensions: the contest’s objective (average

versus best performance) and the solvers’ uncertainty about outcomes. If the firm is concerned

about the solvers’ average performance, then either no feedback or public feedback is the preferred

option. The same preference obtains if the company seeks to improve the best performance when

performance uncertainty is low. However, if the company wants the best possible performance but

performance uncertainty is high, then private feedback outperforms public feedback as well as no

feedback. The matrix presented in Figure 5 summarizes these results.

Our findings have immediate managerial implications. Contest holders that aim to raise the

overall effort level among all solvers—as in the SAP Google Glass Challenge or the Microsoft

Imagine Cup—should refrain from giving private feedback; if performance information is released,

it should be made public. Incremental algorithmic innovation contests likewise do not benefit when

private feedback is provided; for such contests, the relatively low performance uncertainty makes

public feedback the preferred policy. In contrast, contests looking for breakthrough innovation (e.g.,

completely new algorithmic solutions, novel engineering concepts, any problem that requires the

exploration of uncharted territories) should solely rely on private feedback.

Beyond these managerial implications, an intriguing aspect of the private-feedback case is its

social efficiency. Not only does private feedback yield the best results from the firm’s perspective
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(whenever mandated), it also lowers the solvers’ expected effort and therefore maximizes social

welfare.

Finally, this paper’s contribution applies also to traditional procurement efforts. We contextual-

ized contests mainly by examples from the information industry, but contests are by no means niche

mechanisms to source algorithmic innovation. Many procurement efforts by traditional companies

share the features of a contest. Consider a typical automotive manufacturer. For all parts that

require adaptation and development (e.g., headlamps), the manufacturer invites a set of potential

suppliers to create concept designs of what they think best suits the new car model under devel-

opment. Often such concepts include technological innovations; in the case of headlamps, recent

innovations include laser-based light and “curve adaptive” lighting. The car manufacturer provides

feedback on each design—usually to the inventor only—and then asks suppliers to flesh out their

inventions somewhat further, before it decides to engage in detailed development with one supplier.

All of the suppliers must bear (at least partially) the cost of their efforts regardless of the contest

outcome. It is most surprising that the extensive academic literature on efficient procurement set-

tings (e.g., Engelbrecht-Wiggans and Katok 2006, Kostamis et al. 2009, Beil 2010, Wan et al. 2012,

Tunca et al. 2014, Gupta et al. 2015) has not considered contests as sourcing mechanisms and has

focused instead on auctions. This neglect is astonishing given that, for novel and innovative goods:

(i) suppliers endogenously determine their performance by investing in development efforts; and

(ii) contests are an efficient incentive mechanism for steering those efforts.

Previous research on contests has failed to comprehensively explore the repercussions of feed-

back. The aim and principal contribution of this paper is to fill that important gap. It is only by

incorporating all forms of feedback into the analysis that managers can have a reasonable hope of

making the contest mechanism—a method often relied upon in practice to source innovation—more

efficient and effective.

Appendix. Proofs.

Proof of Theorem 1. As a preliminary step, note that solver i’s expected utility ui = A · P(vi2 > vj2)−∑
t
ce2
it <A−ce2

it for all t. Since solver i only participates in the contest if his expected utility is non-negative,

it follows that eit ≤
√
A/c for all t. Thus, the equilibrium emerging in the original contest is identical to the

equilibrium of a contest where solver i’s effort is restricted to the following compact set: eit ∈ [0,
√
A/c]. With

this equivalence result, three steps remain to prove the Theorem. First, we state and prove an important

lemma that simplifies the subsequent argument. Second, we show that without commitment to a feedback

mapping, feedback does not convey any information. Last, we establish that feedback must be indicative of

a solver’s true performance.
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Lemma A1. For any transmitted feedback, there exists a unique pure-strategy second-round equilibrium.

Proof of Lemma A1. We first prove the existence of a pure-strategy Nash equilibrium for any feedback,

and then proceed to show the uniqueness of this equilibrium.

Step 1: Existence. Theorem 1.2 in Fudenberg and Tirole (1991, p. 34) ensures the existence of a pure-

strategy Nash equilibrium if (i) each solver’s strategy space is a nonempty compact convex subset of the

Euclidian space, and (ii) each solver’s expected utility, ui2, is continuous in e2 and quasi-concave in ei2.

The first condition is satisfied by our previous argument that the contest is equivalent to a contest with

ei2 ∈ [0,
√
A/c]. Moreover, ui2 is clearly continuous in e2. To verify the quasi-concavity of ui2 in ei2, we now

show that ui2 is strictly concave in ei2. Given an arbitrary feedback fi ∈ {∅, si, (si, sj)}, solver i’s expected

second-round utility is ui2(ei2, ej2|fi) = AEζ1 [G∆ζ2(ζi1 + ke(ei1 + ei2)− ζj1− ke(ej1 + ej2))|fi] − ce2
i2. Note

that ui2 is twice continuously differentiable in ei2, with the second-order partial derivative being

∂2ui2
∂e2

i2

=Ake
∂

∂ei2
Eζ1 [g∆ζ2(ζi1 + ke(ei1 + ei2)− ζj1− ke(ej1 + ej2))|fi]− 2c. (10)

Since sup
{
∂Eζ1

[
g∆ζ2(ζi1 + ke(e

∗
i1 + ei2)− ζj1− ke(e∗j1 + ej2))|fi

]
/∂ei2

}
= ke/a

2 and a2c > Ak2
e , it follows

that ∂2ui2/∂e
2
i2 ≤Ak2

e/a
2− 2c < 0.

Step 2: Uniqueness. We make use of Theorem 2 in Rosen (1965), which asserts that the Nash equilib-

rium is unique if σ(e2, r) ≡ riui2(e2) + rjuj2(e2) is diagonally strictly concave for some ri, rj > 0. Accord-

ing to Theorem 6 in Rosen (1965), this is true if H(e2, r) +HT (e2, r) is negative definite for any e2 and

some r = (ri, rj) > 0, where H(e2, r) is the Jacobian with respect to e2 of the pseudogradient h(e2, r) =

[ri∂ui2/∂ei2, rj∂uj2/∂ej2]
T

. Note that

H(e2, r) +HT (e2, r) =

 2ri
∂2ui2
∂e2
i2

ri
∂2ui2

∂ei2∂ej2
+ rj

∂2uj2

∂ej2∂ei2

ri
∂2ui2

∂ei2∂ej2
+ rj

∂2uj2

∂ej2∂ei2
2rj

∂2uj2

∂e2
j2

 , (11)

which is negative definite if det (H(e2, r) +HT (e2, r))≥ 0 for any e2. It is readily seen that ∂2ui2/∂e
2
i2 +2c=

−∂2ui2/∂ei2∂ej2, and inf
{
∂Eζ1

[
g∆ζ2(ζi1 + ke(e

∗
i1 + ei2)− ζj1− ke(e∗j1 + ej2))|fi

]
/∂ei2

}
=−ke/a2. With ri =

rj , it follows that det (H(e2, r) +HT (e2, r)) ≥ 0 if ri > (Ak2
e )2/(8a2c(a2c−Ak2

e )) > 0, which concludes the

proof. �

We are now ready to establish Theorem 1 in two separate steps.

Step 1: Commitment. The key step is to show that without a credible commitment to a specific feedback

mapping, the firm’s feedback is always independent of the actual value of the solvers’ first-round submissions.

We show this for the case where the firm is solely interested in the best solution. An identical argument

applies to the average performance case as well. Clearly, after observing v1, the firm chooses the feedback

s= (si, sj) that maximizes expected profits; i.e.,

s∗ ∈ arg max
s

E [max{vi1 + ζi2 + keei2(fi), vj1 + ζj2 + keej2(fj)}|v1] . (12)

Trivially, under a no feedback policy, solvers do not observe s, i.e., fi = fj = ∅, and therefore, no information

is transmitted. We now demonstrate that the same is true for public and private feedback.
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Public feedback: Suppose that the firm gives public feedback; i.e., fi = fj = (si, sj). Also assume that solver

i believes that the firm’s feedback contains some information about v1. (Otherwise, if solver i believes that

feedback does not convey any information, then feedback would be meaningless.) Then, upon observing fi,

solver i chooses the effort that satisfies his necessary and sufficient first-order optimality condition:

∂ui2
∂ei2

=AkeEζ1
[
g∆ζ2(ζi1 + ke(e

∗
i1 + ei2)− ζj1− ke(e∗j1 + ej2))|fi

]
− 2cei2 = 0. (13)

By the symmetry of g∆ζ2 around zero, it follows that both solvers choose the same second-round effort,

ei2(si, sj) = ej2(si, sj). Therefore, we can rewrite the firm’s problem (12) as follows:

s∗ ∈ arg max
s

E [keei2(s) + max{vi1 + ζi2, vj1 + ζj2}|v1] (14)

= arg max
s

keei2(s) +E [max{vi1 + ζi2, vj1 + ζj2}|v1] (15)

= arg max
s

keei2(s). (16)

By (16), it can be readily seen that the firm chooses the feedback that maximizes the solvers’ second-round

effort, irrespective of the realization of v1; thereby implying that, in equilibrium, feedback does not convey

any information about v1.

Private feedback: Suppose that the firm gives private feedback; i.e., fi = si. Also, assume again that solver

i believes that the firm’s feedback contains some information about vi1. Since si never conveys information

about vj1, solver i’s effort choice is independent of vj1. This implies that the firm’s problem (12) decomposes

into two separate problems for each solver respectively; i.e.,

s∗i ∈ arg max
si

E [keei2(si) + vi1 + ζi2|vi1] (17)

= arg max
si

keei2(si). (18)

Again, (18) reveals that, in equilibrium, the firm chooses the feedback si to maximize solver i’s second-round

effort, without revealing any information about vi1.

Step 2: Truthfulness. Suppose that the firm is committed to a feedback mapping (r,Σ), but this mapping

is not indicative of a solver’s true performance; i.e., r(si|vi1) = r(si|v′i1) for all si, vi1, and v′i1. Then, by

Bayes’ rule, a solver’s posterior belief about vi1 is given by g(vi1|si) = r(si|vi1)g(vi1)/
∫
r(si|v′i1)g(v′i1)dv′i1 =

r(si|vi1)g(vi1)/r(si|vi1) = g(vi1); i.e., no belief updating is possible. Thus, feedback does not influence a

solver’s effort choice. In contrast, if r(si|vi1) 6= r(si|v′i1) for some si, vi1, and v′i1, then posterior beliefs differ

from prior beliefs, and therefore, a solver adjusts his effort choice according to the received feedback. �

Proof of Proposition 1. Without feedback between round one and two, solver i’s optimization problem is

equivalent to a utility maximization problem where he simultaneously decides on both effort levels, ei1 and

ei2. Moreover, since performance is linear in effort, while the costs are strictly convex, equilibrium effort

levels must be the same in both rounds. Thus, in equilibrium, ei1 = ei2 = eno
i , and solver i’s equilibrium effort

has to solve

eno
i ∈ arg max

ei

A ·Eζ1 [G∆ζ2(2keei + ζi1− 2keej − ζj1)]− 2ce2
i , (19)
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and the corresponding necessary and sufficient first-order optimality condition is given by

2Ake ·Eζ1
[
g∆ζ2(2kee

no
i + ζi1− 2kee

no
j − ζj1)

]
= 4ceno

i . (20)

By the symmetry of g∆ζ2 around zero, it follows readily that the unique solution to the solvers’ opti-

mality conditions is symmetric; i.e., eno
i = eno

j . Inserting this information in (20) yields eno
i = Ake/(2c) ·

Eζ1 [g∆ζ2(ζi1− ζj1)] =Ake/(3ac). �

Proof of Proposition 2. Given truthful public feedback, the solvers perfectly learn v1 after round one. As

such, solver i’s second-round equilibrium effort solves

epub
i2 ∈ arg max

ei2

A ·G∆ζ2(vi1 + keei2− vj1− keej2)− ce2
i2, (21)

and the corresponding necessary and sufficient first-order optimality condition is given by

Ake · g∆ζ2(vi1 + kee
pub
i2 − vj1− kee

pub
j2 ) = 2cepub

i2 . (22)

By the symmetry of g∆ζ2 around zero, it follows immediately that the unique second-round equilibrium is

symmetric, epub
i2 = epub

j2 .

In the first round, solver i’s equilibrium effort has to solve

epub
i1 ∈ arg max

ei1

A ·Eζ1
[
G∆ζ2(ke(ei1 + epub

i2 ) + ζi1− ke(ej1 + epub
j2 )− ζj1)

]
− ce2

i1−Eζ1
[
c(epub

i2 )2
]

(23)

=A ·Eζ1 [G∆ζ2(keei1 + ζi1− keej1− ζj1)]− ce2
i1−Eζ1

[
c(epub

i2 )2
]
, (24)

and the corresponding necessary first-order optimality condition is given by

Ake ·Eζ1
[
g∆ζ2(kee

pub
i1 + ζi1− keepub

j1 − ζj1)
]
− 2cepub

i1 −
∂

∂ei1
Eζ1

[
c(epub

i2 )2
]

= 0. (25)

Note that the first two terms in (25) capture the direct effect of epub
i1 on solver i’s expected utility, whereas

the third term captures the indirect effect of epub
i1 on his own second-round effort epub

i2 . In equilibrium,

this indirect effect must be zero. To see this, note that (25) reveals that epub
i1 has no strategic effect on

epub
j2 . By the symmetry of the second-round equilibrium, this implies that, in equilibrium, the strategic

effect of epub
i1 on epub

i2 has to be zero as well. Yet, this is true if and only if epub
i1 = epub

j1 ; i.e., first-round

equilibrium efforts are symmetric. Inserting this information in (22) and (25) shows that the unique PBE

under public feedback is given by epub
i2 =Ake/(2c) · g∆ζ2(ζi1− ζj1) =Ake/(2a

2c) · (a− |ζi1− ζj1|), and epub
i1 =

Ake/(2c) ·Eζ1 [g∆ζ2(ζi1− ζj1)] = Eζ1
[
epubi2

]
=Ake/(3ac). �

Proof of Proposition 3. In a first step, we establish uniqueness of the first-round equilibrium. Given truth-

ful private feedback, solver i perfectly learns vi1 after round one, but receives no additional information on

vj1. As such, solver i’s second-round equilibrium effort solves

epri
i2 ∈ arg max

ei2

A ·Evj1 [G∆ζ2(vi1 + keei2− vj1− keej2)|vi1]− ce2
i2, (26)

and the corresponding necessary and sufficient first-order optimality condition is given by

Ake ·Evj1 [g∆ζ2(vi1 + kee
pri
i2 − vj1− kee

pri
j2 )|vi1] = 2cepri

i2 . (27)
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Lemma A1 ensures that the second-round equilibrium defined by (27) is unique. In the first round, solver i’s

equilibrium effort has to solve

epri
i1 ∈ arg max

ei1

A ·Eζ1
[
G∆ζ2(ke(ei1 + epri

i2 ) + ζi1− ke(ej1 + epri
j2 )− ζj1)

]
− ce2

i1−Eζ1
[
c(epri

i2 )2
]
, (28)

and the corresponding necessary first-order optimality condition is given by

Ake ·Eζ1

[
g∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )− ζj1) ·

(
1 +

∂epri
i2

∂ei1
−
∂epri

j2

∂ei1

)]
− 2cepri

i1 −

Eζ1

[
2cepri

i2 ·
∂epri

i2

∂ei1

]
= 0. (29)

Clearly, solver j’s second-round effort cannot be influenced by solver i’s first-round effort, because solver j

does not receive any information on vi1. Therefore, ∂epri
j2 /∂ei1 = 0. Rewriting (29) yields

Ake ·Eζ1
[
g∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )− ζj1)
]
− 2cepri

i1

+Eζ1

[(
Akeg∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )− ζj1)− 2cepri
i2

)
· ∂e

pri
i2

∂ei1

]
= 0,

where the third term is zero because

Eζ1

[(
Akeg∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )− ζj1)− 2cepri
i2

)
· ∂e

pri
i2

∂ei1

]

=Evi1

[
Evj1

[(
Akeg∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )− ζj1)− 2cepri
i2

)
· ∂e

pri
i2

∂ei1

∣∣∣∣∣vi1
]]

=Evi1

[
∂epri

i2

∂ei1
·Evj1

[
Akeg∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )− ζj1)− 2cepri
i2 · |vi1

]]

=Evi1

[
∂epri

i2

∂ei1
·
(
Ake ·Evj1

[
g∆ζ2(vi1 + kee

pri
i2 − vj1− kee

pri
j2 ))|vi1

]
− 2cepri

i2

)]
= 0.

The first equality follows from the law of iterated expectations, the second equality is true because solver i’s

second-round effort choice is independent of vj1, the third equality follows from rearranging terms, and the

last equality follows from solver i’s second-round optimality condition (27). Thus, the first-order optimality

condition of solver i is

Ake ·Eζ1
[
g∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )− ζj1)
]
− 2cepri

i1 = 0,

and by the symmetry of g∆ζ2 around zero, it follows readily that the unique solution to the solvers’ optimality

conditions is symmetric, epri
i1 = epri

j1 , and epri
1 =Eζi1

[
epri
i2

]
.

We now proceed with deriving the solvers’ second-round equilibrium effort. We conjecture that the unique

second-round equilibrium is symmetric in the sense that epri
i2 = epri

2 (ζi1) and epri
j2 = epri

2 (ζj1), and that vpri(ζi1)

increases in ζi1. We will demonstrate in retrospective that these claims are true. Together with (27), the

above properties imply that the equilibrium effort function, epri
2 (·), solves the following integral equation:

Ake ·Eζj1 [g∆ζ2(ζi1 + kee
pri
2 (ζi1)− ζj1− keepri

2 (ζj1))|ζi1] = 2cepri
2 (ζi1), (30)
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or equivalently,

Ak2
e ·Eζj1 [g∆ζ2(vpri(ζi1)− vpri(ζj1))|ζi1] = 2c

(
vpri(ζi1)− ζi1

)
. (31)

Because g∆ζ2(vpri(ζi1)− vpri(ζj1)) is positive only if vpri(ζi1)− vpri(ζj1) ∈ [−a,a], we need to consider three

different cases. (1) If vpri(ζi1)− vpri(ζj1)∈ [−a,a] for all ζj1, then ζi1 ∈ [ζu, ζo]. In this case, (31) is given by∫ ζi1

− a
2

(a− vpri(ζi1) + vpri(ζj1))dζj1 +

∫ a
2

ζi1

(a+ vpri(ζi1)− vpri(ζj1))dζj1 = 2aκ(vpri(ζi1)− ζi1), (32)

and differentiating both sides with respect to ζi1 leads to the following first-order ordinary differential equa-

tion: (
vpri(ζi1)

)′
=

aκ

ζi1 + aκ
, (33)

with the canonical solution

v−1(vpri) = γ3e
1
aκ
vpri − aκ. (34)

Given (34), it is easy to verify that vpri(a/2) − vpri(−a/2) = aκ ln((2κ + 1)/(2κ − 1)) > a, implying that

[ζu, ζo]⊂ [−a/2, a/2].

(2) For ζi1 ∈ [−a/2, ζu], (31) becomes∫ ζi1

− a
2

(a− vpri(ζi1) + vpri(ζj1))dζj1 +

∫ v−1(vpri(ζi1)+a)

ζi1

(a+ vpri(ζi1)− vpri(ζj1))dζj1 = 2aκ(vpri(ζi1)− ζi1),

(35)

and differentiating both sides with respect to ζi1 leads to the following differential equation:(
vpri(ζi1)

)′ · [2ζi1 + 2aκ+
a

2
− v−1(vpri(ζi1) + a)

]
− 2aκ= 0, (36)

which is a Bernoulli equation in v−1(·). The implicit solution to (36) is

v−1(vpri) =Ce
1
aκ
vpri − a

(
κ+

1

4

)
− 1

2aκ
e

1
aκ
vpri
∫
e−

1
aκ
vpriv−1(vpri + a)dvpri. (37)

(3) In a similar vein, we can show that for ζi1 ∈ [ζo, a/2], the implicit solution to (31) is given by

v−1(vpri) =C ′e
1
aκ
vpri − a

(
κ− 1

4

)
− 1

2aκ
e

1
aκ
vpri
∫
e−

1
aκ
vpriv−1(vpri− a)dvpri. (38)

Combining (37) and (38) allows us to derive closed-form solutions. With (38), (37) becomes

v−1(vpri) =Ce
1
aκ
vpri − a

(
3

2
κ+

1

8

)
−C ′ 1

2aκ
e

1
κ e

1
aκ
vprivpri+(
1

2aκ

)2

e
1
aκ
vpri
∫∫

e−
1
aκ
vpriv−1(vpri)d(vpri + a)dvpri. (39)

Note that v−1(vpri)− 2aκ(v−1(vpri))′+ (aκ)2(v−1(vpri))′′ = v−1(vpri)/4− a(3κ/2 + 1/8). This is an equation

of damped vibrations with canonical solution

v−1(vpri) = γ1e
3

2aκ
vpri + γ2e

1
2aκ

vpri − a
(

1

6
+ 2κ

)
. (40)
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In an identical way, we can derive the canonical solution for ζi1 ∈ [ζo, a/2]:

v−1(vpri) = γ4e
3

2aκ
vpri + γ5e

1
2aκ

vpri + a

(
1

6
− 2κ

)
. (41)

Thus, the canonical solution to (31) is given by

v−1(vpri) =


γ1e

3
2aκ

vpri
+ γ2e

1
2aκ

vpri − a
(

1
6

+ 2κ
)

if vo− a≤ vpri < vu

γ3e
1
aκ
vpri − aκ if vu ≤ vpri ≤ vo

γ4e
3

2aκ
vpri

+ γ5e
1

2aκ
vpri + a

(
1
6
− 2κ

)
if vo < v

pri ≤ vu + a,

(42)

where vu = vpri(ζu), vo = vpri(ζo), vo−a= vpri(−a/2), and vu+a= vpri(a/2). It remains to determine all inte-

gration constants γk, vu and vo. From (36), it follows readily that γ1 =−γ4n
3 and γ2 = γ5n. Moreover, (31)

satisfies all requirements of the Implicit Function Theorem. Therefore, vpri(ζi1) is continuously differentiable,

and so is v−1(vpri). From the continuity of (v−1(vpri))
′
, it follows that γ2 = 2γ3xy(n3x + y)/(n2x2 + y2),

and 3γ1 = 2γ3n
2(x − ny)/(n2x2 + y2). Additionally, the continuity of v−1(vpri) implies that γ3 = 3a(κ +

1/6)(n2x2 +y2)/(x2(3y2−n2x2 +4n3xy)), and γ3 = 3a(κ−1/6)n(n2x2 +y2)/(y2(3n3x2−ny2 +4xy)). Equat-

ing these two expressions leads to (6). Finally, the integral equation (31) becomes

a

6κ
+ a

(
1

6
−κ
)

ln(y)− a
(

1

6
+κ

)
ln(x)− aκ+

2

3
γ1

(( y
n

)3

−x3

)
+

1

2
γ3(y2 +x2) = 0, (43)

which is the same as (7). As a last step, we need to verify that our initial conjecture that vpri(ζi1) increases in

ζi1 is true. Note that because 0<x< y, and n> 1, we have γ1 < 0, and γ2, γ3, γ4, γ5 > 0. Thus, it is obvious

that v−1(vpri) increases in vpri for vpri ≥ vu. For vpri < vu, we have (v−1(vpri))′ > 0 if 3γ1x
2 + γ2 = 2γ3x> 0,

which is true. Therefore, vpri(ζi1) increases in ζi1, which concludes the proof.

At this point, it is worthwhile to briefly comment on our methodology for finding the solution to the

integral equation (31). The crucial step is to transform the integral equation into an ordinary differential

equation (ODE) by differentiating both sides of the equality with respect to ζi1. Clearly, the unique solution

to (31) also solves the ODE. However, the ODE may have solutions that do not solve (31). The only way

to circumvent this problem is to identify the canonical solution of the ODE, which is given by (42). Having

the canonical solution allows us to conclude that the solution to (31) has the same structural form, and

it remains to determine the integration constants appropriately by exploiting the properties of the original

integral equation (31). As a result, it is guaranteed that the system of equations (6)-(7) admits a unique

solution for x∈
[
e−1/(4κ), e−1/(4κ)·(1−1/κ)

]
and y ∈

[
e1/(4κ), e1/(4κ)·(1+1/κ)

]
. �

Proof of Corollary 1. Let x̃= e−(κ−1)/(4κ2) = n−(κ−1)/(2κ) and ỹ = e(κ+1)/(4κ2) = n(κ+1)/(2κ). We now show

that (x̃, ỹ) is the solution to the system of equations (6)-(7) as κ→∞. Inserting x̃ and ỹ in (6) reveals that

the left-hand side is equal to −2n2/κ · (2 +n2 +m(1 + 2n2)), which converges to zero as κ→∞, because

limκ→∞ n= 1, and limκ→∞m=−1. Similarly, the left-hand side of (7) is given by (1− 6κ2)/(κ(1 + 6κ)) +

(m+ 1)/(4κ) + (m− 1)/(4κ2) + 3(1 +n2)/(2(1 + 2n2)), which clearly converges to zero as κ→∞. Moreover,

limκ→∞ vu = limκ→∞ 2aκ ln(x̃) = −a/2, and limκ→∞ vo = limκ→∞ 2aκ ln(ỹ) = a/2. From (5), it follows that

only the middle sector persists as κ→∞. Also, by inserting x̃ and ỹ in the formula for γ3 in Proposition

3, it is easy to see that limκ→∞ γ̃3 = limκ→∞ γ3. Taken together, these results imply that limκ→∞ ẽ2(ζi1) =

limκ→∞ e
pri
2 (ζi1) for all ζi1. �
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Proof of Theorem 2A. (i) From Propositions 1 and 2, it follows readily that eno
1 = epub

1 . It remains to show

that eno
1 > epri

1 . Note that (27) reveals that epri
2 (ζi1)<Ake/(2ac) for all ζi1. Thus, 0≤ epri

1 =Eζi1
[
epri

2 (ζi1)
]
<

Ake/(2ac). It follows that lima→∞ e
no
1 = lima→∞ e

pri
1 = 0. Furthermore, ∂eno

1 /∂a = −eno
1 /a, and ∂epri

1 /∂a =

−epri
1 /a + ∂(aepri

1 )/∂a > −epri
1 /a. As a result, eno

1 = epri
1 = 0 for a→∞, but ∂epri

1 /∂a > ∂eno
1 /∂a; i.e., epri

1

decreases less steeply than eno
1 . This implies that eno

1 > epri
1 if a becomes an ε > 0 smaller. But if eno

1 > epri
1 ,

then epri
1 decreases even less steeply compared to eno

1 . By an inductive argument, it follows that eno
1 −e

pri
1 > 0,

and this difference decreases in a.

(ii) The result is a direct consequence of (i) in combination with Propositions 1 - 3.

(iii) By (i) and (ii), it follows that Πpub
avg = E

[
vpub
i2 + vpub

j2

]
/2 − A =

(
epub

1 +E∆ζ1

[
epub

2 (∆ζ1)
])
− A =

(eno
1 + eno

2 )−A= Πno
avg >Πpri

avg =
(
epri

1 +Eζi1
[
epri

2 (ζi1)
])
−A. �

Proof of Theorem 2B. (i) The result follows directly from comparing the firm’s expected profits under the

two different feedback policies:

Πno
best =E

[
max
i
{ζi1 + ζi2 + 2kee

no
i }
]
−A= 2kee

no
1 +E

[
max
i
{ζi1 + ζi2}

]
−A= a

(
2

3κ
+

7

30

)
−A

Πpub
best =E

[
max
i
{ζi1 + ζi2 + kee

pub
1 + kee

pub
2 (ζ1)}

]
−A= kee

pub
1 +E

[
max
i
{ζi1 + ζi2 + kee

pub
2 (ζ1)}

]
−A

= kee
pub
1 +

1

2
·E
[
ζi1 + ζi2 + 2kee

pub
2 (ζ1) + ζj1 + ζj2 + |ζi1 + ζi2− ζj1− ζj2|

]
−A

= 2kee
pub
1 +

1

2
·E [ζi1 + ζi2 + ζj1 + ζj2 + |ζi1 + ζi2− ζj1− ζj2|]−A

= 2kee
pub
1 +E

[
max
i
{ζi1 + ζi2}

]
−A= 2kee

no
1 +E

[
max
i
{ζi1 + ζi2}

]
−A= Πno

best,

where we made use of the well-known result that max{a, b}= (a+ b+ |a− b|)/2.

(ii) Let κ= 1. Then, Πpri
best ≈ 0.889a−A< 0.9a−A= Πpub

best, and by the continuity of Πpub
best and Πpri

best, it

follows that there exists a κ> 1, such that Πpri
best <Πpub

best for all κ< κ.

(iii) The proof proceeds in two steps. First, we establish a lower bound for the firm’s expected profits

under a private feedback policy, Πpri
best <Πpri

best, and show that Πpri
best >Πpub

best if γ3 is sufficiently low. Last, we

verify that there exists a κ such that γ3 becomes sufficiently low for all κ> κ.

Lower bound. The firm’s expected profit is Πpri
best = kee

pri
1 + E

[
maxi{ζi1 + ζi2 + kee

pri
2 (ζi1)}

]
− A.

Clearly, for any effort function e2(ζi1) with e2(ζi1) ≤ epri
2 (ζi1) for all ζi1, we have Πpri

best = kee
pri
1 +

E [maxi{ζi1 + ζi2 + kee2(ζi1)}]−A≤Πpri
best. In the remainder, we set e2(ζi1)≡− ζi1

ke
+ aκ

ke
ln(ζi1 +aκ)− aκ

ke
ln(γ3).

To see that this is indeed a lower bound on epri
2 (ζi1), note that e2(ζi1) solves the integral equation (32) for all

ζi1. By doing so, however, we ignore the fact that for some ζi1 and ζj1, we have ζi1 +kee2(ζi1)−ζj1 +kee2(ζj1) /∈

[−a,a]. This implies that the left-hand side of (32) is extended by negative terms compared to the correct

solution outlined in Proposition 3. Now, since the left-hand side is smaller, it follows by equality that the

right-hand side is smaller as well, thereby implying e2(ζi1)≤ epri
2 (ζi1).

With e2(ζi1), the firm’s expected profit becomes Πpri
best = a · (−κ3(κ2 + 1

4
)(e

1
κ − e− 1

κ ) + κ4(e
1
κ + e−

1
κ ) +

κ(κ2−2κ+ 1
4
) ln( 2κ−1

2κ+1
) + 1

2
κ ln(a4(2κ−1)(2κ+ 1)3) + 5

6
κ2−2κ(1 + ln(2) + ln(γ3)) + 1

12
), and Πpri

best >Πpub
best if

and only if γ3 <γ3
, with

γ
3

=
a

2
· e
−κ

2

2 (κ2+ 1
4 )

(
e

1
κ−e−

1
κ

)
· e

κ3

2

(
e

1
κ+e

− 1
κ

)
·
(

2κ− 1

2κ+ 1

) 1
2 (κ2−2κ+ 1

4 )
· 4
√

(2κ− 1)(2κ+ 1)3 · e
5
12
κ−1− 3

40κ
− 1

3κ2 .

(44)
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Taking the limit. To test whether γ3 < γ3
, we will first derive an upper bound on γ3, and then show that

this upper bound is smaller than γ
3
. As a preliminary step, define the function

Γ(x, y) =
2γ3

a(1 + 6κ)
=

n2x2 + y2

x2(3y2−n2x2 + 4n3xy)
, (45)

which decreases in x and y. Thus, since x ∈
[
e−1/(4κ), e−1/(4κ)·(1−1/κ)

]
and y ∈

[
e1/(4κ), e1/(4κ)·(1+1/κ)

]
, it

follows that Γ(x, y) ∈ [Γ,Γ] = [e1/(2κ)/((1 + 2e1/κ)e1/(2κ2)), e1/(2κ)/(1 + 2e1/κ)]. Given the monotonicity of

Γ(x, y), we can build the inverse function of Γ(x, y) with respect to y:

y(x,Γ) =
nx

1− 3Γx2
·
(

2n2Γx2−
√

4(1 +n4)Γ2x4− (Γx2− 1)2

)
. (46)

Inserting (46) in (6) and (7) allows us to eliminate y from the system of equations, and to represent it in

variables x and Γ. Now, Πpri
best ≤Πpub

best if and only if the transformed system of equations has a solution for Γ

in the interval [Γ3,Γ], and x arbitrary, where Γ3 = 2γ
3
/(a(1 + 6κ)). We proceed to show that for sufficiently

large κ, such a solution does not exist.

Before doing so, we derive some important properties. Let l1(x, y) be the left-hand side of (6), and l2(x, y)

be the left-hand side of (7). Straightforward differentiation verifies that there exists a κ such that for all

κ> κ, l1(x, y) increases in x and decreases in y, whereas l2(x, y) decreases in x and y. Furthermore, denote

by x1(y) (x2(y)) the solution to l1(x1(y), y) = 0 (l2(x2(y), y) = 0) for any y. Applying the Implicit Function

Theorem reveals that x1(y) increases in y, while x2(y) decreases in y for κ> κ.

In a next step, we transfer these results to the transformed system of equations, which we denote by

l′1(x,Γ) = 0 and l′2(x,Γ) = 0. Analogously to above, let x′1(Γ) (x′2(Γ)) be the solution to l′1(x′1(Γ),Γ) = 0

(l′2(x′2(Γ),Γ) = 0) for any Γ. Moreover, note that by the Inverse Function Theorem, y(x,Γ) decreases in Γ,

because Γ(x, y) decreases in y. Therefore, by total differentiation, it follows that ∂x′1(Γ)/∂Γ = ∂x1(y)/∂y ·

∂y(x,Γ)/∂Γ< 0, and ∂x′2(Γ)/∂Γ = ∂x2(y)/∂y · ∂y(x,Γ)/∂Γ> 0 for κ> κ.

We are now well-equipped to complete the proof. We want to show that there exists a κ such that for

all κ > κ, the transformed system of equations l′1(x∗,Γ∗) = 0 and l′2(x∗,Γ∗) = 0 admits no solution with

Γ∗ ∈ [Γ3,Γ]. We do so by verifying that for all κ> κ, l′2(x,Γ)> 0 for any x and Γ∈ [Γ3,Γ]. Note that for κ> κ,

l′2(x,Γ) decreases in x, and increases in Γ. This is true because ∂l′2(x,Γ)/∂Γ = ∂l2(x, y)/∂y ·∂y/∂Γ> 0, and,

by the Implicit Function Theorem, ∂l′2(x,Γ)/∂x=−(∂l′2(x,Γ)/∂Γ)/(∂x′2(Γ)/∂Γ)< 0. Therefore, for κ > κ,

l′2(x,Γ)≥ l′2(x,Γ3), where x= e−1/(4κ)·(1−1/κ). It remains to demonstrate that l′2(x,Γ3)> 0, or equivalently,

l2(x, y(x,Γ3)) > 0 for κ > κ. We will conclude this final step with the help of a two-step Taylor series

expansion. As a starting point, we substitute 1/κ by z. This substitution allows us to develop the Taylor

series at ẑ = 0. Now, as a first step, the Taylor series of y(x,Γ3) at ẑ = 0 is given by yTaylor(z) = 1 + z/4−

3z2/32 − 1177z3/4480 − 611z4/14336 + O(z5). In a second step, we can now derive the Taylor series of

l2(x, y(x,Γ3)) = l2(x, yTaylor(z)) at ẑ = 0. After resubstitution, this Taylor series becomes lTaylor
2 (x, y(x,Γ3)) =

11/(3360κ2)− 23/(960κ3) +O(1/κ4). Obviously, since the first term is positive, we can conclude that there

exists a κ<∞ such that lTaylor
2 (x, y(x,Γ3))> 0 for all κ> κ. �
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