
Optimization of buffer allocations
in stochastic flow lines

Inauguraldissertation
zur Erlangung des akademischen Grades

eines Doktors der Wirtschaftswissenschaften
der Universität Mannheim

vorgelegt von

Sophie Weiss
Mannheim

Dekan: Dr. Jürgen M. Schneider

Referent: Prof. Dr. Raik Stolletz

Korreferent: Prof. Dr. Moritz Fleischmann

Tag der mündlichen Prüfung: 02. Oktober 2015

To my grandparents Lotti and Hans

Summary

The design of flow lines is an important task in practice which is currently not sup-
ported sufficiently by the literature. An important question is how to allocate buffer
capacities within the flow line. This thesis develops exact solution methods which
efficiently optimize the buffer allocation in flow lines under general assumptions.
The first essay provides an overview on existing literature in the field of buffer
optimization. A classification scheme is developed to facilitate the comparison of
different algorithms. The second essay investigates exact mixed-integer program-
ming approaches to calculate optimal buffer capacities. These approaches allow
the consideration of many real-world features that have not yet been covered in the
literature. However, they cannot be applied in practice because of their low com-
putational performance. In the third essay, an exact algorithm which uses Benders
Decomposition is proposed in order to overcome the shortcomings of the mixed-
integer programs. Lower bounds on the buffer capacities are developed to reduce
the solution space. The key result is that this algorithm leads to good computational
performance when optimizing lines under general assumptions. The fourth essay
investigates the impact of limited supply on the optimal buffer allocation. An ex-
act solution method based on individual lower bounds and rule-based generation of
candidate allocations is developed. The major finding is that a limited supply not
only leads to an increase in the optimal buffer capacities, but may also decrease the
throughput of the line to such an extent that the throughput goals of the company
cannot be met, even by adding additional buffer capacities.
Further research should concentrate on extending the proposed solution approaches
to take into account more complex systems, such as flow lines with closed loops or
several product types. In addition, it is desirable to develop a model which allows
for simultaneous optimization of the buffer capacities and the raw material supply.

IV

Contents

Summary IV

List of Figures VIII

List of Tables IX

1. Introduction 1

2. Buffer Allocation Problems for stochastic flow lines with unreliable
machines 6
2.1. Introduction . 7
2.2. Classification scheme for characteristics of flow lines 8
2.3. Classification scheme for decision problems 9
2.4. Conclusion and future research . 13

3. Buffer allocation using exact linear programming formulations and
sampling approaches 14
3.1. Introduction . 15
3.2. Mixed-integer programming formulations 16

3.2.1. Basic idea and assumptions 16
3.2.2. MIP for the optimization 17
3.2.3. Other MIP formulations 20
3.2.4. Sampling of effective processing times 21

3.3. Numerical results . 23
3.4. Conclusion . 27

4. Buffer allocation in stochastic flow lines via sample-based optimization
with initial bounds 28
4.1. Introduction . 29
4.2. Sample-based flow line model . 31

4.2.1. Assumptions . 32

V

4.2.2. Evaluation of given allocations 33
4.2.3. Optimization of buffer allocations 35

4.3. Application of Benders Decomposition to the Buffer Allocation
Problem . 37
4.3.1. Adjustments and specific features 37
4.3.2. Generation of lower bounds from subsystems 40

4.4. Numerical study . 43
4.4.1. A note on robustness . 44
4.4.2. Impact of bounds . 46
4.4.3. Exponentially distributed processing times 48
4.4.4. Generally distributed processing times 51
4.4.5. Correlated processing times 53
4.4.6. Long lines with reliable and unreliable stations 54

4.5. Conclusion and further research 57

5. Optimization of buffer allocations in flow lines with limited supply 58
5.1. Introduction . 59
5.2. Model of the flow line . 61

5.2.1. Model assumptions and decision problem 61
5.2.2. Supply of the first station 62

5.3. Individual lower bounds on the buffer capacities 63
5.4. Rule-based local search algorithm 67

5.4.1. Generation of candidate allocations 67
5.4.2. Sample-based evaluation and exchange of information . . . 68

5.5. Numerical Study . 69
5.5.1. Impact of different buffer selection criteria 69
5.5.2. Impact of individual bounds and the rule-based local search

algorithm . 72
5.5.3. Impact of supply patterns 74

5.6. Conclusion and further research 78

A. Detailed results for Erlang-k and Cox-2 distributed instances 80

B. Sample-based evaluation algorithms for lines with limited supply 83

References X

Curriculum vitae XVII

VI

List of Figures

2.1. Serial production line with K stations (circles) and K −1 buffers of
capacity Bi (rectangles) . 7

3.1. Serial flow line with sampled processing times 17
3.2. Range of total buffer capacity for W = 4,000 and W = 10,000 . . 24
3.3. Range of total buffer capacity for DS and SRS with W = 4,000 . . 25
3.4. Range of total buffer capacity for DS and SRS with W = 10,000 . . 26
3.5. Throughput evaluation . 26

4.1. Flow line under consideration . 33
4.2. Overview of Benders Decomposition for the BAP 37
4.3. Course of the lower and upper bounds during the solution process . 40
4.4. Generation of lower bounds via subsystems of size i = 2 42
4.5. Generation of lower bounds via subsystems of size i = 3 42
4.6. Overview of bound calculation . 43
4.7. Robustness of the approach regarding the number of workpieces

(S = 5, bottleneck last) . 45
4.8. Robustness of SRS (S = 5,W = 250,000, bottleneck last) 46
4.9. Course of the lower and upper bounds during the solution process

(S = 5,W = 250,000, bottleneck last) 50
4.10. Share of computation times for bound calculation and optimality

proof (S = 5,W = 250,000, bottleneck last) 50
4.11. Setting of the 14-station line . 54
4.12. Setting of the 24-station line . 54

5.1. Flow line under consideration . 62
5.2. All subsystems of size i = 3 for a line with M = 5 stations 64
5.3. Overview of the RBLS algorithm 67
5.4. Required total buffer capacity depending on the reorder point and

the lead time for q = 200 . 74

VII

5.5. Required total buffer capacity depending on the lead time and the
order-up-to level for r = 35 . 76

5.6. Required total buffer capacity depending on the lead time and the
order-up-to level for r = 40 . 76

5.7. Computation times in relation to the total buffer capacity of the op-
timal allocation . 78

VIII

List of Tables

2.1. Characteristics of unreliable flow lines 10
2.2. Characteristics of the decision problems 13

3.1. Notation for the MIP models . 18
3.2. Average computation time (sec.) of different MIP formulations . . . 24

4.1. Notation for the models . 33
4.2. Time saving potential of approximate solutions 47
4.3. Mean computation times (Exponential distribution) 49
4.4. Parameter settings for the base case 51
4.5. Mean computation times (Erlang-k and Cox-2 distribution) 52
4.6. Detailed results (Erlang-k distribution, S = 5) 52
4.7. Detailed results (correlated processing times) 54
4.8. Detailed results (S = 14) . 55
4.9. Detailed results (S = 24) . 56

5.1. Notation for the calculation of lower bounds 65
5.2. Average computation times with different selection criteria (10 sam-

ples) . 70
5.3. Parameter settings of the test cases 72
5.4. Performance comparison of the solution methods (average of 10

samples per test case) . 73
5.5. Optimal buffer allocations for selected (s,q)-policies with q = 200 . 75
5.6. Optimal buffer allocations for selected (r,S)-policies with r = 35 . . 77
5.7. Impact of neglecting limited supply 77

A.1. Detailed results (Cox-2 distribution, S = 5) 80
A.2. Detailed results (Erlang-k distribution, S = 7) 81
A.3. Detailed results (Cox-2 distribution, S = 7) 82

B.1. Notation for the throughput evaluation 83

IX

1. Introduction

Flow lines are manufacturing systems which enable high production volumes for
relatively low costs. They are typically to be found in the automotive and in the
food industry, among others. A flow line consists of a number of machines in series
with a fixed sequence of the processing steps. Such lines are of their nature sub-
ject to unpredictable, i.e., stochastic, interruptions. On the one hand, these may be
caused by unreliable machinery suffering from inevitable breakdowns and subse-
quent repairs of random duration. On the other hand, variability in processing time
may originate from human operators (Tempelmeier, 2003). Both influences lead
to interruptions of the material flow and therefore reduce the line’s performance.
In-process storages, so-called buffers, can mitigate the impact of these stochastic
influences by decoupling the machines to a certain extent. Hence, the material flow
does not necessarily have to be synchronized, i.e., the workpieces move indepen-
dently. Consequently, buffers can also facilitate the production of variants or similar
products as long as the processing steps and the processing times are comparable
(Buzacott and Shanthikumar, 1993, p.2). Thus buffer capacities do not only in-
crease machine utilization and therefore the throughput, but also the flexibility of
the flow lines. However, the installation and provision of such capacities is related
to investments and costs for additional storage (Gershwin and Schor, 2000).
Both the output and the costs of such lines may have a significant influence on the
competitiveness of the plant or even the company as a whole (Burman et al., 1998;
Alden et al., 2006). In particular, low or misallocated buffer capacities may cause
low output due to inefficient machine utilization, whereas high buffer capacities lead
to high investments and high costs originating from excessive in-process inventory
and the amount of floor space required (Gershwin and Schor, 2000). The Buffer
Allocation Problem attempts to balance out these counteracting targets.
When optimizing the buffer allocation in practice, two scenarios are distinguished.
On the one hand, if demand exceeds supply, increasing the throughput of the line
generates additional output which can be converted into additional sales. In prac-
tice, overtime is often used in the long run to increase production capacity should the
production targets not be met (Patchong et al., 2003; Alden et al., 2006). However in

1

this case, the overtime and its related costs can be avoided by allocating additional
buffer capacities to increase the productivity. On the other hand, if supply exceeds
demand, decreasing costs while preserving the profit will increase profitability. Re-
allocating and reducing buffer capacities adequately decrease those costs related to
storage and maintain the actual performance of the line. The following examples
underline the tremendous impact of effectively designed production lines. Burman
et al. (1998) point out that the optimization of the printer production at Hewlett-
Packard raised the revenues by $280 million. Alden et al. (2006) report savings and
additional revenues of $2.1 billion within 20 years at General Motors obtained from
buffer optimization and other performance improvements. PSA Peugeot Citroën
reduced overtime and re-designed their production lines resulting in $130 million
of additional profit, which corresponds to about 6.5% of the total profit in 2001
(Patchong et al., 2003). In the food industry, stock deterioration and costs incurred
from scrapping must also be considered. Liberopoulos and Tsarouhas (2002) de-
scribe the case of a Greek croissant manufacturer. Optimized buffer capacities led
to an additional profit of $19,150 per week, made up of additional revenue from
sales as a result of increasing output and lower costs from reduced scrapping and
reduced overtime.
The Buffer Allocation Problem is difficult to solve for several reasons. To begin
with, the causes for low throughput are often not obvious to plant workers and
managers (Alden et al., 2006). Moreover, the line is in general highly sensitive to
changes in its characteristics and the related data (Tempelmeier, 2003). Therefore,
the problem cannot be solved by intuition or experience. Finally, combinatorial
complexity emerges from the number of candidate allocations.
To conclude, the optimization of buffer allocations in stochastic flow lines is a well-
established problem which has been investigated for several decades. Yet existing
exact approaches are based on restrictive assumptions. They are therefore impracti-
cable for solving real-world problems. Optimizing the buffer allocation efficiently
under general assumptions requires approximative solution approaches which can
lead to unsatisfactory inaccuracies.
This illustrates the need for exact and efficient solution methods that are applicable
under general assumptions.
This dissertation presents an overview of the literature on the Buffer Allocation
Problem and investigates how the consideration of realistic features impacts on the
optimal buffer allocation. Furthermore, it introduces new algorithms which are ca-
pable of solving the Buffer Allocation Problem in such a way as to overcome the
drawbacks of the existing approaches.

2

Chapter 2 introduces a classification scheme of the characteristics of a flow line and
the decision problems which arise in the context of the Buffer Allocation Problem.
This work has been motivated by the observation that the underlying assumptions
and solution characteristics are often reported on insufficiently or not at all. The
literature covering unreliable machines is reviewed and categorized in accordance
with the developed classification scheme. Here we identify common assumptions,
existing test instances, and solution approaches. This facilitates the comparison of
existing and new algorithms for the Buffer Allocation Problem. This article was
written jointly with Justus Arne Schwarz and Raik Stolletz1.
The study in Chapter 3 elaborates on an exact solution method for the Buffer Al-
location Problem, which allows the incorporation of realistic features of the line.
When optimizing the buffer allocation, realistic line characteristics, such as gen-
erally distributed processing times, times to failure, or times to repair are often
neglected. If these features are considered in the literature, the Buffer Allocation
Problem is merely solved heuristically. In this chapter, mixed-integer programming
in combination with sampling is applied. The sampling approaches thereby cover
the stochastic effects of the system by replacing the random variables by sampled
realizations. Such procedures correspond to a simulation of the flow of a number
of workpieces through the system. There are different sampling methods available
to generate the realizations of the random variables. An important issue is how to
select the required number of workpieces, i.e., the sample size, which will properly
model the line and lead to robust results, while preserving acceptable computation
times. We conduct an extensive numerical study to investigate the accuracy and
computational performance of different sample sizes and sampling methods. To
this end, we identify appropriate sample sizes for the test cases under investigation.
Moreover, several mixed-integer programming formulations and standard solvers
are compared in order to identify the most efficient combination with respect to the
computation time. This is a first step towards the development of a flexible and effi-
cient solution algorithm for the Buffer Allocation Problem. This article was written
jointly with Raik Stolletz2.
The fourth chapter presents an efficient and exact approach for the determination of
optimal buffer allocations. The in-depth analysis of the performance of the mixed-
integer programming formulations presented in Chapter 2 reveals that these for-

1Weiss, S., J. A. Schwarz, and R. Stolletz (2015). Buffer Allocation Problems for stochastic flow
lines with unreliable machines. In Proceedings of the 10th conference on stochastic models of
manufacturing and service operations, Volos, Greece, pp. 271-277

2Stolletz, R. and S. Weiss (2013). Buffer allocation using exact linear programming formulations
and sampling approaches. In Manufacturing Modelling, Management, and Control, Volume
7(1), St. Petersburg, Russia, pp. 1435–1440.

3

mulations require very long computation times and are often not solvable because
of the high memory consumption. To reduce the solution space of the problem,
we introduce bounds on the buffer capacities. To this end, we iteratively optimize
subsystems, each of which consists of a subset of the line. We prove that these
subsystems produce a higher output for a given buffer capacity than the original
line. As a consequence, optimizing the buffer allocation in such subsystems pro-
vides lower bounds on the total capacity of the respective buffers in the original
line. This concept is independent of the applied solution approach and can there-
fore be used in any algorithm to solve the Buffer Allocation Problem. Furthermore,
we apply a Benders Decomposition, which divides the sample-based mixed-integer
program into two parts. First, candidate allocations are generated by an integer
program. Secondly, they are evaluated using a sample-based simulation algorithm.
Both parts are connected by adding cuts to the integer program, which are generated
from information obtained by the evaluation routine. We show that the application
of the lower bounds in combination with the Benders Decomposition approach sig-
nificantly reduces the computation times. Additionally, we investigate the impact
of correlations in processing times on the optimal buffer allocation. Our study re-
veals that ignoring correlations leads to an overestimation of the required buffer
capacities and hence to additional costs. This article was written jointly with Raik
Stolletz3.
Chapter 5 investigates the impact of a limited supply on the optimal buffer capaci-
ties. Our research is motivated by the observation that the interplay of supply and
demand of the line has up to now been neglected, i.e., system state-independent
arrivals are assumed. In general, order policies manage the supply of workpieces
to the line based on the material consumption. That is, orders are only placed if
the system signals that an insufficient amount of material is available. We there-
fore use order policies to model the supply of the flow line. To efficiently solve
the resulting Buffer Allocation Problem, we develop a two-step rule-based local
search algorithm. The first step generates candidate allocations by applying certain
rules. The second step evaluates these candidates and returns this information to
the first step. In contrast to the Benders Decomposition algorithm, this algorithm
uses information from the evaluations to guide the search for the optimal allocation.
Moreover, we propose individual lower bounds for the buffer capacities which are
applied within the rule-based local search algorithm. A mathematical programming
model is developed to calculate these. We demonstrate that the application of the

3Weiss, S. and R. Stolletz (2015). Buffer allocation in stochastic flow lines via sample-based
optimization with initial bounds. OR Spectrum 37(4), 869–902.

4

individual lower bounds in combination with the rule-based local search algorithm
significantly reduces the computation times. In addition, we show that the choice
of the order policy and its parameters greatly influences the optimal total buffer
capacity and its allocation. The lack of material induced by the limited supply is
compensated by additional buffer capacities. These capacities allow workpieces to
already enter the line which subsequently triggers earlier replenishment or higher
order quantities. However, after a certain point, additional buffer capacities cannot
cope with the interplay between stochastic effects and limited supply. This leads
to a decrease in the throughput of the line, which cannot be compensated for. This
article was written jointly with Andrea Matta and Raik Stolletz4.

4Weiss, S., A. Matta, and R. Stolletz (2015). Optimization of buffer allocations in flow lines with
limited supply. Working paper.

5

2. Buffer Allocation Problems for
stochastic flow lines with
unreliable machines

Co-authors:

Justus Arne Schwarz
Chair of Production Management, Business School, University of Mannheim,
Germany

Raik Stolletz
Chair of Production Management, Business School, University of Mannheim,
Germany

Published in:

Proceedings of the 10th conference on stochastic models of manufacturing and
service operations, Volos, Greece, 2015, pages 271-277

Abstract:

The Buffer Allocation Problem in serial production lines is solved for different ob-
jectives, constraints, and assumptions. The aim of this work is to characterize ana-
lyzed production lines with unreliable machines and the underlying decision prob-
lems. We investigate unreliable serial lines with finite intermediate buffers and a
single machine per station that processes discrete material. Moreover, we review
existing solution approaches.

6

2.1. Introduction

Flow lines process workpieces sequentially on multiple stations. These production
systems usually have a finite buffer capacity and are frequently used in manufactur-
ing, in particular in the automotive industry (Tempelmeier, 2003; Li, 2013). They
often experience random processing times, stochastic failures, and successive re-
pairs. This leads to blocking and starvation which reduce the throughput of the
line. A station starves if it cannot produce due to a lack of material in the upstream
buffer whereas a blocked machine stops production due to a full downstream buffer.
The choice of the total buffer capacity and its allocation between machines is a key
design decision. This is because buffer capacities are associated with the costs of
the buffer itself and the related work-in-process inventory (WIP) stored in it. The
decision on the buffer capacities and their allocation is well known as the Buffer
Allocation Problem (BAP).

The BAP is a well-researched problem which is hard to solve. On the one hand, the
exact performance evaluation of flow lines is only possible for small systems under
specific assumptions, and on the other hand, the allocation of buffer capacities is
an NP-hard combinatorial problem (Smith and Cruz, 2005). Therefore, exact solu-
tions for the BAP exist only for special cases (Enginarlar et al., 2005). However,
heuristic search algorithms in combination with approximative evaluation methods
are frequently used. The solution quality of these approaches is typically investi-
gated numerically. Gershwin and Schor (2000) provide a comprehensive overview
of solution approaches for the BAP published prior to the year 2000.

We provide a survey of the characteristics of the lines for analyzed instances of
the BAP. We focus on unreliable serial lines with finite intermediate buffers and a
single machine per station that processes discrete material (Figure 2.1). Further, we
discuss different problem formulations of the BAP and their solution approaches.
We include references that have been published after the review of Gershwin and
Schor (2000).

M1 B1 Mi Bi MK BK-1
… …

Figure 2.1.: Serial production line with K stations (circles) and K − 1 buffers of
capacity Bi (rectangles)

7

The remainder is organized as follows: Section 2.2 provides a classification of flow
line characteristics. Section 2.3 addresses the different versions of the decision
problem and the corresponding solution approaches. Concluding remarks and sug-
gestions for future research are provided in Section 2.4.

2.2. Classification scheme for characteristics of flow
lines

The key characteristics of serial lines are the number of stations, K , and the sta-
tions’ stochastic properties. A station is characterized by the distribution of the
processing times, the times to failure (TTF), and the times to repair (TTR). We
found the following distributions in the literature: Deterministic (DET), Exponen-
tial (EXP), Erlang (ERL), Rayleigh (RA), Geometric (GEO), Uniform (U), Gamma
(GAMMA), Normal (NORM), Lognormal (LOGN), and Bernoulli (BER). We dis-
tinguish whether all machines have the same (balanced line) or different properties
(unbalanced line). We include references only if all of these key characteristics are
clearly documented with published parameters for all distributions.

In addition to the key characteristics, a set of assumptions about the flow of work-
pieces in the line is required in order to reproduce the dynamics of a flow line
(Dallery and Gershwin, 1992). An assumption has to be made on the supply of
raw material in front of the first machine, which can be unlimited, i.e., saturated, or
limited. Similarly, the demand for finished goods can be a limiting factor or there
is a saturated demand. Moreover, the type of blocking has to be defined. If a buffer
is full, the upstream station may either process an additional workpiece which then
remains on the station until space in the downstream buffer becomes available, i.e.,
blocking after service (BAS), or no workpiece enters the machine until a buffer
space becomes available, i.e., blocking before service (BBS). Unreliable stations
can experience operation-dependent (OD) or time-dependent (TD) failures. In the
former case, a station fails only while it is processing workpieces, while in the latter
case, breakdowns occur independently of the operational status. If a failure occurs
while a workpiece is being processed, it has to be specified whether the progress
on the workpiece is conserved or lost. The differentiation becomes obsolete for
exponentially distributed processing times or discrete-time models with Bernoulli
and Geometric failures if the processing time equals the time interval length. In
several cases these detailed assumptions are not reported on in the surveyed papers.
We mark missing information by * and not applicable categories by - in the tables.

8

Notably, many references lack the required information to reproduce the instance of
the line. Other features receive only little or no attention and are therefore not in-
cluded in the table. For example scrap is only considered by Han and Park (2002).
Moreover, correlations in the processing times are addressed only by Weiss and
Stolletz (2015). They demonstrate that correlations can have a substantial impact
on the optimal buffer allocation.

Table 2.1 shows unreliable lines reported in the literature after the review of Gersh-
win and Schor (2000). Two-thirds of the references consider flow lines that are
balanced. Processing times are mostly deterministic with exponentially or geomet-
rically distributed TTF and TTR. In almost all other cases processing times are
exponentially or Erlang-distributed, again with exponentially distributed TTF and
TTR. It can be observed that OD-failures dominate TD-failures. For the majority
of the references the assumptions on conservation of work during failures is either
not applicable or not addressed. With respect to the supply of the line, all but one
of the articles assume unlimited supply. Lee and Ho (2002) assume random arrivals
with exponentially distributed inter-arrival times. The blocking policy is often not
defined. For the cases in which the blocking policy is defined, BBS occurs twice as
often as BAS.

Some instances of flow lines are used by multiple authors. Kose and Kilincci (2015),
Demir et al. (2011), Lee et al. (2009), and Nahas et al. (2006) use instances of Gersh-
win and Schor (2000). Instances proposed by Papadopoulos and Vidalis (2001) are
utilized by Sabuncuoglu et al. (2006). Furthermore, Bekker (2013), Dolgui et al.
(2007), Alon et al. (2005), and Dolgui et al. (2002) base their choice of instances
on Vouros and Papadopoulos (1998).

2.3. Classification scheme for decision problems

The literature encompasses three main versions of the BAP. They all share the deci-
sion on the vector B = (B1,B2, ...,Bi , ...,BK−1), where Bi represents the capacity
of the buffer behind station i .

9

Table 2.1.: Characteristics of unreliable flow lines

Reference N
o.

of
st

at
io

ns

Pr
oc

es
si

ng
tim

e
di

st
r.

T
T

F
di

st
r.

T
T

R
di

st
r.

U
nb

al
an

ce
d

Sa
tu

ra
te

d
su

pp
ly

Sa
tu

ra
te

d
de

m
an

d

B
lo

ck
in

g
ty

pe

Fa
ilu

re
ty

pe

W
or

k-
co

ns
er

vi
ng

Alon et al. (2005) 3,5,6,10 EXP EXP EXP x x x * TD -
5 ERL EXP EXP x x x * TD *

Bekker (2013) 5 EXP EXP EXP x x x * OD -
5 LOGN EXP EXP x x x * OD *

Chiang et al. (2000) 15 DET EXP EXP x x x BBS OD *
Demir et al. (2011) 5,9,10,12,20,40 DET GEO GEO x x * * -
Diamantidis and Papadopoulos (2004) 4-6,10 DET BER BER x x x * OD -
Dolgui et al. (2002) 5 DET EXP EXP x x x * OD *
Dolgui et al. (2007) 5 DET EXP EXP x x x * OD *
Enginarlar et al. (2002) 2-20 DET EXP EXP x x BBS * *

2-20 DET ERL ERL x x BBS * *
2-20 DET RA RA x x BBS * *

Enginarlar et al. (2005) 3-30 DET EXP EXP x x BBS TD *
Gershwin and Schor (2000) 5,10,12,20,30 DET GEO GEO x x x * * -

3,20 DET GEO GEO x x * * -
7 DET EXP EXP x x x * * *

Han and Park (2002) 5,10 DET GEO GEO x x x * * -
5,10 DET GEO GEO x x * * -

Helber (2001) 6 DET GEO GEO x x * OD -
Kim and Lee (2001) 3,8,10 EXP EXP EXP x x x BAS OD x
Kose and Kilincci (2015) 5,10 DET GEO GEO x x x * * -

9,20,40 DET GEO GEO x x * * -
Lee et al. (2009) 5 DET GEO GEO x x x BBS OD -
Lee and Ho (2002) 5,6 EXP EXP EXP x x * * -

5,6 EXP EXP EXP x * * -
Li (2013) 9,20 DET EXP EXP x x x * * *
Massim et al. (2010) 3,5,10 DET EXP EXP x x x * OD *
Matta et al. (2012) 5 DET EXP EXP x x x * OD *

12 DET GEO GEO x x x * OD -
Nahas et al. (2006) 7 DET EXP EXP x x x * * *
Papadopoulos and Vidalis (2001) 3-6 EXP EXP EXP x x x BAS OD x
Sabuncuoglu et al. (2006) 3,5,10 DET EXP EXP x x * OD x

4-6,8-10 EXP EXP EXP x x x * OD x
4,5,7-10,12 DET EXP EXP x x x * OD x

Savsar (2006) 5 EXP EXP U x x * OD,TD *
7 DET U/EXP/NORM/ U/NORM/ x x x * OD,TD *

ERL/GAMMA LOGN/DET
Shi and Gershwin (2009) 3-6,12 DET GEO GEO x x x * OD -
Shi and Gershwin (2014) 30,70 DET GEO GEO x x * OD -

20 DET GEO GEO x x x * OD -
Shi and Men (2003) 9 DET GEO GEO x x * * -
Tempelmeier (2003) 8,19,23 DET EXP EXP x x x * OD *

14 ERL EXP EXP x x x * OD *
14 EXP EXP EXP x x x * OD -

Weiss and Stolletz (2015) 14,24 DET/ERL EXP EXP x x x BAS OD x

10

(i) Primal Problem:

min
K−1

∑
i=1

Bi (2.1a)

s.t.

E[Th(B)] ≥ Th∗ (2.1b)

Bi ∈N0, 1≤ i ≤K −1 (2.1c)

The objective of the primal problem is to minimize the total buffer capacity in the
line while ensuring that the expected throughput, E[Th(B)], equals or exceeds a
given desired throughput, Th∗. Th∗ is usually selected as percentage of the theo-
retically achievable throughput in a line with infinite buffers.

(ii) Dual Problem:

maxE[Th(B)] (2.2a)

s.t.
K−1

∑
i=1

Bi = Btot (2.2b)

Bi ∈N0, 1≤ i ≤K −1 (2.2c)

The dual problem with respect to the introduced primal (2.1) is the maximization
of the expected throughput subject to the total buffer capacity, Btot , available in
the line. The value of Btot is usually given by space requirements on the shop
floor. However, the dual problem may also be used to solve the primal problem by
repetitively solving the dual for several values of total buffer capacities (Lee et al.,
2009; Tempelmeier, 2003).

(iii) Profit Problem:

maxProfit = αE[Th(B)]−βE[WIP(B)]− γ

K−1

∑
i=1

Bi (2.3a)

s.t.
K−1

∑
i=1

Bi ≤ Btot (2.3b)

E[Th(B)] ≥ Th∗ (2.3c)

Bi ∈N0, 1≤ i ≤K −1 (2.3d)

11

An attempt to directly balance the economic benefits of throughput with the buffer-
related costs in the objective function is the profit problem. It uses weightings α,
β, and γ to convert the technical measures of expected throughput, expected WIP,
and buffer capacities into monetary units. The objective is to maximize the profit
resulting from the gained revenue under the consideration of costs for the buffer
capacities and the WIP stored in them. There is a constrained and an unconstrained
version of the profit problem, i.e., Constraints (2.3b) and (2.3c) are not necessarily
part of the decision problem. In the references considered, the parameters α,β, and
γ are chosen without a direct link to empirical data.

(iv) Other Problems:

The works of Kim and Lee (2001) and Lee and Ho (2002) consider special cases of
the BAP. Kim and Lee (2001) solely focus on the cost originating from the expected
WIP, whereas Lee and Ho (2002) omit WIP-related costs and include costs for oc-
curring throughput losses. Helber (2001) emphasizes that cash flows from revenue
and investments in buffer capacities have different time scales. Thus, Helber (2001)
suggests the use of a net present value approach. The problems introduced so far
are all based on a single objective. Another idea is a multi-objective function. This
approach delivers pareto-optimal solutions. Bekker (2013) employs this concept for
the conflicting goals of throughput and WIP.

Table 2.2 lists the types of decision problems and the solution approaches that can
be found in the literature. Most of the references address the primal or the dual
problem. Both are addressed equally often. The minority of the references covers
the optimization of profits.

The solution approaches for the BAP include a generative and an evaluative part.
The generative method selects candidate solutions which have to be evaluated. The
evaluation method determines the performance of the line, e.g., expected throughput
or expected WIP, for a given buffer allocation. Sometimes integrated approaches are
applied. Weiss and Stolletz (2015) use a Benders Decomposition approach which is
based on a mixed integer programming formulation. In this special case, the corre-
sponding master- and subproblem divide the approach into an integer programming-
based generative and an evaluative method. An approach only delivers exact solu-
tions if the generative and the evaluative part are both exact. Note that the simulation
result converges to the exact solution if the length of the simulation run or the num-
ber of replications is chosen large enough. We therefore mark simulation with (x)
in the table. Exact results for both, the generative and the evaluative method, are
obtained only for two-machine lines (Enginarlar et al., 2002, 2005). For long sim-

12

ulation runs, Weiss and Stolletz (2015) also provide exact results. Metaheuristics,
such as Genetic algorithms (GA), tabu search (TS), and artificial neural networks
(ANN) are developed mainly for the dual problem. In contrast, rule-based allocation
strategies and search algorithms are often employed for the primal problem. Maxi-
mization of profit functions is mainly addressed by genetic algorithms and gradient
methods. Evaluation approaches are typically based on simulation, decomposition,
and aggregation.

Table 2.2.: Characteristics of the decision problems
Decision
Problem

Solution Approach

Reference Pr
im

al

D
ua

l

Pr
ofi

t

O
th

er
s

Generative method E
xa

ct

Evaluation method E
xa

ct

Alon et al. (2005) x Alias method based on cross entropy Simulation (x)
Bekker (2013) x Cross entropy method Simulation (x)
Chiang et al. (2000) x Rule of thumb Aggregation
Demir et al. (2011) x TS DDX

x Binary search and TS DDX
Diamantidis and Papadopoulos (2004) x Dynamic Programming Aggregation
Dolgui et al. (2002) x GA Aggregation
Dolgui et al. (2007) x Hybrid GA and Branch and Bound Aggregation
Enginarlar et al. (2002) x Analytical solution x Analytical solution x

x Buffer allocation rule -
Enginarlar et al. (2005) x Analytical solution x Analytical solution x

x Analytical solution x Aggregation
x Buffer allocation rule -

Gershwin and Schor (2000) x Search algorithm DDX/ADDX
x Gradient algorithm DDX/ADDX

x Gradient algorithm DDX/ADDX
Han and Park (2002) x Steepest descent with penalty function Aggregation
Helber (2001) x Gradient algorithm Decomposition
Kim and Lee (2001) x Local search Decomposition
Kose and Kilincci (2015) x Hybrid GA and Simulated Annealing Simulation (x)
Lee et al. (2009) x ANN and GA Simulation (x)
Lee and Ho (2002) x Modified responds surface methodology Simulation (x)
Li (2013) x Bottleneck-based iterative approach Approx. analytical formula
Massim et al. (2010) x Artificial immune algorithm DDX
Matta et al. (2012) x Numerical optimization technique Kriging approximation
Nahas et al. (2006) x Degraded ceiling approach ADDX
Papadopoulos and Vidalis (2001) x Sectioning approach Markovian state model
Sabuncuoglu et al. (2006) x Search algorithm Simulation (x)
Savsar (2006) x Enumeration Simulation (x)
Shi and Gershwin (2009) x Gradient method Decomposition
Shi and Gershwin (2014) x Gradient method with segmentation Decomposition
Shi and Men (2003) x Hybrid nested partition and TS DDX
Tempelmeier (2003) x Search algorithm and gradient-based search ADDX

x Gradient-based search ADDX
Weiss and Stolletz (2015) x Integer program x Simulation (x)

2.4. Conclusion and future research

We introduce a classification scheme that is used to describe existing unreliable flow
lines for which the BAP is solved in its different problem formulations. Common
assumptions are unlimited supply and an infinite last buffer. Failure type, conser-
vation of work, and blocking type are only reported on insufficiently. Most of the
references consider the primal and the dual problem. The maximization of a profit
function is only considered in few cases. The corresponding solution approaches
are mostly heuristic for both the generative and the evaluation part. Although some
instances are used in several publications, there is a need for a library of sample
instances with a complete description of the line characteristics and the allocations
obtained with different solution approaches.

13

3. Buffer allocation using exact
linear programming formulations
and sampling approaches

Co-author:

Raik Stolletz
Chair of Production Management, Business School, University of Mannheim,
Germany

Published in:

Manufacturing Modelling, Management, and Control, Volume 7(1), St. Petersburg,
Russia, 2013, pages 1435-1440, DOI: 10.3182/20130619-3-RU-3018.00461

Abstract:

Several sampling approaches have been proposed in the literature for the analysis
of flow lines with stochastic processing times and finite buffer capacities. The sys-
tem’s performance can be evaluated by a linear programming formulation if the
capacities of the buffers between the stations are given. This work presents sev-
eral mixed integer programming approaches to optimize the buffer allocation in
flow lines with stochastic processing times. Sampling is used to represent the ran-
dom processing times. The objective is to minimize the overall number of buffer
spaces while obtaining at least a given goal production rate. Numerical experiments
are carried out to evaluate different sampling approaches and model formulations.
These approaches are compared regarding the robustness of the allocation decision
with respect to the sample sizes.

14

3.1. Introduction

Flow lines are characterized by stochastic influences due to random processing
times, machine breakdowns, and uncertain times of repair. This can lead to block-
ing and starvation of the stations in the line. Blocking occurs if a station k finishes
processing a workpiece and the downstream buffer is full. Therefore, the workpiece
cannot depart from the station until a buffer space becomes available. This means
that station k cannot continue even if it is idle. In case of starvation, station k fin-
ishes processing a workpiece but cannot continue processing because the upstream
buffer is empty. Consequently, station k idles until station k−1 finishes processing.
Both effects have a strong impact on the line’s performance. They cause a reduction
of the theoretical throughput of the line. The allocation of additional buffer spaces
can reduce these effects although it leads to an increase of the average work-in-
process in the line.
Two basic streams of research can be found in the literature regarding the allocation
of buffer capacities in stochastic flow lines, performance evaluation and optimiza-
tion. The amount of literature on performance evaluation of flow lines is large. It
can be classified into simulation, analytical exact methods, and analytical approxi-
mation methods. Discrete-event simulation (DES) is often used in the performance
analysis due to its simplicity in terms of flow line modeling. Other papers propose
exact numerical evaluation models. An overview on different approaches can be
found in Gershwin and Schor (2000). In particular for large systems, approxima-
tion methods, e.g., decomposition, are an important tool for the evaluation of flow
lines. Decomposition consists of dividing a flow line into smaller subsystems and
recombining the subsystem solutions. The difficulty is the connection of these sub-
systems in such a way that the properties of the entire flow line are reflected suffi-
ciently. Several decomposition approaches are pointed out in Dallery and Gershwin
(1992).
The methods on performance evaluation proposed in the literature can also be used
for optimization. However, a systematic optimization of flow line design using DES
cannot be carried out efficiently because of long computation times. In contrast,
due to the low computation times, a systematic optimization using exact analytical
methods is possible, yet the underlying mathematical assumptions restrict their use
in practice (Gershwin and Schor, 2000). A review on studies published after 1998
including optimization approaches can be found in Demir et al. (2014).
Dolgui et al. (2007) and Dolgui et al. (2013) prove NP-hardness for unreliable tan-
dem production lines with oracle representation of revenue and costs functions as

15

objective and for series-parallel lines with stepwise revenue functions.
Recent approaches for the analysis and optimization of flow lines with limited buffer
capacities are proposed by Matta and Chefson (2005) as well as Helber et al. (2011).
Matta and Chefson (2005) use sensitivity analysis to determine the optimal alloca-
tion of buffer capacities based on a mathematical programming formulation origi-
nally proposed by Schruben (2000). Helber et al. (2011) introduce a discrete-time
linear programming formulation which incorporates the buffer allocation problem.
They transform the realizations of the stochastic processing times of the different
jobs at a given production stage into corresponding realizations of production ca-
pacities. Besides the simulation error due to sampling, this method also leads to
time discretization errors.
For the reasons mentioned above, we propose an exact mixed-integer programming
(MIP) formulation which optimizes the number of buffer spaces behind each sta-
tion using samples of the processing times in continuous time. In contrast to Helber
et al. (2011), the optimization model is obtained by an exact linearization of the
evaluation model without discretization errors.

3.2. Mixed-integer programming formulations

This section introduces several MIP formulations which optimize the overall num-
ber of buffer spaces assuming that a goal production rate is given.

3.2.1. Basic idea and assumptions

If the number of buffer spaces, bk , behind each station k is given, the performance
of the line can be evaluated by a MIP formulation (Matta and Chefson, 2005). The
key idea of this approach is to model the flow of a large number of workpieces
throughout the line. Therefore, the start and finishing times of processing a work-
piece w at a station k are represented by a set of real-valued decision variables. The
random processing times are replaced by a deterministic sample. The sample gen-
eration will be discussed in the subsequent section in detail. The model of the flow
line is based on the following assumptions:

- The material supply of the first station is unlimited. This means that the first
station never starves.

- The buffer behind the last station is infinitely large. Thus, this station cannot
be blocked.

16

- The processing times of the workpieces at each station are generally dis-
tributed. The MIP uses sampled processing times, dk ,w , for each station,
k , and each workpiece, w .

- In case of blocking, the station finishes the currently processed workpiece.
Then, the workpiece waits at the station until a buffer space or the following
station becomes available (blocking after service).

- Transportation times are insignificant or already included in the processing
times.

Figure 3.1 shows an example of a flow line according to these assumptions.

Station 2

Sampled effective processing times ds,w

Output

Station 1

X1

Station S

X2 …
Determine optimal buffer

capacities

Infinite supply
of workpieces

Material flow

∞

Station 2Station 1 Station 3 Station 4 Station 5

ଵߤ ൌ 7 ଶߤ ൌ 7 ଷߤ ൌ 7 ସߤ ൌ 7 ହߤ ൌ 6Service rate

Station 2

Sampled effective processing times dk,w

Output

Station 1

b1

Station K

b2 …
Infinite supply
of workpieces

Material flow

∞

Figure 3.1.: Serial flow line with sampled processing times

3.2.2. MIP for the optimization

If the buffer capacities, bk , are unknown, an optimization of the buffer capacities
is necessary. This cannot be accomplished by the evaluation model introduced by
Matta and Chefson (2005) as the buffer constraint becomes non-linear when the
buffer capacity is a decision variable. Additional constraints on the performance of
the line become necessary when the overall number of buffer spaces is optimized.
Otherwise, the optimal solution would be a line without any buffer space. There-
fore, a goal throughput has to be attained in steady-state. To consider steady-state
performance measures, a warm-up of W0 finished workpieces is excluded from the
calculation of the throughput.
The formulation of the optimization model requires the definition of a set b =

0, . . . ,B of possible buffer capacities as well as a binary variable Yk ,b . This binary
variable indicates whether the number of buffer spaces behind station k equals b.
Based on the notation given in Table 3.1, the corresponding optimization model is
presented in Formulation 1.

17

Table 3.1.: Notation for the MIP models

Sets and indices
w = 1, . . . ,W Workpieces
k = 1, . . . ,K Stations in the flow line
b = 0, . . . ,B Buffer capacities
Parameters
dk ,w Processing time of workpiece w at sta-

tion k
M Big-M
TH ∗ Goal throughput
W0 Number of workpieces in the warm-up

phase
Real-valued decision variables
XSk ,w Starting time of workpiece w at station k
XFk ,w Departure time of workpiece w from sta-

tion k

X k Buffer capacity behind station k

Binary decision variables

Yk ,b =

{
1 if the buffer capacity behind station k is equal to b

0 otherwise

Formulation 1

Minimize
K−1

∑
k=1

X k (3.1)

s.t.

XSk ,w +dk ,w ≤XFk ,w , ∀k , ∀w (3.2)

XFk ,w ≤XSk+1,w , ∀k <K , ∀w (3.3)

XFk ,w ≤XSk ,w+1, ∀k , ∀w <W (3.4)

XFK ,W −XFK ,W0 ≤
W −W0

TH ∗
(3.5)

XSk+1,w −XFk ,w+b ≤M · (1−Yk ,b), ∀k <K ,∀b,

∀w ≤W − b (3.6)

18

B

∑
b=0

Yk ,b =1, ∀k <K (3.7)

X k =
B

∑
b=0

b ·Yk ,b , ∀k <K (3.8)

Yk ,b ∈{0,1}, ∀k <K , ∀b (3.9)

XSk ,w ,XFk ,w ≥0, ∀k , ∀w (3.10)

The objective function (3.1) minimizes the overall number of buffer spaces in the
line. Constraints (3.2) state that a workpiece, w , departs from station k at the earliest
after being processed. Hereby, the slack variable of the inequality corresponds to
the blocking time of workpiece w after being processed at station k . A workpiece
cannot start processing at station k +1 until it finishes processing at station k . This
is ensured by Equations (3.3). The slack variable of this inequality defines the
waiting time of workpiece w in the buffer between station k and station k + 1.
As a station can only process one workpiece at a time, Equations (3.4) state that
workpiece w +1 does not start processing at station k before workpiece w departs
from this station. A station may starve between the processing of two consecutive
workpieces, which is determined by the slack related to Equations (3.4). Equation
(3.5) ensures that a goal throughput, TH ∗, is attained. The realized throughput
is calculated by the fraction of the number of finished parts, (W −W0), and the
required time, (XFK ,W −XFK ,W0), in steady-state, i.e., after the warm-up phase.
Constraints (3.6) ensure that the buffer capacity is not exceeded. The inequality is
valid in the event of a buffer capacity of b =X k because the right-hand side (RHS)
becomes zero. In this case, the inequality ensures that workpiece w departs from
the buffer between station k and station k + 1 before workpiece w + b enters. For
b 6= X k , the equation becomes redundant due to the Big-M on the RHS. If there is
no buffer between station k and station k + 1, i.e., b = 0, the inequality reduces to
XSk+1,w ≤ XFk ,w . Together with Equations (3.3) it is ensured that the time when
workpiece w departs from station k equals the starting time of w at station k + 1.
The capacity of each buffer between two stations has to be unique. This is stated
in Equations (3.7). Constraints (3.8) connect the (redundant) buffer space variable,
X k , and the binary variables Yk ,b .
This formulation is similar to the one presented by Matta (2008), with the exception
of the assumption of blocking after service.

19

3.2.3. Other MIP formulations

Instead of modeling the binary buffer capacity indicator variable as presented in
Section 3.2.2, a binary variable Xk ,b can be used, which is defined as

Xk ,b =

1 if the buffer capacity behind station k is greater than

or equal to b

0 otherwise.

To obtain Formulation 2, Equations (3.1) to (3.5) and (3.10) remain as in Formula-
tion 1. Equations (3.6) to (3.9) have to be replaced by Constraints (3.11) to (3.14).

Formulation 2

Equations (3.1) to (3.5) and (3.10)

XSk+1,w −XFk ,w+b ≤M · (1−Xk ,b+1), ∀k <K ,

∀b < B ,

∀w ≤W − b (3.11)

X k ≥b ·Xk ,b , ∀k <K , ∀b (3.12)

Xk ,b ∈{0,1}, ∀k <K , ∀b (3.13)

X k ≥0, integer, ∀k <K (3.14)

Note that in this case X k does not necessarily assume integer values. Therefore,
this has to be stated explicitly.
Formulations 3 and 4 are obtained by adding the redundant Equations (3.15) and
(3.16) to Formulation 2 respectively.

Formulation 3

Equations (3.1) to (3.5) and (3.10) to (3.14)

Xk ,b ≥ Xk ,b+1, ∀k <K , ∀b < B (3.15)

20

Formulation 4

Equations (3.1) to (3.5) and (3.10) to (3.14)

X k ≥
B

∑
b=1

Xk ,b , ∀k <K (3.16)

Equations (3.12) in Formulation 2 can be replaced by adding both Equations (3.15)
and (3.16). This leads to Formulation 5.

Formulation 5

Equations (3.1) to (3.5), (3.10), (3.11), and (3.13) to (3.16)

Finally, Equations (3.12) can also be replaced by Equations (3.17), which leads to
Formulation 6.

Formulation 6

Equations (3.1) to (3.5), (3.10), (3.11), (3.13), and (3.14)

X k =
B

∑
b=1

b · (Xk ,b−Xk ,b+1)+B ·Xk ,B , ∀k <K (3.17)

3.2.4. Sampling of effective processing times

Several sampling approaches are proposed in the literature. In this section, two of
these approaches are discussed: Simple Random Sampling (SRS) and Descriptive
Sampling (DS). SRS is the standard sampling procedure in a Monte Carlo Simula-
tion, while DS was proposed by Saliby (1990a).
Both methods can be characterized by the division of a sample into two parts, the
set and the sequence. The set is defined by all the values that occur in the sample
independently of their particular order in this sample, i.e., the values in the set are
sorted in ascending order. The sequence describes the particular order in which the
set values occur in the sample.
The following example illustrates the division of a random sample into a set and a
sequence (Saliby, 1990a). The sample is given by

Sample = {0.45,0.12,0.63,0.23,0.84}.

21

Then the corresponding sorted set is defined by the sample values in ascending order

Set = {0.12,0.23,0.45,0.63,0.84}

whereas the sequence defines the order of the set values in the sample

Sequence = {3,1,4,2,5}.

SRS generates a sample value by randomly selecting a value r ∈ (0,1) and trans-
forming it with regard to a given distribution using the inverse transformation method.
The sample is determined by iteratively repeating this step. In terms of set and se-
quence, this method is based on a random set and a random sequence, which are
determined in one step. The use of a random set is usually justified by the argu-
ment that a sample has to be generated completely at random to represent random
behavior. However, in a Monte Carlo Simulation it is assumed that the samples are
following a given distribution. This implies that the random behavior is to be de-
scribed according to this distribution.
Therefore, DS is based on a deterministic set and a random sequence. The usage of
a deterministic set of values as an input for the sample is motivated by the fact that a
random set causes a high variability of the results. Because of the deterministic set,
DS leads to a more precise description of the sampled distribution (Saliby, 1990b).
The randomness of the sample is only represented by the random permutation of
the deterministic set values. Consequently, the generation of a descriptive sample
requires two steps, the generation of the deterministic set and the random permuta-
tion of those values.
The variability of the simulation estimates depends on the variability of the input
sample. Therefore, the variability of the estimates is influenced by both the set and
the sequence of the sample. In a numerical study, Saliby (1990b) demonstrates that
the set has a high impact on the estimates’ variability. However, the set relative con-
tribution is nearly constant, irrespective of the sample size. This means that a larger
sample does not lead to an improvement regarding the set variability. Using DS,
the sampling cumulative distribution function is close to the probability distribution
function and thereby minimizes the set variability.
The generation of the deterministic set values requires prior knowledge of the in-
put sample size n. An approximated value for the sample size is also sufficient.
If the current sample size is underestimated, the residual values are drawn without
replacement from the same set. If the current sample size is overestimated, a subset
of the estimated sample set values is used.

22

Following a given distribution with distribution function F (x), the set values are
calculated by

xdi = F−1
[
(i −0.5)

n

]
, i = 1, . . . ,n.

Note that the same set values are used for all replicated runs of an experiment as the
set is deterministic.
In the second step these values are shuffled according to Algorithm 1, which is pro-
posed by Saliby (1990a). This step has to be repeated for each replication, while it
is sufficient to generate the set values only once for all replicated runs in an experi-
ment.

Input: Sample size n, set values xdi , index ip
Output: Shuffled set values xdi

Set ip = 1
while ip < n do

Randomly generate integer iaux ∈ [ip ,n]
Interchange xd [ip] with xd [iaux]
Set ip = ip +1;

end while

Algorithm 1: Random permutation of set values

3.3. Numerical results

The numerical study evaluates the following aspects:

1. Performance of the different MIP formulations

2. Impact of the sample size

3. Performance of the sampling approaches

In all examples, we consider an unbalanced flow line with K = 3 stations. The
processing times at all stations are exponentially distributed. The first two stations
operate with service rate µ1 = µ2 = 7 and the last station with µ3 = 6. The number
of workpieces in the warm-up phase is selected as W0 = 2,000. A goal throughput
of TH ∗ = 5.776 has to be attained. The simulation runs have been performed on an
Intel Core i5-2520M with 2.5 GHz and 4 GB RAM. The models are implemented
in C++ using Gurobi 5.0.
The first experiment compares the computational effort of the optimization models
presented in Sections 3.2.2 and 3.2.3. Table 3.2 presents the average computation

23

Table 3.2.: Average computation time (sec.) of different MIP formulations

MIP formulation
W 1 2 3 4 5 6

4,000 102.1 114.5 112.2 114.2 110.1 113.0
5,000 158.7 178.8 179.9 185.5 183.6 184.3
6,000 230.4 286.2 286.1 297.8 290.0 287.4
7,000 305.1 378.9 380.0 412.2 659.3 386.2
8,000 451.8 577.4 617.6 620.1 566.4 606.8

10,000 712.3 1,037.8 1,033.1 1,120.9 1,214.0 1,075.4

0

1

2

3

4

5

6

7

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

N
um

be
r o

f o
bs
er
va
tio

ns

Total buffer capacity 4,000 SRS 10,000 SRS

Figure 3.2.: Range of total buffer capacity for W = 4,000 and W = 10,000

times of different MIP formulations for varying number of workpieces based on 5
different samples. In all cases, Formulation 1 results in the lowest average com-
putation times. The gap in computation time between the formulations rises with
increasing number of workpieces. For instances with 4,000 workpieces, the dif-
ference in computation time is just a few seconds. In contrast, for instances with
10,000 workpieces, it is more than 5 minutes. Therefore, the subsequent experi-
ments use Formulation 1.
The aim of the second experiment is to investigate the impact of the sample size

on the robustness of the results. Several runs with different sample sizes are com-
pared. Figure 3.2 displays the number of observations of the total buffer capacities
obtained by 20 different samples generated by SRS with 4,000 and 10,000 work-
pieces respectively. The range of the total buffer capacity for a sample size of 4,000
workpieces is much larger than for a sample size of 10,000. A total buffer capacity
between 12 and 33 is obtained for a sample size of 4,000, while the range lies be-
tween 16 and 24 for 10,000 workpieces. Consequently, the range of the total buffer
capacity decreases with increasing sample size. Thus, regarding the robustness of

24

0

1

2

3

4

5

6

7

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

N
um

be
r o

f o
bs
er
va
tio

ns

Total buffer capacity 4,000 DS 4,000 SRS

Figure 3.3.: Range of total buffer capacity for DS and SRS with W = 4,000

the solution, a larger sample size yields better results. Nevertheless, a sample size
of 10,000 workpieces is still not sufficient. However, increasing sample sizes lead
to increasing computation times. A complete run with 4,000 workpieces takes on
average 137 seconds in our experiment, while a run with 10,000 workpieces takes
726 seconds on average.
The third experiment is carried out to analyze the performance of the different sam-
pling methods, DS and SRS, introduced in Section 3.2.4. Figures 3.3 and 3.4 com-
pare the range of the total buffer capacity of both methods for an amount of 4,000
and 10,000 workpieces respectively. Both figures show that the range of total buffer
capacity is smaller using DS. SRS leads to a range from 12 to 33 overall buffer
spaces in the case of 4,000 workpieces and a range of 16 to 24 overall buffer spaces
in the case of 10,000 workpieces. In contrast, DS returns a range from 14 to 24 and
a range of 16 to 22 overall buffer spaces in the case of 4,000 and 10,000 workpieces
respectively. This shows that the robustness is higher for samples generated by DS
since the range of the buffer capacities and hence the spread is smaller in both cases.
One of the goals of the numerical study is to investigate the optimal sample size.

The experiments demonstrate that a sample of 10,000 workpieces is not sufficiently
large even if DS is applied. However, a sample size of 10,000 workpieces already
needs a computation time of 10 minutes using Formulation 1 and the computation
time for larger samples turns out to be much longer. Using 20 samples of 100,000
workpieces each results in a smaller total buffer capacity of 18 or 19. The compu-
tation time adds up to more than 204 hours on average. In contrast to this, for a
sample of 1,000,000 workpieces, the computation time takes more than 500 hours,
again with 18 or 19 buffer spaces in total.
For the different combinations of a total buffer capacity of 18 and 19, which are
obtained using samples of 10,000 workpieces, the throughput is evaluated with five

25

0

1

2

3

4

5

6

7

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

N
um

be
r o

f o
bs
er
va
tio

ns

Total buffer capacity 10,000 DS 10,000 SRS

Figure 3.4.: Range of total buffer capacity for DS and SRS with W = 10,000

new samples of 1,000,000 workpieces each. Figure 3.5 presents the minimum, the
average, and the maximum throughput that is obtained from these five samples for
each buffer allocation. The goal throughput is always attained for the allocations
with 19 buffer spaces in total. In contrast, in most of the cases, a buffer capacity of
18 is not sufficient to attain the goal throughput. The maximum deviation from the
goal throughput in case of X1 = 6 and X2 = 12 equals 0.16%.

5,750

5,760

5,770

5,780

5,790

5,800

5,810

17

18

19

20

6, 13 7, 12 8, 11 9, 10 6, 12 7, 11 8, 10

T
h
ro
u
gh
p
u
t

To
ta
l
b
u
ff
e
r
ca
p
ac
it
y

Buffer Allocation

Total buffer

Best

Worst

Average

Goal throughput

Figure 3.5.: Throughput evaluation

26

3.4. Conclusion

We introduce several MIP formulations for the optimization of the buffer allocation
in stochastic flow lines. The stochastic processing times are modeled by samples.
A numerical study is conducted to investigate the performance of these approaches
and the robustness of the results. The numerical study demonstrates that MIP For-
mulation 1 can be solved faster than Formulations 2-6. Additionally, it is shown that
DS leads to better results than SRS. Moreover, the larger the sample size, the more
robust are the results for both sampling approaches. However, larger sample sizes
lead to long computation times. A sample of 10,000 workpieces is hardly enough
to obtain robust results but already takes around 10 minutes of computation time.
As the computation time is still too long, it may be useful to investigate problem-
specific optimization algorithms and heuristics.
In a further step, we would like to extend the model to other, more complex produc-
tion systems such as flow lines with closed loops.

27

4. Buffer allocation in stochastic flow
lines via sample-based
optimization with initial bounds

Co-authors:

Raik Stolletz
Chair of Production Management, Business School, University of Mannheim,
Germany

Published in:

OR Spectrum, 2015, Volume 37(4), pages 869-902, DOI:
10.1007/s00291-015-0393-z

Abstract:

The allocation of buffer spaces in flow lines with stochastic processing times is an
important decision, as buffer capacities influence the performance of these lines.
The objective of this problem is to minimize the overall number of buffer spaces
achieving at least one given goal production rate. We optimally solve this problem
with a mixed-integer programming approach by sampling the effective processing
times. To obtain robust results, large sample sizes are required. These incur large
models and long computation times using standard solvers. This paper presents a
Benders Decomposition approach in combination with initial bounds and different
feasibility cuts for the Buffer Allocation Problem, which provides exact solutions
while reducing the computation times substantially. Numerical experiments are
carried out to demonstrate the performance and the flexibility of the proposed ap-
proaches. The numerical study reveals that the algorithm is capable to solve long
lines with reliable and unreliable machines, including arbitrary distributions as well
as correlations of processing times.

28

4.1. Introduction

Flow lines consist of a number of stations that are arranged in series and separated
by buffers with limited capacities. The workpieces flow through the system from
station to station, waiting in the buffer if the downstream station is not available.
This type of production system is often applied in practice, mainly for mass pro-
duction. Examples can be found in the automotive industry (Colledani et al., 2010;
Li, 2013) and in food production (Cooke et al., 2005; Liberopoulos and Tsarouhas,
2005), among others.
Burman et al. (1998) note that there is a great potential in the systematic optimiza-
tion of the buffer allocation in such stochastic flow lines, as it highly influences
the performance of the line. The stochastic influences are due to random machine
breakdowns, uncertain times to repair, and random processing times. This can lead
to blocking and starvation of the stations, which may lead to a reduction of the
throughput. The allocation of additional buffer space may increase the throughput,
although it leads to an increase of the average work-in-process in the line. In this
paper, we develop an optimization approach for the buffer allocation in a linear flow
line with all those stochastic influences.
Two basic streams of research can be found regarding the allocation of buffers in
stochastic flow lines: performance evaluation and optimization. Dallery and Gersh-
win (1992) and Gershwin and Schor (2000) provide an overview of the different
evaluation approaches. Exact evaluation is only possible for small lines as analytical
results are difficult to obtain (Li and Meerkov, 2009). For longer lines, simulation
and other approximative methods, e.g. decomposition or aggregation, are applied.
The methods proposed in the literature on performance evaluation can also be used
as integral parts of optimization approaches by applying generative methods and
evaluative methods iteratively. The generative methods are used to obtain candidate
solutions that are then evaluated. The optimization of buffer allocations, referred to
as Buffer Allocation Problem (BAP) in the literature, is NP-hard (Smith and Cruz,
2005). Three types of objective functions can be found: minimization of the total
buffer capacity with respect to a given goal throughput, throughput maximization
with respect to a limited number of buffer spaces, and profit maximization. This
paper focuses on the minimization of the total buffer capacity.
The optimization approaches can be divided into exact approaches, heuristics, and
rules of thumb. Demir et al. (2014) provide an overview on the approaches pub-
lished after 1998. Exact approaches only exist for small lines because of the com-
binatorial complexity and the lack of exact evaluation methods (Smith and Cruz,

29

2005; Li and Meerkov, 2009). Recently, sample-based approaches have been pro-
posed to optimize flow lines with limited buffer capacities. For sufficiently large
sample sizes, the obtained allocations converge to the exact solution. Matta and
Chefson (2005) propose an iterative change of configurations to determine buffer al-
locations based on a mathematical programming formulation developed by Schruben
(2000) and Chan and Schruben (2008). Matta (2008) presents an exact mixed-
integer programming (MIP) formulation that optimizes the number of buffer spaces
behind each station, using samples of the processing times in continuous time.
Heuristic methods based on samples are developed by Gürkan (2000), Helber et al.
(2011), and Alfieri and Matta (2012, 2013). Gürkan (2000) uses sample-based gra-
dient estimates of performance measures to obtain buffer allocations in continuous
lines. She points out that this approach may also be used to approximate lines with
discrete goods. Helber et al. (2011) present a discrete-time linear programming
(LP) formulation that incorporates the BAP. The authors use sampling to transform
the stochastic processing times of the different jobs at a given station into the corre-
sponding realizations of production capacities per discrete time period. This method
leads to simulation and discretization errors. Alfieri and Matta (2012) introduce the
concept of time buffers, which can be used to derive approximate buffer allocations.
This approach can also be applied to reduce the feasible region of the buffer capac-
ities as necessary in Matta (2008). Recently, Alfieri and Matta (2013) proposed a
time-based decomposition approach that solves the mathematical programming for-
mulation by iteratively solving a number of subsystems. These subsystems contain
only a portion of the entities in the whole model. The subsystems are connected via
additional constraints reflecting the status of the system defined by previous sub-
systems. Other heuristic methods include Tabu Search and Simulated Annealing, as
generative methods, in combination with simulation or decomposition, as evalua-
tion methods (Lutz et al., 1998; Spinellis and Papadopoulos, 2000). Yamashita and
Altiok (1998) and Diamantidis and Papadopoulos (2004) apply Dynamic Program-
ming in combination with decomposition or aggregation. In addition to the risk of
obtaining local optima as final solutions, some of these methods are based on re-
strictive assumptions. Caramanis (1987) applies Generalized Benders Decomposi-
tion with gradient estimates for performance approximation. However, due to errors
in the gradient estimates, optimal solutions cannot be guaranteed. Li and Meerkov
(2009) propose heuristics based on closed formulas and recursion approaches. They
show that these heuristics are fast, but do not necessarily provide good allocations.
Rules of thumb based on extensive numerical studies are proposed by Hillier et al.
(1993), Powell and Pyke (1996), and Hillier (2000). However, these results may not

30

be generalized, and a large computational effort is needed for their derivation.
This paper deals with exact sample-based MIP formulations, i.e., the obtained re-
sults are sample-exact. The advantage of these sampling approaches compared to
other approaches proposed in the literature is based on their flexibility: besides
the ability to cope with both reliable and unreliable lines, they do not require the
assumption of statistical independency. The processing times, times to failure, and
repair times can follow any distribution, or may be taken from empirical data. How-
ever, when using standard solvers, the sample-based MIP formulations proposed in
the literature remain intractable for flow lines with more than three stations due to
extensive computation times (Matta, 2008). Therefore, to exploit the flexibility of
these approaches, a fast solution method has to be developed. We develop a Ben-
ders Decomposition approach for such a MIP formulation of the BAP.
The main contribution of this paper is to develop a Benders Decomposition ap-
proach with combinatorial cuts to optimally and efficiently solve the BAP with
respect to an underlying sample. The performance of this algorithm is improved
via the derivation of initial bounds. The numerical study shows the great degree
of flexibility of this approach, as its sample-based structure allows to take account
for correlations and arbitrary distributions of processing times, times to failure, and
repair times.
This paper is organized as follows. Section 4.2 introduces the MIP formulation for
the optimization of flow lines. In Section 4.3, the Benders Decomposition approach
and a procedure to obtain initial bounds are presented. Section 4.4 provides a nu-
merical study on the performance of Benders Decomposition and the initial bounds.
Section 4.5 presents the conclusions and further research efforts.

4.2. Sample-based flow line model

This section formulates the evaluation problem and the optimization problem with
respect to the buffer allocation in flow lines. First, the underlying assumptions are
given in Section 4.2.1. The Benders Decomposition approach is based on iterative
generation of candidate allocations and evaluation of these candidates. Therefore,
Section 4.2.2 presents a fast simulation algorithm for the throughput evaluation of
a given buffer allocation. Finally, Section 4.2.3 describes the MIP for buffer opti-
mization.
The key idea of the sample-based modeling approach is to simulate the flow of a
large number of workpieces throughout the line. Therefore, the start and depar-

31

ture times of processing a workpiece, w , at a station, s , are represented by a set
of real-valued decision variables. The random processing times are replaced by a
deterministic sample. The samples are generated by Descriptive Sampling (DS)
(Saliby, 1990a). In DS, deterministic values serve as the input for the inverse dis-
tribution function. These values are then shuffled randomly to represent random
behavior. This method is more appropriate than Simple Random Sampling (SRS)
because it leads to a more precise description of the underlying distribution (Saliby,
1990b). Moreover, DS leads to a reduction of the variability of the input sample and
therefore to a reduction of the variability of the simulation results. The numerical
study in Section 4.4.1 supports this claim for the BAP (see also Stolletz and Weiss,
2013).
The samples consist of effective processing times, i.e., the repair times are assumed
to be included in the (raw) processing times. This can be accomplished with a single
distribution or the sum of the distributions of processing times and repair times.

4.2.1. Assumptions

The model of the flow line is based on the following assumptions:

- The flow line consists of S stations, which process W workpieces.

- A number of W0 workpieces corresponds to the warm-up phase.

- The maximum capacity of the buffer behind station s is limited to Bs .

- The material supply to the first station is unlimited, i.e., the first station never
starves.

- The buffer behind the last station is infinitely large. Thus, this station cannot
be blocked.

- The processing times of the workpieces at each station are generally dis-
tributed or deterministic. The MIP uses sampled processing times, ds,w , for
each station, s , and each workpiece, w .

- The stations may be subject to operation-dependent failures. Times to failure
and repair times are generally distributed. Sampled repair times are added to
the sampled processing times, ds,w , of the workpiece w which is processed
when the breakdown of station s occurs.

- In the event of blocking, the station finishes the currently processed work-
piece. Then, the workpiece waits at the station until a buffer space or the
following station becomes available (blocking after service).

32

- Transportation times are insignificant or are already included in the process-
ing times.

- A goal throughput rate of TH ∗ has to be attained after the warm-up.

Figure 4.1 shows an example of a flow line according to these assumptions.

Station 2

Sampled effective processing times ݀௦,௪

Output

Station 1

X1

Station S

X2 …
Determine optimal buffer

capacities

Infinite supply
of workpieces

Material flow

∞

Station 2Station 1 Station 3 Station 4 Station 5

ଵߤ ൌ 7 ଶߤ ൌ 7 ଷߤ ൌ 7 ସߤ ൌ 7 ହߤ ൌ 6Service rate

Station 2

Sampled effective processing times dk,w

Output

Station 1

b1

Station K

b2 …
Infinite supply
of workpieces

Material flow

∞

Figure 4.1.: Flow line under consideration

4.2.2. Evaluation of given allocations

If the capacities of the buffers are known, the start times and the departure times of
each workpiece at each station can be derived using a fast simulation algorithm, as
Algorithm 2. The corresponding notation can be found in Table 4.1.

Table 4.1.: Notation for the models

Indices
w = 1, . . . ,W Workpieces
s = 1, . . . ,S Stations in the flow line
b = 0, . . . ,Bs Possible buffer capacities behind station s

Parameters
ds,w Processing time of workpiece w at station s
TH ∗ Goal throughput
W0 Number of workpieces in the warm-up phase
M Big-M (sufficiently large positive number)
Real-valued decision variables
XSs,w Start time of workpiece w at station s
XFs,w Departure time of workpiece w from station s
Xs Buffer capacity behind station s

Binary decision variables

Ys,b =

{
1 If the buffer capacity behind station s is equal to b

0 Otherwise

33

1: XS1,1 = 0
2: for all stations s < S do
3: XFs,1 = XSs,1 +ds,1
4: XSs+1,1 = XFs,1
5: end for
6: XFS ,1 = XSS ,1 +dS ,1
7: for all workpieces w > 1 do
8: for all stations s < S do
9: if s = 1 then

10: XSs,w = XFs,w−1
11: else
12: XSs,w = max{XFs,w−1,XFs−1,w}
13: end if
14: if Xs = 0 then
15: XFs,w = max{XSs,w +ds,w ,XFs+1,w−1}
16: else if Xs ≥ w then
17: XFs,w = XSs,w +ds,w
18: else
19: XFs,w = max{XSs,w +ds,w ,XSs+1,w−Xs}
20: end if
21: end for
22: XSS ,w = max{XFS ,w−1,XFS−1,w}
23: XFS ,w = XSS ,w +dS ,w
24: end for

Algorithm 2: Throughput calculation

The algorithm calculates the start and departure times of each workpiece w at each
station s . The first workpiece starts processing at the first station at time zero (line 1)
and flows through the line without ever being blocked, because the line is empty.
Consequently, it leaves a station s after the processing time has elapsed (line 3) and
starts processing at the subsequent station s+1 as soon as it leaves s (line 4). Lines
7-24 model the flow of the remaining workpieces. Start times XSs,w of stations s =
2, . . . ,S depend on the availability of the workpiece w . Since the first station never
starves, processing of a workpiece w starts when w −1 leaves the station (line 10).
At stations s = 2, . . . ,S , it may happen that no workpiece is available. In this case,
s idles until station s − 1 provides a workpiece (lines 12 and 22). Departure times
XFs,w of stations s = 2, . . . ,S − 1 depend on the downstream buffer capacities Xs

and the occurrence of blocking. If the capacities Xs are set to zero, a workpiece
w leaves station s after it finished processing and the subsequent station becomes
available (that is, workpiece w−1 leaves station s+1, line 15). In contrast, if buffer
spaces are allocated behind station s , but the available buffer capacity suffices for

34

all workpieces in the system, blocking can never occur (line 17). If there are more
workpieces in the system than buffer capacities at station s , blocking may occur.
Therefore, workpiece w leaves station s when its processing is completed and a
buffer space becomes available (that is, a workpiece leaves the buffer, because it
starts processing at station s+1, line 19). The last station, S , is never blocked and
consequently, workpieces leave this station directly after processing (line 23).
Based on this information, the realized throughput TH is calculated by the fraction
of the number of finished parts W −W0 and the required time XFS ,W −XFS ,W0

after the warm-up phase:

TH =
W −W0

XFS ,W −XFS ,W0

(4.1)

4.2.3. Optimization of buffer allocations

The problem of allocating a minimum number of total buffer spaces while achiev-
ing a given goal throughput can be solved by a MIP formulation as follows. Addi-
tionally to the notation used in Section 4.2.2, a binary variable Ys,b is required to
indicate that the buffer capacity behind station s equals b (see Table 4.1).

Minimize
S−1

∑
s=1

Xs (4.2)

s.t. XSs,w +ds,w ≤XFs,w , ∀s, ∀w (4.3)

XFs,w ≤XSs+1,w , ∀s ≤ S −1, ∀w (4.4)

XFs,w ≤XSs,w+1, ∀s, ∀w ≤W −1 (4.5)

XFS ,W −XFS ,W0 ≤
W −W0

TH ∗
(4.6)

XSs+1,w −XFs,w+b ≤M · (1−Ys,b), ∀s ≤ S −1 ∀b, ∀w ≤W − b

(4.7)

Bs

∑
b=0

Ys,b =1, ∀s ≤ S −1 (4.8)

Xs =
Bs

∑
b=0

b ·Ys,b , ∀s ≤ S −1 (4.9)

XSs,w ,XFs,w ≥0, ∀s, ∀w (4.10)

Ys,b ∈{0,1}, ∀s ≤ S −1, ∀b (4.11)

35

The objective function (4.2) minimizes the overall number of buffer spaces in the
line. The constraints are linearizations of the formulas given in Algorithm 2. Con-
straint (4.3) states that a workpiece, w , departs from station s at the earliest time
after being processed. Consequently, the slack of the inequality corresponds to the
blocking time of workpiece w after being processed at station s . A workpiece can-
not start being processed by station s + 1 until it departs from station s . This is
ensured by the inequality described by (4.4). The slack of this inequality defines
the waiting time of workpiece w in the buffer between station s and station s + 1.
As a station can only process one workpiece at a given time, the inequality in (4.5)
states that workpiece w+1 does not start processing at station s until the preceding
workpiece w departs from this station. A station may starve between the process-
ing of two consecutive workpieces, which is equivalent to the slack of Constraint
(4.5). Inequality (4.6) ensures that a goal throughput, TH ∗, is attained (see Equality
(4.1)). Constraint (4.7) states that the buffer capacity is not exceeded. If b = Xs ,
the inequality ensures that workpiece w departs from the buffer between stations
s and s + 1 before workpiece w + b enters. Otherwise, the inequality is deacti-
vated by the Big-M on the right-hand side (RHS). We choose Big-M as the product
of the maximum possible buffer capacity, maxs Bs , and the maximum processing
time, maxs,w ds,w . If there is no buffer between station s and station s + 1, i.e.,
b = 0, the inequality reduces to XSs+1,w ≤ XFs,w . Together with Inequality (4.4),
the departure time of workpiece w at station s is assured to equal the starting time
of w at station s+1. Compared to the formulation presented by Matta (2008), we
assume blocking after service instead of blocking before service. The capacity of
each buffer between two stations must be unique. This is stated in Equation (4.8).
Constraint (4.9) connects the (redundant) buffer space variables Xs and the binary
variables Ys,b . Variables Xs are used for notational convenience.
Note that the combination of Equalities (4.4) and (4.5) determines the start times as
in Algorithm 2. Accordingly, the combination of Equations (4.3) and (4.7) deter-
mines the completion times.
If the buffer capacities behind each station are given, the MIP can also be used
for evaluation (instead of Algorithm 2). However, the throughput may be overesti-
mated, because the warm-up phase is based on the number of workpieces instead of
a specific point in time. This results in a degree of freedom regarding the start and
departure times in the warm-up phase of the optimal solution. Due to this flexibil-
ity, the workpieces do not necessarily start processing as soon as possible. To avoid
this overestimation, the start and departure times have to be added to the objective
function (4.2).

36

4.3. Application of Benders Decomposition to the
Buffer Allocation Problem

The complexity of the MIP presented in the previous section incurs long compu-
tation times. Therefore, it is necessary to apply certain techniques to reduce the
computation time. One literature stream concerns decomposition methods, which
aim to split the original problem into smaller parts and to solve them iteratively. One
of these methods is Benders Decomposition (Benders, 1962). Benders Decomposi-
tion divides the original problem into a master problem and a subproblem, both of
which are solved iteratively. The master problem is a relaxation of the original prob-
lem, calculates a solution, and passes it to the subproblem. The subproblem uses
this solution to generate cuts that contain information about the feasibility and op-
timality of the current master solution. These cuts are added to the master problem
such that optimality is proven at the termination of the algorithm. Consequently, a
sequence of master- and subproblems has to be solved to obtain an optimal solution
of the original problem.

4.3.1. Adjustments and specific features

Figure 4.2 provides an overview of the decomposition procedure for the BAP. The
master problem contains only binary and integer decision variables. The subprob-
lem considers the remaining variables, assuming that the variables of the master
problem are fixed. In the case of the MIP formulation presented in Section 4.2.3,
the binary variables, Ys,b , and the integer variables, Xs , become part of the mas-
ter problem. The real-valued decision variables, XSs,w and XFs,w , belong to the
subproblem.

Initialization:
No feasibility cuts

Master problem

Subproblem

STOP
(Original problem is

infeasible)

STOP
(Opt. solution found)

If new
incumbent is
found

Infeasible

Feasible:
Proceed

Infeasible:
Add
feasibility
cut

Figure 4.2.: Overview of Benders Decomposition for the BAP

37

Constraints (4.3)-(4.6) and (4.10) only contain real-valued decision variables and
thus belong to the subproblem. Constraints (4.8), (4.9), and (4.11) are included in
the master problem, as they only contain binary variables. Constraint (4.7) contains
both types of variables. It forms part of the subproblem and contains the mas-
ter variables, Xs , as parameters. Consequently, Constraint (4.7) can be replaced
by (4.12).

XSs+1,w −XFs,w+Xs ≤ 0, ∀s ≤ S −1, ∀w ≤W −Xs (4.12)

Moreover, as the integer variables are assumed to be known when the subproblem
is solved, the subproblem reduces to the evaluation version of the MIP. Note that
the objective function (4.2) includes no real-valued decision variables. Thus, the
objective function of the master problem is equal to the objective function (4.2).
To avoid an overestimation of the throughput as outlined in Section 4.2.3, we use
Algorithm 2 to evaluate the throughput of a given buffer allocation. The feasibility
of this throughput is then checked by comparison to the goal throughput, TH ∗.
The information on feasibility is expressed in additional constraints, which include
only the integer variables. We add these constraints, called feasibility cuts, to the
master problem. If the master problem contains all of the feasibility cuts, it is equiv-
alent to the original problem.
In general, an exponential number of such constraints exists, which are usually not
known in advance. Therefore, we consider a relaxed master problem which includes
no feasibility constraints at the beginning of the solution process. By iterating be-
tween the relaxed master problem and the subproblem, additional cuts are generated
to ensure the feasibility of the final solution. If the subproblem is feasible, the re-
sulting solution is optimal.
Based on Equations (4.2), (4.8), (4.9), and (4.11), the complete master problem is
defined as follows.

Minimize
S−1

∑
s=1

Xs (4.2)

s.t.
Bs

∑
b=0

Ys,b =1, ∀s ≤ S −1 (4.8)

Xs =
Bs

∑
b=0

b ·Ys,b , ∀s ≤ S −1 (4.9)

Feasibility Cuts

Ys,b ∈{0,1}, ∀s ≤ S −1, ∀b (4.11)

38

If the master problem is infeasible, the original problem is also infeasible because
the master problem is a relaxation of the original problem as long as not all fea-
sibility cuts are added. Because of the restriction of the buffer capacities to Bs ,
unboundedness cannot occur in the master problem. The subproblem cannot be un-
bounded because it is a simple evaluation. If the original problem has an optimal
solution, the algorithm finishes after a finite number of iterations when the subprob-
lem does not return new feasibility cuts.
As described in the literature on Benders Decomposition, the feasibility cuts are
obtained from Inequality (4.13) (classical feasibility cut).

0≥ −(
S−1

∑
s=1

W−bs
∑
w=1

µh5,s,w ,bs
·M · (1−Ys,bs)+µh4 ·

W −W0

TH ∗
−

S

∑
s=1

W

∑
w=1

µh1,s,w ·ds,w)

(4.13)

µh is an extreme ray. The cut only contains the binary variables associated with
the buffer capacities in the current solution. Note that we use the LP to solve the
subproblem in the case of the classical feasibility cut, as information from the dual
subproblem is needed for the extreme rays. Because the original formulation uses
Big-M coefficients in Constraints (4.7), the classical feasibility cuts (4.13) are weak.
As a solution, Codato and Fischetti (2006) propose combinatorial cuts for Benders
Decomposition. These cuts force at least one variable to be changed and exclude the
redundant constraints that are caused by the usage of Big-M coefficients. For the
BAP, more information is available. We develop new combinatorial cuts based on
the following observations. If the current buffer allocation is infeasible, the capacity
of at least one buffer has to be increased. If the buffer capacities are decreased,
the throughput remains the same or decreases and the goal throughput cannot be
attained. Therefore, all solutions that include only the combinations of smaller
buffer capacities than the current solution are known to be infeasible as well. We
propose the following combinatorial cut if the current buffer capacity behind station
s equals bs :

1≤
S−1

∑
s=1

Bs

∑
b=bs+1

Ys,b . (4.14)

The RHS sums all the variables of possible buffer capacities for every station that
are larger than the current buffer capacities (b > bs). At least one of these variables
must assume a value of one, i.e., at least one of the buffers increases.

39

4.3.2. Generation of lower bounds from subsystems

Figure 4.3 depicts the solution process using Benders Decomposition with combina-
torial cuts for an exemplary flow line with 5 stations, a sample size of W = 250,000
workpieces, and a bottleneck at the end of the line. One can observe that the solver
takes only a few steps to find upper bounds that are close to the optimum, while the
lower bound increases in many small steps. This is because if a candidate solution
attains the goal throughput, the total buffer capacity has to be smaller or equal to
the total buffer capacity of this solution. In contrast, if a candidate solution does not
fulfill the requirement of the goal throughput, it does not necessarily mean that the
total buffer capacity of this solution has to be increased. There may be other solu-
tions with the same total number of buffer spaces (or even less) but with a different
allocation that are feasible. Therefore, it is crucial to find appropriate lower bounds.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

To
ta
l b

u
ff
e
r
ca
p
ac
it
y

Time (sec)

Figure 4.3.: Course of the lower and upper bounds during the solution process

In the literature, numerous studies propose algorithms, which approximate the op-
timal buffer allocation. Li and Meerkov (2009) propose several approaches to ap-
proximate the optimal solution for lines with more than three stations, which have
deterministic processing times and stochastic up and down times of the stations. To
use these solutions as bounds, they have to be evaluated. Depending on whether the
solution is feasible or infeasible, it serves as a feasibility cut or as an upper bound
on the total number of buffer spaces. The derivation of guaranteed lower bounds or
individual upper bounds cannot be accomplished with these approaches. Therefore,
we focus on the generation of guaranteed lower bounds and compare the different
strategies in the numerical study in Section 4.4.
We decompose the line into several subsystems assuming that the supply of the first
station of each subsystem is unlimited. As a result, the effect of starvation, which
can occur in the original line, is neglected for the first station in each subsystem.

40

Additionally, it is assumed that the workpieces can always leave the subsystem.
Therefore, the last station of each subsystem is never blocked. Thus, for given
buffer capacities, the isolated subsystem will never have a lower throughput than
the original system as proven in the following theorems.

Theorem 4.1. In steady-state, the throughput of a system with unlimited supply at

the first station is higher or equal to the throughput of an identical system with

limited supply.

Proof. Let Arrw ≥ 0 be the arrival time of workpiece w in the system with lim-
ited supply. According to Algorithm 2, the start time of workpieces 1 and 2 at the
first station of the system with limited supply are calculated from XS lim

1,1 =Arr1 and
XS lim

1,2 =max{XF lim
1,1 ,Arr2}=max{XS lim

1,1 +d1,1,Arr2} respectively. As Arrw = 0
for all w in the system with unlimited supply, the start times equal XSunl

1,1 = 0 and
XSunl

1,2 = XF unl
1,1 = XSunl

1,1 + d1,1. Consequently, XSunl
1,2 ≤ XS lim

1,2 . With mathemat-
ical induction using the above formulas for w and the formulas of Algorithm 2
to calculate start and departure times, it follows that XF unl

S ,W ≤ XF lim
S ,W , i.e., less

time to produce W workpieces is required in the unlimited case, and therefore, the
throughput of the system with unlimited supply is higher or equal to the throughput
of an identical system with limited supply.

Theorem 4.2. In steady-state, the throughput of a system with unlimited outflow

at the last station is higher or equal to the throughput of an identical system with

limited outflow.

Proof. Let Depw ≥ 0 be the time workpiece w is allowed to leave the system with
limited supply. According to Algorithm 2, the departure time of workpiece 1 at the
last station, S , is calculated as XF lim

S ,1 = max{XSS ,1 + dS ,1,Dep1} for the system
with limited outflow. As Depw = 0 for all w in the system with unlimited outflow,
the departure time for the system with limited outflow equals XF unl

S ,1 = XSS ,1 +

dS ,1. Consequently, XF unl
S ,1 ≤XF lim

S ,1 . With mathematical induction using the above
formulas for w and the formulas of Algorithm 2 to calculate start and departure
times, it follows that XF unl

S ,W ≤ XF lim
S ,W , i.e., less time to produce W workpieces

is required in the unlimited case, and therefore, the throughput of the system with
unlimited outflow is higher or equal to the throughput of an identical system with
limited outflow.

Consequently, the optimal buffer capacities of the subsystems are lower than or
equal to the optimal buffer capacities in the original line. Levantesi et al. (2001) use

41

Station 2Station 1

X1

Station 3 Station 4 Station 5

∞

Station 2Station 1

∞

Station 3Station 2

∞

Station 4Station 3

∞

Station 5Station 4

∞

∞

∞

∞

∞

X2 X3 X4

b1,1,2

b2,2,2

b3,3,2

b4,4,2

∞

l=1

l=2

l=3

l=4

Figure 4.4.: Generation of lower bounds via subsystems of size i = 2

Station 2Station 1 Station 3 Station 4 Station 5

∞

Station 2Station 1

∞
Station 3

Station 2

∞
Station 4

Station 3 Station 5Station 4

Station 3

∞

∞

∞

∞

∞

X1 X2 X3 X4

b1,1,3 b2,1,3

b3,2,3b2,2,3

b3,3,3 b4,3,3

l=1

l=2

l=3

Figure 4.5.: Generation of lower bounds via subsystems of size i = 3

lower bounds from subsystems of size 2 as a starting point for a gradient algorithm
to approximate optimal buffer allocations in continuous lines.
The larger the subsystems are, the better the original setting is approximated. How-
ever, for large subsystems, the computation time may be long. Therefore, we pro-
pose an iterative procedure. We first solve subsystems with i = 2 stations, as shown
in Figure 4.4. Each solution of a subsystem provides a certain buffer capacity that
forms a lower bound for the respective buffer. These buffer capacities are then used
as lower bounds in the original system and all of the subsequent subsystems. In the
next step, we solve the subsystems of size i ≥ 3. The optimal buffer capacity of each
subsystem l = 1, . . . ,S − i +1 of size i at station s is denoted by bs,l ,i . Figure 4.5
depicts a line with 5 stations divided into subsystems of size i = 3.

42

In contrast to the subsystems of size i = 2, the lower bounds derived from the
subsystems of larger sizes do not form bounds for individual buffers. Individual
bounds, i.e., bs,l ,i ≤ Xs for i ≥ 3, may force a certain buffer to be larger than nec-
essary in the original line, resulting in a sub-optimal final solution for the original
line. This is because the buffer allocation of the subsystem, which is found by the
solver, may not be unique, as only the total number of buffer spaces is minimized.
However, their sum forms a lower bound for all of the respective buffer capacities
in the original line. Figure 4.5 illustrates this case for a subsystem of size i = 3.
Inequality (4.15) presents the bounds obtained from subsystems of size i ≥ 3.

i−2

∑
j=0

bj+l ,l ,i ≤
i−2

∑
j=0

Xj+l ∀l (4.15)

We apply Benders Decomposition to solve each subsystem. The size of the sub-
systems is increased iteratively, until the size of the original line is attained. This
procedure is depicted in Figure 4.6.

Initialization:
݅ ൌ 2, no bounds

Solve all subsystems
of size ݅

Solve original
system

Add lower bounds
from previous
subsystems

݅ ൌ ݅ 1 ݅ ൏ ܵ

݅ ൌ ܵ

Figure 4.6.: Overview of bound calculation

4.4. Numerical study

All of the algorithms are implemented in C++. Gurobi 5.0, with default settings, is
used to solve the linear and mixed-integer programs. The numerical study is per-
formed on an Intel Core i7-3930K with 6x 3.2 GHz and 32 GB RAM.
For all instances, the capacity of each buffer is limited to Bs = 20, and the warm-up
phase is selected as W0 = 2,000.
To further speed up the solution process, we use callbacks, i.e., the master problem
is not solved to optimality before handing over the values of the binary variables to
the subproblem. Instead, a potential incumbent solution (the best integer solution
found at any point of the search) is tested by the subproblem algorithm whenever

43

the solver identifies one. If the solution is feasible, it becomes the new incumbent
solution and the solution process continues. Otherwise, a feasibility cut (4.13) or
(4.14) is added to the master problem. We thereby avoid proving optimality in every
step and visiting the nodes several times during different runs of the master prob-
lem. Both aspects waste time (Bai and Rubin, 2009). Note that an implementation
without callbacks would lead to complete enumeration for the BAP.

4.4.1. A note on robustness

We investigate the robustness based on the instances from the numerical study of
Matta (2008). We assume a line with 5 stations and a bottleneck at the end. The
processing times are exponentially distributed, with a base processing rate of 7.0.
The processing rate of the bottleneck is assumed to be 6.0. The goal throughput is
set to 5.776.
Figure 4.7 depicts the results of a throughput evaluation for different optimal buffer
allocations for a varying number of workpieces. These allocations are obtained
by independently solving 20 samples with 10,000 (Figure 4.7a), 250,000 (Figure
4.7b), 1,000,000 (Figure 4.7c), and 5,000,000 workpieces (Figure 4.7d) each. The
throughput evaluation is conducted with 20 additional samples of 5,000,000 work-
pieces. Figure 4.7 presents the relative deviation of the minimum, average, and
maximum throughput from the goal throughput that is obtained by these 20 sam-
ples for each buffer allocation. For 10,000 workpieces (Figure 4.7a), the indepen-
dent optimization of 20 samples leads to 19 different buffer allocations. The total
buffer capacity lies between 36 and 44 for the different samples. For a total number
of buffer spaces of 39 or above, the goal throughput is always attained, whereas a
total number of 37 (or less) is not (even in the best case) sufficient. On average,
the goal throughput is attained for the allocations with a buffer capacity of 38 in
total. This means that in the case of the allocation with 44 buffer spaces in total, 6
redundant buffer spaces (14% of the total buffer space needed) are allocated in the
line. In Figure 4.7b (250,000 workpieces), only 8 different buffer allocations are
obtained with a total number of 38 or 39 buffer spaces in the line. On average, the
goal throughput is always attained for all allocations. Even in the worst case, the
maximum deviation from the goal throughput equals 0.03%. Figure 4.7c shows very
similar results for W = 1,000,000, with a maximum deviation of 0.01%. There-
fore, it can be concluded that 250,000 workpieces are sufficient to obtain robust
results for the given configuration. However, for increasing number of stations or
increasing squared coefficients of variation (SCV), additional workpieces may be

44

1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
‐0,9

‐0,7

‐0,5

‐0,3

‐0,1

0,1

0,3

0,5

0,7

0,9

1,1

35

36

37

38

39

40

41

42

43

44

45

%
 D
ev
ia
ti
o
n
 f
ro
m
 g
o
al
 t
h
ro
u
gh
p
u
t

To
ta
l b
u
ff
e
r
ca
p
ac
it
y

Buffer Allocation

Total buffer

Goal throughput

% Dev. Worst

% Dev. Best

% Dev. Average

Frequency of allocation1

(a) W = 10,000

1 1 6 2 7 1 1 1
‐0,9

‐0,7

‐0,5

‐0,3

‐0,1

0,1

0,3

0,5

0,7

0,9

1,1

35

36

37

38

39

40

41

42

43

44

45

7,7,9,15 7,8,11,12 8,8,9,13 7,8,9,14 7,7,10,15 6,10,9,14 7,8,9,15 7,9,10,13
%
 D
ev
ia
ti
o
n
 f
ro
m
 g
o
al
 t
h
ro
u
gh

p
u
t

To
ta
l b
u
ff
e
r
ca
p
ac
it
y

Buffer Allocation

Total buffer

Goal throughput

% Dev. Worst

% Dev. Best

% Dev. Average

Frequency of allocation1

(b) W = 250,000

1 7 3 2 7
‐0,9

‐0,7

‐0,5

‐0,3

‐0,1

0,1

0,3

0,5

0,7

0,9

1,1

35

36

37

38

39

40

41

42

43

44

45

8,7,9,14 7,8,9,14 7,8,10,13 7,7,12,13 6,10,8,15

%
 D
ev
ia
ti
o
n
 f
ro
m
 g
o
al
 t
h
ro
u
gh
p
u
t

To
ta
l b
u
ff
er
 c
ap

ac
it
y

Buffer Allocation

Total buffer

Goal throughput

% Dev. Worst

% Dev. Best

% Dev. Average

Frequency of allocation1

(c) W = 1,000,000

‐0,9

‐0,7

‐0,5

‐0,3

‐0,1

0,1

0,3

0,5

0,7

0,9

1,1

35

36

37

38

39

40

41

42

43

44

45

6,10,9,13 8,8,9,13

%
 D
ev
ia
ti
o
n
 f
ro
m
 g
o
al
 t
h
ro
u
gh

p
u
t

To
ta
l b
u
ff
er
 c
ap

ac
it
y

Buffer Allocation

Total buffer

Goal throughput

% Dev. Worst

% Dev. Best

% Dev. Average

Frequency of allocation1

3 17

(d) W = 5,000,000

Figure 4.7.: Robustness of the approach regarding the number of workpieces (S = 5,
bottleneck last)

45

1 1 7 1 1 2 1 1 3 1 1
‐0,9

‐0,7

‐0,5

‐0,3

‐0,1

0,1

0,3

0,5

0,7

0,9

1,1

35

36

37

38

39

40

41

42

43

44

45

%
 D
ev
ia
ti
o
n
 f
ro
m
 g
o
a
l t
h
ro
u
gh

p
u
t

To
ta
l b
u
ff
e
r
ca
p
ac
it
y

Buffer Allocation

Total buffer

Goal throughput

% Dev. Worst

% Dev. Best

% Dev. Average

Frequency of allocation1

Figure 4.8.: Robustness of SRS (S = 5,W = 250,000, bottleneck last)

required to obtain robust results, because more different allocations are obtained
(see Tables A.2 and A.3 in Appendix A respectively). Figure 4.7d shows that the
algorithm converges to a unique solution of the total buffer capacity, i.e., 38 buffer
spaces are allocated. Two allocations result from the optimization of 20 samples,
which both always attain the goal throughput.
Figure 4.8 shows the results of a throughput evaluation for the different optimal
buffer allocations obtained from samples generated with Simple Random Sam-
pling (SRS) instead of Descriptive Sampling (DS), as explained in Section 4.2
(W = 250,000). Compared to the results in Figure 4.7b, the total number of buffer
spaces varies between 37 and 39. The total number of different solutions obtained
for 20 samples is 11 for SRS instead of 8 for DS. Moreover, the maximum devia-
tion from the goal throughput is 0.03% for DS. In contrast, for SRS, a maximum
deviation of 0.15% is observed. Consequently, this demonstrates that DS leads to
more robust results than SRS.

4.4.2. Impact of bounds

This subsection compares three types of bounds: bounds derived from rules of
thumb, bounds obtained from the optimal allocation (theoretical best case), and
bounds generated from the subsystems as described in Section 4.3.2.
We use the rules of thumb developed by Powell and Pyke (1996) to generate al-
locations for given total buffer capacities. Powell and Pyke (1996) point out that
balanced allocations lead to a better throughput unless the imbalance caused by
the bottleneck is more than 20%. In the case of an imbalance of more than 20%,
the capacity of the buffer, which is located farthest from the bottleneck, shall be
decreased. The available buffer space shall be placed around the bottleneck. In-

46

Table 4.2.: Time saving potential of approximate solutions

Type of bound Feasible Infeasible Computation time (sec) Time savings (%)

None 7142 −

Rules of thumb
8,9,9,11 x 7214 −1
9,9,9,10 x 7250 −2
8,9,10,11 x 5753 20
9,9,10,10 x 5834 18

Theoretical best cases
7,8,9,13 x 5721 20
8,7,9,13 x 5860 18
8,8,8,13 x 7093 1
8,8,9,12 x 4892 32
8,8,9,13 x 4711 34

Subsystems 69 99

feasible allocations are used as feasibility cuts (4.14), while feasible allocations are
upper bounds.
We investigate bounds from the optimal allocation (theoretical best case) to show
the impact of near-optimal buffer allocations. In general, however, this solution is
not known and can only be approximated, e.g. by rules of thumb and heuristics.
The optimal solution provides the best upper bound for the buffer capacities. More-
over, solutions that are infeasible but close to the optimum are good candidates for
feasibility cuts. Therefore, as upper bound, the optimal solution is used, whereas
S −1 feasibility cuts can be generated, each by decreasing the optimal capacity of
a buffer by one.
The bounds generated from the subsystems according to Section 4.3.2 are of a dif-
ferent type as they provide (individual) lower bounds instead of only feasibility cuts.
Table 4.2 demonstrates the benefit of using different types of bounds for the exem-

plary flow line, which is described in the previous chapter. The first row shows the
computation time without bounds of 7142 seconds as a reference. For the rules of
thumb and the theoretical best cases, column 1 shows the tested allocations. Each of
these allocations results either in a feasibility cut or a (non-individual) upper bound.
We apply the rules of thumb for total buffer capacities of 37 and 38. Columns 2
and 3 depict whether the evaluation of the allocations results in a feasible or an in-
feasible throughput. The fourth and the fifth column show the computation times
using these bounds and the resulting time savings in comparison to the calculation

47

without bounds.
It can be observed that, in most of the cases, the bounds have a positive impact on
the computation time. The feasibility cuts generated from rules of thumb with 38
buffer spaces in total reduce the computation time by around 20%. In contrast, the
feasibility cuts with a total buffer capacity of 37 have little impact on the compu-
tation time. The effect of feasibility cuts generated from the theoretical best cases
varies for the different allocations from 1 to 32%. The upper bound obtained from
the optimal solution leads to the highest decrease in computation time (34%). How-
ever, even in this case, the impact is rather low. Moreover, approximate solutions
generated by rules of thumb or heuristics, in general, are worse than the allocations
generated from known optimal solutions, which further reduces the usefulness of
such bounds. In contrast, the (individual) lower bounds generated from the subsys-
tems reduce the computation time by 99%. Therefore, it is more advantageous to
implement the lower bounds generated from the subsystems as described in Section
4.3.2 instead of feasibility cuts or upper bounds from near-optimal solutions. For
this reason, we omit further investigations of these upper bounds and feasibility cuts
and focus on the lower bounds obtained from the subsystems.

4.4.3. Exponentially distributed processing times

The investigation of instances with exponentially distributed processing times is
based on the instances from the numerical study of Matta (2008), but varies the
number of stations and the location of the bottleneck. The distribution of the pro-
cessing times is as described in Section 4.4.1. We test instances with 3, 5, and
7 stations with bottleneck at the end of the line or in the middle of the line. We
generate 10 independent samples for each configuration. As the original MIP for-
mulation is able to solve only small instances, we use samples of 10,000 workpieces
to demonstrate the improvements in the computation time of Benders Decomposi-
tion. However, Section 4.4.1 shows that this sample size is not sufficient to obtain
robust results. Therefore, further studies use samples with W = 250,000.
Table 4.3 presents the computation times of complete enumeration, the original
formulation, Benders Decomposition with classical feasibility cuts (Cl. Cut), and
Benders Decomposition with combinatorial feasibility cuts (Comb. Cut). In the lat-
ter case, we present both results with and without initial bounds. The computation
time is limited to 10,000 seconds. Only two settings are solvable within this time
limit using the original MIP or the Benders Decomposition approach with classical
cuts.

48

Table 4.3.: Mean computation times (Exponential distribution)

Computation time (sec)
Benders Decomposition

Original Cl. Cut Comb. Cut

S Bottleneck W formulation without callbacks without bounds with bounds

3 middle 10,000 306 8806 4 < 1 < 1
3 last 10,000 906 6060 2 < 1 < 1
3 middle 250,000 > 10,000 > 10,000 9 5 < 1
3 last 250,000 > 10,000 > 10,000 6 4 < 1

5 middle 10,000 > 10,000 > 10,000 > 10,000 1745 1
5 last 10,000 > 10,000 > 10,000 > 10,000 2392 3
5 middle 250,000 > 10,000 > 10,000 > 10,000 5724 38
5 last 250,000 > 10,000 > 10,000 > 10,000 6720 66

7 middle 10,000 > 10,000 > 10,000 > 10,000 > 10,000 1134
7 last 10,000 > 10,000 > 10,000 > 10,000 > 10,000 5402
7 middle 250,000 > 10,000 > 10,000 > 10,000 > 10,000 5998
7 last 250,000 > 10,000 > 10,000 > 10,000 > 10,000 7484

Benders Decomposition with combinatorial cuts finds the optimal solution much
faster than the implementation with classical cuts. This matches the findings of
Codato and Fischetti (2006). Even the implementation without callbacks leads to
faster computation times. However, callbacks are required to solve instances with
more than 3 stations. The procedure with combinatorial cuts and without bounds is
able to solve instances with up to 5 stations within the time limit. The additional
computation time of Benders Decomposition with classical cuts is composed of the
computation time due to the usage of the LP and the computation time that stems
from the weakness of the cut. Benders Decomposition with combinatorial cuts and
initial bounds solves all instances to optimality within a reasonable amount of time.
Table 4.3 also shows that the instances with a bottleneck in the middle of the line
are easier to solve than the instances with a bottleneck at the end. The reason is that
a bottleneck in the middle of the line is covered by more subsystems. Therefore,
the obtained bounds are better, which results in a smaller feasible region.

To analyze the impact of the initial bounds, Figure 4.9 compares the course of
the lower and upper bounds for Benders Decomposition with combinatorial cuts,
with and without initial bounds, for one sample of a 5-station line with 250,000
workpieces and a bottleneck at the end. To derive the lower bounds, we optimized
four 2-station subsystems, three 3-station subsystems, and two 4-station subsys-

49

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

To
ta
l b

u
ff
e
r
ca
p
ac
it
y

Time (sec)

with initial bounds

without initial bounds

Figure 4.9.: Course of the lower and upper bounds during the solution process
(S = 5,W = 250,000, bottleneck last)

0

10

20

30

40

50

60

70

80

Ti
m
e
(s
ec
)

Samples

Prove optimal solution

Find optimal solution

Bound Calculation

Figure 4.10.: Share of computation times for bound calculation and optimality proof
(S = 5,W = 250,000, bottleneck last)

tems. The computation of the bounds is completed after 8 seconds, with a lower
bound of 31 buffer spaces for the whole line. The lower bound for the case without
bounds slowly rises by 1 in each step. In the case with initial bounds, the optimal
solution of 38 is found after 19 seconds and is proven after 69 seconds. Without
bounds, the upper bound drops in large steps until the optimal solution is found af-
ter 7051 seconds. This solution is proven to be optimal after 7141 seconds.
Figure 4.10 depicts the shares of computation time for the bound calculation, the

time until the optimal solution is found by the upper bound, and the time until this
solution is proven to be optimal for a 5-station line with 250,000 workpieces and
a bottleneck at the end. Most of the computation time is needed for the optimality
proof. The calculation of the bounds represents only a small proportion of the total
time, ranging from 9% to 15% of the total computation time.

50

4.4.4. Generally distributed processing times

The following experiments give further insights on the performance of Benders De-
composition with combinatorial cuts and initial bounds. We investigate the perfor-
mance of the algorithm with respect to generally distributed effective processing
times. The generation of instances focuses on a base case, which is adapted from
Helber et al. (2011) according to Table 4.4. We generate 10 independent samples
for each configuration.

Table 4.4.: Parameter settings for the base case

Number of stations S 7
Number of workpieces W 250,000
Distribution Erlang-k
Squared coefficient of variation (SCV) 0.25
Base processing rate 0.5
Bottleneck middle
Processing rate of bottleneck 90% of base rate
Goal throughput TH ∗ 90% of bottleneck rate

The experiment varies the distribution of the effective processing times and the
number of stations based on the study in Helber et al. (2011). The Erlang-k distri-
bution is used to generate processing times with squared coefficients of variation of
0.25 and 0.5, while the balanced mean variant of the Cox-2 distribution (Buzacott
and Shanthikumar, 1993) is used to generate processing times with squared coeffi-
cients of variation 1.0 and 2.0 respectively. The number of stations is set to 5 and 7
respectively.
The computational results are given in Table 4.5. The first four columns describe
the setting. Column 5 gives the range of the total number of buffer spaces in the op-
timal solutions of 10 samples. The average computation times for the bounds and
the total time are given in columns 6 and 7. The last column presents the maximum
deviation from the goal throughput of all samples.
The instances with low SCV are solved quickly. The reason is that the initial lower
bounds are better for small SCVs, as less starving and blocking occurs; see Ta-
bles 4.6, A.1, A.2, and A.3 in Appendix A. Tables 4.6, A.1, A.2, and A.3 present
the values of the optimal solutions and the initial bounds for all of the subsystems
of all of the samples (samples with identical bounds and identical optimal solutions
are aggregated in a single line). For an SCV of 0.25, some initial bounds are tight
(marked in bold). Instances with Cox-2 distributed processing times and 7 stations

51

Table 4.5.: Mean computation times (Erlang-k and Cox-2 distribution)

Computation time (sec)
Range of Benders Decomposition Max. dev.

total buffer (Comb. Cut) from
Distribution S SCV Bottleneck capacities Bounds Total TH ∗ (%)

Erlang-4 5 0.25 middle 6 < 1 < 1 0.36
Erlang-4 7 0.25 middle 10 2 3 −0.05

Erlang-2 5 0.5 middle 14 1 3 0.05
Erlang-2 7 0.5 middle 22 27 76 −0.09

Cox-2 5 1.0 middle 29 - 30 4 17 −0.22
Cox-2 7 1.0 middle 46 - 47 308 1786 −0.04

Cox-2 5 2.0 middle 60 - 62 20 74 −0.26
Cox-2 7 2.0 middle 95 - 98 1509 6075 −0.36

Table 4.6.: Detailed results1(Erlang-k distribution, S = 5)

Sample SCV
Optimal

allocation

Max.
dev.
from
TH ∗

(%)

Initial bounds
i = 2 i = 3 i = 4

b1 b2 b3 b4
2
∑
j=1

bj
3
∑
j=2

bj
4
∑
j=3

bj
3
∑
j=1

bj
4
∑
j=2

bj

1-10 0.25 1,2,2,1 0.36 1 1 1 1 3 3 3 5 5

1-7,9,10 0.5 3,4,4,3 0.52 1 2 2 1 6 6 6 10 10
8 0.5 3,5,3,3 0.05 1 2 2 1 5 6 5 10 10

are especially difficult to solve, the computation time takes more than 1 h on aver-
age.

Table 4.5 also shows the computation time for the initial bounds. For Erlang-k in-
stances with an SCV of 0.25, the calculation of the initial bounds takes a significant
proportion of the total amount of computation time, summing up to approximately
50% or even more. With increasing SCV, this proportion decreases. In the case
of an SCV of 2.0, the portion of the bound calculation accounts for approximately
15% and less of the total time. The detailed results for the initial bounds in Tables
4.6, A.1, A.2, and A.3 show that it is reasonable to solve all subsystems, as even
large subsystems improve the (aggregated) bounds on the buffer capacities.
The column “Max. dev. from TH ∗” depicts the results of a throughput evaluation

1Tight bounds are marked in bold

52

for the different optimal buffer allocations obtained from the different samples. The
throughput evaluation is conducted with 10 new samples of 1,000,000 workpieces
for each category of instances. The column shows the largest relative downward
deviation of all optimal allocations if the goal throughput is not attained and the
smallest relative upward deviation if it is attained. The deviation for each buffer
allocation is shown in Tables 4.6, A.1, A.2, and A.3. Very small downward and
upward deviations are denoted as -0.00 and 0.00, respectively.
The maximum downward deviation obtained from all 80 optimization runs is only
0.36%. Altogether, this shows that the Benders Decomposition approach with com-
binatorial cuts and initial bounds is able to optimize flow lines with generally dis-
tributed processing times quite well.

4.4.5. Correlated processing times

This experiment investigates the impact of statistical dependency on the optimal
buffer allocation. Inman (1999) points out that statistical dependency of processing
times, i.e., workpiece-dependent processing times at each station, occurs for exam-
ple in the automotive industry when two- and four-door models are manufactured
on the same line. We model this by generating processing times from an Erlang-4
distribution with different rates for the two different types of workpieces. The rate
corresponding to a workpiece of type 1 is set to 0.5, while the rate for workpieces
of type 2 is 0.25. We assume that the probability that a workpieces is of type 2 is
20%. Non-listed parameters remain as in the base case (Table 4.4). We compare
the results to allocations obtained from instances generated by a Generalized Er-
lang distribution based on identical parameters. This corresponds to the case where
correlation is neglected and approximated by independent identically distributed
processing times. The Generalized Erlang distribution may be interpreted as a ran-
dom decision on the type for each processed workpiece at each station.

All instances are solved in less than 15 minutes. Further computational results
are given in Table 4.7. Columns 2 to 4 correspond to the instances with correlation
in processing times and the last three columns to the instances with Generalized
Erlang distribution. The results show that the instances with Generalized Erlang
distribution underestimate the throughput and therefore allocate more buffer spaces
than necessary, mainly around the bottleneck. For the instances under investigation,
on average 26% additional buffer spaces were allocated. In conclusion, the ap-
proximation of correlated processing times by identical independently distributed
processing times leads to substantial misallocation of buffer spaces. Therefore, it is

53

Table 4.7.: Detailed results (correlated processing times)

Correlation Generalized Erlang

Total Max. dev. Total Max. dev.
buffer Optimal from buffer Optimal from

Sample capacity allocation TH ∗ (%) capacity allocation TH ∗ (%)

1 30 5,4,7,7,4,3 −0.04 38 4,5,11,9,5,4 0.07
2 30 3,6,6,7,4,4 0.06 37 5,6,8,7,6,5 −0.15
3 30 3,5,7,6,5,4 0.09 38 4,7,7,10,5,5 −0.00
4 29 4,4,7,5,6,3 −0.29 37 4,6,9,8,6,4 −0.06
5 29 4,4,6,7,5,3 −0.14 37 4,6,9,8,6,4 −0.06
6 30 3,6,6,6,5,4 0.03 37 4,7,8,8,5,5 −0.12
7 30 3,5,7,6,5,4 0.09 37 4,7,8,8,5,5 −0.12
8 30 4,5,6,7,5,3 0.08 38 3,7,9,9,5,5 −0.04
9 29 4,4,7,6,4,4 −0.13 37 4,6,8,9,6,4 −0.06
10 30 3,5,7,8,3,4 −0.02 38 4,7,8,8,6,5 0.03

important that correlations are considered in the solution approach, as it is possible
with our approach.

4.4.6. Long lines with reliable and unreliable stations

This experiment is devoted to long lines comprising 14 and 24 stations respectively,
some of which are reliable and others are unreliable (see Figures 4.11 and 4.12).

E4 D E4 D E4 D DF DF E4 D E4 D E4 D

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4.11.: Setting of the 14-station line

E4

1

D

2

E4

3

D

4

E4

5

D

6

E4

7

D

8

E4

9

D

10

E4

11

DF

12

DF

13

D

14

E4

15

D

16

E4

17

D

18

E4

19

D

20

E4

21

D

22

E4

23

D

24

…

…

Figure 4.12.: Setting of the 24-station line

Reliable stations have Erlang-4-distributed (E4) or deterministic (D) processing
times, both with rate 0.5. Unreliable stations (DF) have deterministic processing
times with rate 0.5 and exponentially distributed times to failure (TTF) and times to
repair (TTR). The mean TTF and the mean TTR are chosen such that the stations in

54

the middle of the line, i.e., 7 and 8 in the line with 14 stations and 12 and 13 in the
line with 24 stations, form the bottlenecks of the line. Non-listed parameters remain
as in the base case (Table 4.4).

Table 4.8.: Detailed results (S = 14)

Total Max. dev.
buffer Optimal Computation times (sec) from

Sample capacity allocation Subsystems Total TH ∗ (%)

T
T

F
=

10
;T

T
R

=
4

1 13 0,0,0,1,2,0,7,2,1,0,0,0,0 178 234 −0.74
2 13 0,0,0,1,0,2,7,2,1,0,0,0,0 138 140 −0.90
3 14 0,0,0,0,0,4,7,2,1,0,0,0,0 384 393 −0.67
4 14 1,0,0,0,3,0,7,2,1,0,0,0,0 295 298 −0.61
5 14 1,0,0,1,2,0,6,2,0,1,0,1,0 276 279 −0.61
6 14 0,0,2,0,1,1,7,2,1,0,0,0,0 320 325 −0.54
7 14 0,0,0,2,2,0,6,3,1,0,0,0,0 387 466 −0.42
8 14 0,0,1,0,3,0,7,2,1,0,0,0,0 371 375 −0.40
9 14 0,0,1,1,1,1,6,2,2,0,0,0,0 324 326 −0.49
10 13 0,0,0,1,2,0,7,2,1,0,0,0,0 223 257 −0.74

∅ 290 309 −0.61

T
T

F
=

5;
T

T
R

=
2

1 8 0,0,1,0,1,0,3,2,0,1,0,0,0 47 49 −0.26
2 8 0,0,1,0,1,0,3,2,0,1,0,0,0 42 44 −0.26
3 8 0,0,0,0,1,1,4,1,0,1,0,0,0 52 54 0.04
4 8 0,0,1,0,1,0,3,2,0,1,0,0,0 42 44 −0.26
5 8 0,0,1,0,1,0,3,2,0,1,0,0,0 52 54 −0.26
6 8 0,0,1,0,1,0,3,2,0,1,0,0,0 52 54 −0.26
7 8 0,0,1,0,1,0,3,2,0,1,0,0,0 49 50 −0.26
8 8 0,0,1,0,1,0,3,2,0,1,0,0,0 52 54 −0.26
9 8 0,0,1,0,1,0,3,2,0,1,0,0,0 46 48 −0.26
10 8 0,0,0,0,0,2,4,2,0,0,0,0,0 48 49 0.15

∅ 48 50 −0.01

Tables 4.8 and 4.9 contain the results of this experiment. The algorithm solves in-
stances with 14 stations within 310 seconds on average for TTF = 10 and TTR =
4. If TTF = 5 and TTR = 2, the algorithm takes 50 seconds on average. For the
line with 24 stations, 14 hours on average are required to prove the optimal solu-
tion for TTF = 10 and TTR = 4. The instances with TTF = 5 and TTR = 2 can
be solved within 10 minutes on average. The algorithm spends most of the time
to calculate the results for the subsystems (93-98% of the total time). Altogether,
under consideration of the strategic nature of the buffer allocation problem, the al-
gorithm is able to optimize long lines in acceptable time. The majority of the buffer
spaces (in many cases half of the total allocated capacities) is allocated between the

55

Table 4.9.: Detailed results (S = 24)

Total Max. dev.
buffer Optimal Computation times (sec) from

Sample capacity allocation Subsystems Total TH ∗ (%)

T
T

F
=

10
;T

T
R

=
4

1 17 0,0,0,0,0,0,0,1,0,1,3,8,0,3,0,0,0,1,0,0,0,0,0 53,803 54,189 −0.68
2 17 0,0,0,0,1,0,1,0,1,0,2,8,1,1,1,0,0,1,0,0,0,0,0 48,436 50,519 −0.56
3 17 0,0,0,0,0,0,0,0,0,2,3,8,1,1,1,0,0,1,0,0,0,0,0 24,432 25,999 −0.65
4 17 0,0,0,0,0,1,1,0,1,1,2,6,1,1,1,1,1,0,0,0,0,0,0 49,414 49,818 −0.68
5 17 0,0,0,0,0,0,0,1,1,0,3,8,1,2,0,1,0,0,0,0,0,0,0 47,830 48,913 −0.69
6 17 0,0,0,0,1,0,0,0,0,2,3,7,0,2,1,0,1,0,0,0,0,0,0 61,035 61,064 −0.54
7 17 0,0,0,1,0,0,0,1,0,1,2,8,1,1,1,0,1,0,0,0,0,0,0 69,225 69,234 −0.43
8 17 0,0,0,0,0,1,1,0,1,1,2,6,1,1,1,1,1,0,0,0,0,0,0 52,257 52,648 −0.68
9 17 0,0,0,0,0,0,1,0,0,1,3,7,0,3,2,0,0,0,0,0,0,0,0 47,098 48,703 −0.66

10 17 0,0,0,0,0,1,0,0,0,1,3,7,1,2,0,2,0,0,0,0,0,0,0 52,572 53,513 −0.71

∅ 50,610 51,460 −0.63

T
T

F
=

5;
T

T
R

=
2

1 9 0,0,0,0,0,0,1,0,0,0,2,3,1,1,1,0,0,0,0,0,0,0,0 601 616 −0.65
2 9 0,0,0,0,0,0,0,0,1,0,2,4,1,1,0,0,0,0,0,0,0,0,0 737 787 −0.36
3 9 0,0,0,0,0,0,0,0,0,0,3,4,2,0,0,0,0,0,0,0,0,0,0 530 538 −0.48
4 9 0,0,0,0,0,0,0,0,0,1,2,4,0,2,0,0,0,0,0,0,0,0,0 513 528 −0.36
5 9 0,0,0,0,0,0,0,0,1,0,2,4,1,1,0,0,0,0,0,0,0,0,0 574 613 −0.36
6 9 0,0,0,0,0,0,0,0,0,0,3,4,2,0,0,0,0,0,0,0,0,0,0 751 767 −0.48
7 9 0,0,0,0,0,0,0,0,1,0,2,4,0,2,0,0,0,0,0,0,0,0,0 581 596 −0.33
8 9 0,0,0,0,0,0,0,0,1,0,2,4,0,1,0,1,0,0,0,0,0,0,0 697 713 −0.32
9 9 0,0,0,0,0,0,0,0,0,1,2,4,0,2,0,0,0,0,0,0,0,0,0 518 521 −0.36

10 9 0,0,0,0,0,0,0,0,0,1,2,4,0,1,1,0,0,0,0,0,0,0,0 505 511 −0.18

∅ 601 619 −0.38

bottleneck stations. At the beginning and at the end of the line, zero or only few
buffer spaces are required. The last column in each table depicts the results of a
throughput evaluation for the different optimal buffer allocations obtained from the
different samples. The throughput evaluation is conducted with 10 new samples of
1,000,000 workpieces for each category of instances. The column shows the largest
relative downward deviation of all optimal allocations if the goal throughput is not
attained and the smallest relative upward deviation if it is attained. The maximum
deviation obtained from all optimization runs is only 0.61% for the 14-station line
and 0.62% for the 24-station line.

56

4.5. Conclusion and further research

In this paper we develop a Benders Decomposition approach that is able to opti-
mally solve the BAP with respect to an underlying sample. This approach divides
the original problem into a master problem and a subproblem, which are both solved
iteratively by exchanging information via cuts. We compare two types of cuts, clas-
sical feasibility cuts and combinatorial feasibility cuts. Our numerical study shows
that the application of combinatorial cuts leads to substantial reductions in the com-
putation time. Furthermore, we develop initial lower bounds based on the iterative
solutions of subsystems for the original line. This approach is able to optimally
allocate buffer spaces in long lines with arbitrary distributions of processing times,
times to failure, and repair times within a reasonable amount of time. The numeri-
cal study also reveals that correlation effects in processing times have a significant
effect, as the optimal buffer allocation is highly influenced. This demonstrates the
necessity for flexible solution approaches, as the sample-based mathematical pro-
gramming formulations.
Further research should be directed towards improving the computation times for
lines with more stations. This may be performed by the analysis of additional
bounds or by the development of a problem-specific branch-and-bound method.
Additionally, the approach could be extended to more complex systems, such as
flow lines with closed loops or several product types.

57

5. Optimization of buffer allocations
in flow lines with limited supply

Co-authors:

Andrea Matta
Shanghai Jiao Tong University, Department of Industrial Engineering and
Management, Shanghai, P. R. China

Raik Stolletz
Chair of Production Management, Business School, University of Mannheim,
Germany

Working paper.

Abstract:

The supply of flow lines is often assumed to be unlimited or to follow certain dis-
tributions. However, this assumption may not always be realistic because flow lines
are usually an integral part of a supply chain where raw material is replenished ac-
cording to some rule. We therefore include the limited supply into the optimization
of buffer capacities in terms of an order policy.
To integrate this type of supply into an optimization model, we exploit the flexibility
of a sample-based optimization approach. We develop an efficient rule-based local
search algorithm that employs new individual lower bounds in order to determine
the optimal buffer capacities of a flow line. Besides the efficiency of the proposed
algorithm, the numerical study demonstrates that the order policy has a significant
impact on the optimal buffer allocation.

58

5.1. Introduction

Flow lines consist of a number of stations that are arranged in series and separated
by buffer spaces. Stochasticity in such lines can be caused by random machine
breakdowns, uncertain times to repair, and random processing times. If buffer ca-
pacities are limited, blocking and starvation effects may occur. This may lead to a
reduction of the throughput of the entire line. Allocating additional buffer capacities
decouples the stations and therefore counteracts these effects. However, the average
work-in-process in the line increases, which involves additional costs.
The decisions on the total quantity of buffer spaces and their allocation within the
flow line, which balance the trade-off between resulting costs and obtained through-
put, are known as the Buffer Allocation Problem (BAP). Multiple examples from
the practice concerning this problem can be found in the literature. Most exam-
ples apply to the automobile industry (e.g. Li, 2013; Alden et al., 2006; Colledani
et al., 2010), but lines from food industry (e.g. Liberopoulos and Tsarouhas, 2002),
and other manufacturing applications (e.g. Burman et al., 1998) are also described.
These articles demonstrate the potential of operations research methods in determin-
ing the optimal allocation of buffer capacities and report on the resulting benefits.
In the literature, the BAP is usually solved under the assumption of unlimited supply
(Gershwin and Schor, 2000). To ensure unlimited supply in practice, large inven-
tory levels in front of the first station are required to allow for stochastic effects in
the line. Some articles take limited supply into account but assume that the arrival
times of the workpieces are exogenously determined (e.g. Dallery and Gershwin,
1992; Matta, 2008) or that an additional station models the supply (e.g. Dallery and
Gershwin, 1992; Helber et al., 2011). Yet this is not realistic, because independency
of the system state and the arrival pattern is assumed. In reality, orders are placed
depending on the inventory level in front of the first station.
Various problem formulations of the BAP with different objectives can be found in
the literature. An overview on these objectives and the existing optimization ap-
proaches is given by Gershwin and Schor (2000) and Demir et al. (2014).
In the following, we review approaches that provide exact optimal solutions for
the BAP or provide bounds on the buffer capacities. Exact analytical results are
only available for very small lines under restrictive assumptions (see e.g. Buza-
cott, 1971). For longer lines, Matta (2008) proposes a mixed integer programming
(MIP) formulation that uses sampling. Sampling approaches replace the stochastic
elements by their sampled counterparts. They therefore allow for a large degree of
flexibility. Hence, these approaches can be used for more realistic modeling of the

59

underlying problem. It is possible to allow for any distribution of processing times,
times to failure, and repair times, as well as correlations therein. Moreover, the
resulting performance measures are sample-exact and converge to the exact value
provided that sample sizes are chosen sufficiently large. However, the correspond-
ing sample-based MIP is only capable of solving very small instances with three
stations. Alfieri and Matta (2012) introduce the concept of time buffers, which
reduce the feasible region of the buffer capacities. Yet the derivation of the time
buffers is only possible for small instances with three stations. Weiss and Stolletz
(2015) consider a MIP formulation similar to Matta (2008). To accelerate the solu-
tion process, they propose a Benders Decomposition approach in combination with
the generation of lower bounds derived from subsystems. They use the flexibility of
the approach to demonstrate the impact of correlations on the optimal buffer alloca-
tion. The work of Shi and Gershwin (2014) is closely related because the proposed
segmentation approach applies the concept of subsystems to estimate the buffer ca-
pacities.
Matta et al. (2014) describe a general methodology to derive simulation-optimization
models in terms of mathematical programming. This concept is also applied for
Base Stock Control Systems and Extended Kanban Control Systems (Pedrielli et al.,
2015) and for the optimization of the number of pallets in ConWIP systems (Alfieri
et al., 2015).
The main contribution of this paper is to incorporate limited supply in the form of
an order policy into the optimization of the BAP in order to gain managerial insights
into the allocation of buffer capacities under such realistic assumptions. Moreover,
the impact of a policy-driven supply is demonstrated. Individual lower bounds on
the buffer capacities and a rule-based local search algorithm are developed to ef-
ficiently and optimally solve the resulting problem. The rule-based local search
algorithm first investigates promising solutions in the neighborhood of the current
allocation under consideration of the individual lower bounds. To ensure optimality
it then jumps to allocations in regions which have not been investigated before.
This paper is organized as follows. Section 5.2 introduces the assumptions of the
flow line model and the decision problem. In Section 5.3, the individual lower
bounds are presented. Section 5.4 describes the rule-based local search algorithm
for buffer optimization. In Section 5.5, a numerical study on the performance of
the search algorithm and the impact of limited supply on the flow line is provided.
Finally, Section 5.6 presents the conclusion and suggestions for further research.

60

5.2. Model of the flow line

This paper considers the allocation of a minimum number of total buffer spaces
while attaining a pre-defined goal throughput, which is known as the primal BAP
(Gershwin and Schor, 2000).
Section 5.2.1 presents the decision problem and the underlying assumptions for the
flow line model. The modeling and the assumptions with respect to the limited
supply are explained in detail in Section 5.2.2.

5.2.1. Model assumptions and decision problem

The model of the flow line is based on the following assumptions:

• The flow line consists of m = 1, . . . ,M stations in series, which process W

workpieces.

• The decision Xm about the capacity of the buffer behind station m is limited
by Bm .

• An order policy is applied to manage the material supply to the first station,
i.e., the supply is limited. Unlimited supply can be modeled by selecting
adequate parameters for the policy.

• The buffer behind the last station is infinitely large, BM =∞. Thus this station
cannot be blocked.

• The processing times of the workpieces at each station are generally dis-
tributed.

• The stations may be subject to operation-dependent failures. Times-to-failure
and times-to-repair are generally distributed.

• In the event of blocking, the station finishes the currently processed work-
piece. Then, the workpiece waits at the station until a buffer space or the
following station becomes available (blocking after service).

• Transportation times through the buffer are insignificant or are already in-
cluded in the processing times.

• The performance of the line is measured with respect to the expected through-
put E[TH(X1, . . . ,XM−1)] and is evaluated under steady-state conditions.

Figure 5.1 shows an example of a flow line according to these assumptions. The

61

Station 2

Stochastic effective processing times

Output
Station 1 Station M

…
Determine optimal buffer capacities

Supply

Material flow

??

Output

Station 2

Stochastic effective processing times

Station 1 Station M

…
Determine optimal buffer capacities

Supply

• Unlimited
• (s,q)‐policy
• (r,S)‐policy

Material flow

Output

X1 X2

Figure 5.1.: Flow line under consideration

mathematical formulation of the decision problem is given in Formulation (5.1).

min
M−1

∑
m=1

Xm (5.1a)

s.t.

E [TH (X1, . . . ,XM−1)]≥TH ∗ (5.1b)

Xm ≤Bm , ∀m (5.1c)

Xm ≥0, integer, ∀m (5.1d)

The objective function (5.1a) minimizes the total buffer capacity in the line. Equa-
tion (5.1b) ensures that the goal throughput, TH ∗, is attained. In Constraint (5.1c)
the physical floor limitations are defined as upper bounds on the buffer capacities.
Equation (5.1d) assures that the buffer capacity variables are non-negative and inte-
ger.

5.2.2. Supply of the first station

We assume that the supply of the first station is organized by an order policy which
launches replenishment orders depending on the inventory position in front of the
first station. The inventory position consists of the current inventory level and al-
ready placed orders, which have not been received yet (i.e., these orders did not
arrive at the first station). Each order has a pre-defined lead time of T time units.
Such policies are e.g. described by Silver et al. (1998).
We test two types of inventory policies, the (s,q)-order policy and the (r,S)-order
policy. However, any type of order policy can be used in our approach.
The (s,q)-order policy is based on a reorder point s , a constant order quantity q ,
and a lead time T . Whenever the inventory position of the storage in front of the

62

first station drops to the reorder point s or below, an order of size q is placed.
Consequently, the inventory position must be continuously monitored. Each order
requires a lead time of T periods until delivery.
The (r,S)-order policy, in contrast, is based on periodic review and uses a review
interval r , a lead time T , and an order-up-to-level S . An order is placed every r

periods. Each order requires a lead time of T periods until delivery. The order
quantity is chosen in such a way that the order raises the inventory position to the
order-up-to-level S . In some cases, it is convenient to always order a multiple of a
certain order quantity q (e.g. truck loads) instead of ordering an arbitrary number of
items. In this case, the order quantity is calculated by dS−inventory position

q e · q . This
formula will be used in what follows.
Whenever the inventory in front of the first station is empty, the starting time of the
next workpiece is delayed at least until the next order arrives. Otherwise, processing
at the first station begins when the previous workpiece leaves the station. Depending
on the parameters of the (s,q) or the (r,S)-policy, there is a positive probability that
the first station will starve, which is not possible when assuming unlimited supply.
This model is closely related to the models proposed in inventory literature. Axsäter
and Rosling (1993) show that a flow line can be modeled as a series of installations
which are supplied by order policies and model the interaction of two consecutive
stations. The consideration of the limited supply of the line corresponds to an ad-
ditional installation in front of the line. However, for these models the waiting and
blocking times of the workpieces must be known to determine the lead time of the
order policies. This is not the case under general assumptions because the wait-
ing and blocking times depend on the buffer capacities and this relation cannot be
expressed in a closed form. Therefore, modeling the flow line as a series of in-
stallations which are connected by order policies is not applicable. Consequently,
approaches from the inventory literature cannot be applied.

5.3. Individual lower bounds on the buffer capacities

The BAP is an NP-hard problem (Smith and Cruz, 2005). The feasible region grows
non-linear with the number of stations in the line. This complexity requires solu-
tion approaches that extensively reduce the size of the feasible region. Therefore,
we develop new lower bounds on the optimal individual buffer capacities in order
to reduce the solution space of the BAP.
Weiss and Stolletz (2015) develop aggregate lower bounds (ALB) for groups of

63

Station 2Station 1 Station 3 Station 4 Station 5

Supply

Station 2Station 1

∞
Station 3

Station 2

∞
Station 4

Station 3 Station 5Station 4

Station 3

∞

∞

∞

∞

∞

X1 X2 X3 X4

b1,1,3 b2,1,3

b3,2,3b2,2,3

b3,3,3 b4,3,3

l=1

l=2

l=3

Figure 5.2.: All subsystems of size i = 3 for a line with M = 5 stations

buffers based on the optimization of subsystems of the line. However, using these
aggregate bounds it is not clear how many buffer spaces have to be assigned to
which individual buffer. Individual lower bounds (ILB) restrict the solution space
of the BAP more extensively than ALBs. The idea of generating individual lower
bounds consists of three steps and is outlined in what follows. First, ALBs are de-
rived for each subsystem. The capacities are reallocated based on the ALB within
the subsystem in a second step. In the third step an ILB is determined as the mini-
mum over all subsystems.
Generation of aggregate lower bounds
Figure 5.2 depicts the decomposition of the flow line into subsystems as introduced
in Weiss and Stolletz (2015). The isolated optimization of a subsystem results in
lower bounds that are valid for groups of buffers in the original line, but do not
hold for individual buffers. We therefore refer to these bounds as aggregate lower

bounds (Weiss and Stolletz, 2015).
Each subsystem consists of i stations and is assumed to operate independently of
the remaining stations of the line. Blocking and starvation that may occur in the
original line because of the interaction of stations not included in the subsystem
or the limited supply in front of the first station are neglected. Consequently, the
isolated optimization of a subsystem results in the same or less total buffer capac-
ity than in the entire line (Weiss and Stolletz, 2015). The optimal buffer capacity

64

Table 5.1.: Notation for the calculation of lower bounds

Indices
m = 1, . . . ,M Stations in the flow line
i = 2, . . . ,M −1 Sizes of the subsystems
l = 1, . . . ,M − i +1 Subsystems of size i

Parameters
TH ∗ Goal throughput
Bm Maximum capacity of the buffer behind station m

Real-valued decision variables
E [TH (X1, . . . ,XM−1)] Expected throughput obtained with buffer allocation

X1, . . . ,XM−1

Integer decision variables
Xm Buffer capacity behind station m
bm,l ,i Buffer capacity behind station m in subsystem l of size i

bm
′

m,l ,i Buffer capacity behind station m in the allocation that
contains the individual lower bound for buffer m ′

b∗m,l ,i Individual lower bound for the buffer behind station m ,
originating from subsystem l of size i

of station m in the isolated subsystem l = 1, . . . ,M − i + 1 of size i is denoted by
bm,l ,i . The allocated total buffer capacity in the subsystem, ∑

l+i−2
m=l bm,l ,i , is a lower

bound for the capacities of the respective buffers in the original line, ∑
l+i−2
m=l Xm

(Weiss and Stolletz, 2015), see Table 5.1 for the used notation.
Reallocation of buffer capacities within a subsystem
We calculate the ILB for a buffer m ′ in subsystem l of size i using the ALB

∑
l+i−2
m=l bm,l ,i . The idea is to reallocate the buffer capacities of the ALB such that

the capacity bm
′

m ′,l ,i for buffer m ′ is minimized under consideration of the throughput
constraint (see the mathematical program (5.2)).

b∗m ′,l ,i = min bm
′

m ′,l ,i (5.2a)
l+i−2

∑
m=l

bm
′

m,l ,i ≥
l+i−2

∑
m=l

bm,l ,i (5.2b)

E [TH (bm
′

l ,l ,i , . . . ,b
m ′
l+i−2,l ,i)]≥ TH ∗ (5.2c)

bm
′

m,l ,i ≤ Bm , ∀m = l , . . . , l + i −2 (5.2d)

bm
′

m,l ,i ≥ 0, integer, ∀m (5.2e)

The objective function (5.2a) minimizes the capacity of buffer m ′ in the subsystem
l to obtain an ILB for m ′. In Constraint (5.2b) it is ensured that the total number
of buffer spaces of the candidate allocation is larger or equal to the ALB derived

65

from the optimization of the subsystem l . Additionally, the goal throughput has to
be attained by the expected throughput of the subsystem obtained with allocation
bm

′
l ,l ,i , . . . ,b

m ′
l+i−2,l ,i . This is assured by Constraint (5.2c). Constraints (5.2d) ensure

that the previously defined maximum buffer capacity, Bm , is complied with. In
Constraints (5.2e), it is specified that the buffer capacities are non-negative and
integer. Note that the sum of the ILBs, ∑

l+i−2
m=l b∗m,l ,i , from subsystem l of size i is

in general smaller than the corresponding ALB.

Theorem 5.1. b∗m ′,l ,i is an individual lower bound for the capacity of buffer m ′.

Proof. Weiss and Stolletz (2015) prove that ∑
l+i−2
m=l bm,l ,i is an ALB for the total

capacity of buffers l , . . . , l + i − 2 with l = 1, . . . ,M − i + 1 and i = 1, . . . ,M − 1.
Constraint (5.2b) holds because ∑

l+i−2
m=l bm

′
m,l ,i < ∑

l+i−2
m=l bm,l ,i violates the ALBs.

Constraints (5.2c)-(5.2e) formulate Equations (5.1b)-(5.1d) for the subsystems and
therefore only exclude candidate allocations that are also excluded when calculating
the ALBs using Formulation (5.1). Consequently, the feasible region of the math-
ematical program (5.2) consists of all optimal allocations for subsystem l of size
i . The objective function (5.2a) minimizes the capacity of buffer m ′. Thus, when
solving the mathematical program (5.2), the result will be a feasible buffer alloca-
tion for the subsystem with minimum capacity of buffer m ′, i.e., a lower bound for
the capacity of buffer m ′.

Derivation of minima
To obtain all ILBs from a subsystem l of size i , the mathematical program must be
solved for each buffer m ′ = l , . . . , l + i − 2. Moreover, we calculate the ILBs re-
sulting from different subsystems l = 1, . . . , i−1 of sizes i = 3, . . . ,M −1, starting
with m ′ = 1, l = 1, and i = 3. Consequently, several ILBs are obtained for each
buffer m ′.
Because the different ILBs for a buffer m ′ dominate each other, only the most re-
strictive ILB, i.e. the maximum value, is used for the optimization of the entire line.
The constraints resulting from the ILBs,

max
l ,i

b∗m,l ,i ≤ Xm ∀m, (5.3)

can also be used iteratively in the calculations of the ALBs and ILBs for all buffers
of the subsystems l + 1, l + 2, . . . of size i as well as for the calculations of larger
subsystems i +1, . . . ,M −1.
In general, these bounds can be calculated with any buffer allocation algorithm be-
cause they can be derived by simply optimizing different subsystems of the line.

66

Additionally, such bounds can speed up different heuristic and exact solution ap-
proaches.

5.4. Rule-based local search algorithm

The rule-based local search (RBLS) algorithm solves the BAP under consideration
of the pre-calculated lower bounds on the individual buffer capacities. Thereby, the
RBLS algorithm iteratively applies a generative (see Section 5.4.1) and a sample-
based evaluative method (see Section 5.4.2) as depicted in Figure 5.3 to determine
the optimal solution. The exchange of information on feasibility and optimality
between generative and evaluative method is ensured by feasibility cuts and upper
bounds. This algorithm yields sample-exact buffer capacities, which converge to
the exact optimum for sufficiently large samples.

Sample‐based evaluation

Generate candidate
allocation

Input data

Optimal buffer allocation
or infeasible

Upper
bound

E[TH(X)]
feasible

E[TH(X)]
infeasible

No more candidate
allocations exist

Candidate
allocation exists

Feasibility
cut

Figure 5.3.: Overview of the RBLS algorithm

5.4.1. Generation of candidate allocations

Generating a new buffer candidate allocation is a non-trivial task because of the
complex relation between buffer spaces and throughput, which cannot be expressed
in a closed form under general assumptions. We therefore develop a rule-based
local search for the generation of candidate allocations.
The maximum buffer capacities, B1, . . . ,BM−1, are defined by the user and serve
as a start solution. The generative method systematically generates new candidate

67

allocations under consideration of the pre-calculated lower bounds and the results
of the evaluation. Three cases can be distinguished.

(I) If the evaluation of the current candidate allocation results in a feasible through-
put, a new candidate allocation is generated by reducing the capacity of one
of the buffers by one. To decide which buffer capacity is to be reduced, a
buffer selection criterion uses information from the evaluation. Several crite-
ria have been tested (see Section 5.5.1). The capacity of the buffer selected
by the chosen selection criterion is reduced by one.

(II) If the evaluated allocation is infeasible, the evaluation data of the last fea-
sible allocation is used to determine another buffer, if available, according
to the selection criterion. The respective buffer capacity of the last feasible
allocation is reduced by one.

(III) If the evaluated allocation is infeasible and all its neighborhood candidates
already have been evaluated, an artificial allocation with a total buffer capac-
ity of the current upper bound-1 is selected. We choose the allocation in the
middle of our candidate allocation vector.

Cases (I) and (II) represent the local search of the algorithm. Case (III) represents
a search in the global region to ensure that the algorithm finds the optimal solution
and is not trapped in local optima.
Whenever all candidates have either been evaluated or excluded by bounds or cuts,
i.e., no further candidate allocations exist, the last upper bound is equal to the opti-
mal buffer allocation. If no upper bound was detected during the solution process,
the problem is infeasible.
Despite the rule-based local search, any other algorithm for the generation of can-
didate allocations can be used, if it ensures to generate not only allocations in the
neighborhood of current candidate allocations but also in the entire feasible region.

5.4.2. Sample-based evaluation and exchange of information

The candidate allocations are evaluated by a sampling algorithm with respect to
the throughput which is adapted from Chen and Chen (1993). Sample-based ap-
proaches model the flow of a large number of workpieces throughout the line. The
random processing times, times to failure, and repair times are replaced by sampled
effective processing times, which are generated by Descriptive Sampling (Saliby,
1990a). See Weiss and Stolletz (2015) for a detailed description of the sampling al-
gorithm for the case of unlimited supply. We extend this algorithm to consider (r,S)

68

and (s,q)-order policies modeling the supply of the first station (see Appendix B).
If the throughput, E [TH (X1, . . . ,XM−1)], resulting from the evaluation is lower
than the goal throughput, TH ∗, the evaluated candidate allocation is infeasible.
This candidate allocation as well as all dominated allocations are then excluded by
feasibility cuts which are added to the rule-based local search. An allocation is
dominated if all its buffer capacities are smaller or equal to the respective buffer ca-
pacities in the candidate allocation, see Weiss and Stolletz (2015). The lower bound
on the total buffer capacity is (implicitly) increased if all candidates of a certain
total number of buffer spaces are infeasible, i.e., all corresponding feasibility cuts
have been generated.
If the candidate allocation is feasible, the upper bound on the total buffer capacity
is updated to exclude all allocations with a higher or equal total number of buffer
spaces.

5.5. Numerical Study

The algorithms are implemented in C++. Gurobi 5.0, with default settings and call-
backs, is used to solve the mathematical programs described in Section 5.3. Call-
backs are used to invoke the evaluation routine whenever Gurobi finds an incumbent
solution. If the evaluation routine returns an infeasible throughput, the incumbent
is rejected. The numerical study is performed on an Intel Core i7-3930K with 6x
3.2 GHz and 32 GB RAM.
In all instance types, the total number of workpieces of a sample is set to W =

250,000 and the warm-up phase is selected as W0 = 2,000. We generate 10 in-
dependent samples for each configuration. The detailed description of the test in-
stances is given in the respective sections.
We first compare different selection criteria as part of the RBLS algorithm in Sec-
tion 5.5.1. Section 5.5.2 investigates the performance of the RBLS algorithm and
the ILBs. In Section 5.5.3, the impact of the order policies on the optimal buffer
allocation is evaluated.

5.5.1. Impact of different buffer selection criteria

Table 5.2 shows ten different selection criteria that were implemented within the
RBLS algorithm. Both, criteria from literature and new criteria are tested.

69

Table 5.2.: Average computation times with different selection criteria (10 samples)

Bottleneck last Bottleneck middle

Av. comp. Dev. from Av. comp. Dev. from
Criterion time (s) best (%) time (s) best (%)

Vergara and Kim (2009)
Number of blocking events 2616 1 1496 3
Blocking time 2581 − 1458 −
Number of starvation events 2696 5 1519 4
Starvation time 2597 1 1459 −
Number of blocking and star- 2621 2 1501 3
vation events

Blocking and starvation time 2727 6 1531 5

New
Net blocking time 2909 6 1531 5
Net starvation time 2644 2 1486 2

Li and Meerkov (2009)
Equal protection criterion 3375 31 1933 33
Buffer half-full criterion 2899 12 1696 16

Criteria proposed by Vergara and Kim (2009)
Vergara and Kim (2009) propose several criteria based on blocking and starvation.
The number of blocking events at a station m and the blocking time of a station
m respectively, are related to the buffer behind station m. In contrast, starvation
is caused by the buffer in front of station m. Therefore, the number of starvation

events and the starvation time, respectively, are related to the upstream buffer, i.e.
the buffer behind station m−1. The number of blocking and starvation events and
the blocking and starvation time with respect to buffer m respectively, are a combi-
nation of the above blocking and starvation criteria. In all cases, the capacity of the
buffer with the lowest value of the criterion is decreased by one.
New criteria
Additionally, we test two criteria, which are also based on blocking and starvation
times but have not been reported in literature yet. The net blocking time criterion
associated with the buffer behind station m only considers blocking times that are
caused by this buffer. This means that blocking times are only considered if station
m + 1 is not blocked at the same time. The net starvation time criterion analo-
gously considers only starvation times of station m if station m−1 is not starved at
the same time.

70

Criteria proposed by Li and Meerkov (2009)
The equal protection criterion described in Li and Meerkov (2009) is based on the
observation that buffer allocations with equal protection of station m against block-
ing and starvation are good candidates for the optimal allocation. As a consequence,
Li and Meerkov (2009) propose to calculate the indicator E [WIPm]− (Xm+1−
E [WIPm+1]) ∀m = 1, . . . ,M −2 where E [WIPm] is the expected work-in-process
(WIP) in the buffer behind station m. This measures the balance of the expected
WIP before station m+1, E [WIPm], and the expected number of free buffer spaces
behind station m+1, Xm+1−E [WIPm+1]. The idea is to enable a smooth flow by
providing sufficient space behind the station for the expected amount of material
in front of the station. Li and Meerkov (2009) describe the application of this cri-
terion for the case of maximizing the throughput, subject to a constant total buffer
capacity. We adapt the procedure for the problem of capacity minimization subject
to a throughput constraint as follows. Let m ′ be the station with the largest abso-
lute value of the indicator. If the value of the indicator is positive, the capacity of
the buffer behind station m ′− 1 is decreased by one, because the expected WIP
in front of the station is too high compared to the expected number of free buffer
spaces. Otherwise, the capacity of the buffer behind station m ′ is decreased by one,
because the expected number of free buffer spaces is too high compared to the ex-
pected WIP in front of the station.
The buffer half-full criterion arises from the observation that a full buffer protects
best against starvation of the succeeding station, while an empty buffer protects best
against blocking of the preceding station (Li and Meerkov, 2009). Thus, a buffer
which is on average half-full is a compromise between the two extreme cases.

To compare these criteria, we use a line with M = 7 stations, unlimited supply, and
exponentially distributed processing times with a base processing rate of 7 units per
time. The bottleneck is located either at the station in the middle of the line or at the
last station of the line and has a processing rate of 6 units per time. The capacity of
each buffer is limited to Bm = 20. The goal throughput is set to 5.776.
Table 5.2 shows the average computation times (resulting from 10 different sam-
ples) of the RBLS algorithm in combination with the different criteria (2nd and 4th
column). Note that the given computation times are generated with the RBLS al-
gorithm in combination with ILBs. We have chosen the lowest computation times
(bold) as the reference values for the calculations of the deviations in columns 3 and
5 for each type of instance. The lowest computation times for both bottleneck loca-
tions are obtained by the blocking time criterion. For a bottleneck in the middle of

71

the line, the starvation time criterion results in the same average computation times.
All other criteria containing blocking or starvation times also result in low com-
putation times with only 1-6% deviation compared to the blocking time criterion.
Consequently, the RBLS algorithm can be combined with any of these criteria. In
contrast, the buffer half-full criterion and the equal protection criterion result in a
rather poor performance. In the following experiments, we apply the blocking time
criterion of Vergara and Kim (2009). However, the superiority of certain selection
criteria may depend on the structure of the instance chosen.

5.5.2. Impact of individual bounds and the rule-based local
search algorithm

We first analyze the RBLS algorithm (based on the blocking time criterion) for
unlimited supply. This allows for a comparison with the results of the Benders
Decomposition in Weiss and Stolletz (2015). Both optimization algorithms are ex-
ecuted with ALBs (proposed by Weiss and Stolletz, 2015) and the new ILBs (as
developed in Section 5.3). The experiments are based on the numerical study of
Weiss and Stolletz (2015). All instances investigate flow lines with M = 7 stations.
The capacity of each buffer is limited to Bm = 20. The bottleneck is located either
at the station in the middle of the line or at the last station of the line. We test in-
stances with Erlang-k, Cox-2, and exponentially distributed processing times. Table
5.3 shows the parameters which change for the different distributions.

Table 5.3.: Parameter settings of the test cases

Processing time distribution Erlang-k Cox-2 Exponential

Base processing rate 0.5 0.5 7.0
Processing rate of bottleneck 0.45 0.45 6.0
Goal throughput TH ∗ 0.405 0.405 5.776
Squared coefficient of variation (SCV) 0.25; 0.5 1.0; 2.0 1.0

Table 5.4 presents the average computation times resulting from 10 different sam-
ples for each of the different types of instances. The first three columns define the
instance type. Column four contains the average computation time of the Benders
Decomposition with ALBs as proposed in Weiss and Stolletz (2015). The fifth col-
umn depicts the results of the Benders Decomposition extended by the ILBs. The
sixth and the seventh column consider the average computation times of the RBLS

72

Table 5.4.: Performance comparison of the solution methods (average of 10 samples
per test case)

Average computation time (min)
Bottle- Benders Decomposition RBLS algorithm

Distribution SCV neck ALB ILB ALB ILB % eval.

Exponential 1.0 middle 100 62 45 24 0.67
Exponential 1.0 last 125 76 81 43 1.11
Erlang-4 0.25 middle < 5 < 5 < 5 < 5 0.03
Erlang-4 0.25 last < 5 < 5 < 5 < 5 0.03
Erlang-2 0.5 middle < 5 < 5 < 5 < 5 0.03
Erlang-2 0.5 last < 5 < 5 6 < 5 0.04
Cox-2 1.0 middle 30 17 16 10 0.23
Cox-2 1.0 last 40 22 20 11 0.26
Cox-2 2.0 middle 101 74 29 23 0.65
Cox-2 2.0 last 775 375 104 76 2.02

algorithm with ALBs and with ILBs respectively. The eigth column shows the pro-
portion of evaluated allocations of the RBLS algorithm with ILBs from a total of
216 = 4084101 possible allocations.
The results show that ILBs significantly improve the computation times of both
the Benders Decomposition and the RBLS algorithm. Both algorithms solve the
instances with Erlang-k distribution within a few minutes. For instances with ex-
ponentially or Cox-2-distributed processing times, a reduction of more than 65% of
the computation time is achieved. The most difficult types of instances are those
with Cox-2 distributed processing times, an SCV of 2.0, and a bottleneck at the end
of the line. The Benders Decomposition with ALBs takes on average 775 minutes
to solve one instance of this type. With ILBs this time is reduced to 375 minutes.
The RBLS algorithm with ALBs takes on average 104 minutes. This can be reduced
to 76 minutes when applying ILBs.
The comparison of the computation times of the Benders Decomposition and the
RBLS algorithm, independently of the considered lower bounds, reveal that the
RBLS algorithm improves the computation times of the difficult instances. In par-
ticular, the instances with Cox-2 distributed processing times with an SCV of 2.0
and a bottleneck at the end are solved within 375 minutes with a Benders Decom-
position (with ILBs) and this is reduced to 76 minutes by the RBLS algorithm. The
computation times of instances with Erlang-k-distributed processing times remain
roughly the same. The required computation time is only of the order of a few
minutes and therefore acceptable for both approaches. The number of evaluations

73

16
7 16
6 16
5

0

20

40

60

80

100

120

140

94
3

94
4

94
5

94
6

94
7

94
8

94
9

95
0

95
1

95
2

95
3

95
4

95
5

95
6

95
7

95
8

95
9

96
0

96
1

96
2

96
3

96
4

96
5

96
6

96
7

96
8

96
9

97
0

97
1

97
2

97
3

97
4

97
5

97
6

97
7

97
8

97
9

98
0

98
1

98
2

98
3

98
4

98
5

98
6

98
7

98
8

98
9

99
0

99
1

99
2

99
3

99
4

99
5

99
6

99
7

99
8

99
9

10
00

Lead time T

To
ta
l b
uf
fe
r c
ap

ac
ity

Reorder point s

Figure 5.4.: Required total buffer capacity depending on the reorder point and the
lead time for q = 200

during the execution of the RBLS algorithm with ILBs is very small with a maxi-
mum of 2% of the candidate allocations in the case of Cox-2-distributed processing
times, an SCV of 2.0, and a bottleneck at the end of the line.

5.5.3. Impact of supply patterns

To investigate the impact of the order policies, we first optimize the total buffer ca-
pacity for a line supplied by a given (s,q)-order policy with varying reorder points s
and lead times T . The order quantity is set to q = 200 because preliminary studies
revealed that the order quantity only has a minor influence on the optimal buffer
allocation. Secondly, the optimal total buffer capacity for a line supplied by a given
(r,S)-order policy with varying review intervals r , order-up-to levels S , and lead
times T is investigated. Finally, we present a study on the impact of the order poli-
cies on the computational performance.
In this section, we use an instance with exponentially distributed processing times
and a bottleneck at the end of the line. This line has been described in the previ-
ous experiment. The maximum capacity, Bm , is set to the number of workpieces,
Bm = 250,000. This corresponds to infinite buffers, i.e., we do not restrict the
buffer capacities.
Figure 5.4 shows the optimal total buffer capacities for (s,q)-policies with s =

943, . . . ,1000 and T = 165, . . . ,167. Thus a total of 174 test cases is optimized.
It can be observed that the required total buffer capacity increases exponentially
with increasing T and decreasing s respectively. Moreover, there are certain values
of s and T respectively for which the total buffer capacity cannot compensate the

74

lack of material induced by the pre-defined parameters of the order policy. Hence,
there exist no feasible buffer allocations with respect to the goal throughput. The
figure includes no bars for these cases. Out of the 174 test cases, 23 cases are in-
feasible. The larger the lead time T , the larger must be the reorder point s selected
in order to attain the goal throughput. If s is chosen large or T is chosen small
enough, this corresponds to an unlimited supply, i.e., the optimal buffer capacity for
the case of limited supply converges to the optimal solution with unlimited supply
for increasing s and decreasing T respectively.

Table 5.5.: Optimal buffer allocations for selected (s,q)-policies with q = 200

s T ∑Xm X1 X2 X3 X4 X5 X6 s T ∑Xm X1 X2 X3 X4 X5 X6

1000 165 58 8 8 9 9 10 14 944 165 100 34 10 9 9 14 24
1000 166 58 8 8 9 9 10 14 951 166 96 25 16 9 9 13 24
1000 167 58 8 8 9 9 10 14 957 167 104 39 10 7 10 12 26

Table 5.5 depicts the resulting buffer allocations for selected (s,q)-order policies.
The first group (columns 1 to 9) includes parameter choices that reflect unlimited
supply. The allocations for unlimited supply (s = 1000) remain the same for vary-
ing lead time T . The second group (columns 10 to 18) corresponds to the lowest
reorder points with a feasible solution for different lead times T . It can be seen that
most of the capacity is located in front of the line and at the bottleneck, i.e., at the
end of the line. The reason for adding buffer capacities in front of the line is that
the lack of material induced by the limited supply is compensated by the additional
buffer capacities. These capacities allow workpieces to already enter the line which
subsequently triggers earlier replenishment.
Figures 5.5 and 5.6 show the optimal total buffer capacities for (r,S)-policies with
T = 165, . . . ,167 and S = 1143, . . . ,1200 for r = 35 and r = 40 respectively. Thus,
the buffer allocations for 348 test cases are optimized. The order quantity is set to
q = 1, i.e. less than truck loads are allowed. Similarly to the (s,q)-policy, the total
buffer capacity increases with increasing r , increasing T , and decreasing S . This
quickly leads to infeasibility. Out of the 348 test cases, 78 cases are infeasible.
Moreover, if r and T are chosen small enough and S is chosen large enough, un-
limited supply is obtained.

75

16
7 16
6 16
5

0

20

40

60

80

100

120

140
11

43
11

44
11

45
11

46
11

47
11

48
11

49
11

50
11

51
11

52
11

53
11

54
11

55
11

56
11

57
11

58
11
59

11
60

11
61

11
62

11
63

11
64

11
65

11
66

11
67

11
68

11
69

11
70

11
71

11
72

11
73

11
74

11
75

11
76

11
77

11
78

11
79

11
80

11
81

11
82

11
83

11
84

11
85

11
86

11
87

11
88

11
89

11
90

11
91

11
92

11
93

11
94

11
95

11
96

11
97

11
98

11
99

12
00

Lead time T

To
ta
l b
uf
fe
r c
ap

ac
ity

Order‐up‐to level S

Figure 5.5.: Required total buffer capacity depending on the lead time and the order-
up-to level for r = 35

16
7 16
6 16
5

0

20

40

60

80

100

120

140

11
43

11
44

11
45

11
46

11
47

11
48

11
49

11
50

11
51

11
52

11
53

11
54

11
55

11
56

11
57

11
58

11
59

11
60

11
61

11
62

11
63

11
64

11
65

11
66

11
67

11
68

11
69

11
70

11
71

11
72

11
73

11
74

11
75

11
76

11
77

11
78

11
79

11
80

11
81

11
82

11
83

11
84

11
85

11
86

11
87

11
88

11
89

11
90

11
91

11
92

11
93

11
94

11
95

11
96

11
97

11
98

11
99

12
00

Lead time T

To
ta
l b
uf
fe
r c
ap

ac
ity

Order‐up‐to level S

Figure 5.6.: Required total buffer capacity depending on the lead time and the order-
up-to level for r = 40

76

Table 5.6.: Optimal buffer allocations for selected (r,S)-policies with r = 35

S T ∑Xm X1 X2 X3 X4 X5 X6 S T ∑Xm X1 X2 X3 X4 X5 X6

1200 165 58 8 8 9 9 10 14 1144 165 127 49 7 11 13 8 39
1200 166 58 8 8 9 9 10 14 1151 166 112 35 11 13 15 17 21
1200 167 58 7 9 9 9 10 14 1158 167 107 29 21 10 8 11 28

Table 5.6 presents the resulting buffer allocations for selected (r,S)-order policies
with r = 35. The first group (columns 1 to 9) includes parameter choices that re-
flect unlimited supply. The allocations for unlimited supply (S = 1200) remain
almost the same for varying lead times T . The second group (columns 10 to 18)
corresponds to the lowest order-up-to-level S with a feasible solution for different
lead times T . It can be observed that the structure of the optimal allocations is sim-
ilar to the case of the (s,q)-order policies.

Table 5.7.: Impact of neglecting limited supply

s T Dev. from goal
throughput (%)

944 165 -1.08
951 166 -1.03
957 167 -1.04

(a) (s,q)-order policies

S T Dev. from goal
throughput (%)

1144 165 -1.16
1151 166 -1.08
1158 167 -1.04

(b) (r,S)-order policies (r = 35)

The impact of neglecting the limited supply is illustrated in Table 5.7. The optimal
allocations for the cases of unlimited supply from Tables 5.5 and 5.6 are evaluated
under consideration of the order policies given in columns 1 and 2. Column 3 shows
the deviation (in %) of the resulting throughput from the goal throughput. It can be
seen that this deviation is larger than 1% in all cases. Hence, neglecting limited
supply may result in buffer allocations that do not fulfill the pre-defined throughput
goals. These results clearly demonstrate the need for solution approaches consider-
ing the supply patterns in front of the first station.
Figure 5.7 displays the impact of the order policies on the computation time. The
computation times are obtained from an optimization run with maximum capacity
Bm = 20. Each point in the figure corresponds to a buffer optimization with given
policy parameters. These policies are combined into groups with respect to the lead

77

0

50

100

150

200

250

300

350

400

450

500

58 60 62 64 66 68 70

C
o
m
p
u
ta
ti
o
n
 t
im

e
 (
m
in
)

Total buffer capacity

T=165 (s,q)

T=166 (s,q)

T=165, r=35 (r,S)

T=166, r=35 (r,S)

T=165, r=40 (r,S)

T=166, r=40 (r,S)

Figure 5.7.: Computation times in relation to the total buffer capacity of the optimal
allocation

time T . The reorder point s and the order-up-to level S , respectively, determine the
total buffer capacity on the x-axis, i.e., they are only implicitly considered in the
figure. With changing parameters, the total buffer capacity increases or decreases
as pointed out in the previous experiments. Therefore, Figure 5.7 shows the com-
putation times in relation to different optimal total buffer capacities. The different
curves of computation times induced by the (s,q)-order policies and the (r,S)-order
policies do not differ significantly, which supports the observation that the policy
parameters itself have low impact on the computation time. Moreover, it can be
observed that the computation time increases with the optimal total buffer capacity.

5.6. Conclusion and further research

In this paper, we develop individual lower bounds for the buffer capacities in flow
lines. These bounds are derived by dividing the original system into subsystems
and exploiting the fact that the subsystems are easier to solve. They can be applied
in combination with any optimization algorithm for the BAP.
Furthermore, we develop a rule-based local search algorithm that uses the bounds
to optimally and efficiently solve the BAP with limited supply. This algorithm iter-
atively decreases the total buffer capacity based on the results of throughput evalu-
ations. We compare several types of criteria to select the buffer whose capacity is
decreased.

78

Our numerical study shows that the application of both the individual bounds and
the rule-based local search algorithm leads to substantial reductions in computation
time. In addition, the numerical study reveals a significant impact of the limited
supply on the optimal buffer capacity. Depending on the policy parameters, the op-
timal total buffer capacity increases exponentially. Thus, unless supplying the line
with infinite material is not expensive, this work shows that the BAP cannot neglect
the order policy governing the release of parts into the system.
Further research should extend this solution approach to take into account more
complex systems, such as flow lines with closed loops or several product types. In
addition, it is desirable to develop a model which allows for simultaneous optimiza-
tion of the parameters for the order policy and the buffer capacities at any station of
the line.

Acknowledgments: This research was supported in part by the Julius-Paul-Stiegler-
Gedächtnis-Stiftung.

79

A. Detailed results for Erlang-k and
Cox-2 distributed instances

Table A.1.: Detailed results (Cox-2 distribution, S = 5)

Sample SCV
Optimal
allocation

Max.
dev.
from
TH ∗

(%)

Initial bounds
i = 2 i = 3 i = 4

b1 b2 b3 b4
2
∑
j=1

bj
3
∑
j=2

bj
4
∑
j=3

bj
3
∑
j=1

bj
4
∑
j=2

bj

1,2 1.0 7,8,8,6 −0.22 3 5 5 3 12 13 12 21 21
3,7 1.0 6,8,9,6 −0.12 3 5 5 3 12 13 12 21 21
4 1.0 6,9,8,6 −0.12 3 5 5 3 12 13 12 21 21
5 1.0 7,7,10,6 0.04 3 5 5 3 12 13 12 21 21

6,9,10 1.0 5,10,10,5 0.12 3 5 5 3 12 13 12 21 21
8 1.0 5,10,8,6 −0.21 3 5 4 3 12 12 11 21 20

1 2.0 12,18,18,13 0.01 6 9 9 5 24 26 24 44 43
2 2.0 11,18,18,13 −0.26 5 9 9 5 24 26 24 43 43
3 2.0 13,20,17,12 0.12 6 9 9 5 25 27 25 44 44
4 2.0 11,18,20,12 −0.09 5 9 9 5 24 26 24 43 43
5 2.0 13,19,15,14 −0.17 5 9 9 5 24 26 24 43 43
6 2.0 13,17,18,13 −0.02 5 9 9 6 24 26 24 43 44
7 2.0 13,18,18,12 0.00 6 9 9 5 25 27 24 44 44
8 2.0 14,17,18,12 −0.05 5 9 9 6 24 26 25 43 44
9 2.0 13,16,20,13 0.09 5 9 9 5 24 26 25 44 44

10 2.0 12,19,17,14 0.16 5 9 9 5 24 26 24 44 43

80

Table A.2.: Detailed results1(Erlang-k distribution, S = 7)

Sample SCV
Optimal
allocation

Max.
dev.
from
TH ∗

(%)

Initial bounds
i = 2 i = 3 i = 4 i = 5 i = 6

b1 b2 b3 b4 b5 b6
2
∑
j=1

bj
3
∑
j=2

bj
4
∑
j=3

bj
5
∑
j=4

bj
6
∑
j=5

bj
3
∑
j=1

bj
4
∑
j=2

bj
5
∑
j=3

bj
6
∑
j=4

bj
4
∑
j=1

bj
5
∑
j=2

bj
6
∑
j=3

bj
5
∑
j=1

bj
6
∑
j=2

bj

1,4,10 0.25 1,2,2,3,1,1 0.21 1 1 1 1 1 1 2 3 3 3 2 4 5 5 4 6 6 6 8 8
2,5,7 0.25 1,2,2,2,1,2 0.14 1 1 1 1 1 1 2 3 3 3 2 4 5 5 4 6 6 7 8 8
3,6 0.25 1,1,3,3,1,1 −0.05 1 1 1 1 1 1 2 3 3 3 2 4 5 5 4 6 6 6 8 8
8,9 0.25 1,1,3,2,2,1 0.26 1 1 1 1 1 1 2 3 3 3 2 4 5 5 4 7 6 7 8 8

1,3,4,7-10 0.5 2,5,4,4,4,3 −0.00 1 1 2 2 1 1 4 6 6 6 4 9 10 10 9 14 14 14 18 18
2 0.5 2,5,5,4,3,3 −0.04 1 1 2 2 1 1 4 6 6 5 4 9 10 10 9 14 14 14 18 18
5 0.5 4,3,4,5,4,2 −0.09 1 1 2 2 1 1 4 5 6 5 4 9 10 10 9 14 14 14 18 18
6 0.5 2,4,5,5,4,2 0.03 1 1 2 2 1 1 4 6 6 6 4 9 10 10 9 14 14 14 18 18

1Tight bounds are marked in bold

81

Table A.3.: Detailed results (Cox-2 distribution, S = 7)

Sample SCV
Optimal
allocation

Max.
dev.
from
TH ∗

(%)

Initial bounds
i = 2 i = 3 i = 4 i = 5 i = 6

b1 b2 b3 b4 b5 b6
2
∑
j=1

bj
3
∑
j=2

bj
4
∑
j=3

bj
5
∑
j=4

bj
6
∑
j=5

bj
3
∑
j=1

bj
4
∑
j=2

bj
5
∑
j=3

bj
6
∑
j=4

bj
4
∑
j=1

bj
5
∑
j=2

bj
6
∑
j=3

bj
5
∑
j=1

bj
6
∑
j=2

bj

1 1.0 6,7,10,12,7,5 0.11 3 3 5 5 3 3 9 12 13 12 9 19 21 21 20 29 30 30 38 38
2 1.0 7,7,8,10,9,6 0.05 3 3 5 5 3 3 9 12 13 12 9 20 21 21 20 29 29 29 38 38
3 1.0 6,7,10,10,7,6 0.03 3 3 5 5 3 3 9 12 13 12 9 20 21 21 19 29 30 29 38 38
4 1.0 6,7,10,10,7,6 0.03 3 3 5 5 3 3 9 12 13 12 9 20 21 21 19 29 29 29 38 38
5 1.0 6,7,11,9,7,6 −0.04 3 3 5 5 3 3 9 12 13 12 9 19 21 21 20 29 29 29 38 38
6 1.0 7,8,8,9,8,7 0.06 3 3 5 5 3 3 9 12 13 12 9 19 21 21 20 29 30 29 38 38
7 1.0 6,7,11,9,7,6 −0.04 3 3 5 5 3 3 9 12 13 12 9 20 21 21 19 29 29 29 38 38
8 1.0 6,8,9,10,7,6 0.01 3 3 5 5 3 3 9 12 13 12 9 19 21 21 20 29 29 29 38 38
9 1.0 5,8,10,10,6,8 0.04 3 3 5 5 3 3 9 12 13 12 9 19 21 21 20 29 30 29 38 38
10 1.0 6,7,10,9,7,7 −0.04 3 3 5 5 3 3 9 12 13 12 9 19 21 21 19 29 29 29 38 38

1 2.0 13,18,18,19,16,13 −0.13 5 5 9 9 5 5 18 24 26 24 18 40 43 43 41 60 61 61 79 78
2 2.0 13,16,19,20,15,14 −0.09 6 5 9 9 5 6 18 24 26 24 18 40 43 43 41 60 61 61 78 79
3 2.0 13,16,19,20,17,13 0.07 6 6 9 9 6 6 18 25 26 25 18 41 43 44 41 61 62 62 80 80
4 2.0 12,18,20,19,14,14 −0.15 5 6 9 9 5 5 18 24 26 24 18 41 44 43 40 61 61 61 79 79
5 2.0 13,15,20,19,16,13 −0.20 6 5 9 9 5 5 18 24 25 24 18 40 42 43 40 60 61 60 79 78
6 2.0 12,16,19,20,18,13 0.03 5 6 9 9 5 5 18 25 27 25 18 41 44 44 41 61 62 62 80 80
7 2.0 13,15,19,19,16,13 −0.36 5 5 9 9 5 5 18 23 26 24 18 39 43 43 40 60 60 60 78 78
8 2.0 11,17,20,20,16,13 −0.09 5 6 9 9 5 6 18 24 26 24 19 40 43 43 41 60 61 61 79 80
9 2.0 12,16,20,20,16,13 −0.05 5 5 9 9 5 5 18 24 26 24 18 40 43 43 41 60 61 61 79 79
10 2.0 12,17,20,19,16,13 −0.07 6 5 9 9 6 6 18 24 26 24 18 40 43 43 41 61 61 61 79 79

82

B. Sample-based evaluation
algorithms for lines with limited
supply

Algorithms 3 and 4 present the evaluation for flow lines with (s,q)-order policies
and (r,S)-order policies, respectively. Table B.1 contains the notation.

Table B.1.: Notation for the throughput evaluation

Indices

w = 1, . . . ,W Workpieces

k = 1, . . . ,dWq e Orders in the (s,q)-policy

l Control variable for the review intervals

k Control variable for the orders in the (r,S)-policy

Parameters

s Reorder point

q Order quantity

r Review interval

S Order-up-to level

T Lead time of an order

dm,w Sampled effective processing time of workpiece w at station m

W0 Number of workpieces in the warm-up

Decision variables

XSm,w Start time of workpiece w at station m

XFm,w Departure time of workpiece w from station m

ArrivalTimek Arrival time of order k

Quantityk Order quantity of order k

Performance measures

E [TH (X1, . . . ,XM−1)] Throughput resulting from allocation X1, . . . ,XM−1

83

1: XS1,1 = T
2: for all stations m <M do
3: XFm,1 = XSm,1 +dm,1
4: XSm+1,1 = XFm,1
5: end for
6: XFM ,1 = XSM ,1 +dM ,1
7: for all workpieces w > 1 do
8: for all stations m <M do
9: if m = 1 then

10: i = d sq e
11: if w ≤ i · q then
12: XS1,w = max{XF1,w−1,T}
13: else
14: k = dwq e
15: XS1,w = max{XF1,w−1,XS1,(k−1)·q−s +T}
16: end if
17: else
18: XSm,w = max{XFm,w−1,XFm−1,w}
19: end if
20: if Xm = 0 then
21: XFm,w = max{XSm,w +dm,w ,XFm+1,w−1}
22: else if Xm ≥ w then
23: XFm,w = XSm,w +dm,w

24: else
25: XFm,w = max{XSm,w +dm,w ,XSm+1,w−Xm}
26: end if
27: end for
28: XSM ,w = max{XFM ,w−1,XFM−1,w}
29: XFM ,w = XSM ,w +dM ,w

30: end for
31: E [TH (X1, . . . ,XM−1)] =

W−W0
XFM ,W−XFM ,W0

Algorithm 3: Sample-based throughput evaluation with an (s,q)-order policy

84

1: l = 1, k = 1
2: InventoryPosition = dSq e · q
3: InventoryLevel = dSq e · q
4: ArrivalTime1 = T
5: Quantity1 = dSq e · q
6: XS1,1 = T
7: for all stations m <M do
8: XFm,1 = XSm,1 +dm,1
9: XSm+1,1 = XFm,1

10: end for
11: XFM ,1 = XSM ,1 +dM ,1
12: for all workpieces w > 1 do
13: for all stations m <M do
14: if m = 1 then
15: if InventoryLevel > 0 then
16: XS1,w = XF1,w−1
17: InventoryPosition −= 1
18: InventoryLevel −= 1
19: else
20: XS1,w = max{XF1,w−1,ArrivalTimek}
21: InventoryLevel += Quantityk −1
22: k+= 1
23: end if
24: else
25: XSm,w = max{XFm,w−1,XFm−1,w}
26: end if

Algorithm 4: Sample-based throughput evaluation with an (r,S)-order policy

85

27: if Xm = 0 then
28: XFm,w = max{XSm,w +dm,w ,XFm+1,w−1}
29: else if Xm ≥ w then
30: XFm,w = XSm,w +dm,w

31: else
32: XFm,w = max{XSm,w +dm,w ,XSm+1,w−Xm}
33: end if
34: if m = 1 then
35: if l · r ≤ XF1,w and InventoryPosition < S then
36: ArrivalTime.add(l · r +T)
37: Quantity.add(dS−InventoryPosition

q e · q)

38: InventoryPosition+= dS−InventoryPosition
q e · q

39: l+= 1
40: end if
41: if ArrivalTimek ≤ XF1,w then
42: InventoryLevel+= Quantityk
43: k+= 1
44: end if
45: end if
46: end for
47: XSM ,w = max{XFM ,w−1,XFM−1,w}
48: XFM ,w = XSM ,w +dM ,w

49: end for
50: E [TH (X1, . . . ,XM−1)] =

W−W0
XFM ,W−XFM ,W0

Sample-based throughput evaluation with an (r,S)-order policy (continued)

86

Bibliography

Alden, J. M., L. D. Burns, T. Costy, R. D. Hutton, C. A. Jackson, D. S. Kim, K. A.
Kohls, J. H. Owen, M. A. Turnquist, and D. J. V. Veen (2006). General Motors
increases its production throughput. Interfaces 36(1), 6–25.

Alfieri, A. and A. Matta (2012). Mathematical programming formulations for ap-
proximate simulation of multistage production systems. European Journal of

Operational Research 219(3), 773–783.

Alfieri, A. and A. Matta (2013). Mathematical programming time-based decompo-
sition algorithm for discrete event simulation. European Journal of Operational

Research 231(3), 557–566.

Alfieri, A., A. Matta, and G. Pedrielli (2015). Mathematical programming models
for joint simulation-optimization applied to closed queueing networks. Annals of

Operations Research 231(1), 105–127.

Alon, G., D. P. Kroese, T. Raviv, and R. Y. Rubinstein (2005). Application of
the cross-entropy method to the buffer allocation problem in a simulation-based
environment. Annals of Operations Research 134(1), 137–151.

Axsäter, S. and K. Rosling (1993). Installation vs. echelon stock policies for multi-
level inventory control. Management Science 39(10), 1274–1280.

Bai, L. and P. A. Rubin (2009). Combinatorial benders cuts for the minimum toll-
booth problem. Operations Research 57(6), 1510–1522.

Bekker, J. (2013). Multi-objective buffer space allocation with the cross-entropy
method. International Journal of Simulation Modelling 12(1), 50–61.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik 4(1), 238–252.

Burman, M. H., S. B. Gershwin, and C. Suyematsu (1998). Hewlett-Packard uses
operations research to improve the design of a printer production line. Inter-

faces 28(1), 24–36.

X

Buzacott, J. A. (1971). The role of inventory banks in flow-line production systems.
International Journal of Production Research 9(4), 425–436.

Buzacott, J. A. and J. G. Shanthikumar (1993). Stochastic models of manufacturing

systems (4 ed.). Englewood Cliffs, NJ, USA: Prentice Hall.

Caramanis, M. (1987). Production system design: A discrete event dynamic sys-
tem and generalized benders’ decomposition approach. International Journal of

Production Research 25(8), 1223–1234.

Chan, W. K. V. and L. Schruben (2008). Optimization models of discrete-event
system dynamics. Operations Research 56(5), 1218–1237.

Chen, J. C. and L. Chen (1993). A fast simulator for tandem queueing systems.
Computers and Industrial Engineering 24(2), 267–280.

Chiang, S.-Y., C.-T. Kuo, and S. M. Meerkov (2000). DT-bottlenecks in serial
production lines: Theory and application. IEEE Transactions on Robotics and

Automation 16(5), 567–580.

Codato, G. and M. Fischetti (2006). Combinatorial benders’ cuts for mixed-integer
linear programming. Operations Research 54(4), 756–766.

Colledani, M., M. Ekvall, T. Lundholm, P. Moriggi, A. Polato, and T. Tolio (2010).
Analytical methods to support continuous improvements at Scania. International

Journal of Production Research 48(7), 1913–1945.

Cooke, R. M., A. Bosma, and F. Härte (2005). A practical model of Heineken’s
bottle filling line with dependent failures. European Journal of Operational Re-

search 164(2), 491–504.

Dallery, Y. and S. B. Gershwin (1992). Manufacturing flow line systems: a review
of models and analytical results. Queueing Systems 12(1-2), 3–94.

Demir, L., S. Tunali, and D. T. Eliiyi (2014). The state of the art on buffer allocation
problem: A comprehensive survey. Journal of Intelligent Manufacturing 25(3),
371–392.

Demir, L., S. Tunali, and A. Løkketangen (2011). A tabu search approach for buffer
allocation in production lines with unreliable machines. Engineering Optimiza-

tion 43(2), 213–231.

XI

Diamantidis, A. C. and C. T. Papadopoulos (2004). A dynamic programming algo-
rithm for the buffer allocation problem in homogeneous asymptotically reliable
serial production lines. Mathematical Problems in Engineering 3, 209–223.

Dolgui, A., A. Eremeev, A. Kolokolov, and V. Sigaev (2002). A genetic algorithm
for the allocation of buffer storage capacities in a production line with unreliable
machines. Journal of Mathematical Modelling and Algorithms 1(2), 89–104.

Dolgui, A., A. Eremeev, M. Y. Kovalyov, and V. Sigaev (2013). Complexity
of buffer capacity allocation problems for production lines with unreliable ma-
chines. Journal of Mathematical Modelling and Algorithms in Operations Re-

search 12(2), 155–165.

Dolgui, A., A. V. Eremeev, and V. S. Sigaev (2007). HBBA: Hybrid algorithm for
buffer allocation in tandem production lines. Journal of Intelligent Manufactur-

ing 18(3), 411–420.

Enginarlar, E., J. Li, and S. M. Meerkov (2005). How lean can lean buffers be? IIE

Transactions 37(4), 333–342.

Enginarlar, E., J. Li, S. M. Meerkov, and R. Q. Zhang (2002). Buffer capacity
for accommodating machine downtime in serial production lines. International

Journal of Production Research 40(3), 601–624.

Gershwin, S. B. and J. E. Schor (2000). Efficient algorithms for buffer space allo-
cation. Annals of Operations Research 93(1-4), 117–144.

Gürkan, G. (2000). Simulation optimization of buffer allocations in production lines
with unreliable machines. Annals of Operations Research 93(1-4), 177–216.

Han, M.-S. and D.-J. Park (2002). Optimal buffer allocation of serial production
lines with quality inspection machines. Computers and Industrial Engineer-

ing 42(1), 75–89.

Helber, S. (2001). Cash-flow-oriented buffer allocation in stochastic flow lines.
International Journal of Production Research 39(14), 3061–3083.

Helber, S., K. Schimmelpfeng, R. Stolletz, and S. Lagershausen (2011). Using
linear programming to analyze and optimize stochastic flow lines. Annals of

Operations Research 182(1), 193–211.

XII

Hillier, F. S., K. C. So, and R. W. Boling (1993). Toward characterizing the optimal
allocation of storage space in production line systems with variable processing
times. Management Science 39(1), 126–133.

Hillier, M. S. (2000). Characterizing the optimal allocation of storage space in
production line systems with variable processing times. IIE Transactions 32(1),
1–8.

Inman, R. R. (1999). Empirical evaluation of exponential and independence as-
sumptions in queueing models of manufacturing systems. Production and Oper-

ations Management 8(4), 409–432.

Kim, S. and H.-J. Lee (2001). Allocation of buffer capacity to minimize average
work-in-process. Production Planning and Control 12(7), 706–716.

Kose, S. Y. and O. Kilincci (2015). Hybrid approach for buffer allocation in open
serial production lines. Computers and Operations Research 60, 67–78.

Lee, H.-T., S.-K. Chen, and S. Chang (2009). A meta-heuristic approach to buffer
allocation in production line. Journal of C.C.I.T 38(1), 167–178.

Lee, S.-D. and S.-H. Ho (2002). Buffer sizing in manufacturing production systems
with complex routings. International Journal of Computer Integrated Manufac-

turing 15(5), 440–452.

Levantesi, R., A. Matta, and T. Tolio (2001). A new algorithm for buffer allocation
in production lines. In Proceedings of the Third Aegean International Conference

on Design and Analysis of Manufacturing Systems, pp. 19–22.

Li, J. (2013). Continuous improvement at Toyota manufacturing plant: Applications
of production systems engineering methods. International Journal of Production

Research 51(23-24), 7235–7249.

Li, J. and S. M. Meerkov (2009). Production Systems Engineering. Boston, MA,
USA: Springer Science+ Business Media, LLC.

Liberopoulos, G. and P. Tsarouhas (2002). Systems analysis speeds up Chipita’s
food-processing line. Interfaces 32(3), 62–76.

Liberopoulos, G. and P. Tsarouhas (2005). Reliability analysis of an automated
pizza production line. Journal of Food Engineering 69(1), 79–96.

XIII

Lutz, C. M., K. R. Davis, and M. Sun (1998). Determining buffer location and
size in production lines using tabu search. European Journal of Operational

Research 106(2), 301–316.

Massim, Y., F. Yalaoui, L. Amodeo, E. Chatelet, and A. Zeblah (2010). Efficient
combined immune-decomposition algorithm for optimal buffer allocation in pro-
duction lines for throughput and profit maximization. Computers and Operations

Research 37(4), 611–620.

Matta, A. (2008). Simulation optimization with mathematical programming repre-
sentation of discrete event systems. In Proceedings of the 2008 Winter Simulation

Conference, Miami, FL, USA, pp. 1393–1400.

Matta, A. and R. Chefson (2005). Formal properties of closed flow lines with lim-
ited buffer capacities and random processing times. In Proceedings of the Euro-

pean Simulation and Modelling Conference, Porto, Portugal, pp. 190–194.

Matta, A., G. Pedrielli, and A. Alfieri (2014). Event relationship graph lite: Event
based modeling for simulation-optimization of control policies in discrete event
systems. In Proceedings of the 2014 Winter Simulation Conference, Savannah,
GA, USA, pp. 3983–3994.

Matta, A., M. Pezzoni, and Q. Semeraro (2012). A kriging-based algorithm to
optimize production systems approximated by analytical models. Journal of In-

telligent Manufacturing 23(3), 587–597.

Nahas, N., D. Ait-Kadi, and M. Nourelfath (2006). A new approach for buffer
allocation in unreliable production lines. International Journal of Production

Economics 103(2), 873–881.

Papadopoulos, H. T. and M. I. Vidalis (2001). A heuristic algorithm for the buffer
allocation in unreliable unbalanced production lines. Computers and Industrial

Engineering 41(3), 261–277.

Patchong, A., T. Lemoine, and G. Kern (2003). Improving car body production at
PSA Peugeot Citroen. Interfaces 33(1), 36–49.

Pedrielli, G., A. Alfieri, and A. Matta (2015). Integrated simulation–optimisation
of pull control systems. International Journal of Production Research 53(14),
4317–4336.

Powell, S. G. and D. F. Pyke (1996). Allocation of buffers to serial production lines
with bottlenecks. IIE Transactions 28(1), 18–29.

XIV

Sabuncuoglu, I., E. Erel, and Y. Gocgun (2006). Analysis of serial production
lines: Characterisation study and a new heuristic procedure for optimal buffer
allocation. International Journal of Production Research 44(13), 2499–2523.

Saliby, E. (1990a). Descriptive sampling: A better approach to monte carlo simula-
tion. The Journal of the Operational Research Society 41(12), 1133–1142.

Saliby, E. (1990b). Understanding the variability of simulation results: An empiri-
cal study. The Journal of the Operational Research Society 41(4), 319–327.

Savsar, M. (2006). Buffer allocation in serial production lines with preventive and
corrective maintenance operations. Kuwait Journal of Science and Engineer-

ing 33(2), 253–266.

Schruben, L. W. (2000). Mathematical programming models of discrete event sys-
tem dynamics. In Proceedings of the 32nd conference on Winter simulation,
Orlando, FL, USA, pp. 381–385.

Shi, C. and S. B. Gershwin (2009). An efficient buffer design algorithm for
production line profit maximization. International Journal of Production Eco-

nomics 122(2), 725–740.

Shi, C. and S. B. Gershwin (2014). A segmentation approach for solving buffer allo-
cation problems in large production systems. International Journal of Production

Research (In Press), 1–21.

Shi, L. and S. Men (2003). Optimal buffer allocation in production lines. IIE

Transactions 35(1), 1–10.

Silver, E. A., D. F. Pyke, and R. Peterson (1998). Inventory management and pro-

duction planning and scheduling (3 ed.). New York, NY, USA: John Wiley.

Smith, J. M. and F. R. B. Cruz (2005). The buffer allocation problem for general
finite buffer queueing networks. IIE Transactions 37(4), 343–365.

Spinellis, D. D. and C. T. Papadopoulos (2000). A simulated annealing approach
for buffer allocation in reliable production lines. Annals of Operations Re-

search 93(1-4), 373–384.

Stolletz, R. and S. Weiss (2013). Buffer allocation using exact linear programming
formulations and sampling approaches. In Manufacturing Modelling, Manage-

ment, and Control, Volume 7(1), St. Petersburg, Russia, pp. 1435–1440.

XV

Tempelmeier, H. (2003). Practical considerations in the optimization of flow pro-
duction systems. International Journal of Production Research 41(1), 149–170.

Vergara, H. A. and D. S. Kim (2009). A new method for the placement of buffers
in serial production lines. International Journal of Production Research 47(16),
4437–4456.

Vouros, G. A. and H. T. Papadopoulos (1998). Buffer allocation in unreliable pro-
duction lines using a knowledge based system. Computers and Operations Re-

search 25(12), 1055–1067.

Weiss, S. and R. Stolletz (2015). Buffer allocation in stochastic flow lines via
sample-based optimization with initial bounds. OR Spectrum 37(4), 869–902.

Yamashita, H. and T. Altiok (1998). Buffer capacity allocation for a desired
throughput in production lines. IIE Transactions 30(10), 883–891.

XVI

Curriculum vitae

Professional experience

06/2011 - present Research Assistant, Chair of Production Management,
University of Mannheim

03/2014 Visiting Researcher, School of Mechanical Engineering,
Shanghai Jiao Tong University, Shanghai, China

Education

01/2010 - 08/2010 Exchange semester, Universitat de València

10/2006 - 09/2010 Business Mathematics (Diploma), University of Cologne

06/2006 Abitur, Paul-Klee-Gymnasium, Overath

XVII

	Summary
	List of Figures
	List of Tables
	Introduction
	Buffer Allocation Problems for stochastic flow lines with unreliablemachines
	Introduction
	Classification scheme for characteristics of flow lines
	Classification scheme for decision problems
	Conclusion and future research

	Buffer allocation using exact linear programming formulations andsampling approaches
	Introduction
	Mixed-integer programming formulations
	Basic idea and assumptions
	MIP for the optimization
	Other MIP formulations
	Sampling of effective processing times

	Numerical results
	Conclusion

	Buffer allocation in stochastic flow lines via sample-based optimization with initial bounds
	Introduction
	Sample-based flow line model
	Assumptions
	Evaluation of given allocations
	Optimization of buffer allocations

	Application of Benders Decomposition to the Buffer AllocationProblem
	Adjustments and specific features
	Generation of lower bounds from subsystems

	Numerical study
	A note on robustness
	Impact of bounds
	Exponentially distributed processing times
	Generally distributed processing times
	Correlated processing times
	Long lines with reliable and unreliable stations

	Conclusion and further research

	Optimization of buffer allocations in flow lines with limited supply
	Introduction
	Model of the flow line
	Model assumptions and decision problem
	Supply of the first station

	Individual lower bounds on the buffer capacities
	Rule-based local search algorithm
	Generation of candidate allocations
	Sample-based evaluation and exchange of information

	Numerical Study
	Impact of different buffer selection criteria
	Impact of individual bounds and the rule-based local search algorithm
	Impact of supply patterns

	Conclusion and further research

	Detailed results for Erlang-k and Cox-2 distributed instances
	Sample-based evaluation algorithms for lines with limited supply
	References
	Curriculum vitae

