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Summary

For many organizations, the efficient utilization of human resources is of
great importance because of their impact on operation costs and their direct
relations to customer service and employee satisfaction. Hence, it may be
convenient for organizations to use decision support tools in workforce
planning processes, such as workforce scheduling.

This thesis presents three different problems belonging to different planning
stages of the workforce scheduling process. The first article addresses a
tour scheduling problem faced by a ground-handling agency at airports. In
this problem, multiskilled agents are assigned to shifts and days-off within
a planning horizon of one month to cover the airlines agent requirements.
The second article considers a technician routing and scheduling problem
form an external maintenance provider. This problem mainly involves
obtaining weekly schedules such that the maintenance tasks requested by
geographically distributed customers are fulfilled. The considered decisions
consist of the assignment of technicians to teams, the assignment teams to
tasks, and the dispatch of teams to service routes. The third article addresses
a task scheduling problem for check-in counters personnel at airports. This
problem involves the daily assignment of multiskilled agents to flights
(check-ins and boardings) considering the change-over times between gates,
such that the agent requirements from the airlines are satisfied.
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On account of the combinatorial nature of the aforementioned problems,
direct solutions through commercial solvers become impractical. This is
due to the high computation time required for the solution realistic test
instances. For this purpose, each article describes the proposed solution
approaches (both heuristic and exact methods) to solve this problems in
short time and with good solution quality. Numerical studies are conducted
in order to compare the performance of the proposed algorithms to the
performance commercial solvers, and to provide managerial insights into
the general decision process.
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1. Introduction

The effective utilization of human resources is important for the majority of
organizations, not only because of their direct relation to overall productiv-
ity, but also because of their impact on costs. In 2012, the compensation of
employees amounted to 5.6% of the overall expenses of German employers,
and 22.3% of employers worldwide (The World Bank, 2016). As the ser-
vice industry is more labor intensive, this figure can significantly increase;
for example, for ground-handling agencies labor cost can represent 66 -
75% of the operation costs (Steer Davies Gleave, 2010). Effective work-
force scheduling can help reduce such costs as well as improve customer
service, and employee satisfaction (Alfares, 2004).

Due to its relevance and multiple areas of application, workforce schedul-
ing is a topic frequently addressed in the literature (e.g., see Ernst et al.
(2004b,a); Alfares (2004) for thorough reviews). Nonetheless, workforce
scheduling is a complex planning process comprised of different sub-stages:
(i) demand modeling, (ii) days-off scheduling, (iii) shift scheduling, (iv)
line of work construction, (v) task assignment, and (vi) staff assignment
(Ernst et al., 2004b). Each stage constitutes a decision problem of its own,
since it is characterized by different decisions, parameters, and planning
horizon length.

This dissertation addresses a different stage of the workforce scheduling
process per chapter. As such, each chapter provides a problem definition,
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an overview of related literature, as well as a description of the proposed
solution approaches. Furthermore, each chapter presents numerical studies
conducted using artificial and real-world data to evaluate the performance
of the algorithms and to provide managerial insights for the respective area
of application.

The first article of this dissertation (Chapter 2) addresses a tour scheduling
problem for check-in counters personnel at airports. This article was
co-authored by Raik Stolletz 1. The problem is encountered by ground-
handling agencies at airports and consists of assigning shifts and days-off
to employees to cover the flights’ agent requirements for a planning horizon
of one month. As airlines work with different computer systems for check-
ins, agents with multiple qualifications are required. Furthermore, the
agent contracts allow a high schedule flexibility (e.g., variable start times,
non-consecutive off-days, etc.). The objective is to obtain schedules that
minimize the number of hours paid while satisfying the airlines’ agent
requirements, contracts conditions, and labor regulations.

Because of the high schedule flexibility and the multiskilled workforce
assumption, this problem is not trivial to solve. The direct solution of a
mixed-integer programming formulation of this problem via commercial
solvers proves to be impractical due to its high computation time. Accord-
ingly, this article proposes a rolling planning horizon-based heuristic as
an alternative solution approach. Using real-world data from two German
ground-handling agencies, numerical tests are conducted to test the per-
formance of this algorithm. Finally, this study provides insights into the
impact of the skill distribution of the agents on the resulting schedules.

1Stolletz, R., & Zamorano, E. (2014). A rolling planning horizon heuristic for schedul-
ing agents with different qualifications. Transportation Research Part E: Logistics and
Transportation Review, 68, 39-52.
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In the second article (Chapter 3) a multiperiod technician scheduling and
routing problem from an external maintenance provider is presented. This
article was co-authored by Raik Stolletz 2. In the considered problem,
geographically distributed customers request maintenance tasks to the
provider within a planning horizon of one week. These maintenance tasks
are associated with a time interval on which customers prefer the provision
of the service, i.e., time windows, which can span multiple working days. In
addition, the type of maintenance and its duration are known which in turn
also provides the information on the qualifications, proficiency, and service
time required for each task. The maintenance provider decisions consist
of obtaining weekly schedules comprised of: (i) the daily assignment of
technician into teams, (ii) the assignment of tasks to teams according to
their skill requirements, and (iii) the dispatch of teams into service routes
to serve their respective tasks. The objective is to minimize the weighted
sum of travel time, customer waiting time, and technician overtime. To the
best of our knowledge, this problem has not been previously addressed in
literature.

The overall problem structure shares many similarities with classical vehicle
routing problems, thus, the proposed solution approaches are based on
existing ideas from this literature stream. Consequently, this article presents
two branch-and-price algorithms that solve two different decompositions
of the original problem. The first decomposition aims to (i) generate daily
schedules comprised of routes for all teams in the subproblems, (ii) and
select the best schedules in the master problem. The second decomposition
aims to (i) generate daily routes for each team in the subproblems, and

2Zamorano, E. & Stolletz, R. (2016). Branch-and-price approaches for the Multiperiod Tech-
nician Routing and Scheduling Problem. European Journal of Operational Research, Avail-
able online 1 July 2016, ISSN 0377-2217, http://dx.doi.org/10.1016/j.ejor.2016.06.058.
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(ii) select the best team-day routes in the master problem. The numerical
tests in this article evaluate the performance of the proposed algorithms
and compare it to the performance of commercial solvers. Artificial data
based on known benchmark data sets and real-world data from a forklift
maintenance provider are used for this purpose. Accordingly, insights
into the impact of time window length on computation time and objective
function value are given.

The third article (Chapter 4) presents a task scheduling problem for check-
in personnel at airports. This article is a joined work with Annika Becker
and Raik Stolletz 3. Similar to Chapter 2, this problem is encountered
by ground-handling agencies at airports. Nonetheless, it belongs to an
operational planning stage which consists of determining a daily assignment
of multiskilled agents to flights (check-in and boarding) such that the agent
requirements defined by the airlines are fulfilled. As check-in counters
can be located in different gates at an airport, change-over times need
to be considered in the assignment process. In contrast to classical task
assignment models, in the current problem the end time of each task is
fixed, and the processing time depends on the arrival time of the agent
to the counter. The objective is to minimize the weighted sum of agent
traveling time, overtime, tardiness, and outsourcing.

The solution approach proposed in this article resembles the one presented
in Chapter 3, as this task assignment problem also involves routing deci-
sions. Accordingly, a branch-and-price algorithm that solves a decompo-
sition of the task assignment problem is presented. In this case, however,
the original problem is decomposed into (i) subproblems that generate

3Zamorano, E., Becker, A. & Stolletz, R. (2016). Task assignment with start time-dependent
processing times for personnel at check-in counters. Working paper, under consideration
for publication.
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flight assignments per agent, and (ii) a master problem that selects the best
assignments. In a numerical study, real-world data from a German ground-
handling agency are used to compare the performance of the proposed
algorithm to the performance of the direct solution via commercial solvers.
Additional tests are conducted to provide insights into the impact of the
tardiness limit on the overall schedules.
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2. A Rolling Planning Horizon Heuristic for
Scheduling Agents with Different
Qualifications

Co-authors:

Raik Stolletz
Chair of Production Management, Business School, University of
Mannheim, Germany

Published in:

Transportation Research Part E: (TRE),
Volume 68 (2014), pages 39-52, DOI: 10.1016/j.tre.2014.05.002

Abstract:

At airports, the workforce for check-in services is managed by ground-
handling companies. Although the time-dependent agent requirements are
known, the scheduling process is complex because agents operate different
check-in systems and contracts allow scheduling flexibility. We propose
a Mixed Integer Programming model based on the Reduced Set-Covering
formulation for the monthly tour scheduling problem for a workforce with
multiple non-hierarchical qualifications. We present a rolling planning
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horizon-based heuristic to solve this problem. Our heuristic provides near-
optimal schedules within reasonable computation time for real-world cases.
In addition, we provide insights into the impact of the skill distribution on
the scheduling costs.

2.1. Introduction

Third-party ground-handling agencies provide passenger handling services,
such as check-in of passengers at airport terminals, to airlines. After the
release in 1996 of Directive 96/67/EC on the liberalization of the ground-
handling market at European airports, the number of third-party ground
handlers increased by 90% in five years (SH&E, 2002), leading to higher
competition and price reductions (Airport Research Center, 2009). Because
staff costs represent 66% to 75% of ground handlers’ operating costs,
optimized workforce schedules significantly increase their profitability
(Steer Davies Gleave, 2010).

A typical workforce planning process undergone by ground-handling agen-
cies is divided into four sub-stages, each with different planning horizons,
objectives, and constraints: (i) head count planning, (ii) tour scheduling,
(iii) task assignment, and (iv) replanning (Stolletz, 2010). Our work focuses
on the second phase of this process: monthly tour scheduling. This decision
problem consists of assigning individual employees to tours (e.g., daily
shifts and days off) to satisfy the time-dependent employee requirements
for check-in of individual flights. The requirements are driven by the flight
schedule and depend on the contract with the airline. Airlines work with
different computer systems for their check-in processes, and only qualified
agents are allowed to operate them. Agents can be cross-trained, and it is
possible for them to switch between different systems during a working
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shift. Agent assignment also must satisfy rules based on the contracts
and qualifications of the employees. The objective of this planning task
is to minimize operative workforce costs with respect to the given pool of
agents and their individual contracts while ensuring that enough qualified
employees are assigned to cover the demand over the course of each day.

This paper presents a Mixed Integer Programming (MIP) model for tour
scheduling with multiple skills. The consideration of multiple skills pre-
vents a solution for the MIP in short CPU times with standard software.
Therefore, this study presents a new heuristic based on a rolling planning
horizon approach. The main idea is to decompose the main tour scheduling
problem for multiple weeks into smaller but well-connected subproblems
that cover only part of the entire planning horizon. To the best of our knowl-
edge, no previous efforts have been directed toward applying a rolling
planning horizon to the problem at hand.

This paper is organized as follows: Section 2.2 gives an overview of related
work. Section 2.3 presents a description of the problem and the formulation
as an MIP. The Rolling Planning Horizon heuristic (RPH) is described in
Section 2.4. The numerical studies described in Section 2.5 demonstrate the
reliability of the solution of the RPH compared to that of the MIP, obtained
for data from different ground-handling agencies. A sensitivity analysis
shows the impact of the skill distribution on the overall scheduling costs.
Concluding remarks and managerial insights are presented in Section 2.6.

2.2. Previous research

Reviews of decision models and solution approaches in workforce schedul-
ing and in particular tour scheduling are given in Alfares (2004), Ernst et al.
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(2004b), Ernst et al. (2004a), and Van den Bergh et al. (2013). Models for
tour scheduling with multiple qualified agents often assume hierarchical
skill sets; see, for example, Rong and Grunow (2009). In this case, employ-
ees with higher skill levels are allowed to be assigned to jobs that require
lower skill levels. The general non-hierarchical model can solve this as a
special case.

Eitzen et al. (2004) provide a generalized set-covering formulation for the
fortnightly scheduling of multiskilled full- and part-time employees. They
propose three different solution techniques (column expansion, column
subset, and branch and price) and conduct numerical tests for problem
instances with different numbers of skill levels, workforce sizes and demand
patterns. Compared to our model, their shift and tour building rules are less
flexible (i.e., a smaller number of tour combinations are possible), and skill
switching during a shift is forbidden.

Love Jr. and Hoey (1990), Loucks and Jacobs (1991), and Hojati and Patil
(2011) address tour scheduling problems in the fast food industry. They
consider a workforce with limited availability (i.e., agents are eligible to
work only during specific time windows) and shifts and tours of variable
length. As with our application, agents are cross-trained and allowed to
change the tasks they are assigned to during a shift. Love Jr. and Hoey
(1990)’s work differs from ours in that the surplus of working hours, skills,
availability of employees and number of working days are modeled as co-
efficients of the shifts to be assigned in the objective function. In addition,
their solution technique differs from ours in that it consists of decomposing
the tour scheduling problem into two network flow subproblems: construc-
tion of tours and allocation of tours to employees with the objective of
minimizing the surplus of manpower.
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Loucks and Jacobs (1991), in contrast to our application, propose a multi-
criteria optimization model to minimize the total man-hours of overstaffing
and minimize the deviation from target working hours. Their solution
approach mainly differs from ours in that shifts are determined by concate-
nating segments (each segment corresponding to a different task), while
the shift and tour building rules (minimum shift length, maximum shift
length, maximum number of working days, etc.) are modeled implicitly as
constraints. Their approach also differs from ours in that they propose a
two-phase procedure: (i) a construction phase in which rules are used to
assign task-segments to employees while relaxing the maximum number of
working days constraint and (ii) an improvement phase in which violations
to this constraint are eliminated and other measures (overstaffing, deviation
from target hours, etc.) are improved.

Hojati and Patil (2011) revisit the model proposed by Loucks and Jacobs
(1991) and propose another solution approach. Their approach differs
from ours in that they decompose the main problem into a two-phase
algorithm: (i) determining good shifts via a linear program that maximizes
the total number of eligible and available employees and (ii) assigning
shifts to employees through the use of an integer linear programming-based
heuristic that determines all the shifts to be assigned to an employee, one
employee at a time.

To address the complexity of tour scheduling problems, the aforementioned
papers propose different decomposition approaches. As Bartholdi (1981)
shows, standard tour scheduling problems are already NP-complete. With
the combination of flexible schedules and multiple non-hierarchical skills,
additional complexity is expected. The basis of our heuristic is the rolling
planning horizon approach, an idea commonly used in production schedul-
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ing to provide partial production schedules (e.g., on a weekly basis) for
longer planning periods; see Modigliani (1955), Baker (1977) and Baker
and Peterson (1979). This approach can also be used to decrease the size
of a planning problem by solving a series of multi-period subproblems that,
in the end, cover the entire planning horizon of the original problem.

Aside from production scheduling, few efforts have been directed at apply-
ing a rolling planning horizon approach to workforce scheduling. Examples
of general workforce scheduling problems using a rolling horizon approach
are the allocation of flexible employees to workstations in a production
line (Gronalt, 2003) and reactive nurse scheduling (Bard and Purnomo,
2005). In the tour scheduling literature we find that Day and Ryan (1997)
address a fortnightly tour scheduling problem for flight attendants for short-
haul flights. In their solution method, they divide the main problem into a
days-off allocation and lines of work construction subproblems. For the
latter, they apply a two-phase procedure by which they (i) construct lines
of work based on a days-off template and (ii) improve the lines of work
using a branch-and-price algorithm. They make use of a rolling horizon
based-procedure to link these two steps recursively. Nevertheless, to the
best of our knowledge, no previous efforts have been directed toward the
development of a rolling horizon-based procedure for the tour scheduling
problem as a whole.

2.3. Problem Description and Model Formulation

This study considers the tour scheduling problem for check-in counters with
discontinuous schedules, i.e., with no overlap between shifts on different
days. The planning horizon spans D days (d = 1, ...,D), and each day is
divided into T periods (t = 1, ...,T ) of equal length. Based on the flight

12



schedules and the contracts between the ground handler and the airlines,
the agent requirements are known. These requirements r

qdt

specify the
number of employees with a specific skill q needed in check-in counters on
day d in period t . The goal is to assign each employee e to a shift of type
j on day d such that the agent requirements are covered and the overall
scheduling costs are minimized.

With respect to multiple qualifications, each employee e can be differently
qualified and cross-trained. The set of skills of each employee is reflected
in the parameter g

eq

, with a value of 1 if employee e has skill q and 0

otherwise.

The working conditions regarding schedules are established by the ground-
handling agency in the employee contracts. The following regulations are
considered:

• Shifts can vary in length between 3 and 10 hours.

• Shifts can start at any period t on day d and at different times on
different days.

• A minimum resting time of R hours between shifts needs to be
respected.

• A maximum of w consecutive workdays without a day off is allowed.
Days off can be non-consecutive.

• There is no limit on the total working hours per week. The overall
number of workdays must remain grater than d

min

e

and less than
d

max

e

days during the planning horizon of D days.

• At most hmax

e

working hours per month are allowed per employee.
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The operational costs consist of two elements:

• Paid hours, i.e., total working hours.

• Overtime costs, i.e., if hmax

e

is exceeded, the respective overtime
periods ot

e

have an additional cost of cot per period.

A commonly used formulation for tour scheduling problems is the set-
covering formulation proposed by Dantzig (1954); see also Ernst et al.
(2004b). This MIP formulation uses a matrix with all possible combina-
tions of tours (daily shifts and days off) as input that are to be assigned
to employees to meet the requirements per period. However, in our case,
the flexibility of the schedules and the heterogeneity of the workforce pro-
duces a tour matrix with a large amount of data, thus making the solution
intractable. Stolletz (2010) proposes a Reduced Set-Covering (RSC) for-
mulation for the tour scheduling problem with single skills. This approach
requires a matrix of all possible daily shifts only. The tour-building rules
(maximum and minimum overall working days, maximum consecutive
working days, etc.) are then modeled implicitly. This study extends the
RSC formulation to a Multiskilled Workforce Scheduling (MWS) model.
Table 2.1 summarizes the notation used.

Four main decision variables are used. First, the binary variable p

ejd

assigns employees to shifts on a day.

p

ejd

=

8
<

:
1, if employee e is assigned to shift j on day d and

0, otherwise.
(2.1)

Second, the skill that an employee applies to work in each period t on day
d is selected through binary variable z

eqtd

:
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z

eqtd

=

8
<

:
1, if employee e uses skill q in period t of day d and

0, otherwise.
(2.2)

Third, we use an auxiliary variable y

ed

to indicate whether an employee
works on a particular day:

y

ed

=

8
<

:
1, if employee e is assigned to work on day d and

0, otherwise.
(2.3)

Last, the number of exceeding periods over the monthly hour limit hmax

e

per employee are determined by the variable ot

e

.

In case the requirements are not met in a particular period within a day,
outsourcing additional resources is allowed and decided upon using integer
variable o

qtd

. This ensures feasibility independent of the problem instance.
This variable is also paired with an outsourcing cost cout

q

, which could be
interpreted as the penalty for unmet requirements.

The staffing costs c

ej

for a certain shift j depend on the length of shift
j and the number of skills employee e has (see Equation (2.4)). The
number of working periods is obtained from the difference between the
last working period (f

j

) and the first working period (s
j

) of shift j . In case
the hourly wage per period depends on an agent’s number of qualifications,
the cost depends on the number of qualifications per agent multiplied by a
differentiation factor ↵:
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c

ej

=

working periods
z }| {
(f

j

� s

j

+ 1) ⇤

skill costs
z }| {0

@
1 + ↵

X

q

g

eq

1

A (2.4)

In this way, ↵ = 0 when all agents are paid the same per hour regardless of
the qualifications they have.

The objective function (2.5) minimizes the overall costs for all assigned
shifts, for outsourced resources and for overtime:

Minimize F =

EX

e=1

JX

j=1

DX

d=1

c

ej

p

ejd

+

QX

q=1

DX

d=1

TX

t=1

c

out

q

o

qtd

+

EX

e=1

c

ot

ot

e

(2.5)

Subject to the following constraints:

JX

j=1

p

ejd

= y

ed

8e; 8d (2.6)

EX

e=1

z

eqtd

+ o

qtd

� r

qtd

8q; 8t ; 8d (2.7)

z

eqtd

 g

eq

8e; 8q; 8t ; 8d (2.8)
QX

q=1

z

eqtd


JX

j=1

a

tj

p

ejd

8e; 8t ; 8d (2.9)

JX

j=1

DX

d=1

(f

j

� s

j

+ 1)p

ejd

 l · hmax

e

+ ot

e

8e (2.10)

DX

d=1

y

ed

� d

min

e

8e (2.11)

DX

d=1

y

ed

 d

max

e

8e (2.12)
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Table 2.1.: Notation

Indices:
t = 1, . . . ,T periods to be scheduled over a day
d = 1, . . . ,D days of the planning horizon
j = 1, . . . , J shift types for a day
e = 1, . . . ,E employees to be assigned to shifts
q = 1, . . . ,Q skills

Parameters:
r

qtd

employee requirements of skill q for period t of day d

a

tj

1, if period t of shift j is a working period, 0 otherwise
s

j

first working period of shift j
f

j

last working period of shift j
d

min

e

minimum number of workdays for employee e

d

max

e

maximum number of workdays for employee e

R minimum rest periods between two shifts
w maximum number of consecutive workdays
h

max

e

maximum number of working hours for employee e
g

eq

1, if employee e has skill q , 0 otherwise
c

ej

cost of shift type j assigned to worker e
c

out

q

cost of outsourcing skill q for one period
c

ot cost of an overtime period
↵ wage differentiation factor
l number of periods in an hour

Decision variables:
p

ejd

1, if employee e is assigned to shift j on day d , 0 otherwise
y

ed

1, if employee e is assigned to a shift on day d , 0 otherwise
z

eqtd

1, if employee e uses skill q in period t on day d , 0 otherwise
o

qtd

number of outsourced agents with skill q in period t on day d

ot

e

overtime periods of employee e
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d+wX

d=d

y

ed

 w 8e; 8d  D � w (2.13)

T �
JX

j=1

f

j

p

ejd

+

JX

j=1

s

j

p

ejd+1 � y

ed+1 � y

ed+1 R 8e; 8d  D � 1 (2.14)

p

ejd

; y

ed

; z

eqtd

2 {0, 1} 8e; 8j ; 8q; 8t ; 8d (2.15)

ot

e

� 0 8e (2.16)

Constraints (2.6) and (2.11) to (2.15) are equivalent to those in the formu-
lation proposed by Stolletz (2010), while the objective function (2.5) and
constraints (2.7) to (2.10) and (2.16) extend the formulation to a multi-
skilled workforce. Constraint (2.6) ensures that employee e is assigned to
at most one shift per day and sets the variable y

ed

. Equation (2.7) ensures
that agent requirements are satisfied for each skill q , either by assigning
agents or by outsourcing. Equation (2.8) ensures that employees are as-
signed to tasks for which they are qualified. An agent can be assigned to
at most one task if the respective period is a working period, as stated in
Equation (2.9). Equation (2.10) ensures that employees are assigned to
at most hmax

e

overall working hours, otherwise incurring an overtime of
ot

e

periods. Constraints (2.11) and (2.12) represent the lower and upper
bounds for the overall working days within a tour, while Equation (2.13)
allows employees to work a maximum of w consecutive days. Equation
(2.14) ensures that the sum of the off periods after the end of a shift on day
d plus those before starting a shift on day d + 1 is at least R periods long.

2.4. Rolling Planning Horizon Heuristic
This section describes our proposed solution procedure based on a rolling
horizon approach. The main idea of the Rolling Planning Horizon heuristic
(RPH) is iteratively solving tour scheduling subproblems for shorter plan-
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ning horizons and freezing the variables for the first days in each iteration
(see Fig. 2.1). In iteration k = 1, the RPH starts with solving the subprob-
lem for the first r days of the planning horizon. The decision variables for
the first s  r days are fixed to their solution values. The next iteration
k = 2 solves the problem up to day s + r , with the decision variables
fixed up to day s . While this subproblem is being solved, the tour-building
constraints respect the already fixed schedule. For a certain iteration k , the
subproblem is based on an already fixed schedule for (k � 1)s days and
covers (k � 1)s + r days. After solving the MIP, the decision variables
for day (k � 1)s + 1 up to day ks are also fixed. In the last iteration, it
is ensured that the remainder of the original planning horizon is covered,
especially when D is not a multiple of s .

Figure 2.1.: RPH example

To avoid infeasibility, the bounds on the overall working days and overall
working hours have to be changed. Specifically, the bounds set in con-
straints (2.10), (2.11), and (2.12) need to be replaced, because they consider
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the full length of the planning horizon. The idea is to set different bounds

in each iteration k < K that are related to the proportion
(k � 1)s + r

D

of
the considered planning horizon:

JX

j=1

(k�1)s+rX

d=1

(f

j

� s

j

+ 1)p

ejd


⇠
[(k � 1)s + r ] · l · hmax

e

D

⇡
+ ot

e

8e (2.17)

(k�1)s+rX

d=1

y

ed

�
�
[(k � 1)s + r ]d

min

e

D

⌫
8e, (2.18)

(k�1)s+rX

d=1

y

ed


⇠
[(k � 1)s + r ]d

max

e

D

⇡
8e, (2.19)

Constraints (2.17)-(2.19) bind the sum of the overall assigned working
hours and days up to (k � 1)s + r to the ratio of the minimum and max-
imum hours and days, respectively. In this way, the bounds are updated
in every iteration. Nevertheless, these new constraints still constitute hard
constraints that strictly bind the length of each tour to a fraction of the
working-days limit defined in the problem setting. The last iteration K runs
with the original bounds and applies the constraints (2.17)-(2.19) in place
of (2.10)-(2.12), which cover the entire planning horizon. Algorithm 1
shows the pseudocode for the RPH procedure.
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Algorithm 1 RPH Pseudocode

for k = 1 to
⇠
D

s

⇡
� 1 do

Solve MWS subject to (2.6)-(2.9), (2.13)-(2.16) and (2.17)-(2.19) for
d  (k � 1)s + r with fixed decision variables up to d = (k � 1)s

for d = (k � 1)s + 1 to ks do
Fix y

ed

, o
qdt

, z
eqtd

and p

ejd

end for
end for
Solve MWS subject to (2.6)-(2.16) for d  D with fixed decision
variables up to d = (K � 1)s

2.5. Numerical Experiments

For our numerical tests, we analyze cases of two German ground-handling
agencies. In the first case, we use the demand data from one ground handler
to obtain good parameters r and s for the RPH. To focus on this goal, we
assume fully qualified agents in Section 2.5.1. In Section 2.5.2, the same
demand data are used to analyze the impact of different skill distributions
on the quality of the schedules. In the second case, we test our proposed
heuristic with data from a second ground-handling agency, which contain
more information regarding the workforce configuration (Section 2.5.3).
The MWS model and the subproblems of the RPH heuristic were solved
using the Gurobi 4.6.1 solver on a 2.5-GHz Intel Core i7 machine with 8
GB of RAM.
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2.5.1. Sensitivity of the RPH Parameters

For the first numerical tests, we study the impact of the choice of the
parameters r and s on the performance of the RPH. The data from the first
ground-handling agency contain the aggregated agent skill requirements
for 30-minute intervals during the opening hours (T = 34) for different
qualifications (Q = 4) within a 30-day planning horizon (D = 30) (see
Fig. 2.2). The workforce consists of E = 65 employees. Because no real
information on the skill distribution was given, we consider agents with all
skills (i.e., generalists) and no wage differentiation (↵ = 0). The employee
contracts establish a maximum of w = 6 consecutive working days without
a day off and a minimum of dmin

e

= 19 and maximum of dmax

e

= 23

overall working days per employee. Shifts can be from 3 to 10 hours in
length, with a minimum of R = 10 resting hours between consecutive
working days. We assume there are no limits on the maximum overall
working hours hmax

e

. The costs consist of scheduled hours and outsourced
hours (with cout

q

= 1⇥10

7), and no overtime costs (c
ot

= 0) are considered.
We test different values of the RPH’s parameters r = 3, 4, 5, ..., 15 and
s = 2, 3, 4.

Solving the MWS MIP model with this setting to optimality yields a total
of 7,941.5 scheduled hours with an overcapacity of 543.5 hours and no
outsourcing. This optimal solution was found in 16,742 seconds. Table
2.2 shows the overall scheduled hours, outsourced hours, the overcapacity
(in hours), and the computation time (in seconds) obtained for each test
instance of the RPH. The absolute gap to the optimal scheduled hours of
the RPH, compared to the optimal solution, is shown in the last column.
The absolute gap is only reported for instances without outsourcing (50%

22



Fi
gu

re
2.

2.
:M

on
th

ly
ag

en
tr

eq
ui

re
m

en
ts

pe
rq

ua
lifi

ca
tio

n

q1

0510152025

d1
d2

d3
d4

d5
d6

d7
d8

d9
d1
0

d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8

d1
9

d2
0

d2
1

d2
2

d2
3

d2
4

d2
5

d2
6

d2
7

d2
8

d2
9

d3
0

q2

01234

d1
d2

d3
d4

d5
d6

d7
d8

d9
d1
0

d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8

d1
9

d2
0

d2
1

d2
2

d2
3

d2
4

d2
5

d2
6

d2
7

d2
8

d2
9

d3
0

q3

01234567

d1
d2

d3
d4

d5
d6

d7
d8

d9
d1
0

d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8

d1
9

d2
0

d2
1

d2
2

d2
3

d2
4

d2
5

d2
6

d2
7

d2
8

d2
9

d3
0

q4

0123456

d1
d2

d3
d4

d5
d6

d7
d8

d9
d1
0

d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8

d1
9

d2
0

d2
1

d2
2

d2
3

d2
4

d2
5

d2
6

d2
7

d2
8

d2
9

d3
0

Agents

23



of the cases) because the optimal solution does not include any outsourced
periods. For the instance considered, there is no combination of r and s

that clearly outperforms the others. Nevertheless, the configuration r = 7

and s = 4 had the lowest computation times and an acceptable optimality
gap among the cases with no outsourcing.

To show that this configuration results in good solutions for other problem
instances, we scale the workforce and the requirements. For this purpose,
we multiply the demand and the workforce size by a scaling factor � to
simulate scenarios with lower demand and a smaller workforce (� < 1)
or higher demand and a larger workforce (� > 1) than the original setting.
We solve the RPH with r = 7 and s = 4 for several values of the scaling
factor � = 0.2, 0.4, ..., 1.4 and compare the solutions to the those from the
MIP formulation. Table 2.3 shows, for each �, the workforce size, the
overall requirements (in hours), the overall scheduled hours, the sum of
the outsourced hours, the overcapacity (in hours) and the computation time
(in seconds). The last column shows the ratio of outsourced hours (as a
percentage of the required hours) for each problem instance. Although for
most of the instances, outsourcing is required according to the RPH results,
the ratio of outsourced hours does not exceed 1.15%. The computation time
of the RPH is considerably lower than that of the exact solution in all cases.
In the case of � = 0.2 an exact solution could not be found even after 33
hours of computation. This confirms that the configuration selected can be
applied to different problem sizes, although testing different configurations
of the RPH parameters for different problem instances is recommended.
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Table 2.2.: Performance tests results for different RPH parameters

r s K

Scheduled Outsourced Overcapacity CPU Opt. hours
(h) (h) (h) (s) gap (%)

3 2 15 7836.0 71.50 509.50 613 -
3 10 7940.5 10.50 553.00 381 -

4 2 15 7944.5 9.00 555.50 13576 -
3 10 7916.5 24.00 542.50 2407 -

5
2 15 7936.5 10.50 549.00 12185 -
3 10 7930.0 14.00 546.00 28689 -
4 8 7810.5 90.50 503.00 861 -

6
2 15 7962.0 1.00 565.00 97054 -
3 10 7964.5 0.00 566.50 3243 4.23%
4 8 7955.5 0.00 557.50 2304 2.58%

7
2 15 7955.0 13.50 570.50 39808 -
3 10 7962.0 0.50 564.50 10017 -
4 8 7957.5 0.00 559.50 1729 2.94%

8
2 15 7957.0 0.00 559.00 4302 2.85%
3 10 7952.0 2.50 556.50 42260 -
4 8 7941.0 5.00 548.00 38550 -

9
2 15 7960.0 0.00 562.00 13367 3.40%
3 10 7959.0 0.00 561.00 5121 3.22%
4 8 7930.0 6.00 538.00 6246 -

10
2 15 7959.5 0.00 561.50 18448 3.31%
3 10 7956.5 0.00 558.50 13793 2.76%
4 8 7946.5 0.00 548.50 12574 0.92%

11
2 15 7960.5 0.00 562.50 20722 3.50%
3 10 7964.0 0.00 566.00 11474 4.14%
4 8 7952.5 0.00 554.50 14673 2.02%

12
2 15 7957.5 0.00 559.50 18740 2.94%
3 10 7961.5 0.00 563.50 7682 3.68%
4 8 7959.0 0.00 561.00 17982 3.22%

13
2 15 7956.0 0.00 558.00 31461 2.67%
3 10 7954.0 0.00 556.00 21035 2.30%
4 8 7962.0 0.00 564.00 26940 3.77%

14
2 15 7952.0 0.00 554.00 35577 1.93%
3 10 7956.0 0.00 558.00 22479 2.67%
4 8 7944.5 0.00 546.50 33921 0.55%

15
2 15 7955.5 0.00 557.50 44787 2.58%
3 10 7951.0 0.00 553.00 11687 1.75%
4 8 7951.0 0.00 553.00 47946 1.75%
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Table 2.3.: Performance tests for different problem sizes

� E
Required Scheduled Outsourced Overcapacity CPU Outsourced

(h) (h) (h) (h) (s) hours ratio

MIP

0.2⇤ 13 1479.6 2099 15.5 660.4 33 h 1.05%
0.4 26 2959.2 3711 0 751.8 5672 0.00%
0.6 39 4438.8 5324 0 885.2 8890 0.00%
0.8 52 5918.4 6904 0 985.6 8002 0.00%

1 65 7398.0 7941.5 0 543.5 16742 0.00%
1.2 78 8877.6 10065 0 1187.4 66876 0.00%
1.4 91 10357.2 12126 0 1768.8 28236 0.00%

RPH

0.2 13 1479.6 2064.5 17 601.9 474 1.15%
0.4 26 2959.2 3685 6 731.8 396 0.20%
0.6 39 4438.8 5301.5 4.5 867.2 1175 0.10%
0.8 52 5918.4 6900.5 2 984.1 3507 0.03%

1 65 7398.0 7957.5 0 559.5 1729 0.00%
1.2 78 8877.6 10068.5 3 1193.9 38576 0.03%
1.4 91 10357.2 12051.5 17 1711.3 22798 0.16%

⇤ Best solution found after 33 hours of computation

2.5.2. Multiple Skills Analysis

In the following tests, we address the impact that different skill distributions
have on the solutions. For this purpose, we use the same requirement data
as in Section 2.5.1, although with different skill distributions and workforce
sizes. We consider a combination of � ·E generalist agents and (1��) ·E
agents with a single skill profile (specialists). The number of specialists
of a specific skill is calculated by multiplying the proportion each skill is
present in the requirements with (1� �) · E (rounding up for the two most
required skills and rounding down for the two least required skills).

Different workforce sizes E 2 {65, 75, 85} and skill distributions (� =

0.0, 0.2, ..., 1.0) are considered, with the original agent requirements held
unchanged for all cases. Furthermore, we look at different cost differentia-
tion factors (↵ = 0, 1, 2), such that for every additional skill an employee
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has, the hourly cost increases by ↵ units. A total of 54 different problem
instances were tested.

Figures 2.3 and 2.4 show a comparison of the results obtained with the
MIP formulation and the RPH heuristic for these tests. Figure 2.3 presents
a comparison of the computation time (in seconds) as a function of � for
each combination of ↵ and E . The computation time for the RPH is less
than 2.14 hours in all cases, while the computation time for the MIP for
the entire planning horizon is up to 55.60 hours. Figure 2.4 shows the
absolute gap (in percentage) of the solutions of the RPH with respect to the
optimal scheduled hours. The cases with � = 0 are not reported because
the results for both the MIP and RPH require outsourcing. For all remaining
cases, the gap remains below 0.34% from the optimum. To summarize,
the RPH solves all cases considered very quickly with an acceptably small
optimality gap. Due to the short CPU times, it is possible to evaluate the
value of flexibility for different skill-mix scenarios.

Figure 2.5 shows a comparison of the overcapacity hours obtained for the
solutions for both methods and all combinations of �, ↵, and E . Additional
flexibility is acquired with larger workforce sizes, and thus, overcapacity
hours are reduced in most cases. This is because more agents can be
assigned to shorter shifts and fewer idle periods are covered. On the other
hand, we observe different behavior in the overcapacity level when varying
the values of � and ↵. If all agents are paid the same (↵ = 0), the full
benefits of adding additional fully qualified agents (generalists) have less
impact when 20% or more generalists are present in the workforce. For
↵ = 1 and ↵ = 2, the the overcapacity hours are not strictly decreasing
with increasing values of �, because more fully qualified agents provide
more flexibility, albeit at with a higher cost.
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Figure 2.3.: Computation time comparison
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2.5.3. Real-world Workforce Case

The tests described in the previous sections were conducted using real-
world demand data with artificial workforce configurations from a ground-
handling agency . In this section, in contrast, we use real-world information
on both the demand and the workforce from a second ground-handling
agency to test the RPH heuristic under a more realistic setting.

In this new case, the agent requirements r

qtd

are known and given in 5-
minute periods (T = 254) for a planning horizon of D = 30 days. There
are 12 different check-in systems, i.e., Q = 12 skills. The requirements
for each skill are highly time-dependent and are not correlated to the
requirements of other skills.
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Figure 2.4.: Optimal scheduled hours gap (%)
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RPH

The check-in personnel consist of by E

full

= 4 full-time agents, E
part

= 3

part-time agents and E

flexi

= 47 flexible agents. Each month, full-time
agents are allowed to work at most hmax

full

= 165 hours and part-time agents
h

max

part

= 40 hours. Flexible agents have no monthly h

max

flexi

limit. Working
hours that exceed these limits are considered overtime and are paid 25%
more than normal working hours. In case the agent requirements cannot be
met with the available workforce, additional non-check-in personnel can be
assigned to cover them, although this is not desirable because it removes
them from their original job positions (i.e., equivalent to outsourcing).

Shifts can have a duration of 3 to 10 hours per day and can start in 15-
minute intervals, with a minimum of R = 10 rest hours between the end
and the start of the shifts of consecutive working days. A maximum of

29



Figure 2.5.: OvercapacityOvercapacity
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MIP RPH

w = 6 consecutive working days is allowed without a day off, and days
off can be non-consecutive. With respect to the overall working days, the
corresponding contract rules do not take into account vacation and sick
days in a specific month. Therefore, to more faithfully represent the real
setting, we fix the assigned working days to the actual number of working
days per employee from the data set.

An exact solution could not be obtained by solving the MIP formulation
because of out-of-memory errors. The RPH approach with r = 7 and s = 4

obtained a final solution in 5.81 hours. Figure 2.6 shows a comparison of the
overall scheduled hours from the RPH solution with respect to the overall
requirements. As Figure 2.6 shows, overcapacity is inevitably present
each day due to the heterogeneity of the demand. This is still acceptable
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Figure 2.6.: Comparison of overall scheduled and required hours
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because the average utilization of the workforce is 87%. Additionally, this
solution incurred 14.50 overall overtime hours and only 1 hour during
which non-check-in personnel were required.

This case study shows that the RPH is able to solve complex problem
instances as they appear in real applications.

2.6. Conclusions and Further Research

This paper addresses the tour scheduling problem for a multiskilled work-
force at check-in counters at airports. To the best of our knowledge, the
combination of the non-hierarchical nature of the skills and the high degree
of scheduling flexibility analyzed in this study has not been considered
in previous research. We present a Mixed Integer Programming model
that extends the Reduced Set-Covering formulation to multiple skills and a
Rolling Planning Horizon heuristic to solve the problem.

The results of a numerical study conducted using real-world data from
a ground-handling agency are presented. These results show that the
proposed heuristic provides good solutions in an acceptable amount of
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time for different problem sizes and skill distributions. However, a proper
selection of the parameters for the RPH is crucial to the performance of
the heuristic, and additional testing is recommended for different problem
settings. Furthermore, the results show that additional flexibility can be
gained by increasing the proportion of generalist agents in the workforce.
On the other hand, this additional flexibility can be acquired at a higher
cost if salaries depend on the number of qualifications of the agents.

The results of additional tests conducted using data from a second ground-
handling agency show that with our proposed heuristic, it is possible to
solve realistic problems that are otherwise not solvable with an MIP formu-
lation, and to obtain good-quality solutions.

Further research needs to be conducted to extend the proposed model to
consider agent preferences and fairness measures in the planning process.
Another research direction is to implement subsequent phases of the work-
force planning process (e.g., task assignment and replanning) with the
present model to serve as an integrative robust planning tool for ground-
handling agencies.

32



3. Branch-and-price approaches for the
Multiperiod Technician Routing and
Scheduling Problem

Co-author:

Raik Stolletz
Chair of Production Management, Business School, University of
Mannheim, Germany

Published in: European Journal of Operational Research,
Available online 1 July 2016, ISSN 0377-2217, DOI:
doi:10.1016/j.ejor.2016.06.058

Abstract:

This paper addresses a technician routing and scheduling problem motivated
by the case of an external maintenance provider. Technicians are proficient
in different skills and paired into teams to perform maintenance tasks.
Tasks are skill constrained and have time windows that may span multiple
days. The objective is to determine the daily assignment of technicians
into teams, of teams to tasks, and of teams to daily routes such that the
operation costs are minimized. We propose a mixed integer program and a
branch-and-price algorithm to solve this problem. Exploiting the structure
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of the problem, alternative formulations are used for the column generation-
phase of the algorithm. Using real-world data from an external maintenance
provider, we conduct numerical studies to evaluate the performance of our
proposed solution approaches.

3.1. Introduction

This paper addresses the Multiperiod Technician Routing and Scheduling
Problem (MPTRSP) based on the case of an external maintenance provider
(EMP) specialized in electric forklifts. Services offered by the considered
EMP include preventive and corrective maintenance, failure diagnoses, and
the delivery of spare parts and supplements to different geographically
distributed customers. As these services are offered at the customers’
locations, they require the visit of a team of technicians based on customers’
service requests. Such requests may be either known in advance (e.g., in
the case of preventive maintenance based on yearly contracts and scheduled
repairs), or requested on demand (e.g., emergency repairs when breakdowns
occur). In this research we consider programmed maintenance tasks, i.e.,
maintenance demand is deterministic and known in advance, because the
current problem constitutes one part of a hierarchical planning process for
the EMP.

These maintenance tasks have the following features:

• First, based on maintenance contracts, a time frame for the provision
of each task has been agreed upon with the respective customer. In
this way, customers can specify the allowed time(s) (and day(s))
on which a task can be performed, i.e., time windows are defined.
These time windows can span several hours and possibly several
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days depending on the type of service requested. For example, a
task can be allowed between Monday at 9:00 am and Friday at 1:00
pm, a corrective maintenance task between Tuesday at 4:00 pm and
Wednesday at 12:00 pm, or a delivery between Thursday at 9:00
am and 4:00 pm. Due to the EMP’s working day duration limit,
these time windows can be formulated as multiple alternative time
windows on consecutive days. Maintenance contracts incur a penalty
fee if a customer is visited after the latest starting time. The contracts
also define the maximum waiting time per customer.

• Second, a single customer can request more than one service; there-
fore, multiple tasks might need to be performed at the same location.
Due to safety requirements, however, tasks are not allowed to be left
unfinished or split, i.e., tasks are non-preemptive, and at most one
team per task is allowed. Third, tasks’ service time and travel time
are known, as well as the minimum skill proficiency required for
each task.

As for the workforce, first, each day, technicians are paired into teams
and then dispatched to visit customers. Team compositions remain fixed
for the duration day (i.e., a technician is assigned to at most one team
per day), although different team compositions on different days is not
forbidden. The number of teams and size of a team are defined based on the
company’s safety policies, e.g. since some maintenance tasks for forklifts
require lifting heavy equipment. Each technician is qualified in certain skill
domains (e.g., hydraulics, mechanic, electric, etc.) and has a proficiency
level in each domain (e.g., basic proficiency, medium proficiency, or
expert). Thus, team qualifications depend on the combined qualifications
of the team members. Second, on any given day, teams are dispatched
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from the EMP’s location and need to return to it before closing time. If a
team returns after this time, overtime is incurred at a cost. Other workforce
scheduling decisions, such as shift scheduling, days-off scheduling, and
meal-breaks placement are outside of the scope of this paper.

The planning problem faced by this EMP consists of obtaining weekly
schedules comprised by: (i) daily pairing of technicians into teams, (ii)
assignment of teams to tasks, and (iii) dispatching teams into routes to
perform their respective tasks. The goal is to obtain weekly schedules such
that the operational costs are minimized. That is, the said schedules should
minimize travel costs, customer waiting time and technician overtime. To
the best of our knowledge, this problem with all its features has not been
previously addressed in literature.

The contribution of this paper is three-fold:

• The multiperiod technician routing and scheduling problem is defined
and its relation to existing research is presented.

• Branch-and-price algorithms to solve this problem to optimality are
proposed.

• Numerical experiments using real-world data are conducted to test
the performance of the proposed solution approaches.

The remainder of this paper is organized as follows. In Section 3.2, an
overview of the related literature is shown, and in Section 3.3, a problem
description and a model formulation are provided. A description of the
proposed solution approaches and details on their implementation are
shown in Section 3.4. The numerical studies conducted in Section 3.5
compare the performance of the different solution approaches using real-
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world data. Concluding remarks and directions for future research are
presented in Section 3.6.

3.2. Related literature

Personnel scheduling has been addressed frequently by many researchers
due to its presence in many application areas (see Ernst et al. (2004b),
Ernst et al. (2004a), and Van den Bergh et al. (2013) for more thorough
reviews). As it is a complex process, several sub-stages need to be carried
on for its completion: (i) demand modeling, (ii) days-off scheduling, (iii)
shift scheduling, (iv) line of work construction, (v) task assignment, and
(vi) staff assignment (Ernst et al., 2004b). The present problem belongs to
task assignment and staff assignment stage of this classification, although
it also involves additional decisions that need to be considered, e.g., the
assignment of technicians into teams, the assignment of teams to tasks, the
construction of routes, and the selection of the day on which a service is
provided.

On the other hand, the Multiperiod Technician Routing and Scheduling
Problem (MTRSP) can also be classified as a generalization of the Work-
force Scheduling and Routing Problem (WSRP), as it combines aspects
from personnel scheduling and vehicle routing problems (see Castillo-
Salazar et al. (2014) for a review on recent WSRP literature). However, it
also incorporates additional features: tasks have multiple alternative time
windows on multiple days (i.e., multiple periods are considered), and teams
of technicians need to be formed on a daily basis (i.e., team building).

In the following we review related literature that addresses similar problems.
First, we analyze existing literature and classify it according to the extent
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to which they incorporate the special features from our problem. Second,
we provide an overview of the proposed solution approaches used in these
works.

3.2.1. Related problem formulations

This section reviews problem formulations similar to ours found in liter-
ature. This analysis focus on contrasting the features considered in these
formulations, in comparison to the features of our proposed problem. Ac-
cordingly, the related works are then classified into the following categories:
(i) a single period and no team building, (ii) multiple periods and no team
building, and (iii) a single period with team building.

(i) Single period, no team building Most literature on WSRP-related
problems differs to our problem in the fact that they consider single-day
routes and the tasks to be assigned involve single agents (i.e., no team
building decisions are made).

In Xu and Chiu (2001) a staff-scheduling problem for field technicians of a
telecommunication company is considered. Skill levels for each technician
are given as a percentage of proficiency on each task. In contrast to our
model, tasks do not require proficiency levels but rather the objective func-
tion maximizes the assignment of technicians to tasks by weighting their
proficiency level, so that highly skilled technicians are more likely to be
assigned. Dohn et al. (2009b) propose a manpower allocation problem in
which teams of technicians are assigned into maintenance tasks constrained
by time windows. Tasks have different skill requirements, which constrain
their assignment to teams, and the collaboration of multiple teams in one
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task is allowed. Pillac et al. (2012) consider the Technician Routing and
Scheduling Problem (TRSP) where the technician-task compatibility in-
cludes spare parts and tools as well. All these models, however, differ from
ours in that all tasks observe a single-day planning horizon and no team
building decisions are considered. Lim et al. (2004) deal with a different
version of a manpower allocation problem for service personnel at the
port of Singapore. They formulate this problem as a multi-objective prob-
lem where, in contrast to our model, minimize the number of servicemen
used as a primary objective and minimize the routing costs as a secondary
objective.

Additional WRSP literature addresses the home health care problem. In this
problem staff members from a health care provider are dispatched to visit
geographically dispersed clients (Akjiratikarl et al. (2007), Cheng and Rich
(1998)). In other examples of home health care related literature the tasks or
clients require the visit of multiple agents. In Bertels and Fahle (2006) and
Eveborn et al. (2006b) a staff planning problem for home care is addressed
where some visits require the coordination of multiple staff due to, e.g.,
safety regulations. However, in contrast to our problem, these groups of
staff do not remain together for the entirety of the working day. Instead,
the authors model additional constraints to force the synchronization on the
arrival and departure of the agents.

(ii) Multiple periods, no team building In Blakeley et al. (2003), tech-
nicians are assigned to customers and dispatched on routes in a multiperiod
planning horizon. Technicians have different qualifications, and compati-
bility of customers and technicians is taken into consideration. Similar to
the Periodic Vehicle Routing Problem (PVRP) (Francis et al., 2006, 2008),
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technicians are assigned to routes according to predetermined visit frequen-
cies, and customers are visited within their preferred visit days. In contrast
to our model, the visit frequency is predetermined, the validity periods do
not consider specific time windows, and no team building decisions are
made.

Similarly, Tang et al. (2007) consider the routing of technicians to main-
tenance tasks for geographically distributed customers on multiple days.
The authors formulate this problem as a Multiple Tour Maximum Collec-
tion Problem with Time-Dependent rewards (MTMCPTD). In this model,
single-day routes are obtained for technicians such that the reward obtained
for visiting customers is maximized. In contrast to the MPTRSP, instead
of time windows on multiple days, the authors consider time-dependent
rewards based on the urgency of the task. This problem considers single
technicians with homogeneous skills; thus, no team building is required.

Bostel et al. (2008) address a similar problem in their multiperiod planning
and routing for a generic field force problem. The authors consider tasks
that can be executed by single technicians on multiple days. In contrast to
our problem, only part of the tasks are subject to time windows, and only
a homogeneous workforce is considered. Additionally, the authors do not
consider team-building decisions.

In Barrera et al. (2012) a combination of a timetabling and crew scheduling
problems of a public healthcare provider is addressed. In this problem
health care agents serve a set of geographically dispersed customers. Cos-
tumers can request multiple services from a portfolio of services on multiple
days within a given planning horizon. The purpose of this problem is to
construct routes that satisfy all services using a minimum number of health
care agents and balancing their workload. The formulation of Barrera
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et al. (2012) differs mainly from ours on the fact that an homogeneous
workforce is considered, routes do not start and end at the depot, and no
team-building decisions nor task assignments are involved as its focus is
on staffing decisions.

(iii) Single period with team building The previous articles address
technician scheduling without assignment of technicians into teams. Ap-
proaches in which team building decisions are considered are: Cordeau
et al. (2010a) and Kovacs et al. (2011).

Cordeau et al. (2010a) address the Technician and Task Scheduling Problem
(TTSP) in a telecommunications company. In this problem, tasks differ in
difficulty and require more than one technician with specific qualifications.
Similar to our approach, technicians have different proficiency levels in
several skill domains, and they are assigned into teams to serve maintenance
tasks. The objective is to minimize the overall makespan while satisfying
the tasks’ skill requirements, precedence constraints, technician availability,
and working day limitations. This problem differs from the MPTRSP in
that routing decisions are not considered, outsourcing tasks is allowed, and
only single-day routes are obtained.

Kovacs et al. (2011) combine elements from Cordeau et al. (2010a) with
routing decisions and define the Service Technician Routing and Scheduling
Problem (STRSP). Similar to the TTSP, the authors consider technicians
with a number of skills on different levels that can be grouped into teams
to perform maintenance tasks. In contrast to Cordeau et al. (2010a), the
STRSP incorporates traveling costs to determine service routes for the
teams. The objective is to obtain routes for each team such that the travel
costs are minimized while satisfying the tasks’ skill requirements and time
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windows. This problem differs from ours in the following: only single
days are considered, teams can have different sizes, which depend on tasks
requirements, and tasks can be left unassigned to the existing workforce
and be outsourced at a different (higher) cost.

In conclusion and to the best of our knowledge, a WRSP where both
multiple periods and team building are considered simultaneously has not
been previously addressed in the literature.

3.2.2. Solution approaches

Among the solution approaches in the presented related literature several
types of methods are used: (i) heuristics and meta-heuristics, (ii) mathemat-
ical programming approaches, and (iii) hybrid methods.

The most commonly used solution approaches are heuristics and meta-
heuristics due to their versatility and short computation time. In the pre-
sented literature the heuristic methods used are: 2-step heuristics (Barrera
et al., 2012), Local Search (Souffriau et al., 2013), Adaptive Large Neigh-
borhood Search (Cordeau et al., 2010a; Kovacs et al., 2011; Pillac et al.,
2012), Tabu Search (Tang et al., 2007), Particle Swarm Optimization (Akji-
ratikarl et al., 2007), Greedy heuristics (Xu and Chiu, 2001), and Simulated
Annealing (Lim et al., 2004).

Among the mathematical programming approaches, the direct solution of
a mixed integer program through a commercial solver is a viable choice
(Barrera et al., 2012), although several author successfully use branch-
and-price and similar algorithms (e.g., Boussier et al. (2006); Dohn et al.
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(2009b); Bostel et al. (2008)) to solve related problems to optimality and in
short computation time.

Finally, hybrid approaches can also be applied for the solution of similar
problems. For example, the combination of linear programming, constraint
programming and metaheuristics (Bertels and Fahle, 2006), or the combi-
nation of linear programming and a repeating matching heuristics (Eveborn
et al., 2006b).

We propose two branch-and-price algorithms for the solution of the pre-
sented problem. To conclude, the reason for the selection of this solution
method is twofold. First, the MTRSP shares many elements with the classi-
cal Vehicle Routing Problem (VRP), on which branch-and-price algorithms
are commonly used (see, e.g., Desrochers et al. (1992), Kohl and Desrosiers
(1999), and Liberatore et al. (2010)). Second, to the best of our knowledge,
there is no exact solution approach developed to solve the MTRSP due to
its novelty, although closely related problems can be solved successfully
with branch-and-price algorithms.

3.3. Problem description and model formulation

The Multiperiod Technician Routing and Scheduling Problem (MPTRSP)
can be defined as follows: a graph G(I ,A) is given where the vertex set
I is made of a set of I 0 geographically dispersed maintenance tasks and
two dummy nodes (o and ō) representing the depot, and A = {(i , j )|i 2
I , j 2 I , i 6= j} corresponds to the arc set. Pairs of technicians m,n 2 M

are assigned to a team k 2 K and dispatched to serve these maintenance
tasks. Each day d 2 D , each team k departs and arrives at the depot within
the opening hours [e, f ]. A transportation time t

ij

and a traveling cost c
ij
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(including the service time p
i

associated to each task i 2 I

0) are associated
to each arc (i , j ) 2 A. We assume that the triangle inequality is satisfied
including the case where tasks i and j are in the same location because
the service times are non-negative. Furthermore, we define l 2 L as the
proficiency level in skill domain q 2 Q . Then, a solution for the considered
problem consists of obtaining a service schedule satisfying all tasks within
the planning horizon. This schedule is composed of the daily assignment
of technicians into teams and the assignment of daily routes to teams. Each
route (i.e., a cycle from o to ō in G) is a sequence of tasks performed by a
team within a working day.

Each task is associated with a time window(s), which indicates the pre-
ferred visit times and days. As daily operation hours are limited, these
time windows can be represented as multiple single-day time windows.
Let [a

id

, b
id

] be the earliest and latest starting time of task i in day d ,
respectively, and ¯

D

i

⇢ D be the set of days on which performing task i is
allowed. Thus, we let the set A

d

⇢ A be the subset of allowed arcs for day
d . Skill requirements are represented by v

iql

, a binary parameter equal to 1
if the task i requires a technician with the skill q 2 Q with at least a level
l 2 L of proficiency.

Similar to Cordeau et al. (2010a) and Kovacs et al. (2011), technician
qualifications are represented by g

mql

, which is a binary parameter equal to
1 if technician m has at least a level l of proficiency on skill domain q . Each
team is composed of exactly ⌧ technicians (in our case ⌧ = 2, although our
formulation allows for different values for ⌧ ). The combined qualifications
of the members of a team must satisfy the skill requirements of each task.
Assigning “overqualified” teams is allowed at no cost. Team configurations
remain fixed for the duration day (i.e., a technician is assigned to at most
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one team per day), although different team configurations on different days
is not forbidden.

Six main decision variables are used. First, the binary variable z
mkd

assigns
technicians to teams on a day:

z

mkd

=

8
<

:
1, if technician m is assigned to team k on day d ,

0, otherwise.
,

8m 2 M , 8k 2 K , 8d 2 D

Second, binary variable x

ijkd

assigns a sequence of tasks to a team on a
day:

x

ijkd

=

8
<

:
1, if team k uses arc (i , j ) on day d

0, otherwise.
,

8(i , j ) 2 A, 8k 2 K , 8d 2 D

Note that for teams with no assignments, empty routes (x
oōkd

= 1) are
allowed.

Third, a binary variable y
ikd

assigns tasks to teams on a day to simplify the
notation:

y

ikd

=

8
<

:
1, if task i is assigned to team k on day d

0, otherwise.
,

8i 2 I , 8k 2 K , 8d 2 D

Fourth, the starting time of task i of team k on day d is defined by the
positive variable s

ikd

8i 2 I

0, 8k 2 K , 8d 2 D . Fifth, a task can be
started only after its earliest starting time, i.e., if a team arrives earlier,
it waits at no cost, whereas starting after the latest starting time, i.e., the
customer waits at a cost. We penalize customer waiting time for task i by
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the use of the positive auxiliary variable w

i

, defined as

w

i

=

8
<

:
max(0, s

ikd

� b

id

), if y
ikd

= 1

0, otherwise,
, 8i 2 I

0

with a cost of wcost per time unit and with a maximum waiting time of
w

max .

Last, in case a team arrives at depot at the end of its route after closing time,
overtime is incurred. We model this by the use of the positive auxiliary
variable ot

kd

defined as

ot

kd

= max(0, s
ōkd

� f ), 8k 2 K , 8d 2 D ,

with a cost of otcost per time unit and with a maximum overtime ot

max .
Table 3.1 shows the notation used for this formulation.

The objective is to minimize the traveling, waiting, and overtime costs. The
MPTRSP can be formulated as a mixed integer programming model as
follows:

Minimize
X

(i,j)2A

X

k2K

X

d2D

c

ij

· x
ijkd

| {z }
Travel costs

+ w

cost ·
X

i2I

0
w

i

| {z }
Waiting costs

+ ot

cost

X

k2K

X

d2D

ot

kd

| {z }
Overtime costs

(3.1)

Subject to the following constraints:

X

k2K

X

d2D

y

ikd

= 1 8i 2 I

0 (3.2)

X

j :(i,j)2A
d

x

ijkd

= y

ikd

8i 2 I

0, 8k 2 K , 8d 2 D (3.3)
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Table 3.1.: Notation

Sets
D Set of days
I

0 Set of tasks
I Set of tasks I = I

0 [ {o, ō}
¯

D

i

✓ D Set of allowed visit days of task i

A Set of arcs A ✓ {(i , j )|i , j 2 I }
A

d

⇢ A Set of arcs A
d

✓ {(i , j )|i , j 2 I and d 2 ¯

D

i

\ ¯

D

j

}
K Set of teams
M Set of technicians
Q Set of skills
L Set of proficiency levels
Parameters
c

ij

Traveling cost from task i to task j

t

ij

Traveling time from task i to task j including service time
[a

id

, b
id

] Earliest and latest starting time window for task i on day d

v

iql

1 if task i requires at least a proficiency level l on skill q for task i , 0
otherwise

p

i

Service time of task i

g

mql

1 if technician m has at least a proficiency level l on skill q , 0 otherwise
[e, f ] Daily work hours
⌧ Nr. of technicians in a team
w

cost Cost per time unit of customer waiting time
ot

cost Cost per time unit of overtime
w

max Maximum customer waiting time
ot

max Maximum overtime
Decision variables
z

mkd

1 if technician m is assigned to team k on day d , 0 otherwise
y

ikd

1 if team k is assigned to task i on day d , 0 otherwise
x

ijkd

1 if team k goes directly from task i to task j on day d , 0 otherwise
s

ikd

Start time of task i by team k on day d

w

i

Waiting time of task i

ot

kd

Overtime of team k on day d
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X

j :(o,j)2A
d

x

ojkd

= 1 8k 2 K , 8d 2 D (3.4)

X

i:(i,ō)2A
d

x

iōkd

= 1 8k 2 K , 8d 2 D (3.5)

X

i:(i,h)2A
d

x

ihkd

�
X

j :(h,j)2A
d

x

hjkd

= 0 8h 2 I

0, 8k 2 K , 8d 2 D (3.6)

x

ijkd

(s

ikd

+ t

ij

� s

jkd

)  0 8i , j : (i , j ) 2 A
d

, 8k 2 K ,

8d 2 D (3.7)

y

ikd

(a

id

� s

ikd

)  0 8i 2 I

0, 8k 2 K , 8d 2 D (3.8)
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mkd
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0, 8q 2 Q , 8l 2 L,
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0  ot
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max 8k 2 K , 8d 2 D (3.16)

s

ikd

� 0 8i 2 I , 8k 2 K , 8d 2 D (3.17)

x

ijkd

, y
ikd

, z
mkd

2 {0, 1} 8i , j 2 I , 8m 2 M , 8k 2 K ,

8d 2 D (3.18)

Constraints (3.2) and (3.3) ensure that all tasks are assigned exactly once
to one team on any feasible day with respect to the requested visit days.
Constraints (3.4) and (3.5) ensure that each team starts and ends its route
at the depot. Constraint (3.6) ensures flow conservation when visiting a
task site. Constraint (3.7) allows a task to be started only if its preceding
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task is completed, which implicitly corresponds to a sub-tour elimination
constraint. Constraints (3.8) and (3.9) state that a task can only start within
its time window. If a team starts a task after its latest starting time, a penalty
on customer waiting is incurred. Note that constraints (3.7)-(3.9) can be
linearized by using a big M formulation. The routes’ duration limit and
overtime are defined by constraints (3.10) and (3.11). Constraint (3.12)
ensures that a technician is assigned to at most one team per day, and
equation (3.13) defines the number of technicians per team. Constraint
(3.14) ensures that the skill requirements of task i are fulfilled by the
combination of skills from the technicians assigned to a team. Constraints
(3.15) and (3.16) define the bounds for customer waiting and overtime,
respectively. Lastly, constraints (3.17) and (3.18) define the positive and
the binary variables, respectively.

From (3.1), constraints (3.2)-(3.11), and (3.15)-(3.18) we observe that the
MPTRSP contains, as a special case, the Vehicle Routing Problem with
Time Windows (VRPTW) with a fixed fleet size, which is an NP-hard
problem (Solomon, 1987; Solomon and Desrosiers, 1988a). Note that even
finding a feasible solution to the VRPTW is itself an NP-complete problem
(Savelsbergh, 1985). The remaining team building constraints correspond
to a special case of the two-to-one assignment problem (2-1-AP) (Goossens
et al., 2012) with no cost-coefficients.

3.4. Branch-and-price algorithms

The choice of column generation-based algorithms to solve workforce
scheduling and routing problems stems from their similarities with the
vehicle routing problem (VRP), on which this method is commonly applied
(see, e.g., Desrochers et al. (1992), Kohl and Desrosiers (1999), and Lib-
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eratore et al. (2010)). This approach exploits the structure of the problem
by reformulating is as a master problem (MP) and a pricing problem(s)
using, e.g., Danzig-Wolfe decomposition, and provides a fractional lower
bound. To guarantee integrality, column generation can be embedded
in a branch-and-bound algorithm to branch on fractional variables, i.e.,
branch-and-price can be applied.

In the MIP formulation for the Multiperiod Technician Routing and Schedul-
ing Problem (MTRSP), we observe that (3.2) and (3.3) are the only con-
straints that link the teams and days together, whereas the rest are team and
day specific. This allows us to apply a similar decomposition and use a
branch-and-price algorithm to solve the problem. However, this fact also al-
lows a certain degree of flexibility as to which constraints are selected to be
in the MP and pricing problem(s). In this section, we illustrate the applica-
tion of a branch-and-price algorithm using two alternative decompositions
of the MPTRSP and details on its implementation.

3.4.1. Day decomposition

Exploiting the fact that the time windows spanning several days can be
represented as multiple alternative single-day time windows, the MPTRSP
can be decomposed into a master problem that selects the best routes for all
teams on each day in the planning horizon, and single-day pricing problems
from which daily technician-to-team assignments and daily routes for all
teams are obtained.

As for the MP, let P
d

be the set of feasible schedules containing feasible
routes (i.e., paths) for all teams on day d and �

dp

be a binary variable equal
to 1 on day d schedule p is used, 0 otherwise. Additionally, let ✓

idp

be
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a parameter equal to 1 if task i on day d is on schedule p, 0 otherwise,
and '

ijkdp

be a parameter equal to 1 if arc (i , j ) is used by team k on day
d and schedule p, 0 otherwise. Then, the integer master problem for the
day-decomposition (MP-D) can be defined as:

Minimize
X

d2D

X

p2P

d

c

dp

�
dp

(3.19)

Subject to:

X

d2D

X

p2P

d

✓
idp

�
dp

= 1 8i 2 I

0 (3.20)

X

p2P

d

�
dp

= 1 8d 2 D (3.21)

�
dp

2 {0, 1} 8d 2 D , 8p 2 P

d

(3.22)

Where the cost of a schedule p 2 P

d

is defined by:

c

dp

=

X

k2K

X

i,j :(i,j)2p

c

ij

'
ijkd

+ w

cost

X

i2p

w

i

+ ot

cost

X

k2K

ot

kd

(3.23)

The objective is to minimize the overall costs. The set partitioning con-
straint (3.20) ensures that tasks are assigned exactly once. Convexity
constraint (3.21) states that exactly one schedule is used per day. Last, con-
straint (3.22) defines the binary requirements for the assignment variables.
The linear relaxation of this formulation (LMP-D), obtained by relaxing
constraint (3.22), can be used to obtain a lower bound on the MP. However,
set P

d

may contain a large number of feasible schedules thus making the so-
lution to this problem computationally intractable. Therefore, in a column
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generation approach, only subset P 0
d

⇢ P

d

of schedules, i.e., columns, are
considered in a restricted master problem (RMP-D). Additional feasible
columns are obtained by the iterative solution of a pricing problem, which
consists of finding schedules with negative reduced cost c̄

dp

:

c̄

dp

= c

dp

�
X

i2I

0
✓
idp

⇡
i

� ⇢
d

(3.24)

=
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k2K

X

i,j :(i,j)2p

(c
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� ⇡
i
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ijkd

+ w

cost

X

i2p

w

i

+ ot

cost

X

k2K

ot

kd

� ⇢
d

where ⇡
i

, and ⇢
d

correspond to the dual values of constraints (3.20) and
(3.21) in the optimal solution of the RMP-D.

These values are then passed to the subproblems from which daily schedules
for all teams are obtained. The pricing problems correspond to a single-day
version of the original MPTRSP problem (i.e., (3.1)-(3.18), without the
d index), one for each day in the planning horizon, which can be solved,
e.g., by the use of commercial optimization software. For this, for each
d -subproblem, we let I 0

sub

d

⇢ I

0 and I

sub

d

⇢ I be the set of tasks that
can be served on day d . Also, we let A

sub

d

= {(i , j )|i , j 2 I

sub

d

} be the
corresponding subnetwork for this subproblem.

This decomposition has the advantage that it can easily incorporate different
team sizes. However, each pricing problem corresponds to a single-day
MPTRSP (a general case of the VRPTW), which is an NP-hard problem.
This may constitute a major drawback for this approach regarding compu-
tation time, as column generation involves solving the pricing problems
multiple times.
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3.4.2. Team-day decomposition

In addition to decomposing the MPTRSP by days, another possibility is to
decompose it by teams. As technician-to-team assignments can change on a
daily basis, however, some additional considerations are required. Because
the workforce composition and team size are known in advance, we can
assume without loss of generality that all possible team configurations
are also known. We now let K be the set of all teams resulting from
all possible combinations of all technicians m 2 M in teams of size ⌧
size, hence |K| = |M |!

⌧ !(|M |�⌧)! . Therefore, the assignment of technicians
to teams can be pre-defined by letting z

mkd

be a parameter with a value
of 1 if technician m 2 M belongs to team configuration k 2 K on day
d 2 D , and 0 otherwise. Thus the technician-to-team assignments become
parameters instead of decision variables. In other words, instead of building
teams (constraints (3.12)-(3.13)), we now address a daily assignment of
pre-configured teams to tasks. This allows us to decompose the MPTRSP
into a master problem defining routes for each team on each day of the
planning horizon and a pricing problem from which daily routes per team
are obtained.

As for the master problem for this decomposition (MP-KD), let P
kd

be
the set of feasible routes (i.e., paths) for team k on day d and �

kdp

be a
binary variable equal to 1 only if team configuration k uses path p on day
d . Additionally, let ✓

ikdp

be a parameter equal to 1 if task i is in path p of
team configuration k on day d , 0 otherwise, '

ijkdp

be a parameter equal
to 1 if arc (i , j ) is used by team k on day d and path p, 0 otherwise, and
⌘
mkdp

be a parameter equal to 1 only if technician m is assigned on the
path p of team configuration k on day d . Then, the MP can be defined as:
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Where the cost of a path p 2 P

kd

is defined by:
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=

X

i,j :(i,j)2p
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ij
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ijkd
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cost
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i2p

w
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+ ot

cost

ot

kd

(3.30)

This MP-KD formulation is fairly similar to the MP-D from Section 3.4.1
with the exception of constraint (3.27). Because multiple team configura-
tions can include the same technician, constraint (3.27) ensures that each
technician is assigned at most once per day. Column generation can be used
to solve the linear relaxation of this set partitioning formulation (LMP-KD),
which is obtained by relaxing constraint (3.29). However, as set P

kd

may
contain a large number of columns, only a subset P 0

kd

⇢ P

kd

of paths are
considered in a restricted version of the master problem (RMP-KD). Further
feasible columns are obtained by the iterative solution of pricing problems
(one for each team and each day), which consist of finding single-day paths
for each team with negative reduced cost. For each k � d -subproblem we
let I 0

sub

kd

= {i 2 I

0|v
iql


P

m2M

g

mql

z

mkd

8q 2 Q , 8l 2 L; a

id

6= ?}
and I

sub

kd

= I

0
sub

kd

[ {o, ō} be the set of tasks that can be served on day d
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and for which team k is qualified. Also, let A
sub

kd

= {(i , j )|i , j 2 I

sub

kd

}.
A given k � d -subproblem can be formulated as a mixed integer pro-
gramming model (we omit the k and d index to simplify the notation) as
follows:

Minimize c̄
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x
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where ⇡
i

, �
md

, and ⇢
kd

correspond to the dual values of constraints (3.26),
(3.27), and (3.28) in the optimal solution of the restricted master problem.
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x

ij

is a binary variable with a value of 1 if the arc (i , j ) is used, and 0
otherwise. s

i

and w

i

are positive variables corresponding to the starting
time and the customer waiting time of task i , while ot is a positive variable
that comprises the (possible) overtime incurred in this route. The objective
is to find a route with a minimum reduced cost (3.31). Constraints (3.32),
(3.33), and (3.34) ensure the feasibility of the route. Constraint (3.35)
defines the tasks’ starting time, whereas constraint (3.36) ensures that time
windows are respected. If a task starts after its latest starting time, customer
waiting occurs. Constraints (3.37) and (3.38) define the working day limits,
and if a team arrives at the depot after closing time, overtime is incurred.
Note that constraints (3.35), (3.37), and (3.38) can be linearized using a
big M formulation. Constraints (3.39) and (3.40) define the bounds for the
waiting and overtime variables, respectively. Last, positive variables (3.41)
and binary variables (3.42) are defined.

These subproblems correspond to an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC). This means, that it is necessary to
explicitly enforce elementary paths as the solution of the subproblems,
since the dual values ⇡

i

and ⇢
d

associated with a task may lead to negative
cost cycles (i.e., subcycles). Note that ESPPRC in graphs with negative
cost cycles is strongly NP-hard (Dror, 1994). This could represent a ma-
jor drawback for this decomposition, as the number of pricing problems
depends directly on the number of possible team configurations. Because
in our algorithm we need to solve these subproblems several times, an
efficient solution approach is required.

Labeling algorithm In the VRPTW literature, a common approach to
solving the pricing problems is to relax the elementary requirement for paths
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so that the subproblem changes to a Shortest Path Problem with Resource
Constraints (SPPRC) (See, e.g., Desrochers et al. (1992)). This approach
can be solved efficiently using dynamic programming, although it has
the disadvantage of weakening the lower bound computed by the column-
generation master problem (Bode and Irnich, 2014b). However, several
approaches successfully apply similar dynamic programming methods to
efficiently solve the ESPPRC (Feillet et al., 2004) and the ESPPRC with
soft time windows (Liberatore et al., 2010) because of its ability to provide
tight lower bounds. In the following, we describe a dynamic programming
approach similar to the approach proposed by Feillet et al. (2004) to solve
the ESPPRC to optimality. Our approach, similar to Ioachim et al. (1998)
and Liberatore et al. (2010), considers time dependent cost (i.e., in the case
of customer waiting and overtime) in addition to elementary paths.

Labeling algorithm overview In the following, we present an overview
of our proposed labeling algorithm (see Algorithm 2). For this, we require
the following notation: let U

i

and P
i

represent the set of unprocessed and
processed labels for task i , respectively. These sets allow keeping track
of the creation of labels throughout the algorithm. The process starts by
setting sets U

i

and P
i

to the empty set, by creating the first label L
o

, and
by adding it to the unprocessed set. Then, iteratively, the label with the
minimum cost is selected from the unprocessed set to look for possible
extensions along its arcs. If feasible, new labels are created by extending
each selected label along all its connecting arcs to successive tasks, and
added to the unprocessed set. Once no more extensions are possible, the
currently explored label is added to the processed set. To keep the size
of these sets tractable, dominance rules are applied to discard labels that
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cannot lead to an optimal solution. Once all paths arriving at the depot ō
are obtained and no more unprocessed labels remain, the label with the
minimum cost is selected and corresponds to the optimal solution of the
respective k � d subproblem. Its corresponding reduced cost is determined
by c̄ = C (T

ō

)�
P

m2M

z

m

�
m

� ⇢. If multiple labels (i.e., columns) are
found with the same minimum reduced cost, and none can be dominated,
then all are added to the master problem.

Algorithm 2 Labeling algorithm overview
Set U

i

= P
i

= ? 8i 2 I

sub

Set L
o

= (o,T
o

= e,C (T

o

) = 0,S
o

= 0)

Set U
o

= {L
o

}
while

S
i2I

sub

U
i

6= ? do
Choose the label L

m

2
S

i2I

sub

U
i

with the minimum cost and remove
it from U

m

for all arcs (m, j ) 2 N

sub

do
Extend L

m

along arc (m, j ) to create label L
j

using the REF’s
if L

j

is feasible then
Add L

j

to U
j

Apply dominance rules to U
j

and P
j

end if
Add L

m

to P
m

end for
Filter P

ō

to find the shortest o � ō elementary path
end while

Label setting In short, the objective of the algorithm is to obtain routes
from o to ō for a team on a single day, visiting a subset of the other tasks,
such that the reduced cost is minimized. For this purpose, we need to define
the following concepts. A state associated with task i corresponds to a
partial path of visited tasks from the depot to i . Each task can be associated
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with more than one state because multiple feasible paths can end in said
task. To represent such states, we make use of multidimensional resource
vectors or labels represented by L

i

= (i ,T
i

,C (T

i

),S
i

) where:

• i is the last visited task,

• T

i

is the starting time of task i ,

• C (T

i

), similar to Liberatore et al. (2010), is a convex stepwise
function describing the time dependent cost, and

• S

i

2 R|I |, similar to Feillet et al. (2004), is a binary visitation vector
of representing the tasks visited in the partial path ho, ..., ii.

Resource Extension Functions (REFs) The process is initialized with
L

o

= (o,T
o

= e,C (T

o

) = 0,S
o

= 0). Through the algorithm, labels are
extended to successive feasible labels of the form L

j

= (j ,T
j

,C 0
(T

j

),S
j

)

by appending an additional arc (i , j ) to the partial path and updating its
corresponding resources. The consumption of each resource along the arc
(i , j ) is described by non-decreasing functions known as resource extension
functions (REF)(Irnich, 2008). The proposed algorithm uses the following
REF’s:

• Start time

T

j

= max(a

j

,T
i

+ t

ij

)

• Cost

C

0
(T

j

) =

8
>>>>><

>>>>>:

C (T

i

) + c

ij

+max(0,wcost

(b

j

� T

j

)) �⇡
i

,

if j 6= ō

C (T

i

) + c

ij

+max(0, otcost (f � T

j

)) �⇡
i

,

if j = ō
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• Visited tasks

S

j

m

=

8
<

:
S

j

m

+ 1, if m = j

S

j

m

if m 6= j

The same way as in Feillet et al. (2004) and Liberatore et al. (2010) in
order to enforce elementariness in the path, a dummy resource is associated
with each task i 2 I such that this resource is consumed when i is visited.
That is, S

j

m

= 1 if the path ho, ..., ii visits task m , 0 otherwise. The path
ho, ..., ii corresponds to an elementary path only if S

j

m

 1 8m 2 I

0
sub

.

Feasibility A label (i ,T
i

,C (T

i

),S
i

) is feasible if T
i

 b

i

+w

max |i 6=
ō and T

i

 b

i

+ ot

max |i = ō and is an elementary path. Labels that do
not satisfy these conditions are discarded.

Dominance As multiple labels per task are allowed, the ability to discard
labels that do not lead to an optimal solution is crucial for the efficiency
of the algorithm. For this purpose, dominance rules are applied. Let
L

i

= (i ,T
i

,C (T

i

),S
i

) and L

0
i

= (i ,T 0
i

,C 0
(T

0
i

),S 0
i

) be two labels of task
i . Then, L

i

dominates L0
i

if L
i

< L

0
i

component-wise, i.e., if T
i

 T

0
i

,
C (T

i

)  C

0
(T

0
i

) and S

i

5 S

0
i

and at least one of the inequalities is strict.
Note that S

i

5 S

0
i

means that each element of vector S
i

is less than or
equal to each corresponding element of vector S 0

i

. If a label is dominated
then it can be discarded; when all components are equal, both labels are
kept.

To strengthen these rules, one can also make use of an additional “reacha-
bility” resource, as presented in Feillet et al. (2004). Let U

i

(T

i

) be a binary
resource vector that indicates whether it is feasible to visit other tasks from
task i given the respective travel and starting times, i.e., if other tasks are
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reachable from i . This means:

U
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m
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>>>>><

>>>>>:
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Then, from labels L
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= (i ,T
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),S
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0
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= (i ,T 0
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,

C

0
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0
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) with U

i

(T
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) and U

0
i
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0
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), the dominance rule S

i

 S

0
i

can be
replaced by S

i

+ U

i

(T

i

)  S

0
i

+ U

0
i

(T

0
i

).

Acceleration strategies The column generation algorithm introduced in
the previous section presents an important drawback in that it requires
that several ESPPRC subproblems (which are NP-hard) be solved multiple
times for its completion. Solving an ESPPRC to optimality can be compu-
tationally expensive, even with our proposed labeling algorithm, when the
number of tasks increases. It is possible, however, to solve each subprob-
lem heuristically since only in the last iteration of the column generation
algorithm an exact solution is required to guarantee optimality (i.e., no
additional columns with negative reduced cost can be found).

In the following, we propose one insertion heuristic and three heuristics
based on the labeling algorithm previously described. The main idea is
to apply these algorithms sequentially during the execution of the column
generation algorithm. After an initialization phase, the first method is used
to solve each subproblem and pass information to the master problem until
no columns with negative reduced cost are found. Then, the next solution
method is chosen, and the process is repeated until no more negative
reduced cost columns are found with the last (exact) algorithm. Gendreau
et al. (2016) propose a similar approach where a heuristically stopped
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labeling algorithm and an exact branch-and-cut algorithm are used in
sequence to solve ESPPRC pricing problems.

Insertion heuristic The column generation is initialized by the use of
a modified version of the insertion heuristic from Solomon (1987). As
the vehicle “fleet” is not known in advance, we make use of the artificial
teams K described at the beginning of this section. This algorithm can
be summarized as follows: (i) for each team k 2 K and day d 2 D ,
we sequentially initialize routes by choosing the task with the highest
transportation costs to and from the depot. (ii) For each task h available to
team k on day d , we calculate the operation costs obtained from inserting it,
if feasible, in each arc (i , j ) of the initial route. (iii) The insertion (i , h, j )⇤

with the minimum cost is selected, and the initial route is accordingly
updated. Steps (ii) and (iii) are repeated until no further tasks can be
inserted. (iv) The resulting routes are post-processed and inserted as initial
columns of the reduced master problem. Note that this procedure can still
lead to infeasible schedules, as tasks may remain unassigned. In this case,
artificial columns are inserted in the master problem for each unassigned
task.

(H1) Partial pricing Each k � d subproblem focuses on the route of a
specific team on a specific day, and thus, only the tasks corresponding to
this subproblem are considered. Depending on the task time windows or
on the skill configuration of the team, it is possible for multiple teams to be
assigned to these tasks on the same day with the same route cost. In terms
of the column generation procedure, it means that the marginal values �

md

and ⇢
kd

have zero values, i.e., there is no prize to earn nor penalty to pay
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by dispatching team k on day d before other teams on other days. We
can exploit this fact to reduce the number of subproblems in each iteration
by solving only those with marginal values different from zero. In case
no subproblem satisfies this condition, one is selected randomly, and the
column generation phase continues.

(H2) Relaxed dominance rules One way to accelerate the solution of
the subproblems is to relax the dominance rules from the exact labeling
algorithm. This is done by testing the dominance of only a subset of
the labels’ resource: for two labels L
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elementariness of the routes is still required, although it is not guaranteed
that an optimal solution is found.

(H3) Partial pricing and partial dominance rules This approach con-
sists of a combination of both previously described heuristics: H1 and H2.
Therefore, partial pricing is applied in the column generation phase and
relaxed dominance rules are used in the solution of the subproblems.

3.4.3. General procedure

In this section, we outline the proposed branch-and-price algorithm. It
mainly consists of a column generation algorithm embedded in a branch-
and-bound procedure to guarantee integrality. Note that the same algorithm
is used to solve both decompositions presented in Section 3.4.1 and 3.4.2.
Therefore, we now use the terms “master problem” and “pricing problem”
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generically. Additionally, further details on the implementation of the
algorithm are presented.

Column generation The column generation process can be described
as follows: the algorithm is initialized by the insertion heuristic. The
master problem is solved with a set of artificial columns obtained by the
introduction of slack variables with a high cost to ensure primal feasibility.
Due to their high cost, these variables eventually leave the basis once further
feasible columns are obtained. From the solution of the master problem, the
marginal values are obtained and passed to the subproblems. New routes
(i.e., columns) are obtained by solving the subproblems. If columns are
found with negative reduced cost, the column generation process is started
again. Otherwise, an optimal solution for the reduced master problem and
thus to the master problem is found. If this solution is integer, then it is an
optimal solution for the MPTRSP; if not, it corresponds to a valid fractional
lower bound. Otherwise branching on fractional variables is required and
column generation is applied on each node with its respective fractional
bounds.

Preprocessing The pricing problems of either decomposition are solved
with only a subset of the original set of tasks. For each subproblem from
the day decomposition, only a subset I

sub

d

⇢ I is considered, i.e., the tasks
with time windows covering day d . For solving each subproblem of the
team-day-decomposition, only a subset I

sub

kd

⇢ I of tasks is considered;
that is, only tasks with a time window covering day d for which constraint
(3.14) for the respective k team is fulfilled. If no task satisfies these criteria,
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i.e., I

sub

d

= ? or I
sub

kd

= ?, then the respective pricing problem is not
considered throughout the column generation phase.

Branching To explore the branching tree a depth-first strategy is used.
This allows us to solve each node starting from the feasible solutions found
for its parent by storing all columns that comply with the current node’s
bounds.

Branching on arcs is the branching strategy selected, as branching on the �
variables is inefficient and troublesome to implement (Feillet, 2010). For
each node on the branching tree, we define the set A0 as the set of fractional
arcs (i , j , k , d) such that 0 <  

ijkd

< 1, where  
ijkd

=

P
p2P

d

'
ijkdp

�
dp

for the day decomposition, and  
ijkd

=

P
p2P

k

d

'
ijkdp

�
kdp

for the team-
day decomposition. Then, the arc (i , j , k , d)⇤ is selected as:

(i , j , k , d)⇤ 2 argmax

(i,j ,k,d)2A0

�
c

ij

·min( 
ijkd

, 1�  
ijkd

)

 

From this node, two successors are generated:

• One node where arc (ijkd)

⇤ is forbidden, i.e., team k cannot visit
task j after i on day d . This is done by removing this arc from its
respective subproblem’s graph, and discard any columns using it.

• Other node where arc (ijkd)

⇤ is fixed, i.e., all other arcs entering j

and leaving i for team k on day d , and all arcs entering i and leaving
j for k ‘ 6= k or d 0 6= d are removed so that team k is forced to go
from i to j on day d . Accordingly, columns using these arcs are then
discarded from the column pool.
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3.5. Numerical experiments

For our numerical experiments, we use artificial data generated from known
benchmarks tests as well as real-world data from a external maintenance
provider (EMP) to test the performance of the proposed solution approaches.
Then, to focus on the impact of the multi-periodicity of the time windows,
we conduct a sensitivity analysis varying the length of the time windows.
Then, we combine selected test instances to create larger test instances to
test the performance of our solution approaches with larger problem sizes.

All solution approaches are implemented in Python 2.7.5 using the Gurobi
5.6.2 solver on a 2.5 GHz Intel Core i7 machine with 8 GB RAM. Addition-
ally, equations (3.7)-(3.11), (3.35), (3.37), and (3.38) are linearized using a
big M formulation, with M =

P
i2I

t

oi

+ t

iō

.

3.5.1. Artificial instances

For our first experiments artificial test instances based on known VRPTW
benchmarks (Solomon, 1987) were generated. Instances C101 to C109,
R101 to R112, and RC101 to RC108 where selected, where C, R, and
RC denote clustered customers, randomly located, and semi-clustered cus-
tomers, respectively. From each instance the first 25 customer locations
(i.e., tasks) are selected (in addition to the depot) and their allowed visit
days distributed along a 5-day planning horizon in two different variants:
first, denoted by suffix a customers’ time windows are defined for a single-
day and evenly distributed through the planning horizon (i.e., five tasks
per day); second, denoted by suffix b, these customer’s time windows
are extended such that they span two consecutive days cutting off those
which exceed the planning horizon’s length. As the goal of these tests is to
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focus on the impact of the multiperiod time windows on the computational
effort, no vehicle capacity nor skill requirements are considered, waiting
and overtime are not allowed, and routes are limited only by the length of
a working day (defined by the daily time windows of the depot from the
original instances). The transportation costs c

ij

correspond to the Euclidean
distance between the two customer locations, and the transportation times
are calculated as t

ij

= c

ij

+ p

i

, as in Kohl and Desrosiers (1999). Addi-
tionally, we consider a workforce of eight homogeneous technicians and
no team building decisions are required. A total of 29 a-instances and 29
b-instances were solved setting a time limit of one hour using all three solu-
tions methods presented before: the MIP formulation solved by a Gurobi’s
branch-and-cut algorithm, branch-and-price with a day decomposition, and
branch-and-price with a team-day decomposition.

Table 3.2 shows, for the solutions of the MIP formulation obtained by
Gurobi’s branch-and-cut algorithm, the objective function value, computa-
tion time (in minutes) and the relative gap reported by the solver. For each
branch-and-price method, the objective function value, the computation
time in minutes, the number of nodes explored, the number of columns
generated (i.e., number of pricing problems solved), and the absolute gap
is shown.

In general, we observe that single day time windows (a-instances) are easier
to solve than multiperiod time windows (b-instances), since allowing time
windows to span multiple days increases the time required to solve the
problem. This can be observed by the significant increase in computation
time for either solution method. In addition, we observe that the branch-
and-price algorithm with the team-day decomposition needs to explore
more nodes in several cases than with the day decomposition. This implies
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Table 3.2.: Artificial tests results

Inst. MIP Day Decomposition Team-day Decomposition
Objective CPU (min) Gap (%) a Objective CPU (min) Nodes Nr. cols Gap (%) Objective CPU (min) Nodes Nr. cols Gap (%)

C101-25a 336.50 < 1 0.00 336.50 6.90 1 44 0.00 336.50 < 1 1.00 83.00 0.00
C102-25a 335.80 < 1 0.00 335.80 25.34 1 39 0.00 335.80 < 1 1.00 95.00 0.00
C103-25a 307.20 < 1 0.00 307.20 17.30 1 27 0.00 307.20 < 1 1.00 102.00 0.00
C104-25a 302.10 < 1 0.00 302.10 23.18 1 26 0.00 302.10 < 1 1.00 112.00 0.00
C105-25a 336.50 < 1 0.00 336.50 5.93 1 44 0.00 336.50 < 1 1.00 97.00 0.00
C106-25a 336.50 < 1 0.00 336.50 7.02 1 45 0.00 336.50 < 1 1.00 72.00 0.00
C107-25a 330.20 < 1 0.00 330.20 6.75 1 49 0.00 330.20 < 1 1.00 91.00 0.00
C108-25a 329.40 < 1 0.00 329.40 15.07 1 40 0.00 329.40 < 1 1.00 83.00 0.00
C109-25a 302.10 < 1 0.00 302.10 22.66 1 26 0.00 302.10 < 1 1.00 91.00 0.00
R101-25a 856.10 < 1 0.00 856.10 6.33 1 34 0.00 856.10 < 1 1.00 56.00 0.00
R102-25a 788.30 < 1 0.00 788.30 14.46 1 30 0.00 788.30 < 1 1.00 79.00 0.00
R103-25a 729.20 < 1 0.00 729.20 12.58 1 21 0.00 729.20 < 1 1.00 82.00 0.00
R104-25a 703.20 < 1 0.00 703.20 14.88 1 25 0.00 703.20 < 1 1.00 96.00 0.00
R105-25a 799.40 < 1 0.00 799.40 4.62 1 23 0.00 799.40 < 1 1.00 59.00 0.00
R106-25a 753.50 < 1 0.00 753.50 22.28 1 54 0.00 753.50 < 1 1.00 71.00 0.00
R107-25a 788.10 < 1 0.00 788.10 6.86 1 20 0.00 788.10 < 1 1.00 64.00 0.00
R108-25a 674.90 < 1 0.00 674.90 13.94 1 30 0.00 674.90 < 1 1.00 93.00 0.00
R109-25a 725.50 < 1 0.00 725.50 8.93 1 27 0.00 725.50 12.15 1.00 60.00 0.00
R110-25a 686.70 < 1 0.00 686.70 21.96 1 57 0.00 714.30 3.99 38.00 3161.00 0.04
R111-25a 715.50 < 1 0.00 715.50 12.86 1 28 0.00 715.50 1.93 23.00 1747.00 0.00
R112-25a 653.90 < 1 0.00 653.90 21.31 1 38 0.00 653.90 2.59 1.00 2501.00 0.00
RC101-25a 630.44 < 1 0.00 630.44 9.39 1 26 0.00 630.44 < 1 1.00 76.00 0.00
RC102-25a 616.01 < 1 0.00 616.01 17.07 1 24 0.00 616.01 < 1 1.00 95.00 0.00
RC103-25a 585.16 < 1 0.00 585.16 37.87 1 55 0.00 585.16 < 1 1.00 122.00 0.00
RC104-25a 567.14 < 1 0.00 567.14 48.46 1 58 0.00 567.14 < 1 1.00 113.00 0.00
RC105-25a 680.02 < 1 0.00 680.02 19.80 1 28 0.00 680.02 < 1 1.00 86.00 0.00
RC106-25a 602.57 < 1 0.00 602.57 36.35 1 56 0.00 602.57 < 1 1.00 102.00 0.00
RC107-25a 561.37 < 1 0.00 561.37 45.82 1 66 0.00 561.37 < 1 1.00 130.00 0.00
RC108-25a 535.34 < 1 0.00 535.34 30.91 1 42 0.00 535.34 < 1 1.00 236.00 0.00
Avg. < 1 0.00 18.51 1.00 37.31 0.00 2.54 3.03 339.83 0.00

C101-25b 217.60 T 44.00 514.00 T 2 98 138.29 215.70 13.22 6.00 914.00 0.00
C102-25b 222.10 T 48.00 786.50 T 1 76 265.13 215.40 5.22 3.00 343.00 0.00
C103-25b 225.20 T 57.80 838.00 T 1 87 291.69 213.95 14.08 9.00 874.00 0.00
C104-25b 221.50 T 59.80 882.50 T 1 92 312.50 213.94 5.43 12.00 987.00 0.00
C105-25b 223.80 T 52.37 801.50 T 1 62 319.19 191.20 5.77 2.00 384.00 0.00
C106-25b 224.40 T 49.00 484.85 T 1 137 124.78 215.70 5.07 2.00 359.00 0.00
C107-25b 201.50 T 47.15 801.00 T 1 57 309.51 195.60 4.70 2.00 403.00 0.00
C108-25b 191.00 T 49.79 810.20 T 1 41 324.41 190.90 3.93 3.00 381.00 0.00
C109-25b 190.30 T 53.70 810.58 T 1 19 325.95 190.30 3.86 4.00 419.00 0.00
R101-25b 613.70 T 43.00 620.00 T 2 221 1.03 613.70 4.40 17.00 2758.00 0.00
R102-25b 559.80 T 10.65 559.80 45.13 1 213 0.00 559.80 < 1 3.00 244.00 0.00
R103-25b 537.80 T 12.72 987.80 T 1 216 83.67 537.80 < 1 3.00 216.00 0.00
R104-25b 529.40 T 11.17 529.40 42.82 1 204 0.00 529.40 3.58 10.00 2337.00 0.00
R105-25b 572.90 T 9.80 578.00 16.52 1 173 0.89 572.90 4.05 14.00 2598.00 0.00
R106-25b 549.20 T 13.27 552.90 38.72 1 211 0.67 549.20 3.78 16.00 1861.00 0.00
R107-25b 555.30 T 22.37 524.60 40.22 1 207 0.00 524.60 1.96 20.00 1151.00 0.00
R108-25b 508.60 T 15.59 512.30 34.34 1 171 1.84 503.05 3.09 27.00 2131.00 0.00
R109-25b 532.30 T 9.98 534.85 T 2 169 0.48 532.30 3.55 11.00 2061.00 0.00
R110-25b 512.30 T 11.91 512.30 26.49 1 196 0.00 512.30 < 1 4.00 190.00 0.00
R111-25b 520.90 T 12.19 987.80 T 1 240 89.63 520.90 2.91 14.00 1707.00 0.00
R112-25b 512.30 T 17.31 510.90 60.00 1 239 0.00 510.90 < 1 4.00 267.00 0.00
RC101-25b 3606.76 T 49.07 909.28 T 1 118 151.45 361.61 1.99 3.00 314.00 0.00
RC102-25b 3606.80 T 64.28 1258.96 T 1 36 253.31 356.33 1.89 4.00 295.00 0.00
RC103-25b 3606.63 T 70.18 1228.56 T 1 57 252.35 348.67 2.08 4.00 343.00 0.00
RC104-25b 3606.31 T 70.30 1063.34 T 1 31 220.06 332.24 1.47 3.00 351.00 0.00
RC105-25b 3606.60 T 62.14 1240.59 T 1 45 242.66 362.05 2.21 2.00 395.00 0.00
RC106-25b 3606.65 T 68.00 908.26 T 1 89 156.49 354.11 1.69 4.00 346.00 0.00
RC107-25b 3606.61 T 71.00 1190.69 T 1 44 258.39 332.24 1.50 3.00 382.00 0.00
RC108-25b 3606.59 T 70.36 1187.50 T 1 31 257.43 332.24 1.27 3.00 396.00 0.00
Avg. T 40.58 38.03 1.10 123.45 151.10 3.58 7.31 876.10 0.00

aGap to best known bound found by solver
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that the team-day decomposition provides a worse linear lower bound
thus requiring additional branching in order to close the integer optimality
gap. This observation indicates that we face a trade-off by choosing a
decomposition with smaller, easier-to-solve pricing problems but which
may require more iterations to provide integer solutions.

We also observe that, for the a-instances the team-day decomposition on all
its variants is clearly outperformed by the other two exact solution methods.
That is because the team-day decomposition considers many subproblems
which could be aggregated due to the workforce homogeneity (see e.g.,
R109-25a to R112-25a). This, however, is not the case for the b-instances
as the team-day decomposition shows the best performance among the
solution approaches regarding computation and solution time. For instance,
with the team-day decomposition all instances could be solved to optimality
compared to only 7 and none with the day decomposition and the MIP
formulation, respectively.

3.5.2. Real-world instances

In order to test for performance under real settings, we solve real-world
instances with three solution methods: solving the MIP formulation directly
Gurobi’s branch-and-cut algorithm, the branch-and-price approach with a
day decomposition, and the branch-and-price approach with a team-day
decomposition. The data consist of 44 instances, each corresponding to the
maintenance requests of a single week. For each task, information such as
the customer location, service time, time windows, and skill requirements
were provided by the company. A total of 66 different customers are consid-
ered, and the estimated traveling time to each of their location corresponds
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to the total travel time of the recommended driving route obtained from
the Google Maps API (Google, 2016). Note that, since this route includes
changes in elevation due to the topography of the respective area, the dis-
tance between locations is not Euclidean. Table 3.3 shows a summary of
the characteristics (number of tasks, min., max., and avg. service time,
min., max., and avg. time window length, max. number of time windows,
and number of tasks with multiple time windows) from the considered
instances. The maintenance provider’s staff consists of six technicians
qualified in five skill domains with three possible proficiency levels paired
into teams of size ⌧ = 2. In addition, based on maintenance contracts
and financial information from the company, the following cost parameters
are considered: w

cost

= 300, otcost = 40, and c

ij

= 60 · t
ij

+ p

i

in
monetary units. Finally, regarding customer waiting and overtime limits,
the maintenance provider uses wmax

= ot

max

= 2 hours.

In Table 3.4, the results obtained within a time limit of three hours for all
methods are shown. For each method, the objective value (in monetary
units), the computation time (in minutes), and the optimality gap is pre-
sented for each of the test instances. Note that for the case of the MIP solver
solutions, this column shows the gap to the best bound found by the solver
within the given time limit. For the methods involving branch-and-price,
the number of explored nodes while branching and the number of columns
are also shown. In case the time limit is reached (denoted with a “T”), the
best integer solution found is shown. If no integer solution could be found,
we report the integer upper bound of the reduced master problem with the
columns found until reaching the time limit.

From these results, we can make several observations. First, the MIP solver
is able to solve only 18 instances to optimality, while in 26 cases, the
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Table 3.3.: Description of real-world instances

Inst. Tasks Service Time (h) TW length (h) Max. Multi-
TW

Min. Avg. Max Min. Avg. Max TW’s tasks

1 15 0.5 1.5 3.0 7.0 7.9 8.0 2 5
2 20 0.5 1.4 3.0 5.0 7.4 8.0 2 2
3 18 0.5 1.1 2.0 6.0 7.1 8.0 1 0
4 25 0.5 2.3 4.0 6.0 18.1 40.0 5 8
5 24 0.5 1.9 5.0 6.0 12.9 40.0 5 4
6 22 0.5 2.1 4.0 6.0 14.8 40.0 5 5
7 22 0.5 2.0 4.0 7.0 15.2 40.0 5 12
8 23 0.5 1.5 5.0 6.0 7.0 8.0 1 0
9 18 0.5 1.5 3.0 6.0 7.1 8.0 1 0
10 22 0.5 1.6 3.0 6.0 19.3 40.0 5 8
11 29 0.5 1.7 4.0 6.0 15.4 40.0 5 9
12 17 0.5 1.4 3.0 5.0 15.0 40.0 5 4
13 26 0.5 1.7 6.0 6.0 12.6 40.0 5 4
14 19 0.5 1.7 3.0 6.0 7.4 8.0 1 0
15 21 0.5 1.5 5.0 6.0 10.3 40.0 5 3
16 31 1.0 1.7 5.0 6.0 15.5 40.0 5 8
17 25 0.5 1.6 4.0 8.0 17.0 40.0 5 2
18 18 0.5 1.8 5.0 8.0 15.1 40.0 5 4
19 26 0.5 1.5 5.0 7.0 12.7 40.0 5 4
20 18 0.5 1.5 4.0 7.0 13.0 40.0 5 3
21 21 0.5 2.0 7.5 4.0 9.1 40.0 5 1
22 12 0.5 1.4 4.0 6.0 12.5 40.0 5 2
23 22 0.5 1.3 3.0 6.0 7.0 8.0 5 6
24 20 0.5 2.4 6.0 6.0 22.3 40.0 5 9
25 14 0.5 1.6 3.5 6.0 16.6 40.0 5 4
26 17 0.5 2.5 7.5 6.0 15.2 40.0 5 4
27 15 0.5 1.6 3.0 6.0 13.8 40.0 5 3
28 10 0.5 1.8 3.0 4.0 10.3 40.0 5 1
29 22 0.5 2.1 5.0 5.0 10.6 40.0 5 2
30 14 0.5 1.8 3.0 4.0 7.4 8.0 1 0
31 27 0.5 1.6 4.0 6.0 18.4 40.0 5 9
32 15 0.5 1.4 3.0 6.0 16.3 40.0 5 5
33 22 0.5 1.6 4.0 6.0 13.5 40.0 5 4
34 20 0.5 1.5 3.0 5.0 12.5 40.0 5 3
35 12 1.0 1.8 5.0 5.0 13.1 40.0 5 5
36 21 1.0 1.7 3.0 5.0 18.2 40.0 5 7
37 24 0.5 1.3 3.0 5.0 19.8 40.0 5 9
38 18 1.0 1.5 3.0 5.0 14.5 40.0 5 4
39 19 0.5 1.2 3.0 4.0 13.7 40.0 5 4
40 17 0.5 1.1 2.0 6.0 13.1 40.0 5 3
41 17 1.0 2.1 4.0 5.0 9.5 40.0 5 1
42 14 0.5 2.1 4.0 4.0 7.2 8.0 2 1
43 8 1.0 1.8 3.5 5.0 7.4 8.0 2 1
44 11 1.0 1.3 3.0 4.0 6.8 8.0 1 0
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computation time limit is reached. For these cases, the objective value
shows a relatively high gap to the best bound found by the solver (average
of 12%), although in some cases the solution found is the optimal solution
(e.g., instances 18, 32, 36, and 39). In the 18 instances with 0% gap, the
branch-and-cut procedure from the solver found the optimal solution in
less than one minute, with the exception of instances 22, 25, 26, and 40
where the optimal solution was found in 0.2, 4.7, 36.8, and 3.1 minutes,
respectively. This indicates that the commercial solver spends ta great deal
of time on proving this solution’s optimality.

Second, the branch-and-price with a day decomposition is clearly outper-
formed by the other two methods. Within the set time limit only in 13
cases, an optimal solution is reported and no feasible solution for instance
24 is found. For all of the remaining 40 instances where the computation
time limit is reached, the algorithm stopped during the column generation
phase at the root node. The solutions reported correspond to the integer
solution of the reduced master problem using the columns obtained up
until the time of interruption, which explains the reason why the optimality
gap is so high in some cases (see, e.g., instance 11, 24, and 10). This low
performance is due to the high computational effort required to solve the
pricing problems in the day decomposition. Furthermore, the frequency
with which the pricing problems are solved has an important impact on the
performance. In the case of instances with tasks with none or few multiple
time windows, the computation time is low since tasks can be assigned to
few possible validity periods, thus, few iterations of the column generation
phase are required. On the other hand, instances with high number of
tasks with multiple periods require more time to solve as the number of
combinations of possible validity days increases, thus greatly incrementing
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the number of iterations of the column generation phase. However, we
observe that using this decomposition has the advantage that it provides
better bounds than the team-day decomposition, as in all the cases where
an optimal solution is obtained, it is found at the root node. Thus, there is a
clear trade-off between the computational effort spent into solving larger
pricing problems and the savings while exploring the branching tree due to
tighter bounds.

Third, the team-day decomposition clearly outperforms the other solution
methods, because it is able to find a proven optimal solution for all cases
in an acceptable computation time. With a maximum of 16.25 minutes,
the team-day-decomposition solves this weekly planning problem for all
instances to optimality in short time.

3.5.3. Impact of the length of the time windows

The purpose of the following experiments is manyfold: we further test the
performance of our algorithms with additional test instances, and we test
the impact of the time window length on the objective function value and
computation time. Note that we refer to window length as the number of
days covered by a single time window, and not exclusively the number of
periods covered by it. For this purpose, we generate 45 test instances by
selecting different instances from Section 3.5.2, and multiplying their time
window length by a scaling factor in the interval [0, 2]. The nine selected
weeks correspond to the instances with:

• Type A: Min., max., and average time window length (Week 44, 24,
and 13, respectively).
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Table 3.4.: Real-world tests results

Inst. MIP Day Decomposition Team-day Decomposition
Objective CPU (min) Gap (%) a Objective CPU (min) Nodes Nr. cols Gap (%) Objective CPU (min) Nodes Nr. cols Gap (%)

1 737.69 < 1 0.00 737.69 < 1 1 39 0.00 737.69 < 1 1 68 0.00
2 861.78 < 1 0.00 861.78 < 1 1 56 0.00 861.78 < 1 1 51 0.00
3 1320.78 < 1 0.00 1320.78 < 1 1 54 0.00 1320.78 < 1 1 48 0.00
4 462.22 T 35.00 1136.97 T 1 22 152.52 450.26 < 1 1 541 0.00
5 470.65 T 24.24 464.00 72.03 1 153 0.00 464.00 16.49 1 243 0.00
6 519.61 T 26.00 1211.55 T 1 43 134.96 515.63 < 1 1 165 0.00
7 519.86 T 20.50 871.01 T 1 74 68.69 516.33 1.38 27 18144 0.00
8 1506.18 < 1 0.00 1506.18 < 1 1 42 0.00 1506.18 < 1 1 80 0.00
9 461.53 < 1 0.00 461.53 < 1 1 15 0.00 461.53 < 1 1 100 0.00
10 406.05 T 28.90 1030.57 T 1 62 157.60 400.06 < 1 1 472 0.00
11 553.31 T 32.20 1472.55 T 1 22 177.52 530.61 4.54 1 2632 0.00
12 355.42 T 8.79 354.99 T 1 110 0.56 353.02 < 1 43 6765 0.00
13 472.71 T 27.50 470.04 T 1 126 3.33 454.91 1.22 1 938 0.00
14 367.49 < 1 0.00 367.49 < 1 1 26 0.00 367.49 < 1 19 287 0.00
15 368.17 T 14.63 368.17 29.20 1 145 0.39 366.74 < 1 28 16408 0.00
16 615.46 T 23.61 1495.07 T 1 24 150.06 597.88 1.93 1 275 0.00
17 412.14 T 32.57 777.19 T 1 107 91.92 404.95 < 1 1 165 0.00
18 356.63 T 9.00 356.63 2.37 1 89 0.00 356.63 < 1 1 276 0.00
19 872.63 T 14.64 1106.77 T 1 87 28.10 864.01 1.16 1 323 0.00
20 387.17 T 12.90 - T - - - 380.32 1.11 50 14750 0.00
21 775.06 T 4.00 775.06 82.15 1 95 0.24 773.17 2.30 61 18279 0.00
22 272.19 1.23 0.00 272.19 < 1 1 59 0.00 272.19 < 1 1 39 0.00
23 875.83 < 1 0.00 875.83 5.52 1 70 0.00 875.83 < 1 59 5754 0.00
24 464.78 T 31.36 1225.30 T 1 32 166.82 459.23 < 1 1 337 0.00
25 285.74 11.52 0.00 285.74 18.82 1 139 0.00 285.74 1.98 1 81 0.00
26 425.18 152.10 0.00 425.18 4.52 1 86 0.00 425.18 < 1 1 79 0.00
27 284.79 < 1 0.00 284.79 < 1 1 75 0.00 284.79 < 1 1 59 0.00
28 205.02 < 1 0.00 205.02 < 1 1 29 0.00 205.02 < 1 1 26 0.00
29 562.39 T 19.82 562.39 3.92 1 89 7.00 525.62 < 1 65 531 0.00
30 294.49 < 1 0.00 294.49 < 1 1 28 0.00 294.49 < 1 1 33 0.00
31 463.36 T 26.32 1127.17 T 1 43 147.58 455.28 < 1 1 274 0.00
32 350.07 T 8.79 350.07 < 1 1 101 0.00 350.07 < 1 1 76 0.00
33 379.75 T 25.34 538.81 T 1 83 51.17 356.42 < 1 1 126 0.00
34 394.73 T 23.46 394.73 137.54 1 109 0.79 391.63 1.09 60 3060 0.00
35 750.76 < 1 0.00 750.76 < 1 1 27 0.00 750.76 < 1 1 28 0.00
36 336.77 T 28.00 822.46 T 1 50 144.22 336.77 16.25 1 210 0.00
37 305.21 T 32.40 643.50 T 1 44 113.46 301.46 1.13 1 184 0.00
38 268.33 T 19.00 269.36 T 1 119 1.98 264.14 < 1 26 9828 0.00
39 299.98 T 9.00 299.98 3.67 1 164 0.00 299.98 1.79 1 167 0.00
40 303.00 17.46 0.00 303.00 < 1 1 96 0.00 303.00 < 1 1 133 0.00
41 396.26 T 13.57 396.26 150.05 1 84 0.65 393.69 2.07 75 126675 0.00
42 358.99 < 1 0.00 358.99 < 1 1 45 0.00 358.99 < 1 76 11856 0.00
43 278.73 < 1 0.00 278.73 < 1 1 16 0.00 278.73 < 1 1 15 0.00
44 257.99 < 1 0.00 257.99 < 1 1 16 0.00 257.99 < 1 1 28 0.00
Avg.b 10.24 12.53 19.07 1 70 37.20 1.41 14 5468 0.00

aGap to best known bound found by solver
bThe average CPU does not consider instances where the time limit is reached

• Type B: Min., max., and average service time (Week 40, 26, and 11,
respectively).

• Type C: Min., max., and average number of tasks per week (Week
43, 26, and 14, respectively).
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If the working day length is exceeded, a new time window is started on the
next consecutive day. In case the length of the planning horizon is exceeded,
the length of the last time window is cut out. To solve these instances, we
select the team-day decomposition, as it shows the best performance in the
results from previous tests.

Figures 3.1 and 3.2 show the objective function value and computation time
resulting from each scaling factor for each of the selected instances. In
these graphs, we observe the following effects. First, the overall costs are
decreasing when increasing the time window length. The wider the time
windows get, the lower their impact is on the reduction of overall costs.
Second, we observe an increase in the computation time of all instances
when increasing the time window length. Since these effects can also be
observed in single-period time windows, the observed results show that
the same behavior can be expected in the multi-period case. Nevertheless,
these effects did not present the same magnitude in all instances (see e.g.,
C avg. and C max.). This can be explained by the fact that the selected
weeks show a high number of multiple requests per customer, i.e., there
are significantly more tasks than locations to visit, which results in high
symmetry.

3.5.4. Performance with larger instances

To further test the performance of our solution methods, we generate
larger artificial instances from the afore-described real-world data. Three
instances were obtained by combining the demand of three different weeks
and tripling the workforce. Each instance is generated by combining weeks
(I) A min., A avg., and A max., (II) B min., B avg., and B max., and (III) C
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Figure 3.1.: TW length vs. costs

Scaling

M
in
ut
es

0
1
2
3
4
5

AVG
A

MAX
A

MIN
A

0
1
2
3
4
5

AVG
B

MAX
B

MIN
B

0
1
2
3
4
5

 0  0.5  1  1.5  2

AVG
C

 0  0.5  1  1.5  2

MAX
C

 0  0.5  1  1.5  2

MIN
C

Figure 3.2.: TW length vs. CPU time

min., C avg., and C max. All three instances are solved with all proposed
solution methods and within a time limit of 10 hours.
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Table 3.5 shows the objective function value, computation time (in minutes),
and optimality gap (in percentage) for all instances and solution methods.
For the day-decomposition and team-day decomposition, in addition, the
number of explored nodes and number of columns is shown. Here, we note
that once again the team-day decomposition outperforms the other solution
methods. In the case of the MIP, the solver reached the time limit on all
three cases and was not able to find even a feasible solution for instance
III. The day-decomposition also reached the computation time limit on all
instances during the column generation phase. Similar to Section 3.5.2, the
reported solution corresponds to the integer solution of the reduced master
problem using the columns found up until the time break, which explains
the large optimality gap. The team-day decomposition, however, is able to
solve all instances to optimality within a reasonable amount of computation
time (all cases under 45 minutes).

Table 3.5.: Results for larger instance tests
Inst. MIP Day Decomposition Team-day Decomposition

Objective CPU (min) Gap (%) a Objective CPU (min) Nodes Nr. cols Gap (%) Objective CPU (min) Nodes Nr. cols Gap (%)

I 1313.00 T 70.41 2068.96 T 1 207 100.20 1033.46 42.00 18 2790 0.00
II 1795.63 T 72.15 1707.65 T 1 140 68.07 1016.04 44.91 25 5406 0.00

III - T - 2107.17 T 1 48 98.51 1061.52 9.90 12 642 0.00
Avg. T 71.28 T 1.00 218.22 88.92 32.27 18.33 2946.00 0.00

aGap to best known bound found by solver

3.6. Conclusions and further research

This paper addresses a multiperiod technician routing and scheduling prob-
lem that is not previously considered in the literature. Our main contribu-
tions are the definition of this new problem, its formulation as a decision
model, and the development of two different decomposition schemes imple-
mented in a branch-and-price algorithm to solve the problem to optimality.
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These solution approaches are further tested with data from an external
maintenance provider (EMP).

The results of our tests show that our solution approaches are able to solve
the majority of instances for this complex problem to optimality within an
acceptable amount of time. However, we observe that this performance
greatly depends on the selected decomposition scheme used in the branch-
and-price algorithm. On the one hand, using a decomposition with fewer,
harder-to-solve subproblems provides tighter fractional lower bounds, al-
though it is computationally more expensive. On the other hand, using a
decomposition with more, easier-to-solve subproblems may result in worse
fractional lower bounds, although it allows us to obtain optimal solutions
for all of our test instances in a shorter amount of time. This also holds for
larger problem instances, as our experiments indicate. Furthermore, our
sensitivity analysis shows that additional flexibility, in the form of length
(and number) of time windows, has a direct impact on operations costs.
This fact needs to be considered during maintenance contract negotiations.

Further research needs to be conducted to incorporate our current decision
model as part of a hierarchical planning process such that, as a first step,
the weekly plans obtained through our approaches are used to announce
visit times to customers. As a second step, the EMP management would
oversee the execution of these plans on a daily basis and adjust them in case
unforeseen events occur. Additionally, other features such as technicians’
preferences, planned meal breaks, balanced workloads, etc. can also be
included. As for the proposed solution methods, further research is needed
to improve their performance by applying ideas used in the VRP literature
for this purpose, e.g., relaxation of the subproblems, applying cuts in
the branching trees, other branching strategies, stabilization strategies,
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intensification strategies, etc. Additionally, other hybrid and heuristic
approaches could be adapted for this problem.
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Abstract:

This paper addresses a task-assignment problem encountered by check-in
counter personnel at airports. The problem consists of assigning multi-
skilled agents to a sequence of tasks in check-in counters. Because each
task’s ending time is fixed to comply with the flight schedule, its pro-
cessing time depends on the arrival of the assigned agents. We propose
a mixed-integer program and a branch-and-price algorithm to solve this
problem. We exploit the problem structure to efficiently formulate the
pricing problems and improve computation time. Using real-world data
from a German ground-handling agency, we conduct numerical studies to
evaluate the performance of the proposed solutions.
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4.1. Introduction
This paper addresses a task assignment problem encountered by ground-
handling agencies at airports, where employees are assigned to process
flight check-ins and boardings (i.e., tasks). Because these agencies provide
the manpower required for multiple airlines’ flights, they need to ensure
that sufficient staff is available in a timely fashion for all flights; otherwise,
they may incur penalties for violating their contracts with the airlines.
Furthermore, as 66% to 75% of a ground-handling agency’s operation costs
correspond to personnel costs (Steer Davies Gleave, 2010), inadequate
workforce plans (e.g., overstaffing) are highly undesirable.

The basic structure of a ground-handling agency’s workforce planning
process can be divided into four planning stages (Stolletz, 2010): (i) head
count planning, (ii) tour scheduling, (iii) task assignment, and (iv) replan-
ning. Our work addresses the third stage of this process, during which tasks
are assigned to employees on a daily basis taking into account the agent’s
skills and availability, traveling time between counters, flight schedules,
and contract conditions with the airlines. The specific characteristics of the
present problem are described below.

The demand for agents is caused by both the flight schedules and the con-
tracts between the airlines and the ground-handling agencies. The flight
schedules provide daily flight-departure times and therefore, the times
when demand occurs. They also provide information about the assignment
of flights to counters, which in turn implies that the transportation time
between the tasks’ locations is known. The contracts with the airlines de-
termine the agent requirements (i.e., number of agents and skills required),
along with the counters’ opening and closing times for processing tasks.
As can be observed in practice, agents are allowed to arrive at a counter
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after its opening time, albeit at a cost, because this tardiness is penalized in
the contracts with the airlines. Regardless of an agent’s tardiness, however,
he or she is required to remain at the assigned counter until its closing time.
This means that all tasks’ end times are fixed and, thus, their duration is
dependent on the assigned agent’s arrival times.

The following issues are taken into consideration when managing the
ground-handler’s workforce. First, agent availability is derived from the
shift schedules and days-off schedules obtained in the preceding planning
stage, i.e., tour scheduling. As explained in Stolletz (2010) and Stolletz and
Zamorano (2014), shifts can have varying durations, can start at different
hours of the day, and can vary from day to day. Although shift-planning
decisions cannot be influenced by the task assignment, overtime is allowed
if the completion of the final task fulfilled exceeds the length of the shift
(which is subject to labor regulations). Second, agents are qualified to oper-
ate various airlines’ check-in systems, i.e., the workforce is multiskilled,
and they may change the check-in system in which they are working dur-
ing the course of a shift. Neither hierarchical skills nor proficiency levels
are considered. If no employee is available to process a task, a limited
number of fully qualified supervisors and/or management personnel can
be ”outsourced” from the back office to cover the demand, although this is
undesirable because it distracts the supervisors and managers from their
normal responsibilities.

The goal of this planning problem is to obtain daily schedules consisting of
task assignments for each agent for a planning horizon of one day. These
assignments define a sequence of tasks for each agent, because the tasks’
end times are fixed. Additionally, these schedules need to minimize the
weighted sum of traveling time, overtime, outsourced time, and tardiness.
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The contribution of this paper is manifold:

• We address a new task assignment problem that incorporates variable
task duration and fixed end time;

• We propose an exact branch-and-price solution approach to solve
this problem in short computation time; and

• We test our proposed approach with real-world data.

The remainder of the paper is organized as follows. In Section 4.2, related
literature on similar task assignment problems is presented. The task
assignment process for check-in counters is explained in detail and the
algebraic notation of the mixed-integer programming model is presented in
Section 4.3. In Section 4.4, the branch-and-price algorithm is described. In
Section 4.5, the numerical analysis of a real-world example is conducted.
Conclusions and directions for further research are presented in Section
4.6.

4.2. Literature review

This paper addresses a problem that can be classified into different streams
of literature because of the different features associated with various appli-
cations of the problem. The allocation of tasks to agents corresponds to task
assignment problems, although the consideration of changeover times (or
traveling time) is also related to routing problems. In the following section,
we present a comparison of the related literature from different application
areas of task assignment, task scheduling, and routing problems, describing
similarities and differences compared to the presented problem.
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Task assignment problems are addressed in several workforce-planning
settings. Generally, task assignment (also referred to as task allocation)
consists of assigning a particular number of employees to perform a partic-
ular number of tasks (Edison and Shima, 2011). Typically, such problems
involve the mere allocation of employees to tasks (see, e.g., Liang and
Buclatin, 1988; Miller and Franz, 1996; Campbell, 1999; Campbell and
Diaby, 2002; Krishnamoorthy et al., 2012; Liu et al., 2013; Smet et al.,
2014). During the last decade, research has generally not addressed task
assignment problems but has focused on task scheduling problems.

In task scheduling problems, both the assignment of employees to tasks and
the start time of a task are part of the decision. Optionally, there could be a
time window during which an employee is allowed to start a task. In these
problems, the processing time is given as input and it can be considered
either fixed or employee-dependent. In either case, this means that the end
times of the tasks become dependent variables.

Loucks and Jacobs (1991), Corominas et al. (2006), Cordeau et al. (2010b),
and Lieder et al. (2015) provide examples of task-scheduling literature that
assumes fixed task durations, albeit without considering routing decisions.
Conversely, Li et al. (2005), Eveborn et al. (2006a), Dohn et al. (2009a),
and Kovacs et al. (2012) include routing in their models. Dohn et al. (2009a)
address a decision problem similar to ours regarding ground personnel at
airports. In their model, employees with different skills are assigned to
tasks (e.g., baggage handling, check-ins, ticketing). As in our model, tasks
may require more than one agent for their completion, based on the task
requirements. Unlike our model, all of the agents assigned to a task are
forced to start it at the same time (i.e., no tardiness is allowed). The authors
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propose a branch-and-price approach to solve this problem and test it using
real-world data from a European airport.

Other studies in the task-scheduling literature assume that the duration of a
task (i.e., processing time) depends on the employee fulfilling the task. The
models of Corominas et al. (2010) and Olivella et al. (2013) assume that
the duration of a task depends on the worker’s experience and that future
performance of the task can be increased. However, these two models
do not include routing. With respect to similar applications that include
routing, Caseau and Koppstein (1992) present an approach to solve the
technician-assignment problem in the telephone industry, assuming that the
duration of a task depends on the efficiency ratio based on the technician’s
skills. Yang (1996) and Tsang and Voudouris (1997) provide solutions
to the workforce management problem at British Telecom. Engineers
are allocated to jobs taking into account that job duration depends on the
engineer’s effectiveness rate and skill level, respectively.

Table 4.1 summarizes previous research based on the characteristics of
the tasks. A task’s starting time, processing time, and ending time may
be inputs for the various decision models, decision variables or dependent
decision variables. The assignment of an employee to a task is the main
decision variable.

Existing task assignment models differ from our present problem as follows:
first, they do not consider changeover times (e.g., traveling time) and thus
no routing decisions are made; second, starting, ending, and processing
times are given, which leaves the assignment of employees to tasks as the
only decision to be made. In task-scheduling problems, the end times of the
tasks are dependent variables. In our problem, the task duration depends on
the agent’s arrival time at the task because the end time is given by the flight
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schedule. We are unaware of decision-problem literature that considers the
start times of the tasks as decision variables when end times are given as
inputs.

The proposed problem is also related to the Vehicle Routing Problem with
Time Windows (VRPTW). The VRPTW addresses the problem of supplying
a set of customers (i.e., check-in counters) with a set of delivery vehicles
(i.e., agents) when the customers’ locations, preferred visit times (i.e., flight
schedules), and demand quantities (i.e., number of agents required) are
known (Solomon and Desrosiers, 1988b; Cordeau et al., 2001). It solves
two decisions simultaneously; the first decision involves determining the
routes for the vehicles (i.e., sequence of tasks processed by an agent)
and the second decision involves assigning vehicles to customers (i.e.,
assignments of agents to tasks). An additional variant of the VRPTW,
the heterogeneous fleet VRP (h-VRP), assumes that vehicles vary with
respect to their capacities and costs (Ferland and Michelon, 1988; Choi
and Tcha, 2007; Pessoa et al., 2009; Jiang et al., 2014). Our problem,
however, generalizes the classical VRPTW and the h-VRP as it considers a
heterogeneous vehicle fleet both because the agents have different skills
and because the task duration is dependent on the task’s starting time.

Because of these similarities, we note that the applications mentioned be-
fore have adapted VRP solution approaches for related workforce-planning
problems. They differ from our problem, however, in that the task duration
is a parameter known in advance that remains fixed throughout the planning
process, whereas in our problem the task duration depends on the tasks’
starting time decision. Nevertheless, our problem structure allows us to ap-
ply solution approaches typical of the VRP literature (e.g., Desrochers et al.
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Table 4.1.: Positioning of the present paper in the literature
Category Start time Processing time End time Assignment References
Task assignment Input Input Input Decision Liang and Buclatin (1988), Miller and Franz

(1996), Campbell (1999), Campbell and
Diaby (2002), Krishnamoorthy et al. (2012),
Liu et al. (2013), Smet et al. (2014)

Task scheduling Decision Input (fixed or
variable)

Dependent Decision Loucks and Jacobs (1991), Caseau and
Koppstein (1992), Yang (1996), Tsang and
Voudouris (1997), Li et al. (2005),
Corominas et al. (2006), Eveborn et al.
(2006a), Dohn et al. (2009a), Cordeau et al.
(2010b), Corominas et al. (2010), Kovacs
et al. (2012), Olivella et al. (2013), Lieder
et al. (2015)

Our model Decision Dependent Input Decision -

(1992); Lübbecke and Desrosiers (2005); Dohn et al. (2009a); Liberatore
et al. (2010)) to solve the current problem.

4.3. Problem description and model formulation

The considered problem consists of assigning each agent k 2 K to daily
routes to perform all tasks i 2 I

0. Each task requires a number of v
i

agents
and is associated with an opening time a

i

and a closing time b

i

. Skill
requirements are represented by the binary parameter r

iq

with a value of
1 if the task requires one agent with skill q . Additionally, let the set I be
the set of tasks that includes the depot (represented by o and ō) and N

the set of arcs (i , j ) such that i , j 2 I . Finally, t
ij

represents the traveling
time from the counter of task i to the counter of task j . We assume that
the triangle inequality is satisfied. This also holds for the case in which
tasks i and j are in the same location because the processing times are
non-negative.

Workforce qualifications are represented by the binary parameter m

kq

with a value of 1 if agent k has skill q and 0 otherwise. Note that this
formulation can also accommodate hierarchical skills and/or proficiency
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levels, because only the values of m
kq

need to be changed for this purpose.
Furthermore, every day, every agent departs and arrives at the depot during
his/her working shift [e

k

, f
k

] (plus overtime).

Six decision variables are used. First, the binary variable x

ijk

assigns a
sequence of tasks to an agent:

x

ijk

=

8
<

:
1, if agent k goes directly from task i to task j

0, otherwise.

Note that for agents with no assignments, empty routes (x
oōk

= 1) are
allowed.

Second, binary variable y

ik

assigns tasks to agents to simplify the notation:

y

ik

=

8
<

:
1, if task i is assigned to agent k

0, otherwise.

Third, outsourcing agents is allowed at a cost. The variable out
i

represents
the number of outsourced agents for task i , with a maximum value of
out

max

i

.

Fourth, the arrival time of agent k at task i is defined by the positive variable
s

ik

. Fifth, a task can be processed only after its opening time a

i

, i.e., if an
agent arrives earlier, he/she waits at no cost. If an agent starts the task after
a

i

, we penalize the delay using the positive variable w

ik

, defined as
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w

ik

=

8
<

:
max(0, s

ik

� a

i

), if y
ik

= 1

0, otherwise,

with a maximum delay of wmax .

Finally, if an agent arrives at the depot at the end of the route after the
end of his/her shift, overtime is incurred. We model this by the use of the
positive, dependent variable ot

k

defined as

ot

k

= max(0, s
ōk

� f

k

),

with a maximum overtime ot

max

k

. Table 4.2 shows the notation used for
this formulation.

The objective is to minimize the weighted sum of overall traveling time,
tardiness, overtime, and outsourced time, i.e., the amount of time each
counter opened with outsourced personnel. Traveling time is a concern for
the agents, who prefer working at counters that are close together. Tardiness,
overtime, and outsourced agent-minutes directly affect the ground-handling
agency because they implicate the agency’s financial interest. The present
problem can be formulated as a mixed-integer programming model as
follows:

Minimize ↵1 ·
X

(i,j )2N

X

k2K

t

ij

· x
ijk

| {z }
Traveling time

+
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Table 4.2.: Notation
Sets
I

0 Set of tasks
I Set of tasks I = I

0 [ {o, ō}
N Set of arcs N ✓ {(i , j )|i , j 2 I }
K Set of agents
Q Set of skills
Parameters
[↵1, ...,↵4] Objective function weights
t

ij

Traveling time from task i to task j

a

i

Opening time of task i

b

i

Closing time of task i

v

i

Number of agents required for task i

r

iq

1 if task i requires skill q , 0 otherwise
m

kq

1 if agent k has skill q , 0 otherwise
[e

k

, f
k

] Start and end of shift of agent k
w

max

i

Maximum allowed tardiness for task i

ot

max

k

Maximum overtime for agent k
out

max

i

Maximum outsourced agents allowed for task i

M Sufficiently large number
Decision variables
y

ik

1 if agent k is assigned to task i , 0 otherwise
x

ijk

1 if agent k goes directly from task i to task j , 0 otherwise
out

i

Number of outsourced agents for task i

s

ik

Start time of task i by agent k
w

ik

Tardiness of agent k on task i

ot

k

Overtime of agent k

↵2 ·
X

k2K

ot

k

| {z }
Overtime

+

↵3 ·
X

i2I

0

X

k2K

w

ik

| {z }
Tardiness

+
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↵4 ·
X

i2I

0

(b

i

� a

i

) · out
i

| {z }
Outsourced time

Subject to the following constraints:

X

k2K

y

ik

= v

i

�out

i

8i 2 I

0 (4.1)

X

j :(i,j )2N

x

ijk

= y

ik

8i 2 I

0, 8k 2 K (4.2)

X

j :(o,j )2N

x

ojk

=

X

i:(i,ō)2N

x

iōk

= 1 8k 2 K (4.3)

X

i:(i,h)2N

x

ihk

=

X

j :(h,j )2N

x

hjk

8h 2 I

0, 8k 2 K (4.4)

b

i

+ t

ij

 s

jk

+M (1� x

ijk

) 8i , j : (i , j ) 2 N , 8k 2 K (4.5)

s

ik

�M (1� y

ik

)  a

i

+ w

i

8i 2 I

0, 8k 2 K (4.6)

s

jk

+M (1� x

ojk

) � e

k

+ t

oj

8j 2 I

0, 8k 2 K (4.7)

b

i

+ t

iō

 f

k

+ ot

k

+M (1� x

iōk

) 8i 2 I

0, 8k 2 K (4.8)

r

iq

y

ik

 m

kq

8i 2 I

0, 8q 2 Q , 8k 2 K (4.9)

0  w

ik

 w

max

i

8i 2 I

0, 8k 2 K (4.10)

0  ot

k

 ot

max

k

8k 2 K (4.11)

0  out

i

 out

max

i

8i 2 I

0 (4.12)

s

ik

� 0 8i 2 I , 8k 2 K (4.13)

x

ijk

, y
ik

2 {0, 1} 8i , j 2 I , 8k 2 K (4.14)
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Constraints (4.1) and (4.2) ensure that the number of required agents (avail-
able or outsourced) is assigned to all tasks. Constraint (4.3) ensures that
each agent starts and ends his/her route at the depot. Constraint (4.4)
ensures flow conservation when visiting a counter for a task. Constraint
(4.5) allows for processing a task only if its preceding task is completed.
Constraint (4.6) states that an agent can arrive at a counter only before a
task’s opening time, otherwise, tardiness occurs. The routes’ duration limit
and overtime are defined by constraints (4.7) and (4.8). Constraint (4.9)
ensures that the skill requirements of each task are fulfilled. Constraints
(4.10), (4.11), and (4.12) define the bounds for tardiness, overtime, and out-
sourced agents, respectively. Finally, constraints (4.13) and (4.14) define
the positive and binary variables, respectively.

4.4. Branch-and-price algorithm

In this section, we present a decomposition of the problem into a master
problem and subproblems as proposed by Dantzig (1954). This decompo-
sition can be then solved by a generic column generation method as the
ones proposed by Barnhart et al. (1998), Lübbecke and Desrosiers (2005),
and Liberatore et al. (2010), among others. The primary idea is to use the
master problem to select agent-schedules from a pool of feasible routes
generated by the subproblems.

Master Problem Let P
k

be the set of feasible routes containing se-
quences of tasks (i.e., paths) for each agent k 2 K , and �

kp

be a binary
variable equal to 1 only if path p of agent k is used and 0 otherwise. Addi-
tionally, let ✓

ikp

be a parameter equal to 1 if task i is in path p of agent k
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and 0 otherwise. Then, the integer master problem (MP) can be defined as
follows:

Minimize
X

k2K

X

p2P

k

c

kp

�
kp

+ ↵4 ·
X

i2I

0

out

i

(4.15)

Subject to:

X

k2K

X

p2P

d

✓
ip

�
kp

= v

i

�out

i

8i 2 I

0 (4.16)

X

p2P

k

�
kp

= 1 8k 2 K (4.17)

out

i

 out

max

i

8i 2 I

0 (4.18)

�
kp

2 {0, 1} 8k 2 K , 8p 2 P

k

(4.19)

Where the cost of a path p 2 P

d

is defined by:

c

kp

=↵1 ·
X

(i,j )2N

X

k2K

t

ij

· x
ijk

+

↵2 ·
X

i2I

0

X

k2K

w

ik

+ ↵3 ·
X

k2K

ot

k

(4.20)

The objective is to minimize the overall costs (4.15). The set partitioning
constraints (4.16) ensure that demand is satisfied either by available agents
or outsourcing. Convexity constraints (4.17) state that exactly one route is
used per agent. Constraint (4.18) ensures that the number of outsourced
agents remains below the maximum allowed. Finally, constraint (4.19)
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defines the binary requirements for the assignment variables. The linear
relaxation of this formulation (LMP), which is obtained by relaxing con-
straint (4.19), can be used to obtain a lower bound on the MP. However, set
P

k

may contain a large number of feasible routes, thus making the solution
to this problem computationally intractable. Therefore, in a column genera-
tion approach, only subset P 0

k

⇢ P

k

of routes are considered in a restricted
master problem (RMP). Additional feasible columns are obtained using the
iterative solution of each subproblem, which consists of finding routes for
each agent with negative reduced cost c̄

kp

:

c̄

kp

= c

kp

�
X

i2I

0

✓
ikp

⇡
i

� ⇢
k

=

X

(i,j )2N

X

k2K

(↵1 · tij � ⇡
i

) · x
ijk

+ ↵2 ·
X

i2I

0

X

k2K

w

ik

+ ↵3 ·
X

k2K

ot

k

� ⇢
k

where ⇡
i

, and ⇢
k

correspond to the dual values of constraints (4.16) and
(4.17) in the optimal solution of the RMP. These values are then passed to
the subproblems from which single-agent routes are obtained.

Pricing Problems We let I 0
sub

k

⇢ I

0 and I

sub

k

⇢ I be the set of tasks
which can be processed by agent k . Also let N

sub

k

= {(i , j )|i , j 2 I

sub

k

}.
Then, each k�subproblem can be defined as follows:
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Minimize c̄

kp

=

X

(i,j )2N

(↵1 · tij � ⇡
i

) · x
ij

+

↵2 ·
X

i2I

0

w

i

+ ↵3 · ot � ⇢
k

(4.21)

X

j :(i,j )2N
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k

x
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= y

i

8i 2 I

0
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k

(4.22)
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j :(o,j )2N

sub

k

x
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iō
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k
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x
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s

i

� 0 8i 2 I
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(4.31)

x

ij

, y
i

2 {0, 1} 8i , j 2 I

sub

k

(4.32)

where x

ij

is a binary variable with a value of 1 if the arc (i , j ) is used and
0 otherwise. s

i

and w

i

are positive variables corresponding to the starting
time and the tardiness of task i , whereas ot is a positive variable that
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represents the overtime of the route. The objective is to find a route with a
minimum reduced cost (4.21). Constraint (4.22) initializes the variable y

i

.
Constraints (4.23) and (4.24) ensure the feasibility of the route. Constraint
(4.25) defines the task’s starting time, whereas constraint (4.26) ensures
that a counter’s opening time is respected; otherwise, the agent is tardy.
Constraints (4.27) and (4.28) define shift-length limits, and if an agent
arrives at the depot after closing time, overtime is incurred. Constraints
(4.29) and (4.30) define the bounds for the tardiness and overtime variables,
respectively. Finally, positive variable (4.31) and binary variable (4.32) are
defined.

These subproblems correspond to an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC). The requirement of elementary paths
(i.e., paths that visit each task no more than once) is required because the
reduced cost associated with each task may lead to negative cost cycles.
Note that ESPPRC in graphs with negative cost cycles is strongly NP-hard
(Dror, 1994). This represents a major drawback because in our algorithm,
we need to solve these subproblems several times. Therefore, an efficient
solution approach is required.

4.4.1. Labeling algorithm

Because the ESPPRC can be computationally expensive to solve, a typical
approach is to relax the elementariness requirement and then to solve it as a
Shortest Path Problem with Resource Constraints (SPPRC) (i.e., subcycles
are allowed). The SPPRC can be solved using dynamic programming,
which can be solved in pseudo-polynomial time (Desrochers et al., 1992).
Nevertheless, the main drawback to this approach is that it weakens the
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lower bound computed by the column generation phase (Bode and Irnich,
2014a). Conversely, dynamic programming can be used to solve the ESP-
PRC (Feillet et al., 2004; Liberatore et al., 2010) to provide better lower
bounds, albeit with a higher computational cost. It is possible, however, to
solve the pricing problem described in the previous section as an SPPRC
while ensuring elementary paths by exploiting the problem structure.

Below, we describe a dynamic programming algorithm we propose for the
solution of the pricing problems of our branch-and-price approach, along
with details on its implementation. Similar algorithms are proposed by
Feillet et al. (2004) and Liberatore et al. (2010) also to solve the pricing
problems embedded in a column generation algorithm to solve the classical
Vehicle Routing Problem with Time Windows (VRPTW). Mainly, our
algorithm differs from theirs on the fact that end times of the tasks are fixed
(thus the processing time of the tasks are start time-dependent) and that
elementary paths are not explicitly required.

In short, the algorithm’s objective is to obtain routes from o to ō for an
agent such that the reduced cost is minimized. For this purpose, we define
the following concepts. A state associated with task i corresponds to a
partial path of visited counters from the depot to i . Each task can be
associated with more than one state because multiple feasible paths can end
in the respective task. To represent such states, we use multidimensional
resource vectors or labels represented by L

i

= (i ,T
i

,C (T

i

)), where i is
the last visited task, T

i

is the starting time of task i , and C (T

i

) is the time-
dependent cost. Additionally, let U

i

and P
i

represent the set of unprocessed
and processed labels for task i , respectively.

The process is initialized by setting sets U
i

and P
i

to the empty set, creating
the first label L

o

= (o,T
o

= e,C (T

o

) = 0), and appending L

o

to the
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unprocessed set. Through the algorithm, labels are extended to successive
feasible labels of the form L

j

= (j ,T
j

,C 0
(T

j

)) by appending an addi-
tional arc (i , j ) to the partial path o � i and updating its corresponding
resources using the following resource extension functions (REF):

T

j

= max(a

j

, b
i

+ t

ij

) (4.33)

C

0
j

=

8
<

:
C (T

i

) + c

ij

+max(0,↵2 · (Tj

� a

j

))� ⇡
i

, if j 6= ō

C (T

i

) + c

ij

+max(0,↵3 · (Tj

� f ))� ⇡
i

, if j = ō

(4.34)

We note that, in contrast to Feillet et al. (2004) and Liberatore et al. (2010),
this algorithm takes into consideration the closing time of a counter b

i

instead of recursively calculating T

j

from previous states. In this way,
the characteristic of fixed ending times from our problem is considered
in our algorithm. Then, iteratively, the labels with the minimum time
are selected from the unprocessed set to search for possible extensions
along their arcs. These extensions can only be made on feasible labels.
A label (i ,T

i

,C (T

i

)) is feasible if T
i

 b

i

+ w

max |i 6= ō and T

i


b

i

+ ot

max |i = ō. Labels that do not satisfy these conditions are discarded.
If feasible, the new extended labels are added to the unprocessed set and
the currently explored labels are added to the processed set.

Because dual information may produce arcs with negative costs, sub-cycles
are not strictly forbidden. Using additional vectors on each label, as pro-
posed by Feillet et al. (2004) and Liberatore et al. (2010), the elementariness
of the paths can be enforced. However, from the time extension function
(4.33) we can observe that the time consumption is strictly positive, as
T

j

�T

i

� 0 for all (i , j ) 2 N

sub

k

if such extension is feasible. Because the
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algorithm chooses the label with the least time consumption from the set of
unprocessed labels, it is then guaranteed that all feasible extensions from a
given label have a non-decreasing consumption of the time resource (Irnich
et al., 2005), effectively forbidding sub-cycles because of the definition
of feasibility. In this way, our algorithm mimics an acyclic graph without
the need to explicitly enforce elementariness at the label-extension step.
Therefore, in contrast to Feillet et al. (2004) and Liberatore et al. (2010),
in the proposed algorithm no elementariness check is conducted while
extending the labels.

To keep the size of these sets tractable, dominance rules are required
to discard (multiple) labels that cannot lead to an optimal solution. For
this purpose, dominance rules are applied. Let L

i

= (i ,T
i

,C (T

i

)) and
L

0
i

= (i ,T 0
i

,C 0
(T

0
i

)) be two labels of task i . Then, L
i

dominates L

0
i

if
L

i

< L

0
i

component-wise, i.e., if T
i

 T

0
i

, C (T

i

)  C

0
(T

0
i

), and at
least one of the inequalities is strict. If a label is dominated, then it can be
discarded; when all components are equal, both labels are retained.

Once all paths arriving at the depot ō are obtained and no unprocessed
labels remain, the label with the minimum cost is selected and corresponds
to the optimal solution of the respective subproblem. Its corresponding
reduced cost is determined by ¯c

kp

= C (T

ō

)� ⇢
k

. If more than one label
has the same cost, and none can be dominated, then all of them are added
as columns of the reduced master problem. Algorithm 3 shows an overview
of the labeling process.
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Algorithm 3 Labeling algorithm overview
Set U

i

= P
i

= ? 8i 2 I

sub

k

Set L
o

= (o,T
o

= e

k

,C (T

o

) = 0)

Set U
o

= {L
o

}
while

S
i2I

sub

k

U
i

6= ? do
Choose a label L

m

2
S

i2I

sub

U
i

and remove it from U
m

for all arcs (m, j ) 2 N

sub

do
Extend L

m

along arc (m, j ) to create label L
j

using the REF’s
if L

j

is feasible then
Add L

j

to U
j

Apply dominance rules to U
j

and P
j

end if
if L

m

is not dominated then
Add L

m

to P
m

end if
end for
Filter P

ō

to find the shortest o � ō path
end while

4.4.2. Acceleration strategies

To accelerate the generation of new columns with negative reduced costs,
one can solve the pricing problems heuristically in the first iterations of
the column generation algorithm and then solve them exactly in the last
iteration(s) to guarantee optimality. For this purpose, below we propose
heuristics that are applied sequentially during the execution of the algo-
rithm. Once no new negative reduced-cost columns can be found with
these heuristics methods, we solve the pricing problems exactly to ensure
optimality.

101



Initialization To provide the initial columns for the column-generation
procedure, we use two approaches. First, we sort the agents by increasing
shift length and for each agent, we run the labeling algorithm, stopping
when a preset number of shortest paths are found. Each path is then
inserted as a column of the reduced master problem (RMP). Second, we
use a modified version of the insertion heuristic from Solomon (1987).
This algorithm can be summarized as follows: (i) for each agent k 2 K ,
we sequentially initialize routes by choosing the task with the highest
processing time; (ii) for each task h available to team k , we calculate the
operation costs obtained from inserting it, if feasible, into each arc (i , j )

of the initial route; (iii) the insertion (i , h, j )⇤ with the minimum cost is
selected and the initial route is updated accordingly at that point, steps (ii)
and (iii) are repeated until no further tasks can be inserted; (iv) the resulting
routes are inserted as columns of (RMP). If a task is not included in any
path from the two methods, then it is included in the RMP as an artificial
column with a high cost.

(H1) Partial pricing Each k subproblem focuses on the route of a spe-
cific agent and thus, only the tasks corresponding to this subproblem are
considered. Depending on the task’s characteristics, it is possible for multi-
ple agents to be assigned to them with the same route cost. In terms of the
column-generation procedure, this means that the marginal values ⇢

k

have
zero values, i.e., there is no prize to earn for dispatching agent k . We can
exploit this fact to reduce the number of subproblems in each iteration by
solving only those subproblems with marginal values different from zero.
If no subproblem satisfies this condition, we solve all of the subproblems
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until three columns with reduced cost are found, and the column-generation
phase continues.

(H2) Relaxed dominance rules One way to accelerate the solution of the
subproblems is to relax the dominance rules from the exact labeling algo-
rithm. This is done by testing the dominance of only a subset of the labels’
resources: for two labels L

i

= (i ,T
i

,C (T

i

)) and L

0
i

= (i ,T 0
i

,C 0
(T

0
i

)),
L

i

dominates L0
i

if C (T

i

)  C

0
(T

0
i

).

(H3) Partial pricing and partial dominance rules This approach con-
sists of a combination of both of the previously described heuristics: H1 and
H2. Therefore, partial pricing is applied in the column-generation phase
and relaxed dominance rules are used in the solution to the subproblems.

4.4.3. General procedure

In this section, we outline the proposed branch-and-price algorithm, which
primarily consists of a column-generation algorithm embedded in a branch-
and-bound procedure to guarantee integrality. Additionally, further details
on the implementation of the column-generation algorithm, data prepro-
cessing, search strategies, and branching rules are presented.

Column generation The column-generation process can be described
as follows. The algorithm is initialized by the insertion heuristic. The
master problem is solved using a set of artificial columns obtained by the
introduction of slack variables with a high cost to ensure primal feasibility.
Because of their high cost, these variables eventually leave the basis, once
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further feasible columns are obtained. From the solution to the master
problem, the marginal values are obtained and passed to the subproblems.
New routes (i.e., columns) are obtained by solving the subproblems. If
columns are found with a negative reduced cost, the column-generation
process is started again. Otherwise, an optimal solution for the reduced
master problem (and thus, for the master problem) is found. If this solution
is an integer, then it is an optimal solution to the original problem; if not,
then it corresponds to a valid fractional lower bound. Next, branching on
fractional variables is required and column generation is applied on each
node with its respective fractional bounds.

Preprocessing Each subproblem k focuses on a subset I
sub

k

⇢ I of tasks
because of the skill requirements. It is possible to further reduce this subset
by removing tasks that cannot be operated by k agents based on the shift
starting and ending times and the overtime limit otmax

k

. Additionally, one
can reduce the number of arcs considered in the subproblem’s set N

sub

k

by redefining it as N

sub

k

= {(i , j )|i , j 2 I

sub

k

, b
i

+ (b

i

� a

i

) + t

i,j 
b[j ] + w

max

i

}. This means that infeasible arcs caused by a violation of the
maximum tardiness bound are eliminated.

Branching We explore the branching tree using a depth-first strategy.
In this way, the solution from the parent node is used as a warm start for
the children nodes (eliminating the columns that do not comply with their
respective branching bounds).

One common branching rule is to branch on the arcs (i , j ), because this
rule is simple to incorporate into the subproblems by removing arcs in
N

sub

k

, and deleting the columns that violate the branching rule. However,
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this approach does not provide strong integrality bounds for our problem,
because tasks i and j might require the assignment of more than one agent.
Therefore, we use the following branching rule: for each node on the
branching tree, we define the set A as the set of fractional assignments
(i , k) such that 0 <  

ik

< 1, where  
ik

=

P
p2P

k

✓
ikp

�
kp

; ✓
ikp

is equal
to 1 if task j is assigned to agent k ’s path p, and 0 otherwise. Then, the
assignment (i , k)⇤ is selected as follows:

(i , k)⇤ 2 argmax

(i,k)2A
{(b

i

� a

i

) ·min( 
ik

, 1�  
ik

)}

From this node, two successors are generated:

• A left node with  
ik

= 0, where agent k cannot be assigned to task
i , i.e., this task is removed from its respective subproblem’s graph
and columns using this assignment are discarded.

• A right node with  
ik

= 1, where this arc is fixed, i.e., agent k is
assigned to task i .

Upper bound update After exploring a given number of nodes, it is pos-
sible to obtain new information on the development of the (integer) upper
bound by solving the reduced master problem (RMP) of the incumbent
node as an integer program. If the new bound is better than the best bound
found so far, then the bound is updated and nodes with a more expensive
solution are pruned. There is, however, a trade-off related to computation
time, because too often, solving the integer RMP can be computationally
expensive and not necessarily beneficial to the quality of the upper bound.
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4.5. Numerical Experiments

For our numerical tests, we use real-world input data from a German
ground-handling agency to test the performance of our proposed algorithm.
First, in Section 4.5.1, we use the provided data to test the performance
of the branch-and-price algorithm. We also evaluate the gains in com-
putation times obtained by solving the pricing problems using shortest
paths instead of elementary shortest paths in the column-generation phase
of our algorithm. Second, in Section 4.5.2, we generate instances with
different shift lengths to evaluate the performance of our algorithm under
different shift profiles. Third, we generate instances of larger size based
on the existing information in Section 4.5.3 to test the performance of our
solution approaches in larger settings. Fourth, in Section 4.5.4, we conduct
a sensitivity analysis to evaluate the impact of the maximum tardiness in
the resulting schedules. All of the methods are implemented in Python
2.7.3 using the Gurobi 5.6 solver on a 2.9 GHz Intel Core i7 machine with
8 GB of RAM in OS X Yosemite 10.10.14.

4.5.1. Performance tests

The data consist of 24 real-world instances, corresponding to flight sched-
ules on different days. In addition, we include 4 realistic but not real in-
stances included in Appendix A and also available at http://stolletz.
bwl.uni-mannheim.de/en/library.

Table 4.3 presents information regarding the tasks and the workforce for
each instance: the number of tasks, the minimum, maximum, and average
occupation time (in minutes), the average agent requirements, and the
number of tasks requiring each skill is shown. Also, this table presents the
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number of agents, the minimum, maximum, and average shift length (in
minutes), as well as the number of agents qualified on each skill, for each
instance. The location of the check-in counters is known, and the traveling
distance between the locations is provided by the ground-handling agency.
Based on the contracts with the airlines, the maximum tardiness is set to one-
half of the duration of each task (wmax

ik

= 0.5 ·(b
i

� a

i

) 8i 2 I , 8k 2 K ),
and the maximum outsourcing is set such that at least one normal agent is
present at each task (outmax

i

= v

i

� 1 8i 2 I ). For each instance, a shift
plan is also provided that includes information about the qualifications, shift
start, and shift end for each agent. The shift length per agent has a value of
between 3 and 10 hours, and each agent can be qualified in one or more
of the 12 available skills. To comply with labor regulations, the maximum
overtime per agent is set such that the shift length plus overtime cannot
exceed 10 hours. Finally, based on observations from the ground-handling
agency’s management, the weights for the objective function are set as
[↵1,↵2,↵3,↵4] = [0.1, 0.2, 0.3, 0.4].

The results for all of the test instances are obtained from the solution of the
MIP formulation and two versions of the branch-and-price algorithm: one
on which the subproblems are modeled as shortest path problems (SPPRC)
and the other on which the subproblems are modeled as elementary short-
est path problems (ESPPRC). The solutions reported are those obtained
within a time limit of 1 hour. We use the exact solutions from the BP to
calculate ex-post the absolute gap of the MIP results for the cases where
optimality is not proven within the time limit. For the MIP results, Table
4.4 presents the objective function value, the computation time (in minutes),
and the absolute gap to optimality (in percentage). For both versions of
the branch-and-price (BP) results, the table shows the objective function
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Table 4.3.: Test instances summary
Occupation (m) Avg. Skills (Nr. of tasks)

Instance Tasks Min. Max. Avg. Demand q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

1 64 30 120 68.95 1.23 5 10 0 1 0 0 12 0 0 0 0 3
2 64 30 140 67.74 1.23 10 4 0 1 0 0 13 0 0 0 0 3
3 70 30 140 71.03 1.33 18 4 0 1 0 1 7 0 2 0 0 3
4 54 30 140 68.65 1.26 8 4 0 1 0 0 9 0 0 0 1 3
5 68 30 140 68.18 1.25 9 6 0 1 0 1 12 0 0 0 1 3
6 52 30 120 68.10 1.19 5 5 0 1 0 0 10 2 0 0 1 3
7 64 30 140 69.44 1.20 8 4 0 1 0 1 13 0 0 0 1 3
8 64 30 120 68.95 1.23 5 10 1 1 0 0 12 0 0 0 0 3
9 64 30 140 67.74 1.23 10 4 0 1 0 0 13 0 0 0 0 3

10 70 30 140 71.03 1.33 18 4 0 1 0 1 7 0 0 0 0 3
11 54 30 140 68.65 1.26 8 4 0 1 0 0 9 0 0 0 1 3
12 68 30 140 68.18 1.25 9 6 0 1 0 1 12 0 0 0 1 3
13 52 30 120 68.10 1.19 5 5 0 1 0 0 10 0 0 0 1 3
14 64 30 140 69.44 1.20 8 4 0 1 0 1 13 0 0 0 1 3
15 64 30 120 68.95 1.23 5 10 0 1 0 0 12 0 0 0 0 3
16 64 30 140 67.74 1.23 10 4 0 1 0 0 13 0 0 0 0 3
17 52 30 120 68.10 1.19 5 5 0 1 0 0 10 0 0 0 1 3
18 64 30 140 69.44 1.20 8 4 0 1 0 1 13 0 3 1 1 3
19 64 30 120 68.95 1.23 5 10 0 1 0 0 12 0 0 0 0 3
20 70 30 140 71.03 1.33 18 4 0 1 0 1 7 0 0 0 0 3
21 52 30 120 68.10 1.19 5 5 0 1 0 0 10 0 0 0 1 3
22 64 30 140 69.44 1.20 8 4 0 1 0 1 13 0 0 0 1 3
23 64 30 120 68.95 1.23 5 10 1 1 0 0 12 0 0 0 0 3
24 64 30 140 67.74 1.23 10 4 0 1 0 0 13 0 0 0 0 3
A1 62 30 140 69.44 1.24 12 1 1 13 0 4 31 - - - - -
A2 66 30 140 68.18 1.28 15 1 1 12 0 4 33 - - - - -
A3 62 30 140 69.44 1.24 12 1 1 13 0 4 31 - - - - -
A4 50 30 120 68.10 1.24 10 1 0 10 0 4 25 - - - - -

Shift length (m) Skills distribution (Nr. of agents)
Instance Agents Min. Max. Avg. q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

1 45 180 585 314.67 42 37 11 25 18 7 39 1 0 0 36 25
2 37 180 555 353.92 34 30 9 19 14 5 32 2 0 0 30 18
3 41 180 585 376.83 38 35 13 24 17 9 35 3 1 0 31 22
4 31 180 570 371.61 27 29 10 17 11 7 27 1 1 1 25 15
5 38 180 570 384.47 34 35 11 22 18 9 33 2 1 1 30 22
6 35 180 525 324.00 33 33 10 19 12 8 31 1 1 1 30 21
7 42 180 555 336.07 41 35 10 22 15 8 35 1 0 1 34 22
8 40 180 570 344.25 37 35 7 19 15 6 32 3 0 1 32 19
9 35 180 555 375.86 33 30 11 16 14 8 30 3 1 1 29 18

10 38 180 585 417.63 35 32 12 19 14 9 33 4 1 1 30 19
11 30 180 585 375.00 26 25 7 15 11 6 27 2 1 1 23 14
12 37 180 570 394.46 33 32 9 19 17 5 30 1 0 1 30 19
13 35 180 525 349.29 31 31 6 15 14 5 28 2 1 0 28 16
14 48 180 585 375.94 42 42 11 25 19 8 40 4 1 0 39 25
15 49 180 570 332.14 45 42 12 25 21 10 40 3 1 1 41 26
16 38 180 555 396.71 37 32 6 19 15 5 33 2 1 1 30 18
17 29 180 585 385.86 27 26 8 18 13 4 25 1 0 0 25 18
18 36 180 585 375.00 32 31 8 17 14 6 30 2 1 1 30 18
19 40 180 585 336.38 35 36 7 22 16 6 36 3 1 0 32 21
20 35 180 585 435.86 32 30 10 20 11 7 32 1 1 1 26 19
21 34 180 585 407.65 31 27 7 17 12 4 29 1 0 0 25 16
22 37 180 585 372.16 35 31 9 19 15 6 33 1 0 0 28 20
23 43 180 600 343.26 38 37 11 21 18 9 37 2 1 1 36 23
24 37 180 585 442.30 35 31 9 20 15 5 33 0 0 1 28 19
A1 42 180 555 336.07 42 23 19 35 1 34 42 - - - - -
A2 38 180 570 384.47 38 23 21 33 2 30 38 - - - - -
A3 48 180 585 375.94 48 26 23 40 1 39 48 - - - - -
A4 29 180 585 385.86 29 18 15 25 0 25 29 - - - -
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value, the computation time (in minutes), the number of explored nodes,
and the overall number of columns generated. No optimality gap is reported
because an exact solution is found for all instances for both versions of the
BP. Detailed results including final schedules, assignments, and routes for
instances A1-A4 are shown in Appendix B.

Table 4.4.: Performance tests results

Inst.
MIP BP

Objective Gap (%) CPU (m) Objective SPPRC ESPPRC
CPU (m) Nodes Columns CPU (m) Nodes Columns

1 30.80 0.00 TL 30.80 6.18 16 16445 18.68 20 17825
2 NA NA TL 25.00 7.73 22 25335 14.95 24 27687
3 NA NA TL 27.00 21.40 20 36410 45.78 25 34549
4 20.80 0.00 10.53 20.80 1.23 2 1439 6.53 2 1350
5 25.60 0.00 58.87 25.60 5.00 7 8675 15.93 7 8401
6 18.20 0.00 14.31 18.20 3.47 19 14383 8.51 11 14888
7 24.60 0.00 59.02 24.60 6.73 17 17551 13.76 13 17301
8 30.80 0.00 25.73 30.80 8.40 29 26780 23.27 32 29212
9 23.60 0.00 15.06 23.60 7.98 21 22658 12.89 18 23730

10 76.10 66.16 TL 45.80 22.22 21 32765 35.25 24 32557
11 38.80 0.00 6.15 38.80 2.40 9 6566 4.53 8 6760
12 40.00 0.00 21.81 40.00 7.23 17 19029 11.61 21 18480
13 24.80 0.00 2.54 24.80 1.10 1 719 2.66 1 672
14 29.40 0.00 46.74 29.40 9.75 21 27366 19.6 25 27038
15 53.80 0.00 TL 53.80 3.85 6 6127 6.35 7 6482
16 22.20 0.00 21.16 22.20 7.29 16 16909 11.85 15 15796
17 31.40 0.00 5.86 31.40 1.05 2 1275 3.8 4 1326
18 72.40 0.00 22.67 72.40 6.84 20 20761 11.74 21 20916
19 31.20 0.00 37.59 31.20 10.45 30 30848 12.73 33 29230
20 46.60 0.00 34.44 46.60 16.23 20 30075 21.84 21 29692
21 31.80 0.00 4.39 31.80 1.91 5 4240 3.8 10 4044
22 24.60 0.00 24.29 24.60 2.46 1 943 7.11 1 949
23 30.80 0.00 30.32 30.80 2.53 1 873 7.32 1 877
24 21.80 0.00 19.61 21.80 9.47 18 21010 16.96 17 20457

Average 2.76 31.71 7.20 14.21 16215.92 14.06 15.04 16259.13

A1 115.00 0.00 13.64 115.00 4.33 2 2459 4.33 4 4918
A2 158.50 0.00 13.05 158.50 8.15 14 14938 8.15 18 19206
A3 135.50 0.00 TL 135.50 5.19 4 4878 5.19 5 6482
A4 122.50 0.00 TL 122.50 3.44 19 15228 3.44 19 15796

Average 0.00 56.68 5.28 9.75 9375.75 5.28 11.50 11600.50

From these results, we make the following observations: On the one hand,
the MIP solver is unable to obtain a feasible solution for instances 2 and 3
within the time limit. Also, on instances 1, 10, 15, A3, and A4 optimality is
not proven within the time limit. Although the solution for instances 1, 15,

109



A3, and A4 corresponds to the actual optimal solution, instance 10 shows a
low solution quality (45% away from the best solution found). Without the
time limit, instances 1, 2, 3, 10, 15, A3, and A4 are solved to optimality,
although with a significant increase in the computation time, reaching a
maximum of 195.96 minutes. All other 19 instances are solved to optimality
within the time limit, with an average computation time of 44.19 minutes.
On the other hand, the branch-and-price approach clearly outperforms the
MIP formulation: it is able to solve all instances to optimality in less than
23 minutes (with an average computation time of 6.24 minutes).

Additionally, these results show that explicitly requiring elementary paths
when solving the pricing problems is computationally expensive. In ad-
dition, we observe that the columns generated by the shortest path sub-
problems are equivalent to those generated by the elementary shortest path
subproblems in terms of the sequence of tasks on each path. This fact
is shown in the number of columns and the number of nodes explored
by the algorithm, because they do not significantly vary among methods.
This indicates that solving the pricing problems as shortest path problems
(exploiting the problem structure) provides equivalent solutions without
the computational effort of requiring elementariness on each subproblem’s
path.

In addition, further comments regarding the schedule quality for the real
instances can be made. For this purpose, Figure 4.1 shows a comparison of
the average required counter time per agent and the average operating time
per agent, defined as the amount of time an agent spends at the assigned
tasks or waiting for a counter to be opened, plus travel time (i.e., route
length). In this figure, we observe that the requirements for all instances
are significantly overestimated by the operating time. In the best case
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(instance 6), 80% of the operating time is destined to serving tasks, whereas
in the worst case (instance 20), this value is only 49%. Overall, in the
current schedules, agents spend an average of 60% of their operating time
in check-in tasks, 4.5% traveling between counters, and the remaining
time they idle. This effect, however, is a product of the relation between
flight schedules (e.g., long gaps between flights), shift plans (e.g., long
shifts covering periods with no flights), and employee qualifications (e.g.,
employees with single qualifications) for which no specific behavior could
be observed in the tested instances.

Figure 4.1.: Average operating time per agent

Instance

M
in

ut
es

0
50

10
0

15
0

20
0

25
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Avg. 
requirements

Avg. operating
time

4.5.2. Impact of shift length

For the following tests, we concentrate on the shift length’s impact on the
resulting schedules. For this purpose, we artificially create different shift
plans for each real-world test instance by multiplying the shift length for
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each agent by a scaling factor � = [0.7, 0.8, 1.2, 1.3]. We keep the start
time e

k

unchanged, and f

k

depends on the new values for the shift length. If
the new shift length does not comply with the shift requirements (minimum
3 and maximum 10 hours), then f

k

is adjusted accordingly. Additionally, if
the new shift end time exceeds the length of the planning horizon, then f

k

is
truncated up to that time point. We then solve all of these new 96 instances
both with the MIP solver and with the branch-and-price algorithm with the
shortest path subproblems given a time limit of one hour.

Table 4.5 and Figure 4.2 present a comparison of the results obtained for
all of the test instances with both solution methods. The table shows the
average values of the computation time (in minutes) for the solutions of
both methods, along with the number of nodes explored and the number
of columns generated by the branch-and-price algorithm and the absolute
gap (in percentage) for the MIP. In the figure, we plot the computation
time (in minutes) for each instance and �. Detailed results can be found in
Appendix C in Tables C.1 through C.4.

Table 4.5.: Summary results for different values of �

�
BP MIP

CPU (m) Nodes Cols CPU (m) Abs. Gap (%)

0.7 4.52 65.64 4588.91 27.88 0.25
0.8 5.06 70.13 4299.21 30.34 0.74
1.2 5.05 65.92 9853.42 30.82 0.18
1.3 5.19 63.92 10154.42 30.60 0.00

Average 4.95 66.40 7223.99 29.91 0.29
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Figure 4.2.: Computation time for different values of �
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From these results, we make the following observations. Instances 3 and
7 with � = 0.7 are shown to be infeasible for both methods, because the
reduction of the shifts to 70% of the original setting is too restrictive. The
MIP solver is unable to solve 10 out of the 94 remaining cases within the
one-hour computation time limit. From the cases in which the time limit is
reached but a solution is obtained, the MIP formulation shows an average
optimality gap of 0.29%, with a maximum value of 11.95%. The branch-
and-price algorithm, however, is able to solve all of the test instances to
optimality in less than 17 minutes (with an average of 4.95 minutes). This
indicates, then, that our proposed algorithm is not only robust enough to
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address instances with different shift profiles but also capable of solving
them in a short computation time.

Moreover, the shift length has a direct impact on the operation of the agents.
In Figure 4.3, the average utilization per agent (average operation time
divided by the average shift length per agent) and the average travel time
per agent are depicted. For clarity, only the results for a subset of instances
are shown. Instances 1, 24, and 4 are selected as these are the instances
with the minimum, maximum, and average shift length. From this figure,
we can make the following observations: First, as expected, utilization
decreases when the shift length increases. However, this shows a lower
impact once the shift length exceeded the 100% of the original setting.
Second, the average travel time per agent as well decreases when the shift
length is increased. This is due to the fact that longer shifts allow agents
to be assigned to additional tasks within the same gate, and thus lower the
overall traveling time. This reduction is, however, not that significant once
the average shift length exceeds the length of the original setting.

4.5.3. Performance of instances of larger size

For the next tests, we select the three real-world instances with maximum,
minimum, and average demand (instances 20, 6, and 22, respectively) and
generate instances of larger size by doubling and tripling the demand and
the number of agents, resulting in 6 new test instances.

Table 4.6 shows the objective function value, the computation time (in
minutes), the optimality gaps (in percentage), the number of explored
nodes, and the number of columns generated for each solved instance.
The MIP formulation is able to solve all instances with an average of
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Figure 4.3.: Avg. Utilization and Avg. Travel time for different values of �
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84.25 minutes of computation time. Consequently, we conclude that the
branch-and-price algorithm outperforms the MIP formulation by solving
all instances to optimality in less than 25 minutes.

In Figure 4.4, a comparison of the computation time (in minutes) of the
MIP solver and the BP approach for these instances and the original ones is
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Table 4.6.: Results for large size instances

Instance MIP BP
Objective CPU (m) Abs. gap (%) Objective CPU (m) Nodes Columns

6x2 36.40 11.91 0.00 36.40 3.02 5 6183
6x3 54.40 58.20 0.00 54.40 10.71 13 22983

20x2 93.20 87.09 0.00 93.20 24.27 11 30030
20x3 140.40 236.00 0.42 139.80 19.17 4 6582
22x2 49.20 34.93 0.00 49.20 9.95 6 9324
22x3 73.80 77.35 0.00 73.80 9.92 18 25373

Average 74.57 84.25 0.07 74.47 12.84 9.50 16745.83

shown. We first note that the computation time increases when increasing
the size of the instances. This was the case for all instances with the
exception of instance 6x2 as the BP approach is 2.4 minutes faster than the
original instance. Second, we observe that increasing the instance size has
a different impact on both methods on all instances. More specifically, the
BP approach shows a lower increase in computation time in comparison to
the MIP solver. This can be explained by the more-efficient exploration of
branching nodes of the BP approach, as the pricing problems are solved with
a pseudo-polynomial algorithm less sensitive to increases in the solution
space.

4.5.4. Impact of tardiness limit

The final tests focus on the impact of the maximum tardiness limit in the
daily schedules of our planning problem. For this purpose, we selected the
real-world instance that shows the maximum overall tardiness from Section
4.5.1 (i.e., instance 15) and modified the original maximum tardiness bound
(wmax

i

). In the original setting, this bound corresponds to half of the
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Figure 4.4.: Computation time comparison
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maximum duration of a task. In these tests, we set wmax

i

= � · (b
i

� a

i

),
and set the values for the tardiness factor � = [0.0, 0.1, ..., 0.7].

Figure 4.5 shows two graphs with results from the aforementioned tests.
The first graph shows the computation time for each tardiness factor. The
second graph shows the objective function value of the solution for each
tardiness factor, along with the weighted value of the components of the
objective function: overall tardiness, overall overtime, and overall traveling
time. Outsourcing is not displayed in these results because its value is 0 for
all cases.

As can be observed, the computation time monotonically increases with
the tardiness factor. Conversely, we observe a reduction of the objective
function value with every increment of the tardiness factor. Although the
weighted tardiness cost increases, because a larger wmax

i

allows it, the
weighted overtime can be decreased by means of this added flexibility,
thus lowering the overall costs. The result is only advantageous from the
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Figure 4.5.: Computation time and objective function values for different
tardiness factors
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ground-handling agency’s point of view. For the customers (i.e., airlines),
the agents’ tardiness may decrease service availability.
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4.6. Conclusions and further research

This paper presents a task assignment problem encountered by ground-
handling agencies at airports. This problem assumes a variable task-
processing time dependent on the agent’s arrival time. To the best of our
knowledge, this feature has not previously been addressed in the literature.

We propose a branch-and-price algorithm to solve this problem to optimality
in a short computation time. Taking advantage of the inherent structure
of the problem, the dynamic programming algorithm used to solve the
pricing problems can be modeled as a shortest path problem with resource
constraints (SPPRC).

We test the performance of the proposed algorithm using real-world data
from a German ground-handling agency. The results show that our algo-
rithm outperforms the standard MIP formulation not only in real-world
instances but also in semi-artificial instances with different shift schedules
and instances of larger size. Additionally, we test two modeling options
for our dynamic program formulation (i.e., SPPRC and ESPPRC) and
observe that the SPPRC formulation obtains equivalent solutions in lower
computation time than an ESPPRC formulation. Furthermore, we conduct
a sensitivity analysis to gain insights into the impact of tardiness on solving
the problem. We observe that increasing the maximum allowed tardiness
increases the computational effort required to obtain the optimal schedule;
however, the added flexibility contributes to a reduction in the objective
function value.

Further research needs to be conducted to integrate the current planning
problem into other planning stages of the operational workforce planning
process (e.g., replanning, tour scheduling, etc.). Furthermore, additional
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features could be considered such as employee preferences, synchronization
of agents’ arrival, or the possibility that agents might leave their counters
earlier.
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5. Conclusions and outlook

5.1. Conclusions

This dissertation presents three articles on workforce scheduling dealing
with decision problems from different areas of application. For each of
these scheduling problems, a formal definition, an overview of related
literature, and a mixed- integer programming formulation are given. The
inherent combinatorial nature of the problems under consideration, however,
makes their direct solution impractical due to the high computational effort
required for it. To this end, all three articles propose exact and/or heuristic
solution approaches that derive optimal and/or near-optimal solutions in
short computation time for artificial and real-world test instances.

The first article presents a tour scheduling problem for check-in agents at
airports and proposes a rolling planning horizon-based heuristic to solve it.
The results from the numerical study show that the proposed algorithm is
able to produce near-optimal solutions in short computation time, although
the selection of the heuristic parameters is crucial to achieve this. Lastly,
the results from the sensitivity analysis show there is a trade-off between
the overall costs and the scheduling flexibility provided by more qualified
employees.

The second article addresses a multiperiod technician routing and schedul-
ing problem from an external maintenance provider and proposes two

121



branch-and-price algorithms to solve it. The numerical tests present a
comparison between different decomposition schemes for the column gen-
eration phase of the algorithms. The results show that a decomposition with
smaller and easier-to-solve subproblems is preferable for a good overall
performance. In addition, results also show that time windows can span
over multiple period has an significant impact on scheduling costs and
computation time.

The third article presents a task scheduling problem for check-in counters
personnel at airports and proposes a branch-and-price algorithms to solve
it. By exploiting the structure of the problem, the algorithms used to solve
the subproblems can be simplified in order to improve its performance.
The results from the numerical tests corroborate this. Finally, a sensitivity
analysis on the tardiness limit indicates that a higher tardiness limit con-
tributes to lower operation costs, although it can have a negative impact on
customer satisfaction.

Despite the fact that all decision models presented in this thesis share many
similarities, they also have many differences. Table 5.1 shows a comparison
of main elements of the decision models on each chapter chapter, such as
the decisions considered, the planning horizon, the characteristics of the
workforce, and their application areas. In summary, several distinctions can
be made. First, the decision model in Chapter 2 considers shift scheduling
and days-off scheduling decision, whereas the models in Chapter 3 and
4 consider fixed schedules. Second, the decision model from Chapter 3
differs from that on Chapter 4 on the fact that teams of agents are built
on a daily basis and that tasks can be served on multiple days. Third, the
planning horizon of all articles is one month, one week, and one day for
the decision models of Chapter 2, 3, and 4, respectively. Last, all decision
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models consider employees with multiple non-hierarchical qualifications,
although in Chapter 3 the decision model considers additionally proficiency
levels for each qualification.

Table 5.1.: Comparison of decision models per chapter
Chapter Decisions Planning Workforce ApplicationHorizon

2 Shift Scheduling, Days-off schedul-
ing

1 month Multiple, non-hierarchical skills Airport

3 Task assignment, Task Scheduling,
Routing, Team building

1 week Multiple skills with proficiency lev-
els

Maintenance
provider

4 Task assignment, Routing 1 day Multiple, non-hierarchical skills Airport

Moreover, in addition to a MIP formulation, all chapters propose alterna-
tive solution approaches for the presented decision models. These solution
approaches share common elements although several distinctions can be
made. Table 5.2 presents a comparison of the key elements of the solution
methods of each chapter including the name of the approach and infor-
mation on the subproblems (i.e., type of problem, solution method, and
how are the subproblems connected for the overall solution). As shown
in this table, the main distinction among all solution methods is that the
approach proposed in Chapter 2 is an heuristic, whereas the ones in Chapter
3 and 4 are exact methods where optimality of the solutions is guaranteed.
Second, all solution methods, in short, attempt to solve the original problem
by decomposing it into smaller subproblems. An overall solution is then
obtained through a connection of the solution of the subproblems. In the
case of the approach of Chapter 2 this is achieved by a modification of the
original formulation, whereas in the approaches presented in Chapter 3 and
4 apply a Dantzig-Wolfe decompositions for this purpose. Last, in Chapter
3 alternative Dantzig-Wolfe decompositions are proposed, one of which
considers subproblems that belong to the Elementary Shortest Path Problem
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with Resource Constraints (ESPPRC) class. The approach presented in
Chapter 4, however, exploits certain characteristics of the problem at hand
to formulate the subproblems as Shortest Path Problems with Resource
Constraints (SPPRC), which require less computational effort for their
solution.

Table 5.2.: Comparison of solution methods per chapter
Chapter Approach Subproblems

Type Solution Connection

2 Rolling Planning
Horizon heuristic

Reduced version of original
problem

MIP solver Modified tour building con-
straints

3 Branch-and-price 1) Reduced version of origi-
nal problem

1) MIP solver 1) Master problem solved
with Column Generation

2) Elementary Shortest Path
with Resource Constaints
(ESPPRC)

2) Labeling algorithm 2) Master problem solved
with Column Generation

4 Branch-and-price Shortest Path with Resource
Constraints (SPPRC)

Labeling algorithm Master problem solved with
Column Generation

5.2. Further research directions
Notwithstanding that the presented scheduling problems correspond to
different stages of the workforce scheduling process, future research can be
oriented towards their integration into a single decision support system. One
option can be to integrate them in a hierarchical planning framework, where
that problems are solved sequentially with information links to connect
them. Likewise, another integration option can be to incorporate several
decisions of different problems into the formulation of a single decision
model.

As all presented decision models are workforce related, further research
can be oriented to common directions such as incorporating employees
preferences, fairness, workload balance, meal-break placements, etc. On
the other hand, all models from this thesis assume information is determin-
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istic and known in advance. Hence, robust optimization approaches need
to be developed in order to accommodate for the stochastic effects of the
information.

In relation to the solution approaches proposed in this thesis, future re-
search is required for an improvement in their performance. In the case
of Chapter 2, alternative solution approaches (e.g., tabu search, simulated
annealing, etc.) can be developed for solving the subproblems of the rolling
horizon-based heuristic. For Chapter 3 and 4, alternative ideas from exist-
ing solution approaches for similar routing problems can be implemented.
Such ideas include, for example, the implementation acceleration and stabi-
lization strategies in the column generation phase of the algorithms, or the
implementation of ng-paths (Baldacci et al., 2011), bi-directional labeling
(Liberatore et al., 2010) or hybrid methods (Gendreau et al., 2016) for the
solution of the subproblems.

Since scheduling problems can be found in more areas of application than
those mentioned in this thesis, further research involves transferring the
proposed solution approaches to scheduling problems in other applications
(e.g., job-shop scheduling, production scheduling with sequence-dependent
setup times, etc.).
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A. Realistic instances from Chapter 4

In the following section detailed informations on realistic instances A1-
A4 is presented. Tables A.1 to A.4 show the task index, the counter
opening time, the occupation time (in minutes), the agent requirements,
and the skills required. Tables A.5 to A.8 present information regarding
the workforce, including: agent index, qualifications, shift start time, and
shift end time. Last, tables A.9 to A.12 display the travel time (in minutes)
from and to each task (including depot). This information is available at
http://stolletz.bwl.uni-mannheim.de/en/library.

We also use the following values for the remaining parameters:

• w

max

ik

= 0.5 · (b
i

� a

i

) 8i 2 I , 8k 2 K

• out

max

i

= v

i

� 1 8i 2 I

• The maximum overtime per agent is set such that the shift length
plus overtime cannot exceed 10 hours.

• [↵1,↵2,↵3,↵4] = [0.1, 0.2, 0.3, 0.4]

• 1 hour computation time limit
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Table A.1.: A1- Tasks
Task Opening Occ. (m) Reqs. q1 q2 q3 q4 q5 q6 q7

i1 75 45 2 0 0 0 0 0 0 1
i2 170 30 1 0 0 0 0 0 0 1
i3 180 105 2 0 0 0 0 0 1 0
i4 180 40 1 0 0 0 0 0 0 1
i5 200 30 1 0 0 0 0 0 0 1
i6 210 30 1 0 0 0 0 0 0 1
i7 220 30 1 0 0 0 0 0 0 1
i8 230 40 1 0 0 0 0 0 0 1
i9 240 45 1 0 0 0 0 0 0 1

i10 250 40 2 0 0 0 0 0 0 1
i11 290 90 1 0 0 0 1 0 0 0
i12 290 120 2 1 0 0 0 0 0 0
i13 290 110 1 1 0 0 0 0 0 0
i14 300 90 1 0 0 0 1 0 0 0
i15 310 80 1 0 0 0 0 0 1 0
i16 310 90 1 0 0 0 1 0 0 0
i17 310 30 1 0 0 0 0 0 0 1
i18 360 120 2 1 0 0 0 0 0 0
i19 390 140 2 1 0 0 0 0 0 0
i20 400 90 1 0 0 0 1 0 0 0
i21 405 30 1 0 0 0 0 0 0 1
i22 415 30 1 0 0 0 0 0 0 1
i23 415 30 1 0 0 0 0 0 0 1
i24 495 30 1 0 0 0 0 0 0 1
i25 495 90 1 0 0 0 1 0 0 0
i26 505 90 1 0 0 0 1 0 0 0
i27 505 90 1 0 0 0 1 0 0 0
i28 525 40 1 0 0 0 0 0 0 1
i29 575 40 1 0 0 0 0 0 0 1
i30 585 90 1 0 0 0 1 0 0 0
i31 585 40 1 0 0 0 0 0 0 1
i32 630 40 1 0 0 0 0 0 0 1
i33 635 110 1 0 0 1 0 0 0 0
i34 655 80 1 0 1 0 0 0 0 0
i35 655 45 2 0 0 0 0 0 0 1
i36 660 30 1 0 0 0 0 0 0 1
i37 680 30 1 0 0 0 0 0 0 1
i38 695 110 1 1 0 0 0 0 0 0
i39 725 30 1 0 0 0 0 0 0 1
i40 735 30 1 0 0 0 0 0 0 1
i41 760 45 1 0 0 0 0 0 0 1
i42 760 105 2 0 0 0 0 0 1 0
i43 765 45 1 0 0 0 0 0 0 1
i44 770 140 1 1 0 0 0 0 0 0
i45 780 120 2 1 0 0 0 0 0 0
i46 800 120 2 1 0 0 0 0 0 0
i47 815 90 1 0 0 0 1 0 0 0
i48 825 90 1 0 0 0 1 0 0 0
i49 845 45 2 0 0 0 0 0 0 1
i50 880 120 2 1 0 0 0 0 0 0
i51 880 40 1 0 0 0 0 0 0 1
i52 885 120 2 1 0 0 0 0 0 0
i53 915 30 1 0 0 0 0 0 0 1
i54 925 30 1 0 0 0 0 0 0 1
i55 930 30 1 0 0 0 0 0 0 1
i56 950 105 2 0 0 0 0 0 1 0
i57 990 110 1 1 0 0 0 0 0 0
i58 1005 90 1 0 0 0 1 0 0 0
i59 1015 90 1 0 0 0 1 0 0 0
i60 1020 90 1 0 0 0 1 0 0 0
i61 1080 30 1 0 0 0 0 0 0 1
i62 1200 120 2 1 0 0 0 0 0 0
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Table A.2.: A2- Tasks
Task Opening Occ. (m) Reqs. q1 q2 q3 q4 q5 q6 q7

i1 75 45 2 0 0 0 0 0 0 1
i2 170 30 1 0 0 0 0 0 0 1
i3 180 105 2 0 0 0 0 0 1 0
i4 180 40 1 0 0 0 0 0 0 1
i5 200 30 1 0 0 0 0 0 0 1
i6 200 40 1 0 0 0 0 0 0 1
i7 210 30 1 0 0 0 0 0 0 1
i8 220 30 1 0 0 0 0 0 0 1
i9 240 45 1 0 0 0 0 0 0 1

i10 275 30 1 0 0 0 0 0 0 1
i11 280 80 1 0 0 0 0 0 1 0
i12 290 90 1 0 0 0 1 0 0 0
i13 290 120 2 1 0 0 0 0 0 0
i14 290 110 1 1 0 0 0 0 0 0
i15 300 90 1 0 0 0 1 0 0 0
i16 310 90 1 0 0 0 1 0 0 0
i17 310 30 1 0 0 0 0 0 0 1
i18 360 120 2 1 0 0 0 0 0 0
i19 395 120 2 1 0 0 0 0 0 0
i20 400 90 1 0 0 0 1 0 0 0
i21 405 30 1 0 0 0 0 0 0 1
i22 415 30 1 0 0 0 0 0 0 1
i23 415 30 1 0 0 0 0 0 0 1
i24 490 40 1 0 0 0 0 0 0 1
i25 495 90 1 0 0 0 1 0 0 0
i26 505 90 1 0 0 0 1 0 0 0
i27 505 90 1 0 0 0 1 0 0 0
i28 575 40 1 0 0 0 0 0 0 1
i29 585 40 1 0 0 0 0 0 0 1
i30 595 40 1 0 0 0 0 0 0 1
i31 600 110 1 1 0 0 0 0 0 0
i32 605 30 1 0 0 0 0 0 0 1
i33 630 40 1 0 0 0 0 0 0 1
i34 655 80 1 0 1 0 0 0 0 0
i35 655 45 2 0 0 0 0 0 0 1
i36 695 90 2 1 0 0 0 0 0 0
i37 695 110 1 1 0 0 0 0 0 0
i38 705 110 1 0 0 1 0 0 0 0
i39 725 30 1 0 0 0 0 0 0 1
i40 730 40 2 0 0 0 0 0 0 1
i41 735 30 1 0 0 0 0 0 0 1
i42 760 105 2 0 0 0 0 0 1 0
i43 765 45 1 0 0 0 0 0 0 1
i44 770 140 1 1 0 0 0 0 0 0
i45 810 80 2 1 0 0 0 0 0 0
i46 815 90 1 0 0 0 1 0 0 0
i47 825 90 1 0 0 0 1 0 0 0
i48 830 45 2 0 0 0 0 0 0 1
i49 835 30 1 0 0 0 0 0 0 1
i50 885 120 2 1 0 0 0 0 0 0
i51 915 30 1 0 0 0 0 0 0 1
i52 915 30 1 0 0 0 0 0 0 1
i53 925 30 1 0 0 0 0 0 0 1
i54 930 30 1 0 0 0 0 0 0 1
i55 935 105 2 0 0 0 0 0 1 0
i56 955 120 2 1 0 0 0 0 0 0
i57 985 30 1 0 0 0 0 0 0 1
i58 1005 90 3 1 0 0 0 0 0 0
i59 1005 90 1 0 0 0 1 0 0 0
i60 1015 90 1 0 0 0 1 0 0 0
i61 1020 90 1 0 0 0 1 0 0 0
i62 1050 30 1 0 0 0 0 0 0 1
i63 1070 30 1 0 0 0 0 0 0 1
i64 1105 120 2 1 0 0 0 0 0 0
i65 1170 120 2 1 0 0 0 0 0 0
i66 1190 120 2 1 0 0 0 0 0 0
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Table A.3.: A3- Tasks
Task Opening Occ. (m) Reqs. q1 q2 q3 q4 q5 q6 q7

i1 75 45 2 0 0 0 0 0 0 1
i2 170 30 1 0 0 0 0 0 0 1
i3 180 105 2 0 0 0 0 0 1 0
i4 180 40 1 0 0 0 0 0 0 1
i5 200 30 1 0 0 0 0 0 0 1
i6 210 30 1 0 0 0 0 0 0 1
i7 220 30 1 0 0 0 0 0 0 1
i8 230 40 1 0 0 0 0 0 0 1
i9 240 45 1 0 0 0 0 0 0 1

i10 250 40 2 0 0 0 0 0 0 1
i11 290 90 1 0 0 0 1 0 0 0
i12 290 120 2 1 0 0 0 0 0 0
i13 290 110 1 1 0 0 0 0 0 0
i14 300 90 1 0 0 0 1 0 0 0
i15 310 80 1 0 0 0 0 0 1 0
i16 310 90 1 0 0 0 1 0 0 0
i17 310 30 1 0 0 0 0 0 0 1
i18 360 120 2 1 0 0 0 0 0 0
i19 390 140 2 1 0 0 0 0 0 0
i20 400 90 1 0 0 0 1 0 0 0
i21 405 30 1 0 0 0 0 0 0 1
i22 415 30 1 0 0 0 0 0 0 1
i23 415 30 1 0 0 0 0 0 0 1
i24 495 30 1 0 0 0 0 0 0 1
i25 495 90 1 0 0 0 1 0 0 0
i26 505 90 1 0 0 0 1 0 0 0
i27 505 90 1 0 0 0 1 0 0 0
i28 525 40 1 0 0 0 0 0 0 1
i29 575 40 1 0 0 0 0 0 0 1
i30 585 90 1 0 0 0 1 0 0 0
i31 585 40 1 0 0 0 0 0 0 1
i32 630 40 1 0 0 0 0 0 0 1
i33 635 110 1 0 0 1 0 0 0 0
i34 655 80 1 0 1 0 0 0 0 0
i35 655 45 2 0 0 0 0 0 0 1
i36 660 30 1 0 0 0 0 0 0 1
i37 680 30 1 0 0 0 0 0 0 1
i38 695 110 1 1 0 0 0 0 0 0
i39 725 30 1 0 0 0 0 0 0 1
i40 735 30 1 0 0 0 0 0 0 1
i41 760 45 1 0 0 0 0 0 0 1
i42 760 105 2 0 0 0 0 0 1 0
i43 765 45 1 0 0 0 0 0 0 1
i44 770 140 1 1 0 0 0 0 0 0
i45 780 120 2 1 0 0 0 0 0 0
i46 800 120 2 1 0 0 0 0 0 0
i47 815 90 1 0 0 0 1 0 0 0
i48 825 90 1 0 0 0 1 0 0 0
i49 845 45 2 0 0 0 0 0 0 1
i50 880 120 2 1 0 0 0 0 0 0
i51 880 40 1 0 0 0 0 0 0 1
i52 885 120 2 1 0 0 0 0 0 0
i53 915 30 1 0 0 0 0 0 0 1
i54 925 30 1 0 0 0 0 0 0 1
i55 930 30 1 0 0 0 0 0 0 1
i56 950 105 2 0 0 0 0 0 1 0
i57 990 110 1 1 0 0 0 0 0 0
i58 1005 90 1 0 0 0 1 0 0 0
i59 1015 90 1 0 0 0 1 0 0 0
i60 1020 90 1 0 0 0 1 0 0 0
i61 1080 30 1 0 0 0 0 0 0 1
i62 1200 120 2 1 0 0 0 0 0 0
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Table A.4.: A4- Tasks
Task Opening Occ. (m) Reqs. q1 q2 q3 q4 q5 q6 q7

i1 75 45 2 0 0 0 0 0 0 1
i2 170 30 1 0 0 0 0 0 0 1
i3 180 105 2 0 0 0 0 0 1 0
i4 180 40 1 0 0 0 0 0 0 1
i5 200 30 1 0 0 0 0 0 0 1
i6 210 30 1 0 0 0 0 0 0 1
i7 220 30 1 0 0 0 0 0 0 1
i8 240 45 1 0 0 0 0 0 0 1
i9 290 90 1 0 0 0 1 0 0 0

i10 290 120 2 1 0 0 0 0 0 0
i11 290 110 1 1 0 0 0 0 0 0
i12 300 90 1 0 0 0 1 0 0 0
i13 310 90 1 0 0 0 1 0 0 0
i14 350 30 1 0 0 0 0 0 0 1
i15 360 120 2 1 0 0 0 0 0 0
i16 405 30 1 0 0 0 0 0 0 1
i17 415 30 1 0 0 0 0 0 0 1
i18 470 120 2 1 0 0 0 0 0 0
i19 490 40 1 0 0 0 0 0 0 1
i20 495 90 1 0 0 0 1 0 0 0
i21 505 90 1 0 0 0 1 0 0 0
i22 575 40 1 0 0 0 0 0 0 1
i23 575 40 1 0 0 0 0 0 0 1
i24 600 110 1 1 0 0 0 0 0 0
i25 655 80 1 0 1 0 0 0 0 0
i26 655 45 2 0 0 0 0 0 0 1
i27 685 110 1 1 0 0 0 0 0 0
i28 700 30 1 0 0 0 0 0 0 1
i29 725 30 1 0 0 0 0 0 0 1
i30 735 30 1 0 0 0 0 0 0 1
i31 760 105 2 0 0 0 0 0 1 0
i32 815 90 1 0 0 0 1 0 0 0
i33 820 30 1 0 0 0 0 0 0 1
i34 820 120 2 1 0 0 0 0 0 0
i35 825 90 1 0 0 0 1 0 0 0
i36 845 45 2 0 0 0 0 0 0 1
i37 895 40 1 0 0 0 0 0 0 1
i38 915 30 1 0 0 0 0 0 0 1
i39 925 30 1 0 0 0 0 0 0 1
i40 930 30 1 0 0 0 0 0 0 1
i41 940 120 2 1 0 0 0 0 0 0
i42 950 105 2 0 0 0 0 0 1 0
i43 970 30 1 0 0 0 0 0 0 1
i44 975 40 1 0 0 0 0 0 0 1
i45 1005 90 1 0 0 0 1 0 0 0
i46 1005 110 1 1 0 0 0 0 0 0
i47 1015 90 1 0 0 0 1 0 0 0
i48 1020 90 1 0 0 0 1 0 0 0
i49 1055 80 1 0 0 0 0 0 1 0
i50 1090 120 2 1 0 0 0 0 0 0
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Table A.5.: A1- Agents
Agent q1 q2 q3 q4 q5 q6 q7 Shift start Shift end

k1 1 1 1 1 0 1 1 20 410
k2 1 1 1 1 0 1 1 20 560
k3 1 1 0 1 0 1 1 35 380
k4 1 1 1 1 0 1 1 95 515
k5 1 1 1 1 0 1 1 110 665
k6 1 0 0 1 0 0 1 140 320
k7 1 0 0 0 0 0 1 140 335
k8 1 0 1 0 0 0 1 140 335
k9 1 0 0 1 0 0 1 140 320

k10 1 0 0 0 0 1 1 140 335
k11 1 1 1 1 0 1 1 155 665
k12 1 0 0 0 0 1 1 155 410
k13 1 0 0 1 0 1 1 155 590
k14 1 1 1 1 0 1 1 185 710
k15 1 0 0 1 0 1 1 185 365
k16 1 0 1 1 0 1 1 215 515
k17 1 0 0 1 0 1 1 215 500
k18 1 0 0 0 0 0 1 230 410
k19 1 0 0 1 0 1 1 230 410
k20 1 0 0 1 0 1 1 275 590
k21 1 1 1 1 0 1 1 410 920
k22 1 1 1 1 0 1 1 455 785
k23 1 1 1 1 0 1 1 470 995
k24 1 0 0 1 0 1 1 470 815
k25 1 1 1 1 0 1 1 530 1040
k26 1 1 0 0 0 1 1 530 770
k27 1 1 0 1 0 0 1 560 995
k28 1 0 0 1 0 1 1 590 1025
k29 1 1 1 1 1 1 1 605 950
k30 1 1 1 1 0 1 1 605 950
k31 1 1 1 1 0 1 1 620 890
k32 1 1 1 1 0 1 1 620 1025
k33 1 1 0 1 0 1 1 620 800
k34 1 1 0 1 0 0 1 620 935
k35 1 0 0 0 0 1 1 635 815
k36 1 0 0 1 0 1 1 635 815
k37 1 1 1 1 0 1 1 650 1205
k38 1 0 0 1 0 1 1 680 935
k39 1 0 0 1 0 0 1 680 1010
k40 1 1 1 1 0 1 1 710 1205
k41 1 1 1 1 0 1 1 755 1010
k42 1 1 0 1 0 1 1 890 1205
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Table A.6.: A2- Agents
Agent q1 q2 q3 q4 q5 q6 q7 Shift start Shift end

k1 1 1 1 1 0 1 1 20 365
k2 1 1 0 1 0 1 1 20 350
k3 1 0 1 1 0 1 1 35 500
k4 1 0 0 1 0 0 1 95 590
k5 1 1 1 1 0 1 1 110 665
k6 1 0 1 0 0 0 1 140 335
k7 1 0 0 1 0 0 1 140 320
k8 1 0 0 1 0 0 1 140 335
k9 1 0 0 1 0 1 1 140 335

k10 1 1 1 1 0 1 1 140 320
k11 1 1 1 1 0 1 1 155 725
k12 1 0 0 1 0 1 1 155 605
k13 1 0 0 1 0 1 1 185 515
k14 1 0 0 0 0 0 1 185 365
k15 1 0 0 0 0 1 1 185 515
k16 1 1 1 1 0 1 1 230 590
k17 1 1 1 1 0 1 1 275 665
k18 1 0 1 1 0 0 1 275 710
k19 1 1 1 1 0 1 1 410 920
k20 1 0 0 1 0 1 1 470 965
k21 1 1 1 1 0 1 1 530 1040
k22 1 1 0 0 0 1 1 530 770
k23 1 0 0 1 0 0 1 530 1025
k24 1 1 1 1 0 1 1 545 890
k25 1 1 0 1 0 1 1 560 1025
k26 1 1 1 1 0 1 1 560 830
k27 1 1 0 1 0 1 1 575 965
k28 1 0 0 1 0 1 1 590 1025
k29 1 1 1 1 1 1 1 605 1010
k30 1 1 1 1 0 1 1 605 1115
k31 1 1 1 1 0 1 1 620 1175
k32 1 1 1 1 0 1 1 620 920
k33 1 1 1 1 0 1 1 650 1205
k34 1 0 0 0 0 1 1 680 1205
k35 1 1 1 1 0 1 1 680 1115
k36 1 1 1 1 0 1 1 740 1115
k37 1 1 0 1 0 0 1 875 1175
k38 1 1 1 1 1 1 1 890 1205
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Table A.7.: A3- Agents
Agent q1 q2 q3 q4 q5 q6 q7 Shift start Shift end

k1 1 0 0 0 0 1 1 20 410
k2 1 1 1 1 0 1 1 20 410
k3 1 0 0 1 0 0 1 35 500
k4 1 1 1 1 0 1 1 95 410
k5 1 1 0 1 0 1 1 110 665
k6 1 1 1 1 0 1 1 140 335
k7 1 1 1 1 0 1 1 140 320
k8 1 0 0 1 0 1 1 140 455
k9 1 0 1 1 0 1 1 140 335

k10 1 1 1 1 0 1 1 155 590
k11 1 1 1 1 0 1 1 170 740
k12 1 1 1 1 0 1 1 170 515
k13 1 0 0 0 0 0 1 170 755
k14 1 0 0 1 0 0 1 185 515
k15 1 1 0 1 0 1 1 200 380
k16 1 0 0 1 0 1 1 200 410
k17 1 1 0 0 0 1 1 200 380
k18 1 0 0 1 0 1 1 230 800
k19 1 1 1 1 0 1 1 230 410
k20 1 0 0 0 0 1 1 275 800
k21 1 0 0 1 0 0 1 380 860
k22 1 0 0 1 0 1 1 380 860
k23 1 1 1 1 0 1 1 380 860
k24 1 0 1 0 0 0 1 380 860
k25 1 1 1 1 0 1 1 380 860
k26 1 0 0 1 0 1 1 380 860
k27 1 0 0 1 0 1 1 380 860
k28 1 1 1 1 0 1 1 410 920
k29 1 0 0 1 0 1 1 455 725
k30 1 0 0 1 0 0 1 530 860
k31 1 0 0 0 0 0 1 530 1040
k32 1 0 0 0 0 1 1 530 770
k33 1 1 1 1 0 1 1 530 935
k34 1 1 1 1 0 1 1 560 995
k35 1 1 1 1 0 1 1 575 725
k36 1 1 0 1 0 0 1 575 785
k37 1 0 0 0 0 0 1 590 1025
k38 1 1 1 1 0 1 1 605 950
k39 1 1 1 1 0 1 1 605 950
k40 1 1 1 1 1 1 1 620 935
k41 1 1 1 1 0 1 1 635 995
k42 1 0 0 1 0 1 1 635 815
k43 1 0 0 1 0 1 1 650 1205
k44 1 1 0 1 0 1 1 650 1205
k45 1 1 1 1 0 1 1 680 1010
k46 1 1 1 1 0 1 1 695 1025
k47 1 1 1 1 0 1 1 710 1205
k48 1 0 0 1 0 1 1 755 1025
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Table A.8.: A4- Agents

Agent q1 q2 q3 q4 q5 q6 q7 Shift start Shift end

k1 1 0 0 0 0 1 1 20 515
k2 1 1 1 1 0 1 1 20 605
k3 1 0 0 1 0 1 1 35 605
k4 1 1 1 1 0 0 1 110 545
k5 1 1 1 1 0 1 1 140 335
k6 1 1 1 1 0 1 1 140 335
k7 1 1 1 1 0 1 1 140 500
k8 1 1 0 0 0 1 1 140 320
k9 1 0 0 1 0 0 1 155 665

k10 1 0 0 1 0 1 1 155 590
k11 1 0 0 0 0 0 1 185 695
k12 1 1 1 1 0 1 1 410 920
k13 1 1 0 1 0 1 1 425 605
k14 1 1 1 1 0 1 1 440 1010
k15 1 0 0 1 0 1 1 530 1100
k16 1 1 1 1 0 1 1 530 1010
k17 1 0 0 0 0 1 1 530 770
k18 1 1 1 1 0 1 1 560 1025
k19 1 1 1 1 0 1 1 590 1025
k20 1 0 0 1 0 1 1 605 1070
k21 1 1 1 1 0 1 1 620 1100
k22 1 0 0 1 0 1 1 665 1025
k23 1 1 0 1 0 1 1 680 1100
k24 1 1 1 1 0 1 1 695 1010
k25 1 0 0 1 0 1 1 695 1070
k26 1 0 1 1 0 1 1 785 1100
k27 1 1 1 1 0 1 1 830 1010
k28 1 1 1 1 0 1 1 845 1025
k29 1 1 0 1 0 0 1 845 1025
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Table A.9.: A1- Travel times
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Table A.11.: A3- Travel times
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B. Results for realistic instances from Chapter
4

The following section presents detailed results for instances A1-A4. Tables
B.1 to B.4 show, for each agent, the overall overtime (in minutes) and the
assigned route (starting and ending at the depot). Tables B.5 to B.8 present
the starting time and overall waiting time (in minutes) per agent per task in
the final schedule.
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Table B.1.: Assignments and routes for instance A1

Agent Overtime Route(m)

k1 0 [(o, i1), (i1, i11), (i11, ō)]
k2 0 [(o, i2), (i2, i10), (i10, i19), (i19, ō)]
k3 0 [(o, i1), (i1, i17), (i17, ō)]
k4 0 [(o, i3), (i3, i18), (i18, ō)]
k5 0 [(o, i6), (i6, i14), (i14, i23), (i23, i24), (i24, ō)]

k11 0 [(o, i3), (i3, i19), (i19, ō)]
k12 0 [(o, i5), (i5, i8), (i8, i13), (i13, ō)]
k13 0 [(o, i4), (i4, i9), (i9, i18), (i18, i28), (i28, ō)]
k14 0 [(o, i10), (i10, i16), (i16, i21), (i21, i27), (i27, i35), (i35, ō)]
k16 0 [(o, i7), (i7, i15), (i15, i20), (i20, ō)]
k17 0 [(o, i12), (i12, ō)]
k20 0 [(o, i12), (i12, ō)]
k21 0 [(o, i22), (i22, i26), (i26, i33), (i33, i49), (i49, ō)]
k23 0 [(o, i25), (i25, i30), (i30, i37), (i37, i45), (i45, i54), (i54, ō)]
k25 60 [(o, i29), (i29, i32), (i32, i42), (i42, i50), (i50, i58), (i58, ō)]
k27 0 [(o, i31), (i31, i46), (i46, i55), (i55, ō)]
k28 35 [(o, i46), (i46, i56), (i56, ō)]
k29 0 [(o, i35), (i35, i41), (i41, i49), (i49, ō)]
k30 0 [(o, i43), (i43, i48), (i48, ō)]
k32 80 [(o, i47), (i47, i53), (i53, i57), (i57, ō)]
k34 0 [(o, i36), (i36, i44), (i44, ō)]
k37 0 [(o, i34), (i34, i40), (i40, i52), (i52, i59), (i59, ō)]
k38 0 [(o, i38), (i38, i51), (i51, ō)]
k39 0 [(o, i52), (i52, ō)]
k40 105 [(o, i39), (i39, i45), (i45, i56), (i56, i61), (i61, i62), (i62, ō)]
k41 0 [(o, i42), (i42, i50), (i50, ō)]
k42 120 [(o, i60), (i60, i62), (i62, ō)]

XLIV



Table B.2.: Assignments and routes for instance A2

Agent Overtime Route(m)

k1 0 [(o, i1), (i1, i3), (i3, i17), (i17, ō)]
k3 0 [(o, i1), (i1, i3), (i3, i16), (i16, ō)]
k4 0 [(o, i7), (i7, i12), (i12, i19), (i19, ō)]
k5 0 [(o, i9), (i9, i18), (i18, i30), (i30, ō)]

k11 0 [(o, i2), (i2, i8), (i8, i13), (i13, i25), (i25, i31), (i31, ō)]
k12 0 [(o, i4), (i4, i22), (i22, i27), (i27, ō)]
k13 0 [(o, i6), (i6, i10), (i10, i18), (i18, ō)]
k15 0 [(o, i5), (i5, i11), (i11, i21), (i21, ō)]
k16 0 [(o, i15), (i15, i19), (i19, ō)]
k17 0 [(o, i14), (i14, i20), (i20, i26), (i26, i32), (i32, ō)]
k18 0 [(o, i13), (i13, i35), (i35, ō)]
k19 0 [(o, i23), (i23, i24), (i24, i28), (i28, i38), (i38, i48), (i48, ō)]
k21 5 [(o, i29), (i29, i40), (i40, i45), (i45, i55), (i55, ō)]
k23 55 [(o, i35), (i35, i41), (i41, i47), (i47, i51), (i51, i56), (i56, ō)]
k30 0 [(o, i40), (i40, i44), (i44, i55), (i55, i62), (i62, ō)]
k31 45 [(o, i36), (i36, i46), (i46, i58), (i58, i64), (i64, ō)]
k32 0 [(o, i33), (i33, i39), (i39, i42), (i42, ō)]
k33 45 [(o, i34), (i34, i43), (i43, i48), (i48, i59), (i59, i65), (i65, ō)]
k34 75 [(o, i36), (i36, i49), (i49, i50), (i50, i58), (i58, i65), (i65, ō)]
k35 0 [(o, i37), (i37, i45), (i45, i54), (i54, i61), (i61, ō)]
k36 0 [(o, i42), (i42, i53), (i53, i57), (i57, i60), (i60, ō)]
k37 140 [(o, i50), (i50, i58), (i58, i64), (i64, i66), (i66, ō)]
k38 110 [(o, i52), (i52, i56), (i56, i63), (i63, i66), (i66, ō)]
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Table B.3.: Assignments and routes for instance A3

Agent Overtime Route(m)

k1 0 [(o, i1), (i1,i17),(i17,ō)]
k2 0 [(o, i1), (i1,i11),(i11,ō)]
k3 0 [(o, i12), (i12,ō)]
k5 0 [(o, i3), (i3,i18),(i18,i26),(i26,ō)]
k8 0 [(o, i2), (i2,i10),(i10,i16),(i16,i21),(i21,ō)]

k10 0 [(o, i6), (i6,i14),(i14,i20),(i20,i28),(i28,ō)]
k11 0 [(o, i5), (i5,i8),(i8,i15),(i15,i25),(i25,i30),(i30,ō)]
k12 0 [(o, i3), (i3,i18),(i18,ō)]
k13 0 [(o, i4), (i4,i10),(i10,i19),(i19,ō)]
k14 0 [(o, i7), (i7,i13),(i13,i23),(i23,ō)]
k18 0 [(o, i9), (i9,i19),(i19,i35),(i35,ō)]
k20 0 [(o, i12), (i12,i24),(i24,ō)]
k28 0 [(o, i22), (i22,i27),(i27,i33),(i33,i49),(i49,ō)]
k31 65 [(o, i35), (i35,i41),(i41,i49),(i49,i53),(i53,i57),(i57,ō)]
k33 0 [(o, i29), (i29,i32),(i32,i42),(i42,i51),(i51,ō)]
k34 0 [(o, i31), (i31,i46),(i46,i54),(i54,ō)]
k37 0 [(o, i50), (i50,ō)]
k39 0 [(o, i45), (i45,ō)]
k40 0 [(o, i34), (i34,i40),(i40,i47),(i47,ō)]
k41 0 [(o, i37), (i37,i39),(i39,i44),(i44,i55),(i55,ō)]
k43 0 [(o, i36), (i36,i38),(i38,i52),(i52,i58),(i58,ō)]
k44 0 [(o, i43), (i43,i48),(i48,i60),(i60,ō)]
k45 0 [(o, i50), (i50,ō)]
k46 35 [(o, i46), (i46,i56),(i56,ō)]
k47 105 [(o, i45), (i45,i56),(i56,i61),(i61,i62),(i62,ō)]
k48 300 [(o, i42), (i42,i52),(i52,i59),(i59,i62),(i62,ō)]
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Table B.4.: Assignments and routes for instance A4

Agent Overtime Route(m)

k1 0 [(o, i1), (i1,i2),(i2,i6),(i6,i15),(i15,ō)]
k2 0 [(o, i1), (i1,i8),(i8,i11),(i11,i18),(i18,ō)]
k3 0 [(o, i3), (i3,i10),(i10,i21),(i21,ō)]
k4 0 [(o, i7), (i7,i13),(i13,i19),(i19,ō)]
k7 0 [(o, i12), (i12,ō)]
k9 0 [(o, i4), (i4,i10),(i10,i17),(i17,i22),(i22,ō)]

k10 0 [(o, i3), (i3,i9),(i9,i16),(i16,i20),(i20,ō)]
k11 0 [(o, i5), (i5,i14),(i14,i15),(i15,ō)]
k12 0 [(o, i18), (i18,i26),(i26,i36),(i36,ō)]
k15 15 [(o, i36), (i36,i43),(i43,i48),(i48,ō)]
k18 35 [(o, i23), (i23,i26),(i26,i33),(i33,i38),(i38,i42),(i42,ō)]
k19 40 [(o, i24), (i24,i31),(i31,i37),(i37,i41),(i41,ō)]
k20 0 [(o, i28), (i28,i34),(i34,i41),(i41,ō)]
k21 20 [(o, i25), (i25,i31),(i31,i40),(i40,i46),(i46,ō)]
k22 0 [(o, i27), (i27,i32),(i32,i44),(i44,ō)]
k23 40 [(o, i29), (i29,i34),(i34,i42),(i42,i49),(i49,ō)]
k25 145 [(o, i30), (i30,i39),(i39,i47),(i47,i50),(i50,ō)]
k26 115 [(o, i35), (i35,i45),(i45,i50),(i50,ō)]
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Table B.5.: Start times and waiting times for instance A1
Task Agent Start Waiting (m)

i1 k1 75 0
i1 k3 75 0
i2 k2 170 0
i3 k11 180 0
i3 k4 180 0
i4 k13 180 0
i5 k12 200 0
i6 k5 210 0
i7 k16 220 0
i8 k12 230 0
i9 k13 240 0
i10 k14 250 0
i10 k2 250 0
i11 k1 290 0
i12 k17 290 0
i12 k20 290 0
i13 k12 290 0
i14 k5 300 0
i15 k16 310 0
i16 k14 310 0
i17 k3 310 0
i18 k13 360 0
i18 k4 360 0
i19 k11 390 0
i19 k2 390 0
i20 k16 400 0
i21 k14 405 0
i22 k21 415 0
i23 k5 415 0
i24 k5 495 0
i25 k23 495 0
i26 k21 505 0
i27 k14 505 0
i28 k13 525 0
i29 k25 575 0
i30 k23 585 0
i31 k27 585 0
i32 k25 630 0
i33 k21 635 0
i34 k37 655 0
i35 k14 655 0
i35 k29 655 0
i36 k34 660 0
i37 k23 680 0
i38 k38 695 0
i39 k40 725 0
i40 k37 735 0
i41 k29 760 0
i42 k25 760 0
i42 k41 760 0
i43 k30 765 0
i44 k34 770 0
i45 k23 780 0
i45 k40 780 0
i46 k27 800 0
i46 k28 800 0
i47 k32 815 0
i48 k30 825 0
i49 k21 845 0
i49 k29 845 0
i50 k25 880 0
i50 k41 880 0
i51 k38 880 0
i52 k37 885 0
i52 k39 885 0
i53 k32 915 0
i54 k23 925 0
i55 k27 930 0
i56 k28 950 0
i56 k40 950 0
i57 k32 990 0
i58 k25 1005 0
i59 k37 1015 0
i60 k42 1020 0
i61 k40 1080 0
i62 k40 1200 15
i62 k42 1200 0

XLVIII



Table B.6.: Start times and waiting times for instance A2
Task Agent Start Waiting (m)

i1 k1 75 0
i1 k3 75 0
i2 k11 170 0
i3 k1 180 0
i3 k3 180 0
i4 k12 180 0
i5 k15 200 0
i6 k13 200 0
i7 k4 210 0
i8 k11 220 0
i9 k5 240 0
i10 k13 275 0
i11 k15 280 0
i12 k4 290 0
i13 k11 290 0
i13 k18 290 0
i14 k17 290 0
i15 k16 300 0
i16 k3 310 0
i17 k1 310 0
i18 k13 360 0
i18 k5 360 0
i19 k16 395 0
i19 k4 395 0
i20 k17 400 0
i21 k15 405 0
i22 k12 415 0
i23 k19 415 0
i24 k19 490 0
i25 k11 495 0
i26 k17 505 0
i27 k12 505 0
i28 k19 575 0
i29 k21 585 0
i30 k5 595 0
i31 k11 600 0
i32 k17 605 0
i33 k32 630 0
i34 k33 655 0
i35 k18 655 0
i35 k23 655 0
i36 k31 695 0
i36 k34 695 0
i37 k35 695 0
i38 k19 705 0
i39 k32 725 0
i40 k21 730 0
i40 k30 730 0
i41 k23 735 0
i42 k32 760 0
i42 k36 760 0
i43 k33 765 0
i44 k30 770 0
i45 k21 810 0
i45 k35 810 0
i46 k31 815 0
i47 k23 825 0
i48 k19 830 0
i48 k33 830 0
i49 k34 835 0
i50 k34 885 0
i50 k37 885 0
i51 k23 915 0
i52 k38 915 0
i53 k36 925 0
i54 k35 930 0
i55 k21 935 0
i55 k30 935 0
i56 k23 955 0
i56 k38 955 0
i57 k36 985 0
i58 k31 1005 0
i58 k34 1005 0
i58 k37 1005 0
i59 k33 1005 0
i60 k36 1015 0
i61 k35 1020 0
i62 k30 1050 0
i63 k38 1080 10
i64 k31 1105 10
i64 k37 1105 0
i65 k33 1170 45
i65 k34 1170 15
i66 k38 1190 0
i66 k37 1230 40
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Table B.7.: Start times and waiting times for instance A3
Task Agent Start Waiting (m)

i1 k1 75 0
i1 k2 75 0
i2 k8 170 0
i3 k12 180 0
i3 k5 180 0
i4 k13 180 0
i5 k11 200 0
i6 k10 210 0
i7 k14 220 0
i8 k11 230 0
i9 k18 240 0
i10 k13 250 0
i10 k8 250 0
i11 k2 290 0
i12 k20 290 0
i12 k3 290 0
i13 k14 290 0
i14 k10 300 0
i15 k11 310 0
i16 k8 310 0
i17 k1 310 0
i18 k12 360 0
i18 k5 360 0
i19 k13 390 0
i19 k18 390 0
i20 k10 400 0
i21 k8 405 0
i22 k28 415 0
i23 k14 415 0
i24 k20 495 0
i25 k11 495 0
i26 k5 505 0
i27 k28 505 0
i28 k10 525 0
i29 k33 575 0
i30 k11 585 0
i31 k34 585 0
i32 k33 630 0
i33 k28 635 0
i34 k40 655 0
i35 k18 655 0
i35 k31 655 0
i36 k43 660 0
i37 k41 680 0
i38 k43 695 0
i39 k41 725 0
i40 k40 735 0
i41 k31 760 0
i42 k33 760 0
i42 k48 760 0
i43 k44 765 0
i44 k41 770 0
i45 k39 780 0
i45 k47 780 0
i46 k34 800 0
i46 k46 800 0
i47 k40 815 0
i48 k44 825 0
i49 k28 845 0
i49 k31 845 0
i50 k37 880 0
i50 k45 880 0
i51 k33 880 0
i52 k43 885 0
i52 k48 885 0
i53 k31 915 0
i54 k34 925 0
i55 k41 930 0
i56 k46 950 0
i56 k47 950 0
i57 k31 990 0
i58 k43 1005 0
i59 k48 1015 0
i60 k44 1020 0
i61 k47 1080 0
i62 k47 1200 15
i62 k48 1200 0
i62 k30 1050 0
i63 k38 1080 10
i64 k31 1105 10
i64 k37 1105 0
i65 k33 1170 45
i65 k34 1170 15
i66 k38 1190 0
i66 k37 1230 40
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Table B.8.: Start times and waiting times for instance A4
Task Agent Start Waiting (m)

i1 k1 75 0
i1 k2 75 0
i2 k1 170 0
i3 k10 180 0
i3 k3 180 0
i4 k9 180 0
i5 k11 200 0
i6 k1 210 0
i7 k4 220 0
i8 k2 240 0
i9 k10 290 0
i10 k3 290 0
i10 k9 290 0
i11 k2 290 0
i12 k7 300 0
i13 k4 310 0
i14 k11 350 0
i15 k1 360 0
i15 k11 385 25
i16 k10 405 0
i17 k9 415 0
i18 k12 470 0
i18 k2 470 0
i19 k4 490 0
i20 k10 495 0
i21 k3 505 0
i22 k9 575 0
i23 k18 575 0
i24 k19 600 0
i25 k21 655 0
i26 k12 655 0
i26 k18 655 0
i27 k22 685 0
i28 k20 700 0
i29 k23 725 0
i30 k25 735 0
i31 k19 760 0
i31 k21 760 0
i32 k22 815 0
i33 k18 820 0
i34 k20 820 0
i34 k23 820 0
i35 k26 825 0
i36 k12 845 0
i36 k15 845 0
i37 k19 895 0
i38 k18 915 0
i39 k25 925 0
i40 k21 930 0
i41 k19 940 0
i41 k20 940 0
i42 k18 950 0
i42 k23 950 0
i43 k15 970 0
i44 k22 975 0
i45 k26 1005 0
i46 k21 1005 0
i47 k25 1015 0
i48 k15 1020 0
i49 k23 1060 5
i50 k25 1110 20
i50 k26 1100 10
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C. Results for instances with different shift
length from Chapter 4

Table C.1.: Results with � = 0.7

Instance MIP BP
Objective Abs. Gap (%) CPU (m) Objective CPU (m) Nodes Columns

1 243.60 0.00 60.00 243.60 3.65 34 1083
2 343.50 5.56 60.00 325.40 5.11 87 6608
3 INFEASIBLE
4 346.20 0.00 13.91 346.20 1.62 75 988
5 291.60 0.00 52.44 291.60 4.98 83 4986
6 261.90 0.00 10.46 261.90 1.38 30 937
7 INFEASIBLE
8 381.30 0.00 24.13 381.30 2.97 40 1093
9 375.90 0.00 12.03 375.90 5.22 80 8343

10 530.90 0.00 59.08 530.90 12.89 81 2211
11 334.20 0.00 2.78 334.20 1.20 47 815
12 354.90 0.00 19.11 354.90 3.63 56 1468
13 318.20 0.00 3.56 318.20 3.04 107 10540
14 182.60 0.00 46.41 182.60 2.80 34 1227
15 423.90 0.00 60.00 423.90 6.71 109 12946
16 255.50 0.00 18.04 255.50 5.52 58 6711
17 378.40 0.00 7.69 378.40 1.41 46 907
18 350.40 0.00 19.29 350.40 3.52 48 1227
19 458.40 0.00 33.74 458.40 6.53 88 14358
20 552.40 0.00 31.62 552.40 10.45 67 2048
21 345.60 0.00 3.17 345.60 1.51 63 936
22 369.90 0.00 26.14 369.90 5.03 81 1661
23 440.00 0.00 31.49 440.00 3.06 43 2306
24 436.10 0.00 18.34 436.10 7.21 87 17557

Average 362.52 0.25 27.88 361.70 4.52 65.64 4588.91
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Table C.2.: Results with � = 0.8

Instance MIP BP
Objective Abs. Gap (%) CPU (m) Objective CPU (m) Nodes Columns

1 229.60 5.81 60.00 217.00 7.65 95 12935
2 312.00 11.95 60.00 278.70 6.78 107 12687
3 220.30 0.00 52.30 220.30 13.93 80 9386
4 282.50 0.00 10.98 282.50 1.51 52 850
5 196.20 0.00 53.05 196.20 3.43 57 1251
6 193.80 0.00 11.74 193.80 1.81 82 1055
7 137.50 0.00 55.30 137.50 4.18 59 1436
8 300.00 0.00 25.11 300.00 3.64 66 1107
9 308.70 0.00 11.51 308.70 3.08 60 1236

10 368.00 0.00 56.90 368.00 16.62 80 8363
11 294.30 0.00 3.88 294.30 2.05 81 2828
12 262.20 0.00 19.04 262.20 5.00 91 1689
13 254.60 0.00 4.74 254.60 1.12 40 832
14 161.20 0.00 45.29 161.20 3.46 50 1226
15 363.70 0.00 60.00 363.70 6.10 81 10071
16 189.70 0.00 19.71 189.70 3.89 77 1344
17 231.90 0.00 6.38 231.90 1.48 59 812
18 283.60 0.00 24.29 283.60 7.07 104 13845
19 399.40 0.00 34.32 399.40 2.89 86 1098
20 361.30 0.00 31.29 361.30 13.64 75 13005
21 266.20 0.00 3.71 266.20 1.20 40 806
22 270.20 0.00 25.16 270.20 4.93 78 2918
23 365.30 0.00 33.95 365.30 3.10 32 1151
24 327.40 0.00 19.39 327.40 2.84 51 1250

Average 274.15 0.74 30.34 272.24 5.06 70.13 4299.21
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Table C.3.: Results with � = 1.2

Instance MIP BP
Objective Abs. Gap (%) CPU (m) Objective CPU (m) Nodes Columns

1 NA NA 60.00 30.40 8.26 100 23154
2 NA NA 60.00 21.80 8.11 112 25370
3 NA NA 60.00 27.00 17.16 102 24274
4 19.60 0.00 11.65 19.60 2.01 62 7656
5 NA NA 60.00 24.20 7.33 105 20025
6 17.40 0.00 13.21 17.40 1.36 40 3538
7 NA NA 60.00 24.20 5.01 72 6657
8 30.40 0.00 23.71 30.40 2.12 35 863
9 22.00 0.00 12.34 22.00 5.49 94 13095

10 27.00 0.00 57.62 27.00 8.29 50 2324
11 19.20 0.00 4.40 19.20 2.24 66 5503
12 24.20 0.00 20.14 24.20 2.84 53 968
13 17.40 0.00 2.04 17.40 1.03 25 1242
14 23.40 0.00 43.86 23.40 7.77 98 17196
15 31.45 3.45 60.00 30.40 6.38 72 18861
16 20.80 0.00 17.81 20.80 2.27 25 827
17 17.40 0.00 7.36 17.40 1.92 47 5989
18 23.40 0.00 20.72 23.40 2.24 54 1822
19 30.40 0.00 36.39 30.40 2.43 38 917
20 27.60 0.00 32.24 27.60 6.22 42 1131
21 17.40 0.00 1.04 17.40 0.73 18 599
22 24.00 0.00 26.47 24.00 9.35 135 30662
23 30.80 0.00 32.19 30.80 4.35 50 11384
24 20.80 0.00 16.39 20.80 6.30 87 12425

Average 23.40 0.18 30.82 23.80 5.05 65.92 9853.42
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Table C.4.: Results with � = 1.3

Instance MIP BP
Objective Abs. Gap (%) CPU (m) Objective CPU (m) Nodes Columns

1 NA NA 60.00 30.40 6.47 95 14929
2 NA NA 60.00 21.80 2.23 37 1755
3 NA NA 60.00 27.00 13.66 90 12759
4 19.60 0.00 8.15 19.60 1.13 36 1286
5 NA NA 60.00 24.00 4.80 63 12236
6 17.40 0.00 12.34 17.40 0.94 22 629
7 NA NA 60.00 23.80 5.91 93 14362
8 30.40 0.00 24.58 30.40 4.98 74 13919
9 21.60 0.00 12.23 21.60 6.75 115 19587

10 27.00 0.00 57.67 27.00 15.05 77 16783
11 19.20 0.00 2.55 19.20 2.32 57 8222
12 23.60 0.00 21.06 23.60 4.65 66 9403
13 17.40 0.00 5.59 17.40 1.46 37 4038
14 23.40 0.00 45.27 23.40 6.32 81 16986
15 30.40 0.00 58.83 30.40 2.38 49 901
16 20.80 0.00 20.18 20.80 3.45 40 3557
17 17.40 0.00 2.73 17.40 1.01 29 679
18 23.40 0.00 22.05 23.40 2.85 47 3579
19 30.40 0.00 33.91 30.40 6.08 75 17411
20 27.60 0.00 30.79 27.60 14.58 83 22484
21 17.40 0.00 3.27 17.40 0.86 26 684
22 24.00 0.00 24.57 24.00 5.50 79 16757
23 30.80 0.00 30.94 30.80 4.06 51 11215
24 20.20 0.00 17.63 20.20 7.07 112 19545

Average 23.26 0.00 30.60 23.71 5.19 63.92 10154.42
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