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Introduction

This thesis consists of three essays that address open research issues in two econo-
metric frameworks: nonparametric quantile regression framework and social networks, sup-
ported by empirical applications. Both econometric approaches are used to achieve a deeper
understanding of the economic processes and interactions in comparison to the simple mean
regression.

Quantile regression, discussed in Chapter 1, allows estimating and analysing the
whole conditional distribution and, therefore, is able to differentiate the effect for the differ-
ent quantiles of the outcomes. Quantile regression has various applications and is especially
popular in socio-economic problems, analysis of individual and household finances, demand
elasticities and many others. In most of this cases, more than one covariates are expected to
be included in the model. However, once the nonparametric approach is chosen, the so-called
curse of dimensionality arises. With the optimal choice of bandwidth h, the dimension of
the covariate vector under which the inference and testing are possible might be insufficient
for the empirical analysis. Chapter 1 proposed a possible improvement of the nonparametric
quantile regression estimation.

Chapters 2 and 3 explore the research questions in the network analysis. Linked
agents are likely to have exhibit similar behaviour, hence, the inclusion of the network infor-
mation into the analysis improves the understanding of the outcome determinants. Identifi-
cation of the network effects is usually quite complex due to the reflection problem introduced
by Manski (1993): the outcomes of the connections that influence one’s own outcomes are af-
fected in its turn by the outcomes. Once the network is known, the identification is achieved
for the most types of the networks, under assumptions shown in Bramoullé, Djebbari, and
Fortin (2009). However, modifications of the classical model may require further thorough
analysis. Dynamic network model with endogenous shock (Chapter 2 ) and panel data model
with fixed network (Chapter 3 ) are the examples of such modifications, required by the spe-
cific empirical examples.

Chapter 1

In the first chapter (based on joint work with Enno Mammen), I consider a problem
of studying the asymptotic properties of the quantile regression estimation under increasing
dimensions in the nonparametric setting. A classical approach for the analysis of the para-
metric and nonparametric quantile estimators use Bahadur expansion, which distinguishes
two parts of conditional quantile model: the mean regression and the remainder. However,
Bahadur expansion requires too restrictive assumptions for the asymptotic analysis. In a
lot of interesting cases, the remainder part of the Bahadur expansion has a slower rate of
convergence than the main part, and the asymptotic inference and testing is not valid for
the models with more than one covariate.

1



2 Introduction

In this chapter, asymptotic properties of marginal averages of kernel quantile estima-
tors are discussed. This estimator arises in some treatment settings, as well as in single-index
and partially-linear models and it can be further applied for testing procedures. Asymptotic
expansions are developed for higher order terms that allow analysing under which conditions
on the dimension of the covariates and on the smoothness of the underlying densities the
estimator is consistent. The mathematical approach makes use of higher order Edgeworth
expansions that allow calculating moments of the nonparametric kernel quantile estimator.

It was possible to show that the considered weighted average estimator works and
achieves

√
n rates with a normal limit for the dimensions d = 2 and d = 3 under a cer-

tain assumption, but the generalization for all functional forms of the model and for higher
dimensions will not work. The first chapter provides the thorough proof of this result.

Chapter 2

In the second chapter, I discuss the dynamic behaviour of connected agents in re-
sponse to the endogenous shock. I pursue the idea, that the shocks or the treatment hap-
pening to one of the players in the network influence not only their future performance but
also affect all their network connections. This idea is closely related to the logic behind
the spillovers in different settings, in particular, knowledge spillovers via conversational net-
works. I combine it with the logic used in peer effect literature to develop the dynamic model
of network behaviour. Unlike spillovers, the shock on the network considered in this chapter
analysis only influence the first-level connections.

Standard peer effect approach explores the co-movement, simultaneous outcomes
of connected agents. Manski (1993) distinguishes three effects that determine the similar
behaviour of peers. The endogenous effect suggests that the performance of an agent will be
affected by the average performance of the peer group or network connections. The exogenous
effect uses mean exogenous characteristics of the peer group to determine the performance.
The correlated effect appears due to the similar individual characteristics within a group.
The most important task of peer effects analysis is to determine the endogenous effect, which
can have important policy implications. Some of the examples of the peer effect analysis
are Ammermueller and Pischke (2009), who discusses the achievements of the peers in the
primary schools, Bruce Sacerdote (2001) and Androushchak, Poldin, and Yudkevich (2013),
who look at the exogenously formed groups to study the peer effects in the college or uni-
versity, Gaviria and Raphael (2001), who study the influence of peers on juvenile behaviour,
and many others in various empirical frameworks. The studied outcomes of peers are of the
same period. However, the significant individual event is likely to have an importance for
the one’s connections. Comola and Prina (2014) is the closest to discuss such a network
dynamics. They are using the randomized treatment as a shocking event, which is clearly
exogenous in the model, although it is not necessarily the case in a more general setting. For
example, shocks in educational frameworks, such as exam failures or dropouts are to a big
extent determined by the network itself, and hence are endogenous.

This chapter develops the dynamic peer effect model with a shock, accounting for
its possible endogeneity as well as for the changes happening to the network as a response
to the shock. The model allows to predict the endogenous part of the shock and use the
unexpected component to estimate the effect of pure shock. Due to simultaneous influence
of connected elements on each other, a model with social interactions alone requires a partic-
ular exogenous variation to identify the endogenous effect. The inclusion of the endogenous
shock in the model make identification more complex. In this chapter, I derive and prove the
identification conditions for both the endogenous effect and the effect of the shock for the
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network case, which require variability of the network as well as the existence of intransitive
triads for the model without correlated effects or the distances of length three for the model
with correlated effects. Intransitive triads appear when some two nodes of the network are
not connected directly, but via the third node, the distances of length three require the
existence of two nodes, the shortest distance between which is three links, i.e. there are
two nodes between them. The latter identifying assumptions were proposed in Bramoullé,
Djebbari, and Fortin (2009), whereas the former assumption is novel for the literature.

I also propose the estimation procedure that uses the exogenous characteristics of
the first or the second level of connections, depending on the type of model, as instrumental
variables and yields the consistent estimation.

The empirical part of this chapter makes the contribution to the strain of literature
analysing peer effects in educational settings. I use the dynamic network data of univer-
sity students to test the model. I treat exam retakes as endogenous shocks and estimate
the effect of the unexpected component of friends’ retakes on one’s own average grade. It
is suggested that the unexpected shock, especially in the important subjects, may have a
certain psychological influence on the connections. I apply the estimation procedure to the
data on the students in HSE, Nizhniy Novgorod. The results indeed suggest that on average
the retake of the friend may have an effect on future performance, and this effect appears to
be negative, however, it has a different magnitude for students of different departments, as
well as for students with and without own retake.

Chapter 3

In the third chapter, I continue analysing the network environment. I apply the

standard peer effect ideology to a rather unusual setting. I assume that the connections in

the art world may have an influence on both the development of the art skills and talent and

reputation of a particular artist. Art market always attracted a lot of money and attention

and is booming in the recent years. Quoting seminal paper by Baumol (1986), ”prices [of

art objects] can float more or less aimlessly and their unpredictable oscillations are apt to

be the exacerbated by the activities of those who treat such art objects as ”investments”.

He suggests that buying art is not likely to deliver any real rate of return different from

zero. However, the big strain of the literature come up with a different conclusion either by

improving the method or the data used for the analysis. For example, Goetzmann (1993)

reports an average annual real return on oil paintings of 3.8% for the period between 1850

and 1986, with returns around 15% after 1940, Mei and Moses (2002) - the return of 4.9% for

1875-1999, with 8.2% after 1950, Renneboog and Spaenjers (2013) - 3.97% over the period

1957-2007.

Among businessmen and collectors, art is indeed often considered as an attractive

investment, being one of the possible so-called passion good. Therefore, understanding the

price formation is crucial for the potential buyers. As noticed in Baumol (1986), art prices

are very unpredictable. Of course, the obvious factors influencing the price are the type of a

work, its style, the supply of other works by the same artist, his or her level of recognition

and popularity. But sometimes, especially within one particular style, these factors are not

enough, and the prices achieve unexpected values. In this chapter, I explore one of the deter-
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minants of art price formation, not included into the analysis in previous literature: artists’

connections. Connections are suggested to matter due to the already discussed logic of the

peer effect analysis as well as by affecting the reputation of particular artists. The more

valuable the works of artists’ connection, the more likely the connections are to be popular

and well-known not only in the art circles. Connecting to more popular artists may result in

better reputation. I believe that the potential buyers will react differently, when they learn

that the artist was a friend of Pablo Picasso and when they are told that the artist worked

together with, for example, Morgan Russel, who was also an important figure in an abstract

movement, but who are far less known than Picasso. Abstract art is in general harder to

evaluate, since the quality of the work and techniques is not so straightforward, especially for

a non-specialist. The network diagram prepared for the ”Inventing abstraction” exhibition

in MOMA, New York gave an idea to explore the networks further in the art prices setting.

I combine the information about the connections of the artists of the abstract move-

ment with the auction prices of their work and apply the peer effect model to estimate the

possible effect of the average price of artists connections on the price of artists’ own work.

The collected data has a panel structure, however, the network is considered constant. The

discussed auctions cover the period of 2000-first half of 2015, whereas the connections were

formed in the beginning of the 20th century, mainly in 1910-1925, so the connections are

well-known during the auction period. The fixed network makes the usage of the fixed effects

model with instrumental variables as discussed in Bramoullé, Djebbari, and Fortin (2009)

impossible since the invariant covariates are not identifiable. I propose the adaptation of

Hausman and Taylor (1981) approach with additional instrumental variables for the endoge-

nous effect of Bramoullé, Djebbari, and Fortin (2009) type. Combining these two methods

allows identifying coefficients for both variant and fixed covariates, including the endogenous

effect.

The results of the analysis suggest the presence of endogenous peer effect, however,

its direction differs for the final prices achieved on the market and prices expected by the auc-

tioneer. The auctioneer is likely to consider connected as substitutes, alternatively the higher

the value of connections’ works, the more likely the artist to be ”worse” than his peers. The

market, however, exhibits similar demand behaviour towards the connected artists leading

to the increase in one’s own price as the connections’ works become more valuable.



Chapter 1

Weighted average estimation in

nonparametric higher-dimensional

quantile regression

joint with Enno Mammen

1.1 Introduction

For a dataset of n i.i.d. tuples (Xi, Yi) we consider a nonparametric quantile regres-

sion model:

Yi = qα(Xi) + εi,α (i = 1, . . . , n). (1.1)

Here, Yi is a one-dimensional response variable and Xi is a d-dimensional covariate. The

function mα(Xi) is the conditional α-quantile of Yi given Xi = x for 0 < α < 1. Thus, the

conditional α-quantile of the error variables εi,α, given Xi is equal to 0. From now on, we

fix the value of α and we write also q and εi instead of qα and εi,α. We are interested in the

estimation of a weighted average θ of q:

θ =

∫
q(x)ω(x)dx (1.2)

for a weight function ω. We discuss the following plug-in estimator

θ̂ =

∫
q̂(x)ω(x)dx (1.3)

where a kernel quantile estimator q̂ is plugged into (1.2).

The value of θ can be of direct interest in a statistical analysis. It also arises naturally

in single index quantile models where q(x) = g(xᵀβ) for some unknown function g : R→ R
and unknown parameter β ∈ Rd. For a differentiable function w : Rd → R with compact

5



6 Chapter 1. Weighted average estimation in higher-dimensional QR

support one gets that with γ =
∫
g′(xᵀβ)w(x)dx

γβ =

∫
q′(x)w(x)dx = −

∫
q(x)w′(x)dx.

Thus,
∫
q(x)w′(x)dx is equal to a multiple of β. Thus, the estimation of β can be

reduced to estimation of θ with ω equal to the components of w′(x). This approach has also

been called average derivative estimation and was developed in Härdle and Stoker (1989) for

mean regression and adapted to quantile regression in Chaudhuri, Doksum, and Samarov

(1997).

A classical mathematical approach for the understanding of parametric and non-

parametric quantile estimators makes use of Bahadur expansions which transform condi-

tional quantile models to mean regression, see e.g. Chaudhuri (1991) for a discussion of

locally polynomial estimators and He and Ng (1999) and He, Ng, and Portnoy (1998) for

splines. Other references are El Ghouch and Van Keilegom (2009), Hong (2003), Hoderlein

and Mammen (2009), Kong, Linton, and Xia (2010), Y. K. Lee and E. R. Lee (2008), Li

and Racine (2008), Koenker, Ng, and Portnoy (1994), Portnoy (1997), Dette and Volgushev

(2008), Belloni, Chernozhukov, and Fernández-Val (2011) and others.

It was observed in Mammen, Van Keilegom, and Yu (2015) that the use of Ba-

hadur expansions for the asymptotic analysis of a goodness-of-fit test in nonparametric

quantile regression may require too restrictive assumptions, which will not allow developing

the asymptotics of the estimator in some interesting cases. In their setting direct application

of Bahadur expansion would need the bandwidth h of a kernel regression quantile estimator

to fulfill the condition nh3d → ∞ for n → ∞. If the bandwidth is chosen as rate optimal,

e.g. h ∼ n−1/(4+d) for the estimation of twice differentiable functions, the assumption will

only allow one-dimensional covariates. Then, this approach allows no inference and testing

results for multidimensional models, d > 1.

In this paper we will show an expansion for the estimator q̂, see (1.3). In the deriva-

tion of the expansion we will make use of the fact that the kernel quantile estimator and

its Bahadur expansion are asymptotically independent if they are calculated at points that

differ more than a constant times the bandwidth h. Similarly as in Mammen, Van Keilegom,

and Yu (2015), we will use Edgeworth expansions for a statistic in a dual problem to get

expansions of moments of the kernel quantile estimator and its Bahadur representation.

The paper is organized as follows. In the next section, we will discuss the model,

state our main result on the asymptotics of the proposed estimator along with possible

applications. Section 3 gives the proof of the main result.
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1.2 Problem formulation and theory

We are interested in studying the estimation by the estimator (1.3) in model (1.1).

We will use the kernel quantile estimator that is defined by:

q̂(x) = argmin
κ

n∑
i=1

K

(
x−Xi

h

)
τ(Yi − κ), (1.4)

where K(u1, . . . , ud) = Πd
j=1k(uj) with a one-dimensional symmetric kernels k and where

τ = τα is the check function τα(u) = αu+−(1−α)u− with u+ = uI(u > 0) and u− = uI(u <

0). We assume that the bandwidths h1, . . . , hd are of the same order, and for simplicity, that

they are also identical. We write h = h1 = · · · = hd. The theoretical discussions in this paper

are restricted to the case that k are positive functions. Thus k̂ is a Nadaraya-Watson like

estimator with kernel of order one. We will comment on Nadaraya-Watson smoothing with

higher order kernels and on local polynomial smoothing below but we will state no results

for these smoothing methods. An essential argument in our proof cannot be extended to

this case. For the following discussion we will assume that q has two derivatives.

Following Chaudhuri (1991), see also Theorem 2 in Guerre and Sabbah (2012), the

Bahadur approximation of q̂ is given by:

q̂(x)− q(x) =

∑n
i=1K

(
x−Xi
h

)
{I(Yi − q(Xi) ≤ 0)− α}∑n

i=1K
(
x−Xi
h

)
fε|X(0|Xi)

+OP (Ln(nhd)−3/4), (1.5)

where fε|X is the conditional density of εi, given Xi. Here and in the following, we write

Ln for sequences that fulfill Ln = O((log n)C) for a constant C > 0 large enough. This

expansion holds uniformly over compact subsets of Rd. Thus, if ω has a compact support

we get that

θ̂ − θ =

∫ ∑n
i=1K

(
x−Xi
h

)
{I(Yi − q(Xi) ≤ 0)− α}∑n

i=1K
(
x−Xi
h

)
fε|X(0|Xi)

ω(x)dx+OP (Ln(nhd)−3/4). (1.6)

We now discuss if this expansion can be used to show that
√
n(θ̂ − θ) has an asymptotic

mean zero normal limiting distribution. The mean of the first term on the right hand side of

(1.6) is of order h2. This follows by standard smoothing theory using our assumption that q

has two derivatives. Thus if we want to prove that
√
n(θ̂ − θ) has an asymptotic mean zero

normal limiting distribution, expansion (1.6) can only be used if h2 + (nhd)−3/4 = o(n−1/2).

Such choices of h only exist for d = 1.

The aim of this paper is to study if the estimator θ̂ still works for d > 1 and achieves
√
n rates with a normal limit, for an appropriate choice of the bandwidth h. We will show

that this is not the case and that the estimator for all choices of h does not has a
√
n rate. The

next question is if for d > 1 it is possible to construct an estimator of θ with
√
n-consistency

and normal limit that works if we only make the assumption that q has two derivatives. We
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will give a positive answer to this question for d = 2 and d = 3. Our estimator of θ is based

on the calculation of q̂ for several bandwidths h.

For our theory, we need to make the following assumptions. We use the convention

that C is a generic strictly positive constant chosen large enough and that c is a generic

strictly positive constant chosen small enough. As above, we also write Ln = (log n)C for a

sequence with C > 0 large enough.

(A1) The support RX of X is a compact convex subset of Rd. The density fX of X is

strictly positive and continuously differentiable on the interior of RX . The conditional

density fε|X(e|x) is uniformly bounded over x, e.

(A2) The cumulative distribution function FY |X(·|x) of the conditional distribution of Y

given X = x is twice continuously differentiable with respect to x and has a continu-

ously differentiable density fY |X(·|x) that satisfies

fY |X(y|x) > 0,

|fY |X(y′|x′)− fY |X(y|x)| ≤ C(||x′ − x||+ |y′ − y|)

for x, x′ ∈ RX and y, y′ ∈ R, where || · || is the Euclidean norm. The density fε|X(ε|x)

and its derivative with respect to ε is twice differentiable in x for ε in a neighborhood

of 0.

(A3) The kernel k is a symmetric, continuously differentiable probability density function

with compact support (w.l.o.g, equal to [−1, 1]). It fulfills a Lipschitz condition and it is

monotone strictly increasing on [−1, 0]. It holds that k′(k−1(u)) ≥ min c{uκ, (k(0)−u)κ

for some κ > 0 where k−1: [0, k(0)] → [−1, 0] denotes the inverse of k: [−1, 0] →
[0, k(0)]. The bandwidth h satisfies h = o(1) and nhd/Ln →∞.

(A4) The function ω(x) is Lipschitz-continuous: |ω(x′−ω(x)| ≤ C||x′−x|| for all x, x′ ∈ RX .

Now we can state our main result.

Theorem 1.1 Assume (A1)-(A4). Then,

θ̂ − θ =

∫
q̃(x)ω(x)dx+ h2

∫
q′′0(x) + 1

2q
′
0(x)f ′X

fε|X(0|x)fX(x)
ω(x)dx+ o(h2)

+
1

nhd

∫ [
fε|X(0|x)fX(x)

∫
K2(u)du+

1

2

∂εfε|X(0|x)

fε|X(0|x)
ω(x)

]
dx

+O
(
Ln(nhd)−3/2

)
+OP (Lnn

−3/4h−d/4)

where we put

q̃(x) =

∑n
i=1K

(
x−Xi
h

)
{I(Yi − qh(x) ≤ 0)− α}∑n

i=1K
(
x−Xi
h

)
fε|X(0|Xi)
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with qh(x) such that

E
[
K

(
x−Xi

h

)
{I(Yi − qh(x) ≤ 0)− α}

]
= 0.

Furthermore, it holds that
√
n

∫
q̃(x)ω(x)dx

d→ N (0, V ),

where

V = α(1− α)

∫
ω2(x)

fX(x)f2ε|X(0|x)
dx.

We now discuss applications of this result. First we will discuss if there exist estimates

of θ that are based on q̂ and that achieve a parametric
√
n-rate of convergence. For

√
n-

consistency we need that the bias of q̂ is of order o(n−1/2). This requires that h = o(n−1/4).

Under this assumption the estimator q̂ is not consistent if d ≥ 4. Thus
√
n-consistent esti-

mation of θ based on q̂ is not possible for d ≥ 4. For d = 1 we can choose the bandwidth

h such that h = o(n−1/4), Ln(nhd)−1 = o(n−1/2) and Lnn
−3/4h−d/4 = o(n−1/2). For such a

choice of h we get that θ̂ − θ =
∫
q̃(x)ω(x)dx + oP (n−1/2). Thus we have a

√
n-consistent

estimator of θ with asymptotic normal limit.

For d = 2 there exists no choice of the bandwidth h such that h = o(n−1/4),

Ln(nhd)−1 = o(n−1/2) and Lnn
−3/4h−d/4 = o(n−1/2). Thus we need here another approach.

We propose to calculate θ̂ for three choices of bandwidths, h1, h2 and h3, say, which fulfill

hj = o(n−1/4), Ln(nhdj )
−3/2 = o(n−1/2) and Lnn

−3/4h
−d/4
j = o(n−1/2) for j = 1, .., 3. This

gives three values θ̂1, θ̂2 and θ̂3 for which it holds that

θ̂j = an,0 + an,1h
2
j + an,2

1

nhd
+ oP (n−1/2)

for j ∈ {1, 2, 3} where an,0 = θ +
∫
q̃(x)ω(x)dx. The three values θ̂1, θ̂2 and θ̂3 can be used

to get least squares fits ân,0, ân,1 and ân,2 of an,0, an,1 and an,2. It holds that ân,0 − an,0 =

oP (n−1/2), h2j (ân,1 − an,1) = oP (n−1/2) and (nhd)−1(ân,2 − an,2) = oP (n−1/2). We choose

θ̃ = ân,0 as our estimator of θ. By construction we have that θ̃−θ =
∫
q̃(x)ω(x)dx+oP (n−1/2).

Thus, we have a
√
n-consistent estimator of θ with asymptotic normal limit.

For d = 3 we need a stronger result than Theorem 1.1. Under slightly stronger

smoothness conditions on the conditional density fε|X one can show the following higher

order expansion:

θ̂ − θ = an,0 + an,1h
2 + an,2

1

nhd
+ an,3

1

(nhd)3/2
o(h2) +O

(
Ln(nhd)−2

)
+OP (Lnn

−3/4h−d/4)

with an,0 =
∫
q̃(x)ω(x)dx and appropriate choices of an,1,..., an,3. This can be shown by

the same arguments as used in Theorem 1.1 but with a higher order Edgeworth expansion.

Now one chooses four bandwidths h1, ..., h4 with hj = o(n−1/4), Ln(nhdj )
−2 = o(n−1/2) and

Lnn
−3/4h

−d/4
j = o(n−1/2) for j = 1, .., 4. This gives four values θ̂1, ..., θ̂4 that can be used

to fit an,0,..., an,3. Again, we propose θ̃ = ân,0 as our estimator of θ. By construction we



10 Chapter 1. Weighted average estimation in higher-dimensional QR

have again that θ̃ − θ =
∫
q̃(x)ω(x)dx+ oP (n−1/2) and thus, we have again a

√
n-consistent

estimator of θ with asymptotic normal limit.

We conjecture that similiar expansions as in Theorem 1.1 are valid for kernel quantile

estimators with higher order kernels and for local polynomial estimators of q. In such

expansions it is expected that the bias term of order h2 and error bound o(h2) is replaced

by a term of order h2k and error bound o(h2k) with an appropriate choice of the order

k. Unfortunately, one of our main arguments in the proof cannot be extended to these

estimators.

1.3 Proof of Theorem 1.1

For the proof we need some additional notation.

We put

q̂∗(x) =

q̂(x), if |q̂(x)− qh(x)| ≤ Ln(nhd)−1/2

q(x), otherwise.

For the proof we also have to define local neighborhoods. For this definition suppose first

that X is one-dimensional. Then the support RX is a compact interval. For arbitrary j and

for k ∈ {1, 2, 3}, we can then define

Ijk = [(3j + k − 1)h, (3j + k)h], and I∗jk = [(3j + k − 2)h, (3j + k + 1)h].

The set of indices of the Xi (i = 1, . . . , n) that fall inside the interval I∗jk is denoted by Njk.
We write Njk for the number of elements of Njk. An arbitrary x ∈ RX belongs to a unique

Ijk and we define N (x) = Njk and N(x) = Njk. If the dimension of X is larger than one,

this partition of the support into small intervals can be generalized in an obvious way.

We also put N−(x) = {u : xj − h ≤ uj ≤ xj + h for all j = 1, . . . , d}. This is the

support of the kernel h−dK(h−1[x−·]). We also write N−(x) for the random number of Xi’s

that lie in N−(x). Note that N−(x) ⊂ N (x) and N−(x) ≤ N(x). We use the shorthand

notation m0 = nhd.

For the proof of Theorem 1.1, it is useful to consider the following decomposition:

θ̂ − θ =

∫
(q̂(x)− q(x))ω(x)dx (1.7)

=

∫
[q̂(x)− q̂∗(x)]ω(x)dx

+

∫
[E{q̂∗(x)− q̃(x)− qh(x)|N(x)}]ω(x)dx

+

∫
[{q̂∗(x)− E[q̂∗(x)|N(x)]} − {q̃(x)− E[q̃(x)|N(x)]}]ω(x)dx

+

∫
[q̃(x)− q(x)]ω(x)dx

+

∫
qh(x)ω(x)dx

= θ̂n1 + ...+ θ̂n5.
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For the discussion of the terms θ̂n1, ..., θ̂n5 we need the following lemmas.

The following lemma gives a bound on the Bahadur expansion for q̂. It can be shown

by a small modification of the proof of Theorem 2 in Guerre and Sabbah (2012).

Lemma 1.1 Suppose that the assumptions of Theorem 1.1 are satisfied. Then,

sup
x∈Rx

|q̂(x)− q̃(x)− qh(x)| = Op((nh
d)(−3/4)Ln).

The following two lemmas follow by standard smoothing theory.

Lemma 1.2 Suppose that the assumptions of Theorem 1.1 are satisfied. Then,

sup
x∈Rx

|q̃(x)| = Op((nh
d)(−1/2)Ln).

Lemma 1.3 Suppose that the assumptions of Theorem 1.1 are satisfied. Then,

sup
x∈Rx

∣∣∣∣∣qh(x)− h2
q′′0(x) + 1

2q
′
0(x)f ′X

fε|X(0|x)fX(x)

∣∣∣∣∣ = o(h2).

From Lemmas 1.1–1.3 we get that q̂(x) = q̂∗(x) for all x ∈ Rx with probability

tending to one. This gives

θ̂n1 = oP (an) (1.8)

for any sequence {an} of positive constants tending to zero as n → ∞. Furthermore, from

Lemma 1.3 we get that

θ̂n5 = h2
∫
q′′0(x) + 1

2q
′
0(x)f ′X

fε|X(0|x)fX(x)
ω(x)dx+ o(h2). (1.9)

We now consider the third summand θ̂n3.

Lemma 1.4 Suppose that the assumptions of Theorem 1.1 are satisfied. Then,

θ̂n3 = OP (Lnn
−3/4h−d/4). (1.10)

Proof of Lemma 1.4. For simplicity we consider first the one-dimensional case. The term

θ̂n3 can be splitted into three summands (for k = 1, 2, 3):

θ̂n3,k =
∑
j

∫
Ijk

[{m̂∗(x)− E[m̂∗(x)|N(x)]} − {m̃(x)− E[m̃(x)|N(x)]}]ω(x)dx.

The terms θ̂n3,1, θ̂n3,2 and θ̂n3,3 are sums of O(h−1) conditionally independent sum-

mands. The summands are uniformly bounded by a term of order OP (Lnn
−3/4h−1/4). This
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follows from Lemma 1.1 and from the fact that q̂(x) = q̂∗(x) for all x ∈ Rx with proba-

bility tending to one. Thus for k ∈ {1, 2, 3} the second conditional moment of θ̂n3,k is of

order OP (Lnn
−3/2h−1/2). This shows that θ̂n3,k = OP (Lnn

−3/4h−1/4) for d = 1 and for

k ∈ {1, 2, 3}, which implies the statement of the lemma for d = 1. For d > 1 one can use the

same approach.

Lemma 1.5 Suppose that the assumptions of Theorem 1.1 are satisfied. Then,

E
{
q̂∗(x)− qh(x)

∣∣∣N(x)
}

= m−10

2κ1,1(h, x)(κ2,1(h, x)− κ1,0(h, x)κ1,1(h, x)) + κ1,2(h, x)

2κ1,1(h, x)
+OP

(
Lnm

−3/2
0

)
,

uniformly in x ∈ RX , where for 1 ≤ k ≤ 3

κk,0(h, x) = Ei
{
Kk

(
x−Xi

h

)
Fε|X [qh(x)− q0(Xi)|Xi]− α

}
,

κk,1(h, x) = Ei
{
Kk

(
x−Xi

h

)
fε|X [qh(x)− q0(Xi)|Xi]

}
,

κk,2(h, x) = Ei
{
Kk

(
x−Xi

h

)
∂εfε|X [qh(x)− q0(Xi)|Xi]

}
.

Thus we have that

θ̂n2 = OP

(
Lnm

−3/2
0

)
. (1.11)

Proof of Lemma 1.5. We denote by L∗n a sequence with L∗n = (log n)C
∗

for some constant

C∗ > 0. Put

Zm(u) = m−1/2
∑

i∈N−(x)

K

(
x−Xi

h

)[
I(Yi − qh(x) ≤ um−1/20 )− α

]

with m0 = nhd. Note that q̂(x)− qh(x) ≤ um
−1/2
0 if and only if Zm(u) ≥ 0. Denote by Em

and Ei the conditional expectation, given that N−(x) = m or that Xi lies in the support of

K((· − x)/h), respectively. Put

µm(u) = −σ−1m (u)Em[Zm(u)],

σ2m(u) = Em
[
{Zm(u)− Em[Zm(u)]}2

]
,

ρm(u) = σ−3m (u)Em
[
{Zm(u)− Em[Zm(u)]}3

]
.

By applying Theorem 19.3 in Roy et al. (1976) with s ≥ 4 we get that

P
(
q̂(x)− qh(x) ≤ um−1/20

∣∣∣N−(x), N−(x) = m
)

(1.12)

= 1− Φ
(
µm(u)

)
+m−1/2

1

6
ρm(u)

(
1− µm(u)2

)
φ
(
µm(u)

)
+O

(
m−10 (1 + µm(u)2)−s

)
,

uniformly in u and x for C∗1m0 ≤ m ≤ C∗2m0 and constants C∗1 < C∗2 . This can be seen as
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in the proof of Theorem 1 in Mammen, Van Keilegom, and Yu (2015).

Now note that for uniformly for |u| ≤ C∗L∗n with Sh,i(v) = Fε|X [qh(x) − q0(Xi) +

v|Xi]− α

σ2m(u) = Ei
{
K2

(
x−Xi

h

)
Sh,i(um

−1/2
0 )

}
− Ei

{
K

(
x−Xi

h

)
Sh,i(um

−1/2
0 )

}2

= Ei
{
K2

(
x−Xi

h

)
Sh,i(0)

}
− Ei

{
K

(
x−Xi

h

)
Sh,i(0)

}2

+
u

m
1/2
0

(
Ei
{
K2

(
x−Xi

h

)
S′h,i(0)

}
− 2Ei

{
K

(
x−Xi

h

)
Sh,i(0)

}
Ei
{
K

(
x−Xi

h

)
S′h,i(0)

})
+O(Lnm

−1
0 )

= κ2,0(h)− κ21,0(h) +
u

m
1/2
0

(κ2,1(h)− κ1,0(h)κ1,1(h)) +O(Lnm
−1
0 ),

where for 1 ≤ k, l ≤ 3 we write κk,l(h) for κk,l(h, x). Thus,

σm(u) = (κ2,0(h)− κ21,0(h))1/2 +
u

m
1/2
0

(κ2,1(h)− κ1,0(h)κ1,1(h))

(κ2,0(h)− κ21,0(h))1/2
+O(Lnm

−1
0 ).

Similarly, one gets that

µm(u) = −σ−1m (u)m1/2Ei
{
K

(
x−Xi

h

)[
I(Yi − qh(x) ≤ um−1/20 )− α

]}
= −σ−1m (u)m1/2Ei

{
K

(
x−Xi

h

)[
Fε|X [qh(x)− q0(Xi) + um

−1/2
0 |Xi]− α

]}
= −σ−1m (u)m1/2Ei

{
K

(
x−Xi

h

)
fε|X [qh(x)− q0(Xi)|Xi]um

−1/2
0

}
− 1

2
σ−1m (u)m1/2Ei

{
K

(
x−Xi

h

)
∂εfε|X [qh(x)− q0(Xi)|Xi]u

2m−10

}
+O(Lnm

−1
0 )

= −σ−1m (u)um1/2m
−1/2
0 κ1,1(h)

− 1

2
σ−1m (u)u2m1/2m−10 κ1,2(h) +O(Lnm

−1
0 )

= um1/2m
−1/2
0 (κ2,0(h)− κ21,0(h))−1/2κ1,1(h)

− u2m1/2m−10

(
2κ1,1(h)(κ2,1(h)− κ1,0(h)κ1,1(h)) + κ1,2(h)

2(κ2,0(h)− κ21,0(h))1/2

)
+O(Lnm

−1
0 ).
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Furthermore,

ρm(u) = σ−3m (u)Em
[
{Zm(u)− Em[Zm(u)]}3

]
= σ−3m (u)

(
Ei
{
K3

(
x−Xi

h

)
Sh,i(0)

}
− 3Ei

{
K2

(
x−Xi

h

)
Sh,i(0)

}
Ei
{
K

(
x−Xi

h

)
Sh,i(0)

}
+ 2Ei

{
K

(
x−Xi

h

)
Sh,i(0)

}3
)

+O(Lnm
−1/2
0 )

=
κ3,0(h)− 3κ2,0(h)κ1,0(h) + 2κ31,0(h)

(κ2,0(h)− κ21,0(h))3/2
+O(Lnm

−1/2
0 ).

Now, from the above calculations it follows that

E
{
q̂∗(x)− qh(x)

∣∣∣N−(x) = m
}

= E
{
q̂(x)− qh(x)I(|q̂(x)− qh(x)| ≤ L∗nm

−1/2
0 )

∣∣∣N−(x) = m
}

= m
−1/2
0

∫ L∗
n

0
P
(
q̂(x)− qh(x) > vm

−1/2
0

∣∣∣N−(x) = m
)
dv

−m−1/20

∫ 0

−L∗
n

P
(
q̂(x)− qh(x) ≤ vm−1/20

∣∣∣N−(x) = m
)
dv

= m
−1/2
0

∫ L∗
n

0

[
P
(
Zm(v) ≤ 0

∣∣∣N−(x) = m
)
− P

(
Zm(−v) ≥ 0

∣∣∣N−(x)
)]
dv

= m
−1/2
0

∫ L∗
n

0

[
Φ
(
µm(u)

)
+

1

6
m−1/2ρm(u)

(
1− µm(u)2

)
φ
(
µm(u)

)]
du

−m−1/20

∫ L∗
n

0

[(
1− Φ

(
µm(−u)

))
+

1

6
m−1/2ρm(−u)

(
1− µm(−u)2

)
φ
(
µm(−u)

)]
du

+O
(
Lnm

−3/2
0

)
= m

−1/2
0

∫ L∗
n

0

[
Φ
(
µm(u)

)
− Φ

(
µm(−u)

)]
du+O

(
Lnm

−3/2
0

)

= 2m
−1/2
0

∫ L∗
n

0
ϕ
(
um1/2m

−1/2
0 (κ2,0(h)− κ21,0(h))−1/2κ1,1(h)

)
×u2m1/2m−10

(
2κ1,1(h)(κ2,1(h)− κ1,0(h)κ1,1(h)) + κ1,2(h)

2(κ2,0(h)− κ21,0(h))1/2

)
du+O

(
Lnm

−3/2
0

)
= m

−1/2
0

∫ ∞
−∞

ϕ
(
um1/2m

−1/2
0 (κ2,0(h)− κ21,0(h))−1/2κ1,1(h)

)
×u2m1/2m−10

(
2κ1,1(h)(κ2,1(h)− κ1,0(h)κ1,1(h)) + κ1,2(h)

2(κ2,0(h)− κ21,0(h))1/2

)
du+O

(
Lnm

−3/2
0

)
= m−10

2κ1,1(h)(κ2,1(h)− κ1,0(h)κ1,1(h)) + κ1,2(h)

2κ1,1
+O

(
Lnm

−3/2
0

)
uniformly in C∗1m0 ≤ m ≤ C∗2m0 with constants C∗1 < C∗2 .
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Thus, we have shown that

E
{
q̂∗(x)− qh(x)

∣∣∣N−(x) = m
}

(1.13)

= m−10

2κ1,1(h)(κ2,1(h)− κ1,0(h)κ1,1(h)) + κ1,2(h)

2κ1,1
+O

(
Lnm

−3/2
0

)
,

uniformly in x ∈ RX and C∗1m0 ≤ m ≤ C∗2m0. For m+ ≥ m we have by a simple argument

that E
{
q̂∗(x) − qh(x)

∣∣∣N(x) = m+, N−(x) = m
}

= E
{
q̂∗(x) − qh(x)

∣∣∣N−(x) = m
}

. Using

(1.13) and

P

(
N−(x) ≤ m+

4

∣∣∣N(x) = m+

)
≤ C exp(−cnhd),

uniformly in m+ ≥ 1
23dfX(x)nhd we conclude that

E
{
q̂∗(x)− qh(x)

∣∣∣N(x) = m+
}

= m−10

2κ1,1(h)(κ2,1(h)− κ1,0(h)κ1,1(h)) + κ1,2(h)

2κ1,1
+O

(
Lnm

−3/2
0

)
,

uniformly in x ∈ RX and 1
23dfX(x)nhd ≤ m+ ≤ 2 3dfX(x)nhd. Because of

P

(
1

2
3dfX(x)nhd ≤ N(x) ≤ 2 3dfX(x)nhd for all x ∈ RX

)
→ 1,

we get the statement of the lemma.

Lemma 1.6 Suppose that the assumptions of Theorem 1.1 are satisfied. Then, it holds that

2κ1,1(h, x)(κ2,1(h, x)− κ1,0(h, x)κ1,1(h, x)) + κ1,2(h, x)

2κ1,1(h, x)

= fε|X(0|x)fX(x)

∫
K2(u)du+

1

2

∂εfε|X(0|x)

fε|X(0|x)
+O(h2).

Proof of Lemma 1.6. This follows by standard smoothing theory.

Proof of Theorem 1.1. The theorem follows directly, using the results of the above lemmas.
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Chapter 2

Endogenous Shocks in Social

Networks: Effects of Students’

Exam Retakes on their Friends’

Future Performance

2.1 Introduction

The peer effect, the effect that social connections have on people’s behavior and

achievements, plays an important role when analyzing educational outcomes. While there

are numerous economics papers on peer effects across many fields, from education to juve-

nile behavior, the effect of shocking events on the friends network is rarely discussed. In

particular, in the university framework, students’ failures, such as retakes of examinations

or dropouts are usually only discussed for the students’ results in the same year and not in

relation to their friends’ future behaviour. However, the shock of a friend’s failure influences

the future behaviour and outcomes, especially when this failure was not anticipated.

This project contributes to the literature by covering an existing gap in peer effects

literature and studying the changes of peers’ behaviour and achievement in response to the

individual shock. In contrast to some examples in development literature (e.g. Comola and

Prina (2014)) considering exogenous individual treatment, I propose the model, allowing

the shock to be endogenously formed. Two components of the shock can be disentangled:

predicted probability of the shock and unexpected component. The latter is considered to

be crucial to the changes of future behavior. I am considering the students’ exam failure as

the source of the shock and test the model on the sample of students of one cohort at the

National Research University - Higher School of Economics, a highly selective university in

Russia. The threat of retakes and dropouts may put a lot of pressure on students, and the

higher probability of failure may result in lower productivity. Knowing, how these shocks

18
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influence the behavior of the students and their friends, can help to understand the whole

dynamics of network performance, and maybe help universities to adjust the strategy of set-

ting up the retakes’ threshold. Of course, dropouts are likely to influence future behaviour

stronger than retakes, since the latter can still be fixed. However, the existing data of the

dropouts is not sufficient for proper econometric analysis. I discuss both sources of shock in

descriptive analysis but apply the econometric model only to retakes.

The direction of the effect, however, can be twofold. While the unexpected shock

may serve as a wake-up call and motivate students to be more dedicated to their studies,

the connections can be extremely tight. This can reduce the amount of time spent on one’s

own studies due to the shared activities with the friend either outside of the university, if

the friend left, or helping the friend to prepare for the retake of the exam. The reasons of

the retakes during the studies can be different. In the first year, students are more likely to

fail due to the lack of the abilities or difficulties with adjustments to the new environment.

The fist exams may appear to be too difficult for some of the students, even though they had

sufficient abilities to enter the university. Students with lower abilities are either dropping

out of the university or adjusting their efforts to improve performance. In the second and

higher year, students are more likely to fail due to insufficient efforts. Therefore, the shock

during the different time periods may have a different effect on the future performance. This

paper discusses only the first year retakes at the moment.

Although I do not study the pure peer effect in this paper, I exploit the general

idea of peer effects literature and its methodological fundamentals. Most of the economic

literature that analyses peer effects use the framework and the model introduced by Manski

(1993). He distinguishes three effects that determine the similar behaviour of peers. The

endogenous effect explains that the probability of a particular student to drop out of the

school or university or to fail an exam will be affected by a number of this student’s peers

who have already done so. The exogenous effect uses mean exogenous characteristics of the

peer group, such as parental education, socio-economic status (SES), etc., to determine the

probability of the dropout or retake. The correlated effect appears due to the similar indi-

vidual characteristics within a group. The most important task of peer effects analysis is to

determine the endogenous effect, which can have important policy implications.

Identification of these three effects in the case of group interactions requires an

additional source of exogenous variation, such as exogenous class formation (for example,

Carrell, Fullerton, and West, 2009 in military institutions framework and De Giorgi, Pel-

lizzari, and Redaelli (2010) and Androushchak, Poldin, and Yudkevich (2013) in university

frameworks with randomly assigned groups) or random assignment of dormmates (for exam-

ple, B. Sacerdote, 2011). Estimating the endogenous peer effect as an effect of an average

group performance obtained some critique, and additional assumptions on the structure or

the ranking inside the peer group or even exact links are preferable, but social network data

is not always available. Usage of social network data requires other identifying assumptions,

which restrict the network. Bramoullé, Djebbari, and Fortin (2009) proved the identification

of the peer effect in social networks under rather mild assumptions. Poldin, Valeeva, and

Yudkevich (2015) use the same identification result to study the peer effect in the university
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framework using HSE dataset.

The identification of the direct effect of shock on the friends’ future outcome is,

however, more challenging, since the changes of the performance are not driven solely by the

effects of the shocks. Exogenous and unobserved characteristics of the student and his peers

as well as the changes in the network structure are among the other determinants. More-

over, as was already mentioned, the shock itself is not exogenous, and its significant part is

driven by the model itself. The paper proposes an econometric model which deals with both

problems and estimates the effect of the shock: a two-step dynamic peer effects model. The

first step estimates the probability of the shock adopting the instrumental variable 2SLS

approach discussed by Bramoullé, Djebbari, and Fortin (2009) after L. Lee (2003). The

second step uses the residuals from the first stage to estimate the effect of the unexpected

component of the changes in students’ performance.

To the best of my knowledge, this project is the first to introduce the dynamic

peer effect in social networks model with endogenous shock1. Moreover, I provide the iden-

tification results for this model and propose estimation procedure. The identification and

estimation of the first step are the straightforward adjustments of the Bramoullé, Djebbari,

and Fortin (2009) approach, and requires the existence of intransitive triads in the network

given the assumption of no correlated effects, i.e. friends of some student’s friends not con-

nected to him or her. Hence, the friends of friend affect the student not directly, but via

the common friend only. If the assumption of no correlated effects is relaxed, the stricter

identifying assumption is necessary. The whole network should include pairs of students with

the distance between them of length three or bigger. They are not connected directly, and

the shortest path from the one to the other has not less than three links. Friends of friends

are used to deal with the correlated effect, therefore, the next level of friends is used as an

identifying assumption. The identification of the second step is novel and demonstrates the

necessity of the network longitudinal variation. Changes of the network allow comparing the

influence of ”old” and ”new” peer group on the outcome. The presence of the new friends

and absence of old ones creates variation in the peer group characteristics and this helps to

identify social effects and the effect of the shock. However, it is important that the changes

of the network are not driven solely by the shock. Moreover, at the moment, I do not model

link formation, and therefore, do not distinguish between different types of network changes

and treat them all as equal and given.

The variation of the network is a valid assumption for the students’ network setting.

The links formed in the first year are highly likely to be revised due to the gradual unveiling

of the friends’ personal characteristics. Some of the links might be broken, however, due to

the exam retakes and dropouts of the friends. The student may seek for a more advantageous

peer group or he/she no longer spends much time with the friend preparing for the retakes.

But even if the friend fails an exam and the link stays stable in the network, the student may

tend to connect to the students with higher results, creating new links. The exam retake

is endogenous in the model, and only an unexpected component of the retake probability is

1See, for example, a review of the recent econometric literature on networks in Paula (2015)
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considered as a shock. The influence of this unexpected component on link formation is not

the same as possible channels of influence of retakes on link formation, discussed previously,

therefore, the actual importance of the shock for link changes might be lower than the one

of exam retakes. The model in the paper is discussed without link formation process and,

therefore, under the assumption that changes in the network are exogenously given. This

setup is a bit restrictive, and relaxation of this assumption will be considered for future

research.

The magnitude of the endogenous effects in different periods is considered to be

different, since the unexpected shock may affect performance via the changes of the peer

groups, and not only directly. The break of the link itself makes the peer group ”better”,

then the improvement of the results can also be caused by the group’s refinement.

Dropouts and retakes are important to study from the university’s perspective.

Dropouts create the sunk costs for the university. For example, costs of the university

dropouts in Germany were estimated at the level of $11.5 billion in 20072 and in Australia

at $1.36 billion3. Some of the dropouts are the results of the policies of the university, which

can be controlled. In some institutions of higher education, as in the sample used in the

analysis, most of the dropouts are directly affected by the retakes. In HSE 3 retakes during

the same exam session term will lead to the expulsion of the student. Therefore, under-

standing the possible mechanisms of retakes’ influence on future performance may suggest

possible university-level policy improvements in order to reduce sunk costs.

The paper is organized as follows. Section 2 discusses the proposed model, states

the identifying assumptions, and proposes the estimation method. Section 3 describes the

data used and the institutional environment of the educational system in Russia, as well as

results of the descriptive analysis. Section 4 provides the estimation results and evidence of

the influence of dropouts and retakes on peers. Section 5 concludes.

2.2 Model

2.2.1 Näıve approach

I propose a two-step model that allows estimating the effect of an unexpected event

happening to network connections. Although I do not conduct the pure peer effect estima-

tion, I use the classical peer effect model as a baseline.

A näıve way to write down the dynamic peer effect model without modelling the link forma-

tion:

y1i = α1 + β1
∑
j 6=i

G1
ijy

1
j + γ1X

1
i + δ1

∑
j 6=i

G1
ijX

1
j + ξi + ε1i , E[ε1i |X1] = 0, (2.1)

2The figures are obtained by the Stifterverband, association of German science and higher education
donors. Details can be found on UWN website

3According to the report on UWN website

http://www.universityworldnews.com/article.php?story=20071025102357719
http://www.universityworldnews.com/article.php?story=20101022203542738


22 Chapter 2. Endogenous Shocks in Social Networks

y2i = α2 + β2
∑
j 6=i

G2
ijy

2
j + γ2X

2
i + δ2

∑
j 6=i

G2
ijX

2
j + ξi + ε2i , E[ε2i |X2] = 0, (2.2)

where y1i and y2i are outcome variables of student i in the first wave and the second wave

correspondingly. I will consider the average grade in the main specification of the model.

Student’s rating or grades for some specific subjects, which last more than 1 term, are used

for robustness checks;

Xi is a vector of individual characteristics that should be controlled for, such as gender,

city of origin, living conditions, some socioeconomic family characteristics. In the discussed

empirical example it also includes the results of the high school examination, universal and

obligatory for all the students graduating the high school.

G1
ij and G2

ij are two adjacency matrices for the first and the second waves correspondingly,

weighted by the number of links, and their entries have the value of 1/ni if the link from

student i to student j exists. Note that this matrices are not necessarily symmetrical, since

the social network can be both directed (as in the sample used later) or undirected.

ξi - student-level unobserved fixed characteristics, which may influence students’ performance

and choice of connections.

Those unobserved individual characteristics also reflect the homophily of the indi-

viduals, which may influence both link formation and the network outcomes. In the case

of group interactions group fixed effects are often introduced to eliminate correlated effects,

whereas in the case of interactions in big networks network fixed effects make little sense. Lo-

cal differences, proposed by Bramoullé, Djebbari, and Fortin (2009), may be used to address

the issue of correlated effects. However, the dynamic structure of the data allows solving this

issue differently. The dynamic peer model can be then written in terms of differences, and

this will eliminate possible unobserved fixed effect component in the error term, consisting

of the common for individual’s connections unobservable component and individual’s own

unobserved fixed characteristics.

∆yi = ∆α+ β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + γ2X

2
i − γ1X1

i + δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ∆εi

Assumption A. The outcome variable of a single period can be estimated using the

one-period model.

This additional assumption allows avoiding the autoregressive component in the

second-period model. Assumption A is valid, because the model, including observed and

unobserved fixed effects characteristics as well as endogenous and exogenous peer effects, is

sufficient to predict the educational achievements. Therefore, it can be claimed that there is

no additional mechanism that can influence the outcome via the previous period’s outcome.

The proposed model system 2.1 and 2.2, and consequently, the model written in

differences, can be further modified in order to catch the desirable effect of shock. In the

näıve way, similar to the model of Comola and Prina (2014), the model will now be as follows:
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The equation for the first period should remain unchanged:

y1i = α1 + β1
∑
j 6=i

G1
ijy

1
j + γ1X

1
i + δ1

∑
j 6=i

G1
ijX

1
j + ξi + ε1i ,

Whereas, the second-period model shall take into account the shock of unexpected

retake of the friend. The straightforward way to do it is just to include the binary variable

in the vector of controls:

y2i = α2 + β2
∑
j 6=i

G2
ijy

2
j + δ̃Di + γ2X

2
i + δ2

∑
j 6=i

G2
ijX

2
j + ξi + ε2i

where Di is a dummy for having any friends with a retake in the first period4.

The system can then be re-written in differences, eliminating the possible individual

fixed effect:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + γ̃Di +

+γ2X
2
i − γ1X1

i + δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ε2i − ε1i

However, this type of the equation is only valid if the shock is exogenous, as in the

examples of randomized treatment. A big share of the probability of the student’s retake

can be explained by the observed component of the model, and therefore, the retake itself

cannot be considered as unexpected shock. I propose to use the peer effect model of the first

period to disentangle predictable and unexpected parts of the probability of the retake, and

use the unpredicted part only to estimate the effect of the shock on the performance.

Comola and Prina (2014) also model the changes of the network as a response to the

exogenous treatment. At the moment, I am not modelling the link formation. The variation

of the network links is assumed and is a crucial identifying assumption. Importantly, a

significant part of the changes in the structure of the friendship networks is caused by the

individual characteristics and outcome and not solely by the exam retake. The influence

of the retake and of the unpredicted component of the retake on the link formation also

should be treated and interpreted differently, since the probability of the exam retake is

endogenous. The following assumption, therefore, should be made. Assumption B. Changes

of the network as a response to unexpected shock are neglected, and all changes of the

network itself are treated as exogenous.

This assumption can potentially cause overestimation of the direct effect of the

shock, and therefore, should be relaxed in the future research.

4In general the coefficients in the model with the shock are different from the baseline one-period models
(1) and (2), but I left the same notations for simplicity
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2.2.2 Proposed model with no correlated effects

The model

Taking into account all above-mentioned argument, I estimate the following model

at the first step:

P (retakei) = α+ β
∑
j 6=i

G1
ijy

1
j + γX1

i + δ
∑
j 6=i

G1
ijX

1
j + ξi + νi, E[νi|X1] = 0 (2.3)

In this specification, the error term consists of two parts: unobserved correlated effect, and

conditionally independent noise. Dynamic peer effect model will eliminate the correlated

effect component at the second step of the model, leading to the conditional independence

of the error term. However, on the first step in general E[ξi + νi|X1] 6= 0. I will discuss two

cases: assuming no correlated effects and with correlated effect. The latter will be considered

in the later subsections. For the former, 2.3 will be transformed as follows :

P (retakei) = α+ β
∑
j 6=i

G1
ijy

1
j + γX1

i + δ
∑
j 6=i

G1
ijX

1
j + νi, E[νi|X1] = 0 (2.3a)

I then take the residuals of the equation 2.3a, which is the part of the probability of

the friends’ retake not predicted by the model. I then construct the shock for student i as the

combination of the residuals for the students in the network of i. The baseline specification

uses the average of the residuals: URi =
∑

j 6=iG
1
ij ν̂j . However, the other approaches to

define URi is possible: maximum of friends’ unpredicted probability of the exam retakes,

residuals for the friends named first, or average weighted according to the order, with which

friends are appearing in the answers of the students. The identification results and estimation

procedure are not affected by the choice of the approach to defining URi. Then I am using

it as an unexpected shock to plug-in in the following equation:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + δ̃URi + γ2X

2
i − γ1X1

i +

+ δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ∆εi (2.4)

Since the model in differences eliminates possible individual fixed effect component in error

term, I am able to make a stricter assumption on the error term: E[∆εi] = 0, instead of the

conditional expectation. This condition will be used to prove the model identification.

Model in differences, additional to the elimination of individual fixed effect, gives a

better interpretation of the studied effect. It estimates the changes of own performance in

response to the shock additional to the changes of performance in comparison to the class-

mates, obtained by the single-period model.

Note that the coefficients for the endogenous peer effect and exogenous characteris-

tics are considered to be different in two periods: β2 and β1 and δ2 and δ1. Students may
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experience the different magnitude of the effects depending on how advanced they are in their

studies, how well they are adjusted to the university environment, etc. Moreover, this also

allows to take into account the changes in the network, since the students are experiencing

the influence of two different peer groups in two periods.

The own retake of the student is not included explicitly in the model. The unex-

pected component for the students themselves is close to zero since they can anticipate most

of the retakes after writing the exam. Moreover, the outcome of the previous period partially

takes care of own retakes. Nonetheless, in the empirical analysis, I will also split the sample

and study the effect for those, who were retaking the exams, and for those, who were not,

to tackle down possible differences.

Identifying assumptions

The identification results for the first step of the model adopt Bramoullé, Djebbari,

and Fortin (2009) approach, whereas the result, obtained for the second stage, is, to the best

of my knowledge, a novel result for the literature.

Lemma 2.1 Let γ21 +δ21 6= 0 and β1 6= 05. If matrices I, G1, (G1)2 are linearly independent,

coefficients in 2.3a are identified.

The proof of Lemma 2.1 is given in Appendix A. This is exactly the condition obtained by

(Bramoullé, Djebbari, and Fortin, 2009), and can be proven similarly. The identification of

the coefficients on the first step, hence, allow using the obtained residuals for the further

analysis. The identification is ensured by the existence of intransitive triads in the network,

i.e. the existence of a set of three individuals i, j, k such that i is influenced by j, j is influ-

enced by k, but i is not influenced by k. This is a valid assumption for most networks, in

particular, for the sample analysed in this paper, which will be discussed in the next section.

Lemma 2.2 In the case of no correlated effects, if the assumptions of Lemma 2.1 hold, if

γ22 + δ22 6= 0 and β2 6= 06, if matrices I, G2, (G2)2 are linearly independent, and if G1 6= G2,

with changes not driven by the shock only, coefficients in 2.4 are identified.

Identification of Step 2 relies heavily on the variation in the network structure. However, it

is important that some changes in the network are exogenous. This assumption is quite rea-

sonable for the friendship networks. Students are likely to learn more about their classmates

with time, and the friendships, created during the first year, are often unstable.

Once there are new links formed in the next period, the variation between new and

old connections help to capture the effect of the changes in the average grade. For example,

5These are the coefficients from the baseline peer effect model 2.1.
6The coefficients from the baseline peer effect model 2.2
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if a student i is no longer connected to student j, and therefore, is not affected by student

j, his performance can be evaluating in the two cases and the comparison of two results will

result in the effect of not having friend j, and hence, the social effects are easier to catch.

The identifying assumptions also put the restriction on the friendship matrix of the second

period, as in the first period: the network should include intransitive triads. The proof of

Lemma 2.2 can also be found in Appendix A, and the validity of identifying assumptions

will be discussed in the next Section.

2.2.3 Model with correlated effects

The model

As was already mentioned, the correlated effect appears due to the similar individual

characteristics within a group. The correlated effect is unlikely to be present in big networks,

however, once the network may suggest existence of smaller groups or subnetworks in it, the

correlated effects are more likely to be present. In the empirical application discussed in this

paper, most of the connections are formed inside of the same department, and even inside of

the same exogenously formed study group. Therefore, the possible correlated effects could

not be ignored and can cause an additional identification issue.

To deal with it and eliminate unobserved variables, I propose taking the local dif-

ferences, i.e. averaging the equation 2.3 over the friends of i and subtracting this average

from 2.3 and noting that ξi are the same for the students in one smaller network, and hence,

it will vanish after taking the local differences:

P (retakei)−
∑
j 6=i

G1
ijP (retakej) = β

∑
j 6=i

G1
ij [y

1
j −

∑
k 6=j

G1
jky

1
k] + γ[X1

i −
∑
j 6=i

G1
ijX

1
j ]+

+ δ
∑
j 6=i

G1
ij [X

1
j −

∑
j 6=k

G1
jkX

1
k ] + ηi, ηi = [νi −

∑
j 6=i

G1
ijνj ], E[ηi|X1] = 0 (2.5)

Similarly to the case without correlated effects, I construct the shock for the student

i, taking the average of their networks residuals: URi =
∑

j 6=iG
1
ij η̂j . The second stage is

then identical to the case with no correlated effects:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + δ̃URi + γ2X

2
i − γ1X1

i +

+ δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ∆εi (2.6)

Model in differences, additional to the elimination of individual fixed effect, also gets

rid off the correlated effects, therefore, no local differences are needed for the second stage

equation.
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Identifying assumptions

The identification results for the first step of the model again adopt Bramoullé,

Djebbari, and Fortin (2009) approach, whereas the result, obtained for the second stage, is

new.

Lemma 2.3 Let γ21 + δ21 6= 0 and β1 6= 07. If matrices I, G1, (G1)2, (G1)3 are linearly

independent, coefficients in 2.5 are identified.

The proof is given in Appendix A. This condition again follows the result of (Bramoullé,

Djebbari, and Fortin, 2009) in the presence of correlated effects, and can be proven in the

similar manner. The identification of model with correlated effects is ensured by the exis-

tence of distances between two students of length 3 and more, i.e. the existence of a set of at

least 4 individuals i, j, k,m such that i is influenced by j, j is influenced by k, k is influenced

by m, but i is not influenced by both m and k, and j is not influenced by m. This is a bit

more demanding assumption than in the case of no correlated effects, but still valid for a lot

of networks’ types, and in particular, for the sampled network, which will be discussed in

the next section.

Lemma 2.4 In the case of correlated effects, if the assumptions of Lemma 2.3 hold, if

γ22 + δ22 6= 0 and β2 6= 08, if matrices I, G2, (G2)2, (G2)3 are linearly independent, and if

G1 6= G2, with changes not driven by the shock only, coefficients in 2.6 are identified.

Identification of Step 2 again heavily relies on the variation in the network structure. More-

over, the restrictions are put on the friendship matrix of the second period, requiring the

distances between two students of length 3 and more. The proof of Lemma 2.4 is presented

in Appendix A.

2.2.4 Estimation strategy

No correlated effects

I first discuss the model that does not take into account correlation effects: 2.3a and

2.4.

Step 1. I partially repeat Bramoullé, Djebbari, and Fortin (2009) for the first step and use

the adaptation of Generalized 2SLS strategy proposed by Kelejian and Prucha (1998) and

refined by L. Lee (2003). As the identification result suggests, ((G1)2X, (G1)3X, . . . ) can

be used as valid instruments to obtain consistent estimators.

7The coefficients from the baseline peer effect model 2.1
8The coefficients from the baseline peer effect model 2.2
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First, recall the peer effect model in reduced form, written in matrix notations, offered in

Bramoullé, Djebbari, and Fortin (2009):

y1 = α1i+ β1G
1y1 + γ1X

1 + δ1G
1X1 + ν1, E[ν|X1] = 0,

which gives

E[G1y1|X1] = (I − β1G1)−1G1α1 + (I − β1G1)−1G1(γ1I + δ1G
1)X1

Note that the fist step model can be written as follows:

PR = α+ βG1Y 1 + γX1 + δG1X1 + ν, E[ν|X1] = 0 (2.7)

I propose the following procedure that gives the consistent estimator of θ = (α, β, γ, δ):

First, compute the 2SLS estimator for θ1 = (α1, β1, γ1, δ1) of the standard peer effects

model, using the following vector of instruments S = [i,X1,G1X1, (G1)2X1], and

with the vector of covariates X̃1 = [i,X1,G1X1,G1y1].

θ̂12SLS = (X̃1TPSX̃
1)−1X̃1TPSy

1, where PS = S(STS)−1ST is a projection matrix.

Second, define Ẑ = Z(θ̂12SLS) = [i,X1,G1X1,E[G1y1(θ̂12SLS)|X1]],

where E[G1y1(θ̂12SLS)|X1] = G1(I − β̂1,2SLSG1)−1α̂1,2SLS +G1(I − β̂1,2SLSG1)−1

(γ̂1,2SLSI + δ̂1,2SLSG
1)X1

Finally, use Ẑ as a vector of instruments to estimate 2.3a. Note that the vector of covariates

coincides with the one used at the first step: X̃1. Then the following consistent

estimator is obtained: θ̂Lee = (Ẑ
T
X̃1)−1Ẑ

T
PR.

This procedure is a modification of a procedure proposed in L. Lee (2003), therefore, the

consistency result is closely related to his Theorem 1:

Lemma 2.5 Under regularity conditions defined in Appendix A, the estimator θ̂Lee is con-

sistent and has the following limiting distribution,

√
n(θ̂Lee − θ)

D−→ N (0,Ψ), (2.8)

with Ψ = σ2ν(limn→∞
1
nZ

TZ)−1 and

Z = [i,X1,G1X1,G1(I − β1G1)−1α1 + (I − β1G1)−1(γ1I + δ1G
1)X1]

Discussion and detailed proof of the consistency of such estimator are given in Appendix A.

Step 2. I am approaching the estimation of the second step also adopting the 2SLS

procedure discussed for the first step. First, the model 2.4 can be rewritten in the following



2.2. Model 29

way:

∆y = (α2 − α1)i+ β2G
2y2 − β1G1y1 + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2−

− δ1G1X1 + ∆ε, with UR defined as discussed in Section 2.2 (2.9)

By X1
TV , and X2

TV I denote the subset of covariates, which are time-variant to avoid

singularity problem of estimation.

Then a vector of covariates is as follows: X̄ = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

G1y1,G2y2]. Following the logic of the first step I use (G2)2X2 as an instrument for

G2y2. However, E[(G1y1)T∆ε] 6= 0, hence the instrument for G1y1 is required. I pro-

pose to use E[G1y1(θ̂12SLS)|X1] as an instrument, as obtained on the step 1. It is ob-

vious that such an instrument is a valid instrument since it is uncorrelated with the sec-

ond step error term and is clearly correlated with the outcome variable. Then I define

M = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,E[G1y1(θ̂12SLS)|X1], (G2)2X2] as a vector of in-

struments.

I modify 2.9, taking expectations given X2 and recalling E[∆ε] = 0:

(I − β2G2)E[y2|X2] = (α2 − α1)i+ (I − β1G1)y1 + δ̃UR+ γ2X
2
TV − γ1X

1
TV +

+δ2G
2X2 − δ1G1X1

E[y2|X2] = (I − β2G2)−1[(α2 − α1)i+ (I − β1G1)y1 + δ̃UR+ γ2X
2
TV − γ1X

1
TV +

+δ2G
2X2 − δ1G1X1]

Let E[G2y2(φ)|X2,X1] = G2(I−β2G2)−1[(α2−α1)i+(I−β1G1)E[y1(θ1)|X1]+

δ̃UR+γ2X
2
TV −γ1X1

TV +δ2G
2X2−δ1G1X1], where E[y1(θ1)|X1] = G2(I−β1G1)−1α1+

(I − β1G1)−1(γ1I + δ1G
1)X1.

Then I also define the following vector Z̄ = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

E[G1y1(θ1)|X1],E[G2y2(φ)|X2,X1]

I propose the following estimation procedure:

First, compute the 2SLS estimator for φ = (α1, α2, β1, β2, γ1, γ2, δ1, δ2) of the 2.9, using a

vector of instruments M and a vector of covariates X̄1, as defined above.

φ̂12SLS = (X̄
T
PMX̄)−1X̄

T
PM (y2 − y1), where PM = M(MTM)−1MT is a projec-

tion matrix.

Second, define ˆ̄Z = Z̄(φ̂2SLS) = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,E[G1y1(θ̂12SLS)|X1]],

E[G2y2(φ̂2SLS)|X2,X1],

where E[G1y1(θ̂12SLS)|X1] = (I−β̂1,2SLSG1)−1α̂1,2SLS+(I−β̂1,2SLSG1)−1(γ̂1,2SLSI+

δ̂1,2SLSG
1)X1, with θ̂12SLS obtained as the estimation of the first stage on the first step.

and E[G2y2(φ̂2SLS)|X2,X1] = G2(I − β̂2,2SLSG
2)−1[(α̂2,2SLS − α̂1,2SLS)i + (I −

β̂1,2SLSG
1)E[y1(θ̂12SLS)|X1]+

ˆ̃
δ2SLSUR+γ̂2,2SLSX

2
TV −γ̂1,2SLSX1

TV +δ̂2,2SLSG
2X2−

δ̂1,2SLSG
1X1]
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Finally, I use ˆ̄Z as a new vector of instrument to estimate 2.9. Then the following consistent

estimator is obtained: φ̂Lee = ( ˆ̄Z
T
X̄)−1 ˆ̄Z

T
(y2 − y1).

The consistency of this estimator is less straightforward, but it holds under the

regularity conditions. The proof of the following Lemma is provided in Appendix A.

Lemma 2.6 Under regularity conditions defined in Appendix A, the estimator φ̂Lee is con-

sistent and has the following limiting distribution,

√
n(φ̂Lee − φ)

D−→ N (0,Φ),

with Φ = (σ2ε1 + σ2ε2)(limn→∞
1
nZ̄

T
Z̄)−1

Correlated effects

If the correlated effects are assumed to be present in the model the fist step model

can be written as follows in matrix notation:

(I −G1)PR = β(I −G1)G1Y 1 + γ(I −G1)X1 + δ(I −G1)G1X1 + η,

η = (I −G1)ν, E[η|X1] = 0

I then use the peer effect model in local differences proposed in Bramoullé, Djebbari, and

Fortin (2009):

(I −G1)y1 = β1(I −G1)G1y1 + γ1(I −G1)X1 + δ1(I −G1)G1X1 + (I −G1)ν1,

E[ν1|X1] = 0,

which gives

E[(I −G1)G1y1|X1] = (I − β1G1)−1(I −G1)G1(γ1I + δ1G
1)X1

The proposed estimation procedure, in this case, is close to the first step with no corre-

lated effects. I redo all the steps with the following vectors of instruments and covari-

ates: instruments S = [(I − G1)X1, (I − G1)G1X1, (I − G1)(G1)2X1] and covariates

X̃1 = [(I −G1)X1, (I −G1)G1X1, (I −G1)G1y1].

Then I find the 2SLS estimator on the first step and use it to get the new vector of

instruments: Ẑ = Z(θ̂12SLS) = [(I−G1)X1, (I−G1)G1X1,E[(I−G1)G1y1(θ̂12SLS)|X1]],

where E[(I −G1)G1y1(θ̂12SLS)|X1] = G1(I − β̂1,2SLSG1)−1(I −G1)(γ̂1,2SLSI+

+δ̂1,2SLSG
1)X1.

The consistent estimator can then be obtained as follows: θ̂Lee = (Ẑ
T
X̃1)−1Ẑ

T
PR.

Note that the proof of consistency follows directly by combining the result of L. Lee (2003)

and the proof of Lemma 5, which can be found in Appendix A.
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Step 2 also requires some adjustments in this case. Due to the presence of corre-

lated effects, E[G1y1(θ̂12SLS)|X1] is no longer observable since it includes the unobserved

fixed effects correlated with covariates and cannot be used as an instrument. Hence, I need

to modify both vectors of covariates and instruments in the following way: X̄ = [(I −
G1)X2

TV , (I−G1)X1
TV , (I−G1)G2X2, (I−G1)G1X1, (I−G1)UR, (I−G1)G1y1, (I−

G1)G2y2] is a new vector of covariates. I then use (I − G1)(G2)2X2 as an instru-

ment for (I − G1)G2y2. I propose to use E[(I −G1)G1y1(θ̂12SLS)|X] as an instru-

ment for (I − G1)G1y1. This instrument is clearly a valid instrument since it is uncor-

related with the second step error term and is clearly correlated with the outcome variable.

Then I define M = [(I − G1)X2
TV , (I − G1)X1

TV , (I − G1)G2X2, (I − G1)G1X1, (I −
G1)UR,E[(I −G1)G1y1(θ̂12SLS)|X], (I −G1)(G2)2X2] as a vector of instruments.

Applying the same changes to all relevant vectors, I then fully repeat the estimation

procedure of the case of no correlated effects, and obtain the consistent estimator. Consis-

tency of the estimator is achieved by the argument similar to the one in Lemma 2.6, proof of

which and more detailed discussion on estimation procedure can be found in Appendix A.

2.3 Data and Descriptive analysis

2.3.1 The system of higher education in Russia and specifics of the sam-

pled university.

People with completed full vocational education or completed professional education

of non-university level are eligible to enter the university9. Most of the places in the state

universities are financed by the government: around 65%10, but it differs among institutions.

For example, the analysed in this paper university, National State University - Higher School

of Economics, Nizhny Novgorod branch, provided 340 state-financed places out of total 431

in 201211. The tuition fee varies from institution to institution, in our example, it varies

between 130000 and 165000 Rubles, which equals to 28-36 times the minimum monthly wage

or 18-23 times the minimum cost of living in Russia.

The students are accepted to the universities depending on the scores of the obliga-

tory standardized examination, Unified School Examination, conducted at the end of the last

school year. Each high school graduate has to take the exam in several subjects: Mathemat-

ics and Russian are mandatory to graduate from the school, the other subjects are chosen by

the graduates depending on their preferences and the requirements of the universities they

are aiming to apply to. For example, economic department of NRU-HSE requires the USE

results in Social Studies (a mixture of basic knowledge about different aspects of society:

philosophy, sociology, social psychology, law, political science) and Foreign language addi-

9It is more accurate to call them the institutions of tertiary or post-secondary education, since not all of
these institutions in Russia have the status of the university, however, the university will be used for simplicity

10According to the Monitoring of education markets and organizations (MEMO), NRU HSE. In Russian
11The main dataset uses 2012 cohort of students, details are described in the next subsection

https://www.hse.ru/data/2015/08/30/1087226912/%D0%B8%D0%BD%D0%B4%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D1%8B_%D1%81%D1%82%D1%83%D0%B4%D0%B5%D0%BD%D1%82%D1%8B%20%D0%92%D0%9E%202014%20%28dragged%29%201.pdf
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tional to the mandatory to all graduates Mathematics and Russian. However, regional and

national level Olympiads can often be used as the second channel to enter some of the uni-

versities. These Olympiads are subject-specific and considered to be more sophisticated than

the school exams, so they are designed to attract more talented students. In Higher School of

Economics, the winners and prize-takers of these competitions are accepted to the university

without exams if the major of the Olympiads corresponds to the university department (Eco-

nomic Olympiads for economics department, Entrepreneurship Olympiads for management

department etc.) or automatically given the highest score for the other subjects. However,

those students are still required to take the USE and have the scores not lower than the

required minimum (65 out of 100 in 2015, significantly lower than the requirement to be

accepted). The share of students entering universities using the Olympiads results is around

5-6% overall in Russia, but it is much higher for the Higher School of Economics, around

40%, because of the selective status of HSE. Therefore, in general, the group of students

entering HSE is more or less homogeneous and consists of the high-achievers. Even though

Nizhniy Novgorod branch of HSE is less selective than the main Moscow branch, the level of

the admitted students is still very high. The list of all accepted students is publicly available

in the university itself as well as on the website.

Usually, universities in Russia have an exogenous group formation. The students

are randomly split into groups of 20-30 people before the beginning of the studies. These

groups stay mainly intact for the first three years. Several groups or even all students at-

tend lectures together, whereas each group has separate tutorials. The changes to the group

structure may occur if a lot of the students leave the university and the group is too small.

Most of the universities have by now adopted the Bologna Process model of 4 years for

Bachelor’s degree and 1-2 years of Master’s degree. In most cases each academic year has 2

terms with exams periods after each, however, HSE has 4 terms per year, with some exams

or pass-fail exams after the 1st and the 3rd term and with most exams after the 2nd and the

4th term. The student is not allowed to fail 3 or more exams per half (1+2 or 3+4 term)

and the retakes are conducted only after the 2nd and 4th exam periods of each year. All

results of all students are publicly available near the students’ office in the university and

online so that everybody can follow their own performance, compare to the peers, and the

tuition students can understand, whether they are eligible for the tuition discount.

2.3.2 Data description

The data is based on two longitudinal studies of the students’ network, conducted

in the National Research University Higher School of Economics (Nizhny Novgorod branch;

state university). The information about the studies is summarized in Table 2.1.

Table 2.1: Studies characteristics

Study Cohort Frequency Departments Total students
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I 2012 Each year Economics, Management,

Law, Computer Science

321

II 2013 Each 3-4 month Economics, Management 205

Students were asked to indicate three and two networks correspondingly: friends

from the university (same cohort), students from the same cohort, whom they ask for help

(in the first study this question is divided into two: help with mathematical subjects and

help with humanities). The I study is of the main interest of the paper due to the longer

periods between the surveys that are able to capture a more persistent trend of the network

dynamic. The II study is used only for the robustness check of the results.

Other data include all exam results, information about retakes and dropouts from

the administrative university data, as well as some personal data: gender, high school ex-

amination results, type of living (dormitory or not, roommates for those who live in the

dormitory), parental education, some indicators of willingness to succeed or efforts (time

spent on homework, time spent online on social networks, indicator of having a job parallel

to studies).

The typical problems of self-reported data are present in the dataset. There are

several observations with partially missing data on the network links. These entries need to

be handled with care since they might suggest both the students without friends, indicating

the antisocial behavior, or the students that just skipped the questions, while answering the

questionnaire. In the I study 13 students indicated no friends links, however, two of those

provide an information about connections in the help networks, which might demonstrate an

antisocial behavior of the students. There is no information on particular friends for 4 more

students, who just said they are friends with a lot of students, or even with all students. In

the II study, there are 9 students without links, however, it is not clear, whether they did

not report anybody at all or whether they answered with a sentence, as 4 students from the

I study, mentioned above.

Sampling is of a slight concern as well. The first survey has 321 observations out of

396 students that entered the 4 departments of the university in 2012, the second has 205 out

of 253 students, started in 2013 in 2 departments, that gives approximately 75-80% of the

full population of students (Table 2.2). Some of the students could have indicated the link

to somebody outside of the sample, which can lead to overestimation of the importance of

the observed links. However, the survey was conducted on several occasions, during lecture

periods, so those, who did not answer the survey, are likely to attend the university only

infrequently, and hence to have less influence on the other students.

Table 2.2: Comparison of samples and population

Sample All students Share

I, year 1

Size 320 432 74.07%
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Retakes 157 203 77.34%

Dropouts 16 40 40 %

I, year 2

Size 296 393 75.32%

Retakes 148 190 77.89%

Dropouts 24 39 62.54%

II

Size 205 254 80.7%

Retakes 65 137 -

Dropouts 6 21 28.57%

Table 2.2 also demonstrates an inability of the dataset to catch all the information about the

dropouts (only 40% are present in the first survey) and their small amount in the network.

This makes the econometric analysis of dropouts implausible, and forces to study exam re-

takes instead.

Note that the I study restricted the friends’ network to 7 names, whereas the II

study did not put any restriction. This lead to almost 50% of the students in the first period

of I study reporting exactly 7 friends, whereas only 13,5% of the students in the II study

indicated the same number of friends. The second wave of the long study also has space

for mentioning the maximum of 7 friends, however, this restriction is not mentioned in the

question itself. Therefore, 7 friends are the maximum of the 2nd wave of the long study with

only 10% indicating exactly 7 friends. The distribution of the number of the friends for both

studies is presented in Table B.1 and Figure B.1 of Appendix B. The average and median

number of connections is 6 in both first year of the I sample and in the II sample, whereas it

is 4 in the second wave of the I study. It is likely, that in the first wave some of the students

had to restrict themselves to exactly 7 names, whereas some felt obliged to include more

people than they are actually tightly connected to, which may cause underestimation of the

importance of some links and overestimation of the others. Lower average number of friends

in the second period may be caused by particularities of the survey construction as well as

by the real trends in the network development.

The survey design is different for three networks. The first wave of the I study asks

for no more than 7 friends and has 7 lines for the names, which was ignored by approxi-

mately 2% of the sample, the second wave of the I study does not put any restriction on

the number of friends, although it has 7 lines as well, the short study says explicitly, that

a number of friends can be unlimited, but has 15 lines. Therefore, the survey design may

influence estimation results from the I survey analysis, hence the analysis of the II study

with its unchanged question design can be helpful as a robustness check.
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2.3.3 Network characteristics

In this section, I will discuss the validity of the identifying assumptions in a frame-

work of the I survey.

Network stability.

Figure 2.1 visualizes the whole networks for the first wave (left) and for the second

wave (right). Red nodes are females, blue - males, the size of the nodes is proportional to the

overall degree of the node. It can be observed from this figure that two networks differ. For

example, two clusters in the bottom part of the graph are not connected in the first wave,

whereas there are several edges between them in the second wave.

More formal justification of the variability of the network is presented in Table 2.3.
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(b) Wave 2.

Figure 2.1: Networks.

Quite a lot of variation can be observed: around 11-12% of the students reported exactly

the same set of friends. However, the share of completely new networks varies with gender.

Females have only 5% of completely new networks. Hence, females tend to be more persis-

tent in forming and retaining the links.

Table 2.3: Overlap of network partners

Network statistics Full sample Male Female

Complete overlap 11.49 11.21 11.89

No new links 24.66 22.43 26.49
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Partial overlap 65.20 46.73 77.30

Complete turnover 12.16 24.30 5.41

Observations 296 107 185

Note: Percentages of 1st, 3rd, and 4th rows do not add up to 100%, because there are new observations in

the 2nd wave, for which we do not observe the network in the 1st wave

Table 2.4 provides more evidence of the network variation: only around 16% of the links

survived after the first period, and around 78% of the links formed in the second period are

new.

Table 2.4: Some network characteristics

Network statistics Definition 1 year 2 year

Average indegree Average number of ingoing

ties

4.96 (2.73) 3.93 (2.53)

Average outdegree Average number of outgoing

ties

4.96 (2.01) 3.93 (2.2)

Density Proportion of existing ties in

the network

0.015 0.014

Reciprocity Proportion of ties which are

reciprocated

0.639 0.636

Transitivity The ratio of the triangles and

the connected triples in the

graph

0.454 0.443

Share of the links that remained from the 1st

wave in total amount of links of the 2nd wave

- 22.61%

Share of the links that remained from the 1st

wave in total amount of links of the 1st wave

16.57% -

Transitivity

. Table 2.4 describes several characteristics of the networks in the sample. The tran-

sitivity is measured by the shares total amount of connected triangles in the whole graph.

So in more than 50% of all possible sets of three students, at least, one link is missing.

Figure2.2 shows the subgraph of the network to demonstrate the existence of intran-

sitive triads in both of the samples. For example, in wave 1 the following triad is intransitive:

717 → 694, 694 → 779, but 717 9 779. Other examples of intransitive triads are: 939→
693→ 778, 693→778→ 878 in the first wave and 939→ 779→ 694, 779→ 694→ 717 in the

second wave, and some more.
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Figure 2.2: Subgraph of the network

The characteristics of the networks (see Table2.4) also clearly suggest that the net-

work is directed and cannot be assumed to be indirected since only around 60% of the links

are reciprocal. Also, the networks are sparse with the density of the links around 1.5%.

2.3.4 Descriptive analysis

People often tend to connect based on similarities in their observed and unobserved

characteristics. Table 2.5 summarizes the findings on the affinity of the peers in the network.

Most of the peers are coming from the same group, more than 84% and almost all friends

are from the same department. The network can in principle be divided into four smaller

networks.

Females are more likely to connect with peers of the same gender, whereas males

have more diverse networks. Gender difference also exists in the probability of connecting

to the dormitory mates: males are more likely to connect. The share of the friends with

the same living conditions is, however, decreasing with time, suggesting that some other

characteristics matter more for creating and sustaining the links.

Future plans on average seem not to matter a lot for the link formation: friends

with the same plans for the future education are about 50% of the peers. This share could

probably be higher, if the students were asked about there plans later in the course of their

studies, and not during the first year. However, given the student’s willingness to do Master,

her peers are as well more oriented on continuing the studies after the Undergraduate level.

Table 2.5: Characteristics of reported networks links by sex

Variables
1st wave 2nd wave

Male Female All Male Female All
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Average size 4.53 5.19 4.96 3.57* 4.18* 3.93*

Average size (with out of sample links) 5.22 5.78 5.58 4.29* 4.96* 4.69*

Study group/department relation (% of network partners)

Same group 84.17 87.23 86.76 87.21 89.89 88.78

Same department 98.54 99.21 98.99 97.54 99.39 98.95

Individual characteristics of network partners(% of network partners)

Same gender 64.05 81.97 76.18

Same working status 62.43 70.33 67.78 50.74 60.95 56.41

Same education of mother 61.75 66.84 65.19 - - -

Same education of father 56.45 50.08 52.14 - - -

Same living conditions 57.59 46.71 50.23 50.97 39.61 43.33

Same living conditions (dorm/not) 84.14 76.23 78.79 74.27 70.55 72.16

Future plans (% of network partners)

Same plans for Master 54.44 57.37 56.41 - - -

Same plans for Doctorate 47.18 47.32 47.27 - - -

Subsample of planning to do Master:

Same plans for Master 68.34 72.42 74.46 - - -

*the network data in the 2nd wave is truncated at 7 friends

More than 1/3 of all links in the first wave are links to the students with retakes

(37%). The share of the links to the students with retakes in the first period in the total

amount of second wave links is slightly smaller: 33%. It might be caused by the intention

of students to improve their peer group and connect to peers with higher outcomes. The

average amount of the friends with retakes in the first period is 1.83 while it is lower for the

second period: only 1.25. The average amount of peers with exam retakes for the subsample

of all students that have at least one peer with retake is higher than the average of the

full sample and is equal to 2.5. For the same students in the second wave, the average

number of peers who had exam retakes in the first period is now much lower: 1.55. It can be

suspected that the decrease in this value may be partially explained by the readjustments

of the network towards better connections. Moreover, for the same subsample, the average

number of peers with retakes in the second period is even lower: 1.37. Interestingly, some of

those, who didn’t have any friends with retakes in the first period, connected to new peers

that had the retakes in the second period, the average number of such friends is only 0.35

though, but the average number of friends with retakes in the next period is 0.57. So the

changes in the network are leading to the improvements as well as worsening of the new peer

group. These findings are summarized in the Table 2.6.

Table 2.6: Distribution of retakes

Links wave 1,

retakes wave 1

Links wave 2,

retakes wave 1

Links wave 2,

retakes wave 2

Share of retakes links in all links 36.99% 32.99% 29.15%

Average amount of friends with retakes 1.83 1.25 1.15

Subsample with retakes of friends
2.5 1.55 1.37
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Average amount of friends with retakes

Subsample no retakes of friends
0 0.35 0.57

Average amount of friends with retakes

Observe that students in the studied framework tend to connect to peers, having

higher average grades than the students themselves, for the full sample as well as for the

samples with and without retake friends. Students, who do not connect to peers with re-

takes, are performing better than those, whose friends are having retakes. However, the

improvements in the performance in the future are not significant, with the changes in the

performance of the students without peers’ retakes being slightly higher.

Table 2.7: Average grades in samples and subsamples

Full sample With retakes of friends No retakes of friends

Average grade
7.04 6.98 7.37

(0.99) (0.96) (0.98)

Average grade of friends
7.18 7.03 7.68

(0.65) (0.63) (0.49)

Sample size 320 234 86

Average grade next period
7.13 7.02 7.44

(1.14) (1.15) (1.07)

Sample size 297 217 80

It is not possible to distinguish between the predicted and unexpected components of

retakes by simply looking at the data. Therefore, the deeper econometric analysis is needed

to make conclusions about the existence and the magnitude of the effect of unpredicted

shock.

2.4 Results

2.4.1 Main specification

I use the following variables for the main specification of the model:

Outcome: average weighted grade of the student in the corresponding period. The grades

are summed up weighted by the amount of the credits assigned to the particular course.

Retakes: indicator of at least one retake in the first period.

Initial ability, measured as the sum of mandatory Unified State Examinations (mathe-

matics and Russian) plus the sum of cross-products between these USE results and a

dummy of winning any relevant Olympiads.
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Controls: time-invariant, such as gender, socio-economic background like a dummy of

parental higher education, a dummy of having a single parent before entering the

university and dummy for siblings; and a set of dummies for three departments with

law department serving as a base.

Controls: time-varying, such as tuition, which is mostly time-invariant, but some rare

students change the type of tuition, working status (dummy for not working versus

any type of job) and living conditions (dormitory versus everything else).

Descriptive statistics for these variables is provided in Table B.3 of Appendix B. It can be

observed that the average changes in the time-variant variables are rather modest, as well as

the changes in the performance. However, the average grade has higher standard deviation

and spread in the second period.

Table 2.8 summarizes some of the findings of the estimation of the model without

correlated effects. Note that the sample size is smaller than was discussed in the data de-

scription, due to the absence of some students in one of the waves. And it is critical to have

the information in both waves for each of the students to estimate the effect.

Table 2.8: Estimation of main specification

Variable (1) (2) (3) (4) (5)

Constant -0.1521 -0.1840 -0.0482

Unexpected Retake -0.2638 -0.2143 -0.3077• -0.2064 -0.3907*

Endogenous effect, period 1 -0.0307 -0.0425 -0.0317 0.0908* 0.0614*

Endogenous effect, period 2 0.0205 0.0085 0.0218 0.0419 0.0306

Time-variant own controls

Tuition, w1 0.0208 0.0102

Tuition, w2 -0.0912 -0.1518

Working status, w1 -0.0664 -0.0719 -0.0716

Working status, w2 0.1381• 0.1147* 0.1346•

Living in dorm, w1 0.1061

Living in dorm, w2 0.1651

Network’s controls

Economics, w1 0.2417 0.1568 0.2692 -0.0732

Economics, w2 -0.4681** -0.4367** -0.4513** -0.5893***

Management, w1 0.5409* 0.5712*

Management, w2 0.1790 0.1996

Working status, w1 -0.7352* -0.5420**

Working status, w2 -0.0497 -0.1903

HE of father, w1 0.4010•

HE of father, w2 0.0006

Sample size 250 250 250 250 250
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BIC -216.68 -225.24 -226.51 -225.79 -196.71

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

It can be observed that for the full sample the estimator of the effect of the unpre-

dicted component of retakes is negative but in most cases insignificant. The magnitude of

the effect in specification (5) suggests that if a friend of some student had a retake during

the first year, which this student couldn’t predict at all, the difference between the average

grade of year 2 and the average grade of year 1 of the student will be on average 0.05-0.39

lower, than in the case the student expected the retake of a friend, depending on the total

number of friends. For example, the median student on average improves her grades in the

second period in comparison to the first by 0.24, which is 2.4% of the maximum grade. The

presence of unpredicted retake of the friend, other things equal, may leave the average grade

in the second period at the same level or even decrease it up to 1.5% of maximum grade,

changing the direction of the dynamics and, moreover, putting the student on average 5-25

positions lower in the overall students’ rating, falling lower with less friends.

Note, that there is a highly significant difference between the economics and other

departments for most of the specifications. On average, students of economics department

have -0.5 lower difference of grades, which suggest the overall lower grades of the economics

department in the second year. This evidence indicates the necessity of using the model with

correlated effects or treating the departments separately by splitting the full sample.

Discussing the results for those, who had their own retakes, versus those, who did

not is the other possible way to improve the estimation results.

The further analysis is given in the next subsections, where I present the results of

estimation in the subsamples, of the model with correlated effects, as well as the estimation

with a possibly improved network. However, it is worth pointing out, that the sample size

for the main specification is 250 students, which may be not sufficiently big to capture the

desired effect, and the results of the estimation in the subsamples should be treated with

even more care, since with the lower sample size the asymptotic properties of the proposed

estimator may suffer.

2.4.2 Connection to one’s own retake

I first report the results for the subsamples of students with and without own retakes.

It can be suggested that the students that had their own retake may, in general, be connected

to worse peers. Therefore, having friends with retakes might lower the performance even

further, whereas the friends’ retakes are more likely to have either no effect or even positive

influence for the better students.

Table 2.9: Presence of own retake

Variable (1), yes (2), yes (1), no (2), no
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Constant 0.2602 0.1027 -0.1001 -0.3734*

Unexpected Retake -0.2092 -0.1788 0.0246 0.0586

Endogenous effect, period 1 -0.0237 -0.0539 0.0352 -0.0262

Endogenous effect, period 2 0.0756** 0.0671• 0.0429 0.0577•

Time-variant own controls

Tuition, w1 -0.1612 0.0032

Tuition, w2 -0.1834 -0.2685

Working status, w1 -0.1175 -0.0713

Working status, w2 0.1379 0.1192

Network’s controls

Economics, w1 -0.1964 -0.0474 0.0616 0.1081

Economics, w2 -0.9973*** -0.9131*** -0.3932 -0.5344•

Management, w1 0.3098

Management, w2 -0.0338

Working status, w1 -0.5632**

Working status, w2 -0.2305

HE of father, w1 0.6306• 0.3753

HE of father, w2 -0.3627 -0.4972•

Dummy siblings, w1 0.7689***

Dummy siblings, w2 0.2113

Sample size 83 83 167 167

BIC -336.10 -348.14 -288.34 -290.82

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Table 2.9 gives hints that the outcomes are influenced differently by the peers in case

of presence of one’s own retake and in the case when the student passed all the exams from

the first attempt. First of all, unexpected retake has an insignificant and negative effect of

higher magnitude in case of own retake than without own retakes. So, when students in the

network have retakes together, they will less likely improve in the future. It may be partially

explained by the worse peer group, and partially by the fact that fewer friends are able to

help to catch up with the courses after retakes. It can also be observed that the endogenous

effect changes the sign, from negative to positive, and is more significant for students with

own retakes, which may suggest that the students, especially the ones with their own retake

tend to seek for the better peers in the future. However, the data does not provide evidence

that the willingness to connect to better peers is coming from the discussed shock, therefore,

the changes may be considered as a natural learning process.
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2.4.3 Effects in different departments

In this subsection, I discuss the results for subsamples of different departments. I

present the results for two departments: economics and management. The economics de-

partment showed significantly different results in comparison to the others in the main speci-

fication, and the management department is quite similar to the economics in the curriculum

and direction of study.

Table 2.10: Departments

Variable (1), Econ. (2), Econ. (3), Man. (4), Man.

Constant -0.5228* -0.2265 0.5614* 0.7032**

Unexpected Retake -0.4375 -0.4794 0.4043 0.3943

Endogenous effect, period 1 -0.0426 -0.0150 0.2884*** 0.3927***

Endogenous effect, period 2 0.0334 0.0544 0.1635** 0.2164**

Time-variant own controls

Tuition, w1 0.2538 -0.4889

Tuition, w2 -0.0479 -0.7778*

Working status, w1 -0.0888 0.0054

Working status, w2 0.2119 0.0880

Network’s controls

Ability, w1 -0.0056* -0.0062**

Ability, w2 -0.0049** -0.0048**

Gender, w1 1.0102*

Gender, w2 0.2889

Working status, w1 -0.6228 -0.6353*

Working status, w2 -0.5707 -0.4209

HE of mother, w1 -0.4308 -0.7535*

HE of mother, w2 -0.3144 -0.5867*

Dormitory, w1 -1.5248*** -0.8094•

Dormitory, w1 -0.9558** -0.8145*

Dummy siblings, w1 0.4005

Dummy siblings, w2 -0.3945

Sample size 82 82 68 68

BIC -305.45 -300.61 -456.68 -471.57

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

As can be seen from Table 2.10, the discussed effect is surprisingly different for

two departments. While specification (1) for the economic department have the negative

effect of the unexpected retake, the same effect in the specifications for management is

positive. However, estimators are not significant. Both subsamples have a small number

of observations, which can cause the low significance of the effect of the interest, and the
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results should be treated with caution. It is possible to eliminate the differences between the

departments and estimate the full sample, by exploring the model with correlated effects.

2.4.4 Estimation in presence of correlated effects

In this Subsection, I would like to discuss the results of the estimation proposed in

Section 2.4.2. Simple estimation in the presence of correlated effects might lead to the biased

results. Next table presents the summary of results, judging from which I can then compare

the two specifications: with and without correlated effects.

Table 2.11: Estimation of specification with correlated effects

Variable (1) (2) (3) (4) (5)

Unexpected Retake -0.4144• -0.3899• -0.3817• -0.3817• -0.4616*

Endogenous effect, period 1 -0.0361 -0.0526 -0.0378 -0.0379 0.0186

Endogenous effect, period 2 0.0143 0.0016 0.0544 0.0544 0.0461

Time-variant own controls

Tuition, w1 0.0834 0.0411

Tuition, w2 -0.1011 -0.1292

Working status, w1 -0.0382 0.0266 0.0411 0.0590

Working status, w2 0.1077 0.1355• -0.1292 0.0991

Living conditions, w1 -0.1323

Living conditions, w2 0.2102

Network’s controls

HE of mother, w1 -0.6547 -0.5532 -0.5785 -0.5785 -0.6717

HE of mother, w2 -0.2011 -0.1541 -0.3396 -0.3396 -0.3875

HE of father, w1 0.5325 0.5789 0.4663 0.4663

HE of father, w2 -0.0167 0.0378 -0.0831 0.3817

Sample size 250 250 250 250 250

BIC -183.89 -185.56 -195.56 -192.25 -197.99

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Controlling for correlated effects leads to more significant and persistent value of

negative effect of unexpected retakes than in the main specification. The magnitude of the

effect in specification (5) suggests that if a friend has a retake during the first year, which

the student couldn’t predict at all, this will make the difference between the average grade

of year two and the average grade of year one for this student on average 0.46 lower, if the

student has only 1 friend, and approximately 0.065 lower, if the student has 7 friends. The

maximum of the grades is 10 so that the person lose almost 5% of the maximum grade when

the network includes friends with retakes.
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2.4.5 Additional analysis

Improving network

As it was mentioned before, students were asked to name up to 7 friends from their

cohort, although some named more than 7. However, it is reasonable to assume that all

named friends are not equal for the person. I introduce two possible ways to account for

better friends so that the quality of the network can be improved.

First, I assume that the friends named among the first are more important than

the others, since they were remembered earlier, and the best friends can’t be named last.

I reduced the network, only taking up to three named first students. I conducted analysis

for both models with and without accounting for correlated effects. The suggested improve-

ment of the network didn’t, however, increased the significance of the results12. The effect

of an unpredicted component of friends’ exam retake is not significantly different from zero.

Therefore, it might be reasonable to conclude that the unexpected negative or positive per-

formance of the whole network of friends is more important for the future performance of

students than the performance of only best friends.

Second, I observe that about 60% of the network is reciprocal, so I conduct similar

analysis limiting the network to only reciprocal connections. This again does not bring any

improvement in terms of the significance of the studied effect. It seems that the students’

performance is shaped not only by their mutual friends, but although by those, who don’t

consider them as friends, but are considered as friends by the students. These students may

be viewed as a sort of role models, and therefore, are important to be taken into account.

Thus, the initial full network is able to capture the effect of unexpected shock better

than the versions of the network, considered initially as possible improvements.

Important classes

The further analysis divides the subjects, studied by the students in the sample, into

two parts: more important and less important. All subjects have the corresponding amount

of ECTS credits, from 0 to 8 with average around 2.5. For the analysis, I set the threshold

of 4 ECTS points. However, some subjects have several exams, for example, Mathematical

Analysis, and the weight of some of the exam in the series can be lower than 4, but, at least,

one exam has ECTS higher than 4. In these cases, I am including all the exams of the series

in the sample of important exams. This restricts the set of the students with retakes to 2/3

of the initial set.

Table 2.12 provides the results of the analysis in the new setting for the model

without correlated effects.

Table 2.12: Estimation with retakes for classes with ECTS 4 and higher

12The detailed results are presented in Tables B.4, B.5 in Appendix B
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Variable (1) (2) (3) (4) (5)

Constant -0.2176 -0.1670 -0.2005

Unexpected Retake -0.4912** -0.5484*** -0.5158** -0.4907** -0.5564**

Endogenous effect, period 1 0.1072* -0.0211 -0.0160 0.1076* -0.0158

Endogenous effect, period 2 0.0378 0.0279 0.0284 0.0401 0.0307

Time-variant own controls

Tuition, w1 0.0417 0.0430 0.0530

Tuition, w2 -0.0861 -0.0575 -0.0830

Working status, w1 -0.0568 -0.0570 -0.0616

Working status, w2 0.1488* 0.1494* 0.1469*

Living conditions, w1 -0.0222 -0.2673

Living conditions, w2 0.0312 -0.1808

Network’s controls

Economics, w1 -0.1032 0.1652 0.1257 -0.1129 0.1387

Economics, w2 -0.6177*** -0.5279** -0.5466** -0.6240*** -0.5411**

Management, w1 0.4322 -0.4049 0.4159

Management, w2 0.1209 0.1045 0.1127

Working status, w1 -0.8120* -0.8186**

Working status, w2 -0.0074 -0.0102

Sample size 250 250 250 250 250

BIC -215.86 -220.76 -220.81 -226.98 -230.99

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

It can be observed that a lot of the results resemble the results for the model with all

retakes, however, the effect of the unpredicted retake is more significant when only important

classes are taken into consideration. The sign of the estimator remains negative but it gains

much more significance, suggesting the different effect that different classes may have on the

future performance of the network. The results also suggest the higher magnitude than in

the initial model. Now, the friend’s unexpected retake of the important class may make the

difference between average grades in two periods bigger and reduce the average grade of the

second year additionally by up to 0.5, which equals to 5% of the maximum grade.

This result is expectable. For example, the new set of retakes does not include

the class of Discrete Mathematics in the Economics department but includes Mathematical

Analysis. These two classes differ not only in the amount of ECTS but also in the length

and importance for the further classes. Mathematical Analysis is studied throughout the

whole length of the first year, whereas Discrete Mathematics only for one term. Moreover,

the former introduces a lot of methods used later in the core classes of the higher years, such

as Micro or Macro, while the latter might be considered to contribute less in future studies.

The full list of classes, which were retaken at least once and the subset of more important

classes are presented in Table B.6 of Appendix B.

The significance of a dummy of the Economics department suggests that the model
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with correlated effects may be used, as in the model with the full set of retakes. Surprisingly,

the estimator of the effect of the unexpected retake in the model with correlated effects loses

the significance once I restrict the set of the retakes.

2.5 Conclusion

The paper discusses the spread of the unpredicted shock across the network of friends

in the university environment using the newly introduced dynamic peer effect model in the

presence of endogenous shock.

Exam retakes play an important role in determining the future of the student. How-

ever, it was shown that the unpredicted component of the retake may influence not only the

students with a retake but also the whole network of friends. In most of the cases the effect

is not very significant, but still should not be ignored. When the threshold of failing the

exam is too high, some students, viewed by their friends as high-achievers, are likely to fail.

This anticipation mistake leads to the decrease of the average grades of the whole friendship

network.

The ideas explored in this paper can be further extended to the analysis of the net-

works in other settings, not only for educational outcomes. The method is applicable, when

the endogenous shocks might have the longitudinal effect on the network outcomes, such

as, for example, a treatment that for some reasons cannot be randomized, or conversational

networks in developing communities, etc.

I have presented the results for identification of such models, that allow disentan-

gling the effect of unpredicted shock on the future performance. The findings of the paper

suggest that it is sufficient to assume time-variability of networks together with the exis-

tence of intransitive triads (or distances of length three, depending on the correlated effects

assumption) in each of the states of the network for the similar models. Intransitive triads

are guaranteed by the presence of two students only connected via the third common friend

but not directly. The characteristics of friends of the friends don’t influence directly the

outcome, and, therefore, can be used as an instrumental variable for the friends’ outcome.

Such instruments can, therefore, deal with endogeneity issue. The group of new friends,

different from the group of old friends, let the model capture the changes, happening due to

the shock.

The procedure developed in the paper is shown to yield consistent estimators of the

individual characteristics, endogenous peer effect and effect of unpredicted shock.

All theoretical findings are tested on the dataset of university students, connected

via the friendship network. Most of the empirical evidence suggest that the unpredicted

exam retakes of the friends will have a negative effect on the changes of the performance

of students. This effect is more prominent for students with own retakes and for students

in the Economics department. The higher significance of the estimators in the model with

correlated effects gives evidence of the presence of unobserved homophily that influences

link formation. Change of sign of endogenous effect for students with own retakes shows the
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importance of further exploration of the problem and improvement of the model by inclusion

of the link formation mechanism.
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Appendix

A. Main proofs

Regularity conditions (adaptation of L. Lee (2003)):

Assumption 1. The matrices (I − β1G1) and (I − β2G2) are nonsingular

Assumption 2. The row and column sums of the matrices G1, G2, (I − β1G1)−1 and
(I − β2G2)−1 are uniformly bounded in absolute value.

Assumption 3. The elements of the matrices X1 and X2 are uniformly bounded in absolute
value

Assumption 4. The error terms {νi : 1 ≤ i ≤ n} are identically distributed. Furthermore,
they are distributed (jointly) independently with E[νiX

1
i ] = 0 and E[ν2i ] = σν < ∞.

Additionally, they are assumed to possess finite fourth moments. The error terms
{∆εi : 1 ≤ i ≤ n} are identically distributed. Furthermore, they are distributed
(jointly) independently with E[∆εi] = 0 and E[∆ε2i ] = σε1 + σε2 < ∞. Additionally,
they are assumed to possess finite fourth moments

Assumption 5. The limit J = limn→∞
1
nZ

TZ exists and is nonsingular.

Assumption 6. The limit J̄ = limn→∞
1
nZ̄

T
Z̄ exists and is nonsingular.

Assumption 7. Step 1. The initial estimator β12SLS of β1 is na-consistent for some a > 0.
The initial estimators α1

2SLS , γ12SLS and δ12SLS are consistent estimators of α1, γ1 and
δ1, respectively. Step 2. The initial estimators β1,2SLS and β2,2SLS of β1 and β2 are
nb-consistent for some b > 0. The initial estimators α1,2SLS , α2,2SLS , γ1,2SLS , γ2,2SLS ,
δ1,2SLS and δ2,2SLS are consistent estimators of α1, α2, γ1, γ2, δ1 and δ2, respectively.

Proof of Lemma 1.

The structural form equation:

P (retakei) = α1 + β1
∑
j 6=i

G1
ijy

1
j + γ1X1

i + δ1
∑
j 6=i

G1
ijX

1
j + νi, E[νi|X] = 0

can be rewritten in the reduced form in the following manner:

PR = α1i+ β1G1y1 + γ1X1 + δ1G1X1 + ν, E[ν|X1] = 0

PR = α1i+ β1G1y1 + (γ1I + δ1G1)X1 + ν, E[ν|X1] = 0

Taking conditional expectations:

E[PR|X1] = α1i+ β1G1E[y1|X1] + (γ1I + δ1G1)X1

Note that y can be expressed in terms of peer effect model as the one used for the probability
of retakes:

y1i = α0 + β0
∑
j 6=i

G1
ijy

1
j + γ0X

1
i + δ0

∑
j 6=i

G1
ijX

1
j + ξi, E[ξi|X] = 0
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with reduced form:

y1 = α0i+ β0G
1y1 + (γ0I + δ0G

1)X1 + ξ, E[ξ|X] = 0

Then following steps of Bramoullé, Djebbari, and Fortin (2009):

y1 = α0(I − β0G1)−1 + (I − β0G1)−1(γ0I + δ0G
1)X1 + (I − β0G1)−1ξ, E[ξ|X] = 0

Using (I − β0G1)−1 =
∑∞

k=0 β
k
0(G1)

k
:

y1 = α0(I − β0G1)−1 + γ0X
1 + (γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+1
X1 +

∞∑
k=0

βk0(G1)
k
ξ

And the expected mean friends’ groups’ performance conditional on X1 can be written as:

E[G1y1|X1] = α0(I − β0G1)−1 + γ0G
1X1 + (γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+2
X1

As was proven in Bramoullé, Djebbari, and Fortin (2009), if γ0β0 + δ0 6= 0 and I,G1 and
(G1)2 are linearly independent, the social effects are identified. So this expression can be
plugged-in into the reduced form of the equation for the probability of retake.

E[PR|X1] = α1i+ β1(α0(I − β0G1)−1 + γ0G
1X1 + (γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+2
X1) +

+(γ1I + δ1G1)X1 = (α1I + β1α0(I − β0G1)−1)) +

+β1(γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+2
X1 + (γ1I + (β1γ0 + δ1)G1)X1

or

E[PR|X1] = α1I+β1(α0(I−β0G1)−1+β1(I−β0G1)−1(γ0I+δ0G
1)G1X1+(γ1I+δ1G1)X1

Now consider two sets of structural parameters (α1, β1, γ1, δ1) and (α̃1, β̃1, γ̃1, δ̃1)
leading to the same reduced form. It means that:

α1I + β1α0(I − β0G1)−1 = α̃1I + β̃1α0(I − β0G1)−1

α1I − α1β0G
1 + β1α0I = α̃1I − α̃1β0G

1 + β̃1α0I

(α1 − α̃1)I + (β1α0 − β̃1α0)I − (α1β0 − α̃1β0)G
1 = 0

(α1 − α̃1 + (β1 − β̃1)α0)I = (α1 − α̃1)β0G
1

and:

β1(I−β0G1)−1(γ0I+δ0G
1)G1+(γ1I+δ1G1) = β̃1(I−β0G1)−1(γ0I+δ0G

1)G1+(γ̃1I+δ̃1G1)

β1(γ0I+δ0G
1)G1+(I−β0G1)(γ1I+δ1G1) = β̃1(γ0I+δ0G

1)G1+(I−β0G1)(γ̃1I+ δ̃1G1)

β1γ0G
1 + β1δ0(G

1)2 + (γ1I − (β0γ
1 − δ1)G1)− β0δ1(G1)

2
) = β̃1γ0G

1 + β̃1δ0(G
12) +

+(γ̃1I − (β0γ̃
1 − δ̃1)G1)− β0δ̃1(G1)

2
)

γ1I+(β1γ0+β1δ0−β0γ1+δ1)G1−β0δ1(G1)
2

= γ̃1I+(β̃1γ0+β̃1δ0−β0γ̃1+δ̃1)G1−β0δ̃1(G1)
2
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(γ1 − γ̃1)I + ((β1 − β̃1)γ0 + (β1 − β̃1)δ0 − β0(γ1 − γ̃1) + δ1 − δ̃1)G1 + β0(δ̃
1 − δ1)(G1)

2
= 0

Now let I,G1 and (G1)2 be linearly independent. Then the above equality holds only if all
three coefficients are 0:

γ1 − γ̃1 = 0

(β1 − β̃1)γ0 + (β1 − β̃1)δ0 − β0(γ1 − γ̃1) + δ1 − δ̃1 = 0

β0(δ̃
1 − δ1) = 0

If β0 6= 0 and γ20 +δ20 6= 0, two sets of coefficients (α1, β1, γ1, δ1) and (α̃1, β̃1, γ̃1, δ̃1) are equiv-
alent. Note that the restrictions on the coefficients of the peer effect model suggest that the
model has an endogenous peer effect and the performance depends on own set of observed
characteristics, or on peers observed characteristics, or on both. These requirements are
natural for the peer effect model and therefore, the identification result is achieved. �

Proof of Lemma 2. (Identification, Step 2, no correlated effects)

Recall the second step equation:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + δ̃URi + γ2X

2
i − γ1X1

i +

+δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ∆εi

It can be rewritten in the reduced form as following:

∆y = (α2 − α1)i+ β2G
2y2 − β1G1y1 + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2−

−δ1G1X1 + ∆ε, with UR defined as discussed in Section 2 and E[∆ε] = 0

This can be further modified in the following manner:

E[∆y|X2] = (α2 − α1)i+ β2G
2E[y2|X2]− β1G1E[y1|X2] + δ̃E[UR|X2]+

+γ2X
2
TV − γ1X

1
TV + δ2G

2X2 − δ1G1X1

with

E[y1|X2] = (I − β0,1G1)−1α0,1 + (I − β0,1G1)−1(γ0,1I + δ0,1G
1)E[X1|X2] =

= (I − β0,1G1)−1α0,1 + (I − β0,1G1)−1(γ0,1I + δ0,1G
1)X1,

since X1 is already known by the time X2 is revealed, therefore, the latter cannot add any
new information.

Also:

E[y2|X2] = (I − β0,2G2)−1α0,2 + (I − β0,2G2)−1(γ0,2I + δ0,2G
2)X2

Note that UR is also defined at the first period, hence, the new information in X2 will not
anything new for the expected value of the UR, hence E[UR|X2] = UR.

Also notice than in principle coefficients in the model in differences α1, β1, γ1, δ1,
α2, β2, γ2, δ2 can be different from the corresponding coefficients in the single period peer
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effect models α0,1, β0,1, γ0,1, δ0,1, α0,2, β0,2, γ0,2, δ0,2. This can be due to the unaccounted in
single period model fixed effects that can be eliminated in the model in differences and due
to the presence of the shock in the model, which can take some of the effect, that would be
otherwise attributed towards endogenous or exogenous effect.

Then, letting α = α2 − α1

E[∆y|X2] = αi+β2G
2(I−β0,2G2)−1(α0,2+(γ0,2I+δ0,2G

2)X2)−β1G1(I−β0,1G1)−1(α0,1+

(γ0,1I + δ0,1G
1)X1) + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2 − δ1G1X1

First, if G1 = G1, then δ2 and δ1 are identified only partially, for time-variant vari-
ables of X1 and X2 respectively. This assumption can be relaxed, if we let the coefficients of
the single period coincide with the coefficients of the coefficients of the model in differences.
Then, however, the following assumption need to be made δ̃ = 0, meaning that the shock
has no effect on the outcome, which is not true in the setting of the model of the paper.
Hence, G1 = G1 is one of the identifying assumptions for the second step model.

Next, I follow similar steps to the proof of Lemma 1. Consider two sets of the pa-
rameters leading to the same reduced form, (α1, β1, γ1, δ1, α2, β2, γ2, δ2, δ̃) and (α̃1, β̃1, γ̃1, δ̃1,

α̃2, β̃2, γ̃2, δ̃2,
˜̃
δ). I do not include the single-period parameters, since their identification

is achieved separately, if I,G1, (G1)2 are linearly independent and if I,G2, (G2)2 are also
linearly independent. Then:

αI + β2G
2(I − β0,2G2)−1α0,2 − β1G1(I − β0,1G1)−1α0,1 =

= α̃I + β̃2G
2(I − β0,2G2)−1α0,2 − β̃1G1(I − β0,1G1)−1α0,1

β2G
2(I − β0,2G2)−1(γ0,2I + δ0,2G

2) + (γ2I + δ2G
2) =

= β̃2G
2(I − β0,2G2)−1(γ0,2I + δ0,2G

2) + (γ̃2I + δ̃2G
2)

β1G
1(I − β0,1G1)−1(γ0,1I + δ0,1G

1) + (γ1I + δ1G
1) =

= β̃1G
1(I − β0,1G1)−1(γ0,1I + δ0,1G

1) + (γ̃1I + δ̃1G
1)

δ̃ =
˜̃
δ

Note, that I added time invariant own exogenous variables to the vectors X1
TV and X2

TV .
Since they are not in the model, zeros are assumed on the additional elements of γ1 and γ2.

The third equation can be further simplified as following:

γ1I + (δ1 − γ1β0,1 − β1γ0,1)G1 + (β1δ0,1 − δ1β0,1)G1)2 =

= γ̃1I + (δ̃1 − γ̃1β0,1 − β̃1γ0,1)G1 + (β̃1δ0,1 − δ̃1β0,1)G1)2

Then, if I,G1, (G1)2 are linearly independent, the coefficients in front of these three matrices
are 0:

γ1 − γ̃1 = 0

δ1 − γ1β0,1 − β1γ0,1 = δ̃1 − γ̃1β0,1 − β̃1γ0,1, or

(δ1 − δ̃1)− (γ1 − γ̃1)β0,1 + (β1 − β̃1)γ0,1 = 0

β1δ0,1 − δ1β0,1 = β̃1δ0,1 − δ̃1β0,1, or

(β1 − β̃1)δ0,1 − (δ1 − δ̃1)β0,1 = 0

Now, if β0,1 6= 0 and γ20,1+δ20,1 6= 0, the two sets of the coefficients, (γ1, δ1, β1) and (γ̃1, δ̃1, β̃1),
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coincide.
Similar argument is valid for the coefficient in front of X2, hence (γ2, δ2, β2) and

(γ̃2, δ̃2, β̃2), also coincide, when I,G2, (G2)2 are linearly independent and β0,2 6= 0 and
γ20,2 + δ20,2 6= 0.

The other two equalities lead then automatically to α = α̃ and δ̃ =
˜̃
δ without any

additional assumptions. Hence, the identification is achieved under the conditions of linear
independence of I,G1, (G1)2 and I,G2, (G2)2 and G1 6= G2 and mentioned assumptions
on the coefficients. �

Proof of Lemma 3.

The structural form equation:

P (retakei)−
∑
j 6=i

G1
ijP (retakej) = β

∑
j 6=i

G1
ij [y

1
j −

∑
k 6=j

G1
jky

1
k] + γ[X1

i −
∑
j 6=i

G1
ijX

1
j ] +

+δ
∑
j 6=i

G1
ij [X

1
j −

∑
k 6=j

G1
jkX

1
k ] + [ηi −

∑
j 6=i

G1
ijηj ], E[ηi|X1] = 0

can be rewritten in the reduced form in the following manner:

(I−G1)PR = β(I−G1)G1y1+γ(I−G1)X1+δ(I−G1)G1X1+(I−G1)η, E[η|X1] = 0

(I −G1)PR = β(I −G1)G1y1 + (γI + δG1)(I −G1)X1 + (I −G1)η, E[η|X1] = 0

Taking conditional expectations:

E[(I −G1)PR|X1] = β(I −G1)G1E[y1|X1] + (γI + δG1)(I −G1)X1

Note that y can be expressed in terms of peer effect model as the one used for the probability
of retakes:

y1i −
∑
j 6=i

G1
ijy

1
j = β0

∑
j 6=i

G1
ij [y

1
j −

∑
k 6=j

G1
jky

1
k] + γ0[X

1
i −

∑
j 6=i

G1
ijX

1
j ] + δ0

∑
j 6=i

G1
ij [X

1
j −

−
∑
k 6=j

G1
jkX

1
k ] + [ξi −

∑
j 6=i

G1
ijξj ], E[ξi|X1] = 0

with reduced form:

(I −G1)y1 = β0(I −G1)G1y1 + (γ0I + δ0G
1)(I −G1)X1 + (I −G1)ξ, E[ξ|X1] = 0

Then following steps of Bramoullé, Djebbari, and Fortin (2009):

(I−G1)y1 = (I−β0G1)−1(γ0I+δ0G
1)(I−G1)X1+(I−β0G1)−1(I−G1)ξ, E[ξ|X] = 0

And:
E[(I −G1)G1y1|X1] = (I − β0G1)−1(γ0I + δ0G

1)(I −G1)G1X1

As was proven in Bramoullé, Djebbari, and Fortin (2009), if γ0β0 + δ0 6= 0 and
I,G1, (G1)2 and (G1)3 are linearly independent, the social effects are identified. So this
expression can be plugged-in into the reduced form of the equation for the probability of
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retake.

E[(I−G1)PR|X1] = β((I−β0G1)−1(γ0I+δ0G
1)(I−G1)G1)X1+(γI+δG1)(I−G1)X1

Now consider two sets of structural parameters (β, γ, δ) and (β̃, γ̃, δ̃) leading to the
same reduced form. It means that:

β(I − β0G1)−1(γ0I + δ0G
1)(I −G1)G1 + (γI + δG1)(I −G1) =

= β̃(I − β0G1)−1(γ0I + δ0G
1)(I −G1)G1 + (γ̃I + δ̃G1)(I −G1)

β(γ0I + δ0G
1)(I −G1)G1 + (I − β0G1)(γI + δG1)(I −G1) =

= β̃(γ0I + δ0G
1)(I −G1)G1 + (I − β0G1)(γ̃I + δ̃G1)(I −G1)

βγ0G
1 + (βδ0 − βγ0)(G1)2 − βδ0(G1)3 + (γI − (β0γ − δ + γ)G1)−

−(β0δ − γβ0 + δ)(G1)2 + β0δ(G
1)3) =

= β̃γ0G
1 + (β̃δ0 − β̃γ0)(G1)2 − β̃δ0(G1)3 + (γ̃I − (β0γ̃ − δ̃ + γ̃)G1)−

−(β0δ̃ − γ̃β0 + δ̃)(G1)2 + β0δ̃(G
1)3)

γI + (βγ0 − β0γ + δ − γ)G1 + (βδ0 − βγ0 − β0δ + β0γ − δ)(G1)
2

+ (β0δ − βδ0)(G1)
3

=

= γ̃I + (β̃γ0 − β0γ̃ + δ̃ − γ̃)G1 + (β̃δ0 − β̃γ0 − β0δ̃ + β0γ̃ − δ̃)(G1)
2

+ (β0δ̃ − β̃δ0)(G1)
3

(γ1 − γ̃1)I + ((β − β̃)γ0 − (γ − γ̃)β0 + (δ − δ̃)− (γ − γ̃))G1 + ((β − β̃)δ0 − (β − β̃)γ0−

−(δ − δ̃)β0 + (γ − γ̃)β0 − (δ − δ̃))(G1)
2

+ ((δ − δ̃)β0 − (β − β̃)δ0)(G
1)

3
= 0

Now let I,G1, (G1)2 and (G1)3 be linearly independent. Then the above equality holds only
if all three coefficients are 0:

γ − γ̃ = 0

(β − β̃)γ0 − (γ − γ̃)β0 + (δ − δ̃)− (γ − γ̃) = 0

(β − β̃)δ0 − (β − β̃)γ0 − (δ − δ̃)β0 + (γ − γ̃)β0 − (δ − δ̃) = 0

(δ − δ̃)β0 − (β − β̃)δ0 = 0

If β0 6= 0 and γ20 + δ20 6= 0, two sets of coefficients (β, γ, δ) and (β̃, γ̃, δ̃) are equivalent. Note
that the restrictions on the coefficients of the peer effect model suggest that the model has an
endogenous peer effect and the performance depends on own set of observed characteristics,
or on peers observed characteristics, or on both. These requirements are natural for the peer
effect model and therefore, the identification result is achieved. �
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Proof of Lemma 4. (Identification, Step 2, correlated effects)

The proof for Lemma 4 follows directly by applying similar arguments to the proofs
of Lemma 2 and Lemma 3. Then, the identification is achieved under the conditions of linear
independence of I,G1, (G1)2, (G1)3 and I,G2, (G2)2, (G2)3 and G1 6= G2 and the follow-
ing assumptions on the coefficients: β0,1 6= 0, γ20,1 + δ20,1 6= 0, β0,2 6= 0 and γ20,2 + δ20,2 6= 0. �

Proof of Lemma 5. Consistency of θ̂Lee of Step 1

√
n(θ̂Lee − θ) = (

1

n
Ẑ
T
X̃1)−1

1√
n
Ẑ
T
PR−

√
nθ = (

1

n
Ẑ
T
X̃1)−1(

1√
n
Ẑ
T
PR− 1√

n
Ẑ
T
X̃1θ)

Then we can rewrite the last term:

1√
n
Ẑ
T
PR− 1√

n
Ẑ
T
X̃1θ =

1√
n
Ẑ
T

(PR−X̃1θ) =
1√
n
Ẑ
T

(αi+βG1y1+(γI+δG1)X1+ν−

−(αi+ (γI + δG1)X1 + βG1y1)) =
1√
n
Ẑ
T
ν

Hence,
√
n(θ̂Lee − θ) = (

1

n
Ẑ
T
X̃1)−1

1√
n
Ẑ
T
ν

Then the following two statements can be shown under the assumed regularity conditions
and by direct application of Lemmas A.7, A.8 and A.9 in L. Lee (2003):

plim
1

n
Ẑ
T
X̃1 = plim

1

n
ZTZ = J

1√
n
Ẑ
T
ν

D−→ N (0, σ2νJ)

which will yield the desired result. �

Proof of Lemma 6. Consistency of φ̂Lee of Step 2

√
n(φ̂Lee−φ) = (

1

n
ˆ̄Z
T
X̄)−1

1√
n

ˆ̄Z
T

(y2 − y1)−
√
nφ = (

1

n
ˆ̄Z
T
X̄)−1(

1√
n

ˆ̄Z
T

(y2 − y1)− 1√
n

ˆ̄Z
T
X̄φ)

Then we can rewrite the last term:

1√
n

ˆ̄Z
T

(y2 − y1)− 1√
n

ˆ̄Z
T
X̄φ =

1√
n

ˆ̄Z
T

(y2 − y1 − X̄φ) =
1√
n

ˆ̄Z
T

((α2 − α1)i+ β2G
2y2−

−β1G1y1+δ̃UR+γ2X
2
TV −γ1X

1
TV +δ2G

2X2−δ1G1X1+∆ε−((α2−α1)i+β2G
2y2−β1G1y1+

+δ̃UR+ γ2X
2
TV − γ1X

1
TV + δ2G

2X2 − δ1G1X1) =
1√
n

ˆ̄Z
T

∆ε
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Hence,
√
n(φ̂Lee − φ) = (

1

n
ˆ̄Z
T
X̄)−1

1√
n

ˆ̄Z
T

∆ε

The following two statements have to hold to get the desired result:

plim
1

n
ˆ̄Z
T
X̄ = plim

1

n
Z̄
T
Z̄ = J̄

1√
n

ˆ̄Z
T

∆ε
D−→ N (0, (σ2ε1 + σ2ε2)J̄)

First, let’s consider 1
n

ˆ̄Z
T
X̄. It is equivalent to 1

n [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

E[G1y1(θ̂12SLS)|X1], E[G2y2(φ̂2SLS)|X2,X1]]T [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR, G1y1,
G2y2]
First six rows do not consist any element of estimated vector of coefficients, and therefore,
will not matter for the consistency argument.

Notice also that G1y1 = G1(I − β1G1)−1α1 +G1(I − β1G1)−1(γ1I + δ1G1)X1 +
G1(I−β1G1)−1ε1 and G2y2 = G2(I−β2G2)−1[(α2−α1)i+(I−β1G1)((I−β1G1)−1α1 +
(I−β1G1)−1(γ1I+ δ1G1)X1) + δ̃UR+γ2X

2
TV −γ1X1

TV + δ2G
2X2− δ1G1X1] +G2(I−

β2G
2)−1∆ε can be both split into two part: with and without error term.

Define E[G1y1] ≡ G1y1 − G1(I − β1G1)−1ε1 and E[G2y2] ≡ G2y2 − G2(I −
β2G

2)−1∆ε
Consider now row six: 1

n(E[G1y1(θ̂12SLS)|X1])T [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

E[G1y1], E[G2y2]] + 1
n(E[G1y1(θ̂12SLS)|X1])T [0, 0, 0, 0, 0, 0, G1(I − β1G1)−1ε1, G

2(I −
β2G

2)−1∆ε].
By the assumed uniform boundedness of X1, X2 in absolute values as well as by the

uniform boundness of the row and column sums of the matrices G1, G2, (I − β1G1)−1 and
(I − β2G2)−1, by E[∆ε] = 0 and by Lemmas A.6, A.7 and A.8 in L. Lee (2003), it can be
shown that this row will have a limit in probability, which equals to corresponding row of J̄ .

Similar argument holds for the row seven: 1
n(E[G2y2(φ̂2SLS)|X1,X2])T [i,X2

TV ,X
1
TV ,

G2X2,G1X1,UR, E[G1y1], E[G2y2]] + 1
n(E[G2y2(φ̂2SLS)|X1,X2])T [0, 0, 0, 0, 0, 0,G1(I−

β1G1)−1ε1, G
2(I − β2G2)−1∆ε]. Therefore, the first statement is correct.

For the second statement consider 1√
n

ˆ̄Z
T

∆ε = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

E[G1y1(θ̂12SLS)|X1], E[G2y2(φ̂2SLS)|X2,X1]]T∆ε.

None of the elements in ˆ̄Z consist ∆ε, therefore, since E[∆ε] = 0, the expectation of
the whole term gives 0, which concludes the consistency part of the proof.

Moreover, the variance can be written as (σε1 +σε2)E[ 1n
ˆ̄Z
T ˆ̄Z]. By the same Lemmas

as before, it can be shown that plimE[ 1n
ˆ̄Z
T ˆ̄Z] = plim 1

nZ̄
T
Z̄ = J̄ , which concludes the proof

of normality.�.

Discussion of 2.4.2, step 2.

I am approaching the estimation of the second step also adopting the 2SLS procedure
discussed for the first step. First, the model (5) can be rewritten in the following way:

∆y = (α2 − α1)i+ β2G
2y2 − β1G1y1 + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2−
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−δ1G1X1 + ∆ε

Then:

(I −G1)∆y = β2(I −G1)G2y2 − β1(I −G1)G1y1 + δ̃(I −G1)UR+ γ2(I −G1)X2
TV −

− γ1(I −G1)X1
TV + δ2(I −G1)G2X2 − δ1(I −G1)G1X1 + (I −G1)∆ε (2.10)

Recall: X̄ = [(I −G1)X2
TV , (I −G1)X1

TV , (I −G1)G2X2, (I −G1)G1X1, (I −
G1)UR, (I −G1)G1y1, (I −G1)G2y2].

And M = [(I − G1)X2
TV , (I − G1)X1

TV , (I − G1)G2X2, (I − G1)G1X1, (I −
G1)UR,E[(I −G1)G1y1(θ̂12SLS)|X1], (I −G1)(G2)2X2].

I modify 2.10, taking expectations given X2 and recalling E[∆ε] = 0:

(I − β2G2)E[(I −G1)y2|X2] = (I − β1G1)(I −G1)y1 + δ̃(I −G1)UR+

+γ2(I −G1)X2
TV − γ1(I −G

1)X1
TV + δ2(I −G1)G2X2 − δ1(I −G1)G1X1

E[(I −G1)y2|X2] = (I − β2G2)−1[(I − β1G1)(I −G1)y1 + δ̃(I −G1)UR+

+γ2(I −G1)X2
TV − γ1(I −G

1)X1
TV + δ2(I −G1)G2X2 − δ1(I −G1)G1X1]

Let E[(I−G1)G2y2(φ)|X2,X1] = G2(I−β2G2)−1[(I−β1G1)E[(I−G1)y1(θ1)|X1]+
δ̃(I−G1)UR+γ2(I−G1)X2

TV −γ1(I−G1)X1
TV +δ2(I−G1)G2X2−δ1(I−G1)G1X1],

where E[(I −G1)y1(θ1)|X1] = (I − β1G1)−1(I −G1)(γ1I + δ1G
1)X1.

Then I also define the following vector Z̄ = [(I − G1)X2
TV , (I − G1)X1

TV , (I −
G1)G2X2, (I −G1)G1X1, (I −G1)UR,
E[(I −G1)G1y1(θ1)|X1],E[(I −G1)G2y2(φ)|X2,X1]

I propose the following estimation procedure:

First, compute the 2SLS estimator for φ = (α1, α2, β1, β2, γ1, γ2, δ1, δ2) of the (7), using
vector of instruments M and vector of covariates X̄1, as defined above.

φ̂12SLS = (X̄
T
PMX̄)−1X̄

T
PM (y2 − y1), where PM = M(MTM)−1MT is a projec-

tion matrix.

Second, define ˆ̄Z = Z̄(φ̂2SLS) = [(I − G1)X2
TV , (I − G1)X1

TV , (I − G1)G2X2, (I −
G1)G1X1, (I−G1)UR,E[(I−G1)G1y1(θ̂12SLS)|X1]], E[(I−G1)G2y2(φ̂2SLS)|X2,X1],

where E[(I−G1)G1y1(θ̂12SLS)|X1] = (I−β̂1,2SLSG1)−1(I−G1)(γ̂1,2SLSI+δ̂1,2SLSG
1)X1,

with θ̂12SLS obtained as the estimation of the first stage on the first step.

and E[(I −G1)G2y2(φ̂2SLS)|X2,X1] = G2(I − β̂2,2SLSG2)−1[(I − β̂1,2SLSG1)E[(I −
G1)y1(θ̂12SLS)|X1]+

ˆ̃
δ2SLS(I−G1)UR+γ̂2,2SLS(I−G1)X2

TV −γ̂1,2SLS(I−G1)X1
TV +

δ̂2,2SLS(I −G1)G2X2 − δ̂1,2SLS(I −G1)G1X1]

Finally, we use ˆ̄Z as a new vector of instrument to estimate (7). Then the following

consistent estimator is obtained: φ̂Lee = ( ˆ̄Z
T
X̄)−1 ˆ̄Z

T
(y2 − y1).

B. Additional tables and figures

Table B.1: Distribution of the number of friends in samples

# of friends Long study, year 1 Long study, year2 Short study
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0 17 5.29% 26 8.12 % 9 4.39 %

1 1 0.31% 14 4.37% 3 1.46 %

2 5 1.56% 34 10.62% 4 1.95 %

3 28 8.72% 39 12.19% 17 8.29 %

4 32 9.97% 56 17.5% 28 13.66 %

5 39 12.15% 55 17.19% 34 16.59 %

6 41 12.77% 39 12.19% 34 16.59 %

7 150 46.73% 33 10.31% 28 13.66 %

8 2 0.62% 0 0.00% 21 10.24 %

9 1 0.31% 0 0.00% 14 6.83 %

10 3 0.93% 0 0.00% 4 1.95 %

11 0 0.00% 0 0.00% 3 1.46 %

12 0 0.00% 0 0.00% 1 0.49 %

13 1 0.31% 0 0.00% 3 1.46 %

14 0 0.00% 0 0.00% 2 0.98 %

Table B.2: Unified State Exams statistics

Subject Number of participated Average grade

Mathematics 305 59.87
Russian 305 79.85
Biology 2 71.5
Chemistry 1 80
Computer Science 49 76.96
Economics 27 32.52
Foreign Language 272 70.64
Geography 4 67
History 78 70.94
Law 20 69.4
Literature 20 69.35
Orientalism 2 75
Physics 49 58.45
Social Studies 269 71.01

Table B.3: Descriptive statistics

Variable Mean St.Dev. Min Max

Average grade, wave 1 7.20 0.94 4.58 9.35
Average grade, wave 2 7.23 1.13 4.50 9.86
Retakes (dummy) 0.33 0.47 0 1
Retakes (number) 0.684 1.25 0 6
Ability 183.6 70.09 106 355
Gender (f) 0.67 0.47 0 1
Tuition, wave 1 (private) 0.18 0.38 0 1
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Tuition, wave 2 (private) 0.184 0.39 0 1
Economics department 0.328 0.47 0 1
Management department 0.272 0.45 0 1
Computer Science department 0.26 0.44 0 1
Working status, wave1 (not working) 0.804 0.39 0 1
Working status, wave2 (not working) 0.74 0.44 0 1
Higher Education of mother 0.796 0.4 0 1
Higher Education of father 0.624 0.49 0 1
Single parent family 0.2 0.40 0 1
Family with more than 1 kid 0.54 0.50 0 1
Living conditions, wave 1 (dormitory) 0.16 0.37 0 1
Living conditions, wave 2 (dormitory) 0.172 0.38 0 1

Figure B.1: Distribution of friends in Short and Long surveys
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Table B.4: Results for the models with reciprocal links and best friends, no correlated effects

Variable Recipr., (1) Recipr., (2) Best, (3) Best, (4)

Constant -0.2318• -0.3127**
Unexpected Retake 0.1320 -0.0097 0.0469 0.0768
Endogenous effect, period 1 0.0180 0.0111 0.0231 -0.0467**
Endogenous effect, period 2 0.0480* 0.0407* 0.0818*** 0.0215

Time-variant own controls
Tuition, w1 0.0317 -0.0771
Tuition, w2 -0.1547 -0.2518
Working status, w1 -0.0909 -0.1235
Working status, w2 0.1483* 0.1510*

Network’s controls
Economics, w1 0.0778 -0.0214 0.0082 0.1953
Economics, w2 -0.4701** -0.5337** -0.4869** -0.4096**
Computer Science, w1 -0.4977**
Computer Science, w2 -0.3899•

Working status, w1 -0.2272 -0.1881
Working status, w2 -0.1623 -0.4340**
Siblings, w1 0.2611*
Siblings, w2 -0.0080

Sample size 250 250 250 250
BIC -224.67 -221.77 -221.41 -218.07

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Table B.5: Results for the models with best friends and reciprocal links, with correlated
effects

Variable Recipr.,(1) Recipr.,(2) Best,(3) Best,(4)

Unexpected Retake -0.1212 -0.0913 0.0406 -0.1365
Endogenous effect, period 1 -0.0081 -0.1188 0.0235 -0.0404
Endogenous effect, period 2 0.0498 0.0016 0.0811 -0.0262

Time-variant own controls
Tuition, w1 0.0394 0.1946
Tuition, w2 -0.1933 -0.0608
Working status, w1 0.0296 -0.0248
Working status, w2 0.0493 0.1437

Network’s controls
Abilities, w1 -0.0004
Abilities, w2 -0.0029
Tuition, w1 -0.5923 0.2977
Tuition, w2 -0.4462* 0.1171
Economics, w1 1.0059
Economics, w2 -0.2755
HE of mother, w1 -0.3578
HE of mother, w2 -0.2662
Single Parent, w1 -0.0083
Single Parent, w2 -0.1985
Siblings, w1 0.2174
Siblings, w2 0.1179
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Sample size 250 250 250 250
BIC -191.02 -192.71 -189.98 -183.06

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Table B.6: List of classes with retakes in the sample

Class Department Total No. of retakes Important classes

Algebra Computer Science 21 No
Architecture of Computer
Systems

Computer Science 2 No

Architecture of ECM Computer Science 1 No
Basics of computer technology
and programming

Computer Science 3 Yes

Discrete Mathematic Computer Science 8 No
Discrete Mathematic Economics 2 No
Economic Theory and Institu-
tional Analysis

Management 28 (in 2 terms) Yes

Economic Theory and Institu-
tional Analysis

Computer Science 12 No

Economic Theory Basics Economics 27 (in 3 terms) Yes
Economics Computer Science 3 No
English and other languages All departments 9 No
Geometry and Algebra Computer Science 8 Yes
History of economic thoughts Economics 1 Yes
History of foreign state and
law

Law 2 Yes

Introduction to software engi-
neering

Computer Science 3 Yes

Judicial power and law en-
forcement

Law 1 No

Life safety All departments 3 No
Linear Algebra Economics 28 No
Mathematical Analysis Computer Science 68 (in 2 terms) Yes
Mathematical Analysis Economics 12 Yes
Mathematics Management 31 (in 2 terms) Yes
Methods of financial and eco-
nomic computations

Economics 1 No

Microeconomics Computer Science 18 (in 2 terms) Yes
Philosophy Management 6 Yes
Roman Law Law 1 No
Socio-Economic Statistics Economics 2 No
Sociology Management 1 Yes
Theoretical basics of com-
puter technology

Computer Science 9 (in 2 terms) No

Theory of state and law Law 4 Yes
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Chapter 3

Peer effects in art prices

3.1 Introduction

Art is receiving an increased attention in recent years as a possible investment. Art is

often attributed to the category of so-called passion investment, which also includes jewelry,

antiques, classic car, wine, etc. Passion investments are assessed to amount to 6% of total

wealth (The Wall Street Journal, 2010), and the high-net-worth investors allocate globally

around 17% of their cash to art (World Wealth Report 2013). According to Knight Frank

Luxury Investment Index 2014, the 10-year capital appreciation of art is among highest and

equal to 226%1. The estimation of the real returns in existing literature varies, depending

on the methodology, time period and data used. For example, Goetzmann (1993) reports an

average annual real return on oil paintings of 3.8% for the period between 1850 and 1986,

with returns around 15% after 1940. Mei and Moses (2002) calculate the return of 4.9% for

1875-1999, with 8.2% after 1950. Renneboog and Spaenjers (2013) are more careful in their

estimation with 3.97% over the period 1957-2007.

However, some of these results show the underperformance of art in comparison to

the other types of investments. Moreover, the volatility of the prices on the art market is

rather high. The attractiveness of the art market is, therefore, cannot be explained by the

investment purposes. Global art and antique sales are steadily high in the last several years

and are close to 50 billion Euro (with the exception of 2009 crisis)2. Buying pieces of art

is also a popular tendency among high earners. Owning the work by a famous artist may

help to strengthen a status in the society. Creating one’s own collection can yield additional

respect for their owner. The attractiveness of the art market in comparison to the other

luxury items, as stated in the World Wealth Report 2013, is likely ”driven by auction house

sales, the art market is lively compared to other categories that are characterized more by

inheritance and private sales”. Approximately half of the art sales are made via auctions

(McAndrew 2010), the rest are privately traded, mostly via art dealers. The auction prices

1Consult here for more details.
2European Fine Art Foundation report
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are the ones who set the benchmark for the art prices in general.

In the literature, discussing art pricing, the following standard set of variables is

usually used as determinants of the price: artists’ characteristics, works’ characteristics, such

as medium, authenticity, attribution, size, and topic, as well as the sales characteristics, such

as a date and a place. Artists’ reputation is usually included, however, it is not always clear,

how to account for it. Renneboog and Spanjers (2012) include a dummy for mentioning of

the artist in the classic art history textbook ”Gardner’s Art Through Ages” and a dummy

of exhibiting at Dokumenta in Kassel.

This paper explores one important determinant of the art price formation that is

potentially missing in the existing analysis, namely the artists’ connections. I believe that

connections can influence in two ways. First of all, following the classical peer effect logic,

artists’ links are influencing the development of artists’ style and quality of the works. But

also the prices of the work of one artist may be driven by the prices of the connected

artists. If the artists worked together or were connected by the same movement, it is likely

that their works will resemble some similarities and may get similar prices on the market.

Alternatively, the demand for some artist’s works may increase, increasing the price, if the

works of connected to them artist are not available or too expensive. The famous film about

street artist Banksy, ”Exit through the Gift Shop”, also depicts, how connections can attract

high demand and big money to quite mediocre pieces of art. The paper uses the data on

abstract movement artists and their works, collected especially for this project from the open

resources. Abstract art is, along with contemporary art, among the movements, for which

the price is especially difficult to determine, and hence, exploring the new channels of price

formation may help to understand it better.

I apply the peer effect model introduced by Manski (1993) to the panel data on the

prices of abstract artists’ work sold at Sotheby’s in 2000-first half of 2015. Although the

model is modified to be applied to the panel data, and to use price as an individual outcome

variable and average price as an endogenous variable of the connections, the identifying

assumptions of Bramoullé, Djebbari, and Fortin (2009) are still valid. The network is required

to have intransitive triads for the model without the correlated effect and the connections

of length 3 for the model with correlated effects. This means that there should exist two

artists that are not connected directly, but via one more artist (or two). These assumptions

are plausible for most of the networks, and for the network of abstract artists in particular.

The paper is organized as follows. Section 2 discusses the proposed peer effect model

and suggested estimation method. Section 3 introduces the data and provides some of the

descriptive analysis. Section 4 provides the empirical results. Section 5 concludes.

3.2 Model

I have the sample of all works sold at Sotheby’s for all of the artists in the sample,

for i ∈ [1, I] being an artwork from the whole set, j ∈ [1, J ] being an artist, created the work.

In order to estimate the effect of being connected to other artists on prices of own work, I
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am proposing the model of peer effect, similar to Manski (1993) and Bramoullé, Djebbari,

and Fortin (2009), with the slight appropriate modification:

P ji = α0 + α1ti + β0Zi + β1Xj + β2
∑
l 6=j

GjlXl + γ
∑
l 6=j

GjlP̄l + νj + εji (3.1)

Some comments on the model ingredients are necessary.

P ji - price of the piece i by artist j. The prices are normalized as will be discussed in the

next section.

Zi - are the characteristics of the painting, that may include type of the work, size, possibly

attribution to an artists’ important period, provenance or exhibition history3.

Xj , Xl - are the characteristics of the artists, such as particular style, major work type (paint-

ings, sculpture etc.), country of birth and living, years active, possibly the total amount of

works produced.

Gjl - is adjacency matrix with 1/nj in the jl cell, if an artist j is connected with an artist

l, with nj being the total number of connections of an artist j. Note that, although all the

links are reciprocal in this particular setting, the matrix is not symmetrical, since

nu.j - are the unobserved effects of the artists.

Here β2 represents exogenous effect, how the similar characteristics of the connec-

tions influence the outcomes, γ is endogenous effect, showing how the outcomes of the con-

nections may influence the outcome of the individual, νj are the unobserved characteristics

of particular painter in the panel.

The presence of individual unobservable effect creates additional issue for the iden-

tification of the endogenous effects.

Potentially, the correlated effects can be also present in the model, making the

smaller group within the network to behave similarly due to the unobserved similarities of

the group. However, the network used in this paper is rather small, and the potential simi-

larities of the subgroup can be captured by observed characteristics, such as the country of

origin or/and work, the group affiliation etc. In more general setting the correlated effects

problem can be dealt with by applying the local differences, averaging over the first level

connections’ outcome variables. The identification of endogenous effect is then achieved by

the presence of links of the length 3 or more, and so G3
jlXl can be used as identifying instru-

ments for the endogenous covariates.

Since the network is held constant in the panel, the fixed effects model, that is more

suitable from the empirical point of view, is not applicable, as then the endogenous effect

cannot be identified. So either the unobserved individual effects should be treated by random

effects analysis or Hausman and Taylor type models should be used.

Both possibilities are plausible, depending on the explanation of assumptions one

believes in. The unobserved individual effects in our empirical could represent the level of

talent of the particular artist, his/her popularity, as well as characteristics not included or

3The variables will be discussed in details in later sections
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missing in the vector of covariates attributed to the artist that could influence the outcome

variable. The level of talent and some potential covariates are more likely to be uncorrelated

with explanatory variables. The popularity is, however, possibly correlated with one of the

explanatory variables, in particular, with the characteristics and outcomes of the connec-

tions. In this case, the random effects will produce inconsistent estimators of all parameters,

and the Hausman and Taylor type models are more suitable for this particular setting. It is,

however, more computationally demanding, and once the correlation is absent, the random

effects are preferable.

3.2.1 Hausman and Taylor type models

If it is suspected that individual unobservables are correlated with the explanatory

variables and time-constant4 variables are of interest, as was already mentioned, neither fixed

effects nor random effects are suitable for the analysis.

For now, I will ignore the correlated effects for simplicity of explaining the estimation

approach. I will give a note on adding the correlated effects in the model later in the paper.

First, I divide all explanatory variables into two vectors: time-variant Zj
i = {ti, Zji } and

time-constant Xj = {1, Xj ,
∑

l 6=j GjlXl,
∑

l 6=j GjlP̄l}. I follow Hausman and Taylor (1981)

approach and partition both vectors as follows: Zj
i = (Zj

i1,Z
j
i2) andXj = (Xj1,Xj2) where

Zj
i1 is 1×K1, Z

j
i2 is 1×K2, Xj1 is 1× J1, Xj2 is 1× J2 and the following assumptions are

fulfilled:

E(Xj1νj) = 0 and E(Zj
i1νj) = 0

Additionally, the following assumption is necessary:

E(εji |Xj ,Z
j
1, . . . ,Z

j
wj
, νj) = 0, i = 1, . . . , wj

with wj being the number of works of artist j in the sample.

We can then rewrite the original model in a simpler way:

P ji = βZji + αXj + νj + εji (3.2)

where β = (α1, β0) and α = (α0, β1, β2, γ).

Note that under assumptions in this subsections the time-constant variables are

likely to include the outcome variable of friends, which are endogenous in the model. There-

fore, the vector of instruments necessary to apply HT approach should additionally include

an identifying instrument for the endogenous peer effect, which is the exogenous character-

istics of friends of friends, following Bramoullé, Djebbari, and Fortin (2009). The estimation

procedure is as follows:

• First, the fixed effects approach is applied, which gives consistent estimation of the

4Note, that notion of time is used here not in the direct sense, but rather follows the conventional termi-
nology of panel data analysis. Time here denotes each time one of the works was auctioned.



3.2. Model 69

coefficients of the time-varying variables β̂FE .

• Using the estimator of the first step, calculate the residuals as follows:

d̂j = P̄ j − β̂FEZ̄j = αXj + νj + ε̄j (3.3)

• Now, estimate 3.3 with a 2SLS approach. The standard vector of instruments in

Hausman and Taylor approach is [Zj
i1,Xj1]. To be able to identify the endogenous

peer effect, I suggest adding
∑

l 6=j Gjl
∑

k 6=lGlkXk to vector of instruments.

• Using the residual variance σ∗2 from the previous step and estimator of σ2ε from the

first step, calculate σ2ν = σ∗2−σ2ε /T̄ , where T̄ is a harmonic mean of Tj ’s. And compute

the weighting coefficients for GLS as:

θj = 1− (
σ2ε

σ2ε + Tjσ2ν
)0.5

• Finally, the following transformations are made: P j∗i = P ji − θjP̄ j , Z
j∗
i = Zji − θjZ̄j ,

Xj∗ = Xj − θjX̄. IV regression of P j∗i on Zj∗i , Xj∗ are performed, using the vector of

instruments [Zji − Z̄j , Z
j
i1, Xj1,

∑
l 6=j Gjl

∑
k 6=lGlkXk]

3.2.2 Alternative approach

The Hausman and Taylor approach is computationally challenging, and the number

of artists in the sample is not very high with the number of observations for each of them

varies a lot, therefore, the alternative approach, avoiding usage of panel data structure is

also proposed. The artists dummies are used in this case, combined with the standard 2SLS

proposed by Bramoullé, Djebbari, and Fortin (2009) following L. Lee (2003) approach. The

model is then as follows:

P ji = α0 + α1ti + α2ADi + β0Zi + β1Xj + β2
∑
l 6=j

GjlXl + γ
∑
l 6=j

GjlP̄l + εji (3.4)

with ADi - set of artists’ dummies.

The 2SLS is then conducted with
∑

l 6=j Gjl
∑

k 6=lGlkXk as an instrument for an

endogenous variable
∑

l 6=j GjlP̄l.

The two proposed approaches should yield comparable results since both of them

provide consistent estimators. I do not prove the consistency of the resulting estimators in

this paper, but it logically follows from the proofs in Hausman and Taylor (1981) and L. Lee

(2003).
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3.3 Data description

The data in the paper consists of several parts: the data on the artists’ connections,

the data on the artists’ characteristics and the collection of the prices for the artists’ work

sold at the auctions at Sotheby’s since 2000.

The network data is taken from the diagram, prepared by the group of researchers

for the exhibition ”Inventing Abstraction, 1910-1925” at the Museum of Modern Art, New

York in December 2012-April 2013.5

Figure 3.1: Network of abstract artists

This diagram represents documented relationships among the artists, who played

significant roles in the development of the new art language. The whole list of the artists

can be found in the Appendix C. The diagram was manually transformed into adjacency

matrix, with 1/ni at the ij cell, if the artist i is connected to the artist j, and ni is the

total number of connections of the artist i. Moreover, I collected additional information

about art groups at the time, such as Der Blaue Reiter (The Blue Rider), De Stijl, etc., to

be able to distinguish between the links of different intensity. Table 1 shows the number of

artists affiliated with the groups and the number of artists worked in the particular country.

Some of the artists worked in more than one country, I included each of them if it was

mentioned either on the official website of the MOMA exhibition or in ”A Dictionary of

Twentieth-Century Art”(1999) by Ian Chilvers.

5An interactive detailed network can be found online at the MOMA website.

http://www.moma.org/interactives/exhibitions/2012/inventingabstraction/?page=connections
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Table 3.1: Countries and groups allocation

Countries Groups

France (30), USA (20), Germany (18),

Russia (18), Italy (15), Switzerland (9),

England (8), Poland (5), Spain (4), The

Netherlands (4), Hungary (3), Romania

(2)

Der Blaue Reiter (7), Puteaux Group (6),

De Stijl (4), Union of Youth (4), Donkey’s

Tail (3), Supremus (3), 291 Gallery (3),

Jack of Diamonds (2), Societe Anonyme

(2), Bloomsbury group (2)

The existing network determined the sample of the artists used for the analysis.

However, several of the names from the list were not included in the analysis. Those are

people important for the abstraction movement, but they were not creative artists, such as,

for example, Guillaume Apollinaire, who was a writer and an art critic, or Claude Debussy,

who was a composer. Therefore, the auctioned items related to these people are more likely

to be personal items or similar. There are 83 artists in the initial list, 11 of which were

eliminated.

The set of artists’ characteristics were collected from different biographical sources.

Among those characteristics are the following: years of life and years active, the country

of birth and the country, where the artist was more active, main artistic mode (paintings,

sculpture, photographs etc.), particular major style inside of abstractionism; if available,

approximate amount of known works and most valuable periods to be able to determine the

rarity of the works.

The price dataset was collected specially for this paper from the Sotheby’s auction

house website. The special program was written to obtain all the lots for each of the artists,

auctioned at Sotheby’s and both sold and not. The data were available for the auctions that

took place from the year 2000, earlier lots are not available online. For each lot the following

information is usually available: an estimated price of the work, whether it was sold and the

price, which lot was sold, date of creation, type of work, size, provenance, history of exhi-

bitions, although the descriptive information is missing in quite a lot of cases. There might

also be some additional catalogue notes, including conditions, authenticity information, etc.

However, not all of this information can be included in the model. Part of the description is

very difficult to re-translate into quantitative variables.

There are several data issues that should be pointed out. First of all, for now only

the data from one auction house is used. This may cause some distortion of the results since

I am not looking at the whole market situation, i.e. I am not controlling for the availability

of the works of a particular artist in the other auction house at the same time. The full

dataset will be collected in the future research, however, new programs should be written for

each of the auction houses to scrap the data from their websites due to the different layouts.

Secondly, the types of works included in the sample are rather different, such as oil

paintings, watercolours, lithographs, different types of sculptures, photographs etc. Includ-

ing dummies for each of the type of the work is possible. However, the description is missing

for almost 30% of the cases, hence, not all of the works can be attributed to a particular
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medium. Since most of the artists in the sample used different media in their work, so only

some lots can be attributed to a specific medium used by the artists6. I am treating these

lots as not attributed. However, buyers at the auction were aware of the type of work on sale.

This missing information is likely to result in biased estimation. One of the solutions is to

obtain the better dataset. However, it can be observed that most of the missing information

corresponds to the sales in years 2000-2003. So the missing information problem can be

partially dealt with by restricting the sales sample for the years after 2003.

Thirdly, the prices are given in the local currency of the auction, which requires

price adjustment not only for the inflation but also for the exchange rates. Most of the prices

are in USD (43,3% of the lots), in GBP (42,3%), or EUR (13,6%). Several lots are in Swiss

Franks, Australian, and Hong Kong Dollars. I use daily historical exchange rates to convert

all of the prices into US Dollars. I then adjust prices by CPI of USD, taking the beginning

of the sample, January of 2000 as a baseline of 1. In both nominal and real terms the most

expensive transaction in my sample is ”Garcon á la Pipe” by Pablo Picasso sold at Sotheby’s

New York in May 2004 for 104 million USD.

The total sample consists of about 12000 observation, however, not all of the ob-

served lots were sold, and the sample used for the analysis is, therefore, smaller, and consists

of 9857 lots.

Description of the sales

Table 3.2: Average prices

Median Mean Standard deviation Number of observations

All sold 20570 384000 2701223 9857

Sold after 2003 25550 463620 3041266 7686

Oil paintings 195800 1919583 6727491 1637

Watercolors 86040 396300 1238530 351

Drawings 27270 179300 824219 4166

Sculptures 43810 541300 3144502 225

Photographs 21900 91480 281245 389

Not attributed 11000 83191 545287 4103

It can be noticed from Table 3.2 that the prices are indeed different for the different

media. The oil paintings are expectedly the most expensive, and the photographs have

the lowest prices. Drawings form the biggest group, with almost half of all the sales. Not

attributed works amount to more than 40% of all sold lots, which is more than in a total

sample. Judging from the distribution of the values of unattributed works, most of them

are likely to be either drawings or photographs, and do not belong to the categories with

6The online database The Art Sales Index could possibly provide a better quality data, I am currently
writing the program to obtain it, and the new dataset will be used in the further extension of the paper.
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higher prices. Hence, I can still analyse the full sample, including dummies for oil paintings,

watercolors, and sculptures only.

Figure 3.2: Distribution of sales over the years

Figure 3.2 shows the distribution of the auctioned and sold lots of the observed time

period. The number of lots in abstraction art varies during the observed time period with

the biggest decrease around the 2008 crisis. The percentage of the lots sold in the first years

after the crisis is, however, among the highest (82% in 2009 and 96% in 2010). In the recent

years, the level of sales recovered to the pre-crisis year. Note, that the data was collected in

the middle of 2015, determining the low amount of sales in this years.

Table 3.3: Prices over time (in 2000 prices)

Average Sum Maximum Sold lots Total lots

2000 181 916.44 57 121 761 10 064 195 314 421

2001 55 504.83 31 138 212 3 016 847 561 749

2002 97 233.27 67 090 953 5 634 195 690 938

2003 109 052.58 66 085 862 10 659 028 606 753

2004 497 636.84 291 117 551 116 695 313 585 740

2005 179 560.06 135 747 408 21 430 066 756 906

2006 300 164.66 296 562 685 114 225 355 988 1195

2007 430 133.71 385 399 804 36 309 073 896 1114

2008 704 978.33 385 623 149 50 360 523 547 826
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2009 424 994.75 155 548 077 14 712 432 366 446

2010 374 195.48 184 478 373 12 049 552 493 515

2011 803 838.78 319 123 997 53 231 183 397 471

2012 700 985.01 343 482 657 56 631 229 490 632

2013 549 474.89 486 834 749 61 579 591 886 1018

2014 464 436.80 480 227 654 44 430 080 1034 1285

2015 400 162.95 99 240 411 18 688 892 248 392

Table 3.3 provides more details on the dynamics of the prices and sales of abstract art

over the discussed period of time. The first four years of the observations show the relatively

low total value of sales, as well as the average price of the lots. After that, the sales increased

significantly with slight decline around after 2008. Demand and for abstract art auctioned

during that period cannot be considered as homogeneous, therefore, year dummies should

be included in the analysis.

Data also include the minimal and maximal expected prices of each lot, which is the

auction house estimate of a potential price before the beginning of the auction. In the cases,

when the lots were sold, these prices are quite an accurate estimate of the final price with

a correlation of around 95%. However, these prices don’t help to predict, whether the lot

will achieve the reserve price, set by auction and seller together. One of the expected prices

can be used as an outcome variable to estimate the effect on the price formation, however,

it will have a different meaning than the effect on the final prices of the lots, representing

the market response. I will consider both possibilities in the empirical analysis.

Network characteristics

The network, as was already mentioned, consists of 83 artists. Table 4 gives some

of the characteristics of the network.

Table 3.4: Network characteristics

Network statistics Definition Value

Average indegree Average number of ingoing

ties

12.84 (6.44)

Minimum indegree Minimal number of ties 2

Maximum indegree Maximal number of ties 28

Density Proportion of existing ties in

the network

0.1566

Transitivity The ratio of the triangles and

the connected triples in the

graph

0.4629
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Links from same country 0.8435

Links inside the group 0.0999

Links inside the group, if

belonged to a group

0.2807

The network has quite a high number of average connections, more than 12. It is

highly likely, that not all of the connections have an effect on the outcome variables, however,

it is almost impossible to restrict the number of connections. One option is to put higher

weight on those, working in the same country or affiliated with the same group. Most of the

links formed between artists lived or worked in the same country for a significant amount

of time. The share of the links in the same group is, however, rather small. Not all of the

artists belonged to official groups, even though they belonged to a particular movement,

whereas some of the artists had affiliations to several groups. Therefore, the group affiliation

might be useful as a control variable of artists’ characteristics, but not as an indicator of the

tightness of connections.

The transitivity of the network is 46%, which is sufficient for the identifying assump-

tions to hold.

3.4 Empirical analysis

I am considering several scenarios in my empirical analysis. Recall, that not all of

the lots were sold during the auctions. Unsold lots don’t necessarily indicate the quality or

importance of the work, but more likely to be a characteristic of the market situation. First,

I am analysing the sample, excluding these observations. The results characterize the price

formation determinants, but not describe the market situation in general. Unsold works are

very relevant to understand, how the buyers value the works with particular characteristics.

Therefore, I also consider the full sample, letting the price of unsold lots be equal to zero.

Additionally, I am conducting the analysis of the full sample, using the minimal and maximal

estimated prices, established by the auction house, and, therefore, representing a possibly

more objective value of the work. I expected the latter results to be similar to the results

for the sample of only sold lots. However, the empirical analysis proved otherwise, which I

will explain in more details in the course of this section.

3.4.1 Subsample of sold lots

As was described in Section 2, I am mostly relying on the modified version of

Hausman-Taylor Type models. However, I also provide the results for the 2SLS proce-
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dure with artists’ dummies, as described in 2.2. The estimation results for the subsample

of sold lots can be found in Table 3.5. Note that the some of the exogenous characteristics

of friends have slightly different meaning than own exogenous characteristics. The charac-

teristics related to the works or the auction are not artist-specific, therefore, the average

is used as artists’ characteristics, which in a lot of cases has the meaning of shares. For

example, averaging the dummy variable of oil paintings as a type of work gives the share of

oil paintings among the works of the artist. Since most of the variables are either dummy

variables or shares, use of logarithm of prices is more appropriate. To avoid the problem

with the logarithm of zero, I take a logarithm of Price+ 1.

Table 3.5: Results for sold lots

HT IV

Constant 3.4121•

Av.log price of friends’ works 0.8645*** 0.4538***

Artists’ dummies incl.

Work’s characteristics

Oil painting 2.1485*** 2.1892***

Watercolor 0.9453*** 0.8754***

Drawings 0.1946*** 0.1923***

Sculpture 0.6152*** 0.5325***

Signed 0.2005*** 0.1944***

Sale’s characteristics

2008 0.3578*** 0.3463***

2009 0.5409*** 0.5436***

2010 0.7089*** 0.6915***

London 0.5862*** 0.5302***

New York 0.6299*** 0.5802***

Artist’s characteristics

Germany -0.0271 0.4131*

USA -0.0671 -0.2108

Russia -0.3955* -0.7322***

Link’s characteristics

Share of oil paintings 3.1866 -2.9127

Share of watercolors -0.5486 3.60977•

Share of drawings 3.6839*** 1.4016•

Share of sculptures -11.2321 9.0579

Share of signed -0.6691 0.7366

Share of 2008 -1.2717 -8.6464**

Share of 2009 0.8975 15.8423**

Share of 2010 3.7417 -36.3713***

Share of London -1.7103 0.2385

Share of New York -1.0710 1.4047
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Germany 0.0634 -0.5304

USA 0.8562** 0.8710***

Russia -1.7922*** -1.2580***

*** - p-value < 0.001, ** - p-value < 0.01, * - p-value < 0.05, • - p-value < 0.1

Both models detect the highly significant positive effect of the average prices of

friends’ works on the price of one’s own work. The magnitude is, however, not very high.

For example, the increase of friends’ average price by 10000 USD will on average result

in increase of 3000 USD. Most of the results are consistent across two methods for own

characteristics, whereas the effect of the exogenous characteristics of connections differs. In

particular, the IV regression detects a very high negative effect of share of friends’ work sold

in 2010. One possible explanation is the general market situation in 2010. The art marked

didn’t not recover completely after the 2008 crisis, and the number of sales went down, as

was discussed in Section 3. The average price of sales in 2010 is lower than in following

years, hence the higher share of 2010 sales suggest the cheaper set of works among friends.

Hence, this effect is related to the endogenous peer effect. However, the Hausman-Taylor

model does not support this finding. Note, that both models show the positive effect of the

one’s own work sale in all the crisis years I am controlling for. It probably suggests, that

once the work got on the auction in these years it is more likely to be less risky since the

share of sold lots in these years is very high, hence, the prices are slightly higher.

In Section 3 it was noted that most of the missing information in the sample is for

lots that were auctioned in the period 2000-2003. I am, therefore, restrict my sample to

the after 2003 sales to check, whether the results are stable in the better subsample. The

estimation results are presented in Table 3.6.

Table 3.6: Results for sold lots, after 2003

HT IV

Constant 3.8531•

Av.log price of friends’ works 0.8179*** 0.3926***

Artists’ dummies incl.

Work’s characteristics

Oil painting 2.1385*** 2.1845***

Watercolor 0.9267*** 0.9034***

Drawings 0.1339*** 0.1350***

Sculpture 0.4762*** 0.3970***

Signed -0.0073 -0.0045

Sale’s characteristics

2008 0.2160** 0.2011**

2009 0.4253*** 0.4008***

2010 0.5629*** 0.5436***

London 0.5929*** 0.5507***
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New York 0.5482*** 0.5235***

Artist’s characteristics

Germany 0.1372 0.1486

USA -0.1825 -0.3001•

Russia -0.1161 -0.6072**

Link’s characteristics

Share of oil paintings 0.7454 -0.4430

Share of watercolors 2.4584 6.7982**

Share of drawings 3.0220*** 0.6620

Share of sculptures -11.5981 9.4014

Share of signed 2.5989 -0.1220

Share of 2008 -9.6161* -9.4391**

Share of 2009 20.3077** 13.6115*

Share of 2010 -0.9464 -28.0462**

Share of London -1.9372 0.7853

Share of New York -1.4191 1.3778

Germany 0.4970 0.6033

USA 1.2969*** 0.7846**

Russia -2.1823*** -1.2936***

*** - p-value < 0.001, ** - p-value < 0.01, * - p-value < 0.05, • - p-value < 0.1

It can be observed, that most of the results hold for the restricted sample. First

of all, the positive effect of the average price of works of friends exists. The magnitude is

slightly smaller than in the sample of all sold lots.

The Hausman-Taylor model is able to catch the same effect for the share of works

of friends auctioned in 2009, as was observed in the sample of all sold lots for IV estimator.

However, the respective effect for 2010 is not detected. IV estimator, on the contrary,

provides the same evidence as before for these variables. In general, restriction of the sample

is not changing the results of the estimation significantly.

3.4.2 Full sample

Letting the price of unsold lots be zero, I am now repeating the analysis for the full

sample. The correlation of the final market price and the maximal estimated price is no

longer as high as it is in the sample of sold lots, therefore, this price can be included in the

analysis, as one of the covariates. It can serve as a proxy for the quality of the work and

capture some of the work’s and artist’s characteristics, determining the price. The estimated

effect of the other variables will have slightly different meaning than in the previous case,

and will catch the effect on the success of the sale.

Table 3.7: Results for the full sample
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HT IV

Constant -6.8033

Log Max EP 0.6182*** 0.6169***

Av.log price of friends’ works 1.2115** 0.4886

Artists’ dummies incl.

Work’s characteristics

Oil painting 0.1743 0.1958

Watercolor 0.0345 0.0292

Drawings -0.1311** -0.1268

Sculpture 0.3112 0.2799

Signed 0.6158*** 0.6106***

Sale’s characteristics

2008 -1.4809*** -1.3565***

2009 0.4002• 0.312*

2010 1.8663*** 1.9270***

London -0.0038 0.0315

New York -0.4963*** -0.5004***

Artist’s characteristics

Germany -0.2545 -0.5176

USA 0.7821* 0.3759

Russia 0.0035 -0.5119

Link’s characteristics

Share of oil paintings 6.2693 3.4184

Share of watercolors 12.3529** 4.2451

Share of drawings -0.0392 0.5824

Share of sculptures 45.1176** 38.1053**

Share of signed -3.6614 -2.7254

Share of 2008 24.1230** 7.0740

Share of 2009 -18.2541 -2.0767

Share of 2010 25.3134 25.3024

Share of London -3.8261 -0.3059

Share of New York -3.6135 -1.9739

Germany 1.6356 1.2606

USA 0.9896• 0.3583

Russia -0.0174 -0.5003

*** - p-value < 0.001, ** - p-value < 0.01, * - p-value < 0.05, • - p-value < 0.1

It can be observed from Table 3.7, that presence of maximal estimated price causes

the insignificance of some of the coefficients, significant in the sample of sold lots. For

example, for both models, the type of the work is no longer relevant (with the exception

of drawings in the Hausman-Taylor model). The maximal estimated price is, as expected,
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highly significant.

The endogenous effect, in which I am mostly interested, is present only in Hausman-

Taylor model analysis. The magnitude is even bigger than in the sample of the sold lots,

suggesting that the average prices of friends’ work might be even more relevant for the

market responses although the two models are different, and the direct comparison of the

coefficient not totally correct. I also run the regressions without maximal estimated price,

which repeats the model from the previous subsection completely. The results are reported

in Table C.3 in Appendix. This model is a worse fit than the one above, and the endogenous

effects are insignificant.

The analysis of the sample of all lots auctioned after 2003 does not detect the

endogenous effect at all, whereas the other results are quite similar to the full sample (see

Table C.2 in Appendix).

3.4.3 Full sample, Maximal and Minimal Estimated Prices

I continue the analysis of the full sample of the lots with the new outcome variable:

estimated by auctioneer price of the lot. The obtained endogenous effect is opposite from

the one obtained for the final market price of sold lots.

Table 3.8: Results for the full sample, max and min EP

HT, Max IV, Max HT, Min

Constant 18.5371***

Av.log price of friends’ works -1.0643*** -0.6299*** -1.0925***

Artists’ dummies incl.

Work’s characteristics

Oil painting 2.1836*** 2.2183*** 2.1838***

Watercolor 0.7829*** 0.7663*** 0.7708***

Drawings 0.2199*** 0.2258*** 0.2227***

Sculpture 0.4816*** 0.4512*** 0.4826***

Signed 0.1162*** 0.1123*** 0.1118**

Sale’s characteristics

2008 0.4195*** 0.3920*** 0.4204***

2009 0.5097*** 0.5069* 0.5125***

2010 0.6793*** 0.6968*** 0.6680***

London 0.5233*** 0.4869*** 0.5203***

New York 0.7845*** 0.7376*** 0.7716***

Artist’s characteristics

Germany 1.0920*** 0.7959*** 1.0947***

USA -0.1613 0.0797 -0.1674

Russia -0.3871* -0.7442*** -0.3933*

Link’s characteristics
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Share of oil paintings -1.5643 -5.4842*** -1.6907

Share of watercolors -9.6956*** 3.8806* -9.9808***

Share of drawings 5.1483*** 1.0577• 5.3086***

Share of sculptures -12.6471* -4.2252 -13.9513*

Share of signed 2.3945 2.1634• 2.5370•

Share of 2008 -11.8377*** -17.6327*** -12.7042***

Share of 2009 35.3523*** 14.6875** 35.4269***

Share of 2010 -32.9338*** -50.5332*** -33.0736***

Share of London -2.9070** -0.3744 -3.1158**

Share of New York 0.8093 1.9496 0.5636

Germany -1.1076* -0.9735*** -1.1208**

USA 0.0061 0.7295*** -0.0076

Russia -1.1539*** -0.5717* -1.1208***

*** - p-value < 0.001, ** - p-value < 0.01, * - p-value < 0.05, • - p-value < 0.1

Results, presented in Table 8, suggest, that the higher average price is expected by

the auctioneer for the artists’ connections, the lower the expected price of artist’s own work.

This is opposite effect in comparison to what I observed for the final price of sold lots. This

possibly reveals two different trends. On one hand, the market treats works of connected

artists as substitutes. Once the auction house expects the high demand, and hence, high

price for the works of artist’s connections, it logically expects lower demand for the artist’s

own works. However, conditional on the sale being successful the prices of connected artists

are likely to move in one direction. The increased interest in one artist leads to raising

interest towards artist’s connections, setting higher prices for all of them.

The other coefficient exhibit rather similar behavior as in Section 4.1. The most

noticeable difference is in the estimation of the share of 2008, 2009 and 2010 in the friends’

works. The effects are close to the ones from the IV estimation and are similar to the IV

estimates of the sample of sold lots.

General observations about other determinants

• All of the models are able to capture the differences in the prices for different media.

The types of work dummies are only insignificant in the full sample model, which

includes the maximum estimated by auction house price. In this case, the effect of

differences in the medium is captured by the effect of estimated price.

• The price of sold lots and the expected prices are estimated to be higher in 2008 crisis

year, and two years after it when art market still did not recover from the crisis. 2009

and 2010 also have the positive effect on the price of the full sample (with 0 prices for

unsold), reflecting the caution behavior of the sellers in these years. The total amount

of sales went down in these two years, but the share of sold lots are higher than in the

other years. It means that the lots auctioned in these two years are less risky, the lots
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with less uncertainty about their quality or value, hence ”better” works were auctioned

in these difficult for the market years. The dummy for 2008 for the full sample with

unsold lots exhibits opposite behavior to the one in the sold lot sample. The share

of sold lots in 2008 is very low due to the crisis, therefore, the amount of zero-priced

works is higher in 2008, resulting in the negative highly significant coefficient.

• Sotheby’s London and New York are the main auction locations and attract more

buyers, hence, the more valuable lots are likely to be auctioned there. The price of

sold lots is, therefore, likely to be higher for sales on one of the two locations. Once I

am analysing the sample with unsold lots and including the maximal expected price,

that accounts for a lot of lots characteristics, the prices in New York are likely to be

lower. It reflects the higher probability of having unsold lots, once the volume of sales

is bigger than at the other locations.

• Russian art is very popular in the recent decades7 with every auction house having

their own Russian Art Auction couple of times per year, and ”works by Russian Avant-

Garde are among the most sought-after on the international market” (Hewitt, 2014).

The result of my analysis suggests that the prices of the Russian artists are on average

lower, and being connected to more Russian artists lower the price as well. So the

high demand for Russian art does not result in higher prices in comparison to the

other nationalities. It is reasonable to assume that the affordability and availability of

Russian abstract art is one of the determinants of its high demand.

3.5 Conclusion

This paper adopts the peer effect logic to analyse the price formation on the art

market. I explore the auction results for abstract art from Sotheby’s auction house for the

period of 2000-first half of 2015 and the connections between the abstract artists as reported

for the MOMA exhibition ”Inventing abstraction”. The connections between the artists can

be an important determinant of the artists’ style and quality of works, as well as of the

resulting price of the works. It can be caused by collaborations, joint exhibitions or the

particular reputation of one of the artist’s connections.

I am proposing the model, combining Hausman and Taylor (1981) approach for the

panel data with the Manski(1993) peer effect model and Bramoulle et al. (2009) instru-

ments. I am also using the alternative model, that uses artists’ dummies instead of the panel

structure.

I am analysing both the sample of only sold lots and the full sample setting the price

of unsold lots to zero. Both settings exhibit the positive peer effect of connections’ works

average prices, with more prominent effect in the sold lots sample. The market is, therefore,

rather responsive to the artist’s connections performance and reputations and the buyers are

7See, for example, the report on London Russian Weeks Auction sales

http://www.russianartweek.co.uk/wp-content/uploads/2012/10/Russian-Art-Market-Report-by-Simon-Hewitt-Nov14.pdf
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willing to pay more if the artist is connected to the ”better” artist.

The auctioneers behaviour towards price formation is, however, likely to be different.

The more valuable the average works of the connected artists are, the smaller is the expected

minimal and maximal prices set by the auction house before the sales begin. The auction

house probably views the connected artists as substitutes. Moreover, the more ”valuable”

peer group of particular artist suggests that the best artists among the group and the artist

him/herself are probably among the peer group and not the artist. Hence, this artist’s work

are valued lower by the specialists.

The data used in the analysis have several limitations described in Section 3, which

can distort some of the results. However, the paper shows clear evidence of the importance

of connections in the price formation and market outcomes at the art market.
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Table C.2: Results for full sample, after 2003

HT IV

Constant -5.606
Log Max EP 0.6164*** 0.6265***
Av.log price of friends’ works 0.2332 0.3782
Artists’ dummies incl.

Work’s characteristics
Oil painting 0.1828 0.1103
Watercolor 0.1940 0.0753
Drawings -0.1988*** -0.1968***
Sculpture 0.2632 0.2958
Signed 0.5584*** 0.5464***

Sale’s characteristics
2008 -1.5539*** -1.486***
2009 0.2594 0.3253
2010 1.7851*** 1.804***
London 0.0750 0.0666
New York -0.6135*** -0.5949***

Artist’s characteristics
Germany -0.7793 -0.7548
USA 0.6151 0.2056
Russia 0.0853 -0.0111

Link’s characteristics
Share of oil paintings 6.7206 6.465
Share of watercolors 5.9433 2.887
Share of drawings 4.0074 3.352•

Share of sculptures 22.5245 42.94*
Share of signed -0.8956 -3.304
Share of 2008 1.5815 9.164
Share of 2009 -4.6728 1.596
Share of 2010 30.2939 10.38
Share of London -4.0689 -3.300
Share of New York -6.1573 -4.396•

Germany 2.6296• 2.522**
USA -0.6291 -0.1124
Russia -0.8737 -1.067

*** - p-value < 0.001, ** - p-value < 0.01, * - p-value < 0.05, • - p-value < 0.1

Table C.3: Results for full sample, first model

HT IV

Constant 5.0217
Av.log price of friends’ works 0.5152 0.0674
Artists’ dummies incl.

Work’s characteristics
Oil painting 1.5214*** 1.5643***
Watercolor 0.5148* 0.5036*
Drawings 0.0044 0.0127
Sculpture 0.6098* 0.5586*
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Signed 0.6869*** 0.6794***
Sale’s characteristics

2008 -1.2225*** -1.1155***
2009 0.7140*** 0.7433***
2010 2.2849*** 2.3561***
London 0.3230** 0.2696*
New York -0.0103 -0.0466

Artist’s characteristics
Germany 0.4028 0.0228
USA 0.6813* 0.3854
Russia -0.2602 -1.0098*

Link’s characteristics
Share of oil paintings 5.4281 0.1631
Share of watercolors 5.0402 6.0087
Share of drawings 3.3378 1.2951
Share of sculptures 37.9046* 35.5186*
Share of signed -2.3242 -1.6292
Share of 2008 16.7121• -3.7773
Share of 2009 0.8907 4.1055
Share of 2010 3.4210 -6.4842
Share of London -5.3984* -0.2770
Share of New York -2.9385 -0.5461
Germany 0.9276 0.5358
USA 1.0146• 0.8755•

Russia -0.7959 -0.8468

*** - p-value < 0.001, ** - p-value < 0.01, * - p-value < 0.05, • - p-value < 0.1
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