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Zahn.

Finally, I wish to thank my parents Francis and Kyung, my sister Lucy, and my

girlfriend Erika. Thank you for always supporting me.

iii



Contents

Declaration of Authorship ii

Acknowledgements iii

1 General Introduction 1
I Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
III Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Ex-post Optimal Knapsack Procurement 5
I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.i Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
II Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
III Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

III.i The symmetric case . . . . . . . . . . . . . . . . . . . . . . . 26
III.ii The asymmetric case . . . . . . . . . . . . . . . . . . . . . . 31

IV Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
IV.i Residual money . . . . . . . . . . . . . . . . . . . . . . . . . 39

V Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
VI Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

VI.A Properties of optimal mechanisms: General proofs . . . . . . 44
VI.B Constructing a scoring function: Proof of Proposition 2.11 . 50
VI.C The symmetric case . . . . . . . . . . . . . . . . . . . . . . . 55
VI.D Bidder Substitutability and Complementarity . . . . . . . . 55

3 Groups, cheap talk, and voting 58
I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
II Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
III Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IV Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
V Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 In or Out - the effect of small parties winning representation in
proportional representation systems. A regression discontinuity
design. 92
I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

iv



Contents v

I.i Related literature . . . . . . . . . . . . . . . . . . . . . . . . 95
II The RD approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

II.i Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
III Municipal politics and data . . . . . . . . . . . . . . . . . . . . . . 102

III.i The voting method . . . . . . . . . . . . . . . . . . . . . . . 102
III.ii Politics on the municipal level . . . . . . . . . . . . . . . . . 103
III.iii Main outcomes . . . . . . . . . . . . . . . . . . . . . . . . . 104
III.iv Constructing the dataset . . . . . . . . . . . . . . . . . . . . 106
III.v Trimming with respect to investment per capita . . . . . . . 108

IV Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
IV.i Determinants of the average treatment effect . . . . . . . . . 118

V Robustness checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
V.i Sensitivity to trimming . . . . . . . . . . . . . . . . . . . . . 126

VI Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 138



1. General Introduction

“Collective Decision Making” is a subfield of microeconomics that investigates

how public decision-making processes and public organizations work or alterna-

tively how they should work. This dissertation consists of three self-contained

papers related to this subfield. In the broadest terms, these papers investigate

public decision making processes, i.e., they ask how a decision that involves sev-

eral individuals is or should be made. The question is not trivial, in particular if

these individuals have potentially different preferences and have private informa-

tion that is relevant to the decision.

If the question is how the the decision making process should be designed, the

answer can be found using the tools of mechanism design. Chapter 2, which is

joint work with Vincent Meisner, is such a mechanism design exercise. We derive

the mechanism that allows for the optimal procurement of projects by a budget-

constrained procurement agency under ex-post constraints.

In Chapter 3, I use game theory to analyze a particular decision-making process:

voting. In the context of a committee voting on a reform, I ask whether how

the possibility of pre-vote cheap talk communication affects outcomes, when the

committee consists of two distinct groups.

Finally, in Chapter 4 I look at voting from an empirical perspective. Using data

from local elections in Thuringia, I investigate how a small party winning rep-

resentation on the municipal council affects the council’s policies and the party

itself.

In the remainder of this introduction, I give a short overview for each chapter.

1
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Chapter 2

In this chapter, we investigate how to design a specific decision-making process. In

particular, we ask ourselves how to organize public procurement. Public procure-

ment is an immensely important part of the economy, amounting to, for example,

16 percent of GDP in the EU.1

We have a specific public procurement situation in mind. We consider a procure-

ment agency that has a fixed budget and cannot go over budget. It wants to

procure projects from different suppliers who propose one project each. The pro-

curement agency knows how much it values each project but the projects’ costs

are the suppliers’ private information. The agency aims to maximize the aggregate

value of implemented projects. We want to design a mechanism for this problem

that is as robust as possible. Therefore, we impose that all constraints (budget,

incentive, and participation) have to hold ex-post.

Our leading example for a concrete procurement problem is that of a development

fund that has a fixed budget to build wells in different areas. It knows how valuable

a well is in a given community, but it does not know how much money is necessary

to build the well.

If costs were not private information, this problem would be the classical knapsack

problem: An individual (development fund) has a knapsack that can carry a cer-

tain amount of weight (budget). It wants to maximize the value of items (wells) it

carries in this knapsack. However, the total weight of carried items (sum of costs

of built wells) cannot exceed the capacity of the knapsack.

With private information, this problem becomes a mechanism design problem.

However, given our set of constraints, it cannot be solved with the standard

pointwise-optimization techniques. Instead, we derive characteristics that the op-

timal procurement mechanism must have. Those characteristics imply that the

optimal mechanism lies within the class of DA-auctions, a class of mechanisms

proposed by Milgrom and Segal (2014). As DA auctions are equivalent to clock

auctions, this result implies that our optimal procurement mechanism has a cor-

responding descending-clock auction.

If projects are ex-ante asymmetric, we find a novel and interesting quantity-quality

tradeoff: out of two projects the procurement agency must sometimes implement

1Source: http://ec.europa.eu/trade/policy/accessing-markets/public-procurement/
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the inferior project in order to get both projects with a high probability. This novel

tradeoff occurs because here, in contrast to similar mechanisms, the quantity of

procured projects is endogenously determined.

Chapter 3

This chapter is about analyzing voting as a decision-making process from a game-

theoretical perspective. In particular, it contributes to the literature on the strate-

gic interaction of cheap talk and voting. In it, I consider a committee that consists

of two differently sized groups, each with members that have homogeneous prefer-

ences. The committee must vote on whether to implement a reform that impacts

all members of the committee. Committee members have private information

about the probability of success of the reform.

Thus, voting can be seen as a way to aggregate this private information. However,

there are other ways to aggregate information. In particular, individuals on the

committee could talk to each other prior to voting. This communication is modeled

as cheap talk. The novelty in this model is that the committee consists of two

different groups whose members can both talk to each other and to the other

group.

In this model, I find that among the implementable social choice functions there

always exists one Pareto-dominant social choice. This result allows for the com-

parison of outcomes under two different voting rules: majority rule and unanimity.

Surprisingly, there exist parameters such that both groups, including the minority,

prefer majority rule and other parameters such that both groups, including the

majority, prefer unanimity.

Chapter 4

In this chapter, I empirically investigate representative democracy as a decision-

making process. For each party, there is a threshold of minimum votes that the
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party would need to get in order to win seats2 on the municipal council. This

threshold is a function of how many votes all other parties obtained and follows

from the seat-allocation method, which translates vote shares into the number of

seats. If a party obtains a number of votes that is very close to this threshold, it

can be considered close to random whether this party made it onto the municipal

council or not. In most cases in which the party does make it, it gains its seats

from other parties who would have been on the municipal council even if the party

close to the threshold would not have made it. Thus, in most cases, a small party

narrowly making it onto the municipal council implies that there is one additional

party on the council.

Using the quasi-randomness in close cases, I can use a regression discontinuity

(RD) design to estimate the effect of having seats on the council on the party

itself and the effect of having an additional party on the council on the council’s

policies. I find that a party that narrowly wins seats is 35 percent less likely

to drop out in the subsequent election. This result, however, precludes me from

estimating a precise incumbency effect, i.e., the effect of being on the council on

the vote share in the next election. Estimating bounds on the effect, I find no

evidence of a statistically significant incumbency effect.

On the municipal level, I find evidence of an effect on public spending. One

additional party leads to an increase in investment spending of almost 50 percent

compared to the average level. This increase is larger, the stronger the additional

party changes the overall composition of the municipal council.

2I use the plural “seats” as in some cases getting an additional vote can make the difference
between winning no seats or several seats. In the elections in my dataset, there is a minimum
threshold of 5 percent of the vote to win seats. But, on large councils, 5 percent of the vote
translates into more than one seat. Thus parties with a vote share of 5 percent can win several
seats but parties with 4.99 percent win none.



2. Ex-post Optimal Knapsack

Procurement

with Vincent Meisner

Introduction

We study the problem of a procurer who can spend a fixed budget on any of n avail-

able projects which differ in the value the designer derives from them. Projects

(agents) have private information about their costs and want to get funding beyond

the necessary minimum. The designer’s goal is to select an affordable set of max-

imal aggregate quality. In other words, she faces a mechanism design variant of

the knapsack problem with strategic behavior due to informational asymmetries.1

Essentially, we approach this problem as an “up to possibly n-units” procurement

problem with n agents with single-unit supply where demand quantity is deter-

mined after observing projects’ reports under a budget constraint. The budget

constraint, the individual rationality constraints, and the incentive compatibility

constraints are imposed ex-post, i.e., for any cost realization, implemented projects

are always at least fully compensated, the sum of transfers must not exceed the

budget, and truth-telling must be a (weakly) dominant strategy. We find that the

optimal mechanism can be implemented with a descending-clock auction with a

deferred acceptance rule. Because of a tradeoff between quantity and quality, an

optimal price clock may have to stop for a period of time leading to instances in

which an inferior project is implemented instead of a superior one.

This framework matches a large range of allocation problems, in which a designer

needs to allocate a divisible but fixed capacity among agents. Allocation problems,

1The knapsack problem is a classical combinatorial problem, dating as far back as 1897. A
set of items is assigned values and weights. The knapsack should be filled with the maximal
value, but can carry only up to a given weight. For an overview of the literature on knapsack
problems, see Kellerer, Pferschy, and Pisinger (2004).

5
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in which a financial budget constraint represents the fixed capacity, include the

procurement of bus lines, bridges, and streets, or the allocation of subsidies or

research money. Alternatively, the capacity constraint can represent the payload

limit on a freighter or on a space shuttle,2 or a limited amount of time to be

devoted to several tasks. Out of many suitable applications, we employ as our

leading example a development fund that desires to distribute money to nonprofit

projects with nonmonetary benefits.

Our paper not only helps to understand a class of economically relevant problems,

the framework also presents a novel methodological challenge. The ex-post nature

of both the participation and the budget constraint precludes the use of standard

pointwise optimization techniques à la Myerson (1981). Nonetheless, rewriting the

problem involves expressing expected transfers in terms of the allocation function

as an auxiliary step. As the designer maximizes expected payoff including residual

money, we can employ the procurement analogue of Myerson’s notion of “virtual

values”. However, our results qualitatively translate to a setting in which the

designer does not value residual money.

By focusing on strategyproof deterministic mechanisms, we can reduce the prob-

lem to finding a set of optimal cutoff functions zi that, for each project i, map the

cost vector of other projects c−i into a cutoff cost level. Project i is conducted

if and only if i’s cost report falls weakly below cutoff zi(c−i) and the correspond-

ing compensation payment for that case equals the cutoff zi(c−i). In optimum,

these cutoff functions implement an allocation rule that exhibits certain properties.

First, the optimal allocation rule has substitutes: Given a project is implemented

for some cost vector, it is also implemented when, all else being equal, the cost

of a rival project is increased. Second, the optimal allocation rule has non-bossy

winners: A single project that is implemented cannot affect the allocation without

changing its own allocation status. Third, the optimal allocation rule excludes all

projects with negative “virtual surplus” from the allocation.

By virtue of these properties, any optimal mechanism has an equivalent deferred

acceptance (DA) auction representation as described in Milgrom and Segal (2014).

A DA auction is an iterative algorithm that computes the allocation and transfers

of an auction mechanism and possesses attractive features with respect to bidders’

2Clearly, the capacity of a space shuttle is limited. The problem of optimally allocating
the capacity and incentivizing projects to reduce payload is economically relevant, see Ledyard,
Porter, and Wessen (2000).
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incentives that go beyond dominant-strategy implementability. First, in any DA

auction, revealing the type truthfully is an “obviously dominant strategy” as de-

fined by Li (2015).3 Second, any DA auction is weakly group-strategyproof. In

other words, it is impossible for a coalition of projects to coordinate their bidding

strategies such that it strictly increases the utility of all projects in the coalition.

Third, the dominant strategy equilibrium outcome of any DA auction is the only

outcome that survives iterated deletion of dominated strategies in the correspond-

ing full information game with the same allocation rule but where players pay

their own bid. Therefore predicting the dominant-strategy equilibrium outcome

in a DA auction can be considered robust.

Milgrom and Segal (2014) argue that these properties make DA auctions suit-

able for many challenging environments such as radio spectrum reallocations.

Most importantly, they show that every DA auction can be represented by a

descending-clock auction. Among several potential applications, they also con-

sider our budget-constrained procurement setup (Example 5: “Adaptive Scoring

for a Budget Constraint”). However, they do not show optimality of the DA auc-

tion. To the best of our knowledge, we are the first to do so in a nontrivial setting.

Therefore we can strengthen the argument in favor of DA auctions. The tech-

niques established in our paper may be helpful to prove optimality of DA auctions

in the other settings mentioned in their paper.

Reducing the set of candidates for optimality to a special kind of DA auction

implies that any optimal allocation can be implemented with an appropriately

designed descending-clock auction: Any project faces a clock with a continuously

decreasing price on it, and indicates whether it is willing to conduct its project at

this price. In this auction it is a weakly dominant strategy for any project to exit

the auction once the clock price hits the project’s cost level. At first, we focus on

the case in which all projects are ex-ante symmetric: They have the same value

and costs are drawn from the same distribution. Here, we show that it is optimal

to rank projects according to their cost and “greenlight” the cheapest ones. In

optimum, price clocks run down synchronously and hence projects exit in order of

their costs until the budget suffices to pay the current clock price to all remaining

active projects.

3There does not exist any deviation such that, in any information set in which a deviat-
ing action is played, the best-case deviation payoff (against even the most favorable profile of
strategies of the other players that is consistent with this information set) is strictly larger than
the worst-case payoff from truthful bidding (achieved against the least favorable such strategy
profile).
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Next, we examine the case of ex-ante asymmetric projects, i.e., costs are drawn

from different distributions and/or project values differ. Here, we restrict atten-

tion to the two-project case because it conveys the main insights while retaining

tractability. In applications, the designer may prefer some projects over others and

might have different information over cost distributions. In standard procurement

settings, the quantity of units to be procured is not endogenously determined

as in our model, but it is exogenously fixed to be some quantity k. It is well

known that in k-unit procurement auctions the k projects with the greatest non-

negative virtual surpluses are implemented, e.g., Luton and McAfee (1986). In

the asymmetric case, the ranking implied by costs and the ranking implied by

virtual surpluses do not necessarily coincide. Broadly speaking, the designer dis-

criminates against stochastically stronger projects, and favors projects with higher

values. The asymmetry requires that each project faces an individual clock and

prices decrease asynchronously. In optimum when quantities are exogenous, the

clocks’ speed is adjusted such that the virtual surplus of marginal projects is kept

equal at all times, see Caillaud and Robert (2005, Proposition 1).

Interestingly, the optimal allocation of this environment does not simply translate

into the asymmetric case of our environment. In contrast, projects are not always

greenlighted in order of their virtual surpluses. Therefore we cannot adopt the

approach of Caillaud and Robert (2005). Instead, the descending-clock imple-

mentation of the optimal allocation includes individual clocks stopping at certain

times. Here, the quantity-quality tradeoff kicks in: We show that the optimal allo-

cation generically features instances in which out of two rival projects the project

with lower virtual surplus is chosen. The reasoning behind this result is that the

number of procured units is endogenous. In the asymmetric case, always green-

lighting in order of virtual surplus reduces the expected number of greenlighted

projects compared to the optimal mechanism. Strategyproofness creates a trade-

off between quantity and quality of the procured projects. This discrimination of

the stronger project is employed on top of the discrimination due to stochastic

domination through the virtual costs.

Clock auctions are generally easy to understand and hard to manipulate. Fur-

thermore, they are less information hungry than, for example, sealed bid auctions.

In descending-clock auctions, the designer only learns the private information of

those projects that are not greenlighted. In fact, Milgrom and Segal (2014) show

that clock auctions are the only strategyproof mechanisms that preserve winners’
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unconditional privacy: Winners only need to reveal the minimum of their private

information that is necessary to prove that they should be winning. These features

of clock auctions make them attractive for applications in which there is limited

trust between the involved parties. In practice, clock auctions are commonly used

to sell fish in Japan and they are often found in the public sector, e.g., when the

US Department of the Treasury sells warrant positions.

To the best of our knowledge, this paper is the only one that considers purely

ex-post constrained optimal procurement design. Such a restrictive setting can

be seen as a “worst-case scenario” for the designer, suiting many economic ap-

plications. In our leading example of the development fund, an ex-post budget

constraint appears natural as budgets are usually fixed. The nonprofit nature of

the projects might prohibit acquiring additional money on the financial market.

Information rents are necessary, because a project might want to spend money on

extra equipment that is convenient for the project’s staff but has no value for the

designer. In practice, such incentive problems are often resolved using dominant-

strategy implementable mechanisms. In strategyproof mechanisms, agents have

no incentive to invest in espionage activities or to hire consultants to avoid mis-

specification of beliefs. Mainly, dominant strategies are desirable as they are easy

to explain and not prone to manipulation. For similar reasons, we restrict at-

tention to deterministic mechanisms. Deterministic mechanisms obviate the need

for a credible randomization device and are therefore more easily applicable in

practice. Finally, ex-post participation constraints are necessary because projects

simply cannot be conducted with insufficient funds, and the designer wants to

avoid costly renegotiations when the projects default.

Literature

Even though the knapsack problem has a wide range of economic applications,

there are relatively few publications in economics on this issue. Most prominently,

Maskin (2002), in his Nancy L. Schwartz memorial lecture, addressed the related

problem of the UK government that put aside a fixed fund to encourage firms to

reduce their pollution. The government faces n firms that have private marginal

cost of abatement θi and can commit to reduce xi units of pollution. To reduce pol-

lution as much as possible, the government pays expected compensation transfers

ti to the firms, who report costs and proposed abatement to maximize ti−θixi. For

some distributions, Maskin (2002) proposes a mechanism that satisfies an ex-post
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participation constraint, an ex-post incentive compatibility constraint, and the

condition that the budget is not exceeded in expectation. In response to Maskin

(2002), Chung and Ely (2002b) look at a more general class of mechanism design

problems with budget constraints and translate them into a setting à la Baron

and Myerson (1982). Their approach nests Maskin (2002) and also Ensthaler and

Giebe (2014a) as special cases. However, Ensthaler and Giebe (2014a) more ex-

plicitly derive a constructive solution. In contrast to us, they all consider a soft

budget constraint that only requires the sum of expected transfers to be less than

the budget. By incorporating the budget constraint into a Lagrangian function

and ignoring the monotonicity (incentive) constraint, they find a mechanism that,

under the standard regularity condition, indeed is incentive compatible.

In addition, Ensthaler and Giebe (2014a) use AGV-budget-balancing (such as

Börgers and Norman, 2009) to obtain a mechanism which is ex-post budget-

feasible. However, transformation into a mechanism with an ex-post balanced

budget in such a way comes at the cost of sacrificing ex-post individual rational-

ity. Many applications do not allow this constraint to be weakened. For instance,

subsidy applicants usually cannot be forced to conduct their proposal when re-

ceiving only a small or possibly no subsidy. Alternatively, limited liability justifies

insisting on ex-post individual rationality. Because we want both constraints to

hold ex-post, we cannot build on their techniques and, thus, we approach the

problem by characterizing the optimal allocation rule.

To the best of our knowledge, no paper exists that jointly considers optimal mech-

anism design under ex-post budget balance and ex-post individual rationality in

a procurement setting. Ensthaler and Giebe (2014b) propose a belief-free clock

mechanism that coincides with our optimal mechanism in the symmetric case for

many parameterizations4 but differs in the asymmetric case by holding the cost-

benefit-ratio equal among projects. By simulating different settings, they conclude

that this mechanism outperforms a mechanism used in practice. In contrast to

their setting, the mechanism designer in our model values residual money. In Sec-

tion IV, we discuss the meaning of residual money and find that our main results

qualitatively carry to the case where residual money is neglected.

4For all parameter constellations such that virtual surplus is always nonnegative.
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Because of the appeal of dominant-strategy incentive-compatible (DIC) mech-

anisms compared to Bayesian incentive-compatible (BIC) mechanisms, many re-

searchers have produced valuable BIC-DIC equivalence results. These results char-

acterize environments in which restricting attention to the more robust incentive

criterion comes without loss. Our setup is not contained in these environments.

For any BIC mechanism, Mookherjee and Reichelstein (1992) show that one can

construct a DIC mechanism implementing the same ex-post allocation rule, when-

ever this allocation rule is monotone in each coordinate. However, the ex-post

transfers of the constructed DIC mechanism are not guaranteed to satisfy ex-post

budget balance. More recently, Gershkov, Goeree, Kushnir, Moldovanu, and Shi

(2013) employ a definition of equivalence in terms of interim expected utilities

introduced by Manelli and Vincent (2010). For any BIC mechanism, including

the optimal one, they construct a DIC mechanism that yields the same interim

expected utilities. Here, the ex-post allocation as well as the ex-post transfers

might differ between the two. Therefore a DIC mechanism equivalent to a feasible

BIC mechanism might violate the ex-post constraints in our setting.

Our budget-constrained procurement setup with ex-post constraints has received

much attention in the computer science literature. Instead of specifying the opti-

mal mechanism, the authors in this literature typically aim to construct allocation

algorithms that give good approximation guarantees. In other words, they try

to maximize the minimal payoff an algorithm can guarantee compared to the full

information knapsack payoff. Apart from the seminal paper by Singer (2010), the

works of Dobzinski, Papadimitriou, and Singer (2011) and Chen, Gravin, and Lu

(2011) are notable examples of this approach. Anari, Goel, and Nikzad (2014)

present a stochastic algorithm and show that it gives the best possible approxima-

tion guarantee in the many projects limit in which any individual project’s costs

are small compared to the budget. While the above papers examine the belief-free

case, Bei, Chen, Gravin, and Lu (2012) propose an algorithm for setups in which

the designer knows how the private information is distributed.

Other auction theoretic papers featuring “knapsack auctions” deal with a slightly

different problem compared to us. Aggarwal and Hartline (2006) consider a set-

ting in which each agent is characterized by his object of commonly known size

and a privately known valuation for having his object placed in the auctioneer’s

knapsack with commonly known capacity. They are looking for the truthful auc-

tion that best approximates the optimal full-information monotone pricing rule
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which maximizes the auctioneer’s profit. Mu’Alem and Nisan (2008) cover the

case of an auctioneer maximizing social welfare instead. Dütting, Gkatzelis, and

Roughgarden (2014) study the performance of DA auctions for knapsack auctions,

i.e., they show DA auctions fail to achieve a constant factor approximation of

the optimal social welfare in knapsack auctions Dizdar, Gershkov, and Moldovanu

(2011) investigate a similar knapsack problem of a profit maximizing auctioneer

in a dynamic setting: Agents sequentially arrive over time and are either included

in the knapsack immediately or lost forever. Thereby they avoid combinatorial

issues, which gives rise to a threshold property of the optimal mechanism. In such

knapsack auctions, the mechanism designer maximizes the sum of transfers, and

the value only enters the individual projects’ payoff while the capacity constraint is

imposed on the weight assigned to agents. In our framework, the value is collected

by the auctioneer and the capacity constraint is imposed on the sum of transfers.

Because of the latter, knapsack auctions and our knapsack procurement auctions

are not dual problems

There seems to be no reasonable analogy for our setting to another setting in

which the mechanism designer is a similarly constrained seller and the agents are

buyers. The literature on group-strategyproof cost-sharing mechanisms, initiated

by Moulin (1999), considers the dual of a “surplus-sharing” problem. The crucial

difference between this problem and our “budget-sharing” problem is that the

agents themselves produce the output to be distributed, while in our case the

budget to be distributed is fixed and unrelated to the surplus created by the

agents, which is collected by the mechanism designer. Budget-constrained buyers

in auctions have been discussed in the literature, e.g., by Che and Gale (1998) or

Pai and Vohra (2014). However, these authors study budget-constrained agents

whereas in our setting the designer is budget-constrained.

In the following section, we introduce the model. In Section III, we rewrite the

problem as a problem of finding the optimal cutoff functions and derive a set of

properties that any optimal mechanism must have. Sections III.i and III.ii cover

symmetric and asymmetric environments, respectively. We discuss extensions and

possible modifications to the model in Section IV. Finally, we conclude in Section

V.
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Model

We consider a set of n projects I = {1, . . . , n} and one mechanism designer. Each

project can be conducted exactly once. The designer gains utility vi if and only

if project i ∈ I is conducted. We consider projects to be utility maximizing

agents. If project i is executed, it incurs cost ci ∈ Ci := [ci, ci], where in the

following we restrict c = 0.5 Let C := ×i∈ICi and C−i := ×j∈I\{i}Cj. Let the

realization of a cost vector be denoted by c ∈ C. The costs are the projects’ private

information and are independently drawn from a distribution Fi. We assume Fi

to be continuously differentiable with a strictly positive density fi on the support.

The value of the project vi and the distribution Fi are common knowledge.

To compensate project i for its cost, the designer pays transfer ti. A direct mech-

anism is characterized by 〈qi, ti〉. It is a mapping from the vector of cost reports

c ∈ C into provision decisions and transfers. We denote the allocation function by

γ : C → P(I), and it maps a cost vector into the set of “greenlighted” projects,

an element of the power set of I. Correspondingly, we call I \ γ(c) the set of

“redlighted” projects.

We restrict attention to deterministic mechanisms. This restriction implies that

once all cost reports are collected, we know with certainty which project is selected

by the mechanism. In other words, the decision of implementation qi is binary,

qi(c) = I(i ∈ γ(c)),

where I denotes an indicator function that is one if the corresponding condition is

true and zero otherwise. We employ a revelation-principle argument and without

loss of generality only consider direct mechanisms.6

5The impact of this assumption it discussed in Appendix VI.D.
6In general, the revelation principle does not hold when restricting attention to deterministic

mechanisms: Deterministic direct mechanisms are unable to replicate mixed strategy equilib-
ria in deterministic indirect mechanisms, as noted by, e.g., Strausz (2003). However, in our
setting we do not lose generality. A mixed strategy equilibrium consists of a distribution over
pure strategy profiles. Because the mechanism is implementable in dominant strategies any of
these pure strategy profiles also constitutes a pure strategy equilibrium, in particular the pure
strategy equilibrium associated with the designer’s most preferred outcome. Similarly, because
the mechanism is ex-post constrained, this outcome is feasible. Therefore, while there are al-
locations that (in the class of deterministic mechanisms) can only be implemented by indirect
mechanisms, the designer’s most preferred feasible allocation can truthfully be implemented in
a direct mechanism.
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Project i’s utility ui is given by its transfer minus the cost it bears,

ui(c) = ti(c)− qi(c)ci.

The designer derives value vi from each greenlighted project i while having to

pay the sum of transfers. Therefore she wants to maximize the aggregate value

of greenlighted projects net of transfers paid. Her (ex-post) utility function uD

implies that, in our setting, the designer values residual money,

uD(c) =
∑
i

(
qi(c)vi − ti(c)

)
. (2.1)

We impose an ex-post participation constraint. That is, if i is greenlighted the

transfer must be at least as high as the cost,

ti(ci, c−i)− qi(ci, c−i)ci ≥ 0 ∀i ∈ I, (ci, c−i) ∈ C. (PC)

In addition, the designer has a budget constraint which is “hard” in the sense that

she cannot spend more than her budget B for any realization of the cost vector.

That is, the designer can never exceed her budget,

∑
i

ti(c) ≤ B ∀c ∈ C. (BC)

Finally, incentive compatibility has to hold ex-post. Alternatively, we can say

that the mechanism has to be implementable in (weakly) dominant strategies7 or

that the mechanism must be strategyproof. Therefore for every realization of the

cost vector, project i’s truthful report must yield at least as much utility as any

possible deviation,

ti(ci, c−i)− qi(ci, c−i)ci ≥ ti(c̃i, c−i)− qi(c̃i, c−i)ci
∀i ∈ I, c−i ∈ C−i and ci, c̃i ∈ Ci. (IC)

7In our private value environment, these two concepts are equivalent in a direct revelation
mechanism. In general, however, ex-post incentive compatibility is essentially a generalization
of dominant-strategy implementability to interdependent value environments. See Chung and
Ely (2002a).
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Analysis

We search for the direct mechanism that maximizes the expected utility of the

designer and refer to this mechanism as the optimal mechanism. One may think

that a natural approach to this problem would be to express the ex-post transfer

ti(ci, c−i) as a function of the ex-post allocation decision qi(ci, c−i), taking c−i as

given, and applying the envelope theorem. In that case, it would be possible to

restrict attention to the allocation in order to solve for the optimal mechanism.

However, this approach does not reduce the complexity of the problem. The reason

is that the ex-post transfers and allocation for one cost vector restrict transfers and

allocation for other cost vectors through the budget constraint in a manner much

more involved than standard monotonicity. In particular, the budget constraint

with the ex-post transfer expressed as a function of the ex-post allocation may be

ill-behaved. Therefore we cannot straightforwardly arrive at sufficient conditions

using convex optimization.8

Instead, we derive a set of properties that every mechanism must inherit to be

optimal. In general, we establish these properties by showing that the expected

payoff yielded by any feasible mechanism not having one of the properties can

be increased by adopting the properties. For some of the following lemmata, we

provide the proof for the two-project case in the main text and provide the proof of

the general case in the appendix. Our first step is to show that strategyproofness

implies that the optimal mechanism has to be a cutoff mechanism.

Lemma 2.1. The optimal mechanism can be represented by cutoff functions zi :

C−i → Ci, such that project i is greenlighted whenever it reports a cost weakly less

than its cutoff,

qi(ci, c−i) = I(ci ≤ zi(c−i)).

The transfer to project i equals its cutoff whenever it is greenlighted and zero

otherwise,

ti(ci, c−i) = qi(ci, c−i)zi(c−i).

Proof. For any two cost reports ci, c
′
i ∈ Ci of project i and for some c−i ∈ C−i,

(IC) implies that if the allocation of i is the same, qi(ci, c−i) = qi(c
′
i, c−i), also the

transfer has to be the same, ti(ci, c−i) = ti(c
′
i, c−i). Otherwise, project i could, as

one of the cost types, deviate to the report yielding the higher transfer.

8Requiring either the budget or the participation constraint to hold only in expectation would
enable us to use the techniques employed by Ensthaler and Giebe (2014a).
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Conditional on i’s allocation and given any cost reports c−i, the transfer is fixed

and does not vary with i’s cost report. Hence, given c−i, there can only be two

different transfers ti for project i, one for each allocation status, tqi=1
i (c−i) and

tqi=0
i (c−i).

Define zi(c−i) := tqi=1
i (c−i)− tqi=0

i (c−i). Then, (IC) implies

qi(ci, c−i) =

1 if ci ≤ zi(c−i)

0 if ci > zi(c−i)
.

Suppose to the contrary that for some realization ĉi < zi(c−i) and some other

c̃i < zi(c−i), qi(ĉi, c−i) = 0 and qi(c̃i, c−i) = 1. Then, type ĉi can profitably

deviate to reporting c̃i to ensure the green light which yields a utility increase of

zi(c−i)− ĉi. An analogous argument applies for ĉi > zi(c−i) > 0.9

The last step is to show that tqi=0
i (c−i) = 0. This result follows from the mechanism

being optimal, i.e., maximizing expected utility of the designer.

As a direct consequence of dominant-strategy implementability, Lemma 2.1 shows

that allocation and transfers are characterized by cutoffs. Project i is greenlighted

whenever it reports a cost that lies weakly below the cutoff. Crucially, these cutoffs

are functions of the other cost reports c−i. However, the optimal cutoffs remain

to be determined. The maximization problem of the designer is given by

max{zi}i∈I Ec [
∑

i qi(c)vi − ti(c)]

s.t. (BC),

qi(c) = I(ci ≤ zi(c−i)) ∀c ∈ C,

ti(c) = I(ci ≤ zi(c−i))zi(c−i) ∀c ∈ C.

(2.2)

9When ci = zi(c−i), (IC) permits both qi(ci, c−i) = 0 and qi(ci, c−i) = 1. By convention,
we assume qi(ci, c−i) = 1 in this case. However, writing a mechanism this way precludes the
specification of tie-breakers, which might be necessary to conserve budget balance. For example,
in a two-project example we would write down the mechanism “greenlight the cheaper project”
as z1(c2) = c2 and z2(c1) = c1. If c1 = c2 a tie-breaker is needed to select a project. As this
is a zero-probability event, the choice of the tie-breaker does not impact the designer’s payoff.
Similarly, as projects are indifferent, their ex-post utility is unaffected. Therefore we refrain
from specifying a tie-breaker and proceed with our analysis as if both projects are greenlighted
in these cases.
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Here, qi and ti are determined by the cutoff function zi. Incentive compatibility

and participation constraints, thus, hold by construction.

The next step towards solving this problem involves applying standard methods

introduced by Myerson (1981). Let the conditional expected probability of being

greenlighted and the conditional expected transfer be

Qi(ci) = Ec[qi(ci, c−i)|ci]

and Ti(ci) = Ec[ti(ci, c−i)|ci].

The interim incentive compatibility required by Myerson (1981) is weaker than

our condition (IC). Consequently, the expected transfer is determined by the al-

location, Ti(ci) = Qi(ci)ci +
∫ ci
ci
Qi(x)dx. The usual monotonicity condition is

trivially fulfilled as we are dealing with cutoff mechanisms. This reformulation

in turn allows us to rewrite the objective function as a function of the alloca-

tion. Substituting into problem (2.2) and integrating by parts yields the following

maximization problem,

max{zi}i∈I Ec

[∑
i I(ci ≤ zi(c−i))

(
vi − ci − Fi(ci)

fi(ci)

)]
s.t.∑

i∈I
I(ci ≤ zi(c−i))zi(c−i) ≤ B ∀c ∈ C.

(2.3)

We call ϕi(ci) := ci+
Fi(ci)
fi(ci)

the virtual cost of project i and ψi(ci) := vi−ϕi(ci) the

virtual surplus. Here, ϕ and ψ are the procurement analogues to standard auction

terminology. We can directly see from problem (2.3) that the optimal mechanism

maximizes the expected sum of greenlighted virtual surpluses.

Note that constrained optimization by Lagrangian is not straightforward here be-

cause of the nondifferentiability of the indicator function. Instead, in the following

we derive useful properties of the optimal cutoffs that can be exploited to charac-

terize the optimal mechanism. A cutoff mechanism is by construction monotonic

in the following sense:

Definition 2.2. An allocation rule γ is monotonic in costs if i ∈ γ(ci, c−i) and

c′i < ci imply i ∈ γ(c′i, c−i) for all c−i ∈ C−i.
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In words, if a project gets greenlighted for some cost vector, it also gets green-

lighted when, all else equal, its cost is lower. To proceed, we restrict the class of

distributions from which costs can be drawn.

Assumption 1 (Log-concavity). For all i, the cumulative distribution function Fi

is log-concave.

This assumption is standard in information economics. It is equivalent to the

reverse hazard rate function f/F being a weakly decreasing function or the ratio

F/f being weakly increasing. Hence, the standard regularity condition is implied:

ϕi is strictly increasing and ψi is strictly decreasing. A decreasing reverse hazard

rate is the procurement analogue to the assumption of increasing hazard rate

functions in seller auction settings.

Regularity ensures that a lower cost ci translates to a higher virtual surplus ψi(ci).

Hence, we can define the following cutoff cost type

z∗∗i :=

ψ
−1
i (0) if ψ−1

i (0) ∈ Ci

ci otherwise
, (2.4)

where regularity implies the invertibility of ψi and thus allows for the above def-

inition of z∗∗i . In the symmetric case, z∗∗i = z∗∗ for all i ∈ I. Let ζ∗∗ be the

n-dimensional vector with z∗∗i as i-th element for all i ∈ I.

Definition 2.3. An allocation rule γ is ζ∗∗-exclusive if, for all i ∈ I, ci > z∗∗i

implies that i 6∈ γ(ci, c−i) for all c−i ∈ C−i.

A cutoff mechanism is ζ∗∗-exclusive if and only if zi(c−i) ≤ z∗∗i for all c−i ∈ C−i
and for all i ∈ I. If the budget sufficed, a designer would want to greenlight all

projects with nonnegative virtual surplus. Crucially, the arguments leading to this

statement also imply that it is never optimal to greenlight a project with negative

virtual surplus.

Lemma 2.4. The optimal mechanism is ζ∗∗-exclusive. In the trivial case,
∑
z∗∗i ≤

B, the optimal cutoffs are independent of the cost reports,

zi(c−i) = z∗∗i ∀c−i ∈ C−i and ∀i ∈ I.

The proof of this lemma is standard and hence omitted. It immediately follows

from the rewritten objective function (2.3): Greenlighting a project with negative
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virtual surplus decreases the designer’s payoff and uses part of the budget. Guar-

anteeing the green light for high-cost types comes at the cost of having to pay

higher information rents to all cost types. For the same reason, also a budget-

unconstrained designer would implement a ζ∗∗-exclusive mechanism, even when

the surplus vi − ci is positive for all projects. Next, we show that an optimal

mechanism possesses the following property:

Definition 2.5. An allocation rule γ has substitutes if i ∈ γ(c) and c′j > cj for

some j 6= i implies i ∈ γ(c′j, c−j).

That is, if a project gets greenlighted for some cost vector c, it is also greenlighted

when, all else equal, another project’s cost is increased. This property relates to

the cross-monotonicity defined in the cost sharing problem of Moulin and Shenker

(2001): an agent’s cost share cannot increase when the allocation set expands.

Having in mind a setting with an exogenously determined amount of projects to

be procured and without a budget constraint, this property is clearly optimal,

because if i is among the projects with the highest virtual surpluses for some cost

vector, it is also among them when the cost of some other project j is increased,

i.e., when j’s virtual surplus is decreased. However, with the budget constraint,

this property does not hold in a full-information setting.10 A cutoff mechanism

has substitutes if all functions zi are weakly increasing in each argument.

Lemma 2.6. The optimal mechanism has substitutes,

zi(c̃j, c−i−j) ≥ zi(ĉj, c−i−j) for almost every c̃j > ĉj and c−i−j ∈ C−i−j. (2.5)

Proof. (with n = 2, see appendix for the general proof)

For a graphical representation of the proof, consult Figure 2.1. We show that for

any feasible cutoff mechanism that does not have substitutes, there exists a feasible

alternative mechanism with substitutes that outperforms the initial candidate in

terms of the designer’s payoff. In fact, the alternative mechanism outperforms the

initial candidate state-by-state and not only in expected terms.

As a first step, we can, without loss of generality, restrict the range of any optimal

function zi: By ζ∗∗-exclusivity, any optimal functional value zi(c−i) cannot exceed

10For example, there are two projects, v1 > v2. Under full information, both projects get
implemented for a cost vector (c1, c2) = (B − z, z). Then, increasing c1 would kick project 2
out of the allocation. In contrast, in our asymmetric-information setting where c2 pins down a
cutoff z1(c2) for project 1, project 1 instead loses the green light status, when its cost increases
while c2 remains constant.
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z∗∗i .

Next, fix an arbitrary feasible pair of cutoff functions {z1, z2} as a candidate for

optimality. Contrary to (2.5), suppose that z2 is decreasing on a set with positive

Lebesgue-measure. Then, there exist sets C̃1 and Ĉ1 with positive Lebesgue-

measure, such that

z2(ĉ1) > z2(c̃1) for all ĉ1 ∈ Ĉ1, c̃1 ∈ C̃1,

and ĉ1 < c̃1 for all elements of the corresponding sets.

Figure 2.1: The alternative cutoff mechanism {z1, z
′
2} outperforms the initial

candidate {z1, z2} for all cost vectors in the light gray area and otherwise yields
the same allocation.

c1 c1
c1

c2

c2,
z2(c1)

z2

ĉ1

Ĉ1 C̃1

c̃2

z′2z2(ĉ1)

c̃1
c2 c2

c2

c1

c1,
z1(c2)

z1(c̃2)

Case 1

Case 2

c̃2

z1 = z′1

Now, consider an alternative cutoff mechanism {z1, z
′
2} that leaves cutoff function

z1 unchanged, but modifies the cutoff function of project 2 in the following way

z′2(c1) =

z2(ĉ1) if c1 ∈ C̃1

z2(c1) otherwise
,

with an arbitrary ĉ1 ∈ Ĉ1. In words, the alternative flattens z2 over region C̃1 and

otherwise leaves the initial mechanism as it is. This alternative cutoff function is

depicted in Figure 2.1 as the thick flat line.

The alternative mechanism implements the same allocation, except in the gray

area depicted in Figure 2.1 where it additionally greenlights project 2. Because
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z2(ĉ1) ≤ z∗∗2 by ζ∗∗-exclusivity, the alternative mechanism clearly yields a higher

payoff.

It remains to be shown that the alternative mechanism is not only more profitable

but also feasible. First of all, the initial mechanism is, by assumption, budget-

feasible everywhere. In particular, it is feasible at any point (ĉ1, c̃2) with ĉ2 ≤ z2(ĉ1)

and ĉ1 ∈ Ĉ1. Formally, for any such points, the budget constraint holds,

q1(ĉ1, c̃2)z1(c̃2) + q2(ĉ1, c̃2)z2(ĉ1) ≤ B. (*)

To any point (ĉ1, c̃2), there is a range of corresponding points (c̃1, c̃2) with c̃1 ∈ C̃1.

We now check feasibility for any such point (c̃1, c̃2). Referring to Figure 2.1, we

are addressing all points that live in the rectangle below the thick flat line of z′2.

Under the alternative mechanism, for all c̃1 ∈ C̃1, q′2(c̃1, c̃2) = q2(ĉ1, c̃2) = 1.

Regarding ĉ1, there can be two cases:

Case 1: If ĉ1 ≤ z1(ĉ2), then q1(ĉ1, c̃2) = 1, i.e., both projects are implemented and

have to be compensated. The alternative is feasible in any point (c̃1, c̃2) as

q′1(c̃1, c̃2)z′1(c̃2) + q′2(c̃1, c̃2)z′2(c̃1) = q′1(c̃1, c̃2)z1(c̃2) + z2(ĉ1)

≤ z1(c̃2) + z2(ĉ1) ≤ B,

where the final inequality follows from (*).

Case 2: If ĉ1 > z1(ĉ2), then q1(ĉ1, c̃2) = 0, i.e., only project 2 is financed. The

alternative is feasible in any point (c̃1, c̃2) as

q′1(c̃1, c̃2)z′1(c̃2) + q′2(c̃1, c̃2)z′2(c̃1) = 0 + z′2(c̃1)

≤ z2(ĉ1) ≤ B,

where the first equality follows from c̃1 ≥ ĉ1 > z1(c̃2) and the final inequality again

follows from (*).

Since, for any feasible cutoff mechanism with a cutoff function that is somewhere

decreasing, we can find an alternative more profitable cutoff mechanism with cutoff

functions that are weakly increasing, the optimal mechanism’s allocation rule must

have substitutes.
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Lemma 2.6 establishes that optimal cutoff functions are weakly increasing in each

of their arguments. The intuition is straightforward. The cost realizations of all

projects are independent. Therefore project i’s cost report only influences the

allocation of project j 6= i via the budget constraint. Project i’s cost report only

influences the budget through exceeding or lying below the cutoff. If project i

exceeds its cutoff, this frees budget to be distributed among the other projects.

Consequently, their cutoffs should remain constant or increase. While the intuition

is the same for both n = 2 and n > 2, the proof is more involved in the general

case. The reason is that the cost report of the project with the decreasing cutoff

does not simultaneously pin down all other cutoffs and the remaining budget - as

it does when n = 2. We cannot trivially extend the proof above, if some cutoff of

a third project z3 increases in c1 while z2 decreases. The intuition of the general

proof is that a decreasing cutoff cannot be optimal, because it essentially implies

exchanging project 2 for project 1 while the virtual surplus of project 2 decreases

relative to the virtual surplus of project 1.

We continue by establishing the next property of the optimal mechanism:

Definition 2.7. An allocation rule γ has non-bossy winners if for any i ∈ I,

c ∈ C, and c′i ∈ Ci, i ∈ γ(c′i, c−i) ∩ γ(c) implies γ(c′i, c−i) = γ(c).

In words, a non-bossy winner cannot affect the allocation without changing its own

green-light status. In restricted environments, it can be shown that the optimal

allocation rule is non-bossy: γ(c′i, c−i)∩ {i} = γ(c)∩ {i} implies γ(c′i, c−i) = γ(c).

However, we only need the winners to be non-bossy and examples of environments

with bossy losers in the optimal mechanism can be constructed, see Appendix

VI.D.

Given some cost vector, let G represent the set of greenlighted projects and R

represent the set of redlighted projects. In the following lemma, we show that

given that only the projects in some set G are greenlighted and given the re-

maining projects’ costs cR, for all g ∈ G all functions zg intersect at some point

(aG1 (cR), aG2 (cR), ...). This point only depends on cost reports cR of redlighted

projects. Intuitively, optimal cutoffs cannot depend on greenlighted projects’ cost,

because for these projects the cutoff coincides with the transfer. For the two-

project case, Figure 2.2 illustrates that (BC) must bind when both projects are

greenlighted. However, then project 1 influencing project 2’s cutoff would change

the remaining budget which is equal to project 1’s transfer, given that (BC) binds.

This contradicts the notion of a cutoff mechanism.
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Lemma 2.8. For any cost vectors (cG, cR) ∈ C and (c′G, cR) ∈ C such that

G = γ(cG, cR) = γ(c′G, cR) and R = I \ γ(cG, cR), the optimal cutoff function zg

for all g ∈ G is (almost everywhere) independent of the costs of all greenlighted

projects cG. That is,

zg(cG−g, cR) = zg(c
′
G−g, cR),

for all cG−g and c′G−g such that G is the set of greenlighted agents.

Proof. (with n = 2, see appendix for the general proof and consult Figure 2.2 for

intuition)

By Lemma 2.1, the optimal mechanism has to be a cutoff mechanism. What

remains to be shown is that the cutoff functions {zi}i∈I only depend on cR. When

γ(c) is a singleton, i.e., when only one project is greenlighted, the statement follows

from the nature of a cutoff function. Hence, we need to show that the cutoffs

must be constants whenever γ(c) = {1, 2}. Therefore suppose that γ(c) = {1, 2}
is induced with positive probability.

Figure 2.2: In Lemma 2.8, we show that in the nontrivial two-project case
whenever G = {1, 2} both projects get constant transfers summing up to the
budget. For instance, the candidate mechanism (with substitutes) depicted
above is outperformed by an alternative mechanism indicated by the arrows.

B c1

B

c2

G =
{1, 2}

a2

a1

Take any feasible candidate mechanism with any increasing cutoff functions zi and

define

a1 = max{c1|∃c2 : c2 ≤ z2(c1), c1 ≤ z1(c2)}

a2 = max{c2|∃c1 : c1 ≤ z1(c2), c2 ≤ z2(c1)}, (2.6)

i.e., ai is the highest cost of project i such that both projects are implemented.
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Whenever greenlighting both projects, the sets over which we have defined a1 and

a2 must be non-empty. The maximum exists by left-continuity of any optimal

function zi.
11 Hence by definition of a1, there exists c̃2 such that a1 = z1(c̃2).

Similarly, there exists c̃1 such that a2 = z2(c̃1).

By definition, (c̃1, c̃2) ≤ (a1, a2) and at cost realization (c̃1, c̃2) both projects are

implemented. The budget feasibility of the candidate mechanism implies a1 +a2 ≤
B.

Now we show that, in optimum, z1(c′2) = a1, for all c′2 ≤ a2, and z2(c′1) = a2, for

all c′1 ≤ a1. Suppose not. Suppose (without loss of generality) there is some set

Ξ ⊂ [0, a2] with positive Lebesgue-measure such that z1(c′2) < a1 for all c′2 ∈ Ξ.

Denote zΞ
1 := maxc2∈Ξ z1(c2). Since a1 + a2 ≤ B, changing the mechanism to

z1(c′2) = a1, ∀c′2 ≤ a2 does not violate the budget constraint and increases the

payoff by

∆ > Pr(c2 ∈ Ξ)

∫ a1

zΞ
1

ψ1(c)dF (c) > 0.

In fact, this alternative mechanism outperforms the initial candidate state-by-state

and not only in expectation.

The following corollary is an immediate consequence of Lemma 2.8 combined with

monotonicity and bidder substitutability. It establishes that any optimal mecha-

nism satisfies non-bossiness of greenlighted projects.

Corollary 2.9. For any optimal mechanism with G = γ(cG, cR) for some (cG, cR) ∈
C, also γ(c′G, cR) = G for any cost vector (c′G, cR) ∈ C with c′g ≤ cg for all g ∈ G.

Hence, for all i ∈ I, for all c−i ∈ C−i, and for all ĉi, c̃i ∈ Ci with ĉi < c̃i, in any

optimal mechanism,

ĉi < c̃i ≤ zi(c−i) implies γ(ĉi, c−i) = γ(c̃i, c−i).

Taking stock, among all mechanisms satisfying (PC), (BC) and (IC), any mecha-

nism that maximizes the designer’s expected payoff (2.1) belongs to a certain class

11We can replace any function zi with a left-continuous function that is identical up to a set
of points with Lebesgue-measure zero. Hence, if there exists an optimal function zi that is not
left-continuous, then there also exists a left-continuous version of the same function that yields
the same payoff and hence is also optimal.
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of mechanisms: We have shown that the optimal mechanism is characterized by a

set of cutoff functions {zi}i∈I and the corresponding allocation rule is

Property 1 monotonic in costs,

Property 2 ζ∗∗-exclusive,

Property 3 has substitutes, and

Property 4 has non-bossy winners.

Being able to restrict attention to mechanisms with these properties is highly

useful, as these mechanisms are a much more tangible class than the substantially

larger set of all permissible cutoff mechanisms. In addition, all mechanisms with

these properties can be implemented with a DA auction as proposed by Milgrom

and Segal (2014). To this end, we first restate their definition adapted to our

setting.

Definition 2.10 (DA auction). A deferred acceptance (DA) auction is an iterative

algorithm defined by a collection of scoring functions

sAi : Ci × CI\A → R+

that are weakly increasing in ci for all i ∈ A and for all A ⊂ I. Let At ⊂ I denote

the set of active bidders in iteration t and initially A1 = I. The algorithm stops

in some period T when all active projects have a score of zero, sAT
i = 0 for all

i ∈ AT . Then the set of greenlighted project is AT . Otherwise, at each iteration

t, the project with the highest score is removed. The payment pti of project i at

iteration t is either given by the highest possible cost that i could have had without

being removed from the set of active bidders or by the last iteration’s payment,

depending on which payment is smaller,

pti(c) =

sup{c′i : sAt
i (c′i, cI\At) < sAt

j (cj, cI\At)} for j ∈ At \ At+1,

min{sup{c′i : sAt
i (c′i, cI\At) ≤ 0}, pt−1

i } if t = T.

The algorithm is initialized with p0
i = min{ci, z∗∗i , B}.12

The main appeal of DA auctions lies in their incentive guarantees. They are

not only strategyproof, they are obviously strategyproof, as defined by Li (2015).

12Compared to Milgrom and Segal (2014), we slightly tweak the updating function of payments
without changing the deferred acceptance nature of the algorithm and any of its properties.
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Moreover, DA auctions are weakly group-strategyproof. That is, no coalition of

projects can manipulate their reports such that it strictly increases the utility

of all projects in the coalition: At least one member of the coalition receives a

weakly worse payoff whenever other coalition members benefit. Because collusion

in auctions is generally illegal, compensating the worse off coalition member is

not contractible. In addition, the dominant-strategy equilibrium outcome in a

DA auction can be interpreted as robust in the following sense: Consider the

full-information game in which all cost reports are observed, projects can report

any cost, the allocation is determined according to the DA auction’s allocation

rule, but projects receive their own report as payments. The dominant-strategy

equilibrium outcome of the DA auction is the only outcome that survives iterated

deletion of dominated strategies in this game.

Proposition 2.11. Any optimal mechanism has a DA auction representation and

can be implemented with a descending-clock auction.

The proof of Proposition 2.11 is relegated to a separate section in the appendix.

Milgrom and Segal (2014) show that with a finite type space, any mechanism

satisfying monotonicity, bidder substitutability, and non-bossiness of winners can

be implemented by a myopic clock auction.

The symmetric case

In this section, we focus on symmetric projects, i.e., environments with vi = v

and Fi = F for every project i ∈ I. An implication of this assumption is that

the order of costs coincides with the order of virtual surpluses and that z∗∗i = z∗∗

for all i ∈ I. We show how to utilize the established results to characterize the

optimal allocation and also how to implement it. As in previous proofs, the proof of

Proposition 2.12 considers the two-project case while the general proof is relegated

to the appendix. In the two-project case, the designer’s optimization problem can

be reduced to optimally solving for a single constant. Nevertheless, we discuss

possible alternatives to the optimal mechanism in greater detail to foreshadow the

complications which arise in asymmetric environments.

Proposition 2.12. Arrange the projects in ascending order of their reported costs,

c1 ≤ c2 ≤ · · · ≤ cn ≤ cn+1 := c, and define zk := min
{
B
k
, z∗∗, ck+1

}
. In the

symmetric case, the cutoff mechanism with zi(c−i) = zk
∗

is the optimal mechanism.

The optimal number of accepted projects k∗ is given by k∗ := max{k|ck ≤ zk}.
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Proof. (with n = 2, see appendix for the general proof)

In Proposition 2.11, we have shown that the optimal mechanism must be a special

kind of DA auction. We call the mechanism in the proposition the proposed

mechanism and, as a candidate for optimality, consider {z1, z2}, some different

cutoff mechanism with the properties we derived. Suppose {z1, z2} greenlights both

projects with nonzero probability and that it differs from the proposed mechanism

in a way such that a1 = z > B/2 and a2 = B − z < B/2 with ai defined as in

(2.6). For graphic intuition of the deviation consult Figure 2.3.

By Lemma 2.4, any optimal mechanism must never greenlight a project with

negative virtual surplus. This property is depicted as the kink at (z∗∗, z∗∗).

In the area northwest of the dashed budget line, c1 + c2 > B, the designer can,

by (BC) and (PC), only execute one of the two projects. It can be directly seen

from objective function (2.3) that the designer prefers the project with the higher

virtual surplus, i.e., the one with lower cost. It does not, however, follow directly

that zi(cj) = cj whenever B−ci < cj < z∗∗. It could be optimal for the designer to

forgo executing the lower-cost project for some cost vectors (shaded triangle and

crossed square in Figure 2.3) in order to execute both projects in an additional

area (horizontally lined, Figure 2.3). In such a case, the designer is forced by

incentive compatibility to execute the higher-cost project (for cost vectors in the

shaded triangle or the square that is both horizontally and vertically lined).

Figure 2.3: A candidate mechanism compared to the proposed mechanism.

c1 B c1

c2 = c
B

c2

B
2

B − z

zB
2

z∗∗
z2(c1)

z2(c1) candidate

z1(c2)
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By Lemma 2.8, both cutoffs must be constant whenever both projects are executed.

In optimum in that case, there can be no slack in the budget constraint and zi is

flat in that region. Otherwise increasing one of the cutoffs until the budget binds

is both feasible and profitable.

Formally, candidate mechanism {z1, z2} is given by

z2(c1) =


z∗∗ if c1 ≥ z∗∗

c1 if z < c1 < z∗∗

B − z if c1 < z

and z1(c2) =


z∗∗ if c2 ≥ z∗∗

c2 if B − z < c2 < z∗∗

z if c2 < B − z

. (2.7)

For ease of exposition, let A = B
2

. Let ∆ be the increase in the designer’s expected

payoff from implementing the proposed mechanism instead of candidate {z1, z2}.

∆ = F (z)

∫ A

B−z
ψ(x2)dF (x2) (vertical)

− F (A)

∫ z

A

ψ(x1)dF (x1) (horizontal)

+

∫ z

A

∫ c

A

ψ(x2)dF (x2)− (F (c)− F (A))ψ(x1)dF (x1) (shaded)

where the patterns represent the area in Figure 2.3 where the allocation changes.

Everywhere else the allocation and payoff remain the same.

To rewrite ∆, define ξ(x) = F (x)(v − x) with ξ′(x) = ψ(x)f(x):

∆ = F (z)(ξ(A)− ξ(B − z))− F (A)(ξ(z)− ξ(A))

+ F (A)(ξ(z)− ξ(A)) +

∫ z

A

ξ(x1)− ξ(A)− F (x1)ψj(x1)dF (x1)

= F (z)(ξ(A)− ξ(B − z))− F (A)(ξ(z)− ξ(A))

+ F (A)(ξ(z)− ξ(A))− ξ(A)(F (z)− F (A)) +

∫ z

A

F 2(x1)dx1
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because (ψ(c)F (c) − F (c)(v − c))f(c) = F 2(c) and then since
∫ z
A
F (x1)2dx1 >

F (A)2
∫ z
A

1dx1,

∆ > F (z)(ξ(A)− ξ(B − z))− ξ(A)(F (z)− F (A)) + F (A)2(z − A)

= F (A)2(v − A+ z − A)− F (z)F (B − z)(v −B + z)

= (v −B + z)(F (A)2 − F (z)F (B − z))

> 0 ⇔ F (A)2 > F (z)F (B − z).

This statement is true under Assumption 1, log-concavity. Maximizing F (z)F (B−
z) with respect to z, the first order condition is given by

F (z)

f(z)
=
F (B − z)

f(B − z)
(2.8)

which is only true at z = B/2 since F/f is an increasing function. For the same

reason, the left-hand side is greater (less) than the right-hand side for z > B/2(<

B/2) making z = B/2 the maximum.

We have assumed that in the optimal mechanism both projects get greenlighted for

some cost vectors. It remains to show that the optimal mechanism beats the best

mechanism in which at most one project gets greenlighted. The best mechanism

that selects at most one project always greenlights the project with higher virtual

surplus. Clearly, the proposed mechanism outperforms this mechanism as it also

always greenlights the project with higher virtual surplus, and it, additionally,

sometimes greenlights a second project with positive virtual surplus.

To sum up, in the symmetric case, the optimal allocation rule takes a simple

form: The cheapest projects are greenlighted and the mechanism greenlights as

many projects as the budget allows, while each procured project receives the same

compensation. Any project that is redlighted prefers this allocation status over

having to conduct the project with the associated compensation.

There are two rationales for greenlighted projects to get the same transfer. First,

as shown in the proof of Proposition 2.12, this cutoff rule maximizes the probability

of getting as many projects as possible. Dominant-strategy incentive compatibility

prevents the budget from being shifted away from projects with low cost reports to

projects with high costs. Therefore offering equal cutoffs is the best the designer

can do. Second, as seen in (2.3), the rewritten maximization problem of the
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designer, the expected utility of the designer is given by the sum of virtual surpluses

of greenlighted projects. Therefore she wants to greenlight those projects with

the highest virtual surpluses. That goal is consistent with offering equal cutoffs

to greenlighted projects and excluding those with higher cost. In the optimal

allocation, greenlighted projects have higher virtual surplus than those which are

not greenlighted. The compatibility of the two goals - get as many projects as

possible and get those with the highest virtual surpluses - is a special feature of

the symmetric case. It generically fails in the asymmetric case, as we demonstrate

in the next section.

Figure 2.4: An example of optimal allocations for the symmetric case with
n = 2.

c1 B c1

c2 = c
B

c2

both

1

2

(a) Budget-constrained, full infor-
mation.

c1 B c1

c2

B

c2

both

1

2z2(c1)

z1(c2)

none

z∗∗

z∗∗

(b) Budget-constrained, private
information.

Figure 2.4 illustrates the optimal budget-constrained allocations in an example

with two projects. Panel 2.4b shows the fully-constrained optimal allocation jux-

taposed with the relaxed optimal allocation when (IC) is neglected, shown in

Panel 2.4a. First, note that in this example v ≥ c and c < B. Therefore a

fully-unconstrained designer with full information would always greenlight both

projects, and a budget-constrained designer with full information would always

greenlight at least one project. However, since z∗∗ < c, there exist realizations

of c (the upper-right corner of Panel 2.4b) such that no project gets greenlighted

in the (IC)-constrained optimal allocation, even though doing so would be prof-

itable from an ex-post perspective. The negative virtual surpluses of the projects

in these cases indicates that the cost of allocating to such a project - incentive

compatibility requires higher transfers for other cost types - outweighs the benefit

from an ex-ante perspective. The second major difference between the relaxed
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optimal allocation and the optimal allocation can be seen for those realizations of

costs such that allocating to both projects would be feasible only in the relaxed

problem. This difference is a result of the designer’s inability to shift budget from

low-cost to relatively higher-cost projects with a strategyproof mechanism.

Corollary 2.13. In the symmetric case, the optimal direct mechanism can be

implemented by a descending-clock auction. The clock price, denoted by τ , starts

at z∗∗ and descends continuously and synchronously down to B
n

. Projects can drop

out at any price but cannot re-enter. The auction stops once the clock price can

be paid out to all projects remaining in the auction.

In any iteration, a scoring function of the corresponding DA auction is

sAt
i (ci, At) = max

{
ci −

B

|At|
, 0

}
.

We consider the descending-clock auction of Corollary 2.13 to be a natural indirect

mechanism that implements the outcome of the optimal allocation. Project i’s

equilibrium strategy, which implements this outcome, has it staying active as long

as the price is weakly larger than its private cost, τ ≥ ci. It is easily verifiable

that this is a weakly dominant strategy for project i.

The asymmetric case

In this section, we demonstrate why the logic of the optimal mechanism in the

symmetric case does not carry over to the asymmetric case. To preserve tractabil-

ity, we restrict the analysis to the two-project case which conveys the intuition

behind the forces at work in the general case. However, we allow for general val-

ues v1 and v2 as well as differing cost distributions F1 and F2. We consider the

non-trivial case, z∗∗1 + z∗∗2 > B

Since we did not impose symmetry to prove Proposition 2.11, we can without loss

of generality restrict attention to mechanisms inheriting the optimal properties

to find an optimal mechanism for the asymmetric case as well. The rewritten

maximization problem of the designer (2.3) for the asymmetric two-project case
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is given by

maxz1(c2),z2(c1) E
[
I(c1 ≤ z1(c2))

(
v1 − c1 − F1(c1)

f1(c1)

)
+I(c2 ≤ z2(c1))

(
v2 − c2 − F2(c2)

f2(c2)

) ]
s.t.

I(c1 ≤ z1(c2))z1(c2) + I(c2 ≤ z2(c1))z2(c1) ≤ B ∀(c1, c2) ∈ C.

(2.9)

By Lemma 2.8, the cutoffs must be constants whenever both projects are green-

lighted. Since we consider the non-trivial case, these constants must sum up to

the budget. Otherwise, increasing one of the cutoffs until the budget binds is

both feasible and profitable. Let project 1’s cutoff for this case be z1(c2) = z and

project 2’s cutoff be z2(c1) = B − z. By virtue of the optimal properties, the de-

signer must greenlight a project once its cost is below the constant cutoff zi(c−i).

If both projects report greater costs, the designer is free to choose one of them. A

glance at the objective function (2.9) reveals that in such a case it is desirable to

greenlight the project with greater positive virtual surplus, if feasible. This result

allows us to rewrite the objective function (2.9) as a function of z,

max
z
π(z) =

∫ z

0

ψ1(c1)dF1(c1) +

∫ B−z

0

ψ2(c2)dF2(c2) (2.10)

+

∫ c2

max{ψ−1
2 (ψ1(z)),B−z}

∫ min{ψ−1
1 (ψ2(c2)),z∗∗1 ,B}

z

ψ1(x)dF1(x)dF2(c2)

+

∫ c1

max{ψ−1
1 (ψ2(B−z)),z}

∫ min{ψ−1
2 (ψ1(c1)),z∗∗2 ,B}

B−z
ψ2(x)dF2(x)dF1(c1).

In the symmetric case, the ranking of virtual surpluses coincides with the reversed

order of costs. Hence, the optimal DA auction in the symmetric case rejects in each

round the least attractive project in terms of virtual surplus. A natural extension

of this mechanism to the asymmetric case would involve adjusting the cutoffs so

that they equalize virtual surplus. This modification ensures that again in each

round the least attractive project in terms of virtual surplus is rejected. We call

this the candidate allocation.

The condition for optimality of the candidate allocation is stated in (2.11). To

implement the candidate allocation, the constant cutoffs at which both projects

are greenlighted must be a pair (a1, a2) = (z, B− z) such that ψ1(z) = ψ2(B− z).

Then, however, optimality is only obtained if F2(B−z)
f2(B−z) = F1(z)

f1(z)
. The intuition behind
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this statement is straightforward. Selecting z in order to satisfy ψ1(z) = ψ2(B−z)

allows the designer to always program the price clocks such that they greenlight

the project with the higher virtual surplus, whenever it is not feasible to greenlight

both projects. However, if F2(B−z)
f2(B−z) 6=

F1(z)
f1(z)

the cutoffs z and B−z do not maximize

the probability to greenlight both projects. Consequently, the designer can adjust

the cutoffs {z,B − z} to trade off a higher probability of implementing the most

favorable allocation (γ(c1, c2) = {1, 2}) against a positive probability of having to

implement the less preferred of two possible singleton allocations (γ(c) = j, when

project j has lower virtual surplus).

Therefore the two aspects of the designer’s payoff maximization - getting projects

with high virtual surplus and getting as many projects as possible - are only

aligned if condition (2.11) is met. In the symmetric case, the condition holds by

construction. However, in an asymmetric environment it is generically violated.

Proposition 2.14. In the nontrivial asymmetric two-project case, i.e., n = 2

and z∗∗1 + z∗∗2 > B, in which values or cost distributions differ across projects, it

is generically not optimal to always greenlight the project with the higher virtual

surplus. That is, under the optimal allocation rule γ, there may exist cost vectors

(ci, cj, c−i−j) ∈ C such that

i 6∈ γ(ci, cj, c−i−j), and j ∈ γ(ci, cj, c−i−j)

although

ψi(ci) > ψj(cj).

Proof. To obtain the derivative of π(z) given in (2.10) with respect to z we can use

the rules for differentiation under the integral sign.13 Given the max operators,

the derivative takes a different form depending on whether ψ1(z) ≷ ψ2(B − z).

However, as π is continuously differentiable, it suffices to look at one of the two

forms,

∂π

∂z

∣∣∣∣
z:ψ1(z)≥ψ2(B−z)

=

∫ ψ−1
1 (ψ2(B−z))

z

ψ1(x)dF1(x)f2(B − z)+

+ ψ1(z)f1(z)F2(B − z)

− ψ2(B − z)f2(B − z)F1(ψ−1
1 (ψ2(B − z))).

13Define g(z, c2) :=
∫min{ψ−1

1 (ψ2(c2)),z
∗∗
1 ,B}

z
ψ1(x)dF1(x)f2(c2) and then use

d
dz

(∫ b(z)
a(z)

g(z, c2)dc2

)
= g(z, b(z))b′(z)− g(z, a(z))a′(z) +

∫ b(z)
a(z)

gz(z, c2)dc2.
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Now, consider z corresponding to the candidate allocation with ψ1(z) = ψ2(B−z),

which yields
∂π

∂z
= 0⇔ F2(B − z)

f2(B − z)
=
F1(z)

f1(z)
, (2.11)

a nongeneric case. Consequently, it is generically not optimal to always allocate

to the project with the higher virtual surplus.

Proposition 2.14 is driven by a tradeoff between quantity and quality: Even though

the designer always prefers the project with the higher virtual surplus, if she

greenlights a single project she sometimes greenlights the project with lower virtual

surplus out of two rival projects, as quantity is endogenous here. The simplest

way to lay out the intuition behind Proposition 2.14 is by an example.

Example 2.1. There are two projects, (n = 2) with v1 = 5, v2 = 4.5 and c1 and

c2 are uniformly distributed on support [0, 1]. The budget is given by B = 1. The

optimal cutoff functions are given by:

z1(c2) =


0.53 if c2 ≤ 0.47

c2 + 0.25 if 0.47 < c2 ≤ 0.75

1 if c2 > 0.75

z2(c1) =

0.47 if c1 ≤ 0.72

c1 − 0.25 if c1 > 0.72.

Possible scoring functions for a corresponding DA auction are given by:

s
{1,2}
1 (c1) =


c1 + 0.47 if 0.53 < c1 < 0.72

2c1 − 0.25 if c1 ≥ 0.72

0 otherwise

s
{1,2}
2 (c2) =

2c2 + 0.25 if c2 > 0.47

0 otherwise

s
{1}
1 (c1) = 0

s
{2}
2 (c2) = 0.
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The corresponding optimal allocation is:

(q1, q2) =



(1, 1) if 0 ≤ c1 ≤ 0.53 and 0 ≤ c2 ≤ 0.47

(1, 0) if 0 ≤ c1 ≤ 0.72 and c2 > 0.47

(1, 0) if c1 > 0.72 and ψ1 ≥ ψ2

(0, 1) if 0.53 < c1 ≤ 0.72 and c2 ≤ 0.47

(0, 1) if c1 > 0.72 and ψ1 < ψ2.

The corresponding transfers are:

t1(c1, c2) =



0.53 if c2 ≤ 0.47 and c1 ≤ 0.53

c2 + 0.25 if 0.47 < c2 ≤ 0.75 and c1 ≤ c2 + 0.25

1 if c2 > 0.75

0 otherwise

t2(c1, c2) =


0.47 if c1 ≤ 0.72 and c2 ≤ 0.47

c1 − 0.25 if c1 > 0.72 and c2 < c1 − 0.25

0 otherwise.

Consider Example 2.1. The candidate allocation demands cutoffs such that z̃1(c2) =

0.625 and z̃2(c1) = 0.375 for allocating to both projects. At these cutoffs, the prob-

ability of greenlighting both projects is 0.625 · 0.375 ≈ 0.234. This allocation is

depicted in Panel 2.5a. In contrast, the maximal feasible probability to greenlight

both projects is at equal cutoffs, ẑ1(c2) = ẑ2(c1) = 0.5. The corresponding area is

the dotted square in the lower-left corner of Panel 2.5b. However, at these cutoffs

it is not incentive compatible to guarantee the green light for the project with

higher virtual surplus in every case. More specifically, it is not incentive compat-

ible to allocate along the dotted14 diagonal line, if at least one project exceeds

ẑi(c−i). Hence, strategyproofness introduces a tradeoff between maximizing the

probability of greenlighting both projects and allocating to the preferred one if only

one project is feasible. Consequently, the optimal cutoffs (z∗1 , z
∗
2) for greenlighting

14Not to be confused with the dashed diagonal representing the budget constraint.
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both projects do not lie at (0.625, 0.375) but rather at (0.53, 0.47). Importantly,

this optimal discrimination of the stronger project is pursued independently of the

discrimination due to the stochastic dominance reflected in the virtual costs.

Given the optimal allocation in Example 2.1, there are some realizations of the cost

vector for which the designer greenlights the project with lower virtual surplus.

These realizations are represented by the shaded area in Panel 2.6a. Here, (IC),

(PC), and the choice of (z1(c2), z2(c1)) force the designer to greenlight project 2,

even though project 1 has the higher virtual surplus.

The cost vectors for which the designer implements both projects are repre-

sented by the rectangular area in the lower-left corner of Panel 2.6a. Any point

(z1(c2), z2(c1)) on the dashed line representing the budget constraint satisfies z1(c2)+

z2(c1) = B. Moving this corner point southwest along the dashed budget line has

two effects: shrinking the shaded area and shrinking the area of the rectangle,

which in this example represents the probability that both projects are conducted.

While it is desirable to shrink the shaded area, in which the designer must allocate

to project 2 despite its lower virtual surplus, shrinking the size of the rectangle

lowers the probability of allocating to both projects. Given that we have an in-

terior solution in this example, at (z1(c2), z2(c1)) these two effects balance each

other out.

Figure 2.5: Candidate and optimal allocation for Example 2.1.

B, c1
c1

B, c2

c2

both

1

2

z̃1(c2)

z̃2(c1)

(a) Candidate allocation.

B, c1
c1

B, c2

c2

both

1

2
z2(c1)

z1(c2)

(b) Optimal allocation.

Graphically, the fact that there is no slack in the budget constraint whenever both

projects are greenlighted implies that the area representing points at which both

projects are executed touches the dashed line at least once, as can be seen, for



Ex-post Optimal Knapsack Procurement. 37

example, in Panel 2.6b. In fact, it can touch the (BC)-constraint exactly once, as it

is not possible to greenlight both projects when c1 > z1(c2) or c2 > z2(c1) without

violating (BC) sometimes. This result means that the area where both projects

are greenlighted is the rectangle with corners (0, 0) and (z1(c2), z2(c1)). Then,

if c1 < z1(c2) but c2 > z2(c1), the nature of cutoffs prevents the designer from

greenlighting project 2. Therefore project 1 must be greenlighted, as represented

by the lightly shaded area in Panel 2.6b. A similar argument applies to the darkly

shaded area. Thus, looking at Panel 2.6b, the choice of (z1(c2), z2(c1)) determines

the allocation for all cost realizations except those in the upper-right corner. Here,

the designer is free to choose the allocation, as long as the line delineating whether

project 1 or 2 gets greenlighted is (weakly) increasing or vertical. Not surprisingly,

it is optimal to greenlight the project with the higher virtual surplus.

Figure 2.6: Greenlighting the project with lower virtual surplus and (IC)-
constraints on the allocation (Example 2.1).

B, c1
c1

B, c2

c2

1

2
z2(c1)

z1(c2)

both

(a) Greenlighting the project with
lower virtual surplus.

B, c1
c1

B, c2

c2

both
z2(c1)

z1(c2)

2 by (IC)

1 by (IC)

free to
choose (IC)
allocation

(b) (IC)-constraints on the alloca-
tion.

By Proposition 2.11, the optimal allocation can be implemented with a descending-

clock auction. In the following, we show how to accommodate the tradeoff between

quantity and quality in a modified clock auction.

Corollary 2.15. In an optimal implementation with descending price clocks, the

clocks not only run at individual speeds, occasionally some clocks also have to halt.

A crucial difference to the symmetric case is that each project must have an individ-

ual price clock, because heterogeneous virtual surplus functions require individual

speeds. Interestingly, an implication of the quantity-quality tradeoff is that some-

times one clock has to halt. For Example 2.1, the clock prices, denoted by τi, are
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depicted in Figure 2.7 as a function of time. The entire (maximal) duration of the

auction can be divided into three segments. The auction starts with both clocks

at z∗∗1 = z∗∗2 = c. First, τ2 decreases while τ1 is held constant, which happens

until both clock prices lead to the same virtual surplus, i.e., ψ2(τ2) = ψ1(c2). Sec-

ond, both τ1 and τ2 decrease simultaneously, but asynchronously keeping virtual

surplus equal, ψ1(τ1) = ψ2(τ2), until τ2 = z2(c1). Third, only τ1 decreases until

τ1 = z1(c2). If at this point both projects still remain in the auction, the auction

stops and both are greenlighted. Otherwise, the inferior project 2 is greenlighted.

Figure 2.7: Optimal descending-clock auction in Example 2.1.

time

prices
τ1, τ2

c

τ2

τ1

z1(c2)

z2(c1)

ψ−1
2 (ψ1(c))

end

The cost vectors for which the designer greenlights project 2 despite its lower

virtual surplus, represented by the shaded area in Panel 2.6a, are also represented

graphically in Figure 2.7: If the auction ends in the third time segment (shaded

area of Figure 2.7) before both projects can be greenlighted, project 1 must have

exited because τ1 dropped below c1. Project 2 is greenlighted and receives transfer

z2(c1) even though project 1 has the higher virtual surplus. Therefore if cost

vectors in the shaded area of Panel 2.6a realize, the optimal descending-clock

auction ends in the third time segment.

We should emphasize again a novel feature of this descending-clock auction. The

clocks of both projects are paused asynchronously over some time of the auction.

One project’s clock runs down while the other project’s clock stops. Since we have

examined a very simple example, each project’s clock is paused only once. In a

more general setting, the projects’ clocks may pause and resume several times.

Given the complexity of our problem, we do not find a simple and general (n >

2) full characterization of the optimal mechanism in the asymmetric case. In
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our examples with two projects, the problem boils down to finding one point,

(z1(c2), z2(c1)), with respect to one crucial tradeoff. Naturally, the number of

relevant tradeoffs increases with the number of projects. Therefore unfortunately,

optimization with a larger set of projects quickly loses tractability.

Discussion

With our model as a starting point, there are several interesting modifications. In

this section, we address the most natural alternative models or extensions.

vi as private information, potentially correlated with ci - The designer can

neglect asking for vi directly since no meaningful non-babbling equilibria in the

vi-dimension exist. If the conditional density of vi|ci has full support, project i

cannot credibly announce being a “high” type, say vi. If we slightly change the

regularity assumption such that E[vi|ci]−ci− F (ci)
f(ci

must be strictly increasing, our

results generalize by exchanging the previously commonly known vi with E[vi|ci].
This regularity condition mildly restricts the degree of positive correlation.

Interdependent types - We can interpret the symmetric case as a setting in

which identical projects are provided at individual costs. Hence, one may wonder

about a setting in which projects only draw an imperfect signal about the cost,

which finally depends on other projects’ signals as well. In a clock auction in such

an environment, active projects update their belief about the cost whenever a

project drops out. Moreover, the designer learns this information as well. There-

fore the design of the optimal mechanism crucially depends on the information

structure. This analysis is left for a follow-up paper.

Residual money

Whether it is reasonable to assume that the designer values residual money de-

pends on the setting. In Ensthaler and Giebe (2014a), money does not enter the

objective function, only the constraints. To clarify the relation to their paper, we

introduce a linear weighting λ ∈ [0, 1] of residual money, and provide comparative

statics on parameter λ. The objective function can be rewritten as in (2.3),
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max{zi}i∈I Ec

[∑
i I(ci ≤ zi(c−i))

(
vi − λ

(
ci + Fi(ci)

fi(ci)

))]
s.t.∑

i∈I
I(ci ≤ zi(c−i))zi(c−i) ≤ B ∀c ∈ C.

This objective function highlights one difference to the original setting. Instead of

ζ∗∗-exclusive the optimal mechanism is ζ∗∗λ -exclusive: Define ψi,λ(c) = vi − λ(c +
Fi(c)
fi(c)

) as the λ-adjusted virtual surplus and define the vector ζ∗∗λ with i-the element

z∗∗i,λ = min{ci, ψ−1
i,λ (0)}.

It can be shown that the other properties that are sufficient to allow a DA-auction

implementation continue to hold. In fact, the optimal allocation in the symmetric

case remains unchanged if ζ∗∗λ = (c1, c2, . . . , cn) for all λ ∈ [0, 1], i.e., when the

original optimal mechanism did not exclude any cost types. For any combination

of cost supports and values, there exists a sufficiently small λ′ > 0 such that

the designer’s ranking over projects is lexicographic. In other words, λ′ must

be sufficiently small such that no λ′-weighted difference in cost can offset any

difference in values.

Figure 2.8: Decreasing λ augments the quantity-quality tradeoff: The gray
areas, where the project with lower λ-adjusted virtual surplus is implemented,

increases.

B, c1
c1

B, c2

c2

λ = 1

λ = 0.5

λ = 0

In the asymmetric case, however, the quantity-quality tradeoff is affected as well.

To illustrate how the optimal allocation varies when λ is perturbed, we consider

the example again, see Figure 2.8. A lower λ means that the designer prefers the
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high-value project 1 for higher cost reports relative to the low-value project 2 for

a given cost report. This difference is illustrated by a right-shift in the diagonal

that represents the loci such that both projects have equal (λ-adjusted) virtual

surplus.

Reducing the weight of residual money increases the measure of cost reports for

which the optimal mechanism implements project 2 despite project 1 having the

larger λ-adjusted virtual surplus. Thus changing λ directly affects the quantity-

quality tradeoff. As illustrated in Figure 2.8, reducing λ means that in the optimal

mechanism the cutoffs at which both projects are greenlighted moves southeast,

thus reducing the probability to greenlight both projects. The reason is that for

lower λ a higher weight is placed on the high-value project 1.

Conclusion

Despite their importance, knapsack problems with private information have been

somewhat overlooked by the economics literature. We examine a setting in which

a budget-constrained procurer faces privately-informed sellers under ex-post con-

straints. Amongst many possible economic problems, this setting particularly ap-

plies to development funds, which are typically endowed with a fixed budget and

want to finance both many projects and projects of high quality. Such problems

often entail relationships in which sellers can renege on the terms of the agree-

ment ex-post. To avoid nondelivery, shelving the project or costly renegotiation,

it is appropriate to impose ex-post constraints on the agents’ participation. For

such settings, we have shown that a subset of DA auctions constitutes the class of

optimal deterministic strategyproof mechanisms.

An optimal mechanism is described by a set of cutoff functions: All projects that

report costs below their cutoff are greenlighted and receive a transfer equal to

the cutoff. These cutoff functions are weakly increasing in other projects’ costs,

which means that the optimal allocation rule has substitutes: Given a project

is implemented for some cost vector, it is also implemented when, all else being

equal, the cost of a rival project is increased. Moreover, we show that the optimal

allocation rule has non-bossy winners: A project that is implemented cannot affect

the allocation without changing its own allocation status. In particular, if two

different realizations of the cost vector lead to the same allocation, then the cutoffs

of conducted projects only vary in the costs of projects not conducted. Finally,
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the optimal allocation rule excludes all projects with negative “virtual surplus”

from the allocation.

These properties allow for a characterization as a deferred acceptance (DA) auc-

tion, introduced by Milgrom and Segal (2014). The DA auction representation

provides a simple implementation via descending-clock auctions, which are easy

to understand and usable in practice. In addition, DA auctions have attractive

properties regarding incentive compatibility which make the prediction of equilib-

rium play more robust.

We fully describe the optimal allocation and the corresponding descending-clock

auction in an environment in which projects are ex-ante symmetric. The optimal

mechanism is monotone in the sense that the cheapest projects are greenlighted

and all projects conducted receive the same transfer. This transfer either corre-

sponds to the lowest cost among redlighted projects or the budget is distributed

equally. The equivalent clock auction features a single price clock that continu-

ously descends until all active projects can be financed.

For asymmetric environments, in which values and/or cost distributions differ,

we demonstrate a novel tradeoff between quantity and quality of the greenlighted

projects. The designer values both quantity and quality of the projects: She

prefers projects with high virtual surplus over projects with low virtual surplus

and she prefers more projects over fewer projects. In models in which the designer

wants to procure a fixed number of projects, she would always choose the projects

with the highest virtual surpluses. If quantity is endogenously determined by the

mechanism, as in our setup, it is ex-ante not always desirable to conduct the best

projects. When the best projects are always conducted, incentive compatibility

would force the designer to reduce the expected number of greenlighted projects.

This insight entails a consequence for the corresponding descending-clock auction.

Clocks not only run asynchronously, but also periodically have to stop for certain

projects.

Other interesting extensions are left for future research, for example, multiple

projects per agent or projects that are complements instead of perfect substitutes.

For practitioners, a simple approximately optimal mechanism may be of great

value. The characterization of the optimal mechanism as a DA auction sheds

light on how to construct such an approximately optimal mechanism. Halting

clocks should be a key feature for the corresponding clock auction in asymmetric



Ex-post Optimal Knapsack Procurement. 43

environments. However, we showed that the optimal strategyproof mechanism is

not detail-free.

In conclusion, our methodological approach contributes to a better understanding

of a class of relevant problems and opens the door for future research in this

area. Furthermore, we provide an elegant indirect mechanism that can be easily

implemented in practice.
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Appendix

Properties of optimal mechanisms: General proofs

Lemma 2.6. The optimal mechanism has substitutes,

zi(c̃j, c−i−j) ≥ zi(ĉj, c−i−j) for almost every c̃j > ĉj and c−i−j ∈ C−i−j. (2.5)

Figure 2.9: Continuous decrease / increase.

cM c1

z2

z3

c1

ĉ3

ĉ2

(a) Intuition for the hat devi-
ation.

cM c1

z2

z3

c1

c̃3

c̃2

(b) Intuition for the tilde devi-
ation.

Proof. Suppose to the contrary that somewhere z2 is decreasing in c1. Then there

exist some c1
M and η > 0 such that z2(c1, c−1−2) > z2(c1, c−1−2) for all c1 ∈

(c1
M − η, c1

M), for all c1 ∈ (c1
M , c1

M + η), and for all c−1−2 ∈ χ−1−2 ⊂ C−1−2, and

χ−1−2 has positive Lebesgue-measure.

With more than two projects, the simple deviation of the two-project case - flat-

tening the decreasing cutoff - is not necessarily feasible. It may be the case that

other projects’ cutoff functions are strictly increasing in c1 over the same region

and that for some cost vectors these cutoffs have to be paid along z2. Then simply

flattening z2 could violate the budget constraint.

Suppose no other cutoff function is increasing while z2 is decreasing. Then the

decrease of z2 cannot be optimal and flattening z2 increases the designer’s payoff

much in the same way as in the two-project-case. Otherwise, pick a subset of
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Figure 2.10: Jump decrease / increase.
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(b) Intuition for the tilde devi-
ation.

χ̂1 ⊂ (c1
M , c1

M + η) (with pos. Lebesgue-measure) such that w.l.o.g. project 3’s

cutoff increases in c1 in the analogous sense to the decrease of z2 defined above -

for cost vectors where both project 2 and project 3 are eventually greenlighted,

i.e., z2 and z3 both need to be paid.

The set

Ξ̂23(c1, c−1−2−3, δ) = {(c2, c3)|c2 ∈ (z2(c1, c3, c−1−2−3), z2(c1, c3, c−1−2−3) + δ];

c3 ∈ (z3(c1, c2, c−1−2−3)− δ, z3(c1, c2, c−1−2−3)]}

must have positive measure on R2 for all c1 ∈ χ̂1 and for any c−1−2−3 ∈ χ−1−2−3,

where χ−1−2−3 is a set with positive Lebesgue measure where the cutoff of project

2 is decreasing while the cutoff of project 3 is increasing. It is the set of (c2, c3)

tuples, where c2 just exceeds z2 by no more than δ, while c3 lies just below z3 by

no more than δ - given c−1−2−3 and c1. By Ξ̂2
23(c1, c−1−2−3, δ) we denote the set

of project 2 components of tuples in the set Ξ̂23(c1, c−1−2−3, δ), and similarly for

project 3.
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Now deviate from the candidate mechanism in setting

ẑ2(c1, c3, c−1−2−3) := z2(c1, c3, c−1−2−3) + δ

ẑ3(c1, c2, c−1−2−3) := z3(c1, c2, c−1−2−3)− δ

for all

c1 ∈ (ĉ1, ĉ1 + ε)

c2 ∈ Ξ̂2
23(c1, c−1−2−3)

c3 ∈ Ξ̂3
23(c1, c−1−2−3)

c−1−2−3 ∈ χ̂−1−2−3 ⊂ χ−1−2−3.

We call this deviation the hat deviation. The intuition for this deviation is the

following. For an ε-environment of c1 to the right of cM1 (i.e., ĉ1 > cM1 ), in-

crease the decreasing cutoff z2(c1, c3, c−1−2−3) by δ for all c3 that drop out of

the allocation if z3(c1, c2, c−1−2−3) (at c2) is decreased by δ. Likewise only in-

crease z3(c1, c2, c−1−2−3) by δ for those c2 that are additionally greenlighted if

z2(c1, c3, c−1−2−3) is increased by δ. Therefore if the deviation changes the alloca-

tion, project 2 is now greenlighted whereas project 3 is not.

This deviation is feasible. Remember that there must be enough budget to pay

both z2 and z3 - otherwise flattening z2 would have been possible. But then there

is enough budget for z2 + δ and z3 − δ.

Now define

ĉ2 := sup
c1,c−1−2−3

Ξ̂2
23(c1, c−1−2−3)

ĉ3 := inf
c1,c−1−2−3

Ξ̂3
23(c1, c−1−2−3)

s.t.

c1 ∈ (ĉ1, ĉ1 + ε)

c−1−2−3 ∈ χ̂−1−2−3.

In words, to bound the change in payoff we let ĉ2 be the highest cost type gained

by the deviation and we let ĉ3 be the lowest cost type lost by the deviation. Then
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the change in payoff for the hat deviation is bounded in the following way:

∆̂ > (ψ2(ĉ2)− ψ3(ĉ3))∗∫
χ̂−1−2−3

∫ ĉ1+ε

ĉ1

∫
Ξ̂2

23(c1,c−1−2−3)

∫
Ξ̂3

23(c1,c−1−2−3)

1dF3(·)dF2(·)dF1(·)dF−1−2−3(·).

If ∆̂ > 0, we have found a profitable deviation. If not, then consider the following

tilde deviation.

Analogously to Ξ̂23 we define the set

Ξ̃23(c1, c−1−2−3, δ) = {(c2, c3)|c2 ∈ (z2(c1, c3, c−1−2−3)− δ, z2(c1, c3, c−1−2−3)];

c3 ∈ (z3(c1, c2, c−1−2−3), z3(c1, c2, c−1−2−3) + δ]}

which again must have positive measure.

Now, we deviate for an ε-environment to the left of cM1 (i.e., c̃1 < cM1 ). But instead

of increasing z2 and decreasing z3, we increase z3 and decrease z2:

z̃2(c1, c3, c−1−2−3) := z2(c1, c3, c−1−2−3)− δ

ẑ3(c1, c2, c−1−2−3) := z3(c1, c2, c−1−2−3) + δ

for all

c1 ∈ (c̃1 − ε, c̃1)

c2 ∈ Ξ̃2
23(c1, c−1−2−3)

c3 ∈ Ξ̃3
23(c1, c−1−2−3)

c−1−2−3 ∈ χ̃−1−2−3 ⊂ χ−1−2−3.

The relevant bounds to bound the payoff are then given by

c̃2 := inf
c1,c−1−2−3

Ξ̃2
23(c1, c−1−2−3)

c̃3 := sup
c1,c−1−2−3

Ξ̃3
23(c1, c−1−2−3)

s.t.

c1 ∈ (c̃1 − ε, c̃1)

c−1−2−3 ∈ χ̃−1−2−3.
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And this gives the following bound for the payoff

∆̃ > (ψ2(c̃3)− ψ3(c̃2))∗∫
χ−1−2−3

∫ c̃1

c̃1−ε

∫
Ξ̃2

23(c1,c−1−2−3)

∫
Ξ̃3

23(c1,c−1−2−3)

1dF3(·)dF2(·)dF1(·)dF−1−2−3(·).

By appropriately choosing δ, Ξ̂−1−2−3, and Ξ̃−1−2−3, we can ensure that ĉ3 > c̃3 and

ĉ2 < c̃2. This follows simply from the notion of increasing/decreasing cutoffs and is

illustrated in Figures 2.9 and 2.10. Therefore ∆̂ ≤ 0 implies ∆̃ > 0. Consequently,

there is always a profitable deviation and our candidate mechanism could not have

been optimal.

Lemma 2.8. For any cost vectors (cG, cR) ∈ C and (c′G, cR) ∈ C such that

G = γ(cG, cR) = γ(c′G, cR) and R = I \ γ(cG, cR), the optimal cutoff function zg

for all g ∈ G is (almost everywhere) independent of the costs of all greenlighted

projects cG. That is,

zg(cG−g, cR) = zg(c
′
G−g, cR),

for all cG−g and c′G−g such that G is the set of greenlighted agents.

Proof. Take any feasible candidate mechanism with any set of increasing cutoff

functions {zi}i∈I for any individual project. Assume that for some cost vectors

with positive Lebesgue-measure, only all projects in set G ⊆ I are executed while

all projects of set R are not conducted. Therefore there exists a set, CG
R , with

positive Lebesgue-measure containing the part of the cost vector for the projects

in setR such that the partition {G,R} is induced given some c where the redlighted

projects have costs cR ∈ CG
R . Then aGi (cR) according to the following definition

aGi (cR) = max{ci|∃cG−i : ci ≤ zi(cG−i, cR),

and cg ≤ zg(cG−j, c−G)∀g ∈ G,

and cr > zr(cG, c−G−r)∀r ∈ R} (2.12)

exists for all i ∈ G given cR ∈ CG
R . In words, aGi (cR) is the highest cost of project i

such that, given some cost vector cR of projects that are not executed, there exists

some vector cG−i of costs of competing projects that induces a cutoff zi(cG−i, c−G)

above said cost while each element cg of the vector cG−i is lower than the cutoff
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induced by aGi (cR) and the elements of the cost vectors cR and cG−i−g,

∀g ∈ G \ {i}, cg ≤ zg(cR, cG−i−g, a
G
i (cR)).

Simultaneously, it must hold that these costs induce a cutoff such that no project

r ∈ R is conducted

∀r ∈ R, cr > zr(cR−r, cG−i, a
G
i (cR)).

Moreover, we can replace any function zi with a left-continuous function that is

identical up to a set of points with Lebesgue-measure zero. Hence, the limit is

reached from below and there exists at least one cost vector (ĉ−i, a
G
i (cR)) where

G is the set of executed projects and aGi (ĉR) = zi(ĉ−i) holds. Now, notice that

ĉg ≤ aGg (ĉR) ∀g ∈ G \ {i},

because, given ĉR, there cannot exist a cost vector where only all projects in G are

executed and the cost of project g exceeds aGg (ĉR) by its construction. Moreover,

we have established that every cutoff function zi is weakly increasing in each

argument. Thus,

aGi (ĉR) = zi(ĉ−i) ≤ zi(a
G
G−i(ĉR), ĉR), (2.13)

where aGG−i is the vector of all aGg defined according to (2.12) except aGi . This in-

equality tells us that, whenever some vector (cR, cG−i) ≥ (ĉR, a
G
G−i(ĉR))15 realizes,

a sufficient condition for project i ∈ G to be executed is ci ≤ aGi (ĉR).

The same logic also applies to all projects in G other than i. Therefore at least

all projects g ∈ G are conducted whenever a cost vector realizes such that cg =

aGg (cR).16 Consequently, the budget constraint requires that

∑
g∈G

zg(a
G
−g(cR), cR) ≤ B. (2.14)

Furthermore, given cR, for all projects g ∈ G, zg(c−G, cR) = aGg (cR) if cG−g ≤
aGG−g(c−G). That is, the cutoffs are constant given the cost vector of redlighted

projects.

15When x and y are vectors, x ≥ y means that every element xi of x weakly exceeds the
corresponding element yi of y.

16aGi (cR) is only defined if CG 6= ∅ and cR ∈ CGR , but this does not hinder the proof.
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Suppose to the contrary that zi(c−i) < ai(cR) for some i ∈ G and for all c−i ∈
Ξ ⊂ CG

−i with Ξ having positive Lebesgue measure.

Define Ξ(cG−i−j, cR) ⊂ [0, cj] where zi(cG−i−j, cj, cR) < aGi (cR) for all cj ∈ Ξ(cG−i−j, cR).

For any cG−i−j ≤ aG−i−j(cR), let

zΞ
i (cG−i−j, cR) := max

cj∈Ξ(cG−i−j ,cR)
zi(cG−i−j, cj, cR)

By (2.14), changing the mechanism to

zi(cG−i,−j, cj, cR) = aGi (cR), ∀cj ≤ aGj (cR)

does not violate the budget constraint. This deviation increases the payoff condi-

tional on cR by

∆ >

∫
Ξ−j

Pr(cj ∈ Ξ(cG−i−j, cR))

∫ aGi (cR)

zΞ
i (cG−i−j ,cR)

ψi(c)dFi(c)dF−i−j(c−i−j) > 0.

Given that Ξ has positive Lebesgue-measure, this deviation also strictly increases

the unconditional payoff.

Constructing a scoring function: Proof of Proposition 2.11

To prove Proposition 2.11, it is helpful to consider the following lemmata. While

Lemma 2.8 (non-bossy winners) is a statement that conditions on a fixed alloca-

tion, it also has implications on the cutoffs resulting from different cost vectors

that induce different allocations.

Lemma 2.16. Take any mechanism and any two cost vectors c 6= ĉ that induce

partitions {G,R} and {Ĝ, R̂}, respectively. Then

cR∪R̂ = ĉR∪R̂

cG∩Ĝ 6= ĉG∩Ĝ

implies

G = Ĝ

R = R̂,
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that is, c and ĉ induce the same allocation.

Proof. Given cost vector c, define a new cost vector c′, where c′i = min{ci, ĉi} for

all i ∈ G ∩ Ĝ and c′R∪R̂ = cR∪R̂. By Lemma 2.8, c′ induces allocation {G,R}.
Similarly, a perturbation of cost vector ĉ in the same way with ĉ′i = min{ci, ĉi}
for all j ∈ G∩ Ĝ and ĉ′

R∪R̂ = ĉR∪R̂ must induce allocation {Ĝ, R̂}. But c′ = ĉ′ by

construction. Hence, G = Ĝ and R = R̂.

Lemma 2.17. Take any mechanism and any two cost vectors c 6= c̃ that induce

partitions {G,R} and {G̃, R̃}, respectively. Then

zi(cG∩G̃, cR∪R̃) = zi(c̃G∩G̃, cR∪R̃)

zj(c̃G∩G̃, c̃R∪R̃) = zj(cG∩G̃, c̃R∪R̃)

for all i ∈ G and for all j ∈ G̃, respectively.

Proof. By Lemma 2.16, the vector (c̃G∩G̃, cR∪R̃) leads to allocation {G,R} and

the vector (cG∩G̃, c̃R∪R̃) leads to allocation {G̃, R̃}. The rest follows directly from

Lemma 2.8 (non-bossy winners).

Having established these properties we can prove Proposition 2.11 by induction.

We construct a DA scoring function for each iteration. Conditional on all previous

iterations having been constructed correctly, we can demonstrate how to construct

an appropriate scoring function for any iteration.

Proposition 2.11. Any optimal mechanism has a DA auction representation and

can be implemented with a descending-clock auction.

Proof. This proof is structured as follows. First, we construct scoring functions

for each iteration of the DA auction. Then we explain how the zeros of the scoring

functions are derived. Finally we show by induction that the constructed DA

auction implements the same allocation as the underlying z-mechanism.

Scoring functions

First, we introduce some notation. Let At be the set of active projects in iteration

t and let Ot := I \ At be the set of inactive projects (O as in “out”). Let Otj :=

Ot ∪ {j} be the union of dropped out projects and some individual project j.
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Fix an optimal z-mechanism and consider the corresponding DA auction with

scoring functions {sAi }A⊂I,i∈A

sAi (ci, cO) =


0 if ci ≤ aAi (cO),

ci +
j∈A∑
i 6=j

bjOi(ci, cO) otherwise,
(2.15)

where aAi (cO) is defined as in (2.12) and bjOi(ci, cO) is defined as

bjOi(ci, cO) := max
{
cj : ∃c̃−Oi−j : R = Oi|ci, cO

}
:= max

{
cj : ∃c̃−Oi−j : ci > zi(cj, c̃−Oi−j, cO),

and co > zo(ci, cj, c̃−Oi−j, cO−i)∀o ∈ O,

and cg ≤ zg(ci, cj, c̃−Oi−j, cO)∀g ∈ A \ i
}
.

In words, bjOi(ci, cO) is the highest cost of project j such that given the vector cOi

the corresponding z-mechanism implements the allocation partition R = Oi and

G = A \ i for some realization of the cost vector c̃−Oi−j.

Zeros of the scoring functions

Suppose the DA auction ends in the t-th iteration. Then all projects i ∈ At

have score sAt
i = 0 and the cost vector must induce G = At in the underlying

z-mechanism. By non-bossiness of winners, cutoffs of projects in G are constant

in the part of the cost vector cAt for all cost vectors inducing the same allocation.

Therefore we can characterize the zeros of the scoring function by a threshold and

sAt
i = 0 whenever project i’s cost is below this threshold. The threshold is given

by aAt
i (cO) as defined in (2.12). Notice that ci ≤ aAt

i (cO) implies that project i is

not eliminated in the t-th iteration, even if other projects exceed their threshold.

This implication does not rule out permissible z-mechanisms. Conditional on cOt ,

some projects exceeding their threshold can at most lead to a higher cutoff for

project i due to monotonicity.

Further notice that if ci > aAt
i (cO), there always exist cost vectors with cOt for

previously eliminated projects that induce G = At \ {i}. For example, all cost

vectors with cj ≤ aAt
j (cOt) for all j ∈ At \ {i} induce that allocation. However,
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this condition is sufficient for G = At \ {i} but not necessary. There can be other

cost vectors inducing the same allocation.

Iteration 1

If multiple projects have a positive score, it also holds that

If ĉ induces R̂ = {i} then sIi (ci) > sIj (cj) for all j 6= i (2.16)

The meaning of R̂ = {i} is that ĉi > zi(ĉ−i) and ĉj ≤ zj(ĉ−j). Hence, by construc-

tion

ĉj ≤ zj(ĉ−j) ≤ bji (ĉi) (2.17)

as bji (ĉi) is the highest cutoff zj that allows allocation R̂ = {i} given ĉi.

Next, we show

ĉi > bij(ĉj). (2.18)

Suppose that the contrary holds, then there exists a vector c̃−i−j such that

ĉi ≤ zi(ĉj, c̃−i−j)

and allocation R̃ = {j} is implemented. By Lemma 2.17 we know that the cutoffs

z are constant in costs of projects Ĝ ∩ G̃ = I \ {i, j}. Consequently, we arrive at

ĉi ≤ zi(ĉj, c̃−i−j) = zi(ĉj, ĉ−i−j)

which means that i is greenlighted for vector ĉ, a contradiction to our initial

assumption that ĉ implements R̂ = {i}.

Next, we show

bki (ĉi) ≥ bkj (ĉj) for all j 6= i and k 6= i, j. (2.19)

By definition

bki (ĉi) = zk(ĉi, c̃−i−k) for some c̃−i−k,

bkj (ĉj) = zk(ĉj, ċ−j−k) for some ċ−j−k.
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Because projects −i−j−k are greenlighted for both cost realizations (ĉk, ĉi, c̃−i−k)

and (ĉk, ĉi, ċ−i−k), it follows by Lemma 2.17 that

bki (ĉi) = zk(ĉi, c̃−i−k) = zk(ĉi, ĉ−i−k),

bkj (ĉj) = zk(ĉj, ċ−j−k) = zk(ċi, ĉ−i−k).

Furthermore, it must hold that ĉi > ċi, otherwise vector ĉ would not optimally

redlight project i while vector (ĉ−i, ċi) optimally greenlights project i. Then by

bidder substitutability,

bki (ĉi) = zk(ĉ−k) ≥ zk(ċi, ĉ−i−k) = bkj (ĉj).

Combining (2.17), (2.18) and (2.19) leads to (2.16). We have shown that the

scoring function eliminates the correct project when |R| = 1, i.e., the redlighted

project.

Finally, we need to show that if |R| > 1, the project removed in the first iteration

is redlighted in the allocation implemented by the underlying z-mechanism, i.e.,

A1 \ A2 = {k} ⇒ k ∈ R.

Now take cost vector c̃ with allocation {G̃, R̃} and let i ∈ G̃ be some greenlighted

project and and let j ∈ R̃ be some redlighted project, respectively. Since project j

is redlighted, it must have cost c̃j > aIj . Hence there exists some cost vector ĉ with

ĉj = c̃j such that R̂ = {j}. By Lemma 2.17, we can assume ĉi = c̃i since i ∈ G̃∩Ĝ.

As our scoring function correctly matches all cases in which |R| = 1, it must be

that sj(c̃j) > si(c̃i). Given that we have chosen i and j arbitrarily, we have shown

that any project removed in the first iteration must be in the redlighted set, which

was to show.

Iteration 2

We can show with the same arguments as above, that the previously stated scoring

function is correct for t = 2 as well. To this end, we inductively rely on the fact

that the project k removed in the first iteration is indeed redlighted by the z-

mechanism - as we have shown above.

Iteration t ≥ 3
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With the appropriate scoring functions used in all previous iterations, we can

then show that the t-th iteration removes the correct project for all cost vectors

inducing |R| = t given a z-mechanism and otherwise removes some project i ∈ At,
where i ∈ R, for all cost vectors inducing |R| > t.

The symmetric case

Proposition 2.12. Arrange the projects in ascending order of their reported costs,

c1 ≤ c2 ≤ · · · ≤ cn ≤ cn+1 := c, and define zk := min
{
B
k
, z∗∗, ck+1

}
. In the

symmetric case, the cutoff mechanism with zi(c−i) = zk
∗

is the optimal mechanism.

The optimal number of accepted projects k∗ is given by k∗ := max{k|ck ≤ zk}.

Proof. The case n = 2 has been proven in Section III.i.

Now, consider n = 3. Fix any c3 and any mechanism as candidate for optimality.

Either c3 > z3(c1, c2) or c3 ≤ z3(c1, c2). In the first case, project 3 is not executed

and the budget remaining for the other two is still B. In the second case, project

3 is executed and the budget remaining for the other two becomes B − z3(c1, c2).

Now, consider deviating to the proposed mechanism only for project 1 and 2. The

change in profit looks like a probability weighted sum of terms similar to the two-

project case, only that the distributions F are conditional on c1 and c2 being in

some interval (that induces z3 > or < c3) and the budget must be adjusted.

Because log-concavity of F implies log-concavity of F (c)−F (a)
F (b)−F (a)

this deviation is al-

ways positive like in the case n = 2. The same logic can be applied to any

n, changing any mechanism by selecting two projects and then adjusting their

cutoffs in the following way: The budget is shared equally if both projects are

executed; if only one project is executed, it has to be the one with higher virtual

surplus; never execute projects with negative virtual surplus. Iterating over these

steps ultimately arrives at the proposed mechanism which has to be optimal.

Bidder Substitutability and Complementarity

In the main text, we made the crucial assumption that c = 0. As a consequence,

complementaries as in the following example are excluded. The example shows

that an optimal mechanism may not have substitutes. When the lower bound of

all projects’ costs is zero, it is always possible to improve a mechanism that does
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not have substitutes. The idea of the proof of optimality of bidder substitutability

in Appendix A is that it cannot be optimal to decrease i’s cutoff to the benefit of

increasing j’s cutoff when some third project’s cost increases from ck to c′k > ck,

because then it would either be better to raise project zj(·, ck) at the cost of

lowering zi(·, ck) as well or it would be better to raise zi(·, c′k) at the cost of lowering

zj(·, c′k).

In the following example, this approach is not feasible. Through the lower cost

bounds and the values, projects 1 and 2 inherit endogenous complementarities.

The designer prefers implementing 1 and 2 together over implementing 3 alone,

but once either 1 or 2 becomes too expensive the other project is dropped as well

in favor of implementing only project 3.

Example 2.2. Suppose I = {1, 2, 3} and B = 300. Let the costs be arbitrarily

distributed on the following supports:

c1 ∼ [200, 400], c2 ∼ [20, 200], c3 ∼ [290, 300],

and let the values be

v1 = 700, v2 = 500, v3 = 1000.

Let the corresponding optimal mechanism be given by

z1(c2, c3) =

250 if c2 ≤ 50

0 otherwise
, z2(c1, c3) =

50 if c1 ≤ 250

0 otherwise
,

z3(c1, c2) =

300 if c2 > 50 or c1 > 250

0 otherwise
.

Bidder substitutability fails because, e.g., as c1 increases from 249 to 251, project 2

with, say, cost 40 gets dropped from the allocation set. The designer cannot, as in

the main text with c = 0, lower z3(40, 249) as it is already zero or profitably raise

z2(251, ·) at the cost of project 3 as the lower cost bounds prohibit that projects

2 and 3 are ever conducted together and implementing G = {3} is preferred to

G′ = {2}.

However, it is still possible to construct an implementation with price clocks: All

clocks start at the upper bounds. Then (at arbitrary speed) the prices of 1 and

2 decrease to (250, 50). If both projects are still active, the price for project 3
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decreases to zero while clocks 1 and 2 halt: 1 and 2 are implemented. If any

project i ∈ {1, 2} drops out earlier, then the price for j 6= i, j ∈ {1, 2} drops to

zero, while price 3 remains at 300. 3 is implemented.

The next example features another kind of complementatity. In this example

project 3 can be a bossy loser. Again, there exists a DA-auction implementation.

The lower cost bounds of the (stochastically) identical projects 1 and 2 are too

high for both projects to ever be conducted together. The cheaper of the two is

greenlighted. Project 3 is then only implemented if enough money remains.

Example 2.3. Suppose I = {1, 2, 3} and B = 300. Let the costs be arbitrarily

distributed on the following supports:

c1, c2 ∼ [151, 200], c3 ∼ [50, 300],

and let the values be

v1 = v2 = 1000, v3 = 500.

Let the corresponding optimal mechanism be given by

z1(c2, c3) = c2, z2(c1, c3) = c1, z3(c1, c2) = B −max{c1, c2}.

Suppose c2 > c1, then project 2 can be a bossy loser: It can increase its cost report

without changing its status to the green light and thereby kick project 3 out of

the allocation.

While substitutes and non-bossiness are sufficient for an implementation with a

DA auction, they are clearly not necessary. From the matching literature, it is

apparent that some kind of substitutes condition is needed and non-bossy winners

seem to be important for DA implementations. We have constructed a scoring

function that implements the exemplary allocations above. However, in the proof

of non-bossiness of winners, we need the strong substitutes condition for inequality

(2.13).

A weaker substitutes condition, such as our groupwise substitutes, does not suffice

for the optimality of non-bossy winners. This condition is satisfied by the examples

above and is helpful for the construction of a scoring function.

Definition 2.18. An allocation rule γ has groupwise substitutes, if
∑

g∈G zg(c−g)

is increasing in any cost report cr with r 6∈ G for all allocation sets G that are

admitted by γ.



3. Groups, cheap talk, and voting

Introduction

In settings in which several individuals have to make a collective decision, voting

is a very common if not the most common decision-making process. As such,

voting is a method to aggregate private information from different individuals. In

some cases, however, in particular when voters act strategically, voting might not

be the best way to aggregate information. Feddersen and Pesendorfer (1998), for

example, point out this inferiority of voting in the context of a jury in a criminal

trial. When voting is the only way to aggregate private information about guilt

or innocence and unanimity is needed to convict, the resulting outcome can be an

excess of convictions. However, in their model this problem vanishes once jurors are

allowed to talk prior to voting. Given that talking to each other is usually possible,

this example serves to demonstrate the importance of the strategic interaction of

information aggregation through voting and through talking, i.e., through cheap

talk.

Often committees that vote on an issue consist of different groups. Political parties

in a parliamentary committee are one example of such a situation. On such a

committee, the way in which individuals talk to each other is different from the

way they talk to each other in the absence of groups. Normally, members of the

same party would first talk amongst their fellow party members before talking to

members of other parties.

To investigate the interaction between this form of group-to-group communication

and voting, I consider a model of a reform decision made by a committee consisting

of two groups, a majority with 3 members and a minority with 2 members. Each

individual receives a (binary) private signal about the (binary) state of the world,

which is whether the reform would be a success if implemented. A successful reform

58
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gives every individual the same benefit but implementing the reform is associated

with different costs for the majority and the minority. Costs and benefit of the

reform are such that all individuals would want to implement a successful reform

and not implement an unsuccessful reform, if the state of the world was known.

Both groups are risk-neutral and weigh the probability of success of the reform

against their costs of implementing the reform.

For my analysis, I consider each group to act as a player in a two-player game.

The implicit assumption in this model choice is that both groups pool their pri-

vate information within the group and then perfectly coordinate their strategies

afterwards. As both groups are perfectly homogeneous, this assumption is plau-

sible and the resulting equilibrium also exists in a game in which each individual

is a single player instead of the group. However, less plausible equilibria in which

groups fail to coordinate are ruled out.

The timing is as follows. First, both groups can simultaneously send a cheap

talk message about their groups’ signals to the other group. Then both groups

simultaneously vote, where the number of votes of each group equals its number

of members. Depending on the voting rule, the reform either needs a majority or

a unanimous pro-reform vote to pass.

For this game, I characterize the set of implementable deterministic social choice

functions, i.e., the mapping from signals to the outcome, and specify strategies

with which any such social choice function can be implemented. These strategies

are such that only one group conveys information through cheap talk. Thus no

social choice function requires for implementation that both groups talk instead

of babbling. Moreover, if the set of implementable social choice functions is not a

singleton, one social choice function must Pareto-dominate the others. This result

allows me to compare outcomes under the two different voting rules: majority

rule and unanimity. Interestingly, there exist parameters such that both groups

strictly prefer majority rule and other parameters such that both groups strictly

prefer unanimity. Consequently, understanding whether a committee consists of

different groups and, if so, how these groups communicate can have important

implications for the choice of the voting procedure.

There is an extensive literature on the influence of cheap talk (Crawford and So-

bel, 1982) prior to voting. The seminal paper by Austen-Smith (1990) is one of

the earliest contributions in this strand of the literature, of which a good overview
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is provided by Austen-Smith and Feddersen (2009). The role of voting thresholds

with pre-voting communication has been analyzed by Gerardi and Yariv (2007).

They very elegantly point out that the set of implementable outcomes is not af-

fected by the choice of the voting rule, as long as the rule is non-unanimous.

However, their argument hinges on achieving an outcome using voting strategies

with which no single voter is ever pivotal. Thus all voting strategies are necessar-

ily equilibrium strategies. This result, however, is no longer plausible when there

exist voter groups that can potentially coordinate their behavior.

With majority rule, my model is close to the model of Ishida and Shimizu (2016),

who consider cheap talk between an informed sender and an informed receiver,

where the latter makes a decision affecting both. Their setup is therefore directly

related to settings in my model in which the minority sends a cheap talk message

to the majority who can then decide afterwards. However, in contrast to me, they

focus on conditions for full communication, in particular when sender and receiver

receive signals with different precision.

The importance of considering groups in the context of communication and vot-

ing is also not completely novel. In their overview, Austen-Smith and Feddersen

(2009) call for research in this area. To my knowledge, Thordal-Le Quement and

Yokeeswaran (2015) and Hummel (2012) have provided the only studies with this

focus, apart from this paper. Both Hummel (2012) and Thordal-Le Quement and

Yokeeswaran (2015) consider within-group cheap talk followed by voting. Contrary

to Thordal-Le Quement and Yokeeswaran (2015) and me, Hummel (2012) focuses

on the large committee limit. He shows that in the limit, the presence of groups

who can communicate via within-group cheap talk can lead to the probability of

making a correct decision going to 1.

Probably most closely related to this paper is the recent work of Thordal-Le Que-

ment and Yokeeswaran (2015), who also consider a committee with two groups.

The crucial difference is that they consider communication within a group followed

by coordinated voting by both groups while I consider group-to-group cheap talk

prior to coordinated voting, which is a richer communication protocol. For any

equilibrium under their communication protocol there exists one under my com-

munication protocol giving the same outcome. However, the converse is not true.

Keeping the voting rule - unanimity - fixed, they then make a welfare comparison

between three different communication protocols: subgroup deliberation (cheap

talk within the group), plenary deliberation (cheap talk among all committee
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members), and no deliberation. They find that the outcome with the first protocol

Pareto-dominates the outcome with the second protocol, which Pareto-dominates

the outcome with the third protocol. I, on the other hand, keep the communi-

cation protocol fixed (group-to-group cheap talk) and make a welfare comparison

between two voting rules: majority rule and unanimity.

Finally, the information structure in my model can be considered the work horse

of the cheap talk and voting literature. Albeit usually framed a bit differently in

the context of a jury trial, the same structure of binary private signals, a binary

state of the world, and a binary collective decision is used by Feddersen and Pe-

sendorfer (1998), Doraszelski, Gerardi, and Squintani (2003), Ishida and Shimizu

(2016) (when we interpret sender and receiver as groups), Thordal-Le Quement

and Yokeeswaran (2015), Hummel (2012), and many others. Thus, the basic struc-

ture of their models and my model is either the same or at least isomorphic for

relevant parameter values.

Model

A committee consisting of two groups has to make a binary decision a ∈ {0, 1}.
This decision is about a reform with a = 1 signifying the reform’s implementation.

From an ex-ante perspective, the reform, if implemented, will be successful, s = 1,

with probability 1
2
. There are two groups, majority M with 3 group members and

minority m with 2 group members. I number the individuals starting with the

majority. An individual i will thus be from the majority group if i ∈ {1, 2, 3} and

i will be from the minority group if i ∈ {4, 5}. The assumption about the size of

groups M and m is made for the sake of exposition. I conjecture that one can also

derive the main results of this paper with larger groups, albeit with vastly bigger

case distinctions in some of the proofs.

The benefit from the proposed reform will depend on the true state of the world

s ∈ {0, 1} and is identical for all individuals from both groups. The benefit is

normalized to 1 if the reform is successful (s = 1) and 0 if the reform fails (s = 0).

However, individuals from the majority and individuals from the minority have

to bear different costs for implementing the reform. If the reform is implemented,

denoted by a = 1, members of the majority bear cost cM ∈ [0, 1] and members of

the minority bear cost cm ∈ [0, 1] - regardless of the reform’s success. Hence, the



Groups, cheap talk, and voting. 62

ex-post utility function of group x ∈ {M,m} is given by

ux = a(s− cx).

Each individual i is endowed with a private signal si ∈ {0, 1} that is correlated with

the true state of the world with precision p, i.e. Pr(si = 1|s = 1) = Pr(si = 0|s =

0) = p, p ∈ (0.5, 1). As all signals are drawn with the same precision, an individual

from any group weighs all signals he can observe equally and the relevant statistic

to judge the reform is the sum of positive signals. To an individual who observes k

out of n positive signals the posterior probability of the reform’s success and thus

the expected benefit from the reform to this individual is given by:

β(k, n) :=
pk(1− p)n−k

pk(1− p)n−k + (1− p)kpn−k
.

As individuals in both groups are risk-neutral, an individual that could observe

all 5 signals wants to see the reform implemented if

β (k, 5)− cx ≥ 0,

where x ∈ {M,m} denotes the individual’s group and k =
∑5

i=1 si.

The eventual decision whether to implement the reform is made by voting. Each

individual can cast a vote ai ∈ {0, 1} and the reform is implemented if the number

of affirmative votes reaches threshold τ :

a = 1⇔
∑
i

ai ≥ τ.

I use two different voting rules, majority rule with τ = 3 and unanimity with

τ = 5.

Voting occurs after an initial round of communication. The goal of this paper is

to illuminate the interaction of information transmission between different groups

with different incentives through cheap talk and through subsequent voting. To

this end, from here on, I consider each group to act as a single economic agent.

Thus both M and m are agents who only differ in the number of individuals they

represent and therefore in the number of signals and in the number of votes they

are endowed with. For readability, I use female pronouns for M and male pronouns
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for m. Here,

sM :=
3∑
i=1

si ∈ {0, 1, 2, 3} = SM , sm :=
5∑
i=4

si ∈ {0, 1, 2} = Sm,

denote the number of positive signals observed by M and m, respectively. Thus I

call sM M ’s signal and sm m’s signal. Alternatively, one can interpret sM and sm

as M ’s and m’s respective types in a common values public good decision setup.

While at first the restriction of considering both groups as two agents seems per-

haps parsimonious, it does not really exclude any interesting equilibria because the

interests within each group are perfectly aligned. Therefore, it is not unreasonable

to assume that group members within each group act in unison. Consequently, all

the results of the following analysis can also be derived in an alternative model

in which instead each individual is an economic agent, and individuals in both

groups can first communicate within their group and then from group to group.

In the relevant equilibria both groups pool their information, and then coordinate

their behavior. This restriction does, however, rule out some implausible equilibria

which hinge on the groups failing to coordinate and often can only be supported

by a construction in which no single individual is pivotal.

With respect to both cheap talk and voting, the timing is as follows. First, both

groups observe their respective signals. Then both groups simultaneously exchange

messages about sM and sm. The majority announces message rM ∈ SM and the

minority announces message rm ∈ Sm. Then the both groups simultaneously cast

their affirmative votes, aM ∈ SM for the majority and am ∈ Sm for the minority.

The reform is implemented if aM +am ≥ τ , in which case the success of the reform

s is revealed and payoffs realize.

Analysis

In this section, I derive all my results with respect to the model described in the

previous section. Statements that require a proof (Lemma 1, Lemma 2, Lemma

3, and Proposition 3.2) are proved in the Appendix. Other statements either

follow directly from previously established results (Corollary 3.1) or are shown by

example (Proposition 3.3). The relevant equilibrium concept for this analysis is

Perfect Bayesian equilibrium. To obviate the need for equilibrium refinements I
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Figure 3.1: An example with the same threshold of doubt qM = qm = 3
without a conflict of interest (top) and with different thresholds of doubt qM =
2 < qm = 3 and thus with a conflict of interest (bottom). A circle with number
x marks the posterior β(x, 5) if x out of 5 positive signals realize for precision

p = 0.66.
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only consider equilibria in which all available messages are played on path in the

cheap talk stage. With cheap talk, this restriction is without loss of generality,

as for any message strategy that does not use all available messages there exists

an alternative strategy that uses all messages and conveys the same amount of

information.1

A useful concept that is often employed in models with the same type of informa-

tion structure as in this model (e.g., Feddersen and Pesendorfer, 1998; Thordal-

Le Quement and Yokeeswaran, 2015) is the notion of the threshold of reasonable

doubt qx. It is defined as the lowest number of positive signals out of the total

number of available signals such that group x wants to implement the reform.

Therefore, a threshold qx > 0 satisfies

β(qx − 1, 5) < cx ≤ β(qx, 5).

Information sharing in the context of this model means making the outcome con-

tingent on the signals of both groups. Depending on the mode of voting, τ , in-

formation can be shared between both groups using communication, using voting,

or using both. Consider an example with majority voting, τ = 3. Suppose in

this example m wants to allow M to condition the outcome on his own signal sm.

In particular, M wants to implement the reform whenever sm ≥ 1. One way to

achieve this outcome is to reveal sm at the communication stage, i.e., rm = sm.

Then M could vote aM = 3 whenever rm ≥ 1, achieving the desired outcome.

Alternatively, m could simply cast a number of affirmative votes corresponding

1For a more detailed version of this argument see Farrell (1993, Section 3).
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to his signal, i.e., am = sm. Then, aM = 2 also achieves the desired outcome,

implementing the reform whenever sm ≥ 1, regardless of the information conveyed

at the communication stage.

In terms of payoff in equilibrium, it is not important whether information was

conveyed through cheap talk or through voting. As information sharing through

cheap talk and through voting are at least to a degree substitutable, there can be

several equilibria with different strategies at the cheap talk and at the voting stage

that are equivalent in terms of payoff. Instead, the equilibrium can uniquely be

characterized payoff-wise by a social choice function α, mapping from both group’s

signals into outcomes. For the sake of tractability, I only consider equilibria that

implement a deterministic social choice,

α : {0, 1, 2, 3} × {0, 1, 2} → {0, 1}.

This restriction is not without loss of generality. In particular, it rules out equi-

libria in which there is mixing at the voting stage between two different strategies

that could lead to different outcomes. However, I believe that the restriction is

comparatively innocent in this setting as there could only be a limited amount of

mixing in any case.

To illustrate this point, consider the following example in a setup with majority

rule (τ = 3). Suppose that m plays a mixed strategy at the voting stage for some

realization of sm, e.g., sm = 1, and after receiving some message rM . Suppose m

mixes between am = 2 and am = 1. Mixing only meaningfully affects the outcome

if M sometimes votes aM = 1 given sM and rm, so that am = 2 and am = 1

lead to different outcomes. Therefore, m must be indifferent whether the reform

is implemented given his information, sm = 1, rM , and what he can infer about

sM from M voting aM = 1. But if M is indifferent for sm = 1 he must strictly

prefer the reform not to be implemented for sm = 0 and he must strictly prefer the

reform to be implemented if sm = 2. Consequently, conditional on the information

transmitted before the voting stage, m can only mix between am = 1 and am = 2

for one of the three possible realizations of sm in a way that affects the outcome.

Additionally, the decision to limit attention to deterministic social choice func-

tions has the advantage of preserving comparability to Thordal-Le Quement and

Yokeeswaran (2015). For those equilibria with the communication protocol that

is closest to my setup, subgroup deliberation (SD) equilibria, they consider two
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groups that first pool their information within the group and then all vote for

reform (or in their case for conviction) if the number of positive signals is weakly

greater than some threshold and all vote against otherwise. By construction, this

class of equilibria leads to a deterministic social choice function. Moreover, the

set of social choice functions that can be implemented by SD equilibria is a subset

of the set of implementable social choice functions. The additional cheap talk be-

tween groups with my communication protocol does not eliminate SD equilibria,

as both groups can simply babble and then follow the equilibrium voting strategy

of an SD equilibrium. Therefore, all their welfare comparisons between SD equi-

libria and other equilibria under other communication protocols also hold in my

model, whenever their and my model coincide.2

As established above, information sharing can occur both through cheap talk and

through voting. Therefore, the amount of information shared in equilibrium can

only be meaningfully quantified based on the social choice function α. To this end,

I distinguish between information transmission, full information transmission and

partial information transmission.3

Definition 1 (Information transmission). An equilibrium has information trans-

mission if it implements a social choice α such that

α(sM , sm) 6= α(s′M , sm) for some sM , s
′
M , sm

α(sM , sm) 6= α(sM , s
′
m) for some sm, s

′
m, sM .

Having an equilibrium with information transmission means that the social choice

function is contingent on both groups’ signals. Thus information from both groups

is used in determining the outcome.

Definition 2 (Full information transmission). An equilibrium satisfies full infor-

mation transmission if there exists an equilibrium implementing the same social

choice α in which both groups truthfully reveal their signals at the communication

stage in equilibrium.

2The models do not always coincide, as Thordal-Le Quement and Yokeeswaran (2015) assume
max{cM , cm} > 0.5. In other words, based solely on the prior, the group paying a greater cost
for reform dislikes the reform. In terms of their court application, the doves on the jury favor
acquittal without information. They do not claim that this assumption is necessary, but they
use it in their proofs.

3Thordal-Le Quement and Yokeeswaran (2015) have similar categories. Their notion of a fully
reactive equilibrium coincides with my notion of an equilibrium for which the corresponding social
choice function has (partial) information transmission.
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In contrast, full information transmission is stronger than information transmis-

sion.4 An equilibrium has full information transmission if no group would want to

deviate at the voting stage, even if it was fully informed about the other group’s

signal. Therefore, each group either receives or can infer all the information it

seeks from the other group. It is well known (e.g., Coughlan, 2000, Proposition

5) that full information transmission can generally only be achieved if M and m

have the same preferences, i.e., qM = qm.5 While the full information transmission

case is straight-forward, the interesting case for this analysis is the case of partial

information transmission, the case in which information transmission is feasible

but full information transmission is not.

Definition 3 (Partial information transmission). An equilibrium satisfies partial

information transmission if the social choice α exhibits information transmis-

sion but not full information transmission.

In order to examine partial information transmission social choice functions, I first

need to establish if and when such social choice functions can be implemented

in equilibrium. This is not a trivial task, since I have shown that there can be

different combinations of communication and voting strategies that implement the

same social choice function α. Therefore, showing that some set of strategies that

would implement α is not an equilibrium does not automatically rule out other

strategies that might implement α in equilibrium.

This is not a Mechanism Design problem, as the rules of the game that both

groups play are fixed. Nevertheless, I follow an approach similar to the reve-

lation principle approach in Mechanism Design to tackle this problem. First, I

formulate necessary conditions that the social choice function α must satisfy in

any equilibrium. Then I characterize strategies that implement α and show that

these strategies constitute an equilibrium whenever the necessary conditions are

fulfilled. Therefore, these conditions are both necessary and sufficient for α to be

implementable in equilibrium.

4I assume qM , qm ∈ {1, 2, 3, 4, 5} in this statement. This assumption rules out situations in
which group x is never interested in the other group’s signal because it is always for the reform
(qx = 0) or always against the reform (qx > 5). If the other group cannot be swayed, then it is
an equilibrium strategy to truthfully reveal one’s signal. Thus such a social function would have
the silly property of having full information transmission but not information transmission, in
the sense of the definitions.

5Full information transmission can also be achieved in the non-generic case in which |qM −
qm| = 1 and one of the groups, group x, is indifferent with respect to the reform’s implementation
if qx positive signals realize: cx = β(qx, 5).
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The first condition any α must satisfy to be implementable in equilibrium is mono-

tonicity (MON). If the reform is implemented given signals (sM , sm), it must also

be implemented for any signals (s′M , s
′
m) that are weakly larger in both dimensions.

α(s′M , sm) ≥ α(sM , sm) ∀s′M , sM ∈ SM ; s′M > sM ; sm ∈ Sm (MON)

α(sM , s
′
m) ≥ α(sM , sm) ∀s′m, sm ∈ Sm; s′m > sm; sM ∈ Sm

An equivalent statement is that any monotone α can be represented by thresh-

old rules ψM(sm) and ψm(sM) for each group. Then, for example, the reform is

implemented given sm only when sM ≥ ψM(sm).

ψM(sm) := min{ŝM |α(ŝM , sm) = 1}

ψm(sM) := min{ŝm|α(sM , ŝm) = 1}

The necessity of monotonicity follows almost directly from the fact that the re-

form decision is monotone in the number of yes-votes. To see this point, suppose

monotonicity fails. Then, receiving a larger signal must induce one group to cast a

lower number of yes-votes, after having received some message of the other group.

Suppose that, after having received some message rm, M votes aM given sM but

votes a′M < aM given s′M > sM . Voting aM leads to reform whenever a′M leads

to reform. In addition, for monotonicity to fail aM must lead to reform in some

cases in which a′M does not. As M votes aM with signal sM , the posterior belief

in the reform’s success must exceed cM , given sM , given m’s message, and given

what M can infer about sm when aM leads to reform but a′M does not, Thus M

wants to chose aM instead of a′M . But she also wants to do so given s′M > sM ,

contradicting our initial assumption that she votes aM .

Apart from (MON), any equilibrium must satisfy the incentive constraints (ICM)

and (ICm). These constraints ensure that M and m weakly prefer following their

equilibrium strategies given signal sM or sm rather than deviating and following

the strategy prescribed for some other signal ŝM or ŝm.
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∑
sm∈Sm

Pr(sm|sM)α(sM , sm)(β(sm + sM , 5)− cM) ≥ (ICM)∑
sm∈Sm

Pr(sm|sM)α(ŝM , sm)(β(sm + sM , 5)− cM) ∀sM , ŝM ∈ SM∑
sM∈SM

Pr(sM |sm)α(sM , sm)(β(sm + sM , 5)− cm) ≥ (ICm)

∑
sM∈SM

Pr(sM |sm)α(sM , ŝm)(β(sm + sM , 5)− cm) ∀sm, ŝm ∈ Sm

The final set of constraints depends on the choice of τ . With majority rule,

τ = 3, the constraints (IR1
M) and (IR0

M) ensure that the majority does not want

to deviate given sM and unilaterally prevent the reform - ensured by (IR1
M) - or

unilaterally force the reform - ensured by (IR0
M) - regardless of sm. For unanimity,

τ = 5, I need constraints (IR1
M) and (IR1

m), as both groups can prevent the reform

unilaterally but neither can force it:

Additional constraints with majority rule:∑
sm∈Sm

Pr(sm|sM)α(sM , sm)(β(sm + sM , 5)− cM) ≥ 0 ∀sM ∈ SM

(IR1
M)∑

sm∈Sm

Pr(sm|sM)(1− α(sM , sm))(β(sm + sM , 5)− cM) ≤ 0 ∀sM ∈ SM

(IR0
M)

Additional constraints with unanimity:∑
sm∈Sm

Pr(sm|sM)α(sM , sm)(β(sm + sM , 5)− cM) ≥ 0 ∀sM ∈ SM

(IR1
M)∑

sM∈SM

Pr(sM |sm)α(sM , sm)(β(sm + sM , 5)− cm) ≥ 0 ∀sm ∈ Sm

(IR1
m)

Having established necessary conditions for α to be implementable in some equi-

librium, I can construct specific strategies that implement any α in equilibrium,

as long as α satisfies these conditions. These strategies are stated in Lemma 1.

Lemma 1. With the following strategies any α that is feasible given majority rule
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(τ = 3) and any α that is feasible given unanimity (τ = 5) can be implemented in

equilibrium of the communication and voting game with the appropriate τ :

1. M babbles at the communication stage by mixing over all messages with

equal probability.

2. Given sm, m mixes over all messages rm ∈ {ŝm|α(sM , ŝm) = α(sM , sm)∀sM ∈
SM} with equal probability.

3. M votes aM = 3 if α(sM , rm) = 1 and aM = 0 if α(sM , rm) = 0.

4. m votes am = 2 at the voting stage unless α(sm, sM) = 0 for all sM ∈ SM
given sm.

Lemma 1 is useful insofar as it allows me to now only consider the strategies from

the lemma for the remaining analysis. Moreover, in any equilibrium constructed

with the strategies described in the lemma, m uses one out of four distinct com-

munication strategies. These strategies are described in Corollary 3.1: A strategy

for full information transmission, two distinct strategies for partial information

transmission, termed communication strategy (a) and communication strategy (b),

and a strategy for babbling. Consequently, for the focus of this analysis, equilib-

ria with partial information transmission, it is sufficient to consider two different

strategies, which considerably simplifies the analysis. Figure 3.2 illustrates the

construction of such an equilibrium under majority rule.

Corollary 3.1. Any social choice α can be implemented in an equilibrium in which

the minority m uses one of the following four communication strategies:

1. Full information transmission: rm = sm

2. Communication strategy (a):

rm =

0 if sm = 0

∈ {1, 2} with equal prob. if sm ∈ {1, 2}

3. Communication strategy (b):

rm =

∈ {0, 1} with equal prob. if sm ∈ {0, 1}

2 if sm = 2
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4. Babbling: rm ∈ {0, 1, 2} with equal probability

In a first step, I can use Lemma 1 and Corollary 3.1 to investigate the limits of

information transmission. Like full information transmission, partial information

transmission is limited by the degree of conflict between M and m. While full

information transmission is only feasible when preferences are perfectly aligned, i.e.

when qM = qm, partial information transmission is only feasible if preferences are

sufficiently aligned. Lemma 2 gives the necessary condition for partial information

transmission in this setup, |qM−qm| ≤ 1 . This condition is not general, but specific

to the setup in this paper. With larger groups, this condition, i.e., the maximal

difference of qM and qm, will increase, as a difference of the same size represents a

smaller degree of conflict with larger groups.

Lemma 2. Information transmission can only occur in equilibrium as long as |qM−
qm| ≤ 1.

Having established Lemma 2, I derive Lemma 3 in order to further characterize

how an implementable social choice α is implemented with the strategies described

in Lemma 1. This result is useful as it allows me to focus on a manageable number

of possible equilibria in the proof of Proposition 3.2.

Lemma 3. In an equilibrium that implements a social choice α with partial in-

formation transmission and which is constructed with the strategies described in

Lemma 1, the communication strategy of m depends on τ , qM , and qm in the

following way.

With majority rule (τ = 3):

• If qm < qM : m uses communication strategy (a).

• If qm > qM : m uses communication strategy (b).

With unanimity (τ = 5):

• If qm < qM : m uses communication strategy (a).

• If qm > qM : Either communication strategy can occur.

Proposition 3.2 is a crucial result that makes all subsequent observations possible.

Both models with voting and and with cheap talk generally allow for a multitude of

equilibria. As a result, there might be more than one social choice function that is

implementable in equilibrium. Therefore, I need to select one social choice function
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to make meaningful comparisons between outcomes for different cost parameters

or to compare voting with majority rule and with unanimity.

Proposition 3.2. If several social choice functions are implementable in equilib-

rium, there is always a Pareto-dominant one.

Proposition 3.2 establishes that if several social choice functions are implementable

for a given setup, one always Pareto-dominates the others. This social choice is

thus a natural candidate for selection. In all subsequent comparisons I only con-

sider Pareto-dominant implementable social choice functions. Thordal-Le Que-

ment and Yokeeswaran (2015, Lemma 6 and Proposition 8) have a comparable

argument in their setup. While conceptually similar, it does not, however, easily

extend to my setup.

With unanimity the set of implementable social choice functions with my group-

to-group communication protocol rule is a superset of the implementable social

choice functions with their subgroup deliberation (SD) communication protocol.

Therefore, the best implementable outcome in my setup weakly Pareto-dominates

the best outcome in their setup. Now I can use their main results (Propositions

7-9), which state that the outcome with the SD communication protocol Pareto-

dominates the outcome with a plenary deliberation (PD) protocol, where cheap

talk messages are received by all individuals (not just their own group). This out-

come in turn Pareto-dominates the outcome with a no deliberation (ND) protocol,

where no cheap talk is permitted. Therefore, whenever max{cM , cm} > 0.5 (one

of their assumptions), the outcome under my group-to-group protocol not only

Pareto-dominates the SD outcome, but also the PD and ND outcomes.

The proof of Proposition 3.2 consists of an extensive and thus slightly tedious

case distinction, in order to show that whenever several social choice functions

are implementable, one of those social choices Pareto-dominates the others from

an ex-ante perspective. In all cases, similar arguments can be used to prove this

statement, building on a combination of some of the relevant constraints - (ICM),

(ICm), (IR1
M), (IR0

M), and (IR1
m). Unfortunately, even though the proofs in all

these cases are similar, there does not seem to be a way to easily generalize the

argument in order to construct a more elegant proof.

For the conclusion of the analysis, all subsequent observations are made using

graphs. Here, I use the parameter p = 0.66. However, one can produce qualita-

tively equivalent graphs with other values of p such that 1
2
< p < 1.
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My first set of observations is about the extent of information transmission. Fig-

ure 3.3 shows the parameters such that information transmission social choice

functions are feasible both for majority rule and unanimity. The dark square

areas represent (cM , cm)-values such that qM = qm and M and m can therefore

fully share information. The outlined white rectangles represent (cM , cm)-values

such that |qM − qm| = 1. As established in Lemma 2, information transmission

is not feasible for (cM , cm)-values that don’t lie in either area. However, while

|qM − qm| ≤ 1 is a necessary condition for the Pareto-dominant social choice func-

tion to have information transmission, it is not a sufficient condition. The gray

areas in Figure 3.3 represent (cM , cm)-values with partial information transmission

and clearly only cover part of the areas with |qM − qm| = 1.

My second set of observations is about partial information transmission being more

prevalent with unanimity when compared to majority rule. In Figure 3.3, this fact

is reflected by the gray area being larger in the right panel when compared to the

left panel. This observation implies that if cM and cm are drawn independently

from a uniform distribution, information transmission is more likely to occur with

unanimity than with majority rule. Figure 3.4 also depicts this result. The dark

areas in its left panel show (cM , cm)-values for which there is information trans-

mission with majority rule but not with unanimity, and vice-versa in its right

panel. While the overall area is larger for unanimity, there are also dark areas for

majority rule. Therefore, it is not the case that there is information transmission

with unanimity, whenever there is information transmission with majority rule.

Figure 3.5 illustrates how unanimity in general benefits the minority. The dark

areas in the left panel depict (cM , cm)-values for which the majority strictly benefits

from majority rule when compared to unanimity. The dark areas in the right panel

depict (cM , cm)-values for which the minority strictly benefits from unanimity rule

when compared to majority rule. Both areas mostly overlap, implying that in most

cases in which the majority is worse off with unanimity compared to majority rule

the minority is better off, and vice-versa.

However, both areas do not overlap fully. Therefore, surprisingly, there are cases

in which both groups are better off with either majority rule or unanimity. The

(cM , cm)-values for both cases are depicted in Figure 3.6. Thus, depending on the

parameters, the majority can potentially benefit from relinquishing decision power

and the minority from relinquishing veto power. For emphasis, I state this fact in

Proposition 3.3.
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Proposition 3.3. There exist parameters cM , cm, and p, such that both M and m

strictly prefer majority rule over unanimity in terms of the ex-ante payoffs of the

Pareto-dominant social choice functions. Conversely, there exist parameters such

that both M and m prefer unanimity over majority rule.

A comparison of Figures 3.4 and 3.6 reveals that the result of Proposition 3.3 is not

or at least not entirely due to majority rule or unanimity allowing for information

transmission, where the other voting rule does not allow for it, i.e., it is not

due to making the outcome contingent on both groups’ outcome. Graphically,

the dark areas in Figure 3.6 do not lie within the dark areas in Figure 3.4. In

some cases, both majority rule and unanimity allow for information transmission,

while, nevertheless, the outcome with one of the voting rules strictly dominates

the outcome with the other voting rule for both groups.

Moreover, whenever majority rule or unanimity allows for information transmis-

sion, while the other voting rule does not, the outcome under the voting rule with

information transmission does not necessarily Pareto-dominate the outcome under

the voting rule without. Graphically, the dark areas in Figure 3.4 do not lie within

the dark areas in Figure 3.6.

Finally, one can directly observe that the outcome with majority rule and the

outcome with unanimity only differ when the minority is less pro-reform than the

majority, i.e., if qm > qM . Here, giving the minority m the power to veto the

reform does not change the outcome. Clearly, whenever M wants the reform, m

wants the reform as well and therefore does not veto. Consequently, switching

from majority rule to unanimity does not affect the outcome in those cases. In

Figures 3.3 - 3.6, this fact results in both the left panel and the right panel being

equal below an imaginary 45◦-line, or (cM = cm)-line. Below this line cM > cm

and thus qM ≥ qm. However, if unanimity was needed for keeping the status quo

instead of achieving the reform, this picture would be reversed, i.e., both panels

would be equal above the (cM = cm)-line.

Conclusion

In this paper, I contribute to the literature that investigates the interplay of cheap

talk and voting in the context of a common values setup. While this field in

general has been studied extensively, there is little research on how the presence of
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different groups affects these models, when each group consists of individuals with

the same preferences (think about political parties, hawks vs. doves, constitutional

originalists vs. constitutional evolutionists in US courts, etc.). To the best of my

knowledge, Thordal-Le Quement and Yokeeswaran (2015), Hummel (2012), and I

are the only ones that have this particular focus so far. My focus, in particular,

lies on the communication between homogeneous groups - that have previously

pooled their information - and how this communication interacts with their voting

strategies.

In my model, I consider two homogeneous groups who first communicate and

then vote on whether to pass a reform requiring either a majority or unanimity

in favor. Given potential equilibrium multiplicity, I analyze the model in terms

of implementable social choice functions. In particular, I derive conditions for

the implementability of information transmission social choice functions, social

choice functions with which the outcome is contingent on both groups’ outcome.

Not surprisingly, information transmission is only feasible when preferences are

sufficiently close.

Moreover, I find that there always exists a Pareto-dominant and thus focal social

choice function. This result allows me to compare the outcomes under two differ-

ent voting rules: unanimity and majority rule. For most parameters, unanimity

benefits the minority and majority rule benefits the majority. However, there ex-

ist parameters for which majority rule strictly Pareto-dominates unanimity and

vice-versa. Therefore, the majority can benefit from relinquishing decision power

or the minority can benefit from relinquishing veto power.
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Figure 3.2: An example of partial information exchange under majority rule:
cM = 0.7, cm = 0.5, p = 0.66. The top row illustrates the degree of conflict
of interest. The second row contains m’s and M ’s strategies. The third and
fourth rows illustrate the incentive compatibility of M ’s voting strategy and m’s

reporting strategy, respectively.

qM 6= qm ⇒ Full information exchange is not feasible.

0 1

0 1 2 3 4 5

cMcm

m reports:

sm = 0⇒ rm = 0

sm ∈ {1, 2} ⇒ rm ∈ {1, 2}

m votes (without influencing the
outcome):

am = 2

M babbles:

sM ∈ {0, 1, 2, 3} ⇒ rM ∈ {0, 1, 2, 3}

M votes:

rm = 0 ∨ sM < 2⇒ am = 0

rm ∈ {1, 2} ∧ sM ≥ 2⇒ am = 3

M ’s voting strategy is incentive compatible given m’s reporting strategy.
The message rm = 0 (light shaded circles) or rm ∈ {1, 2} (dark shaded

circles) shifts M ’s posterior. Combined with M ’s own signal, sM , this leads
to his voting strategy:

0 1 2

0 1

0 1 2 3

cM

0 1

0 1 2 3

cM

m’s communication strategy is incentive compatible given M ’s voting
strategy. m’s report is pivotal if sM ≥ 2 in which case m wants M to vote

pro-reform if sm > 0:

2 3

0 1 2

cm
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Figure 3.3: Degrees of information transmission under majority rule and una-
nimity (with p = 0.66). The dark squares along the diagonal represent pa-
rameters for which qM = qm, allowing for full information transmission. The
outlined white rectangles represent parameters for which |qM − qm| = 1 and
partial information transmission is potentially feasible. The gray rectangles
represent parameters for which social choice functions with partial information

transmission are actually implementable.
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Figure 3.4: Comparing information transmission with majority rule and with
unanimity (with p = 0.66). The dark areas in the left panel represent parameters
for which the social choice with majority rule has information transmission but
the social choice with unanimity does not. Conversely, the dark areas in the
left panel represent parameters for which the social choice with unanimity has

information transmission but the social choice with majority rule does not.
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Figure 3.5: Comparing payoffs with majority rule and with unanimity (with
p = 0.66). The dark area in the left panel represents parameters for which
M ’s payoff is higher with majority rule compared to unanimity. Conversely,
the dark in the right panel represents parameters for which m’s payoff is higher

with unanimity compared to majority rule.
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(b) m’s payoff higher with unanim-
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Figure 3.6: Comparing payoffs with majority rule and with unanimity (with
p = 0.66). The dark areas in the left panel represent parameters for which
the outcome under majority rule strictly Pareto-dominates the outcome under
unanimity. Conversely, the dark areas in the right panel represent parameters
for which the outcome under unanimity strictly Pareto-dominates the outcome

under majority rule.
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Appendix

Lemma 1. With the following strategies any α that is feasible given majority rule

(τ = 3) and any α that is feasible given unanimity (τ = 5) can be implemented in

equilibrium of the communication and voting game with the appropriate τ :

1. M babbles at the communication stage by mixing over all messages with

equal probability.

2. Given sm, m mixes over all messages rm ∈ {ŝm|α(sM , ŝm) = α(sM , sm)∀sM ∈
SM} with equal probability.

3. M votes aM = 3 if α(sM , rm) = 1 and aM = 0 if α(sM , rm) = 0.

4. m votes am = 2 at the voting stage unless α(sm, sM) = 0 for all sM ∈ SM
given sm.

Proof. It is easily verified that the stated strategies lead to the outcome prescribed

by α. Thus, to prove the lemma I need to show that (ICM), (ICm), (IR1
M),

and (IR0
M) (with majority rule) and (ICM), (ICm), (IR1

M), and (IR0
M) (with

unanimity) are not only necessary conditions but also sufficient to guarantee that

the stated strategies are equilibrium strategies.

First, clearly M has no incentive to deviate at the communication stage since

deviating does not affect the outcome. With majority rule, m has no incentive to

deviate at the voting stage, as deviating again does not affect the outcome. With

unanimity, m deviating at the voting stage affects the outcome whenever the

equilibrium strategies require the reform to be implemented. Then, m’s expected

utility from voting yes conditional on sm and conditional on m’s vote being pivotal

is given by ∑
sM∈SM Pr(sM |sm)α(sM , sm)(β(sm + sM , 5)− cm)∑

sM∈SM Pr(sM |sm)α(sM , sm)
≥ 0

which is greater than zero, the expected utility of voting no, due to (IR1
m). There-

fore, what remains to be shown is that m does not have a profitable deviation at

the communication stage and that M does not have a profitable deviation at the

voting stage.
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First, suppose to the contrary of what is to be shown that m, given sm, has a

profitable deviation r̂m. Then there must be some sM ∈ SM such that α(sM , r̂m) 6=
α(sM , sm). Thus, given M ’s voting strategy, m’s interim payoff is given by

∑
sM∈SM

Pr(sM |sm)α(sM , r̂m)(β(sm + sM , 5)− cm).

But by (ICm), this payoff must be weakly lower than m’s payoff from following

his equilibrium strategy. Therefore, the deviation cannot be profitable.

Second, consider M ’s strategy at the voting stage. After having received message

rm, M can infer that sm must lie in the set X = {sm|α(sM , sm) = α(sM , rm)∀sM ∈
SM}.

Suppose M always votes no regardless of rm. Then, m babbles by construction.

With majority rule, the left-hand side of (IR0
M) represents M ’s expected payoff

from deviating and voting yes, which is smaller than zero, M ’s expected payoff from

voting no. Thus, (IR0
M) ensures that M ’s strategy is optimal. With unanimity,

whenever M always votes no m also always votes no by construction. Therefore,

deviating and voting yes does not affect the outcome. Now suppose M always

votes yes regardless of rm. Then again m babbles and the left-hand side of (IR1
M)

represents M ’s expected payoff when always voting yes. So (IR1
M) ensures that

M ’s strategy is optimal.

For the final case, suppose M sometimes votes yes and sometimes votes no depend-

ing on sM and rm. Now I can use (ICM) to show the optimality of M ’s voting

strategy. Suppose rm is such that M votes yes in equilibrium, α(sM , rm) = 1.

Define s−M := max{ŝ−M |ŝ
−
M < ψ(sm) ≤ sM , sm ∈ Sm}. In other words, s−M is the

signal just below the highest possible cutoff that can be induced by m so that M

votes yes given sM . The fact that M sometimes votes no ensures that s−M exists.

Now, notice that due to monotonicity, switching from sM to s−M only leads to a

different allocation for messages in the set X. Any other message r′m /∈ X must

induce a cutoff either even smaller than s−M or larger than ψ(rm) = ψ(sm), the
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cutoff induced by rm. But then α(sM , r
′
m) = α(s−M , r

′
m). Therefore, I get:

∑
sm∈Sm

Pr(sm|sM)α(sM , sm)(β(sm + sM , 5)− cM)

−
∑

sm∈Sm

Pr(sm|sM)α(s−M , sm)(β(sm + sM , 5))

=
∑
sm∈X

Pr(sm|sM)(β(sm + sM , 5)− cM) ≥ 0

Now, (ICM) implies that the first term of the difference is weakly larger than the

second term. This inequality in turn implies that the difference is weakly positive.

Finally, this result gives∑
sm∈X Pr(sm|sM)(β(sm + sM , 5)− cM)∑

sm∈X Pr(sm|sM)
≥ 0,

which states that the expected utility of M when voting yes conditional on rm and

sM is greater than zero, the expected utility of voting no.

For any message rm such that α(sM , rm) = 0, the optimality of voting no can

be shown analogously. Thus I have now established the optimality of M ’s voting

strategy in equilibria in which she always votes yes, in equilibria in which she

always votes no, and in all other equilibria.

Lemma 2. Information transmission can only occur in equilibrium as long as |qM−
qm| ≤ 1.

Proof. Given Lemma 1, it is sufficient to consider equilibria in which m affects

the outcome only through cheap talk and M affects the outcome only through

voting. As stated in Corollary 3.1, m can use one of four different communication

strategies in such an equilibrium.

Full information transmission is feasible only when qM = qm. Therefore what

remains to be shown is that the two partial information transmission strategies

cannot be sustained in equilibrium when |qM − qm| > 1. Then, the only strategy

that remains for m is babbling, in which case there is no information transmission.

Suppose qM > qm + 1, for example qM = 4 and qm = 2. Consider strategy (a).

After receiving rm = 0, M only votes yes if sM ≥ qM . After receiving rm ∈ {1, 2},
M only votes yes (aM = 3) either whenever sM +1 ≥ qM or whenever sM +2 ≥ qM ,

depending on M ’s preferences. But then m would always want to deviate when
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sm = 0. In terms of the example, M never votes yes when rm = 0 and either

votes yes whenever sM ≥ 3 or whenever sM ≥ 2 when rm ∈ {1, 2}. But then m

never wants to send message rm = 0. The same approach can be applied with

strategy (b) or when qM + 1 < qm. Therefore, partial information transmission

cannot occur in equilibrium.

Lemma 3. In an equilibrium that implements a social choice α with partial in-

formation transmission and which is constructed with the strategies described in

Lemma 1, the communication strategy of m depends on τ , qM , and qm in the

following way.

With majority rule (τ = 3):

• If qm < qM : m uses communication strategy (a).

• If qm > qM : m uses communication strategy (b).

With unanimity (τ = 5):

• If qm < qM : m uses communication strategy (a).

• If qm > qM : Either communication strategy can occur.

Proof. As babbling and full information transmission are ruled out in equilibria

with partial information transmission, Corollary 3.1 means that m must use either

communication strategy (a) or (b). Therefore, to prove the lemma it suffices to

show that in each of the first three cases that the other (i.e., the non-prescribed)

communication strategy cannot be used in equilibrium.

If qm > qM , then qm = qM + 1 and if qm < qM , then qm = qM − 1.

• Majority rule, qm = qM − 1:

Suppose m uses communication strategy (b). If rm = 2, then M votes

yes whenever sM ≥ ψM(2) = qM − 2. Since there is partial information

transmission, M votes differently if rm 6= 2. But then, whenever sm = 1, m

would want to deviate and report rm = 2, since M would vote yes whenever

sM ≥ ψM(2) = sM−sm−1 = qm−sm. In other words, M votes yes whenever

sM + sm ≥ qm, a strategy which m prefers over any other possible voting

strategy of M .
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• Majority rule, qm = qM + 1:

The argument that rules out communication strategy (a) is exactly analogous

to the above argument.

• Unanimity, qm = qM − 1:

Suppose m uses communication strategy (b). If rm = 2, then M votes

yes whenever sM ≥ ψM(2) = qM − 2. Since there is partial information

transmission, M votes differently if rm 6= 2. But then, whenever sm = 1, m

would want to deviate and report rm = 2, since M would vote yes whenever

sM ≥ ψM(2) = sM−sm−1 = qm−sm. In other words, M votes yes whenever

sM + sm ≥ qm, a strategy which m prefers over any other possible voting

strategy of M .

Proposition 3.2. If several social choice functions are implementable in equilibrium,

there is always a Pareto-dominant one.

Proof. This proof is a case-by-case proof. Both for majority rule and for una-

nimity I show that whenever several social choice functions can be implemented

in equilibrium, one social choice function Pareto-dominates the others.

Majority rule (τ = 3)

One social choice function that is always implementable is the one that corresponds

to no information transmission. With the strategies of Lemma 1 this social choice

is implemented by m babbling and always voting am = 2 and M voting aM = 3,

whenever she prefers the reform solely based on her own signal sM . Whenever

information transmission is not feasible, this social choice function is the only

implementable one, as no other social choice function without information trans-

mission can be implemented with the strategies of Lemma 1.

If information transmission is feasible, then Lemma 2 means that |qM − qm| ≤ 1.

With qM = qm the preferences of M and m are perfectly aligned. Therefore, the

social choice function that corresponds to full information transmission clearly

dominates any other social choice that is implementable.
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Thus, what remains to be shown is that, when only partial information transmis-

sion is feasible, the social choice function corresponding to information transmis-

sion is preferred by both M and m to the social choice function corresponding

to no information transmission. As m follows a different strategy depending on

whether qM > qm or qm < qM , I verify this statement for each case separately.

1. qM > qm, specifically qM = qm + 1.

Lemma 3 gives that m follows communication strategy (a). Information

transmission is not possible, whenever qm = 0, because m would always

want to lead M to vote pro reform, regardless of sm. Hence 1 ≤ qm ≤ 4.

Incentive compatibility gives that in the equilibrium with partial information

transmission the reform is implemented if

sM ≥ qM −

0 if rm = 0

2 otherwise.

Since M can perfectly infer sm = 0 if rm = 0, she can only vote aM = 3 if

sM ≥ qM . If rm > 0, she would either want to vote for reform if sM ≥ qM −1

or sM ≥ qM − 2. But in equilibrium it must be that she votes for reform

only if sM ≥ qM −2, otherwise m would want to deviate to rm = 0 whenever

sm = 1. With no information transmission the reform is implemented if

sM ≥ qM − 1, since β(qM , 5) = β(qM − 1, 3) ≥ cM .

Call the partial information social choice function α and the no information

transmission social choice α̂. Now only consider 2 ≥ qM ≤ 4. These social

choice functions differ only in cases: α(qM − 2, 2) = 1, α(qM − 1, 0) = 0, and

α(qM − 2, 1) = 1, with α̂ prescribing the opposite action.

M prefers α(qM − 2, 2) = 1 and α(qM − 1, 0) = 0 to α̂ but she prefers

α̂(qM − 2, 1) = 0 to α(qM − 2, 1) = 1. Notice that M ’s ex-ante utility can be

expressed as

∑
sM∈SM

Pr(sM)
∑

sm∈Sm

Pr(sm|sM)α(sM , sm)(β(sm + sM , 5)− cM).

Now comparing α to α̂, M ’s ex-ante utility is higher with α since her utility

gains from α(qM − 2, 2) = 1 outweigh her losses due to α(qM − 2, 1) = 1,

since it is an equilibrium strategy for M to vote yes whenever sM = qM − 2
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and rm > 0, which implies

Pr(sm = 1|sM = qM − 2, rm > 0)(β(qM − 1, 5)− cM)+

Pr(sm = 2|sM = qM − 2, rm > 0)(β(qM , 5)− cM) ≥ 0.

m prefers α(qM − 2, 2) = 1 and α(qM − 2, 1) = 1 to α̂ but he prefers α̂(qM −
1, 0) = 1 to α(qM − 1, 0) = 1. However, similar to the argument for M , m’s

gains due to α(qM−2, 1) = 1 outweigh his losses due to α(qM−1, 0) = 0, since

the ex-ante probability of (sM , sm) = (qM − 2, 1) is higher than the ex-ante

probability of (sM , sm) = (qM −1, 0) and β(qM −2 + 1, 5) = β(qM −1 + 0, 5).

Finally, consider qM = 4 and qm = 5. Then the reform is never imple-

mented in the equilibrium without information transmission. With informa-

tion transmission, α(3, 1) = 1 and α(3, 2) = 1. Clearly, m prefers α to α̂. M

also prefers α since her gains from α(3, 2) = 1 must outweigh her losses due

to α(3, 1) = 1 from an ex-ante perspective, as she votes yes with rm > 0 and

sM = 3.

2. qM < qm, specifically qM = qm − 1.

The proof is similar to the proof for qM > qm. Lemma 3 gives that m fol-

lows communication strategy (b). Information transmission is not possible,

whenever qM = 0, because M always votes yes. Hence 1 ≤ qM ≤ 4. In-

centive compatibility gives that in the equilibrium with partial information

transmission the reform is implemented if

sM ≥ qM −

2 if rm = 2

0 otherwise.

Since M can perfectly infer sm = 2 if rm = 2, she can only vote aM = 3

if sM ≥ qM − 2. If rm < 2, she would either want to vote for reform if

sM ≥ qM − 1 or sM ≥ qM − 0. But in equilibrium it must be that she

votes for reform only if sM ≥ qM , otherwise m would want to deviate to

rm = 2 whenever sm = 1. With no information transmission the reform is

implemented if sM ≥ qM − 1, since β(qM , 5) = β(qM − 1, 3) ≥ cM .

Again, call the partial information social choice function α and the no in-

formation transmission social choice α̂. These social choice functions differ
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only in cases: α(qM − 2, 2) = 1, α(qM − 1, 0) = 0, and α(qM − 1, 1) = 0, with

α̂ prescribing the opposite action.

M prefers α(qM − 2, 2) = 1 and α(qM − 1, 0) = 0 to α̂ but she prefers

α̂(qM − 1, 1) = 1 to α(qM − 1, 1) = 0. Again comparing α to α̂, M ’s ex-ante

utility is higher with α since her utility gains from α(qM−1, 0) = 0 outweigh

her losses due to α(qM − 1, 1) = 0, since it is an equilibrium strategy for M

to vote no whenever sM = qM − 1 and rm < 2, which implies

Pr(sm = 0|sM = qM − 1, rm < 2)(β(qM − 1, 5)− cM)+

Pr(sm = 1|sM = qM − 1, rm < 2)(β(qM , 5)− cM) ≤ 0.

m prefers α(qM − 1, 0) = 0 and α(qM − 1, 1) = 0 to α̂ but he prefers α̂(qM −
2, 2) = 0 to α(qM − 2, 2) = 1. However, similar to the argument for M , m’s

gains due to α(qM − 1, 1) = 0 outweigh his losses due to α(qM − 2, 2) = 1,

since the ex-ante probability of (sM , sm) = (qM − 1, 1) is higher than the

ex-ante probability of (sM , sm) = (qM − 2, 2).

Unanimity (τ = 5)

The social choice function α(sM , sm) = 0 for all sM , sm is always implementable

with unanimity. In the corresponding equilibrium, no group has an incentive to

deviate at the voting stage and m babbles. Due to (IR1
M) and (IR1

m), I know

that any other implementable social choice function must Pareto-dominate this

no reform social choice. With qM = qm, the social choice corresponding to full

information transmission is implementable and again clearly Pareto-dominates any

other social choice. For other social choice functions, the analysis again depends

on whether qM > qm or qM < qm.

1. qM > qm.

There are three different cases in which α does not have information trans-

mission, i.e., α is contingent on at most one group’s signal. First, the social

choice with the reform never being implemented. Second, when qM = 1,

then the reform is a social choice such that the reform is always imple-

mented, since M always votes yes if m babbles, given β(qM , 5) = β(qM−1, 3).

Third, if qM > 1, then there is a social choice function corresponding to m

babbling and always voting yes in equilibrium and M voting yes whenever

sM > qM − 1. This social choice function, described for the majority rule
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case, is also feasible with unanimity. The reason is that m cannot meaning-

fully deviate at the communication stage and can only deviate at the voting

stage by voting am < 0 for some sm. But this deviation only matters if M

votes yes, in which case sM ≥ qM − 1, which implies that m would want the

reform regardless of sm. For qM > 1, it is possible to have α only contin-

gent on sM and not sm but not vice versa, since m can only always vote yes

because qm < qM .

In any information transmission social choice function, Lemma 3 gives that

m follows communication strategy (a). If both social choice functions are

implementable, then this communication social choice dominates the no com-

munication social choice. The underlying argument is exactly the same as

the above argument with majority rule.

2. qM < qm.

Apart from the reform never being implemented and the reform always being

implemented, the only social choice function without information transmis-

sion has α only depend on sm, i.e., M always votes yes. This social choice

function is feasible whenever cm is such that cm > β(qM − 1, 2). In this case,

M never has an incentive to vote no, even if sM = 0, since m already votes

no whenever M does not want the reform. Again, this social choice function

clearly Pareto-dominates never implementing the reform. However, when

partial information transmission is feasible, it is not so clear that a Pareto-

dominant social choice function must exist in the set of implementable social

choice functions. With unanimity and qM + 1 = qm, unlike with unanimity

and qM = qm + 1, Lemma 3 does not prescribe a communication strategy for

m. Thus there are up to four different implementable social choice functions

in this case. The social choice with which the reform is never implemented

(1), a social choice function with α(sM , sm) only depending on sm (2), an

information transmission social choice function in which m uses communica-

tion strategy (a) in equilibrium (3) or one in which m uses communication

strategy (b) in equilibrium (4). To show that one social choice function

always Pareto-dominates other implementable social choice functions I in-

vestigate each possible case separately:

• (qM , qm) = (0, 1)
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Apart from the reform never being implemented, the only other feasible

social choice has the reform always implemented. The latter is feasible

since M can clearly always vote yes and in this case m also wants to

to so, since β(0, 2) > β(0, 3) = β(1, 5). Thus m can babble and always

vote yes, even when sm = 0.

• (qM , qm) = (1, 2)

First, suppose that β(0, 2) ≥ cm. Then, as with (qM , qm) = (0, 1) there

exists a social choice function where both groups always vote yes. There

can only be a social choice function in which m uses communication

strategy (a), if the reform is never implemented whenever sm = 0.

Otherwise, when rm = 0, M would vote yes whenever sM ≥ 1, but then

m would want to deviate to rm = 0 when sm = 1. Now, let α̃ correspond

to the reform always being implemented and α̂ to the reform always

being implemented unless sm = 0. Notice that α̃ is not implementable

given β(0, 2) ≥ cm, as m would want to deviate whenever sm = 0 given

that

β(0, 2)− cm =
∑

sM∈SM

Pr(sM |sm = 0)(β(sM , 5)− cM) ≥ 0.

Suppose there is also a social choice in which m uses communication

strategy (b). Here it must be that the reform is always implemented

when rm = 2 and the reform is implemented when sM ≥ 1 when rm < 2.

Call this social choice α, which only differs from α̃ in that α(0, 0) =

α(0, 1) = 0. Now clearly m prefers α to α̃. M prefers α(0, 0) = 0

and does not prefer α(0, 1) = 0. However, her gains due to α(0, 0) = 0

must outweigh her losses due to α(0, 1) = 0 since she votes no whenever

rm < 2 and sM = 0.

Second, suppose that β(1, 2) ≥ cm > β(0, 2). Now α̃, the social choice

corresponding to always implementing the reform, does not exist. How-

ever, α̂ is now implementable and clearly dominates never implementing

the reform. If α, the information transmission social choice, is also im-

plementable, it Pareto-dominates α̂. α differs from α̂ in that α(0, 1) = 0

and α(1, 0) = α(2, 0) = α(3, 0) = 1, while α̂ has the opposite value in

those cases. Now both M and m prefer α(2, 0) = α(3, 0) = 1. M prefers

α(1, 0) = 1 to α̂ but not α(0, 1) = 0 and vice versa for m. M ’s gains due
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to α(1, 0) = 1 outweigh her losses due to α(0, 1) = 0 since the ex-ante

probability of (sM , sm) = (1, 0) is higher than the ex-ante probability

of (sM , sm) = (0, 1). For m, his gains due to α(2, 0) = α(3, 0) = 1

outweigh his losses due to α(1, 0) = 1 since he votes yes when sm = 0.

• (qM , qm) = (2, 3)

Now, since cM ≥ β(1, 5) = β(0, 3), always implementing the reform is

not a feasible social choice.

First, suppose β(1, 2) > cm. Again, m can only utilize communication

strategy (a) if the reform is never implemented whenever sm = 0. When

sm > 0 and thus rm > 0 the reform is either implemented always

or implemented whenever sM ≥ 1, depending on cM . Suppose the

latter is the case and call this social choice α̂, which dominates never

implementing the reform. If there is also a feasible social choice in

which m uses communication strategy (b) it must that when m reports

rm = 2 the reform is always implemented and when m reports rm < 2

the reform is implemented when sM ≥ 2. Call this social choice α.

It is not possible that when sm = 1 and thus rm < 2 the reform is

implemented when sM ≥ 1 since m would want to deviate when sm = 2.

It is similarly not possible that the reform is never implemented when

sm ≤ 1, since m would want to deviate to rm = 2 as β(1, 2) > cm. Now,

if both are implementable, α Pareto-dominates α̂. The social choice

functions differ in α(2, 0) = α(3, 0) = 1 and α(1, 1) = 0 with α̂ having

the opposite values. Both M and m prefer α(3, 0) = 1. M prefers

α(2, 0) = 1 and does not prefer α(1, 1) = 0 to α̂, while the opposite

is true for m. For m, his gains due to α(3, 0) = 1 outweigh his losses

due to α(2, 0) = 1, since he votes yes with sm = 0. For M , her gains

outweigh her losses since

Pr(sM = 3, sm = 0)(β(3, 0)− cM)

+ Pr(sM = 2, sm = 0)(β(2, 0)− cM)

≥ 2 Pr(sM = 2, sm = 0)(β(2, 0)− cM)

= Pr(sM = 1, sm = 1)(β(1, 1)− cM),

where the top row represents the utility gained with α compared to α̂

and the bottom row represents the utility lost. Now suppose cM is such
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that the reform is always implemented whenever m uses communication

strategy (a) and sm > 0. Call this social choice function α̃. Then the

social choice functions differ in α(2, 0) = α(3, 0) = 1 and α(0, 1) =

α(1, 1) = 0 with α̃ having the opposite values. Again clearly α Pareto-

dominates α̃. The only difference to the previous case is that here

α(0, 1) = 0 and α̃(0, 1) = 1. But both M and m prefer α(0, 1) = 0.

Second, suppose β(1, 2) < cm. Now, α̃ is not implementable, asm would

want to deviate to rm = 0 when sm = 1. However, now a social choice

function is implementable in which m uses communication strategy (b),

the reform is never implemented when sm ≤ 1 and always implemented

when sm = 2. Call this social choice α. If α is implementable as well,

α Pareto-dominates α. The two allocations differ in that α(1, 1) =

α(2, 1) = α(3, 1) = 1. Clearly M prefers α. m must also prefer α,

given that he must vote yes whenever sm = 1. Thus his gains from

α(2, 1) = α(3, 1) = 1 must outweigh his losses due to α(1, 1) = 0.

• (qM , qm) = (3, 4)

Suppose m follows communication strategy (a). Then it must be that

the reform is never implemented when sm = 0. Similarly, it must be

that the reform is only implemented when sm ≥ 1 and sM ≥ 2. There

can be no equilibrium in which M votes yes whenever sM ≥ 1 when

receiving rm 6= 0. The reason is that m’s posterior of the success of the

reform conditional on sM ≥ 1 and sm = 1 is smaller than cm as

Pr(s = 1|sm = 1, sM > 0) =
1− (1− p)3

1− (1− p)3 + 1− p3
< p = β(3, 5) < cm

for all p ∈ (0.5, 1). Therefore, if M voted yes whenever rm 6= 0 and

sM ≥ 1, m would have an incentive to deviate and vote no when sm = 1.

Call this social choice α.

Suppose m follows communication strategy (b). Then it must be that

reform is never implemented when sm ≤ 1, since m never wants the

reform if sm = 0. If sm = rm = 2 the reform is implemented whenever

sM ≥ 1. Call this social choice α̃.

If only one of the two social choice functions α and α̂ is implementable,

it clearly Pareto-dominates the only other implementable social choice
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function, never implementing the reform. If both α and α̂ are imple-

mentable, α dominates. The two functions only differ in that α(2, 1) =

α(3, 1) = 1 and α(1, 2) = 0. m prefers α(1, 2) = 0 and α(3, 1) = 1

but not α(2, 1) = 1. However, his gains due to α(3, 1) = 1 outweigh

his losses due to α(2, 1) = 1 as he votes yes whenever sm = 1. M

prefers α(2, 1) = 1 and α(3, 1) = 1 but not α(1, 2) = 0. However, her

gains due to α(2, 1) = 1 outweigh her losses due to α(1, 2) = 0 since

(sM , sm) = (2, 1) is twice as likely as (sM , sm) = (1, 2) from an ex-ante

perspective.

• (qM , qm) = (4, 5)

In any social choice for which the reform is sometimes implemented,

m can only follow communication strategy (b). If such a social choice

is implementable, the reform is only implemented when sm = 2 and

sM ≥ 2.

• (qM , qm) >> (4, 5)

There is only one implementable social choice function. The reform is

never implemented.



4. In or Out - the effect of small

parties winning representation in

proportional representation

systems. A regression

discontinuity design.

Introduction

In legislative bodies with a proportional representation electoral system there are

often small parties that fail to win representation. This failure can be caused by

a minimum electoral threshold, or by the overall number of seats up for election

being too small for a small vote share to translate to at least one seat. In this

paper, I estimate the causal effect of parties winning representation at the extensive

margin, i.e., the effect of being in as opposed to being out. Identification of a causal

effect is a tricky issue, as winning representation is not random. Parties that win

representation are inherently different from parties that do not, and not only in

the sense that the former gain more votes.

To address this issue of causal identification, a lot of attention in empirical Eco-

nomics has been given to quasi-experimental research designs. A prominent ex-

ample of such a research design is the regression discontinuity (RD) design. It

exploits settings in which treatment is assigned based on a score relative to a cut-

off. The idea underlying this approach is to consider treatment assignment for

observations with a score close to the threshold as essentially random. The RD

approach has been particularly well received in Political Economy. Following the

92
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seminal work of Lee (2008), who estimates the incumbency advantage1 in close

US House elections, many researchers have used an RD approach to exploit close

elections as natural experiments. Almost all of these studies are based on the

threshold of winning at 50 percent in a majoritarian electoral system with two

parties or two candidates.

In proportional representation electoral systems there is no fixed threshold of win-

ning at 50 percent. Nevertheless, there are discontinuities stemming from the seat

allocation method that can be exploited for an RD design. Folke (2014) is the

first and only one, to my knowledge and not counting this paper, to build an RD

framework based on these discontinuities. He studies the effect of certain parties

winning representation on the intensive margin on policy, i.e., the effect of winning

an additional seat. In this paper, in contrast to his approach, I develop a similar

RD setup to study the effect of any party winning representation at the extensive

margin, i.e., of winning at least one seat. Winning representation at the extensive

margin potentially has a two-dimensional effect: First, an effect on policy, through

the effect on the overall composition of the municipal council. Second, an effect

on the party itself, such as an incumbency effect similar to the one estimated by

Lee (2008) in a majoritarian context.

With respect to the first dimension, I can investigate the relationship between

fractionalization and public spending. A party winning representation, in most

cases, increases the total number of parties in the legislature by 1 and thus in-

creases the fractionalization in the legislature. The Political Economy literature

generally predicts a positive relationship between fractionalization and spending,

either within an electoral system (Lizzeri and Persico, 2005), or with respect to

the dichotomy of a majoritarian system with two parties and a proportional repre-

sentation system with many parties (Milesi-Ferretti, Perotti, and Rostagno, 2002;

Persson, Roland, and Tabellini, 2007).

With respect to the second dimension I can add to the Political Economy literature

on incumbency effects. The existence of incumbency effects is a well-established

fact for majoritarian electoral systems in many different contexts.2 The effect of

1The average advantage an incumbent has over a challenger in terms of the vote share.
2 Apart from the studies with an RD approach, such as Lee (2008), there are many more

studies with different methodological approaches that investigate incumbency effects. For exam-
ple, Gelman and King (1990), Alford and Brady (1993), and Levitt and Wolfram (1997) are are
some influential studies on incumbency effects in the US House not using an RD approach.
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incumbency in a proportional representation system, i.e., the effect of winning

representation, has been studied much less by comparison.

For my estimation, I use data from municipal council elections in the German

state of Thuringia. Using the seat allocation method in these elections, I calcu-

late the counterfactual number of votes a party would have needed to safely win

representation in the municipal council. I use the difference in the actual number

of votes to this threshold as a measure of closeness of the election for a party. I

estimate a sharp RD design, where the discontinuous jump in an outcome can be

interpreted as the average causal effect of winning representation.

For public spending, measured by investment spending, I find a large and statis-

tically significant effect of a party winning representation and thus increasing the

overall number of parties in the municipal council by 1. With the additional party,

investment spending per capita per year increases by 142 Euros, representing an

increase of almost 50 percent. For the effect of incumbency on the individual party,

I find that small parties close to the extensive margin have a high probability of

dropping out and not running in the next election. However, I find a statistically

significant difference suggesting that parties that win seats are roughly 35 percent

less likely to drop out in the next election. This phenomenon precludes the exact

estimation of an incumbency effect with respect to the vote share. I only observe

the vote share in the next election for a selected sample and selection varies de-

pending on whether a party won seats or not. In a bounding exercise, I estimate

a lower bound and an upper bound for the incumbency effect. Both bounds are

relatively close to zero and not statistically significant. Therefore, I do not find

evidence of a vote share incumbency effect.

With respect to the estimated significant discontinuities for investment spending

and dropping out, I also attempt to disentangle the estimated average effect and

thus to identify potential channels of the effect. One potential channel is the effect

of winning representation on the composition of the municipal council. If a party

winning representation causes a larger change in the composition of the municipal

council, I expect a larger effect on outcomes as well. To test this prediction, I

interact the jump in treatment with a measure of the impact of the party close

to the threshold on the composition of the municipal council. As measures I use

both the change in the Herfindahl index attributable to that party and the baseline

number of parties that win seats, not counting that party. If the baseline number

of parties is small, one additional party represents a larger change. For investment
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spending, interaction effects are significant and have the expected sign, suggesting

that a greater impact on the composition of the municipal council is associated

with a larger effect on spending. For the probability of dropping out, I do not find

statistically significant interaction effects.

Overall, this paper contributes to the Political Economy literature by shedding

light on the effects of incumbency at the extensive margin. Compared to ma-

joritarian electoral systems, these effects are much less studied for proportional

representation systems. However, knowledge about them can help policy makers

to make informed decisions. For example, with respect to constitutional design,

policy makers can better answer whether an electoral system should include elec-

toral thresholds. Electoral thresholds are put in place to prevent very small parties

from gaining seats and thus to prevent the number of parties that win represen-

tation from becoming too large. My results suggest a considerable effect of an

additional party winning representation on political outcomes.

Related literature

The RD approach has been applied frequently in Political Economy with respect

to many different questions, mostly exploiting the discontinuity in close elections.

Tables listing some of the these works can be found both in Lee and Lemieux

(2010) and Caughey and Sekhon (2011).

The vast majority of works that apply the RD approach to close elections exploit

the 50-50 threshold. In majoritarian two-party systems, with only one seat in

contention within a district, this threshold of absolute majority is in fact the only

relevant discontinuity. In proportional representation systems with many parties,

there is no clear 50-50 threshold. In the context of municipal council elections

in Sweden, Pettersson-Lidbom (2008) and Liang (2013) overcome this obstacle

by lumping political parties into two-camps: left-wing and right-wing. This way,

they obtain a 50-50 threshold for overall control of the municipal council, despite

municipal council elections in Sweden having a proportional representation system

and generally more than two parties.

Instead of having a natural discontinuity at the 50-50 threshold, proportional rep-

resentation systems induce multiple discontinuities that can be exploited. This

feature is due to the fact that a continuous vote share is translated into a dis-

crete number of seats. Also in the context of Swedish municipal council elections,
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Carlsson, Dahl, and Rooth (2015) exploit this fact for a control-function approach,

which relies on the same discontinuities for identification that RD studies use but is

methodically different from the RD approach. Besides applying the RD approach

to the 50-50 threshold, Liang (2013) also uses a control-function approach. To

my knowledge, Folke (2014) was the first to develop an RD methodology specifi-

cally for the proportional representation context. Again, using Swedish municipal

council elections, he investigates how an additional seat for a certain party in a

municipality impacts policy. His approach to identifying the relevant thresholds

is methodically different, due to the different seat allocation rules in Sweden and

Thuringia, but conceptually very similar. One crucial difference of Carlsson, Dahl,

and Rooth (2015), Liang (2013), and Folke (2014) to this paper is that they pre-

dominately consider the intensive margin while I consider the extensive margin.

They focus on the effect of additional seats for a party while I look at the effect

of that party winning either some seats or no seats at all.

In the study that started the surge in the application of the RD approach to

elections, Lee (2008) finds a strong incumbency effect. Being the incumbent comes

with an advantage over the challenger in terms of votes in the next election.3 He

also finds that incumbent candidates are much more likely to run in the next

election than candidates that narrowly lost the last one. Trounstine (2011) finds

similar effects in the context of mayoral elections in California. However, they

encounter this phenomenon in the two-party majoritarian context of the US. If the

Democratic candidate decides not to run again, another candidate will take his or

her place. The effect I find in the proportional representation setup is with respect

to the party dropping out in the next election. Thus the aforementioned studies

do not encounter the same sample selection problems I face in the estimation of

an incumbency effect with respect to the vote share in the next election.

For the proportional representation context, Liang (2013) finds no evidence of a

“ruling effect”, an effect of belonging to the majority camp, on the vote share in the

next election, but he finds an intensive margin incumbency effect. Additional seats

on the municipal council lead to a higher vote share in the next election. Carlsson,

Dahl, and Rooth (2015) also find such an effect and link it to the impact of strength

in the municipal council on attitudes. Apart from these intensive margin effects,

3This advantage has been observed independently in many different contexts. Just for the
US, there are studies which, using an RD design, find an incumbency advantage in House elec-
tions (Lee, 2008), state legislature elections (Uppal, 2010), and mayoral elections (Ferreira and
Gyourko, 2009; Trounstine, 2011).
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using only parties that win 0 seats or 1 seat, Liang (2013) also finds an extensive

margin effect, i.e., the effect of winning representation at all. However, in both

papers the authors do not report a dropping out effect, as observed by Lee (2008)

and Trounstine (2011) in a majoritarian context and in this paper in a proportional

representation context. Consequently, Liang (2013) does not face a selection bias

issue in estimating the extensive margin incumbency effect.

There are several studies, both theoretical and empirical, according to which hav-

ing a proportional representation rather than a majoritarian electoral system is

associated with more public spending. Persson and Tabellini (2004) provide an

overview of these studies. Milesi-Ferretti, Perotti, and Rostagno (2002) develop a

model of electoral competition that predicts more targeted and inefficient rather

than diffused spending in proportional representation systems compared to ma-

joritarian systems. They also provide empirical evidence in support of their model

using a cross-country panel of OECD and Latin American countries. Persson,

Roland, and Tabellini (2007), on the other hand, propose a model that attributes

the difference between the systems to the higher incidence of coalition govern-

ments under proportional representation. Also using a cross-country panel, they

give some empirical evidence in support of their assertion. Finally, instead of

comparing the two electoral modes, Lizzeri and Persico (2005) provide a model

of electoral competition within a proportional representation system that predicts

more targeted spending with a larger number of parties.

Some researchers have used the RD approach to investigate public spending. Fer-

reira and Gyourko (2009) look at mayoral elections in the US and find no effect

of the mayor’s party on the amount of public spending. Albouy (2013) finds

that members of Congress in the US attract more federal spending to their dis-

trict if they belong to the party currently holding the majority. Republicans and

Democrats also differ in the type of spending they attract. The former attract more

spending for defense and transportation, the latter attract more spending for ed-

ucation and urban development. Pettersson-Lidbom (2008) finds a different effect

of left-wing and right-wing governments on spending. Left-wing governments are

found to spend more than right-wing governments. Again with regard to munic-

ipal councils in Sweden, Pettersson-Lidbom (2012) does not look at elections but

exploits the thresholds that determine the size of the municipal council by pop-

ulation size. He finds that larger municipal councils lead to smaller government
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and explains this finding with the control function performed by the municipal

council.

In any application of the RD approach, it is prudent to investigate whether the

identifying assumption holds, i.e., if treatment is essentially random for observa-

tions close to the threshold. A large difference in pre-treatment observables or

in the mass of observations on either side of the threshold might indicate discon-

tinuous sorting, which would imply that the identifying assumption is violated.

Caughey and Sekhon (2011) raised this concern in the context of congressional

elections in the United States. They point out that even when investigating a

narrow window around the 50-50 threshold close races might not be random. For

example, they find that incumbents are more likely to win close elections than

challengers. Snyder, Folke, and Hirano (2015) address this finding. They point

out that this phenomenon is not necessarily indicative of manipulation. Instead, it

can easily arise as a result of electoral competition and the empirical distribution

of voting results. Eggers, Fowler, Hainmueller, Hall, and Snyder (2015) test the

validity of the RD setup in many different election contexts. In general they fail

to find problems due to sorting and argue that the concern raised by Caughey

and Sekhon (2011) may be a fluke. Both Caughey and Sekhon (2011) and Eg-

gers, Fowler, Hainmueller, Hall, and Snyder (2015) include recommendations for

tests of the identifying assumption which guide my robustness tests. Among those

tests, the test for a discontinuity in the histogram of the forcing variable was first

proposed by McCrary (2008).

In applying the RD methodology, I am guided largely by Imbens and Lemieux

(2008) and Lee and Lemieux (2010). For bandwidth choice in local linear regression

I rely on Imbens and Kalyanaraman (2012).

The RD approach

In this section, I briefly describe the regression discontinuity (RD) approach in

general and how I apply it in this context. An RD design is a quasi-experimental

research method to identify the causal effect of a treatment. RD approaches can be

applied in settings in which treatment status is not assigned randomly - as it would

be in a controlled experiment - but assigned according to some characteristic, called

the forcing variable, in relation to a threshold.
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In this case, I am interested in the effect of party i making it into the municipal

council. The treatment Di is defined as

Di = 1 if party i holds at least one seat,

Di = 0 if party i holds no seat,

and the treatment effect on outcome Yi is Yi(Di = 1)−Yi(Di = 0). Unfortunately,

it is generally impossible to observe Yi(Di = 1) and Yi(Di = 0) for i at the same

time. Also, unlike in an experiment, one cannot simply divide the sample into

subgroups by treatment and compare outcomes to identify the treatment effect.

Parties with Di = 1 gain a larger number of votes than parties with Di = 0 due in

part to systematical differences between both groups. Consequently, differences in

outcomes cannot only be attributed to the effect of the difference in the treatment

Di.

An elegant way to address this problem is the RD approach. The underlying

idea is to exploit randomness in the realization of the forcing variable, so that

treatment status can be considered random for observations that lie close to the

threshold. Applied to this setting, whether Di = 1 or Di = 0 is close to random

if the number of votes for party i is in the neighborhood of the number of votes i

would need to win at least one seat. Consequently, parties that narrowly win seats

are comparable to parties that narrowly do not and differences between these two

groups can be attributed to the difference in Di. By comparing two groups, it

is possible to obtain a measure of the average treatment effect for these parties,

E[Yi(Di = 1)− Yi(Di = 0)|i close to threshold].

The crucial methodological step in applying the RD approach in a proportional

representation setting is to construct a one-dimensional forcing variable that quan-

tifies the closeness of an election outcome. Folke (2014) was the first to develop an

approach for the Sainte-Laguë seat allocation method. I use a conceptually slightly

different approach for the seat allocation method described in Section III.i, which

is based on the largest remainder method.

First, I calculate the counterfactual variable v̂i, the number of votes party i would

have needed to safely (without coin toss) win at least one seat, given that the

number of votes for all other parties had stayed the same. The difference between

party i’s actual number of votes vi and v̂i then measures how narrowly i won seats

or missed winning seats in terms of the number of votes. To construct a measure
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comparable across different municipalities of different sizes, I divide the difference

by the sum of votes for all other parties plus v̂i, the counterfactual number of votes

of party i. The resulting forcing variable xi is a normalization of the vote share

of party i centered at the threshold and can therefore be interpreted as measuring

closeness in percent,

xi =
vi − v̂i∑
j 6=i vj + v̂i

· 100. (4.1)

Given the construction of xi, the relevant threshold determining treatment status

is at 0,

Di =

1 if xi ≥ 0

0 if xi < 0.
(4.2)

The crucial difference between my forcing variable and the forcing variable pro-

posed by Folke (2014) is that I only look at a vote change for party i, keeping

the number of votes for all other parties equal, while he considers a vote change

in the entire vector of votes. For a detailed explanation why my much simpler

approach is appropriate for the largest remainder method but not for the Sainte-

Laguë method, see the Online Appendix of Folke (2014).

Specification

To estimate an RD design, I need to regress the outcome of interest on the forcing

variable allowing for a discontinuous jump at the threshold. This jump represents

the treatment effect. When using a parametric specification, RD estimates can be

very sensitive to a misspecification of the functional form. One possible remedy of

this problem is to use a semi-parametric estimation technique, such as local linear

regression. I follow this approach for the main analyses and report alternative

polynomial specifications as a robustness check.

In local linear regression at a point c, observations are weighted by closeness to

the point with a Kernel function. As recommended by Imbens and Kalyanaraman

(2012), I use the triangular Kernel,

K(xi, c, h) = 1−
∣∣∣∣xi − ch

∣∣∣∣ . (4.3)

In the RD approach with local linear regression, how many observations around

the threshold are included in the estimation and how they are weighted is governed



In or Out. The effect of small parties winning representation. 101

by the choice of bandwidth h. The trade-off in selecting the bandwidth is between

identification and variance. Including observations further away from the threshold

reduces the variance of the estimator but makes the identification assumption,

that treatment status can be considered random, less plausible. I calculate the

bandwidth according to a method proposed by Imbens and Kalyanaraman (2012),

which yields a bandwidth that is asymptotically optimal under squared error loss.

Essentially, local linear regression can be described as a local and weighted ver-

sion of a linear least squares regression. With Yi as the outcome of interest, the

regression is estimated optimizing

min
α,τ,β,γ

∑
{i:−h≤xi≤h}

(Yi − α− τDi − βxi − γxiDi)
2K(xi, 0, h). (4.4)

The effect of interest, the treatment effect, is captured by the discontinuity τ which

represents the shift of the intercept at the threshold. The intercept α, the slope

parameter β, and the change of the slope γ for treated observations control for the

relationship between forcing variable and outcome and are not interpreted.

Given the identification strategy of the RD approach it is not necessary to include

control variables in the specification. While an outcome of interest may be influ-

enced by many different variables, this effect biases τ̂ , the estimate of τ , only if

it itself is discontinuous at the threshold. In this case, however, the identifying

assumption, that observations slightly below and slightly above the threshold are

similar, is likely to be violated. Nevertheless, it is possible to include controls by

estimating

min
α,τ,β,γ

∑
{i:−h≤xi≤h}

(Yi − α− τDi − βxi − γxiDi − δ′Zi)2K(xi, 0, h), (4.5)

where Zi represents a vector of controls. Imbens and Kalyanaraman (2012) also

provide a method for bandwidth calculation adjusted for control variables, which

I use.

There are two reasons why it may be useful to include controls. First, including

controls can reduce the variance of the estimator. Second, including controls can

also work as a basic check of the identifying assumption. If the inclusion of controls

has a large impact on the result of estimation, it casts doubt on the identifying

assumption.
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Municipal politics and data

The lowest level of geographical administrative division in Germany is the level of

the municipality (Gemeinde). I use municipal council elections in the East German

state of Thuringia in 1994, 1999, and 2004.4 In 1994, municipal elections were held

in 1247 municipalities in Thuringia. These municipalities are very heterogeneous

in terms of size, ranging from 47 inhabitants to 213,472 inhabitants.5

Municipalities in Germany perform a wide variety of functions. Among other

functions these typically include the maintaining of schools and kindergartens,

waste disposal, the provision of local infrastructure, emergency management, and

the provision of local facilities for cultural and sporting events. To finance these

functions, municipalities receive funding from higher level administrative units,

e.g., the state, charge fees for some of their services, e.g., waste disposal, and levy

certain taxes. Most importantly, in Germany the property tax (Grundsteuer) and

the business tax (Gewerbesteuer) are levied at the municipal level.

The voting method

Municipal councils in Thuringia are elected using a party list proportional repre-

sentation system.6 Every voter gets three votes which he or she can freely allocate

among the party lists running in the election. A seat allocation method is then used

to translate continuous vote shares into discrete numbers of seats. The method

applied in the elections in the data is the largest remainder method, also called

Hare-Niemeyer, or Hamilton method. In this method, in a first step, seats are

allocated according to the integer part of the vote share times the total number of

available seats. In the second step, the remaining seats are allocated in the order

of the size of the remainders.

Additionally, two adjustments are made to this basic largest remainder method

in the elections in the data. A majority clause is added to ensure that any party

4Election data for the elections in 2009 and 2014 is also available. However, from 2009 on
the election mode did not include a 5 percent minimum threshold. As this change affects the
threshold of necessary votes to win seats and the composition of parties at the threshold, I do
not include the 2009 election round. For 2014, outcome data is not yet available.

5Larger cities such as the capital Erfurt with 213,472 inhabitants are classified as Kreisfreie
Städte. As such, they perform the functions of a municipality and the next highest unit of
administration, the district (Kreis). I include them in my dataset.

6In some municipalities a majoritarian voting system was used instead. I address this issue
in Section III.iv.
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Figure 4.1: A flowchart describing the largest remainder seat allocation
method with 5% threshold and majority clause.

Exclude all parties
below 5% threshold

and their votes
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of #seats · vote-share
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Allocate remain-
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Done

Allocate integer part
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NoYes

No
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that wins a majority of votes also wins a majority of seats. Also, a 5 percent

minimum threshold prevents any party with a vote share below 5 percent from

winning any seats. For larger municipalities, this threshold implies that a party

crossing it might go from no seats to several seats instead of going from no seats to

one seat. Consequently, I do not refer to the effect at the extensive margin as the

effect of winning the first seat. The resulting seat allocation method is depicted

in a flowchart in Figure 4.1.

Politics on the municipal level

Politics on the federal or on the state level in Germany are dominated by major

political parties, such as the center-right Christian Democrats (CDU), the center-

left Social Democrats (SPD), the business-friendly Liberal Party (FDP), or the

Greens. On the municipal level this statement does not hold true. While the

traditional political parties also play a role, in many municipalities in Thuringia

politics are dominated by free voter groups and local clubs.

Free voter groups are associations of local voters that enter municipal elections as

a party list without formally having the legal status of a political party. They often

represent specific local interests that are unrelated to the ideological differences

between the major political parties. Chief among those voter groups are those
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formed by local clubs, such as local sports clubs, volunteer firefighters, community

gardening clubs, or clubs for the preservation of local heritage. In addition, there

are voter groups for the local church, or the PTA of the local school or local

kindergarten.

Clubs such as the local football club or the volunteer firefighter club are an impor-

tant part of the community, especially in more rural areas. Also, they are often

directly affected by municipal politics. For example, the municipality of Marksuhl

planned to spend 18,000 Euros on refurbishing local football pitchtes, 3,000 Euros

on equipment for local volunteer firefighters, and 2,000 Euros on equipment for the

kindergarten.7 Therefore, local clubs often have a direct interest in participating

in municipal politics.

The composition of parties running in a municipality is not necessarily stable over

time. Some parties drop out, some parties merge and run as a joint party list, or

parties that have previously formed a joint list split up again. The phenomenon

can be observed for free voter groups and major political parties alike. In some

cases major parties merge with free voter groups, e.g., one observation in the data

is the party list “Social Democrats and Volunteer Firefighters” winning one seat

on the municipal council of Oppurg in 2004.

Another major difference between municipal and state or federal level politics in

Germany is that the municipal council does not appoint the government of the

municipality. The mayor of a municipality is directly elected and does not need

the continuous support of a majority of the municipal council. Therefore, par-

ties in a municipal council do not formally form coalitions but cooperate on an

issue-by-issue basis to reach a majority. Nevertheless, parties with similar politi-

cal preferences often cooperate with each other, thus forming a type of informal

coalition.

Main outcomes

I am interested in the effect of the treatment on municipal politics, i.e., what

is the effect of a party narrowly winning or not winning representation in the

municipal council. In particular, I want to answer two questions. First, what is

7According to the municipal gazette of Marksuhl (“Marksuhler Nachrichten”, 1/2006,
“Gemeinsames Amtsblatt der Gemeinden Marksuhl, Wolfsburg-Unkeroda und Ettenhausen an
der Suhl”).
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the treatment effect through the resulting change in the number of parties in the

municipal council on policy in the municipality? Second, what is the effect of

holding or not holding seats on the party in question?

For the first question, I investigate realized investment spending between elec-

tion rounds. There are several reasons for choosing spending, and in particular

investment spending, as a policy measure. There is much more variation in the

spending level than in other policy dimensions, such as, for example, tax rates,

which are quite stable over time. Furthermore, as previously laid out, there is an

existing theoretical Political Economy literature on the relationship between the

number of represented parties and spending from which I can derive predictions. I

have picked investment spending rather than overall spending, because it is more

likely to reflect the policy of the current municipal council. For example, overall

spending contains wage payments, debt repayment, and accounting devices such

as internal loan repayment, which are likely to be directly caused by past poli-

cies rather than policies of the current municipal council. In addition, the type

of investment spending mentioned in Section III.ii is a type of targetable policy

that is likely to be affected by the size and composition of the municipal council.

An additional party representing specific local interests that makes it onto the

municipal council could lead to additional investment spending in line with these

interests.

For the second question, I look at a dummy variable of whether the party in

question drops out and does not run in the next election (t + 1). Parties that

merged with another party are not counted as having dropped out. This measure

is similar to the measures of Lee (2008) and Trounstine (2011) in the two-party

majoritarian context, who instead look at candidates who do not run again for

their party in the next election. Additionally, it is an indicator of the effect of

winning representation on the success of the party in municipal politics.

For parties that do run in the next election, I can ask whether and how winning

representation affects the success of the party in terms of votes. Unfortunately,

the effect of the treatment on the propensity to drop out in the next election

precludes the exact estimation of such an incumbency effect. The fact that parties

with seats on the municipal council have a different propensity to drop out in the

next election than parties without seats is likely to lead to a selected sample - as

the decision to drop out is probably also related to the potential to attract votes.

A party that decides to run again despite having narrowly missed winning seats
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in the last election is on average likely to be more optimistic about its prospects

compared to a party that decides to run and that has narrowly won seats.

I estimate an upper bound on the incumbency effect by assigning the value 0 for the

vote share in the next election to parties that drop out. Despite having dropped

out, those parties most likely would have received some votes. Given the higher

rate of dropping out to the left to the threshold, this procedure produces an upward

biased estimate of the discontinuity. Similarly, I estimate a lower bound on the

incumbency effect by substituting the missing vote share in the next election with

the current vote share for parties that drop out. Parties that drop out despite

having won representation might do so because they expect to do worse in the

next election. Parties that drop out after not winning representation, on the other

hand, might do so just because they did not win. As a result, the estimate of the

discontinuity would be biased downwards.

Constructing the dataset

All data I use is publically available at the statistical office of the state of Thuringia

(Thüringer Landesamt fÃ1
4
r Statistik)8. I use municipal election data for the

1994, 1999, and 2004 election rounds, census data from 1994 to 2008, and data

on municipality finances from 1995 to 2008. For municipality spending outcomes,

I use the average per capita spending in the years between election periods. For

example, for an observation from the 1994 election round I investigate the average

of per capita investment spending in 1995, 1996, 1997, and 1998.

In some municipalities, only one party list or only individual candidates registered

for the election. In these cases, a majoritarian voting system was used instead of

proportional representation. I exclude these municipalities.

Moreover, throughout the nineties, municipalities in Thuringia were frequently

reorganized. Most of them merged to form larger municipalities. I exclude all

observations in which the relevant municipality was reorganized prior to the next

municipal election round.

Given the idea underlying the identifying assumption, the level of observation is

the party. In other words, one observation corresponds to one of potentially many

8www.statistik.thueringen.de
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party lists close to the threshold in a given municipality. However, one of my two

main outcomes, investment spending, is aggregated at the level of the municipality.

To allow me to estimate municipality effects, I construct the dataset such that one

observation corresponds to one municipality in an election round. To this end I

only pick the party closest to the threshold in any municipality. In most cases,

this party increments the total number of parties with seats on the municipal

council by 1 by narrowly winning or not winning seats. In other words, if the

party closest to the threshold narrowly won seats, it took these marginal seats

from larger parties that still remained on the municipal council. In a few cases, 22

in total, the party closest to the threshold simply replaced or would have replaced

another party compared to the counterfactual and thus did not affect the overall

number of parties with seats. By excluding these cases, I am able to estimate a

sharp RD design in which I can interpret treatment status as having an additional

party on the municipal council. Put differently,

Di = 1 b+ 1 parties with seats,

Di = 0 b parties with seats,

where b represents the baseline number of parties winning seats, without counting

the party closest to the threshold.

For the final dataset, I then take all observations with a value of the forcing variable

that is “sufficiently close” to the threshold. Naturally, there is a lower bound on

the distance to the threshold. If 5 percent of the vote would have been enough to

win representation, then xi ≈ −5. As most parties with xi < 0 are much closer

to winning seats, I define “sufficiently close” as values xi close enough to 0 so

that the support of xi exhibits no gaps. To this end, I pick the top 90 percent of

observations with xi < 0. For positive values of xi, I then use the same cutoff in

absolute terms.

Finally, there are some cases in which I cannot reproduce the reported seat al-

location from the election result. This problem might occur due to data entry

mistakes, the seat allocation might have been calculated wrongly, parties that

won seats might have refused to fill them, or the election result might have re-

quired a coin toss. As this problem affects only a small number of observations (7

in total), I exclude them.
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Summary statistics of the final dataset can be found in Table 4.8.

Trimming with respect to investment per capita

One of my two main outcomes of interest is investment spending per capita in

the municipality. The distribution of investment contains some large outliers.

While the average is 349 Euros, the municipality of Petersberg spent on average

7092 Euro per capita in 1995-1998. These large outliers pose a threat to my

estimation. To address this problem, I trim the data, trimming off the upper

tail of the distribution. For my main set of results, I trim the data at the 95th

percentile. I discuss the sensitivity of my results to this procedure in Section V.i.

Results

At the beginning of this section, I give my main set of empirical results. The

following subsections contain an investigation into the possible channels of the

treatment effect, in relation to the existing literature.

Table 4.1 reports the results for the number of parties that win seats in the munic-

ipal council. My results for my main outcomes of interest, investment per capita,

dropping out in the next election and the bounds on the incumbency effect, are

presented in Tables 4.2, 4.3, 4.4, and 4.5. Graphically, the discontinuity for these

outcome variables are depicted in Figures 4.2 and 4.3 for the baseline estimation.

In all three tables, the first column contains the baseline. In columns 2-4 either

population size, or an election round dummy, or both are added as control vari-

ables. In columns 5 and 6 the baseline specification is estimated with half and

twice the optimal bandwidth for comparison.

The results of Table 4.1 provide a first sanity check of the estimation strategy.

As I am interested in the effect of the number of parties in the municipal council

on investment spending, the dataset is constructed so that in the counterfactual

case where party i landed just on the other side of the threshold, the number of

parties in the municipal council would change by exactly 1 party, party i. Put

differently, for Yi being the number of parties winning seats, it is possible to know

both Yi(Di = 1) and Yi(Di = 0) at the same time due to the seat allocation rule.

For the treatment effect we have Yi(Di = 1)− Yi(Di = 0) = 1 by construction.
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Figure 4.2: Local linear regression conducted separately on both sides of the
threshold. Outcome: The number of parties winning seats in the election and
(trimmed) investment spending. The box in the bottom right corner of each

panel contains the estimate of the discontinuity (treatment effect).
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Consequently, if comparing observations to the left and to the right of the threshold

provides me with a good estimate of the average within-observation treatment

effect, the estimate of the treatment effect for the number of parties winning seats

should be close to 1. The estimate does not mechanically have to equal 1, as there

might be slight differences in the average of the baseline number of parties winning

seats, i.e., the number of parties without party i, for the compared subgroups on

both sides of the threshold. However, an estimate considerably different from 1

would point to a discontinuity in the baseline number of parties winning seats,

which in itself would cast doubt on the validity of the identification strategy.

The main estimate for the effect is 1.10. With the inclusion of controls or with a

variation of the bandwidth, the estimates range from 0.97 to 1.15. These estimates

suggest that the empirical strategy passes this first sanity check.

The panel for the number of parties winning seats in Figure 4.2 shows that on

both sides of the threshold the number of parties increases with proximity to

the threshold. This observation is not surprising, as the party closest to the

threshold out of many parties will generally be closer than the closest party out

of few. Nevertheless, this fact does not threaten the identification strategy, as the

successful sanity check demonstrates.
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Figure 4.3: Local linear regression conducted separately on both sides of the
threshold. Outcome: a dummy variable indicating whether the party dropped
out in t+ 1 and the vote share in the next election (to deal with selection bias,
I estimate bounds on the treatment effect by proxying for parties that dropped
out in t + 1 in a different way - for details see Section III.iii). The box in the
bottom right corner of each panel contains the estimate of the discontinuity

(treatment effect).
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I find a considerable effect with regard to investment spending. One party gain-

ing enough votes to be represented in the municipal council, so that overall one

additional party is represented, leads to a statistically significant average increase

in per capita investment spending of about 142 Euros in the years after the elec-

tion. This estimate is an average effect. Given discontinuity for the number of

parties winning seats displayed in Figure 4.2, the average municipality close to

the threshold changes from 4 to 5 parties in the municipal council when gaining

an additional party. However, the effect of a third additional party is potentially

different from the effect of a sixth additional party. In Section IV.i I investigate

the composition of the average effect.

Compared to the average level of per capita investment spending in the trimmed

dataset of roughly 295 Euros, this treatment effect represents a sizable increase

of almost 50 percent. The estimated effect does not change significantly with the

inclusion of controls. The effect does however react to a variation of the bandwidth.

It ranges from 201 Euros with half the optimal bandwidth to 102 Euros with double

the optimal bandwidth, all the while being significantly different from zero. This

variation suggests that, in the data, the difference between parties that won seats

and those that did not is more pronounced for parties closer to the threshold.

The graphical representation of the discontinuity in Figure 4.2 also reveals that

this result seems to be driven by the observations within a 1-percentage point win-

dow around the threshold. Within this window, investment spending is lower for

municipalities with parties narrowly missing representation the closer the party

missed. The mirroring statement is true for municipalities with parties that nar-

rowly won. Further away from the threshold, there does not seem to be a shift in

the level of investment spending depending on treatment status. Put differently,

there does not seem to be a clear difference between municipalities that are on

different sides of the threshold but sufficiently far away from it.

Table 4.3 contains the estimation results with regard to the question whether

treatment status affects the propensity to run in the next election. The dependent

variable is a dummy that equals 1 if the party drops out in the next election.

I find a sizable and statistically significant effect of −0.35. Winning seats on

the municipal council reduces the propensity to drop out in the next election by

35 percent. Again, this effect remains virtually unchanged by the inclusion of

population and election round dummies as controls. And again, a variation of

the bandwidth does have an impact on the size, though not on the statistical
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significance of the effect, with estimates ranging from −0.49 for half the optimal

bandwidth to −0.33 for double the optimal bandwidth.

With regard to dropping out in the next election, the corresponding panel in Figure

4.3 shows a weak negative relationship between xi and the propensity to drop out.

As a larger value of xi corresponds to a larger vote share, this relationship is not

surprising. A party gaining more votes is more likely to run in the next election.

At the threshold, there is a clear shift in the level of parties dropping out. This

shift is relatively large, compared to the flat slope of the local linear fit. The

comparison of shift and slope suggests that, for a party close to the threshold, in

determining whether it should run again there is more weight on whether it was

able to win representation compared to the relative success in the election in terms

of votes .

For treatment effects on the vote share in the next election, Table 4.4 contains

the estimate for the lower bound and Table 4.5 contains the estimate of the upper

bound. The baseline point estimate of the lower bound, −1.65, is not statistically

significant. Estimates remain not significant with the inclusion of controls or with

a variation of the bandwidth. All point estimates remain negative, except the

estimate with half the optimal bandwidth. For the upper bound estimate, results

are similar. The baseline estimate of 0.56 is not statistically significant, and nor

are the estimates with controls and different bandwidths. All point estimates are

positive.

The graphs for the lower bound and the upper bound estimation of the vote share

incumbency effect in Figure 4.3 show a clear positive relationship of the forcing

variable and the vote share in the next election. This result is not surprising, as

the forcing variable represents a normalized version of the vote share in the current

election, which should be a good predictor of the vote share next election. Both for

the lower bound and upper bound estimation, the path of the local linear estimate

seems comparatively smooth and continuous at the threshold, compared to the

overall variation away from the threshold. Hence, the graphical representation

does not suggest the existence of an incumbency advantage.
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Table 4.1: Estimating the treatment effect using local linear regression - Out-
come: Number of parties winning seats.

(1) (2) (3) (4) (5) (6)

Treatment effect 1.10 ** 1.02 * 1.15 ** 1.08 * 0.99 0.97 **
(0.55) (0.56) (0.55) (0.56) (0.81) (0.35)

Bandwidth 0.64 0.64 0.64 0.63 0.32 1.28

Within bandwidth
Obs 143 142 142 142 68 269
Clusters 123 122 122 122 63 210

Overall
Obs 571 571 571 571 571 571
Clusters 371 371 371 371 371 371

Controls
Population No Yes No Yes No No
Election round No No Yes Yes No No

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. The treatment effect

corresponds to the τ̂ that solves (4.4). The estimates α̂, β̂, γ̂, and δ̂ are not reported.
Bandwidth in columns 1-4 is computed according to Imbens and Kalyanaraman (2011). The

bandwidth in columns 5 and 6 is half and twice the bandwidth of column 1, respectively.
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Table 4.2: Estimating the treatment effect using local linear regression - Out-
come: Investment per capita in Euros (trimmed).

(1) (2) (3) (4) (5) (6)

Treatment effect 142.06 ** 141.53 ** 140.80 ** 142.30 ** 201.05 ** 102.10 **
(57.80) (58.76) (52.97) (53.66) (76.00) (40.09)

Bandwidth 0.74 0.74 0.67 0.67 0.37 1.48

Within bandwidth
Obs 154 154 145 145 77 292
Clusters 129 129 122 122 71 218

Overall
Obs 542 542 542 542 542 542
Clusters 358 358 358 358 358 358

Controls
Population No Yes No Yes No No
Election round No No Yes Yes No No

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. The treatment effect

corresponds to the τ̂ that solves (4.4). The estimates α̂, β̂, γ̂, and δ̂ are not reported.
Bandwidth in columns 1-4 is computed according to Imbens and Kalyanaraman (2011). The

bandwidth in columns 5 and 6 is half and twice the bandwidth of column 1, respectively.
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Table 4.3: Estimating the treatment effect using local linear regression - Out-
come: Party not running t+ 1 (dummy variable).

(1) (2) (3) (4) (5) (6)

Treatment effect -0.35 ** -0.33 ** -0.34 ** -0.33 ** -0.49 ** -0.31 **
(0.11) (0.11) (0.11) (0.11) (0.16) (0.08)

Bandwidth 1.52 1.52 1.52 1.49 0.76 3.04

Within bandwidth
Obs 303 303 303 295 158 494
Clusters 226 226 226 222 132 327

Overall
Obs 549 549 549 549 549 549
Clusters 353 353 353 353 353 353

Controls
Population No Yes No Yes No No
Election round No No Yes Yes No No

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. The treatment effect

corresponds to the τ̂ that solves (4.4). The estimates α̂, β̂, γ̂, and δ̂ are not reported.
Bandwidth in columns 1-4 is computed according to Imbens and Kalyanaraman (2011). The

bandwidth in columns 5 and 6 is half and twice the bandwidth of column 1, respectively.
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Table 4.4: Estimating a lower bound on the treatment effect using local linear
regression - Outcome: Vote share t+ 1 (lower bound: parties that dropped out

in t+ 1 are assigned value 0).

(1) (2) (3) (4) (5) (6)

Treatment effect -1.65 -1.48 -1.66 -1.51 0.96 -1.62
(2.08) (2.05) (1.99) (1.97) (2.43) (1.44)

Bandwidth 0.76 0.76 0.76 0.75 0.38 1.52

Within bandwidth
Obs 158 158 158 158 79 301
Clusters 132 132 132 132 73 225

Overall
Obs 549 549 549 549 549 549
Clusters 353 353 353 353 353 353

Controls
Population No Yes No Yes No No
Election round No No Yes Yes No No

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. The treatment effect

corresponds to the τ̂ that solves (4.4). The estimates α̂, β̂, γ̂, and δ̂ are not reported.
Bandwidth in columns 1-4 is computed according to Imbens and Kalyanaraman (2011). The

bandwidth in columns 5 and 6 is half and twice the bandwidth of column 1, respectively.
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Table 4.5: Estimating an upper bound on the treatment effect using local
linear regression - Outcome: Vote share t+1 (upper bound: parties that dropped

out in t+ 1 are assigned vote share t for vote share t+ 1).

(1) (2) (3) (4) (5) (6)

Treatment effect 0.56 0.63 0.49 0.55 2.97 0.11
(2.54) (2.52) (2.44) (2.44) (3.12) (1.73)

Bandwidth 0.77 0.77 0.76 0.76 0.38 1.53

Within bandwidth
Obs 158 158 158 158 79 303
Clusters 132 132 132 132 73 226

Overall
Obs 549 549 549 549 549 549
Clusters 353 353 353 353 353 353

Controls
Population No Yes No Yes No No
Election round No No Yes Yes No No

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. The treatment effect

corresponds to the τ̂ that solves (4.4). The estimates α̂, β̂, γ̂, and δ̂ are not reported.
Bandwidth in columns 1-4 is computed according to Imbens and Kalyanaraman (2011). The

bandwidth in columns 5 and 6 is half and twice the bandwidth of column 1, respectively.
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Determinants of the average treatment effect

As previously discussed, my main set of estimation results for the treatment effects

represent average effects. However, the effect of a party narrowly making it onto

the municipal council might differ depending on whether the change in treatment

status changed the number of parties in the municipal council from 2 to 3 parties

or from 6 to 7 parties. Similarly, there might be a different effect depending

on whether an additional party considerably changed majorities and therefore

potential coalitions in the municipal council. In this section, I try to disentangle

the estimated average treatment effects and look into potential channels behind

my results.

Technically, I am interested in how the treatment effect varies conditional on some

covariate, such as, for example, the number of parties. To investigate this question,

I estimate a specification in which zi, the covariate in question, is also interacted

with the switch in treatment status at the threshold,

min
α,τ,β,β2,γ,γ2

∑
{i:−h≤xi≤h}

(Yi−α−τDi−βxi−γxiDi−β2zi−γ2ziDi)
2K(xi, 0, h). (4.6)

The crucial difference to specification (4.5) is the interaction term ziDi, which

allows me to estimate the treatment effect conditional on zi:

Yi(Di = 1|zi)− Yi(Di = 1|zi) = τ + γ2zi.

This specification means that the estimated treatment effect varies linearly in zi

by construction.

To obtain a heterogeneous treatment effect by the number of parties winning seats

I use the baseline number of parties with seats, which is the number of parties win-

ning seats without counting the party in question. If party i enters the municipal

council as the fifth party winning seats, then the baseline number of parties is 4

and the treatment effect for party i is τ + γ2 · 4. I would expect treatment effects

to be stronger with a lower baseline number of parties, as treatment comes with

larger change to the number of parties winning seats in relative terms, giving more

bargaining power to a party narrowly entering the municipal council. For invest-

ment per capita, the coefficient of the interaction effect is −37, which therefore

has the expected sign, and is statistically significant. According to the coefficient,

one additional baseline party would imply a decrease of the treatment effect of 37
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Euros, which however remains positive in all cases but the extreme case with 9

baseline parties. In contrast, with regard to how treatment affects the propensity

to drop out in the next election, I cannot reject the null hypothesis that the effect

does not vary by the baseline number of parties. Apart from not being statistically

significant, the estimate for dropping out in the next election is 0. The treatment

effects by baseline number of parties are depicted in the left panels in Figure 4.3.

The number of baseline parties can be considered a measure of how an additional

party affects or would affect the political setup on the municipal council. Next,

I use the Herfindahl index as an alternative measure of the political setup. The

Herfindahl index is a measure of concentration. In the context of Economics it

is more commonly used in the field of Industrial Organization to measure market

concentration. In Political Science and Political Economy it is used to measure the

concentration or fractionalization of a legislature. To capture the concentration in

a municipal council I calculate

(Herfindahl index)M :=
∑
i∈M

(
si
sM

)2

∈ (0, 1], (4.7)

where si represents the seats obtained by party i in municipality M and sM rep-

resents the total number of seats in the municipal council.

By measuring fractionalization, the Herfindahl index captures the extent of dif-

ferent interests represented in the municipal council. A lower Herfindahl index

indicates a more fractionalized municipal council, where the maximal Herfindahl

index of 1 indicates that the council is not fractionalized and all seats are held

by a single party. Achieving a majority in a vote might be more difficult in a

more fractionalized municipal council and in which compromise might be more

important. However, the Herfindahl index does not account for variations in the

political compatibility between parties. While an ideal measure of the political

setup in the municipal council would account for political compatibility, I do not

think a sensible measure can be constructed for the municipal election context

with the available data.

Calculating the counterfactual allocation of seats, I can measure how much an

individual party list affected the setup on the municipal council. Much in the

same way as for the number of parties winning seats, I can observe Yi(Di =

1) − Yi(Di = 0) for an individual party i for the Herfindahl index. With Yi
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Figure 4.3: Differential treatment effects obtained by interacting the treat-
ment dummy variable with the baseline number of parties winning seats (with-
out counting the party in question) or with ∆ Herfindahl index, the change in
the Herfindahl index attributable to the party in question. Dots/the solid line
represent/s the point estimate of the treatment effect. Bars/the dashed line

represent/s the 95 percent confidence interval.
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Table 4.6: Estimating differential treatment effects using local linear regres-
sion - Outcome: Investment per capita in Euros (trimmed). The baseline num-
ber of parties winning seats (without the party in question) and ∆ Herfindahl
index (the change in the Herfindahl index attributable to the party in question)

are included with and without an interaction effect.

(1) (2) (3) (4)

Treatment effect 142.39 ** 302.34 ** 141.60 ** 81.88
(58.22) (101.72) (58.18) (60.19)

Baseline n. of parties w. s. 3.91 23.85 *
(8.79) (12.32)

Baseline n. of parties w. s. ×Di -37.00 **
(17.88)

∆ Herf. ind. 82.07 1007.55 **
(375.55) (287.30)

∆ Herf. ind. ×Di -1683.25 **
(593.89)

Bandwidth 0.74 0.74 0.74 0.74

Within bandwidth
Obs 154 154 154 154
Clusters 129 129 129 129

Overall
Obs 542 542 542 542
Clusters 358 358 358 358

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. Estimates in columns 1 and 3

are the solutions to (4.5). Estimates in columns 2 and 4 are the solutions to (4.6). The

treatment effect corresponds to τ̂ . The estimates α̂, β̂, and γ̂ are not reported. Bandwidth is
computed according to Imbens and Kalyanaraman (2011).

standing for the Herfindahl index, the variable “∆ Herfindahl index” measures the

individual treatment effect Yi(Di = 1)− Yi(Di = 0).

With respect to the interaction effect of treatment and ∆ Herfindahl index I would

expect a larger effect in absolute terms for larger absolute values of ∆ Herfindahl

index. Put differently, I would expect parties which, by narrowly making it onto

the municipal council, cause a larger change in its political setup to also cause

a larger change in investment spending in that municipality. Similarly, I would
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Table 4.7: Estimating differential treatment effects using local linear regres-
sion - Outcome: Not running in t+ 1 (dummy variable). The baseline number
of parties winning seats (without the party in question) and ∆ Herfindahl index
(the change in the Herfindahl index attributable to the party in question) are

included with and without an interaction effect.

(1) (2) (3) (4)

Treatment effect -0.35 ** -0.34 * -0.35 ** -0.28 **
(0.11) (0.21) (0.11) (0.13)

Baseline n. of parties w. s. -0.01 -0.01
(0.03) (0.03)

Baseline n. of parties w. s. ×Di 0.00
(0.04)

∆ Herf. ind. -0.42 -1.27
(0.75) (1.02)

∆ Herf. ind. ×Di 1.52
(1.47)

Bandwidth 1.52 1.52 1.52 1.52

Within bandwidth
Obs 303 303 303 303
Clusters 226 226 226 226

Overall
Obs 549 549 549 549
Clusters 353 353 353 353

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. Estimates in columns 1 and 3

are the solutions to (4.5). Estimates in columns 2 and 4 are the solutions to (4.6). The

treatment effect corresponds to τ̂ . The estimates α̂, β̂, and γ̂ are not reported. Bandwidth is
computed according to Imbens and Kalyanaraman (2011).

expect the probability that those parties drop out in the next election to be more

affected by treatment.

For the interaction effect of treatment and ∆ Herfindahl index with respect to

investment per capita I find a statistically significant coefficient with the expected

sign. For observations with the average value of ∆ Herfindahl index −0.06, i.e., for

observations which by making it onto the council lower the Herfindahl index by

0.06, the treatment effect is roughly 183 Euros. The coefficient of the interaction

effect with respect to dropping out next election is not statistically significant. It
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does have the expected sign, however, which would imply that the treatment effect

for the propensity to drop out is larger in absolute terms if treatment status leads

to a larger change in the Herfindahl index. The treatment effects by ∆ Herfindahl

index are depicted in the right panels of Figure 4.3.

Robustness checks

As pointed out by Caughey and Sekhon (2011) and Eggers, Fowler, Hainmueller,

Hall, and Snyder (2015), among others, it is important to test the validity of the

identifying assumption when applying the RD methodology to an election setting.

One test they propose is to check for a discontinuity in the density of the sorting

variable at the threshold. Such a discontinuity would cast doubt on the identifying

assumption.

I test for a discontinuity in the density using methods proposed by McCrary (2008).

The idea of this test is to test for a discontinuity in the histogram of the forcing

variable. One bin corresponds to an observation, the value of the forcing variable

is given by the bin center and the outcome variable is given by the number of

observations within the bin. As in the baseline specification for my main estimation

results, the test uses local linear regression with a triangular kernel. McCrary

(2008) comments on bandwidth selection but his test does not require a specially

tailored bandwidth. Again, as in my baseline specification, I use the bandwidth

selection method of Imbens and Kalyanaraman (2012).

The results of the test are reported in Table 4.9. The test does not reject the null

hypothesis, no discontinuity in the density, for any of the three test bin sizes, and

with either the full dataset or the trimmed dataset. A graphical representation of

the test for bins with a 0.1 percentage point size can be found in Figure 4.3, the

p-values of the tests of Table 4.9 can also be found in Figure 4.4.

Another important test of the identifying assumption is to check for discontinuities

in pre-treatment covariates. Covariates that should not be affected by the treat-

ment and exhibit a discontinuity at the threshold would indicate that observations

close to the threshold but on different sides are not comparable, contrary to the

identifying assumption.

I test for a discontinuity in election variables, such as the number of people eligible

to vote, the total number of seats in the municipal council, whether the party list in
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question belongs to a major political party in Germany, and the population of the

municipality.9 The results of these tests are presented in Figure 4.4. The panel

on the left contains the regression for turnout in the election, as an example.

The panel on the right contains the p-values for the examined covariates. The

null hypothesis, no discontinuity at the threshold, is not rejected for any of these

covariates.

Ideally, I would also test for discontinuities in lags of the main outcome variables.

In other words, I would test for discontinuities in whether a party was running in

the previous election and in investment spending in the years prior to the election.

Unfortunately, I cannot conduct these tests, as the necessary data is not available

for a large part of my sample. This part includes the 1994 election round, as

there was no municipal election of this kind prior to 1994 and as the data for

municipal finances is only available from 1995 onwards. Similarly, it also includes

municipalities that underwent reorganization in the years prior to the election.

An important robustness check when using local linear regression is to investigate

the sensitivity of the results with respect to the choice of the bandwidth. I use the

optimal bandwidth proposed by Imbens and Kalyanaraman (2012). My main set

of estimation results in Tables 4.2 and 4.3 also contain results for half and twice the

optimal bandwidth. The sensitivity of the estimate with respect to the bandwidth

is depicted in Figure 4.5. Point estimates of the treatment effect are smaller for

larger bandwidths but remain statistically significant for all bandwidths in that

range, suggesting that my results are not critically driven by the bandwidth choice.

When using an RD approach, a common robustness check is to estimate the model

at pseudo-thresholds, at which treatment status does not change, as it does at the

true threshold. If there is a significant effect at many pseudo-thresholds, it is

questionable whether a significant effect at the true threshold can be attributed

to the change in treatment status. Including the estimation at the true threshold

0, I estimate the baseline model for 21 different thresholds, going from −2 to 2 in

0.1 increments. Figure 4.6 contains the z-statistics for these regressions. For in-

vestment spending as the outcome, I find one statistically significant discontinuity

at 0.9. For not running in the next election as the outcome, I find one statistically

significant discontinuity at the 10 percent level at 1.7. However, under the null

9 As major parties I classify the previously mentioned Christian Democratic “CDU”, the
Social Democratic “SPD”, the Greens, the pro-business “FDP”, and the far-left successor of the
ruling party of the GDR: “PDS”. Where a major political party merged with another party in
a municipality, the resulting joint party list is not classified as major.
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hypothesis, in which the z-statistic is distributed according to a standard normal

distribution, i.e., with mean 0, finding one significant value in 20 regressions is

expected.

Interestingly, the estimate of the discontinuity is not significant for pseudo-thresh-

olds close to the true threshold, i.e., for −0.1 and 0.1. This result indicates that

there are observations10 both very close to the threshold and with a substantial

difference in the average outcome variable contributing to the results of the baseline

estimation.

Instead of local linear regression, many researchers use polynomial regression in

RD frameworks. For robustness, I also estimate a polynomial regression. The

results can be found in Tables 4.10 and 4.11. For polynomials of order 3 to order

6 I find statistically significant effects, at least at the 10 percent level, that are

comparable to the estimates in the local linear regression in terms of magnitude.

In Section III.iii I present the reasons for choosing investment spending rather than

overall spending as my measure of public spending. Nevertheless, I should find at

least comparable effects for overall spending, as investment spending contributes

to overall spending. In Table 4.12 I report estimation results with (trimmed)

overall gross spending as the outcome variable instead of investment spending.

For the baseline specification I do not find a statistically significant treatment

effect. The point estimate of 114 Euros is, however, comparatively close to the

point estimate of 142 Euros for investment spending. The fact that the point

estimate is slightly lower might be caused by the somewhat larger bandwidth

selected for overall spending. At half the optimal bandwidth, the treatment effect

is significant at the 10 percent level and similar in size to the treatment effect for

investment spending. It is considerably smaller and not significant at twice the

optimal bandwidth. With respect to controls, I find that the baseline estimate

for overall spending is only limitedly robust. Unlike the estimate for investment

spending, the estimate for overall spending reacts much more strongly to the

inclusion of population size and election year dummies. All in all, keeping in mind

the link between the point estimate and the bandwidth, I find similar effects for

overall spending and investment spending. This result suggests that the overall

spending effect reflects the investment spending effect, though with added noise,

which provides some justification for the choice of investment spending as my

measure of public spending.

10There are 22 observations within xi ∈ [−0.1, 0.1].
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Sensitivity to trimming

As mentioned in Section III.v, for the estimation with investment per capita as

the outcome variable I trim the data at the 95th percentile. This procedure might

cause some concern that the estimated effects are biased or that I only find sig-

nificant effects because, through trimming, I investigate a sample in which finding

an effect is more likely. This phenomenon is referred to as “selection on the de-

pendent variable”. I need to be careful in this regard, as the number of parties in

the municipal council might be more likely to affect the small and medium level

type of investment spending described in Section III.ii than very large investment

projects.

Graphically, the distribution of investment per capita and some robustness checks

with regard to trimming are presented in Figure 4.7. As depicted in the upper left

panel, estimating the baseline specification with the untrimmed dataset leads to

an estimate that is not too far in magnitude from the main estimation result for

the treatment effect of 142 Euros, though it is not statistically significant. The

distribution of the untrimmed investment per capita is shown in the top right

panel of the figure. The 95th percentile roughly coincides with Tukey’s upper

fence, i.e., the set of outliers in Tukey’s sense roughly coincides with the top 5

percent of the data. The bottom left panel shows how the point estimate changes

if a percentile other than the 95th is chosen for trimming, ranging from trimming

at the 90th percentile to no trimming at 100 percent. Other than when the data

is not trimmed or trimmed at a percentile higher than the 99th, the estimate of

the treatment effect is relatively stable in size and significant. The bottom right

panel contains an estimation of the discontinuity at the threshold with a dummy,

whether the observation was kept or trimmed. The null hypothesis, that the data

is not discontinuously trimmed at the threshold, is not rejected.

An alternative to trimming is to use investment in logs. The results of this esti-

mation are reported in Table 4.13. The estimates of the baseline specification and

the specifications with population as control are positive and significant at the 10

percent level. However, the estimates are no longer significant with the inclusion

of controls and at half the optimal bandwidth. While not very robust, these results

at least give some indication that the estimates obtained for the trimmed dataset

are not just spurious, and are not due to trimming.
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Nevertheless, it is important to remember that the data is trimmed and repre-

sents the bottom 95 percent of the sample when interpreting the main result.

Consequently, for my main result, I find an average effect of 142 Euros of addi-

tional investment spending with one additional party in the municipal council for

municipalities that do not have a very large amount of investment spending.

Conclusion

Recently, many researchers have used close elections as natural experiments. In

majoritarian election systems with two parties, elections with an almost 50-50

outcome are used to identify the causal effect of incumbency. In proportional

representation electoral systems, discontinuities in the seat allocation method can

also be used for identification. In a proportional representation context, there are

two margins of incumbency: the intensive margin, capturing how many seats a

party won, and the extensive margin, capturing whether the party won seats at

all. While intensive margin effects have been studied to a wide extent, there is

little evidence with regard to extensive margin effects. My paper is the first study

focused on the causal estimation of the effect of a small party winning represen-

tation in a proportional representation system. I apply a regression discontinuity

(RD) approach to municipal level data from the German state of Thuringia.

On the municipal level, I estimate the effect it has on public spending if a small

party narrowly wins seats and thereby increases the overall number of parties

with seats on the municipal council. The Political Economy literature generally

predicts a positive relationship of legislative fractionalization and spending and

therefore a positive effect. Using (trimmed) investment spending as my measure

of public spending, I find a large and statistically significant positive effect. One

additional party increases investment spending by 50 percent of the average level

of spending in my dataset. Decomposing this average effect, I find that the effect

is stronger where a party winning seats leads to a larger change to the composition

of the municipal council. A graphical inspection of the discontinuity reveals that

the estimated effect is driven by observations within a relatively narrow window

around the threshold. Therefore, I believe that further research to investigate

this relationship is warranted. Nevertheless, a large variety of robustness checks

and the fact that the decomposition of the effect produces results in line with



theoretical predictions give me confidence that the estimated effect is not just a

statistical anomaly.

On the party level, I find that parties that narrowly won representation are 35

percent less likely to drop out in the next election. Similar effects have been ob-

served in RD studies for individual candidates in the majoritarian context but not

for parties in the proportional representation context. This discontinuity leads to

a sample selection problem that precludes me from obtaining an unbiased esti-

mate of a potential vote share incumbency effect. Conducting a bounding exercise

instead, I find no evidence of an incumbency effect on the vote share in the next

election. The lower bound point estimate is negative, the upper bound point esti-

mate is positive, and neither is statistically significant. This result is in contrast to

Liang (2013), who finds an incumbency advantage of approximately 0.7 percent at

the extensive margin in the proportional representation context. However, given

the magnitude of his estimate, it could be that I simply lack statistical power to

find a similar sized statistically significant effect.

Overall, I find sizable effects at the extensive margin. This finding suggests that a

small shift in the election outcome reflecting only a slight shift in the preferences

of the electorate can have a comparatively large impact, if it leads to an additional

party winning seats. A better understanding of these effects can be useful in the

design of political institutions.
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Table 4.8: Summary statistics.

Mean Median SD Min Max Obs

Forcing variable - distance to the threshold in Percent: xi 0.44 0.41 1.77 -3.65 3.67 571
Number of parties winning seats 4.04 4.00 1.29 1.00 10.00 571
Baseline number of parties winning seats 3.45 3.00 1.23 1.00 9.00 571
Number of parties running 4.74 5.00 1.51 2.00 11.00 571
Number of parties running t+ 1 4.23 4.00 1.50 2.00 11.00 549
Herfindahl index 0.38 0.34 0.14 0.12 1.00 571
∆ Herfindahl index -0.06 -0.04 0.05 -0.28 0.00 571
Major political party 0.38 0.00 0.48 0.00 1.00 571
Party dropped out in t+ 1 (dummy variable) 0.47 0.00 0.50 0.00 1.00 549
Party merged with other party in t+ 1 (dummy variable) 0.03 0.00 0.18 0.00 1.00 549
Party split up in t+ 1 (dummy variable) 0.01 0.00 0.07 0.00 1.00 549
Population (election year) 7061.00 2614.00 17913.85 125.00 202400.00 571
Number of seats on council 15.25 14.00 8.03 6.00 50.00 571
Eligible to vote 5676.00 2083.00 14402.43 101.00 164800.00 571
Voters 3210.00 1364.00 7321.18 90.00 79970.00 571
Turnout 68.23 69.45 12.06 38.32 100.00 571
Turnout t+ 1 60.60 60.41 10.52 38.32 98.13 549
Percentage of invalid votes 4.50 4.06 2.05 0.00 20.66 571
Percentage of invalid votes t+ 1 4.45 3.89 2.21 0.00 20.66 549
Investment per capita in Euros (trimmed) 295.40 271.10 157.44 19.26 752.10 542
Investment per capita in Euros (untrimmed) 348.60 277.40 381.25 19.26 7092.00 571
Log Investment per capita in Euros 5.60 5.63 0.70 2.96 8.87 571
Gross spending per capita in Euros (trimmed) 1187.00 1141.00 296.21 550.50 2058.00 542
Gross spending per capita in Euros (untrimmed) 1301.00 1162.00 727.14 550.50 9600.00 571
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Table 4.9: Histogram test, as proposed by McCrary (2008). Columns 1-3
contain tests of the full dataset with various bin sizes. Columns 4-6 contain

tests of the data trimmed with respect to investment per capita.

(1) (2) (3) (4) (5) (6)

Treatment effect -0.18 0.64 0.66 0.35 0.88 1.22
(0.47) (1.88) (1.90) (0.63) (1.75) (1.77)

Bin size 0.025 0.050 0.100 0.025 0.050 0.100

Bandwidth 2.82 1.04 1.04 1.47 1.03 1.03

Within bandwidth
Obs 226 42 20 118 42 20

Overall
Obs 320 160 80 320 160 80

Significance levels: * 0.1, ** 0.05. Standard errors are robust. Estimates are obtained using
local linear regression with a triangular kernel. The treatment effect corresponds to a potential

discontinuity in the density of the sorting variable at the threshold. The data for the test is
based on a histogram of the forcing variable on the support [-4,4]. Each observation

corresponds to a bin. The value of the outcome variable is the number of observations within a
bin, the value of the forcing variable is the bin center. Bandwidth is computed according to

Imbens and Kalyanaraman (2011).
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Table 4.10: Estimating the treatment effect using polynomial regression in-
stead of local linear regression - Outcome: Investment per capita in Euros

(trimmed).

(1) (2) (3) (4)

Treatment effect 125.12 ** 161.08 ** 166.79 ** 196.91 **
(49.14) (60.66) (72.11) (85.40)

Degree of polynomial 3 4 5 6

Obs 542 542 542 542
Clusters 358 358 358 358
AIC 7026.451 7029.470 7033.453 7036.709

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality.

Table 4.11: Estimating the treatment effect using polynomial regression in-
stead of local linear regression - Outcome: Party not running in t+ 1 (dummy

variable).

(1) (2) (3) (4)

Treatment effect -0.43 ** -0.31 * -0.54 ** -0.66 **
(0.14) (0.17) (0.21) (0.25)

Degree of polynomial 3 4 5 6

Obs 549 549 549 549
Clusters 353 353 353 353
AIC 720.8352 723.0383 723.5698 726.6073

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality.
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Table 4.12: Estimating the treatment effect using local linear regression -
Outcome: Gross spending per capita in Euros (trimmed).

(1) (2) (3) (4) (5) (6)

Treatment effect 114.42 90.93 94.79 73.04 176.04 * 49.64
(79.29) (77.78) (76.77) (76.32) (93.87) (61.56)

Bandwidth 1.09 1.03 1.08 1.00 0.54 2.17

Within bandwidth
Obs 220 208 220 201 120 391
Clusters 179 171 179 165 108 284

Overall
Obs 542 542 542 542 542 542
Clusters 360 360 360 360 360 360

Controls
Population No Yes No Yes No No
Election round No No Yes Yes No No

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. The treatment effect

corresponds to the τ̂ that solves (4.4). The estimates α̂, β̂, γ̂, and δ̂ are not reported.
Bandwidth in columns 1-4 is computed according to Imbens and Kalyanaraman (2011). The

bandwidth in columns 5 and 6 is half and twice the bandwidth of column 1, respectively.
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Table 4.13: Estimating the treatment effect using local linear regression -
Outcome: Log Investment per capita in Euros.

(1) (2) (3) (4) (5) (6)

Treatment effect 0.38 * 0.37 0.32 0.32 0.52 0.27 *
(0.23) (0.23) (0.21) (0.22) (0.32) (0.16)

Bandwidth 0.89 0.89 0.90 0.90 0.45 1.79

Within bandwidth
Obs 187 187 187 187 101 355
Clusters 156 156 156 156 94 263

Overall
Obs 571 571 571 571 571 571
Clusters 371 371 371 371 371 371

Controls
Population No Yes No Yes No No
Election round No No Yes Yes No No

Significance levels: * 0.1, ** 0.05. Standard errors are clustered by municipality. Estimates are
obtained using local linear regression with a triangular kernel. The treatment effect

corresponds to the τ̂ that solves (4.4). The estimates α̂, β̂, γ̂, and δ̂ are not reported.
Bandwidth in columns 1-4 is computed according to Imbens and Kalyanaraman (2011). The

bandwidth in columns 5 and 6 is half and twice the bandwidth of column 1, respectively.
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Figure 4.3: Robustness check - checking for a discontinuity in the density of
the forcing variable as proposed by McCrary (2008). Panels contain a histogram
of the forcing variable overlaid with a local linear regression on both sides of

the threshold. Estimates of the discontinuity are also reported in Table 4.9.
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(a) Bin size 0.1 - full dataset.
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(b) Bin size 0.1 - data trimmed with
respect to investment per capita.
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Figure 4.4: Robustness check - checking for discontinuous sorting at the
threshold.
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Figure 4.5: Robustness check - estimated treatment effect for different band-
widths.
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Figure 4.6: Robustness check - checking for significant discontinuities at other
values of xi besides the true threshold. z-value on the vertical axis. Dashed lines

mark boundary of 10 and 5 percent significance.
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Figure 4.7: Robustness check - sensitivity of the estimation results for invest-
ment per capita with respect to trimming.
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