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Abstract

Material flow simulation is in increasing need of multi-scale models.
On the one hand, macroscopic flow models are used for large scale simula-
tions with a large number of parts. On the other hand microscopic models
are needed to describe the details of the production process. In this pa-
per we present a hierarchy of models for material flow problems ranging
from detailed microscopic, Discrete Element Method (DEM) type, mod-
els to macroscopic models using scalar conservation laws with nonlocal
interaction terms. Numerical simulations are presented on all levels of
the hierarchy and the results are compared to each other for several test
cases.

Keywords: interacting particles, DEM material flow simulation, diffusive
limits, hydrodynamic limits, mean field equations

1 Introduction

Multi-scale models are needed for the simulation of material flow problems in
large scale plant simulation, see e.g. [1]. Models on the macroscopic, as well as
the microscopic and intermediate level of description are in use to describe such
problems [2, 3]. In the present work we present a hierarchy of models rang-
ing from detailed microscopic models of Newton-dynamics type to macroscopic
models based on (systems of) conservation laws. Each level of the hierarchy is,
at least on a formal level, derived from the underlying one.

Methods to deal with problems involving material flow or granular flow of
materials have been developed on different levels of description by many au-
thors. On the microscopic level methods, so called Discrete Element Methods
(DEM), based on system of ordinary differential equations are widely used, see
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for example [4, 5, 6]. On the macroscopic or hydrodynamic level methods are
derived via phenomenological arguments or via kinetic theories. Examples can
be found in [7, 8, 9]. From an engineering point of view, microscopic parti-
cle methods like DEM are a common tool to simulate material flow systems.
However, for large systems the computational time increases rapidly with the
number of particles. As an alternative, one can think of models independent of
individual parts, i.e. macroscopic models.

In this work, we closely follow a procedure for interacting particle systems
used, for example, in the derivation of hydrodynamic equations in swarming
problems, see [10] or crowd dynamics see [11]. We derive hydrodynamic equa-
tions via a kinetic mean field limit and further scalar macroscopic approxima-
tions via simple formal arguments. The hydrodynamic equations as well as the
scalar macroscopic approximations are integro-differential equations involving
a non-local term. Interestingly, the scalar non-local macroscopic models also
appear in crowd dynamics applications, cf. [12, 11]. Moreover, we note that
similar scalar models are used in [8] for material flow simulation.

All of the above macroscopic models are finally numerically solved by a
macroscopic mesh free particle method. We present different experimental se-
tups as well as computational times.

Finally, we note that a method which is close in spirit to our numerical
method, has been developed in [13, 14, 15] and is called the averaging method.

The paper is organized in the following way: in section 2 the microscopic
model is presented along the lines of [6]. In section 3 the mean field and hydrody-
namic limit of the microscopic system are derived. Section 4 contains the scalar
limit equations for the density with nonlocal interaction or diffusion terms. In
section 5 the models are applied and compared using different problems from
material flow simulation.

2 The microscopic granular flow model

We consider a microscopic model for simulating material flow. In the following,
we restrict our investigations for simplicity to two space dimensions, i.e., for
example, a situation with a single layer of particles on a transportation belt.
The model is given by a two-dimensional interacting particle system as used in
Discrete Element Methods (DEM), see e.g. [6]. We note that the exact form of
the microscopic system is not relevant for the following considerations. With
xi ∈ R

2, i = 1, . . . , N, and velocity vi ∈ R
2 the equations of motion are

dxi

dt
= vi, (2.1a)

m
dvi

dt
=
∑

i6=j

F(xi − xj ,vi − vj) +G(vi). (2.1b)

Here, the bottom friction G is defined by

G(v) = −µbmg
v − vT

‖v− vT‖
. (2.2)
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Here, g is the gravitational constant, m is the mass and µb is the bottom friction
coefficient. The velocity of the belt is denoted by vT . Analogous to the proce-
dure in [6] for the interaction friction forces (see below) one might introduce a
regularized version of the bottom friction force

G(v) = −min
(

µbmg, γb‖v − vT‖
) v − vT

‖v − vT‖
. (2.3)

Here, γb is the bottom viscous damping. Moreover, using the Heaviside function
H , the interaction force is given by a spring-damper model of the following form

F(x,v) = H(2R− ‖x‖)
(

fn(x,v) + f t(x,v)
)

(2.4)

with
fn(x,v) = fnel(x,v) + fndiss(x,v). (2.5)

The force F(x,v) is active whenever particles collide, i.e., 2R > ‖x‖, where R
is the radius of the particles. Otherwise, it is inactive and the movement of
particles is solely influenced by the bottom friction (2.3).

The elastic repulsive force is given by

fnel(x,v) = knn(2R− ‖x‖), (2.6)

where
n = n(x) =

x

‖x‖
(2.7)

is the normal unit vector and kn is the normal spring constant. The normal
dissipative force is given by

fndiss(x,v) = −γn〈v,n〉n (2.8)

with γn the normal viscous coefficient. The tangential friction force is

f t(x,v) = −min
(

γt‖v
t‖, µ‖fn‖

) vt

‖vt‖
, (2.9)

where
vt = v − 〈v,n〉n (2.10)

is the tangential vector pointing into the direction of the tangential component
of the relative velocity. The Coulomb friction coefficient is µ and γt is the
tangential viscous damping.

Remark 2.1 The present paper concentrates on the modeling and simulation
of material flow on a transportation belt and 2-D situations. However, the
derivation of the model hierarchy as well as the particle method presented later
are in no way restricted to a 2-D situation.
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3 Mean field and hydrodynamic limit

Using the so-called ’weak coupling scaling’ assumption [16, 17] one rescales the
interaction potential with the factor M/N where N denotes the total number
of particles and M the total mass in the problem. Usually M is chosen as
M = 1. Thus, our scaled microscopic model is given by equations (2.1) with a
1/N scaling of the interaction term, i.e.

dxi

dt
= vi, (3.1a)

m
dvi

dt
=

1

N

∑

i6=j

F(xi − xj ,vi − vj) +G(vi). (3.1b)

Letting N tends to infinity, one can derive in the limit of a large number
of particles the associated mean field equation. For the derivation we refer to
[18, 10] or [11].

One obtains for the distribution function f = f(x,v) of the particles the
mean field equation

∂tf + v · ∇xf + Sf = 0 (3.2)

with force term

Sf = ∇v ·

(

1

m
G(v)f(x,v)

)

+∇v ·

(
∫ ∫

1

m
F(x − y,v −w)f(y,w)dwdyf(x,v)

)

.

(3.3)

For the following we define the density ρ as

ρ(x) :=

∫

f(x,v)dv (3.4)

and the momentum by

ρu(x) :=

∫

vf(x,v)dv. (3.5)

Since the total mass M is normalized we have
∫

ρ(x)dx = 1. (3.6)

In the following, we derive from the mean field equation the hydrodynamic
limit equations. Hydrodynamic limits for similar equations have been derived
in [10, 19]. We consider the mean field equation

∂tf + v · ∇xf + Sf = 0. (3.7)

We integrate the kinetic equation against dv and v dv and neglect fluctuations,
i.e., we use a monokinetic distribution function to close the resulting equations.
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The latter means that the velocity distribution function is assumed to be con-
centrated in the direction of the mean velocity, i.e., see for example [10]

f ∼ ρ(x)δu(x)(v). (3.8)

This gives the continuity equation

∂tρ+∇x · (ρu) = 0 (3.9)

and the momentum equation

∂tu+ u · ∇xu =
1

ρ

∫

1

m
G(v)f(x,v)dv (3.10a)

+
1

ρ

∫ ∫ ∫

1

m
F(x− y,v −w)f(y,w)dwdyf(x,v)dv. (3.10b)

Using now the monokinetic closure we obtain
∫ ∫ ∫

F(x− y,v −w)f(y,w)dwdyf(x,v)dv (3.11a)

=

∫ ∫ ∫

F(x − y,v −w)ρ(y)δu(y)(w)dwdyρ(x)δu(x)(v)dv (3.11b)

= ρ(x)

∫

F(x− y,u(x) − u(y))ρ(y)dy (3.11c)

=: ρ(x)F⋆(ρ,u)(x) (3.11d)

and altogether an equation for the mean velocity

∂tu+ (u · ∇x)u =
1

m
G(u) +

1

m
F⋆(ρ,u) (3.12)

which is solved together with the continuity equation (3.9).

4 Scalar limit equations

Scalar limit equations for interacting particle systems have been derived, for
example in [10, 20]. Rigorous results on the convergence of hydrodynamic equa-
tions with damping to the porous media equation can be found, for example
in [21]. We proceed as follows. Starting from the hydrodynamic momentum
equation we use a quasi-stationary approximation of the momentum equation,
setting time and spatial derivatives to zero. This can be interpreted here as
considering comparatively small values of the mass m. We obtain

G(u) = −F⋆(ρ,u) (4.1)

with G(u) given by

G(u) = −min
(

µbmg, γb‖u− vT‖
) u− vT

‖u− vT‖
(4.2)
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and

F⋆(ρ,u) =

∫

F(x − y,u(x) − u(y))ρ(y)dy. (4.3)

We have to determine a solution u of this integral equation for fixed ρ. The
result is used to close the continuity equation. In the general case the existence
of a solution of the equation is not obvious. However, a simplified version of the
equation is easily solved. For small values of u− vT we have

G(u) = γb(vT − u). (4.4)

Moreover, we assume that the elastic normal force dominates the friction forces.
This means F does not depend on u or F⋆(ρ,u) = F⋆ρ. Then, we have to solve

γb(vT − u) = −F ⋆ ρ (4.5)

or

u = vT +
1

γb
F ⋆ ρ. (4.6)

The resulting scalar equation is then

∂tρ+∇x · (vTρ) +∇x ·
( 1

γb
(F ⋆ ρ)ρ

)

= 0. (4.7)

Remark 4.1 One might derive an associated diffusive equation as well, com-
pare [20], for the more complicated case of swarming models. To do so, we write
the force F as a gradient field with F = −∇U . Using the above simplifications
we have F(x) = kn(x)(2R − ‖x‖) for ‖x‖ < 2R and

U = kn

(

2R2 − ‖x‖(2R−
‖x‖

2
)

)

(4.8)

for ‖x‖ < 2R. Approximating the potential U by a δ distribution, i.e.

U(y) ∼ Dδ0(y) (4.9)

with the constant D > 0 given by

D =

∫

U(y)dy (4.10)

and using the symmetry of the convolution

∫

∇xU(x− y)ρ(y)dy = −

∫

∇yU(x− y)ρ(y)dy =

∫

U(x− y)∇yρdy (4.11)

and

F ⋆ ρ = −

∫

U(x− y)∇yρdy ∼ −D∇xρ (4.12)

6



we obtain the following equation

∂tρ+∇x · (vTρ) = D∇x ·
( 1

γb
ρ∇xρ

)

. (4.13)

Thus, this procedure reduces the problem to a porous media equation with drift
term.

Remark 4.2 We note that (4.7) is similar to an equation considered in [12] for
modeling pedestrian crowds and used in [8] for material flow simulation. There,
equations of the form

∂tρ+∇x · (vTρ) +∇x ·

(

∇x(η ⋆ ρ)
√

1 + ‖∇x(η ⋆ ρ)‖2
ρ

)

= 0 (4.14)

have been considered. This is equivalent to (4.7) if −η is identified with the
potential U , where −∇xU = F and

1

γb
=

1
√

1 + ‖∇x(η ⋆ ρ)‖2
. (4.15)

5 Numerical investigations

In this section we present a series of numerical experiments on the micro-
scopic equations (3.1), as well as the hydrodynamic and scalar limit equations
(3.9),(3.12) and (4.7). Different situations are studied and various patterns are
investigated. In general, we observe the following: For a large number of par-
ticles microscopic and hydrodynamic equations yield similar results in all cases
studied here. The scalar limit equation deviates from these solutions in certain
cases. Qualitatively they still give similar results. This deviation is, in the
examples and for the parameters considered here, essentially due to using the
quasi-stationary approximation of the momentum equation described above in
the derivation of the scalar limit equation. Using (2.3) instead of (4.4) and ne-
glecting the friction forces fndiss and f t in the hydrodynamic simulation does not
change the results significantly for the parameters considered in the following.
From the point of view of computation time all equations require approximately
the same amount of time per particle used in the simulations. The advantage of
using the macroscopic limit equations lies in the fact that, in particular, for sit-
uations with a large number of microscopic particles the number of macroscopic
particles can be strongly reduced obtaining still very similar results.

5.1 Numerical methods

The microscopic equations are solved using a simple explicit Euler scheme for
systems of ordinary differential equations. For a straightforward implementa-
tion, the complete distance matrix (di,j) = |xi−xj | has to be computed in order
to evaluate the interaction potential. Since this is costly, there is a restriction
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on the number of particles which can be simulated in this way. A more sophis-
ticated implementation uses nearest neighbor lists. In the present microscopic
simulations as well as in the particle method for the hydrodynamic equations
an implementation based on a nearest neighbor list is used.

The hydrodynamic limit equations (3.9),(3.12) are considered in detail nu-
merically using a macroscopic particle method, see [22]. The particle method is
based on a Lagrangian formulation of the hydrodynamic equations (3.9),(3.12):

dx

dt
= u, (5.1a)

dρ

dt
= −ρ∇x · u, (5.1b)

du

dt
=

1

m
G(u) +

1

m
F⋆(ρ,u), (5.1c)

where d/dt = ∂t+u·∇x. Quantities, like, for example, the derivatives, appearing
on the right hand side are approximated at the particle location x from the
surrounding neighbor particles at xj using weight functions. In order to restrict
the number of neighboring point we associate a weight function w = w(xj−x, h)
with small compact support of size h. In the present computation we use a
Gaussian weight function in the following form

w(xj − x, h) =

{

exp(−α
‖x,−x‖2

h2 ), if
‖xj−x‖

h
≤ 1,

0, else,
(5.2)

where α is a positive constant and is considered to be equal to 6.25. The radius
h is approximately chosen 4 times the particle radius to include enough particles
for a stable approximation of the equations, see [22] for details. We note that
smoothing functions are also used in the averaging methods [15] mentioned in
the introduction. The integral over the interaction potential is in most cases
evaluated by a straightforward integration rule:

F⋆(ρ,u) ∼
∑

j

F(x− xj ,u(x) − uj)ρjdVj , (5.3)

where dVj is the local area around a particle determined by a nearest neighbor
search. In case the numerical simulation is underresolved a higher order approx-
imation of the integral has to be implemented. We refer to [23] for details. The
resulting system of ordinary differential equations is then solved again by a first
order time discretization method. Diffusive terms can be included as well in a
straightforward way. Obviously, this shows that the actual macroscopic com-
putations are very similar to the microscopic ones. A major difference is the
procedure to evaluate the interaction term. In the microscopic case we compute

1

N

∑

j

F(x− xj ,v − vj) (5.4)
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instead of the above expression. If the values of ρj and dVj are all equal then
using

1 =

∫

ρ(x)dx ∼
∑

j

ρjdVj (5.5)

it is easy to see that ρjdVj = 1/N and both terms (5.3) and (5.4) are equal.
However, in the macroscopic situation the particles are not physical particles
as in the microscopic case. They play the role of discretization points. In par-
ticular, if the number of ’real’ particles is very large, that does not mean that
the number of macroscopic particles in the particle method has to be increased
in the same way. The number of macroscopic particles is only chosen accord-
ing to accuracy considerations. On the other hand, the macroscopic equations
considered here are derived under the assumption of a monokinetic distribution
function. Thus, they are not able to capture all microscopic patterns, compare,
for example, the appearance of double mills in microscopic swarming simula-
tions, see [10].

Finally, the scalar equation is solved as well with a particle method. In this
case the so called diffusion velocity methods, see [24], are used. This means,
equation (4.7) is written as a pure transport problem

∂tρ+∇x · (uρ) = 0 (5.6)

with

u = vT +
1

γb
F ⋆ ρ (5.7)

and then solved in a Lagrangian way. The approximation of the convolution
term is done as for the hydrodynamic models. Boundary conditions are realized
by using fixed boundary particles with a suitable interaction potential.

5.2 Numerical comparison of the microscopic, hydrody-

namic and diffusive equations

In this section we investigate different configurations for material flow in 2-D
ranging from a simple diffusion problem to modeling material on a conveyor
belt with slides and junctions. For the following comparisons we consider the
microscopic solution as the reference solution and compare the hydrodynamic
and scalar approximation with the microscopic solution. The first example
treats diffusion of particles, compare also [23]. Examples 2, 3 and 4 describe
test cases relevant for material flow problems.

5.2.1 Example 1 (Diffusion):

This example studies the diffusion of the density without motion of the belt and
boundary conditions. It has been partially discussed in [23]. In this situation
particles are artificially compressed in a region in the center of the domain. As
time proceeds the support of the density becomes larger and larger, compare
the Barenblatt solution of the porous media equation [25]. For the microscopic
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Figure 1: Comparison of the density determined from microscopic,
hydrodynamic and scalar model for short and long times.

model this terminates if the compact support of the interaction kernels of the
finite number of particles do not overlap any more.

We consider a 2-D situation, a friction force

G(v) = −v, (5.8)

that means we choose vT = 0, µb = ∞, γb = 1. Moreover, we choose m = 1,
where N is the initial number of particles and R = 0.0375, kn = 3/(2R4π)
such that D = 2. Intermolecular friction is neglected, i.e. γn = µ = γt = 0.
We use 17 383 particles for the microscopic and 6 400 particles representing the
’grid’ for the macroscopic model. In Figure 1 the densities determined from the
microscopic, the hydrodynamic and the scalar approximation are compared to
each other for short and long time t = 0.2, 0.6.

One observes in Figure 1(b) that all solutions have a similar long time behav-
ior, compare [21]. For shorter times hydrodynamic and microscopic solutions
still show a similar behavior, whereas the scalar solution is at least qualitatively
correct (for example, the speed of propagation) but shows quantitative devia-
tions (stronger diffusivity). This is quantified in Figure 2, where the distance
(in the L2-norm) between the hydrodynamic and scalar solution is shown versus
time.

The difference in approximation quality between hydrodynamic and scalar
approximation is clearly observed. This could be rephrased in terms of the
assumptions leading to the different approximations. In the present simulations,
the assumptions leading to the hydrodynamic approximation (chaos assumption
and monokinetic closure) are obviously more justified for the present set of
parameters than neglecting the inertia terms, which finally leads to the scalar
approximation. This is due to the fact that D =

∫

U(y)dy = 2 and γb =
1. In this case the scalar approximation is still far from the hydrodynamic
solution. If D and γb would be chosen large, we would observe that microscopic,
hydrodynamic and scalar models yield very similar solutions.
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Figure 2: Comparison of the L2-error between hydrodynamic (dotted
line) and scalar model (straight line).

Remark 5.1 Finally, we remark that a comparison of the computation times
for microscopic, hydrodynamic and scalar models for the present example can be
found in [23]. This comparison clearly shows the advantage of using macroscopic
particle methods compared to microscopic simulations. In particular, computa-
tion time is strongly reduced using the macroscopic method, if the number of real
microscopic particles in a system is large.

5.2.2 Example 2 (Slider):

This and the following examples are used to compare the time evolution for
the different models in a situation where diffusion is small compared to the
advection given by the belt motion. The second test example shows the time
evolution in a channel flow with a slider. We choose the parameter m = 1/N ,
R = 0.375, vT = (2, 0), µb = 200×m,µ = 2×m, γt = 2×m. Additionally, we
set here γb = 60, kn = 2 × 107 × m and γn = 4 × 106 × m. First we consider
a situation with a fixed number of microscopic particles entering the domain
from the left and being transported on the conveyor belt to the right. For
this comparison we use N = 246 microscopic particles and the same number of
’grid’-particles for the macroscopic solution Figure 3 shows the time evolution
of the particles for the microscopic, macroscopic and scalar model for times
t = 1.125, 1.5, 2.0. Quantitatively all three solutions have a similar behavior.
Qualitatively, the hydrodynamic solution shows a slightly closer agreement with
the microscopic one as the scalar solution. The computations times for the
three models are similar in this case, since the number of particles used are
equal. Figure 4 shows the amount of cargo that passes the slider. The solutions
show the relative number of particles in the region in front of the obstacle at
x = 4. The hydrodynamic solution captures the time decay of the microscopic
outflow nearly exactly, see Figure 4. In particular, it is a better approximation
of the time dependent microscopic outflow than the outflow determined from
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the scalar equation.
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Figure 3: Distribution of particles for microscopic, hydrodynamic and
scalar models at different times.
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5.2.3 Example 3 (Slider with constant inflow):

Next we consider a constant stream of ingoing particles. We use this example
to compare the solutions of the scalar and hydrodynamic model in more detail.
The following figures show the distribution of particles for a long time t until
a stationary state is obtained. Figure 5 shows the densities for hydrodynamic
and scalar model.
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Figure 5: Density for hydrodynamic and scalar models at large time
for constant stream of particles.

Figure 6 shows the velocities for hydrodynamic and scalar model.
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Figure 6: Velocity field for hydrodynamic and scalar models at large
time for constant stream of particles.

Figure 7 shows the densities and velocities in x-direction for hydrodynamic
and scalar model for the above computation along a cut at y = 1.

For all quantities one observes a good coincidence between scalar and hy-
drodynamic model for the present situation.
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5.2.4 Example 4 (Orthogonal slider):

The same situation as in Example 2 is shown in Figure 8 with an orthogonal
slider. Only the solution of the hydrodynamic model is presented. The figures
show that most of the particles pass through the channel. A small part of the
particles, however, is trapped by the orthogonal slider.
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Figure 8: Distribution of particles for hydrodynamic models t =
0, 0.85, 1.75 and t = 20.0 for orthogonal slider.

A comparison of the outflow is given as for the previous example in Figure
9. Again there is a good coincidence between hydrodynamic and microscopic
model. Only the final number of trapped particles differs slightly.
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Figure 9: Comparison of the outflow. We measure the normalized
number of parts at x = 2.

5.2.5 Example 5 (Junction):

Finally,we consider a junction modeled by a conveyor belt from left to right with
an ingoing belt from below. The belt speeds are orthogonal to each other. The
parameters are chosen as above. Again the hydrodynamic model is shown. The
comparison for the particles is shown in Figure 10.
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Figure 10: Distribution of particles for hydrodynamic models t =
0.0, 1.0, 1.5 and t = 3.0 for a junction.

We observe a collision of the bulk of particles in the junction. This results in a
merger of the bulks and a small part of particles dragged behind the bulk part.
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A comparison of the outflow is given as for the previous examples in Figure
11. There is a perfect fit between hydrodynamic and microscopic solution,
whereas the simpler scalar model gives a solution which deviates slightly from
the microscopic one.
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Figure 11: Comparison of the outflow. We measure the normalized
number of parts before a vertical line at x = 6.

6 Concluding Remarks

We have presented a numerical discussion of a model hierarchy for material or
granular flow simulations. All models show a quantitatively correct behavior.
The advantage of considering a system of equations for density and momentum,
i.e. a hydrodynamic approximation, compared to a scalar (nonlocal) conserva-
tion law is clearly observed for certain parameter values. Lagrangian particle
methods are a natural choice for the above problems. Further research will
concentrate on applying the above methods to more complex and large scale
material flow problems like, for example, particles of different size or mass or
three dimensional problems with more complex geometry.
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[11] R. Etikyala, S. Göttlich, A. Klar, S. Tiwari, Particle methods for pedes-
trian flow models: from microscopic to non-local continuum models. Math.
Models Methods Appl. Sci. 24 (2014), 2503-2523.

[12] R. Colombo, M. Garavello, M. Lecureux-Mercier, A Class of Non-Local
Models for Pedestrian Traffic. Math. Models Methods Appl. Sci. 22 (2012)
1150023.

[13] M. Babic, Average balance equations for granular materials. Int. J. Eng.
Sci. 35 (1997) 523-548.

[14] H.P. Zhu, A.B. Yu, Averaging method of granular materials. Phys. Rev. E
66 (2002) 021302.

[15] H.P. Zhu, A.B. Yu, Micromechanic modeling and analysis of unsteady-state
granular flow in a cylindrical hopper. J. Engrg. Math. 52 (2005) 307-320.

17



[16] W. Braun, K. Hepp, The Vlasov Dynamics and Its Fluctuations in the 1/N
Limit of Interacting Classical Particles. Commun. Math. Phys. 56 (1977)
101-113.

[17] H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical me-
chanical systems of interacting particles. Trans. Fluid Dynamics 18 (1977)
663-678.
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